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Résumé

Introduction

La physique moderne est basée sur deux théories fondamentales: la théorie d’Einstein de la relativité générale,
qui est la théorie classique décrivant la géométrie de notre Univers à grande échelle, et la théorie quantique des
champs qui forme la trame du modèle standard de la physique des particules.
L’état fondamental de la théorie quantique des champs, le vide, présente des propriétés exceptionnelles, bien
qu’il ne contienne pas de particules. La raison est l’existence de fluctuations quantiques du vide, appelées le
champ de vide. La présence de ce champ provoque une variété de phénomènes intéressants et d’effets observ-
ables comme l’émission spontanée, le Lamb shift ainsi que beaucoup d’autres effets.
Par exemple, la présence de champs externes, peut modifier les propriétés du vide et induire des réactions
intéressantes. Un phénomène particulièrement intéressant est la réaction du champ du vide à des champs de
background qui varient avec le temps. Le vide répond à de telles perturbations dépendantes du temps par
l’amplification des fluctuations du vide, qui peuvent être interprétées comme la création de particules à partir
du vide. Deux exemples sont la production de photons dans un champ électromagnétique fort dépendant du
temps ainsi que la création de particules dans l’Univers en expansion.
Un autre exemple est l’expansion rapide de l’Univers après sa création lors du Big Bang, appelée inflation.
L’amplification des fluctuations quantiques pendant cette ère sont responsables des petites anisotropies de den-
sité et de température que nous observons dans le fond de rayonnement cosmique (CMB) avec des expériences
de précision élevée comme la Wilkinson Microwave Anisotropy Probe (WMAP). Dans le modèle standard de
la cosmologie, qui est soutenu par des observations récentes, les structures que nous observons dans l’Univers
aujourd’hui, ont émergé de ces petites fluctuations de densité. Les fluctuations quantiques initiales du vide ont
ainsi laissé une impression dans le ciel que nous observons.
Les conditions de bord du système, qui peuvent être considérées comme des champs classiques de background
très localisés, ont un impact particulier sur le champ du vide, ils changent la structure de ses modes. Ceci a
comme conséquence une force attractive entre deux plaques métalliques appelé l’effet Casimir statique , ainsi
que la création de photons par des miroirs en mouvement, appelé l’effet Casimir dynamique .

Tous ces phénomènes sont décrits par ce qui s’appelle l’approche semi-classique. La dynamique des champs
quantiques est ainsi étudiée dans le background des champs classiques tels que le champ de gravitation, des
champs électromagnétiques forts ou des bornes mobiles.
Néanmains, l’approche semi-classique n’est pas adaptée à la description de l’Univers primordial. Afin de com-
prendre l’origine de l’Univers, la théorie quantique des champs et la gravitation doivent être unifiés dans ce
qui s’appelle la gravitation quantique. De nos jours, la tentative la plus réussie vers une théorie unifiant la
théorie de la relativité générale et la théorie quantique des champs est la théorie des cordes. Récemment, la
théorie des cordes a motivé l’introduction de modèles de braneworld, dans lesquels notre Univers est décrit
comme une hypersurface, appelée brane, dans un espace temps à dimensions supplémentaires, appelé bulk.
Dans ces modèles, le modèle standard de la physique des particules est confiné à cette hypersurface et seule la
gravitation peut se propager dans les dimensions supplémentaires. L’expansion de l’Univers que nous observons
correspond, dans ces modèles, au mouvement de la brane dans les dimensions supplémentaires. Une brane en
mouvement dans le bulk correspond à une borne, ou limite, dépendante du temps pour les perturbations de
la gravitation, de la méme manière qu’un miroir mobile est une pour le champ de photons. Par conséquent,
une brane mobile engendre la production de gravitons à partir des fluctuations du vide. Ceci constitue l’effet
Casimir dynamique pour les gravitons.

Cette thèse étudie l’effet Casimir dynamique pour deux scénarios: premièrement la production de photons
dans une cavité dynamique et deuxièmement la production de gravitons par des branes en mouvement.
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viii RÉSUMÉ

L’effet Casimir statique

L’effet Casimir a été prédit par le physicien hollandais Hendrik Casimir en 1948. Sous sa forme la plus simple,
l’effet Casimir statique correspond à l’attraction d’une paire de plaques conductrices parallèles engendrée par
les perturbations du vide du champ électromagnétique. Puisqu’il n’existe aucune force entre des plaques
neutres dans l’électrodynamique classique, cet effet est purement quantique. Dans une situation idéale, á
température nulle par exemple, il n’y a aucun photons réels entre les plaques. Par conséquent, c’est seulement
l’état fondamental de l’électrodynamique quantique, le vide, qui fait s’attirer les plaques macroscopiques.
Pour cela, l’effet Casimir est souvent cité comme preuve de l’existence des fluctuations du vide du champ
électromagnétique, et du vide quantique en général. Non seulement cet effet a été mesuré en laboratoire avec
une grande précision, mais on doit de plus en tenir compte dans la nanotechnologie.
La force Casimir entre deux plaques parallèles est donnée par

F (d) = − π2

240

~ c

d4
S .

Ice, d est la séparation entre les deux plaques et S leur surface. La force Casimir est une conséquence exclusive
des conditions aux limites, imposées par les plaques. Celles-ci modifient la structure des modes des fluctuations
du vide et, par conséquent, l’énergie du point zéro du champ par rapport à celle dans l’espace libre [cf. Fig. 1].

Figure 1: Représentation imagée de l’effet Casimir. Les miroirs idéaux changent la structure des modes du
champ du vide. Alors que toutes les fréquences sont permises dans l’espace libre, les conditions aux limites de
Dirichlet pour le champ du vide imposées par les miroirs, limitent l’éventail des modes du champ à certaines
fréquences particulières dans le volume entre les deux plaques. Cette différence dans la structure des modes
du champ du vide crée la force Casimir [cf. Section 2.2].
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L’effet Casimir dynamique

La contre-partie dynamique de l’effet Casimir statique, l’effet Casimir dynamique, semble encore plus frap-
pante. Quand les plaques sont mises en mouvement, le vide quantique répond aux conditions aux limites
dépendantes du temps induites par la création de photons réels provenant de fluctuations du vide quantique.
Cet effet est également appelé motion induced radiation.

Cet effet de création de particules à partir des fluctuations du vide dues aux conditions aux limites dépendantes
du temps se produit pour n’importe quel champ quantique. Il est possible de prouver que différents scénarios
peuvent être réduits à un problème 1 + 1–dimensionnel d’un champ réel scalaire et massif Φ(t, x) sur un in-
tervalle dépendant du temps x ∈ [0, l(t)] ≡ I(t). La borne l(t) suit une trajectoire classique définie. L’action
décrivant le champ Φ(t, x) sur I(t) est

S =
1

2

∫
dt

∫

I(t)

dx
[
(∂tΦ)2 − (∂xΦ)2 − m

2Φ2
]

,

où m est la masse du champ. Pour poser le problme adéquatement, on doit exiger des conditions aux limites
pour Φ(t, x) x = 0 et à x = l(t). La forme spécifique des conditions aux limites est donnée par le problème
physique particulier étudié, mais également contrainte par le principe variationnel. Afin de préparer le terrain
pour la quantification canonique, on doit présenter un ensemble approprié de fonctions permettant l’expansion
du champ Φ(t, x) dans des variables canoniques. Plus précisément, on a besoin d’un ensemble complet et
orthonormal de fonctions propres φn(t, x) de l’opérateur laplacien unidimensionnel ∂2

x. L’existence d’un tel
ensemble dépend des conditions aux limites et est assurée si le problème est de type de Sturm-Liouville.
Puisque les fonctions propres φn(t, x) doivent satisfaire des conditions aux limites dépendantes du temps à
x = l(t), elles dépendent explicitement du temps. Les valeurs propres correspondantes ωn(t) sont également
dépendantes du temps. Avec un ensemble des fonctions propres appropriées, on peut faire une expansion en
série du champ:

Φ(t, x) =
∑

n

qn(t)φn(t, x) .

Les nouvelles variables qn(t) sont les variables canoniques du champ décrivant son évolution temporelle. Elles
satisfont un système infini d’équations couplées de second ordre de la forme

q̈n + Ω2
n(t)qn +

∑

m

[Mmn(t) − Mnm(t)] q̇m +
∑

m

[
Ṁmn(t) − Nnm(t)

]
qm = 0

où le point dénote la dérivé temporelle. Ici

Ωn(t) =
√

ω2
n(t) + m2

est la fréquence dépendante du temps d’un mode du champ et Mnm(t) et Nnm(t) sont les matrices de couplage
dépendantes du temps avec Nnm =

∑
k MnkMmk. La matrice de couplage Mnm(t) d’accouplement contient la

condition aux limites dynamique. Pour le cas particulier des conditions aux limites de Dirichlet Φ(t, x = 0) =
Φ(t, l(t)) = 0, on a:

ωn(t) =
n π

l(t)
with n = 1, 2, ... ,

Mnm(t) =






l̇(t)

l(t)
(−1)n+m 2 n m

m2 − n2
si n 6= m

0 si n = m .

Après la quantification, les deux dépendances temporelles dans les équations du mouvement, la fréquence Ωn(t)
et le couplage Mnm(t), correspondent à deux sources de création de particules à partir des fluctuations du vide.
Dans la littérature sur l’effet Casimir dynamique, l’apparition du couplage des modes dépendants du temps est
parfois désigné effet d’accélération. C’est une conséquence exclusive des conditions aux limites. La dépendence
temporelle de la fréquence Ωn(t), due à la variation temporelle du volume de quantification, c’est-à-dire du
“squeezing ” du vide, est habituellement appelée squeezing effect.
L’apparition de l’effet d’accélération reflète la différence principale entre l’effet Casimir dynamique et d’autres
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phénomènes établis de production de particules comme la création de particules dans un Univers en expansion
homogène et isotrope, et de photons dans un champ électromagnétique classique dépendant du temps. Dans
tous ces cas, l’évolution temporelle est décrite par des équations non-couplées d’oscillateurs avec une fréquence
dépendante du temps comme seule source de création de particules, ce qui pose un problème beaucoup plus
simple. Les couplages intermodaux empêchent de trouver des expressions analytiques pour des observables
physiques comme le nombre de photons créés ou leur spectre d’énergie. Les exceptions sont des situations où
des approximations peuvent être employées pour simplifier les équations, comme dans le cas de résonance. Il
est donc nécessaire d’appliquer des méthodes numériques afin d’étudier l’effet Casimir dynamique pour des
situations générales. Dans cette thèse, j’ai développé un tel formalisme permettant des simulations numériques
efficaces de l’effet Casimir dynamique.

Le concept de particule n’est pas sans ambigüıté, et en général problématique dans la théorie quantique des
champs sous l’influence de conditions externes. J’ai soigneusement abordé ces questions importantes dans le
texte principal de la thèse.
Afin de présenter un concept canonique de particules pour des systèmes avec un bord mobile, j’exige que le
problème dynamique soit tel qu’il est possible de trouver deux temps tin et tout, tels que le bord l(t) soit au
repos pour t < tin et t > tout. Les configurations initiales (in) et finales (out) du système sont caractérisées
par les conditions

configuration initiale du système : Ωin
n = Ωn(t < tin) = const 6= 0, Mnm(t < tin) = 0

configuration finale du système : Ωout
n = Ωn(t > tout) = const 6= 0, Mnm(t > tout) = 0

pour tout n, m. Ceci permet l’introduction des états du vide initiaux |0, in〉 et finaux |0, out〉, associés avec des
opérateurs d’annihilation et de création, {âin

n , âin†
n } et {âout

n , âout†
n } respectivement, par

âin
n |0, in〉 = 0 and âout

n |0, out〉 = 0 ∀ n .

Des particules définies par rapport aux états initiaux et finaux du vide, c’est-à-dire les quanta d’énergies Ωin
n

et Ωout
n respectivement, sont comptées par les opérateurs de nombre de particules

N̂ in
n = âin†

n âin
n et N̂out

n = âout†
n âout

n .

Durant la dynamique du bord, pour des temps t ∈ [tin, tout], les modes du champ évoluent temporellement tels
que, en général, âout

n 6= âin
n . Cette différence peut même persister si le système est revenu à sa position initiale,

c’est-à-dire si Ωin
n = Ωout

n ∀ n.
Des opérateurs d’état initiaux et finaux sont liés par une transformation de Bogoliubov

âout
n =

∑

m

[
Amn(tout) âin

m + B∗
mn(tout) âin†

m

]
.

Si Bnm(tout) 6= 0, le vide |0, in〉 contient des particules définies par rapport à l’état final du vide |0, out〉 et
vice versa. Ce mélange des opérateurs d’annihilation et de création est interprété comme une conversion des
fluctuations virtuelles du vide quantique en particules réelles, c’est-à-dire production de particules à partir du
vide. Le nombre de quanta d’énergie Ωout

n qui pour t > tout sont présents dans le vide initial est donné par

N out
n = 〈0, in|N̂out

n |0, in〉 =
∑

m

|Bmn(tout)|2.

De cette valeur d’expectation, des quantités comme le nombre total de particules et l’énergie associée peuvent
être déduites. Pour ceci, le coefficient Bmn(tout) de Bogoliubov doit être calculé.

Dans cette thèse, j’ai présenté et j’ai testé un formalisme qui permet la recherche numérique efficace de l’effet
Casimir dynamique. De ce fait, le coefficient Bmn(tout) de Bogoliubov est directement lié aux solutions d’un
système couplé des équations de premier ordre de la forme

Ẋ(t) = W(t)X(t)

où la matrice W(t) contient la fréquence Ωn(t) et la matrice de couplage Mnm(t). La mise en œuvre numérique
d’un tel système est évident et les résultats numériques obtenus pour différents scénarios sont en accord par-
fait avec les résultats analytiques connus. C’est le “proof of concept” de la méthode présentée. Les résultats
correspondants sont publiés dans [P1,P2].
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La production de photons dans une cavité dynamique

Une installation expérimentale particulièrement intéressante est une cavité dynamique comme représenté dans
Fig. 5.1 où un des miroirs oscille avec une fréquence égale à la fréquence d’un mode du champ électromagnétique
à l’intérieur de la cavité. Dans ce cas, des effets de résonance entre le mouvement mécanique du miroir et les
modes du champ se produisent. Ceci engendre la production “explosive” de particules à partir du vide, c’est-
à-dire le nombre de photon dans la cavité augmente exponentiellement, ce qui fait ce scénario le candidat
le plus prometteur pour une vérification expérimentale de l’effet Casimir dynamique. La difficulté principale
pour concevoir cette expérience est que les fréquences typiques de résonance des cavités micro-onde sont de
l’ordre du gigahertz. Du point de vue expérimental il est très difficile de construire un dispositif mécanique
macroscopique (le miroir) oscillant à une fréquence si élevée. Cependant, des progrès sont accomplis dans cette
direction et des expériences concrètes ont été proposées.

Dans le chapitre 5 de cette thèse, j’étudie la production des photons dans une cavité résonnante tridimension-
nelle idéale. Le miroir dynamique vibre de façon sinusöıdale à une fréquence qui est exactement deux fois la
fréquence d’un mode du champ à l’intérieur de la cavité. C’est un cas idéal de résonance. Ces études numériques
confirment les résultats analytiques connus qui sont basés sur des approximations mais ont également indiqué
leurs limitations. Les effets de couplage intermodaux ont été étudiés en détail, ce qui est possible uniquement
par des simulations numériques. Les simulations numériques ont indiqué que l’efficacité de la production de
photon dans une cavité vibrante peut être controle en accordant la taille de cavité. Par conséquent, l’efficacité
de production de photons peut être maximisé si on construit la cavité telle que les dimensions non-dynamiques
de cavité sont suffisamment supérieures aux dimension dynamique. Ce résultat important et nouveau, qui
pourrait être très utile pour l’optimisation des expériences dynamiques proposées d’effet Casimir dynamique,
est publiés dans [P3].

Le modèle standard de la cosmologie

Le modèle standard de la cosmologie s’appuie sur trois piliers: l’isotropie de l’expansion cosmique, l’isotropie
du fond de rayonnement diffus (le CMB) ainsi que la synthèse des éléments légers.
La géometrie d’un univsers isotrope autour de chaque point est donnée par la métrique de Friedmann-Lemâıtre-
Robertson-Walker (FLRW)

ds2 = gµνdxµdxν = −dτ2 + a2(τ)

[
dr2

1 − K r2
+ r2

(
dθ2 + sin2θdϕ2

)]

où a est le facteur d’échelle, τ le temps cosmique et K la courbure des surfaces τ = const. . La dynamique du
champ gravifique, la métrique gµν , est régie par les équations d’Einstein

Gµν + Λ4gµν = κ4Tµν .

Gµν est le tenseur d’Einstein qui contient le champ métrique gµν et Tµν est le tenseur énergie-impulsion
décrivant la matière contenue dans l’Univers. Λ4 est la constante cosmologique et κ4 la constante du couplage
gravifique qui est liée à la masse de Planck mPl par

κ4 =
8π

m2
Pl

.

La forme la plus générale de Tµν compatible avec l’homogénéité et l’isotropie, c’est-à-dire compatible avec la
métrique FLRW, est un tenseur énergie-impulsion qui a la forme d’un fluide parfait

T µ
ν = diag (−ρ, P, P, P ) .

Ici ρ est la densité d’énergie et P la pression de la matière contenue dans l’Univers. Les deux quantités peuvent
dépendre du temps seulement.
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L’insertion du tenseur énergie-impulsion dans les équations d’Einstein mène aux équations décrivant l’évolution
du facteur d’échelle a(τ). On obtient la première

H2 +
K

a2
=

κ4

3
ρ +

Λ4

3

et le deuxième
1

a

d2 a

dτ2
= −κ4

6
(ρ + 3 P ) +

Λ4

3

équation de Friedmann qui décrivent la dynamique du facteur d’échelle de l’Univers selon le contenu en énergie,
la courbure et la constante cosmologique. H est le paramètre de Hubble

H =
1

a(τ)

da(τ)

dτ
.

Le tenseur d’Einstein satisfait les identités de Bianchi Gµν
||ν = 0 selon la loi locale de conservation pour le

tenseur énergie-impulsion T µν
||ν = 0. Pour un fluide parfait, cette relation implique l’équation de continuité

d ρ

dτ
= −3 H (ρ + P ) ,

qui décrit (localement) le changement de la densité d’énergie dans un Univers FLRW. Les deux équations de
Friedmann et l’équation de continuité ne sont pas indépendantes, mais seulement deux d’entre elles.
La densité ρ d’énergie et la pression P sont souvent reliés par une équation d’état

P = w ρ

où w est constant. Dans ce cas, l’équation de continuité peut facilement être intégrée

ρ = ρ0a
−3(1+w) ,

où ρ0 est une constante d’intégration. Pour un Univers plat, la première équation de Friedmann peut alors
être résolue facilement. Par exemple, si l’Univers est dominé par de la matière ultra-relativiste (rayonnement)
on a w = 1/3, et par conséquent a ∝ τ1/2.

Les ondes gravitationnelles

Les ondes gravitationnelles, ou perturbations tensorielles, c’est-à-dire les petites perturbations de la géométrie
de l’espace-temps se manifestent comme “des ondes se propageant sur la courbure de l’espace-temps ”. L’amplitude
d’une onde gravitationnelle libre dans un Univers FLRW plat, rempli d’un fluide parfait est décrite par
l’équation

∂2

∂η2
h(η,k) + 2H ∂

∂η
h(η;k) + k2h(η;k) = 0 .

Ici H = Ha est le paramètre de Hubble. Il est fonction du temps conforme η, qui est lié au temps cosmique
τ par dτ = adη. k = |k| est le nombre d’onde. La dynamique du facteur d’échelle entre dans cette équation
au travers du terme de friction ∝ H. Par conséquent, en fonction de l’évolution de a, l’amplification des
ondes gravitationnelles peut avoir lieu. Après la quantification, et à condition qu’une définition du vide et
des particules soit possible, ceci correspond à la création de gravitons, c’est-à-dire de particules de spin 2 sans
masse. Un exemple important est l’amplification des ondes gravitationnelles durant l’inflation. L’inflation est
une époque d’accélération de l’Univers primordial, qui résout les imperfections du scénario standard du Big
Bang. Durant l’inflation de-Sitter, par exemple, le facteur d’échelle est

a(τ) = eH τ with H = const. .

Dans ce cas, le spectre de puissance des ondes gravitationnelles [voir Eq. (6.54)] produites sur de grandes
échelles est

Ph(k) =
κ4 H2

(2π)3
.
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Il ne dépend pas du nombre d’onde k, il est donc invariant d’échelles. L’invariance d’échelles du spectre de
puissance est une prévision saisissante de l’inflation, et est de nos jours confirmée par les observations du CMB
avec une précision impressionnante. Ces problèmes sont discutés en détail dans le section 6.5 de la thèse.

La partie restante de la thèse étudie la production d’ondes gravitationnelles dans le contexte de la cosmologie
de braneworld.

Dimensions supplémentaires et branes

L’idée que notre Univers a plus de trois dimensions spatiales germa dans les années 1920. Afin d’essayer
d’unifier la gravitation et l’électromagnétisme Theodor Kaluza et Oscar Klein ont découvert que les champs
gravitationnels et électromagnétiques quadridimensionnels peuvent être compris comme composants du tenseur
métrique dans une théorie avec une cinquième dimension compacte.

De nos jours, la recherche pour un théorie de gravitation quantique a mené à des théories et des modèles
qui contiennent de nouvelles dimensions spatiales supplémentaires. Le candidat le plus abouti pour une théorie
d’unification est la théorie des cordes dont les constituants fondamentaux ne sont plus des particules ponctuelles,
mais des objets unidimensionnels, les cordes. La théorie des (super)cordes peut être formulée de manière con-
sistente seulement dans un espace-temps avec dix dimensions. Ainsi des dimensions supplémentaires sont un
ingrédient habituel de théorie des cordes. Les excitations des cordes génèrent des états représentant diverses
particules aussi biens sans masse que massives, y compris un état de spin 2 sans masse, le graviton. Les
champs du modéle standard, comme les bosons et les fermions, sont décrits par des cordes ouvertes tandis que
les gravitons correspondent aux excitations de cordes fermées.

La découverte de D-branes (D représente Dirichlet) par Polchisnki en 1995 a mené à l’idée de braneworld où le
modèle standard de la physique des particules est confiné à une hypersurface, une brane. D’après Polchinski: “
Les D-branes sont des objets étendu, des défauts topologiques dans un certain sens, définis par la propriété que
les cordes peuvent se terminer sur eux ”. Par conséquent, les particules du modèles standard qui correspon-
dent aux cordes ouvertes, sont naturellement confinées sur une hypersurface puisque leurs points finaux sont
attachés au D-brane. D’autre part, les gravitons qui correspondent aux cordes fermées, se propagent dans les
dimensions supplémentaires, voir Figure 2. Ceci a des conséquences étonnantes, par exemple pour le problème
de la hiérarchie. Ces sujets sont discutés en détail dans le chapitre 7.

Randall-Sundrum braneworld et cosmologie d’une brane

Les scénarios de braneworld de Randall-Sundrum (RS) I et II présenté en 1999 ont attiré énormément d’attention
durant ces récentes années. Dans ces modèles avec une dimension spatiale supplémentaire, l’univers, supposé
plat, est décrit comme une 3−brane (une hypersurface) de tension T plangée dans un espace-temps Anti-de-
Sitter (AdS) à cinq dimensions. La métrique de l’AdS est

ds2 =
L2

y2

[
−dt2 + δijdxidxj + dy2

]
.

Ici δij est le Kronecker-delta (Univers plat K = 0), t est le temps conforme du bulk, et y dénote la coordonnée
de la cinquième dimension. Le facteur L2/y2 s’appelle le warp-factor où L est le rayon de courbure d’ADS qui
est lié à la constante cosmologique en cinq dimension négative Λ5 par

− Λ5 =
6

L2
=

κ2
5T 2

6
.

κ5 est de ce fait la constante de couplage de la gravitation en cinq dimensions.

κ5 = 6π2G5 =
1

M3
5

.



xiv RÉSUMÉ

Figure 2: Représentation imagée de l’idée de braneworld: une brane dans un espace-temps à dimensions
supplémentaires. Alor que les champs du modèle standard (cordes ouvertes) sont confinés sur la brane, les
gravitons (cordes fermées) se propagent dans le volume total.

M5 et G5 sont respectivement la masse réduite de Planck et la constante (fondamentale) de Newton en cinq
dimensions.
Le modèle de RS II contient une brane, habituellement appelée visible brane, représentant notre Univers tandis
que le modèle de RS I contient une brane additionnelle (hidden brane). En raison de la courbure de AdS, le
modèle de RS I peut résoudre le problème de hiérarchie d’une façon élégante, alors que le modèle de RS II a la
propriété intéressante de localiser la gravitation quadridimensionnelle sur la brane. Une introduction détaillée
aux modèles de RS est donnée dans le chapitre 8.

La situation cosmologique d’un Univers en expansion dans le modèle de RS est obtenue par une brane se
déplaçant dans le espace-temps à cinq dimensions d’ADS. Dénotant par η le temps conforme d’un observateur
sur la brane, et la position de la brane dans la cinquième dimension par yb, la métrique de brane induite par
la métrique d’AdS est

ds2 = a2(η)
[
−dη2 + δijdxidxj

]
,

c’est-à-dire une métrique FLRW plate. Le facteur d’échelle a(η) est lié à la position de la brane yb(t) par

a(η) =
L

yb(t)
,

et

dη =

√

1 −
(

dyb

dt

)2

dt .

Quand la brane se déplace vers des valeurs décroissantes de y, l’Univers est en expansion, alors qu’il contracte
dans le cas opposé.

La dynamique du facteur d’échelle est régie par l’équation de Friedmann modifiée

H2 =
κ4ρ

3

(
1 +

ρ

2T
)

.

A grand temps, tels que ρ ≪ T , la dynamique de l’Univers dans la cosmologie de la brane n’est pas modifiée.
Cependant, elle est modifiée dans l’Univers primordial (à haute énergie) car H2 ∝ ρ2. Les observations cos-
mologiques imposent une limite inférieure à la tension T de la brane. Ceci est discuté en détail dans la section
8.4.
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Perturbations tensorielles dans une braneworld de
Randall-Sundrum

Puisque la gravitation, à la différence des champs du modèle standard, se propage dans l’espace-temps entier,
les perturbations de la gravitation peuvent être employées pour étudier les effets liés à la cinquième dimension.
Du point de vue (quadridimensionnel) de la brane, indépendamment du graviton quadridimensionnel standard,
les braneworlds contiennent une tour de Kaluza-Klein de gravitons massifs. Les perturbations quadridimen-
sionnelles tensorielles, c’est-à-dire les ondes gravitationelles de notre Univers, sont ainsi une superposition du
graviton quadridimensionnel standard et des gravitons massifs de Kaluza-Klein qui sont des traces de la nature
cinq-dimensionnelle de la gravitation. Des signatures de la dimension supplémentaire, provenant de l’époque
primordiale de l’Univers ont pu être gravées dans le fond d’ondes gravitationelles et dans les anisotropies du
CMB.
Dans la section 8.5 on montre en détail que des ondes gravitationelles dans une braneworld de RS sont décrites
par une équation d’ondes dans l’espace-temps à cinq dimensions d’AdS. L’amplitude de chaque polarisation
satisfait [

∂2
t + k2 − ∂2

y +
3

y
∂y

]
h•(t, y;k) = 0 .

De plus, une brane se déplaçant dans le bulk impose des conditions aux limites dépendantes du temps pour les
perturbations, les conditions de jonction,

(v∂t + ∂y) h•(t, y;k)|yb(t)
= 0 ,

où v est la vitesse de la brane. L’évolution des ondes gravitationnelles dans la cosmologie de braneworld est ainsi
décrite par une équation d’ondes soumise à une condition aux limites dépendante du temps. Par conséquent,
par le même mécanisme qu’un miroir mobile crée des photons à partir du vide électromagnétique, une brane
mobile mène à la production de gravitons à partir des fluctuations du vide. C’est l’effet Casimir dynamique
pour des gravitons. Si la production des gravitons, en particulier des particules massives de Kaluza-Klein, est
suffisamment importante, ils pourraient par la suite dominer la densité d’énergie de l’Univers et corrompre la
phénoménologie. Il est donc important d’étudier l’évolution des ondes gravitationelles dans la cosmologie de
braneworld afin de confronter des modèles de braneworld avec des contraintes observationnelles.

L’effet Casimir dynamique pour les gravitons et la localisation de la
gravitation sur une brane en mouvement

Dans le chapitre 9, je décris la production de gravitons par une brane mobile en utilisant les méthodes pour
l’effet Casimir dynamique développées dans la première partie de la thèse. Il s’avérera que le formalisme em-
ployé pour décrire l’effet Casimir dynamique pour le champ électromagnétique est très approprié à l’étude des
perturbations tensorielles dans la cosmologie de braneworld. Ceci se fonde en particulier sur sa capacité à
traiter les couplages entre les modes de Kaluza-Klein provoqués par les conditions de bord dépendantes du
temps d’une manière claire en employant des matrices de couplage. Cette approche a certains avantages par
rapport à d’autres formulations employées dans la littérature, et apporte une nouvelle perception du problème.
Les résultats de la deuxième partie de la thèse sont publiés dans [P3, P4, P5].

Des quantités observables peuvent être reliées au nombre de gravitons produits N out
α,k à la fréquence Ωα,k.

Ici α est le nombre quantique de l’impulsion concernant la dimension supplémentaire et k = |k| est l’impulsion
du graviton parallèle à la brane. Le cas α = 0 décrit le mode zéro qui n’a aucune impulsion dans la dimension
supplémentaire, c’est-à-dire le graviton quadridimensionnel standard. Les nombres quantiques α = n ≥ 1
correspondent aux gravitons de Kaluza-Klein de masses mn, représentant l’impulsion quantifiée dans la di-
mension supplémentaire. N out

α,k peut être obtenu à partir de simulations numériques du système d’équations
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pour les coefficients de Bogoliubov. En termes de nombre de gravitons, le spectre de puissance du graviton
quadridimensionnel standard à de temps retardé (après que la production de gravitons a cessé) est

P0(k) =
κ4

a2

k2

(2π)3
N out

0,k .

tandis que pour les modes de Kaluza-Klein il est

PKK(k) =
k3

a4

κ4L
2

32π

∑

n

N out
n,k

m2
n

Ωout
n,k

Y 2
1 (mnys) ,

où Y1 est une fonction de Bessel. Comme prévu, pour les gravitons quadridimensionnels standards, le spectre
de puissance décrôıt avec l’expansion de l’Univers comme 1/a2. Par contre, le spectre de puissance de Kaluza-
Klein décrôıt comme 1/a4, c’est-à-dire avec un facteur 1/a2 plus rapide que P0. Le spectre de puissance à
grand temps est donc dominé par le spectre de puissance du mode zéro et semble quadridimensionnel.

Pour la densité d’énergie du mode zéro on obtient

ρ0 =
1

a4

∫
d3k

(2π)3
kN out

0,k .

C’est le comportement prévu. La densité d’énergie des gravitons du mode zéro se comporte comme celle du
rayonnement.
Par contre, pour la densité d’énergie des modes de Kaluza-Klein on trouve

ρKK =
L2

a6

π2

4

∑

n

∫
d3k

(2π)3
Ωout

n,k N out
n,k m2

nY 2
1 (mnys) ,

qui se comporte comme 1/a6. Par conséquent, durant l’expansion de l’Univers, la densité d’énergie des gravi-
tons massifs sur la brane est rapidement diluée. Une conséquence immédiate de ce comportement est que les
gravitons de Kaluza-Klein ne peuvent pas jouer le rôle de la matière sombre dans une braneworld de Randall-
Sundrum. Je discute en détail dans la section 9.5.4, que ce comportement particulier pour PKK et ρKK découle
de la localisation de la gravitation standard sur la brane. Ceci implique que les gravitons de Kaluza-Klein, qui
sont des traces de la nature à cinq dimensions de la gravitation, se évadent rapidement de la brane dans la
cinquième dimension.

La production des gravitons dans un bouncing model

Comme exemple explicite, j’étudie la production de graviton dans un modèle ekpyrotic constitué de deux
branes rebondissant à de basses énergies dans le chapitre 10. Je constate que pour les longues longueurs d’onde
kL ≪ 1, le mode zéro évolue pratiquement indépendamment des modes de Kaluza Klein. Des gravitons de
mode zéro sont produits par le couplage du mode zéro au brane mobile. Pour le nombre de gravitons sans
masse produits, j’ai trouvé l’expression analytique simple 2vb/(kL), òu vb est la vitesse de rebond du brane.
Ces modes de grande longueur d’onde sont intéressants pour le spectre de puissance du mode zéro. En accord
avec qu’un scènario ekpyrotic prévoit, je constate que le spectre de puissance du mode zéro est bleu sur des
échelles plus grand. Par conséquent, l’éventail des gravitons de Casimir a une puissance beaucoup trop faible
sur de grandes échelles pour affecter les fluctuations du CMB.
La situation est complètement differente pour les longueurs d’onde courtes kL ≫ 1. Des effets nouveaux et
intéressants apparaissent qui sont discutés en détail. Une des conclusions principales de cette partie finale de
la thèse est que la backreaction des gravitons massifs doit être prise en considération pour un rebond réaliste.
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Chapter 1

Introduction

Boundary conditions, which can be considered as very localized classical fields, change the mode structure of
the electromagnetic quantum vacuum leading to an attractive force between two uncharged, perfectly conduct-
ing parallel plates (ideal mirrors). The prediction of this effect by the Dutch physicist Hendrik Casimir in
1948 and its experimental verification during the last ten years, have impressively demonstrated the non-trivial
nature of the quantum vacuum, the ground state of quantum field theory (QFT). This so-called Casimir effect
reveals that changes in the infinite zero-point energy of the electromagnetic vacuum can be finite, observable
and even affect macroscopic bodies. It is therefore often considered as proof for the reality of quantum vacuum
fluctuations.
The dynamical counterpart of this effect - the dynamical Casimir effect - appears to be even more striking.
When the boundaries are set in motion, the quantum vacuum responds to the induced time-dependent bound-
ary conditions by the creation of real particles out of quantum vacuum fluctuations. As a consequence, a mirror
moving through the vacuum of the electromagnetic field produces real photons “out of nothing”. Sometimes,
this effect is also referred to as motion induced radiation. A particular interesting setup is a dynamical cavity
with one wall (mirror) oscillating at a frequency which is twice the frequency of a field mode inside the cavity.
In this case, resonance effects between the mechanical motion of the wall and the quantum vacuum occur,
leading to “explosive” photon production. After all, the Casimir effect, static and dynamical, is only one out
of the many fascinating manifestations of the non-trivial nature of the quantum vacuum within the broad field
of quantum field theory under the influence of external conditions. 1 .

In cosmology, which at first sight has nothing in common with the dynamical Casimir effect, we are cur-
rently experiencing exciting times. The precise measurements of the anisotropies in the cosmic microwave
background (CMB) with experiments like the Wilkinson Microwave Anisotropy Probe (WMAP) and its pre-
decessor COBE (COsmic Background Explorer) have impressively confirmed the cosmological standard model
and have transformed cosmology into a precise science. However, despite its great success, the standard cos-
mological model contains building blocks whose fundamental theoretical understanding is still lacking. Just
to name a few of the puzzles cosmologists are facing: What is the inflaton, or more precisely, the underlying
physics of the inflationary paradigm whose predictions are so impressively in agreement with recent observa-
tions? What is the nature of dark energy and dark matter? And, how can the initial singularity problem (Big
Bang), inherent in general relativity, be resolved?
It is widely accepted that a theory of quantum gravity which unifies gauge interactions and gravity is needed
in order to address (at least) some of these questions. Their unification represents maybe the biggest challenge
theoretical physics has ever seen. An early attempt for a unifying theory, a prototype, so to speak, goes back
to Nordström, Kaluza and Klein who tried to unify gravity and electromagnetism already in the 1920’s. Even
though their model was phenomenologically not feasible, they were the first to introduce the concept of extra
dimensions, which had its revival in the 1970’s when the 11-dimensional theory of supergravity was constructed.
Nowadays, the most successful attempt towards a unified theory is String theory, which can be formulated con-
sistently in a higher-dimensional spacetime only; ten-dimensional for Superstring theory and 11-dimensional
for M-theory. String theory also predicts the existence of branes, i.e. hypersurfaces in the higher-dimensional

1Since it took place for the first time in 1989 in Leipzig, Germany , with the intention of being “an East-West bring-together”,
the series of workshops on QUANTUM FIELD THEORY UNDER THE INFLUENCE OF EXTERNAL CONDITIONS has
developed into one of the most prominent international meetings in this field. For more information on the current workshop to
be held again in Leipzig, please visit http://www.physik.uni-leipzig.de/˜ bordag/QFEXT07 .
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2 CHAPTER 1. INTRODUCTION

spacetime on which the standard model of particle physics (e.g., gauge particles and fermions) is confined.
Then, gravity is the only fundamental force propagating in the whole spacetime. This has motivated the
consideration of braneworld models, where our Universe is described as such a hypersurface (a 3-brane) in a
higher-dimensional spacetime (the bulk) onto which the standard model of particle physics is confined. The
difference between gravitation and standard model fields with respect to their possibility to probe the extra
dimensions in these models, allows to address the hierarchy problem, i.e. the unnatural vast disparity between
the electroweak and Planck scale. After the initial proposal by Arkani-Hamed, Dimopoulos and Dvali in 1998,
the Randall-Sundrum (RS) braneworld models introduced in 1999 have attracted most of the attention.
In the RS II model, our Universe is described as a 3-brane, usually called the visible brane, in a five-dimensional
anti-de Sitter spacetime. The RS I model contains an additional hidden brane. Due to the curvature of anti-de
Sitter, the RS I model is able to address the hierarchy problem in an elegant manner, while the RS II model
has the appealing feature of localizing four-dimensional gravity on the brane.

The cosmological situation of an expanding Universe within the RS setup is obtained by a brane moving
through the five-dimensional anti-de Sitter spacetime. Thereby, the scale factor of the Universe and the posi-
tion of the brane in the bulk are directly related. The dynamics of the scale factor is governed by a modified
Friedmann equation which changes the standard cosmological evolution in the early Universe, but does not
affect its evolution at low energies.
Since gravity, unlike standard model fields, probes the whole spacetime, gravitational perturbations can be
used to explore effects related to the extra dimension. From the brane (four-dimensional) point of view, apart
from the standard four-dimensional graviton, braneworlds allow for a tower of massive Kaluza-Klein gravitons.
Four-dimensional tensor perturbations, i.e. gravity waves in our Universe, are thus a superposition of the stan-
dard four-dimensional graviton and massive Kaluza-Klein gravitons which are traces of the five-dimensional
nature of gravity. Signatures of the extra dimension stemming from the very early epoch of the Universe could
be engraved in the gravitational wave background and in the anisotropies of the CMB.
Gravitational perturbations in RS braneworld cosmology are described by a wave equation in the five-dimensional
anti-de Sitter bulk. In addition, a brane moving through the bulk enforces time-dependent boundary conditions
for the perturbations. This is the point where the dynamical Casimir effect enters the stage: A brane moving
through the extra dimension acts as a time-dependent boundary for five-dimensional gravitational perturba-
tions in the same way, as a moving mirror acts as a time-dependent boundary for the electromagnetic field.
Consequently, by the same mechanism a moving mirror creates photons out of the electromagnetic vacuum, a
moving brane leads to the production of gravitons from vacuum fluctuations. If the production of gravitons, in
particular of the massive Kaluza-Klein particles, is sufficiently copious, they could eventually dominate the en-
ergy density of the Universe and spoil phenomenology. It is therefore an important task to study the evolution
of gravity waves in braneworld cosmology in order to confront braneworld models with observational constraints.

The study of particle creation by moving mirrors and branes is the subject of this thesis. It will turn out
that the formalism used to describe the dynamical Casimir effect for the electromagnetic field is very suitable
for the study of tensor perturbations in braneworld cosmology. This relies in particular on its power to deal
with the couplings between the Kaluza-Klein modes caused by the time-dependent boundary conditions in a
clear way by using coupling matrices. This approach has certain advantages compared to other formulations
which are being used in the literature, and admits a new perception to the problem.

The thesis is organized as follows. In Chapter 2 I give a very brief introduction to the static Casimir ef-
fect. Chapter 3 represents the first main technical part in which I introduce the canonical formulation of the
dynamical Casimir effect. Thereby I shall set great store on the discussion of issues regarding particle definition
in external field problems as well as on the difference to other quantum vacuum radiation effects like the Unruh
effect. With a particular parameterization for the time evolution of the field modes, I derive a relatively simple
system of coupled differential equations determining the Bogoliubov transformations between initial and final
vacuum states. Its solutions can be obtained from numerical simulations. In Chapter 4 I show and discuss
results of numerical simulations for the dynamical Casimir effect in two dimensions and compare them with
analytical predictions. This will show the applicability and reliability of the numerical formalism. The material
presented in Chapters 3 and 4 is published in [P1,P2]. In chapter 5 I apply the formalism to study the realistic
scenario of photon production in a three-dimensional vibrating cavity. Thereby, new results regarding the
interplay between the geometry of the cavity and the strength of the intermode coupling are presented. I show
in particular that the rate of photon production in a vibrating cavity can be enhanced by tuning its size. This
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may be important for the optimization of future experiments aiming to verify the dynamical Casimir effect in
the laboratory. These results are published in [P3]. After this more “down to earth” physics, I discuss the
production of gravitons by moving branes in the second part of the thesis.
After a description of the standard model of cosmology in Chapter 6, I introduce the concept of extra dimen-
sions and braneworlds in Chapter 7. Chapter 8 is entirely devoted to the discussion of the Randall Sundrum
models, braneworld cosmology and tensor perturbations within this context. The more technical Chapter 9
deals with the generalization of the dynamical Casimir effect formulation of Chapter 3 to tensor perturbations
in braneworld cosmology. The connection between observable quantities, like the power spectrum and energy
density, and quantum mechanical expectation values is established in detail. I shall show that, very generically,
massive Kaluza-Klein gravitons cannot play the role of dark matter since their energy density in our Universe
scales like stiff matter. A comprehensive discussion on the underlying physics of this new and very important
result is provided. It is a consequence of the localization of four-dimensional gravity on the brane, implying
that massive Kaluza-Klein gravitons escape from the moving brane into the bulk. Finally, motivated by the
ekpyrotic Universe and similar ideas, I study graviton production in a model of two bouncing branes in Chapter
10. The numerical results are discussed in detail and bounds on the parameters of the model are derived. I
show that such a model is not constrained by the standard four-dimensional graviton, but that for a realistic
model of bouncing universes, the back reaction of the massive Kaluza-Klein gravitons cannot be neglected. The
second part is based on the publications [P4,P5,P6]. I conclude the thesis by summarizing the main results
and providing an outlook for future work in Chapter 11.
Two appendices provide some details of technical nature (A) and on the numerical simulations (B), whose
implementation, code writing and testing engulfed most of the time during the last four years.
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Some notations and conventions

In the following I summarize some basic notations and conventions which I shall use throughout this the-
sis. Other notations which are not used so frequently are explained upon their first appearance.

• D denotes the total number of spacetime dimensions, while d the number of spatial dimensions and n the
number of extra spatial dimensions. With n extra dimension in our Universe it is D = 1 + d = 1 + 3 + n.

• Without extra dimensions n = 0, indices µ, ν, ρ, ... label the coordinates of the D-dimensional spacetime
while i, j denote the d spatial dimensions.

• With extra dimensions, indices A, B, C, D label coordinates of the full spacetime. Coordinates are split
as xA = (xµ, z) = (t, xi, z) in case of one extra dimension (D = 1 + 3 + 1) denoted here by z.

• In the first part of the thesis dealing with quantum field theory, I shall use the metric signature
(+,−, ...,−) while in the second part on braneworld cosmology I switch to (−, +, ..., +).

• 2(D) denotes the Klein-Gordon (wave) operator which is defined as 2(D) = 1√
g∂µ(

√
ggµν∂ν), where gµν

is the spacetime metric and g = (−1)ddet(gµν) (first part) and g = −det(gµν) (second part), respectively.
∂µ is the partial derivative.

• Lowercase boldface quantities denote d-dimensional spatial vectors like the wave vector k, and uppercase
boldface quantities denote vectors and matrices for linear systems of equations like Y = WX.

• Quantum operators are denoted by an over-hat, e.g. â and â† for particle annihilation and creation
operators, respectively, where † denotes the adjoint.

• [â, b̂] = âb̂ − b̂â defines the commutator between quantum operators.

• c∗ is the complex conjugate of the quantity c.

• h.c. is hermitian conjugate

In addition, I work in units ~ = c = kB = 1, such that there is only one dimension, energy, which is usu-
ally measured in GeV. Then,

[energy] = [mass] = [temperature] = [length]−1 = [time]−1.

An exception is Chapter 2 where I discuss the static Casimir effect.
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Chapter 2

The Casimir effect

I mentioned my results to Niels Bohr, during a walk. That is nice, he said, that is something new. I told him
that I was puzzled by the extremely simple form of the expression for the interaction at very large distances and
he mumbled something about zero-point energy. That was all, but it put me on a new track. (H. B. G. Casimir
to P. W. Milonni, March 1992 [158].)

2.1 The Casimir force

In this section I shall give a short introduction to the Casimir effect. Excellent reviews on which the presented
material is partly based are [19, 175, 160, 135, 158, 164].
In its simplest form, the Casimir effect is the interaction of a pair of neutral, parallel conducting planes due
to the disturbance of the vacuum of the electromagnetic field. Since there is no force between neutral plates
in electrodynamics, it is a pure quantum effect. In an ideal situation, at zero temperature for instance, there
are no real photons between the plates. Hence it is only the ground state of quantum electrodynamics, the
vacuum, which causes the plates to attract each other. Therefore it is often cited as the proof for the reality
of the vacuum electromagnetic field and quantum vacuum fluctuations in general. There are of course more
observable consequences of the vacuum field like spontaneous emission, the Lamb shift and many others [158].
But the fascination in the Casimir effect relies on the fact that it is a pure quantum effect which acts on
macroscopic scales. It has not only been experimentally verified in the laboratory with high precision (see
section below) but is nowadays even important for nanotechnology [19].
In his famous paper [33] Casimir found (with a nudge from Bohr [160, 35] - see above) that the force between
two parallel plates caused by the vacuum fluctuations is given by 1

F (d) = − π2

240

~ c

d4
S . (2.1)

Thereby, d is the separation between the two plates and S their area. I shall derive an analogous expression
for a simple two-dimensional example in the next section to illustrate the way of its occurrence. Note, that
apart from the two geometric quantities d and S, only fundamental constants enter the force. Also the electron
charge is absent. This demonstrates the above statement that the electromagnetic field is not coupling to
matter in the usual sense. The Casimir force is purely a consequence of the boundary conditions imposed by
the plates which modify the mode structure of the vacuum fluctuations and thus the zero-point energy of the
field compared with free space [cf. Fig. 2.1]. In the ideal case, i.e. in the limit of perfect conductivity, the
microscopic properties of the plates are not important. The Casimir energy, in particular its sign, depends
strongly on the geometry. While the force is attractive for two parallel plates, it is repulsive for a sphere which
was first shown by Boyer in 1968 [21], who calculated the Casimir self-energy for a perfectly conducting shell.
This represented the demise of Casimir’s proposal [34] that a classical electron could be stabilized by zero-point
attraction [160].
Nowadays, the Casimir effect has become a very active field of research, with attention focusing on finite-
temperature and roughness corrections as well the treatment of realistic boundary conditions. See the above
cited reviews for details.

1Only in this section I shall keep units ~ and c. Later on I use ~ = c = 1 throughout.

7



8 CHAPTER 2: THE CASIMIR EFFECT

Figure 2.1: Pictorial representation of the Casimir effect. The ideal mirrors change the mode structure of
the vacuum field. While arbitrary frequencies are allowed in free space, Dirichlet boundary conditions for the
vacuum field at the ideal mirrors restrict the spectrum of field modes to particular (quantized) frequencies in
the intervening volume. This difference in the mode structure of the vacuum field leads to the Casimir force
[cf. section 2.2].

After the first attempt by Sparnaay in 1958 [203] whose experimental data “do not contradict Casimir’s
theoretical prediction”, the Casimir force has been measured with high accuracy only during the last decade.
First, in 1996/97, Lamoreaux [133, 134] clearly demonstrated the presence of the Casimir force using a torsion
pendulum. Only one year later, Mohideen and Roy measured the Casimir force with a statistical precision of
1% [162] for the configuration of a metallic sphere above a plate for separations from 0.1 to 0.9 µm using an
atomic force microscope. This method has been improved since then [187, 188]. But it took until the year 2002
to demonstrate the Casimir force for Casimir’s original configuration of two parallel plates [24].
As an representative example, I show in Figure 2.2 the experimental results obtained with the sphere-plate
configuration [162, 19], which impressively demonstrates the existence of the Casimir force. For a detailed
discussion see Section 6.4 of [19].

2.2 A simple example

As an illustration, let me discuss the simple example of a real massless scalar field Φ(t, x) on an interval [0, l0].
Ideal, perfectly reflecting, boundary conditions imply that the field vanishes at the edges of the interval, i.e.
Φ(t, 0) = Φ(t, l0) = 0. The ground state energy of the field is the sum of the ground state energies (frequencies)
of all field modes (harmonic oscillators) [cf. Chapter 3]

E0(l0) =
~

2

∞∑

n=1

c πn

l0
. (2.2)

This divergent expression can be regularized by introducing an exponential damping function

E0(l0, δ) =
~

2

∞∑

n=1

c πn

l0
exp

(
−δ

cπn

l0

)
(2.3)
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Figure 2.2: Measured Casimir force as a function of the plate-sphere separation shown as squares. The solid
line is the theoretical prediction for the Casimir force including corrections due to surface roughness and finite
conductivity while the dashed line is the prediction without any corrections. Picture taken from [19].

with δ ≥ 0. The regularization is removed in the limit δ → 0. With this trick, the summation can be performed,
leading to

E0(l0, δ) =
π~c

8 l0
sinh−2 δcπ

l0
=

~ l0
2πcδ2

+ E(l0) + O(δ2) (2.4)

with

E(l0) = − π~c

24 l0
. (2.5)

Consequently, the vacuum energy is given as a sum of a singular term and a finite contribution.
The singular term can be removed by subtracting the regularized vacuum energy without the presence of the
boundary. Without the boundary, the total vacuum energy on the axis is

E0,M(−∞, +∞) = L
~ c

2π

∫ ∞

0

dk k (2.6)

where L → ∞ is the normalization length and M stands for Minkowski. Separating the whole axis into intervals
of size l0 yields for the vacuum energy corresponding to such an interval

E0,M (l0) =
E0,M(−∞, +∞) l0

L
=

~ c l0
2π

∫ ∞

0

dk k . (2.7)

Regularizing it by again using an exponential damping function exp(−δck) leads to

E0,M (l0, δ) =
~ c l0
2π

∫ ∞

0

dk ke−δck =
~ l0

2πcδ2
, (2.8)

i.e. the same singular term as in (2.4). The renormalized vacuum energy on the interval [0, l0] is then defined
as

Eren
0 (l0) = lim

δ→0
[E0(l0, δ) − E0,M (l0, δ)] = E(l0) = − π~c

24 l0
. (2.9)

The force exerted on the endpoints is

F (l0) = −∂E(l0)

∂l0
= − π~c

24 l20
. (2.10)

This attractive force is the two-dimensional analog of the Casimir force (2.1) in four dimensions.
Note that (2.9) can also be directly obtained from (2.2) using the powerful technique of Zeta-function regular-
ization, since

∞∑

n=1

n = ζ(−1) = − 1

12
(2.11)

where ζ(s) is the Riemannian Zeta-function. For a detailed discussion see [71].
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Chapter 3

Dynamical Casimir effect

3.1 Prelude: Wave equation on a time-dependent interval

In order to familiarize with the mathematical problem, I begin with the simple example of a real massless
scalar field Φ(t, x) on a time-dependent interval x ∈ [0, l(t)] ≡ I(t) subject to Dirichlet boundary conditions.
The dynamics of the field is described by the equations

[
∂2

t − ∂2
x

]
Φ(t, x) = 0 with Φ(t, 0) = Φ[t, l(t)] = 0 . (3.1)

To arrive at a formulation of the field dynamics in terms of field modes and eventually pave the way for canonical
quantization, a complete and orthonormal set of eigenfunctions {φn} of the one-dimensional Laplacian −∂2

x

has to be introduced. On a static interval [0, l0 = const.] such a set of eigenfunctions satisfying the Dirichlet

boundary conditions is simply given by
{√

2
l0

sin
(

nπ
l0

x
)}

with n = 1, 2, ... . The corresponding eigenvalues

are (nπ/l0)
2
. When the boundary is in motion, a suitable set of eigenfunctions has to satisfy both, the

eigenvalue equation and the boundary conditions at any time t. This forces the eigenfunctions to be explicitly
time dependent, and consequently, so are the eigenvalues. Such a set of instantaneous eigenfunctions can be
obtained from the eigenfunctions on a static interval through replacing l0 with l(t):

φn(t, x) =

√
2

l(t)
sin [ωn(t)x] with frequency ωn(t) =

nπ

l(t)
. (3.2)

It is readily checked that the set {φn(t, x)}∞n=1 is complete and orthonormal with respect to the inner product

on I(t),
∫ l(t)

0
dxφn(t, x)φm(t, x), i.e. it forms an instantaneous basis. This allows me to expand the field Φ in

these eigenfunctions and canonical variables qn(t):

Φ(t, x) =

∞∑

n=1

qn(t)φn(t, x). (3.3)

Inserting the expansion into the wave equation (3.1), multiplying it by φm(t, x) and integrating over I(t) leads
to the equations of motion for the qn’s

q̈n + ω2
n(t)qn − 2

∑

m

Mnm(t)q̇m +
∑

m

[
Ṁmn(t) − Nnm(t)

]
qm = 0. (3.4)

The dot denotes the derivative with respect to time t and Mnm(t) and Nnm(t) are coupling matrices defined
by

Mnm(t) =

∫

I(t)

dx φ̇n(t, x)φm(t, x) =






l̇(t)

l(t)
(−1)n+m 2 n m

m2 − n2
if n 6= m

0 if n = m ,

(3.5)

Nnm(t) =

∫

I(t)

dx φ̇n(t, x)φ̇m(t, x) =
∑

k

MnkMmk. (3.6)

11
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Using the completeness and orthonormality of the eigenfunctions φn, the relation between Nnm and Mnm is
easily demonstrated.

