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A mis padres.

If you want to know the way nature works, we looked at it carefully,

and that’s the way it looks. You don’t like it..., go somewhere else!

To another universe, where the rules are simpler.

Richard Feynman
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Introducción

El gran colisionador de hadrones LHC instalado en el CERN, y en particular el

detector ATLAS, han ampliado el campo de estudio de la f́ısica de altas enerǵıas

a un nivel inexplorado en experimentos anteriores. No sólo han permitido el au-

mento de la enerǵıa en el centro de masas hasta el valor de
√
s = 7 TeV, sino

que han logrado una excelente luminosidad a lo largo de estos años de toma de

datos. Esto ha sido especialmente importante para el descubrimiento del bosón

de Higgs, además de permitir búsquedas de nueva f́ısica más allá del modelo

estándar, aśı como estudios de las propiedades de estados finales conocidos, como

la producción de pares top-antitop.

En esta tesis se han analizado datos tomados a lo largo del año 2011 para testar

el sector fuerte SU(3)C del modelo estándar.

Los modelos de duchas partónicas y de hadronización de quarks han sido testados

en una medida del flujo de enerǵıa transversa de los jets producidos en estados

finales tt̄. Considerando los decaimientos del quark top t → bW y los subsigu-

ientes decaimientos hadrónicos del bosón W , se han logrado aislar muestras de

muy alta pureza de jets inducidos por quarks b y ligeros. Esto, junto con la fina

granularidad del sistema calorimétrico de ATLAS, nos ha permitido comparar los

flujos transversos correspondientes a los b-jets con los de los jets ligeros (ATLAS

Collaboration, Eur. Phys. J. C 73 2676 (2013)), aśı como determinar la masa

del quark bottom a partir de los llamados efectos de apantallamiento angular,

claramente apreciables en estos datos (J. Llorente and J. C., Nucl. Phys. B 889

401 (2014)). Además, se observa que los b-jets tienen una distribución más ancha

de la enerǵıa transversa que los jets ligeros, por lo que este observable podŕıa ser

utilizado para la discriminación de jets atendiendo al quark que los origina.

El valor de la constante de acoplo fuerte αs en la escala del polo del Z0 también

ha sido medido en la segunda parte de esta tesis. Esta constante tiene una im-
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portancia central en nuestro entendimiento de la naturaleza a escala subatómica,

puesto que juega un papel fundamental en la radiación de gluones, además de ser

responsable de la estabilidad de la materia nuclear.

Hemos seleccionado una muestra de sucesos con varios jets imponiendo que la

suma escalar de momentos transversos de los dos jets con mayor pT sea mayor

de 500 GeV, mientras que el momento transverso de los jets adicionales debe

ser mayor de 50 GeV. Los jets seleccionados deben ser detectados en la parte

central del detector |η| < 2.5. En estas condiciones, hemos realizado la medida

de las correlaciones transversas enerǵıa-enerǵıa, que son la extensión natural de

la función de correlación enerǵıa-enerǵıa, anteriormente usada en colisionadores

e+e− a las enerǵıas de PETRA-PEP y LEP-SLC.

Se ha realizado una comparación de estos datos (J. Llorente, F. B. ATL-PHYS-

COM-2013-884, enviado a Phys. Lett. B) con las predicciones a segundo orden

en QCD perturbativa (A. A., F. B., J. Llorente y W. W., Phys Rev. D 86

114017 (2012)), que permite la determinación de la constante de acoplo fuerte

αs(mZ) = 0.1173± 0.0010 (exp.)+0.0065
−0.0026 (theo.).
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Introduction

The Large Hadron Collider facility at CERN, and in particular the ATLAS de-

tector, have provided a testing ground for high energy physics at a level which

couldn’t be explored in previous experiments. It has not only increased the

centre-of-mass energy to the up to now highest value of
√
s = 7 TeV but also has

had an excellent luminosity performance during these years of data taking. This

has been especially important for the discovery of the Higgs boson, as well as

for allowing searches of new physics and studies of the properties of, up to now,

poorly known final states as tt̄ production.

In this thesis, data taken during the year 2011 have been analyzed to probe the

strong SU(3)C sector of the Standard Model.

The parton shower and hadronisation models have been tested in this thesis by

means of the measurement of jet shapes in tt̄ final states. Relying on the top-

quark decays t → bW and the subsequent W boson hadronic decays W → qq̄′,

samples with very high purity of b- and light-quark induced jets have been se-

lected. This fact, together with the fine granularity of the ATLAS calorimeter

system, has allowed us to compare b-jet shapes with those of light jets (ATLAS

Collaboration, Eur. Phys. J. C 73 2676 (2013)) and to determine the b-quark

mass from the so-called angular screening effects, clearly visible in these data (J.

Llorente and J. C., Nucl. Phys. B 889 401 (2014)). Furthermore, b-jets are found

to be broader than light jets and therefore b-jet shapes may be used for tagging

purposes.

The value of the strong coupling constant αs at the Z0-pole scale has also been

measured in this thesis. This constant plays a key role in our understanding of

nature at the subatomic scale, as it determines the strength of gluon radiation,

as well as being responsible for the stability of nuclear matter.

We have selected a sample of multijet events by demanding the scalar sum of
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transverse momenta of the two leading jets to be greater than 500 GeV while the

transverse momenta of the subleading jets is required to be above 50 GeV. All

jets are required to lie in the central part of the calorimeter, i.e. |η| < 2.5. We

have performed a measurement of transverse energy-energy correlations, which

are the natural extension of the energy-energy correlation function which was

popular in e+e− colliders at PETRA-PEP and LEP-SLC energies. We have per-

formed a comparison between the data (J. Llorente, F. B. ATL-PHYS-COM-

2013-884, submitted to Phys. Lett. B) with NLO pQCD calculations (A. A., F.

B., J. Llorente and W. W., Phys. Rev. D 86 114017 (2012)) which allows us to

determine αs(mZ) = 0.1173± 0.0010 (exp.)+0.0065
−0.0026 (theo.).
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Chapter 1

Theoretical framework

In this chapter, the main features of the Standard Model of Particle Physics (SM)

and in particular on Quantum Chromodynamics (QCD) are described in some

detail.

1.1 The Standard Model: General features

The Standard Model of Particle Physics [1, 2] is a quantum field theory [3] sum-

marising our current knowledge on the interactions of subatomic particles, with

the exception of gravity. It is based on the symmetry group SU(3)C × SU(2)L×
U(1)Y . The first part, SU(3)C , correctly describes a wide variety of data regard-

ing the strong interaction, while SU(2)L×U(1)Y describes the electroweak sector

of the theory.

The elementary particles in the SM are divided in two main subgroups, fermions

and bosons. Fermions are the building blocks from which matter is constructed,

and have a semi-integer value of the spin, while bosons are considered to be the

force carriers of the interactions between fermions and have integer spin. In figure

1.1, the elementary particles and their interactions are shown.

Fermions are classified into quarks and leptons depending on the way they in-

teract. Quarks have fractional electric charge, colour charge, as well as weak

hypercharge. Thus, they are subject to the strong, weak and electromagnetic

interactions. Furthermore, they are the constituents of hadrons, in particular

1



Figure 1.1: The fundamental constituents and interactions of the Standard Model.

nucleons. Leptons have integer electric charge as well as weak hypercharge, and

therefore they are subject to the electroweak force.

The massive bosons and fermions in the Standard Model acquire mass according

to the Higgs mechanism, where the electroweak symmetry SU(2)L × U(1)Y is

broken in order to allow for mass terms. Dirac mass terms of the form Ψ̄LmΨR

are not SU(2) invariant due to the chiral symmetry.

A new particle (the so-called Higgs boson), whose couplings to the rest of parti-

cles define their masses, arises from this mechanism as the vibrational modes of

the new field Φ, which transforms as an SU(2) doublet and has a non-vanishing

vacuum expectation value v = 〈0|Φ|0〉 6= 0.

1.1.1 Symmetry and invariance

The most fundamental feature of the Standard Model is its invariance under the

gauge group of transformations SU(3)C×SU(2)L×U(1)Y . These transformations

can be represented mathematically in terms of the generators of the symmetry

group. As the simplest example, let us consider the electromagnetic group U(1)Y ,

whose Lie algebra has just one generator, and its action on a Dirac spinor Ψ.

Ψ(x) 7→ Ψ′(x) = eigω(x)Ψ(x) (1.1)

2



Let us consider the free fermion Lagrangian as well

LΨ = Ψ̄(iγµ∂µ −m)Ψ (1.2)

Clearly, the Lagrangian 1.2 is not invariant under the transformation 1.1 due to

the presence of terms on the derivatives of the space-time dependent function

ω(x). However, one can consider the covariant derivative Dµ defined as

Dµ = ∂µ − igAµ (1.3)

where Aµ is a gauge field and g is the QED coupling (the electron charge). Then,

the prospect of invariance leads us to write the transformation law for Aµ

Aµ 7→ A′µ = Aµ + ∂µω(x) (1.4)

Equation 1.4 can also be obtained from the gauge transformations of the classical

electromagnetic 4-potential which leave the Maxwell equations invariant

φ′ = φ+ ∂tΩ(~x, t)
~A′ = ~A− ~∇Ω(~x, t)

}
⇒ A′µ = Aµ + ∂µΩ(x) (1.5)

By a simple identification of the equations 1.4 and 1.5, it is seen that there

is a clear relationship between the Lagrangian 1.6 and electromagnetism. In

fact, the QED Lagrangian is the quantum version of the classical equations of

electrodynamics, where the field Aµ, introduced by the requirement of invariance

in Eq. 1.3, represents the quanta of the electromagnetic fields: the photons.

