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Chapter 1

1 Introduction

Symmetry plays an important role in the development of the various as-
pects of theoretical physics. Gauge theory in this context is of particular
interest. A theory which is symmetric under a local gauge transformation is
known as gauge theory. This gauge symmetry provides the essential principle
to describe fundamental interactions of nature except one namely gravita-
tional interaction.

In modern language a gauge theory is characterized by the first class con-
straint [1, 2, 3]. The terminology first class constraint was initially used by
Dirac. To study the gauge theory, therefore, concept of constraints along
with the formalism to handle the constrained system (known as constraints
dynamics) enters automatically into the study related to gauge theory. We
often get confronted to the constrained theory to study theoretical physics.
From Maxwell’s theory of electromagnetism to the latest developed string
theory, everywhere presence of constraint in the phase space is found in an
essential way. So the study of physics related to the gauge theory in the
light of constraint dynamics has wide applications in the arena of theoretical
physics.

Constraint means velocity independent relation between coordinate and
momentum [1, 2]. So all the velocities of the dynamical variables of a theory
can not be determined in terms of momenta and as a result the precise
canonical quantization gets threatened when a system contains constraints
in its phase space. So quantization of this type of system is interesting in
its own right. The constraints imposes restriction on the degrees of freedom
too. The physical degrees of freedom are manifested through the Hamiltonian
only when all the constraints are imposed in it.

Sometimes it may be the case that a theory does not show any symmetry
in its usual phase space. However these theories may have symmetry in the
extended phase space. These theories are also considered as gauge theory and



constrained dynamics developed by Dirac is equally useful to these systems.
The main purpose of our investigation is the study of some field theoretical
models which has gauge symmetry in the usual phase space or which can be
made gauge symmetric in the extended phase space taking the help of some
auxiliary fields [4]. It is interesting to mention that these auxiliary fields
render their incredible services towards restoration of the gauge symmetry
without disturbing the physical sector at all.

Our investigations not only limited to gauge symmetry. It has been ex-
tended to the two other important symmetry like BRST symmetry [5, 6, 7|
and Poincare symmetry. Unlike the BRST symmetry Poincar’e symmetry
has no direct link with gauge symmetry. However presence of constraints
sometimes found to have considerable influence on the Poincar’e symmetry.
In this context, we mention that even a theory which is not Lorentz covari-
ant to start with through it has been found to satisfy the correct Poincar’e
algebra [8, 9].

BRST symmetry [5, 6, 7] has direct link with gauge symmetry. In fact, it
is an improvement over gauge symmetry. It is a symmetry of the gauge fixed
action after all gauge fixed theory is the ultimate description of a gauged
theory since what we need is the physical sector of a theory. For covari-
ant quantization of a theory BRST formulation is instrumental. The BRST
symmetry also ensures the unitarity and renormalization of a theory [5, 6, 7].
Since it has direct link with gauge symmetry, constraint structure of a theory
has the crucial link to the BRST formulation. So special emphasis towards
BRST invariant reformulation is given in our investigation [10, 11, 12].

FFBRST is an important extension over BRST [13]. Here BRST transfor-
mation parameter become field dependent and anti-commutating in nature.
It is also a symmetry of the gauge fixed action like the BRST. It indeed
protect nilpotency. Few recent interesting investigations related to FFBRST
are available in [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. So investigation
related to FFBRST is also included in our studies [12].

Quantization in the usual phase space as well as in the extended phase
space have also acquired a considerable part of our investigation [10, 11, 12].
Like the previous studies [25, 26, 27, 28, 29] quantization in the extended
phase space has been termed as alternative quantization in our study. When
the phase space of a system is enlarged in order to bring back the gauge
symmetry of the theory introducing Wess-Zumino fields [4] the composite
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system contains usual as well as Wess-Zumino fields. So it is a matter of
study whether these extra fields has influence on the physical subspace or
not. To investigate it our study [12, 26] is extended with Falck and Kramer
formalism [30] which enables us to conclude that the Wess-Zumino fields
helps to bring back the symmetry of the theory without disturbing the phys-
ical sector. Proper gauge fixing maps the theory of the extended phase space
onto the usual phase space.

Study of constrained system is not limited to Hamiltonian formulation
only. Lagrangian formulation of constrained system is also possible [31].
One of the drawback of Hamiltonian formulation is its inability of presenting
a theory in a covariant manner, which can be overcome in the Lagrangian
formulation. In spite of that, it is fair to say that this formalism it is not
so popular like Hamiltonian formulation [32, 33, 34, 35, 36, 37]. However
because of the available advantage of covariant description it can not be
ignored. In [31], a formulation is developed which not only enables to iden-
tify the constraint but also general gauge transformation generator can be
constructed like the Hamiltonian formulation. It is capable of giving well
judgement whether a theory has gauge symmetry or not. This formulation
is equally applicable both in the usual and extended phase space. Our inves-
tigation, therefore, include the application of this formulation on some field
theoretical models both in the usual and the extended phase space [38]. This
thesis has been organized in the following way.

Chapter 2, contains general description of constraint dynamics with an
example of gauged chiral boson with Faddeevian anomaly [8, 9]. In Chapter
3, a gauge invariant reformulation of the chiral Schwinger model with Fad-
deevian anomaly has been carried out [10] with the help of Mitra-Rajaraman
prescription [39, 40]. A comparison is also made between the result obtained
for the chiral Schwinger model with Faddeevian anomaly with the gauge in-
variant version of the usual chiral Schwinger model for a = 2. In Chapter
4, we have studied the Poincar’e invariance of a model where both vector
and axial vector interaction get mixed up with different weight [41, 42, 43].
Therefore, investigation through the Poincare algebra has been carried out to
find the appropriate masslike term which is capable of describing a physically
sensible theory, using a very generalized mass like term for the gauge field
[26]. An attempt is also made to single out the real physical canonical pairs
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embedded within the phase space of the allowed physically sensible theory. In
Chapter 5, Batalin, Fradkin, Vilkovisky (BFV) formalism [44, 45, 46, 47, 48]
is used to obtain BRST invariant reformulation of the generalized version
of quantum electro dynamics (GVQED) and chiral Schwinger model with
Faddevian anomaly and Gauged Floreanini-Jackiw type chiral Boson. In
Chapter 7, an alternative quantization of the gauge invariant version of the
GVQED and the Gauged Floreanini -Jackiw type chiral Boson are made.
Using the method developed by Falck and Kramer [30] one can see that an
appropriate gauge fixing can correlate between the gauge invariant theory of
the extended phase space and the gauge non-invariant theory in the usual
phase. In Chapter 7, a brief introduction of FFBRST and anti-FFBRST for-
mulation is given. This formulation is applied to the BRST invariant effective
action of GVQED to get back the original gauge non-invariant form of the
action through the field dependent parameter of FFBRST and anti-FFBRST
[12]. In Chapter 8, we study the constrained systems with the lagrangian for-
mulation. With a brief description of Shirzad’s formalism [31] the symmetry
property of few lower dimensional models has been investigated.



Chapter 2

2 General Description of Constrained

Dynamics

2.1 Definition and Classifications of Constraints

A constraint in general is a velocity independent relations between coordinate
and momentum in the phase space of a theory. The presence of which make
some velocities inexpressible in terms of momentum and as a result naive
Poisson’s brackets become inadequate to quantize the system. How to deal
with a system endowed with constraints let us consider a system which is
described by the lagrangian

L = L(g, gs), (1)

where ¢;, ¢; represent coordinate and velocity. This lagrangian is said to be
singular when ,
L
) =0 )
104

The above equation (2) signifies that the system posses some primary con-
straints [1, 2, 3]. In order to extract out the constraint of a given system
described by the lagrangian (1) the momenta corresponding to the variables
q; are required to find out. The momentum variables P! is defined by

det|

. 0L
pP'=— (3)
aq"
with ¢ = 1............ n, where n is the number of canonical coordinates. When

some momenta are not expressible in terms of the velocities then there exist
certain relation among the momenta and coordinate variables:

dm(q,p) =0, (4)
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where m=1,.......... M. The above relations are known as primary constraints
of the theory. The constraints are all weak condition and to indicate weak
condition the symbol ~ is used in place of =. The canonical Hamiltonian of
the system is given by

Hc(qiapi) = piGi — L(% Gis t)- (5)

The corresponding Hamiltonian equations of motion are

dg; . OH,;
dp;  OH;

Hamiltonian in equation (5) is not unique. We may replace it by effective
Hamiltonian

He - Hz + um¢m(Qap) ~ He- (8)

Here u,, are known as Lagrange multipliers. H, gives new equations of motion

as follows

at op' + opt’ (9)
dp; 0H; Obm

— . 1
dt = g " 0y (10)

Physical consistency demands that the time derivative of the primary con-
straints are to be zero for all time and the necessary condition for that is

gbm = [¢maH€ff] ~ 0. (11)

This preservation may lead to two possibilities [1, 2, 3]: it may gives new
constraints or it may fix the velocities u,,. The new constraints that evolve
out are termed as secondary constraints. The process is to be repeated until
all independent constraints and conditions on u,, have been explicitly found
out. In this way all the constraints and velocities of a theory are determined.
If we get K number of additional secondary constraints,

¢n(g, p) = 0, (12)
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where n=1,2,.............. K, we find the complete set of constraints

¢a(q,p) =0, (13)

where a=1,2,.............. K+M=T. T is the total number of constraints embed-
ded in the system. Consistency of all constraints with Lagrange equations of
motion require that there exist solutions of u,, as a function of q and p:

U = U (4, D). (14)

According to Dirac [1], the constraints are classified into two categories,
e.g. first class constraints and second class constraints. If Poission brackets
of a particular constraint with itself and with the other constraints of the
theory get vanished then that constraint is called first class constraints else
it is called second class constraints. A function of coordinate and momenta,
R(q,p) is said to be first class if it has zero Poission bracket with all the
constraints, i.e.,

[R, ¢a] = 0, (15)
where a=1............. A. R(q,p) is said to be second class if [R, ¢,] # 0. Some-
times a linear combination of second class constraints form first class con-
straints which is of interest for gauge invariant reformulation of a theory.
All constraints may not be independent of each other. Constraints are di-
vided into two sets. One set consists of all linearly independent first class
constraints, i.e.,

vilg, p) = 0, (16)
where i=1,....... P, and other set consists of remaining T-P number of second
class constraints

¢a(q,p) =0, (17)
where oo = 1............ T — P. For instance the second class constraints give a
nonsingular matrix constructed with the Poisson bracket among themselves,

Cap = [¢a; dp]. (18)

Since it is known that anti-symmetric matrices can be inverted if and only
if they have an even number of rows and columns. So we assume that the
system consists of an even number of second class constraints, i.e. Cy g is a
nonsingular matrix and its inverse C }3 exist:

CapCip = 1. (19)
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2.2 Dirac Bracket and its importance

The presence of second class constraints make the ordinary Poission bracket
in adequate for its analysis. So we need to modify the naive Poisson bracket.
A new dynamical variable which has zero Poission bracket with all second
class constraints can be defined by

A/ =A- [A7 ¢a]0;}3¢5' (20)

We see that /
[A 7¢"/] = [A, Qb'y] - [A7 gbv]coc,ﬁcoz,lﬁ = 0. (21>

With the construction (20), the variables give vanishing Poission brackets
with the constraints. Let us now change the Poission bracket of two variable
A and B by their primed variables [2],

[A,B] = [A', B]. (22)

Though A ~ A", B ~ B’ the Poission bracket between A, B is not weakly
equal to Poisson bracket of A", B". So to overcome the above problem all
Poission bracket have to be replaced by Dirac bracket which is defined by

[A, B]" = [A, B] - [A, 6|C4 505, Bl. (23)

Now we observe that [4, B]* ~ [A", B]* ~ [A’, B]* ~ [A, B']".

The presence of second class constraints imply that the system contains
some non dynamical degrees of freedom. Thus the naive Poission bracket
needs to be modified, if we impose the second class constraints in the theory
as a strong condition to get the theory involving only the dynamical degrees
of freedom. The Dirac bracket of a constraint with an arbitrary phase space
variable vanishes by construction. This is the essential condition to set all
second class constraints strongly to zero.

[A,’ o,]" ~ [A, ¢, = [A, va]oa,ﬁog,lﬁ =0. (24)

A very useful property of Dirac bracket is its iterative property. If there are
a large number of constraints, it is not always convenient to invert the large
matrix. So one can choose a smaller subset of second class constraints and
find the intermediate Dirac bracket and so on. The process is to be repeated

13



until all the second class constraints are exhausted. Identical result can be
achieved calculating the final Dirac bracket in a single step.

So first class replacement of the Hamiltonian is obtained by imposing the
constraints as strong condition in (8) redefining the Hamiltonian by

Hp=H. — [Hea ¢a]0;51¢57 (25)

and then we find
u, = —[H,, qﬁa]C;é. (26)

With this choice too, Hamiltonian is not completely determined. However
H,; defined by

Ht = HR + Ui¢i(Q7p)7 (27>

keeps the equations of motion and the constraints unaltered. Where ;(q, p)
stands for the first class constraints and v;(7) are the arbitrary velocity func-
tion. This Hamiltonian (27) is found consistent with the Dirac bracket. Now
it is possible to find out the new equations of motion since v;(q,p) do not
have vanishing Poission bracket with the canonical variables. Now the time
derivative of q and p are given by

¢ = @i, Hy] 4 vilai, 51, (28)

pi = [pis Hi] + vilpi, 5] (29)

¥i(q,p) in equation (28) and (29) generates infinitesimal contact transfor-
mation of the q’s and p’s, under which the physical content of the theory
remains the same. This is known as gauge transformation.

Appearance of arbitrary functions v; in H; occurs when the original la-
grangian contains of gauge degrees of freedom associated with the first class
constraints. The velocities v; can be fixed by the gauge fixing condition

’yi<Q7p7 T) ~ O, (30)

where i=1.......c........ J. Condition (30) looks like a constraint which however
does not follow from the lagrangian. The gauge fixing conditions are to be
chosen in such a way that the constriants v); and gauge fixing conditions all
together form a second class set. So the matrix [¢;, ;] becomes nonsingular.

14



One needs to replace all the Poission bracket by Dirac bracket which is con-
sistent with the v; and ~;, then arbiratariness due to v; will automatically
disappear.

If at this stage one likes to express the systems in terms of true independent
canonical variables only, then it is needed to impose some invariant relations
on the system [2]. It may be the situation that the gauge choices do not
completely reduce the phase space available for particle momentum down
to the size implied by the Eular Lagrange equations. Therefore additional
constraints are needed to define the physical system completely. These are
termed as invariant relations. The function (;(¢,p) be an invariant relation
of the form

Gi(q,p) = 0. (31)
at 7 =0, and
dg;

In(31) (=) sign indicates that the all the constraints including the (; are
set to zero. ¢ will remain weakly zero for all 7 if equation (31) is satisfied.
Invariant relations are different from the equations of motion and these are
the conditions which should be satisfied in order for a solution to be consid-
ered as a physical one. If one can choose the gauge constraints and invariant
relations properly, then all the constraints turned into second class. In the
second-class theory, the variables which have vanishing Poission bracket with
the constraints, can be considered as independent degrees of freedom.

As it is discussed earlier for a theory with second class constraints, Poission
brackets have to be replaced by Dirac brackets. The system then can be
quantized by converting the Dirac brackets into equaltime commutators. We
give an example which is usually helpful.

2.3 Application of Constrained Dynamics on chiral Schwinger

Model with Faddeevian Anomaly

We consider the lagrangian of chiral Schwinger model with Faddeevian anomaly
8, 9]. The model when described in terms of chiral Boson [49, 50, 51] looks

Loy =60 — ¢'° +2e¢/(Ag — Ay) — 26° AT (33)
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From the standard definition, the momentum corresponding to the fields
Ag, Ay and ¢ are:

aaig% = =0, (34)
0
aaﬁfi’% =T = Al - A67 (35)
1
OLey /
L =my=¢. 36
99 M ¢ (36)

m ~ 0 and 71, = ¢ ~ 0 are identified as the primary constraints of the
theory. The effective Hamiltonian follows from the equation (34), (35) and
(36)

H, = /dx[HC +umg + v(my — ¢')], (37)
where the canonical Hamiltonian is
1
He = /d:ﬁ[iﬂ'% + Ay + ¢ — 2e(Ag — Ap)¢' + 22 A43]. (38)

Here v and v are two required lagrange multipliers. The gauss law constraints
of the theory is
G =71+ 2e¢d’ = 0. (39)

The preservation of constraint 7, = ¢’ ~ 0, with respect to the Hamiltonian
gives a new constraint

The Lagrange multipliers u and v take the following expressions

u=—(m + 4p), (41)
v = gb — G(AO — Al) (42)

The reduced Hamiltonian for this system is

1 1
Hr = /dl’[iﬂ'% + 7TlA/1 + 47627'('/2 + 46214%] (43)
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The Dirac bracket between the two variables A and B is defined by
[A(z), B(y)]" = [A(z), B(y)] - / [A(@), wi(n)]C35' [wi(n), B(x)ldndz,  (44)

where Cj; s given by

/C'Z.;l(x,z)[wi(z),wj(y)]dz =1. (45)
Four constraints of the system under consideration are
w1 =my ~ 0, ( )
wr =y — 0 0, (47)
wsg = m + 2ep =~ 0, (48)
w4:(A1+A0)%0_ ( )
For this system

0 0 0 —i(z —y)
B 0 —20'(x —y) —2ed(x —y) 0
Gy = 0 2ed(x —y) 0 —d(x —y) (50)
dz —y) 0 oz —vy) 0
The matrix C;; ! exists since Cy; is nonsingular
—57 2 32 |
1 = 0 = 0
Ci =1 & 1 %% o |- (51)
2¢2 2e 2e2
-1 0 0 0

The Dirac brackets between the fields describing the reduced Hamiltonian
are

[Ala Wl]* = 6(3: - y): (52)
Ay, Ai] = _21625/@ _y). (53)

Using Dirac bracket (52), (53) and the reduced Hamiltonian (43), we obtain
the following first order equations of motion

T =7 — 4e* Ay, (54)

17



Al =71 — All (55>
The second order differential follows from (54) and (55) is
[0+ 4e%A; = 0. (56)

So A; describes a massive boson with square of the mass m? = 4e?. So
the theoretical spectrum contains a massive boson with mass 2e [8, 9]. This
example shows an application of constraint dynamics towards the exact so-
lution of this model.
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Chapter 3

3 Gauge Invariant Reformulation in the

Usual Phase Space

3.1 Introduction

Symmetry plays a crucial role in the understanding of theoretical physics
and a gauge symmetric theory always scores over the theory where this sym-
metry is lacking. So the study related to restoration of gauge symmetry is
of interest. Gauge symmetry can be restored in two different ways. Exten-
sion of phase space by auxiliary fields to bring back the gauge symmetry
was known from long past. Another interesting way of restoration of gauge
symmetry is available from the work of Mitra and Rajaraman [39, 40]. Here
extension of Phase space is not needed. Restoration of symmetry takes place
in the usual phase space here. Therefore, applications of this technique on
any gauge non symmetric model would be instructive. In this content, we
consider the chiral Schwinger model with Faddeevian anomaly [8, 9]. Here
gauge symmetry breaks down at the quantum mechanical level. The ancestor
of the model known as Jackiw-Rajaraman version of chiral Schwinger model
too did not have gauge symmetry which was restored by Mitra and Rajara-
man in [39, 40]. In [10] we have made the restoration of gauge symmetry of
the chiral Shwinger model with Faddeevian anomaly which we are going to
describe here.

Before restoration of gauges symmety has been carried out on the model,
the bosonization of the fermionic version of chiral Schwinger model has been
done with Faddeevian type regularization and imposing a chiral constraint
in the phase space the model has been expressed in terms of chiral boson
49, 50, 51].
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3.2 Bosonization of Fermionic Model and Imposition

of Chiral Constraint

Chiral Schwinger model is described by the following generating functional
Z[A] = / dpdipe) L, (57)
with
L = Py"id + ev/mAu(1 = 75)]¢
= YrY"i0u ¥R + Yy (0, + 2ev/TAL )L (58)

The right handed fermion remains uncoupled in this type of chiral interaction.
So integration over this right handed part leads to field independent counter
part which can be absorbed within the normalization. Integration over left
handed fermion leads to

ie? 9
Z[A] = exp 7/61 TA,

M (@ YL@+ 2 Ay] T

M,, = ag,,, for Jackiw-Rajaraman regularization [32] where the parameter
a represents the regularization ambiguity and

M= (1 T3 )ote-n)

for an alternative version proposed by Mitra in [8, 9]. Writing down the
generating functional in terms of the auxiliary field ¢(x), it turns out to the
following

Z14] = [ doe'] 5, (60)
with
Ly = L(0u0)(00) +elg" — )0,04, + S AM@A,
_ ;(q's? — @) +e(d+ ¢) (A — Ay)

1
+ 562(A(2) — 2404, — 3A3). (61)
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Here "' = —¢g; = 1 and the Minkowski metric ¢*” = diag(1, —1). Equation

(61) was initially found in [8] where Mitra termed it as chiral Schwinger
model with Faddeevian regularization. In [8], we find that the Gauss law
constraint of this theory is

G =) +e(my+¢). (62)
It is found that the Poisson bracket between G(z) and G(y) is
(G(x), G(y)] = 20" (x —y). (63)

This Poission bracket of the Gauss law constraint (63) was found to gave the
vanishing contribution for the usual chiral Schwinger model [32]. Faddeev
initially noticed that anomaly made Poission bracket between G(x) and G(y)
nonzero [52, 53]. The constraint became second class itself and gauge invari-
ance was lost. He, however, argued that it would be possible to quantize
the theory but in this situation system may posses more degrees of freedom.
From the standard definition, the momentum corresponding to the field ¢ is
found out to be

%i,)’i* — =+ e(Ag — Ay). (64)

The following Legendre transformation
HB = /dQZE[TFd)QB - ,CB], (65)

leads to the Hamiltonian density

1 1,
HB = 5[7T¢—€(A0—A1)]2+§¢2

1
— 26@5/(140 — Al) - 562(14(2) - 2A0A1 - 3A%) (66)

In order to suppress one chirality at this stage we impose the chiral constraint

w(z) = my(x) — &' () = 0. (67)
It is a second class constraint itself since
w(w), wy)] = —20"(x —y). (68)
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After imposing the constraint w(z) & 0, into the generating functional we
arrived at the following

Zon = [ dodnydlms — o) fdetlo,wlet  #insi o

- /d¢affﬂ@m (69)

with '
Len = ¢¢' — ¢ + 2e¢/(Ag — Ay) — 2¢° A3, (70)

We obtained the gauged lagrangian density for chiral boson from the bosonized
lagrangian with Faddeevian regularization [8] just by imposing the chiral con-
straint in its phase space. Harada in [35], obtained the same type of result for
the usual chiral Schwinger model with one parameter class of regularization
proposed by Jackiw and Rajaraman [32]. The lagrangian (70) can be thought
of as the gauged version of chiral boson [49, 50] described by Floreanini and
Jackiw [51]. A discussion related to the theoretical spectrum has given in
Chapter 1. One can find that theoretical spectra contains a massive boson
with mass m = 2e. The equation of massive boson was

[0+ 4e%]4; = 0. (71)

Equation (71) was interpreted there as the photon acquired mass via a dy-
namical symmetry breaking and the fermion got confined.