Even if the problem of a massless scalar field in two dimensions might seem to be relatively simple at first
glance, the time-evolution of the field modes is described by a coupled system of infinitely many differential
equations, each of which containing an infinite number of time-dependent terms. The mode couplings are a
direct consequence of the time-dependence of the boundary and their specific form depends on the particular
boundary condition the field is subject to. Hence, in general, no analytical solutions to the equations can be
found even for simple motions l(t).
Of course, exploiting conformal invariance of a massless scalar field in two dimensions one would expect that
the equations can be simplified. The first works on the dynamical Casimir effect were indeed based on confor-
mal invariance, but still, “closed form” solutions could be found only for particular wall motions. This will be
briefly discussed in the next section.
In higher dimensions, for different geometries of the time-dependent region and massive fields, the correspond-
ing time evolution of the field modes is always described by a system of coupled differential equations of the
form of Eq. (3.4). For very special cases like the scenario of vibrating cavities which I discuss later, approxima-
tions can be used to simplify the equations. But in general, if one wishes to study more complicated models,
the problem has to be attacked by means of numerical methods.

3.2 Remarks

As I shall show below, after quantization the two time dependencies in the equations of motion, the frequency
ωn(t) and the coupling Mnm(t), correspond to two sources of particle creation from vacuum fluctuations. In the
dynamical Casimir effect literature, the appearance of the time-dependent mode coupling is sometimes referred
to as acceleration effect. The time-dependence of the frequency ωn(t), as consequence of the time-dependent
quantization volume, i.e. the “squeezing” of the vacuum, is usually called squeezing effect [195].
The occurrence of the acceleration effect reflects the main difference between the dynamical Casimir effect and
other established particle production phenomena like particle creation in an isotropic and homogeneous expand-
ing Universe [15], particle production in reheating and preheating in inflationary models [127, 202, 128, 20, 73]
or photon creation in a time-dependent classical electromagnetic field [87]. In all these cases, the time-evolution
is described by uncoupled oscillator equations with time-dependent frequency as the only source of particle
creation, which poses a much simpler problem.

In 1970 G. Moore published his paper entitled “Quantum Theory of the Electromagnetic Field in a Variable-
Length One-Dimensional Cavity” [163] which was the first paper dealing with the quantum aspects of the
problem, including particle creation from vacuum. Exploiting the conformal invariance of equation (3.1), he
showed that the problem can be mapped onto a stationary problem, and that the mode functions φn(t, x)
inside a one-dimensional dynamical cavity I(t) satisfying the initial value problem (3.1) can be written (up to
a normalization) as

φn(t, x) = exp{−ikπR(t + x)} − exp{−inπR(t− x)} (3.7)

provided that R(z) satisfies the equation

R[t + l(t)] − R[t − l(t)] = 2. (3.8)

This equation has entered the literature as Moore’s equation. It can be solved and R(z) evaluated exactly only
for a very restricted class of mirror trajectories [163, 36]. Among them is the simple example of a uniform
motion (cf. Section 4.2). It serves also as starting point for perturbative and numerical studies of particle
production in one-dimensional cavities [56, 140, 39, 47, 40].

By again exploiting the conformal invariance of a massless scalar field in two dimensions Fulling and Davis
calculated the total energy radiated by a single moving mirror [78] and pointed out the close analogy to the
Hawking radiation (see also [195]). A few years, later Ford and Vilenkin developed a method for the calculation
of the radiation emitted by a moving mirror in higher dimensions [75]. Let the trajectory of the moving mirror
be l(t), then the radiated energy is (using certain approximations, e.g., l̇ ≪ 1, see [195])

E ∝
∫

dt l̈ 2(t) . (3.9)
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The creation of quantum radiation, i.e. the production of particles from vacuum, is related to the acceleration of
the mirror. This is analogous to classical electrodynamics where acceleration of charges gives rise to radiation.
Hence, the mirror does not emit quantum radiation, i.e. no particles are produced from vacuum fluctuations,
when it undergoes a uniform motion.
Other early papers devoted to field theory with moving boundaries are by Razavy [183] and by Razavy and
Terning [184].

3.3 Canonical formulation

3.3.1 Expanding the action and equations of motion

I restrict myself in the following to the consideration of a real massive scalar field in two dimensions Φ(t, x),
described by the Lagrange density

L =
1

2

[
(∂tΦ)2 − (∂xΦ)2 − m

2Φ2
]
, (3.10)

where m is the mass of the field. The corresponding action of the field on a time-dependent interval I(t) =
[0, l(t)] then reads

S =

∫
d2xL =

1

2

∫
dt

∫

I(t)

dx
[
(∂tΦ)2 − (∂xΦ)2 − m

2Φ2
]
. (3.11)

In addition I impose time-dependent boundary conditions (BC’s) for the field at the end points of the interval.
Their particular form depends on the physical system under consideration. Examples are

• Dirichlet BC’s : Φ(t, 0) = Φ[t, l(t)] = 0

• Neumann BC’s : ∂xΦ(t, 0) = ∂xΦ[t, l(t)] = 0

• Mixed BC’s : Φ(t, 0) = ∂xΦ[t, l(t)] = 0 or ∂xΦ(t, 0) = Φ[t, l(t)] = 0 .

In order to achieve a canonical formulation, I introduce a set of real time-dependent eigenfunctions {φn(t, x)}
of the Laplace operator −∂2

x which (i) obey the eigenvalue relation

− ∂2
xφn(t, x) = ω2

n(t)φn(t, x) (3.12)

on I(t) with time-dependent eigenvalues ω2
n(t), and (ii) are subject to the boundary conditions of the field Φ

for all times t. The spectrum {ω2
n(t)} is discrete due to the finite volume of I(t). In addition, orthonormality

∫ l(t)

0

dxφn(t, x)φm(t, x) = δnm (3.13)

and completeness ∑

n

φn(t, x)φn(t, x′) = δ(x − x′) , (3.14)

at any t is postulated. The existence of such a set of instantaneous eigenfunctions does of course depend on
the particular type of BC’s one is confronted with. It is ensured if the BC’s are such that equation (3.12) forms
a regular Sturm-Liouville problem (see, e.g., [174]). All examples given above belong to this class. However,
as I shall show in a short while, not all of these BC’s are actually compatible with a wave equation on a
time-dependent interval.

Given such a complete set of eigenfunctions compatible with the BC’s, the real scalar field can be expanded in
these eigenfunctions by introducing mode functions qn(t) :

Φ(t, x) =
∑

n

qn(t)φn(t, x). (3.15)
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Inserting this expansion into the action (3.11) and making use of (3.13) and (3.14) one obtains the La-
grangian for the mode functions qn(t)

L(qn, q̇n, t) =
1

2

∑

n

[
q̇2
n − Ω2

n(t)q2
n

]
+
∑

n m

[
qnMnm(t)q̇m +

1

2
qnNnm(t)qm

]
(3.16)

where

Ω2
n(t) = ω2

n(t) + m
2 (3.17)

is the time-dependent frequency of a massive field mode and Mnm and Nnm are the coupling matrices already
introduced in Eq. (3.5):

Mnm(t) =

∫

I(t)

dx φ̇n(t, x)φm(t, x) , (3.18)

Nnm(t) =

∫

I(t)

dx φ̇n(t, x)φ̇m(t, x) =
∑

k

Mnk(t)Mmk(t). (3.19)

The relation between Mnm and Nnm follows from the orthonormality and completeness relations (3.13) and
(3.14), respectively. Employing the Euler-Lagrange equations

d

dt

dL

dq̇n
− dL

dqn
= 0 (3.20)

leads to the equations of motion for the mode functions qn(t)

q̈n + Ω2
n(t)qn +

∑

m

[Mmn(t) − Mnm(t)] q̇m +
∑

m

[
Ṁmn(t) − Nnm(t)

]
qm = 0. (3.21)

As already seen in the introductionary example given in 3.1, the time evolution of the field modes inside a
dynamical cavity is described by infinitely many coupled second-order differential equations. The structure of
the inter-mode coupling mediated by the coupling matrix Mnm(t) depends on the particular kind of boundary
conditions which decide on the specific form of the instantaneous eigenfunctions φn(t, x). Note that Eq. (3.21)
contains the combination Mmn −Mnm instead of 2Mnm in Eq. (3.4), because I have not restricted myself to a
particular boundary condition for the field. Considering Dirichlet boundary conditions as done in Section 3.1,
Mnm is anti-symmetric [see Eq. (3.5)] and therefore Mmn − Mnm = −2Mnm.

The canonical conjugated momentum pn of a field mode is given by

pn =
∂L

∂q̇n
= q̇n +

∑

m

qmMmn(t), (3.22)

i.e. it is coupled to all other “positions” qn through the coupling matrix Mnm. The Hamiltonian obtained via
a Legendre-transformation

H(t) =
∑

n

q̇n(t)pn(t) − L(t) (3.23)

takes the form

H [qn, pn, t] = Hosc[qn, pn, t] + Hint[qn, pn, t] (3.24)

where

Hosc[qn, pn, t] =
1

2

∑

n

[
p2

n + Ω2
n(t)q2

n

]
(3.25)

corresponds to a collection of vacuum field modes with time-dependent frequency (squeezing effect) and the
interaction part

Hint[qn, pn, t] = −
∑

nm

Mnm(t)qnpm (3.26)
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describes their coupling due to the boundary motion (acceleration effect).
The Hamilton equations equivalent to the Lagrange equations (3.21) are given by

q̇n =
∂H

∂pn
= pn −

∑

m

Mmnqm, (3.27)

ṗn = − ∂H

∂qn
= −

[
Ω2

nqn −
∑

m

Mnmpm

]
. (3.28)

So far, the discussion has been based on the expansion of the action into instantaneous eigenfunctions subject to
given boundary conditions. This allows me to write down the Hamiltonian (3.24) associated with the dynamics
of the field modes on the interval I(t) described by Eq. (3.21). Taking this as a starting point, a well defined
quantum theory including a meaningful particle definition can be constructed as I shall show later. However,
Equation (3.21) does not describe the dynamics of field modes corresponding to a field Φ satisfying a free wave
equation on I(t) for all boundary conditions for which the set of eigenfunctions {φn(t, x)} can be introduced.
The possible boundary conditions compatible with a free wave equation in a time-dependent domain are rather
constraint.

3.3.2 Variation of the action, wave equation and compatible boundary conditions

In order to see what kind of boundary conditions are compatible with a free wave equation, I shall investigate
the variation of the action (3.11) with respect to Φ. Note that similar considerations arise very generally in
the theory of radiation boundary conditions for wave equations [25, 45].
Varying the action (3.11) with respect to Φ leads to

δS = −
∫

T

dt

∫

I(t)

dx
(
2(2)Φ + m

2Φ
)
δΦ −

∫

T

dt
{
[(v∂t + ∂x)Φ] δΦ|l(t) − (∂xΦ) δΦ|0

}
(3.29)

where I have assumed that δΦ vanishes at the boundaries of the time interval T and v = l̇(t) denotes the velocity
of the boundary motion. In order for Φ to satisfy the wave equation

[
2(2) + m

2
]
Φ = 0 on the interval, the

choice of boundary conditions and their possible combinations is very restricted. It is given by the requirement
that the integrand of the second integral vanishes

[
2(2) + m

2
]
Φ = 0 ⇔ [(v∂t + ∂x)Φ] δΦ|l(t) − (∂xΦ) δΦ|0 = 0. (3.30)

One can either require that the field is of constant value at one or both boundaries, i.e. Dirichlet BC’s such
that δΦ vanishes at the boundary, or the field has to be subject to a Neumann BC at the mirror at rest and
to satisfy (v∂t + ∂x)Φ = 0 at the moving boundary. In the literature this boundary condition linking time
and spatial derivative of the field at the boundary is sometimes called generalized Neumann BC. Physically it
means that the scalar field satisfies a Neumann BC in the instantaneous rest frame of the moving mirror. In
Chapter 5 I shall explicitely derive this BC from the requirement that BC’s for the electromagnetic field have
to be imposed in the instantaneous rest frame. Thereby, the operator v∂t + ∂x is (up to a γ-factor) related to
a Lorentz transformation from the rest frame to the laboratory frame.

Not all the possible combinations of BC’s which I have considered in 3.3.1 are therefore consistent with the
variational principle. For example a Dirichlet BC at x = l(t) and a Neumann BC at x = 0 is consistent with
(3.30) but the opposite choice is not. The generalized Neumann BC does not at all fall into the class of BC’s
for which (in the (t, x)-coordinates) a set of instantaneous eigenfunctions {φn(t, x)} can be introduced.

Inserting the expansion (3.15) which, on the level of the action, has lead to Eq. (3.21), into the wave equation[
2(2) + m

2
]
Φ = 0, multiplying it with an eigenfunction φn(t) and integrating over I(t) yields

q̈n + Ω2
n(t)qn(t) + 2

∑

m

Mmn(t)q̇m +
∑

m

Ṁmn(t)qm +
∑

mk

Mmk(t)Mkn(t)qm = 0. (3.31)

This equation following from the expansion of the wave equation does in general not agree with Eq. (3.21)
resulting from the expansion of the action. It turns out that both equations differ by a boundary term

∑

k

(Mnk + Mkn) [q̇k +
∑

m

Mmkqm] (3.32)
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which, since
Mnk + Mkn = −v φn[t, l(t)]φk[t, l(t)] , v = l̇(t) , (3.33)

vanishes only if the BC’s at the moving mirror are of Dirichlet type leading to an anti-symmetric coupling
matrix. This is certainly not surprising since (in the (t, x)-coordinates) eigenfunctions φn(t, x) can be introduced
for Dirichlet BC’s at the moving mirror, but not for the generalized Neumann BC’s. As expected, both
Equations (3.21) and (3.31) are identical whenever the action is expanded in eigenfunctions which are consistent
with BC’s determined by (3.30). This implies in particular, that if the action is expanded under the assumption
of BC’s which do not comply with (3.30), the resulting system of differential equations (3.21) does not describe
the dynamics of a free scalar field on I(t) even though the Hamiltonian etc. is well defined. I shall come back
to this issue below.

3.3.3 Energy vs Hamiltonian

It is important to emphasize that the dynamical Casimir effect does not belong to the class of problems where
the Hamiltonian H [qn, pn, t] corresponds to the energy of the system [195].
The total energy of the Φ-field is given by the integral over the 00-component of the “canonical” energy
momentum tensor for a massive scalar field in Minkowski space [80] 1

T00 =
1

2

[
Φ̇2 + (∂xΦ)2 + m

2Φ2
]

. (3.34)

Introducing the conjugated field [80]

Π(t, x) =
∂L
∂Φ̇

= Φ̇ , (3.35)

T00 is identical to the Hamilton density H obtained via Legendre transformation

H = Φ̇Π − L =
1

2

[
Π2 + (∂xΦ)2 + m2Φ2

]
. (3.36)

Given a set of suitable eigenfunctions {φn(t, x)}, the field Π can be expanded as

Π(t, x) =
∑

n

pn(t)φn(t, x) (3.37)

with pn defined in Eq. (3.22). Then, the total energy of the Φ-field reads

E[qn, pn, t] =

∫

I(t)

dxT00 =

∫

I(t)

dxH =
1

2

∑

n

[
p2

n + Ω2
n(t)q2

n

]
= Hosc[qn, pn, t] 6= H [qn, pn, t]. (3.38)

E[qn, pn, t] does not agree with the full Hamiltonian H [qn, pn, t] for the canonical variables defined via the
Legendre transformation (3.23). Hence, H [qn, pn, t] determines the dynamics of the canonical variables qn and
pn but is not identical to the energy of the field to which the coupling part Hint does not contribute. This
difference is a result of the time-dependent transformation Φ(t, x) → qn(t) through introducing eigenfunctions
which satisfy the time-dependent boundary condition [195].

It is also useful to consider the time-dependence of the energy of the field. Taking the time derivative of
(3.38) one finds

dE

dt
=

∫ l(t)

0

dx(∂tΦ)
[
2(2) + m

2
]
Φ + (∂xΦ)(∂tΦ)|l(t)0 + v T00[t, l(t)] , v = l̇(t). (3.39)

Hence, when Φ satisfies the wave equation, the change of the energy is given by

dE

dt
= T01[t, l(t)] + v T00[t, l(t)] (3.40)

where I have assumed that the field satisfies Dirichlet or Neumann BC’s at x = 0 as required by Eq. (3.30).

1A more general consideration on the definition of energy is given in 3.6.3.
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3.4 Quantization, vacuum and particle definition

3.4.1 Canonical quantization

In the following I shall quantize the real scalar field on a time-dependent interval based on the expansion of
the action (3.11) in canonical variables (3.15). The starting point for the following considerations is therefore
the Hamiltonian (3.24).
Canonical quantization is promoted by replacing the classical field variables Φ(t, x) and Π(t, x) with the corre-
sponding operators Φ̂(t, x), Π̂(t, x), and imposing the equal-time commutation relations [80]

[
Φ̂(t, x), Φ̂(t, x′)

]
=
[
Π̂(t, x), Π̂(t, x′)

]
= 0 ,

[
Φ̂(t, x), Π̂(t, x′)

]
= iδ(x − x′). (3.41)

The canonical variables qn, pn are replaced by operators q̂n and p̂n. They are subject to the equal-time
commutation relations

[q̂n(t), q̂m(t)] = [p̂n(t), p̂m(t)] = 0 , [q̂n(t), p̂m(t)] = iδnm , (3.42)

in accordance with (3.41).

The Hamilton operator follows from the replacement H [qn, pn, t] → Ĥ[q̂n, p̂n, t]. But now, when going from
the classical Hamiltonian to the Hamilton operator, one has to keep in mind that q̂n and p̂n do not commute.
To make Ĥ [q̂n, p̂n, t] hermitian, one has to symmetrize the coupling term qnpm in (3.26) when quantizing the
Hamiltonian:

Ĥ [q̂n, p̂n, t] = Ĥosc[q̂n, p̂n, t] + Ĥin[q̂n, p̂n, t] (3.43)

=
1

2

∑

n

[
p̂2

n + Ω2
n(t)q̂2

n

]
− 1

2

∑

nm

Mnm(t) [q̂np̂m + p̂mq̂n] . (3.44)

The time evolution of a quantum mechanical system can be described in different pictures. In this thesis I
shall work exclusively in the Heisenberg picture which is very convenient for studying particle production,
in particular numerically. In the Heisenberg picture the time evolution of an operator Ô is governed by the
equation

˙̂
O = i

[
Ĥ, Ô

]
+

(
∂Ô

∂t

)

expl.

. (3.45)

Here “expl” denotes the derivative with respect to an explicit time dependence. States |Ψ(t)〉 in the associated
Hilbert space of the quantum system do not evolve in time; i.e. |Ψ(t)〉 = |Ψ(t0)〉 ∀ t ≥ t0 where t0 is some
initial time.
Using (3.45) it is readily shown that the time evolution of the not explicitly time-dependent operator q̂n is
described by the differential equation (3.21) which determines the time evolution of the corresponding classical
variable qn. This similarity of the equations of motion for the classical variables and operators is what the
Heisenberg picture stands out for.

3.4.2 The particle concept

Our common notion of particles in a free field theory in Minkowski space relies on the existence of a preferred
set of solutions: plane wave solutions describing the time evolution of the field modes. With their aid the
Hamiltonian, which coincides with the energy of the field, can be diagonalized leading to an expression familiar
from the treatment of the quantum mechanical oscillator. A canonically quantized field is identical to a
superposition of infinitely many Hamilton operators describing independent harmonic oscillators. Each of those
harmonic oscillators corresponds to a field mode to which a certain amount of quantized energy is associated.
The field modes can then be interpreted as particles when the occupation numbers of the harmonic oscillators
are identified with the number of field quanta. In that sense our notion of particles is that those are “objects”,
which exhibit the following properties: They are (i) countable, (ii) independent and (iii) carry a certain energy
[197]. These conditions are automatically satisfied when it is possible to diagonalize a Hamiltonian which
coincides with the energy of the field.
The definition of energy and the selection of a preferred set of solutions associated with the time evolution
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of the field modes is therefore crucial if one wishes to work with a particle concept in field theory. But this
is not without ambiguity, and in general problematic in quantum field theory under the influence of external
conditions, in particular in curved spacetimes [79, 80, 15, 197, 218].
The scenarios considered in this work allow to introduce an unambiguous particle concept based on Hamiltonian
diagonalization for well defined initial and final states. For an extensive and mathematically founded discussion
of particle definition in field theory under the influence of external conditions, I would like to refer the interested
reader to [197]. I shall also come back to this issue below in more detail when discussing the important difference
between the dynamical Casimir effect and the so-called Unruh effect.

3.4.3 Vacuum and particle definition

In order to introduce a canonical particle concept for systems described by the Hamiltonian (3.44), I require
that the dynamical problems under consideration are such that it is possible to introduce two times tin and tout,
such that the boundary l(t) is at rest for t < tin and t > tout. This includes asymptotic times, e.g., tin → −∞
and tout → +∞, as well as finite times at which the motion of the boundary is (smoothly) turned on and off,
respectively 2.
The initial (in) and final (out) configuration of the system is characterized by the conditions

initial system configuration : Ωin
n = Ωn(t < tin) = const 6= 0, Mnm(t < tin) = 0

final system configuration : Ωout
n = Ωn(t > tout) = const 6= 0, Mnm(t > tout) = 0

for all n, m. I do not require that Ωin
n = Ωout

n ; i.e. the final configuration of the system does not have to be
equal to the initial one. Under these assumptions, the Hamiltonian does coincide with the energy for times
t < tin and t > tout and corresponds to a superposition of independent harmonic oscillators. It can therefore be
diagonalized in the usual way by introducing time-independent annihilation and creation operators associated
with the initial and final system configuration, through 3

q̂n(t) =






âin
n√

2Ωin
n

e−iΩin
n t + h.c. for t < tin

âout
n√

2Ωout
n

e−iΩout
n t + h.c. for t > tout

(3.46)

and

p̂n(t) =






i

√
Ωin

n

2
âin†

n eiΩin
n t + h.c. for t < tin

i

√
Ωout

n

2
âout†

n eiΩout
n t + h.c. for t > tout

(3.47)

where h.c. stands for hermitian conjugated. Both sets of operators {âin
n , âin†

n } and {âout
n , âout†

n } satisfy the usual
commutation relations for annihilation (ân) and creation

(
â†

n

)
operators:

[ân, âm] =
[
â†

n, â†
m

]
= 0 ,

[
ân, â†

m

]
= δnm. (3.48)

Initial |0, in〉 ≡ |0, t < tin〉 and final |0, out〉 ≡ |0, t > tout〉 vacuum states can now be introduced as the states
which are annihilated by âin

n and âout
n , respectively:

âin
n |0, in〉 = 0 and âout

n |0, out〉 = 0 ∀ n. (3.49)

2 If the motion is turned on in a non-smooth way but rather with a non-zero velocity (instantaneously), spurious effects might
contribute to the particle creation process. This will be discussed later on more detailed.

3 The quantization procedure assumes that in the initial and final frequency spectra Ωin
n 6= 0 and Ωout

n 6= 0 ∀ n . For Neumann
boundary conditions ∂xΦ = 0 at both walls x = 0 and x = l(t), a zero-mode φ0(t) of equation (3.12) with ω0(t) = 0 ∀ t appears.
The normalized eigenfunctions are

n

φ0(t) = 1/
p

l(t), φn(t, x) =
p

2/l(t)cos(nπx/l(t)
o

.

If the field is massless, i.e. Ωin

0
= Ωout

0
= 0, the quantization of the zero-mode goes then along the lines of the quantization of the

bosonic string [48]. But if the field is massive, Ωin

0
= Ωout

0
6= 0, the above quantization scheme can be used. Actually, for a massless

field Φ in two dimensions, a complete set of solutions satisfying the generalized Neumann boundary condition (∂x + v∂t)Φ = 0 at
l(t) is given by solutions of Moore’s equation (3.8) of the form (up to normalization) [48]

φ0(t, z) = R(t + z) + R(t − z) , φn(t, z) = exp{−inπR(t + z)} + exp{−inπR(t − z)} .
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The associated Hilbert spaces Hin, Hout of the quantum system are introduced as the Fock-spaces build up
through successive application of the creation operators onto the vacuum states. The basis of Hin and Hout is
then given by the vectors

{
|0, in〉, âin†

n |0, in〉, âin†
n âin†

m |0, in〉, ...
}

and
{
|0, out〉, âout†

n |0, out〉, âout†
n âout†

m |0, out〉, ...
}

, (3.50)

respectively. Thereby the vacuum states are normalized according to

〈0, in|0, in〉Hin
= 〈0, out|0, out〉Hout

= 1. (3.51)

Here 〈|〉Hin
( 〈|〉Hout

) denotes the scalar product in Hin (Hout).
Particles defined with respect to the initial and final vacuum states, i.e. quanta of energies Ωin

n and Ωout
n ,

respectively, are counted through the particle number operators

N̂ in
n = âin†

n âin
n and N̂out

n = âout†
n âout

n . (3.52)

In the above Fock basis, initial and final Hamilton operators are diagonal

Ĥ in =
∑

n

Ωin
n

[
N̂ in

n + 1/2
]

and Ĥout =
∑

n

Ωout
n

[
N̂out

n + 1/2
]

, (3.53)

and correspond to the energy of the field quanta. The ground states, i.e. the vacua, have zero-point energy

Ein
0 = 〈0, in|Ĥ in|0, in〉Hin

=
1

2

∑

n

Ωin
n and Eout

0 = 〈0, out|Ĥout|0, out〉Hout
=

1

2

∑

n

Ωout
n , (3.54)

respectively. As demonstrated in Section 2.2, these formally divergent quantities lead after renormalization to
finite Casimir energies, which cause the attraction of macroscopic bodies (parallel plates).

Introduced by means of diagonalization of a Hamiltonian which corresponds to the energy of the field, this
definition of particles before and after the motion is without ambiguity and physically meaningful.

During the dynamics of the system for times t ∈ [tin, tout] the field modes evolve in time such that, in general,
âout

n 6= âin
n . The final state operator âout

n will rather be a combination of initial annihilation and creation
operators. In other words, the vacuum states of the initial and final Hamiltonians (3.53) do not coincide. This
discrepancy can even persist if the system has returned to its initial position, i.e. if Ωin

n = Ωout
n ∀ n.

Initial and final state operators are linked through a Bogoliubov transformation [15]

âout
n =

∑

m

[
Amn(tout) âin

m + B∗
mn(tout) âin†

m

]
. (3.55)

This mixture of annihilation and creation operators is interpreted as the conversion of virtual quantum vacuum
fluctuations into real particles, i.e. particle production from vacuum. It implies that, if Bnm(tout) 6= 0, the
vacuum |0, in〉 contains particles defined with respect to the final vacuum state |0, out〉 and vice versa. Notice
that, due to the intermode couplings, the Bogoliubov transformation (3.55) is not diagonal. The number of
quanta of energy Ωout

n which for times t > tout are present in the initial vacuum is given by

N out
n = 〈0, in|N̂out

n |0, in〉 =
∑

m

|Bmn(tout)|2. (3.56)

It may happen that the initial vacuum state contains an infinite number of final state particles. In that case,
the two Fock spaces cannot be related by a unitary transformation [220].
By virtue of the commutation relations (3.48) the Bogoliubov coefficients Amn(tout) and Bmn(tout) satisfy the
relations

∑

m

[Amn(tout)A∗
mk(tout) − B∗

mn(tout)Bmk(tout)] = δnk , (3.57)

∑

m

[Amn(tout)B∗
mk(tout) − B∗

mn(tout)Amk(tout)] = 0. (3.58)
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In the next paragraph the Bogoliubov coefficients Amn(tout), Bmn(tout) will be constructed explicitely as solu-
tions of an infinite system of coupled differential equations.

From (3.56) quantities like the total particle number N out and associated energy Eout given by

N out =
∑

n

N out
n and Eout =

∑

n

Ωout
n N out

n , (3.59)

respectively, can be deduced. When applying the formalism to tensor perturbations in braneworld cosmology
in the second part of the thesis it will turn out that observable quantities, like power spectrum and energy
density of gravitons, can be expressed entirely through the particle number and energy.

The quantities (3.59) are, under certain circumstances, ill defined and require appropriate regularization. For
example, if the boundary motion l(t) is not sufficiently smooth, the discontinuities in its velocity cause the
excitation of modes of arbitrary high frequencies. Hence the summations in (3.59) do not converge. This can
be avoided most easily by introducing a frequency cutoff which effectively smoothes the dynamics l(t). Intro-
ducing an explicit frequency cutoff is in many cases physically well motivated since, for instance, it accounts
for imperfect (non-ideal) boundary conditions for high frequency modes [195]. As a matter of fact one has to
make use of such a frequency cutoff in the numerical simulations in any case. These issues will be discussed
below in more detail.

3.5 Time evolution

3.5.1 Bogoliubov transformations

Allowing for mode mixing during the motion of the boundary, the operators q̂n and p̂n may be expanded in

initial state operators âin
n , âin†

n and complex functions ǫ
(m)
n (t):

q̂n(t > tin) =
∑

m

âin
m√

2Ωin
m

ǫ(m)
n (t) + h.c., (3.60)

p̂n(t > tin) =
∑

m

âin
m√

2Ωin
m

f (m)
n (t) + h.c. (3.61)

with
f (m)

n (t) = ǫ̇(m)
n (t) +

∑

k

Mkn(t)ǫ
(m)
k (t). (3.62)

The complex functions ǫ
(m)
n (t) satisfy

ǫ̈(m)
n + Ω2

n(t)ǫ(m)
n +

∑

k

[Mkn(t) − Mnk(t)] ǫ̇
(m)
k +

∑

k

[
Ṁkn(t) − Nnk(t)

]
ǫ
(m)
k = 0, (3.63)

i.e. the same system of differential equations as the canonical variables qn [cf. Eq. (3.21)].
The system of second order differential equations is equivalent to the system of first order differential equations

for ǫ
(m)
n and f

(m)
n

ǫ̇(m)
n (t) = f (m)

n (t) −
∑

k

Mkn(t)ǫ
(m)
k (t), (3.64)

ḟ (m)
n (t) = −Ω2

n(t)ǫ(m)
n (t) +

∑

k

Mnk(t)f
(m)
k (t) , (3.65)

corresponding to the Hamilton equations (3.27) and (3.28).

Through the formal expansion (3.60) I have reduced the problem of finding the time evolution for the operator
q̂n(t) to the problem of solving the system of coupled second-order differential equations (3.63). This requires

initial conditions for ǫ
(m)
n (t). Demanding that Eqs. (3.60) and (3.61) have to match with the corresponding

expressions (3.46) and (3.47) for t = tin leads to the initial conditions:

ǫ(m)
n (tin) = δnmΘin

α , ǫ̇(m)
n (tin) =

[
−iΩin

n δnm − Mmn(tin)
]
Θin

m with Θin
n = e−iΩin

n tin . (3.66)
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I have decided to keep the, in principle arbitrary, phase Θin
n , since it is especially useful for the numerical work

later on [cf. Section 10.2]. With Mmn(tin) vanishing only if l̇(tin) = 0, the initial condition ǫ̇
(m)
n (tin) is not

simply −iΩin
n δnm when dealing with boundary motions l(t) which have an initial discontinuity in the velocity.

This subtle point is sometimes disregarded in the literature, but it is needed for consistency.

The Bogoliubov coefficients Amn(tout) and Bmn(tout) introduced in Eq. (3.55) are obtained by matching (3.60)
and (3.61) at the end of the dynamics t = tout with the corresponding expressions (3.46) and (3.47). One finds

Amn(tout) =
Θout∗

n

2

√
Ωout

n

Ωin
m

{
ǫ(m)
n (tout) +

i

Ωout
n

[
ǫ̇(m)
n (tout) +

∑

k

Mkn(tout)ǫ
(m)
k (tout)

]}
(3.67)

Bmn(tout) =
Θout

n

2

√
Ωout

n

Ωin
m

{
ǫ(m)
n (tout) −

i

Ωout
n

[
ǫ̇(m)
n (tout) +

∑

k

Mkn(tout)ǫ
(m)
k (tout)

]}
(3.68)

with phase Θout
n defined as in (3.66). Starting in the initial vacuum state |0, in〉, the Bogoliubov transformation

(3.55) has to become trivial for tout = tin, i.e. âout
n = âin

n . This implies the vacuum initial conditions

Amn(tin) = δmn and Bmn(tin) = 0 (3.69)

which are consistent with the initial conditions (3.66). The emergence of Mmn(tin) in the initial conditions
(3.66) therefore guarantees to meet the vacuum initial conditions even for the unphysical situation that the
motion of the boundary starts instantaneously with a non-zero velocity. To take this into account consistently
is of particular importance for the numerical simulations. For the same reason Mnm(tout) is kept explicitely
though I have required that Mnm(t > tout) = 0.

3.5.2 First-order system

From the solutions of the system of differential equations (3.63) or from the system of first-order differential
equations (3.64) and (3.65) the Bogoliubov coefficient Bmn(tout) and hence the number of created final state
particles (3.56) can now be calculated. It is however useful to introduce another set of complex (auxiliary)

functions ξ
(m)
n and η

(m)
n :

ξ(m)
n (t) = ǫ(m)

n (t) +
i

Ωin
n

[
ǫ̇(m)
n (t) +

∑

k

Mkn(t) ǫ
(m)
k (t)

]
= ǫ(m)

n (t) +
i

Ωin
n

f (m)
n (t), (3.70)

η(m)
n (t) = ǫ(m)

n (t) − i

Ωin
n

[
ǫ̇(m)
n (t) +

∑

k

Mkn(t) ǫ
(m)
k (t)

]
= ǫ(m)

n (t) − i

Ωin
n

f (m)
n (t). (3.71)

With their aid, the Bogoliubov coefficients (3.67) and (3.68) can be cast into the form

Amn(tout) =
Θout∗

n

2

√
Ωout

n

Ωin
m

[
∆+

n (tout) ξ(m)
n (tout) + ∆−

n (tout) η(m)
n (tout)

]
, (3.72)

Bmn(tout) =
Θout

n

2

√
Ωout

n

Ωin
m

[
∆−

n (tout) ξ(m)
n (tout) + ∆+

n (tout) η(m)
n (tout)

]
. (3.73)

∆±
n (tout), defined by

∆±
n (t) =

1

2

[
1 ± Ωin

n

Ωn(t)

]
, (3.74)

is a measure for the deviation of the final system configuration (e.g., cavity size), characterized by l(tout), with
respect to its initial configuration l(tin).

In the important case that at time tout the system has returned to its initial position, for example in an
asymptotic scenario where the motion of the boundary ceases for |t| → ∞, it is

N out
n =

1

4

∑

m

Ωin
n

Ωin
m

|η(m)
n (tout)|2. (3.75)
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The advantage of introducing the functions ξ
(m)
n and η

(m)
n is due to the fact that they satisfy the following

”symmetric” system of first-order differential equations:

ξ̇(m)
n (t) = −i

[
a+

nn(t)ξ(m)
n (t) − a−

nn(t)η(m)
n (t)

]
−
∑

k

[
c−nk(t)ξ

(m)
k (t) + c+

nk(t)η
(m)
k (t)

]
, (3.76)

η̇(m)
n (t) = −i

[
a−

nn(t)ξ(m)
n − (t)a+

nn(t)η(m)
n (t)

]
−
∑

k

[
c+
nk(t)ξ

(m)
k (t) + c−nk(t)η

(m)
k (t)

]
(3.77)

with the vacuum squeezing contribution

a±
nn(t) =

Ωin
n

2

{
1 ±

[
Ωn(t)

Ωin
n

]2}
(3.78)

and the time-dependent mode coupling term (acceleration effect)

c±nk(t) =
1

2

[
Mkn(t) ± Ωin

k

Ωin
n

Mnk(t)

]
. (3.79)

By “symmetric” I mean the behavior of the system under the exchange of the superscripts + ↔ −. Into this
system of coupled differential equations, besides the time-dependent frequency Ωn(t), only the coupling matrix
Mkn(t) enters but neither its square Nnk(t) nor its time derivative Ṁkn(t).

The vacuum initial conditions (3.69) entail the initial conditions for the functions ξ
(m)
n and η

(m)
n to be

ξ(m)
n (tin) = 2δmn , η(m)

n (tin) = 0. (3.80)

Let me emphasize that all derivations and equations shown so far, do not rely on particular symmetry proper-
ties of the coupling matrix.

By means of Eq. (3.73), the number of particles created during the dynamics of the system may now be

calculated from the solutions ξ
(m)
n and η

(m)
n of the system of coupled first-order differential equations formed

by Eqs. (3.76) and (3.77) 4 . Being of the form ẋ = Wx, the numerical implementation of the system of differ-
ential equations is straight forward. A cutoff parameter nmax is introduced to make the system of differential
equations finite and suitable for a numerical treatment. The system is then evolved numerically from tin up
to final time tout where the final particle spectrum N out

n is calculated. The stability of the numerical solutions
with respect to the cut-off nmax, i.e. the independence of N out

n on the value of nmax, has to be ensured. nmax

will be chosen such that the numerical result for N out
n is stable for a given range of quantum numbers. In

addition, the quality of the numerical results can be assessed by testing the relations (3.57), (3.58). Details on
the numerical simulations can be found in Appendix B.

In the course of the thesis I shall encounter the situation where the velocity of the mirror has discontinu-
ities. As it is clear from Eq. (3.9), any discontinuity in the velocity will lead to an infinite particle number since
the acceleration of the mirror diverges there. Arbitrary high frequency modes are excited and it is expected
that the convergence of the numerics is very slow. Explicit examples are discussed in the next Chapter. Note,
however, that the initial conditions are such that the particle number is zero at tin by construction, even with

4 The occurrence of the mode coupling due to the moving boundary represents the main difficulty of the dynamical Casimir
effect compared to, e.g., cosmological particle creation [15] or reheating [127, 202, 128]. In those scenarios, the time evolution of
the mode functions is just described by an oscillator equation

ǫ̈n(t) + Ω2

n(t)ǫn(t) = 0

where the time-dependent frequency Ωn(t) reflects the dynamics of the external (classical) field which couples to the quantum
fluctuations. The number of produced final state quanta is then simply given by

N out

n =
1

4

Ωout
n

Ωin
n

»

|ǫn(tout)|
2 +

|ǫ̇n(tout)|2

(Ωout
n )2

–

−
1

2
,

which can be immediately obtained from the above equations by setting Mnm ≡ 0.
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an initial discontinuity in the velocity [cf. Eq. (3.66)].
Any well behaved, i.e. physical, motion does of course not have discontinuities in its velocity. But as a matter of
fact, discontinuities are sometimes unavoidable in the numerical simulations. If, for example, a mirror following
a smooth trajectory is only asymptotically at rest, i.e. Mnm → 0 for |t| → ∞, the physical velocity does not
exhibit any discontinuity. The numerical simulation on the other hand has to be started and stopped at finite
times leading to discontinuities in the velocity. Of course, the motion could be turned on and off smoothly with
an artificial function avoiding discontinuities. However, unless not done adiabatically slow which is a disadvan-
tage for the numerics because of the additional very long integration times, any such artificial function will also
contribute to the particle production because of its non-vanishing acceleration [cf. Eq. (3.9)]. Consequently,
the influence of discontinuities (or of an artificial “smoothing” - function) on the numerical results has to be
examined case by case. If for special situations analytical results can be derived with which the numerical
results can be compared, provides certainly the best way to detect how numerical results are contaminated by
discontinuities.
In the simulations the expectation value (3.56) is also calculated for several times steps in between of [tin, tout].
By doing so, tout is interpreted as a continuous variable such that Eq. (3.56) becomes a continuous function of
time; i.e. N out

n → Nn(t). Such a procedure corresponds to the use of an instantaneous particle concept.

3.5.3 Instantaneous vacuum

When interpreting tout as continuous time variable, I can write the Bogoliubov transformation Eq. (3.55) as

ân(t) =
∑

m

[
Amn(t)âin

m + B∗
mn(t)âin †

m

]
, (3.81)

where at any time t I have introduced a set of operators {ân(t), â†
n(t)}. Vacuum states defined at any time t

can be associated with these operators via

ân(t)|0, t〉 = 0 ∀ n. (3.82)

Similar to Eq. (3.56) a ”particle number” can be introduced through

Nn(t) = 〈0, in|â†
n(t)ân(t)|0, in〉 =

∑

m

|Bmn(t)|2 . (3.83)

I shall denote |0, t〉 as the instantaneous vacuum state and the quantity Nn(t) as instantaneous particle num-
ber. It could be interpreted as the number of particles which would have been created if the motion of the
boundary stops at time t. (Recall that my notation |0, t〉 does not imply that the state of the system is time
dependent!) However, even if I call it ”particle number” and shall plot it for illustrative reasons, I consider only
the particle definitions for the initial and final states (asymptotic regions) as physically meaningful particles.
When interpreting tout as a continuous variable t, one can of course derive a corresponding system of coupled
differential equations for Amn(t) and Bmn(t) simply by differentiating Eq. (3.67) and (3.68) with respect to t

and using the equations of motion for ǫ
(m)
n .

More formally, this can be achieved as follows: Introduce non-hermitian and explicitely time-dependent oper-
ators ân(t) and â†

n(t) via

q̂n(t) =
1√

2Ωn(t)

[
ân(t) + â†

n(t)
]

, p̂n(t) = i

√
Ωn(t)

2

[
â†

n(t) − ân(t)
]
. (3.84)

With their aid, the oscillator part of the Hamiltonian (3.44) which corresponds to the energy of the field can
be diagonalized for all times

Ĥosc.(t) =
∑

k

Ωk(t)

[
â†

k(t)âk(t) +
1

2

]
. (3.85)

The coupling Hamiltonian Ĥint on the other hand reads

Ĥint(t) = − i

2

∑

km

√
Ωm(t)

Ωk(t)
Mkm(t)

[
â†

m(t)âk(t) − â†
k(t)âm(t) − âk(t)âm(t) + â†

k(t)â†
m(t)

]
. (3.86)
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Introducing the instantaneous vacuum state (3.82), then 〈0, t|Ĥint(t)|0, t〉 = 0. Thus the expectation value of
Ĥ(t) in the state |0, t〉 is just what one would identify as instantaneous vacuum energy (1/2)

∑
n Ωn(t). As for

the classical field, the interaction part does not contribute to the energy.
From the Heisenberg equation (3.45) one obtains the equation of motion for ân(t)

˙̂an(t) = −iΩn(t)ân(t) +
1

2

Ω̇n(t)

Ωn(t)
â†

n(t) − 1

2

∑

m

[
A−

mn(t)âm(t) + A+
mn(t)â†

m(t)
]

(3.87)

where I have defined

A±
mn(t) =

√
Ωn(t)

Ωm(t)
Mmn(t) ±

√
Ωm(t)

Ωn(t)
Mnm(t). (3.88)

The term ∝ Ω̇n(t)/Ωn(t) comes from the explicit time derivative in the Heisenberg equation. Inserting the
Bogoliubov transformation (3.81) into Equation (3.87) leads to the differential equations for Amn(t) and Bmn(t)
which one obtains by formally replacing tout → t and differentiating Eq. (3.67) and (3.68) with respect to t.

3.6 A more formal point of view

In this section I shall discuss the dynamical Casimir effect from a more formal point of view to stress the
difference to other quantum vacuum radiation effects like the Unruh effect. I first review the formulation
of field quantization in Minkowski spacetime in the way it is usually presented in textbooks and courses
on quantum field theory in curved spacetime, e.g., [15, 103, 76, 220] (see also [197]). Then, I introduce the
concept of Killing vectors, discuss quantum fields in static spacetimes, describe the Unruh effect and eventually
reformulate the dynamical Casimir effect in this more formal language.

3.6.1 QFT in Minkowski spacetime

For a real free scalar field in D = 1 + d – dimensional Minkowski spacetime a natural set of solutions to the
Klein-Gordon equation [

2(D) + m
2
]
Φ = 0 (3.89)

is given by

uk(t,x) =
1√

2Ωk(2π)d
eikx−iΩkt with Ωk =

√
k2 + m2. (3.90)

These solutions are eigenfunctions of ∂t, i.e.

∂tuk = −iΩkuk (3.91)

and define so-called positive frequency solutions. The corresponding complex conjugated solutions u∗
k

are called
negative frequency solutions. With respect to the inner product of two arbitrary solutions u1, u2 of the Klein
Gordon equation

(u1, u2) = −i

∫
dxd [u1 ∂tu

∗
2 − (∂t u1) u∗

2] , (3.92)

the positive and negative frequency solutions satisfy 5

(uk, uk′) = δkk′ , (u∗
k, u∗

k′) = −δkk′ , (uk, u∗
k′) = 0. (3.93)

Thereby the integration is performed over a spacelike hyperplane at constant t. Quantization is achieved by
promoting the field Φ to a field operator Φ̂ and expanding it in positive and negative frequency solutions and
operator valued coefficients, the annihilation and creation operators âk, â†

k
:

Φ̂ =
∑

k

âk uk + h.c. . (3.94)

5 Here δkk′ is understood as a d-dimensional delta function if the entire Minkowski spacetime is considered, or as a Kronecker-
delta corresponding to quantized wave numbers when the field is, for example, restricted to a torus. Furthermore I shall use the
symbol

P

k
for both, the summation in the discrete case and for integration if k is continuous.
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The corresponding vacuum state |0〉 is defined as

âk|0〉 = 0 ∀ k , (3.95)

and the Fock space is constructed like in 3.4. Hamilton and momentum operators associated with the classical
conserved energy and momentum of the field are given by the corresponding densities of the energy momentum
tensor integrated over the spatial dimensions

Ĥ =

∫
T̂00 ddx =

1

2

∑

k

Ωk

(
â†
k
âk +

1

2

)
(3.96)

P̂i =

∫
T̂0i ddx =

∑

k

ki â†
k
âk. (3.97)

This quantization procedure relies on the existence of the set of modes uk, u∗
k

which are closely related to
the symmetry properties of Minkowski spacetime. The special property of Minkowski spacetime is that the
vacuum state as defined in (3.95) is the vacuum state for all inertial observers, i.e. all inertial observers agree
on the same vacuum state. It is invariant under the action of the Poincaré or inhomogeneous Lorentz group
(application of which leave the Minkowski line element invariant) and so are the inertial observers in Minkowski
spacetime [15].

3.6.2 Killing vectors

Equation (3.91) shows that the mode-functions (3.90) are eigenfunctions of ∂t. This has been used to define
the notion of positive frequency solutions and the vacuum state. Strictly speaking, ∂t is the time-like Killing
vector ξ = ξν∂ν = ∂t of Minkowski spacetime.
Killing vectors are deeply connected with symmetry properties of a spacetime metric gµν and are defined by
Lξgµν = ξµ‖ν + ξν‖µ = 0 where Lξ is the Lie-derivative and “‖” denotes the covariant derivative [206]. The
above condition is equivalent to gµν|ρξ

ρ + gρνξρ
|µ + gµρξ

ρ
|ν = 0 where “|” denotes the partial derivative. If

ξµ(xν) is a solution to the above equations at every point xν of the spacetime, then the metric gµν does not
change under a flux along the direction of ξµ [206, 217]. Killing vectors therefore express the symmetries of
a spacetime. Ten Killing vectors exist in four-dimensional Minkowski space, given by ξµ = cµ + ǫµνxν with
ǫµν = −ǫνµ. The four constants cµ describe four translations and ǫµν three spatial rotations and three boosts
[206].
Such transformations in the direction of a Killing vector, which map the space onto itself without altering the
metric, form a group (Lie-group). Thereby, the linearly independent Killing vectors form a basis for generating
the group [206].
In particular, the Killing vector ∂t mediates the Minkowski time translation symmetry. It corresponds to usual
observes at rest and generates the time evolution with respect to them.
Since the definition of vacuum states is associated with modes that are of positive frequency, it inherently
depends on the existence of time-like Killing vectors [212]. If, for example, a spacetime has different time-like
Killing vectors, each of which generating the time evolution with respect to different observers, the particle
interpretation will be observer dependent. A spacetime might not have any Killing vectors in which case one
probably has to give up the particle concept all together [220].

3.6.3 QFT in curved spacetimes

In a general curved spacetime the Poincaré group is no longer a symmetry group and no Killing vectors
exist with which positive frequency modes can be defined. A particular exception where a meaningful particle
definition can be accomplished is the case of static spacetimes. In a static spacetime M of dimension D = d+1,
using appropriate coordinates with t ≡ x0 timelike, all metric components gµν are independent of t and g0j = 0
for j = 1, ..., d [80]. This is equivalent to the existence of a time-like Killing vector field ξ = ξµ∂µ and of a
family of space-like hypersurfaces orthogonal to the time-like Killing vector everywhere [80]. The space-like
hypersurfaces are Cauchy surfaces, i.e. space-like hypersurfaces which are intersected by every inextensible
causal curve (a curve whose tangent vector is everywhere time- or light-like) exactly once. I shall denote those
surfaces by Σ. One can scale ξ such that the Killing time t is the proper time measured by at least one
co-moving clock [220] and ξ = ∂t. Positive frequency can then be defined via modes which are eigenfunctions
of this time-like Killing vector. In this situation a preferred foliation of spacetime and hence a meaningful
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notion of positive frequency modes does exist, making it possible to introduce a unique concept of particles.
The spacetime M can be factorized as M = R × Σ with metric

ds2 = g00dt2 − gΣ
ijdxidxj (3.98)

where gΣ
ij is the metric of the Cauchy surface Σ. The metric is called ultrastatic if g00 = 1 [80].

I restrict my considerations in the following to a real non-interacting massive minimally coupled scalar field Φ.
Its action is given by

S =

∫

M
dxDL =

∫

M
dxD

√
g

2

[
(∂µΦ)(∂µΦ) − m

2Φ2
]

(3.99)

with g = (−1)ddet(gµν). Variation of the action with respect to the field leads to the Klein-Gordon equation

[
2(D) + m

2
]
Φ = 0 with 2(D) =

1√
g
∂µ (

√
ggµν∂ν) . (3.100)

I have made the assumption that the spatial surface terms appearing when varying the action vanish. As I
have shown in Section 3.3.2, this implies particular boundary conditions in case that the field is confined inside
a time-dependent domain.
The foliation of the spacetime implies that the Klein-Gordon operator can be written as

2(D) = g00∂2
t +

1√
g
∂i

(√
ggij∂j

)
. (3.101)

Introducing an operator K = g00

[
1√
g ∂i

(√
ggij∂j

)
+ m

2
]

the Klein-Gordon equation can be cast into the form

−∂2
t Φ = KΦ. The operator K is formally self adjoint with respect to the inner product in L2

ρ with ρ = g00√g
[80]. In the case that the metric is ultrastatic it is K = −△Σ + m

2 where △Σ the Laplacian on the Cauchy

hypersurface; i.e. △Σ = 1√
gΣ

∂i

(√
gΣgΣ ij∂j

)
.

Quantization can be performed by expanding the field in eigenfunction of △Σ (or K) similar to the Minkowski
case. Since positive frequency solutions can be defined with respect to the time-like Killing vector ∂t, a phys-
ically meaningful vacuum state can be introduced. The generalization of the inner product (3.92) of two
solutions of the Klein-Gordon equation reads [15]

(u1, u2) = −i

∫

Σ

[u1 ∂µu∗
2 − (∂µ u1) u∗

2]
√

gΣdΣµ, (3.102)

with dΣµ = nµdΣ. Thereby nµ is the future directed unit normal vector to Σ and dΣ = dxd is the volume
element on Σ. Using Gauss’ theorem it follows that this product is independent of Σ [15].

Since for the static metric nµ =
(
1/

√
g00,0

)
one has

√
gΣn0 =

√
gΣg00 = ρ, i.e. it is exactly the integration

measure for which the operator K is self-adjoint.

The energy momentum tensor obtained from the variation of the action with respect to the metric reads

Tµν =
2√
g

δS
δgµν

= ∂µΦ∂νΦ − 1

2
gµν∂ρΦ∂ρΦ +

1

2
m

2gµνΦ2. (3.103)

In a general spacetime no conserved quantity can be constructed from the local conservation law T µ
ν||µ = 0 :

T µ
ν‖µ =

1√
g
∂µ (

√
gT µ

ν ) − 1

2
T ρκ∂νgρκ = 0. (3.104)

The second term leads to an exchange of energy and momentum between the gravitational and scalar field.
If, however, the spacetime possesses Killing vectors, i.e. in particular if ∂0gµν = 0, a conservation law can be
associated with every Killing vector field [206, 218, 197]. In particular, a conserved energy can be introduced
if spacetime admits a time-like Killing vector ξ (like in the static case) [206, 197]:

E =

∫

Σ

dΣµT µνξν . (3.105)
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The formalism presented for the dynamical Casimir effect on a time-dependent interval can immediately be
extended to the case of a static curved spacetime. This will allow me to study the dynamical Casimir effect
for gravitons in braneworld cosmology with the same formalism which is the subject of the second part of this
thesis.

