
363 

A U X I L I A R Y  G R O U P  A P P R O A C H  F O R  
G R O U P - S U B G R O U P  R E L A T E D  T R A N S F O R M A T I O N  M A T R I C E S  

J.N. Kotzev, M.K. Peer, M.I. Aroyo t 
Department of Solid State Physics, University of Sofia 

BG-1126 Sofia, 5 Anton Ivanov Blvd; Bulgaria 

R. Dirl, P. Kasperkovitz 
Institut fiir Theoretische Physik, TU Wien 

A-1040 Wien, Karlsplatz 13; Austria 

The auxiliary group approach is extended to a systematic calculation 
of subducing matrices and to relate various isoscalar matrices. 

1. THE AUXILIARY GROUP APPROACH: Symmetries of subducing matrices, 
especially of Clebsch-Gordan matrices C k~,k= , have been studied for a long time. 
For instance the permutational properties of the latter matrices were used to corre- 
late Ckt,k2 and Ck2'kl; later complex conjugation [1], [2] and other operations [3], 
[41, [5] were similarly employed. In a series of papers [6], [7], [8], [91 we developed 
a systematic approach combining all these operations by closing them in what we 
call the auziliary group Q. The elements of this group are bijective mappings q of 
the set of all unitary matrix (co)representations D(g) of some fixed group G. 

a E ASS (ajD)(g) = DJ(g) ® D(g) (dim DJ = 1) 

q = b E A/IT (bD)(9) = D(/3-1(g)) /3 E Aut(G) 

c e C O X  (cD)(9) = D(9)" 

q : (a,b,c): (qD)(9) -- DJ(g) ® D(/3-1(g)) * (1) 

It follows from these definitions that Q has the structure 

0 = {q} = Ass(×(AU " × coil) (2) 

The action of q on a given (co)rep D(g) transforms it either into an equivalent one 
~r an inequivalent one. In the first case we obtain a symmetry relation while the 
~eond case leads to a generating relation. It is natural to introduce a subgroup of 
Q leaving D(g) invariant up to equivalence transformations. Here we are primarily 
i~terested in (co)irreps Dk(g) of G; the corresponding subgroups are denoted by 
Q~. 

~)k = {q E QIqD k ~ D k} (3) 
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For each @k the group Q is decomposed with respect to this subgroup. 

^(k)~k 

e 
T4 k = {q~/¢)} = fixed set of coset representatives (4) 

These decompositions allow us to define C2-classes [k] (Q orbits) consisting of 
(co)irreps that are linked by the transformations q E C2. 

[k] = { D t I D  ~--,qD k, qE Q} (5) 

Staring from a fixed D k standard (co)irreps are generated by the convention 

D e ( k ) ~ k  q~k) ~ .  = qe ~' , e (6) 

For q C ~k one also has to construct the matrices Uk(q) occurring on the RHS of 
the equation 

qD~(g) = U~(q)~Dk(g)U~(q) (a). (7) 

Having in mind (6) and (7) it is then easy to find for any q E Q matrices U e''e(q) 
relating D e and D e'. 

qD e = Ue"~(q)tDe'Ue"e(q), q e Q (8) 

Ue' '~"  q~k,)Uk(q'), q' q~,k)-lqq~ k) ' ( q )  = = (9) 

The next step in our procedure is to transfer the action of the operations q from 
the the (co)irrep Dk(g) to the reducing matrices. For this purpose we use the 
definition of the latter (see eq. (11) below) and the matrices Ud'e(q). This results 
in generating relations of the following form. 

UL,k 
S k ,* S* (S = unitary matrix), 

~.TL1 ,kt  ~T,.)'L2 ,k2 
Ckl,/¢2 ~ Cel,e2 (C = Clebsch-Gordan matrix) 

These relations will be discussed in more detail for the special case where the 
reducing matrix is a subducing one. 

2. THE AUXILIARY GROUP APPROACH FOR SUBDUCING MATRICES: If 
a group ~a is restricted to a subgroup Gs a (co)irrep DkA of GA becomes a (co)rep 
of GB which is general reducible. 

