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Abstract 

The procedure in [Fuchs et al.) to obtain fusion algebra from the modular 
transformation of characters in logarithmic conformal field models is extended to 
the (p ,p') logarithmic models. 

1 Introduction 

This paper is a remark on fusion in a class of logarithmic models of conformal field 
theory (1- 3]. In rational conformal field models, fusion is related to modular transforma­
tions of characters by the celebrated Verlinde formula [4,5] . Because the Verlinde formula 
relies on the fact that the fusion algebra is semisimple, it does not immediately extend to 
logarithmic conformal field theories, where fusion algebras (starting with the pioneering 
results in (6]) are typically nonsemisimple. The known extensions of the Verlinde for­
mula to the nonsemisimple realm rely on some extra input, in one form or another [7] 
(also see [8]). In the prescription proposed in [9], this extra input can be related to a 
quantum-group formulation. 

The role of q11a.nt 11 rn groups in logarithmic couformal Hold theory gradual! merged 
in [10-13] (see [I ] for a :;um111ary a1icl [~5] for some fu rth<-Jr development) , leading Lo aver­
sion of the Kazhrlan~LnS'.!t. i g "d11aliLy" be'Lw~en the ext nded al~brn W in a Lo~arithmic 
conformal field mod 1 1lud 1.L r.orres1'.J<mdlng q 11 n11L111n gr >UP ,g .1 The ru st nmiarkable 
result rnlated to tbe l(nzhrlan- Lus-1.tig duality is li te coi n icl nee of modular group repre­
sentations (the one ge11eratcd front the W c11arnct·.crs 1111d t11e one carried by the center 
of .s); also, t;he rothcudi ck ring of .9 is a nutma l candidate for the fusion algebra of 
W-repres ntat.io11. (we sµ .ak of the K0-type fusion , see [9 18J) . 

For the (p, 1) logarithmic models, in particular, this "quantum-group candidate fu­
sion" coincides with the fusion derived in [9] from the characters, thus giving additional 
support to the procedure proposed in [9] . The aim of this paper is to extend the exist­
ing state of consistency to (p, p') logarithmic rnodcls: we propos' a pr SCl'ipLio11 whereby 
the modular transformations of t ho chara 'tr.rs of tbc extended a lgebra in th (JJ , p1} log­
arithmic model [12] are converted into. a nonscmis.im ple fusion a lgebra ·oinciding with 
the Grothendieck ring of the corn·sp nd ing 1iua11 t11 m b'l'Oup .9 [13j. For this, we fo ll ow 
the approach in [9] (also see [7]) very closely. In Sec. , we describe our starting; point, 
the modular group representation generated from the characters of the extended algebra 
of the (p, p') models. In Sec. , we formulate the procedure to convert these modular 

1 These are factorizable ribbon quantum groups at even roots of unity; see (16] for their other use 
and (17] for an interesting precursor. 
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transformations to the following fusion algebra on 2pp' elements .;e;~, [13]: 

r+s - L r'+.li'-1 

.;e;;,z,~, = 2= 
u=Jr-.<l+l u'=Jr' - s'I+ I 

where cv, (3 = ±1 and 

j x;~;- r,rl I 2. ){~=~,r', 

.:1~:11,, -r, + '2 .x~;~-p'' 
t ;(,1,~; ,·,'I.fl 1·' -t- :l~;~r,r 1 -p1 

slep=2 sLc~p ='2 

1 ~r ~p, 1 ~r' ~p', 

p+l~r~2p-l, l~r'~p', 

1 ~ r ~ p, p' + 1 ~ r' ~ 2p' -1, 

+ 2.Y,.:.~ .~µ'-r' + 4Jf,:~p,r'-p'> p+ 1~7' ~ 2p-1, p' + 1 ~ r' ~ 2p' -1. 

(1) 

The identity of this associative commutative algebra is given by £ii. We also recall 
from [13] that this algebra is generated by two elements 1i~ and ~~ and can also be 
described as the quotient of IC[x, y] by the ideal genr~rated by the polynomials 

U2p+1(x) - U2p--t(x) - 2, 

U2p'+1(Y) - U2p'-1(Y) - 2, 

Uµ+1(x) - Up-1(x) - Up'+1(Y) + Up•-1(Y), 

where 
sin st 

Us(2 cost) = -. -t , 
sm 

are Chebyshev polynomials of the second kind. 