3.6.4 Bogoliubov transformations

In the spirit of general covariance of general relativity there is, in general, no preferred coordinate system
(no preferred foliation of spacetime). In this case, there exist not only one but rather many (even infinitely
many) valid sets of basis functions, i.e. solutions of the Klein-Gordon equation (3.100), belonging to particular
coordinate systems. Each expansion of the field associated with such a set corresponds to a different particle
definition which makes the particle concept ambiguous. On the other hand, spacetime might possess different
time-like Killing vectors which then can be used by different observers to define positive frequency solutions.
What is the consequence of this?

Let the decomposition of the field with respect to two of such sets be

Φ(x) =
∑

n

[ânun(x) + h.c.] =
∑

m

[
ˆ̃amũm(x) + h.c.

]
. (3.106)

Each decomposition defines an own vacuum state via

ân|0〉 = 0 , ˆ̃am|0̃〉 = 0 ∀ n, m , (3.107)

and therefore an own Fock space H and H̃, respectively. The completeness (separately) of these sets of functions
allows to expand functions of one set into functions of the other set

ũm =
∑

n

[αmnun + βmnu∗
n] , un =

∑

m

[α∗
mnũm − βmnũ∗

m] . (3.108)

It follows immediately that the operators ân, â†
n and ˆ̃am, ˆ̃a†

m are related via a Bogoliubov transformation

ân =
∑

m

[
αmn

ˆ̃am + β∗
mn

˜̂a†
m

]
, ˆ̃am =

∑

n

[
α∗

mnân − β∗
mnâ†

n

]
. (3.109)

If βnm 6= 0, the Fock spaces associated with both sets of modes are not equal. While ân annihilates |0〉, the
operator ˆ̃am associated with the second mode decomposition does not:

ˆ̃am|0〉 = −
∑

n

β∗
mnâ†

n|0〉 6= 0. (3.110)

Consequently, calculating the expectation value of the particle number operator ˆ̃a†
m

ˆ̃am counting the number of
particles defined with respect to the ũm-modes, leads to

Ñm = 〈0|ˆ̃a†
m

ˆ̃am|0〉H =
∑

n

|βmn|2. (3.111)

Ergo, the vacuum |0〉 of the un-modes contains Ñm particles of the ũm-modes. Hence what one observer
considers as a vacuum state might be a many particle state for a different observer. Two main origins of the
presence of this quantum vacuum radiation have to be distinguished:

1. quantum vacuum radiation caused by the dynamics of some (time-dependent) background field and

2. the presence of particles due to observers using different particle definitions .

For the former case, imagine a situation in which asymptotically (t → ±∞) the spacetime is Minkowskian.
Thus, asymptotically, Lorentz invariant initial and final vacuum states can be introduced which all inertial
observers agree on. If gravity is switched on for intermediate times (expanding Universe, for example) the
field will in general depart from its initial vacuum state. Then, a field mode which was of positive frequency
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for t → −∞ may evolve into a field mode which is a mixture of positive and negative frequency solutions
for t → +∞. Hence, βnm 6= 0, i.e. particles have been created by the gravitational field. The scenario of
cosmological particle production, discussed in e.g., [15], belongs to this class.
Another example is the scenario discussed in this thesis: the motion of boundaries which can be viewed as very
localized classical background fields. For example it is discussed in [15] (see also [78, 51]) that for a particular
non-uniformly accelerating trajectory of a mirror an inertial detector will detect a thermal flux of radiation.
To the latter class of the above mentioned origins of quantum vacuum radiation belongs the Unruh effect [212],
i.e. the detection of a thermal spectrum of particles by an uniformly accelerated detector. Note that both
effects, the Unruh effect and the creation of particles (detected via an inertial detector) by moving mirrors are
rather distinct (see [15, 212, 213, 197]).

3.6.5 Unruh effect

It is enlightening to briefly discuss the Unruh effect. I shall just sketch the basic ideas following [220] and refer
the interested reader to the original literature for the quite involved calculations.
Consider a massless scalar field Φ in a two-dimensional Minkowski space ds2 = dt2 − dx2. Positive frequency
solutions 1√

4πΩk
e−iΩkt+ikx which are eigenfunctions of the time-like Killing vector ξ = ∂t mediating Minkowski

time translation symmetry can be used to define a vacuum state via âM
k |0〉M = 0 ∀ k. In this section I use

explicitly sub- and super-scripts to denote the vacuum states, here “M” for Minkowski. If one introduces
so-called Rindler coordinates (τ, ρ) via t = ρ sinh(κτ) and x = ρ cosh(κτ), the metric takes the form ds2 =
κ2ρ2dτ2 − dρ2. Thereby κ is called surface gravity [220] and the range of the new coordinates is 0 < ρ < ∞,
−∞ < τ < ∞ covering only a quarter of Minkowski space. This so-called Rindler wedge x > |t| is globally
hyperbolic and may be viewed as a spacetime in its own right [220]. The Rindler metric is obviously static,
hence a quantum field theory can be constructed along the lines described above. In particular η = ∂τ is
a time-like future directed Killing vector for the Rindler metric. In Rindler coordinates positive frequency
solutions (with respect to η) are given by 1√

4πΩk′

ρik′/κe−iΩk′ τ which can be used to define the Rindler vacuum

via âR
k′ |0〉R = 0 ∀ k′. For the stationary observes in the Rindler wedge, i.e. for observers following orbits

of η, the states of the Fock space have a natural particle interpretation. Since the Killing vector ∂τ can
be written as ∂τ = κ(x∂t + t∂x), it represents the Killing field which generates the group of Lorentz boost
isometries [218, 220]. Hence those observers all undergo uniform acceleration varying from orbit to orbit.
In Rindler coordinates one has ηµηµ = (κρ)2 = g00. Since for the orbit with ηµηµ = 1, i.e. ρ = 1/κ, the
proper acceleration is κ, it is conventional to view the orbits of η as corresponding to a family of observers
naturally associated with an observer who accelerates uniformly with acceleration κ [220, 218]. Following
Wald [218], “the notion of ’particles’ obtained from this quantum field construction are referred to as the
’particles seen by an observer who undergoes uniform acceleration κ’ ”. The relation between |0〉M and |0〉R
is given by the corresponding Bogoliubov transformation. The calculation of the Bogoliubov coefficients is
rather lengthy and technically involved so I just state the results. Detailed calculations can be found in, e.g.,
[15, 197, 212, 208, 220]. Calculating the expectation value of the number operator for Rindler particles in the

Minkowski vacuum one finds M〈0|âR†
k′ âR

k′ |0〉M ∝ 1/(e2πΩk′/κ − 1) where I have dropped a volume factor. Thus
one is led to the surprising conclusion that an accelerated observer experiences the Minkowski vacuum as a
thermal bath of particles of temperature T = κ/(2π). This result was first discovered by Unruh [212].

3.6.6 Dynamical Casimir effect

I now come back to the situation of a scalar field Φ confined on a time-dependent interval I(t). In the following
I shall discuss the dynamical Casimir effect along the lines of the formal considerations on quantization and
particle definition discussed above. As already discussed in section 3.4, a meaningful particle definition can be
accomplished for times t < tin and t > tout where the couplings Mnm vanish. By virtue of the expansion of the
field (3.15) and the definition of initial and final states [cf. Eqs. (3.46) and (3.47)] the field can asymptotically
be written as

Φ̂in(t, x) = Φ̂(t < tin, x) =
∑

n

âin
n uin

n (t, x) + h.c. , uin
n (t, x) =

e−iΩin
n t

√
2Ωin

n

φin
n (x) , (3.112)

Φ̂out(t, x) = Φ̂(t > tout, x) =
∑

n

âout
n uout

n (t, x) + h.c. , uout
n (t, x) =

e−iΩout
n t

√
2Ωout

n

φout
n (x). (3.113)



3.6. A MORE FORMAL POINT OF VIEW 29

Thereby φin
n (x) ≡ φn(t < tin, x) and φout

n (x) ≡ φn(t > tout, x) do not depend on time. The complex functions
uin

n and uout
n are solutions of the Klein-Gordon equation and correspond to the positive frequency solutions

defining the initial |0, in〉 and final |0, out〉 vacuum state, respectively [cf. Eq. (3.49)].
During the motion of the boundary the field can be expanded as [cf. Eqs. (3.15) and (3.60)]

Φ̂(t, x) =
∑

n

âin
n un(t, x) + h.c. , un(t, x) =

1√
2Ωin

n

∑

m

ǫ(n)
m φm(t, x). (3.114)

The functions un(t, x) are not only solutions to the Klein Gordon equation while the mirror is in motion, but
also satisfy the boundary conditions at all times. Furthermore, the un(t, x)’s are positive frequency solutions
uin

n for t < tin associated with the initial vacuum state. Being solutions of the Klein-Gordon equation the
complex solutions uin

n , uin∗
n , uout

n , uout∗
n and un, u∗

n obey the relations (3.93) with respect to the inner product
(3.92) with d = 1 and the integration is performed over the time-dependent interval only.

The completeness of the sets {uin
n , uin∗

n } {uout
n , uout∗

n } and {un, u∗
n} (separately) allows to expand every function

of each set with respect to the other set (for appropriate times). In particular at t = tout, one may expand
un(tout, x) as a linear combination of uout

n (tout, x) and uout∗
n (tout, x) or vice versa:

un(tout, x) =
∑

m

[
Anm(tout)u

out
m (tout, x) + Bnm(tout)u

out∗
m (tout, x)

]
, (3.115)

uout
m (tout, x) =

∑

n

[A∗
nm(tout)un(tout, x) − Bnm(tout)u

∗
n(tout, x)] , (3.116)

which corresponds to the expansions (3.108) and hence represents a Bogoliubov transformation. The coefficients
Anm and Bnm are the same Bogoliubov coefficients already introduced in Eq. (3.55) which follows from (3.112)
and (3.113) jointly with (3.115) and (3.116). The Bnm(tout) coefficient leading to the particle number can be
obtained by using the inner product (3.92) and the relations (3.93) 6

Bnm(tout) = (uout
m (tout, x), u∗

n(tout, x)). (3.117)

Evaluating this expression yields (3.68).

The solutions of the Klein-Gordon equation un which are at t = tin positive frequency solutions uin
n with

respect to the initial observer are, in general, for t = tout a mixture of positive and negative frequency solutions
uout

n , uout∗
n with respect to the out-observer, i.e. Bnm(tout) 6= 0. Unlike in the Unruh effect, the two observers

(here inertial in- and out-observers) use the same Killing vector mediating the time translation symmetry of
Minkowski spacetime to define positive frequency solutions

∂tu
in/out
n = −iΩin/out

n uin/out
n , (3.118)

and the associated Lorentz invariant vacuum states |0, in〉 and |0, out〉, respectively. Nevertheless, after the
dynamical period, both vacuum states will, in general, be different, even if the moving wall has returned to
its initial position; i.e., if Ωin

n = Ωout
n ∀n. Consequently, the out-observer detects the presence of out-particles

N out
n in the vacuum |0, in〉 of the initial observer. Thereby, the complete amount of particles has been created

entirely during the dynamics of the boundary (the mirror) and does not arise due to the comparison of different
observers, or the use of an ambiguous particle definition, cf. Fig. 3.1.

6Note that this formulation is equivalent to the so-called Wronskian formulation of particle production employed in [4] for the
dynamical Casimir effect, and in [121, 122] for graviton production in braneworld cosmology.
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Figure 3.1: Pictorial demonstration of the dynamical Casimir effect and the used particle and vacuum def-
initions. Shown is the worldline of the moving mirror and snapshots of particular mirror positions together
with the evolution of the instantaneous eigenfunction φn(t, x) for the particular case n = 3 as representative
example. The motion of the mirror squeezes and stretches the mode functions leading, together with the mode
coupling, to particle creation from vacuum. Initial and final particles and vacuum states are defined using
the mode functions uin

n [Eq. (3.112)] and uout
n [Eq. (3.113)], respectively, which are of positive frequency with

respect to the Killing vector ∂t.



Chapter 4

Dynamical Casimir effect for a

massless scalar field in a

one-dimensional cavity

The example of the electromagnetic field in a one-dimensional cavity [0, l(t)] represents the most simple scenario
of the dynamical Casimir effect and has extensively been studied in the literature. Its dynamics is completely
determined in terms of the corresponding vector potential A(t, x) which, in this case, is a scalar function. In
Coulomb gauge it obeys the two-dimensional wave equation [163]

∂2
t A(t, x) − ∂2

xA(t, x) = 0. (4.1)

The continuity requirement on the electric field at the ideal “mirrors” x = 0 and x = l(t) implies Dirichlet
boundary conditions

A(t, x = 0) = A[t, x = l(t)] = 0. (4.2)

The example of the electromagnetic field in a one-dimensional dynamical cavity is therefore equivalent to the
problem of a massless scalar field introduced in Section 3.1. After summarizing known results and phenomena
I shall compare available analytical predictions with the results obtained by solving the system of differential
equations (3.76,3.77) numerically.

4.1 Preliminary remarks on numerics

In order to solve the system of coupled differential equations formed by Eqs. (3.76) and (3.77) numerically a
cutoff nmax is introduced at which the summations are truncated. I shall call numerical results stable when
the final particle spectrum N out

n does not change for all quantum numbers n smaller than a particular value ns

when increasing nmax further. The simulations are started at tin = 0. Sometimes the particle number is plotted
for various time steps, i.e. the notion of instantaneous particles is adapted here for purely illustrative reasons
[cf. Section 3.5.3]. All physical quantities carrying dimensions are measured with respect to the initial cavity
length l0, the only scale in the problem. Dimensionless quantities are used throughout without introducing
additional notations.

4.2 Moore’s original example: A uniformly moving mirror and the

role of discontinuities

The first scenario which has been studied analytically is the one of a mirror moving uniformly with velocity v
[163, 78]

l(t) = l0 + vt . (4.3)

For this particular case Moore’s equation (3.8) [cf. Section 3.2] can be solved exactly, leading to [163, 4]

R(z) =
1

arctanhv
ln

(
z +

l0
v

)
. (4.4)

31
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Figure 4.1: Final particle spectrum N out
n for the motion (4.3) with initial cavity size l0 = 50 and final integration

time tout = 50. Numerical results for different velocities v and cutoff parameters nmax are shown. The dashed
lines indicate N out

n = 0.035v2/n.

The mode functions (3.7) read

φn(t, x) = exp

[
−i

nπ

arctanhv
ln

(
t + x +

l0
v

)]
− exp

[
−i

nπ

arctanhv
ln

(
t − x +

l0
v

)]
(4.5)

with n = 1, 2, ...,∞.

As already noted by Moore [163], the total particle number diverges logarithmically due to the discontinu-
ities in the velocity at the beginning and end of the motion. Castagnino and Ferraro [36] calculated the
Bogoliubov coefficients explicitely and found for the particle spectrum

N out
n ∝ v2

n
for n > 6 and v ≪ 1 . (4.6)

They also conclude that particle creation in this scenario is entirely due to the discontinuities, and no particle
creation takes place during periods of uniform motion, i.e. when the acceleration of the mirror is zero. That a
discontinuity in the mirror velocity does create infinitely many particles has already been discussed at the end
of section 3.5.2. Since particle production from vacuum is related to the mirrors acceleration [see Eq. (3.9)],
any sudden change in the velocity will give rise to a divergent radiated energy.

The numerical simulations are, in general, sensitive to discontinuities in the velocity. Since modes of ar-
bitrary high frequency are excited by a discontinuity and the modes are coupled to each other due to the
time-dependent boundary condition, one has to expect that the convergence of the numerical results is not
very good for cases like the uniform motion (4.3) where discontinuities in the velocity are the only source of
particle production.
In Figure 4.1 I show the final particle spectrum N out

n obtained from numerical simulations for the motion (4.3)
with an initial cavity size l0 = 50. The final integration time is tout = 50, and results for different velocities
and cutoff parameters are displayed. As expected, the convergence of the numerical results with respect to
nmax is very slow. Only for nmax ≥ 100, the spectrum N out

n is stable for the first field modes n ≤ 10. But it
is nevertheless evident that the spectra converge towards a linear decrease ∝ 1/n when increasing the cutoff.
The spectra towards which the numerical results converge are indeed all very well fitted by N out

n = 0.035v2/n
(dashed lines), as predicted by Eq. (4.6). In the simulation, particles are entirely created at tin and tout. At
these points, the initial and final plane wave solutions [cf. Eqs. (3.46),(3.47) ] are matched to the intermediate
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solutions (3.60),(3.60) even though the coupling, which is proportional to the velocity, does not vanish. These
are the discontinuities which lead to the 1/n behavior of the final particle spectrum in accordance with the
analytical prediction (4.6).
Particle production related to discontinuities is proportional to the square of the corresponding velocity for
non-relativistic velocities Nn ∝ v2, v ≤ 0.1. (Recall that in the above discussed example the maximal number
is ≃ 10−4 for v = 0.1.) Therefore, when dealing with non-relativistic cavity motions where other effects like
resonances are the primary source of particle production, contributions from the discontinuity to the particle
production are expected to be small. Nevertheless, when summing over the entire spectrum the total particle
number does diverge. In the simulations this is automatically avoided by the cutoff nmax such that the total
particle number and energy is practically only given by the “truly” excited modes, i.e. modes which are excited
due to primary effects (resonances). Such examples are discussed in the next section for vibrating cavities.
Note that, as already mentioned before, the cutoff nmax has indeed a physical meaning since it accounts for
the non-ideality of the boundary conditions for high frequency modes.

4.3 Particle creation in a vibrating cavity - An overview

The scenario which has attracted most of the attention in recent years are so-called vibrating cavities [132].
In these systems, the distance between two parallel mirrors changes periodically in time leading to resonance
effects between the mechanical motion of the mirror and the quantum vacuum. Under certain conditions, this
results in an exponential growth of the total energy inside the cavity, making it the most prominent candidate
for an experimental verification of the dynamical Casimir effect.

Particle creation in a one-dimensional vibrating cavity has been studied in numerous works, e.g., [56, 57,
58, 104, 195, 59, 120, 77, 37, 219]. Thereby the oscillations of the cavity are considered to be of the particular
form

l(t) = l0 [1 + ǫ sin(ωcav t)] , (4.7)

and small amplitude oscillations ǫ ≪ 1 are assumed. For such a trembling cavity, approximations can be made
and perturbative methods can be used to simplifying the system of coupled second-order differential equations
(3.1). Other work is based on approximate solutions to Moore’s equation [56, 140, 39, 47, 40], again valid for
small amplitudes only.

In the so-called main resonance case where the frequency of the cavity vibrations is twice the frequency
of the first quantized eigenmode inside the cavity,

ωcav = 2Ωin
1 , (4.8)

the total particle number increases quadratically in the short as well as long time limit [57]. Higher cavity
frequencies have been considered in [104, 59]. Particle creation due to off-resonant wall motions, i.e. the
frequency of the wall oscillations does not exactly match the resonance condition, called detuning, has been
studied in, e.g., [59]. In an off-resonantly vibrating cavity the number of created particles may still increase
eternally, or, if the detuning effect is too strong, the particle number oscillates with a period much larger than
the period of the cavity vibrations. Furthermore, it was shown in [46], that the creation of motion induced
radiation is enhanced in a cavity with two moving boundaries (see also [105]).

The evolution of the energy density in a one-dimensional cavity with one vibrating wall has been studied
by numerous authors [140, 39, 157, 47, 186, 2, 147]. In a resonant one-dimensional cavity the energy density
consists mainly of pulses (traveling wave packets) whose number depends on the mechanical frequency of the
cavity vibration. The height of the pulses increases exponentially and their width decreases exponentially with
time while moving inside the cavity and becoming reflected at the boundaries. This proceeds in such a way,
that the total area beneath each peak grows exponentially in time. Consequently, the total energy inside a
resonantly vibrating cavity grows exponentially in time as well [47], although the total number of particles
increases only with a power law [57]. Thus, a pumping of energy into higher frequency modes takes place and
particles of frequencies exceeding the mechanical frequency of the oscillating mirror are created. The energy
for this process is provided by the energy which has to be given to the system from outside to maintain the
motion of the mirror against the radiation reaction force [75, 9, 155, 169].
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Turning the motion (4.7) on at t = 0 leads to a discontinuity in the velocity of the mirror. It has been
shown in [47] that due to such an initial discontinuity a δ-function singularity develops in the energy density
inside the cavity which is reflected back and forth between the mirrors. This δ−function singularity is related
to the artificial excitation of modes of arbitrary high frequency as discussed before. Since it represents an
unphysical process which does not appear in a realistic setup it is usually disregarded in the calculations.

An important result which reveals the coupling structure between the field modes for an arbitrary cavity
frequency ωcav is derived in [41] by means of multiple scale analysis: Two field modes l and k inside an
oscillating cavity are resonantly coupled whenever one of the conditions

ωcav = |Ωin
l ± Ωin

k | (4.9)

is satisfied. This result holds for all cavity dimensions and reveals that the structure of the mode coupling does
depend on the spectrum of frequencies {Ωin

n }. In the one-dimensional case under consideration, the frequency
spectrum {Ωin

n = nπ/l0} is equidistant and therefore infinitely many modes are coupled. For the main resonance
case ωcav = 2π/l0, for example, Eq. (4.9) predicts that only odd modes are coupled, while even modes are not
excited. The numerical simulations will confirm this statement.
It is therefore clear that the scenario of a massless scalar field with its equidistant frequency spectrum in a
one-dimensional cavity represents a special case with strong intermode coupling. Adding a mass or going to
higher cavity dimensions breaks the equidistance of the spectrum and yields a different coupling behavior where
only a few or even no modes are coupled. I shall discuss this in more detail in Chapter 5 where I study the
realistic case of the electromagnetic field in a three-dimensional cavity.

4.4 Particle creation in a vibrating cavity - Numerical results

4.4.1 Main resonance ωcav = 2Ωin
1

Analytical expressions for the number of particles created in the resonant mode n = 1 and for the total particle
number valid for all times have been obtained in [57]

N1(t) =
2

π2
E(κ)K(κ) − 1

2
, (4.10)

N (t) =
1

π2

[(
1 − 1

2
κ2

)
K2(κ) − E(κ)K(κ)

]
. (4.11)

Thereby

κ =
√

1 − exp{−8τ} (4.12)

and τ is the so-called slow time

τ =
1

2
ǫ Ωin

1 t =
π

2

ǫ

l0
t. (4.13)

E(κ) and K(κ) are the complete elliptic integrals [86]. For τ ≪ 1 these expressions yield N(τ) = N1(τ) = τ2

while they lead to the asymptotic behavior N1(τ) = τ and N(τ) = τ2 for τ ≫ 1.

In Figure 4.2 (a) I show the numerical results for a cavity of initial length l0 = 0.1 and ǫ = 10−5 obtained
for an integration time tout = 3500 and compare them to the analytical expressions (4.10) and (4.11). The
numerical results perfectly agree with the analytical expressions of [57] for all times predicting that the initial
quadratic increase of both, the total particle number and the number of particles created in the resonance
mode n = 1, devolves in a quadratic increase of the total particle number and a linear behavior for the number
of resonance mode particles. The particle spectrum at the end of the integration shown in panel (b) for the
two cutoff parameters nmax = 10 and 15 indicates the stability of the numerical results. As one infers from
the spectrum, only odd modes are created as predicted by Eq. (4.9). From the particle spectrum shown for
short times Nn(t = 250) one reads off the value N1(t = 250) = 1.5419× 10−3 which agrees perfectly with the
analytical prediction N1(τ) = τ2|t=250 = 1.5421× 10−3.

In Fig. 4.2 I further show results of numerical simulations for a cavity with initial size l0 = 1 and ǫ = 0.001
[Panels (c) and (d)] and 0.01 [Panels (e) and (f)]. Also for these parameters the analytical predictions (4.10)
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Figure 4.2: Particle numbers Nn(t) and final particle spectra N out
n = Nn(tout) of particles produced in a cavity

vibrating with (4.7) in the main resonance ωcav = 2Ωin
1 for parameters: (a) and (b) l0 = 0.1, ǫ = 0.00001;

(c) and (d) l0 = 1, ǫ = 0.001 and (e) and (f) l0 = 1, ǫ = 0.01. The numerical results are compared to the
predictions (4.10) and (4.11) and the spectra are shown for two cutoff parameters nmax to indicate numerical
stability.
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Figure 4.3: Number of particles created in the modes n = 3 and n = 5 for τ > 1 and parameters l0 = 1 and
ǫ = 0.01 corresponding to Fig. 4.2 (e) and (f). The data is fitted to the linear law Nn(t) = an t + bn.

and (4.11) reproduce the numerical solutions very well for all time scales under consideration. For the ampli-
tude ǫ = 0.01 the number of excited field modes inside the cavity increases drastically. This is reflected by the
value for the cutoff parameter nmax which has to be chosen in order to obtain numerically stable solutions for
the field modes. Whereas for ǫ = 0.001 the value nmax = 30 guarantees stability of the numerical solutions up
to t = 500 it has to be increased to nmax = 110 to provide stable solutions for ǫ = 0.01 up to t = 100.

Already three years before their paper [57] the same authors found in [56] that in the main resonance case, the
rate of particle creation for a mode of frequency Ωin

n (n odd) is given by

dNn(t)

dt
=

4 ǫ

π n
(4.14)

if ǫ t ≫ 1, i.e. τ ≫ 1. Thus, the number of particles created in the excited modes increases linearly for large
times 1. By expanding Eq. (4.10) one easily recovers Eq. (4.14) for the particular case n = 1. As mentioned in
[57], this asymptotic formula works quite well even for τ ≈ 1

2 .
In Figure 4.3 I show the results for the number of particles created in the modes n = 3 and n = 5 for l0 = 1
and ǫ = 0.01 [cf. Fig. 4.2 (e), (f)] for τ > 1. The rate of particle creation obtained by fitting the data to
Nn(t) = ant + bn agrees very well with the values predicted by Eq. (4.14). The numerical calculations lead to
a3 = 0.00417 and a5 = 0.00254 which are in very good agreement with the values a3 = 4 ǫ/(3 π) = 0.00424 and
a5 = 4 ǫ/(5 π) = 0.00255 predicted by Eq. (4.14). The numerical simulations show that the rate of particle
creation for higher frequency modes is very well described by the analytical expression (4.14) beginning at
τ ≈ 1. It was noted in [56] that Eq. (4.14) is valid only for not very large numbers n due to limitations of the
used approximations. For ǫ = 0.01 I have found that Eq. (4.14) perfectly describes the rate of particle creation
for n = 7 and n = 9 as well.

As mentioned before, a particular feature of a resonantly vibrating cavity is the exponential growth of the
total energy associated with the produced quantum vacuum radiation. For the main resonance case it is shown
in [57] that the total energy is described by

E(τ) =
1

4
Ωin

1 sinh2(2 τ). (4.15)

That the energy of the created quantum radiation grows much faster than the total particle number reflects
the excitation of the high frequency modes visible in the spectra shown in Fig. 4.2. Those modes of frequencies
higher than the mechanical frequency of the cavity vibration significantly contribute to the total energy. Much
of the energy is transfered from the resonant mode to the high frequency modes due to the mode coupling.
In Fig. 4.4 (a) I have arranged the numerical results for the particle numbers N (t) and N1(t) and show the

1Note that in [56] a factor 2 was missed which has been corrected in [57].
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Figure 4.4: (a) Summary of numerical results obtained for the particle production in a cavity oscillating
with (4.7) in the main resonance. The total particle number as well as the number of particles created
in the resonance mode is shown for amplitudes l0 ǫ = 10−6, 10−3 and 10−2 corresponding to Fig. 4.2. (b)
Comparison of the numerical results obtained for the energy associated with the created quantum radiation
for the parameters shown in part (a) with the analytical expression (4.15).

corresponding total energy E(t) in panel (b) in comparison with Eq. (4.15). Figure 4.4 (a) again demonstrates
that the analytical expressions (4.10) and (4.11) describe the numerical results very well for values of ǫ up
to 0.01. Comparing the numerical results for the energy with the analytical prediction shows, that for small
amplitudes ǫ = 0.00001 and ǫ = 0.001 the numerical results agree perfectly with the analytical prediction (4.15).
In the case of ǫ = 0.01 the numerically calculated energy deviates slightly from the analytical prediction in
particular for small times where the total particle number is still in very good agreement with the analytical
expression. This can be attributed to spurious effects caused by the initial discontinuity in the mirror velocity.
The discontinuity artificially excites modes up to very high frequencies right at the very beginning of the
dynamics. Since the energy of the created quantum radiation is much more sensitive to contributions from
higher frequency modes than the total particle number, those modes dominate the total energy for short times.
In addition, once excited, these higher frequency modes damp the evolution of the resonant mode. That the
influence of the discontinuity becomes visible for larger values of ǫ is expected, since the initial velocity is
proportional to ǫ 2.
The perfect agreement of the numerics for l0 ǫ = 0.001 with the analytical prediction Eq. (4.15) proves that
the initial discontinuity is of no relevance for such small amplitudes. I shall therefore consider exclusively this
case in the course of the following discussion.

4.4.2 Higher resonances ωcav = 2Ωin
n , n > 1

The scenario in which the cavity oscillates at a higher frequency ωcav = 2Ωin
n = 2nπ (l0 = 1) is studied, for

instance, in [104, 59]. Provided that the slow time (4.13) is small, τ ≪ 1, the number of particles produced in
a mode k is given by [104]

Nk(τ) = (2 n − k) k τ2 , k < 2n , (4.16)

and Nk = 0 for k ≥ 2n. Here n characterizes the frequency ωcav = 2Ωin
n of the cavity vibrations and can take

the values n = 1, 1.5, 2, ... . Consequently, in the short-time limit, the total particle number is given by

N (τ) =

2n−1∑

k=1

(2 n − k) k τ2 =
n

3
(4n2 − 1)τ2 if τ ≪ 1. (4.17)

This expression is also derived in [59] by means of a different method. In [59] it was found that for long times
the particle number grows quadratically, too,

N (τ) =
8n3

π2
τ2 if τ ≫ 1 , (4.18)

2This is discussed in more detail in the publications cited in the introduction.
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Figure 4.5: (a) Total number of particles produced in a cavity vibrating with (4.7) and ωcav = 2nπ with
n = 1.5, 2, 2.5 and 3. The small plot shows the results in the time range [0, 50] together with the analytical
prediction (4.17) (solid line). (b) Energy E(t) corresponding to the results shown in (a) together with the
analytical prediction (4.19) (solid line). The results correspond to the largest cut-off parameters as given in
Fig. 4.6.

and that the energy associated with the motion induced radiation grows, as in the main resonance case,
exponentially in time

E(τ) =
4n2 − 1

12
π sinh2(2nτ). (4.19)

In Fig. 4.5 (a) I show the numerical results for the total particle number in the time range [0, 250] for resonant
cavity frequencies ωcav = 2nπ for n = 1.5, 2, 2.5 and 3. The associated energy of the created quantum radiation
is depicted in Fig. 4.5 (b) and the corresponding particle spectra are shown in Fig. 4.6 for different cutoff
parameters nmax to demonstrate numerical stability of the results. The spectra confirm that no modes k = 2np
with p = 1, 2, 3, ... are coupled (and therefore excited) as predicted by the coupling condition (4.9).

One observes, that by going to higher cavity frequencies the number nmax of modes taken into account in
the system of coupled differential equations has to be increased in order to ensure stability of the numerical
solutions in the given range of integration. While for n = 1.5 the value nmax = 30 guarantees stability, one has
to increase the cut-off to nmax ≈ 100 in the case of n = 3 to obtain stable solutions for the first few modes.
This is due to the fact that for higher cavity frequencies, modes of higher frequencies become excited faster.
Furthermore, for higher cavity frequencies also modes close to the resonant mode become excited due to the
particular structure of the mode coupling.

For short times ǫ π t = 10−3 π t ≪ 1, the numerical results are well described by the analytical predictions
of [104, 59]. The numerically calculated spectra for times t = 25 shown in Fig. 4.6 are well fitted by the
analytical expression (4.16), predicting a parabolic shape of the particle spectrum. More quantitatively, for
n = 2, for instance, the predicted values N1(t = 25) = N3(t = 25) = 4.63 × 10−3, N2(t = 25) = 6.17 × 10−3

agree well with the values N1(t = 25) = 4.62 × 10−3, N2(t = 25) = 6.14 × 10−3 and N3(t = 25) = 4.59 × 10−3

obtained from the numerical simulations with nmax = 50. The total number of created particles is perfectly
described by the expression (4.17) as it is demonstrated in the small plot in Fig. 4.5 (a).

An interesting observation in the final particle spectrum for ωcav = 2Ωin
3 [cf. Fig. 4.6 (d)] is that the number

of particles produced in the resonant mode k = 3 is slightly less than the number of particles produced in
the mode k = 2. I find that up to t ≈ 200 the number of resonant mode particles N3 is larger than N2

but then N2 grows faster and finally overtakes N3. Even though the numerically calculated spectrum is not
stable for higher modes, it is perfectly stable for small k. To demonstrate this, the results for three cut-off
parameters nmax = 90, 100 and 110 are shown in Fig. 4.6 (d). The values of Nk(t = 250) do not change for
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Figure 4.6: Particle spectra for (a) ωcav = 3π, (b) ωcav = 4π, (c) ωcav = 5π and (d) ωcav = 6π corresponding to
the results shown in Fig. 4.5. The small plots compare the numerical results for Nk(t = 25) with the analytical
prediction (4.16) plotted for continuous values of k (solid line).

k = 1, 2 and 3 at all when varying nmax form 90 to 110 3. Also the results for higher frequency modes up
to k ≃ 10 are very stable when changing nmax from 100 to 110. For that reason the fact that the number of
particles created in the resonant mode k = 3 is slightly smaller than the number of particles produced in the less
energetic close-by mode k = 2 is not an artefact of numerical instability of the solutions but rather a real feature.

For the energy, the numerical values and the analytical prediction agree very well for n = 1.5 and 2. In
the case of n = 2.5 and 3 we observe slight deviations towards the end of the integration range. This is due
to the numerical instabilities in the corresponding particle spectra [cf Figs. 4.6 (c) and (d)]. The numerical
values for Nk with k larger than some value (k > 10 for n = 3, for instance) do not remain unchanged when
varying nmax. Even Nk is small for the higher frequencies compared to the values of Nk for the excited lowest
modes, their contribution to the total energy is significant because of their high frequency. Hence relatively
small instabilities in Nk for larger k give rise to a non-stable (with respect to nmax) result for the energy. In
order to gain better agreement of the numerical results for the energy for n = 2.5 and 3 with the analytical
prediction a further increase of nmax is necessary.

3The values, rounded to the third digit, are (0.489, 0.750, 0.738) for nmax = 90, (0.488, 0.750, 0.737) for nmax = 100 and
(0.488, 0.749, 0.736) for nmax = 110 where we use the notation (N1,N2,N3). For comparison, regarding the numerical accuracy,
the largest deviation in the Bogoliubov test is ≈ 4 × 10−4 for nmax = 100 (see Appendix B).
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4.4.3 Detuning

As I have demonstrated, the energy inside a vibrating one-dimensional cavity increases exponentially under
the perfect resonance condition ωcav = 2Ωin

n . The same phenomenon occurs also in three-dimensional cavities
which has led to the hope that it might actually be possible to observe the dynamical Casimir effect in the
laboratory. I will comment on proposals for experiments at the end of Chapter 5 in which I shall discuss
the electromagnetic field. In a realistic experimental setup it will not be possible to operate a (macroscopic)
mechanical device like a moving mirror at exactly the resonance frequency. It is therefore important to study
how particle production is affected if the frequency of the cavity vibration does not exactly match the resonance
condition, i.e. if it is detuned.

The detuned frequency may be parameterized by

ωcav = ωres + ∆ (4.20)

with exact resonance frequency ωres and detuning parameter ∆.

Detuning for a massless scalar field in a one-dimensional cavity subject to sinusoidal oscillations of the form
(4.7) has been investigated analytically in [59, 186]. The exact resonance frequency is again ωres = 2Ωin

n . Let
me rewrite the detuning parameter ∆ introduced in Eq. (4.20) as

∆ =
2π δn

l0
(4.21)

with δn controlling the deviation of the cavity frequency from the exact resonance condition. Introducing the
new parameter

γ =
δn

nǫ
, (4.22)

it has been shown in [59] that there exist three different possibilities for the time evolution of the energy inside
an off-resonantly vibrating cavity depending on γ. If γ < 1 the energy increases exponentially in time

E(τ) =
4n2 − 1

12
π

sinh2(2naτ)

a2
with a =

√
1 − γ2. (4.23)

This is an important threshold. As long as it is possible to adjust the cavity frequency with such an accuracy
that γ < 1, the energy inside the cavity still increases exponentially. For γ = 1 the energy still increases in
time, but only quadratically

E(τ) =
π

3
(4n2 − 1)(nτ)2. (4.24)

If finally γ > 1, detuning is too large and the cavity motion does not support a continuous increase of the
energy inside the cavity anymore. It oscillates instead according to

E(τ) =
4n2 − 1

12ã2
π sin2(2nãτ) with ã =

√
γ2 − 1 (4.25)

and period

Tn(δn, ǫ) =
1

n ǫ ã
. (4.26)

An oscillating energy corresponds to an oscillating particle number. Hence, for strong detuning, particles
are created and annihilated by the off-resonant motion of the cavity. Processes leading to oscillating occu-
pation numbers can be found in many other scenarios dealing with quantum fields under the influence of
time-dependent external fields [87].

In Figure 4.7 (a) I show the numerical results for the total energy for different off-resonant frequencies cov-
ering all three different possibilities for γ and compare them with the analytical predictions. As before, the
parameters l0 = 1 and ǫ = 0.001 have been used. For n = 2, δn = 0.001 and hence γ = 0.5 the energy still
increases exponentially in time. The case γ = 1 is realized by the parameter combination n = 1 and δn = 0.001
yielding quadratic growth of the energy inside the cavity. Furthermore, three examples for γ > 1 leading to
oscillations of the energy are shown. In all three cases, the results of the numerical simulations coincide with
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Figure 4.7: (a) Total energy associated with the particles produced in an off-resonantly vibrating cavity. The
numerical results are compared with the analytical predictions (4.23) - (4.25). The given values for the cut-off
ensure numerical stability. (b) Period and (c) maximal amplitude of the particle number oscillations caused
by detuning. The numerically obtained periods are compared with Eq. (4.26).
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Figure 4.8: (a) Time evolution N (t) and (b) spectra Nk[T1(δn, ǫ)/2] of the occupation numbers in a cavity
oscillating with detuned frequency 2(1 + δn)π. The spectra are shown for the oscillating occupation numbers
only and correspond to times where the amplitude is maximal, i.e. T1(δn, ǫ)/2.

the analytical predictions. Figure 4.7 (b) depicts the periods of the energy (and particle number) oscillations
as obtained from the simulations with n = 1, 1.5, 2 and 2.5 and δn ranging from 0.003 to 0.005. Comparison
with the analytical prediction Eq. (4.26) shows that they are in excellent agreement. The numerical values for
the maximal amplitudes N [Tn(δn, ǫ)/2] of the corresponding particle number oscillations are shown in Fig. 4.7
(c) and fitted to the power law N [Tn(δn, ǫ)/2] ∝ (δn)α with values of α as indicated in the figure.
Let me discuss the n = 1 case in more detail. Figure 4.8 (a) depicts the numerical results for the total particle
number N for the detuned case ωcav = 2π(1 + δn) for different δn. Panel (b) shows the corresponding particle
spectra for values of δn such that γ > 1 taken at half the period Tn(δn, ǫ)/2 of the oscillations, i.e. when N (t)
has its maximal amplitude. In each case the total particle number N (t) is shown for two cutoff parameters
nmax to underline numerical stability of the results.
One observes, that for decreasing δn the shape of the spectra converges towards the spectra obtained for the
resonance case, cf. Fig. 4.2 (d). For the largest considered value δn = 0.005, i.e. strongest detuning, the
shape of the particle spectra equals the parabolic short time spectra of the exact resonance case, i.e. only the
resonant mode itself becomes excited, cf. small plot in Fig. 4.2 (d). The turning point in the time evolution of
the number of particles created in the ”resonant” mode n = 1 is already reached when higher modes are still
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not excited. The excitation of the next coupled mode n = 3 is sufficiently strong from t ≈ 150 on only since N3

does not contribute to the total particle number for times t < 150 as visible in Fig. 4.2 (c). For times t > 150,
the coupling to the resonance mode excites the n = 3-mode and creation of particles in this mode sets in. From
Fig. 4.8 (a) one infers that the first maximum of the oscillating particle number is at t ≈ 100, i.e. it is reached
before the n = 3-mode is excited. Thus, with N1 decreasing afterwards due to detuning, there is no time left to
excite the n = 3-mode. For smaller values of the detuning parameter the maximum of the oscillating particle
number is shifted towards larger times. Hence the excitation of higher modes can set in before detuning leads
to damping, and thus the shapes of the particle spectra equal more and more the one of the exact resonant case.

Next, I compare the results for particle production obtained for the sinusoidal motion (4.7) with the following
cavity dynamics

l(t) = l0 [1 + ǫ (1 − cos(ωcavt))] = l0

[
1 + 2ǫsin2

(ωcav

2
t
)]

with ωcavity = 2Ωin
n . (4.27)

Note that for this motion l̈ jumps at t = 0, but not l̇.
Studying particle creation for this motion reveals an important effect related to detuning which, as it seems,
has not been emphasized in the literature so far. It is frequently assumed (e.g., [4, 57]) that the behavior of the
occupation number in an oscillating cavity is the same for both motions (4.7) and (4.27). However, as I will
show now, this is not the case. Let me restrict my discussion to the main resonance case ωcav = 2π (l0 = 1). In
Fig. 4.9 (a) the numerical results for the number of created particles for the same parameters as in Fig. 4.2 (c)
and (d) [l0 = 1, ǫ = 0.001] are shown and compared to the analytical predictions (4.10) and (4.11). The final
particle spectra are depicted in panel (b). One observes that the numerical results do not match the analytical
predictions, except for short times. Consequently, particle production behaves indeed differently for the two
motions.
Comparing N (t) obtained for the motion (4.27) [cf. Fig. 4.9 (a)] with N (t) for the detuned sinusoidal motion
with detuning strength δn = 0.001 [cf. Fig. 4.8 (a)], reveals that both are identical, not only qualitatively but
also quantitatively. Recall that the detuned case δn = 0.001 corresponds to γ = 1, i.e. the total energy inside
the cavity increases quadratically with time [cf. Eq. (4.24)]. One finds that the energy produced inside the
cavity oscillating with (4.27) is very well fitted by a power law E(t) = 7.727 × (ǫt)2. But this is exactly the
behavior predicted by Eq. (4.24) for the detuned sinusoidal motion with δn = 0.001 (thus γ = 1). Why does
the cosine motion with ωcav = 2π lead to the same behavior for the energy as the detuned sinusoidal motion?
The reason is, that one has to formulate the resonance condition more precisely: An exact resonance occurs,
if the external frequency ωcav is twice the eigenfrequency of a cavity mode defined with respect to the average
position of the mirror, i.e. if

ωres = 2Ω<l>
n ≡ 2 n π

< l >
. (4.28)

Here < l > denotes the average position of the oscillating mirror. Whereas for the cavity motion (4.7) the
average position of the moving mirror is identical to the initial size l0, it is < l >= l0 + ǫ in case of Eq. (4.27).
Thus, Eq. (4.27) is not a resonant cavity motion for ωcav = 2Ωin

n , but a detuned one! The detuning parameter

is ∆ = 2Ωin
n −ωres = 2Ωin

n (< l > −l0)/< l >. For n = 1 and l0 = 1 this reduces to ∆ = 2π
(

ǫ
1+ǫ

)
≃ 2π ǫ, hence

δn = ǫ = 0.001 and thus γ = 1 [cf. Eq. (4.21)]. This explains why the energy inside the cavity is described by
Eq. (4.24).
Consequently, by replacing the cavity frequency ωcav = 2π in (4.27) by ωcav = 2 π/(1 + ǫ), i.e. no detuning,
the result for the cosine motion should coincide with the one for the sinusoidal motion, and be described by
Eqs. (4.10) and (4.11). This is confirmed by the numerical simulations and demonstrated in Figs. 4.10 (a) and
(b). With the “corrected frequency”, the time evolution of the number of created particles is now qualitatively
as well as quantitatively in very good agreement with the analytical predictions (4.10) and (4.11).
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Figure 4.9: (a) Time evolution of the occupation number in a one-dimensional cavity oscillating with (4.27)
and frequency ωcav = 2π (l0 = 1) and amplitude ǫ = 0.001. The solid line represents the analytical prediction
(4.10) derived for the cavity motion (4.7). (b) Particle spectrum corresponding to (a).
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Figure 4.10: (a) Time evolution of the occupation number in a one-dimensional cavity oscillating with (4.27)
and frequency ωcav = 2π/(1 + ǫ), i.e. the “true resonance” frequency. The solid and dotted lines represent
Eqs. (4.10) and (4.11), respectively. (b) Particle spectrum corresponding to (a).
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4.5 Discussion and final remarks

The main purpose of the work presented in this Chapter has been to test the very concept of investigating
the dynamical Casimir effect fully numerically. Even though not very realistic, the model of a one-dimensional
cavity represents a very good playground for testing the numerics, in particular the scenario of a vibrating
cavity with its strong intermode coupling. Thereby, the results of the numerical simulations are entirely in
perfect agreement with the variety of available analytical predictions. This may be regarded as not very exciting
but, nevertheless, it leads to two conclusions. On the one hand it has demonstrated that the analytical results
derived in the literature by means of approximations are indeed correct within their range of validity. On the
other hand and not less important, it is a “proof of concept”. One has a numerical formalism at hand, which
allows to investigate particle production due to moving boundaries fully numerically which can be applied to
scenarios where less is known analytically than in the simple model discussed here.



Chapter 5

Photon creation in a three-dimensional

vibrating cavity

5.1 The electromagnetic field in a dynamical cavity

Let me begin by recalling that the free Maxwell equations describing the electromagnetic field in a region where
there are no sources (charges and currents), are (see, e.g., [158])

∇E(t,x) = 0 , ∇B(t,x) = 0, (5.1)

∇∧ E(t,x) = −∂tB(t,x) , ∇ ∧B(t,x) = ∂tE(t,x) . (5.2)

Consider now a perfectly reflecting flat boundary (ideal mirror) with normal vector x̂ pointing into the x -
direction. The ideality of the mirror requires that the electromagnetic field is subject to the boundary conditions
(see, e.g.,[158])

E‖|mirror = 0 ⇔ x̂ ∧ E|mirror = 0 (5.3)

B⊥|mirror = 0 ⇔ x̂ ·B|mirror = 0. (5.4)

Here ‖ and ⊥ denote the components of the field parallel and perpendicular to the mirror, respectively.

If the mirror is in motion, the boundary conditions (5.3,5.4) have to be imposed in the comoving Lorentz
frame in which the mirror is instantaneously at rest [163]. I shall follow here the standard approach, where
this problem is tackled by a decomposition of the fields into transverse-electric (TE) and transverse-magnetic
(TM) modes [155, 156, 169, 42].
The decomposition reads

E(t,x) = E(TE)(t,x) + E(TM)(t,x) (5.5)

B(t,x) = B(TE)(t,x) + B(TM)(t,x) (5.6)

with
E(TE)(t,x) · x̂ = 0 , B(TM)(t,x) · x̂ = 0. (5.7)

The main step is to introduce two different vector potentials A(TE) and A(TM) for each polarization trough
[155]

E(TE) = −∂tA
(TE) , E(TM) = ∇ ∧A(TM) (5.8)

B(TE) = ∇ ∧A(TE) , B(TM) = ∂tA
(TM). (5.9)

This ansatz is suggested by the invariance of the free Maxwell equations under the duality transformation
E → B, B → −E [155]. With these definitions the decompositions (5.5) and (5.6) read

E(t,x) = −∂tA
(TE)(t,x) + ∇∧ A(TM)(t,x) (5.10)

B(t,x) = ∇ ∧ A(TE)(t,x) + ∂tA
(TM)(t,x). (5.11)

45
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Both potentials are subject to the Coulomb gauge, i.e.

∇ · A(TE/TM) = 0 (5.12)

and satisfy the wave equation
2(4)A

(TE/TM)(t,x) = 0. (5.13)

Recall that the corresponding scalar potentials are identically zero due to the absence of sources.
From the definition of the vector potentials (5.8) and (5.9) jointly with Eqs. (5.7) it follows the important
result that

A(TE) · x̂ = 0 and A(TM) · x̂ = 0. (5.14)

Ergo, the newly introduced vector potentials are both invariant under a boost in the x-direction.

Consider now the following situation. In the Laboratory frame Σ the position of the moving mirror is given by
xmirror = l(t). At a given time t0 the mirror is located at l(t0). For times t sufficiently close to t0, the position
of the mirror is given by xmirror = l̇(t0)(t− t0)+ l(t0); it moves uniformly with velocity v(t0) = l̇(t0). The frame
Σ′(t0) moving with this trajectory represents the instantaneously comoving frame at time t0 [169]. Hence, the
coordinates in both frames are related via the Lorentz transformation

x = γ (x′ + vt′) + l(t0) , t = γ (t′ + vx′) + t0 , x‖ = x′
‖ (5.15)

with γ = 1/
√

1 − v2.

In the instantaneous rest frame Σ′ of the mirror the fields satisfy the boundary conditions (5.3,5.4), i.e.

x̂ ∧ E′(t′ = 0, x′ = 0,x′
‖) = 0 and x̂ ·B′(t′ = 0, x′ = 0,x′

‖) = 0. (5.16)

From the decomposition of the fields in TE- and TM-components one finds the corresponding conditions for
the vector potentials

∂t′A
(TE) ′

(t′ = 0, x′ = 0,x′
‖) = 0 (5.17)

∂x′A(TM) ′

(t′ = 0, x′ = 0,x′
‖) = 0. (5.18)

Using that
∂t′ = γ (v∂x + ∂t) and ∂x′ = γ (∂x + v∂t) , (5.19)

as well as that A(TE) and A(TM) are invariant under a boost in the x-direction one arrives at

γ(v∂x + ∂t)A
(TE)(t = t0, x = l(t = t0),x‖) = 0 , (5.20)

γ(∂x + v∂t)A
(TM)(t = t0, x = l(t = t0),x‖) = 0. (5.21)

For the TE-potential, γ(v∂x + ∂t) is just the total derivative d/dt. This implies that A(TE)(t, x = l(t),x‖) has
to be constant since t0 is arbitrary. One can set this constant to zero without loss of generality. Therefore, the
boundary conditions for the vector potentials at the moving mirror are

A(TE)(t, x = l(t),x‖) = 0 (5.22)

(∂x + v∂t)A
(TM)(t, x = l(t),x‖) = 0. (5.23)

The TE-mode vector potential obeys a Dirichlet boundary condition while the TM-mode vector potential is
subject to a generalized Neumann boundary condition, i.e. a mixture of a Neumann boundary condition and
a time-derivative, which I have already derived in Section 3.3.2 starting from the general variational principle
[cf. Eq. (3.30)].

In the following I shall consider a rectangular cavity made of perfectly conducting walls (ideal mirrors) of
dimensions {(0, lx = l(t)), (0, ly)(0, lz)}, with the right wall following a prescribed trajectory l(t) (cf. Fig. 5.1).

Using the just outlined considerations on the boundary conditions, it has been shown explicitely in [42]
that the behavior of each component of the TE vector field inside an ideal cavity is related to that of a scalar
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Figure 5.1: A three-dimensional cavity made of perfectly conducting walls. The right wall undergoes a pre-
scribed trajectory l(t).

field subject to Dirichlet boundary conditions at all cavity walls. Similarly, the dynamics of TM-modes can be
mapped onto the problem of a scalar field subject to the generalized Neumann boundary conditions. There-
fore, the dynamics of the electromagnetic field (and thus the problem of photon creation) inside a dynamical
rectangular cavity can be split up into two separate boundary value problems for the two different polarizations

2(4)Φ(t,x) = 0 with






Φ|all walls = 0 for TE − modes

(v∂t + ∂x)Φ|x=l(t) = ∂xΦ|static walls = 0 for TM − modes
. (5.24)

By this analogy, the number of created photons in TE- and TM - modes equals the number of created scalar
particles subject to Dirichlet and (generalized) Neumann boundary conditions, respectively [42]. In the next
section I shall discuss the TE-modes in detail.