Defining the field strength tensor in the same fashion as the Faraday tensor

in Classical Electrodynamics, Fµν = ∂µAν − ∂νAµ, allows us to write the full

Lagrangian of Quantum Electrodynamics (QED) as

LQED = −1

4
FµνF

µν + Ψ̄(iγµDµ −m)Ψ (1.6)

The term in F µνFµν in Eq. 1.6 encodes the dynamics of the photon field. However,

for non-commutative groups such as SU(N), this term has more fundamental

physical consequences. The coupling of the gauge bosons with themselves, as

3



we will see in the next section, is encoded in the new terms arising from the

non-trivial structure constants of the group.

1.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the quantum field theory describing the

strong interactions [4] and it is based on the gauge group SU(3). The fundamental

difference with respect to QED, whose Lagrangian has been described before,

is the non-commutativity of the Lie algebra su(3) associated with the gauge

group. The fundamental representation of this algebra is given by the Gell-Mann

matrices:

λ1 =
1

2

 0 1 0

1 0 0

0 0 0

 , λ2 =
1

2

 0 −i 0

i 0 0

0 0 0

 , λ3 =
1

2

 1 0 0

0 −1 0

0 0 0



λ4 =
1

2

 0 0 1

0 0 0

1 0 0

 , λ5 =
1

2

 0 0 −i
0 0 0

i 0 0

 , λ6 =
1

2

 0 0 0

0 0 1

0 1 0



λ7 =
1

2

 0 0 0

0 0 −i
0 i 0

 , λ8 =
1

2
√

3

 1 0 0

0 1 0

0 0 −2

 (1.7)

These eight matrices provide the group structure for the special unitary group

SU(3) via the exponential map. The gauge transformation for a fermion field Ψj

can therefore be written as

Ψj(x) 7→ Ψ′j(x) =
∑
k

(
eigsΓ(x)

)
jk

Ψk(x) (1.8)

where Γ(x) ≡ Ga(x)λa is an element of su(3) and the indices j, k cover all quark

flavours. By convention, the normalization of the generators is chosen to be

Tr
(
λaλb

)
= TRδ

ab; TR =
1

2
(1.9)
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Thus, with this specification, the generators of the Lie group SU(3) fulfill

∑
a

λaijλ
a
jk = CF δik; CF =

4

3
(1.10)

Tr
(
T aT b

)
=
∑
c,d

f cdaf cdb = CAδ
ab; CA = 3 (1.11)

where T a are the matrices in the adjoint representation

adX(Y ) = [X, Y ] ∀X, Y ∈ su(3) (1.12)

The Lagrangian of the theory, which is left invariant by the transformations in

Eq. 1.8, can be written as

LQCD = −1

4
F a
µνF

µν
a +

∑
j,k

Ψ̄j (iγµDµ −m)jk Ψk (1.13)

where the indices j, k cover all quark flavours. In this case, the covariant derivative

is constructed by considering the 8 generators of SU(3), which are given by the

Gell-Mann matrices 1.7.

Dµ = ∂µ − igs
∑
a

Ga(x)λa (1.14)

and the field strength tensor is defined as the curvature of the gauge connection

Fµν =
i

gs
[Dµ, Dν ] = ∂µGν − ∂νGµ + gsfabcG

b
µG

c
νλ

a (1.15)

Here, the vector fields Ga
µ(x) represent the gluons, which are the bosons respon-

sible for carrying the strong interaction and have n = 8 degrees of freedom. It

is now clear that the first term in 1.13 contains the self-couplings of the gluon

fields arising from the non-Abelian nature of the theory. In Eq. 1.15, fabc are the

so-called structure constants of the group SU(3), defined from the commutation

relations of the Gell-Mann matrices

[λa, λb] = ifabcλ
c (1.16)
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The strong coupling constant αs is the fundamental parameter of the theory,

giving the interaction strength in the vertices of the gluon-gluon and quark-gluon

couplings. This constant will be measured in this thesis using the LHC data, and

it can be written in terms of the coupling gs in equation 1.14 as

αs =
g2
s

4π
(1.17)

1.2.1 Running coupling constant

The value of αs is not constant, but rather depends on the energy scale Q involved

in the interaction process. This is understood to be responsible for the proper-

ties of QCD known as confinement (the fact that quarks and gluons cannot be

observed as isolated states) and asymptotic freedom (the decrease of the strong

interaction strength at short distances).

Let us consider a dimensionless observable R which depends on the energy scale

Q. Being R dimensionless, the dependence on Q can only be achieved via the

ratio Q2/µ2, where µ is an arbitrary parameter introduced by the renormalisation

procedure. Because the QCD lagrangian 1.13 does not make explicit reference

on the parameter µ, neither should any physical observable such as R. Thus, the

independence of R(Q2/µ2, αs) on µ can be expressed as

µ2 d

dµ2
R(Q2/µ2, αs) ≡

[
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

]
R = 0 (1.18)

We can transform this equation into a more compact form by introducing the

notations

t = log

(
Q2

µ2

)
; β(αs) = µ2∂αs

∂µ2
(1.19)

With these definitions, Eq. 1.18 can be rewritten as[
− ∂

∂t
+ β(αs)

∂

∂αs

]
R(et, αs) = 0 (1.20)
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The running of the strong coupling constant αs is thus determined by the renor-

malisation group equation

β(αs) = Q2 ∂αs
∂Q2

=
∂αs

∂ logQ2
(1.21)

Here, the function β(αs) can be expanded in perturbation theory as a power series

in αs

β(αs) = −α2
s(β0 + β1αs + β2α

2
s + O(α3

s)) (1.22)

The coefficients βi in Eq. 1.22 are extracted from the higher order corrections to

the vertices of the theory. Fig. 1.2 shows the one-loop diagrams contributing to

the leading-order (LO) β function

Figure 1.2: Graphs contributing to the β function in the one-loop approximation.

The result for the coefficients up to two loops is given by [5]

β0 =
1

4π

[
11− 2

3
nf

]
; β1 =

1

(4π)2

[
102− 38

3
nf

]
(1.23)

In the one-loop approximation, i.e. keeping only the first term in the power

expansion 1.22, the differential equation 1.21 can be integrated out, leading to

the solution

αs(Q
2) =

αs(Q
2
0)

1 + β0αs(Q2
0) log

(
Q2

Q2
0

) (1.24)

which expresses the value of αs(Q) at a scale Q as a function of its value at some

other scale Q0. Let us define the QCD scale ΛQCD as

Λ2
QCD = Q2

0 exp

[
− 1

β0αs(Q2
0)

]
(1.25)

7



Then, equation 1.24 can be rewritten in terms of ΛQCD as

αs(Q
2) =

1

β0 log
(

Q2

Λ2
QCD

) (1.26)

For documentation purposes, the two-loop expression for αs(Q) in terms of ΛQCD

is also quoted [6, 5]

αs(Q
2) =

4π

β0 log z

[
1− 2β1

β2
0

log (log z)

log z

]
; z =

Q2

Λ2
QCD

(1.27)

The running of αs has been studied in several experimental conditions, including

e+e−, ep and pp̄ collisions, and all the available results agree to the renormalisa-

tion group equation 1.21, whose solutions have been calculated to higher orders.

Figure 1.3 shows a comparison between the theoretical predictions for the 2012

world average of αs [7] and the presently available data from various experimental

sources.

pp –> jets (NLO)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia (NLO)

e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2012

Lattice QCD (NNLO)

Z pole fit (N3LO)

τ decays (N3LO)

Figure 1.3: The running of the strong coupling αs as a function of the energy scale
Q. The shaded band represents the theoretical calculation, while the data points
represent several measurements used as input for the 2012 αs world average [6]
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1.2.2 Proton structure: Deep inelastic scattering

The internal structure of protons has been studied in detail using neutral current

deep inelastic scattering (NC DIS), [8], where an electron with momentum k is

scattered by a proton with momentum P . In figure 1.4, a typical DIS process is

illustrated.

e± e±k k′

γ∗/Z
q = k′ − k

p

P

Pq = xP

Jet

b.r.

Figure 1.4: Electron-proton deep inelastic scattering

The process occurs via the exchange of a virtual photon γ∗ or a Z boson with

momentum q between the electron and one of the partons inside the proton.

After the interaction, the parton, which carries a fraction x of the momentum of

the proton, is separated from it and forms a hadronic jet whose properties are

measured by the detector. The scattered electron can also be detected, measuring

its final energy and momentum, thus allowing us to know the momentum scale

Q2 ≡ −q2 relevant for the process and to probe the structure of the proton.

The data recorded in NC DIS experiments at SLAC brought the first evidence

that protons are in fact composite particles, which lead Feynman to develop the

quark-parton model in the 1960s [9].

The DIS cross-section can be expressed in terms of a set of three Lorentz-invariant

observables

Q2 = −q2 = (k′ − k)2; x =
Q2

2(P · q) ; y =
Q2

sx
(1.28)

where s is the squared center-of-mass energy of the electron-proton system. In

terms of these 3 variables, the double-differential NC DIS cross section takes the

9



form
d2σ

dxdQ2
=

4πα2

xQ4

[
xy2F1 + (1− y)F2 +

(
y − y2

2

)
F3

]
(1.29)

where Fi(x,Q
2) are referred to as the structure functions of the proton. These are

related to the probability that a quark interacts with the neutral current boson

and are given by

F1(x,Q2) =
1

2

∑
i

[
fqi(x,Q

2) + fq̄i(x,Q
2)
]
Cqi(Q

2) (1.30)

F2(x,Q2) = x
∑
i

[
fqi(x,Q

2) + fq̄i(x,Q
2)
]
Cqi(Q

2) (1.31)

F3(x,Q2) =
∑
i

[
fqi(x,Q

2)− fq̄i(x,Q2)
]
Dqi(Q

2) (1.32)

The coefficients Cqi , Dqi are functions of the weak angle θW , the weak isospin T3

and the propagator P (Q2) [4]. Sometimes, the cross section 1.29 is expressed

using the function

FL(x,Q2) =

(
1 +

4M2x2

Q2

)
F2(x,Q2)− 2xF1(x,Q2) (1.33)

which is called the longitudinal structure function and vanishes for Q2 →∞. The

fact that F2 − 2xF1 = 0, known as the Callan-Gross relation, is a consequence

of the impossibility for spin-1
2

quarks to absorb longitudinally polarised vector

bosons. The functions fi(x,Q
2) are the so-called parton distribution functions

and parametrise the probability of finding a parton of flavour i, quark or gluon,

carrying a fraction x of the momentum of the proton, being Q2 the interaction

scale of the hard process.

