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Abstract Recently Böhmer and Lobo have shown that a metric due to Florides,
which has been used as an interior Schwarzschild solution, can be extended to
reveal a classical singularity that has the form of a two-sphere. Here the singular-
ity is shown to be a naked scalar curvature singularity that is both timelike and
gravitationally weak. It is also shown to be a quantum singularity because the
Klein–Gordon operator associated with quantum mechanical particles approach-
ing the singularity is not essentially self-adjoint.

Keywords Singularity, Quantum singularity, Essentially self-adjoint

1 Introduction

An unusual singularity has been described by Böhmer and Lobo [1]. They studied
a constant-density version of a spherically-symmetric spacetime due to Florides
[2], which has been used as an interior Schwarzschild solution with vanishing
radial pressure, and which can be interpreted as an “Einstein cluster” [3]. It has
the metric

ds2 =− dt2√
1− (r/R)2

+
dr2

1− (r/R)2 + r2dΩ
2, (1)

where R =
√

3/8πρ0 in terms of the constant energy density ρ0, and dΩ 2 = dθ 2 +
sin2

θdφ 2. The coordinate ranges are r < R,−∞ < t < ∞,0≤ θ ≤ π , and 0≤ φ <
2π .
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Böhmer and Lobo transform to a new coordinate α = sin−1(r/R) and then
rescale t to give

ds2 =− dt2

cosα
+R2dα

2 +R2 sin2
α dΩ

2. (2)

The spatial portion of the global extension of this solution can be considered
to be a three-sphere containing a single equatorial two-sphere. (In what follows
however we interpret the angle α to be a radial coordinate and the spatial part of
the metric to be the well-known “round metric” of a three-sphere.) The radial
coordinate α can either take the values 0 < α ≤ π/2 (half a three-sphere) or
−π/2 ≤ α ≤ π/2 (two half three-spheres joined at α = 0 with α =−π/2 identi-
fied with α = +π/2.) 1

The Böhmer–Lobo spacetime is static, spherically symmetric, regular at α = 0,
and it has vanishing radial stresses [1]. It is also Petrov Type D and Segre Type
A1 ([(11) 1, 1]) 2, and it satisfies the strong energy condition automatically and
the dominate energy condition with certain more stringent requirements [2]. Ver-
tical cuts through the three-sphere define latitudinal two-spheres; in particular, the
equatorial cut at α = π/2 is a two-sphere on which scalar polynomial invariants
diverge and the tangential pressure diverges as well. In the following sections we
will explore the classical and quantum singularity structure of this spacetime.

2 Classical singularities

We use a variation of the Ellis and Schmidt classification scheme [4] to define
singular points as the endpoints of incomplete geodesics in maximal spacetimes.
Singularities come in many types [4]: the strongest are scalar curvature singulari-
ties, in which approaching particles experience infinite tidal forces and there is at
least one scalar quantity constructed from the metric tensor gab, the antisymmetric
tensor ηabcd , and the Riemann tensor Rabcd , along an incomplete geodesic ending
at a point q, which is unbounded as the geodesic approaches q (see, for example,
[4; 5]).

Böhmer and Lobo show that scalar polynomial invariants of the Riemann ten-
sor diverge at α = π/2. To verify that this is a true singularity we must also show
that it can be reached by causal geodesics. The spacetime is spherically symmetric,
so it is sufficient to study geodesics in the equatorial (θ = π/2) plane. A complete
set of first integrals of the timelike (−1) or null (0) geodesic equations is [1]

ṫ = ε cosα φ̇ =
`

sin2
α

(3)

R2
α̇

2 +
(
−ε

2 cosα +
R2`2

sin2
α

)
= {−1,0} (4)

where ε and ` are constants, with ε ≥ 1. We can therefore identify an effective
potential

Veff =−ε
2 cosα +

R2`2

sin2
α

(5)

1 See Figs. 1 and 2 in Böhmer and Lobo.
2 Calculated using CLASSI.
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Fig. 1 This is the uv-plane; it indicates the singularities in the Böhmer–Lobo spacetime and a
representative timelike geodesic which is repelled from the singularity

which, in the case of radial (` = 0) geodesics, increases from −ε2 to zero as α

increases from 0 to π/2. Therefore radial timelike geodesics beginning at small
α cannot reach α = π/2; they are reflected by the potential barrier back to small
α at α = cos−1(1/ε2). (Geodesics with ` 6= 0 are turned back at even smaller
values of α .) Therefore the apparent singularity at α = π/2 is timelike geodesi-
cally complete, so timelike geodesic observers never “fall into” the singularity at
α = π/2.