s? 1, 

2 Modular transformations of the (p, p') characters [12] 

For each pair of coprime positive integers p, p', the extended algebra of the logarithmic 
(p,p') model is the W-algebra ~.P' identified and studied in [12]. It has HP - l)(p' -
1) + 2pp' irreducible representations, the ~(p - l)(p' - 1) of which are just the Virasoro 
representations in the corresponding (p, p') minimal model and the other are "genuine" 
~.p'-representations (such that the radical of "fl!;,,p' acts nontrivially). In what follows, 
the characters of irreducible ~,p--representations are denoted as 

Xr,r' ( T), x:.r' ( T), X;,r' ( T) (2) 
(r,r')E.Po I ~ r ~ p, 1 ~ r' ~ p' 

where we introduce the index set 

Jo= {(r,r') / 1 ~r~p-l, 1 ~r' ~p'-1, p'r +pr' ~pp'}, (3) 

wi th f.Y0 f = ~ (v - i. )(1/ - 1) (w(• re.call Llw wdl-known symmetry Xr,r'(r) = Xp-r,p'-r'(r) 
or Lh 111 in i11ml-11 1od •l Vira'ioro eharncLcrs). 

T hr• mocl11 lar (spr:d fi call , 8 -) Lrnu~ fomml; i on properties of the characters are as fol­
lows. FirsL, !, hr. mi.uimf.Ll-1rH1dcl c·lrn.ror.Lnn; Xr,r' are well-known to S-transform as 

l 
Xrr•(--) = 

' T 

2./2 L ( l)rs' +sr' . 7rp'rs . 7rpr' s' ( ) - -- - sm -- sm-- x ' T ,;p:;; p p' s,s ' 
(s,s')EJ"o 

187 

(r, r') E Jo. (4) 



Next, it follows from [12] that {for 1 ~ r ~ p and 1 ~ r' ~ p') 

p p' 

x:,r,(-~) = 2-:L:>~·.r';s,s'(r)(x;,,,(r) + (-l)P'r+pr'x.~,,(r)) 
s =L s'= l 

+ L Yr;,,;s,s'(r)xs,s'(r), (5) 
(s,s' )EJ'o 

p p' 

x;,r' (- ~) = L L(-l)P''+p's Yr,r';s,s•(r) (x;, •• (r) + (-l)P'r+pr' x;,,,(r)) 
s=l s'=l 

+ L Yr~';s,s'(r)xs,s'(r), (6) 
(s,s')EJ'o 

where the matrix elements Yr,r',s,s'(r) that interest us in what follows are given by 

Y, ( ) 2..;2 { l)rs'+sr' (r np'rs . p-s . np'rs) r,r';s,s' T = ,/iiii' - p COS-p- - irp S!Il-p-

l ~ s~p-1, 
r' 7rpr1 s' . p' - s' . 7rpr1 s' 

x (-cos-- -ir-- sm--), l~s'~p'-1, 
p' p' p' p' 

.1" I I I 
Y, { ) _ v• r { l)sr'+pr'+p'r(r nprs . p-s . nprs) l l (7) r,r';s,p' r - ,/iiii' p; - P cos-P- - irp sm-p- , ~ s ~p-

..;2 r ' r' nnr' s' p' - s' npr' s' Y. 1. •(T) = - -(-l)s'r+p'r+,,,- (-cos-"-· - ir-- sin--) 1 :>::: s' :>:::p'-1 r,r ,p,s ,/iiii' p p' p' p' p' , "' ..._, 

1 rr' 
Y." •(r) = --r,r ,p,p .JiPil pp', 

and the other matrix elements are 

--+ _ rs'+sr' v'2 ( / 1 trp'rs 7rpr's' 
J"'rr"s 9,(T) - (-1) 2 ,2 t= pp TT COS- COS-,-, ' ' pp VI'/' p p 

. 1 1 , wp'rs . 7rpr's' . / 1 , . 7rp'rs 7rpr'tl + ip rr(ps - p s) cos- sm-,- + ipr r(p s - ps) sm- cos-:;;-
" p p I' 

( 
(ps' - p' s) 2 2 . 1 p2r'2 + p'2r2

) . wp'rs . trpr1 s') + 
2 

r -2mppr + 
2 

sm--;-· sm-7 - , 

.5'.- ( ) = (-l)'P'+s'p.5'.+ ( ) _ (-I)rs'+sr'+sp'+s'p_l_ . 7rp'rs in11'1""
1

•
1 

r,r1 js 1a1 'T r,r';s
1
s' 'T .JiPil Sill p S p' · 

3 "Logarithmic" (p, p')-fusion 

3.1 The procedure 

The steps leading from (5) and {6) to {1), in much the same way as in [9], are as 
follows. 