1.2.3 Parton distribution functions

The parton distribution functions, hereafter simply PDFs, are not directly pre-

dicted in QCD. However, the DGLAP equations which will be discussed later

provide an evolution scheme for their Q2 dependence. To parametrise their ana-

lytical form, fits are performed to the DIS data at a given scale Q2
0, which in the

case of HERAPDF discussed here is taken to be Q2
0 = 1.9 GeV2. This ensures

10



that the starting scale is below the charm mass threshold. The parametrical form

of the PDFs at the fixed scale Q2
0 is chosen to be [10]

xf(x) = AxB(1− x)C(1 + Ex2) (1.34)

The initial choice of these parameters for the gluon xfg(x) and valence quarks

xfqv(x) yields

xfg(x) = Agx
Bg(1− x)Cg (1.35)

xfuv(x) = Auvx
Buv (1− x)Cuv (1 + Euvx

2) (1.36)

xfdv(x) = Advx
Bdv (1− x)Cdv (1.37)

Once the PDFs are determined at the scale Q2
0, their form at an arbitrary scale

Q2 > Q2
0 is derived by solving the DGLAP equations at next-to-leading order

(NLO) or next-to-next-to-leading order (NNLO). Figure 1.5 (left) shows the

HERAPDF1.0 fits at Q2 = 10 GeV2, together with the experimental, model

and parametrisation uncertainties. In the right part of Figure 1.5, the PDFs are

evolved at Q2 = 10000 GeV2, i.e. at the energy scale relevant for hadron colliders

as Tevatron or the LHC, using the DGLAP equations up to NNLO [O(α6
s)].
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Figure 1.5: The HERAPDF parton distribution functions xf(x,Q2) as a func-
tion of x for valence quarks, gluons and sea quarks obtained for different values
of the interaction scale Q2. The gluon and sea PDFs have been scaled down by
a factor of 20 [10]
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The parton distribution functions are relevant in the calculation of hadron-hadron

cross sections σ(pp → X) from the partonic process σ̂(ij → Y ). As it will be

stated later, according to the factorisation theorem, the pp cross sections can be

expressed as a convolution of the partonic cross sections with the PDFs.

1.2.4 The DGLAP evolution equations

The analytical form of the parton distribution functions is not predicted by QCD.

However, differential equations can be derived for the evolution of the PDFs with

the energy scale Q2. The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

equations [11] describe this scale evolution of the PDFs for both quarks and

gluons as a convolution f⊗P of the PDFs at the present scale configuration with

the DGLAP kernels Pab(z). They can be written as

∂fqi(x,Q
2)

∂ logQ2
=
αs(Q

2)

2π

∫ 1

x

dξ

ξ

[
fqi(ξ,Q

2)Pqq

(
x

ξ

)
+ fg(ξ,Q

2)Pqg

(
x

ξ

)]
(1.38)

∂fg(x,Q
2)

∂ logQ2
=
αs(Q

2)

2π

∫ 1

x

dξ

ξ

[∑
i

fqi(ξ,Q
2)Pgq

(
x

ξ

)
+ fg(ξ,Q

2)Pgg

(
x

ξ

)]
(1.39)

Equation 1.38 describes the scale evolution of the i-th active flavour quark density

inside the proton, while 1.39 describes the running of the gluon PDF. The splitting

functions Pab(z) parametrise the probability of a parton b emitting a parton a with

momentum fraction z via the processes q → qg (gluon radiation), g → qq̄ (pair

production) or g → gg (gluon splitting). The LO diagrams for these processes

are illustrated in Figure 1.6.

q [P ]

q [zP ]

g [(1− z)P ]

Pqq(z) Pqg(z)

g [P ]

q [zP ]

q̄ [(1− z)P ]

g [P ]

g [zP ]

g [(1− z)P ]

Pgg(z)

Figure 1.6: Leading-order diagrams contributing to the parton splitting functions.
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The parton splitting functions can be expressed as a power series in the strong

coupling constant αs

Pij(z) = P
(0)
ij (z) +

(αs
2π

)
P

(1)
ij (z) + O(α2

s) (1.40)

The leading order contributions were calculated in Ref. [11], and are given by

P (0)
qq (z) = CF

[
1 + z2

(1− z)+

+
3

2
δ(1− z)

]
(1.41)

P (0)
gq (z) = CF

[
1 + (1− z)2

z

]
(1.42)

P (0)
qg (z) = TR

[
z2 + (1− z)2

]
(1.43)

P (0)
gg (z) = 2CA

[
z

(1− z)+

+
1− z
z

+ z(1− z)

]
+ δ(1− z)

11CA − 4NfTR
6

(1.44)

where factors of the form (1− z)−1 have been regularised by reinterpreting them

as distributions defined in the following way∫ 1

0

f(z)dz

(1− z)+

≡
∫ 1

0

f(z)− f(1)

1− z dz =

∫ 1

0

log(1− z)
df

dz
dz (1.45)

1.2.5 The factorisation theorem

One of the most succesful features of QCD is the fact that the perturbative and

non-perturbative contributions to the physical cross sections in hadron-hadron

collisions can be separated [12], allowing for theoretical predictions which can

be testable in a hadron collider such as the LHC. The perturbative part of the

interaction can be calculated in terms of the partonic cross section σ̂ij, for any

pair of partons i and j in the initial state, using the standard Feynman rules [1],

while the non-perturbative part is absorbed into the PDFs described above.

The differential cross-section for a given process in a hadron-hadron collision can

be calculated as the convolution of the partonic cross section σ̂ij with the parton

distribution functions, after summing over all possible initial-state configurations:

dσ

dX
=
∑
i,j

∫ 1

0

dx1

∫ 1

0

dx2fi(x1, µ
2
F )fj(x2, µ

2
F )
dσ̂ij
dX

(
x1, x2, αs(µ

2
R),

Q2

µ2
R

)
(1.46)
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where X is any physical observable. The parameters µR and µF are the renorma-

lisation and the factorisation scales, introduced as a result of the procedures of

redefinition of the parameters in the theory to cancel the divergences appearing

in the calculation of certain diagrams.

1.3 Monte Carlo predictions

A very convenient way of comparing the experimental data with the theoretical

predictions is to use a Monte Carlo (MC) generator which simulates events of

a given physics process. This simulation starts on the calculation of the parton

level cross section σ̂ at a fixed order in perturbation theory, and follows with

the simulation of the parton cascades and non-perturbative effects, such as the

hadronisation and multiple parton scatterings. In this section, a general overview

of these techniques is given. The structure of a proton-proton collision is shown

in Figure 1.7

1.3.1 Parton showers

The parton shower algorithm mimics the remaining terms of the perturbative

expansion in αs by emitting gluons which will eventually split into more par-

tons. This is parametrised by the parton splitting functions 1.41 to 1.44 and

implemented via Sudakov factors ∆(t2, t1) [15]. This quantity represents the

non-splitting probability of a parton between two scales t1 and t2.

Consider the following simpified example, where the scale t is identified as the

time axis: If the splitting probability at a time t is given by a function f(t)

and one requires that the splitting can only happen at the instant t if it did not

happen for t′ < t, whose probability is N(t′), then the splitting probability P(t)

satisfies

P(t) =
d

dt
(1−N(t)) = f(t)N(t) (1.47)

Therefore, if the process starts at t = 0 with N(0) = 1, the solution of 1.47 is

P(t) = f(t) exp

[
−
∫ t

0

f(s)ds

]
(1.48)
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Figure 1.7: A sketch of the structure of a proton-proton collision, including the
initial state partons (blue), the underlying event (violet), the hard scattering
process and subsequent parton shower (red), and the final state hadrons (green).
Figure taken from [14]

And therefore, the Sudakov factor ∆(t2, t1) with t1 ≤ t2 is

∆(t2, t1) = 1−
∫ t2

t1

P(s)ds = 1 + exp

(
−
∫ t

0

f(s)ds

)∣∣∣∣t2
t=t1

≤ 1 (1.49)

The parton showers can be angle or pT-ordered, depending on the chosen scale

t. In the first case, the angle of emission with respect to the incoming parton

is decreased in each step, while in the second, the ordering variable in time is

the parton transverse momentum. The sucessive branching is stopped when a

certain cut-off scale is reached. For the initial-state radiation, the scale variation

is reversed (angles and momenta are increased), while for final-state radiation,

the scales are forced to decrease in each step.
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1.3.2 Hadronisation

The hadronisation is the process of recombination of the final state partons into

hadrons, which can be viewed as colour singlet quantum mechanical states. This

process is based on the parton-hadron duality hypothesis [16], which establishes

that, as hadronisation is a long-distance process involving only small momentum

transfers, the flows of momentum and quantum numbers at the hadron level must

follow those for the parton level. This implies that partons are recombined with

other partons to form hadrons if they are close in phase space. As perturbation

theory works well down to low scales Q ∼ 1 GeV, the assumption is made that αs

can be defined non-perturbatively for arbitrary low scales Q. These assumptions

are supported by heavy quark spectra and event shapes data, but they do not

provide a model for the way hadronisation actually happens.

The mechanism by which hadrons are formed from partons is simulated using

two models, namely the Lund string model [17] and the cluster model [18], which

are schematically described in Figure 1.8
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Figure 1.8: Schemes for the cluster (left) and the string (right) hadronisation
models [19]

• The Lund string model: The string model describes the colour dynamics

between quarks in terms of strings, assuming a linear confinement potential.