5.2 Transverse electric modes

As I have just outlined, the study of photon production inside a rectangular ideal cavity is equivalent to the
study of the production of scalar particles. For TE-modes, the problem is described by the wave equation

2(4)Φ(t,x) = [∂2
t −△(3)]Φ(t,x) = 0 (5.25)

for a massless scalar field Φ(t,x) subject to Dirichlet boundary conditions at all walls of the cavity.
As in section 3.1, at any moment in time the field can be written as

Φ(t,x) =
∑

n

qn(t)φn(t,x) (5.26)

with canonical variables qn(t) and functions

φn(t,x) =

√
2

l(t)
sin

[
nxπ

l(t)
x

]√
2

ly
sin

[
nyπ

ly
y

]√
2

lz
sin

[
nzπ

lz
z

]
(5.27)

ensuring Dirichlet boundary conditions at all cavity walls [41]. The functions φn(t,x) form an orthonormal
and complete set of instantaneous eigenfunctions of the Laplacian −△(3) with time-dependent eigenvalues

Ωn(t) = π

√(
nx

l(t)

)2

+

(
ny

ly

)2

+

(
nz

lz

)2

. (5.28)
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Each field mode is labeled by three integers nx, ny, nz = 1, 2, ... for which I use the abbreviation n = (nx, ny, nz).
Inserting the expansion (5.26) into the field equation (5.25), multiplying it by φm(t, x) and integrating over
the spatial dimensions leads to the equation of motion for the canonical variables qn(t)

q̈n(t) + Ω2
n
(t)qn(t) + 2

∑

m

Mmn(t)q̇m(t) +
∑

m

[
Ṁmn(t) − Nnm(t)

]
qm(t) = 0 (5.29)

which is of the same form as for the one-dimensional case studied in section 3.1. The time-dependent coupling
matrices Mnm(t) and Nnm(t) are given by [41]

Mnm =

∫ l(t)

0

dx

∫ ly

0

dy

∫ lz

0

dz φ̇n(t,x)φm(t,x)

=
l̇(t)

l(t)





(−1)nx+mx

2nxmx

m2
x − n2

x

δnymy
δnzmz

if nx 6= mx

0 if nx = mx

and
Nnm =

∑

k

MnkMmk. (5.30)

Thus, Mnm = Mnxmx
δnymy

δnzmz
with Mnxmx

the coupling matrix (3.5) of the one-dimensional case. In
Eq. (5.29), for a given mode (nx, ny, nz), the coupling matrix (5.30) yields couplings of q(nx,ny,nz) to q(mx,ny,nz)

and to q̇(mx,ny,nz) only, i.e. entirely summations over mx appear. Modes of different quantum numbers with
respect to the non-dynamical cavity dimensions are not coupled. The quantum numbers corresponding to the
y- and z-directions enter the equations of motion only globally. This allows me to make the identifications

qn(t) ≡ q(nx,ny,nz)(t) and Ωn(t) ≡ Ω(nx,ny,nz)(t) =

√[
nπ

l(t)

]2
+ k2

‖ (5.31)

with n ≡ nx and the wave number

k‖ = π

√(
ny

ly

)2

+

(
nz

lz

)2

(5.32)

associated with the non-dynamical cavity dimensions. Because all summations over m = (mx, my, mz) involv-
ing the coupling matrix (5.30) reduce to summations over a single quantum number m ≡ mx, Eq. (5.29) is
equivalent to the differential equation describing a massive scalar field on a time-dependent interval [0, l(t)]
(one-dimensional cavity) when k‖ is identified with the mass of the field

m = k‖ =
M

l0
. (5.33)

M is a dimensionless parameter which I shall use in the numerics and l0 = l(tin) is the initial position of the
moving mirror.
The analogy between TE-mode photons and massless scalar particles in a three-dimensional cavity implies,
that the number of produced TE-polarized photons equals the number of scalar particles of “mass” k‖ created
in a one-dimensional cavity [0, l(t)]. Production of TE-polarized photons in a three-dimensional dynamical
cavity can therefore be studied numerically with the formalism introduced in Chapter 3.
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5.3 Known analytical results

In what follows, I consider again the periodic trajectory

l(t) = l0 [1 + ǫ sin(ωcav t)] , ǫ ≪ 1. (5.34)

Recall that two field modes l and k are coupled whenever one of the conditions given by Eq. (4.9) is satisfied.
While for a massless field in a one-dimensional cavity mode coupling always occurs due to the equidistance of
the frequency spectrum, only a few or even no modes may be coupled for TE-modes since the effective mass
m (higher dimensionality of the problem) breaks the equidistance.
In a resonantly vibrating cavity ωcav = 2Ωin

n with not one of these conditions fulfilled, the number of TE-mode
photons created in the resonant mode n increases exponentially in time [41]

Nn(t) = sinh2(n γn ǫ t) with γn =
n

2 Ωin
n

(
π

l0

)2

. (5.35)

Here I have translated the results for three-dimensional cavities to the case of massive scalar particles according
to Eq. (5.33).
By means of multiple scale analysis the authors of [41] also studied the resonance case ωcav = 2Ωin

n with two
coupled modes n and k satisfying

3Ωin
n = Ωin

k . (5.36)

For the particular case n = 1 and k = 5 analytical expressions for the number of TE-mode photons are derived
in [41]. Given a mode n, I can couple it to a particular mode k by tuning the mass M (or equivalently k‖)
such that the condition (5.36) is fulfilled. It is important to note, that coupling between modes does occur
even if Eq. (4.9) is detuned, i.e. if Eq. (4.9) is satisfied by the frequencies Ωin

k and Ωin
l only approximately. The

particular case of two modes n and k satisfying

(3 + κ)Ωin
n = Ωin

k (5.37)

without additional couplings to higher modes is studied in [62]. For sufficiently small κ (i.e., κ < ǫ) the two
modes n and k are still resonantly coupled and the number of particles produced in both modes increasing
exponentially with time.

5.4 Numerical results for TE-modes

In the following I restrict myself to the discussion of the the main resonance case ωcav = 2Ωin
1 . Higher resonances

are briefly discussed in the corresponding publication mentioned in the introduction. In Fig. 5.2 the number
of particles created in the resonant mode n = 1 is shown for masses M = 0.2, 0.7, 2 and 3.5 and compared
to the analytical prediction Eq. (5.35) 1. For M = 0.7, 2 and 3.5 the numerical results are well described by
Eq. (5.35) which is valid provided that the resonant mode n = 1 is not coupled to other modes. But for the
mass M = 0.2 the numerical result for N1(t) disagrees with the analytical prediction (5.35). This shall now be
discussed in detail.
Figure 5.2 (b) shows the corresponding particle spectra at time t = 6700. As one infers from these spectra, the
mode which becomes excited most is indeed the resonant mode n = 1 for masses M = 3.5, 2 and 0.7. However,
also higher modes become excited but the corresponding particle numbers are several orders of magnitude
smaller than the number of particles created in the resonant mode. For M = 0.7, for example, the mode k = 3
is clearly excited. Figure 5.3 (a) shows the number of particles created in the modes k = 1, 2 and 3 for the
mass parameter M = 0.7 in detail. The difference in the numerical values of N1 and N3 is so large that the
contribution of N3 to the total particle number is negligible such that N ≃ N1. From Fig. 5.3 (a) one could
conclude that N2 behaves in the same way as N3 but shows superimposed oscillations. However, the high
resolution figures provide a more detailed view on the time evolution of Nk(t) for modes k = 2 and 3. In the
upper panel of Fig. 5.3 (a) the resolution in which the numerical results are shown is not sufficient in order
to resolve the details which are visible in the lower panel plots of Fig. 5.3 (a). These high resolution pictures
reveal that N3 increases exponentially in time with oscillations superimposed on an average particle number

1In this section I use the general notion “particles” for massive scalar particles, or equivalently, TE-mode photons. Furthermore,
I call M the mass of the particle, having in mind that it corresponds to the wave number k‖ for TE-mode photons.
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Figure 5.2: (a) Number of particles created in the resonance mode n = 1 for mass parameters M = 0.2, 0.7, 2,
and 3.5 in comparison with the analytical prediction (5.35). (b) Particle spectrum for different mass parameters
M = 3.5, 2, 0.7 and M = 0.2 at time t = 6700 corresponding to (a). The spectra are shown for nmax = 10
(dots) and nmax = 20 (squares) to demonstrate numerical stability.

0 1000 2000 3000 4000 5000 6000 7000
t

10
-6

10
-3

10
0

10
3

10
6

10
9

N
k(t

)

(a)

0

2

4

N
2(t

)

2.3

2.4

2.5

N
3(t

)

6557 6558
t

l(t
)

6557 6558
t

l(t
)

k=1
k=3
k=2

x10
4

x10
2

0 1000 2000 3000 4000 5000 6000 7000
t

10
-6

10
-3

10
0

10
3

10
6

10
9

N
k(t

)

(b)

0

1

2

3
N

2(t
)

6.6

6.7

6.8

6.9

N
5(t

)

6557 6558 6559
t

l(t
)

6557 6558 6559
t

l(t
)

k=1
k=3

k=2

k=4

k=5

x10
4 x10

2

Figure 5.3: (a) Number of particles created in the modes k = 1, 2 and 3 for M = 0.7 and (b) number of particles
created in the modes k = 1, 2, 3, 4 and 5 for M = 0.2, corresponding to the spectrum shown in Fig. 5.2 (b).
The small plots are high resolution figures for the two time resolutions ∆t = 0.01 (circles) and ∆t = 0.005
(solid lines). The particle numbers calculated for times at which the mirror has returned to its initial position
are accented by “+” and the background motion is shown for comparison as well.

whereas N2 itself oscillates strongly with an amplitude negligibly small compared to N1.
The small scale oscillations in the particle numbers are correlated with the periodic motion of the mirror which
is depicted in the high resolution plots of Fig. 5.3 as well. One infers that the particle numbers show oscilla-
tions also when the expectation value (3.56) is calculated only for times at which the mirror has returned to
its initial position l0, i.e. if one uses Eq. (3.75). However, when calculating the particle number only after a
full period of the mirror oscillations, no small scale oscillations in the particle numbers are left.

The observation that also higher modes become excited (even though they are very much suppressed) is
explained by the fact, that two modes k and l are coupled even if Eq. (4.9) is not exactly satisfied by the two
frequencies Ωin

k and Ωin
l . For M = 0.7 the equation 3Ωin

1 = Ωin
k has no solution for integer k. Thus taking

Eq. (4.9) as an exact equation only the resonant mode n = 1 should become excited and particle creation should
take place in this mode exclusively. Inserting M = 0.7 one finds the solution k ≈ 3.07 which is apparently
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close enough to the integer value k = 3 to excite that mode.
For smaller values of M the solution of 3Ωin

1 = Ωin
k approaches the value k = 3 and one has to expect that

for sufficiently small values of M the mode coupling becomes again so strong that Eq. (5.35) does no longer
describe the numerical results. This is the case for M = 0.2 yielding k ≈ 3.005 for which a strong coupling
between the modes n = 1 and k = 3 occurs. Furthermore, from Eq. (4.9) and the coupling of n = 1 to k = 3
follows 2Ωin

1 +Ωin
3 = Ωin

l which has l ≈ 5.004 as solution, hence the mode k = 3 is coupled to the mode l = 5. In
the same way the mode 5 is coupled to the mode 7. Thus interpreting Eq. (4.9) as ωcav ≃ |Ωin

k ± Ωin
l | explains

the numerically computed particle spectrum for M = 0.2 [cf. Fig. 5.2 (b)] which shows similar features as the
spectrum obtained for the massless case [cf. section 4.4.1].

One observes that for M = 0.2 also even modes become excited (like also for M = 0.7) which is not the
case for M = 0, i.e. in the case of a one-dimensional cavity. These modes are dragged by the strongly excited
modes (odd modes) and rapidly oscillate (like N2 for M = 0.7) with an amplitude several orders of magnitude
smaller compared to N1, N3 and N5. In Fig. 5.3 (b) I show the number of particles created in the modes k = 1
to 5 for M = 0.2 to illustrate the just-stated. As for M = 0.7 the number of particles created in the odd modes
increases exponentially showing oscillations superimposed on an average particle number, while the number
of particles created in the even modes k = 2 and k = 4 consists mainly of oscillations with amplitudes much
smaller compared to the number of particles created in the odd modes.

The fact that mode coupling occurs even if Eq. (4.9) is not satisfied exactly is well known. One can rewrite
the expression 3Ωin

n ≃ Ωin
k to get (3 + κ)Ωin

n = Ωin
k [Eq. (5.37)]. As mentioned at the end of the former section,

for sufficiently small κ the modes n and k are still resonantly coupled, provided that no coupling to higher
modes exists [62]. However, the case of two detuned coupled modes does not apply to the scenario discussed
here. Decreasing the detuning, i.e. reducing the value of M , does not only strengthen the coupling between
the modes n = 1 and k = 3 which would lead to an exponential growth of the particle number in both modes,
but also enhances the coupling strength to higher modes k = 5, 7, ... because the frequency spectrum becomes
equidistant as M → 0. The convergence of the numerical results towards the analytical expressions for the
massless case is demonstrated below.

To study in more detail how the number of produced particles depends on the mass, I have performed numerical
simulations for a wide range of values for M . The results are summarized in Fig. 5.4 in a “mass spectrum”,
where the number of particles created in the resonant mode N1(t = 2000) is plotted as a function of M and
compared to the analytical prediction Eq. (5.35). Particular values of M for which Eq. (4.9) gives integer so-
lutions, i.e. exact (un-detuned) intermode coupling, are marked by arrows. Numerical results for these values
are not included in the spectrum. Cases with exact coupling shall be discussed below.
The numerical values for N1 perfectly agree with the analytical prediction (5.35) for values of M larger than
roughly M ≈ 0.6. For masses smaller than this threshold value, the number of created particles is smaller
compared to the analytical prediction. The mass spectrum has a maximum at M ≈ 0.4, i.e. the production of
particles in the resonant mode is most efficient for this particular mass. When M < 0.4 the number of created
particles drops down and approaches the M = 0 result. The appearance of a maximum in the mass spectrum
is clear from the above discussion. For the particular value M = 0.4 the equation 3Ωin

1 = Ωin
k leads to a value

k = 3.02 which is close enough to the integer solution k = 3 to couple this mode strongly to the resonant
mode. On the other hand, the coupling to higher modes is still suppressed. Figure 5.5 (a) shows the particle
spectrum obtained for M = 0.4 for different times, and in Fig. 5.5 (b) the time evolution of the number of
particles created in the modes k = 1, 2, 3 and 4 is plotted. For the even modes k = 2 and 4 the same oscillating
behavior is observed as for M = 0.7 and M = 0.2. But the coupling of the mode k = 3 to the mode n = 1
damps the evolution of the resonant mode.
For increasing masses larger than M = 0.4 the excitation of higher modes becomes more and more suppressed
[cf Fig. 5.2 (a)]. Accordingly, the numerical results match the analytical expression (5.35) predicting that the
number of created particles decreases with increasing mass. Decreasing the mass below M = 0.4 enhances the
strength of the intermode coupling which results in a damping of the resonant mode n = 1. Consequently
the number of particles produced in the resonant mode (and also the total particle number) is smaller than
predicted analytically.
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Figure 5.4: Number of particles created in the resonance mode n = 1 at time t = 2000 as a function of the mass
parameter M . The solid line shows the analytical prediction Eq. (5.35). Arrows pointing towards particular
values of M mark masses for which Eq. (5.35) is not valid because of exact intermode coupling. The coupled
modes are given in brackets [(1, k)]. No numerical results are shown in the plot for these cases. Most of the
numerical results are shown for different values of the cutoff nmax to underline stability.
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Figure 5.5: (a) Particle spectra for mass parameter M = 0.4 at times t = 1500, 3000, 4500 and 6700. Each
spectrum is shown for values nmax = 10 (dots) and nmax = 20 (squares) to indicate numerical stability. (b)
Upper panel: number of particles created in the modes k = 1, 2, 3 and 4 for the mass parameter M = 0.4
corresponding to the spectra shown in (a). Lower panels: N3(t) and N2(t) in each case for the two resolutions
∆t = 0.01 (circles) and ∆t = 0.005 (solid lines).

When studying the limit M → 0, the numerical results should converge towards the well known results for
the massless case studied in Section 4.4.1. This is demonstrated in Fig. 5.6 where the total particle number
and the number of particles created in the resonant mode n = 1 are depicted for M = 0.2, 0.15, 0.1 and 0.05
up to t = 500 and compared with the analytical predictions for M = 0 [cf. Eqs. (4.10) and (4.11), Fig. 4.2 (c)].
While for M = 0.2 the total particle number N (t) is still mainly given by N1(t), a divergency between N (t)
and N1(t) starts to become visible for M = 0.15, i.e. the influence of the intermode coupling gains importance.
For M = 0.1 the numerical results are close to the analytical M = 0-results and are virtually identical with
them for M = 0.05.
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Figure 5.6: Total particle number N (circles) and number of particles created in the resonant mode N1 (squares)
for mass parameters M = 0.2, 0.15, 0.1 and 0.05 together with the analytical predictions for the massless case
Eq. (4.10) (dashed line) and Eq. (4.11) (solid line) to demonstrate the convergence of the solutions towards
the M = 0 case. The cut-off parameter nmax = 30 was used in the simulations.

I now turn to cases with exact coupling between two modes which takes place if Equation (4.9) has inte-
ger solutions. Exact coupling between two modes n and k occurs if Eq. (5.36) is satisfied. In [41] the authors
derive analytical expressions (Eqs. (54) and (55) of [41]) for the case that the TE-mode Ωin

(1,1,1) (resonant

mode) is coupled to the mode Ωin
(5,1,1), i.e. 3Ωin

(1,1,1) = Ωin
(5,1,1) is fulfilled. This particular case is equivalent to

the coupling of the massive modes n = 1 and k = 5 if M =
√

2π (l0 = 1). Figure 5.7 (a) shows the particle
spectrum at four different times. The cutoff parameter nmax = 20 guarantees stability of the numerical results.

The numerical simulations confirm the prediction that virtually only the modes n = 1 and k = 5 become
excited and particles are produced exclusively in the two coupled modes. Thereby the rate of particle creation
is equal for the two modes. In Fig. 5.7 (b) I show the numerical results for N1(t) and N5(t) and compare
them with the analytical expressions Eq. (54) and Eq. (55) of [41] derived via multiple scale analysis (MSA).
Whereas the numerical results agree quite well with the analytical prediction of [41] for long times, one ob-
serves a discrepancy between the numerical results and the analytical predictions for ”shorter times” up to
t ≈ 3000 (ǫπ t = 3π). For long times, the analytical predictions nicely reproduce the large scale oscillations
in the exponentially increasing particle numbers. But while the analytical expressions predict that for times
t < 500 N1 and N5 increase with the same rate, I find from the numerical simulations that the production
of particles in the mode k = 5 sets in after the production of particles in the n = 1-mode. Apart from the
differences for short times the numerical results are well described by the analytical predictions of [41]. The
discrepancy between the analytical predictions and the numerical results for short times is due to the fact that
the multiple scale analysis in [41] only considers the resonant coupled modes, but for short enough times, all
modes should be treated on an equal footing [49].
As a second example of exact coupling between two modes I show in Fig. 5.8 the numerical results obtained
for M =

√
7/8π for which the mode n = 1 is coupled to the mode k = 4.

Let me finally discuss another case with exact coupling of two modes which impressively demonstrates that
strong coupling between modes k and l occurs even if Eq. (4.9) is satisfied only approximately. For M =

√
5π

equation (4.9) predicts that the mode n = 1 is exactly coupled to the mode k = 7. The equation 2Ωin
1 = Ωin

l −Ωin
7

is not satisfied by an integer l, but has the solution l ≈ 12.04 which is close to the integer l = 12. Thus one ex-
pects a coupling of the mode k = 7 to the mode l = 12. In addition, one finds that the equation 2Ωin

1 = Ωin
m−Ωin

12

has solution m ≈ 16.96, hence l = 12 is coupled to m = 17. In the same way the equation 2Ωin
1 = Ωin

j − Ωin
17

which is solved by j ≈ 21.93 leads to a coupling between the modes m = 17 and j = 22. Hence, from the
numerical simulations, one expects to find a particle spectrum which shows that particle creation takes place
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Figure 5.7: (a) Particle spectra for ωcav = 2Ωin
1 and mass parameter M =

√
2π yielding exact coupling between

the modes n = 1 and k = 5. Dots correspond to nmax = 10 and squares to nmax = 20. (b) Number of particles
created in the modes n = 1 and k = 5 corresponding to the particle spectra depicted in (a). The numerical
results are compared to the analytical predictions Eq. (54) [solid line] and Eq. (55) [dashed line] of [41]. The
numerical results shown correspond to the cut-off parameter nmax = 20.
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Figure 5.8: (a) Particle spectra for ωcav = 2Ωin
1 and mass parameter M =

√
7/8π yielding exact coupling

between the modes n = 1 and k = 4. Dots correspond to nmax = 10 and squares to nmax = 20. (b) Number of
particles created in the modes n = 1 and k = 4 for ωcav = 2Ωin

1 and mass parameter M =
√
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to the particle spectra depicted in (a).

in the modes k = 1, 7, 12, 17 and 22. This is demonstrated in Fig. 5.9 (a) where the numerically evaluated
particle spectrum is depicted for times t = 500, 1000, 1500 and 2000. The cutoff parameter nmax = 50 ensures
numerical stability in the integration range considered 2. The corresponding number of created particles Nk(t)
is shown in Fig. 5.9 (b) for the modes k = 1, 7 and 17.
Without having done a detailed analysis I find, as a reasonable approximation, that a mode l is (strongly)
coupled to a given mode k whenever the ratio |l − l̃|/l with l̃ denoting the solution of 2Ωin

n = |Ωin
l̃
± Ωin

k | is of

the order of or smaller than 10−3, i.e. of the order or smaller than ǫ used in the simulations.

2 From Fig. 5.9 (a) one observes that also the mode l = 27 is weakly coupled. The equation 2Ωin

1
= Ωin

l
−Ωin

22
has the solution

l ≈ 26.92 which explains the excitation of the mode l = 27.
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Figure 5.9: (a) Particle spectra for ωcav = 2Ωin
1 and mass parameter M =

√
5π. Dots correspond to nmax = 40

and squares to nmax = 50. (b) Number of particles created in the modes n = 1, k = 7 and l = 17 for ωcav = 2Ωin
1

and mass parameter M =
√

5π corresponding to the particle spectra depicted in (a).

5.5 Discussion

The analogy between massive scalar particles and transverse electric photons in a three-dimensional rectangular
cavity allows to interpret the presented numerical results in the following way: Consider a three-dimensional
rectangular cavity with equally sized non-dynamical dimensions ly = lz ≡ l‖. I parameterize the size of l‖ in
terms of the initial position l0 of the dynamical cavity wall by introducing ℓ = l‖/l0. If I restrict myself for
simplicity to the case ny = nz ≡ n‖, the dimensionless mass parameter M reads

M = l0k‖ =
√

2
(n‖π

ℓ

)
. (5.38)

Therefore, for fixed n‖, any value of M corresponds to a particular realization, i.e. size ℓ, of the non-dynamical
cavity dimensions. Since I have shown that for a particular value M the production of massive scalar particles in
the resonant mode is maximal, it is possible to maximize the production of TE-photons in a three-dimensional
rectangular cavity by tuning the size ℓ of the non-dynamical cavity dimensions.

For instance, for ωcav = 2Ωin
1 the creation of massive scalar particles in the resonant mode n = 1 is most

efficient for M = 0.4 (cf. Fig. 5.4). This corresponds to the three-dimensional case with ωcav = 2Ωin
(1,1,1)

and ℓ ≈ 11. Hence by designing the three-dimensional cavity such that l‖ ≈ 11 l0 the production of TE-mode
photons in the resonant mode (1, 1, 1) can be maximized. In order to maximize the creation of TE-photons
in the mode (1, 2, 2) when ωcav = 2Ωin

(1,2,2), the size l‖ of the non-dynamical dimensions has to be doubled, i.e
l‖ ≈ 22 l0.
The strong coupling case ωcav = 2Ωin

1 with M = 0.2 where the analytical prediction (5.35) does not describe
the numerical results due to enhanced intermode coupling [cf. Fig. 5.2] corresponds to the lowest TE-mode
(1, 1, 1) in a cavity of size l‖ ≈ 22 l0.

Similarly one can arrange the size of the cavity such that particular modes are exactly coupled, i.e. Eq. (5.36) is
satisfied. For instance, resonant coupling of the TE-modes (1, 1, 1) and (4, 1, 1) corresponds to ωcav = 2Ωin

1 with
M =

√
7/8π [cf Fig. 5.8] and is therefore realized in a cavity of size l‖ ≈ 1.5 l0. Finally, choosing l‖ ≈ 0.63 l0,

i.e. M =
√

5π, couples the TE-modes (1, 1, 1), (7, 1, 1),(12, 1, 1), (17, 1, 1) and (22, 1, 1) in the resonance case
ωcav = 2Ωin

(1,1,1) [cf Fig. 5.9].

In summary, the mass spectrum Fig. 5.4 can be interpreted in the following way if I set n‖ = 1 and
ωcav = 2Ωin

(1,1,1): For l‖ = l0, i.e. cubic cavity, the modes (1, 1, 1) and (5, 1, 1) are resonantly coupled (see

Fig. 5.7). Enlarging l‖ with respect to l0 increases the production of resonance mode photons (1, 1, 1) until

l‖ ≈ 1.5 l0 (M =
√

7/8π) is approached where the modes (1, 1, 1) and (4, 1, 1) are exactly coupled, see Fig. 5.8.
When increasing l‖ further, photon creation in the TE-mode (1, 1, 1) becomes more and more efficient and is
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perfectly described by Eq. (5.35). Reaching l‖ ≈ 7.4 l0 (M ≈ 0.6, the threshold) the intermode coupling starts
to become noticeable causing slight deviations of the numerical results from the analytical prediction. For
l‖ ≈ 11 l0 (M ≈ 0.4), the production of TE-mode photons is most efficient. Thereby, the number of photons
created in the mode (1, 1, 1) is smaller than the analytical prediction Eq. (5.35) because of the coupling of
the modes (1, 1, 1) and (3, 1, 1). When increasing l‖ beyond ≈ 11 l0, the strength of the intermode coupling
is enhanced drastically, and consequently the number of produced TE-mode photons decreases rapidly. For
l‖ ≈ 22 l0, for instance, the mode (1, 1, 1) is (strongly) coupled to the modes (3, 1, 1) and (5, 1, 1) [cf. Fig.

5.2(b)]. Reducing l‖ with respect to l0 (i.e. going to masses M >
√

2π) lowers the efficiency of photon creation
in the resonant mode.

5.6 Outlook: TM-modes

The used formalism can, after some modifications resulting in a larger complexity of the numerics, also be
employed to study the evolution of TM-modes. As the formalism depends inherently on the existence of a
complete and orthonormal set of functions satisfying the BC’s, the generalized Neumann BC (∂x+v∂t)Φ|l(t) = 0
cannot be treated directly using the (t, x)-coordinates. For a Neumann BC an orthonormal and complete set
of functions is given by cosine functions, see footnote 3 in Section 3.4.3. In order to deal with the generalized
Neumann BC, one can perform a particular coordinate transformation (t, x) → (η, ξ) involving the motion of
the mirror itself. It is described in detail in [42]. The effect of this coordinate transformation is that, in the new
coordinates, the mirror is still moving but the BC at the moving mirror becomes a usual Neumann BC ∂ξΦ|l(η) =
0. Then, a complete set of functions which can be used to expand the field are cosine functions φn(η, ξ) =√

2/l(η)cos(nπ ξ/l(η)). Being relatively complicated to deal with analytically without approximations, its
numerical implementation is involved but straight forward. This is actually an ongoing project.

5.7 Observing quantum vacuum radiation

In contrast to its static counterpart, an experimental verification of the dynamical Casimir effect is still lacking.
But before I briefly discuss experimental proposals, I should mention other phenomena and developments within
the dynamical Casimir effect which are of importance in this context. So far, I have used the term “dynamical
Casimir effect” for the production of photons by a moving mirror, for example in an empty cavity. A second
possibility, and which goes under the same name, is the creation of photons from vacuum fluctuations in a cav-
ity with space-time dependent dielectric properties [55, 141, 107, 191, 211]. For example, filling a whole cavity
with a homogeneous medium described by a time-dependent permittivity ǫ(t) is analogous to introducing an
effective cavity length leffective(t) =

√
ǫ(t)l0 [211]. Worth mentioning are also studies of non-perfect boundary

conditions [193, 194] and corrections due to finite temperature effects [176, 198, 106], two important and still
not completely resolved (realistic BC’s) problems which I do not consider in this thesis.

The main difficulty in designing an experiment aimed to verify the dynamical Casimir effect is that typi-
cal resonance frequencies of microwave cavities are of the order of gigahertz. From the experimental point of
view, it is very difficult to construct a macroscopic mechanical device involving a wall oscillating at such a high
frequency. However, progress is being made in this direction and a concrete experiment has been proposed
[117, 118, 26].
A second proposal currently under debate which overcomes the mechanical problem is to mimic the mechan-
ical motion of the mirror through a semiconducting layer whose reflectivity is driven by a laser at gigaherz
frequencies [43, 22] (see also [5, 54, 196]).
Given the effort which is currently undertaken, it seems to be possible that the experimental verification of
the phenomenon of quantum vacuum radiation will be accomplishable in the near future. One main result of
this work, namely the finding that the rate of photon production can be maximized by tuning the size of the
cavity, may be helpful for optimizing such an experiment.
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Chapter 6

The cosmological standard model

6.1 The observable Universe and the cosmological standard model

In this section I shall give a brief, by far not complete, description of the standard model of cosmology based
on [151, 53, 129, 143].
The appropriate unit which is used by cosmologists to express distances in the Universe is megaparsec, abbre-
viated as Mpc. Thereby 1 Mpc = 3.26 × 106 light years which corresponds to ≃ 3.1 × 1022 m.
Galaxies, which may be regarded as the building blocks of the Universe, have a size of roughly 0.1 Mpc (large
galaxies like our own). This includes a dark halo surrounding the galaxy which extends roughly 10 times as
far and contains of order 10 times as much mass as the visible matter (stars, etc.) making up the galaxies. As
the name suggests, the dark halo, made out of what is called dark matter (some, yet unknown, very weakly
interacting form of matter), is not directly accessible through observations, but is needed to explain the rota-
tion curves of the galaxies. The distance between the galaxies is roughly 1 Mpc with many of them existing
in gravitationally bound clusters which contain several thousands of galaxies. Big clusters can reach a size of
order 5 Mpc, so-called superclusters are even larger. Those are regions of space with a higher density than the
average. On scales larger than 100 Mpc, however, the Universe, or more precisely the distribution of matter in
it, appears to be very homogeneous.
On those scales where it is homogeneous, the Universe expands isotropically, i.e. the distance between any pair
of galaxies is proportional to a universal scale factor a [cf. Eq. (6.2)] . That the Universe is expanding was
discovered in 1929 by Hubble who found that galaxies move away from us (and from each other) with a speed
v = H d proportional to their distance d. The proportionality factor H is called Hubble parameter. Its value
today is usually parameterized as

H0 = 100 h
km

s · Mpc
(6.1)

with the numerical value h ≃ 0.7. Here and in the following I use the subscript ”0” to denote the today’s value
of quantities.
The assumption of homogeneity and isotropy, i.e. the absence of a preferred place and a preferred direction,
on large scales (> 100 Mpc) is the so-called cosmological principle. It implies that the spacetime geometry
of the Universe is described by the Friedmann-Lemâıtre-Robertson-Walker -metric [cf. Eq. (6.2)]. Nowadays,
the strongest evidence for the cosmological principle is the high level of isotropy of the Cosmic Microwave
Background (CMB).
The CMB is a uniform background of photons with black body spectrum and a temperature of ≃ 2.73 K. It
was discovered in 1965 by Penzias and Wilson and its precise measurements with missions like COBE (COsmic
Background Explorer) and WMAP (Wilkinson Microwave Anisotropy Probe) have turned cosmology into a
high precision science. The origin of the CMB radiation, first predicted by Gamov in 1948, lies in the very
early Universe. It provides strong support for the picture of a hot and dense beginning of the Universe, the
so-called Hot Big Bang. In such a dense initial phase until about 300, 000 years after the Big Bang, the mat-
ter was fully ionized. Photons were tightly coupled to baryons and leptons through collision processes like
Thomson scattering with cross section σT , leading to a black body spectral distribution of the photons. But
as the Universe expands, the photon temperature decreases like T ∝ 1/a. At a temperature of ≃ 3000 K,
corresponding to an age of the Universe of ≃ 300, 000 years, or equivalently energies ≃ 0.25 eV much below the
hydrogen ionization threshold (13.6 eV), the electrons combined with protons to form hydrogen atoms. The
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result was a sudden decrease of the free electron density ne and consequently the photon-electron interaction
rate (Thomson scattering) Γ ∼ neσT became small compared to the expansion rate, H ≪ Γ. After this decou-
pling of matter and radiation, the photons traveled freely through the Universe, maintaining the black body
spectrum. Until today, their temperature has decreased down to 2.73 K due to expansion. Streaming nearly
freely and undisturbed to us, the CMB radiation provides us with a snapshot of the Universe when it was only
∼ 300, 000 years old. Photons coming to us from different directions in the sky should have exactly the same
temperature if the Universe was completely isotropic at the time of last scattering. Experiments have revealed
that fluctuations ∆T in the CMB temperature exist, the so-called CMB anisotropies, which are of the order
of ∆T/T ∼ 10−5 (up to the dipole). This demonstrates that the Universe at last scattering was not perfectly
but still very isotropic. The capability to explain the existence of the CMB radiation is a big success of the
Hot Big Bang standard model.
Another important building block of the standard model is nucleosynthesis, i.e. the formation of nuclei from
protons and neutrons, which took place at a temperature of T ∼ 1 TeV when the Universe was ≃ 180 seconds
old. Based on the Hot Big Bang scenario, it succeeds to predict the measured abundances of light elements
like hydrogen, helium, lithium and deuterium. Its predictions are very sensitive to the expansion rate H and
thus to the total energy density [154, 23]. Therefore, the underlying particle theory, in particular what is
called the effective number of species g∗ at time of nucleosynthesis which is related to the energy density, is
constraint. More importantly for this work, nucleosynthesis puts constraints on additional contributions to the
total energy density (radiation), notably on the contribution of gravitational waves [154] (see Section 10.4.1).
As long as the Universe was younger than teq ≃ 3, 000 years, most of the the energy in the Universe was in the
form of radiation. At time of “equality” teq, matter started to dominate over radiation and the Universe entered
the matter era. Relatively recently, the Universe has become dominated by a yet unknown component called
dark energy. Its density contributes to 70% to the total density and remains (relatively) constant with time,
causing the Universe to accelerate. Structure formation leading to the large scale structure in the Universe set
in when the Universe was t ≃ 2 × 108 years old and has its origin in the small initial density perturbations
which we observe as CMB anisotropies [172].

Despite its success in explaining the Hubble expansion of the Universe, the existence of the CMB radia-
tion and the abundance of light elements via nucleosynthesis, the standard cosmological model had a number
of shortcomings:

1. Flatness problem: Why is the Universe so close of being flat?

2. Horizon problem: Why do causally disconnected regions appear to be so similar?

3. Origin of perturbations: What mechanism did produce the small density perturbations we observe in the
CMB and which are the seeds for structure formation?

4. Monopole porblem: Why do not we observe “dangerous relics” from early phase transitions like magnetic
monopoles and other topological defects?

I shall abandon the idea to enter here into the details of all the problems since, as it is not directly related to
the topic of this thesis, this would be too far-reaching. For a very pedagogical introduction see [144].
An idea which simultaneously solves all four cosmological puzzles is inflation [146, 88]. The basic idea of
inflationary models is that, before the radiation era, the Universe underwent a period of superluminal expansion.
One example is a so-called de Sitter phase, where the scale factor grows exponentially. Even an conclusive
embedding of the paradigm of inflation into a more fundamental theory is still lacking, the agreement of its
predictions with observations is very compelling.
In the remaining part of this Chapter I shall give a summary of basic equations governing the dynamics of an
homogeneous and isotropic Universe and introduce gravitational waves.

6.2 Geometry of the Universe

Adopting the cosmological principle, the four-dimensional spacetime in the Universe is described by the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric [53, 206, 129]

ds2 = gµνdxµdxν = −dτ2 + a2(τ)dl2 with dl2 =
dr2

1 − K r2
+ r2

(
dθ2 + sin2θdϕ2

)
(6.2)
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where r, θ and ϕ are comoving polar coordinates and τ is the proper or cosmological time measured by a
free-falling observer. The constant K determines the curvature of spacetime. It is positive for closed models,
negative for open models and zero for a flat Universe. In the latter case, it is more convenient to replace the
polar coordinates in (6.2) by euclidian coordinates, i.e. dl2 = δijdxidxj . The comoving coordinates remain
fixed for any object which does not undergo any other motion except the expansion of the Universe itself. The
expansion of the Universe is expressed in the scale factor a(τ).

The radial physical distance at proper time τ between us (r = 0) and an object at (fixed) comoving dis-
tance r is given by

rphys(τ) = a(τ)

∫ r

0

dr′√
1 − Kr′2

. (6.3)

In a flat Universe it is rphys(τ) = a(τ)r, hence physical distances evolve with time due to cosmological expansion.
If one assumes that there are no peculiar velocities, i.e. velocities with respect to the comoving coordinates,
the velocity vphys(τ) of an object at physical radial distance rphys(τ) is

vphys(τ) = H(τ)rphys(τ) (6.4)

with the Hubble parameter

H(τ) ≡ 1

a(τ)

d a(τ)

dτ
. (6.5)

Equation (6.4) is the famous Hubble law stating that due to the expansion of the Universe all objects move
away from each other. Thereby the escape velocities of, e.g. galaxies, are proportional to their distances.
Another important quantity is the so-called Hubble radius

RH =
1

H
(6.6)

which roughly gives the distance light has been able to travel since the beginning of the Universe. Its todays
value is RH0

≃ 3000h−1 Mpc [129] which is the radius of the observable Universe. Two times the Hubble radius
2RH gives the horizon size. Regions in the Universe separated by a distance less than the horizon size are in
causal contact.

It is sometimes convenient to work with conformal time η defined by

η =

∫ τ dτ ′

a(τ ′)
(6.7)

in which the FRW-metric takes the form

ds2 = a2(η)
[
−dη2 + dl2

]
. (6.8)

The Hubble parameter H defined with respect to conformal time is related to H via

H ≡ 1

a

d a

dη
= H a. (6.9)

6.3 Friedmann equations and cosmological solutions

The form of the FLRW-metric (6.2) is completely determined by the symmetry requirements of the cosmological
principle. The only “unknown” is the scale factor a, or more precisely, its evolution in time, which is determined
by the matter content of the Universe via the Einstein equations.

6.3.1 Einstein equations

In general relativity the dynamical variable is the metric gµν describing the gravitational field. The Einstein
equations relate gµν , i.e. the geometry of the spacetime, to the matter content in the Universe

Gµν + Λ4gµν = κ4Tµν . (6.10)
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Λ4 is a cosmological constant and κ4 is the gravitational coupling constant. It is related to Newton’s constant
G4 and the (four-dimensional) Planck mass mPl through

κ4 =
1

M2
4

= 8πG4 =
8π

m2
Pl

(6.11)

where M4 = mPl/
√

8π is the reduced Planck mass.
The curvature is encoded in the Einstein tensor

Gµν = Rµν − 1

2
R gµν (6.12)

where Rµν is the Ricci tensor and R the curvature scalar R = Rµ
µ. The Ricci tensor is defined as Rµν = Rγ

µγν

where Rγδµν is the Riemann tensor

Rµ
νλρ = Γµ

νρ|λ − Γµ
νλ|ρ + Γµ

σλΓσ
νρ − Γµ

σρΓ
σ
νλ (6.13)

with Christoffel symbols

Γµ
λρ =

1

2
gνσ

(
gσλ|ρ + gσρ|λ − gλρ|σ

)
. (6.14)

The matter content is described by the energy momentum tensor Tµν . Since the cosmological constant term
has the form of vacuum energy it could be as well counted as part of the energy momentum tensor on the
right hand side of the equation. The Einstein tensor satisfies the contracted Bianchi identities Gµν

||ν = 0 in

accordance with the local conservation law for the energy momentum tensor T µν
||ν = 0.

From the Lagrangian viewpoint, Einstein’s equations in vacuum, i.e. Λ4 = 0 and Tµν = 0, arise in a very
natural way from variation of the Einstein-Hilbert action

SEH =
1

2κ4

∫ √−g R d4x (6.15)

with respect to the metric gµν since [206, 217]

δ (
√−g R)

δgµν
=

√−g

(
Rµν − 1

2
R gµν

)
. (6.16)

The full Einstein equations (6.10) follow accordingly from variation of the action

S =
1

2κ4

∫ √−g (R − 2Λ4) d4x + Smatter . (6.17)

Smatter is the action of the matter in the Universe whose variation with respect to the metric defines the energy
momentum tensor [cf. Eq. (3.103)].

6.3.2 Friedmann equations

In order to solve Einsteins equation for the metric (6.2), i.e. to find the dynamics of the scale factor a(τ), one
has to specify the energy momentum tensor. The most general form of Tµν compatible with homogeneity and
isotropy, i.e. compatible with the metric (6.2), is an energy momentum tensor which has the form of a perfect
fluid

Tµν = ρuµuν + P (gµν + uµuν) (6.18)

where uµ is the four-velocity field of the fluid in the local rest frame uµ = (1,0) [217, 206], i.e.

T µ
ν = diag (−ρ, P, P, P ) . (6.19)

Here ρ is the energy density and P the pressure of the matter contained in the Universe. Both quantities can
depend on time only.
Inserting the energy momentum tensor into the Einstein equations and evaluating the components of Gµν
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for the metric (6.2) leads to the desired equations describing the evolution of the scale factor. From the
00-component one obtains the so-called first Friedmann equation

H2 +
K

a2
=

κ4

3
ρ +

Λ4

3
(6.20)

with the Hubble parameter H defined in (6.5). It describes the expansion rate of the Universe depending on
the energy content, the curvature and the cosmological constant. Combining the 11-component of the Einstein
equations with the first Friedmann equation leads to the second Friedmann equation

1

a

d2 a

dτ2
= −κ4

6
(ρ + 3 P ) +

Λ4

3
. (6.21)

6.3.3 Continuity equation

As already noted in Section 3.6.3 on quantum field theory in a curved spacetime, the local conservation law
T ν

µ ||ν = 0 does in general (no Killing vectors) not lead to conserved quantities due to energy exchange with the
gravitational field. However, when applied to the perfect fluid energy momentum tensor the ν = 0 component
yields the continuity equation

d ρ

dτ
= −3 H (ρ + P ) , (6.22)

which describes (locally) the change of the energy density in a FLRW-Universe. The first term on the right
hand side describes the dilution of energy due to the expansion of the Universe and the second term corresponds
to the work done by pressure [143].
Note, that the two Friedmann equations (6.20), (6.21) and the continuity equation (6.22) are not all independent
of each other, but only two of them. The continuity equation can be used, for example, to integrate the second
Friedmann equation which leads to the first Friedmann equation.

6.3.4 Cosmological solutions

The energy density ρ and pressure P are often related via an equation of state

P = w ρ (6.23)

where w is a constant. In this case, the continuity equation (6.22) can easily be integrated

ρ = ρ0a
−3(1+w) . (6.24)

ρ0 is an integration constant. Assuming that the Universe is flat, the first Friedmann equation can be solved
with the aid of (6.24). Solutions corresponding to different kinds of matter are

• w = 0: non-relativistic matter (baryons)

ρm ∝ a−3 , a ∝ τ2/3 (6.25)

• w = 1/3: ultra-relativistic matter (radiation)

ρrad ∝ a−4 , a ∝ τ1/2 (6.26)

• w = −1: cosmological constant (vacuum energy)

ρΛ4
= const. , a ∝ eτ . (6.27)

6.3.5 Critical density

The critical density ρcrit is defined as the density which leads to a flat Universe with vanishing cosmological
constant. Hence, from the first Friedmann equation

ρcrit =
3 H2

κ4
. (6.28)
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With the parameterization (6.1) for the Hubble radius, the critical density today is ρcrit = 1.88 h2 10−29g/cm3 [53].
With the aid of the critical density, the first Friedmann equation can be cast into a form which is useful for pa-
rameter estimations. One introduces the dimensionless density parameter Ωi of some matter/energy component
i as the ratio of the corresponding energy density ρi with respect to the critical density:

Ωi ≡
ρi

ρcrit
. (6.29)

The first Friedmann equation suggests to define an effective curvature density ρK

ρK = − 3 K2

κ4 a2
. (6.30)

Then, dividing by H2, the first Friedmann equation is cast into the simple form

1 = ΩK + Ω + ΩΛ4
(6.31)

which relates all the matter components in a very instructive way. Here I do not have assigned any subscript
to Ω = ρ/ρcrit since it is in general a composition of different components (radiation, baryons, etc).

6.4 Cosmological perturbations and gravitational waves

6.4.1 Cosmological perturbation theory

The smallness of the anisotropies in the CMB teach us that the early Universe can be described in a good
first approximation by the FLRW-metric (6.2). Since at time of recombination the deviations from isotropy
and homogeneity have been very small (∼ 10−5) the deviations of the “real” early Universe from the FLRW-
model can be studied perturbatively, i.e. by linearizing the equations around the FLRW-model. Cosmological
perturbation theory is nowadays a very well developed tool and to give a broad introduction into this subject
would be out of proportion for this thesis. I shall rather briefly outline the main ideas and then discuss
only tensor perturbations (gravity waves) more detailed since their evolution in braneworld cosmology is the
main subject of the following sections. References for cosmological perturbation theory are, for example,
[207, 68, 165, 126, 12].
In the following I assume, as indicated by observations, that the Universe is flat, i.e. K = 0 in (6.2) such that
dl2 = δijdxidxj . In addition I work in conformal time η instead of cosmic time τ . Consider now a perturbed
metric

g̃µν = gµν + a2 γµν (6.32)

where gµν(η) = a2(η) ηµν is the flat FLRW-metric in conformal time. The perturbation γµν , assumed to be
small, can be decomposed in components according to their transformation properties with respect to three-
dimensional rotations. It contains scalar (spin-0), vector (spin-1) and tensor (spin-2) degrees of freedom.
In linear perturbation theory, all those perturbations evolve independently of each other. This follows very
generally from the so-called decomposition theorem (see, e.g.,[207, 53]). Consequently, the equations governing
their dynamics are not coupled to each other which allows to treat them separately. There are, however, more
degrees of freedom in the metric than physical modes; some are just gauge artifacts. Metric perturbations can
thus be changed by gauge transformations, i.e. infinitesimal coordinate transformations. Only six physical
degrees of freedom remain: two scalars, two vectors and two tensors, where tensor perturbations turn out to
be gauge invariant. Scalar degrees of freedom correspond to the generalization of Newtonian gravity, vectors
describe gravito-magnetism and tensors correspond to gravity waves [144]. Calculations can be performed by
introducing gauge invariant quantities obeying gauge invariant equations of motion, like the so-called Bardeen
potentials for the scalar degrees of freedom. Gauge invariant cosmological perturbation theory is nowadays not
only very well developed, but also rather technical [68, 207]. Another way to proceed is to fix a gauge from
the beginning and to use variables which are not gauge invariant. Their equations of motions have the correct
number of independent solutions [144]. However, one has to be careful when extracting a physical meaning out
of gauge dependent perturbations. Physical quantities, of course, are gauge invariant.
I shall now consider tensor perturbations in more detail.
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6.4.2 Gravitational waves

Tensor perturbations of the metric are parameterized as [207, 53]

ds2 = a2(η)(ηµνdxµdxν + 2hµνdxµdxν). (6.33)

Here and in the following I restrict myself to a flat FLRW-spacetime and work in conformal time η. Tensor
perturbations hµν(η,x) satisfy the transverse traceless (TT) gauge conditions

h00 = h0i = hi
i = hj

i |j = 0, (6.34)

and remain invariant under gauge transformations (see, e.g., [207]). The perturbed metric allowing for tensor
perturbations can hence be written as

ds2 = a2(η)
[
−dη2 + (δij + 2hij) dxidxj

]
. (6.35)

Transversality and vanishing trace imply that tensor perturbations have two degrees of freedom, i.e. two po-
larization states h×, h+. It is convenient to go into Fourier space. Introducing the unitary constant transverse-
traceless polarization tensors e•ij(k) where • denotes the two polarizations, hij(η,x) can be decomposed as

hij(η,x) =

∫
d3k

(2π)3/2

∑

•=+,×
eik·xe•ij(k)h•(η,k) . (6.36)

The polarization tensors satisfy (e.g.,[207])

e•ij = e•ji , e• i
i = 0 , kie•ij(k) = 0 , e•ij(−k) =

(
e•ij(k)

)∗
, (6.37)

as well as

e• j
i (k)

[
ei •′

j (k)
]∗

= δ••′ . (6.38)

Note that the last relation implies ∑

•
e•ij(k)

(
e• ij(k)

)∗
= 2 . (6.39)

Demanding that hij be real leads to
h∗
•(η,k) = h•(η,−k) . (6.40)

If one fixes a coordinate system in which k = k ẑ, i.e. the wave propagates into the z-direction, the perturbation
has the form

hij =




h+ h× 0
h× −h+ 0
0 0 0



 . (6.41)

From the linearly perturbed Einstein equations it follows that the tensor amplitudes h•(η; k) satisfy a damped
wave equation

∂2

∂η2
h•(η,k) + 2H ∂

∂η
h•(η,k) + k2h•(η,k) = 0. (6.42)

H is the Hubble parameter in conformal time [cf. Eq. (6.9)]. Furthermore it is assumed that the Universe is filled
with a perfect fluid only, i.e. anisotropic stresses (perturbations of the energy momentum tensor) are absent.
Equation (6.42) describes the propagation of tensor perturbations or gravity waves which are ”propagating
ripples in the spacetime curvature” on scales much smaller than the characteristic scales of the background,
i.e. the Hubble radius in the cosmological context. Quantization of this equation leads to the definition of
gravitons, i.e. massless spin-2 particles. This will be discussed below in more detail.
Deriving Equation (6.42) from the variation of the Einstein-Hilbert action (6.15) is tedious [207, 165]. The
result is that the quadratic part of the Einstein-Hilbert action which corresponds to tensor perturbations reads
[207]

S(2) =
1

2κ4

∫
dη

∫
d3xa2

[(
∂

∂η
hi

k

)(
∂

∂η
hk

i

)
− hi

k|lh
k |l
i

]
. (6.43)

Here it is important to note that the indices are lowered and raised with respect to δij . Inserting the expansion
(6.36) and using the properties of the polarization tensors leads to

S(2) =
1

2κ4

∫
dη

∫
d3k a2

∑

•

[∣∣∣∣
∂

∂η
h•(η,k)

∣∣∣∣
2

− k2|h•(η,k)|2
]

. (6.44)

The Euler-Lagrange equations give now immediately (6.42).
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6.5 Amplification of gravitational waves and inflation

As mentioned earlier, the shortcomings of the standard big bang scenario are solved by an early epoch of
acceleration, called inflation. In Eq. (6.42) the dynamics of the scale factor enters into the friction term. It
comes certainly not as a surprise that the problem of gravitational waves in a FLRW-Universe belongs to
the class of scenarios discussed in the first part of the thesis; external field problems. Hence, depending on
the background motion, amplification of gravitational waves may take place, in particular during inflation.
Consequently, after quantization and provided that a meaningful vacuum and particle definition is possible,
this corresponds to the creation of gravitons, i.e. massless spin-2 particles. This shall now be discussed.

6.5.1 Quantum generation of gravity waves

If one introduces a new variable

q•(η,k) =
1√
κ4

h•(η,k) a(η) , (6.45)

Equation (6.42) takes the familiar form of an oscillator

∂2q•(η,k)

∂η2
+ Ω2(η, k)q•(η,k) = 0 (6.46)

with background dependent frequency or effective mass

Ω2(η, k) = k2 − ∂H
∂η

−H2 = k2 − 1

a

∂2a

∂η2
. (6.47)

Note, that in a radiation dominated Universe a ∝ η and thus Ω2(η, k) = k2. The solutions to (6.46) are then
just plane waves. The factor 1/

√
κ4 in (6.45) has been introduced to make q•(η, k) canonically normalized.

Indeed, Eq. (6.46) can be derived from the Hamiltonian [144]

H =
∑

•

1

2

∫
d3k

[
|p•(η,k)|2 + k2|q•(η,k)|2 + 2Hp•(η,k)q•(η,k)

]
(6.48)

with canonical momentum

p•(η,k) =
∂

∂η
q•(η,−k) −Hq•(η,−k) . (6.49)

This canonical Hamiltonian follows directly from the action for q•(η,k) which is obtained by inserting (6.45)
into the action (6.44).
Formally one can now promote the canonical variable q•(η,k) to an operator and expand it in annihilation and
creation operators

q̂•(η,k) = v(η, k)âk,• + v∗(η, k)â†
−k,• , (6.50)

and demand the commutation relations
[
âk,•, â

†
k′,•′

]
= δ••′δ(3)(k − k′) , [âk,•, âk′,•′ ] =

[
â†
k,•, â

†
k′,•′

]
= 0 . (6.51)

Then, the complex functions v(η,k) are also solutions to (6.46). Of course, the vacuum state |0〉 onto which
these operators act and their very meaning as particle operators has to be justified. In Chapter 3 this was
done by demanding that the motion of the background ceases for some initial and final time such that the
canonical Hamiltonian describing the quantized field becomes the usual collection of independent oscillators
and corresponds to the energy of the field. Here in the cosmological context, and in particular in an inflationary
scenario as I shall discuss below, a particle interpretation can be given for modes which are deep inside the
horizon. Those modes with physical wavelength

λphys ∼ a/k (6.52)

much smaller than the Hubble radius 1/H behave virtually as Minkowski modes. Since, in that limit, k ≫
aH = H, and thus the Hamiltonian (6.48) and the equation of motion (6.46) reduce to the standard oscillator
types. Consequently,

v(η, k) =
1√
2k

e−ikη , k ≫ aH (6.53)
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is a positive frequency solution which can be used to define an annihilation operator.

A background of gravitational waves generated during inflation, for example, could be observed due to its
contribution to the anisotropies of the CMB or directly in future gravity wave experiments. Related to obser-
vations can be the power spectrum Ph(k) and the energy density ρh of the gravitational waves, which I shall
now define.

6.5.2 Power spectrum

The power spectrum of gravitational waves is defined as (see, e.g., [207])

(2π)3

k3
Ph(k)δ(3)(k − k′) =

∑

•
〈0|ĥ•(η,k)ĥ†

•(η,k′)|0〉 (6.54)

with [cf. Eqs. (6.45), (6.50)]

ĥ•(η,k) =
√

κ4
q̂•(η,k)

a
. (6.55)

Note that different authors adopt different definitions for the power spectrum, in particular when the distribu-
tion of numerical factors like π is concerned. Using the commutation relations readily leads to

Ph(k) = 2
k3

(2π)3
κ4

a2
|v(η, k)|2, (6.56)

i.e., the power spectrum is completely determined by the solutions v(η, k).

