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Abstract

The procedure in [Fuchs et al] to obtain fusion algebra from the modular
transformation of characters in logarithmic conformal field models is extended to
the (p,p') logarithmic models.

1 Introduction

This paper is a remark on fusion in a class of logarithmic models of conformal field
theory [1-3]. In rational conformal field models, fusion is related to modular transforma-
tions of characters by the celebrated Verlinde formula [4,5]. Because the Verlinde formula
relies on the fact that the fusion algebra is semisimple, it does not immediately extend to
logarithmic conformal field theories, where fusion algebras (starting with the pioneering
results in [6]) are typically nonsemisimple. The known extensions of the Verlinde for-
mula to the nonsemisimple realm rely on some extra input, in one form or another [7]
(also see [8]). In the prescription proposed in [9], this extra input can be related to a
quantum-group formulation.

The role of quantum groups in logarithmic conformal field theory gradually emerged
in [10-13] (see [14] for a summary and [15] for some further development), leading to a ver-
sion of the Kazhdan-Lusatig “duality” between the extended algebra W in a logarithmic
conformal field model and the corresponding quantum group g.' The most remarkable
result related to the Kazhdan-Lusztig duality is the coineidence of modular group repre-
sentations (the one generated from the W characters and the one carried by the center
of g); also, the Grothendieck ring of g is a natural candidate for the fusion algebra of
W-representations (we speak of the Ko-type fusion, see [9,18]).

For the (p,1) logarithmic models, in particular, this “quantum-group candidate fu-
sion” coincides with the fusion derived in [9] from the characters, thus giving additional
support to the procedure proposed in [9]. The aim of this paper is to extend the exist-
ing state of consistency to (p,p') logarithmic models: we propose a prescription whereby
the modular transformations of the characters of the extended algebra in the (p,p') log-
arithmic model [12] are converted into a nonsemisimple fusion algebra coinciding with
the Grothendieck ring of the corresponding quantum group g [13]. For this, we follow
the approach in [9] (also see [7]) very closely. In Sec. , we describe our starting point,
the modular group representation generated from the characters of the extended algebra
of the (p,p') models. In Sec. , we formulate the procedure to convert these modular

IThese are factorizable ribbon quantum groups at even roots of unity; see [16] for their other use
and [17] for an intercsting precursor.
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transformations to the following fusion algebra on 2pp’ elements Ji’,_,f, [13]:

r4-s—1 s’ =1

SHL =D D A (1)

u=lr—s|+1u'=fr'—s'|+1

step=2  slep=2
where o, f = +1 and
B AME 1<r<p, 1<Ky,
' o 2K, pH1<r<2p—1, 1<r' <y,
s = Ko VBHE L, 1<r<p, pHL<r <2—1,
- ’;}1 vt ot 255 %

b 2K H A gy PHISTS 21, PHISH L2 -1

The identity of this associative commutative algebra is given by Ji’l] We also recall
from [13] that this algebra is generated by two elements J£7% and J£} * and can also be
described as the quotient of C[z,y] by the ideal gencrated by the polynomlals

Uzpt1(z) — Uzp-1(z) - 2,
Usy +1(y) — UZp’—l(y) -2,
Upsi(z) = Upoi(z) — Up 1 () + Up 1 (),
where .

sint ’ o

Us(2cost) =
are Chebyshev polynomials of the second kind.

2  Modular transformations of the (p,p’) characters [12]

For each pair of coprime positive integers p, p', the extended algebra of the logarithmic
(p,p') model is the W-algebra %, identified and studied in [12]. It has J(p — 1)(p' —
1) + 2pp’ irreducible representations, the 2(p — 1)(p’ — 1) of which are just the Virasoro
representations in the corresponding (p,p’) minimal model and the other are “genuine”
#, »-representations (such that the radical of %, acts nontrivially). In what follows,
the characters of irreducible %, -representations are denoted as

XT,T'(T)v X:TI(T)v X:‘r’(T) (2)
(rr')eSH 1<r<p, 1€ <P

where we introduce the index set
Fo={(rr)|1<r<p-1, 1K' <P -1, pr+pr'<pp'}, (3)

with | ] = %(p —1)(p' = 1) (we recall the well-known symmetry X, (7) = Xp-rp—r(T)
of the minimal-model Virasoro characters).