When the quarks separate in the phase space, this confinement potential

increases the energy of the string up to the mass threshold of a new qq̄ pair.
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At this point, the string is broken and the new qq̄ pair gives raise to the

formation of hadrons. When a gluon splits perturbatively, an additional

string segment is created, whereas the remaining gluons at the end of the

parton shower lead to kinks in the string segment that connects them.

• The cluster model: The cluster model is based on the preconfinement

property of the shower, by which neighbouring colour connected partons

have an asymptotic mass distribution that falls steeply at high masses and

is aymptotically independent of Q2 and universal. The method starts with

a non-perturbative splitting g → qq̄, and follows with the association of qq̄

pairs into colour singlet combinations, which are assumed to form clusters.

These clusters decay into pairs of hadrons following an isotropic pattern.

1.3.3 Underlying Event

The underlying event (UE) is a result of the interaction between the remnants

of the incoming hadrons. It contributes to the final state hadronic activity by

interacting with the colour structure of the hard scattering outcoming partons,

as well as creating new hadrons from the hadronisation of its own outcoming

partons (see Figure 1.7). The parameters involved in the modelling of the UE

have to be tuned using experimental data such as the jet shapes [20] or other

sensitive observables [104]

1.3.4 Monte Carlo Programs

The general features described above are used by several MC generator programs

to describe the experimental data. Here, a description is given for the most

commonly used and, in particular, the ones used in the analyses carried out in

this thesis.

1.3.4.1 PYTHIA

Pythia [22] is a LO event generator implementing the calculations of 2→ 1 and

2→ 2 matrix elements. It is matched to a pT-ordered parton shower accounting

for the initial and final state radiation. Thus, the relevant scale is Q2 = −p2
T,
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which increases its value as the shower evolves. For the hadronisation modelling,

Pythia relies on the Lund string model described in the previous section. For

the initial-state radiation, Pythia parton showers are space-like; i.e. the involved

partons have a negative value of m2 = E2 − ~p2. In contrast, the value of m2 is

positive for the final-state radiation, thus developing a time-like shower.

The UE modelling is based on different tunes [23] depending on the values of the

QCD parameters such as ΛQCD used for this purpose, and they differ from version

6 to version 8, written in FORTRAN and C++, respectively.

1.3.4.2 HERWIG

The Herwig program [24] implements a wide variety of QCD processes. The

parton showers are angular-ordered. This means that, for a branching a → bc

the relevant scale is given by Q2 = 2E2
a(1 − cos θbc), where Ea is the energy of

the particle a and θbc is the angle between the branching products b and c. The

so-defined scale Q2 increases with the evolution of the shower, thus the angle

between the products of sucessive branchings decreases as the shower evolves.

The hadronisation in Herwig is implemented using the cluster model, while the

underlying event is modelled using minimum-bias interactions. It also implements

an interface to Jimmy [25], which uses multiple parton interactions to model the

underlying event effects.

1.3.4.3 MC@NLO

The MC@NLO program [26] matches exact NLO calculations to a parton shower.

The parton shower Monte Carlo programs already implement some of the NLO

corrections, so the problem consists in avoiding the double counting between the

NLO matrix element and the extra activity arising from the parton shower. This

has been implemented by subtracting the NLO effects already accounted for from

the matrix element calculation.

Events generated using MC@NLO are associated with a weight which might be

+1 or −1. The negative weighting accounts for the cancellation of interfering

diagrams. The smoothness of the distributions obtained using this scheme is

guaranteed since the number of events with negative weights is reasonably small.
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MC@NLO is commonly matched to the Herwig parton showers interfaced with

Jimmy.

1.3.4.4 POWHEG

In the Powheg formalism [27], each event is built by producing the 2 → 2 or

2 → 3 hard scattering matrix element. The renormalisation and factorisation

scales µR and µF are set to be equal to the transverse momentum of the hard

partons (pBorn
T ). The cut on the minimum transverse momentum of the generated

hard partons, pBorn
T , may affect the value of the cross section due to the low-pT

divergence of the 2 → 2 cross section. Powheg is matched either to Pythia

or Herwig for the parton shower step of the event generation. In case of using

Herwig, the UE modelling is tipically performed by the Jimmy program.

1.3.4.5 ALPGEN

The Alpgen generator [28] is used for the simulation of 2 → n multiparton

events. The combination of the different multiplicities is performed by weighting

each sample, with k partons in the final state, attending to its cross section to

produce the inclusive sample. Then, the generated events at the matrix element

level are matched to a parton shower algorithm such as Pythia or Herwig.

The addition of the parton shower on the top of the n-parton final state can lead

to an overlap of the event with the (n+ 1)-parton sample if the shower produces

an additional jet. To avoid this, Alpgen uses MLM matching to identify the

overlaps. This algorithm is based on the following steps steps: First, the n-

parton contribution is generated and matched to the parton shower. Then, a jet

algorithm is applied to the outcoming parton shower output and if the number

of jets is the same as the generated number of hard partons, the event is kept.

If the parton shower has produced one or more additional hard jets, the event is

tagged as an overlap and rejected.
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1.4 Jets and jet algorithms

The collimated showers of particles formed by the fragmentation of partons pro-

duced in hard scattering processes are known as jets. These jets are the exper-

imental counterpart to the hard scattering partons. Thus, the reconstruction of

the kinematic properties of partons is possible using jet algorithms. Their perfor-

mance is normally dependent on a clustering parameter R, which can be regarded

as the jet radius in the η–ϕ1 space.

In general terms, a jet algorithm needs to fulfill two conditions stating the invari-

ance of the jet topology under the arbitrary addition of soft particles:

• Collinear safety: The jet topology in a given event should not depend on

the collinear radiation of partons. If an initial parton radiates a soft particle

with a small angle, both of them should be reconstructed in the same jet.

• Infrared safety: The parton radiation at large angles should not affect

the jet topology. Thus, if a given event presents two reconstructed jets, the

addition of soft radiation between them should not result in the merging of

both jets.

These two requirements have been successfuly implemented into two different

types of jet reconstruction algorithms. The cone algorithms, such as SISCone [29]

are based on the maximisation of the energy density inside cones of a given radius

R, followed by a merging-splitting step where overlapping configurations of two

well-defined jets are removed. Other approach, using sequential recombination

algorithms use pseudo-particles with defined four-momenta as seeds.

1.4.1 Sequential recombination algorithms

The sequential recombination algorithms are based on the iterative merging of

pairs of constituents (i, j) in a same object attending to both their transverse

momentum kt and their spatial distance ∆Rij =
√

(ηi − ηj)2 + (ϕi − ϕj)2.

1Pseudorapidity is defined as η = − log
(
tan θ

2

)
with θ the polar angle.
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This is done using a metric dij defined as

dij = min
(
k2p
t,i , k

2p
t,j

) ∆R2
ij

R2
(1.50)

di,B = k2p
t,i (1.51)

The algorithm works as follows: for a pair of input particles (i, j), the value of

dij is calculated and compared to the value of di,B. If dij < di,B, the inputs i

and j are merged into a single input following a given recombination method. If

this condition is not fulfilled, i is identified as a stable jet. Different values of the

parameter p lead to different algorithms, such as kt [30, 31] with p = 1, anti-kt

[32] with p = −1 or the Cambridge-Aachen [33] algorithm for p = 0. Figure

1.9 shows the behaviour of different jet algorithms. All these methods have been

implemented in the FastJet program [34].

Figure 1.9: Sketch of the transverse profile of the jet areas attending to different
algorithms. Figure taken from [32].
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1.4.2 Recombination schemes

During the application of equation 1.51, there are different ways of combining

the particles i and j. The most common is to simply add their four-momenta

combining the inputs 1 and 2 into a new input with pµ = pµ1 + pµ2 . This is called

the E-scheme and it is the one used for all measurements presented in this thesis,

but there are several others, depending on the main observable being used for the

recombination. These are the pT and p2
T schemes for the transverse momentum

and the ET and E2
T schemes for the transverse energy.

In the E-scheme, the algorithm results in a massive object with massless con-

stituents as inputs. However, in the rest of the methods, the inputs are combined

into a massless object. The observable p resulting from the recombination of pi

and pj, as well as the new object angular coordinates are defined as

pR = pi + pj (1.52)

ηR =
wiηi + wjηj
wi + wj

(1.53)

ϕR =
wiϕi + wjϕj
wi + wj

(1.54)

Here, the weights wk are the transverse momentum pT for the pT and p2
T schemes

and ET for the ET and E2
T schemes.

1.5 Transverse Energy-Energy Correlations

The energy-energy correlation (EEC) function was proposed in electron-positron

annihilation e+e− → X to study the relative energy distribution of charged

hadrons in a given event [35]. Recently, Ref. [36] has provided a theoretical cal-

culation of the transverse EEC function in proton-proton collisions at the LHC.

In the transverse plane, one can define the TEEC function as

1

σ′
dΣ′

dφ
≡ 1

N∆ cosφ

N∑
A=1

∑
ij

EA
TiE

A
Tj

(
∑

k E
A
Tk)

2 δ(cosφ− cosφij) (1.55)
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The index A runs over a sample of N hard-scattering events, while the indices i

and j run over the jets in the event labelled by the index A. Equation 1.55 shows

that the TEEC function is nothing else than the distribution of the angle between

pairs of jets in a given event weighted by the fraction between the product of their

transverse energies and the squared total transverse energy in the event.

At the LO accuracy, the calculation of the TEEC function involves the convo-

lution of the PDFs with the 2 → 2 partonic cross section. However, the 2 → 2

contributions will only appear in the end-points cosφ = ±1 due to the momentum

conservation in the transverse plane. Away from the end-points, the contributions

due to the 2→ 3 diagrams such as gg → ggg can be schematically expressed as

1

σ′
dΣ′

dφ
=

∑
ai,bi

fa1(x1)fa2(x2)⊗ Σ̂(a1a2 → b1b2b3)∑
ai,bi

fa1(x1)fa2(x2)⊗ σ̂(a1a2 → b1b2)
(1.56)

where Σ̂(a1a2 → b1b2b3) denotes the transverse energy-energy weighted partonic

cross section, fai(xi) are the PDFs of the i-th flavour parton inside the proton

and ⊗ denotes a convolution over the appropriate variables.