The equation of motion for radial null geodesics is

R2
α̇

2 +Veff = 0 (6)

with the same effective potential, so they are able to penetrate all the way to the
singularity. In fact, the affine parameter λ along a null geodesic is finite as α →
π/2, since

λ =
R
ε

π/2∫
0

dα√
cosα

< ∞. (7)

The spacetime is therefore null geodesically incomplete at α = π/2. This
incompleteness is the necessary condition to confirm that the two-sphere at α =
π/2 is singular.

We would also like to know if the singularity is timelike, spacelike, or null. In
double-null form the Böhmer–Lobo metric becomes

ds2 =−2e−2 f (u,v)dudv+ r2dΩ
2, (8)

where u = t + g(r) and v = t − g(r), with g(r) =
∫ r

r0
dr(1− (r/R)2)−1/4. If g(r)

goes to infinity at the singularity, the singularity is null, but if g(r) remains finite
the singularity is timelike (see, e.g., [6]). Here g(r) remains finite as r → R, so the
singularity is timelike, as illustrated in Fig. 1. It is also clearly naked.

It is also interesting to know if the two-sphere is a strong or weak singularity.
In the case of null geodesics a singularity is Tipler-strong if an area tangential to
the geodesics, with sides represented by the tangential Jacobi fields, goes to zero
as the singularity is approached [4; 7]. Nolan [8] has shown that in spherically
symmetric geometries the tangential Jacobi fields have the norm

η(λ ) = r(λ )
λ∫

λ0

dλ ′

r2(λ ′)
(9)

where r is the radius and λ is an affine parameter along the null geodesic. These
integrals are finite and nonzero, so there is no strong singularity. The two-sphere
singularity is therefore gravitationally weak, which is in accord with a general
theorem of Nolan that a radial null geodesic terminating at a non-central (r 6= 0)
singularity terminates in a gravitationally weak singularity [7].
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3 Quantum singularities

Massive or massless test particles following timelike or null geodesics play an
essential role in defining classical singularities. Classical particles do not exist,
however, which suggests the need to find a better definition of singularities.
Horowitz and Marolf [9], following Wald [10], have proposed the following proce-
dure for using quantum mechanical particles to identify singularities: They define
a spacetime to be quantum mechanically nonsingular if the evolution of a test
scalar wave packet, representing a quantum particle, is uniquely determined by
the initial wave packet, the manifold, and the metric without having to place arbi-
trary boundary conditions at the classical singularity.

If a quantum particle approaches a quantum singularity, however, its wave
function may change in an indeterminate way; it may even be absorbed or another
particle emitted. This is a close analog to the definition of classical singularities:
A classical singularity, as the endpoint of geodesics, can affect a classical particle
in an arbitrary way; it can, for example, absorb (or not) an approaching particle,
and can emit (or not) some other particle, undetermined by what comes before in
spacetime.

Mathematically, the evolution of a quantum wave packet is related to proper-
ties of the appropriate quantum mechanical operator. Horowitz and Marolf there-
fore define a static spacetime to be quantum mechanically singular [9] if the spatial
portion of the Klein–Gordon operator is not essentially self-adjoint [11; 12; 13]. In
this case the
evolution of a test scalar wave packet is not determined uniquely by the ini-
tial wave packet; boundary conditions at the classical singularity are needed
to “pick out” the correct wavefunction, and thus one needs to add information
that is not already present in the wave operator, spacetime metric and manifold.
Horowitz and Marolf [9] showed that although some classically singular space-
times are quantum mechanically singular as well, others are quantum mechani-
cally nonsingular. A number of papers have tested additional spacetimes to see
whether or not the use of quantum particles “heals” their classical singularities
[14; 15; 16; 17; 18; 19; 20; 21; 22; 23].

One way to test for essential self-adjointness is to use the von Neumann crite-
rion of deficiency indices [24; 25], which involves studying solutions to the equa-
tion AΨ = ±iΨ , where A is the spatial Klein–Gordon operator, and finding the
number of solutions that are square integrable (i.e., ∈L 2(Σ) on a spatial slice Σ )
for each sign of i. Another approach, which we have used before [11; 12; 16; 23]
and will use here, has a more direct physical interpretation. A theorem of Weyl
[11; 12; 25] relates the essential self-adjointness of the Hamiltonian operator to
the behavior of the “potential” in an effective one-dimensional Schrödinger equa-
tion, which in turn determines the behavior of the scalar-wave packet. The effect
is determined by a limit point-limit circle criterion.

