

TOWARDS A DIFFRACTION LIMITED STORAGE RING*

J. Bengtsson[†], Diamond Light Source, Oxfordshire, UK
P. F. Tavares, MAX IV Laboratory, Lund University, Lund, Sweden

Abstract

A robust lattice design for a 500 m circ. tunnel, as another step towards a “Diffraction Limited” Storage Ring, based on first principles and best practices, is presented (e.g. $\varepsilon_x \sim \lambda/4\pi = 8 \text{ pm} \cdot \text{rad} @ 1 \text{ \AA} = 12.4 \text{ keV}$; and a beam energy of $\sim 3 \text{ GeV}$). In other words, exploratory, strategic work. As the aviation concept: “To stay ahead of the power curve”.

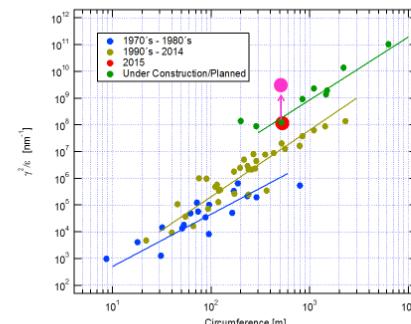
INTRODUCTION

MAX IV has been the first practical and robust implementation of a 7-Bend-Achromat [1,2], i.e., “Predictable Results” [3]; which began operation 2016. In particular, it has introduced a paradigm shift in the design philosophy for the “Engineering-Science” in the quest for a Diffraction Limited Storage Ring (DLSR) [4]. Besides, its construction (by necessity) has been innovative and cost effective (e.g. outsourcing by built-to-Print, concrete girders, etc.).

Similarly, SLS-2 [5,6] has introduced a systematic method for controlling the linear optics beyond some 20 years of TME inspired paper designs; by introducing reverse bends [7,8] to disentangle dispersion and focusing, which enables longitudinal gradient bends to efficiently reduce the emittance.

While the conceptual design for the former initially has been met by a naysayer or two, operating facilities now either is [9], or have plans to, upgrade; by a “Rip-&-Replace” [5,10-13]. In industry the phenomenon is known as: “Disruptive Technology”.

A key insight for the design of and R&D for MAX IV has been miniaturization; enabled by leveraging the Engineering-Science know-how provided by: MAX-I \rightarrow MAX-II \rightarrow MAX-III.


Similarly, since permanent magnets are well understood for insertion devices, i.e., predictable results, they now provide another opportunity (or risk); to “Push the envelope” further, see Fig. 1.

PRELIMINARY CONSIDERATIONS

Preliminary Concept: 19-BA

The basic requirements are summarized in Table 1. By numerical simulations and optimizations of the number of unit cells and cell tune, a 19-BA with $\bar{\nu}_{\text{cell}} = [4/16, 1/16]$ and a natural emittance of $\varepsilon_x = 16 \text{ pm} \cdot \text{rad}$ (ignoring the impact of IBS) was obtained as a baseline lattice for a preliminary concept [14], see Table 2 and Figs. 2 and 3.

The Quest for higher brightness

Nov 2016

Low Emittance Rings Workshop

MAXIV

Figure 1: The Quest for Higher Brightness [14].

Table 1: Requirements

Energy	~ 3
Hor/Ver Emittance [pm-rad]: Round Beam	~ 10
On-Momentum Dynamic Aperture [mm]	$\sim 2 \text{ mm}$
Off-Momentum Dynamic Aperture	$\sim 3\%$
Touschek Life Time [hrs]	$\sim 5\text{hrs}$
Momentum Spread	$< 1 \times 10^{-3}$
Magnet Reference Radius R_{ref} [mm]	5

Table 2: Global Parameters for 19-BA

Circumference [m]	527.7
Energy [GeV]	3
Horizontal Emittance [pm·rad]	16
Normalized phase advance $\bar{\nu}$	[101.2, 27.32]
Linear Chromaticity	[-100.2, -126.0]
Linear momentum Compaction	5.3×10^{-5}
Momentum Spread [%]	0.092

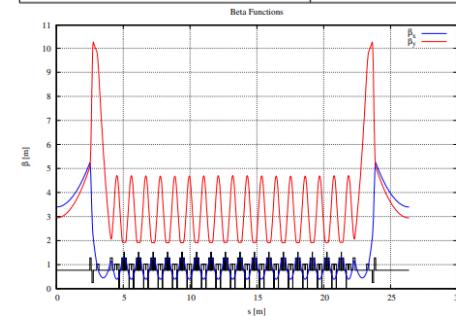


Figure 2: Linear optics for 19-BA.