3.3 Role of Constraint in the Gauge Invariant Refor-

mulation

The formalism of making a theory gauge invariant by the reduction of the
number of second class constraint was first developed by Mitra and Rajara-
man [39, 40]. The formalism strictly depends on the constraint structure of
the theory. Depending on the constraint structure of the theory different
gauge invariant version is possible for a particular theory. No extension of
phase space is needed in this formalism. So the physical contents of all the
gauge invariant actions remain the same. In [39, 40], the authors gave a
reasonably general theory relating to a large class of systems with second
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class constraints to corresponding class of gauge invariant systems having
the same dynamical content. A gauge theory in a generalized sense means
a theory with some first class constraints. To covert it into an equivalent
second class system is well known. One generally fix the gauge, i.e., impose
a suitable number of gauge fixing conditions. These gauge fixing conditions
together with the original first class set of constraint form a second class set
and the theory gets converted into an equivalent second class system. An
inverse procedure is suggested in [39, 40] where a formalism is developed for
construction of a gauge invariant system equivalent to a given second class
theory. The authors argued there as follows. If a dynamical system possess
2n constraints and the constraints all together form a second class set and if
n of these constraints are found to have mutually vanishing Poission brack-
ets then these n constraints can be used as gauge generator of the gauge
invariant reformulation. The remaining n constraints may be thought of as
the gauge fixing condition. The Hamiltonian needs the required modifica-
tion accordingly. So in [39, 40] the authors suggested to reduce half of the
constraint from a second class set of constraint retaining the first class set
only in order to get the gauge invariant reformulation. The obtained gauge
invariant theory can be treated in the similar way as any standard gauge
invariant theory is treated. What follows next is the application of the for-
malism in the presently considered mode. To apply this formalism in a model
it is essential to know the constraint structure of that theory. In our case
which is already given in Chapter 2.

Now we are going to describe the gauge invariant reformulation of chiral
Schwinger model with Faddeevian anomaly using Mitra Rajaraman’s formal-
ism, the investigation in that respect was carried out in [10]. The lagrangian
of chiral Schwinger model with Faddeevian anomaly in terms of chiral boson
gets the following shape

Lop =¢¢ — ¢ +2ed/(Ag — Ay) — 26° A3, (72)

In Chapter 2, we found that the theory under consideration contains four
constraints in its phase space. Precisely, the constraints were

w1 :7T¢—¢/%O, (73)
wy = o & 0, (74)
w3 = + 2e¢ =~ 0, (75)

23



Wy = —(Al -+ Ao) ~ 0. (76)

The combination wy ~ 0 and w3 ~ 0 form a first class set. If we retain only
these two constraints as stated above, following the suggestion available in
(39, 40], we require a modification of the Hamiltonian density of the second
class system (38) in the following manner in order to get a first class system.

1
H = 57’(’% + 7T1A6 — G(AO — A1>¢, + 26214% + 7T¢¢/ - 67T¢(A0 — Al)
/ 1 /
+e(my — @) (Ao + A1) +§(7T¢—¢)2+u7r0. (77)

The modification certainly keeps the physical contents of the theory intact.
This modified Hamiltonian density (77) contains only the two first class con-
straints ws ~ 0 and w3y =~ 0. The equation of motion with respect to the
Hamiltonian (77) are found out as follows

¢ =[¢, H] = my + 2eA, (78)
Ay = [Ay, H] = —u, (79)
Ay =[A,, H) =, (80)

We have kept the first class constraints only modifying the system accordingly
and we have got desired first class lagrangian from the modified Hamiltonian
(77)

. . . 2
L, = /dx[m,(b + m A + moAg — [% + m Ay + 2e Ay + Tpd — 2e Ao
1
+ 5( s — &) +um + 2e*Af). (81)

Using equation (78),(79),(80) the lagrangian density (81) can be converted
to a very simplified form

Ly = §(¢2 — ¢”) — 2e(A1¢ — Agd) + 5 (A1 = Ap)*. (82)
The lagrangian density (82), is consistent with the Hamiltonian density (77),
and the equations of motion (78), (79) and (80). To see whether the la-

grangian density (82) stems out from the modified Hamiltonian density (77)
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contains only the two first class constraints (74) and (75) in its phase space
let us calculate the momenta corresponding to the field Ag

oL
mo = —=2 = 0. (83)
04,
It gives back the primary constraint (74) and the preservation of this once
again gives the Gauss law constraint

G =7 +2e¢ ~0. (84)

No other constraints come out from the preservation of (84). These two first
class constraints help us to construct the gauge transformation generator.
The generator is given by

G = /dx()\lwl + )\20.)2). (85)

Here A\; and A, are two arbitrary parameters. The transformations evolved
out of the generator (85) for the fields ¢, A; and Ay respectively are

5(]5 - O, 5141 - —)\/1, (SAO = —)\2. (86)

The lagrangian (82) is found to remain unchanged under the transformation
(86) if the parameter satisfy the following relations .

Ao = A (87)

A note worthy thing is that this transformation is equivalent to the trans-
formation A, — A, + i@u/\. There is some thing interesting that we must
mention here. The first class lagrangian that comes out from our investiga-
tion is the bosonized lagrangian of the well known vector Schwinger model
(54, 55]. Here coupling strength is 2e. It does not come as a great surprise be-
cause the theoretical spectrum of the model under consideration is identical
to the vector Schwinger model. To be precise, both the models contain the
massive boson with mass m = 2e. We have mentioned earlier that the gauge
invariant reformulation follows from this prescription depends crucially on
the constraint structure of the model. There are other possibilities to get
first class set of constraints from the set of constraints (73), (74), (75) and
(76). However that possibilities fail to give consistent first class theories.
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3.4 Comparison of the Result Obtained in Section 3.3
with the Gauge Invariant Chiral Schwinger Model

for a =2

Let us compare our result with the work of the Shatashvili [36] because seeing
their apparent similarities at a first glance one may think that these two
results are identical. But a careful look revels that this is not so. In his work
Shatashvili considered the non-Abelian gauge invariant version of the chiral
Schwinger model and showed that the interacting degrees of freedom gets
reduced if the choice a = 2 is made. For a = 2, the mass term of Shatashvili’s
model become identical to our model but there lies a basic difference which
we would like to address. Here we consider the gauge invariant Abelian
bosonized version of that model [36] because this version would be compatible
for comparison with our work. Unlike the non- Abelian version the Abelian
version of it is exactly solvable.

It is described by the lagrangian density

1 1
L= S(0,0)(0"0) +e(g" — )0,04, + Sac* A, A"
1
- ZFMVFHV + LwEss (88)

where Ly pss is given as follows
1 v vV
Lwpss = 5(a = 1)(0,n)(9"n) + e[(a = 1)g"" + e*]0unA,. (89)

The lagrangian is invariant under the gauge transformation A, — A, + %(%A,
¢ — o+ AN, n—n—A The momenta corresponding to the fields Ay, Ay, ¢
and 7 are

oL

P _n =0, 90
(9A0 o ( )
oL :

— = = A — A, 91
8A1 ™ ! 0 ( )
(Zg =Ty = ¢+ e(Ag — Ay), (92)
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oL

=
Equation (90), (91) and (92) are independent of the parameter a. The choice
a = 2 brings change only in (93) and with that choice that turns into

7T77 :17+6(A0—|—A1) (94)

The canonical Hamiltonian density for the model with a = 2 is

T, = (a—1)n+ella—1)A;+ A4 (93)

H = ;[Wf + 7T¢2) + ¢?] — eAi(my — ¢') + 262 A + ;[7?3 +n?] — eAy(m,
+ n') = Aom +e(my — @) —e(m, +1). (95)

The phase space of the model contains the following two constraints [27]
O =m ~0, (96)
Qy =7 +e(my — ¢') —e(m, +1') = 0. (97)

The constraint (97) appears as a secondary constraint in order to preserve
the constraint (96). The two constraints are first class. The first class con-
straints shows a clear indication of reduction of degrees of freedom because to
quantize the theory two gauge fixing conditions are to be needed. Bosonized
version of vector Schwinger model (82), appeared out as the gauge invari-
ant version of chiral Schwinger model with Faddeevian anomaly in previous
Section, contains the following two constraint

Wysr = T =~ O, (98)

Wyse = T + 26@5 =~ 0. (99)

The Hamiltonian density of this bosonized version of vector Schwinger model
(82) comes out to be

1
Hyg = §(w§ + 75+ ¢%) + mAY + 2e(Army — Agg). (100)

It is true that both the models are gauge invariant and the massive fields
which comes out form (100) and (95) looks almost identical. Square of the
mass of the boson in each case is m? = 4e? . However the Hamiltonian (95)
cannot be made free from Wess-Zumino field 1 using the constraints (96) and
(97) and the constraints (98) and (99) also do not map on to the constraints
of the vector Schwinger model. On the contrary the Gauge invariant version
as obtained in (82), using Mitra-Rajaraman prescription, does not contain
this type of field. Here gauge invariance is resulted in the usual phase space.
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3.5 Discussion

Gauge invariant reformulation of chiral Schwinger model with Faddeevian
anomaly has been carried out using Mitra-Rajaraman’s prescription [39, 40].
Here gauge invariance takes place in the usual phase space and that is a spe-
cial feature of Mitra-Rajaraman’s prescription. However, in this situation
we have to be satisfied with the gauge invariant reformulation only because
the formalism developed till now is not adequate to obtain BRST invariant
action of the gauge fixed version of the gauge invariant reformulation ob-
tained through this formalism. In spite of the existence of more than one
possibilities, only a particular possibility leads to a gauge invariant action in
this situation. Surprisingly, the other possibilities fail to do so. Only that
possibility has explored to obtain gauge invariant reformulation which ren-
ders a very interesting result. The gauge invariant model that comes out is
found to be identical to the lagrangian of the well known vector Schwinger
model and gauge invariance of which is obvious. It is explicitly shown here
too. It is true that the gauge non invariant version of this model under con-
sideration too contains a massive boson like vector Schwinger model [54, 55].
We have already mentioned it. But the exact mapping of this model onto the
vector Schwinger model is an interesting and novel findings. The counting
of degrees of freedom also found to be consistent. It would be interesting
to investigate how a particular Faddeevian regularized version of the chiral
Schwinger model maps onto the vector Schwinger model in its gauge invari-
ant version. We compare the gauge invariant lagrangian of chiral Schwinger
model contains Faddeevian type of anomaly with the gauge invariant version
of the Abelian chiral Schwinger model setting a = 2. Both the model is
gauge invariant and contains a massive field with the same mass. But for the
former one gauge invariance has occurred in its usual phase space whereas
for the later it does occur in the extended phase space.
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Chapter 4

4 Study of a Constrained Field Theoretical
Model where Vector and Axial Vector In-

teraction Get Mixed up with Different Weight

4.1 Introduction

In terms of fundamental interaction, Quantum Electrodynamics (QED) in
(1+1) dimension can be categorized into two different classes. The first way
of description was originated from vector type of interaction between matter
and gauge fields. The models which belong to this class are well known vector
Schwinger model [54, 55] and Thiring-Wess model [56]. The other way of de-
scription originated from chiral interaction between matter and gauge fields.
Chiral Schwinger model [32] along with its different variants [9, 35, 57, 58]
and chiral Thiring-Wess model [59, 60] are the example of this class. In the
chiral Schwinger model [32] and in its different variants [9, 35, 57, 58] we
find that vector and axial vector interaction get mixed up with equal weight.
Few years ago, the authors in [41] presented a model where unlike chiral
Schwinger model, vector and axial vector interactions did not mix up with
equal weight. Few extensions over this model are also found in [42, 43]. The
mixing of interaction with different weight may be regarded as a generalized
version of QED (GVQED) which covers all the fundamentally different inter-
action and their mixing [8, 35, 54, 56]. The beauty of this model is that it is
capable of interpolating both the QED and chiral QED. Both the Schwinger
model [54] and the chiral Schwinger model [32] can be achieved through the
different choices of its mixing weight factor of interaction. For unit weight
factor it describes the chiral Schwinger model [32] and for vanishing weight
it describes the vector Schwinger model [54].
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Standard quantization scheme furnishes that these two models are fun-
damentally different so far theoretical spectrum and confinement aspect of
fermion are concerned [33, 34, 55]. Needless to mention that Schwinger model
[54], and its chiral generation, e.g., chiral Schwinger model [32, 61] and the
GVQED as presented in [41, 42, 43] which covers the both into its own, are
of considerable interest because of their ability to describe different physical
aspects which are found to exist even in (3+1) dimension. Schwinger model
acquired popularity not only for its ability of describing mass generation via
dynamical symmetry breaking [54, 55] but also it can describe the confine-
ment aspect of fermion in lower dimension [54, 55] which is a real (3+1)
dimensional phenomena of QCD. On the other hand, chiral Schwinger model
is capable of describing mass generation as well like vector Schwinger model
[54, 55], however fermions are found to get liberated here which can be con-
sidered as lower dimensional de-confining state of fermion [8, 32, 35]. Since
the GVQED presented in [41, 42, 43] interpolates both the Schwinger model
and chiral generation of that, it is natural that all the surprises involved
within the Schwinger model and chiral Schwinger model lies significantly
in this GVQED. All these models along with the GVQED are so rich in
describing, different surprises like dynamical mass generation, confinement
and de-confinement aspects of fermion, that till now investigation over these
models has been carried out [57, 58, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73,
74,75, 76, 77, 78, 79, 80, 81, 82, 83, 84] and these models still remains as
a fertile field to carry out further investigations. Our objective in this work
is to carry out few investigations over the GVQED coined in [41] concerning
the Poincar’e and gauge symmetry. An attempt is also made here to single
out the real physical canonical pairs embedded within the phase space of the
system. It is true that a systematic quantization of this model is available in
[41], however the definite identification of real physical canonical pairs lying
within the phase space is found to be absent. In order to make it a com-
pliment to the quantization part of the work [41], again quantization of this
model has been pursued using Dirac’s scheme of quantization of constrained
system.
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4.2 Brief Review of the Model

A Model where we find both vector and axial vector interaction get mixed
up with different weight is given by the following generating functional [41]

Z(A) = / dydiexpli / L. (101)

with Lz = Yy*[i0, + e\/TA,(1 — rvy5)]tb. The integration over the fermionic
degrees of freedom 1) leads to a determinant which is singular in nature
(33, 34]. In order to remove the singularity we need to regularize the theory.
After proper regularization if we express the fermionic determinant in terms
of auxiliary scalar field ¢, we get

Z(A) = /d¢exp[i/d2xﬁg]. (102)
with

1
Lp = iama% + e€,, 0" A" 4 erg,, 0" pA*
2

+ %(aAg + 28 A0 A, +vA2). (103)

where = €,,0” and €”! = 1. A generalized masslike term has been included
here as counter term in place of standard %ae2AuA“ term since we are in-
tended to study whether any other alternative masslike term can serve as a
physically sensible counter term for regularization like the chiral Schwinger
model [8, 9, 57, 58]. The parameters «, ( and =, therefore, stand as the
regularization ambiguity parameter. Needless to mention that in this situa-
tion ambiguity emerged out during the process of regularization in order to
remove the divergence of the fermionic determinant. If we now take into ac-
count the kinetic term of the back ground electromagnetic field the lagrange
density then turns into

1
L = 5 00" ¢ + e€,, 0" p A" + erg,, 0" p A"

2
1
+ %(QAS + 2840 Ay + 7 AD) = JFu P, (104)

What follows next is the invariant property of the theory described by the
lagrangian (104).
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4.3 Lorentz Transformation of the Fields and the Re-

quirement to be the Physically Sensible

Investigation has been carried out over the GVQED [41] to study the Poincar’e
symmetry in [26]. An attempt is also made to single out the real physical
canonical pairs embedded within the phase space of the theory. Starting
with the generalized masslike term we now proceed to investigate which type
of term leads to a physically sensible theory. The word physically sensible
implies a structure that not only maintains physical Lorentz invariance but
also leads to an exactly solvable nature at the same time. To this end, we
would like to study the Lorentz transformation property of the fields and the
Poincar’e algebra of the theory in an explicit manner following the guide-
line available in [8]. In this context we need to calculate the momenta of
the fields describing the theory. From the standard definition the momenta
corresponding to the fields ¢ , Ag and A; are found out:

gg = Ty = ¢ — eAy + erAy, (105)
oL
— =7y =0, 106
04, " (106)
oL .
T —m=A, — AL 107
04, ! 1 0 (107)

For this theory w; = mp &~ 0, is the primary constraint. A Legendre transfor-
mation leads to the the following canonical Hamiltonian density.

1 1
He = S(mf+¢" + %) + mdy + 5e* (A —rAo)

-+ €7T¢(A1 — ’I"AD) — 6(A0¢, — TA1¢/)
2

(&
— 5(04143 +2BA0A; + vAD). (108)

Time evolution of primary constraint with respect to the Hamiltonian gives
a secondary constraint,

wy = m + e*(a—1) A+ *(r + B)A; + ermy + ed = 0. (109)
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The constraints are all weak conditions at this stage. To impose it as a strong
condition into the system we need to have the expression of Ay . Equation
(109), gives

Ay = T+ ermy +ed + e*(r + B)Ay). (110)

)

Inserting the expression of Ay in equation (108) we get the following reduced
Hamiltonian.

P - (gf_ 5+ ;(a“fi 5t Cla-m+ M]A?
G +<;+_o:;)— r3)€A1¢, N ((a —~ fg)) A,
+ m%Al + (Oéjrz)dﬁ'%
TR SR —— (111)

e(a—12)  ela—12)

For this reduced Hamiltonian the ordinary Poission brackets become inad-
equate [2]. So it becomes essential to calculate the Dirac brackets between
the fields describing the Hamiltonian to proceed further. The Dirac bracket
[1] between the two variables A and B is defined by

[A(z), B(y)]" = [A(z), B(y)] - /[A(x),wi(n)]q'}l(m 2)wi(n), B(y)ldndz,
(112)
where C;; s given by

[ G2z, i)z = 1 (13)
Here w;s represents the second class constraints that remains embedded

within the phase space of the theory. The matrix C’Z}l for the theory un-
der consideration is

1 1 0 oz —y)
Gy = e?(a —r?) < —o(z —y) 0 ) . (114)
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Our task becomes little easier since it is found that the Dirac brackets be-
tween the fields remains canonical.

[As(2), m(y)]" = 0(z —y), (115)
[0(x), 7o (y)]" = 0(z —y), (116)
[A1(z), o(y)]" = 0. (117)

The reduced Hamiltonian can be expressed in the following form
2

e

5%1“7)A%

b (@420t edi(mo ). (118)

2e2(a — 1?)

1 2
Hp = /dx[i(wg,jtqb/ + %) +

The total momentum and the boost generator in (1+1) dimension are defined
by
p= / di[myd + m AL+ mAl). (119)

M = t(ﬂ'¢¢l —f- 7T1A,1 —I— 7TOA6) —|— /dl’[l’HR —f- 7T1A0 —I— 7T0A1]. (120)

In the reduced phase space that is in the constrained subspace the equations
(119) and (120) reads

Pr = /dx[m,gb' + m Al (121)
e b &
MR = t<7f¢¢ + 7T1A1) + /dl’[l’HR — 62(a — 7'2)7-(1]7 (122)
where
=7 +ermg +ed +e*(r+ B)A;. (123)

and the total Hamiltonian Hgr and the Hamiltonian density Hz are related
by Hr = [dxHzr . The momentum operator Py transform the fields within
the constrained subspace. Similarly, the Hamiltonian operator Hg generate
the time translation of the same. The time translation of the fields are given
by

. T
¢:7T¢+6A1+6
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1

Al =m - ¢ (125)
However, the most interesting one is the action of the Lorentz-boost generator
Mg, on the fields in the constrained subspace. We now turn to observe
that. Let us now see how the fields get transformed under the Loentz-boost.
Calculating the Poission brackets of the fields ¢ and A; with the Lorentz-
boost and expressing these in terms of ¢ and A, using equation (124) and
(125), we find the expected transformation of the fields ¢ and A; under the
Lorentz-boost.

[0, Mg] = t¢/ + 2, (126)
[Al, MR] = tAll + xAl + Ao. (127)

With the use of the above transformation rules (126) and (127), and the
Dirac brackets (115), (116) and (117), it is straight forward to see that the

following Poincare algebra
[Pr, Hr|* =0, (128)

[Pr, Mp|" = Hp, (129)

2e23£2 2e23¢m

(a—1r?)  eta—r?)

1-— r?+1

+ [((a - :2) _ ((a —+r2>)]7T1A/1 — P (130)
is satisfied if and only if f = 0 and o = —~ [26]. We should mention here that
it is valid only for the very structure of the constraints which are given in
equation (106) and (109). If we set o = r?, the constraint structure will get
altered and in that case total scenario will be different. In fact, the number
of constraint will be greater than two in this situation like the Faddeevian
[52, 53] class of regularization of chiral Schwinger model [8, 9, 57, 58]. To
study the aforesaid situation let us set o = r? and carry out the Poincar’e
algebra for this special case. The constraint wy now takes the form

[Hr, Mp]" = 7T¢¢,+ez

Wy = Ty 4+ €*(r + B) A + ermy + ed. (131)

The effective Hamiltonian of this theory in the present situation can be writ-
ten down as
Heff :H—FU(,JQ—FUCJL (132)
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The consistency of W, with time requires «, = 0, which fixes the velocity v.
The velocity v is found out to be

v+ r?

26

With this velocity v the [We, H(y)] gives birth of a new constraint

U:A0—|—

Ay (133)

WGy = (r+ B)m + 2BAL + (v + r?) Al (134)

So in the present situation, three constraints are embedded in the phase space
of the theory and the constraints are

Wy = T, (135)
WGy =+ eX(r + B) AL + ermy + e, (136)
Wy = (r+ B)m + 2BA5 + (v + r?) A} (137)

The matrix constructed out of the Poission brackets within the constraints
is Cij =
0 0 230,
0 —2e240, (r? +79)0f + e(r + B8)* | é(x —y)138)
2000 —(r+ )R —Ar+ B 2r+B)( +7)d

The Hamiltonian in the reduced phase space in this situation reads

(1+72)¢" x2 1 . e 3
B = /d:z:[ 22 * ?1 * 2627”27TI1 * 5(7’72 — A
1
+ e(r+ g)Ald)’ + ng + fgﬂfh]- (139)

The Dirac brackets of the fields with which the reduced Hamiltonian is con-
stituted with are computed as follows.