After separating the wave equation for the static, spherically-symmetric met-
ric, with changes in both dependent and independent variables, the radial equa-
tion can be written as a one-dimensional Schrödinger equation Hu(x) = Eu(x)
where the operator H =−d2/dx2 +V (x) and E is a constant, and any singularity
is assumed to be at x = 0. This form allows us to use the limit point-limit circle
criteria described in Reed and Simon [11; 12].
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Definition 1 The potential V (x) is in the limit circle case at x = 0 if for some, and
therefore for all E, all solutions of Hu(x) = Eu(x) are square integrable at zero. If
V (x) is not in the limit circle case, it is in the limit point case.

There are of course two linearly independent solutions of the Schrödinger
equation for given E. If V (x) is in the limit circle case at zero, both solutions are
square integrable (∈L 2(Σ)) at zero, so all linear combinations ∈L 2(Σ) as well.
We would therefore need a boundary condition at x = 0 to establish a unique solu-
tion. If V (x) is in the limit point case, the L 2(Σ) requirement eliminates one of
the solutions, leaving a unique solution without the need of establishing a bound-
ary condition at x = 0. This is the whole idea of testing for quantum singularities;
there is no singularity if the solution in unique, as it is in the limit point case. A
useful theorem is the following.

Theorem 1 (Theorem X.10 of Reed and Simon [12]) Let V (x) be continuous and
positive near zero. If V (x)≥ 3

4 x−2 near zero then V (x) is in the limit point case. If
for some ε > 0,V (x)≤ ( 3

4 − ε)x−2 near zero, then V (x) is in the limit circle case.

The theorem states in effect that the potential is only limit point if it is suffi-
ciently repulsive at the origin that one of the two solutions of the one-dimensional
Schrödinger equation blows up so quickly that it fails to be square integrable.

The Klein–Gordon equation

|g|−1/2
(
|g|1/2gµν

Φ ,ν

)
,µ = M2

Φ (10)

for a scalar function Φ has mode solutions of the form

Φ ∼ e−iωtF(α)Y`m(θ ,φ) (11)

for spherically symmetric metrics, where the Y`m are spherical harmonics and α

is the radial coordinate. The radial function F(α) for the Böhmer–Lobo metric
obeys

F ′′+
(

2cotα +
1
2

tanα

)
F ′+

[
R2

ω
2 cosα − `(`+1)

sin2
α

−R2M2
]

F = 0, (12)

and square integrability is judged by finiteness of the integral

I =
∫

dαdθdφ

√
g3

g00
Φ
∗
Φ , (13)

where g3 is the determinant of the spatial metric. The substitutions z = π/2−
α , to place the singularity at z = 0, and F(α) = R−3/2(cosz)−1ψ(x), where x =∫ z dz

√
sinz, convert the integral and differential equation to the one-dimensional

Schrödinger forms
∫

dxψ∗ψ and

d2ψ

dx2 +(E−V )ψ = 0, (14)



6 T. M. Helliwell, D. A. Konkowski

where E = R2ω2 and

V =
R2M2

sinz
+

`(`+1)
sinzcos2 z

. (15)

For small z,x =
∫ z

0 dz
√

sinz ∼ z3/2, so the potential as x → 0 is

V (x)∼ R2M2 + `(`+1)
x2/3 <

3
4x2 . (16)

It follows from the theorem that V (x) is in the limit circle case, so x = 0 is a
quantum singularity. The Klein–Gordon operator is therefore not essentially self-
adjoint. Quantum mechanics fails to heal the singularity.

Finally, the fact that the singularity is gravitationally weak suggests that an
extension through the singularity might be possible [8]. For example, using the
two half-sphere version of the Böhmer–Lobo geometry, one might be able to
extend the spacetime through the hypersurface that identifies −π/2 with +π/2.
Null geodesics could then penetrate the hypersurface, whereas timelike geodesics
are trapped in the half-sphere. We have not explored the differentiability of such an
extension because the fact that the hypersurface is quantum mechanically singular
means that any possible extension would be of little or no physical interest.
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