Dka ~OB=DkA i = { D k ( g ) :  gEOm} (10) 
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The matrices reducing these (co)reps are the so-called subducing matrices. 

SktD~J'(g)S ~(g) = e ,E(k l s  ) ® D~(g) g E U B  (11) 

E(d) 
(kl~) 
D~ 

= unit matrix of dimension d 

= subduction multiplicity of D~ in D~t t 

= (co)irrep of a s  

The matrices S k can be calculated straightforwardly from a set of linear equations 
from (11) by varying g over Us. However our goal is to reduce and to systematize 
this calculation and to obtain a set of correlated subducing matrices in one run. 
For this purpose we have to adapt our approach for the case where (co)irreps of 
two groups aa  and a s  C g,t are involved. In general there exists no direct relation 
between the auxiliary groups Q,4 and Qs introduced before. However if we restrict 
QA to a subgroup a a  by excluding all automorphisms of ~A that do not leave an 
invariant, then there exists a homomorphism • from aa  ( c  QA) to a subgroup 
Q~ (c QB). 

'~(aA) = Qs  (12) 

This homomorphism also relates subgroups of QA to subgroups of QB that are 
need in our approach. 

ok,  t 
aA : @A 3 a A  ~ akA ~ ~"A 

(3k ~. ,t 
a s :  @s 3 a s  ~ a~ ~ ~ ~B (t3) 

Itere Q~ is the "stabilizer" of D~ (cf. (3)). Proceeding as before we decom- 
Pose QA with respect to Q~t, fix a set of coset representatives ~4 ,  and define 
standard representatives D~t of the Qa-classes [k]a. Moreover we determine the 
subgroup Q~J,,t of Q~I = q~(Q~t) leaving invariant some of the (eo)irreps D~ 
contained in D~A l, and construct Q~l-classes [t]~ ~ analogously. Employing the ma- 

trices U~t't(qA) and u~'t(qB) defined in complete analogy to (8), we arrive at the 
following general result. 

t' )t Se, MB(qB) e',e e t = U A (qA)(qBS)ZB(qB 

qB = q~(qA) 

S e* if qB contains c 
qBSt = S e otherwise 

t ~ , t  
Z~(qB) = @rE(lit) ® U B (qB) 

(14) 

(15) 

(16) 
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In (14) M ~  is a matrix commuting with the reduced form of D~t ~. Now a careful 
l '  

selection of qa and the corresponding matrices MB(q~ ) allows us to reduce the 
calculations and to establish generating relations for the subducing matrices. The 
various steps of our approach are visualized in the following figure. 

° 

.• 

generating ~ ~ _ ~  generating 
relation II relation I 

t f 
qB D~B ~ D B 

symmetry 
relation 

qsD~ ~ D~ 

[ qAD~ "~ D~ 

S k 

generating 
relation II 

m l  • • . m r  

i 

symmetry 
relation 

multiplicity 
problem 

generating 
relation [ 

- - - 4 .  o . .  

t 
H b q .  ° . • ! 

o , .  S ~ = 

The first kind of generating relations allows one to obtain the matrices S e, t E [k]A, 
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from a single matrix S k. Setting qA e nkA, M~k(qa) = E(ne) in (14) we get 

S t = (qBS~)Z~(qB), qs = ~(qa).  (17) 

The second kind of generating relations shows that we need not have to calculate 
the whole matrix S k but only some of its subblocks St k because all S~ , t e C 

[t]~ t are related by suitable transformations. We take qA = ~2-1(qs) , qB E 
R~ ~, and split (14) into rectangular blocks S~ (see the Figure). Choosing the 

submatrix M~'~'(qB) which is a constituent of M~(qA) as unit matrix we arrive 
at the equation 

(]8) 

Apart from these generating relations we can also tackle the multiplicity problem, 
i.e. reduce the inherent ambiguity of the subblocks S~, m (see the Figure). For this 

¢3k't and split (18) into the above mentioned subblocks. The Purpose we set qA E ~A  
RHS of this equation may then be viewed as an (anti-)linear operator acting on 
the blocks S~,m. 