1. We view the characters in (2) as a column vector and write the S-transformation 
formulas as 

1 
x(--) = .9'(r)x(r), 

T 

with the corresponding N x N r-dependent matrix .9'( r), where 

N = ~(p- l)(p' - 1) + 2pp' 
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is the total number of characters. 

We then take §(r) to be the (2pp') x (2pp') block of Y(r) corresponding to the 2pp' 
characters X~r' ( T), 1 :::; r :::; p, 1 :::; r' :::; p'. That is, we deal only with the ,y-; ,,.• ;s.s' ( T) 
in (7). From now on, x = (XJ) denotes the 2pp' characters ordered as 

1 ~ T ~p-1 1 ~r' ~p1 -l (r,r')Efo 

In accordance with this ordering of characters, we fix the block structure of matrices 
as follows : 2 blocks of size 1 x 1, (p - 1) + (p' - 1) blocks of size 2 x 2, and 
HP- 1)(p' - 1) blocks of size 4 x 4. The matrices used in what follows are square 
matrices of size (2pp') x (2pp') with this block structure. 

2. Totally similarly to [9), there exists a ((2pp') x (2pp')-matrix) automorphy factor 
J("y, r), for 'Y E SL(2, Z), satisfying the cocycle condition and a commutativity 
property formulated in [9], such that S = J(S, r)S(r) is a numerical (r-independent) 
matrix, and in fact 

s = §(i). (9) 

It then follows, in particular, that S2 = 1. 

Let Sn = (Sn J) be the row of S corresponding to the vacuum-representation char­
acter Xn = xt1 , i.e., 

(the sum is taken over the 2pp' values of J in accordance with (8)). With the 
chosen ordering, Xn occupies position 2p + 2p' - 1 in (8) and, accordingly, Sn is 
the (2p+ 2p' - l)th row. Explicitly (see (7)), the segment of Sn corresponding to 

( + - - + ) . . b 2v'2 ( l)s'+s . 
Xs,s'' Xp-s,s' ' Xs,p'-s'>Xp-s,p'-s' IS given y pp',/W - times 

( 
7rp1 s 7rp1 s 7rps' 7rps' 

(cos-+ (p-s)sin-)(cos-, + (p'-s')sin-, ), 
p p p p 

( 
7rp1 s . 7rp1 s) ( 7rps' 1 1 • 7rps') 

cosp - s smp cosy+ (p -s) smy , 

7rp1 s . 7rp1 s 7rps' 1 • 7rps' 
(cosp + (p-s)smp)(cosy- s smy), 

( 
7rp

1 
s . 7rp' s) ( 7rps' 1 • 7rps')) cosp - s smp cosy - s smy . (10) 

We also define a special row 

Pn = (1, 1, 1, 0, ... , 1, 0, J, 0, ... , l , 0, 1, 0, 0, 0, .. . , 1, 0, 0, 0) 
...__,_.. '--v-----'' ~,,-----

2(p-l) elements 2(p' -1) elements 4·!(p-l){p' -l) elements 

3. Let K be a block-diagonal matrix of the specified form (with zeros outside the 
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blocks), 

K= (11) 

where the two 1 x 1 blocks are arbitrary, the 2 x 2 blocks are as in [9], i.e., have the 
structure 

K2 x2 = (~a b~) 
· · (i) ( a(iJ >,(il ) (1t 1s understood that K 2x2 = -aUl b<•>>.<•l for each block, but the block dependence 

is not indicated for brevity), and the 4 x 4 blocks have the structure 

I 

) [" 
µ I/ ; JI.II 

c 
-a -µ CV ;; Jiii 

K4x4 = h -a bµ -v -;; µ11 

-bµ hr a -CV -;;- JU/ 

(again, with the block dependence omitted). 

The nonzero factors >. , µ, and v, rescaling columns 2 through 4 in each block, are 
irrelevant in what follows (because nilpotent elements have no canonical normaliza­
tion). The unknowns a and bin each 2 x 2 block and a, b, and c in each 4 x 4 block 
are determined from the equation generalizing the one in [9): 

Pn = SnK. (12) 

That is, if (8i, 82 , 8 3, 84) is a segment of Sn corresponding to a 4 x 4 block, then 

1 
a= , 

S1 - 82 - 83 + S4 

S3 - 81 
c=--

82 - S4 

in this block; the equations are compatible because 8 184 = 8 28 3 , as is readily seen 
from (10). (By (12), the two elements of K that constitute the 1x1 blocks are just 
the inverse of the corresponding S-matrix coefficients, just as the denominators in 
the semisimple Verlinde formula.) 