1
2¢e2[3

[Av(2), Ar(y)]" = d'(x —y), (140)
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@ mol = s - ), (1a1)
m@ ) = " -y, (112)
0(@). M) =~ 50+ Delw ), (143)

6(0), o) = el — ) (144)

Let us now proceed to calculate the Poincar’e algebra for this special situ-
ation. There are three elements in this algebra like the previous situation.
One of the elements of course, is H,, which is given in equation (139), and
the rest of the two are two are the total momentum and the boost generator.
These two respectively are

P = /d$[ﬂ'¢¢/ + m Al + mAp). (145)

and

M = t(ﬂ'¢¢/ + 7T1A,1 -+ 7T0A/0> -+ / [I’HR + 7T1A0 -+ WoA]]d.ﬁE, (146)

In the constrained subspace these two reduce to

P, = ms¢) +mA], (147)
and
v / / 1 -1 (v + 7”2)
M, = t(myd + mAL) /xHRdx —milagr B0 Im 4 AL (148)

respectively. The the action of the Lorentz-boost generator M, on the fields
in the constrained subspace for this case are

[0, M,] = t¢/ + 2, (149)
[Ala MT] = tAll + 33141 + AO) (15())
[Ag, M,] = tA) + x A, + A, (151)
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With the use of the above transformation rules (149) (150) and (151) and the
Dirac brackets (140), (141), (142), (143) and (144) to see that the following
Poincare algebra

[PR7 HR]* = Oa (152)
[Pr, Mg]" = Hg. (153)
[HR, Mg]" (154)
— _ﬂ-,(b/ —€2<T+B>A1¢/— £¢/¢/
er er er
(v+r9) 2y, 28, (B2=1r?)
+ g+ )+
2 2
+ (’szr)_/i]wlAll
= 7T¢(b/ + 7T1A/1 - PR. (155)

holds if the conditions 7> = 1 and 23 + r(1 + v) = 0 are satisfied simulta-
neously. This result agrees with result available in [8,; 9, 57, 58] for weight
factor r = —1 with the choice of parameters § = —1 and v = —3. The result
also reminds the result obtained in [59]. At this point we would like to end
up our the investigation through Poincar’e algebra on this model and would
like to proceed with the Lorentz covariant mass like term for the gauge field
(which of course is a result obtained from the Poincar’e algebra ) and carry
out investigation to shed light on some of the important facts those which
would be of orth unraveling for this model.

4.4 Identification of the Real Physical Canonical Pair

Using Dirac Quantization Scheme

Putting f = 0 and @« = —v = a (a condition for maintenance of Lorentz
invariance) we get a Lorentz covariant masslike term for gauge field and the
reduced Hamiltonian with this setting reads

2 a ar? e2a(l+a—r?)
Hp = -2 L ¢ — A}
f 2 * 2e2(a — r?) * 2(a —r?) i 2 (a—r?) !
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(Ita-r?)e”  rémy  d'm

* (a—12) 2 * (a—1r%)  e(la—1?)
T l+a-—1r% a
e(a—12) rer (a—r?) Ao+ e(a — TQ)AIM)
rmi Ay
e (156)

Using Dirac bracket (115),(116) and (117) we get the following first order
differential equations of motion for the fields describing the theory in the
constrained subspace.

" /
1 " r / ¢ T7T¢

A=y — —— Al _
A e?(a — rQ)Wl (a — rQ)Al e(a—1r2)  ela—1r2) (157)
L (1+a—r1? B (1+a—r1? . a B r ,
T = —e ai(a ey A eri(a ey 1) 67(a ey T 7@ ey 1,
158
. (1 +a— T2)¢,, + 67’(1 +a— r2>A/ + r / + 7T1/ §159;
my = — .
¢ (a —1?) a—r? UL e(a —1r?)’
. a ea r r
— A / /. 1
¢ (a—r2)ﬂ¢+(a—r2) 1+e(a—r2)ﬁl+(a—r2)¢ (160)

Using equation (157),(158),(159) and (160) we have obtained second order
differential equations

(P Gl TQ)]WI —0, (161)
@)

Of¢ + emﬂl] =0, (162)

aip+ U+ Ly —o, (163)

D(éﬂi + ) = 0. (164)

Now a careful look reveals that within the above four equations (161), (162),
(163) and (164) the theoretical spectra are hidden in a significant manner.
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Note that the equation (161) describes a massive boson with square of the
mass ) ,

m2:ea(1+a—r) (165)

(a—r?)

and equation (162) describes a massless boson which is equivalent to a free
fermion in (1 + 1) dimension. So unlike the Schwinger model, fermions gets
deconfined here. We have noticed that equation (163) and (164) describe the
Klein-Gordon type equations for a massive and a massless excitation respec-
tively. The fields describing equations (163) and (164), can be considered as
the momenta corresponding to the fields satisfying equation (161) and (162).
Note that the fields satisfying equation (161) and (163), satisfy canonical
Poission brackets between themselves. Similarly, the fields satisfying equa-
tion (162) and (164), satisfy the same canonical condition. So our description
gives a transparent picture not only for the theoretical spectrum but also for
the physical canonical pairs of the phase space. Therefore this section, will
certainly complement the quantization part of the work reported in [43]. We
end up the discussion related to the theoretical spectra and identification
of the real canonical pair of the gauge non-invariant version of the GVQED
here.

4.5 Discussion

We have considered the GVQED coined in [41], with a generalized masslike
term for gauge fields. It is added as a counter term to remove the divergence
of the fermionic determinant. In this context, we should mention that all
possible masslike term are not admissible as it gets restricted in order to be
physically sensible, however massslike term may take some generic shape.
It may even take a structure which looks Lorentz non-covariant however it
does not stand as a hindrance in the way of the theory to be exactly physical
Lorentz invariant [9, 35, 57, 58]. In this respect, an investigation through the
Poincar’e algebra has been carried out using a generalized masslike term for
the gauge field. The algebra has imposed some condition on the parameters
used in the generalized masslike term and on the weight factor of mixing.
In fact, we have found two possibilities. In the first case it does not put
any restriction on the weight factor of mixing, however, it suggests a restric-
tion that admits the Lorentz covariant structure of the masslike term. No
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other masslike term is admissible for this theory as long as its phase space
contains two constraints. In the second case, i.e., when a = 72, it imposes
restriction on both the weight factor and the parameters within the masslike
term simultaneously. We have found that the number of constraint in this
situation is more than two and the masslike term is of Lorentz noncovariant
in nature. It is worth mentioning here that the mixing weight r # 1 fails to
provide any physically sensible theory having Lorentz non-covariant masslike
term. With the admissible masslike term obtained from the first possibility
of the Poincar’e algebra we quantize the theory using the Dirac’s scheme
of quantization of constrained system. The result though was known from
the work available in [41] that the theoretical spectrum contains a massive
and massless boson, nevertheless a more transparent calculation has been
presented here with the identification of real canonical pairs of the phase
space. Massive boson as usual can be considered as photon acquires mass
via a dynamical symmetry breaking. On the other hand, the massless boson
of the theoretical spectrum may be considered as free fermion. So fermion
gets liberated here which can be thought of as de-confinement in lower di-
mension. So the model may be useful to study the lower dimensional QGP
phenomena. The quantization of the theory with masslike term as obtained
in the second possibility may get a ready idea form the work of one of us
[60], with few redefinitions of the parameter used there.
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Chapter 5

5 Study of BRST Symmetry of Few Field

Theoretical Models

5.1 Introduction

Quite often dynamical equations of physical system cannot be described in
terms of observable physical degrees of freedom. As a result the physical
interpretation of evaluation equation cannot be done in a straightforward
manner. In some cases, certain solution needs to be excluded since they
do not describe the real physical situation or it may be the case that certain
class of apparently different solutions are physically indistinguishable. BRST
formalism has been developed specifically to deal with such system. BRST
is a technique to enlarge the phase space of a gauge theory and to restore the
symmetry of the gauge fixed action in the extended phase space keeping the
physical contents of the theory intact. The unphysical ghost field acquires
prominent status bringing back the symmetry of the gauge fixed action pre-
serving unitarity in a significant manner. Since this symmetry mixes all the
fields (physical and ghost) in such a way that ghost field along with the other
fields needs to be treated on the same footing and that forces to regard the
ghost field along with all the other field as a different component of a single
geometrical object.

BRST formalism provide a natural framework of covariant quantization
of field theoretical models and is interesting in its own right since it ensures
unitarity and renormalizability of the theory [5, 6, 7]. So BRST invariant
reformulation of any field theoretical model would be interesting and add new
contribution to the field theoretical regime. We, therefore, carry out BRST
quantization of three interesting field theoretical models. The models are
1. A generalized (1+1) dimensional quantum electrodynamical model where
axial and vector interaction get mixed up with different weight [41, 42, 43] 2.
Chiral Schwinger model with Fadeevian anomaly [8, 9] and 3. Gauged model
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of Floreanini-Jackiw type chiral Boson [51]. BRST invariant reformulation of
these models have been done with the help of Batalin, Fradkin and Vilkovisky
(BFV) formalism [44, 45, 46, 47, 48] .

The scheme developed by Batalin, Fradkin and Vilkovisky [44, 45, 46,
47, 48] towards the conversion of a set second class constraint into first class
set helps to get this symmetric transmuted form. It is known that for the
above transmutation some extra fields are needed. These fields are known
as auxiliary fields [44, 45, 46, 47, 48, 82, 83]. These auxiliary fields turn into
Wess-Zumino scalar [4] with appropriate choice of gauge fixing conditions
for some favorable situations. In fact, we have used the improved version
presented by Fujiwara and Igarishi and Kubo (FIK) [46], since it is known
that it generally helps to obtain the Wess-Zumino [4] action associated with
the model in most of the cases. What follows next are systematic description
of BRST quantization of the said three models which we have done in [10,
11, 12]. We are going to give the detailed description of these one by one
with a brief introduction of BFV formalism.

5.2 BRST Invariant Reformulation using BFV Formal-

ism

Let us start with the brief introduction of the BFV formalism. BFV formal-
ism consists of two steps. First step consists of converting the second class
system to a first class system. Auxiliary fields are needed for this conversion.
In the second step the ghost and anti-ghost fields are needed to be introduced
and along with that few gauge fixing function are needed to be chosen. This
allows one to define BRST charge and obtain BRST transformation of the
fields.
We consider a canonical Hamiltonian described by the canonical pairs ¢*, p;(i =
1,2, n). The pairs are subjected to a set of constraints Q;(q%, p;) = 0,
a=1,2,...,n, and it is assumed that the constraints satisfy the following al-
gebra [48, 82].

[Q4, Q] = 1Q.US,, (166)

[He, Q] = i%V. (167)
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where US, and V are structure coefficients. Then n number of additional
condition ¢* ~ 0 with det[¢p,, 2] # 0 have to be imposed in order to single
out the physical degrees of freedom. The constraints 2, ~ 0 and ¢, ~ 0
together with Hamiltonian equation of motion is obtained from the action

S = [ Ipidt = Holpin @) = X' + o)t (168)

where \*, 7, are the Lagrange multiplier fields canonically conjugate to each
other having the relation [A\% .| = id¢ between themselves.

Now introducing a pair of canonical ghost field (C®P,) and a pair of canonical
anti-ghost field (P2, C,) for each pair of constraints an equivalence can be
made to the initial theory with constraints in the reduced phase space. So
the quantum theory can be described by the partition function where the
action [44, 45, 46, 47, 82, 83| in its exponent will be

S = /dt[pidi + WA + PaC, + CaP, — H,, +1i[Q,V]]. (169)

H,, is the minimal Hamiltonian [44, 45|, as termed by Batalin, Fradkin is
defined by

H,, = H,+ P,V;C". (170)

The BRST charge () and the fermionic gauge fixing function v are respec-
tively given by [48, 82, 83]

1 _
Q:W%—iﬁqmﬁ%uw% (171)

¥ = Cexa + PN, (172)
BRST invariant Hamiltonian is
Hpnst = H + [ dafQ, ] (173)
where ;s are expressed through the gauge fixing condition
Dy = Ay + Xa- (174)

In order to show the equivalence between the BFV and the reduced phase
space quantization, one has to consider the quantum effects associated with
the ghosts and the pure degrees of freedom they mutually cancel each other.
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5.3 Study of BRST Quantization of GVQED

Before describing BRST quantization let us start with the brief introduction
of the model GVQED. It is a (1+1) dimensional model where vector and axial
vector mixes with different weight [41, 42, 43]. The most interesting feature
of this model is its ability to interpolates the vector schwinger model [54]
and chiral Schwinger model [32] through its mixing weight factor. Schwinger
model started a glorious journey for its potential of describing the mass gen-
eration along with its ability to describe the confinement aspect of fermion
in lower dimension. Chiral generalization of this model too has been studied
with great interest after the removal of its unitarity problem by Jackiw and
Rajaraman [32, 63, 64, 67, 68, 69, 70].

Recently, an attempts has been made by us in [12] to quantize both the
gauge invariant and gauge noninvariant version of GVQED [41]. This model
in its bosonized version does not posses the local gauge symmetry, since
it becomes essential to take into account the anomaly to protect the uni-
tarity of this model. Here mass generation takes place indeed, via a kind
of dynamical symmetry breaking. However, unlike Schwinger model [54],
here the fermions are found to get liberated which may be considered as
de-confinement phase of fermions. We should mention here that the fermion
are found to remain confined when the model turns into Schwinger model
in absence of its axial interaction part. So naturally, the extension of the
model coined in [41], which has the ability of combining these two models
into a single structure would be of worth investigations. Besides, in order
to protect unitarity, inclusion of anomaly become essential and it adds fur-
ther interest in another direction, because one loop correction enters there
holding the hand of anomaly. But it certainly breaks the local gauge symme-
try. So the study related to the restoration of symmetry would be instructive.

Let us now proceed to describe the BRST invariant reformulation of this
model which we have done in [12]. It has been done here by the use of Batalin,

Fradkin and Vilkovisky (BFV) formalism. The bosonized lagrangian density
for this theory is

Ls = 36— 0") +elAod) — 4d) +er(Aod — Ard)
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2
1 .

+ %a(A(Z) — A + (A - A (175)
We are now in a state to proceed towards the BRST invariant reformulation
of the lagrangian given in (175). In order to proceed to that end, we need
to know the constraint structure of the theory described by the lagrangian
(175). The momentum corresponding to the fields ¢, Ay and A; respectively
are

aaﬁéB:ﬂ'd,:(;g—eAl—i‘eT’Ao, (176)
0Lp
CY )
0Lxp :
04, ~ = (178)

The equation §2; = my ~ 0, is identified as the primary constraint of the
theory.

The canonical Hamiltonian is H, = 7T1A1 + 7r¢<;5 — L.

By the Legendre transformation we obtain the following canonical Hamilto-
nian:

: . 1 - ) _
He = [dalnsd+mdi = (5(8 = 6) + (Aot — 419)
2
: 1.
+ er(Avd— i) + Ta(Af - A + S(A - AT (179)
Putting the expression of ¢ and A from equations (176) and (178) we obtain
the simplified form of Hamiltonian

1
H. = /dx[§(7ri + 73 4 @) + 1Ay + emg (A — 1T Ap)
2

1
%amg — A} + S (A = rA) + e (r Ay — o)l (180)

The consistency of the primary constraint with respect to the time evolution
leads to the secondary constraint

Qy = [mo, H,] (181)

=7 + X (a—1%)Ag + e*rA; +ed + ermy = 0. (182)
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So the constraints that are embedded within the phase space of the theory
are
O =m =0, (183)

Qo =m +e*(a— 1) Ay + *rA; + e(¢ +rmy) = 0. (184)
Therefore, the effective Hamiltonian in this situation reads

Heff :HC—I—Uﬂl, (185)

where u is the Lagrange multipliers. The preservation of €2, with respect to
the Hamiltonian determines the velocity u as follows.

Qy = [, Heps) = *(a — r*)u — e*(a — r?) A} + *rmy = 0. (186)
Equation (186) gives
-
Therefore, substituting u in (185) we get
L, 2 & e’ 2 2
Hepp = 5(71 + Ty + ¢") — ECL(AO — A7)
1

+ 562(A1 — T’AQ)Q + GQSI(TA:[ — Ao)

r

+  emy(Ar — rdAp) + mo(A] — )71'1). (188)

(@ —r?

These two constraints form a second class set as they gives nonvanishing
Poission bracket between themselves

[Q1,0) = —e*(a —1*)6(z — y). (189)
The closures of the constraints with respect to the Hamiltonian are

Ql - [QlaHeff] - QQ) (]‘90)

627“2

(@17
For BRST invariant reformulation the system with second class constraints
(190) and (191) are needed to be convert these into a first class set. In this

QQ = [WQ, Heff] == Q/ll - Ql. (191)
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respect, we introduce the auxiliary field 6 and my. This set of auxiliary fields
satisfy the following canonical relation.

[0(x), mo(y)] = id(z —y). (192)

The auxiliary fields are known as BF fields. With some suitable linear com-
binations of BF fields the second class constraints get convert into first class
constraints in the following way.

O = Q +e(a—12)0, (193)

QQ = QQ + emy. (194)

In general, the first class Hamiltonian consistent with the constraints will
be the original Hamiltonian added with a polynomial of BF field. And the
polynomial will be determined by the condition that the new first class con-
straints will satisfy the same time involution like the old second class set
of constraint (183) and (184). The first class Hamiltonian in the extended
phase space is found out as

HIHeff—l—HBF. (195)

where Hgp for this theory is found out to be

1 1 1
Hpp = /dx[wwg +gla— 0" + 5627"292]- (196)

The constraints (193) and (194), ; and Q5 need to satisfy the same closures
as satisfied by €2y and {25 for consistency:

[H, Q] = Q, (197)

627'2

(H, Q) = Q" — o (198)

a—r?
We are now in a position to introduce the two pairs of ghost and anti-ghost
fields (C*, P;) and (P*,C;). We also need a pair of multiplier fields (N;, B;).
The fields satisfy the following canonical Poission bracket

(C*, P, [P, )], [N, Bj] = i6id(x — ). (199)
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From the definition (170), we can write the BRST invariant Hamiltonian for
the theory under the present situation:

Hprst = Hepp + Hpp + / (Q,Y)dx + P,V,ACP. (200)

The BRST charge QQ is a nilpotent operator that satisfies the equation

Q*=1[Q,Ql =0. (201)

Here BRST charge Q and the fermionic gauge fixing function v are defined
by

Q == /dw(Clﬁl + CQQQ -+ PlBl + P2B2), (202)

b = / de(CX" + CoX? + PLN' + P,N?). (203)

Right now we have to fix up the gauge condition which is very crucial for
getting appropriate Wess-Zumino term. It is found that these two very con-
ditions only meet our need successfully.

X, = Ay, (204)
Xy = A, + %BQ. (205)

Let us now calculate the commutation relation in between BRST charge and
gauge fixing function:

[Q,v] = [B:P"+ C'w;, C; X7 + P;NY]
B X'+ B,X?
— PP, — P?P, — C'C, + C?CY
+ NP4+ QN2 (206)

Using equation (200), BRST invariant Hamiltonian is obtained which is given
by

€2T2

PiCy. (207)

Hprsr = Heps + Hpp + /[Q, Yldx + P,Cy + P Cy — — 3

The generating functional for this system can now be written down as
Z = / [DuJexp’. (208)
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where [Dp] is the Liouville measure in the extended phase space

1
[Dy] = [do)[dmy) > _[dA;][dm;)[dn)[dm,] [d6] [dme] x
1=0
2
S [AN|[dB][AC*], [dC,)[dPY, [dPy).
k=1
There exists a simplification

/memﬂ+éJm:—ﬂQ/fﬂzNw

with the Legendre transformation B* = B® + N°.
The action S in equation (208)reads

/dzfﬁ[ﬂqﬂg + 7TOA() + 7T1A1 + é’ﬂ'a + NlBl
+ N232 — HBRST]‘

The explicit form of Hpprsr lying in equation (211) is

Hppst = Heff+HBF_P1P1_P2P2—0161+026é,

+ ON'+Q,N?2+ PO, + P,
2..2

ae_T POy + B1A° + By(A] + 232)

(209)

(210)

(211)

(212)

To get the action in the desired form it is necessary to integrate out the
fields By, N',my, m, mg, P1,Cy and C;. After integrating out of these fields
we obtain a simplified form of the generating functional with the following

action:

1
S = 3 00" ¢ + e€,,, ALO" ¢ + erg,, AFOY ¢

1 1 1
+ 5@6214“14# — ZFMVF'LLV + i(a - 7,2)8M98ﬂ9
+ ela— rQ)gu,,A“ﬁ”H — ere,, A*0"0
2

. B
+ 9.00'C + a7 + BY A

20

(213)



We have to choose C? = C, N? = Ay, Bo = B to reach equation (213) from
equation (208). It is interesting to see that the action (213) is invariant under
the transformation

66 = er\C, 6Ny = —\C, 64, = =\, (214)

50 = —X\eC,0C = 0,6C = —\B. (215)

These are the very BRST transformations corresponding to the fields that
describe the system under consideration. It would be of worth to reiterate
that the choice of gauge fixing is very crucial here. The choice of gauge
fixing which we have considered here renders a great service to obtain the
appropriate Wess-Zumino term. The Wess-Zumino term L, can easily be
identified as

Ly, = ;(a - 7’2)8#9(9“9 +e(a — 7‘2)gWA“(9”9 — ere,, A"0"0. (216)

Wess Zumino terms appears automatically during the process of quantiza-
tion. In this formalism the fields needed for the extension of the phase space
keep themselves allocated in the unphysical sector of the theory. With this
we end up the BRST quantization part of the GVQED and proceed towards
BRST quantization of gauged model of chiral boson with the siegel type ki-
netic term in the following two Sections. Among these two first one contains
the description of the model itself.

5.4 A Gauged Model of Chiral Boson with the Siegel

Type Kinetic Term

Free chiral boson is interesting because it is considered as the basic ingredient
of heterotic string theory [85, 86, 87, 88]. The obvious generalization of free
chiral boson is to take into account of the interaction of gauge field with
that and this interacting field theoretical model is known as gauged chiral
boson. The interacting theory of chiral boson was first described by Bellucci,
Golterman and Petcher [50] with Seigel like kinetic term for chiral boson.
So, naturally, the theory of interacting chiral boson with FJ type kinetic was
wanted for as free F.J type chiral boson became available in [51] and that was
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successfully met up by Harada [35]. After the work of Harada [35], interacting
model of chiral boson based on FJ type kinetic term attracted considerable
attention [84] in spite of the fact that this theory of interacting chiral boson
was not derived from any fundamental principle. Harada obtained it from
Jackiw-Rajaraman (JR) version of chiral Schwinger model [32] imposing a
chiral constraint into it by hand. An attempt towards search for a link is
therefore a natural extension which we would like to explore. In fact, we
want to show whether the gauged FJ type chiral boson is contained within
the gauged chiral boson of Seigel type chiral boson which is available in [50].
The study of the model may be beneficial from another point of view indeed;
where anomaly is the central issue of investigation [8, 9, 32, 35, 65|, since it is
known from Ref. [35] that the model took birth from the JR version of chiral
Schwinger model and this very chiral Schwinger model viz., chiral generation
of Schwinger model [54] gets secured from unitarity problem when anomaly
was taken into consideration [32]. In this respect, the recent chiral generation
of Thirring model is of worth mentioning [59, 60]. So when the issue related
to the search of desired link gets settled down a natural extension that comes
automatically in mind is to study the symmetry underlying in the model and
perform the quantization of the model. BRST quantization in this context
scores over other.