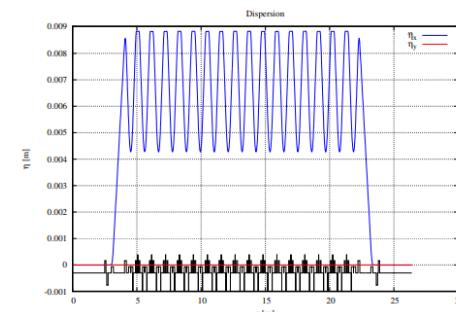


Figure 3: Horizontal linear dispersion for 19-BA.

*Exploratory strategic work conducted at MAX IV winter 2016-2017.

† johan.bengtsson@diamond.ac.uk.

A 3rd Order Achromat: 18-BA

However, the resonance $4\nu_x = 1$ is systematically driven for the 19-BA structure. A 3rd order achromat [15,16] can be obtained by changing to $\bar{v}_{\text{cell}} = [5/15, 1/15]$. However, the increase of the horizontal cell tune leads to an excessive increase of the horizontal linear chromaticity. So, instead, one may consider $\bar{v}_{\text{cell}} = [4/15, 1/15]$; by reducing the number of cells to a 18-BA, see Table 3 and Figs. 4 and 5.

Table 3: Global Parameters for 18-BA

Circumference [m]	560
Energy [GeV]	3
Horizontal Emittance [pm·rad]	18
Normalized phase advance $\bar{\nu}$	[102.2, 68.18]
Linear Chromaticity	[-124.8, -118.2]
Linear momentum Compaction	4.4×10^{-5}
Momentum Spread [%]	0.094

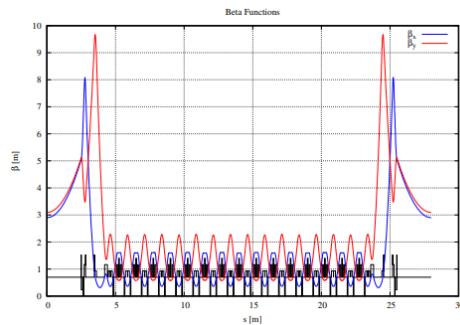


Figure 4: Linear optics for 18-BA.

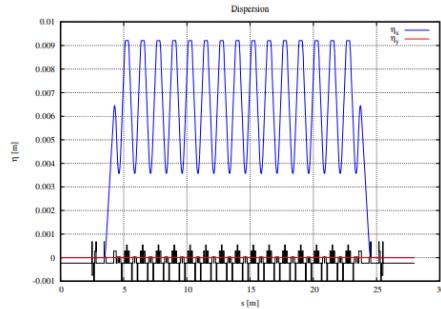


Figure 5: Horizontal linear dispersion for 18-BA.

BEAM DYNAMICS BENCHMARK

Our beam dynamics benchmark comprises of:

- Tune footprint, see Fig. 6.
- On and off-momentum Dynamic Aperture (DA) for Bare Lattice, see Fig. 7.
- On and off-momentum DA for the real lattice (i.e., with mechanical mis-alignments, magnetic field errors, control of closed orbit, and beta-beat), see Figs. 8 and 9.
- On and off-momentum frequency maps for real lattice, see Figs. 10 through 13.
- “Touschek Tracking”, see Fig. 14.
- Longitudinal phase space, see Fig. 15.

from which it is clear that the design is robust [17].