The modular (specifically, S-) transformation properties of the characters are as fol-
lows. ivst, the minimal-model characters y, . are well-known to S-transform as

1 2v/2 'pgpt . TP'TS . 7rprs '
Xew(—2) = — 5= 30 (<) sin B sin Py i(r), () € K. (4)
& pp (s,8")ES v
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Next, it follows from [12] that (for 1 <r<pand 1< 7' <p')

er szr',ss Xss’( )+( )pr+pr XSS(T))

s=1 ¢'=1
£ Z T, r 1S,8' Xs s'( ) (5)
(s,5")ES
P p’ o
X Z g Sy st (T )(XLI(T) + (~1)prter Xs_,s’(T))
s=1 s’:l =
+ Z 'y;‘,r’;s,s’(T)Xs,s'(T)v (6)
(s,5')€S

where the matrix elements %, ; «(7) that interest us in what follows are given by

’ - /
-%.r’;s,s’(T) = %_(_l)m%sr’ (; COSW:D T iTP_—i Sinwp Ts)

1<s<p-1
X (g; cosm:ls’ — i‘rpl;,s' sin”;'sl), 1 ; s'\<pp’~ i,
Fgrsa(T) = % :72(—1)"'”’"“’”(% cos%— - szps sin%'m), 1<s<p—-1 (7)
ForrpilT) = % ;(-—1)"’+”"+”" (:7: cosm;r,lsr - iTpl;sl sinm:,,S'), 1<s'<p'—1
Frripw (T) = "\/‘;ﬁ ;;’n

and the other matrix elements are

5’;—'}- (,r) _ (_1)rs’+sr'

Vo ol
78,8

V2 ( 11 mp'r 0™
202 V/pp! P v

5 wp'rs .
+ip'rr(ps’ — p's) cos—’;—r sin™% | ipr'r(p's — ps') sm% cos”; A
- 2,12 4 5122 ’
+ (—(m 2” 9) % — 2inpp'T + p—-—r tr )sm”;” sin"—’zi),

1 5 ! .
rr' ” _,;(T) = (-1)* k] pj’ (r) — (_l)rs’+.1r’+sp’+s'p - wp'rs 1rpr o

sin Sin
4

r,rl;8,8

3  “Logarithmic” (p,p’)-fusion
3.1 The procedure

The steps leading from (5) and (6) to (1), in much the same way as in [9], are as
follows.

1. We view the characters in (2) as a column vector and write the S-transformation
formulas as 1
x(-1) = #(r)x(r)
with the corresponding N x N 7-dependent matrix #(7), where
1
N =z(p-1)(p'—1) + 2pp/
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is the total number of characters.

We then take S(7) to be the (2pp') x (2pp’) block of .Z(7) corresponding to the 2pp’
characters xf_,.,(r), 1<r<p, 1< <p'. That is, we deal only with the .7 . (1)
in (7). From now on, x = (x,) denotes the 2pp’ characters ordered as

— (v+ - + - + = + = — +
X = (Xﬂ,p" Xpp's Xrpty Xp—r,pts Xp,rts Xppt 171 X'y Xp—ypts Xt =1 Xp—r.p’~r’)‘ (8)
e
~—

1<rgp-1 1<r'gp'—1 (r,r)ESD

In accordance with this ordering of characters, we fix the block structure of matrices
as follows: 2 blocks of size 1 x 1, (p—1) + (p' — 1) blocks of size 2 x 2, and
3(—1)(p' — 1) blocks of size 4 x 4. The matrices used in what follows are square
matrices of size (2pp’) x (2pp’) with this block structure.