In the LO approximation, the TEEC function described above is approximately

independent of the PDFs due to the fact that certain normalised distributions

for the 2 → 3 subprocesses are similar and that the same PDF combination

fa1(x1)fa2(x2) enters both the 2→ 2 and the 2→ 3 cross sections. Therefore, to

a good level of approximation, the TEEC function reads

1

σ′
dΣ′

dφ
∼ αs(µ)

π
F (φ) (1.57)

In the NLO accuracy, one can express the TEEC function as the product of the

so-called K-factor and the LO result, namely

1

σ′
dΣ′

dφ
∼ αs(µ)

π
F (φ)

[
1 +

αs(µ)

π
G(φ)

]
≡ αs(µ)

π
F (φ)K(φ) (1.58)

One can also define the forward-backward asymmetry of the TEEC function

(ATEEC) as the difference between the cosφ < 0 and cosφ > 0 halves of the
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distribution
1

σ′
dΣ′asym

dφ
≡ 1

σ′
dΣ′

dφ

∣∣∣∣
π−φ
− 1

σ′
dΣ′

dφ

∣∣∣∣
φ

(1.59)

The importance of both the next-to-leading order TEEC and ATEEC functions

resides in the fact that, being both to a good extent independent of the PDFs and

of the renormalisation and factorisation scales µR and µF , as it has been shown

in Ref. [36], they show a marked dependence on the strong coupling constant

αs(mZ) and can therefore be used for a measurement of αs at the LHC. Fig. 1.10

illustrates the behaviour of the TEEC and ATEEC functions with the strong

coupling constant.
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Figure 1.10: Dependence of the TEEC (left) and ATEEC (right) functions with
the strong coupling constant αs(mZ)

The prediction shown in Fig. 1.10 has been ellaborated using the NLOJet++

[37] program. Kinematic cuts on the jets have been set so that their transverse

momenta is greater than 50 GeV and their pseudorapidity range corresponds to

the central region |η| < 2.5. The scalar sum of transverse momenta of the two

leading jets has to be pT,1 + pT,2 > 500 GeV.

1.6 Jet shapes

Jet shapes [38, 39, 40] are generally accepted as the best-suited observable to

study the internal structure of a jet. For jets defined using sequential recombi-

nation algorithms with a radius R, jet shapes parametrise the dependence of this
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energy spread with the distance r < R of a given jet constituent to the jet axis.

The integrated jet shape Ψ(r) is defined as

Ψ(r) =

∑
i pT,iΘ(r − ri)∑

i pT,i

(1.60)

The index i in Equation 1.60 runs over the jet constituents, which are only en-

tering the sum in the numerator if ri < R. On the other hand, the denominator

express the total scalar sum of the jet constituents transverse momenta. There-

fore, by definition, the integrated jet shape fulfills Ψ(R) = 1.

From the integrated jet shape, one can also define the differential jet shape as its

derivative with respect to the clustering distance r

ρ(r) =
dΨ(r)

dr
(1.61)

At leading order in αs, as 1.61 describes the energy flow ∼ z for a jet initiated

by a parton of type a, one can write

ρa(r) =
∑
b

αs
πr

∫ 1−z0

0

zPba(z)dz; z0 =

{
r

r+R
if r < (Rsep − 1)R

r
RsepR

if r > (Rsep − 1)R
(1.62)

Here, Rsep is a parameter, depending on the jet kinematics, to be fitted from the

data [39], and R is the jet radius. Making use of the expressions 1.41 to 1.44 for

the leading order parton splitting functions, one finds the LO expressions for the

jet shape of quark and gluon -induced jets

ρq(r) =
αsCF
πr

[
2 log

(
1

z0

)
− 3

2
(1− z0)2

]
(1.63)

ρg(r) =
αsCA
πr

[
2 log

(
1

z0

)
−
(

11

6
− z0

3
+
z2

0

2

)
(1− z0)2

]

+
αsNfTR
πr

(
2

3
− 2z0

3
+ z2

0

)
(1− z0)2 (1.64)
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1.7 Gluon radiation from heavy quarks

In this section, the angular radiation pattern of a gluon emitted by a quark is

studied as a function of the quark mass mq. Ref. [41] shows that the angular

distribution of the radiation off a heavy quark depends drastically on the quark

mass. In an approximate approach, for a quark branching q → q̃g, the invariant

mass can be written as m2
q ' 2EqEg(1 − cos θ) in the regime where the masses

are negligible with respect to the energy scale and θ is the angle between the

final-state quark and the radiated gluon. In the limit where θ is small, which

holds for the jet cone region, one can expand the cosine as the Taylor series

cos θ =
∑∞

n=0
(−1)nθ2n

(2n)!
and obtain the relation

θ ' mq√
Eq̃Eg

=
1√

z(1− z)

mq

Eq
(1.65)

where z is the fraction of energy carried by the radiated gluon (Eg = zEq). For

light-quark jets, the dominant effect on the opening angle described by Eq. 1.65

arises from the gluon energy fraction 0 < z < 1. On the other hand, the opening

angle in b-jets is controlled by the heavier mass of the b-quark.

Defining θ0 = mq/Eq, the probability of a gluon emission at a small opening angle

θ < θ0 � 1 is given by [42]

dσ

dω
=
αsCF
πω

(2 sin θ/2)2d(2 sin θ/2)2

[(2 sin θ/2)2 + θ2
0]2

[1 + O(θ0, ω)] ∼ 1

ω

θ2dθ2

[θ2 + θ2
0]2

(1.66)

In Eq. 1.66, ω corresponds to the energy of the radiated gluon. From here one

can infer that for the kinematical region with θ < θ0 the amount of radiation

is highly suppressed. This effect is known as angular screening, and the region

θ < θ0 is known as the ‘dead cone’.

Defining ξ = (2 sin θ/2)2 and neglecting terms of order O(θ0, ω), one can easily

infer that the differential cross section as a function of the angle θ has the form

dσ

dθ
=
dξ

dθ

dσ

dξ
=

2αsCF
π

(2 sin θ/2)2 sin θ

[(2 sin θ/2)2 + θ2
0]

2

dz

z
(1.67)
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The cross section in Eq. 1.67 is shown in Fig. 1.11 as a function of the quark

mass mq and the quark-gluon angle θqg for two different values of the energy of

the heavy quark, namely 30 and 60 GeV. In this figure, the suppression of the

radiation at small angles θ < θ0 from the quark direction is clearly seen, as well

as the fact that the radiation is less likely to occur for heavier quarks. Also,

the effect of the jet energy is clearly seen, showing that for larger energies, the

radiation around the quark direction is more collimated and the effect of the dead

cone is less pronounced.
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Figure 1.11: The differential cross section of the gluon radiation off a massive
quark as a function of its mass mq and the angle between the quark and the
radiated gluon θqg.

It is then expected that the differential jet shape defined before will be a sensitive

observable to the mass of the initiating parton, as the radiated gluons inside the

jet will be screened in a cone around the jet axis, and therefore the fraction of

transverse momentum in this region will be severely suppressed.
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Chapter 2

The LHC and the ATLAS

experiment

In this chapter, a description of the experimental details is given, with special

attention to the CERN accelerator complex and the ATLAS detector, where the

two proton beams collide and the physics processes object of these measurements

are produced.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC), see Ref. [43], is the world’s largest particle

accelerator, buried between 50 and 175 metres under the franco-swiss border in

Geneva, Switzerland and spanning a 27 km circumference. Its purpose is to accel-

erate two proton beams up to a nominal centre-of-mass energy taking the value
√
s = 7 TeV for the analyses presented in this thesis, but which may vary from

run to run. Once the nominal energy is reached, both beams are made to col-

lide inside the 4 main experimental detectors ATLAS, ALICE, CMS and LHCb,

which are distributed along the accelerator circumference, as shown in Fig. 2.1.

The proton beams are extracted from Hydrogen gas and drift in a smaller system

of accelerators containing linear accelerators (LINAC), the Proton Booster and

the Proton Synchrotrons (PS, SPS). When the beams reach the LHC, they move

around the ring inside vacuum chambers passing through 1232 superconducting
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Figure 2.1: The distribution of the LHC experiments ATLAS, ALICE, CMS and
LHCb along the LHC ring.

dipole magnets distributed around the circumference. These dipole modules pro-

duce a vertical magnetic field which bends the trajectory of the protons via the

Lorentz force. At 7 TeV, the magnitude of the magnetic field is around 8.4 Tesla

with a current of 11700 A. To avoid excessive resistive losses due to Joule effect

with such a high current, a large cryogenics system is needed to provide the liq-

uid helium which is then injected into the dipoles to keep the magnets cold. A

standard dipole module is depicted in Fig.2.2

2.1.1 Physics event rate. Luminosity

The motivation for the construction of the LHC is to study the physical pro-

cesses at the TeV scale, where new physics beyond the Standard Model, such as

Supersymmetry (SUSY) could be found, as well as to give answer to some open

questions of the Standard Model, as the existence of the Higgs boson.

Every physics process has a probability to occur in a proton-proton collision,

which is parametrised by the process cross-section σ. The LHC provides millions

of pp collisions per second, giving an expected event rate (the number of events
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Figure 2.2: The cross section of a dipole module at the LHC

per second) for each process which is proportional to its cross-section [6]

R =
dNev

dt
= σL⇒ Nev(t1, t2) = σ

∫ t2

t1

Ldt = σL (2.1)

The proportionality factor L is referred to as the differential luminosity. It is

defined as the number of protons crossing the unit area per unit time, and can

be calculated from the beam parameters assuming a gaussian distribution of the

proton density inside the beam. If two proton bunches with numbers of particles

n1 and n2 collide with a frequency f , the differential luminosity is given by

L = f
n1n2

4πΣxΣy

(2.2)

The parameters Σx and Σy carachterise the beam transverse profiles assuming a

2-dimensional gaussian distribution.

