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Abstract

Beginning with the Fokker-Planck equation we present
a new analysis of intrabeam scattering (IBS) in electron
storage rings. Our approach is distinguished by having
no ill-defined Coulomb logarithm, a fundamental draw-
back of previous approaches. We treat the case of linear
x3yg coupling in detail, deriving explicit expressions for
the second moment invariants and their time evolution in
the presence of IBS. We compare our results with those
of Bjorken-Mtingwa, as well as with measurements per-
formed at KEK’s ATF damping ring. More details of our
derivations will be published elsewhere.

EVOLUTION EQUATIONS

We consider a smooth focusing approximation Hamil-
tonian representing the symplectic part of the dynamics
in the storage ring given by H = (1/2)S;;z;z; with 2 =
(x,2',y,y,2,0). If we consider damping and diffusion
processes (both radiation and IBS) as well as the Hamil-
tonian evolution, the beam distribution function f(Zz¢)
evolves via the Fokker-Planck equation:

of _ o0 1 8
with B; = Cijzj + (<5Zi>w/5t)IBSa Dij = dij +
((0z:0z;)y,/0thBs. The various matrices are given by

C = JS — b, b is the damping matrix, d is the diffu-
sion matrix, and J is the symplectic inner product matrix
J=diag({01},{—10}). ThelBSaverage ), isover the
probability that a given particle with phase space position
Z will change by 67 in atime ¢t. In a coordinate system
where x, y, z are real positions, only W (dp,) (a=1...n)
will be non-zero. For 2n-D phase space, there exist n
invariants of H: g, = 27G*Z with G* = JUG*U" J,
where U is the symplectic matrix whose columns con-
sist of pairs of eigenvectors of JS, (va,—iv}) normalized
such that v1 Ju, = —id., and G is given by having
—io, = ({0 —i},{—i0}) inthe a'"* spot along the diag-
onal and therest 0's. The RMS emittanceise, = (g,)/2.

If the damping and diffusion are slow compared to the
Hamiltonian evolution, the distribution will approximately
be a Gaussian function of the invariants:

f(E = @

The distribution is normalized so that [ dz’f(Z) = N, and
the phase space volumeisgiven by I' = (7)3({g1){g2){g3).
IBS is most naturally analyzed in the beam frame which
wenotate by Z = (X, P). With small 2/, ¢/, and for large
relativistic - factor, the Lorentz transformation is simply
X=2Y=y2Z=n~zPFP, = Pa',P, = Py, ,P. =
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Pyd/~,dt = ~dt with Py the reference momentum. We
introduce Z = LZ. For the distribution matrices, we write
S @ 5./ A BW@
M= ZM = Z B@T () ©)
a=1 a=1
vyhereM = LML isM expressed in the beam frame and
M@ = 2LTG( L/ (g,).

From (1), the evolution of themoments X;; = (z;z2;) ;s

dX;; 1 . .
T = (1B 500), ) Hied) @
Note that ¥~! = M. We can also show that the evolution

of the average values of the invariantsis

d o d o IBS

o) — s tado) + (221) @
where the equilibrium values of the invariants without IBS
are (ga)y = da/(20), OF €50 = do/(4ay) With 20, =
Tr(by) and d, = Tr (Gd) where b, isthe a'h 2x2 block
along the diagonal of b = U~'bU. To first order, the a,
arethereal parts of the eigenvalues of the matrix C'.

We define the IBS growth rate as 7,! =
(d{ga)/dt)™®8 /{g,). For Eq. (4) there are 2 types of
terms in (dX/dt)'BS, one in the form of (z,p;) and the
other (p.py). Using Eq. (3), we get

IBS
1 %Tr <M“ dx ) = %ATr (IB%(“)@+C(“)K> 6)

1, dt

where .AKab = d<Pan>/dt|IBs, .AQab = d<Xan>/dt|IBs
and A contains overall constants. We've moved into the
beam frameusing Tr (M) =Tr(M*Y) withX =LY LT,

IBSDAMPING AND DIFFUSION

IBS has been studied extensively [1-4,7], with Bjorken-
Mtingwa (BM)[2] and Piwinski (P)[3] the main founda-
tions of later derivations. We start from first principles,
aiming for a clearer understanding of the subject. In addi-
tion to having no Coulomb log, our approach differs from
[4] and [7] inthat we follow invariants directly and give ex-
plicit expressions for them in the case of global coupling.

We compute BIBS(Z) = (6P,),, /6t and DIBS(Z) =
(0P,0Py)y,/ot. Let the two particles have coordinates Z
and Z, and let 7= X, — X, and A=P, — B,. If we consider
them undergoing a scattering process, the impact param-
eter isb = 7—r(A - #)A, where hats designate unit vec-
tors. In the small angle approximation, the scatter leads to
atotal momentum kick 6 P ~ —4k2 /(A3b2) A+2k /(Ab)b
where k = (mc)?ry with r the classical particleradius. For
6 P,, wediscard the 2nd term which should rightfully bein-
cluded in the space charge analysis, and then keep the term
in 6P, P, required for energy conservation. We then av-
erage these quantities over the portion of particle 2's phase
space where the time to the distance of minimum approach
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tmin = —
arrive at
<6P

m(r/A)A -7 islessthan 6t. Letting 6 — 0 we

2
=— Ak /dAdr

0P, 0P, 4 PO
% :1 /dA aF 2 (%o, P)S(A7) @
After use of the delta function in the integral, b can be re-
placed by = |7|. fis f normalized sothat [ dZf(Z) =
If we replace the spatial distribution with the local constant
density, and absorb the spatial divergence into a Coulomb
log, these reduce to the Rosenbluth Potentialg[6].