6.5.3 Energy density

In an averaged sense, it is also possible to associate an effective energy-momentum tensor with gravitational
waves (see [207, 154] and in particular [159] for a careful discussion). The effective energy-momentum tensor
is defined as (recall that the perturbed metric is ηµν + 2hµν)

T GW
µν =

1

κ4

〈
hρσ||µhρσ

||ν

〉
. (6.57)

where “‖” denotes the covariant derivative with respect to the unperturbed background metric, and the bracket
stands for a four-dimensional average over regions of several wave lengths [207]. For the TT-gauge (6.34) the
energy density ρh of gravitational radiation is then given by the 00-component of (6.57)

ρh =
1

κ4

〈
(∂τhij)(∂τhij)

〉
=

1

κ4 a2

〈
(∂ηhij)(∂ηhij)

〉
. (6.58)

6.5.4 De-Sitter inflation

As an explicit example, let me finally discuss the generation of gravitational waves during inflation in the limit
of an exact de Sitter stage. It is assumed that an inflationary phase takes place between two times τi and τf

and the Universe enters a radiation dominated stage for times τ > τf . Exact de Sitter inflation is characterized
by a(τ) = eHτ with H = const and thus η = −1/H with η ∈ (−∞, 0). The differential equation for the
functions v(η, k) takes the form

∂2

∂η2
v(η, k) +

(
k2 − 2

η2

)
v(η, k) = 0 . (6.59)

The solution with the right asymptotics, i.e. which for k ≫ H or equivalently −kη ≫ 1 behaves as (6.53) is
given by

v(η, k) =
1√
2k

(
1 − i

k η

)
e−ikη. (6.60)

During de Sitter inflation, the Hubble radius RH = 1/H remains constant while the physical wavelength of the
modes gets stretched λphys ∼ eHτ/k; they leave the horizon. Eventually, in a subsequent radiation and later
matter dominated stage when the Hubble radius increases, they re-enter the horizon. Those perturbations
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on super-Hubble scales, i.e. k ≪ aH , are the ones which contribute to the CMB anisotropies. In the long
wavelength limit k → 0 the equation of motion for v(η, k) reduces to

∂2

∂η2
v(η, k) +

1

a

∂2a

∂η2
v(η, k) = 0 , (6.61)

which has two solutions v1 ∝ a and v2 ∝ a
∫

dη/a2. Since the second one is a decaying solution it implies that
h• is approximately constant. Consequently, on super-Hubble scales the primordial spectrum of gravitational
waves which enters observable quantities can be evaluated at the end of inflation. The corresponding large
wavelength solution, i.e. k ≪ aH or ηk → 0, is

v(η, k) =
iaH√
2k3

, k ≪ aH . (6.62)

Inserting this expression into (6.56) leads to

Ph(k) =
κ4 H2

(2π)3
. (6.63)

The power spectrum of gravitational waves generated during de Sitter inflation does not depend on the wave
number k. Such a scale invariant spectrum is sometimes called Harrison - Zel’dovich spectrum.
Other inflationary models like power-law inflation where the Hubble parameter is not constant predict a nearly
scale invariant spectrum of perturbations, not only for tensor but also for scalar perturbations. Thereby the
scale invariance of the tensor spectrum is parameterized by the spectral tilt nT , with nT = 0 corresponding to
scale invariance. The spectral tilt is given in terms of the so-called slow roll parameters. Those are linked to
the features of the potential which the so-called inflaton field is rolling down when it drives the inflationary
phase.
The approximate scale invariance of the power spectrum is a striking prediction of inflation and is nowadays
confirmed by CMB observations with an impressive precision [144].



Chapter 7

Extra dimensions and braneworlds

In this section I shall give a brief introduction to extra dimensions and braneworld models. The presented
material is partly based on the reviews [190, 136, 69, 173, 185].

7.1 Extra dimensions - An overview

The idea that our Universe has more than three spatial dimensions goes back to the 1920s. In an attempt
to unify gravity and electromagnetism Theodor Kaluza [110] and Oscar Klein [119] discovered that the four-
dimensional gravitational and electromagnetic fields can be understood as the components of the metric tensor
in a theory with a compact fifth-dimension.
The quest for a theory unifying gravity and gauge interactions has led to theories and models that involve new
extra spatial dimensions. Nowadays, the most successful candidate for such a unified theory is String theory
[177, 178] whose fundamental constituents are no longer point particles, but one-dimensional objects called
strings. Characterized by a tension (energy per unit length) their excitations give rise to states representing
various massless and massive particles, including a massless spin-2 state, the graviton. Since superstring theory
can be consistently formulated only in ten spacetime dimensions, extra dimensions are a natural ingredient for
string theory.

If extra dimensions are compactified (“curled up”) on, e.g., a torus of small radii with sizes of the order
of the Planck length Lp ∼ 10−35 m, they would be completely hidden to experiments explaining why our world
looks four dimensional. But if they were larger, what would be their influence in our four-dimensional world?
One striking feature of models with extra dimensions is that a massless field defined in a theory involving
compact extra dimensions would appear as an entire tower of massive fields when seen from four dimensions.
Thereby the masses correspond to the (quantized) momenta of the field modes with respect to the extra di-
mensions and are thus inversely related to their size. Similarly, a higher dimensional massive field looks like
a collection of massive fields, usually called the Kaluza-Klein tower, where the original mass is lifted by the
(quantized) momenta with respect to the extra dimensions. Since this is true for any standard model field,
compact extra dimensions imply the existence of identical copies of standard model particles but with different
masses, notably a massive photon. From the fact that no such Kaluza-Klein particles have been seen in colliders
so far leads to upper bounds on the size of the compact dimensions of the order of ∼ (200GeV)−1 or ∼ 10−18m.
Explicit derivations are given in 7.2.
On the other hand, the presence of extra dimensions modifies Newton’s law on small scales, i.e. on scales smaller
or comparable to the size of the extra dimensions. If n is the number of extra dimensions, the gravitational
force on small scales is ∝ 1/r2+n. The fact that Newton’s law has been tested down to scales of ∼ 0.1mm only
leaves the possibility for large extra dimensions, provided that the Kaluza-Klein bound can be evaded. With
such large extra dimensions it is possible to address the hierarchy problem, i.e. the vast unnatural discrepancy
between the Planck scale ∼ 1019GeV and the electroweak scale ∼ 1 TeV = 103 GeV since the fundamental
gravity scale departs from the Planck scale once extra dimensions are introduced. I shall discuss this more
detailed in 7.3.

The Kaluza-Klein bound on the size of the extra dimension is evaded in the braneworld scenario where the
standard model of particle physics is constrained to live on a hypersurface, a so-called 3-brane. Extra dimen-
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Figure 7.1: Pictorial presentation of the braneworld idea: a 3-brane in a higher-dimensional bulk. While
standard model fields (open strings) are confined to the brane, gravitons (closed strings) propagate in the
whole bulk.

sions can then be probed by gravity only. In 7.4 I briefly introduce the ADD-brane model. “ADD” stands for
Arkani-Hamed, Dimopoulos and Dvali who introduced such a brane model in 1998 [6] in order to solve the
hierarchy problem. Only one year later Randall and Sundrum presented there braneworld models, RS-models
I and II. While in the ADD model the brane is considered as a hypersurface within a higher dimensional flat
spacetime, the bulk, it is treated as physical self-gravitating object in the RS case. The bulk is five dimen-
sional and has a negative cosmological constant Λ5 < 0, implying that the fifth dimension is a slice of an Anti
de-Sitter space. Such curved extra dimensions are usually referred to as warped extra dimensions. While in
the RS I model [181] with two flat branes at the edges of the bulk, the warping leads to an interesting solu-
tion of the hierarchy problem, it localizes four-dimensional gravity on the brane in the RS II model [182] with
one brane. Chapter 8 is devoted to the discussion of the RS scenario and its extension to braneworld cosmology.

The idea that the standard model is confined to a hypersurface is a picture that resembles D-brane con-
structions in string theory [179, 180, 8]. Thereby “D” stands for Dirichlet. Following Polchinski, “D-branes
are extended objects, topological defects in a sense, defined by the property that strings can end on them”. In
String theory, standard model particles correspond to open strings and are naturally confined to a hypersurface
since their endpoints are attached to the D-brane. Gravitons, on the other hand, correspond to closed strings
and therefore propagate in the whole higher-dimensional space, cf. Figure 7.1. The braneworld setup consisting
of hypersurfaces onto which standard model fields are confined does therefore naturally arise in String theory.
For realizations within several string models see, e.g., [94, 95, 3, 201, 108].

Even though the braneworld picture has received a lot of attention since 1998/99 it is important to men-
tion that similar ideas involving the localizing fermions on walls date back to the 1980’s [189].

7.2 Kaluza-Klein modes

To demonstrate the appearance of Kaluza-Klein (KK) modes and their consequences in models with extra di-
mensions I shall consider a free non-interacting massive real scalar field Φ(xµ, y) in a five-dimensional Minkowski
spacetime where the fifth dimension is compactified on a circle of radius R. The coordinates of the usual four-
dimensional spacetime are denoted by xµ and the extra dimension by y. Compactifying the fifth dimension on
a circle means that the points y and y + 2π R are identified. This implies the periodicity condition

Φ(xµ, y) = Φ(xµ, y + 2π R) (7.1)
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for the field Φ. The dynamics of the field is governed by the Klein-Gordon equation 1

[
2(5) − m

2
]
Φ(xµ, y) = 0 (7.2)

with
2(5) = 2(4) + ∂2

y = −∂2
t + △3 + ∂2

y . (7.3)

Separability of the equation allows to expand a solution in eigenfunctions of ∂2
y , i.e. a Fourier decomposition

with respect to the extra dimension:

Φ(xµ, y) =

∞∑

n=0

φn(xµ)ei n y/R. (7.4)

The spectrum of ∂2
y is discrete due to the periodicity condition (7.1) and takes the values (n/R)2 for n =

0, 1, 2, ..., which is nothing else than the squared momentum associated with the fifth dimension. Consequently,
every mode φn(xµ) satisfies the usual four-dimensional Klein-Gordon equation

[
2(4) − m2

n

]
φn(xµ) = 0 (7.5)

with an “effective mass”

mn =

√
m2 +

( n

R

)2

(7.6)

which depends on the size (compactification radius) of the extra dimension. This shows that a five-dimensional
massive field is equivalent to a collection of (infinitely many) four-dimensional fields of masses mn forming
the KK tower. The lowest mode is the zero mode n = 0 which is constant throughout the extra dimension.
Discussed here only for the simple case of a scalar field, the same is of course true for any standard model field.
Hence a signature of an extra dimension would be the detection of such KK modes. For an observer in usual
four-dimensional spacetime who does not know about the extra dimension, KK particles appear as copies of
usual four-dimensional particles but with different masses. Therefore, KK particles related to such a compact
extra dimension should be detectable in colliders if the energy scale reached in colliders exceeds the mass of
the KK particles. That no KK particles have been seen so far gives us an upper bound on the size R of the
compact extra dimension. Assuming that 1/R ≫ m, the mass of the first KK mode is ∼ 1/R such that an
energy scale of E >∼ 1/R is needed to excite that mode. Nowadays, the typical energy scale reached in colliders
is ∼ 200GeV, which translates into a limit for the maximal radius Rmax of the compact extra dimension

Rmax ∼ 10−18 m (7.7)

(see, e.g.,[136]). At energy scales much lower than this threshold, physics is effectively four dimensional and
one can integrate out the dependence on the extra dimension to obtain an effective low energy theory.

7.3 Gravity and extra dimensions

So far I have shown what the existence of extra dimensions implies for standard model fields: the existence of
KK particles. Now I shall discuss how gravity, in particular Newton’s law, is modified in the presence of extra
dimensions. Thereby I consider a flat D = d+1 dimensional spacetime with d = 3+n spatial dimensions where
n denotes the number of extra dimensions. First I assume the extra dimensions to be non-compact to derive
Newton’s law generalized for higher dimensions. Then I shall discuss the case of compact extra dimensions,
address the hierarchy problem and comment on experimental bounds. The material presented in this Section
is partly based on [136, 69, 16] while the original argument goes back to Arkani-Hamed, Dimopoulos and Dvali
[6].

7.3.1 Non-compact extra dimensions

Let F be the force exerted on a test mass m a distance r away from a point mass M generating the gravitational
field g = ∇(d)φ. φ is the gravitational potential in the presence of d spatial dimensions. It is determined by
the Poisson equation

△(d)φ = Area(S(d−1))GD ρM (7.8)

1Note the different sign in front of the mass term with respect to the first part of the thesis since here in the second part I work
with the metric signature (−,+, ...,+) which is more common in cosmology.
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where Area(S(d−1)) is the area of the surface of the d−1 - dimensional sphere Sd−1 = ∂Vd of radius r enclosing
the d-dimensional volume Vd with the mass M in its center. With M being a point mass, the mass density is
just ρM = Mδ(r). GD denotes Newton’s constant in the D-dimensional spacetime.
The force exerted on the test mass m reads

F = mg . (7.9)

Applying Gauss’ law gives ∫

Vd

(∇(d)F)dV =

∫

∂Vd

FdS , (7.10)

where dV and dS denotes the volume element of V and surface element of S(d−1), respectively. Since the force
is perpendicular onto every surface element dS, the surface integral is simple to evaluate

∫

∂Vd

FdS = F (r) rd−1 Area(S(d−1)). (7.11)

Equating the volume integral by using (7.8)
∫

Vd

(∇(d)F)dV = m

∫

Vd

(∇(d)g)dV = m

∫

Vd

(△(d)φ)dV = m Area(S(d−1))GD M (7.12)

leads finally to Newton’s law for d = 3 + n spatial dimensions:

F (r) = GD
m M

r2+n
. (7.13)

Due to the presence of the extra dimensions, i.e. the additional space, the field lines are diluted which is
reflected by the additional factor 1/rn.

7.3.2 Compact extra dimensions

The above derivation of Newton’s law (7.13) for a D-dimensional spacetime has been performed under the
assumption that the extra dimensions are non-compact. In order to calculate the gravitational force in the
presence of n compactified dimensions one uses an approach based on decompactification. One considers the
infinite extension of extra dimensional space consisting of copies of the original compact spacetime leading to
a lattice of masses. It is assumed that all compact dimensions have the same size R.
If r ≪ R, the influence of all the copies of the mass M (mirror masses) is negligible and the force exerted on
the test mass m is described by Eq. (7.13). For the opposite limit r ≫ R, the lattice looks like a hypersurface
(i.e. a line for n = 1) of mass density M/Rn and the test mass feels the copies. The force can be evaluated
by forming a n + 2 - dimensional cylinder C of length L and radius r around the mass distribution. Applying
Gauss’ law to this configuration implies the usual Newton’s law

F =
Area(S(d−1))

4π Rn
GD

m M

r2
. (7.14)

The force exerted on a mass m due to the gravitational field generated by the mass M behaves like 1/r2 even
in the presence of compact dimensions of size R if r ≫ R, i.e. gravity on large scales behaves four dimensional.
However, comparing (7.14) with Newton’s law in four dimensions gives an important relation between the
four-dimensional Newton constant G4 and the fundamental D-dimensional Newton constant GD:

G4 =
Area(S(n+2))

4π Rn
GD with Area(S(n+2)) =

2 π(n+3)/2

Γ((n + 3)/2)
(7.15)

where Γ denotes the Gamma function [1].
In summary, in the presence of compact extra dimensions, Newton’s law is changed on small scales r ≪ R to
∝ 1/rn+2 while it remains unchanged on large scales r ≫ R. Thereby the four-dimensional Newton constant
G4 is related to the fundamental D-dimensional one GD by (7.15). Consequently, the existence of compactified
extra dimensions is, in principle, observable in gravitational strength experiments using for example torsion
pendulums. The smallest distances r probed in such experiments so far are r ≃ several µm and no deviation
from the 1/r2 behavior has been found (see 7.3.4). Gravity strength experiments lead thus to an upper bound
on the size of extra dimensions of

Rmax ∼ several µm (7.16)
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which is many orders of magnitude larger than the constraint (7.7) coming from the fact that no KK particles
have been seen in colliders. Therefore, within a braneworld scenario where the standard model fields are
confined to a brane and the KK constraint (7.7) does not apply, the extra dimensions can be rather large. This
can be exploited to address the hierarchy problem.

7.3.3 The hierarchy problem

The reduced Planck mass M4 appearing as the prefactor in the Einstein-Hilbert action of general relativity
defines the energy scale of gravity. Its numerical value is

M4 =
1√

8π G4

=
mPl√

8π
= 2.44 × 1018GeV. (7.17)

In contrast, the electroweak scale MEW – the energy scale of the standard model of particle physics – is
MEW ≃ 1 TeV = 103 GeV, i.e. 1015 times smaller than M4! To explain this vast difference in the scales poses
the so-called hierarchy problem, which can be rephrased as: Why is gravity so much weaker than the other
fundamental forces?
One attempt to address this rather unnatural huge separation of scales is to use the relation (7.15). If higher di-
mensions exist, the fundamental scale of gravity is given by GD rather than G4. Introducing the D-dimensional
(fundamental) Planck mass MD via

(D − 2)Area(S(D−2))GD = M
−(D−2)
D (7.18)

(recall that D = 4 + n), which follows from dimensional arguments, the relation (7.15) can be cast into

M2
4 ∼ M

(n+2)
D Rn. (7.19)

Thereby, Rn is (not counting factors of π) the volume of the internal space, i.e. the volume of the compact
extra dimensions, which here are assumed to be of equal size. This allows to lower the fundamental gravity
scale MD by tuning the volume of the extra dimensions. Fixing MD at the electroweak scale MD ∼ MEW, for
example, leads to

R ∼ 1030/n−19 m. (7.20)

While the case n = 1 with R ∼ 1011 m is excluded since Newtonian gravitation would be modified on solar
system scales, already the case n = 2 with R ∼ 1 mm comes close to the small scales up to which gravity has
been tested so far [cf. Eq. (7.16)]. Consequently, in a braneworld scenario, where the KK constraint (7.7) does
not apply, the hierarchy problem can be solved by using “large” extra dimensions.

7.3.4 Gravity strength experiments

In the presence of extra dimensions, the deviation of Newton’s law from the 1/r2 behavior should become
visible when probing scales comparable to the size of the extra dimensions. However, because of the weakness
of gravity compared to electromagnetic interactions, such experiments are very difficult to perform. Here I shall
briefly comment on recent experimental results obtained by using torsion-balance experiments [98, 97, 111] of
the Washington group (see also [96, 204, 38]).
Usually, the deviation from the Newtonian potential is parameterized by a Yukawa addition to the familiar 1/r
potential

V (r) ∝ 1

r

(
1 + αe−r/λ

)
(7.21)

where α is a dimensionless strength parameter and λ a length scale [74].
The experimental results are summarized in an α − λ - exclusion plot. Two such plots are depicted in Figure
7.2, corresponding to the results as of 1999 and 2007, demonstrating the progress which has been made in
recent years. The shown plots have been compiled of many different experiments. I shall not comment on all
features and information contained in the plots but rather refer the interested reader to the original papers
[97, 111] where these pictures have been taken from.
Here I shall stress only two facts. First of all, note that in 1999 the Casimir force experiments of Lamoreaux
[133, 134] which I have briefly described in 2.1 helped to constrain the allowed region in the α−λ - parameter
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Figure 7.2: Constraints on Yukawa violations of the gravitational 1/r2 law as of 1999 (left panel) and 2007 (right
panel). The shaded region is excluded at the 95% confidence level. Results compiled of different experiments
are depicted. Pictures are taken from [97, 111].

space. Secondly, for the ADD models α is of order one and λ corresponds to the size of the extra dimensions
[136]. At present, for |α| = 1 the constraint on λ is [111].

λ <∼ 56 µ m . (7.22)

7.4 ADD braneworlds

Let me now finally introduce the already mentioned ADD braneworld model more detailed. In 1998 Arkani-
Hamed, Dimopoulos and Dvali [6] introduced the following model: As bulk spacetime they consider a flat
spacetime of dimension D = 3 + 1 + n. Thereby n is again the number of “large” extra compact dimensions.
The line element of the global spacetime reads

ds2 = ηABdxAdxB = ηµνdxµdxν + δabdyadyb (7.23)

where the xA’s are the coordinates of the bulk, the xµ’s of the usual four-dimensional Minkowski spacetime
and the xa’s the coordinates of the extra dimensions, i.e. xA = (xµ, xa). As before, ηµν is the four-dimensional
Minkowski metric and δab the Kronecker-delta. It is assumed for simplicity that the compact dimensions are
all of the same size, and one identifies xa = xa + 2π R.
So far, the setup is the same as in the original KK-picture, i.e. one has the possibility to “solve” the hierarchy
problem through the relation (7.19) but on the other hand is subject to the constraint that no KK particles
of standard model fields have been seen in colliders. To evade the constraint (7.7) on the size of the extra
dimensions it is assumed that the standard model fields do not live in the whole bulk but are confined to
a sub-space, a so-called p-brane. A p-brane is a spatial hypersurface of dimension p and thus sweeps out a
p + 1-dimensional spacetime. In the ADD model, the four-dimensional Universe we see is assumed to be such
a world sheet defined by a 3-brane onto which the standard model is confined. As I have outlined in 7.1,
such objects do naturally arise in String theory. Since standard model fields do not propagate into the extra
dimensions, the KK constraint (7.7) does no loner apply and the extra dimensions can be probed by gravity
only. Such a model has a very rich phenomenology for high-energy particle physics [82] as well as cosmology
[7].



Chapter 8

The Randall-Sundrum models and

brane cosmology

8.1 Warped geometry

The ADD setup discussed in 7.4 consists of a flat 3-brane in a higher dimensional bulk of flat geometry. But
a brane itself is a physical object with an energy density T , called brane tension. The brane itself produces
a gravitational field. Taking the self-gravity of the brane into account and introducing a bulk cosmological
constant Λ5 which, as is shown below, is negative, leads to a bulk spacetime which is a portion of Anti-de Sitter
(AdS). Many novel properties emerge within such a model. This braneworld scenario was first introduced by
Randall and Sundrum in 1999 [181, 182].

I now derive the Randall-Sundrum setup in detail. Thereby I shall mainly follow [136, 190]. Consider a
five-dimensional bulk with cosmological constant Λ5 but otherwise empty and a 3-brane of tension T . The
brane is assumed to be Minkowskian, i.e. four-dimensional Poincaré invariance is imposed. One can now show
[181, 136, 69, 190, 152] that the most general ansatz for the metric compatible with the symmetry requirements
is given by

ds2 = gABdxAdxB = a2(z)ηµνdxµdxν + dz2 (8.1)

where xA = (xµ, z) with xµ denoting the coordinates of the Minkowski slices and z the extra-dimension. The
factor a(z) is called the warp factor which is the new ingredient in this model with non-factorizable geometry.
In order to determine the bulk geometry, i.e. in particular the warp factor a(z), one has to solve the five-
dimensional Einstein equations

GAB + Λ5gAB = κ5TAB (8.2)

where TAB is the energy momentum tensor and κ5 the five-dimensional gravitational coupling constant

κ5 = 6π2G5 =
1

M3
5

. (8.3)

M5 and G5 are the five-dimensional (fundamental) reduced Planck mass and Newton constant, respectively.
Since I have assumed that the bulk is empty and I have already incorporated Λ5 on the left hand side, TAB

contains just the brane tension T . Putting the brane at z = 0, TAB is of the form

TAB = −T δµ
Aδν

Bηµνδ(z). (8.4)

The self-gravitating brane acts as a delta function source for the gravitational field.
In the bulk where GAB + Λ5gAB = 0, Einstein’s equation reduces to

(
∂za

a

)2

= −Λ5

6
(8.5)

implying that (for a non-trivial solution) the five-dimensional cosmological constant has to be negative, Λ5 < 0.
Note, that if Λ5 = 0, the ADD scenario is recovered. The warp factor can take two possible solutions:

a(z) =

{
e+z/L

e−z/L (8.6)
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where I have introduced the AdS curvature scale L defined by

Λ5 = − 6

L2
. (8.7)

Einstein’s equation contains a δ-function singularity at the position of the brane. This can be dealt with in the
same way δ-function potentials are treated in quantum mechanics. The dynamical equation, the Schrödinger
equation in QM and here Einstein’s equation, is integrated over a small interval including the δ-function.
Letting the interval shrink to zero, assuming that the field, the wave function in QM and here the metric field
gAB, is smooth at the position of the δ-function singularity leads to a jump in the first derivative of the field.
The strength of this jump is related to the properties of the potential.
Using that

Gµν = 3∂z (a∂za) ηµν (8.8)

gives, with ǫ > 0 and small,

∫ +ǫ

−ǫ

dz
[
3∂z (a∂za) + a2Λ5

]
ηµν = κ5

∫ +ǫ

−ǫ

dzTµνδ(z) = −T κ5ηµν (8.9)

such that, since a(z) is taken to be continuous at z = 0,

3a∂za|+ǫ
−ǫ = −κ5T . (8.10)

In the limit ǫ → 0 and setting without loss of generality a(0) = 1 leads to a jump in the derivative of a which is
related to the five-dimensional gravitational coupling and the brane tension. Finally, Z2-symmetry is imposed
across the brane, i.e. the coordinates z and −z are identified. This implies that a(z) has to be even and ∂za(z)
odd. Consequently, the total jump in the first derivative of the warp factor at z = 0 is given by

∂za(+ǫ) = −κ5T
6

. (8.11)

This relation is called junction condition and I shall derive it below in a more general form.
The junction condition and the Z2-symmetry imply that, depending on whether the brane tension is positive
or negative, one has two different solutions for the warp factor:

positive tension brane T > 0 : a(z) = e−|z|/L with
1

L
=

κ5 T
6

(8.12)

negative tension brane T < 0 : a(z) = e|z|/L with
1

L
= −κ5 T

6
. (8.13)

The relation between the AdS curvature scale L and the brane tension just follows from the junction condition
(8.11) and the particular solution. Combining these relations with (8.7) leads to the Randall-Sundrum-fine
tuning condition

− Λ5 =
6

L2
=

κ2
5T 2

6
. (8.14)

In summary, for a flat brane of positive tension the bulk geometry is

ds2 = e−2|z|/Lηµνdxµdxν + dz2 (8.15)

where the brane position is z = 0.

Later on I shall use Poincaré coordinates (xµ, y) with

y = Lez/L (8.16)

which bring the metric into the conformally flat form

ds2 =

(
L

y

)2 [
ηµνdxµdxν + dy2

]
, (8.17)

where now the brane position is y = L. Note that these coordinates do not cover the whole AdS spacetime but
only a slice of it [136].



8.2. RANDALL-SUNDRUM MODELS 77

8.2 Randall-Sundrum models

8.2.1 Randall-Sundrum model I

The first model proposed by Randall and Sundrum (RS) [181] consists of a spacetime with a single S1/Z2

orbifold extra dimension. Two flat 3-branes with opposite tensions reside at the orbifold fixed points. Within
this construction involving two branes, Eq. (8.15) is still the bulk solution. In this particular case, one usually
uses an angular coordinate φ with z = rcφ where −π ≤ φ ≤ π and rc is the radius of the compactified
dimension. The metric reads

ds2 = e−2rc|φ|/Lηµνdxµdxν + r2
cdφ2 . (8.18)

The two 3-branes are located at φ = 0 (positive tension brane) and φ = π (negative tension brane) and the
points (xµ,−φ) and (xµ, φ) are identified. Since the spacetime in between the two branes is a slice of AdS5, the
RS I geometry can be interpreted as two portions of AdS5 which are glued together at the two brane positions.
Similar orbifold constructions arise within the context of M theory [94, 95, 221] and in [215] it is demonstrated
how such a model may be obtained from String theory compactifications.
Standard model fields are confined on the negative tension brane called the visible brane which represents our
Universe. The positive tension brane has fundamental scale M5 and is called the hidden brane. An important
consequence of the warp factor is that the four-dimensional Planck mass M4 on the visible brane is related to
the fundamental scale M5 via

M2
4 = M3

5 L
[
1 − e−2rcπ/L

]
. (8.19)

Since M4 depends only weakly on rc in the large rc/L limit, M4 is of the order of M5. Furthermore, the
exponential factor in the spacetime metric implies that any fundamental mass parameter m0 of a field confined
on the visible brane corresponds to a physical mass [181]

m = m0e
−rcπ/L . (8.20)

Therefore, for k/L ≃ 10 the weak scale ∼ 1 TeV is generated from a fundamental scale M5 of the order of
the Planck scale. Here I have followed the original Randall Sundrum paper [181] where the Planck scale is
considered to be the fundamental scale. One could as well regard the TeV scale as the fundamental scale and
the Planck scale as derived scale as I have done it in 7.3.3. Technically this can be established by a change of
coordinates [181]. This mechanism does not require very larger hierarchies among the fundamental parameters
and thus represents an appealing solution to the hierarchy problem. However, the radius rc, i.e. the separation
between the two branes, corresponds to a massless scalar field, the radion, which has to be stabilized in order
to recover four-dimensional relativity at low energies [152, 136, 83, 209].

8.2.2 Randall-Sundrum model II

The RS II-model contains only one positive tension brane at position y = L (or z = 0) representing our
Universe. It may be thought of as arising from sending the negative tension brane in the RS I model off to
infinity. From (8.19) it follows immediately that the energy scales are related via

M3
5 =

M2
4

L
or κ5 = Lκ4 . (8.21)

From now on I shall work exclusively in Poincaré coordinates (8.17). For the Poincaré metric, the full geometry
of the spacetime is obtained by replacing the “left hand side”, 0 < y < L, of AdS by a second copy of the “right
hand side”. The superscripts “>” and “<” are used for the bulk sides with y > yb and y < yb, respectively.
In terms of the coordinate y, the value of y decreases continuously from ∞ to L and then jumps to −L over
the brane whereafter it continues to decrease. At the brane position, y>

b = L, y<

b = −L, the metric function
(L/y)2 has a kink. The advantage of the metric Eq. (8.15) is that the variable z does not jump.
Another way of seeing (8.21) is to consider the five-dimensional Einstein Hilbert action (R is the Ricci scalar
for the five-dimensional metric (8.17) with determinant g)

S =
1

2 κ5

∫
dx4dy

√−g R . (8.22)
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Integrating out the dependence on the extra dimension leads to the four-dimensional Einstein-Hilbert action
if one identifies the pre-factor with the reduced Planck mass

M2
4 = M3

5

∫ +∞

−∞
dy

(
L

y

)3

= 2 M3
5

∫ +∞

L

dy

(
L

y

)3

= M3
5 L . (8.23)

Even the fifth-dimension is infinite, the integration remains finite due to the warp factor. Comparing this
relation with (7.19) shows that it corresponds to the case of one compactified extra dimension of size L. For
that reason, the mechanism of relating the energy scales via a warping of the extra dimension is called effective
compactification.

Another important feature of the RS II model is that it localizes four-dimensional gravity on the brane.
In order to discuss this, one has to study perturbations of the metric, in particular the tensor perturbation
hij – the spin-2 graviton. Since it depends on the fifth dimension, it has a KK-decomposition in addition to a
massless zero mode which corresponds to the standard four-dimensional graviton. I shall introduce perturba-
tion theory and discuss the evolution equations in detail in 8.5 and Chapter 9. Here, I shall only address the
standard four-dimensional graviton, and anticipate that its wave function (profile) Ψ0(y) with respect to the
extra dimension is described by

− ∂2
yΨ0(y) +

15

4 y2
Ψ0(y) = 0 (8.24)

together with the boundary (junction) condition

(
∂y +

3

2 y

)
Ψ0|y=L = 0. (8.25)

These follow directly from the Eqs. (9.99) and (9.100) discussed in 9.5.4 which describe the evolution of tensor
perturbations for the more general case of a moving brane by restriction to a fixed brane and an infinite bulk.
The solution to (8.24) satisfying (8.25) which is normalizable, i.e. 2

∫∞
L

|Ψ0|2 = 1, is readily found

Ψ0(y) =
L

y3/2
. (8.26)

Its probability profile Ψ2
0(y) decreases rapidly for increasing values of y. This shows that the standard four-

dimensional graviton is localized on the brane (at y = L).
Another way to see this localization qualitatively is to combine the wave equation (8.24) and the boundary
condition (8.25) to a Schrödinger equation

− ∂2
yΨ0(y) + V (y)Ψ0(y) = 0 (8.27)

with volcano-type potential

V (y) =
15

4 y2
− 3

L
δ(|y| − L) . (8.28)

That Eq. (8.27) is indeed equivalent to the above boundary value problem is obvious. This is because Eq. (8.27)
follows from the perturbed Einstein equation which contains a delta-function confining the energy momentum
tensor (here only the brane tension) to the brane. Integrating it over a small interval across the brane and
demanding continuity of Ψ0 is what leads to the junction condition (8.25) [cf. Sections 8.1 and 8.5].
The vulcano-type potential peaks as |y| → L but has a negative singularity right at |y| = L, i.e. at the
position of the brane. It is well known from quantum mechanics that such a delta-function potential supports
a single normalizable bound state, whose wave function peaks at y = L [182]. This state is the standard four-
dimensional graviton (8.26). Its localization is the physical reason why gravity still behaves as four-dimensional
on the brane [173].
For the massive KK gravitons which are traces of the five-dimensional nature of gravity, the potential (8.28)
acts as a barrier. I shall discuss this in Section 9.5.4 in detail within the more general context of a moving brane.

For completeness, let me finally quote from [152] how the four-dimensional gravitational potential produced by
a mass M , to which the KK-modes contribute, behaves within the RS II model. For small distances, r ≪ L
one obtains

V (r) ≈ G4 M L

r2
(8.29)
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which reflects the fact that the potential becomes truly five dimensional on small scales. On large scales r ≫ L,
it behaves as

V (r) ≈ G4M

r

(
1 +

2L2

3r2

)
, (8.30)

i.e. it has a small correction at low energies from extra-dimensional effects. Table-top experiments of Newton’s
law require

L <∼ 0.1 mm. (8.31)

8.3 Junction conditions

In this section I introduce the junction conditions in a more formal way. I shall not explicitely derive them in
order to avoid the presentation of too many technical details which can be found in the literature.
Let me first introduce some important geometrical quantities. Consider a 3-brane in a five-dimensional bulk
with metric gAB. The worldsheet of the brane defines a four-dimensional spacetime, i.e. a submanifold of the
bulk, which can be parameterized by coordinates ξλ. One can then define a brane embedding xA = XA

b (ξλ)
describing the brane position in the bulk. With the aid of this parameterization, it is now possible to define
four vectors, forming a basis of vectors tangent to the brane eµ = eA

µ ∂A via

eA
µ =

∂XA
b (ξλ)

∂ξµ
(8.32)

and the unit normal vector n = nA∂A to the brane through 1

gABeA
µ nB = 0 and gABnAnB = 1. (8.33)

The bulk metric induces a metric on the brane, the first fundamental form or induced metric. From the bulk
perspective it is given by

qAB = gAB − nAnB, (8.34)

which, after contraction with the tangent vectors, can be identified as the brane metric [136]

qµν = qABeA
µ eB

ν = gABeA
µ eB

ν . (8.35)

Consider now the RS II case with the metric (8.17) and a brane at y = yb = L (or equivalently z = 0 for
the metric (8.15)) as described in 8.2.2. Denoting the energy momentum tensor on the brane by Sµν , the
five-dimensional Einstein equation reads

GAB + Λ5gAB = κ5TAB = κ5δ
µ
Aδν

BSµνδ(y − yb) (8.36)

where I have assumed that no matter is present in the bulk. The delta function enforces in the classical theory
the string theory idea that Standard Model fields are confined to the brane. As already explained above, to
avoid the delta function, one can integrate Eq. (8.36) along the extra dimensions from y = yb − ǫ to y = yb + ǫ,
and take the limit ǫ → 0. This leads to the so-called Israel-Darmois junction conditions [139, 200, 50, 102, 159]
at the brane position. These read

[gµν ] ≡ g>

µν − g<

µν = 0 , (8.37)

[Kµν ] ≡ K>

µν − K<

µν = κ5

(
Sµν − 1

3
Sqµν

)
≡ κ5Ŝµν , (8.38)

where I have used the superscript notation (“>”, “<”) of 8.2.2. S = Sµ
µ is the trace of the brane energy

momentum tensor, qµν the induced metric (8.35) and Kµν the extrinsic curvature or second fundamental form
of the brane. It can be expressed purely in terms of the internal brane coordinates [52, 168, 69]

Kµν = −1

2

[
gAB

(
eA

µ∂νnB + eA

ν ∂µnB
)

+ eA

µeB

ν nC∂CgAB

]
. (8.39)

1Note that here we have a timelike hypersurface with spacelike normals.
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Equation (8.38) is usually referred to as the second junction condition. This important relation links the ex-
trinsic curvature of the brane to the matter content on the brane. The first junction condition simply states
that the induced metric, the first fundamental form, qµν [Eq. 8.35] be continuous across the brane. Note that
the sign of the extrinsic curvature is not uniquely defined in the literature. Here I use the convention of [69] 2.

In the case of interest, the background spacetime consists of two copies of the part of AdS with y > yb = L.
The coordinate y jumps from y = L to y = −L across the brane. Due to Z2 - symmetry, i.e. the two sides of
the brane are mirror images, the first junction condition is trivially fulfilled. In addition one has K>

µν = −K<

µν

so that the second junction condition reduces to

[Kµν ] = 2K>

µν = κ5Ŝµν . (8.40)

Assuming a brane tension only, Sµν = −T qµν , and yb = L one finds

[K00]
∣∣∣
yb=L

= − 2

L
= −1

3
κ5T and [Kii]

∣∣∣
yb=L

=
2

L
=

1

3
κ5T , (8.41)

leading to the Randall-Sundrum-fine tuning condition (8.14).

8.4 Brane cosmology

So far, I have considered a self-gravitating brane which is supposed to represent our Universe at a fixed position
in the bulk. Now I shall assume that also matter in form of an energy momentum tensor of a perfect fluid exists
on the brane. The AdS metric (8.17) is then still a solution to the five-dimensional Einstein equation. As a
consequence of the matter on the brane, the brane position will be time-dependent; in other words, the brane
is moving through the static AdS bulk [131, 101]. The induced metric on the brane is the FLRW-metric with
the scale factor directly linked to the position of the brane in the bulk. In that way, the motion of the brane
through AdS naturally mimics the expansion of the Universe. The dynamics of the scale factor is governed by
the modified Friedmann equation for brane cosmology which follows from the second junction condition. That
the brane is moving through the static AdS bulk is of course a coordinate-dependent picture. By using other
coordinates (Gaussian normal coordinates) the brane position is fixed, but the bulk spacetime itself becomes
time-dependent 3 [13, 166, 216, 14]. In the following I shall work with the picture of a brane moving through
the static AdS bulk since, when studying five-dimensional tensor perturbations in this setup, the similarities
to the dynamical Casimir effect discussed in the first part of the thesis become evident.

Let me begin by again writing down the AdS metric (8.17)

ds2 =
L2

y2

[
−dt2 + δijdxidxj + dy2

]
. (8.42)

The time coordinate t is conformal time of the AdS bulk. Denoting by η the conformal time of an observer on
the brane, and the position of the brane in the bulk by yb, the brane metric induced by the bulk metric (8.42)
is

ds2 =
L2

y2
b

[
−
(

1 −
(

dyb

dt

)2
)

dt2 + δijdxidxj

]
= a2(η)

[
−dη2 + δijdxidxj

]
, (8.43)

i.e. a flat FLRW-metric. The scale factor a(η) is related to the position of the brane in the bulk yb(t) through

a(η) =
L

yb(t)
. (8.44)

The brane motion induces a γ-factor which relates the conformal time η on the brane to the conformal time t
of the bulk:

dη =

√

1 −
(

dyb

dt

)2

dt ≡ γ−1dt . (8.45)

2 The extrinsic curvature is in general defined as KAB = −qC
A

nB ‖C , or in terms of the Lie-derivative KAB = − 1

2
LnqAB =

− 1

2

“

nC qAB ‖C + qCB nC
‖A

+ qAC nC
‖B

”

, and describes the bending of the brane with respect to the bulk spacetime [136, 152,

69, 206].
3The explicit transformation between the two coordinate systems is given in [167].
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Figure 8.1: Pictorial presentation of a cosmological (FLRW-) brane, i.e. a brane with FLRW-metric (8.43),
endowed with brane tension T > 0 and energy density ρ of usual cosmological matter [cf. Eq. (6.19)] moving
through five-dimensional AdS. For increasing values of yb(t) the Universe is contracting while it is expanding
for decreasing values of yb(t) according to Eq. (8.44).

By means of the relation (8.44) any particular dynamics of the scale factor corresponds to a motion of the
brane through AdS. When the brane is moving towards decreasing values of y the Universe is expanding while
it is contracting for the opposite case (see Figure 8.1).
It is useful to introduce the velocity v of the brane via

v ≡ dyb

dt
= −LHγ−1 = − LH√

1 + L2H2
(8.46)

such that

γ =
1√

1 − v2
=
√

1 + L2H2. (8.47)

H is the Hubble parameter (6.9)

H = (∂ηa)/(a2) = a−1H = −L−1γv. (8.48)

Consider now an homogeneous and isotropic total energy momentum tensor on the brane

Sµ
ν = T µ

ν − T δµ
ν . (8.49)

Here T denotes again the brane tension and T µ
ν is the energy momentum tensor of particles and fields confined

on the brane, given by Eq. (6.19).
Evaluating the second junction condition gives

[K00]
∣∣∣
yb

= −2
1 + L2H2 + L2(∂τH)

L
√

1 + L2H2
= κ5(ρ + P ) − κ5

3
(ρ + T ) , (8.50)

[Kij ]
∣∣∣
yb

= 2a2

√
1 + L2H2

L
δij =

κ5

3
a2(ρ + T ) δij , (8.51)

which leads to the two equations (∂η = a∂τ )

κ5(ρ + T ) = 6

√
1 + L2H2

L
, (8.52)
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κ5(ρ + P ) = − 2L(∂ηH)

a
√

1 + L2H2
. (8.53)

Taking the square of (8.52) yields

H2 =
κ2

5

18
T ρ
(
1 +

ρ

2T
)

+
κ2

5T 2

36
− 1

L2
(8.54)

while combining (8.52) and (8.53) results in

(∂ηρ) = −3Ha(ρ + P ) . (8.55)

Equation (8.55) is the usual continuity equation of four-dimensional cosmology which holds since all the matter
is confined on the brane and the bulk is empty [136, 152], and Eq. (8.54) is called the modified Friedmann
equation for brane cosmology [131, 13]. Inspection of this equation reveals that one can define a four-dimensional
cosmological constant Λ4 = κ2

5T 2/6 − 3/L2. However, imposing the RS fine tuning condition (8.14) yields
Λ4 = 0.
The new feature of the modified Friedmann equation is its dependence on the energy density. While for the
ordinary four-dimensional Friedmann equation (6.20) H2 ∝ ρ, one has H2 ∝ ρ2 in brane cosmology if ρ ≫ T .
For usual matter with ρ + P > 0, ρ decreases during expansion and at sufficiently late time ρ ≪ T . Then one
can neglect the ρ2-term and the ordinary 4-dimensional Friedmann equation is recovered if one sets

κ4 =
1

6
κ2

5T . (8.56)

But, in addition [cf. Eq. (8.12)]

L =
6

κ5T
so that κ4 =

κ5

L
. (8.57)

Note that, although for a de Sitter brane the density is simply constant, ρ = −P = const. and there is no
late time approximation, Eq. (8.53) implies that the Hubble rate remains constant and the usual exponential
expansion is reproduced. Only the relation between the expansion rate H and the brane density ρ is modified.

Putting everything together, the modified Friedmann equation becomes

H2 =
κ4ρ

3

(
1 +

ρ

2T
)

. (8.58)

Note that for a non-flat brane (K 6= 0), the K
a2 -term would appear in (8.58) as in (6.20). While the dynamics

of the Universe in brane cosmology remains unchanged at late times when ρ ≪ T , it is modified in the early
Universe due to H2 ∝ ρ2, i.e. in the high-energy regime. Cosmological observations impose a lower limit on
the brane tension T . Significant deviations from usual general relativity must take place before nucleosynthesis
which is very sensitive to the expansion rate , thus

T > (1 MeV)4 , (8.59)

implying for the five-dimensional Planck mass [69, 152]

M5 > 104GeV . (8.60)

Hence, if the brane tension is for example given by the electroweak scale T ≥ (1 TeV)4, the observed low energy
cosmology is not affected.
If the matter on the brane has an equation of state P = wρ with w = const., Eq. (8.58) can be integrated
[69, 152]. Using cosmological time τ on the brane, i.e. H = (∂τa)/a, and (6.24) leads to

a(τ) = a0 [τ (τ + τT )]1/[3(1+w)] (8.61)

with (w > −1)

τT =
mPl√

3πT (1 + w)
< (1 + w)−1 × 10−9 seconds , (8.62)

where for the inequality the bound (8.59) has been used. In the limit T → ∞, i.e. τT → 0, the usual four-
dimensional behavior from general relativity is recovered. For times τ ≪ τT the evolution differs from standard
cosmology while for “late times” τ ≫ τT it is the usual one. During a radiation dominated stage with w = 1/3,
for example, one finds a ∝ τ1/4 for high energies (early times), instead of the usual (low energy) a ∝ τ1/2

behavior.
A qualitative analysis of the Friedmann equations in braneworld cosmology is given in [29, 30]. For a discussion
of inflation in the braneworld scenario see the review [152] and the references therein.
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8.5 Tensor perturbations in a RS braneworld

Perturbation theory in braneworld cosmology has been extensively studied and developed. To give a detailed
introduction into this subject would exceed the frame of this thesis (and the knowledge of its author). A
comprehensive list of references can be found in, e.g., Chapter 6 of [152]. Here, I shall concentrate only on
tensor perturbations, in particular on the degree of freedom of the five-dimensional graviton which appears as
four-dimensional graviton in our Universe. The presentation is partly based on [152, 136, 52, 67].
The spin-2 graviton in five dimensions is represented by a transverse traceless metric perturbation hAB and
has five spin sates. In our Universe, i.e. projected onto the brane, four of those five degrees of freedom
(polarizations) of the five-dimensional graviton field are felt as the four-dimensional spin-2 graviton hij and
a vector perturbation Σi which is the spin-1 gravi-vector. Both have two polarizations. The fifth degree of
freedom felt on the brane is a scalar perturbation which is called gravi-scalar. All three different types of
perturbations evolve independently from each other, depend on the extra dimension and satisfy the same wave
equation. Therefore, having the KK-decomposition in mind, each of these perturbations appears as a tower
of KK modes on the brane. In the following I restrict myself to the investigation of the modes hij , i.e. to
the four-dimensional spin-2 gravitons on the brane, which I shall just call tensor perturbations. The massless
zero mode of hij , mass in the sense of the KK-decomposition, corresponds to the standard four-dimensional
graviton.
The bulk metric allowing for tensor perturbations of the spatial three-dimensional geometry at fixed y reads
(compare with Section 6.4.2) [136, 52]

ds2 =
L2

y2

[
−dt2 + (δij + 2hij)dxidxj + dy2

]
, (8.63)

where the perturbation now depends on the extra dimension hij = hij(t,x, y) and satisfies

hi
i = ∂ih

i
j = 0 . (8.64)

From the perturbed five-dimensional Einstein equation

δGAB = −Λ5δgAB =
6

L2
δgAB , (8.65)

where I have used the RS fine tuning (8.14), it follows that the tensor modes satisfy the wave equation for
minimally coupled massless scalar fields in AdS5 [89, 90, 138]

[
∂2

t −△(3) − ∂2
y +

3

y
∂y

]
hij(t,x, y) = 0 , (8.66)

where △(3) is the Laplacian of three-dimensional flat space. Transversality and vanishing trace implies that
hij has only two independent degrees of freedom, the two polarizations • = × and • = +, such that hij can be
decomposed into spatial Fourier modes like in Eq. (6.36)

hij(t,x, y) =

∫
d3k

(2π)3/2

∑

•=+,×
eik·xe•ij(k)h•(t, y,k) , (8.67)

where e•ij(k) are the unitary constant transverse-traceless polarization tensors (6.37,6.38) which form a basis
of the two polarization states. For hij to be real one has to require

h∗
•(t, y,k) = h•(t, y,−k). (8.68)

Inserting the expansion (8.67) into (8.66) leads to the two-dimensional wave equation for the tensor amplitudes
h•(t, y,k) [

∂2
t + k2 − ∂2

y +
3

y
∂y

]
h•(t, y,k) = 0 . (8.69)

This equation describes the perturbations in the entire bulk but it does not involve any time-dependence. As I
shall show now, the time-dependence enters through a boundary condition for the perturbation at the moving
brane as a consequence of the second junction condition.
The perturbed second junction condition at the brane reads

[δKµν ]
∣∣∣
yb

= κ5δŜµν , (8.70)
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leading to

[δKµν ]
∣∣∣
yb

= 2

√
1 + L2H2

L

[
2hij − yb∂yhij + yb

LH√
1 + L2H2

∂thij

] ∣∣∣
yb

=
κ5

3

[
2(ρ + T )hij + 3PΠ

(T )
ij

] ∣∣∣
yb

. (8.71)

Here Π
(T )
ij denotes possible anisotropic stress perturbations in the brane energy-momentum tensor [69]. From

now on I shall neglect the anisotropic stress perturbations for simplicity, Π
(T )
ij ≡ 0, since I am interested in the

quantum production of free gravitons, not in the coupling of gravitational waves to matter. That is, I make the

assumption that the Universe is filled with a perfect fluid. Some of the difficulties which appear when Π
(T )
ij 6= 0

are discussed in [31].
Using the background equations and the expansion of the tensor perturbation in Fourier modes (8.67), Eq. (8.71)
can be cast into the form

[
LH∂th•(t, y,k) −

√
1 + L2H2∂yh•(t, y,k)

]∣∣∣
yb(t)

= 0 . (8.72)

Finally, with the definition of the brane velocity (8.46), it can be written as

(v∂t + ∂y)h•(t, y,k)|yb(t)
= 0 . (8.73)

It is the time-dependence of the boundary condition caused by the moving brane which leads to a non-trivial
time evolution for the tensor modes. The problem is now completely equivalent to the dynamical Casimir effect
discussed for the scalar and electromagnetic fields in the first part of this thesis.
Two facts are worth stressing. First, the boundary problem for tensor perturbations is the same as for
transverse-magnetic polarized modes of the electromagnetic field [cf. Section 5.1]. In this context, the boundary
condition (8.73) has been called generalized Neumann boundary condition [cf. Eq. (5.24)]. Secondly, the bound-
ary condition (8.73), here derived via the second junction condition (8.70), is also the only possible boundary
condition which is compatible with the variational principle starting from an action for h•(t, y,k), except under
the (unphysical) assumption that h•(t, y,k) is constant on the brane (e.g., Dirichlet boundary condition). The
wave equation (8.69) and the boundary condition (8.73) follow directly form the variation of the action

S(2) = 2
L3

2κ5

∑

•

∫
dt

∫
d3k

∫ ys

yb(t)

dy

y3

[
|∂th•(t, y,k)|2 − |∂yh•(t, y,k)|2 − k2 |h•(t, y,k|2

]
(8.74)

by means of a similar calculation as the one shown in more detail for the model of a massive scalar field in
a two-dimensional spacetime with moving boundaries in Section 3.3. The above action can be obtained from
the second-order perturbation of the gravitational Lagrangian which is quite involved (see also Section 6.4.2).
Notice the additional factor 2, which is due to Z2-symmetry.

After quantizing the tensor perturbations, the brane moving through the AdS bulk leads to the creation
of gravitons from vacuum fluctuations in the same way the moving mirror leads to photon production in dy-
namical cavities as discussed in part one of the thesis. I shall therefore refer to this phenomenon as dynamical
Casimir effect for gravitons which is the subject of the next Chapter and was the second main research topic
of my thesis.



Chapter 9

Dynamical Casimir effect approach to

graviton production by a moving brane

9.1 The problem and motivations

As I have shown in the preceding Chapter, at low energies the observed cosmological evolution is not affected
within the braneworld scenario. However, perturbations on the brane, i.e in our Universe, carry five-dimensional
effects like massive four-dimensional gravitons as discussed in Section 8.5. Described by the wave equation (8.69)
and the time-dependent boundary condition (8.73) caused by the motion of the brane through the AdS bulk,
the evolution of perturbations is highly non trivial. Depending on the particular brane trajectory, their ampli-
tude may be significantly amplified leading to observable consequences, for example a stochastic gravitational
wave background. (For a review of stochastic gravitational waves see [154].) This amplification mechanism
is identical to the dynamical Casimir effect in dynamical cavities as discussed in the first part of the thesis.
In the quantum field theoretical language, such an amplification corresponds to the creation of particles, here
gravitons, out of vacuum fluctuations. Hence, in the same way the moving mirror in a dynamical cavity leads
to the production of photons, the brane moving through the bulk causes the creation of gravitons. Thereby,
not only the usual massless graviton might be produced, but also gravitons of the KK-tower can be excited.
Those massive gravitons are of particular interest, since their energy density could eventually dominate the
energy density of the Universe and spoil the phenomenology if their production is sufficiently copious.

The evolution of cosmological perturbations under the influence of moving brane has been the subject of
many studies during recent years. Since one has to deal with a complicated partial differential equation and
time-dependent boundary conditions the investigation of the evolution of perturbations in the background of a
moving brane is quite complicated. Analytical progress has been made based on approximations like the “near
brane limit” and a slowly moving brane [10, 11, 70, 125].
The case of de Sitter or quasi-de Sitter inflation on the brane has been investigated analytically in [85, 124,
153, 138]. In [138] it is demonstrated that during slow-roll inflation (modeled as a period of quasi-de Sitter
expansion) the standard four-dimensional result for the amplitude of perturbations is recovered at low energies
while it is enhanced at high energies.
However, most of the effort has gone into numerical simulations [91, 92, 93, 130, 99, 100, 121, 122, 123, 199],
in particular in order to investigate the high energy regime. Thereby different coordinate systems have been
used for which the brane is at rest, and different numerical evolution schemes have been employed in order
to solve the partial differential equation. Recall that in coordinates in which the brane is not moving, the
boundary condition simplifies significantly but the bulk metric becomes time dependent (see e.g.,[130]) what
leads a priori not to a simpler problem. The above mentioned simulations are based on the classical evolution
of the perturbations (most of them) but also on their quantum mechanical treatment, in particular [121, 122].