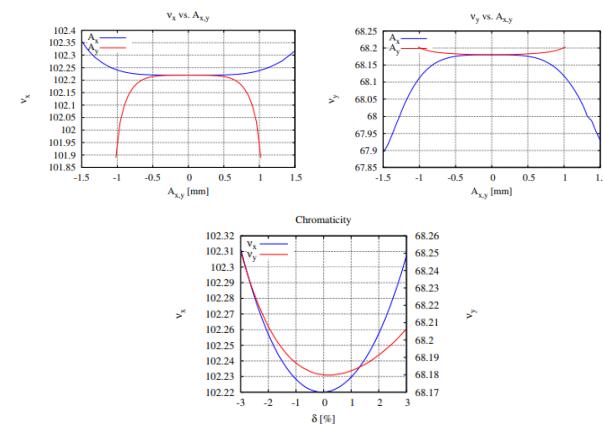


Figure 6: Tune footprint for 18-BA.

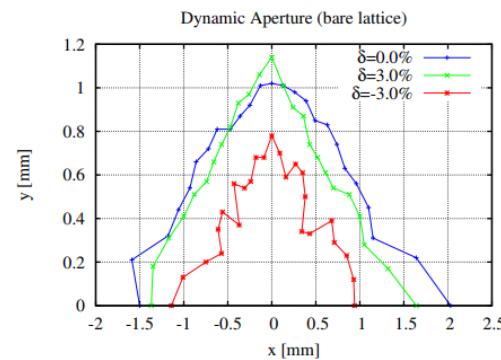


Figure 7: Dynamic aperture for 18-BA; bare lattice.

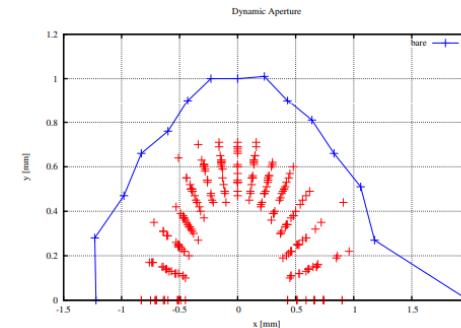


Figure 8: Dynamic aperture for 18-BA; real lattice.

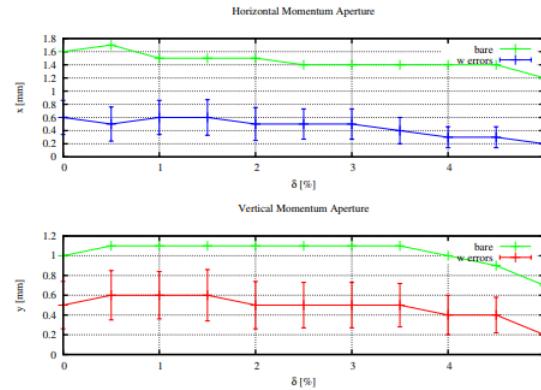


Figure 9: Off-momentum dynamic aperture for 18-BA; real lattice.

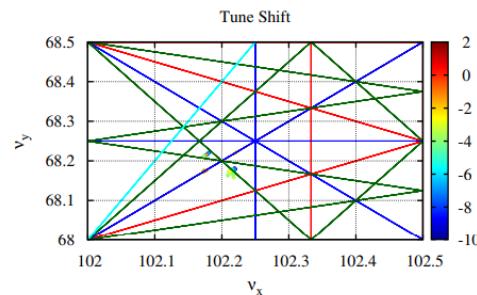


Figure 10: Tune footprint for 18-BA; real lattice.

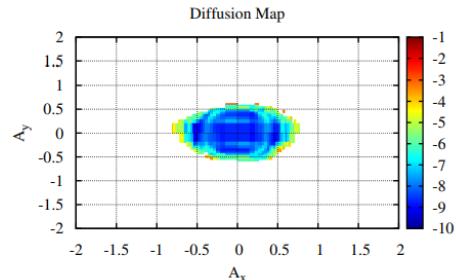


Figure 11: Diffusion map for 18-BA; real lattice.