4. We set 
P=SK. 

The fusion algebra is reconstructed from the P matrix in much the same way as 
in [9), as follows. Clearly, the (2p + 2p' - l)th row of P is just Pn. We define M1 , 

I = 1, ... , 2pp', to be block-diagonal matrices that solve the equation 

(13) 
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(where P 1 is the Ith row of P) and whose 2 x 2 blocks are of the form (just as in [9]) 

and the 4 x 4 blocks are 

(with zeros below the diagonal) . 

(
O' /-J) 
0 <.¥ 

(

a (3 I () 
a 0 r 

a f3 
a 

The M1 are then determined uniquely; in particular, the 4 x 4 blocks are given by 

(

P1 ~~ ci ;;) 
Pr Qr ' 

Pr 

where (p1 , QJi r1 , s1 ) is a segment of P 1 corresponding to the chosen block. 

The result is then that the M1 satisfy the algebra 

M1MJ = L nfi.MK, 
K 

(14) 

where the nonnegative integer coefficients nf., turn out to be those read off from (1). 
(Simultaneously, the matrix Nr = PM1 p-1 for each I gives the fusion structure constants 
as (Nr)/ = n1J·) 

3.2 Examples 

The illustrative power of examples is hampered by the rapidly growing matrix size 
and the general clumsiness of explicit expressions. We consider only the "percolation" 
and "Lee-Yang" cases, where explicit values of the various matrix entries may be useful 
for comparison with the studies of these cases by more direct methods (see [19]). 

3.2.1 (3, 2) For (p ,p') = (3, 2), the 12 x 12 matrix S = §(i) explicitly evaluates as 

I 1 I I 1 1 I I 2 2 2 2 

2i3 2Y'3 '{3 V'3 
I 

7a 
1 ~ 73 

-1 
73 
-1 

73 
-2 ~ ~ ~ 

273 273 v'3 7a 7a 73 7a Va v'3 73 73 73 
1 l 6-v'J -3-0 -3-0 l!..=.0 1 1 6-0 -3-0 6-0 -3-0 

67J' 673 18 18 18 18 J7a 3y'3 9 9 9 9 

1 1 -3-0 3-20 3-20 -3-0 2 2 -2(3+v'3) 3-20 -2(3+./3) 3-20 
3;73 3v'J 9 16 16 9 3;73 J7a 9 9 9 9 

1 I -3-0 3-20 3-20 -3-0 -2 -2 2(3+v'3) 20-3 2(3+v'3) 20-3 
3;73 3V3 9 16 16 9 3V3 3V3 9 9 9 9 

1 1 l!..=.0 -3-0 -3-0 8-0 -1 -1 0-6 ~ 0-6 ~ 
5= 6i3 6v'3 16 18 16 18 3V3 3'(3 9 9 9 9 

-1 l l -1 -1 -1 -1 1 1 1 

4f3 47:i 
-1 2)73 2Y'3 273 

-1 
273 
-1 2Y'3 273 

-1 ~ -?3 ?f 4 
4V'3 47:i 2v'3 2y'3 273 ~ 273 2y'3 

;(!6 
73 73 -73 

_1_ -1 l!..=.0 -3-0 ~ 6 -1 1 ~ 6-0 -3-0 
12v'3 l2V3 36 36 36 36 67J' 67a 18 16 16 16 

I ·-1 -3-0 3-20 20-3 ~ -1 l ~ 20-3 -3-0 3-20 
673 67J' 16 36 36 18 3V3 3y'3 9 18 9 16 

l -1 6-0 -3-0 ~ 0-6 1 -1 6-0 -3-0 0-6 lli2 
l2V3 l2V3 36 36 36 38 673 67J' 18 18 18 18 

I -I -3-v'J 3-2v'3 2v'3-3 ~ 1 -1 -3-0 3-2v'3 ~ 20-3 
G7:i 67J' _1_8_ ----:16 ----:J6 18 3V3 3V3 9 

_1_6_ 
9 18 
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Here, Sn is the 9th row of S. The matrix K in (11) is then given by 