The gauged chiral boson with the Siegel type of kinetic term is described by
the lagrangian density

Ly = 5@~ el +)(A— A)

+ ;((dﬁ — &) + € (Ao — A1)? + 2e(Ay — A1) (6 — )

1, . 1
+ 5(141 — A+ iaeQ(Ag — A). (217)
Here over dot and over prime represent the time and space derivative respec-
tively. The momenta corresponding to the field Ay, A1, A and ¢ respectively

are

9Ls _ . (218)
04y
0Lz .
958 A AL 219
DA, 1 1 0 (219)

52



0Lz
LA — 220
o\ ™ ’ (220)

88 = (1 N — A0 + (1 + M) (Ao — A1), (221)

¢

The canonical Hamiltonian density of the system is obtained through a Leg-
endre transformation: ' '

H :7T¢¢+7T1A1 - L. (222)

Using equations (218), (219), (220) and (221), we find that H,. takes the
following form

2
1
HC = /dfﬂ[% + 7T1A6 —|— 7T¢¢/ —|— 562(/11 — A0)2

2
— e(mg+ ¢ ) (Ao — A1) — %(A(Z) — A}
- 2(11+A)(7T¢ — )"+ umy + vmy]. (223)

In equation (223) u and v are the two Lagrange multipliers. The primary
constraints of this system are identified as

O = m ~ 0, (224)
Qy =m\ =~ 0. (225)

since these two expression do not contain the time derivative of the fields.
The preservation of the constraints (224) and (225) leads to the following
two constraints:

Q3 =71 +e(my + &) + e*[(a—1)Ag + Ay =0, (226)
Qu=my— ¢ ~0. (227)

In order to single out the physical degrees of freedom we proceed to quantize
the theory with the following gauge fixing condition

Qs =\— f~0. (228)
Generating functional for this system can be written down as
Z - / dAgd A dm dgdr sdhdry exp' ] Calmod+mdi=H] o
0(£21)6(£22)6(£23)6(£24)0($25) (229)
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After integrating out of the momenta of the fields we get the generating
functional Z in the following form

Z - / dAgd A dddr expt | #olacs (230)
where
Locs = ¢¢' — ¢ +2e¢/(Ag — Ay) — ;GQ(AO — Ay)?
+ ;ae2(A3 — A3 + ;(Al — Ap)>. (231)

This is the gauged model of chiral boson with FJ type kinetic term. Note
that Lgep is an action generated from Lz and it agrees with the lagrangian
found in [35]. So we find that the gauged model of chiral boson with FJ type
kinetic term is contained within the gauged version of Siegel like chiral boson.
Imposition of chiral constraint by hand like the work [35] is not needed here.
Here Q's stands for the standing second class constraints embedded in the
phase space of the theory. The constraints of the theory explicitly are

Ql =Ty~ 0, (232)

Qy = my ~ 0, (233)

Oy =1y — & ~0, (234)

Qu =7 +e(my+ &)+ e*[(a—1)Ag + Ay =0, (235)
Qs = A— f ~0. (236)

Therefore, to compute Dirac brackets we need to construct the matrix consti-
tuted with the Poission brackets between the constraints (232), (233), (234)
,(235) and (236). The required matrix is

0 0 0 —e*a—-1) 0
0 0 O 0 —1
Oy = 0 0 —29 0 0 |s@—y). (237
e*(a—1) 0 0 0 0
0 1 0 0 0
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The matrix Cilj is nonsingular. So inverse of it exists which is found out to

be

0 0 762(;71) 0
0 0 0 0 1
q.;l — 01 0 —ﬁ 0 0 |6(z—y). (238)
oy 0 0 0 0
0 -1 0 0 0

The Dirac brackets between the field variables are found to be

1

[Ao(z), A1 (y)]" = mazé(x — ), (239)
(6(0), 60))" = 550z ~ 1), (240)
.1
[Aole). 6] = 0l ) @41)
. 1
[Ag(z), m(y)]* = — (- 1)5(w - y), (242)
. 1
[Aule) 7)) = gy Onbla =) 43)
(o), m ()] = 8 ), 24)
(6(@). o))" = 8= ). (215)

Here (*) indicate the Dirac bracket. It is the rightpoint to end up the
description of this Section. In the following section we will proceed towards
BRST quantization of this model.

5.5 Study of BRST Quantization of Gauged Floreanini-

Jackiw Type Chiral Boson

We have carried out the BRST quantization of the gauged chiral boson with
FJ type kinetic term using BVF formalism in [11] which we are going to
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describe here. The lagrangian density of gauged FJ type chiral boson is
given by

L = ¢¢' — ¢ +2ed/(Ag — Ay)
3Py — A+ Sad (A~ A 4 (A - ALY (246)

For this lagrangian density (246) the canonical momenta corresponding to
the field ¢, Ay and A; respectively are

oL
—_— = - ,, 247
96 =™ ¢ (247)
oL
oA, " (248)
oL -
04, A (249)

Equation (247) and (248) do not contain any time derivative of the fields. So
these two are the primary constraint of the theory.

wy =Ty — ¢ ~ 0, (250)
wy = o ~ 0. (251)

The canonical Hamiltonian density of the system is obtained through a Leg-

endre transformation: ) )
H,=msp+mA; — L (252)

The canonical Hamiltonian can be calculated using equations (247),(248) and
(249) through a Legendre transformation as done earlier:

1
H. = /dx[iﬁf + T Ay + ¢ — 2e¢/ (Ag — Ay)
1 1
+ 562(140 —A)? - iaez(Ag — A)] (253)
Therefore, the effective Hamiltonian reads
1
Hp — /da:[?rf b AL 4 ¢ — 2ed (Ag — Ay)

1 1
+ §€2<A0 - A1)2 - 5&62(143 — A%) + U(7T¢ - ¢/) + U?T()], (254)
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where u and v are Lagrange multipliers. The preservation of wy renders the
following new constraint

wy = + 2e¢’ + e*(a — 1) Ay + %A, (255)

~ 4 ed +emy+e2(a—1)Ag + e2A; ~ 0. (256)

The preservations of w; and w3 however do not give rise to any new constraint.
These two conditions fix the velocities u and v respectively:
1

u= A — mm. (257)

and
v = d)/ - €<A0 - Al) (258)

Therefore, the theory under consideration contains three constraints in its
phase space. Precisely, the constraints are

W1 =T — (b, ~ O, (259)
~ 0, (260)
w3—7r1—|—26¢+e(a— 1)Ap + €*A; =~ 0. (261)

Imposing the expression of u and v in (254) the Hamiltonian turns into

1
Hp = /dx[iﬂf + m Ay + me(¢) — e(Ag — Ar))

1
— €¢,(A0 — Al) + 562(140 — A1)2
1 , 1
_ 7@62(143 — A%) + 7T0<A1 — m

2
The constraints of the theory satisfy the following Poission brackets among
themselves

)] (262)

[wi,w] = —2i0(z — y), (263)
[wi,ws] =0, (264)

[CL)Q, (,L)Q] = 07 (265)
(266)

[wa, ws] = —ie*(a — 1)§(z —y).
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The involution relation between the Hamiltonian (262) and the constraints
wq , wo and ws are

—i[wl, Hp] = wi, (267)
—i[WQ, Hp] = Wws, (268)
" e?
—ifws, Hp] = !l — ————ws. 2
ilws, Hp] = wy = 1>w2 (269)

The set of second class constraints wy , wo and w3 can be converted into a first
a class set with the help of two auxiliary canonical pairs (6, m) and (n, 7).

[777 71—77] - 5($ - y)? (270)
6,79 = 6 — ). (271)

The first class set of constraints that are constructed from the said second
class set of constraints using these auxiliary fields are the following

Wy =w, +me+ 0, 272

(272)
CJ2 = WQ — 7T77’ (273)
Wy = w3 +e*(a — 1)n. (274)
The Hamiltonian consistent with the first class set of constraint (272), (273)
and (274) is )

A= Hp + Hgp. (275)

where Hgp would certainly be constituted with the auxiliary fields which is
found out to be
1 2

7T:]2+2(a — 1)27rn]. (276)

o 1 1AW 1 2 - 2 1
Hpr = [ dal(mo+6'+ Se*a— 1)y 30T

For consistency, the time evaluation of these first class set (272), (273) and
(274) must be identical to the (267), (268) and (269). Precisely these are the
following.

—ifwy, H] = wy, (277)
—i[wy, H] = w3, (278)
_ 62

—z'[ch, H] == (,JQ// - CJQ. (279)



The stage is now set to introduce the two pairs of ghost and anti-ghost fields
(C%, P) and (P!, C;). We also need to introduce a pair of multiplier fields
(N;, B;). The multipliers and the ghost anti-ghost pairs satisfy the following
canonical Poission brackets: [P?,Cj] = [C?, P,] = [N', B;] = i66(x—y), where
i=1, 2, 3. According to the definition

Hprsr = HP+HBF+I5a‘/IJaCb+/[Q7w]d$- (280)

In this situation BRST charge Q and the fermonic gauge fixing function v
can be written down as

0= / d(C'o, + P'By), (281)

b = /dx(C’iXi + PN, (282)

We are now in a position to fix up the gauge condition which is very crucial
for getting appropiate Weiss Zumino term. It is found that the following
condition help to reach our goal successfully.

R — (283)
= N2 4 A, (284)
X3 = —A" + %Bg. (285)

Let us now calculate the commutation relation in between the BRST charge,
and gauge fixing function:

[Q, 4] = Bix' + PP — C*Cy" — C*C, — 20" Cy + w;N'. (286)
Generating functional for this system can be written down as
Z = / [Dp] exp's . (287)

where [Dp] is the Liouville measure in the extended phase space.

[Du] = [do|[dmy] Z: [dA;][dm;][dn)[dm,][d0)][dmg] x
Zgj dNF¥][dBg)[dC*), [dCk[dP*], [dPy). (288)
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and the action S is explicitly given by
S = /d%[gfﬁm, + Aymy + Agmo + nm, + Oy
+ B;Ni+ PCi+ C;Pi — Hpgsr). (289)
The above formulation allows the following simplification:
/ dr(B;N' + C,PP) = i[Q, / dzxCyN1). (290)

Exploiting the above simplification (290), we obtain the effective action in
the following form

Serf = /d'x[éﬂ-(]ﬁ_‘_Alﬂ-l+A0WD+777TU+9.7T9+N2BQ
+ N3By+ PCY 4 PyC? + PyC3 + CyP? + Cy P8
— Plpl—Psz—P3p3—[’ﬂ'd)(gb/—e(AO—Al))
1 1
+ 577% + 7T1A6 — GQb/(A[) — Al) + 562(140 — A1)2

1 1 1

_ 5@62(143—14%) +7T0(All — mﬂj) +Z<7T9—|—€/)2
1 1 1
*62((1— 1)?72+ 7_‘,/2 + 71_2]

T 22 (a—1)"" " 2a—1)2

+ (my—¢ +mg+ )N + (mg — m,) N?

+ (7] +ed +emy+e*(a—1)Ag + 2 A +e*(a — 1)n)N?
— Bix' = Byx? — Bs\® — P,C| + P3Cy — PYC4

2 PyCy — C2Cy + C3C5" + 2CC. (291)

1
(a—1)

We are in a state to integrate out of the fields 7, 171, Bi, By, N'*

N2, C1, Py, PsandP, one by one in order to have the effective action in a
desired shape. After integrating out of the said fields and choosing N3 = A
the effective action reduces to

Sepr = [ daldd — 7 + 26 (A — A))

1 1
— 562(140 — A1)2 + 5@62(A(2) — A%)
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1, . , 1 : ,
+ 5(141 — A0)2 + mﬂ'n(Al — AO)

: 1 .2 2
+ (mA =7, A0) + m(”n — )
4 ByAy— ByA/ + %Bg +8,0%0"C5) (292)

If we now define m, = e(a — 1)1, C5 = C' and B3 = B we get the desired
BRST invariant action:

Sprst = [ d*alde’ — 6 + 2/ (A — A)
1 1
— 562(140 — A1)2 + 5&62(143 — A%)

1 : / ]- . /
+ A - AY? + =(a—1)(H* —n?)

2
e(Aon' — An) +e(a — 1)(A — Agn)

_ B2
9,00"C + B, A" + & == (293)

The action (293) is now found to remain invariant if the fields transform as
follows.

66 = eAC, (294)
ONy = —\C, (295)
6A, = =\, (296)
on = —XxeC, (297)

6C =0, (298)

6C = —\B. (299)

The above transformations are the very BRST transformation generated from
the BRST charge (281). The Wess-Zumino term for the theory under con-
sideration can easily be identified as

L = [ @l (a— 1) =)+ e(Agt/ = Avi) + el — 1) (Auf = Avi)] (300)

This very action (300) is the appropriate Wess-Zumino term corresponding to
the theory of our present consideration and it agrees with the Ref. [89]. We
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would like to reiterate that in [84] it was lacking for. In fact, in [84], the term
which was demanded for by the author as the Wess-Zumino term was not
the appropriate one and he tried to show the on shell BRST invariance with
that inappropriate Wess-Zumino term. The term standing in equation (300)
however establishes the off-shell BRST invariance. To achieve the appropriate
Wess-Zumino term for this theory is a novel aspect of this reinvestigation.
In the following section we will discuss the BRST invariant reformulation of
the chiral Schwinger model with Faddeevian anomaly.

5.6 Study of BRST Quantization of Chiral Schwinger

Model with Fadeevian Anomaly

Jackiw-Rajaraman version of chiral Schwinger model is an interesting field
theoretical model which has been studied over the years for different pur-
poses. Another parallel development of chiral Schwinger model with Fadee-
vian regularization was made few years later by Mitra [8, 9]. BRST invariant
reformulation of Jackiw-Rajaraman version of chiral Schwinger model was
done in [48]. However the BRST invariant reformulation was lacking for the
chiral Schwinger model where anomaly is Faddeevian like. Quantization of
this model has been done in [10], which suggests that the system may posses
more degrees of freedom than the usual. With this in view and also as a
pedagogical illustration of the BVF formalism effort has been made to ob-
tain a BRST invariant effective action of this model. The work will certainly
demonstrate the power of BFV formalism once more. This new study would
be instrumental for future studies towards unitarity and renormalization of
this model.

The lagrangian for chiral Schwinger model with Faddeevian anomaly is given
by

Low = / dz]od’ — &2 + 2e¢! (A — A;) — 26247, (301)
We find that the momenta corresponding to the fields ¢, Ay, and A; are
OLcy ,
— =Ty =, 302
) 6= (302)
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OLcn
DA
=m = A, — A). (304)

= =0, (303)

OLcu
04

It is known that my ~ 0 and 74 = ¢’ = 0 are the primary constraints of the
theory.

Wy = Tg — ¢/ ~ O, (305)
Wy = Ty =~ 0. (306)
The effective Hamiltonian follows from the equations of motion is
Hb:/dﬂHc+mm+uh¢—¢% (307)
where H, is
1 2 / 2 / 2 A2
Hb:/m5m+mAﬁw—Qdm—Aﬂ¢+%AJ (308)

Here u and v are two required Lagrange multipliers. The preservation of the
constraints leads to two other constraints

G =7+ 2e¢d’ =~ 0, (309)

—2e*(A; + Ag) =~ 0. (310)

The multipliers u and v are found out to be

u=—(m + Ap), (311)
v = qb — B(AO - Al) (312)

Therefore, the theory under consideration consists four constraints in its
phase space. Precisely, the constraints are

leﬂ-d)_(b/%()?

(
wy =y =~ 0, (

w3 =T + 2e¢’ ~ 0, (315)
wy = —2e*(A; + Ag) = 0. (
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These four constraints form a second class set and the closures of the con-
strains with respect to the Hamiltonian (307) are given by

wp = Wi, (317)

Wy = w3 — Wh + ewr, (318)
W3 = wy — ewr, (319)
wy = 2e%w). (320)

To obtain a BRST invariant reformulation we need to convert the second
class set of constraints into a first class set. With this in view, we introduce
four auxiliary fields 1,7, 7y, and m, and fields are such that they satisfy the
following canonical condition

(), m(y)] = oz —y), (321)
() my(y)] = oz —y). (322)
The fields used here are known as Batalin-Fradkin (BF) fields. The con-

straints (313), (314),(315) and (316), with some suitable linear combination
of the BF fields get converted into first class set as follows

0 =Ty — ¢ +my + Y, (323)
Wy = Ty — Ty, (324)

W3 = —2ey)’ + 2e¢’ + 1) — 7, (325)
Q4 = —2e*(Ag + Ay) — 2e*. (326)

First class Hamiltonian is obtained by the appropriate insertion of the BF
fields within the Hamiltonian (307) and it is given by H = Hp + Hpp.
Here Hpp is a polynomial of ¢, n, m, and m, that extend the phase space
respecting the closures (328), (329), (330) and (331). We find that Hgp for
this system will be

Hpp = /dx[—Qemb’ +e(my + ¢ )+ ;(7?727 + 7T12/, + WQ)]- (327)

The above four first class constraints will be found consistent with the first
class Hamiltonian if these new first class set satisfy the same closures as their
ancestor did with the Hamiltonian (307). Precisely, the conditions are

W = @, (328)
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Wy = (03 — QO + ey, (329)
Wy = @y — e}, (330)
g = 26205, (331)

We now introduce four pairs of ghost (Cj, P?) and four pairs of anti-ghost
(P;, C") fields. Four pairs of multiplier fields (N, B;) are also needed. These
fields need to satisty the following canonical relations

(Ci, P =[P, Cj] = [N".Bj] =idio(x —y), i=1,234. (332)
From the definition we can write BRST invariant Hamiltonian
Hppsy = Hp + Hpp + P,VACY + /[Qa Ylde, (333)

@ is the BRST charge and ’s are the gauge fixing functions. The BRST
charge @) is a nilpotent operator and it satisfies the equation

Q*=[Q, Q=0 (334)
The definition of () in this formalism is
Q= / (B;P' + C;@")d , (335)
and the definition of gauge fixing function v is
b = / (C; X' + PNY)d . (336)

The BRST invariant Hamiltonian for the theory with which we are dealing
with is
Hprst = HP—f—HBF—i—/d:E(—plC{ + Py,
+ PQC§+€p1CQ+P4C3
— eP|C5+2e*PyCy). (337)

It would be helpful to write down the generating functional that ultimately
leads to an effective action with the elimination of some fields by Gaussian
integration. The generating functional reads

7z = / (Due’s. (338)
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Here the expression of S is

/d2 .CIZ[’/T(z,QB + 7T1A1 + 7TOA0 + 7qu¢ + 77777;] + pzcz + ézPZ
+ B;N'— Hpgst),

where [Dy] is the Liouville measure in the extended phase space.
1
[Dp] = [do)ldry) > _[dA;][dm;)[dn][dm,] [dy][dmy] x
=0
4 — —
Z [AN*[dB][dC*], [dCy][dP*], [dPy).

We are now in a position to fix up the gauge conditions.

X1="g— &,
X2 = —N? + Ay,
Bs
X3 = 2 A/la

X4 = Ty — N*.

(339)

When we substitute the simplified form of Hggrsr obtained after plugging
the gauge fixing conditions (341), (342), (343) and (344) in the action (339),

we get the explicit expression of S:

S = /dzx[%g{ﬁ#—ﬂw@/}—{—wnﬁjtmfil

2
(% +m Ay — ed'(Ag — Ap) + 262 A7
— mo(m + Ay) + 10" — emy(Ag — A1) — e’ + emyn
1 7 ~ 7
5 (T + 7+ U%) + Bix + G
— PP — PC; + PsCy + PCY
+ €p102 + ]5403 — €P1/03 + 2€2P2/C4
— C3C" - CyP? — O, P
+ 2620464 — 20/61 — 620262.
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Here ¢ runs from 1 to 4. Our next task is to simplify (338) through the
elimination of some fields and that will lead us to our desired result. A
careful look reveals that here exists a simplification

/ Pr(BIN' + C,Py) = —i[Q / 20, N1, (346)

with be Legendre transformation B — B? + N . However the simplifica-
tion corresponding to i = 1 suffices in this situation. More simplification
follows from the elimination of the fields my, m, m,, Bi, Ba, Bi, Ao, N',
N2, N* P, P', P,, P? P4, P* P, P!, C,, C', CyandC?by Gaussmn
integration. Ultlmately we reach to a very snnphﬁed form of the generating
functional (338) that contains the following effective action in its exponent.

1
+2e¢’(Ag — A1) + 2e' (A1 + Ap) + QLBA” + §ozB2
+9,C0"C. (347)

We have used few redefinition of fields, e.g N3 = Ay and P? = Cg to reach to
the result (347). Since after elimination there is no other B’s and C’s except
Bs and C3 we are free to read them as B and C. It is now time to check
the invariance of the action (347). The action is found invariant under the
transformation

bA; = —\C',  5Ag=0ON;=—-\C,
Sp=\C, 0 = —XC, 6C=\B, 4C=0. (348)

We can identify easily the Wess-Zumino term for this theory which is

Ly, = =00 — "2 4 2e)/ (Ag + Ay). (349)

5.7 Discussion

We have described the BRST invariant reformulation of three different mod-
els using the improved version of BFV formulation due to Fujiwara, Igarishi
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and Kubo [46]. This improved version has helped us to obtain a BRST in-
variant reformulation along with the emergence of appropriate Wess-Zumino
term of the GVQED where vector and axial vector interaction get mixed
up with different weight, chiral Schwinger model with Fadeevian anomaly
and gauged model of Floreanini-Jackiw type chiral Boson. In the BRST in-
variant reformulations of these models, extension of phase space have been
needed because of the entry of the auxiliary fields in an essential way. The
fields needed for the extension however keep themselve laid in the unphys-
ical sector of the theory and the process keeps the physical content of the
theory intact. Beauty as well as the advantage of this formalism is that the
Wess Zumino terms appears automatically during the process of quantiza-
tion. Note that the role of gauge fixing is very crucial to get the appropriate
Wess-Zumino term in every case.