For this thesis I have chosen a different way of looking at the problem. In contrast to the above cited studies, I
shall apply the dynamical Casimir effect formalism outlined in Chapter 3 to study the amplification of tensor
perturbation, i.e. the production of gravitons, in braneworld cosmology. This approach and its numerical im-
plementation, which has been employed to braneworld cosmology here for the first time, offers many advantages
and differs from the cited numerical evolution schemes in different respects. The most important advantage

85
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is the fact that this approach deals directly with the mode couplings described by the coupling matrices 1.
Hence, the complicated interaction between the four-dimensional graviton and the KK modes is not hidden
within a numerical simulation, but can directly be investigated. Since the coupling matrices enter the system
of differential equations describing the evolution of the Bogoliubov coefficients “analytically”, different cou-
plings between modes can be switched on and off artificially. This makes it possible to select the most relevant
couplings and reveals the underlying physical effects in a very transparent way. As I shall show below, under
certain circumstances it is then possible to find analytical solutions. Another advantage concerns the accuracy
of the numerical simulations. Since the boundary motion is encoded in the coupling matrices the numerical
problem is reduced to solving a system of coupled linear first-order ordinary differential equations which can
be done with very high accuracy.

In the following I consider the setup of a flat FLRW-brane of positive tension representing our Universe
which moves through the AdS5 bulk with a time-dependent position yb(t). Additionally, a second brane is
introduced at a fixed position ys > yb(t). The fixed brane serves as a regulator brane for the numerics in RS
II-type models [182] and as a “real” brane in the spirit of ekpyrotic models about which I shall say more in
Chapter 10. For reasons discussed below in detail, I shall assume that the velocity of the brane is small, but
the brane trajectory otherwise not restricted. This setup is generic enough to study many interesting effects
and is depicted in Fig. 9.1 for better illustration.

Figure 9.1: Two branes in an AdS5 spacetime. The physical brane is to the left. While it is approaching the
fixed brane its scale factor is decreasing, and when it moves away from the fixed brane the physical brane is
expanding. The value of the warp factor as function of the extra dimension y is also indicated.

9.2 Canonical formulation in the low energy limit

9.2.1 Introductionary remarks

The treatment of the dynamical Casimir effect expounded in Chapter 3 relies on the existence of eigenfunctions
of the spatial part of the wave equation which obey the time-dependent boundary condition. As already
mentioned there, this is not practicable for the junction condition (8.73) involving a time derivative ∂t.
One possibility is to use a different coordinate system in which the boundary conditions at both branes are
of Neumann type. Such a coordinate transformation has been proposed in [42] for the treatment of the
transverse-magnetic modes in a dynamical cavity (cf. Section 5.6). In this work I shall proceed otherwise. I
use an approximation for the junction condition at low energies, supposing a small brane velocity. As I shall

1Note that in [11] a similar approach involving coupling matrices has been used. However, perturbatively only, and not in the
complexity presented in this Chapter.
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demonstrate, if this approximation is done consistently, the equations following from the full five-dimensional
theory reproduce exactly the behavior of the four-dimensional graviton. Hence, at low energies, the evolution
of the usual four-dimensional graviton is not modified by effects related to the fifth dimension; its equation
of motion is reproduced automatically. This is certainly not a proof of the goodness of the approximation
but provides me with confidence that this treatment of five-dimensional perturbations should be valid at low
energies where four-dimensional physics is in perfect agreement with observations. Eventually, of course, this
has to be confirmed by implementing the full junction condition for which this work and the used numerics
provides a very reliable starting point.

9.2.2 Mode expansion

The restriction to late times and low energies is characterized by [cf. Eqs. (8.58)]

ρT ≫ ρ2 , |LH | ≪ 1 and therefore |v| ≪ 1. (9.1)

One particular example which I shall consider below is a radiation dominated dynamics of the brane. Since in
this limit γ ≃ 1 (cf. Eq. (8.45)), the conformal time on the brane η agrees roughly with the five-dimensional
conformal time coordinate t. Thus I set t = η, and I do not distinguish between these times in the following.
Because of |v| ≪ 1, I now assume that in the low energy limit the junction condition (8.73) at the position of
the moving brane can be replaced by a Neumann boundary condition. The graviton amplitude is then subject
to the boundary conditions

∂yh•|yb
= ∂yh•|ys

= 0 . (9.2)

This is the basic approximation (assumption) which most of the remaining material is based on.
Given the boundary conditions (9.2), a canonical formulation, i.e. a description of the graviton field and its
dynamics in terms of field modes in the spirit of the dynamical Casimir effect can now be achieved. I introduce
instantaneous real eigenfunctions φα(t, y) of the spatial part of the differential operator (8.69)

[
−∂2

y +
3

y
∂y

]
φα(t, y) = −y3∂y

[
y−3∂yφα(t, y)

]
= m2

α(t)φα(t, y) (9.3)

and impose the boundary conditions (9.2) for these eigenfunctions. This forms a Sturm-Liouville problem at
any given time t. Consequently, the set of eigenfunctions {φα(t, y)}∞α=0 is complete and orthonormal with
respect to the inner-product

(φα, φβ) = 2

∫ ys

yb

dy

y3
φα(t, y)φβ(t, y) = δαβ . (9.4)

The completeness relation of the eigenfunctions φα reads

2
∑

α

φα(t, y)φα(t, ỹ) = δ(y − ỹ)y3 . (9.5)

Note the factor 2 in front of both expressions which takes into account the Z2-symmetry.
The case α = 0 with m0 = 0 is the zero-mode, i.e. the massless four-dimensional graviton. Its general
solution in accordance with the boundary conditions is just a constant with respect to the extra dimension,
φ0(t, y) = φ0(t), and is fully determined by the normalization condition (φ0, φ0) = 1:

φ0(t) =
ysyb(t)√
y2

s − y2
b (t)

. (9.6)

For α = n ∈ {1, 2, 3, · · · , } with eigenvalues mn > 0 the general solution of (9.3) is a combination of the Bessel
functions J2 (mn(t) y) and Y2 (mn(t) y). The particular combination is determined by the boundary condition
at the moving brane. The remaining boundary condition at the fixed brane selects the possible values for the
eigenvalues mn(t), the KK masses. Explicitly, the solutions φn(t, y) corresponding to the KK modes are given
by

φn(t, y) = Nn(t)y2C2 (mn(t) y) (9.7)

where I have defined

Cν(mny) = Y1(mnyb)Jν(mny) − J1(mnyb)Yν(mny). (9.8)
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The normalization reads

Nn(t, yb, ys) =

[
1

y2
sC2

2(mn ys) − (2/(mnπ))
2

] 1
2

(9.9)

where I have used that (see [1] Eq. (9.1.16))

C2(mn yb) =
2

π mn yb
. (9.10)

Ni can be simplified further by using

C2(mn ys) =
Y1(mn yb)

Y1(mn ys)

2

π mn ys
(9.11)

leading to

Nn =
mnπ

2

[
Y 2

1 (mnys)

Y 2
1 (mnyb) − Y 2

1 (mnys)

] 1
2

. (9.12)

Note that it is possible to have Y 2
1 (mn ys) − Y 2

1 (mn yb) = 0. But then Y 2
1 (mnys) = Y 2

1 (mnyb) = 0 and
Eq. (9.12) has to be understood as a limit. For that reason, the expression (9.9) for the normalization is used
in the numerical simulations. Its denominator remains always finite.
The spectrum of time-dependent KK masses {mn(t)}∞i=1 is determined by the condition

C1 (mn(t)ys) = 0. (9.13)

This condition poses the first difficulty which requires numerical work: Because the zeros of the cross product
of the Bessel functions J1 and Y1 are not known analytically in closed form, the KK-spectrum has to be
determined by solving Eq. (9.13) numerically 2.
An important quantity which I need below is the rate of change ṁn/mn of a KK-mass given by

m̂n ≡ ṁn

mn
= ŷb

4

m2
n π2

N2
n (9.14)

where the rate of change of the brane motion

ŷb(t) ≡
ẏb

yb
≃ −Ha = − ȧ

a
= −H (9.15)

is just the Hubble parameter on the brane. From now on, an over-dot always denotes the derivative with
respect to t.

9.2.3 Equations of motion

On account of the completeness of the eigenfunctions φα(t, y) the gravitational wave amplitude h•(t, y,k) can
now be expanded in these eigenfunctions

h•(t, y,k) =

√
κ5

L3

∞∑

α=0

qα,k,•(t)φα(t, y). (9.16)

The coefficients qα,k,•(t) are canonical variables describing the time-evolution of the five-dimensional perturba-

tions and the factor
√

κ5/L3 has been introduced in order to render the qα,k,•’s canonically normalized. The
first term in the expansion α = 0 corresponds to the usual four-dimensional graviton, and the succesive terms
α ≥ 1 to the tower of KK gravitons. In order to satisfy (8.68) ensuring that the perturbation is real, one has
to impose the same condition for the canonical variables:

q∗α,k,•(t) = qα,−k,•(t). (9.17)

As discussed in Section 3.3.2, imposing a Neumann boundary condition at a moving boundary does not lead to
a free wave equation by means of variation of the action (8.74). Consequently, if one would insert the expansion

2Approximate expressions for the zeros can be found in [1].
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(9.16) into the wave equation (8.69), one is led to an equation of motion for the variables qα,k,•(t) of the form
(3.31). This equation cannot be derived by means of Hamiltonian equations of motion (3.27,3.28) since no
associated Lagrangian and hence Hamiltonian exists while the boundary is in motion. The only consistent way
to implement the boundary condition (9.2) is therefore to consider the action (8.74) as the starting point.
Inserting the expansion (9.16) into the action (8.74) leads to the canonical action

S(2) =
1

2

∑

•

∫
dt

∫
d3k
{∑

α

[
|q̇α,k,•|2 − Ω2

α,k|qα,k,•|2
]

(9.18)

+
∑

αβ

[Mαβ (qα,k,•q̇β,−k,• + qα,−k,•q̇β,k,•) + Nαβqα,k,•qβ,−k,•]
}

.

I have introduced the time-dependent frequency of a graviton mode

Ωα,k =
√

k2 + m2
α , k = |k| , (9.19)

and the familiar coupling matrices

Mαβ(t) ≡ (∂tφα, φβ) , Nαβ(t) ≡ (∂tφα, ∂tφβ) , (9.20)

which are given explicitely in 9.2.4. Introducing the canonically conjugate momentum

pα,k,• =
∂L

∂q̇α,k,•
= q̇α,−k,• +

∑

β

Mβαqβ,−k,• (9.21)

leads, after Legendre transformation, to the Hamiltonian describing the evolution of the perturbations

H =
∑

•

∫
d3k





1

2

∑

α

[
|pα,k,•|2 + Ω2

α,k|qα,k,•|2
]
− 1

2

∑

αβ

Mβα [qβ,k,•pα,k,• + pα,k,•qβ,k,•]




 , (9.22)

where I have symmetrized the interaction term.
Consequently, the equations of motion for the canonical variables qα,k,• are

q̈α,k,• + Ω2
α,kqα,k,• +

∑

β

[Mβα − Mαβ ] q̇β,k,• +
∑

β

[
Ṁαβ − Nαβ

]
qβ,k,• = 0 . (9.23)

The dynamical equations describing the evolution of tensor perturbations are identical to the ones describing
the dynamics of a scalar field on a time-dependent interval (3.21). Here, the only difference is the appearance
of the three-momentum k. As in the case of the electromagnetic field discussed in Chapter 5, modes with
different k do not couple due to translation invariance with respect to the directions parallel to the brane. The
three-momentum enters the equations only via the frequency Ωα,k, i.e. as a global quantity similar to the mass
of the scalar field of Chapter 3. The motion of the brane through the bulk, i.e. the expansion of the Universe,
is encoded in the time-dependent coupling matrices Mαβ , Nαβ. These mode couplings are caused by the time-
dependent boundary condition ∂yh•(t, y, k)|yb(t) = 0 which forces the eigenfunctions φα(t, y) to be explicitly
time dependent. In addition, the frequency of a KK mode is also time dependent since the distance between
the two branes changes when the brane is in motion. Both time-dependencies can lead to the amplification of
perturbations, i.e. graviton production. For the bouncing model which I shall discuss in the next Chapter, it
turns out that the inter-mode coupling is the most important source for the production of KK gravitons.

9.2.4 Coupling matrices

The use of several identities of Bessel functions leads to the coupling matrices

M00 = ŷb
y2

s

y2
s − y2

b

, (9.24)

M0m = 0 , (9.25)

Mn0 =
4Nn

πmn

ŷb

yb
φ0 = ŷb

4

πmn
Nn

ys√
y2

s − y2
b

, (9.26)

Mnn = m̂n , (9.27)

Mnm = MA
nm + MN

nm (9.28)
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with

MA
nm = (ŷb + m̂n)yb

2 m2
nNnNm

m2
m − m2

n

× (9.29)

× [ys C2(mmys)J1(mnys) − yb C2(mmyb)J1(mnyb)]

where

J1(mn y) = [J2(mnyb)Y1(mny) − Y2(mnyb)J1(mny)] (9.30)

and

MN
nm = 2 NnNmmnm̂n

∫ ys

yb

dyy2C1(mny)C2(mmy). (9.31)

Eventually, this integral has to be solved numerically. Note that, because of the boundary conditions, one has
the identity ∫ ys

yb

dyy2C1(mny)C2(mmy) = −
∫ ys

yb

dyy2C1(mny)C0(mmy). (9.32)

Furthermore, one can simplify

J1(mn yb) =
2

πmnyb
, J1(mn ys) =

2

πmnyb

Y1(mnys)

Y1(mnyb)
(9.33)

where the limiting value has to be taken for the last term whenever Y1(mnyb) = Y1(mnys) = 0.

9.3 Recovering four-dimensional gravity

Before discussing the quantization of the perturbations, it is already possible to derive an important result
from the equations of motion for qα,k,•. Numerics indicate that the term MN

nm appearing in Mnm has a similar
amplitude like MA

nm, thus MA
nm can give us an order of magnitude estimate of Mnm. Here I’m mainly interested

in the limit that the fixed brane goes to infinity, ys → ∞. Setting ǫ = yb/ys one finds m̂n ∝ ybǫ
2 for ǫ → 0. To

lowest order in ǫ the elements of the coupling matrix reduce to

M00 = −H[1 + O(ǫ)] ,

M0m = 0 ,

Mn0 = HO(ǫ) , (9.34)

Mnn = HO(ǫ2) ,

Mnm = HO(ǫ2) .

Hence, only the M00 matrix element survives the limit ǫ → 0. Recall that M00 expresses the coupling of
the zero mode to the moving boundary. Since all other couplings disappear for ǫ → 0 all modes decouple
from each other and, in addition, the canonical variables for the KK modes decouple from the brane motion
itself. This leads to the following interesting result. At late times and in the limit ys ≫ yb, the KK modes
with non-vanishing mass evolve trivially and only the massless zero mode is coupled to the brane motion 3.
Explicitely, the equation of motion for the zero mode α = 0 is

q̈0,k,• +
[
k2 − Ḣ −H2

]
q0,k,• = 0 , (9.35)

while for the KK modes α = n 6= 0

q̈n,k,• +
[
k2 + m2

n

]
qn,k,• = 0 . (9.36)

Equation (9.35) is identical to Eq. (6.46) describing the evolution of the canonical variable for the usual four-
dimensional tensor perturbation. Consequently, the expressions for the canonical momentum (9.21) and the
Hamiltonian (9.22) consistently reduce to the expressions (6.49) and (6.48) for the four-dimensional tensor

3It is easy to see that ǫ−1
P

α Mαm is bounded for all values of ǫ and therefore we do not have to fear that the infinite sum
might contribute in the limit ǫ → 0.
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perturbation. Since φ0 ∝ 1/a [cf. Eqs. (9.75,9.77) of Section 9.5.1], and the zero mode is not coupled to the
KK modes, I find that the gravitational zero-mode on the brane

h0,•(t,k) ≡
√

κ5

L3
q0,k,•φ0(t, yb) (9.37)

evolves according to
ḧ0,•(t,k) + 2Hḣ0,•(t,k) + k2h0,•(t,k) = 0 , (9.38)

This equation is valid everywhere in the bulk, and in particular on the physical brane where it reproduces
exactly the equation for a four-dimensional gravity wave in a FLRW-Universe (6.42). This explicitly demon-
strates that at low energies (late times) the homogeneous tensor perturbation equation in brane cosmology
reduces to the four-dimensional tensor perturbation equation. Massive KK modes decouple completely from
the massless mode in the one brane limit and their canonical variables evolve trivially [cf. Eq. (9.36)]. The
dynamical Casimir effect approach also allows the following interesting association. The friction term ∝ H
in (9.38) can be related to time-dependent boundary condition since M00 ≃ −H. It is a consequence of the
motion of the brane through the AdS bulk (expansion of the Universe) and not due to the excitation of massive
modes damping the evolution of the zero mode as claimed in [130].

An important comment is in order here concerning the Randall-Sundrum II model. In the limit ys → ∞
the fixed brane is sent off to infinity and one ends up with a single positive tension brane in AdS, i.e. the RS II
model. Even though I have just shown that all couplings except M00 vanish in this limit, that does not imply
that this is necessarily the case for the RS II setup. Strictly speaking, the above considerations are only valid
in a two brane model with ys ≫ 1. Starting with the RS II model from the beginning, the coupling matrices
do in general not vanish when calculated with the corresponding eigenfunctions which can be found in, e.g.,
[85].
These eigenfunctions are similar to (9.7) but with mn → m continuous, and a different normalization N(m).
The Mm0 coupling (m continuous), for instance, is given by (4N(m)/(πm))(ŷb/yb)φ0, i.e. as in (9.26), but the
normalization is different and non-vanishing. Hence, in general, Mm0 does not vanish. The reason is, that when
taking the limit ys → ∞, the discrete normalization Nn (Kronecker-δnm orthonormality) does not converge
into the continuum normalization N(m) (δ(n−m)-function orthonormality). But what the above consideration
demonstrates is that, if the couplings of the zero-mode to the KK-modes vanish, like in the ys ≫ 1 limit or in
the low energy RS II model as observed in numerical simulations (see below), the standard evolution equation
for the zero-mode emerges automatically from five-dimensional perturbation theory.

In summary, starting from five-dimensional perturbation theory, the above formalism does imply the usual
evolution equation for the four-dimensional graviton in a FLRW-Universe in the limit of vanishing couplings.
This serves as a very strong indication (but certainly not proof!) for the fact that the approach based on the
approximation (9.2) and the expansion of the action in canonical variables rather than the wave equation is
consistent and leads to results which should reflect the physics at low energies. A few more comments are in
order to support this statement. First of all, if one would expand the wave equation in the set of functions
φα introduced above, the equation of motion for the corresponding canonical variables would be of the form
(3.31). While for (9.23) the term ∝ q̇0,k,• vanishes in the limits discussed in this section, it does not for (3.31).
This equation, which cannot be derived from a Hamiltonian, does not reproduce the usual evolution equation
for massless gravitons in a FLRW-Universe. Moreover, in [130] the low energy RS II scenario has been studied
numerically including the full junction condition (8.73) without approximations. Those numerical results show
that the evolution of tensor perturbations on the brane is four dimensional, i.e. described by Eq. (6.42) derived
here analytically. Combining these observations gives me confidence that the used approach based on the
Neumann boundary condition approximation and the action as starting point for the canonical formulation is
adequate for the study of tensor perturbations in the low energy limit. The many benefits this approach offers
will become visible in the following.
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9.4 Quantum generation of tensor perturbations

9.4.1 Preliminary remarks

In this section I present the treatment of quantum generation of tensor perturbations, based on the formulation
of the dynamical Casimir effect introduced in the first part of the thesis. Even though the formulation is
basically the same as for the scalar field, I shall repeat the important steps for tensor perturbations again for
the sake of clarity and completeness.
I assume that asymptotically, i.e. for t → ±∞ the physical brane approaches the Cauchy horizon, yb → 0,
moving very slowly. Then, asymptotically, the coupling matrices vanish and the Kaluza-Klein masses are
constant

lim
t→±∞

Mαβ(t) = 0 , lim
t→±∞

mα(t) = const. . (9.39)

In this limit, the system (9.23) of differential equations reduces to an infinite set of uncoupled harmonic
oscillators and the Hamiltonian (9.22) can be diagonalized. This allows to introduce an unambiguous and
meaningful particle concept, i.e. notion of gravitons (cf. Section 3.4).
As a matter of fact, in the numerical simulations, the brane motion has to be switched on and off at finite
times. These times are denoted by tin and tout, respectively. I shall introduce the vacuum states with respect
to times t < tin < 0 and t > tout > 0 in the same way as I have done it in 3.4. In order to avoid spurious
effects influencing the particle creation, one has to chose tin small, respectively tout large enough such that
the couplings are effectively zero at those times. Checking the independence of the numerical results on the
choice of tin and tout guarantees that these times correspond effectively to asymptotic states of the brane
configuration.

9.4.2 Quantization, initial and final state

Canonical quantization of the gravity wave amplitude is performed by replacing the canonical variables qα,k,•
by the corresponding operators q̂α,k,•

ĥ•(t, y,k) =

√
κ5

L3

∑

α

q̂α,k,•(t)φα(t, y) , (9.40)

where q̂α,k,• satisfies equation (9.23).
Under the assumptions outlined above, the operator q̂α,k,• can be written for times t < tin as

q̂α,k,•(t < tin) =
1√

2Ωin
α,k

[
âin

α,k,•e
−i Ωin

α,k t + âin†
α,−k,•e

i Ωin
α,k t

]
(9.41)

where I have introduced the initial-state frequency

Ωin
α,k ≡ Ωα,k(t < tin). (9.42)

This expansion ensures that (9.17) is satisfied. The set of annihilation and creation operators {âin
α,k,•, âin†

α,k,•}
corresponding to the notion of gravitons for t < tin is subject to the usual commutation relations

[
âin

α,k,•, â
in†
α′,k′,•′

]
= δαα′δ••′δ(3)(k − k′) , (9.43)

[
âin

α,k,•, â
in
α′,k′,•′

]
=

[
âin†

α,k,•, â
in†
α′,k′,•′

]
= 0. (9.44)

For times t > tout, the operator q̂α,k,• can be expanded in a similar manner,

q̂α,k,•(t > tout) =
1√

2Ωout
α,k

[
âout

α,k,•e
−i Ωout

α,k t + âout †
α,−k,•e

i Ωout
α,k t

]
(9.45)

with final-state frequency
Ωout

α,k ≡ Ωα,k(t > tout). (9.46)

The annihilation and creation operators {âout
α,k,•, â

out †
α,k,•} correspond to a meaningful definition of final state

gravitons (they are associated with positive and negative frequency solutions for t > tout) and satisfy the same
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commutation relations as the initial state operators.
Initial |0, in〉 ≡ |0, t < tin〉 and final |0, out〉 ≡ |0, t > tout〉 vacuum state are uniquely defined via

âin
α,k,•|0, in〉 = 0 , âout

α,k,•|0, out〉 = 0 , ∀ α, k, • . (9.47)

Recall that the notations |0, t < tin〉 and |0, t > tout〉 do not mean that the states are time dependent; states
do not evolve in the Heisenberg picture. The operators counting the number of gravitons defined with respect
to the initial and final vacuum state, respectively, are

N̂ in
α,k,• = âin †

α,k,•â
in
α,k,• , N̂out

α,k,• = âout †
α,k,•â

out
α,k,• . (9.48)

The number of gravitons created during the motion of the brane for each momentum k, quantum number α
and polarization state • is given by the expectation value of the number operator N̂out

α,k,• of final-state gravitons
with respect to the initial vacuum state |0, in〉:

N out
α,k,• = 〈0, in|N̂out

α,k,•|0, in〉. (9.49)

If the brane undergoes a non-trivial dynamics between tin < t < tout, âout
α,k,•|0, in〉 6= 0 in general, i.e. graviton

production takes place.
From (8.67), the expansion (9.40) and Eqs.(9.41), (9.45) it follows that the quantized tensor perturbation with
respect to the initial and final vacuum state can be written as

ĥij(t < tin,x, y) =

√
κ5

L3

∑

•,α

∫
d3k

(2π)3/2

âin
α,k,• e−i Ωin

α,k t

√
2Ωin

α,k

u•
ij,α(tin,x, y,k) + h.c. (9.50)

and

ĥij(t > tout,x, y) =

√
κ5

L3

∑

•α

∫
d3k

(2π)3/2

âout
α,k,• e−i Ωout

α,k t

√
2Ωout

α,k

u•
ij,α(tout,x, y,k) + h.c. , (9.51)

respectively. I have introduced the basis functions

u•
ij,α(t,x, y,k) = eik ·x e•ij(k)φα(t, y) (9.52)

which, on account of (e•ij(k))∗ = e•ij(−k), satisfy (u•
ij,α(t,x, y,k))∗ = u•

ij,α(t,x, y,−k).

9.4.3 Time evolution

During the motion of the brane the time evolution of the tensor modes is described by the system of coupled
differential equations (9.23). To account for the inter-mode couplings mediated by the coupling matrix Mαβ

the operator q̂α,k,• is decomposed as

q̂α,k,•(t) =
∑

β

1√
2Ωin

β,k

[
âin

β,k,•ǫ
(β)
α,k(t) + âin†

β,−k,•ǫ
(β)∗

α,k (t)
]
. (9.53)

The complex functions ǫ
(β)
α,k(t) also satisfy the system of coupled differential equations (9.23). With the ansatz

(9.53) the quantized tensor perturbation at any time during the brane motion reads

ĥij(t,x, y) =

√
κ5

L3

∑

•αβ

∫
d3k

(2π)
3
2

âin
β,k,•√
2Ωin

β,k

ǫ
(β)
α,k(t)u•

ij,α(t,x, y,k) + h.c. . (9.54)

Due to the time dependence of the eigenfunctions φα, the time derivative of the tensor perturbation contains
mode-coupling contributions. Using the orthnormality (9.4) and completeness (9.5) of the φα’s it is readily
shown that

˙̂
h•(t, y,k) =

√
κ5

L3

∑

α

p̂α,−k,•(t)φα(t, y) (9.55)

where [cf. Eq. (9.21)]

p̂α,−k,•(t) = ˙̂qα,k,•(t) +
∑

β

Mβαq̂β,k,•(t). (9.56)
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The coupling term ∝ Mβα arises from the time dependence of the mode functions φα. Accordingly, the time

derivative
˙̂
hij reads

˙̂
hij(t,x, y) =

√
κ5

L3

∑

•αβ

∫
d3k

(2π)
3
2

âin
β,k,•√
2Ωin

β,k

f
(β)
α,k(t)u•

ij,α(t,x, y,k) + h.c. (9.57)

with [cf. Eq. (3.62)]

f
(β)
α,k(t) = ǫ̇

(β)
α,k(t) +

∑

γ

Mγα(t)ǫ
(β)
γ,k(t). (9.58)

By comparing Eq. (9.50) and its time-derivative with Eqs. (9.54) and (9.57) at t = tin one can read off the

initial conditions for the functions ǫ
(β)
α,k [cf. Eq. (3.66)]

ǫ
(β)
α,k(tin) = δαβ Θin

α,k , ǫ̇
(β)
α,k(tin) =

[
−iΩin

α,kδαβ − Mβα(tin)
]

Θin
β,k (9.59)

with phase

Θin
α,k = e−iΩin

α,k tin . (9.60)

The choice of this phase for the initial condition is in principle arbitrary, I could as well set Θin
α,k = 1. But

with this choice, ǫ
(β)
α,k(t) is independent of tin for t < tin and therefore it is also at later times independent of

tin if only I choose tin sufficiently early. This is especially useful for the numerical work.

9.4.4 Bogoliubov transformations and first order system

The two sets of annihilation and creation operators {âin
α,k,•, âin †

α,k,•} and {âout
α,k,•, âout †

α,k,•} corresponding to
the notion of initial-state and final-state gravitons are related via a Bogoliubov transformation. Matching
the expression for the tensor perturbation Eq. (9.54) and its time derivative Eq. (9.57) with the final-state
expression Eq. (9.51) and its corresponding time derivative one finds

âout
β,k,• =

∑

α

[
Aαβ,k(tout)â

in
α,k,• + B∗

αβ,k(tout)â
in †
α,−k,•

]
(9.61)

with

Aβα,k(tout) =
Θout∗

α,k

2

√
Ωout

α,k

Ωin
β,k

[
ǫ
(β)
α,k(tout) +

i

Ωout
α,k

f
(β)
α,k(tout)

]
(9.62)

and

Bβα,k(tout) =
Θout

α,k

2

√
Ωout

α,k

Ωin
β,k

[
ǫ
(β)
α,k(tout) −

i

Ωout
α,k

f
(β)
α,k(tout)

]
(9.63)

where I shall stick to the phase Θout
α,k defined like Θin

α,k in (9.60) for completeness. Performing the matching
for tout = tin the Bogoliubov transformation has to be trivial, i.e. the Bogoliubov coefficients are subject to
vacuum initial conditions

Aαβ,k(tin) = δαβ , Bαβ,k(tin) = 0. (9.64)

By means of Eq. (9.61) the number of generated final state gravitons (9.49), which is the same in every
polarization state, is given by

N out
α,k (t ≥ tout) =

∑

•=+,×
〈0, in|N̂out

α,k,•|0, in〉 = 2
∑

β

|Bβα,k(tout)|2. (9.65)

As in section 3.5.2, I introduce auxiliary functions ξ
(β)
α,k(t), η

(β)
α,k(t) via

ξ
(β)
α,k(t) = ǫ

(β)
α,k(t) +

i

Ωin
α,k

f
(β)
α,k(t) , η

(β)
α,k(t) = ǫ

(β)
α,k(t) − i

Ωin
α,k

f
(β)
α,k(t) (9.66)
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which are related to the Bogoliubov coefficients through

Aβα,k(tout) =
Θout∗

α,k

2

√
Ωout

α,k

Ωin
β,k

[
∆+

α,k(tout)ξ
(β)
α,k(tout) + ∆−

α,k(tout)η
(β)
α,k(tout)

]
(9.67)

Bβα,k(tout) =
Θout

α,k

2

√
Ωout

α,k

Ωin
β,k

[
∆−

α,k(tout)ξ
(β)
α,k(tout) + ∆+

α,k(tout)η
(β)
α,k(tout)

]
(9.68)

with

∆±
α,k(t) =

1

2

[
1 ±

Ωin
α,k

Ωα,k(t)

]
. (9.69)

ξ
(β)
α,k(t) and η

(β)
α,k(t) satisfy the following system of first order differential equations:

ξ̇
(β)
α,k(t) = −i

[
a+

αα,k(t)ξ
(β)
α,k(t) − a−

αα,k(t)η
(β)
α,k(t)

]
−
∑

γ

[
c−αγ,k(t)ξ

(β)
γ,k(t) + c+

αγ,k(t)η
(β)
γ,k(t)

]
(9.70)

η̇
(β)
α,k(t) = −i

[
a−

αα,k(t)ξ
(β)
α,k(t) − a+

αα,k(t)η
(β)
α,k(t)

]
−
∑

γ

[
c+
αγ,k(t)ξ

(β)
γ,k(t) + c−αγ,k(t)η

(β)
γ,k(t)

]
(9.71)

with

a±
αα,k(t) =

Ωin
α,k

2




1 ±
[

Ωα,k(t)

Ωin
α,k

]2



 , c±γα,k(t) =
1

2

[
Mαγ(t) ±

Ωin
α,k

Ωin
γ,k

Mγα(t)

]
. (9.72)

The vacuum initial conditions (9.64) entail the initial conditions

ξ
(β)
α,k(tin) = 2 δαβ Θin

α,k , η
(β)
α,k(tin) = 0. (9.73)

The coefficients Bαβ,k(tout) and therefore the number of produced gravitons can be directly deduced from the
solutions to this system of coupled first order differential equations. In the next section I show how interesting
observable quantities like the power spectrum and the energy density of gravitational waves can be expressed
in terms of the number of created gravitons.

9.5 Power spectrum and energy density

9.5.1 Perturbations on the brane

By solving the system of coupled differential equations formed by Eqs. (9.70) and (9.71) the time evolution of

the quantized tensor perturbation ĥij(t,x, y) can be completely reconstructed at any position y in the bulk.
Accessible to observations is the imprint which the perturbations leave on the brane, i.e. in our Universe. Of
particular interest is therefore the part of the tensor perturbation which resides on the brane. It is given by
evaluating Eq. (8.67) at the brane position y = yb (see also [199])

ĥij(t,x, yb) =

∫
d3k

(2π)3/2

∑

•=+,×
eik·xe•ij(k)ĥ•(t, yb,k) . (9.74)

The motion of the brane (expansion of the Universe) enters this expression via the eigenfunctions φα[t, yb(t)].
I shall take (9.74) as the starting point to define observables on the brane.
The zero mode function φ0(t), given in Eq. (9.6), does not depend on the extra dimension y. Noting that
C2(mnyb) is a Wronskian [cf. Eq. (9.10)], one reads off from Eq. (9.7) that the eigenfunctions on the brane
φα(t, yb) are

φα(t, yb) = yb Yα(yb) =
L

a
Yα(a) (9.75)

where I have defined

Y0(a) =

√
y2

s

y2
s − y2

b

and Yn(a) =

√
Y 2

1 (mnys)

Y 2
1 (mnyb) − Y 2

1 (mnys)
, (9.76)
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for the zero and KK modes, respectively. One immediately is confronted with an interesting observation: the
function Yα(a) behaves differently with the expansion of the Universe for the zero-mode α = 0 and the KK-
modes α = n. This is evident in particular in the asymptotic regime ys ≫ yb, i.e. yb → 0 (|t|, a → ∞) where,
exploiting the asymptotics of Y1 (see [1]), one finds

Y0(a) ≃ 1 , Yn(a) ≃ L

a

πmn

2
|Y1(mnys)| ≃

L

a

√
mn π

2 ys
. (9.77)

Ergo, Y0 is constant while Yn decays with the expansion of the Universe as 1/a. For large n one can approximate
mn ≃ nπ/ys and Y1(mnys) ≃ Y1(nπ) ≃ (1/π)

√
2/n [1], so that

Yn(a) ≃ Lmn√
2 na

, Y2
n(a) ≃ πL2mn

2 ysa2
. (9.78)

In summary, the amplitude of the KK modes on the brane decreases faster with the expansion of the Universe
than the amplitude of the zero mode. This leads to interesting consequences for the observable power spectrum
and energy density and has a clear physical interpretation: It manifest the localization of usual gravity on the
brane. As I shall show below, KK-gravitons which are traces of the five-dimensional nature of gravity escape
rapidly from the brane.

9.5.2 Power spectrum

I define the power spectrum P(k) of gravitational waves on the brane as in four-dimensional cosmology
[cf. Eq. (6.54)] by using the restriction of the tensor amplitude to the brane position (9.74):

(2π)3

k3
P(k)δ(3)(k − k′) =

∑

•=×,+

〈
0, in

∣∣∣ĥ•(t, yb,k)ĥ†
•(t, yb,k

′)
∣∣∣0, in

〉
, (9.79)

i.e. I consider the expectation value of the field operator ĥ• with respect to the initial vacuum state at the
position of the brane y = yb(t). In order to get a physically meaningful power spectrum, averaging over
several oscillations of the gravitational wave amplitude has to be performed. Equation (9.79) describes the
observable power spectrum imprinted in our Universe by the four-dimensional spin-2 graviton component of
the five-dimensional tensor perturbation.
The explicit calculation of the expectation value is carried out in detail in Appendix A.1. The final result reads

P(k) =
1

a2

k3

(2π)3
κ5

L

∑

α

Rα,k(t)Y2
α(a). (9.80)

The function Rα,k(t) can be expressed in terms of the Bogoliubov coefficients (9.62) and (9.63) if one considers
tout as a continuous variable t:

Rα,k(t) =
Nα,k(t) + ON

α,k(t)

Ωα,k(t)
. (9.81)

Nα,k(t) is the instantaneous particle number [cf. Section 3.5.3] and the function ON
α,k(t) is defined in Eq. (A.6),

Appendix A.1. It is important to recall that Nα,k(t) can in general not be interpreted as a physical particle
number. For example zero modes with wave numbers such that kt < 1 cannot be considered as particles.
They have not performed several oscillations and their energy density cannot be defined in a meaningful way.

Equivalently, expressed in terms of the complex functions ǫ
(β)
α,k, one finds

Rα,k(t) =
∑

β

|ǫ(β)
α,k(t)|2
Ωin

β,k

− 1

Ωα,k(t)
+ Oǫ

α,k(t), (9.82)

with Oǫ
α,k given in Eq. (A.7). Equation (9.80) together with (9.81) or (9.82) holds at all times.

If one is interested in the power spectrum at early times kt ≪ 1, it is not sufficient to take only the instantaneous

particle number Nα,k(t) in Eq. (9.81) into account. This is due to the fact that even if the mode functions ǫ
(β)
α,k

are already oscillating, the coupling matrix entering the Bogoliubov coefficients might still have a non-trivial
time dependence [cf. Eq. (10.25)]. In the next chapter I shall show explicitly, that in a radiation dominated
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bounce particle creation, especially of the zero-mode, only stops on sub-Hubble times, kt > 1, even if the mode
functions are plane waves right after the bounce [cf, e.g., Figs. 10.1, 10.2, 10.4] Therefore, in order to determine
the perturbation spectrum of the zero mode, one has to make use of the full expression expression (9.82) and
may not use (9.83), given below.
At late times, kt ≫ 1 (t > tout) when the brane moves slowly, the couplings Mαβ go to zero and particle creation
has come to an end, both functions ON

α,k and Oǫ
α,k do not contribute to the observable power spectrum after

averaging over several oscillations. Furthermore, the instantaneous particle number then equals the (physically
meaningful) number of created final state gravitons N out

α,k and the KK masses are constant. Consequently, the
observable power spectrum at late times takes the form

P(k, t > tout) =
κ4

a2

k3

(2π)3

∑

α

N out
α,k

Ωout
α,k

Y2
α(a) , (9.83)

where I have used that κ5/L = κ4 [cf. Eq. (8.57)]. Its dependence on the wave number k is completely
determined by the spectral behavior of the number of created gravitons N out

α,k .
It is useful to decompose the power spectrum in its zero-mode and KK-contributions:

P = P0 + PKK . (9.84)

In the late time regime, using Eqs. (9.83) and (9.77), the zero-mode power spectrum reads

P0(k, t > tout) =
κ4

a2

k2

(2π)3
N out

0,k . (9.85)

As expected for a usual four-dimensional tensor perturbation (massless graviton), on sub-Hubble scales the
power spectrum decreases with the expansion of the Universe as 1/a2 [cf. Eq. (6.56)].
In contrast, the KK-mode power spectrum for late times, given by

PKK(k, t > tout) =
k3

a4

κ4L
2

32π

∑

n

N out
n,k

m2
n

Ωout
n,k

Y 2
1 (mnys), (9.86)

decreases as 1/a4, i.e. with a factor 1/a2 faster than P0. The gravity wave power spectrum at late times is
therefore dominated by the zero-mode power spectrum and looks four dimensional. Contributions to it arising
from five-dimensional effects are scaled away rapidly as the Universe expands due to the 1/a4 behavior of PKK.
In the limit of large masses mnys ≫ 1, n ≫ 1 and for wave lengths k ≪ mn such that Ωn,k ≃ mn, the late-time
KK-mode power spectrum can be approximated by

PKK(k, t > tout) =
k3

a4

κ4L
2

16π2ys

∑

n

N out
n,k , (9.87)

where I have inserted Eq. (9.78) for Y2
n(a). Note that, as discussed at the end of Section 3.4.3, the formal

summation over the particle number might be ill defined if the brane trajectory contains unphysical features
like discontinuities in the velocity. An appropriate regularization is then necessary, for example, by introducing
(a physically motivated) cutoff.

9.5.3 Energy density

For a usual four-dimensional tensor perturbation hµν on a background metric gµν an associated effective energy
momentum tensor can be defined unambiguously by (cf. Section 6.5.3, [207])

Tµν =
1

κ4
〈hαβ‖µhαβ

‖ν〉 , (9.88)

where the bracket stands for averaging over several periods of the wave. The energy density of gravity waves is
the 00-component of the effective energy momentum tensor. Here I shall use the same effective energy momen-
tum tensor to calculate the energy density corresponding to the four-dimensional spin-2 graviton component of
the five-dimensional tensor perturbation on the brane, i.e. for the perturbation hij(t,x, yb) given by Eq. (9.74).
It is important to remember here that in my low energy approach, and hence in particular at late times for
which I want to calculate the energy density, the conformal time η on the brane is identical to the conformal
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bulk time t. The energy density of four-dimensional spin-2 gravitons on the brane produced during the brane
motion is then given by (see also [199])

ρ =
1

κ4 a2

〈〈
0, in| ˙̂hij(t,x, yb)

˙̂
hij(t,x, yb)|0, in

〉〉
. (9.89)

Here the outer bracket denotes averaging over several oscillations, which (in contrast to the power spectrum) I
embrace from the very beginning. The factor 1/a2 comes from the fact that an over-dot indicates the derivative
with respect t. A detailed calculation is carried out in Appendix A.2 leading to the result

ρ =
1

a4

∑

α

∫
d3k

(2π)3
Ωα,kNα,k(t)Y2

α(a) (9.90)

where again Nα,k(t) is the instantaneous particle number. At late times t > tout after particle creation has
ceased, the energy density is therefore given by

ρ =
1

a4

∑

α

∫
d3k

(2π)3
Ωout

α,k N out
α,k Y2

α(a). (9.91)

This expression looks at first sight very similar to a “naive” definition of energy density as integration over
momentum space and summation over all quantum numbers α of the energy Ωout

α,k N out
α,k of created gravitons.

(Note that the graviton number N out
α,k already contains the contributions of both polarizations [see Eq. (9.65)].)

However, the important difference is the appearance of the function Y2
α(a) which exhibits a different dependence

on the scale factor for the zero mode compared to the KK modes.
Let me decompose the energy density into zero mode and KK contributions

ρ = ρ0 + ρKK . (9.92)

For the energy density of the massless zero mode one then obtains

ρ0 =
1

a4

∫
d3k

(2π)3
kN out

0,k . (9.93)

This is the expected behavior; the energy density of standard four-dimensional gravitons scales like radiation.
In contrast, the energy density of the KK modes at late times is found to be

ρKK =
L2

a6

π2

4

∑

n

∫
d3k

(2π)3
Ωout

n,k N out
n,k m2

nY 2
1 (mnys), (9.94)

i.e. it decays like 1/a6. As the Universe expands, the energy density of massive gravitons on the brane is
therefore rapidly diluted. The total energy density of gravitational waves in the Universe at late times is
dominated by the standard four-dimensional graviton (massless zero-mode). In the large mass limit mnys ≫
1,n ≫ 1 the KK-energy density can be approximated by

ρKK ≃ πL2

2a6ys

∑

n

∫
d3k

(2π)3
N out

n,k Ωout
n,kmn . (9.95)

Due to the factor mn coming from the function Y2
n, for the summation over the KK-tower to converge, the

number of produced gravitons N out
n,k has to decrease faster than 1/m3

n for large masses and not just faster than

1/m2
n as one might naively expect.

9.5.4 Escaping of massive gravitons and localization of gravity

As I have shown above, power spectrum and energy density of the KK modes scale with the expansion of the
Universe at late times, when particle production has ceased, as

PKK ∝ 1/a4 , ρKK ∝ 1/a6. (9.96)

Both quantities decay by a factor 1/a2 faster than the corresponding expressions for the zero mode graviton.
In particular the energy density of the KK particles on the brane behaves effectively like stiff matter [w = 1 in
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Eq. (6.24)]. Mathematically, this difference arises from the distinct behavior of the functions Y0(a) and Yn(a)
[cf. Eq. (9.77)] and is a direct consequence of the warping of the fifth dimension. But what is the underlying
physics? As I shall discuss now, this scaling behavior for the KK particles has indeed a very appealing physical
interpretation which is in the spirit of the Randall-Sundrum model.
First, the mass mn is a comoving mass. The (instantaneous) ’comoving’ frequency or energy of a KK-graviton
is Ωn,k =

√
k2 + m2

n, with comoving wave number k. The physical mass of a KK mode measured by an
observer on the brane with cosmic time dτ = adt is therefore mn/a, i.e. the KK masses are redshifted with
the expansion of the Universe. This comes from the fact that mn is the wave number corresponding to the
y-direction with respect to the bulk time t which corresponds to conformal time η on the brane and not to
physical time. It implies that the energy of KK particles on a moving AdS brane is redshifted like that of
massless particles. From this alone one would expect that the energy density of KK modes on the brane decays
like 1/a4 (see also Appendix D of [85]).

Now, let me define the “wave function” for a graviton

Ψα(t, y) =
φα(t, y)

y3/2
(9.97)

which, by virtue of (φα, φα) = 1, satisfies

2

∫ ys

yb

dyΨ2
α(t, y) = 1 . (9.98)

From the expansion of the gravity wave amplitude Eq. (9.16) and the normalization condition it is clear that
Ψ2

α(t, y) gives the probability to find a KK graviton of mass mα for a given (fixed) time t at position y in the
Z2-symmetric AdS-bulk. Since φα satisfies Equation (9.3), the wave function Ψα satisfies the Schrödinger like
equation

− ∂2
yΨα +

15

4 y2
Ψα = m2

αΨα (9.99)

and the junction conditions (9.2) translate into
(

∂y +
3

2 y

)
Ψα|y={yb,ys} = 0. (9.100)

In Fig. 9.2 I plot the evolution of Ψ2
1(t, y) under the influence of the brane motion Eq. (10.3) with vb = 0.1

which I shall study in the next chapter, as an example. For this motion, the physical brane starting at yb → 0
for t → −∞ moves towards the static brane, corresponding to a contracting Universe. After a bounce, it moves
back to the Cauchy horizon, i.e. the Universe expands. The second brane is placed at ys = 10L and y ranges
from yb(t) to ys. I set Ψ2

1 ≡ 0 for y < yb(t), and the time-dependent KK mass m1 is determined numerically
from Eq. (9.13). As it is evident from this figure, Ψ2

1 is effectively localized close to the static brane, i.e. the
weight of the KK-mode wave function lies in the region of less warping, far from the physical brane. Thus the
probability to find a KK mode is larger in the region with less warping. Since the effect of the brane motion on
Ψ2

1 is hardly visible in Fig. 9.2, I also show the behavior of Ψ2
1 close to the physical brane in Fig. 9.3. This shows

that Ψ2
1 peaks also at the physical brane but with an amplitude roughly ten times smaller than the amplitude

at the static brane. While the brane, coming from t → −∞, approaches the point of closest encounter Ψ2
1

slightly increases and peaks at the bounce t = 0 where, as I shall show in the next Chapter, the production of
KK particles takes place. Afterwards, for t → ∞, when the brane is moving back towards the Cauchy horizon,
the amplitude Ψ2

1 decreases again and so does the probability to find a KK particle at the position of the
physical brane, i.e. in our Universe. The parameter settings used in Figures 9.2 and 9.3 are typical parameters
which I use in the numerical simulations described later on. However, the effect is illustrated even better if the
second brane is closer to the moving brane. In Figure 9.4 I show Ψ2

1 for the same parameters as in Figures 9.2
and 9.3 but now with ys = L. In this case, the probability to find a KK particle on the physical brane is of
the same order as in the region close to the second brane during times close to the bounce. However, as the
Universe expands, Ψ2

1 rapidly decreases at the position of the physical brane.

From Eqs. (9.75) and (9.77) it follows that Ψ2
n(t, yb) ∝ 1/a. The behavior of the KK-mode wave function

suggests the following interpretation: If KK gravitons are created on the brane, or equivalently in our Uni-
verse, they escape from the brane into the bulk as the brane moves back to the Cauchy horizon, i.e. when the
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Universe undergoes expansion. This is the reason why the power spectrum and the energy density imprinted
by the KK modes on the brane decrease faster with the expansion of the Universe than for the massless zero
mode.
The zero mode, on the other hand, is localized at the position of the moving brane. The profile of φ0 does not
depend on the extra dimension, but the zero-mode wave function Ψ0 does. Its square is

Ψ2
0(t, y) =

y2
sy2

b

y2
s − y2

b

1

y3
→ y2

b

y3
=

(
L

a

)2
1

y3
if ys ≫ yb , (9.101)

such that on the brane (y = yb) it behaves as

Ψ2
0(t, yb) ≃

a

L
. (9.102)

Equation (9.101) shows that, at any time, the zero mode is localized at the position of the moving brane.
In addition, Eq. (9.102) reveals that the “localization of the zero mode on the brane becomes stronger” as
the Universe expands. For a better illustration I show Eq. (9.101) in Fig. 9.5 for the same parameters as in
Fig. 9.4. This is the “dynamical analog” of the localization mechanism discussed in Section 8.2.2, and (9.101)
corresponds to the generalization of (8.26) to the case of a moving brane.
As I have done it in Section 8.2.2 to obtain a intuitive physical description, I again rewrite the boundary value
problem (9.99), (9.100) as

− ∂2
yΨα(t, y) + V (y, t)Ψα(y, t) = mα(t)Ψα(y, t) (9.103)

with

V (y, t) =
15

4 y2
− 3

yb(t)
δ(|y| − yb(t)) =

15

4 y2
− 3

a(t)

L
δ(|y| − yb(t)) , (9.104)

where I have absorbed the boundary condition at the moving brane into the (instantaneous) volcano potential
V (y, t) and made use of Z2 symmetry. At any time, the potential (9.104) supports a single bound state, the
four-dimensional graviton (9.101), and acts as a barrier for the massive KK modes. The potential, ensuring
localization of four-dimensional gravity on the brane and the repulsion of KK modes, moves together with the
brane through the fifth dimension. Note that with the expansion of the Universe, the “depth of the delta-
function” becomes larger, expressing the fact that the localization of four-dimensional gravity becomes stronger
at late times [cf. Eq. (9.102), Fig. 9.5].

Figure 9.2: The evolution of Ψ2
1(t, y) which corresponds to the probability to find the lightest KK-graviton at

time t at the position y in the AdS-bulk. The static brane is at ys = 10L and the maximal brane velocity is
given by vb = 0.1.
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Figure 9.3: Evolution of Ψ2
1(t, y) as in Fig. 9.2 but zoomed into the bulk-region close to the moving brane.

Figure 9.4: Evolution of Ψ2
1(t, y) for ys = L and vb = 0.1.
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Figure 9.5: Localization of four-dimensional gravity on a moving brane: Evolution of Ψ2
0(t, y) for ys = L = 1

and vb = 0.1.

In summary, the different scaling behavior for the zero and KK modes on the brane is entirely a conse-
quence of the geometry of the bulk spacetime, i.e. of the warping L2/y2 of the metric (8.42) 4. It is simply a
manifestation of the localization of gravity on the brane: as time evolves, the KK gravitons, which are traces
of the five-dimensional nature of gravity, escape into the bulk and only the zero mode which corresponds to
the usual four-dimensional graviton remains on the brane.

This, and in particular the scaling behavior (9.96), remains also true if the second brane is removed, i.e.
in the limit ys → ∞, leading to the original Randall-Sundrum II model. By looking at (9.87) and (9.95) one
could at first think that then the KK-power spectrum and energy density vanish and no traces of the KK
gravitons could be observed on the brane since both expressions behave as 1/ys. But this is not the case since
the spectrum of KK masses becomes continuous. In the continuum limit ys → ∞ the summation over the
discrete spectrum mn has to be replaced by an integration over continuous masses m in the following way:

1

ys

∑

n

f(mn) −→ 1

π

∫
dm f(m) . (9.105)

f is some function depending on the spectrum, for example f(mn) = N out
n,k . The pre-factor 1/ys in (9.87) and

(9.95) therefore ensures the existence of the proper continuum limit of both expressions.
Another way of seeing this is to repeat the same calculations but using the eigenfunctions for the case with
only one brane from the beginning. Those are δ-function normalized and can be found in, e.g., [85]. They
are basically the same as (9.7) except that the normalization is different since it depends on whether the fifth
dimension is compact or not. In particular, on the brane, they have the same scale factor dependence as (9.75).

At the end, the behavior found for the KK modes should not come as a surprise, since the RS II model
has attracted lots of attention because of exactly this; it localizes usual four-dimensional gravity on the brane
(cf. section 8.2.2, [182, 136, 190]). As I have shown here, localization of standard four-dimensional gravity
on a moving brane via a warped geometry automatically ensures that the KK modes escape into the bulk as
the Universe expands because their wave function has its weight in the region of less warping, resulting in an
KK-mode energy density on the brane which scales like stiff matter.

An immediate consequence of this particular scaling behavior is that KK gravitons in an AdS braneworld
cannot play the role of dark matter. Their energy density in our Universe decays much faster with the expan-
sion than that of ordinary matter which is restricted to reside on the brane.

4Note that it does not depend on a particular type of brane motion and it should also be true in the high energy case which I
do not consider here.