2. Totally similarly to [9], there exists a ((2pp’) x (2pp’)-matrix) automorphy factor
J(v,7), for v € SL(2,Z), satisfying the cocycle condition and a commutativity
property formulated in [9], such that S = J(S, 7)S(7) is a numerical (7-independent)
matrix, and in fact

S = S(). (9)
It then follows, in particular, that S% = 1.
Let Sq = (Sq”) be the row of S corresponding to the vacuum-representation char-
acter xqo = Xi,, i.e,
xiti(=2) = Sa”xs(7)
(the sum is taken over the 2pp’ values of J in accordance with (8)). With the

chosen ordering, xq occupies position 2p+2p' —1 in (8) and, accordingly, Sq is

the (2p+2p’—1)th row. Explicitly (see (7)), the segment of Sq corresponding to
+ — — I . . 22 !5 g:
(X360 Xp—s,s Xapr — 512 Xp—s /') 18 Biven by —= s (—1)* " times

wp's . 7p's wps' . mps'
((cosT + (p—3s) s1n—p—) (cosT +(p'—¢) smT),

mp's . 7p's mps' oY ain TP
(cos -~ ssin ) (cos - + (p'—s') sin p )

wps’
7

(cos%,s + (p—s) sin%is) (cos 5 NPSI),

= .S" sin?—
np's . wp's mps' . mps’
(cosT -5 smT) (COST - sm?)). (10)

We also define a special row

Py = (1,1,},0, ..., 1,0,1,0,...,1,0,1,0,0,0, ..., 1,0,0,0).

~ > v
2(p—1) elements 2(p'—1) elements  4.1(p—1)(p'—1) elements

3. Let K be a block-diagonal matrix of the specified form (with zeros outside the
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blocks),

K1
) K2
I]('zle

K= @ g (11)

l(4x4 J

where the two 1 x 1 blocks are arbitrary, the 2 x 2 blocks are as in [9], i.e., have the

structure N
a
KZXZ - (_a b/\)

- ; i i)
(it is understood that K. 522 = (_“;(),) b(é(,\(‘)) for each block, but the block dependence

is not indicated for brevity), and the 4 x 4 blocks have the structure

a 1 v .1. J
) -2
-a —u v -y
Kasqg = a
4x4 b b
-a bu -—v -
a —bu —cv "
“ =1

(again, with the block dependence omitted).

The nonzero factors A, u, and v, rescaling columns 2 through 4 in each block, are
irrelevant in what follows (because nilpotent elements have no canonical normaliza-
tion). The unknowns a and b in each 2 x 2 block and a, b, and ¢ in each 4 x 4 block
are determined from the equation generalizing the one in [9]:

Pa = SaK. (12)

That is, if (s1, s2, 83, 84) is a segment of S corresponding to a 4 x 4 block, then

1 82 — 81 §3 — 81
a=— = ; o=
§1— 82 — 83+ 34 83 — S4 82 — 84

in this block; the equations are compatible because s;s4 = 283, as is readily seen
from (10). (By (12), the two elements of K that constitute the 1 x 1 blocks are just
the inverse of the corresponding S-matrix coefficients, just as the denominators in
the semisimple Verlinde formula.)

4. We set
P =SK.

The fusion algebra is reconstructed from the P matrix in much the same way as
in [9], as follows. Clearly, the (2p + 2p’ — 1)th row of P is just Pg. We define My,
I=1,...,2pp, to be block-diagonal matrices that solve the equation

P; =PqM; (13)
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(where Py is the Ith row of P) and whose 2 x 2 blocks are of the form (just as in [9])

a f
0 «

and the 4 x 4 blocks are

D S
L W= v

(with zeros below the diagonal).