Though in [84], an attempt was made towards BRST quantization of the
gauged version of FJ type chiral boson nevertheless in that work the part of
the action which was demanded as the Wess-Zumino term was not the ap-
propriate Wess-Zumino term for the corresponding model. The author with
that inappropriate Wess-Zumino term tried to establish the on shell BRST
invariance. The way we have made the BRST invariant reformulation leads
to the appropriate Wess-Zumino term. It is interesting that the appropriate
Wess-Zumino term has automatically appeared during the process and it has
been found off shell BRST invariant. Note that equation (269) reveals the
missing of a term in the involution relations corresponding to the constraint
wy in Ref. [84], and that may be considered as the reason behind obtaining
an untrustworthy Wess-Zumino action.

We would like to end up this Chapter with the remarks that in the usual
Hamiltonian formulation of a gauge invariant theory one some times need
to destroy the gauge symmetry under the introduction of some gauge fixing
terms. However, BRST invariant Hamiltonian which has been reformulated
will help one to work in an extended phase space on which only a subspace
corresponds to the state of physical interest.
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Chapter 6

6 Alternative Quantization in the Extended

Phase Space

6.1 Introduction

In the usual phase space of a theory Dirac’s scheme of quantization is in-
strumental to determine the phase space structure of a theory. However in
order to get a symmetric theory we need to extend the phase space. So
quantization of a theory in the extended phase space is a natural extension.
In [10, 12] a gauge symmetric versions of two models are made available by
us. Extension of phase space has been occurred there by the advent of Wess
Zumino field. In the extended phase space too an alternative quantization is
found possible, which of course is based on the very Dirac theory of quanti-
zation of constrained system [25]. In presence of that Wess-Zumino term an
extension towards an alternative quantization [11, 26| is made to determine
the canonical pair of fields which describe the Fock-space. The Lorentz type
gauge fixing term at the action level also has chosen for quantization in the
alternative manner. A natural corollary, at this stage of course is to show
that the physical contents of the theory remains identical, even after the ex-
tension of phase space. The use of the formalism available from the work of
Falck and Kramer in [30] has come in use in this respect. It is shown here
explicitly that an appropriate gauge fixing is capable of mapping the Wess-
Zumino added action onto the initial gauge non-invariant effective action of
the usual chiral Schwinger model.

The alternative quantization of GVQED and gauged F'J type chiral boson
have been studied in [11, 26]. In this Chapter we are going to describe the
alternative quantization of these two models. This Chapter also includes the
discussion related to the study concerning equivalence between the physical
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contents of the actual gauge non invariant version and the gauge invariant
version of the extended phase space for these two models.

6.2 Study of Alternative Quantization of GVQED

A known standard way of expressing a gauge non-invariant theory into its
gauge invariant version is to extend the phase space with the inclusion of
Wess-Zumino field [4]. So by adding the appropriate Wess-Zumino action to
the action of the usual bosonized gauge non-invariant action of GVQED we
get a gauge invariant theory of the same and the lagrangian of which is given
by

1 1
L — / Az[50,00" 6 + e A,0,6 + €19" A,0,6 = L Fyu I
ae? L 1 9 " o
TA/‘A + i(a —r%)0,00"0 — ere'” A,0,0

+ e(a—12)g"A,0,0 + BO'A, + %BQ]. (350)

Here we have included the admissible mass like term %ANA“ which we have
obtained from Poincar’e algebra in Chapter 4. The last two terms of the
lagrangian (350), imply the Lorentz type gauge fixing term at the action
level. It is needed for quantization in the alternative manner [25, 27, 28, 29].
The Euler-Lagrange equations of motion of the fields (of both the usual and
extended phase space) are

d¢ = —68;14“ —erg, A", (351)

00 = ——§,A" — ed, A (352)
(a—r2)"" meo

0, A" +aB =0, (353)

0, F" — "B+ J" =0, (354)

Where J” is the electromagnetic current, which is defined by

J' = e 0,0 + erg"’ 0,6 — ere 9,0 + e(a — r*)g" 0, + e*aA”.  (355)
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The equation (351),(352),(353) and (354), agrees with the following exact
solution of the fields ¢, 6 and A,

a—r? h
- ea<<1 +a—)r2>” PR (356)
r r
9:_6(1(1+a—r2)F_a(a_TQ)h+n7 (357)
1 (a—1%) - B
m= %[mﬁplj + 0,B + €d,h — ead,n). (358)

where the h, B, n, F' are fock space fields.
For Lorentz index p = 0 the equation (354) takes the following form

—Al+ A —B+el'=0. (359)
Similarly for g = 1 the eqution (354) looks
A+ A+ B +ed =0 (360)

Substituing the value of Ag and A; in equation (353), we get the following
relation
On = aeB. (361)

Putting the expression of Ay, A; and € in (352) we have obtained the following
condition
OB =0, (362)

Similarly putting the expression of Ay and Ay, ¢, 0 in (354) we get
(O +m?)0F =0, (363)
Oh =0, (364)
where square of the mass m? is given by

m? = GQG((ZJ:‘:J_) ) (365)
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We have obtained the same mass during the quantization of the system in
the usual phase space. The Fock-space fields has the following relation with
canonical variables of the physical system.

2

r a—r
n=-—-¢+ ?, (366)
a a
O S S S— (367)
B e(l+a—r2) "
F=0"Y. (368)
Here F is the electric field and
B =" (369)
since m = —e"0, A, = —5"14”. Now we find that the equal time commutator
of the fock space fields are
) 1
(@) 1Y)} = i—d(z —y), (370)
[F(x), F(y)] = im*6(x — y), (371)
[h(x), h(y)] = id(x — ), (372)
[B(x),10(y)] = ied(z —y). (373)

This completes the quantization of the gauge invariant version of the theory in
the extended phase space. The equation (363) and (364) represents a massive
and a massless boson respectively. We have found that the appearance of
massless and massive boson is identical as we have got in usual gauge non
invariant version. Equation (361) and (362) appears because of the presence
of the auxiliary field B in the Lorentz type gauge fixing term at the action
level. When the phase space of a theory is extended in order to restore the
gauge symmetry it is expected that the fields needed for the extension will
allocate themselves in the un-physical sector the theory.
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6.3 Study of Alternative Quantization of Gauged Floreanini-

Jackiw Type Chiral Boson

The quantization of gauged FJ type chiral boson [51] was available in [35].
It was attempted there to quantize it in a gauge non-invariant manner. The
gauge invariant version certainly can be quantized. Like the previous case
some gauge fixing is needed in this situation indeed. We choose the Lorentz
gauge and proceed to quantize the gauge symmetric version of the gauged FJ
chiral boson. The gauge symmetric version of the said theory with Lorentz
gauge is described by the lagrangian density:

L= 66 = "+ 260/ (A — A1) = 3¢ (Ao — A + Sae (4 — 4D

L, ! 1 . /
+ 5(141 — A + §(a - )" =1
e(Aon — Arn) 4+ e(a — 1) (A" — Agn)

BQ
B, A" + =~ (374)

Gauge fixing is needed in order to single out the real physical degrees of
freedom from the gauge symmetric version of the extended phase space. The
Euler-Lagrange equations of motion corresponding to the fields ¢, Ag, A1, B
and 7 that follow from the lagrangian density (374) respectively are

¢ — ¢" + e(Ay — A}) =0, (375)

A — A+ (1= a)Ag— A1 +ela— 1) —eny —2e¢ —B=0, (
Ay — Ay + ae®A; + 24 — Ay — e(a — 1)) + en + 2e¢ + B' =0, (377
9, A" +aB = 0, (378
(a—1)ii— (a— 1) —e(a — 1)Ag + e(a — 1) A, + Al —eA; =0. (379

376)
)
)
)

It is found that the following expression of A, , ¢ and 7 represents the exact

solution of the equations (375), (376), (377), (378) and (379)

1. (a—1)

9, F 4 0,B — ed,h — ead, (], (380)
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(a—1) h
e (381)

x o
ea? ala—1)

If we put the expression of Ay, A;,60 and ¢ in (375) , (376), (377), (378) and
(379) we obtain some essential conditions which are given as follows

¢:_

n=— (382)

(0o — 01)h =0, (383)
(9 — 01)B =0, (384)
0¢ = aeB, (385)
[O+m?F =0, (386)
where square of the mass is given as follows
2.2
m2=_2° (387)

(a—1)

Therefore, the free fields in terms of which the system is completely described
are

h——(a—l)((b—i-??-i-elaF), (388)
(=1o-21, (359
F=m, (390)

B = 0. (391)

The equal time commutation relations corresponding to the free fields are
found out to be

[F, F] = im?6(x — ), (392)
6.4 = i3 —0), (393)
[h,h] = id(x — ), (394)
(B, (] =ied(x —y). (395)

Note that F' = m; represents a massive field with mass m and h represents a
massless chiral boson. These two are the replica of the spectrum as obtained
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in [35]. The equations involving B appear because of the presence of the
auxiliary field in the Lorentz gauge fixing. Note that B has the vanishing
commutation relation with the physical field F and h. The field { represents
the zero mass dipole field playing the role of gauge degrees of freedom that
can be eliminated by operator gauge transformation. So the spectrum agrees
in an exact manner with the spectrum obtained in [35]. So it would be inter-
esting if we get back the usual gauge non-invariant version from the gauge
symmetric one of the extended phase space peeping the physical principles
intact. We will now turn towards that.

6.4 Appropriate Gauge Fixing of GVQED and to get
back the GNI from its GI form in presence of Wess-

Zumino Term

In [30], we have found a technique how to get back the usual gauge non-
invariant theory from a gauge symmetric theory of the extended phase space.
We would like to make an extension for this GVQED following the guideline
available in [30] towards getting back the original gauge non-invariant theory.
Let us see how this technique responds to GVQED. Lagrangian of GVQED
when added with the Wess-Zumino term in order to restore the local gauge
symmetry turns into

1, 2 1 1 .
L= [dal5(d? - )+ 5act(4 - AD) + S (A1 - A
+ e(Agd — A1) + er(Agd — Ar') + ;(a — ) (62 — ¢”)
— er(Agf — A0) + e(a — r?)(Agh — A1), (396)

Let us now proceed to calculate the momenta corresponding to the field
Ag, A1, ¢ and 6. From the standard definition, the momenta corresponding
to the fields Ag, Ay, ¢, and 6 are found out:

oL

e — 307
04, — (397)
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—— =m=A - A, 398
DA, ™ 1 0 (398)
I .
gq'ﬁ :7T¢:¢—€A1+67’A0, (399)
aL 2 b 2
i (a—r*)8 +e(a—r7)Ag+ eri. (400)

Using (397),(398),(399) and (400) canonical Hamiltonian is found out to be

e*a(l+a—1r?)

2(a —1?)

1 / /
He = [def5(rd 478+ +mdy+ A+ e/ (r A1 — Ao)

+ emy(A; —rAp) + ;(a —r?)g"

1
2(a—r?)
(rA; + (a — %) Ag) ). (401)

+ ef((a—rH A — Ay) +

2
Ty

N e

(@1
Equation (397) is independent of velocity. So it is the primary constraint of
the theory as usual. The time evolution of the primary constraint (397) with
respect to the Hamiltonian is

[0, He] = m1 + e(¢' + rmy) —e(mg — ') = 0, (402)

which gives the secondary constraint of the theory. It is found that the Pois-
sion bracket of the secondary constraint w, with the Hamiltonian vanishes.
So there lies only two constraints in the phase space of the theory. Following

are those two.
Wy = Ty ~ 0, (403)

Wo = +e(¢ +rmy) —emg + erd = 0. (404)

As it has been found in [1], we too have introduced two gauge conditions to
get back the gauge non-invariant theory. These two gauge fixing conditions

are
Gy = 010 ~ 0, (405)

Gy =g +e((a—rH)Ag+rA;) ~0. (406)
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Inserting the conditions (405) and (406) as strong condition into «» and H.,,
we find that wy and H., reduce to the following

wop =m +e2((a— 1) Ao +1A)) +e(rmy + ¢') = 0, (407)

L, /2 / ae? 2 2
Hp = 5(”1‘*’?5 )+7T1Ao+7(A1_A0)

+ ed'(rA; — Ag) + ;[7% +e(A; — rAy))>. (408)

Note that (407) and (408) is identical to the constraint and Hamiltonian in
the usual phase space when &« = —y = a and § = 0. For Hp the ordi-
nary poisson brackets become inadequate [52]. So we need to evaluate the
Dirac brackets among the fields. It necessities the computation of the matrix
formed out of the Poission brackets between the constraints along with the
gauge fixing conditions themselves. The constraints along with the gauge
fixing conditions gives the following matrix when Poission brackets among
themselve are evaluated.

0 0 0 —e*a—r?
B 0 0 —edy 0
Cij = 0 —681 0 661 5(1’ - y) (409)
la—r* 0 ed 0

The determinant of Cj; is non vanishing. So it is invertible and its inverse is

0 o(z —y) 0 o(z —y)
_ 1 d(z —y) 0 —Ce(x —y) 0
1 _ 2e
G’ = e?(a—1?) 0 —Le(z—y) 0 0 (#10)
—0(x —vy) 0 0 0.

where the factor ¢ = e*(a — r?). Therefore, from the definition of Dirac
bracket, the Dirac brackets between the field variables can now be computed

[Ao(2), A (W)]" = 5——50'(x — ), (411)

[Ao(x), o(y)] m&x — ), (412)



[Ao(e), mo0)]* = 5elx — ), (113)
[Aola). w0 = s = ) (414)
[As(a), mo(y)]" = — el — ), (115)
[Ao(a) mw)" = a0l = ), (416)
ro(a), mo(y)]* = r8'(z — 1), (a17)
[Av(e) m)]* = 6z~ y), (118)
(6(a), (W) = 5 — ). (419)

Here also (*) stands to symbolize the Dirac bracket. Note that the role of
gauge fixing is very crucial to gate back the usual theory since the other
choice of valid gauge fixing certainly exists, but that will lead to a different
effective theory which may not help to get back to the usual theory in a
straightforward manner.

6.5 Appropriate Gauge Fixing of Gauged Floreanini-
Jackiw type Chiral Boson and to Get Back the

GNI model from its GI Form with the Weiss Zu-

mino Term

An attempt is also made to show the equivalence between the gauge invariant
version of the extended phase space and the gauge variant version of the
usual phase space of the gauged model of FJ chiral boson. It is important
because to make the model gauge invariant phase space is needed to extend
introducing the Wess-Zumino fields. So, what service does the Wess-Zumino
fields actually renders is a matter of utter curiosity. To meet it let us start
with the lagrangian of the gauged FJ type chiral boson with the appropriate
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Wess-Zumino term as is obtained from our investigation. The said lagrangian
density reads

oY / / 1 1
L = ¢¢' — ¢ +2e¢/(A) — Ay) — iez(Ao — 4+ 5&62(143 — A?)
i 1 N
+ §(A1—A6)2+§(a—1)(772—772)
+ e(Aon’ — An) +e(a — 1)(Ain' — Agn). (420)

To show the equivalence between the gauge invariant and the gauge variant
version of this model we proceed with computation of the canonical momenta
corresponding to the fields ¢, Ay, A1, n:

oL
=15 —¢ 421
oL
— =7 =0, 422
aAo 7o ( )
oL .
— =m=A; - A]. 4923
(9141 T 1 0 ( )
gg =(a—1)n—eA; —e(la—1)A =, (424)

The equations (421) and (422) are independent of velocity so these two rep-
resent the two primary constraints. Explicitly these two are

w1 =7 ~ 0, (425)
wy =Ty — ¢ = 0. (426)

Using the equations (421),(422),(423) and (424), a Legendre transformation
leads to the canonical Hamiltonian H,. corresponding to the lagrangian den-
sity (420):

HC = /d(lf[gba + ;ﬂ'% + 7T1A6 - 26¢,(A0 - A1> + ;62(140 — A1)2

1 1
- ian(Ag — A + i(a — 1) —eAgn’ — e(a — 1) A

N 1 2, e?
T oG- 1)

=T ((a — 1) Ap + A1)?)
7Tn((CL — 1)A0 + 6/4.1)]. (427)

e

(a—1)
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The preservation of the constraint of w; leads to a new constraint
wy =T + emy + ed +en’ —em, = 0. (428)

The ref.[30], suggests that we have to choose appropriate gauge fixing at this
stage to meet our need and we find that gauge fixing conditions those which
have been found suitable for this system are the following:

wy =en =0, (429)

ws = e*(a —1)Ag + €*A; + em, =~ 0. (430)

Under insertion of the conditions of (429) and (430), ws and H, turns into
w3 and H, those which are explicitly given by

Wby = T + emy + et + e*(a— 1)Ag + e*A; = 0. (431)
and
7 2 1 2 / / 1 2 2
A, = /dx[¢ 57 Ty — 200/ (Ag — A1) + 5eX(Ao — Ay)
1
- 5@62(143 - A7), (432)

respectively. Note that with the gauge fixing conditions (429) and (430)
push back the constraint ws into ws which was the constraint of the usual
phase space and as a result H. lands onto H, which was the Hamiltonian
of the usual phase space. It has therefore become evident that physical
contents remains the same in the gauge symmetric version of the theory in
the extended phase space. The extra fields, therefore, renders their incredible
service towards bring back of the symmetry without disturbing the physical
sector. For completeness of the analysis we compute the Dirac brackets of
the physical fields. The matrix C; in this situation is

0 0 0 0 —e*a—1)
0 —-20 0 0 0
Oy = 0 0 0 - 0 Sz —y). (433)
0 0 —€e*0 0 e
e2(a—1) 0 0 €20 0



and the inverse of it is the following

1 1
0 01 e?(a—1) 0 e?(a—1)
1 O1 — 55 0 01 0
Ci'=| —2ap O 0 — 20 0 Sz —vy).
0 0 —z5 O 0
1
~ 2o 0 0 0

The Dirac brackets between the field variables are found to be

[Ao(), A1 (y)]" = m@ﬁ(w — ),
(6(), o))" = —55-5(0 — v),
[Aola). 6] = 50l =)
[Aola). ma ()] = 50w =),
[Aale) mo(0)]" =~y Phbla )

[Ar(2), m(y)]" = 0(z —y),
[0(2), ms(y)]" = oz —y),

(434)

(435)
(436)
(437)
(438)
(439)

(440)
(441)

Here also (*) stands to denote the Dirac bracket. It has been found that an
appropriate gauge fixing helps us to land onto the the gauge non invariant
version from gauge invariant version. The role of gauge fixing is crucial, it

has been found once again.

6.6 Discussion

In this Chapter we have described the alternative quantization of two im-
portant field theoretical models which we have studied in [11] and [26]. The
models are GVQED and the gauged model of FJ type chiral boson. In the
usual phase space the quantization of the models were available in [11] and
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[26]. The gauge symmetric version which arise from our study [11] and [12]
have been quantized using Lorentz gauge. In both the cases physical content
of the theory have been found identical. Because of the presence of the field
B in Lorentz type gauge some extra equations occurred in both the cases but
B has vanishingly Poission bracket with the physical fields.

Since the gauge symmetric part contains auxiliary fields an equivalence
between the gauge symmetric and nonsymmetric version is of orth investi-
gation which we have studied in [12] and [26] and in both the cases we have
found the appropriate gauge fixing has got the success to map the gauge
symmetric theory onto the respective gauge non symmetric version. The
formalism developed by Falck Kramer [30] is found insrumental. We would
like to mention that the role gauge fixing has been found crucial in both the
cases.
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Chapter 7

7 Study of Finite Field Dependent BRST
and Finite Field Dependent Anti-BRST

Quantization of GVQED

7.1 Introduction

The role of field dependent BRST (FFBRST) [13] is almost similar to the
BRST so far symmetry is concerned. It does protect nilpotency and reflects
the symmetry of the gauge fixed action [13] of a physically sensible theory.
It can be considered as a generalization over the usual BRST formalism
where transformation parameters becomes finite, field dependant and anti-
commuting in nature [13]. Unlike BRST transformation, it fails to keep the
measure of the generating functional unchanged [13]. However, the change
appeared there renders several important services to make an equivalence
between the different effective actions of a particular theory [13]. In this
context, the services obtained through the exploitation of the change entered
into the measure of the generating functional to relate the different gauge
fixed actions of a particular theory is remarkable [13]. FFBRST is therefore
important and interesting in its own right and FFBRST related studies has
been carried out over the year [12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].
So application of this formalism on any physically sensible theories would be
of considerable interest and would certainly add a new contribution to the
formal field theoretical regime.

We have studied a (141) dimensional generalized version of Quantum

electrodynamics (GVQED) where axial and vector interaction get mixed up
with different weight [41, 42, 43]. Application of FFBRST formalism on this
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model would also be instructive like its ancestor BRST formalism. So an
extension using FFBRST formulation is also made in [12] to show how the
contribution that enterers into the measure of the generating functional under
FFBRST transformation helps to convert the BRST invariant effective action
into its original gauge non-invariant version to ensures that the physical
contents of these two effective actions are identical. The recent works [14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24], indeed provides much insight into the
way of approach towards this new endiviour. It reminds the work of Falck
and Kramer [30], where they explicitly showed that physical content of chiral
Schwinger model [32] remains identical both in the usual gauge non invariant
action and the gauge symmetric action of the extended phase space. But it
has to be kept in mind that in that situation the symmetry that was handled
was the local gauge symmetry. Now FFBRST and anti-FFBRST formulation
is applied to the BRST invariant effective action of GVQED to get back the
original gauge non-invariant form of the action through the incredible service
of the field dependent parameter of FFBRST and anti-FFBRST.

7.2 Brief Review of the Model

The model where we find the mixing of both vector and axial vector interac-
tion with different weight is given by the following generating functional:

Z(A) = / dydiexpli / drLg). (442)

with Lp = y#[i0,+e/TA,(1—rvs)]t. The phase space analysis of which is
described in Chapter 4. The integration over the fermionic degrees of freedom
leads to a determinant and if that fermionic determinant is expressed in terms
of auxiliary scalar field ¢, we get

Z(A) = /dgzﬁexp[i/d%ﬁd. (443)
where L5 = %@qﬁ@“qﬁ—kefl“(éu +r8,)p+ sae? A, A", Here a is the regulariza-
tion ambiguity emerged out during the process of regularization to remove

the divergence of the fermionic determinant. If we now introduce the kinetic
term of the back ground electromagnetic field we will get the lagrangian
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density:
1 , € 1 v
Ly = B 00" + e A (€,,0" +1g,,0")¢ + gaAuA# - ZF/WFM - (444)

The Euler-Lagrange equations for the fields describing the lagrangian density
(444) are
8#F/,LI/ - _a€2AlI - e(ewﬁ“gb + rg#Va#¢)7 (445)

06 = —e(rguwd” + €,0")A". (446)

It is known that the most general solution for A, is
1 _ _
Ay = —=5[rdud+ (a - r)0,¢ + (1 + a — r°)0,,h), (447)

and the thoritical specturm are given by

(O+m*)o =0, (448)
Oh =0, (449)

where
¢+ h=o. (450)

m? is given by
2 1 2
m? = & a((at‘:d) ) (451)

So the physical subspace of the model is constituted with a massive boson

with square of the mass m? = %

this is the physical content of the model.

and a massless boson. In short,

7.3 Application of FFBRST and Anti-FFBRST For-

malism in the GVQED

An ingenious attempt was made in [13] to generalize the well celebrated
BRST formulation. It was shown there that even making the BRST trans-
formation field dependent the nilpotency can be protected and it is equally
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effective for anti-BRST formalism. Under finite field dependent transfor-
mation the path integral measure acquires a nontrivial change that though
leads to a different effective theory, the physical contents of the theory re-
mains unaffected. This generalization however is advantageous since that
renders several important services. One of such advantage is that it helps to
correlate the different gauge fixed versions of a particular theory [13]. The
ability to relate a theory endowed with a set of first class constraint to an
equivalent theory endowed with a set of second class constraint through ap-
propriate choice of gauge fixing parameter is also an interesting extension of
the field dependent BRST (FFBRST) [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24|
formalism.