The integrated luminosity L is a key quantity in cross-section measurements and

therefore needs to be precisely measured by both the LHC (delivered luminosity)

and each experimental detector (recorded luminosity) when the data taking is
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ready. In Fig. 2.3, the integrated luminosity delivered to ATLAS as a function

of the month in the year for 2010, 2011 and 2012 runs.
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Figure 2.3: Cumulative luminosity versus day delivered to ATLAS during stable
beams and for pp and Pb-Pb collisions. This is shown for 2010 (green for pp,
magenta for Pb-Pb), 2011 (red for pp, turquoise for Pb-Pb) and 2012 (blue)
running. The online luminosity is shown.

2.1.2 Bunch crossing and pileup

The proton beams are not continuous, but have a structure of bunch train. Each

bunch contains a high number of protons to maximize the probability of inter-

action for each bunch crossing. As we have seen, the rate of inelastic events

produced in a collider is given by Rinel = L × σinel, while the average bunch

crossing rate is given by the product of the number of bunches per beam and

the revolution frequency, Rcross = Nbunch × fLHC. Therefore, one can define the

number of interactions per bunch crossing µ as

µ =
Rinel

Rcross

=
L× σinel

Nbunch × fLHC

(2.3)

Attending to the time difference between interactions, one can distinguish two

types of pileup collisions. First, the in-time pileup occurs when the pileup signal in
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the detector corresponds to the same bunch crossing as the hard-scattering signal,

and therefore both are recorded in the same data taking window. On the other

hand, the out-of-time pileup is the effect of collisions which have produced in a

different bunch crossing has the hard-scattering signal recorded in the detector. In

the data taken in 2010, the amount of out-of-time pileup interactions is negligible,

as the bunch spacing was smaller than in 2011, when it was rised to the nominal

value of 25 ns. The average number of interactions per bunch crossing can be up

to 〈µ〉 = 25 for the data presented here.

2.2 The ATLAS experiment

The ATLAS detector [44] is a multi-purpose particle detector installed at the

LHC Point 1, near the CERN Meyrin site. It is a cylindrical apparatus designed

to detect the products of the hadron collisions occuring at its center. From the

particle interaction point outwards, it contains an Inner Detector (ID), designed

to precisely measure the momentum of charged particle tracks, an electromag-

netic calorimeter for measuring the energy deposition of electrons and photons,

a hadronic calorimeter, used for the measurement of strong-interacting particles

and a muon spectrometer for measuring the energy and momentum of muons. A

schematic representation of the detector can be seen in Fig. 2.4.

2.2.1 Coordinate system

The ATLAS experiment uses a right-handed coordinate system, which has its

center at the nominal interaction point and the z-axis in the direction of the

incoming protons. The positive x-axis direction points to the center of the LHC

ring and the positive y-axis direction points upwards. Cylindrical coordinates

(r, ϕ) are used to describe the positions in the transverse plane, being ϕ the

azimuthal angle around the beam pipe. The polar angle θ is defined as the angle

between the particle direction and the beam axis.

As one does not know the momentum fraction of the partons inside the proton,

the collision products can be boosted in the direction of the beam axis. For this

reason, one needs to define observables which transforms in a desirable way under
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Figure 2.4: General view of the ATLAS detector

z-axis Lorentz boosts. The pseudorapidity η is defined in terms of the polar angle

θ as

η = − log

(
tan

θ

2

)
=

1

2
log

( |~p|+ pz
|~p| − pz

)
(2.4)

Under a z-axis Lorentz transformation parametrised by a factor γ, it transforms

as

η → η − log γ (2.5)

Therefore, the difference in pseudorapidity for two particles i and j is invariant

under beam-axis Lorentz transformations. One can also define the rapidity as

y =
1

2
log

(
E + pz
E − pz

)
(2.6)

This variable is equivalent to the pseudorapidity for massless objects, where E =

|~p|. For the hadron-hadron collisions studied here, once the pseudorapidity is

defined, one can define a boost-invariant distance in the η–ϕ space, ∆R as

∆R =
√

(∆η)2 + (∆ϕ)2 (2.7)
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2.2.2 The Inner Detector

The ID is described in detail in Ref. [45]. It is designed to precisely measure the

momentum of charged particles produced in the collisions, as well as primary and

secondary vertex identification. It covers the pseudorapidity region |η| < 2.5 and

the full azimuthal range and has tracking capabilities for particles with transverse

momentum above 500 MeV, but a lower threshold of 100 MeV has also been used

for some minimum bias studies. The ID is immersed in a 2 Tesla axial magnetic

field which bends the trajectory of charged particles and allows for a measurement

of the charge. It consists in three different subsystems, being the innermost the

Pixel detector followed by the Semiconductor Tracker (SCT) and the Transition

Radiation Tracker (TRT). Fig. 2.5 provides a sketch of its structure.

Figure 2.5: Transverse view of the ATLAS Inner Detector subsystems being tra-
versed by a 10 GeV track with η = 0.3. Each track crosses 3 pixel layers, 4 SCT
layers and approximately 35 axial straws in the TRT.

The ID is expected to give an excellent tracking performance. The overall trans-

verse momentum resolution of the ID, resulting from the combined performance
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of all subsystems, is required to be

σpT

pT

= 0.05%× pT ⊕ 1% (2.8)

The main parameters of the subsystems composing the Inner Detector are given

in Table 2.1.

Subsystem Position Area Resolution Channels η coverage
(m2) σ (µm) (×106)

Pixels 1 barrel layer 0.2 Rϕ = 12, z = 66 16 ±2.5

2 barrel layers 1.4 Rϕ = 12, z = 66 81 ±1.7

4 end-cap disks 0.7 Rϕ = 12, R = 77 43 1.7-2.5
on each side

Silicon strips 4 barrel layers 34.4 Rϕ = 16, z = 580 3.2 ±1.4

9 end-cap wheels 26.7 Rϕ = 16, R = 580 3.0 1.4-2.5
on each side

TRT Barrel straws 170 (per straw) 0.1 ±0.7

End-cap straws 170 (per straw) 0.32 0.7-2.5
36 straws per track

Table 2.1: The main parameters of the inner detector subsystems. The resolutions
quoted are typical values (the actual resolution depends on |η|).

2.2.2.1 The Pixel Detector

The pixel detector is designed to provide a high granularity as close to the in-

teraction point as possible. It determines the performance of the ID at finding

short-lived particles such as b-quarks and τ -leptons.

The system is designed to be highly modular, with three barrels containing ap-

proximately 1500 identical barrel modules and four disks on each side containing

1000 disk modules. The whole system uses just one type of support structure in

the barrel and one in the disks.

The pixel modules are designed very similarly for the disks and barrel modules.

Each barrel module contains 61440 pixel elements, with a readout system con-

sisting in 16 chips. Each of these modules are 62.4 mm long and 22.4 mm wide.
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2.2.2.2 The Semiconductor Tracker

The SCT is designed to provide four independent measurements per track in the

intermediate radial range, contributing to the measurement of the track momen-

tum, impact parameter and vertex position.

The barrel SCT contains four layers of silicon microstrip detectors, which provide

precision measurements of the track coordinates. Each of them has a surface of

6.36 × 6.40 cm2 and contain 768 readout strips parallel to the beam direction,

providing measurements of the radial and azimuthal coordinates. The readout

chain consists on a front-end amplifier and discriminator, followed by a pipeline

which stores the hits above a given threshold until the first level of trigger decision.

2.2.2.3 The Transition Radiation Tracker

The TRT consists on gaseous straw detectors, measuring the track radial and

azimuthal coordinates up to |η| = 2.0 with a typical resolution of about 130 µm.

Each straw is 4 mm in diameter, providing fast response and good mechanical

properties for a maximum straw length of 150 cm.

The barrel is formed by 144 cm long straws, parallel to the beam direction and

with their wires divided in two halves approximately at η = 0. In the end-cap

region, the 37 cm long straws are arranged radially in wheels. The number of

readout channels is approximately 351000.

2.2.3 The Calorimeter System

The ATLAS calorimeter system is divided into two subdetectors: A Liquid Argon

(LAr) electromagnetic calorimeter and a hadronic calorimeter. Its main param-

eters are detailed in Table 2.2. The calorimeters cover the pseudorapidity region

|η| < 4.9 and are designed for a good containment of electromagnetic and hadronic

showers, also providing punch-through containment into the muon system.

Within the |η| range matched to the inner detector, the fine granularity of the EM

calorimeter is ideally suited for precision measurements of electrons and photons.

The coarser granularity of the rest of the calorimeter is sufficient to satisfy the
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physics requrements for jet and Emiss
T reconstruction. Fig. 2.6 presents a view of

the subsystems composing the ATLAS calorimeter.

Figure 2.6: Cut-away view of the ATLAS calorimeter system.

2.2.3.1 The LAr electromagnetic calorimeter

The ATLAS electromagnetic calorimeter is divided into a barrel part, with |η| <
1.475, and two end-caps with 1.375 < |η| < 3.2. The barrel calorimeter consists

of two identical half-barrels, separated by a small gap (4 mm) at z = 0. Each

end-cap is divided into two coaxial wheels: an outer wheel covering the range

1.375 < |η| < 2.5 and an inner one covering 2.5 < |η| < 3.2.

The EM calorimeter has several layers of active material depending on the pseu-

dorapidity region (see Table 2.2). The granularity ∆η × ∆ϕ also depends on

the η range, being the finest in the central region of the barrel, where maximum

precision is required. A sketch of a barrel module is shown in Fig. 2.7, where the

granularity is specified for cells in the central region.