Chapter 10

Graviton production in a bouncing

braneworld

10.1 The model

The model which I shall consider in the following is strongly motivated by the ekpyrotic or cyclic Universe and
similar ideas [112, 109, 171, 205, 137, 113, 114, 115, 116, 210]. The scenario of the ekpyrotic Universe goes
back to Khoury, Ovrut, Steinhardt and Turok [112] who suggested a three-brane cosmological model based on
the Hor̆ava-Witten [94, 95] and heteroic M-theory [148, 149, 150]. In this model, roughly speaking, the Hot
Big Bang corresponds to the collision of two branes; a moving bulk brane which hits “our” brane, i.e. the
observable Universe. Thereby, our brane is one of two bounding branes spanning an intervening bulk volume
(the fifth dimension). While our brane, called the visible brane is of negative tension, the second boundary
brane is of positive tension and called the hidden brane. Both branes are Minkowskian but the bulk is warped
along the fifth dimension. In addition there is a bulk brane which is free to move and its collision with our
brane defines the creation of the Hot Big Bang Universe. Within such a model, it seems to be possible to
address all major cosmological problems (homogeneity, origin of density perturbations, monopole problem)
without invoking the paradigm of inflation. For more details see [112] but also [109] for critical comments.
One important difference between the ekpyrotic model and standard inflation is that in the latter one density
as well as tensor perturbations have a nearly scale invariant spectrum [cf. Section 6.5.4]. The ekpyrotic model,
on the other hand, predicts a strongly blue gravitational wave spectrum with spectral tilt nT ≃ 2 [112]. This
blue spectrum is a key test for the ekpyrotic scenario since inflation always predicts a slightly red spectrum
for gravitational waves. One method to detect a background of primordial gravitational waves of wavelengths
comparable to the Hubble horizon today is the polarization of the cosmic microwave background. Since a
strongly blue spectrum of gravitational waves is unobservably small for large length scales, the detection of
gravitational waves in the cosmic microwave background polarization would falsify the ekpyrotic model [112].
It is important to mention that a blue spectrum of gravitational waves also appears in the Pre-Big-Bang models
introduced by Veneziano and Gasparini [214, 81, 28, 27] (see also [66, 32]).

Here I shall consider a simple specific model which should be generic enough to cover important main features
of the generation and evolution of gravitational waves in the background of a moving brane whose trajectory
involves a bounce.
The setup is the scenario depicted in Fig. 9.1. Our Universe is represented by the positive tension FLRW-brane
in the five-dimensional AdS bulk. (In that respect this model is more similar to the pyrotechnic Universe of
Kallosh, Kofman and Linde [109] where the observable Universe is also represented by a positive tension brane
rather than to the ekpyrotic model where our brane has negative tension.) First, the physical brane moves
towards the static brane, initially the motion is very slow. During this phase the Universe is contracting, i.e.
the scale factor on the brane decreases, the energy density on the brane increases and the motion becomes
faster. I suppose that, at some more or less close encounter of the two branes which I call the bounce, some
high energy mechanism which I do not want to specify in any detail, turns around the motion of the brane
leading to an expanding Universe. Modeling the transition from contraction to subsequent expansion in any
detail would require assumptions about unknown physics. I shall therefore ignore results which depend on the
details of the transition. Finally the physical brane moves away from the static brane back towards the horizon

103
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y = 0 with expansion first fast and then becoming slower as the energy density drops.

In particular I assume that the dynamics of the brane is driven by a radiation component on the brane in
the low energy limit

P =
1

3
ρ and v ≪ 1 so that γ ≃ 1 , dη ≃ dt . (10.1)

In such a period, the dynamics of the scale factor on the brane is described by the usual Friedmann equation
(6.20) with solution

a(t) =
|t| + tb

L
, tb = const. > 0. (10.2)

Recall that the conformal time on the brane η corresponds to the bulk time t in the low energy limit. The
motion of the brane through the AdS bulk which mimics the above evolution of the scale factor on the brane
is [cf. Eq. (8.44)]

yb(t) =
L2

|t| + tb
(10.3)

with velocity

v(t) = − sign(t)L2

(|t| + tb)2
= −HL . (10.4)

Negative times describe a contracting phase, while positive times describe radiation dominated expansion.
At t = 0, the scale factor exhibits a kink and the evolution equations are singular. The (free) parameter tb
determines the value of the scale factor ab as well as the velocity of the brane vb at the bounce

ab = a(0) =
tb
L

=
1√
vb

, vb = |ẏb(0)| =
L2

t2b
. (10.5)

Apparently one has to demand tb > L. Inspection of Equation (10.4) shows that the time-derivative of the
Hubble parameter diverges at t = 0; it contains a δ-function [cf. Section 10.3.1]. This is the bounce which I
shall not model in detail. I will have to introduce a cutoff in order to avoid ultraviolet divergencies in the total
particle number and energy density which are due to this unphysical kink expressing my ignorance related
to the physics driving the bounce. But I shall show that when the kink is smoothed out at some scale, the
production of KK modes with masses larger than this scale is exponentially suppressed, and the divergency
disappears.
One advantage of considering this particular brane motion is, that the two brane system has well defined
asymptotic configurations such that the conditions (9.39) are naturally satisfied.

10.2 Numerical simulations

10.2.1 Preliminary remarks

In the numerical simulations I set L = 1, i.e. all dimensionful quantities are measured in units of the AdS5

curvature scale. Starting at initial time tin ≪ 0 where the initial vacuum state |0, in〉 is defined the sys-
tem (3.76,3.77) is evolved numerically up to final time tout. Thereby I set tin = −2πNin/k with 1 ≤ Nin ∈ N,

such that Θin
0,k = 1 [cf. Eq. (9.60)]. This implies ξ

(0)
0 (tin) = 2, i.e. independent of the three-dimensional

momentum k a (plane wave) zero-mode solution always performs a fixed number of oscillations between tin
and the bounce at t = 0 [cf. Eq. (9.73)]. The final particle spectrum at N out

α,k,• is calculated at late times
tout ≫ 1 when the brane approaches the Cauchy horizon and particle creation has ceased. This quantity is
physically well defined and leads to the late-time power spectrum (9.83) and energy density (9.91) on the
brane. For illustrative purposes, I also plot the instantaneous particle number Nα,k,•(t) which also determines
the power spectrum at all times [cf Eq.(9.81)]. In this section I shall use the term particle number for both,
the instantaneous particle number Nα,k,•(t) as well as the final state graviton number N out

α,k,•, keeping in mind
that only the latter one is physically meaningful.

There are two physical input parameters for the numerical simulation; the maximal brane velocity vb (i.e.
tb) and the position of the fixed brane ys. The latter determines the number of KK modes which fall within a
particular mass range. On the numerical side one has to specify Nin and tout, as well as the maximum number
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Figure 10.1: Evolution of the graviton number Nα,k,•(t) for the zero mode and the first ten KK modes for
three-momentum k = 0.01 and vb = 0.1, ys = 10.

of KK modes nmax which one takes into account, i.e. after which KK mode the system of differential equations
is truncated. The independence of the numerical results on the choice of the time parameters is checked and
the convergence of the particle spectrum with increasing nmax is investigated. More detailed information on
numerical issues including accuracy considerations are collected in Appendix B.1.
One strong feature of the brane motion (10.3) is its kink at the bounce t = 0. In order to study how particle
production depends on the kink, I shall compare the motion (10.3) with the following motion which has a
smooth transition from contraction to expansion (L = 1):

yb(t) =

{
(|t| + tb − ts)

−1 if |t| > ts
a + (b/2)t2 + (c/4)t4 if |t| ≤ ts

(10.6)

with the new parameter ts in the range 0 < ts < tb. This motion is constructed such that its velocity at |t| = ts
is the same as the velocity of the kink motion at the bounce. This will be the important quantity determining
the number of produced gravitons. For ts → 0 the motion with smooth transition approaches (10.3). The
parameters a, b and c are obtained by matching the motions and the first and second derivatives. Matching
also the second derivative guarantees that possible spurious effects contributing to particle production are
avoided. The parameter ts has to be chosen small enough, ts ≪ 1, such that the maximal velocity of the
smooth motion is not much larger than vb in order to have comparable situations.
For reasons which will become obvious in the next two sections I shall discuss the cases of long k ≪ 1 and
short wavelengths k ≫ 1, separately.

10.2.2 Generic results and observations for long wavelengths k ≪ 1

Figure 10.1 displays the results of a numerical simulation for three-momentum k = 0.01, static brane position
ys = 10 and maximal brane velocity vb = 0.1. Depicted is the graviton number for one polarization Nα,k,•(t)
for the zero mode and the first ten KK modes as well as the evolution of the scale factor a(t) and the position
of the physical brane yb(t). Initial and final times are Nin = 5 and tout = 2000, respectively. The KK-particle
spectrum will be discussed in detail below. One observes that the zero mode particle number increases slightly
with the expansion of the Universe towards the bounce at t = 0. Close to the bounce N0,k,•(t) increases
drastically, shows a local peak at the bounce and, after a short decrease, grows again until the mode is sub-
horizon (kt ≫ 1). Inside the horizon N0,k,•(t) is oscillating around a mean value with diminishing amplitude.
This mean value which is reached asymptotically for t → ∞ corresponds to the number of generated final state
zero mode gravitons N out

0,k,•. Production of KK mode gravitons takes effectively place only at the bounce in a
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Figure 10.2: Nn,k,•(t) for the zero mode and the first ten KK modes for the parameters of Fig. 10.1, but
without coupling of the zero mode to the KK modes, i.e. Mi0 ≡ 0.

step-like manner and the graviton number remains constant right after the bounce.
In Fig. 10.2 I show the numerical results obtained for the same parameters as in Fig. 10.1 but without coupling
of the zero mode to the KK modes, i.e. Mn0 = 0 (and thus also Nn0 = N0n = 0). One observes that the
production of zero mode gravitons is virtually not affected by the artificial decoupling 1. Note that even if
M0m ≡ 0 (see Eqs. 9.25), which is in general true for Neumann boundary conditions, the zero mode q0,k,•
couples in Eq. (9.23) to the KK modes via N0m = M00Mm0 and through the anti-symmetric combination
Mαβ − Mβα.
In contrast, the production of the first ten KK modes is heavily suppressed if Mn0 = 0. The corresponding
final-state graviton numbers N out

n,k,• are reduced by four orders of magnitude. This shows that the coupling
to the zero mode is essential for the production of massive gravitons. Later we will see that this is true for
light KK gravitons only. If the KK masses exceed mn ∼ 1, they evolve independently of the four-dimensional
graviton and their evolution is entirely driven by the intermode couplings Mnm. It will also turn out that
the time-dependence of the KK mass mn plays only an inferior role for the generation of massive KK modes.
On the other hand, the effective decoupling of the evolution of the zero mode from the KK modes occurs in
general as long as k ≪ 1 is satisfied, i.e. for long-wavelengths. We will see that it is no longer true for short
wavelengths k ≫ 1.
The effective decoupling of the zero mode evolution from the KK modes makes it possible to derive analytical
expressions for the number of zero mode gravitons, their power spectrum and energy density. The calculations
are carried out in section 10.3.1.
In summary I would like to emphasize the important observation that for long wavelengths the amplification
of the four dimensional gravity wave amplitude during the bounce is not affected by the evolution of the KK
gravitons. One can therefore study the zero mode separately from the KK modes in this case.

10.2.3 Zero mode: long wavelengths k ≪ 1

In Figure 10.3 I show the numerical results for the number of generated zero mode gravitons N0,k,•(t) and
the evolution of the corresponding power spectrum P0(k) on the brane for momentum k = 0.01, position of
the static brane ys = 10 and maximal brane velocity vb = 0.1. The results have been obtained by solving the
equations for the zero mode alone, i.e. without the couplings to the KK modes, since, as I have just shown, the
evolution of the four-dimensional graviton for long wavelengths is not influenced by the KK modes. Thereby

1Quantitatively it is N0,k,•(t = 2000) = 965.01 with and N0,k,•(t = 2000) = 965.06 without Mi0. Note that this difference lies
indeed within the accuracy of our numerical simulations (see Appendix B.3.)
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Figure 10.3: Time evolution of the number of created zero mode gravitons N0,k,•(t) and of the zero-mode
power spectrum (9.80): (a) for the entire integration time; (b) for t > 0 only. Parameters are k = 0.01, ys = 10
and vb = 0.1. Initial and final time of integration are given by Nin = 10 and tout = 4000, respectively. The
power spectrum is shown with and without the term ON

0,k,•, i.e. before and after averaging, respectively, and
compared with the analytical results.

the power spectrum is shown before and after averaging over several oscillations, i.e. employing Eq. (9.81)
with and without the term ON

0,k, respectively. Right after the bounce where the generation of gravitons is
initiated and which is responsible for the peak in N0,k,• at t = 0, the number of gravitons first decreases
again. Afterwards N0,k,• grows further until the mode enters the horizon at kt = 1. Once on sub-horizon
scales kt ≫ 1, the number of produced gravitons oscillates with a diminishing amplitude and asymptotically
approaches the final state graviton number N out

0,k,•. During the growth of N0,k,• after the bounce, the power
spectrum remains practically constant. Within the range of validity it is in good agreement with the analyt-
ical prediction (10.32) yielding (L2(2π)3/κ4)P0(k, t) = 4vb(kL)2. When particle creation has ceased, the full
power spectrum Eq.(9.80) starts to oscillate with an decreasing amplitude. The time-averaged power spectrum
obtained by using Eq. (9.81) without the ON

0,k-term is perfectly in agreement with the analytical expression

Eq. (10.30) which gives (L2(2π)3/κ4)P0(k, t) = 2vb(L/t)2. Note that at early times, the time-averaged power
spectrum behaves not in the same way as the full one, demonstrating the importance of the term ON

0,k.
Figure 10.4 shows a summary of numerical results for the number of created zero mode gravitons N0,k,•(t) for
different values of the three-momentum k. The maximum velocity at the bounce is vb = 0.1 and the second
brane is at ys = 10. These values are representative. Other values in accordance with the considered low-energy
regime do not lead to a qualitatively different behavior. Note that the evolution of the zero mode does virtually
not depend on the value of ys as long as ys ≫ yb(0) (see below). Initial and final integration times are given
by Nin = 5 and tout = 20000, respectively.
For sub-horizon modes I compare the final graviton spectra with the analytical prediction (10.26). Both are
in perfect agreement. On super-horizon scales where particle creation has not ceased yet N0,k,• is independent
of k. The corresponding time-evolution of the power spectra P0(k, t) is depicted in Fig. 10.5. For the sake of
clarity, only the results for t > 0, i.e. after the bounce, are shown in both figures.

The numerical simulations and the calculations of section 10.3.1 reveal that the power spectrum for the four-
dimensional graviton for long wavelengths is blue on super-horizon scales, as expected for an ekpyrotic scenario.
The analytical calculations performed in section 10.3.1 rely on the assumption that yb ≪ ys and tin → −∞.
Figure 10.6 shows the behavior of the number of generated zero mode gravitons of momentum k = 0.01 in
dependence on the inter-brane distance and the initial integration time. The brane velocity at the bounce is
vb = 0.1 which implies that at the bounce the moving brane is at yb(0) =

√
vb ≃ 0.316 (L = 1). In case of a



108 CHAPTER 10. GRAVITON PRODUCTION IN A BOUNCING BRANEWORLD

Figure 10.4: Numerical results for the time evolution of the number of created zero mode gravitons N0,k,•(t)
after the bounce t > 0 for different three-momenta k. The maximal brane velocity at the bounce is vb = 0.1 and
the second brane is positioned at ys = 10. In the final particle spectrum the numerical values are compared
with the analytical prediction Eq. (10.26). Initial and final time of integration are given by Nin = 5 and
tout = 20000, respectively.
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Figure 10.6: Dependence of the zero mode particle number on inter-brane distance and initial integration
time for momentum k = 0.01, maximal brane velocity vb = 0.1 in comparison with the analytical expression
Eq. (10.25). (a) Evolution of the instantaneous particle number N0,k,•(t) with initial integration time given by
Nin = 5 for ys = 0.35, 0.5 and 1. (b) Final zero mode graviton spectrum N0,k,•(tout = 2000) for various values
of ys and Nin. (c) Close-up view of (b) for large ys.

close encounter of the two branes as for ys = 0.35, the production of massless gravitons is strongly enhanced
compared to the analytical result. But as soon as ys >∼ 1, (i.e. ys >∼ L) the numerical result is very well
described by the analytical expression Eq. (10.25) derived under the assumption ys ≫ yb. For ys >∼ 10 the
agreement between both is very good. From panels (b) and (c) one infers that the numerical result becomes
indeed independent of the initial integration time when increasing Nin. Note that in the limit Nin ≫ 1 the
numerical result is slightly larger than the analytical prediction but the difference between both is negligibly
small. This confirms the correctness and accuracy of the analytical expressions derived in Section 10.3.1 for
the evolution of the zero mode graviton.

10.2.4 Kaluza-Klein-modes: long wavelengths k ≪ 1

Because the creation of KK gravitons ceases right after the bounce [cf Fig. 10.1] one can stop the numerical
simulation and read out the number of produced KK gravitons N out

n,k,• at times for which the zero mode is still
super-horizon.
Even though Eq. (9.13) cannot be solved analytically, the KK masses can be approximated by mn ≃ nπ/ys.
This expression is the better the larger the mass. Consequently, for the massive modes the position of the
second brane ys determines how many KK modes belong to a particular mass range ∆m.
In Figure 10.7 I show the KK graviton spectra N out

n,k,• for three-momentum k = 0.001 and second brane po-
sition ys = 100 for maximal brane velocities vb = 0.1, 0.3 and 0.5. For any velocity vb two spectra obtained
with nmax = 60 and 80 KK modes taken into account in the simulation are compared to each other. This
reveals that the numerical results are stable up to a KK mass mn ≃ 1. One infers that first, N out

n,k,• grows
with increasing mass until a maximum is reached. The position of the maximum shifts slightly towards larger
masses with increasing brane velocity vb. Afterwards, N out

n,k,• declines with growing mass. Until the maximum
is reached, the numerical results for the KK-particle spectrum are very stable. This already indicates that the
KK-intermode couplings mediated by Mnm are not very strong in this mass range. In Figure 10.8 I show the
final KK particle spectrum for the same parameters as in Fig. 10.7 but for three-momentum k = 0.01 and
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Figure 10.7: Final state KK graviton spectra for k = 0.001, ys = 100, different maximal brane velocities vb and
Nin = 1, tout = 400. The numerical results are compared with the analytical prediction Eq. (10.44) (dashed
line).

0.01 0.1 1 10
Kaluza-Klein mass mn

10
-4

10
-3

10
-2

10
-1

10
0

fin
al

 s
ta

te
 g

ra
vi

to
n 

nu
m

be
r 

N
k,

n,
ou

t

nmax=40

nmax=60

nmax=80

nmax=60, Mnm=0 for all n, m

vb = 0.1

vb = 0.5

vb = 0.3

vb = 0.9
●

Figure 10.8: Final state KK graviton spectra for k = 0.01, ys = 100, different vb and Nin = 1, tout = 400. The
numerical results are compared with the analytical prediction Eq. (10.44) (dashed line). For vb = 0.3, 0.5 the
spectra obtained without KK-intermode and self-couplings (Mnm ≡ 0 ∀n, m) are shown as well.
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the additional velocity vb = 0.9 2. One observes the same qualitative behavior as in Fig. 10.7. In addition I
show numerical results obtained for vb = 0.3 and 0.5 without the KK-intermode and self couplings, i.e. I have
set Mnm ≡ 0 ∀n, m by hand. One infers that for KK masses, depending slightly on the velocity vb but at
least up to mn ≃ 1, the numerical results for the spectra do not change when the KK-intermode coupling is
switched off. Consequently, the evolution of light, i.e. mn <∼ 1, KK gravitons is virtually not affected by the
KK-intermode coupling.
In addition I find that also the time-dependence of the KK masses is not important for the production of light
KK gravitons which is explicitly demonstrated below. Thus, production of light KK gravitons is driven by
the zero mode evolution only. This allows me to find an analytical expression, Eq. (10.44), for the number of
produced light KK gravitons in terms of exponential integrals. The calculations which are based on several
approximations are performed in Section 10.3.3.
In Figs. 10.7 and 10.8 the analytical prediction (10.44) for the spectrum of final state gravitons has already
been included (dashed lines). Within its range of validity it is in excellent agreement with the numerical results
obtained by including the full KK-intermode coupling. It perfectly describes the dependence of N out

n,k,• on the
three-momentum k and the maximal velocity vb. For small velocities vb <∼ 0.1 it is also able to reproduce the
position of the maximum. This reveals that the KK-intermode coupling is negligible for light KK gravitons
and that their production is entirely driven by their coupling to the four-dimensional graviton.
The analytical prediction is very precious for testing the goodness of the parameters used in the simulations, in
particular the initial time tin (respectively Nin). Since it has been derived for real asymptotic initial conditions,
tin → −∞, its perfect agreement with the numerical results demonstrates that the values for Nin used in the
numerical simulations are large enough. No spurious initial effects contaminate the numerical results.
Note, that the numerical values for N out

n,k,• in the examples shown are all smaller than one. However, for
smaller values of k than the ones which we consider here for purely numerical reasons, the number of gener-
ated KK-mode particles is enhanced since N out

n,k,• ∝ 1/k as can be inferred from Eq. (10.44) in the limit k ≪ mn.

If one goes to smaller values of ys, fewer KK modes belong to a particular mass range. Hence, with the
same or similar number of KK modes as taken into account in the simulations so far, I can study the behavior
of the final particle spectrum for larger masses. These simulations shall reveal the asymptotical behavior of
N out

n,k,• for mn → ∞ and therefore the behavior of the total graviton number and energy density. Due to the
kink in the brane motion one cannot expect that the energy density of produced KK-mode gravitons is finite
when summing over arbitrarily high frequency modes. Eventually, I will have to introduce a cutoff setting
the scale at which the kink-approximation [cf. Eqs. (10.2) - (10.4)] is no longer valid. This is the scale where
the effects of the underlying unspecified high-energy physics which drive the transition from contraction to
expansion become important. The dependence of the final particle spectrum on the kink will be studied later
on in this section in detail.

In Figures 10.9 and 10.10 I show KK graviton spectra for ys = 10 and three-momentum k = 0.01 and k = 0.1.
The analytical expression Eq. (10.44) is depicted as well and the spectra are always shown for at least two
values of nmax to indicate up to which KK mass stability of the the numerical results is guaranteed. Now,
only two KK modes are lighter than m = 1. For these modes the analytical expression Eq. (10.44) is valid and
in excellent agreement with the numerical results, in particular for small brane velocities vb ∼ 0.1. As before,
the larger the velocity vb the more visible is the effect of the truncation of the system of differential equations
at nmax.
For k = 0.01 the spectrum seems to follow a power law decrease right after the maximum in the spectra.
In case of vb = 0.1 the spectrum is numerically stable up to masses mn ≃ 20. In the region 5 <∼ mn <∼ 20
the spectrum is very well fitted by a power law N out

n,k,• ∝ m−2.7
n . Also for larger velocities the decline of the

spectrum is given by the same power within the mass ranges where the spectrum is numerically stable. For
k = 0.1, however, the decreasing spectrum bends over at a mass around mn ≃ 10 towards a less steep decline.
This is in particular visible in the two cases with vb = 0.1 and 0.3 where the first 100 KK modes have been
taken into account in the simulation. The behavior of the KK mode particle spectrum can therefore not be
described by a single power law decline for masses mn > 1. It shows more complicated features instead,
which depend on the parameters. I shall demonstrate that this bending over of the decline is related to the
coupling properties of the KK modes and to the kink in the brane motion. But before I come to a detailed dis-
cussion of these issues, let me briefly confront numerical results of different ys to demonstrate a scaling behavior.

2Such a high brane velocity is of course not consistent with a Neumann boundary condition Eq. (9.2) at the position of the
moving brane.
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Figure 10.9: Final state KK graviton spectra for k = 0.01, ys = 10, different maximal brane velocities vb and
Nin = 2, tout = 400. The numerical results are compared with the analytical prediction Eq. (10.44) (dashed
line).
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Figure 10.10: Final state KK graviton spectra for k = 0.1, ys = 10, different maximal brane velocities vb and
Nin = 2, tout = 400. The numerical results are compared with the analytical prediction Eq. (10.44) (dashed
line).



10.2. NUMERICAL SIMULATIONS 113

10
-4

10
-2

10
-3

10
-5

10
-1

fin
al

 s
ta

te
 g

ra
vi

to
n 

nu
m

be
r 

N
n,

k,
ou

t

ys=3,     nmax=40

ys=10,   nmax=100

ys=30,   nmax=120

ys=100, nmax=80

0.1 1 10 100
Kaluza-Klein mass mn

0
2
4
6
8

en
er

gy
/∆

m ys=10
ys=30
ys=100

x10
-02

●

Figure 10.11: Upper panel: Final state KK particle spectra for k = 0.01, vb = 0.1 and different ys = 3, 10, 30
and 100. The analytical prediction Eq. (10.44) is shown as well (dashed line). Lower panel: Energy Ωout

n,kN out
n,k,•

of the produced final state gravitons binned in mass intervals ∆m = 1 for ys = 10, 30, 100.

In the upper panel of Figures 10.11 and 10.12 I compare the final KK-spectra for several positions of the
second brane ys = 3, 10, 30 and 100 obtained for a maximal brane velocity vb = 0.1 for k = 0.01 and 0.1,
respectively. One observes that the shapes of the spectra are identical. The bending over in the decline of the
spectrum at masses mn ∼ 1 is very well visible for k = 0.1 and ys = 3, 10. For a given KK mode n the number
of particles produced in this mode is the larger the smaller ys. But the smaller ys, the less KK modes belong to
a given mass interval ∆m. The energy transferred into the system by the moving brane, which is determined
by the maximum brane velocity vb, is the same in all cases. Therefore, the total energy of the produced final
state KK gravitons of a given mass interval ∆m should also be the same, independent of how many KK modes
are contributing to it. This is demonstrated in the lower panels of Figs. 10.11 and 10.12 where the energy
Ωout

n,kN out
n,k,•(in units of L) of the generated KK gravitons binned in mass intervals ∆m = 1 is shown 3. One

observes that, as expected, the energy transferred into the production of KK gravitons of a particular mass
range is the same (within the region where the numerical results are stable), independent of the number of KK
modes lying in the interval. This is in particular evident for ys = 30, 100. The discrepancy for ys = 10 is due
to the binning. As I shall discuss below in detail, the particle spectrum can be split into two different parts.
The first part is dominated by the coupling of the zero mode to the KK modes (as shown above), whereas
the second part is dominated by the KK-intermode couplings and is virtually independent of the wave number
k. As long as the coupling of the zero mode to the KK modes is the dominant contribution to KK particle
production it is N out

n,k,• ∝ 1/k [cf. Eq. (10.44)]. Hence, Eout
n,k,• = Ωout

n,kN out
n,k,• ∝ 1/k if mn ≫ k. This explains why

the energy per mass interval ∆m is one order larger for k = 0.01 (cf Fig. 10.11) than for k = 0.1 (cf Fig. 10.12) .

Let me now discuss the KK-spectrum for large masses. The qualitative behavior of the spectrum N out
n,k,•

and the mass at which the decline of the spectrum changes are independent of ys. This is demonstrated in
Figure 10.13 where KK-spectra for vb = 0.1, k = 0.1, ys = 10 [cf Fig. 10.10] and ys = 3 [cf Fig. 10.12] are
shown. The results obtained by taking the full intermode-coupling into account are compared to results of
simulations where I have switched off the coupling of the KK modes to each other as well as their self-coupling
(Mnm ≡ 0 ∀n, m). Furthermore I display the results for the KK-spectrum obtained by taking only the KK-
intermode couplings into account, i.e. Mn0 = Mnn = 0 ∀n. One infers that for the lowest masses the spectra
obtained with all couplings are identical to the ones obtained without the KK-intermode (Mnm = 0, n 6= m)

3The energy for the case ys = 3 is not shown because no KK mode belongs to the first mass interval.
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Figure 10.12: Upper panel: Final state KK particle spectra for k = 0.1, vb = 0.1 and different ys = 3, 10, 30
and 100. The analytical prediction Eq. (10.44) is shown as well (dashed line). Lower panel: Energy Ωout

n,kN out
n,k,•

of the produced final state gravitons binned in mass intervals ∆m = 1 for ys = 10, 30, 100.

and self-couplings (Mnn = 0). Hence, as already seen before, the primary source for the production of light
KK gravitons is their coupling to the evolution of the four-dimensional graviton. In this mass range, the
contribution to the particle creation coming from the KK-intermode couplings is very much suppressed and
negligibly small.
For masses mn ≃ 4 a change in the decline of the spectrum sets in and the spectrum obtained without the
coupling of the KK modes to the zero mode starts to diverge from the spectrum computed by taking all the
couplings into account. While the spectrum without the KK-intermode couplings decreases roughly like a
power law N out

n,k,• ∝ m−3
n the spectrum corresponding to the full coupling case changes its slope towards a

power law decline with less power. At this point the KK-intermode couplings gain importance and the cou-
pling of the KK modes to the zero mode looses influence. For a particular mass mc ≃ 9 the spectrum obtained
including the KK-intermode couplings only, crosses the spectrum calculated by taking into account exclusively
the coupling of the KK modes to the zero mode. After the crossing, the spectrum obtained by using only the
KK-intermode couplings approaches the spectrum of the full coupling case. Both agree for large masses. Thus
for large masses mn > mc the production of KK gravitons is dominated by the couplings of the KK modes
to each other and is not influenced anymore by the evolution of the four-dimensional graviton. This crossing
defines the transition between the two regimes mentioned before: for masses mn < mc the production of KK
gravitons takes place due to their coupling to the zero mode Mn0, while it is entirely caused by the intermode
couplings Mnm for masses mn > mc.
Decoupling of the evolution of the KK modes from the dynamics of the four-dimensional graviton for large
masses implies that KK-spectra obtained for the same maximal velocity are independent of the three-momentum
k. This is demonstrated in Fig. 10.14 where I compare spectra obtained for vb = 0.1 and ys = 3 but different
k. As expected, all spectra converge towards the same behavior for masses mn > mc.

Figure 10.15 shows KK particle spectra for k = 0.1,vb = 0.1 and ys = 3 obtained for different couplings.
This plot visualizes how each particular coupling combination contributes to the production of KK gravi-
tons. It shows, as already mentioned before but not shown explicitly, that the Mnn coupling which is the
rate of change of the corresponding KK mass [cf. Eqs. (9.14),(9.27)] is not important for the production of
KK gravitons. Switching it off does not affect the final graviton spectrum. I also show the result obtained
with all couplings but with α+

nn(t) = Ωin
n,k and α−

nn(t) = 0, i.e. the time-dependence of the frequency has
been neglected [cf. Eq. (9.72)]. One observes that in this case the spectrum for larger masses is quantitatively
slightly different but has a identical qualitative behavior. If, on the other hand, all the couplings are switched
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Figure 10.13: KK particle spectra for three-momentum k = 0.1, maximum brane velocity vb = 0.1 and ys = 3
and 10 with different couplings taken into account. The dashed lines indicates again the analytical expression
Eq. (10.44).
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Figure 10.14: Comparison of KK particle spectra for ys = 3, vb = 0.1 and three-momentum k = 0.01, 0.03, 0.1
and 1 demonstrating the independence of the spectrum on k for large masses. nmax = 60 KK modes have been
taken into account in the simulations.
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Figure 10.15: KK particle spectra for three-momentum k = 0.1, maximum brane velocities vb = 0.1 and ys = 3
for nmax = 40 obtained for different coupling combinations.

off Mαβ ≡ 0 ∀α, β and only the time-dependence of the frequency Ωn,k is taken into account, the spectrum
changes drastically. Not only the number of produced gravitons is now orders of magnitude smaller but also
the spectral tilt changes. For large masses it behaves as Nn,k,• ∝ m−2

n . Consequently, the time-dependence of
the graviton frequency itself plays only an inferior role for production of KK gravitons.
The bottom line is that the main sources of the production of KK gravitons is their coupling to the evolution
of the four-dimensional graviton (Mn0) and their couplings to each other (Mnm, n 6= m) for small and large
masses, respectively. Both are caused by the time-dependent boundary condition. The time-dependence of the
oscillator frequency Ωn,k =

√
m2

n(t) + k2 is virtually irrelevant. Note that this situation is very different from
ordinary inflation where there are no boundaries and particle production is due entirely to the time dependence
of the frequency 4.

The behavior of the KK-spectrum, in particular the mass mc at which the KK-intermode couplings start
to dominate over the coupling of the KK modes to the zero mode depends only on the three-momentum
k = |k| and the maximal brane velocity vb. This is now discussed. In Figure 10.16 I show KK particle spectra
for ys = 10, vb = 0.1, nmax = 100 and three-momenta k = 0.01 and 0.1. Again, the spectra obtained by
taking all the couplings into account are compared to the case where only the coupling to the zero mode is
switched on. One observes that for k = 0.01 the spectrum is dominated by the coupling of the KK modes to
the zero mode up to larger masses than it is the case for k = 0.1. For k = 0.01 the spectrum obtained taking
into account Mi0 only is identical to the spectrum obtained with the full coupling up to mn ≃ 10. In case
of k = 0.1 instead, the spectrum is purely zero mode dominated only up to mn ≃ 5. Hence, the smaller the
three-momentum k the larger is the mass range for which the KK-intermode coupling is suppressed, and the
coupling of the zero mode to the KK modes is the dominant source for the production of KK gravitons. As
long as the coupling to the zero mode is the primary source of particle production, the spectrum declines with
a power law ∝ m−3

n . Therefore, in the limiting case k → 0 when the coupling of the zero mode to the KK
modes dominates particle production also for very large masses it is N out

n≫1,k→0,• ∝ 1/m3
n.

Figure 10.17 shows KK graviton spectra obtained for the same parameters as in Fig. 10.16 but for fixed
k = 0.1 and different maximal brane velocities vb. Again, the spectra obtained by taking all the couplings
into account are compared with the spectra to which only the coupling of the KK modes to the zero mode
contributes. The mass up to which the spectra obtained with different couplings are identical changes only

4Note, however, that the time-dependent KK mass mj(t) enters the intermode-couplings.
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Figure 10.16: KK particle spectra for ys = 10, vb = 0.1, nmax = 100 and three-momentum k = 0.01 and 0.1
with different couplings taken into account. The thin dashed lines indicates Eq. (10.44) and the thick dashed
line Eq. (10.9).
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Figure 10.17: KK particle spectra for three-momentum k = 0.1,ys = 10 and maximum brane velocities vb =
0.03, 0.1 and 0.3 with nmax = 100. As in Fig. 10.16 different couplings have been taken into account and thin
dashed lines indicates Eq. (10.44) and the thick dashed line Eq. (10.9).
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Figure 10.18: KK particle spectra for three-momentum k = 0.01, 0.03, 0.1 and 1 for ys = 3 and maximum
brane velocity vb = 0.1 with different couplings taken into account where the notation is like in Fig. 10.17.
From the crossing of the Mnn = Mnm = 0 – and Mnn = Mn0 = 0 – results we determine the k-dependence of
mc(k, vb). The thick dashed line indicates Eq. (10.9).

slightly with the maximal brane velocity vb. Therefore, the dependence of mc on the velocity is rather weak
even if vb is changed by an order of magnitude, but nevertheless evident.
This behavior of the spectrum can indeed be understood qualitatively. In Section 10.3.3 I demonstrate that the
coupling strength of the KK modes to the zero mode at the bounce t = 0, where production of KK gravitons
takes place, is proportional to √

vb

k
. (10.7)

The larger this term the stronger is the coupling of the KK modes to the zero mode, and thus the larger
is the mass up to which this coupling dominates over the KK-intermode couplings. Consequently, the mass
at which the tilt of the KK particle spectrum changes depends strongly on the three-momentum k but only
weakly on the maximal brane velocity due to the square root behavior of the coupling strength. This explains
qualitatively the behavior obtained from the numerical simulations.

An approximate expression for mc(k, vb) can be obtained from the numerical simulations. In Figure 10.18
I depict the KK particle spectra for three-momentum k = 0.01, 0.03, 0.1 and 1 for ys = 3 and maximum brane
velocity vb = 0.1 with different couplings taken into account. The legend is as in Fig. 10.17. From the crossings
of the Mnm = 0, n 6= m and Mnn = Mn0 = 0 results one can determine the k-dependence of mc. Note that
the spectra are not numerically stable for large masses, but they are stable in the range where mc lies [cf., e.g.,
Fig. 10.20, for k = 0.1]. Using the data for k = 0.01, 0.03 and 0.1 one finds mc(k, vb) ∝ 1/

√
k .

In Fig. 10.19 KK graviton spectra are displayed for k = 0.1, ys = 3 and maximal brane velocities vb =
0.3, 0.2, 0.1, 0.08, 0.05 and 0.03 with different couplings taken into account. It is in principle possible to deter-
mine the vb-dependence of mc from the crossings of the Mij = 0, i 6= j- and Mii = Mi0 = 0 results as done for
the k-dependence. However, the values for mc displayed in the Figures indicate that the dependence of mc on
vb is very weak. From the given data it is not possible to obtain a good fitting formula (as a simple power law)
for the vb-dependence of mc. (In the range 0.1 ≤ vb ≤ 0.3 a very good fit is mc = 1.12πv0.13

b /
√

k.) The reason
is twofold. First of all, given the complicated coupling structure, it is a priori not clear that a simple power
law dependence exists. Recall that also the analytical expression for the particle number Eq. (10.44) has not
a simple power law velocity dependence. Moreover, for the number of modes taken into account (nmax = 40)
the numerical results are not stable enough to resolve the weak dependence of mc on vb with a high enough
accuracy. (But it is good enough to perfectly resolve the k-dependence.) The reason for the slow convergence
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Figure 10.19: KK graviton spectra for three-momentum k = 0.1, ys = 3 and maximal brane velocities
vb = 0.3, 0.2, 0.1, 0.08, 0.05 and 0.03 with different couplings taken into account where the notation is like
in Fig. 10.17. From the crossing of the Mnn = Mnm = 0 – and Mnn = Mn0 = 0 – results we determine the
vb-dependence of mc.

of the numerics will become clear below. As we shall see, the corresponding energy density is dominated by
masses much larger than mc. Consequently the weak dependence of mc on vb is not very important in that
respect and therefore does not need to be determined more precisely. However, combining all the data I can
give as a fair approximation

mc(k, vb) ≃
π vα

b

L
√

k L
, with α ≃ 0.1. (10.8)

Taking α = 0.13 for 0.1 ≤ vb ≤ 0.3 and α = 0.08 for 0.03 ≤ vb ≤ 0.1 fits the given data reasonably well.

As we have seen, as long as the zero mode is the dominant source of KK particle production, the final KK
graviton spectrum can be approximated by a power law decrease m−3

n . I can combine the presented numerical
results to obtain a fitting formula valid in this regime:

N out
n≫1,k≪1,• =

π

k ys

(vb)
2.37

(L mn)3
, for

1

L
< mn < mc. (10.9)

This fitting formula is shown in Figs. 10.16 10.17 and 10.18 and is in reasonable good agreement with the
numerical results. Since Eq. (10.9) together with (10.8) is an important result, I have reintroduced dimensions,
i.e. the AdS scale L which is set to one in the simulations, in both expressions.

Let me now discuss the slope of the KK graviton spectrum for masses mn → ∞ since it determines the
contribution of the heavy KK modes to the energy density. In Figure 10.20 I show KK graviton spectra ob-
tained for three-momentum k = 0.1, second brane position ys = 3 and maximal brane velocities vb = 0.01, 0.03
and 0.1. Up to nmax = 100 KK modes have been taken into account in the simulations. One immediately is
confronted with the observation that the convergence of the KK graviton spectra for large mn is very slow. This
is since those modes, which are decoupled from the evolution of the four-dimensional graviton, are strongly af-
fected by the kink in the brane motion. Recall that the production of light KK gravitons with masses mn ≪ mc

is virtually driven entirely by the evolution of the massless mode. Those light modes are not so sensitive to
the discontinuity in the velocity of the brane motion. To be more precise, their primary source of excitation is
the evolution of the four-dimensional graviton but not the kink which, as I shall discuss now, is responsible for
the production of heavy KK gravitons mn ≫ mc.
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Figure 10.20: KK particle spectra for k = 0.1, ys = 3 and maximal brane velocities vb = 0.01, 0.03, 0.1 up to
KK masses mn ≃ 100 compared with an 1/mn decline. The dashed lines indicate the approximate expression
(10.11) which describes the asymptotic behavior of the final KK particle spectra reasonably well, in particular
for vb < 0.1.

As discussed in section 3.5.2 and demonstrated in section 4.2, a discontinuity in the velocity will always lead
to a divergent total particle number. Arbitrary high frequency modes are excited by the kink since the ac-
celeration diverges there. Due to the excitation of KK gravitons of arbitrarily high masses one cannot expect
that the numerical simulations show a satisfactory convergence behavior which allows to determine the slope
by fitting the data. However, it is nevertheless possible to give a quantitative expression for the behavior of the
KK graviton spectrum for large masses. The studies of the usual dynamical Casimir effect on a time-dependent
interval are very useful for this purpose.

In section 4.2 I have discussed particle production on a time-dependent interval [0, l(t)] for the boundary
motion l(t) = l0 + v t with v = const. in detail. I have demonstrated that the particle spectrum behaves as
∝ v2/Ωn where Ωn = nπ/l0 is the frequency of a massless scalar particle. This divergent behavior and the
resulting slow convergence of the numerical results shown in Fig. 4.1 is caused by the discontinuities in the
velocity appearing when the motion is switched on and off.
At the kink in the brane-motion the total change of the velocity is 2vb, similar to the case for the linear
motion where the discontinuous change of the velocity is 2v. Consequently one may conclude that for large
KK masses mn ≫ mc for which the evolution of the KK modes is no longer affected by their coupling to the
four-dimensional graviton the KK graviton spectrum behaves as 5

N out
n,k,• ∝ (vb)

2

mn
for mn ≫ mc . (10.10)

If I assume that the spectrum declines like 1/mn and use that the numerical results for masses mn ≃ 20 are
virtually stable one finds N out

n,k,• ∝ v2.08
b /mn which describes the asymptotics of the numerical results well.

As for the uniform motion [cf. Fig. 4.1], the slow convergence of the numerical results towards the 1/mn

behavior is well visible for large masses mn ≫ mc which do no longer couple to the four-dimensional graviton.
This is a strong indication for the statement that the final graviton spectrum for large masses behaves indeed
like (10.10). It is therefore possible to give a single simple expression for the final KK particle spectrum for

5Note that the discussion in section 4.2 refers to Dirichlet boundary conditions. For Neumann boundary conditions considered
here, the zero mode and its asymmetric coupling play certainly a particular role. However, as we have shown, for large masses
only the KK-intermode couplings are important. Consequently, there is no reason to expect that the qualitative behavior of the
spectrum for large masses depends on the particular kind of boundary condition.
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Figure 10.21: Evolution of the zero mode particle number N0,k,•(t) and final KK graviton spectra N out
n,k,• for

ys = 3, maximal brane velocity vb = 0.1 and three-momenta k = 10 and 30. The dashed line in the upper plots
indicate Eq. (10.26) (divided by two) demonstrating the value of the number of produced zero mode gravitons
without coupling to the KK modes.

large masses which comprises all the features of the spectrum even quantitatively reasonably well [cf. dashed
lines in Fig. 10.20]

N out
n,k,• ≃ 0.2

v2
b

Ωout
n,k ys

for mn ≫ mc . (10.11)

The 1/ys-dependence is compelling. It follows immediately from the considerations on the energy and the
scaling behavior discussed above [cf. Figs. 10.11 and 10.12]. For completeness we now write 1/Ωout

n,k instead of
the KK mass mn only, since what matters is the total energy of a mode. Throughout this section this has
not been important since I considered only k ≪ 1 such that Ωout

n,k becomes independent of k for large masses
mn ≫ k [cf. Fig. 10.14].

10.2.5 Short wavelengths k ≫ 1

For short wave lengths k ≫ 1 (short compared to the AdS-curvature scale L set to one in the simulations)
a completely new and very interesting effect appears. The behavior of the four-dimensional graviton mode
changes drastically. I find that the zero mode now couples to the KK gravitons and no longer evolves virtually
independently of the KK modes, in contrast to the behavior for long wavelengths.
In Fig. 10.21 I show the evolution of the zero mode graviton number N0,k,•(t) and final KK graviton spectra
N out

n,k,• for ys = 3, maximal brane velocity vb = 0.1 and three-momenta k = 10 and 30. One observes that the
evolution of the four-dimensional graviton depends on the number of KK modes nmax taken into account, i.e.
the zero mode couples to the KK gravitons. For k = 10 the first 60 KK modes have to be included in the
simulation in order to obtain a numerically stable result for the zero mode. In the case of k = 30 one already
needs nmax ≃ 100 in order to achieve numerical stability for the zero mode.
Figure 10.22 displays the time-evolution of the number of produced zero mode gravitons N0,k,•(t) for ys = 3
and vb = 0.1. For large k the production of massless gravitons takes place only at the bounce since these short
wavelength modes are sub-horizon right after the bounce. Corresponding KK particle spectra for k = 10, 30 are
depicted in Figs. 10.21 and 10.23. The inset in Fig. 10.22 shows the resulting final four-dimensional graviton
spectrum N out

0,k,•, which is very well fitted by an inverse power law N out
0,k,• = 0.02/(k− 1.8) 6. Consequently, for

6The momenta k = 5, 10, 20, 30 and 40 have been used to obtain the fit. Fitting the spectrum for k = 20, 30 and 40 to a power
law gives N out

0,k,• ∝ k−1.1.
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Figure 10.22: 4D-graviton number N0,k,•(t) for k = 3, 5, 10, 20 and 30 with ys = 3 and maximal brane velocity
vb = 0.1. The small plot shows the final graviton spectrum N out

0,k,• together with a fit to the inverse law a/(k+b)
[dashed line] and the analytical fitting formula Eq. (10.33) [solid line]. For k = 10 and 30 the corresponding
KK graviton spectra are shown in Fig. 10.21.

k ≫ 1 the zero mode particle number N out
0,k,• declines like 1/k only, in contrast to the 1/k2 behavior found for

k ≪ 1.

The dependence of N out
0,k,• on the maximal brane velocity vb also changes. In Fig. 10.23 I show N0,k,•(t)

together with the corresponding KK graviton spectra for ys = 3, k = 5 and 10 in each case for different vb.
Using nmax = 60 KK modes in the simulations guarantees numerical stability for the zero mode. The velocity
dependence of N out

0,k,• is not given by a simple power law as it is the case for k ≪ 1. This is not very surprising
since now the zero mode couples strongly to the KK modes [cf. Fig. 10.21]. For k = 10, for example, one finds
N out

0,k,• ∝ v1.4
b if vb <∼ 0.1.

As in the long wavelengths case, the zero mode particle number does not depend on the position of the
static brane ys even though the zero mode now couples to the KK modes. This is demonstrated in Fig. 10.24
where the evolution of the zero mode particle number N0,k,•(t) and the corresponding KK graviton spectra
with k = 10, vb = 0.1 for the two values ys = 3 and 10 are shown. One needs nmax = 60 for ys = 30 in order
to obtain a stable result for the zero mode which is not sufficient in the case ys = 10. Only for nmax ≃ 120 the
zero mode solution approaches the stable result which is identical to the result obtained for ys = 3.
What is important is not the number of the KK modes the four-dimensional graviton couples to, but rather a
particular mass mzm ≃ k. The zero mode couples to all KK modes of masses below mzm no matter how many
KK modes are lighter. Recall that the value of ys just determines how many KK modes belong to a given
mass interval ∆m since, roughly, mn ≃ nπ/ys. The KK-spectra for k ≥ 1 show the same scaling behavior as
demonstrated for long wavelengths in Figs. 10.11 and 10.12.

The production of four-dimensional gravitons of short wavelengths takes place on the expense of the KK
modes. In Fig. 10.25 I show the numerical results for the final KK particle spectra with vb = 0.1, ys = 3
and k = 3, 5, 10 and 30 obtained for different coupling combinations. These spectra should be compared with
those shown in Fig. 10.18 for the long wavelengths case. For k >∼ 10 the number of the produced lightest KK
gravitons is smaller in the full coupling case compared to the situation where only the KK-intermode coupling
is taken into account. In case k = 30, for instance, the numbers of produced gravitons for the first four KK
modes are smaller for the full coupling case. This indicates that the lightest KK modes couple strongly to the
zero mode. Their evolution is damped and graviton production in those modes is suppressed. The production
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Figure 10.23: Zero mode particle number N0,k,•(t) and corresponding final KK particle spectra N out
n,k,• for

ys = 3, k = 5, 10 and different maximal brane velocities vb. nmax = 60 guarantees numerically stable solutions
for the zero mode.
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Figure 10.24: Zero mode particle number N0,k•(t) and corresponding KK graviton spectra for k = 10, vb = 0.1
and 2nd brane positions ys = 3 and 10.
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Figure 10.25: Final KK particle spectra N out
n,k,• for vb = 0.1, ys = 3 and k = 3, 5, 10 and 30 and different

couplings. Circles correspond to the full coupling case, squares indicate the results if Mnm = Mnn = 0, i.e.
no KK-intermode couplings and diamonds correspond to Mn0 = 0, i.e. no coupling of KK modes to the zero
mode.

of zero mode gravitons on the other hand is enhanced compared to the long wavelengths case. For short
wavelengths, the evolution of the KK modes therefore contributes to the production of zero mode gravitons.
This may be interpreted as creation of zero mode gravitons out of KK-mode vacuum fluctuations.
As in the long wavelengths case, the KK particle spectrum becomes independent of k if mn ≫ k and the
evolution of the KK modes is dominated by the KK-intermode coupling. This is visible in Fig. 10.25 for k = 3
and 5. Also the bend in the spectrum when the KK-intermode coupling starts to dominate is observable. For
k = 10 and 30 this regime with mn ≫ k is not reached.

As I have shown before, in the regime mn ≫ k the KK particle spectrum behaves as 1/Ωout
n,k which will

dominate the energy density of produced KK gravitons.
If 1 ≪ mn <∼ k, however, the zero mode couples to the KK modes and the KK graviton spectrum does not
decay like 1/Ωout

n,k. This is demonstrated in Fig. 10.26 where the number of produced final state gravitons N out
n,k,•

is plotted as function of their frequency Ωout
n,k for parameters vb = 0.1, ys = 3 and k = 5, 10, 20, 30 and 40.

While for k = 5 the KK-intermode coupling dominates for large masses [cf. Fig. 10.25] leading to a bending
over in the spectrum and eventually to an 1/Ωout

n,k-decay, the spectra for k = 20, 30 and 40 show a different

behavior. All the modes are still coupled to the zero mode leading to a power-law decrease ∝ 1/(Ωout
n,k)α with

α ≃ 2. The case k = 10 corresponds to an intermediate regime. Also shown is the simple analytical expression
given in Eq. (10.45) which describes the spectra reasonably well for large k (dashed line).
The KK particle spectra in the region 1 ≪ mn <∼ k will also contribute to energy density since the cutoff scale
is the same for the integration over k and the summation over the KK-tower (see Section 10.3.4 below).

10.2.6 A smooth transition

Let me finally investigate how the KK-graviton spectrum changes when the kink-motion (10.3) is replaced
by the smooth motion (10.6). In Fig. 10.27 I show the numerical results for the final KK-graviton spectrum
for ys = 3, vb = 0.1 and k = 0.1 for the smooth motion (10.6) with ts = 0.05, 0.015 and 0.005. nmax = 60
modes have been taken into account in the simulation and the results are compared to the spectrum obtained
with the kink-motion (10.3). The parameter ts defines the scale Ls ≃ 2ts at which the kink is smoothed, i.e.
Ls corresponds to the width of the transition from contraction to expansion. From the numerical results one
observes that KK modes of masses smaller than ms ≃ 1/Ls are not affected, but the production of KK-particles
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Figure 10.26: Final KK particle spectra N out
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Figure 10.27: KK-particle spectrum for ys = 3, vb = 0.1 and k = 0.1 for the bouncing as well as smooth
motions with ts = 0.005, 0.015, and 0.05 to demonstrate the influence of the bounce. nmax = 60 KK modes
have been taken into account in the simulations and the result for the kink motion is shown as well.
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of masses larger than ms is exponentially suppressed. This is in particular evident for ts = 0.05 where the
particle spectrum for masses mn > 10 has been fitted to a exponential decrease. Going to smaller values of
ts, the suppression of KK-mode production sets in for larger masses. For the example with ts = 0.005, the
KK-particle spectrum is identical to the one obtained with the kink-motion within the depicted mass range.
In this case the exponential suppression of particle production sets in only for masses mn > 100. Note that the
exponential decay of the spectrum for the smooth transition from contraction to expansions also shows that
no additional spurious effects due to the discontinuities in the velocity when switching the brane dynamics on
and off occur. Consequently, tin and tout are appropriately chosen.