An illustration related to the calculation of Jacobian for this field depen-
dent transformation is available in [13]. To make this Chapter self contained
one, let us now proceed with the brief introduction concerning how FFBRST
transformation brings a non trivial change in the integral measure of the gen-
erating functional and how this change adds a contribution to the effective
action.

If the fields that describe a physically sensible theory are function of
parameter 1 such that ¢(z,n) is defined by ¢(z,n = 0) = ¢(z) and ¢(z,n =
1) = ¢(z) and the infinitesimal BRST transformation [4, 44, 45, 46, 47, 71|
is given by

d{7¢<x> — Sarslém)O o)) (452)

The finite field dependence can be obtained through the integration over the
infinitesimal transformation within the limit n =0 to n =1,

¢(z) = ¢(z,n =1) = ¢(x,n = 0) + dprs[o(2)O[d(2)]] (453)
where

Ofp(a)] = [ dn&/l6(z. )] (154

It should be mentioned here that the condition ©? = 0 is to be maintained
in order to protect nilpotency. The Jacobian for the transformation can be
evaluated from the field dependent function ©[p(x)] by

[Tdo = Jn) [Tdo(n) = J(n+dn) ] dé(n + dn). (455)
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The infinitesimal nature of transformation from ¢(n) to ¢(n + dn) leads to
the following relations of the Jacobian J(n):

Jn) d¢(x,m + dn)
Todn) = T ee

Here Y and [] singnifies the sum and product over all the fields involved
within the theory respectively. In equation (456), (+) and (-) sign refers the
boson and fermion fields respectively. Equation (456) renders the following
in infinitesimal change in the Jacobian J(n).

1dJ 00’
e A IE=)
The incredible characteristic of this extension is that within the functional
integration J(n) can be expressed as

(456)

—. (457)

J(n) = expiS,(z,n), (458)
If and only if the condition
1 dJ dS.(x,n) .
/H do(x J d77 Tn] expi(Sesr + S:) =0, (459)

is maintained within the phase space of the theory. The role of © though
surprising, nevertheless plays a very crucial as well as intriguing role since
the appropriate choice © leads to another equivalent effective action corre-
sponding to the starting theory which is given by the generating functional:

7 = [TLdo(x) expi(Sess + S.), (460)

It indeed keeps the physical contents of the theory unchanged.

To see the transmutation between the gauge invariant and gauge non-invariant
effective theory of GVQED we begin our analysis starting from the BRST
invariant effective action of the theory which reads

1
Sefr = 3 L POM D + e€,, AMOY § + erg,, AFOY d
- leFWF’“’ - ;aezA#A“ + ;(a —12)0,00"0 + e(a — 1r*)g,, A*0"0
B
- 67’€HVA”8”9 + @LC@“C + Oé? + B@uA“.
= Sorr + Swz + Scuosr + Sar (461)
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The infinitesimal BRST transformations of the fields under which the above
action (461) is found to remain invariant are

¢ = rAC,0A, = —lxauo, 50 = \C,6C = 0,6C = —B,6B =0.  (462)
e

and the FFBRST transformations of those fields describing the theory under
consideration are

1 )
66 = (0,64, = ~~0,00,60 = ~6C,6C = 0,6C = —BO,6B = 0,

(463)
where © is an arbitrary finite field dependent function which is the trans-
formation parameter corresponding to the FFBRST transformation. Our
objective is to connect this BRST invariant effective action of the extended
phase space to the original effective action of the usual physical phase space.
To relate this we make a choice over the © in such a way that the change that
would enter into the measure of the generating functional can be exploited
to serve the desired purpose. To this end we define © as follows:

w/dQ C(0,4" + 5 B)] (464)

Here 7 is the arbitrary parameter that would be fixed later. For the finite field
dependent parameter the nontrivial infinitesimal change that would enter in
the Jacobian can be computed using equation (457)

1dJ de’ de’

4o
- = 2 -
T =" /dx[éCdOJréAudA +0B ]

(465)

— iy / P2[B(9, A" + B)+ aﬂca .. (466)

The Euler-Lagrange equation of motion for the ghost field simplifies the above
equation to the following form:

1dJ , )
Y& = w/d B(9,A" + 2B)] (467)

We are now in a state to choose an ansatz for S.. The following ansatz for
S¢ suffices our need without violating any physical principle:

S, = / (¢, (k) B? + &(k) B, A"). (468)

88



Here & (n) and &(n) are some functions of the parameter 7. The differenti-
ation of the action S¢ with respect to 7 yields

0S5, , ,
5 = | FeBE )+ BOAG )] (469)

Here over prime denotes differentiation with respect to the parameter 7.
The contribution that enters into the measure of the generating function
through the Jacobian under FFBRST transformation can be written down
in the form of expiS,, provided the following very equation:

[ BrexpiSeys + Sl — 1B +iB0,A"(& ~ )] =0, (470)

is satisfied. It fixes & and & and it can be expressed in terms of o and

&1 = %n, (471)
§2 = . (472)
Setting n = 1, we get S,
S, = / PafyBO,A" + T B?) (473)
And for v = —1, S, turns into
S, = / [~ (BO,A" + %32)]. (474)

So through the exploitation of the change entered in to the measure of the
generating functional through FFBRST transformation enables us to elimi-
nate the gauge fixing part Sgr from the S.¢; for the above setting of v and
1. It is the first step to proceed towards the effective action defined in the
usual phase space. So the remaining part in the Scss are

Ssr = Sorr + Swz + SaHosT- (475)

Precisely, the parameter of FFBRST transformation (being field dependent)
renders here a great job which is the elimination of the gauge fixing term
through the contribution entered into the path integral measure of generating
functional due to the finite field dependent nature of the transformation
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parameter of the FFBRST transformation. Our next task is to eliminate
the ghost and the Wess-Zumino part one by one. The elimination of the
ghost part is trivial because under integration the contribution that evolve
out from this part can be absorbed within the normalization. However, the
elimination of the Wess-Zumino term is not so trivial. It certainly needs the
integrating out of the Wess-Zumino field but one has to keep it in mind that
the theory has now converted into gauge invariant one and the constraints
that embedded in its phase space are first class in nature. So proper gauge
fixing is needed to land onto the theory of the usual phase pace [30]. This
can be done in different ways. In [30], the authors did not use the path
integral approach. However, since in the full body of the chapter path integral
approach is followed, we use gauge fixing with the path integral formulation
to which we now turn.

From the Hamiltonian analysis which is available in [26], it is known that
the phase space of the theory contains two first class constraint. From [26],
we find that the original action along with the Wess-Zumino part of the S,y
(461), leads to the following Hamiltonian:

ea(l+a—r?
( )A% —|— €¢/(TA1 — Ao)

]. ’ ’
He = [dol5(nd+nd+6%) +mA, +

2(a —r?)
+ emy(Ar —rAg) + ;(a —r2)0"
, 1
+ 60 ((a — 7"2)141 + AO) + mﬂ'g
+ (rA; + (a — r*)Ag)m), (476)

(@=17)

and there embeds the following two first class constraints in the phase space
of the theory:
W, = Ty ~ 0, (477)

Wy =7y 4 (¢ 4+ 1rmy) + emg — ert = 0. (478)

Therefore, two gauge fixing conditions are needed at this stage to get back
the gauge non-invariant theory of the usual phase space. These two gauge
fixing conditions that are chosen here are

(,53 = 819 ~ 0, (479)
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Wby =g +e(a—1*)Ag+erA; = 0. (480)

With these inputs, the generating functional can be written down as

7 — /[DIU] [det[wz, ’lf]j]%eifd2[ﬂ—lA.I+ﬂ0A0+ﬂ¢¢;+ﬂ9é_Hce]5(’Ujl)5('[[)2)(5(7[)3)5(7174),
(481)
where [Dy] is the Liouville measure. [Dpy| = [dmy][d¢][dm][dA][dmo|[dAo)[dm][d6)]
and i and j runs from 1 to 4. After integrating out of the field # and my we
find that equation (481) turns into

7 = N/[dﬂ]eifdzw[W1A1+W0A0+7F¢Q5—Iifce] >
§(mo)0(m) + e(¢ +rmy) + e (a —r*)Ag + e*rAy)],  (482)
where [dfi] = [dry|[d¢][dm |[dA;][dmo][dAo] and N is a normalization constant
having no significant physical importance and H,, is

1 1
H., = 5(7rf +¢”) +mAL + §a62(A% — A?)

bt (r Ay — Ag) + ;m 4 e(Ar — r A (483)

Now after integrating out of the the fields 7y, my and m; we land on to the
required result

Z = / dA,dAgdpeiSon. (484)

Like BRST symmetry anti-BRST is also a symmetry of the effective action
of a given theory and like the BRST transformations anti-BRST transforma-
tions do generate from a nilpotent charge. In the anti-BRST formulation the
role of ghost and anti ghost fields interchanges. In addition to that there may
be change in the coefficient depending upon the system. Therefore, study
with anti-FFBRST is equally important like FFBRST. So we are intended
to examine whether the anti-FFBRST formalism can be brought into the
same service as it has been found to serve by the FFBRST formalism. The
anti-BRST transformations for the fields describing the theory are given by

_ 1 _ _ _
d¢p =rAC, 04, = —=10,C,00 = —\C,0C = BA,6C =0,0B =0, (485)
e
and the corresponding anti-FFBRST transformation of the fields are

_ 1 _ _
56 = 100,04, = —-0,00,,00 = —CO, (486)
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5C =0,6C = —BO,4, 6B = 0. (487)

where © 4 is an arbitrary finite field dependent function serving the role of
transformation parameter corresponding to the anti-FFBRST transforma-
tion. Our objective is the same as we have done for the FFBRST. For that
purpose here also we need to choose a © 4 in such a way that the change
that would enter into the generating functional can be exploited to serve the
same purpose as it has been found to serve in the earlier situation. In an
analogous manner, let us define © 4 as

gzaﬂ, (488)

@;:m/fwx@w+
where 7 is an arbitrary parameter that would be fixed later like the previous
situation. For anti-FFBRST transformation also the nontrivial infinitesimal
change in the Jacobian that would enter can be calculated using equation

(457).

1dJ , . B )
iy w/ﬁ OuA + SB) + - 29,C0nC). (489)

By the use of Euler-Lagrange equation of motion for the anti ghost field the
above equation reduces to

1dJ ) u B
St w/d B(9,A" + 5 B)). (490)

In order to express the above in the form of exp iS¢, the following ansatz
can be chosen for So without any loss of generic condition, and of course,
without violating any physical principle:

s_/ﬁ B2 + &(k) B9, A", (491)

Here &1(n) and &(n) are some functions of parameter 1. If we now take the
derivative of the action S¢ with respect to n we get

:/fﬂWgw+B@N%MH (492)

The over prime denotes here the differentiation with respect to the parameter
1 as usual. The contribution that the path integral measure of the generating
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functional acquires under anti-FFBRST transformation can be written down
in the form of exp™¢, if and only if the following relation

[ respi(Seg; + S.(E - 72532) CiBOAME, — ) =0, (493)
holds. Equation (493) fixes &1(n) and &»2(n) so one can express these in terms
of f and #:

6="10 (494
§a = 1. (495)
Thus setting the parameter n = 1 we get
5 [ 2.0 u . BV o
Se = [ d*z[yB0, A" + 73 ]. (496)
and finally putting 4 = —1, we get the appropriate S¢ in his situation:
S, = / d*z[—(BO, A" + 532)]. (497)

Therefore, we find that the exploitation of the change entered into path in-
tegral measure of the generating functional due to the anti-FFBRST trans-
formation with the above choice of 4 and 1 enables us to eliminate the gauge
fixing term from our starting Sess and it now reduces to

Sst = Sorr + Swz + Sauosr. (498)

So the first step to reach towards the effective action defined in the usual
phase space is successfully made in case of anti-FFBRST transformation too.
Note that for this system the calculation may look similar to the FFBRST.
After the first step, the task that is yet to be done is to make the S¢;s part
free from ghost as well as the Wess- Zumino part. The elimination of the
ghost part is trivial like the previous case since under integration of the anti-
ghost field the contribution that evolve out can again be absorbed within
the normalization. However, the elimination of the Wess-Zumino term is not
trivial but it is identical to the previous case as it has already been made for
the FFBRST transformation. Explicit calculation in this situation therefore
does not carry any new information. So, it is not shown here.
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7.4 Discussion

Application of FFBRST and anti-FFFBRST are made here for interesting
as well as important purpose. In fact, it has been used here to make the
equivalence between the physical content of a model in the usual and in
the extended phase space. Here extended phase space implies the presence
of not only the Wess-Zumino field, but also the presence of ghost and the
auxiliary B fields too. It has been found that both the FFBRST and anti-
FFBRST formulation have successfully render their great services to show
the equivalence. In both the cases, FFBRST and ant-FFBRST it has been
found that the gauge fixing part, i.e., the part of the effective action involving
the auxiliary B gets eliminated by the contribution entered into the effective
action through the acquired contribution of the measure of the generating
functional under FFBRST and anti-FFBRST transformations respectively.
To eliminate rest of the part we have adopted here the formalism developed by
Falck and Kramer [30]. So, the joint action of the two formalisms developed
in [13] and [22] have done their novel services to show the equivalence. We can
conclude that the joint action of these two formalisms would be instrumental
to show the equivalence between the different effective actions of any field
theoretical model if these two are employed in appropriate manner.
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Chapter 8

8 Constraints Through Lagrangian

Formulation: Few Case Studies

8.1 Introduction

The constraints structure of a theory can be studied through Lagrangian
formulation in the velocity phase space too. In velocity phase space La-
grangian formulation is an useful instrument to study the gauge symmet-
ric property of field theoretical models and it is also useful to find out
gauge transformation generator. This formalism has developed by Shirzad
[31].  Another approaches have been found in the literature to study the
local symmetry of the gauge theories through the Hamiltonian formulation
132, 33, 34, 35, 36, 37] based on Dirac conjecture. Several authors have tried
to find out the answer of several interesting questions related to the gauge
symmetry using Hamiltonian formulation. The most general form of gauge
transformation generator too can be determined with that Hamiltonian for-
mulation [32, 33, 34, 35, 36, 37]. To study BRST symmetry, Hamiltonian
approach also has been found to be instrumental. It is true that unitarity of a
theory can not be well understood without Hamiltonian approach. However,
Hamiltonian embedding of constrained system has some drawbacks. It does
not always lead to Lorentz covariant generating functional. This drawback
indeed has the remedy in the Lagrangian formulation. So the importance
of the study of gauge symmetric property through the formalism based on
Lagrangian formulation can not be ignored. Therefore, gauge symmetry re-
lated studies on dynamical theory should be extended with equal intensity in
both the approaches. Few studies using Lagrangian approach are available
in the literature [3, 31]. However, before Shirzad very little was achieved
to understand the fundamental question related to the gauge symmetry in
the Lagrangian formulation. In [31], Shirzad gave a systematic development
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of gauge symmetry related study for an arbitrary lagrangian and applied
it to the so called generalized Schwinger model. So this formalism can be
applied on the different field theoretical models in order to test whether a
given model does have gauge symmetry or it is lacking in it and it is also
useful to find out the gauge transformation generator. It becomes much
more interesting if one apply this formalism in the extended phase space
needed to restore the gauge invariance and to verify whether this formalism
works there in an appropriate manner as it was found to work in the usual
phase space in [31]. In [38] we have studied the different gauge symmetric
and gauge non symmetric (anomalous) models with the prescription based
on Lagrangian formulation developed by Shirzad [31]. We have investigated
whether Shirzads formalism enables one to verify the presence or absence of
gauge symmetry in a given theory. One reasons behind the consideration of
anomalous model is to ensure whether this scheme is capable for testing the
absence of gauge symmetry when it is lacking in a given model. The another
reason is to study the power of this approach towards its applicability in the
extended phase space.

8.2 A Brief Discussion of Shirzad’s Formalism

It would be useful if we give a brief account of the formalism developed by
Shirzad [31] in this section before going to apply it. If a dynamical system
with N degrees of freedom is considered which is described by the lagrangian,

the Euler equations of motion for that lagrangian will be

Li = wyd; + a. (500)
Here 7 = 1,2.....N. The matrix w stands for the Hessian matrix of the system.
The Hessian matrix w;; and «; of equation (500) respectively are
0L

94;0q;’

9L . 0L
09,06 g,

(501)

wij
(502)

(6%}
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For a singular lagrangian det[w;;] = 0. The equations of motion in this
situation can not be solved for all accelerations. If the rank of w is N — A;
then A; number of null eigen vector will be found for the matrix w;;

)\?lwi]’ = 0, (503)

where a; = 1............. A;. Here A\/* indicates the null eigen vector. When
equation (500) is multiplied by the null eigen vector A\* from the left it gives

Y = AL = Ay = 0. (504)

This indicates the presence of A; number of lagrangian constraints of velocity
and coordinates, but all of these constraints are not independent of each other
in general. If it is assumed that the rank of equation (504) is A;, then A,
number of independent functions 7*! can be written down as

Y7 (q.4) = T2 CE (q, )y (g, 4), (505)

where a; — 1.......... A and C¢l represents the coefficients which may depend
on ¢; and ¢; . These set of lagrangian constraints are useful for determining
the number of undetermined accelerations. Remaining constraints which
vanish identically are

Sl iGN g, @) (g,4) = 0. (506)

where a; = 1,...... Aj. These are of course linear combinations of v%!’s and
their number will be Al = A, — A,. This set of lagrangian constraints can
be used to construct the form of the gauge transformation from lagrange
equations of motion. Comparing equation (504) and (505) one gets,

A (q.q) = S8, C8 (g, )N (q.4) (507)

Using equation (507), primary constraints can be calculated and these are
given by i
Y = AL, (508)

Equating equation (504) and (506) one can obtain

A (q.q) = S0 ,C (g, 9)A" (¢, q). (509)
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Equation (509), represents Ay number of null eigen vector. Now identities of
the Euler derivatives appears as

ML = 0. (510)

In order to get a consistent theory, the time derivatives of the primary con-
straint (508) is to be added to the equation of motion (500). Therefore, one
gets N + A; number of equations that contain accelerations which can be
written in a combined manner as follows

Li, = w, ;4 + o, =0, (511)

where i1 = 1........o..ail. N + A;. Here A, represents the rank of time deriva-
tives of y%. The matrix wil1 ; may also contain some other null eigen vector
like the previous one. Following the previous process one gets new null eigen
vector, and the expressions A\*? of it is

v = \2L} =0, (512)

where as = 1.......... Ay . So, one finds A, number of independent functions
~% and A, number of identities 42 for 4% standing in equation (512). In
the next step the time derivative of secondary constraint is to be added to
the equation (511), as it is done for the former set of constraint in order to
maintain consistency. This gives,

Ly, = wy,;qi; + ai, = 0, (513)

where iy = 1.......... N+A,;+A,. Here A, stands for the rank of time derivative
of secondary constraint. In this way one needs to proceed step by step.
In each step some identities along with some new constraints may results.
Finally, in the n th stage the equations of motion for the system will be of
the form

Li, = wy ;gij + ai) =0, (514)

where i, = 1.......... N + Ay + A,,. If in this case one finds new null eigen
vector A%+1 for w™ and multiplication of A{"*' with equation (514) provides
A1 number of lagrangian constraints and A,,; number of identities and
these with hold the following relation

d~™
dt

an- an- 1 d
NI 4 N+ F s Dy, (515)



Equation (515) can be written down in the form of a total derivative as

follows
d?

s Odt (¢sz z) - 7 (516)

where ¢g; are some functions of coordinate and their derivatives. That can
be determined with a judicious choice. If w, does not give any new eigen
vector, it indicates that the process gets terminated. Another way of testing
the termination of the procedure is to check whether the nth step gives any
new constraint or not. The appearance of no new constraint too indicate the
termination of the process. For the lagrangian L(g;,¢;) the action is found
to be invariant under the following transformation,

d° f

0q; = Z?:o(—l)S%

Dsi (517)

if ¢g; exists for that particular dynamical system represented by the L(g;, ¢;),
where f (t) is an arbitrary function of time. The variation of lagrangian under
the transformation (517) is given by

5L =[Sy o (6uLf =0, (518)

If the lagrangian of a dynamical system is described by the set of fields g;( .
the general form of the lagrangian reads

L= [ deL(a(x.1), 0u0,(z, )0ai(.1). (519)

The equation of motion in this situation becomes

Lifa,t) = [ dywiy(a.9)a(0.1) + il ), (520)

where 1 =1, .cccooeee. , N. N here represents the number of fields describing
the dynamical system. w(z,y,t) and «a(z,t) in this situation takes the form

52
6qi(, t)oq;(y, t)”
52L oL
ai(x7t) - /dy(gqj(y’t)éq'j(l',t) a 5Qi(xvt)

wij(2,y,t) = ( ); (521)

). (522)
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The null eigen vector of the Hessian matrix w(zx,y,t) here looks
A(z) = N\(z — z). (523)

Multiplication of \%(z) with equation of motion gives primary lagrangian
constraint as follows

o = / dr\ed(z — x)Li(z.8) = N2 Li(z,1). (524)
If the process continues in the similar manner as it is described earlier keeping

in mind that the system is described by field then one will arrive at the
following gauge transformation formula

(. t) = (1) [ a2 T E Doy )

8.3 Free Maxwell’s Lagrangian
Let us consider the lagrangian density of Free Maxwell field

1
Lrm =~ FuF". (526)

In (1 4+ 1) dimension the lagrangian density reads
1 . ) .
Long = 5(/112 +AD —2ALA)). (527)

The equations of motion for the field Ay and A; that come out from equation
(500) for the lagrangian Lz are

a0 = A — Ay (528)
La, = A — A (529)

For the lagrangian (527) w and « respectively are

_ ( - >(5(z—x), (530)
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o= ( Ay~ 4l ) : (531)
— Ay

It is found that Hessian matrix w has a null eigen vector
M(2) = (1,0)0(z — ). (532)
Multiplying the equation (527) from the left by A', we get the primary la-
grangian constraint
Y (z,t) = /dxé(z —x)La,(x,t) = La,(2,t) = (Af — All)(z,t). (533)

Time derivatives of 4! yields

: .
St (e, ) = (g — A, ). (534)
According to Shirzad’s prescription equation (534) is to be added with (527)
in order to maintain consistency condition of the primary constraint and that
results

Lila ) = (Las + 94" 1) (535)

w' and o' as standing in equation (501) and (502) are found out to be

0 0
wl(o 1 )5(2:6), (536)

0
0 —%
Al — 4
ot = —A) | (537)
AO//
We find that w; also has a null eigen vector
N (z) = (0 g 1)6(z — ). (538)
) axﬂ

Multiplying the equation (535) from left by A* we find that «* comes out to
be zero. Explicitly

V2, t) = / da)2 Ly, (1,1) = A2ay (2,t) = 0. (539)
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So, A? does not give rise to any new constraint. As a result we can not
increase the the rank of equation for accelerations and v? can be expressed
in the following form

B )
2 pu— _— —_— pu—
(1) = (5 Lay + 5-La) (@, 1) = 0. (540)

Comparing (540) with equation (516) we get the non vanishing ¢'s:

d11(z, ) =6(2 — ), (541)

Go2(2,x) = 8826(2 — ). (542)

The gauge transformation formula (517) gives the following gauge transfor-
mation for the field

dAg = —/dzgtcg(z —x)f(z,t) = —aatf(x,t), (543)
5A, = — /dz(;zé(z N f(zt) = aaxf(a:,t). (544)

The variation of the lagrangian density Lz, lagrangian under the above
transformation is

o° ) 0
SLrm(a.t) =~ (6uLi)(w,t) = =[5 Lao + 5 Lail(x,t) = 0. (545)

It is shows that the lagrangian (526) is invariant under the gauge transfor-
mation (543) and (544). It is the expected result since it is known that the
lagrangian (526) is invariant under the transformation A, — A, — 0, f.

