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The auziliary group approach is extended to a systematic calculation
of subducing matrices and to relate various isoscalar matrices,

L. THE AUXILIARY GROUP APPROACH: Symmetries of subducing matrices,
especially of Clebsch-Gordan matrices C*'*2 have been studied for a long time.

orinstance the permutational properties of the latter matrices were used to corre-
late Ck1:%2 and Ck»#1; Jater complex conjugation (1], [2] and other operations (3],
l4], [5] were similarly employed. In a series of papers [6], [7], [8], [9] we developed
& systematic approach combining all these operations by closing them in what we
¢all the auriliary group Q. The elements of this group are bijective mappings ¢ of
the set of all unitary matrix (co)representations D(g) of some fixed group G.

a€ ASS  (a;D)(g) =Di(g)® D(g) (dim D’ =1)

g=<be AUT  (bD)(g) =D(87(g)) B € Aut(G)
c€CON  (cD)g) = D(g)"
g= (a,bye): (gD)(g) = D/(g) @ D(B~ (g))" (1)

It follows from these definitions that é has the structure
Q = {q} = ASS(x(AUT x CON) (2)

The action of q on a given (co)rep D(g) transforms it either into an equivalent one
T an inequivalent one. In the first case we obtain a symmetry relation while the
%econd case leads to a generating relation. It is natural to introduce a subgroup of
. 1eaving D(g) invariant up to equivalence transformations. Here we are primarily
SZerested in (co)irreps D¥(g) of G; the corresponding subgroups are denoted by

Q% = {q € Q|¢gD* ~ D*} (3)
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For each QF the group Qis decomposed with respect to this subgroup.

Q= U qﬁ"’)é’“ ) R* = {g{*'} = fixed set of coset representatives  (4)
£

These decompositions allow us to define Q-classes (k] (é orbits) consisting of
(co)irreps that are linked by the transformations ¢ € Q.

[k] = {D|D* ~ ¢D*, q€ O} ()
Staring from a fixed D* standard (co)irreps are generated by the convention
8 g
D’ = ¢’ D*, ¢ e R" (6)

For q € O one also has to construct the matrices U*(q) occurring on the RHS of
the equation

gD*(g) = U*(q) ' D*(g)U*(g)?, (7)

Having in mind (6) and (7) it is then easy to find for any q € @ matrices U? *(q)
relating D? and D,

/ 1 ' '
¢D* = U ¥(q) DU q), qe€Q (8)

¢ k B (ke
U¥ () = ¢PUMY), ¢ =g qg® 9

The next step in our procedure is to transfer the action of the operations g from
the the (co)irrep D*(g) to the reducing matrices. For this purpose we use the
definition of the latter (see eq. (11) below) and the matrices u? “(q). This results
in generating relations of the following form.

k Lt ) . .
s* — S (S = unitary matrix)
¥ )
kik, DURrEUE
chfs e Ch2 (C = Clebsch-Gordan matrix)

These relations will be discussed in more detail for the special case where the
reducing matrix is a subducing one.

2. THE AUXILIARY GROUP APPROACH FOR SUBDUCING MATRICES: If
a group G 4 is restricted to a subgroup Gz a (co)irrep D% of G4 becomes a (co)reP
of Gp which is general reducible.

D% | G = D% = {D*4y): g€ gp} (10)
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The matrices reducing these (co)reps are the so-called subducing matrices.

s*'D¥()5*” = @,E(kls) ® Di(g) g€0p (11)

E(d) = unit matrix of dimension d
(k|s) = subduction multiplicity of DY in D%’
Dy = (co)irrep of Gg

The matrices S* can be calculated straightforwardly from a set of linear equations
from (11) by varying g over Gpg. However our goal is to reduce and to systematize
this calculation and to obtain a set of correlated subducing matrices in one run.
For this purpose we have to adapt our approach for the case where (co)irreps of
two groups G4 and Gg C Ga are involved. In general there exists no direct relation
lletWGen the auxiliary groups @ 4 and Op introduced before. However if we restrict
QA to a subgroup Q 4 by excluding all automorphisms of G4 that do not leave Gg
Invariant, then there exists a homomorphism ¢ from Q4 (C Q4) to a subgroup
Q5 (C 2p).

®(Qa) =< (12)

This homomorphism also relates subgroups of Q4 to subgroups of Qg that are
Deed in our approach.

Ga: 94 O Qa D ok > Qf{t
U 1? | @ 1@ 1@
Gp : dg D> 9 O Q% o gt (13)

Here Q* is the “stabilizer” of D% (cf. (3)). Proceeding as before we decom-
Pose Q, with respect to Q’fm fix a set of coset representatives ’Rﬁ, and define
Standard representatives D¢ of the Q 4-classes [k]4. Moreover we determine the
Subgroup Q'f;l't of Qg' = ®(Q%) leaving invariant some of the (co)irreps Dj
Contained in D;i, and construct Qg—cla,sses [t}}g analogously. Employing the ma-

I_rices Ui‘e(q;‘) and Ug’t(qg) defined in complete analogy to (8), we arrive at the
“llowing general result.