In the region with |η| < 1.8, a presampler detector is used to correct for the en-

ergy lost by electrons and photons upstream of the calorimeter. The presampler

consists of an active LAr layer of 1.1 cm (0.5 cm) thick in the barrel (end-cap).
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Figure 2.7: Sketch of a barrel module where the different layers are clearly visible
with the ganging of electrodes in ϕ. The granularity in η and ϕ of the cells of
each of the three layers and of the trigger towers is also shown.

The EM calorimeter is a lead-LAr detector with accordion-shaped kapton elec-

trodes and lead absorber plates over its full coverage. The accordion geometry

provides a complete azimuthal symmetry without cracks, while the lead thickness

in the absorber plates is optimised in terms of energy resolution performance. The

resolution is required to be

σE
E

=
0.1 GeV

1
2

√
E

⊕ 0.7% (2.9)

2.2.3.2 The hadronic calorimeters

The hadronic part of the ATLAS calorimeter is composed of several subsystems,

namely the tile calorimeter, the LAr hadronic end-cap calorimeter (HEC) and

the LAr forward calorimeter (FCal).
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Barrel End-cap

EM calorimeter

Number of layers and |η| coverage

Presampler 1 |η| < 1.52 1 1.5 < |η| < 1.8

Calorimeter 3 |η| < 1.35 2 1.375 < |η| < 1.5
2 1.35 < |η| < 1.475 3 1.5 < |η| < 2.5

2 2.5 < |η| < 3.2

Granularity ∆η ×∆ϕ versus |η|

Presampler 0.025× 0.1 |η| < 1.52 0.025× 0.1 1.5 < |η| < 1.8

Calorimeter 1st layer 0.025/8× 0.1 |η| < 1.40 0.050× 0.1 1.375 < |η| < 1.425
0.025× 0.025 1.40 < |η| < 1.475 0.025× 0.1 1.425 < |η| < 1.5

0.025/8× 0.1 1.5 < |η| < 1.8
0.025/6× 0.1 1.8 < |η| < 2.0
0.025/4× 0.1 2.0 < |η| < 2.4
0.025× 0.1 2.4 < |η| < 2.5
0.1× 0.1 2.5 < |η| < 3.2

Calorimeter 2nd layer 0.025× 0.025 |η| < 1.40 0.050× 0.025 1.375 < |η| < 1.425
0.075× 0.025 1.40 < |η| < 1.475 0.025× 0.025 1.425 < |η| < 2.5

0.1× 0.1 2.5 < |η| < 3.2

Calorimeter 3rd layer 0.050× 0.025 |η| < 1.35 0.050× 0.025 1.5 < |η| < 2.5

Number of readout channels

Presampler 7808 1536 (both sides)

Calorimeter 101760 62208 (both sides)

LAr hadronic end-cap

|η| coverage 1.5|η| < 3.2

Number of layers 4

Granularity ∆η ×∆ϕ 0.1× 0.1 1.5 < |η| < 2.5
0.2× 0.2 2.5 < |η| < 3.2

Readout channels 5632 (both sides)

LAr forward calorimeter

|η| coverage 3.1 < |η| < 4.9

Number of layers 3

Granularity ∆x×∆y (cm) FCal1: 3.0× 2.6 3.15 < |η| < 4.30
FCal1: ∼ four times finer 3.10 < |η| < 3.15

4.30 < |η| < 4.83

FCal2: 3.3× 4.2 3.24 < |η| < 4.50
FCal2: ∼ four times finer 3.20 < |η| < 3.24

4.50 < |η| < 4.81

FCal3: 5.4× 4.7 3.32 < |η| < 4.60
FCal3: ∼ four times finer 3.29 < |η| < 3.32

4.60 < |η| < 4.75

Readout channels 3524 (both sides)

Scintillator tile calorimeter

Barrel Extended barrel

|η| coverage |η| < 1.0 0.8 < |η| < 1.7

Number of layers 3 3

Granularity ∆η ×∆ϕ 0.1× 0.1 0.1× 0.1

Last layer 0.2× 0.1 0.2× 0.1

Readout channels 5760 4092 (both sides)

Table 2.2: The main parameters of the calorimeter subsystems.
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• Tile calorimeter: The tile calorimeter barrel covers the region |η| < 1.0

and its two extended barrels the range 0.8 < |η| < 1.7. It is a sampling

calorimeter using steel as the absorber and scintillating tiles as the active

material. The barrel and extended barrels are divided into 64 modules

extended azimuthally. Radially, it extends from an inner radius of 2.28 m

to an outer radius of 4.25 m and is segmented in depth in three layers.

• LAr hadronic end-cap: The HEC consists of two independent wheels per

end-cap, located directly behind the end-cap electromagnetic calorimeter

and sharing the same LAr cryostats. The HEC overlaps with the forward

calorimeter to reduce the drop in the material density at the transition

region around |η| = 3.1, extending up to |η| = 3.2. Each wheel is built from

32 identical wedge-shaped modules, assembled with fixtures at the periphery

and at the central bored. Each wheel is divided into two segments in depth

for a total of four layers per end-cap.

• LAr forward calorimeter: The FCal is integrated into the end-cap

cryostats, as this provides clear benefits in terms of uniformity of the cov-

erage as well as reduced radiation levels in the muon spectrometer. The

FCal is approximately 10 interaction lengths deep, and consists of three

modules in each end-cap: the first, made of copper, is optimised for electro-

magnetic measurements, while the other two, made of tungsten, measure

predominantly the energy of hadronic interactions.

The energy resolution of the hadronic calorimeters is given by

σE
E

=
a√
E
⊕ b (2.10)

For the barrel and end-cap hadronic calorimeters, the values of a and b are a =

0.5 GeV
1
2 and b = 3%, while the forward calorimeter has a poorer resolution with

a = 1 GeV
1
2 and b = 10%.

The structure of a cryostat, showing the relative positions of the three forward

calorimeters is depicted in Fig. 2.8. The outer radius of the cylindrical cryostat

vessel is 2.25 m and the length of the cryostat is 3.17 m. The feed-throughs and

front-end crates containing the readout electronics are also shown.
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Figure 2.8: Cut-away view of an end-cap cryostat, showing the positions of the
three end-cap calorimeters.

2.2.4 The Muon Spectrometer

The ATLAS muon system is based on the magnetic deflection of muon tracks

in the large superconducting air-core toroid magnets. Over the range |η| < 1.4,

the bending is provided by the large barrel toriod, while for 1.6 < |η| < 2.7,

the muon trajectories are bent by two smaller end-cap magnets inserted into

both ends of the barrel toroid. Over 1.4 < |η| < 1.6, usually referred to as the

transition region, the deflection is provided by a combination of barrel and end-

cap fields. This configuration provides a field which is mostly orthogonal to the

muon trajectories, while minimising the degradation of resolution due to multiple

scattering.

In the barrel region, tracks are measured in chambers arranged in three cylindrical

layers around the beam axis; in the transition and end-cap regions, the chambers

are installed in planes perpendicular to the beam, also in three layers. Fig. 2.9

shows a general view of the muon spectrometer and its components.
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Figure 2.9: Cut-away view of the ATLAS muon system.

The muon spectrometer is divided into four subsystems, namely the Monitored

Drift Tubes (MDT), the Cathode Strip Chambers (CSC), the Resistive Plate

Chambers (RPC) and the Thin Gap Chambers (TGC). The two first are used

for precission tracking purposes, while the two latter provide triggering capabil-

ities. The main parameters of each subsystem, in terms of coverage, number of

chambers and number of channels are shown in Table 2.3

Number of Number of
System Coverage Chambers Channels Function

MDT |η| < 2.7 1150 354000 Precision tracking

CSC 2.0 < |η| < 2.7 32 31000 Precision tracking

RPC |η| < 1.05 606 373000 Triggering, second coordinate

TGC 1.05 < |η| < 2.7 3588 318000 Triggering, second coordinate

Table 2.3: The main parameters of the subsystems conforming the muon spec-
trometer.
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2.2.4.1 Toroid magnets

The magnetid field in the muon spectrometer is generated by three large air-

core toroids. Their performance in terms of bending power is characterised by

the line integral
∫
~B · ~dl of the magnetic field along an infinite-momentum muon

trajectory between the innermost and the outermost muon-chamber planes. The

barrel toroid provides 1.5 to 5.5 Tm of bending power in the pseudorapidity range

0 < |η| < 1.4, and the end-cap toroids approximately 1 to 7.5 Tm in the region

1.6 < |η| < 2.7. The bending power is lower in the region 1.4 < |η| < 1.6, where

the two magnets overlap.

2.2.4.2 Precision tracking chambers. MDTs and CSCs.

The MDTs perform the precision momentum measurement. They cover the pseu-

dorapidity range |η| < 2.7 (except in the innermost end-cap layer, where their

coverage is limited to |η| < 2.0). These chambers consist of three to eight layers

of drift tubes, operated at an absolute pressure of 3 bar, which achieve an average

resolution of 80 µm per tube, or about 35 µm per chamber.

The CSCs are located in the forward region 2 < |η| < 2.7. They are used in the

innermost tracking layer due to their higher rate capability and time resolution.

The CSCs are multiwire proportional chambers with cathode planes segmented

into strips in orthogonal directions. This allows both coordinates to be measured

from the induced-charge distribution. The resolution of a chamber is 40 µm in

the bending plane and about 5 mm in the transverse plane.

2.2.4.3 Triggering chambers. RPCs and TGCs.

The precision-tracking chambers are complemented by a system of fast trigger

chambers capable of delivering track information within a few tens of nanosecond.

In the barrel region |η| < 1.05, the RPCs were selected for this purpose, while

in the end-cap 1.05 < |η| < 2.4, the TGCs were chosen. Both chamber types

deliver signals with a spread of 15-25 ns. They also provide measurements of

both coordinates of the track, one in the bending plane in the η direction and

one in the non-bending azimuthal plane.