8.4 Maxwell lagrangian with mass like term

Let us now add the mass like term “—;A#A“ with the Maxwell lagrangian and
apply the formalism to test whether it has the gauge symmetry or not. So
lagrangian with which we are going to start our analysis is

1 2
Ly = / [~ B + %AMA“]dx. (546)
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In (1 + 1) dimension the lagrangian density takes the form

1 .2 . a?
Loim = 5(A1 + AP —2ALA)) + E(Ag — A

(547)

The equations of motion for the field Ag and A; that come out from equation

(500) for the lagrangian under consideration are
LAO = Ag — A1/ — CL2A0,

LA1 = Al — AQI + 0,2141.

The matrices w and « for this modified lagrangian come out to be
0 0
w-(o 1)(5(z—x),

= (M)
—Ay +a*A, .

The Hessian matrix w has a null eigen vector

M(z2) = (1,0)0(z — ).

(548)

(549)

(550)

(551)

(552)

Equation (547) when multiplied from left by A!, it results the primary la-

grangian constraint
Ya,t) = (Al — A — a®Ag) (2, t) = L, (2,1).

We need the time derivatives of v! to calculate Ly (z,t):

@’yl(x, t) = (Al — A, — a®Ag)(,1).

Now adding equation (554) with Ly we get

La(e,t) = (Lans + 50012 0).

103

(553)

(554)

(555)



This Lq(z,t) is to be used for further analysis in order to maintain consistency
of the primary constraint (553). Using equation (501) and (502) the matrices
wy and o for this system are calculated as follows.

0 0
wt=10 1 |dz—2), (556)
0 —9
ox

Ag - All - a2A0

ol = A +a?A | (557)
AOII - G2A0
We find that w; has another null eigen vector
M (2) = (0 9 1)é(z — ). (558)
) a:E?

Multiplying the equation (555) from left by A, we get
(1) / dx)2 Ly (z,1) = a*(A) — Ag)(x.1). (559)

which is non vanishing one. This A\? is nothing but the s econdary con-
straint for this system. For maintaining consistency we have added the time
derivative of secondary constraint to the equation (555) and obtain

Lafa 1) = (L + 2%) (1) (560)

The matrix w? and o? standing in equations (513) will be the following for
this particular situation

0 0
w? = 8 _1@ iz — ), (561)
ox
—a? 0
A// All —a AQ
Iy 2A
o= s (562)
0o —a Ao
2A/1
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We find that w? again gives a null eigen vector
9
oz’
Multiplying the equation (560) from left by A3, we obtain

N(2) = (0, =,1,0)6(z — ). (563)

V¥ (z,t) = a* (A} — Ap)(x,t) = ~*(x,t). (564)

Note that v3(z,t) and v*(z,t) are identical. So multiplication of A\* with L,
does not provide any new constraint. Therefore, we can not increase the the
rank of equation for accelerations. Let us now try to write 4 in the form of
equation (515)

0 0
3 _
Y (SC,t) - <8tLA0 + axLA1)<x7t)' (565)

Equating equation (565) with (516) we get ¢'s and the non vanishing ¢'s are
found out to be

d11(z,x) =6(z — x), (566)
Goa(2,) = 2-5(z ) (567)

The gauge transformation formula (517) gives the following gauge transfor-
mation for the field

0Ay = —/dzgtf(z,t)é(z —x) = —gtf(:v,t), (568)

SA, = — /dz(aazé(z e f(z 1) = aaxf(:)s,t). (569)

The variation of the lagrangian density (547) under the variation of the fields
(568) and (569) is

ds((bsz[/l)

OLpmf(r,t) = =X, s f(z,t)
d d

= —[aLAQ + %LAl]f@j?t)

= —a’(A) — Ay)f(z,1). (570)

Since Ly does not vanish, there is no gauge symmetry of the lagrangian
density (547). The result here to does not go beyond our expectation since

105



it is known that the presence of mass like term breaks the gauge invariance
of the free Maxwell theory. In the following section we will proceed to study
the application of the Shirzad’s formalism in the extended phase space of
this system.

8.5 Maxwell’s Lagrangian with Masslike Term is Made

Gauge Invariant with Auxiliary Field

We have seen in the previous Section that the lagrangian density (547) is
not invariant under the Gauge transformation (568) and (569). So we add
some terms involving auxiliary fields 6 with the lagrangian (547) in order to
make right hand side of the equation (570) zero. Lagrangian density under
consideration along with the appropriate terms needed to make Eq. (570)
Zero is

1 2 . .
Lo = — (B + %AMA“ + g(e2 0 4 ae(0Ag — 0 A, (571)
Note that the term is nothing but the Wess-Zunino term which we have

needed to add to make equation (570) zero. The equations of motion for the

field Ay, A; and 6 are

L, = Ay — A — ae* Ay — aeb), (572)
La, = A — AOI + ae’A; + ael, (573)
Lo = ab — ab" + aeAy — aeAl. (574)

Here we repeat the same calculation as before and w and « for this lagrangian
are found out to be

0 00
w=]|01 0 |dz—2x) (575)
0 0 a

A — A — ae*Ay — ach
o= — Ay + aeA, + aetV (576)
—af" + aeAy — aeA
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We also find that the Hessian matrix w has the null eigen vector
AM(z) = (1,0,0)6(z — z). (577)

Like the massless situation we calculate the primary lagrangian constraint in
this situation too:

M a,t) = Lag(2,t) = (Al — A, — ae>Ag — aeb)(z,1). (578)
L4 in this situation is obtained as
)
Li(z,t) = (Lgy + %71)("”’ t). (579)

Here w' and o' too are found out using Egs. (501) and (502).

0 0 0
o1 o -
w=10 9 . d(z —x), (580)
0 —% —ae

Af — A~ aeAy — ach
1 — A+ ae? Ay + acl
= . . 581
“ —af" 4 aeAy — aeA) (581)

7 .

Ay — ae’A

We see that w! has the following null eigen vector
0
N (2) = (0, =, 4e, 1)6(z — ). (582)
Ox
Multiplying equation (579) from left by A?, we find that

v (z,t) = 0. (583)

So, A% does not give rise to any new constraint. Therefore, the process gets
terminated. Thus the increase of the rank of equation for acceleration is not
possible here. +? here also can be written in the form of equation (515) as
follows 9

0
VA (z,t) = (ELAO + %Lm +eLg)(z,1). (584)
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Comparing equation (584) with (516) we get the non-vanishing ¢'s

$11=10(z —x), (585)
Go2(z, ) = 862’6(2 —x), (586)
bos3(z,x) =ed(z — x). (587)

Finally we find the gauge transformation of the field for this system with the
help of (517)

dAg = —/dzf(z,t)é(z —x) = —aat (x,1), (588)

) B
SA, = —/dz(%a(z —@))f(2,) = =5 (1) (589)
00 =ef(x,t). (590)

The variation of the lagrangian density (571) under the transformation
(588),(589),(590) comes out to be

dS
0LEm (I‘, t) - _EZZO%(¢SiLi)(I7 t)
[aL —|—aL +eLlglf(x,t) =0 (591)
= —|= — e x,t) =0.

ot A0 o Al 0 )
Equation (591) confirms that the action is invariant under the above gauge
transformation. Note that the formalism shows its successful application
in the extended phase space of this simple non interacting system. In the
following section the formalism is again applied to another noninteracting
field theory, e.g., chiral boson which is known as a basic ingredient of heterotic

string theory:.

8.6 Free Chiral Boson

Free chiral boson [49, 50, 85, 86, 90, 91] though a very simple field theory
the study of gauge symmetry for this system is very subtle and interesting
because the lagrangian of chiral boson contains a second class constraint
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(0o + 01)¢ = 0. So it is studied here using Shirzad’s formalism. Lagrangian
density of free chiral Boson as described in [50, 91] is given by

1

Los = 5(¢7 = %) + (6 — ). (592)

Here 7 stands for the Lagrange multiplier field. The equations of motion for
the field ¢ and n are

Ly=(¢p—¢"+n—1), (593)
Ly=—(¢—¢). (594)

In this case w and « are

w:<(1) 8)5@-@, (595)

B _¢//t{_7;]_7,]/
a_< oo ) (596)

Hessian matrix w has the null eigen vector, \'(z) = (0,1)d(z—=). Multiplying
A with equation (592) from left we obtain the primary constraint of the
theory as usual

The consistency of this primary constraint with time needs to be maintained
which necessities to calculate L; as follows for further analysis

Li(z,t) = (Lep + gtvl)(x, t). (598)

We find that w; and oy are :

1 0
w' = ( 0 0 ) §(z — ), (599)
-1 0

—¢" =1
ot = —¢+¢ : (600)
¢/
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We find that w; has another null eigen vector A> = (1,0,1)d(z — x). So
Secondary lagrangian constraint is now obtained, multiplying A? with ( 598).

V(w,t) = (¢ — ¢ — 1 +10)(z,1). (601)

Adding the time derivatives of v with L, , L, is obtained to maintain the
consistency of the secondary constraint with time

Ly(z,t) = (Ly + aatfﬂ)(x, t). (602)

For L, , the matrices wy and ay are found out as

1 0
, | 0 o0
w=1 d(z —x), (603)
21
_(bllji_,r']_,r]/
Qo = —¢—i—¢ (604)
K
_¢/1_7-7/

It is found that ws is also having a null eigen vector A\3(z) = (1,0,1,0)d(z—x).
Multiplying the equation (602) from left by A* we find

Vi (x,t) = 72 (x,t). (605)

So from the previous step it can be concluded that there is no further con-
straint and we can not increase the rank of equations for accelerations. The
process is thus terminated. We now write 72 in the following form.

V¥ (x,t) = (Lg + ;Ln)(x,t). (606)

At this stage we need to compare (605) with equation (516) to compute the
following non vanishing ¢'s.

bo1(z,x) =6(z — x), (607)
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d12(z,x) = 6(z — x). (608)

Finally we obtain the gauge transformation of the field ¢ and 7 for the system
using equation (517).

o = f(x,t), (609)
on = _;f (x,1). (610)

Let us now calculate the variation of Lo under the above transformations
of the fields

5Las = ~(Lo+ 0w 1) = ~(~¢" i~ + D)0 (61)
This shows that the lagrangian (592) is not invariant under the above gauge
transformations. The result of course have not gone beyond our expectation
because chiral boson is known not to possess any gauge symmetry. This
shows that the formalism is capable of testing the gauge symmetric property
of this simple system having subtlety in many respects.

8.7 Free Chiral Boson in the Extended phase space

Let us add some appropriate terms involving auxiliary fields 6 to the la-
grangian density of free Chiral Boson that makes the right hand side of the
equation (611) zero. It is found that Lagrangian density that satisfy the
above requirement is

Locs = (62— ¢ +n(d—¢) - 3 (6 +67)
+ ¢ +00 —0¢ —nd—0) (612)

What follows next is to study the gauge symmetric property of the lagrangian
(612) using the formalism given in previous section. To this end we calculate
the equations of motion corresponding to the field ¢, n,

Ly=(d—¢"+n—1 +0"—8), (613)
Ly=—(p—¢)+0-0, (614)
Lo=—0—0"+¢" +20 —ij+n — ¢ (615)
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In this situation w and « are

1
w=1 0
0

_¢//_!_7-7_77/_i._6/1_9'/
a= —o+¢ +0—10 . (617)

_9//+29./_77+n/_¢/+¢//

o O O

0
0 ) iz —z), (616)
1

We find that w has the following null eigen vector
M(2) = (0,1,0)8(z — ). (618)

Multiplying A! with equation (612) from left we obtain the primary constraint
in this situation

Yz, t) = (—p+ ¢ + 0 —0)(x,1). (619)

It is needed to add the time derivatives of ¥' with L for further analysis
otherwise we will fail to maintain consistency of the primary constraint

Lu(a 1) = (Lics + ") 1) (620)
w; and «q here are:
1 0 0
w' = 8 8 1 iz — ), (621)
-1 0 1

—¢"+77—77/+9"—9"

: —0+¢' +0 -0
= . . . 22
« _9//+29/_77+77/_¢/+¢// (6 )
é/ _ 9/

w; has a new null eigen vector
N = (1,0,1,1)8(z — z). (623)
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Multiplying A? with equation ( 620) we get the following vanishing condition:
7 (z,t) = 0. (624)

If we proceed to write 7% in the form of equation (515) we reach at

V(@ t) = (Ly + ;Ln + Lo)(x,1). (625)

Comparing the above equation (625) with equation (516) we get the non
vanishing ¢'s

Go1(z,2) =6(z — x), (626)
G12(2,7) = ;5(2 — ), (627)
Gos(z,x) =6(2 — ). (628)

We are now in a position to compute the gauge transformation for the fields
describing the system:

0p = f(x,t), (629)
on = _gt (x,t), (630)
60 = —f(x,t). (631)

The variation of Lrcp under the above set of transformations (629), (630)
and (631) gives.

0Lpep = —(Ly + 881;;7 + Lg) f(z,t) = 0. (632)
It shows that the lagrangian (612) is invariant under the transformation
(629), (630) and (631). It is the expected result because the terms which
we are forced to add to make equation (611) zero is nothing but the Wess-
Zumino term that has brought back the gauge symmetry in the system. Thus
the formalism is found to work successfully in the extended phase space of
this system too. So for free field theories the formalism is found to works
equally well both in the usual and extended phase space. In the following
sections we will consider some interacting system to test how well it woks
there .
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8.8 Chiral Schwinger Model with Fadeevian Anomaly

Let us consider the lagrangian of the so called chiral Schwinger model with
Faddeevian anomaly [8, 9] and apply the same formalism to study its gauge
symmetric property. The gauss law of this theory shows a special type of non
vanishing commutation relation because of the presence of anomaly in the
system. This is commonly known as Faddeevian type of anomaly [52, 53].
This model is interesting in different respect. So study of this model with
this formalism would certainly be of interest.

1 1
Losu = [I(=7Ful™ + 50,006 + (g — )0 6A"
1
+ 562(143 —2A0A, — 3A})|dx. (633)

The equations of motions for the field ¢, Ag and A; are

Ly = (¢ — ") + e(Af — A)) + e(do — Ay), (634)
Lag = Al — Ay — 2Ag+ 2 Ay — e(¢) + §), (635)
La, = Ay — Ay +32A, + e(d + ¢) + €2 A,. (636)
For this lagrangian the Hessian matrix w and « are
1 00
w=]|0 0 0 |d(z—2x), (637)
001

—¢,/ +/€(A6 — All) + G(AO - A1>
o = Ag — Al — €2A0 + 62141 — 6(@25, + ¢) . (638)
./ .
—Ag +3e?A; +e(op+ @) + 2 Ag

The Hessian matrix w bears the following null eigen vector
M(2) = (0,1,0)6(z — z). (639)

Here too multiplying equation (633) from left by A! we get the primary
constraint,

VHa,t) = (Al — A) — 2Ag + 2 Ay — e(¢ + §))(x,1). (640)
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The constraint has to be consistent with time. So we add time derivatives of
vt with Legas , and it results

Li(z,t) = (Lesa + ;’yl)(:c, ). (641)

1

In matrix w! and o' that occurs in equation (633) are found out as

0(z — x), (642)

o O OO

0+ e(Af — Ay) + e(Ag — A1),
1| AF— AL —eAg+ A —e(d 4 ¢9)

al = . . 643
_AO/T"3€2A1+6(Q_§+¢I)—'_—€2AO ( )
Ag — egb’ + 62141 — 62A0
Let us now calculate null vector A\?(z) which the matrix w! is having.
N (2) = (e,0 g 1)o(z — z). (644)
Y 7ax7

We get secondary lagrangian constraint multiplying equation (641) from left
by A% :
P(z1) = 263(A + A) (1), (645)

In order to maintain consistency again the time derivatives of v? is added
with L; which results
d s
Ly(z,t) = (L1 + 5.77) (2, 1). (646)

In this situation the matrices w? and a? for Lo(x,t) are found out as

iz — ), (647)

coc o oo
o =)
gl
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—¢" + e(Al) — A)) + e(Ag — Ay)
Al — A — €Ay + €241 — e(¢) + )
o =| —A)+3e24; +e(dp+¢) +e4, |- (648)
Al —ed! + e2A; — 24,
22 (A} + A})

w? also has a new null eigen vector

M (2) = (e, 0, 0

%,1,0)5(2—30). (649)

Multiplying the equation (646) from left by A3 | we get
o, 1) = 234+ A (1,) = (). (650)

The mapping of v3(x,t) onto v*(z,t) indicates that there is no other con-
straint. Thus the process is terminated. As it is done in this previous cases
72 here too is expressed in the form of equation (515).

0 0
3
t)=(=L —L L t). 651
7($’) (8t AO+8:L‘ A T e ¢)(QZ,) ( )
Comparing v*(z, t) with equation (516) we get non vanishing ¢'s which will be
useful to calculate gauge transformations of the fields describing the system.

bo1(z,x) =ed(z — x), (652)
P12(z,x) =6(z — x), (653)
bos(z,x) = ;xé(z — ). (654)

We are now in a state to find the gauge transformation of the field describing
the system by using equation (517)

56 = ef (a,1), (655)
0

0Apg = —af(l"vt)» (656)

0A; = —aif(x,t). (657)
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The variation of Lcgys is under the transformation (655),(656) and (657)

88
Losm(z,t) = —Eﬁzo@(szﬁsi&)f(x,t)
0 0
= _[aLAO + %Lm +eLy) f(z,1)

= —26%(A} + Ag) f(a,1). (658)

So it is found that the lagrangian (633) is not invariant under the above
transformations. The formalism here too gives the expected result because it
is an anomalous model with Faddeevian type of anomaly and the appearance
of gauge non invariance for this model is obvious.

8.9 Chiral Schwinger Model with Faddeevian anomaly
is Made Gauge Invariant in the Extended Phase

space

The lagrangian of chiral Schwinger model with Fadeevian anomaly [8, 35] is
found gauge non invariant under the transformation generated in the previous
section by Shirzad’s formalism. So we add some terms with the previous
lagrangian (633) to bring back its symmetry and apply the prescription to
verify whether we get the expected result in the extended phase space like
the previous case. Lagrangian density with appropriate terms involving the
auxiliary field 6 that helps to make Eq. (658) zero reads

1 1
LESM = /[(_ZFNVFMV -+ 58M¢a“¢ -+ e(g,w - ew)ﬁ“qﬁA”

1
+ 562(143 — 2AOA1 — 3A%)

+ ;(92 —20'0 — 30"%) — ;(9'2 —0?)
- 6(1409 - AQQI - Alg - 3141(9,) + e(A()Q' - A10)
+ e(=A0 + Ab))da. (659)
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The equations of motions for the field ¢, Ag, A, 6 are
Ly = (6= ¢") + e(Ay = A7) + e(Ag — Ay), (660)
Ly = Al — Ay — Ao+ Ay — e(¢ + §) — 2¢0), (661)
La, = Ay — Ay +32A, + e(d+ ¢) + €2 Ay — 2¢0, (662)
Ly = (260" — 20") + 2e A} + 2¢ Al (663)
The matrices w and « in this situation are
1000

éz —vy), (664)

o O O
o O

0 0
01
0 0

e}

—¢" + e(Af — AY) + e(Ag — Ay)
Al — A — 2 Ag + €24y — e(d + ) — 2t
Ay 4+ 3e2A, + e+ @) + €Ay — 20
—20" — 20" + 2e Al + 2e A,

(665)

It is found that there exists a null vector within the the Hessian matrix w
which is given by
M(2) =(0,1,0,0)6(z — x). (666)

Multiplying the equation (659) with A! from the left we obtain the following
primary constraint

Y, t) = (A7 — A — 2Ag+ €Ay — e(¢ + &) — 2e0') (. 1). (667)

When the time derivative of 4! is added with Lggas , L1 which is the require-
ment for the primary constraint to be consistent with time.

Li(x,t) = (Lpsy + gt’yl)(:z:, t). (668)

It is now needed to find out w' and o' contained in (668)

10 0 0

oo o o B

w=1 9 0 1 o0 0(z — x), (669)
—e 0 =2 0



—¢" + e(Al) — A)) + e(Ag — Ay)
Al — A — €Ay + €241 — e(¢) + ¢) — 20
ol = | —A) +3e24; +e(¢p+ @)+ e2dy — 20 |- (670)
—20" — 20 + 2e Al + 2e A"
Al —ed) — 2Ag + e Ay — 2e0'

Our next step is to find out whether the matrix do have any null eigen vector
and it is seen that matrix w! has the following null eigen vector.

N (z) = (e, 0, ai:, —e,1)0(z — x). (671)
Now we multiply the equation (668) from left by A? to find v* which turns
out to be zero here.

Y (z,t) = 0. (672)

So it is not possible to increase the the rank of equation for accelerations.
Since A? does not give rise to any new constraint one needs to express 72 in
the form of equation (515).