S* M4 (g5) = U4 (94)(9859Z5(a8)' (14)
g = P(qa)

q8St = { §tx if ¢ contains ¢ (15)

st otherwise

2%(g5) = ®:E(llt) ® Uy (¢5) (16)
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In (14) M‘,; is a matrix commuting with the reduced form of Dﬁl. Now a careful
selection of g4 and the corresponding matrices Mg(qB) allows us to reduce the
calculations and to establish generating relations for the subducing matrices. The
various steps of our approach are visualized in the following figure.

generating generating ko £
I_J relation II _‘] [_—“ relation I _‘I qADA DA
t t
gD ~ Dj
t
DB
k| t £
Dy~ Dy Dy~
t'
DB
symmetry
relation
t t t
¢8Dp ~ Dp Dp
generating generating
I'_‘ relation II _l 1'_‘— relation I —'I
B
— t — — -
' t
my ™. | My m,
— Sf - | Si‘, —
Sk=1|... St =
—
k
Stm
symmetry
relation
multiplicity
problem ! -

The first kind of generating relations allows one to obtain the matrices S¢, ¢ € (k] 4



367

from a single matrix S*. Setting g4 € RY, MgB‘k(qA) = E(n,) in (14) we get

S’ = (¢S*)25(¢B), 9B = ¥(qa). (17)

The second kind of generating relations shows that we need not have to calculate
the whole matrix S* but only some of its subblocks S¥ because all S% , ¢' €
[t]ﬁl are related by suitable transformations. We take g4 = ®7'(gB), ¢B €
ng, and split (14) into rectangular blocks S¥ (see the Figure). Choosing the

submatrix Mgt’(qg) which is a constituent of M%(g4) as unit matrix we arrive
at the equation
1

S5 = Uk(g4)(gS%) [E(kls) ® U*(a5)] (18)

Apart from these generating relations we can also tackle the multiplicity problem,
Le. reduce the inherent ambiguity of the subblocks S$§ .. (see the Figure). For this

Purpose we set g4 € Q'j’i’t and split (18) into the above mentioned subblocks. The
RHS of this equation may then be viewed as an (anti-)linear operator acting on
the blocks S,’f'm.

T(ga)St . = U%(qa)(gaS; ) Us(en)! (19)

T(QA)Sf.m = Z Sf,m‘Lt(qA)m',m (20)

Here Lt(g4) is a matrix commuting with the (co)irrep D%. Thus it is obvious
that a group of (anti)linear operators T(ga) is defined in the vector space spanned
by the blocks S¢ .. and that the matrices L'*(g4) form a (co)representation. This
Space can be decomposed into its irreducible constituents. If none of them occurs
More than once the multiplicity problem is completely solved, while in all other
Cases it is only reduced. The method outlined in this section generalizes the results
for Kronecker products described in detail in Ref.[9].

3. GENERATING RELATIONS FOR ISOSCALAR MATRICES: Up to now the

uxiliary group approach has always been utilized to simplify the calculation of

Yeducing matrices. We now briefly discuss an extension where these methods are

Used to systematize the determination of matrices that relate pairs of different

"educing matrices. To be specific the action of Q4 and Qp is now transferred
om the (co)representations to the isoscalar matrices X defined by the Racah
®mma [10), [11].

{sép@i [@LE@;;) ® CEB] } - {c-‘_;l {@zm(g;e) ® s‘] Péﬂf}xg (21)

In this equation Ci = Cfi‘b and CEB = Ceg"t’ are Clebsch-Gordan matrices
°r G, and Gg C Ga respectively. Moreover S¢ is a subducing matrix and St
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is a shorthand notation for S @ S§%. The symbol (£[¢) denotes the Kronecker

multiplicity of D in DéA while (£|¢) is the number of times D% occurs in D%
(subduction multiplicity). Moreover P®¢ and P®¢ are well-defined permutational
matrices. Finally, X% is the so-called isoscalar matriz that links the two matrices
in curly brackets both of them reducing D% into the direct sum ®.E(£|t) @ DY.

In order to make use of the auxiliary group approach we need not only the groups
Q4 and Qp but also the corresponding groups for the Kronecker products, namely
Q, and Q. Each of these groups, Q@ = {¢}, is isomorphic to an extension of the
groups @ = {gq} introduced previously for the factors of the Kronecker products
(for details see [4]).

Q= (ASS x ASS)(x (AUT x CON x 8,) (22)
The action of @ N (Q x Q) is defined by
(¢D4)(9) = (41,42) (D ® D) (9) = ((aD") ® (:D*)) (9)  (23)

and the effect of py;, the only non-trivial element of S, is simply

(p12D%) (9) = (p12 (D" ® D%)) (9) = D*(g) ® D" (g). (24)

There exists a natural homomorphism mapping Q onto Q,
H:Q— @, (25)

and the homomorphism $ introduced for single (co)representations in Section 2
can be extended to a homomorphisms @ defined for Kronecker products. The
following commutative diagram of morphisms related to the group-subgroup pair
Gp C Ga, shows the relations between the four homomorphisms H4, Hp, & and
$.

gA : Q—A _?i'i. QA
U | 1@
Cs : 9, & g (26)

From these relations we may derive the following general result
! t £I é’ ¢ it z # ) { 27)
M] (ﬂA) XBMz (QA) = @tE(ﬂt) ® UB (‘IB)] XB [@tE(Qt) ® UB (‘IB)] (

In this equation g = ®(Ha(g,)) = Hp(®(¢g,)) and Mf‘(gA) and Mf'(gA) are
special matrices, each commuting with ©,E(£|t) ® D%(g). A careful choice of
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transformations 9, and matrices Mf (q I =12 leads us to generating relations
for isoscalar matrices, symbolically written as

FA g
XB — X-B.

However, as this is a rather involved procedure the detailed formulas as well as
some illustrative examples will be given elsewhere [12], [13].
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