The M, are then determined uniquely; in particular, the 4 x 4 blocks are given by

Pr q Tr Sy

pr 0 rf
proqr |’
pr

where (pr,q;,71,57) is a segment of P; corresponding to the chosen block.

The result is then that the M; satisfy the algebra
M[MJ =an]MK, (14)
K

where the nonnegative integer coefficients nfS turn out to be those read off from (1).
(Simultaneously, the matrix N; = PM; P~ for each I gives the fusion structure constants
as (N7),/ =nf5.)

3.2 Examples

The illustrative power of examples is hampered by the rapidly growing matrix size
and the general clumsiness of explicit expressions. We consider only the “percolation”
and “Lee-Yang” cases, where explicit values of the various matrix entries may be useful
for comparison with the studies of these cases by more direct methods (see [19]).

3.2.1 (8,2) For (p,p') = (3,2), the 12 x 12 matrix S = S(7) explicitly evaluates as
1 1. 1 1 1 1, O 2 2 2 2
3 2V3 V3 V3 3 3 V3 V3
? 2_‘5 sl@a _f 3 —3[ 3 6~7;§ E E sl/;s —3{ 3 6—753 —3{53
6vV32 6vV3 18 18 13 18 3V3 33 9 9 9 9
1 1 —3-v3 3-2v3 3-2/3 -3-v3 _2_ _2_ —2(3+V3) 3-2v3 -2(3+V3) 3-2/3
3V/3 3V3 9 18 18 9 av3 3V3 9 9 9 9
¥ 1 —3-v3 3-2v3 3-2v3 -3-v3 -2 —2 2(3+v3) 2v/3-3 203+v3) 2/3-3
3v/3 3v3 [] 18 18 9 3V3 33 9 9 ] 9
1 1 6=y3 -3-v3 —3-v3 6-v3 -1 -1 3-6 343 36 3+V3
s={goF 2 BB L M T 5 TR
o B i I e -
43 43 2v3 2v3_ 2V/3 2Y/3 2V3 2V3 3 V3 3 V3
L -1 6=V3 =3-vV3 343 3-6 ii 1 36 3+v3 6—y3 —3-v3
12v3 12v/3 36 36 36 36 6v3 6v3 18 8 18 18
1 -1 =-3-v3 3-2/3 2v/3-3 34+v3 -1 _1_  3+vy3 2v/3-3 -3-V3 3-2V3
6vV3 6v3 18 36 36 18 3v3 33 ) 18 g 18
1 ~1_ 6-v3 -3-v3 34+y/3 V3-6 _1_ -1 6=v/3 =3-v3 3-6 3+v3
12v3 12v3 aaf 36\/_ \/3_6 36 6v3 6v3 18\/_ xsf 1?/_ \/1_3
-1 -3-v3 3-2v3 2v3-3 34v3 _1_ -1 -—3-v3 3-2v3 3+v3 2/3-3
\Equ' 6v3 18 36 18 3vV/3 33 g 18 9 18

—
©
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Here, Sq is the 9th row of S. The matrix K in (11) is then given by
12v3

—12V3

-1 1 1 -1
I 7—3\/5 3\/3—7
1 1 = -1

1 -1 3,(3—7 3va-7

2

which gives rise to the fusion-algebra eigenmatrix

SK =

T~

=1

|
R DO o

B HEN HWw W N R oo

|
[\

D =N ~Wwow

0 W=D o WS g 2 g g 0 6(1-v3))
0 A= o WD g =2 9 0 0 6(v3-1)
2 0o -2 0 0 3 0 2 0 0
= = 23]
_o 30 4\/5) 2 3(1;-2 \/_) 0 ﬁa_ 0 -2 0 3(v3-1)
3(1—V3; ~3(1+2v3 =
—2 vl 9 BAWH g 4 0 2 0 31-vH)
2 0 -2 0 0 % 0 -2 0 0
0 UM g D 3 5 g g 31-vE) 0
0 U= o 30429 _3 g ¢ 0 3(/3-1) O
10 1 0 1 0 10 0 0
1 30=vB) 4 3042v3) o 5 _y g S8(/3-1 0
8 44 2
1 0 1 0 -1 0 -10 0 0
3(1-v3, 3(14+2v/3] 3(1—V3]
-1 38 g 304 g ¢ 1 o g 0

The fusion relations result in accordance with (13)-(14); this (3, 2) specialization of (1)
is explicitly written in [12].