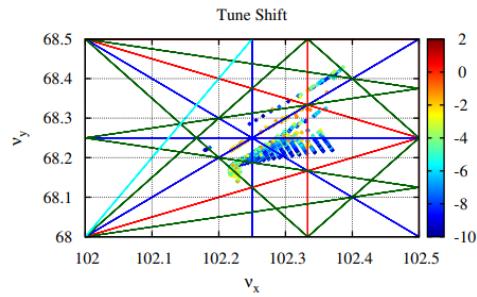


Figure 12: Off-momentum tune footprint for 18-BA; real lattice.

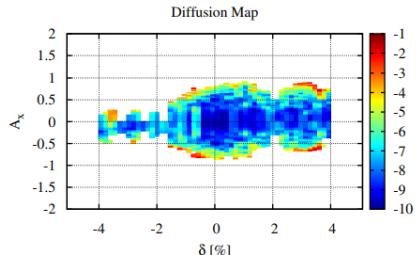


Figure 13: Off-momentum diffusion map for 18-BA; real lattice.

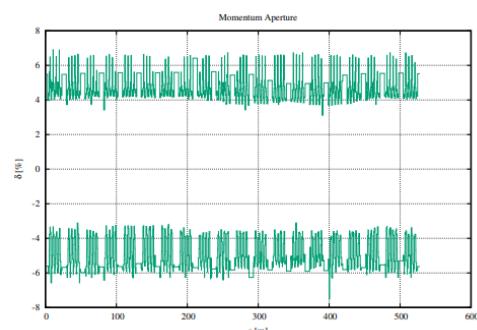


Figure 14: "Touschek tracking" for 18-BA; real lattice.

MC2: Photon Sources and Electron Accelerators

A05 Synchrotron Radiation Facilities

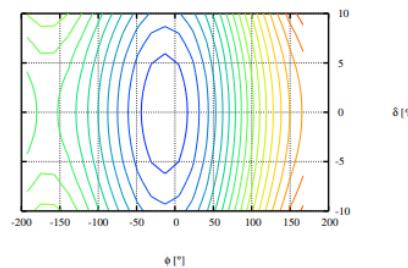


Figure 15: Longitudinal dynamics for 18-BA.

SYSTEMATIC CONTROL OF H_2

Control of the quadratic Hamiltonian, H_2 , i.e., the linear optics, can be refined by introducing longitudinal gradient dipoles and reverse bends [7,8]. The result is summarized in Table 4 and Fig. 16.

Table 4: Global Parameters for 8-BA with Longitudinal Gradient Dipoles and Reverse Bends

Circumference [m]	533.6
Energy [GeV]	3
Horizontal Emittance [pm·rad]	23
Normalized phase advance $\bar{\nu}$	[73.94, 27.82]
Linear Chromaticity	[-179.0, -65.982]
Linear momentum Compaction	-3.9×10^{-5}
Momentum Spread [%]	0.089

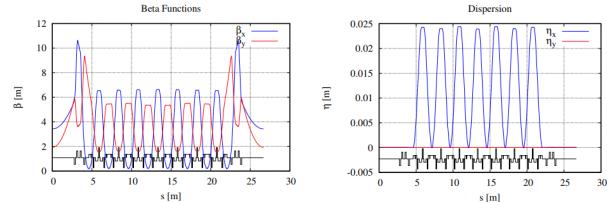


Figure 16: Linear optics and horizontal linear dispersion for 18-BA.

CONCLUSIONS

A robust lattice design, based on first principles and best practices, for a 500 m circ. tunnel with a natural emittance of $\epsilon_x \sim 20$ pm·rad for a beam energy of 3 GeV (ignoring the impact of IBS) has been presented; as another step towards a "Diffraction Limited" Storage Ring (DLSR).