12v'3 
-12v'3 

4 
-4 7-vs 

4 

K= 
-4 7\31y'J 

-3v'3 
3v'3 

-1 -1 
-1 7-3,/3" 3v'3-7 

-2- -2-

1 -1 -1 
-1 -1 3y'J-7 3y'J-7 

2 2 

which gives rise to the fusion-algebra eigenmatrix 

6 -6 0 3(,/3"-J) 
0 3(I+2v'J) 0 2 0 0 0 6(1 - v'3) 2 11 Vs 

6 -6 0 3(v"3-I) 0 3(I+2v"3) 0 -2 0 0 0 6(v'3-l) 2 11 -;; 
2 -2 2 0 -2 0 0 W3 0 2 0 0 

4 -4 -2 3 (I~v'3) 2 -3(I+2v"3) 0 4 0 -2 0 3(v'3- l) 22 W3 
4 -4 -2 3(1~v"3) 2 -3(I+2v"3) 0 -4 0 2 0 3(1 -v'3) 22 3v'J" 

P =SK= 2 -2 2 0 -2 0 0 -2 0 -2 0 0 373 
3 3 0 J(./;i- 1) 0 -3(I+2v'3) 3 0 0 0 3(1-v'3) 0 

~c.A n 22 

3 3 0 0 -3(I+2v"3) -3 0 0 0 3(v'3- l) 0 •I 22 
0 1 0 1 0 1 0 0 0 

2 2 -1 3(1~v"3) -1 3(I+2v'3) 2 0 -1 0 3(,/3"-J) 0 44 2 
1 1 1 0 1 0 -1 0 -1 0 0 0 

2 2 -1 3!1-v"3) -1 3(!+2v'3) -2 0 0 3(1-v"3) 0 8 44 2 

The fusion relations result in accordance with (13)-(14); this (3, 2) specialization of (1) 
is explicitly written in [12]. 

3.2.2 (5, 2) For (p,p') = (5, 2), all of the entries of the 20 x 20 matrix Scan be easily 
evaluated from the Yr,r';s,s•(i) in (7). In particular, the vacuum-representation row is 

S -S -(_1_ 1 5-VS+4J10(5+VSJ 5-vs-J10(5+VSJ 5+VS-ljto(&-VS) 
n - 13 - 20VS' - 20VS' 200 I 200 I 200 I 

5 +vs+ ~ .,/10(5 - vs) -5 - vs - 2../10(5 - vs) -5 - vs+ 3J10(5 - vs) vs - 5 + J10(5 +vs) 

200 1 200 ! 200 I 200 ) 

vs - 5 - 4V1D(5 + vsJ 1 1 5 - vs+ ·• /10(5 + vsJ 5 - vs - /10(5 + vsJ 

200 ' "iQ";i'5 ' - lOVS' JOO JOO 

vs - 5 - 4JJo(5 +vs) vs - 5 + .j10(5 +vs) 5 +vs - 3J10(5 - vs) 

100 JOO JOO 

5 +vs+ 2~ vs) -5 - vs+ 3/10(5 - vs) -5 - vs - 2JJ0(5 - If.) ) 
JOO I 100 ' 100 • 
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The matrix K in ( 11) then c:onsist.R of the blocks 

1~1+1r,v's+s~~J · 
L58 

- J r.-./t. 
l'I 

~I · l ~~/rt v!11nor.u 1 ·r11Jt1\l{r• ) 
•ll G . 

r.-,lf. 
10 

nm 111sV'!l- i 11roor.o 1 rn 111u .Jh 
I Bl 

This gives rise to the fusion-algebra eigenmatrix P = SK, shown (at about the limit of 
reasonable typesetting capabilities) in Fig. 1. The (5, 2)-case of algebra (1) follows from 
this P in accordance with (13)- (14). 

4 Conclusions 

The procedure proposed here is of course not a replacement for the "honest" derivation 
of fusion (cf. (19]). We also reiterate that the success of this procedure is apparently 
rooted in the quantum group structure of the corresponding logarithmic conformal field 
models (12, 13] (and actually amounts to no more than establishing the coincidence with 
the quantum group Grothendieck ring). For the logarithmic (p,p') models, anyway, the 
existence of a relation between modular transformations of characters and the fusion 
additionally supports the "quantum-group candidate" for the fusion of representations 
of the extended algebra in (12] (in fact, Kazhdan- Lusztig-dual quantum groups "know" 
not only about the numerology and modular group transformations of extended-algebra 
characters in logarithmic conformal field models but also about the asymptotic form of the 
characters (20]). But the much more complicated "logarithmic" modular transformations 
in [21] are not likely to yield a fusion algebra similarly. 
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