T(qA)S~,.~ = UkA(qA)(qAS~,m)U~(qs) t (19) 

= ' St,m, L (qA)m',ra (20) 
-t~ t 

Here L*(qA) is a matrix commuting with the (co)irrep D~.  Thus it is obvious 
that a group of (anti)linear operators T(qA) is defined in the vector space spanned 
by the blocks S k and that the matrices Lt(qA) form a (co)representation. This 
Space can be decomposed into its irreducible constituents. If none of them occurs 
raore than once the multiplicity problem is completely solved, while in all other 
Cases it is only reduced. The method outlined in this section generalizes the results 
for Kronecker products described in detail in Ref.[9]. 

3, GENERATING RELATIONS FOR ISOSCALAR MATRICES: Up to now the 
auxiliary group approach has always been utilized to simplify the calculation of 
reducing matrices. We now briefly discuss an extension where these methods are 
Used to systematize the determination of matrices that relate pairs of different 
reducing matrices. To be specific the action of QA and QB is now transferred 
from the (co)representations to the isoscalar matrices X defined by the Racah 
Lerama [10], [11]. 

g ~ t l  , t2 Ia this equation C~ = C ~ " :  and C~ = "~s are Clebsch-Gordan matrices 
for GA and ~B C GA respectively. Moreover S t is a subducing matrix and S e-- 
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is a shorthand notation for S 6 ® S e~. The symbol (_gig) denotes the Kronecker 
multiplicity of D~t in D~t while (-g[t) is the number of times D~ occurs in 
(subduction multiplicity). Moreover p ~ t  and P~e are well-defined permutational 

l matrices. Finally, X~ is the so-called isoscalar matriz that links the two matrices 
in curly brackets both of them reducing D ~  into the direct sum @~E(glt ) ® D~. 

In order to make use of the auxiliary group approach we need not only the groups 
Qa and QB but also the corresponding groups for the Kronecker products, namely 
QA and ---QB" Each of these groups, ~ = {q_}, is isomorphic to an extension of the 
groups Q = {q} introduced previously for the factors of the Kronecker products 
(for details see [4]). 

Q_ = ( A s s  × Ass ) (×  (AUnt × c o ~ ¢  × s2) (22) 

The action of _Q n (Q × Q) is defined by 

(qDt)(g)=(ql ,q~)(Del®D'2)(g)=((qlDe~)®(q~Dl:)) (g)  (23) 

and the effect of Ply, the only non-trivial element of $2, is simply 

(p12D t) ( g ) =  (p12 (De1® D e : ) ) ( g ) =  De~(g)® De~(g). (24) 

There exists a natural homomorphism mapping _Q onto Q, 

7~: ~ ....... , Q ,  (25) 

and the homomorphism ¢ introduced for single (co)representations in Section 2 
can be extended to a homomorphisms ~ defined for Kronecker products. The 
following commutative diagram of morphisms related to the group-subgroup pair 
~B C CA, shows the relations between the four homomorphisms 7~A, 7~B, ~ and 

6 a :  Q--A ~A' QA 

6 z :  --Qs n "  Qs  

From these relations we may derive the following general result 

(26) 

" , " " . . , , , , /  .1 , 
Mi (q-A) X~M5 (q_A) -~- ® - ~ B  [qs)J X ~  

~J / I 
In this equation qB = ~(HA(q_A)) = ?~B('I~(qA)) and M i (qa) and M] ( q A )  a f e  

special matrices, each commuting with @tE(-g]t) ® D~(g). A careful choice of 
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~r 
transformations qa and matrices M 7 (-qA)' j = 1,2, leads us to generating relations 
for isoscalar matrices, symbolically written as 

~t % 

However, as this is a rather involved procedure the detailed formulas as well as 
Some illustrative examples will be given elsewhere [12], [13]. 
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