0 0
VA (z,t) = (ELAO + %LA1 +eLy —eLg)(x,t). (673)
Equating (673) with equation (516) we find that the non vanishing ¢'s in

this situation are

bo1(z,x) =ed(z — x), (674)
P12(2,7) =6(2 — ), (675)
bos(z, ) = (9826(2 —x), (676)
Goua(z,x) = —ed(z — x). (677)

The gauge transformations (517) for the field ¢, Ag, A; and 6 are found out
to be

56 = ef (x,1), (678)
A, = —(f)?t fla,b), (679)
JA, = ‘ai« fla 1), (680)
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30 = —ef(x,t). (681)
The variation of Lggys is under the transformation (678),(679), (680),(681)

ds (¢51Lz)

(5LESM($,t> = —22207(137{;)
0 0
= —[aLAo —+ %LAI + €L¢ — €L9]f<x,t).
= 0. (682)

It shows that the lagrangian (659) is invariant under the gauge transformation
(678), (679), (680) and (681). Therefore, we again observe the real ability
of this formalism for testing the gauge symmetric property in the extended
phase space of the so called chiral Schwinger model with Faddeevian anomaly.

8.10 Discussion

An instrument for testing gauge symmetry as well as generating gauge trans-
formation of a theory through Lagrangian formulation developed by Shirzad
in [31] has been applied in different interacting and non interacting field the-
oretical model [38]. Some of the model had gauge symmetry to start with
and in some model it was lacking. The formalism is found instrumental to
study the gauge symmetric property for all the cases whatever subtleties are
involved in these. Using Shirzad’s formalism, we have successfully tested
whether a given model does posses gauge symmetry or not. When a model
is found gauge non-invariant it is made gauge invariant by adding some aux-
iliary fields. With the lagrangian of that model in the extended phase space
investigation is carried out using Shirzad’s prescription to test whether gauge
symmetric gets restored in it. The process of adding auxiliary fields though
extends the phase space the physical content of the theory remains unaltered
because the fields required for the extension keep themselves allocated in the
unphysical sector of the theory. More importantly, it has been possible to
generate gauge transformation generator in the extended phase space too.
So it is found that the formalism is not only useful in the usual phase space
of the theory but also it is equally powerful in the extended phase space. In
this context, we should mention that in [31], Shirzad kept himself confined
within the usual phase space of the theory. One important aspect of this
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formalism which we have noticed here is that one can have a guess about
the Weiss-Zumino term needed to bring back the symmetry of a gauge non
invariant theory. In every cases of our studies we have noticed that the terms
involving auxiliary field needed for making the variation of a particular gauge
non invariant lagrangian zero under the respective transformations generated
through Shirzads formalism leads to the Weiss- Zumino term for the respec-
tive theory. But it is fair to admit that the formalism is still lacking the
mechanism to make a theory gauge invariant in a straightforward manner,
i.e., the automatic generation of Wess-Zumino term as it has been found
to be generated during the BRST invariant reformulation through Batalin-
Fradkin- Vilkovisky formalism [44, 45, 47]. However there is enough room of
improvement for the formalism towards this end. More serious and intense
investigation is needed in that direction.

References

[1] P. A. M. Dirac: Lectures on Quantum Mechanics. Yeshiva University
Press, New York (1964)

[2] A. J. Hanson, C. Teitelboim: Dirac General Method For constrained
Hamiltonian system

[3] K. Sundermayer: Constrained Dynamics Springer Berlin (1982)

[4] J. Wess, B. Zumino: Phys. lett. B37 95 (1971)

[5] C. Becchi, A. Rouet, R. Stora : Phys. Latt. B52 344 (1974)

[6] C. Becchi, A. Rouet, R. Stora: Commun. Math. Phys. 42 127 (1975)
[7] C. Becchi, A. Rouet, R. Stora: Ann. Phys. 98 287 (1976)

[8] P. Mitra: Phys. Lett. B284 23 (1992)

[9] S. Ghosh, P. Mitra: Phys. Rev. D44 1332 (1990)

[10] A. Rahaman, S. Yasmin, S. Aziz: Int.J.Theor. Phys. 49 2607 (2010)

121



[11] A. Rahaman, S.Yasmin: Gauged Floreanini-Jackiw type chiral Boson
and its BRST quantization communicated (hep-th 1612.07095v1).

[12] S. Yasmin, A. Rahaman: Int. J. Mod. Phys. 31, 32 (2016)
[13] S. D. Joglekar, B. P. Mandal: Phys. Rev. D51 1919 (1995)

[14] S. Upadhyay, S. K. Rai, B. P. Mandal: J. Math. Phys. 52, 022301
(2011). 330 (1987)

[15] S. Upadhyay, B. P. Mandal: Eur. Phys. Lett. 93 31001 (2011).
[16] S. Upadhyay, B. P. Mandal: Mod. Phys. Lett. A40 3347 (2010).

[17] B. P. Mandal, S. K. Rai, S. Upadhyay: Eur. Phys. Lett. 92 21001
(2010).

[18] S. Upadhyay, B. P. Mandal: Eur. Phys. J. C72 72065 (2012).
[19] S. Upadhyay, B. P. Mandal: Phys. Lett. B744 231 (2015).

[20] S. Upadhyay, A. Reshetnyak, B. P. Mandal: Eur. Phys. J C76 391
(2016)

[21] S. Deguchi, V. K. Panday, B. P. Mandal: Phys. Lett. B756 394 (2016)
[22] M. Faizal, S. Upadhyay, B. P. Mandal: Phys. Lett. B738 159 (2014)
[23] M. Faizal, B. P. Mandal: Phys. Lett. B721 159 (2013)

[24] S. Upadhyay, B. P. Mandal: Ann. Phys. (N.Y.) 327 2885 (2012)

[25] E. Abdalla, M. Cristina, B. Abdalla, K. D. Rothe: Non-perturbative
methods in 2 Dimensional Quantum fiield Theory, World Scientific,
Singapore, 1991.

[26] S. Yasmin, A. Rahaman: Int.J Theor. Phys 55 5172-5185 (2016)
[27] S. Miyake, K. Shizuya : Phys. Rev. D36 3781 (1987)
[28] S. Miyake, K. Shizuya : Phys. Rev. D37 2288 (1988)
[29] K. Harada, I. Tsutsui: Zeit. f. Phys. C39 137 (1988)

122



[30]
[31]
[32]
[33]
[34]
[35]
[36]

[37]

[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]

[49]

N. C. Falck. G. Kramer: Ann. Phys. (N. Y.) 176 330 (1987)

A. Sirzad: J Phys A, math Gen 31 2747(1998)

R. Jackiw, R. Rajaraman: Phys. Rev. Lett. 54 1219 (1985)

H. O. Girotti, H. J. Rothe, K. D. Rothe: Phys. Rev. D33 514 (1986)
H. O. Girotti, H. J. Rothe, K. D. Rothe : Phys. Rev. D34 592 (1986)
K. Harada: Phys. Rev. Lett. 64 139 (1990)

S. L. Shatashvili: Theor. Math. Phys. 60 770 (1985), Theor. Mat. Fiz.
60, 206 (1984)

S.L. Shatashvili : Theor. Math. Phys. 71 366 (1987), Theor. Mat. Fiz.
71, 40 (1987)

S. Yasmin, A. Rahaman: Int.J Theor. Phys 52 1539 (2013)

P. Mitra, R. Rajaraman: Ann. Phys. (N. Y.) 203 137 (1990)

P. Mitra, R. Rajaraman: Ann. Phys. (N. Y.) 203 157 (1990)

A. Bassetto, L. Griguolo, P. Zanca: Phys. Rev. D50 1077 (1994)
A. Bassetto: Nucl. Phys. B439 327 (1995)

A. Bassetto, L. Griguolo, P. Zanca: Phys. Rev. D50 7638 (1994)
E. S. Fradkin, G. A. Vilkovisky: Phys. Lett. B55 224 (1975)

I. A. Batalin, E. S. Fradkin: Nucl. Phys. B279 514 (1987)

T. Fujiwara, 1. Igarashi, J. Kubo : Nucl. Phys. B314 695 (1990)
I. A. Batalin, V. Tyutin: Int. J. Mod. Phys. A6 3255 (1991)

Y. W. Kim, S. K. Kim, W.T. Park, Y.J. Kim, K.Y. Kim : Phys. Rev.
D46 4574 (1992)

W. Siegel: Nucl. Phys. B238, 307 (1984)

123



[50] S. Bellucci, M. F. L. Golterman, D. N. Petcher: Nucl. Phys. B 326
[51] R. Floreanini, R. Jackiw: Phys. Rev. Lett. 59 1873 (1987)

[52] L. D. Faddeev: Phys. Lett. B 154 81 (1984)

[53] L. D. Faddeev, S. L. Shatashvili: Phys. Lett. B 167 225 (1986)
[54] J. Schwinger: Phys. Rev. 128 2425 (1962)

[55] J. H. Lowenstein, J. A. Swieca: Ann. Phys. (N. Y.) 68 172 (1971)
[56] W. E. Thirring, J. E. Wess: Ann. Phys. 27 331 (1964)

[57] S. Mukhopadhyay, P. Mitra, f. Zeit: Phys. C97 552 (1995)

[58] S. Mukhopadhyay, P. Mitra: Ann. Phys. (N. Y.) 68 241 (1995)
59] A. Rahaman: Ann. Phys. (N.Y.) 361 33 (2015)

[60] A. Rahaman: Ann. Phys. (N. Y.) 354 511 (2015)

[61] C.R. Hagen : Ann. Phys. (N.Y.) 81 67 (1973)

[62] A. Rahaman: Int. J. Mod. Phys. A19 3013 (2004)

[63] A. Rahaman: Int. J. Mod. Phys. A12 5625 (1997)

[64] A. Rahaman, P. Mitra: Mod. Phys. Lett. A11 2153 (1996)

[65] A. Rahaman: Int. J. Mod. Phys. A21 1251 (2006)

[66] A. Rahaman: Phys. Lett. B697 260 (2011)

[67] A. Rahaman: Mod. Phys. Lett. A24 2195 (2011),

[68] A. Rahaman: Mod. Phys. Lett. A29 1450072 (2014),

[69] A. Saha, A. Rahaman, P. Mukherjee: Phys. Lett. B638 292 (2006)
[70] P. Mitra, A. Rahaman : Ann. Phys. (N. Y.) 249 34 (1996)

[71] A. Saha, A. Rahaman, P. Mukherjee: Mod. Phys. Lett. A23 2947
(2008)

124



[72] A. Rahaman, S. Yasmin, S. Aziz: Int. Jour. Theor. Phys. 49 2607
(2010)

[73] R. Casana, S. A. Dias: Int. Jour. Mod. Phys. A15 4603 (2000)
[74] R. Casana, S. A. Dias: Int. Jour. Mod. Phys. A17 4601 (2000)
[75] M. Ghasemkhani, N. Sadooghi: Phys. Rev D81 045014 (2010)
[76] M. Ghasemkhani: Euro, Phys. Jour. C74 2921 (2014)

[77] U. Kulshreshtha, D. S. Kulshreshtha, J.P. Vary: Int. Jour. Theor.
Phys. 55 338 (2016)

[78] S. I. Muslih: Mod. Phys, Lett. A18 1187 (2003)

[79] S. G. Maicel, S. Perez: Phys. Rev. D78 065005 (2008)

[80] A. Das, R. R. Fransisco, J. Frankel: Phys. Rev. D86 047702 (2012)
[81] Y. G. Miao, Y. J. Zhao: Commun. Theor. Phys. 57 855 (2012)

[82] S. J. Yoon, Y. W. Kim, Y. J. Park : J. Phys. G25 1783 (1989)

[83] M. I. Park, Y. J. Park, S. J. Yoon : J. Phys. G24 2179 (1988)

[84] S. Ghosh : Phys. Rev. D49, 2990 (1994)

[85] C. Imbimbo, J. Strominger: Phys. Lett. B193 445 (1987)

[86] J. M. F. Labastida, M. Permici: Nucl. Phys. 297 557 (1988)

[87] N. Marcur, J. Schwasz: Phys. Lett. B54 111 (1982)

[88] D. J Gross, J. A. Hervey, E. Martinec, R. Rohm: Phys. Rev. Lett.54
502 (1985)

[89] K. Harada I. T'sutsui: Phys. Lett. 64 139 (1990)
[90] P. Srivastava: Phys. Rev. Lett. 36 2791 (1989)
[91] P. Srivastava: Phys. Lett. B234 93 (1990)

125



List of publications

1. On the gauge and BRST invariance of the Chiral QED with Faddeevian
Anomaly. A. Rahaman, S. Yasmin, S.Aziz: Int.J Theor. Phys. 49:
2607- 2620 (2010)

2. Study of Gauge symmetry Through the Lagrangian Formulation of
some field Theoretical models. S. Yasmin, A. Rahaman: Int.J Theor.
Phys. 52: 1539-1565 (2013)

3. On the Poincar’e and Gauge symmetry of a model where vector and
axial vector interaction get mixed up with different weight. S. Yasmin,
A. Rahaman: Int.J Theor. Phys 55: 5172-5185 (2016)

4. On the BRST and finite field dependent BRST of a model where vec-
tor and axial vector interaction get mixed up with different weight.
S.Yasmin, A. Rahaman : Int.J Mod. Phys A 31 1650171 (2016).

Communicated Paper:
5. Gauged Floreanini Jackiw type Chiral Boson and its BRST quantiza-
tion. A. Rahaman, S. Yasmin: communicated. (ArXiv- 1612.07095)

Proceedings

6. Study of Gauge symmetry Of both the free chiral Boson and gauged
chiral Boson Through the Lagrangian Formulation. S. Yasmin, A. Ra-
haman Proceedings of the XX BRNS DAE High Energy Physics Sym-
posium held at Visva- Bharoti Dated 13-18. 2013

126



' TeeN oRNF—FEIX

International Journal of Modern Physics A
Vol. 31. No. 32 (2016) 1650171 (18 pages)
© World Scientitic Publishing Conrpauy
DOLI: 10.1142,"80217751)(165(]171'2

World Scientific

www. worldscientitic.com

On the BRST and finite field-dependent BRST of a model
where vector and axial vector interactions get
mixed up with different weights

Safia Yasmin
Indas Mahavidyalaya, Bankura 722205, West Bengal, India

Anisur Rahaman

Hooghly Mohsin College, Chinsurah, Hooghly 712101, West Bengal, India
anisur.rahman@saha. ac.in; manisurn@ gmail. com

Received 14 June 2016
Revised 2 October 2016
Accepted 13 October 2016
Published 8 November 2016

The generalized version of a lower dimensional model where vector and axial vector
interactions get mixed up with different weights is considered. The bosonized version
of which does not possess the local gauge symmetry. An attempt has been made here
to construct the BRST invariant reformulation of this model using Batalin-Fradlin and
Vilkovisky formalism. It is found that the extra Held needed to make it gauge invariant
turns into Wess Zumino scalar with appropriate choice of gauge fixing. An application
of finite ficld-dependent BRST and anti-BRST transformation is also made here in order
to show the transmutation between the BRST symmetric and the usual nonsymmetric
version of the model.

Keywords: BRST; Huitc ficld-dependent BRST; Wess—Znino terui; anowaly.
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1. Introduction

Dynamical equations of physical system cannot always be described in terms of
observable physical degrees of freedom which pose problem to the straightforward
physical interpretation of the solution of evaluation equations.! * In some cases, few
solutions need to be excluded since they do not describe the real physical situation or
it may be the case that certain class of apparently different solutions appears to be
physically indistinguishable. The BRST-formalism?  has been developed precisely
to deal with such systems. It is a technique to enlarge the phase space of a gauge
theory and to restore the symmetry of the gange fixed action in the extended phase
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Abstract A (1+ 1) dimensional model where vector and axial vector interaction get mixed
up with different weight is considered with a generalized masslike term for gauge field.
Through Poincaré algebra it has been made confirm that only a Lorentz covariant masslike
term leads to a physically sensible theory as long as the number of constraints in the phase
space is two. With that admissible masslike term, phase space structure of this model with
proper identification of physical canonical pair has been determined using Diracs’ scheme
of quantization of constrained system. The bosonized version of the model remains gauge
non-invariant to start with. Therefore, with the inclusion of appropriate Wess-Zumino term
it is made gauge symmetric. An alternative quantization has been carried out over this gauge
symmetric version to determine the phase space structure in this situation. To establish
that the Wess-Zumino fields allocates themselves in the un-physical sector of the theory an
attempts has been made to get back the usual theory from the gauge symmetric theory of
the extended phase-space without hampering any physical principle. It has been found that
the role of gauge fixing is crucial for this transmutation.

Keywords Poincaré symmetry - Anomaly - Faddeevian regularization - Gauge symmetry

1 Introduction

In terms of fundamental interaction, Quantum Electrodynamics (QED) in (1+1) dimension
can be categories in two different classes. The first way of description that came in the
literature was originated from vector type of interaction between matter and gauge fields.
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Abstract Study of gauge symmetry is carried over the different interacting and noninter-
acting licld theoretical models through a prescription based on Lagrangian formulation. It
is found that the prescription is capable of testing whether a given model posses a gauge
symmetry or not. It can successfully formulate the gauge transformation generator in all the
cases whatever subtleties are involved in it. Itis found that the prescription has the ability to
show a direction how Lo extend the phase space using auxiliary lields to restore the gauge
invariance of a theory. Like the usual phase space the prescription is found to be equally
powerful in the extended phase space of a theory.

Keywords Lagrangian formulation - Gauge theory - Constrained dynamics

1 Introduction

Every basic interaction is supposed to have their origin from the gauge principle and under-
standing of the gauge symmetry of a physical theory is a very important problem which has
received much attention to the physicist from the Jong past. In a gauge theory, their exists
some transformation that leaves physical content of the theory invariant. It even stands as
a fundamental principle that determines the form of Lagrangian of a theory. Two main ap-
proaches have been followed in the literature to study the local symmetry of the Lagrangian
of the gauge theories. The oldest one is the Hamiltonian formulation based on Dirac conjec-
ture [1-3]. Several authors have tried to find out the answer of several interesting questions
related to the gauge symmetry using Hamiltonian formulation [4—14]). The most general
form of gauge transformation generator too can be determined with that Hamiltonian for-
mulation. To study BRST symmetry, Hamiltonian approach also has been found to be in-
strumental [15-22].
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Abstract Chiral Schwinger model with the Faddeevian anomaly is considered. It is found
that imposing a chiral constraint this model can be expressed in terms of chiral boson. The
model when expressed in terms of chiral boson remains anomalous and the Gauss law of
which gives anomalous Poisson brackets between itself. In spite of that a systematic BRST
quantization is possible. The Wess-Zumino term corresponding to this theory appears auto-
matically during the process of quantization. A gauge invariant reformulation of this model
is also constructed. Unlike the former one gauge invariance is done here without any exten-
sion of phase space. This gauge invariant version maps onto the vector Schwinger model.
The gauge invariant version of the chiral Schwinger model for a = 2 has a massive field
with identical mass however gauge invariant version obtained here does not map on to that.

Keywords Chiral QED - BRST invariance - Faddeevian anomaly

1 Introduction

Symmetry plays a fundamental role in physics. Some times symmetry of a given theory
may be broken and that has a profound consequences. Gauge symmetry of a theory is of
particular interest in this context. Absence of gauge symmetry invites anomaly in a theory.
There have been considerable elTorts in the understanding ol anomaly in quantum field the-
ory [1-14]. The studies of chiral Schwinger model and anomalous Schwinger model [11]
are worth mentionable in this respect. It is the anomaly that removed the long suffering of
chiral Schwinger model from non-unitarity. Credit went to Jackiw and Rajaraman—those
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The gauged Siegel type chiral boson is considered. It has been shown that the action of gauged
Floreanini-Jackiw (F.J) type chiral boson is contained in it in an interesting manner. A BRST
invariant effective action corresponding to the action of gauged FJ type chiral boson has been
formulated using Batalin, Fradkin, Vilkovisky (BFV) based improved Fujiwara, Igarishi and Kubo
(FIK) formalism. An alternative quantization of the gauge symmetric effective action has been
made with a Lorentz gauge and an attempt has been made to establish the equivalence between the
gatge svmmetric version of the extended phase space and original gauge non-invariant version of
the usual phase space.

PACS numbers:

I. INTRODUCTION

The self-dual field in (1+1) which is also known as chiral boson is the basic ingredient of heterotic string theory [1-4].
This very chiral hosou plays a crucial role in the study of quantum hall effect too [5, 6]. Seigel initiated the study of
chiral beson in his seminal work [7]. Another description of chiral boson came from the work of Srivastva [8]. Tu these
two descriptions 7. 8], the lagrangian of chiral boson were constituted with the second order time derivative of the
field. In the description of Seigel chiral constraint was in a quadratic form where as in the description of Srivastava
it was in a linear form. One more ingenious description of chiral boson came from the description of Floreanini
and Jackiw [9]). In this description the lagrangian of chiral boson was constituted with first order time derivative
of the feld. In Ret [10]. we find an imteresting description towards quantization of that free FJ type chiral boson.
In o very resent work [8]. we find an application of augmented super field approach to derive the off-shell nilpotent
and absolutelv ant lconmmuting (anti-)BRST and (anti-Jco-BRST sviunetry transformations for the BRST invariant
Lagrangian deusity of a free chiral boson. Another recent important development towards the BFV quantization of
the free chiral hoson along with study of Hodge decomposition theorem in the context of conserved charges has came
in [11]

The obvious generalization of free chiral boson is to take into account, of the interaction of gauge field with that and
this interacting field theoretical model is known as gauged chiral boson. The interacting theory of chiral boson was
first described by Bellucei. Golterman and Petcher [13] with Seigel like kinetic tern for chiral boson. So naturally the
theory of interacting chiral boson witl FJ type kinetic was wanted for as free FJ type chiral boson became available
i [9] and that was successfully met up by Harada [14]. After the work of Harada (14], interacting chiral boson based
on F.J type kinetic term attracted considerable attention [34] in spite of the fact that this theory of interacting chiral
boson was not. derived from any fundamental principle. Harada obtained it from Jackiw-Rajaraman (JR) version of
chiral Schwinger model [15], imposing a chiral constraint into it by hand. So there is a missing link between the two
types of interacting gauged chiral boson. An attempt towards search for a link is therefore a natural extension which
we would like to explore. In fact, we want to show whether the gauged F.J type chiral boson is contained within the
gauged chiral hoson of Seigel type chiral boson which is available iy (13]. T'he study of this model may be beneficial
from another another point of view indeed: where anomaly is the central issue of investigation [14-21], since it is known
from vef. [14] that the model took birth from the JR version of chiral Schwinger model this very chiral Schwinger
model viz., chiral generation of Schwinger model [22] gets secured from unitarity problem when anomaly was taken
into consideration (15]. In this respect, the recent chiral generation of Thirring model is of worth-mentioning [23, 24).
So when the issue search of desired link gets settled down a natural extension that comes automatically in mind is to
study the synimetry underlying in the 1hodel and perform the quantization of the model. BRST quantization in this
colitext SCOres over UL}I(_’.I‘.
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