A2b3 f(XZa ﬁ2)6(A : ’F) (7)

REDUCE TO ANGULAR INTEGRALS

For the IBS contribution to the moment evolution equa-
tions, we can combine the damping and diffusion together
using (4) . For Gaussian distributions, the result is:

ab /A 3 7”@7”1;

where M is the unitless M ‘matrix expressed in the basis of
Z,ie we use’A = r2 A, B = (1, P))B,C = P3C. Also,

AgAy| e 288 M5 (A 7Y (9)

£ = (7, A). For the overall constant, A = Nk2/(7mf)
with F:P3P. We al'so can compute:
1 N
Q= [ e teeosAr) o)

Ignore Q,, for now (no “Coulomb log” behaviour). If we
dothe|r] and |A| integrals and theintegral from the ¢ func-
tionin K, we areleft with

Koy == /dQ hab [1og(h )+ —qtan"tq] (11)

Wlth hay = TqTp — A oAy, hy = Agptaiy, ho = Bayfaly,

= Cup A, Ay, and g = hy//4h1hs—h; vg ~ 0.577.
The g termin (11) will often be small and we drop it here.
Approximating thelog()+~g term asaconstant giveswhat
we call the Coulomb |og approximation. Thiscan be shown
to reduce exactly to the equivalent expression in BM. We
denote it by KBM. The quotient of these two expressions
can be used to define the Coulomb log:

J dee (—log(") — vr)
2L0gab = h =
fdQ Rab
This alows us to explore the range over which the usual

approach of having a single Coulomb log makes sense.

Kab
BM
Kab

(12)

THE CASE OF A COUPLED BEAM
With both  and y dispersion and z 3y coupling param-
eter x in the smooth approximation, we use the Hamilto-
nian H = (ﬁc/2)(k:ggaz:%f + 2+ 2kxpys + k‘yyg +y? -
(kz/ac)z%—aC(V) where xz = o — 136, yg = y — 0y,
zp=2—"1,x'—nyy" and o =k,n+k,n; isthe momentum
compaction factor. Gcisthe reference particle velocity. We

1This derivation of the BM results from the Rosenbluth potential [6]
was carried out by M. Venturini [5].

2The quantity r,,, is the minimum impact parameter cut-off required
because (9) diverges for small distances. We take it to be a typical dis-
tance of minimum approach, r., = roBz/(y%€z). This cut-off is aso
consistent with the small angle approximation used in the analysis.

2

use lab time as the independent varlable The smoothed
frequenciesare k,=1/32=(v,/R)*, k,=1/52=(1,/R)?,
k.= (vs/ R)Q, with v, ,,  the horizontal, vertical betatron
and synchrotron tunes respectively. R = C/2x with C the
storage ring circumference. We parametrize k., k, and «
by ky = ko+Acosy, ky = kg —Acosey, k = Asing.
A= /(ky — ky)?/4+k? and tantp =2/ (ky —ky ). /2
isthetilt anglein the z3,y3 plane. The eigeninvariants are

]‘ /
[(ko £ A)y3 +y"%](1 F cosy) +
2[(ko£A)zsys+a'y]sin1), (1 upper sign,2 lower sign)

= (25/B:) + B-6° (13)
where 3, = Ra./vs. Notethat H = 2¢(v/ko + Agi +
Vko — A ga — vk, g3). The IBS growth rates are

g12 =

A
— = — (1% Ki; £ 2sinyK
Tis Teravie TR Ecos)Ku £ 2sin gk
+ (1 Fcost)Kos + 72(14:0 + A)(ni(l + cos )
+ (1 F costp))Kas)
1 A’y
— = K 14
o= K (1)

The damping matrix has non-zero elements bos = 2,
baa = 20y, bgs = 2cr, and the rest of the elements are 0.
The diffusion matrix d has just one non-zero element (ig-
noring intrinsic 2/, v diffusion), dgs = D/E3, where D =
55rohmetyT/(24v/3p3). These yield coupled damping
constants oy » = o (1 £ cosv) + 2oy, (1 Fcosy), ag =
o, and diffusion constants d1 » = Dv/kg £ A1), cos &+
Ny, SN 5 Y)2, dy = [3.D which yield equilibrium emlt-
tances W|thout IBS of
<D\/k0 [nxycos j:nyxs1n12p}2> )

]