10.3 Analytical calculations and estimates

10.3.1 Zero mode: long wavelengths k ≪ 1/L

The numerical simulations show that the evolution of the zero mode at large wavelengths is not affected by
the KK modes. To find an analytical approximation to the numerical result for the zero mode, I neglect all
the couplings of the KK modes to the zero mode by setting Mnm = 0 ∀ n, m and keeping M00 only. Then only

the evolution equation for ǫ
(α)
0 ≡ δα

0 ǫ is important; it decouples and reduces to

ǫ̈ + [k2 + V(t)]ǫ = 0 , (10.12)

with “potential”

V = Ṁ00 − M2
00 . (10.13)

The corresponding vacuum initial conditions are [cf. Eq. (9.59); here I do not consider the unimportant phase]

lim
t→−∞

ǫ = 1 , lim
t→−∞

ǫ̇ = −ik. (10.14)

A brief calculation using the expression for M00 leads to

V =
y2

s

y2
s − y2

b

[
ÿb

yb
+

ẏ2
b

y2
b

3y2
b − 2y2

s

y2
s − y2

b

]
= − y2

s

y2
s − y2

b

[
H2

(
1 − y2

b

y2
s − y2

b

)
+ Ḣ

]
. (10.15)

If one assumes that the static brane is much further away from the Cauchy horizon than the physical brane,
ys ≫ yb, it is simply

V = −H2 − Ḣ , (10.16)

and one recovers Eq. (9.35).
For the particular scale factor (10.2) one obtains

H =
ȧ

a
=

sign(t)

|t| + tb
and (10.17)

Ḣ =
2δ(t)

tb
− 1

(|t| + tb)2
(10.18)

such that

Ḣ + H2 =
2δ(t)

tb
. (10.19)

The δ-function in the last equation models the bounce. Without the bounce, i.e. for an eternally radiation
dominated dynamics, one has V = 0 and the evolution equation for ǫ would be trivial. With the bounce, the
potential is just a δ-function potential with “height” proportional to −2

√
vb/L

V = −2
√

vb

L
δ(t) , (10.20)

where vb is given in Eq (10.5). Equation (10.12) with potential (10.20) can be considered as a Schrödinger
equation with δ-function potential. Its solution is a classical textbook problem. Since the approximated
potential V vanishes for all t < 0 one has, with the initial condition (10.14),

ǫ(t) = e−ikt , t < 0 . (10.21)



10.3. ANALYTICAL CALCULATIONS AND ESTIMATES 127

Assuming continuity of ǫ through t = 0 and integrating the differential equation over a small interval [0−, 0+]
around t = 0 gives

0 =

∫ 0+

0−

[
ǫ̈ +

(
k2 − 2

√
vb

L
δ(t)

)
ǫ

]
= ǫ̇(0+) − ǫ̇(0−) − 2

√
vb

L
ǫ(0) . (10.22)

Consequently, similar to the derivation of the junction condition in Chapter 8, the derivative ǫ̇ has a jump.

This jump leads to particle creation. Using ǫ(0+) = ǫ(0) = ǫ(0−) and ǫ̇(0+) = ǫ̇(0−) +
2
√

vb

L ǫ(0) as initial
conditions for the solution for t > 0, one obtains

ǫ(t) = Ae−ikt + Beikt , t > 0 (10.23)

with

A = 1 + i

√
vb

kL
, B = −i

√
vb

kL
. (10.24)

The Bogoliubov coefficient B00 after the bounce is then given by

B00(t ≥ 0) =
e−ikt

2

[(
1 + i

H
k

)
ǫ(t) − i

k
ǫ̇(t)

]
, (10.25)

where I have used that M00 = −H if ys ≫ yb [cf. Eq. (9.34)]. At this point the importance of the coupling
matrix M00 becomes obvious. Even though the solution ǫ to the differential equation (10.12) is a plane wave
right after the bounce, |B00(t)|2 is not a constant due to the motion of the brane itself. Only once the mode is
inside the horizon, i.e. H/k ≪ 1, |B00(t)|2 is constant and the number of generated final state gravitons (for
both polarizations) is given by

N out
0,k = 2|B00(kt ≫ 1)|2 = 2

(
1

4

[
|ǫ|2 +

|ǫ̇|2
k2

]
− 1

2

)
=

2vb

(kL)2
(10.26)

where I have used that the Wronskian of ǫ, ǫ∗ is 2ik. As illustrated in Fig. 10.4 the expression (10.26) is indeed
in excellent agreement with the (full) numerical results, not only in its k-dependence but also the amplitude
agrees without any fudge factor. The evolution of the four-dimensional graviton mode and the associated
generation of massless gravitons with momentum k < 1/L can therefore be understood analytically.

In order to calculate the energy density, I have to take into account that the approximation of an exactly
radiation dominated Universe with an instant transition breaks down on small scales. I assume this break
down to occur at a lengths scale Ls, much smaller than L. In particular I shall take this scale to be the string
scale, thus

L3
s = κ5 , (10.27)

which, by virtue of (8.57), implies that

L

Ls
=

(
Ls

LPl

)2

. (10.28)

Ls is the true width of the transition from collapse to expansion which is set to zero in the treatment. Modes
with mode numbers k ≫ (2π)/Ls will not ’feel’ the potential and are not generated. I therefore choose
kmax = (2π)/Ls as the cutoff scale. Then, with Eq (9.93), one obtains for the energy density

ρ0 =
1

2 π2a4

∫ 2π/Ls

0

dkk3N0,k . (10.29)

For small wave numbers, k < 1/L, I can use the above analytical result for the zero mode particle number.
However, as the numerical simulations have revealed, as soon as k ≥ 1/L, the coupling of the four-dimensional
graviton to the KK modes becomes important and for large wave numbers N out

0,k decays only like 1/k. Hence
the integral (10.29) is entirely dominated by the upper cutoff. The contribution from long wavelengths to the
energy density are negligible.

For the power spectrum, on the other hand, I am interested in cosmologically large scales, 1/k ≃ several
Mpc or more, but not in short wavelengths kL > 1 dominating the energy density. Inserting the expression
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for the number of produced long wavelength gravitons (10.26) into (9.83), the gravity wave power spectrum at
late times becomes

P0(k) =
2 vb

(2π)3
κ4

(aL)2
for kt ≫ 1. (10.30)

This is the asymptotic power spectrum, when ǫ starts oscillating, hence inside the Hubble horizon, kt ≫ 1.
On super Hubble scales, kt ≪ 1 when the asymptotic out-state of the zero mode is not yet reached, one may
use Eq. (9.82) with

R0,k(t) =
|ǫ(t)|2 − 1

k
≃ 4vba

2

k
. (10.31)

For the ≃ sign I assume t ≫ L and t ≫ tb so that one may neglect terms of order t/L in comparison to√
vb(t/L)2. I have also approximated a = (t + tb)/L ≃ t/L. Inserting this in Eq. (9.80) yields

P0(k) =
κ4

2 π3
vb k2 , kt ≪ 1 . (10.32)

Both expressions (10.30) and (10.32) are in good agreement with the corresponding numerical results, see
Figs. 10.4,10.5 and 10.6.

10.3.2 Zero mode: short wavelengths k ≫ 1/L

As I have demonstrated with the numerical analysis, as soon as k ≥ 1/L, the coupling of the zero mode to the
KK modes becomes important and for large wave numbers N out

0,k,• ∝ 1/k. I obtain a good asymptotic behavior
if I set

N out
0,k,• ≃ vb

5(kL)
. (10.33)

This function and Eq. (10.26) (divided by two for one polarization) meet at kL = 5. Even though the
approximation is not good in the intermediate regime it is very reasonable for large k [cf. Fig. 10.22]. Inserting
this approximation into Eq (10.29) for the energy density, one finds that the integral is dominated entirely by
the upper cutoff, i.e. by the blue, high energy modes:

ρ0 ≃ 16

30

π

a4

vb

LL3
s

≃ 1

2

π

a4

vb

LL3
s

. (10.34)

The power spectrum associated with the short wavelengths k > 1/L is not of interest since the gravity wave
spectrum is measured on cosmologically large scales only, k ≪ 1/L.

10.3.3 Light Kaluza-Klein modes and long wavelengths k ≪ 1/L

The numerics indicates that light (mn < 1) long wavelength Kaluza-Klein modes become excited mainly due
to their coupling to the zero mode. Let me take only this coupling into account and neglect also the time-
dependence of the frequency, setting Ωn,k(t) ≡ Ωout

n,k = Ωin
n,k. The Bogoliubov coefficients are then determined

by the equations

ξ̇n,k + iΩout
n,kξn,k =

k

2Ωout
n,k

Sn(t; k) (10.35)

η̇n,k − iΩout
n,kηn,k = − k

2Ωout
n,k

Sn(t; k) (10.36)

with the “source”
Sn(t; k) = (ξ0,k − η0,k)Mn0 . (10.37)

I have defined ξα,k ≡ ξ
(0)
α,k and ηα,k ≡ η

(0)
α,k. The source is known, since the evolution of the four-dimensional

graviton is know. From the result for ǫ above and the definition of ξ0,k and η0,k in terms of ǫ and ǫ̇ one obtains

ξ0,k − η0,k =
2i

k

[
−ik +

1

|t| + tb

]
e−itk , t < 0 (10.38)

ξ0,k − η0,k = 2

[
1 +

i

ktb
+

1 − iktb
k2tb(t + tb)

]
e−itk + 2

[
i

ktb
− 1

k2tb(t + tb)

]
eitk , t > 0 . (10.39)
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Furthermore, if ys ≫ yb, one has [cf. Eq. (9.26)]

Mn0 = 2
ẏb

yb

√
Y1(mnys)2

Y1(mnyb)2 − Y1(mnys)2
. (10.40)

Assuming ysmn ≫ 1 and ybmn ≪ 1 one can expand the Bessel functions and arrives at

Mn0 ≃ √
π

√
mn

ys
ẏb = −

√
πmnL2

ys

L sign(t)

(|t| + tb)2
.

To determine the number of created final state gravitons, I only need to calculate ηn,k [cf. Eq. (9.68)],

N out
n,k,• = |B0n,k(tout)|2 =

1

4

Ωout
n,k

k
|ηn,k(tout)|2 . (10.41)

The vacuum initial conditions require limt→−∞ ηn,k = 0 so that ηn,k is given by the particular solution

ηn,k(t) =
k

Ωout
n,k

∫ t

−∞
Sj(t

′; k)e−it′Ωout
n,kdt′ , (10.42)

and therefore

N out
n,k,• =

k

4Ωout
n,k

∣∣∣∣
∫ ∞

−∞
Sn(t; k)e−itΩout

n,kdt

∣∣∣∣
2

, (10.43)

where the integration range has been extended from −∞ to +∞ since the source is very localized around the
bounce. This integral can be solved exactly. A somewhat lengthy but straight forward calculation gives

N out
n,k,• =

πm5
nL4

2Ωout
n,kkys

∣∣∣2iRe
(
ei(Ωout

n,k+k)tbE1(i(Ω
out
n,k + k)tb)

)

+ (ktb)
−1ei(Ωout

n,k−k)tbE1(i(Ω
out
n,k − k)tb) −ei(Ωout

n,k+k)tbE1(i(Ω
out
n,k + k)tb)

∣∣∣
2

. (10.44)

Here E1 is the exponential integral, E1(z) ≡
∫∞

z t−1e−tdt . This function is holomorphic in the complex plane
with a cut along the negative real axis, and the above expression is therefore well defined. Note that this
expression does not give rise to a simple dependence of N out

n,k,• on the velocity vb = (L/tb)
2. In the preceding

Section we have seen that, within its range of validity, Eq. (10.44) is in excellent agreement with the numerical
results (cf., for instance, Figs. 10.7 and 10.8).
As already mentioned before, this excellent agreement between the numerics and the analytical approximation
demonstrates that the numerical results are not contaminated by any spurious effects.

10.3.4 Kaluza-Klein modes: asymptotic behavior and energy density

The numerical simulations show that the asymptotic KK-graviton spectra (i.e. for masses mn ≫ 1) decay like

1/Ωout
n,k if mn ≫ k and like

(
1/Ωout

n,k

)α

with α ≃ 2 if mn <∼ k. The corresponding energy density on the brane

is given by the summation of Eq. (9.95) over all KK modes up to the cutoff. Since the mass mn is simply the
momentum into the extra dimension, it is plausible to choose the same cutoff scale for both, the k-integral and
the summation over the KK modes, namely 2π/Ls. The main contribution to the four-dimensional particle
density and energy density comes from mn ∼ 2π/Ls and k ∼ 2π/Ls, i.e. the blue end of the spectrum.
The large-frequency behavior of the final KK-spectrum can be approximated by

N out
n,k,• ≃ 0.2v2

b

ys






1

Ωout
n,k

if 1/L <∼ k <∼ mn

2(α−1)/2 kα−1

(Ωout
n,k)α

if mn <∼ k <∼ 2π/Ls

(10.45)

with α ≃ 2 which is particularly good for large k. Both expression match at mn = k and are indicated
in Figs. 10.20 and 10.26 as dashed lines. Given the complicated coupling structure of the problem and the
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multitude of features visible in the particle spectra these compact expressions describe the numerical results
reasonable well for all parameters. The deviation from the numerical results is at most a factor of two. This
accuracy is sufficient in order to obtain a useful expression for the energy density from which bounds on the
involved energy scales can be derived.
The energy density on the brane associated with the KK gravitons is given by [cf. Eq. (9.95)]

ρKK ≃ L2

4πa6ys

∑

n

∫
dkk2 N out

n,k,• Ωout
n,k mn . (10.46)

Splitting the momentum integration into two integrations from 0 to mn and mn to the cutoff 2π/Ls, and
replacing the sum over the KK masses by an integral one obtains

ρKK ≃ C(α)
π5v2

b

a6ys

L2

L5
s

. (10.47)

The power α in Eq. (10.45) enters the final result for the energy density only through the pre-factor C(α)
which is of order unity.

10.4 Discussion

The numerical simulations have revealed many interesting effects related to the interplay between the evolution
of the four-dimensional graviton and the KK modes. All features observed in the numerical results have
been interpreted entirely on physical grounds and many of them are supported by analytical calculations and
arguments. Having summarized the results for the power spectrum and energy densities in the preceding
section, I’m now in the position to discuss the significance of these findings for brane cosmology.

10.4.1 Zero mode

For the zero-mode power spectrum I have found that

P0(k) =
κ4

2 π3
vb

{
k2 if kt ≪ 1
1
2 (La)−2 if kt ≫ 1

. (10.48)

Therefore, the gravity wave spectrum on large, super Hubble scales is blue with spectral tilt

nT = 2 . (10.49)

As I have explained in Section 10.1, this is a common feature of ekpyrotic and pre-Big Bang models. The
amplitude of perturbations on CMB scales is of the order of (H0/mPl)

2, i.e. very suppressed on scales relevant
for the anisotropies of the CMB. The fluctuations induced by these Casimir gravitons are much too small to
leave any observable imprint on the CMB.

For the zero-mode energy density at late times, kt ≫ 1, I have obtained [cf Eq. (10.34)]

ρh0 ≃ 1

2

π

a4

vb

LL3
s

. (10.50)

In this section I denote the energy density of the zero mode by ρh0 in order not to confuse it with the present
density of the Universe. Recall that Ls is the scale at which my kinky approximation (10.2) of the scale factor
breaks down, i.e. the width of the bounce. If this width is taken to zero, the energy density of gravitons is very
blue and diverges. This is not so surprising, since the kink in a(t) allows one to generate gravitons of arbitrary
high energies. However, as the numerical simulations have shown, when I smooth the kink at some scale Ls,
the production of modes with energies larger than ≃ 1/Ls is exponentially suppressed [cf. Fig. 10.27]. This
justifies the introduction of Ls as a cutoff scale.

In the following I shall determine the density parameter of the generated gravitons today and compare it
to the nucleosynthesis bound. For this I need the minimal scale factor ab [cf. Eq. (10.5)] and

Hb =

∣∣∣∣
ȧ

a2

∣∣∣∣
t=0

≃ vb

L
, (10.51)
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the maximal Hubble parameter, i.e. the Hubble parameter right after the bounce. (Recall that in the low energy
approximation t = η.) Since at low energies the modified Friedmann equation (8.58) reduces to the standard
one (6.20) (neglecting curvature and/or a cosmological constant), during the radiation era the radiation density
is

ρrad =
3

κ4
H2 =

3

κ4L2
a−4 =

3

κ4
H2

b

(ab

a

)4

. (10.52)

In order to determine the density parameter of the generated gravitons today, i.e., at t = t0, I use [cf. Sec-
tion 6.3.5]

Ωh0 =
ρh0(t0)

ρcrit(t0)
=

ρh0(t0)

ρrad(t0)

ρrad(t0)

ρcrit(t0)
=

ρh0(t0)

ρrad(t0)
Ωrad. (10.53)

The second factor Ωrad is the present radiation density parameter. For the factor ρh0/ρrad, which is time
independent since both ρh0 and ρrad scale like 1/a4, I insert the above results and obtain, using κ4 = L2

Pl,

Ωh0 =
ρh0

ρrad
Ωrad =

1

2

π

3
vb

(
LPl

Ls

)2
L

Ls
Ωrad ≃ vb

2

(
LPl

Ls

)2
L

Ls
Ωrad . (10.54)

The nucleosynthesis bound [154] requests that

Ωh0 <∼ 0.1 Ωrad , (10.55)

which translates into the relation
vb

2
(LPl/Ls)

2
(L/Ls) <∼ 0.1 (10.56)

which, at first sight, relates the different scales involved. But since I have chosen the cutoff scale Ls to be the
higher-dimensional fundamental scale (string scale), Equation (10.56) reduces to

vb <∼ 0.2 (10.57)

by virtue of Equation (10.28). All one has to require to be consistent with the nucleosynthesis bound is a
small brane velocity which justifies the low energy approach. In all, I conclude that the model is not severely
constrained by the zero mode. This result itself is remarkable. If there would be no coupling of the zero
mode to the KK modes for small wavelengths the number of produced high energy zero-mode gravitons would
behave as ∝ k−2 as it is the case for long wavelengths. The production of high energy zero-mode gravitons
from KK gravitons enhances the total energy density by a factor of about L/Ls. Without this enhancement,
the nucleosynthesis bound would not lead to any meaningful constraint and would not require vb < 1.

10.4.2 KK modes

As derived above, the energy density of KK gravitons on the brane is dominated by the high energy gravitons
and can be approximated by Eq. (10.47)

ρKK ≃ π5v2
b

a6ys

L2

L5
s

. (10.58)

Let me evaluate the constraint induced from the requirement that the KK-energy density on the brane be
smaller than the radiation density ρKK(t) < ρrad(t) at all times. If this is not satisfied, back-reaction cannot
be neglected and the results are no longer valid. Clearly, at early times this condition is more stringent than
at late times since ρKK decays faster than ρrad. Inserting the value of the scale factor directly after the bounce
where the production of KK gravitons takes place, a−2

b = vb, one finds, using again the RS-fine tuning condition
(10.28),

(
ρKK

ρrad

)

max

≃ 100 v3
b

(
L

ys

)(
L

Ls

)2

. (10.59)

If I use the largest value for the brane velocity vb admitted by the nucleosynthesis bound vb ≃ 0.2 and require
that ρKK/ρrad be (much) smaller than one for back-reaction effects to be negligible, I obtain the very stringent
condition

L

ys
≪
(

Ls

L

)2

. (10.60)
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Let me first discuss the largest allowed value for L ≃ 0.1mm. The RS-fine tuning condition then determines
(10.28)

Ls = (LL2
Pl)

1/3 ≃ 10−22 mm ≃ 1/(106 TeV). (10.61)

In this case the brane tension is

T = 6κ4/κ2
5 = 6L2

Pl/L6
s = 6/(LL3

s) ∼ (10 TeV)4. (10.62)

Furthermore, one has

(L/Ls)
2 ≃ 1042 so that ys > L(L/Ls)

2 ≃ 1041 mm ≃ 3 × 1015 Mpc, (10.63)

which is about 12 orders of magnitude larger than the present Hubble scale! Also, since yb(t) ≪ L in the low
energy regime, and ys ≫ L according to the inequality (10.60), the physical brane and the static brane are
very far apart at all times. Note that the distance between the physical and the static brane is

d =

∫ ys

yb

L

y
dy = L log(ys/yb) >∼ L ≫ Ls .

This situation is probably not very realistic. Some high energy, stringy effects are needed to provoke the bounce
and one expects these to be relevant only when the branes are sufficiently close, i.e. at a distance of order Ls.
But in this case the constraint (10.60) will be violated which implies that back-reaction will be relevant.
On the other hand, if one wants that ys ≃ L and back-reaction to be unimportant, then Eq. (10.59) implies
that the bounce velocity has to be exceedingly small,

ys ≃ L ⇒ vb <∼ 10−15. (10.64)

One might hope to find a way out of these conclusions by allowing the bounce to happen in the high energy
regime. But then vb ≃ 1 and the nucleosynthesis bound is violated since too many zero-mode gravitons are
produced. Even if one disregards this limit for a moment, saying that the calculation presented here only applies
in the low energy regime, vb ≪ 1, the modification coming from the high energy regime are not expected to
alleviate the bounds. In the high energy regime one may of course have yb(t) ≫ L and therefore the physical
brane can approach the static brane arbitrarily closely without the latter having to violate (10.60). These
results suggest that even in the scenario of a bounce at low energies, the back reaction from KK gravitons has
to be taken into account. But this does not need to exclude the model.



Chapter 11

Conclusions

In this thesis, I have studied particle creation from vacuum fluctuations by moving boundaries - the dynamical
Casimir effect - for two rather distinct scenarios: The production of photons in dynamical cavities and the
generation of gravitons in braneworld cosmology.

The first part of the thesis was devoted to a comprehensive presentation of the dynamical Casimir effect
within the framework of canonical quantization. Besides the detailed treatment of compatible boundary condi-
tions which, at least to my knowledge, has been outlined for the dynamical Casimir effect in this form for the
first time, I have tried to highlight the differences between the dynamical Casimir effect and other quantum
vacuum radiation effects like particle creation in an expanding Universe and the Unruh effect.
By introducing a particular parameterization for the time-evolution of the field modes inside the dynamical
cavity, I have derived a system of coupled first-order linear differential equations determining the evolution of
the Bogoliubov coefficients. Physical quantities like the number of particles created during the dynamics of
the mirror and the associated energy of the generated radiation are determined by the solutions to this system
which can be found by applying standard numerics. This formalism allows for efficient numerical investigation
of the dynamical Casimir effect for a variety of possible interesting scenarios where less or even nothing is
known analytically.
As a first example, and as a testing ground for the numerics, I studied the creation of massless scalar particles
in a one-dimensional cavity. After the historic example of a uniform motion, which I have used to demonstrate
the role of discontinuities in the velocity of the mirror motion, I have employed the numerical formalism to
trembling cavities, the most studied model of the dynamical Casimir effect. Thereby, the numerical results are
entirely in agreement with analytical predictions derived by many authors for resonant as well as off-resonant
mirror vibrations. This has demonstrated that the numerical simulations are a reliable tool and that the de-
veloped method is appropriate to study the dynamical Casimir effect fully numerically. Potential problems
inherent in the method, in particular the matching problem due to discontinuities in the velocity of the bound-
ary motion leading to spurious contributions to the total particle number, have been discussed. It has been
shown that this effect is negligibly small for cavity vibrations with a sufficiently small amplitude.

As the main application of the formalism, the production of TE-mode photons in a three-dimensional rectan-
gular vibrating cavity has been studied numerically for resonant wall oscillations. This is of great importance
regarding current proposals for experiments aiming to verify the dynamical Casimir effect in the laboratory. I
have found perfect agreement between numerical results and analytical predictions in the case that no modes are
(strongly) coupled. When two field modes of frequency Ωin

l
and Ωin

k
are exactly coupled, i.e. ωcav = |Ωin

l
±Ωin

k
|

where ωcav is the (resonant) cavity frequency, the numerical results agree with analytical predictions of [41] for
sufficiently long times but disagree for short times. The discrepancy for short times is ascribed to properties
of the multiple scale analysis used in [41].
The effects of the intermode coupling has been studied in detail which is only possible by means of numerical
simulations. The numerical simulations have revealed that the efficiency of photon production in a resonantly
vibrating rectangular cavity can be controlled and in particular maximized by tuning the cavity size. This
important and indeed new result might be very useful for the optimization of planned dynamical Casimir
experiments. The main resonance case ωcav = 2Ωin

(1,1,1) has been discussed for a cavity with equally sized non-

dynamical dimensions l‖ = ly = lz in detail. I have shown that photon creation in the resonant mode (1, 1, 1)

133
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is most efficient if the size l‖ of the non-dynamical cavity dimensions is ≈ 11 times larger than the dynamical
cavity dimension. The existence of a certain cavity size which maximizes photon creation is among other things
explained by the fact, that intermode coupling takes place even if the coupling condition ωcav = |Ωin

l
± Ωin

k
|

is satisfied only approximately. If l‖ is larger than ≈ 11, the intermode coupling is so strong that higher fre-
quency modes like (3, 1, 1) and (5, 1, 1) couple to the resonant mode (1, 1, 1) and strongly damp its evolution.
Furthermore the coupling of particular field modes by tuning the size of the cavity has been studied. The
effects provoked by the intermode coupling can be studied in full detail only by means of numerical methods.
The findings demonstrate that the intermode coupling in dynamical cavities plays an important role. Even if
analytical results are known, numerical simulations are a very useful and indeed necessary tool because only
they can completely account for the intermode coupling.

In the second part of the thesis, I have studied the evolution of tensor perturbations in braneworld cosmology
by using the techniques developed for the standard dynamical Casimir effect. A model consisting of a moving
and a fixed 3-brane embedded in a five-dimensional static AdS bulk has been considered. Regarding particle
creation from vacuum, such a two-brane setup is analogous to the dynamical cavity considered in the first
part. Applying the dynamical Casimir effect formulation to the study of tensor perturbations in braneworld
cosmology represents an interesting alternative to other approaches existing in the literature so far and provides
a new perspective on the problem.
First of all, the explicit use of coupling matrices allows to obtain detailed information about the effects of
the intermode couplings generated by the time-dependent boundary conditions, i.e. the brane motion. This
has enabled me to shown analytically that, at low energies (late time cosmology), all couplings except the
zero-mode self coupling vanish if the fixed brane is far away from the physical brane. As a consequence, in this
limit or in any other case where the zero mode decouples from the KK modes, the homogeneous tensor pertur-
bation equation in brane cosmology automatically leads to the standard four-dimensional tensor perturbation
equation. As I have argued in section 9.3, this result supports the assumption that the low energy physics is
reasonably well described even if one replaces the full junction condition at the moving brane by a Neumann
boundary condition.
Based on the expansion of the tensor perturbations in instantaneous eigenfunctions, I have introduced a con-
sistent quantum mechanical formulation of graviton production by a moving brane. Observable quantities like
the power spectrum and energy density can be directly deduced from quantum mechanical expectation values,
in particular the number of gravitons created from vacuum fluctuations. The most surprising and at the same
time most interesting fact which this approach has revealed is that the energy density of the massive gravitons
decays like 1/a6 with the expansion of the Universe. At first this seems very disturbing. How can it be that
massive modes on the brane scale like stiff matter rather than like ordinary massive particles, ∝ 1/a3? As I
have explained in detail in Section 9.5.4, the reason for this is twofold. First, the mass of the modes, mn is a
’comoving’ mass and hence the dispersion relation of the particles is Ω2

n,k = k2 + m2
n, where k and Ωn,k are

comoving momentum and frequency as also pointed out in [85]. Alone, this would imply a 1/a4 behavior of the
energy density, as for the massless mode. But there is an additional factor 1/a2 coming from the value of the
mode function φn on the brane. This function is normalized in the bulk, but its value on the brane decreases.
Physically this means, as time evolves, the probability that a KK graviton is concentrated close to the brane
becomes smaller and smaller, i.e. the KK gravitons escape into the bulk. While the wave function of massive
gravitons is repulsed away from the brane, the zero-mode wave function stays localized at the brane position
with the localization becoming even stronger as the Universe expands. This is the localization of gravity:
the five-dimensional aspects of it, like the KK gravitons, become less and less ’visible’ on the brane with the
expansion of the Universe. The 1/a6-scaling behavior remains valid also when the fixed brane is sent off to
infinity and one ends up with a single braneworld in AdS, like in the original Randall-Sundrum II scenario.
Consequently, Kaluza-Klein gravitons on a brane moving through an AdS bulk cannot play the role of dark
matter.

As an explicit example, I have studied graviton production in a generic, ekpyrotic-inspired model of two
branes bouncing at low energies, assuming that the energy density on the moving brane is dominated by a
radiation component. The numerical results have revealed a multitude of interesting effects.
For long wavelengths kL ≪ 1 (k being the co-moving momentum and L the curvature radius of AdS) the
zero mode evolves virtually independently from the KK modes. Zero mode gravitons are generated by the self
coupling of the zero mode to the moving brane. For the number of produced massless gravitons I have found
the simple analytical expression 2vb/(kL) with vb being the bounce velocity of the brane. These long wave-
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length modes are the once which are of interest for the zero-mode power spectrum which could also be derived
analytically. As one expects for an ekpyrotic scenario, the zero-mode power spectrum is blue on super-horizon
scales with spectral tilt nT = 2. Hence, the spectrum of these Casimir gravitons has much too little power on
large scales to affect the fluctuations of the cosmic microwave background.
The situation changes completely for short wavelengths kL ≫ 1. In this wavelength range, the evolution of the
zero mode couples strongly to the KK modes, and production of zero-mode gravitons takes place on the expense
of KK-graviton production. The numerical simulation revealed that the number of produced short-wavelength
massless gravitons is given by 2vb/(5kL). It decays only like 1/k instead of the 1/k2-behavior found for long
wavelengths. These short wavelength gravitons dominate the energy density. Comparing the energy density
with the nucleosynthesis bound and taking the cutoff scale to be the string scale Ls, I have found that the
model is not constrained by the zero mode. As long as vb <∼ 0.2, i.e. a low energy bounce as I have assumed
from the very beginning, the nucleosynthesis bound is not violated.
More stringent bounds on the model come from the KK modes. Their energy density is dominated by the high
energy modes which are produced due to the kink which models the transition from contraction to expansion.
Imposing the reasonable requirement that the energy density of the KK modes on the brane be (much) smaller
than the radiation density at all times in order for back-reaction effects to be negligible, has led to two cases.
On the one hand, allowing the largest values for the AdS curvature scale L ≃ 0.1mm and the bounce velocity
vb ≃ 0.2, back-reaction can only be neglected if the fixed brane is very far away from the physical brane
ys ∼ 1041mm. As I have argued, this is not very realistic since some high energy, stringy effects provoking the
bounce are expected to be relevant only when the branes are sufficiently close, i.e. ys ∼ Ls. On the other hand,
by only requiring that ys ≃ L ≫ Ls, the bounce velocity has already to be exceedingly small, vb <∼ 10−15, for
back-reaction to be unimportant. Therefore, one of the main conclusions to take away from this final part of
the thesis is that back reaction of massive gravitons has to be taken into account for a realistic bounce.

Many of the results presented here are based on numerical calculations. However, since the used approach
provides the possibility to artificially switch on and off the mode couplings, I was able identify the primary
sources driving the time evolution of the perturbations in different wavelength and KK-mass ranges. This has
allowed me to understand many of the features observed in the numerical results on analytical grounds.
On the other hand, it is fair to say that most of the presented results rely on the low energy approach, i.e. on the
approximation of the junction condition (generalized Neumann boundary condition) by a Neumann boundary
condition. Even though I have given arguments for the goodness of this approximation, it has eventually to
be confirmed by calculations which take the exact boundary condition into account. Therefore, the next step
is to extend the formalism to generalized Neumann boundary conditions along the lines which I have briefly
outlined in this thesis. The present formalism and in particular the available code represents an ideal starting
point for this promising task. This will not only allow to study graviton production in the high energy regime
of braneworld models, but also the investigation of TM-modes in dynamical cavities. Let me finally mention
that the present model of two bouncing branes seems to be adequate to address the back reaction issue since
the creation of Kaluza-Klein gravitons happens exclusively at the bounce.
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Appendix A

On power spectrum and energy

density calculation

A.1 Power spectrum

In order to calculate the power spectrum Eq. (9.79) I need to evaluate the expectation value

〈ĥ•(t, yb,k)ĥ†
•(t, yb,k

′)〉in =
κ5

L3

∑

αα′

φα(t, yb)φα′ (t, yb)〈q̂α,k,•(t)q̂
†
α′,k′,•(t)〉in (A.1)

where I have used (9.40) and introduced the shortcut 〈...〉in = 〈0, in|...|0, in〉. Using the expansion (9.53) of

q̂α,k•(t) in initial state operators and complex functions ǫ
(γ)
α,k(t) one finds

〈q̂α,k,•(t)q̂
†
α′,k′,•(t)〉in =

∑

β

ǫ
(β)
α,k(t) ǫ

(β)∗
α′,k (t)

2Ωin
β,k

δ(3)(k − k′). (A.2)

From the initial conditions (9.59) it follows that the sum in (A.1) diverges at t = tin. This divergence is
related to the usual normal ordering problem and can be removed by a subtraction scheme. However, in
order to obtain a well defined power spectrum at all times, it is not sufficient just to subtract the term
(1/2)(δαα′/Ωin

α,k)δ(3)(k − k′) which corresponds to 〈q̂α,k,•(tin)q̂†α′,k′,•(tin)〉in in the above expression. In order
to identify all terms contained in the power spectrum one can use the instantaneous particle concept which
allows to treat the Bogoliubov coefficients (9.62) and (9.63) as continuous functions of time [cf. section 3.5.3].

First I express the complex functions ǫ
(β)
α,k in (A.2) in terms of Aγα,k(t) and Bγα,k(t). This is of course equivalent

to calculating the expectation value using

q̂α,k•(t) =
1√

2Ωα,k(t)

[
âα,k,•(t)Θα,k(t) + â†

α,−k,•(t)Θ
∗
α,k(t)

]
(A.3)

and the Bogoliubov transformation of the from (3.81). The result consists of terms involving the Bogoliubov
coefficients and the factor (1/2)(δαα′/Ωα,k(t))δ(3)(k−k′), leading potentially to a divergence at all times. This

term corresponds to 〈0, t|q̂α,k,•(t)q̂
†
α′,k′,•(t)|0, t〉, i.e. it is related to the normal ordering problem (zero-point

energy) with respect to the instantaneous vacuum state |0, t〉. It can be removed by the subtraction scheme

〈q̂α,k,•(t)q̂
†
α′,k′,•(t)〉in,phys = 〈q̂α,k,•(t)q̂

†
α′,k′,•(t)〉in − 〈0, t|q̂α,k,•(t)q̂

†
α′,k′,•(t)|0, t〉 (A.4)

where I use the subscript “phys” to denote the physically meaningful expectation value. Inserting this expec-
tation value into (A.1), and using Eq. (9.75) I find

〈ĥ•(t, yb,k)ĥ•(t, yb,k
′)〉in =

1

a2

κ5

L

∑

α

Rα,k(t)Y2
α(a)δ(3)(k − k′) (A.5)

with Rα,k(t) defined in Eq. (9.81). The function ON
α,k appearing in Eq. (9.81) is explicitely given by

ON
α,k = 2ℜ

∑

β

{
Θ2

α,kAβα,kB∗
βα,k + Θα,k

∑

α′ 6=α

√
Ωα,k

Ωα′,k

Yα′(a)

Yα(a)

[
Θ∗

α′,kB∗
βαBβα′ + Θα′,kAβαB∗

βα′

] }
(A.6)
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and Oǫ
α,k appearing in Eq. (9.82) reads

Oǫ
α,k =

∑

β,α′ 6=α

Yα′(a)

Yα(a)

ǫ
(β)
α,kǫ

(β)∗

α′,k

Ωin
β,k

. (A.7)

A.2 Energy density

In order to calculate the energy density I need to evaluate the expectation value

〈 ˙̂hij(t,x, yb)
˙̂
hij(t,x, yb)〉in. Using (8.67) and the relation e•ij(−k) = (e•ij(k))∗ I obtain

〈 ˙̂hij(t,x, yb)
˙̂
hij(t,x, yb)〉in =

∑

••′

∫
d3k

(2π)3/2

d3k′

(2π)3/2
× (A.8)

× 〈 ˙̂h•(t, yb,k)
˙̂
h†
•′(t, yb,k

′)〉inei(k−k
′)·xe•ij(k)

(
e•

′ ij(k′)
)∗

.

By means of the expansion (9.55) the expectation value 〈 ˙̂h•(t, yb,k)
˙̂
h†
•′(t, yb,k

′)〉in becomes

〈 ˙̂h•(t, yb,k)
˙̂
h†
•′(t, yb,k

′)〉in =
κ5

L3

∑

αα′

〈p̂α,k,•(t)p̂
†
α′,k′,•′(t)〉inφα(t, yb)φα′(t, yb). (A.9)

From the definition of p̂α,k,•(t) in Eq. (9.56) it is clear that this expectation value will in general contain

terms proportional to the coupling matrix and its square when expressed in terms of ǫ
(β)
α,k. However, since I’m

interested in the expectation value at late times only when the brane moves very slowly such that the mode
couplings go to zero and a physical meaningful particle definition can be given, I can set

〈p̂α,k,•(t)p̂
†
α′,k′,•′(t)〉in =

〈
˙̂qα,−k,•(t) ˙̂q†α′,−k′,•′(t)

〉

in
. (A.10)

Calculating this expectation value by using Eq. (9.53) leads to an expression which, as for the power spectrum
calculation before, has a divergent part related to the zero-point energy of the instantaneous vacuum state
(normal ordering problem). I remove this part by a subtraction scheme similar to Eq (A.4). The final result
reads

〈 ˙̂qα,k,•(t) ˙̂q†α′,k′,•′(t)〉in,phys =
1

2




∑

β

ǫ̇
(β)
α,k(t)ǫ̇

(β)∗

α′,k′(t)
√

Ωin
β,kΩin

β,k′

− Ωα,k(t)δαα′



 δ••′δ(3)(k − k′). (A.11)

Inserting this result into Eq. (A.9), splitting the summations in sums over α = α′ and α 6= α′ and neglecting
the oscillating α 6= α′ contributions having averaging over several oscillations in mind, leads to

〈 ˙̂h•(t, yb,k)
˙̂
h†
•′(t, yb,k

′)〉in =
1

a2

κ5

L

∑

α

Kα,k(t)Y2
α(a)δ••′δ(3)(k − k′) (A.12)

where the function Kα,k(t) is formally given by

Kα,k(t) =
∑

β

|ǫ̇(β)
α,k(t)|2
Ωin

β,k

− Ωα,k(t) = Ωα,k(t)Nα,k(t) (A.13)

and I have made use of Eq. (9.75). The relation between
∑

β |ǫ̇(β)
α,k(t)|2/Ωin

β,k and the number of created particles
can easily be established. Using the above expression in Eq. (A.8) leads eventually to

〈0, in| ˙̂hij(t,x, yb)
˙̂
hij(t,x, yb)|0, in〉 =

1

a2

κ5

L

∑

α

∫
d3k

(2π)3
Kα,k(t)Y2

α(a) (A.14)

where I have used that ∑

•
e•ij(k)

(
e• ij(k)

)∗
= 2. (A.15)

The final expression for the energy density Eq. (9.90) is then obtained by exploiting that κ5/L = κ4.



Appendix B

Numerics

B.1 Generalities

To solve the system of differential equations formed by Eqs. (3.76) and (3.77) numerically I decompose ξ
(m)
n (t)

and η
(m)
n (t) in their real and imaginary parts:

ξ(m)
n = u(m)

n + iv(m)
n , η(m)

n = x(m)
n + iy(m)

n . (B.1)

The resulting coupled system of first-order differential equations can then be written in the form

Ẋ(m)(t) = W(t)X(m)(t) (B.2)

with real vectors X(m)(t) and matrix W(t). Choosing the representation

X(m) = (u
(m)
1 ...u(m)

nmax
x

(m)
1 ...x(m)

nmax
v
(m)
1 ...v(m)

nmax
y
(m)
1 ...y(m)

nmax
)T , (B.3)

where I have truncated the infinite system via introducing the cut-off parameter nmax, the 4 nmax × 4 nmax -
matrix W(t) becomes

W(t) = −





C−(t) C+(t) −A+(t) A−(t)
C+(t) C−(t) −A−(t) A+(t)
A+(t) −A−(t) C−(t) C+(t)
A−(t) −A+(t) C+(t) C−(t)



 (B.4)

with the nmax × nmax - matrices C±(t) =
[
c±kn(t)

]
, 1 ≤ k, n ≤ nmax and diagonal matrices A±(t) = [a±

nn(t)]

where a±
nn(t) and c±nk(t) are defined in Eq. (3.78) and Eq. (3.79), respectively. The number of particles (3.56)

created in a mode n at t = tout may now be expressed in terms of the real functions:

N out
n =

1

4

nmax∑

m=1

Ωout
n

Ωin
m

{[
∆−

n (tout)u
(m)
n (tout) + ∆+

n (tout)x
(m)
n (tout)

]2

+
[
∆−

n (tout)v
(m)
n (tout) + ∆+

n (tout)y
(m)
n (tout)

]2 }
(B.5)

which in the particular case Ωin
n = Ωout

n ∀n reduces to

N out
n =

1

4

nmax∑

m=1

[(
x(m)

n (tout)
)2

+
(
y(m)

n (tout)
)2
]

. (B.6)

In order to calculate (B.5) the system (B.2) has to be evolved numerically nmax-times (m running from 1 to
nmax) up to t = tout with initial conditions

v(m)
n (tin) = x(m)

n (tin) = y(m)
n (tin) = 0 and u(m)

n (tin) = 2δnm. (B.7)

This shows that the numerical effort can become quite time and memory intensive if the cut-off parameter is
large and the integration times are long. If nmax = 100, for instance, a typical cut-off parameter used in the
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simulations, the matrix W(t) has size 400 × 400 and the system (B.2) has to be solved 100 times, each time
with different initial conditions. Fortunately, these runs with varying initial conditions are independent of each
other such that the code is easy to parallelize. I have done this using MPI and the simulations for the tensor
perturbations were performed on the Myrinet cluster of the University of Geneva. The results presented for the
scalar and electromagnetic field were obtained by using standard PC’s without parallelization. The code has
been written in C++ and I have used integration routines based on different standard solvers. Mainly employed
were the Runge-Kutta-Fehlberg 4th-5th order method (rkf45) and the Runge-Kutta Prince-Dormand method
(rk8pd). Source codes provided by the GNU Scientific Library (GSL) [222] as well as the MATPACK - Library
[223] (some of the scalar field results) were used.
Besides investigating the stability of the numerical solutions in dependence on the cut-off nmax the quality of
the numerical solutions can be assessed by checking the validity of the Bogoliubov relations

∑

m

[Amn(t1)A∗
mk(t1) − B∗

mn(t1)Bmk(t1)] = δnk (B.8)

∑

m

[Amn(t1)B∗
mk(t1) − B∗

mn(t1)Amk(t1)] = 0. (B.9)

In the next two sections I restrict myself to show to which accuracy the diagonal part of (B.8) is satisfied, i.e.
I consider the quantity

dn = 1 −
∑

m

[
|Amn|2 − |Bmn|2

]
(B.10)

which, analytically, has to be zero. In the following two sections I show and discuss representative examples
demonstrating the high accuracy of the numerical simulations.

B.2 Accuracy examples: TE-mode simulations

In Fig. B.1 I show dn(t), i.e. Eq. (B.10) evaluated as a continuous function of time corresponding to two
numerical results discussed in section 5.4.
Panels (a) and (b) correspond to the exact coupling case M =

√
2π (cf. Fig. 5.7) with the absolute and

relative errors (err) for the Runge-Kutta Prince-Dormand method (rk8pd) [222] preset to 10−8 (a) and 10−12

(b). Thereby two “bands” are shown. The upper one correspond to n = 1 to 5 whereas the lower one correspond
to n = 16 to nmax = 20. The deviation from zero is larger for higher n because these modes are more affected
by the truncation of the infinite system through the cut-off nmax. Comparing the absolute value of the maximal
deviation of dn(t = 8000) from zero which is ≈ 3.5 × 10−4 for err=10−8 and ≈ 1.5 × 10−8 for err=10−12 with
the number of particles created in the resonantly excited modes N1(t = 8000) ≈ 350 and N5(t = 8000) ≈ 400
demonstrates that the numerical simulations guarantee a good accuracy. In panel (c) and (d) I show dn(t)
for the case M = 0.4 (cf. Fig. 5.5) for the cut-off values nmax = 30 (c) and nmax = 50 (d). The numerical
simulations have been performed with err=10−8 and again two bands are shown corresponding to the first five
(upper band) and last five (lower band) values of n. For nmax = 50 the deviation of the absolute value of
dn from zero for the last values n = 46, ..., 50 [panel (d)] is slightly larger compared to the deviation for the
last five modes for nmax = 30. But the deviation of dn(t) from zero for the first modes n = 1, ..., 5 is smaller
for nmax = 50 than for nmax = 30, i.e. the accuracy for the first modes improves when increasing nmax as
it is expected. Comparing |dn(t = 2000)| ≈ 3 × 10−4 for nmax = 50 with the number of created particles
N1(t = 2000) ≈ 124 demonstrates again the good accuracy of the numerical simulations.

B.3 Accuracy examples: tensor mode simulations

For any value of the three-momentum k, the system of differential equations (9.70) and (9.71) is, using the
same parameterization as in B.1, also of the form (B.2).
However, in the braneworld case additional complications arise which make the numerical simulations more
involved. The main difficulty is that most of the entries of the matrix W(t) are not known analytically. This is
due to the fact that Eq. (9.13) which determines the time-dependent KK-masses mi(t) does not have an (exact)
analytical solution. Hence, except for the 00-component, the coupling matrix Mαβ is not known analytically. I
therefore have to determine the time-dependent KK-spectrum {mn(t)}nmax

n=1 by solving Eq. (9.13) numerically.
In addition, also the part MN

ij [Eq. (9.31)] has to be calculated numerically since the integral over the particular
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Figure B.1: The function dn(t) for ωcav = 2Ωin
1 and M =

√
2π [panel (a) and (b)] and M = 0.4 [panel (c) and

(d)]. In any case dn(t) is shown for n = 1, ..., 5 (upper bands) and the last five values n = nmax − 4, ..., nmax

(lower bands). With “err” I denote the presetted values for the relative and absolute error used in the numerical
simulations performed with, in these cases, the Runge-Kutta Prince-Dormand method.

combination of Bessel functions could not be found analytically.
I numerically evaluate the KK-spectrum and the integral MN

ij for discrete time-values ti and use spline routines
to assemble Wk(t). The system (B.2) can then be solved with the standard routines already used for the case
of the electromagnetic field. I chose the separation of the ti’s in a non-uniform way. A more dense mesh close
to the bounce and a less dense mesh at early and late times. The independence of the numerical results on
the particular separation is checked. In order to implement the bounce as realistic as possible I do not spline
the KK-spectrum very close to the bounce but re-calculate it numerically at any time t it is needed in the
differential equation solver. This minimizes possible artificial effects caused by using a spline in the direct
vicinity of the bounce. The same has been done for MN

ij and I have found that splining MN
ij when propagating

through the bounce does not affect the numerical results.
Again, entirely routines provided by the GNU Scientific Library (GSL) have been employed. Different routines
for root finding, and integration and several differential equation solvers have been compared. The code has
been parallelized (MPI) in order to deal with the intensive numerical computations.
In Fig. B.2 I compare final KK-graviton spectra N out

n,k,• with the expression dn(tout) for two different cases
corresponding to numerical results shown in Figs. 10.20 and 10.21. One observes that also for this, much more
complicated numerical problem, the accuracy of the numerical simulations is very good. Even if the particle
number is only of order 10−7 to 10−6, the deviation of dn(tout) from zero is at least one order of magnitude
smaller. This demonstrates the reliability of our numerical simulations and that we can trust the numerical
results presented in this work.
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Figure B.2: Comparison of the final KK-graviton spectrum N out
n,k,• with the expression dn(tout). Left panel:

ys = 3, k = 0.1, vb = 0.03 and nmax = 100 [cf. Fig. 10.20]. Right panel: ys = 3, k = 30, vb = 0.1 and
nmax = 100 [cf. Fig. 10.21]. In both cases, the preset accuracy for root finding, integration and the differential
equation solver is 10−12.
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[211] M. Uhlmann, G. Plunien, R. Schützhold, and G. Soff, Resonant Cavity Photon Creation via the
Dynamical Casimir Effect, Phys. Rev. Lett. 93, 193601 (2004), [arXiv:quant-ph/0404157].

[212] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev. D 14, 870 (1976).



BIBLIOGRAPHY 153

[213] W. G. Unruh and R. M. Wald, Acceleration radiation and the generalized second law of thermo-
dynamics, Phys. Rev. D 25, 942 (1982).

[214] G. Veneziano, Scale factor duality for classical and quantum strings, Phys. Lett. B 265, 287
(1991).

[215] H. Verlinde, Holography and compactification, Nucl. Phys. B580, 264 (2000), [arXiv:hep-
th/9906182].

[216] D. N. Vollick, Cosmology on a three-brane, Class. Quant. Grav. 18, 1 (2001), [arXiv:hep-
th/9911181].

[217] R. M. Wald, General Relativity, The University of Chicago Press, Chicago, 1984.

[218] R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics,
Chicago Lectures in Physics, The University of Chicago Press, Chicago, 1994.

[219] P. Wegrzyn, Exact closed-form analytical solutions for vibrating cavities, J. Phys. B: At. Mol.
Opt. Phys. 40, 2621 (2007), [arXiv:0706.4078].

[220] A. Wipf, Quantum Fields near Black Holes (1998), [arXiv:hep-th/9801025].

[221] E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B471, 135
(1996), [arXiv:hep-th/9602070].

[222] www.gnu.org/software/gsl/

[223] www.matpack.de


	Acknowledgments
	Publications
	Résumé
	1. Introduction
	2. The Casimir effect
	2.1 The Casimir force
	2.2 A simple example

	3. Dynamical Casimir effect
	3.1 Prelude: Wave equation on a time-dependent interval
	3.2 Remarks
	3.3 Canonical formulation
	3.3.1 Expanding the action and equations of motion
	3.3.2 Variation of the action, wave equation and compatible boundary conditions
	3.3.3 Energy vs Hamiltonian

	3.4 Quantization, vacuum and particle definition
	3.4.1 Canonical quantization
	3.4.2 The particle concept
	3.4.3 Vacuum and particle definition

	3.5 Time evolution
	3.5.1 Bogoliubov transformations
	3.5.2 First-order system
	3.5.3 Instantaneous vacuum

	3.6 A more formal point of view
	3.6.1 QFT in Minkowski spacetime
	3.6.2 Killing vectors
	3.6.3 QFT in curved spacetimes
	3.6.4 Bogoliubov transformations
	3.6.5 Unruh effect
	3.6.6 Dynamical Casimir effect


	4. Dynamical Casimir effect for a massless scalar field in a one-dimensional cavity
	4.1 Preliminary remarks on numerics
	4.2 Moore’s original example
	4.3 Particle creation in a vibrating cavity - An overview
	4.4 Particle creation in a vibrating cavity - Numerical results
	4.4.1 Main resonance
	4.4.2 Higher resonances
	4.4.3 Detuning

	4.5 Discussion and final remarks

	5. Photon creation in a three-dimensional vibrating cavity
	5.1 The electromagnetic field in a dynamical cavity
	5.2 Transverse electric modes
	5.3 Known analytical results
	5.4 Numerical results for TE-modes
	5.5 Discussion
	5.6 Outlook: TM-modes
	5.7 Observing quantum vacuum radiation

	6. The cosmological standard model
	6.1 The observable Universe and the cosmological standard model
	6.2 Geometry of the Universe
	6.3 Friedmann equations and cosmological solutions
	6.3.1 Einstein equations
	6.3.2 Friedmann equations
	6.3.3 Continuity equation
	6.3.4 Cosmological solutions
	6.3.5 Critical density

	6.4 Cosmological perturbations and gravitational waves
	6.4.1 Cosmological perturbation theory
	6.4.2 Gravitational waves

	6.5 Amplification of gravitational waves and inflation
	6.5.1 Quantum generation of gravity waves
	6.5.2 Power spectrum
	6.5.3 Energy density
	6.5.4 De-Sitter inflation


	7. Extra dimensions and braneworlds
	7.1 Extra dimensions - An overview
	7.2 Kaluza-Klein modes
	7.3 Gravity and extra dimensions
	7.3.1 Non-compact extra dimensions
	7.3.2 Compact extra dimensions
	7.3.3 The hierarchy problem
	7.3.4 Gravity strength experiments

	7.4 ADD braneworlds

	8. The Randall-Sundrum models and brane cosmology
	8.1 Warped geometry
	8.2 Randall-Sundrum models
	8.2.1 Randall-Sundrum model I
	8.2.2 Randall-Sundrum model II

	8.3 Junction conditions
	8.4 Brane cosmology
	8.5 Tensor perturbations in a RS braneworld

	9. Dynamical Casimir effect approach
	9.1 The problem and motivations
	9.2 Canonical formulation in the low energy limit
	9.2.1 Introductionary remarks
	9.2.2 Mode expansion
	9.2.3 Equations of motion
	9.2.4 Coupling matrices

	9.3 Recovering four-dimensional gravity
	9.4 Quantum generation of tensor perturbations
	9.4.1 Preliminary remarks
	9.4.2 Quantization, initial and final state
	9.4.3 Time evolution
	9.4.4 Bogoliubov transformations and first order system

	9.5 Power spectrum and energy density
	9.5.1 Perturbations on the brane
	9.5.2 Power spectrum
	9.5.3 Energy density
	9.5.4 Escaping of massive gravitons and localization of gravity


	10. Graviton production in a bouncing braneworld
	10.1 The model
	10.2 Numerical simulations
	10.2.1 Preliminary remarks
	10.2.2 Generic results and observations for long wavelengths
	10.2.3 Zero mode: long wavelengths
	10.2.4 Kaluza-Klein-modes: long wavelengths
	10.2.5 Short wavelengths
	10.2.6 A smooth transition

	10.3 Analytical calculations and estimates
	10.3.1 Zero mode: long wavelengths
	10.3.2 Zero mode: short wavelengths
	10.3.3 Light Kaluza-Klein modes and long wavelengths
	10.3.4 Kaluza-Klein modes: asymptotic behavior and energy density

	10.4 Discussion
	10.4.1 Zero mode
	10.4.2 KK modes


	11. Conclusions
	A. On power spectrum and energy density calculation
	A.1 Power spectrum
	A.2 Energy density

	B. Numerics
	B.1 Generalities
	B.2 Accuracy examples: TE-mode simulations
	B.3 Accuracy examples: tensor mode simulations


	Bibliography