REFERENCES

- [1] MAX IV Detailed Design Report, Aug. 2010, <https://www.maxiv.lu.se/accelerators-beam-lines/accelerators/accelerator-documentation/max-iv-ddr>
- [2] N. Mårtensson, M. Eriksson, "The Saga of MAX IV, the First Multi-Bend Achromat Synchrotron Light Source", *Nucl. Instr. Meth. Phys. Res. A*, vol. 907, pp. 97-104, Nov. 2018. doi: 10.1016/j.nima.2018.03.018
- [3] S. Leemann, *et al.*, "Beam Dynamics and Expected Performance of Sweden's New Storage-Ring Light Source: MAX IV", *Phys. Rev. ST Accel. Beams*, vol. 12, p. 120701, Dec. 2009. doi: 10.1103/PhysRevSTAB.12.120701

[4] R. O. Hettel and M. Borland, "Perspectives and Challenges for Diffraction-Limited Storage Ring Light Sources", in *Proc. North American Particle Accelerator Conf. (NAPAC'13)*, Pasadena, CA, USA, Sep.-Oct. 2013, paper MOYAB1, pp. 19-23.

[5] SLS-2 Conceptual Design Report, Dec. 2017, http://www.lib4ri.ch/archive/nebis/PSI_Berichte_000478272/PSI-Bericht_17-03.pdf

[6] J. Bengtsson, A. Streun, "Robust Design Strategy for SLS-2", PSI, Villigen, Switzerland, Rep. SLS2-BJ84-001-2, Jun. 2017. <http://ados.web.psi.ch/SLS2/Notes/SLS2-BJ84-001.pdf>

[7] A. Streun, "The Anti-Bend Cell for Ultralow Emittance Storage Ring Lattices", *Nucl. Instr. Meth. Phys. Res. A*, vol. 737, pp. 148-154, Feb. 2014.
doi: 10.1016/j.nima.2013.11.064

[8] J. Delahaye, J. Potier, "Reverse Bending Magnets in a Combined Function Lattice for the CLIC Damping Ring", in *Proc. PAC89*, Chicago, Illinois, USA, Mar. 1989, pp.1611-1613.

[9] ESRF Upgrade Programme Phase II (2015-2022) Technical Design Study (The ESRF Orange Book), http://www.esrf.eu/Apache_files/Upgrade/ESRF-orange-book.pdf

[10] Advanced Photon Source Upgrade Project Preliminary Design Report, APSU-2.01-RPT-002, Sep. 2017.
doi: 10.2172/1423830

[11] C. Steier *et al.*, "Status of the Conceptual Design of ALS-U", in *Proc. 10th Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation Int. Conf. (MEDSI'18)*, Paris, France, Jun. 2018, pp. 53-56.
doi:10.18429/JACoW-MEDSI2018-TUPH14

[12] S. C. Leemann, L. O. Dallin, J. Bengtsson, F. Sannibale, M. Aiba, and A. Streun, "Progress on a Novel 7BA Lattice for a 196-m Circumference Diffraction-Limited Soft X-Ray Storage Ring", presented at the 10th Int. Particle Accelerator Conf. (IPAC'19), Melbourne, Australia, May 2019, paper TUPGW095, this conference.

[13] S. C. Leemann, W. E. Byrne, M. Venturini, J. Bengtsson, and A. Streun, "A Novel 7BA Lattice for a 196-m Circumference Diffraction-Limited Soft X-Ray Storage Ring", in *Proc. 9th Int. Particle Accelerator Conf. (IPAC'18)*, Vancouver, Canada, Apr.-May 2018, pp. 4252-4255.
doi:10.18429/JACoW-IPAC2018-THPMF077

[14] P. F. Tavares, "Long Term Plans at MAX IV", presented at the 2nd Low Emittance Rings Workshop 2016, Lund, Sweden, Dec. 2016.

[15] J. Bengtsson, "NSLS-II: Control of Dynamic Aperture", BNL, NY, USA, Rep. BNL-81770-2008-IR, Oct. 2008.

[16] J. Bengtsson, "The Sextupole Scheme for the Swiss Light Source (SLS): An Analytic Approach", PSI, Villigen, Switzerland, Rep. SLS 9/97, Mar. 1997.

[17] P. F. Tavares, J. Bengtsson, Å. Andersson "Future Development Plans for the MAX IV Light Source: Pushing Further Towards Higher Brightness and Coherence", *J. Electron. Spectrosc. Relat. Phenom.*, vol. 224, pp. 8-16, Apr. 2018.
doi:10.1016/j.elspec.2017.09.010