3.2.2

(5,2) For (p,p') = (5,2), all of the entries of the 20 x 20 matrix S can be easily

evaluated from the & ;5.4 (%) in (7). In particular, the vacuum-representation row is

SQ =SI3 = (ﬁg}'—

1

205’

200

5 VE+44/10(5+ v5) 5— V6 —1/10(5+v5) 5+ V5~ 3/ 105 — v5)
Y2000 ' 200 0

5+ V5 + /105 - vB) —5- vE ~24/10(5 - v5) —5—v5+3 10(5 - V) V5 -5+ /105 + v5)

200

\/5—5—4,/10(5+\/§) 1 1

200

1

200 200

B= \/5+-|ﬁ,/_10(5 +5) 5—v5— \/10(5+\/§)

100 100

200

Y10v5°  10v5’

VB —-5-4\/10(5+ v3) VE—-5+
100 1

V1065 + VB) 5+ v5 - 3/10(5 - v/5)
' 100 L

100

5+v5+2y/105 - vB) 5~ v5+3,/105-vB) ~5-v5-2 10(5—\/?.))

100 100 100
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The matrix K in (11) then consists of the blocks
K= diag<20\/5,—20\/5, 2206 - v0) N
) /2(5 ~ \/5) u\/s—l-}—; 5--2v5
{_2\/2(5 +5) 1 ] [‘2,/2(5 +v5) ] }

9 2(5+\/5) l09+20\/5~~:\l/365+158\/5 2 /2(5+\/§) |42+|5\/§+155\8/485+202\/5

2\/2(5— V/5) 1 o [5\/5 1]
—oy/2(5 - V) 37_\)_.10\/5_51\l/2(l;z45—2558\/5 =55 1
b5 4.
; | ! \/‘m
_\/'L._\(;E TR Y (T | ER VA R
3 Bl

»

_J:';L 1 -1 \/.’i}i#

91—
i
\/""1 | “'_—_V"“‘/""f; (5 -2v5 '5“_\/@;'))_%5?6?“2““@

LS , _Jid
2 . [I] -
of et L P00y 5\ UBRE LIEVE 425 195y AT6060 -1 T 10y )
a8 - I ' AT
/ fn—yR h
1 -1 — (gt

2 PN e S,
La /b | ~109-20VA4 5/ 3054 168VE 4264 1255/G— /176060 179100 /5
] - [ (i ?

This gives rise to the fusion-algebra eigenmatrix P = SK, shown (at about the limit of
reasonable typesetting capabilities) in Fig. 1. The (5, 2)-case of algebra (1) follows from
this P in accordance with (13)—(14).

4 Conclusions

The procedure proposed here is of course not a replacement for the “honest” derivation
of fusion (cf. [19]). We also reiterate that the success of this procedure is apparently
rooted in the quantum group structure of the corresponding logarithmic conformal field
models [12,13] (and actually amounts to no more than establishing the coincidence with
the quantum group Grothendieck ring). For the logarithmic (p,p’) models, anyway, the
existence of a relation between modular transformations of characters and the fusion
additionally supports the “quantum-group candidate” for the fusion of representations
of the extended algebra in [12] (in fact, Kazhdan-Lusztig-dual quantum groups “know”
not only about the numerology and modular group transformations of extended-algebra
characters in logarithmic conformal field models but also about the asymptotic form of the
characters [20]). But the much more complicated “logarithmic” modular transformations
in [21] are not likely to yield a fusion algebra similarly.
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