2[ay + ay £ (0p — ) cOsY bﬁ

€(1,2)0

DB.\ »p
€30 — 4az , R (15)
We have assumed that the lattice is isomagnetic and hence
the 1/p? average in D causes the other parameters to be
averaged only in the bends with an overall p/R normaliza-

tion. Inthe zero coupling limit, we also replace (12 , /5. )

with (M, ,). The observable transverse beam sizes are re-
|ated to the invariants by
2 %Y 2
9 1- kZ T,
52 - €1,2c08° ¥ +€2,1( cos 1)) +63\/_n%/ (16)
’ vV ko:l:A vV ko:FA Q¢

When ¢) — 0, werecover o2, = By y€xy + 0372 ,-

APPLICATION TO THE ATF

Asan application of our analysis, we compared with the
data taken at the ATF in April 2000. Ref. [1] attempted
this using a combination of the program SAD and IBS ex-
pressions based on BM with coupling added in a heuristic
way. There was an apparent discrepancy between theory
and experiment in the current dependence of the projected
vertical emittance, ¢, = (0202 —02,,)%. Our andysis
provides a solid base to explore th|s issue.
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Wevary x and compare equilibrium valuesfor e, o, 05,
ande, ;. Wealso (asin[1]) vary 5, with current computed
fromthe o, o5 data, as alinear model for bunch Iengthen-
ing. We use £y = 1.28 GeV, 7, = 0.052 m, 1, = 3mm,
B:=3.9m, B, =4.5m, ;0 =1.05x 107" m, vs =.0049,
a. =.0029, C =138.6m, p/R = 0.260. 7, =1/q, are
T, =18.2ms, 7,=29.2 ms, and 7, =20.9 ms.

Figure 1 shows the evolution of the invariants starting
with injection values. We evolve the invariants using (5),
(11), and (14). The parameters correspond to the 3.1 mA
point on the middle curve of Figure 2. Note that €, . /€,
is not constant, and hence there is not an exact global cou-
pling paameter ' such that ¢, . (t) = k'€, (t).
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Figure 1: Time evolution of emittances.

Figure 2 shows a comparison of equilibrium projected
vertical emittance (solid curves) to the data (diamonds). ¢,
and o are not shown, but agreement is comparable to that
in [1]. By adjusting the coupling, we can get the correct
magnitude in ¢, ., but the slope still does not agree. For
7y =3mm, we need r/ ky between .02 and .03 which corre-
sponds to atilt angle between 4 and 6 degrees. ¢, (dashed
curves) is smaller than e, ... This gives an indication of

the effect coupling has had on the measurements.  In the
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Figure 2: Comparison with ATF measurements. (x inm™2)

ATF, the beam is coolest in ¢ and hottest in z. Thus, K3
is positive and K;; negative. Koo can be either positive
or negative (energy conservation gives » | K., = 0.) We
find the biggest difference between K, and KEM for Ka,.
In the small coupling limit, the Ky, and the K33 contri-
butions to 1/, have arelative coefficient of 4*n7 /35 In
the “High Energy Approximation”, one keeps only the K33
term. However, for the ATF parameters, if n, < 1.8 mm,
Koo can become important. In Figure 3 we plot the ratio
of the Coulomb logs defined in (12) to the conventional
Coulomb log L. = log(oy/rm) (L. ~ 16 for ATF) for
varying vertical dispersion and zero coupling (since BM
dealt only with the uncoupled case). Effectively, we are
varying the beam aspect ratio, with the right side of the
3

plot approaching a round beam. Near 7, = 28 mm, the
intrinsic vertical growth rates Ky, and KEM have opposite
signs. Finally note that both Log,, /L. and Logss/L. are

closeto 1 over awide range of beam aspect ratios.
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Figure 3: Ratios of computed to nominal Coulomb log.
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CONCLUSIONS AND FUTURE WORK

We have given new expressions for the IBS damping and
diffusion coefficients B, and D,; and the moment evolu-
tion quantities AK ;. We include the position distribution
in our approach (the matrix A for Gaussians), a necessary
step in understanding the effect that the shape of the beam
has on IBS. For Gaussian beams, we have reduced the ex-
pressions to 3-D angular integrals. In fact we can reduce
them to 2-D integrals with some increase in complexity.
We find that for flat beams with ATF parameters, Bjorken-
Mtingwa with b, equal to the vertical beam size gives
excellent results for the horizontal and longitudinal growth
rates, but can break down for the intrinsic vertical growth
rate. We expect that for n, < 1.8 mm, for some values of
x and v, — vy, there may be observable differences in the
growth rates and/or equilibriain the ATF.

We have also included global zzys coupling explicitly
for the first time and computed the evolution of the invari-
ants for the case of the ATF damping ring. We find that the
dependence of ¢, ,» on beam current cannot be explained
by our model which suggests that non-1BS physics and/or
measurement error may be occurring. The offset can be
explained, however, with a beam tilt angle of 4-6 degrees.

Future plans include exploration of full 7, x, v, — vy
parameter space in the ATF, application to protons or
heavy ions, synchrobetatron coupling, non-Gaussian equi-
libria and extension beyond the smooth approximation.
BN would like to acknowledge Marco Venturini and Ben
Freivogel for many useful discussions.
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