The purpose of the precision-tracking chambers is to determine the coordinate of
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the track in the bending plane. After matching of the MDT and trigger chamber

hits in the bending plane, the trigger chamber’s coordinate in the non-bending

plane is adopted as the second coordinate of the MDT measurement. This method

assumes that in any MDT/trigger chamber pair a maximum of one track per event

be present, since with two or more tracks the η and ϕ hits cannot be combined

in an unambiguous way.

2.2.5 The Forward Detectors

Three smaller detector systems cover the ATLAS forward region. At ±17 m

from the interaction point lies LUCID (LUminosity measurement using Cerenkov

Integrating Detector). It detects inelastic pp scattering in the forward region,

providing online relative-luminosity monitoring for ATLAS. The second detector

is ALFA (Absolute Luminosity For ATLAS), which is located at ±240 m. It con-

sists of scintillating fibre trackers located inside Roman pots which are designed

to approach as close as 1 mm to the beam. The third system is the Zero-Degree

Calorimeter (ZDC), which plays a key role in determining the centrality of heavy-

ion collisions. It is located at ±140 m from the interaction point, just beyond

the point where the vacuum beam-pipe divides into two independent pipes. The

ZDC modules consist of layers of alternating quartz rods and tungsten plates

which will measure neutral particles in the high pseudorapidity region |η| ≥ 8.2.

Figure 2.10 shows an schematic view of the placement of these three detectors

with respect to the interaction point.

2.2.5.1 The LUCID detector

LUCID consists on twenty 1.5 m long aluminium tubes with a diameter of 15 mm

which surround the beam-pipe and point towards the interaction point. The tubes

are filled with C4F10 at a constant pressure of 1.2−1.4 bar, providing a Cerenkov

threshold of 2.8 GeV for pions and 10 MeV for electrons.

The Cerenkov light emitted by a particle traversing the tube has a half-angle of

3 degrees and is reflected on average three times before the light is measured by

photomultiplier tubes (PMTs) which match the size of the Cerenkov tubes. The

signal amplitude from these PMTs can be used to distinguish the number of par-
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Figure 2.10: Placement of the forward detectors along the beam-line around the
ATLAS interaction point (IP).

ticles per tube, and the fast timing response provides unambiguous measurements

of individual bunch-crossings.

2.2.5.2 The ZDC detector

The main role of the ZDC detector is to detect very forward neutrons in heavy ion

collisions, in which the centrality is strongly correlated with the number of forward

neutrons. The ZDCs consist in two arms, located symmetrically with respect to

the interaction point. Each arm contains four modules: one electromagnetic and

three hadronic.

The EM modules consist of 11 tungsten plates, with their faces perpendicular to

the beam direction. A total of 96 quartz rods of 1.0 mm diameter penetrate the

tungsten plates, and multi-anode phototubes capture the Cerenkov light from the

products of incident particles. The hadronic modules are similar, but instead of

mapping the 96 quartz rods onto the pixel of the phototube, they map clusters

of four rods into individual phototubes and have only one light-guide.

2.2.5.3 The ALFA detector

The goal of the ALFA detector is the determination of the absolute luminosity

via elastic scattering at small angles. The optical theorem connects the elastic-
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scattering amplitude in the forward direction to the total cross section, and there-

fore can be used to extract the absolute luminosity. The ALFA detector consists

on ten double-sided modules, each with 64 fibres arranged in stereo u–v geome-

try on both sides. The square fibres have a width of 0.5 mm. The modules are

staggered in depth by multiples of a tenth of the effective fibre pitch, i.e. 70 µm.

The fibres are aligned and glued on a precisely machined support structure made

of titanium. Before assembly, the fibres are aluminised to reduce light losses and

optical cross-talk. The fibre positions are measured by means of optical metrology

at various stages of the manufacturing, resulting in a set of equations describing

the location of each fibre in a given detector.

2.2.6 The ATLAS Trigger System

The ATLAS Trigger system is composed of three levels of event selection: L1, L2

and Event Filter (EF), collectively referred to as the High Level Trigger (HLT).

It is designed to reduce the event rate to about 200 Hz from the nominal bunch

crossing rate of 40 MHz. Fig. 2.11 shows a flow diagram of the 3 trigger levels.

Figure 2.11: Flow diagram of the ATLAS Trigger system [46]
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2.2.6.1 Level 1

The L1 trigger performs the initial event selection based on the information from

the calorimeters and muon detectors. The calorimeter selection (L1Calo) is based

on the information provided by all the calorimeter subsystems, being consistent

with high-ET objects such as electrons, photons, hadronically decaying τ -leptons

or jet clusters, as well as events with large Emiss
T . The L1Calo is designed to work

with 7000 analoge trigger towers of reduced granularity (∆η×∆ϕ = 0.1× 0.1 in

the central region, but larger at high |η|), see Fig. 2.7. It sends the signal to the

L1 computer farm approximately 1.5 µs after the event occurs.

The L1 muon trigger is based on the information provided by the RPC and TGC,

the muon chambers with triggering capabilities in the barrel and end-cap regions,

respectively. The algorithm is based on the coincidence of aligned hits in different

trigger stations, tracking the trajectory of a muon. The low-pT trigger is capable

of tracking muons with a threshold range of about 6–9 GeV, while the high-pT

trigger has a threshold which varies from 9 to 35 GeV.

2.2.6.2 Level 2 and Event Filter

The L2 is mainly based on regions of interest (RoI) identified at the L1 level. A

seed is constructed for each L1 accepted object, that consists of a pT threshold

and an η−ϕ position for each object. The L2 algorithms make use of information

which is not available at the L1 level, such as the Inner Detector tracks. The L2

trigger reduces the event ratio below 3.5 kHz, while takes the decission of keeping

or rejecting the event in approximately 40 ms.

The Event Filter must provide additional rejection to reach the desired 200 Hz

rate. It is typically based on very similar algorithms to those from the offline se-

lection, as the EF has access to the complete data from a given event, because the

EF selection is made after the event building step. The average event processing

time is about 4 s.
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Chapter 3

Object reconstruction and

identification

In this chapter, the performance of the ATLAS detector in terms of physics

object reconstruction and identification is discussed, including tracks and vertices,

electrons, muons, jets, b-jets and missing transverse energy. These objects will

be later used in the physics analyses presented in this work.

3.1 Tracks and vertices

Track reconstruction is essential for electron and muon identification, as well

as for track-jet studies. It is done using all subsystems in the inner detector,

including the pixel detector, the SCT and the TRT. The track reconstruction

software includes global-χ2 and Kalman-filter techniques [47], and divides the

processing into three stages:

• Pre-processing: The raw data from the pixel and SCT detectors are con-

verted into clusters, while the TRT raw timing information is calibrated.

The SCT clusters are transformed into space-points, combining the cluster

information from opposite sides of the SCT modules.

• Track-finding: Track seeds are formed by combining space-points in the

pixel detector and the first SCT layer. These seeds are then extended
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throughout the SCT to form track candidates, which are then fitted and

subject to quality cuts. The selected tracks are then extended into the

TRT to associate the drift-circle information. Finally, the extended tracks

are refitted including the information from all three subsystems.

• Post-processing: A vertex-finding algorithm is used to reconstruct pri-

mary vertices, followed by the reconstruction of photon conversions and

secondary vertices. The vertex candidates are selected by minimsing a χ2

function which depends on the (x, y, z) position as well as on the track mo-

menta ~pi. The primary vertex is defined as the one maximising the quantity∑
i(p

i
T)2, where the index i runs over all tracks originating from it.

3.2 Electrons

ATLAS requires a high efficiency electron reconstruction to achieve physics goals

such as the Higgs to four lepton H → 4` reconstruction or the measurement

of top-quark properties. The electron reconstruction starts with a clustering

algorithm maximising the energy containment and follows with differents sets of

cuts to separate the high jet background from the electron signal. This section

aims to describe each step of this process.

3.2.1 Calorimeter-seeded reconstruction

Electron (and photon) reconstruction starts with a three-step clustering algo-

rithm, referred to as the sliding-window method, described in detail in Ref. [48].

• Tower building: The η–ϕ space in the calorimeter is divided into a grid

of towers with size ∆η × ∆ϕ, which depends on the calorimeter system

involved. For the electromagnetic case described here, both the EM Barrel

and Endcap cells, with granularity ∆η × ∆ϕ = 0.025 × 0.025 are used as

towers for |η| < 2.5.

• Seed finding: A window of 5× 5 EM cells is moved across the tower grid

defined in the previous step. The total transverse energy of the window

(defined as the sum of the transverse energy of each cell within the window)
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is required to be greater than 3 GeV and to be a local maximum. If these

two conditions are fulfilled, then the window is selected as a precluster with

η and ϕ calculated as the energy-weighted average of the position of all

cells within a new 3 × 3 window around the center of the sliding window.

Precluster duplicates are removed.

• Cluster formation: Once the seeds are defined, a layer-by-layer clustering

algorithm is ran by considering all 3×7 (Barrel) and 5×5 (Endcap) rectan-

gles centred in a given seed position. The algorithm starts with the middle

layer, using as seed the precluster position computed in the previous step.

The strip layer is done in the second place, taking as input the middle-layer

barycenter. Finally, the Presampler and back layers are included using the

strip and middle layer barycenters as seeds.

Once the electron cluster has been calculated, it is required to match a track

from the inner detector. This is done by extrapolating the track position to the

LAr calorimeter and requiring it to be within a ∆η×∆ϕ = 0.05× 0.10 rectangle

centred at the cluster position. If the ratio E/|~p| between the cluster energy

and the track momentum is smaller than 10, both the track and the cluster are

combined to form the electron candidate. The energy is calculated as the weighted

average between the cluster energy and the track momentum, while the angular

coordinates η and ϕ correspond to those from the track.

The electron reconstruction efficiency is high: Approximately 93% of true isolated

electrons with ET > 20 GeV and |η| < 2.5 are selected as candidates. The 7%

inefficiency is understood to arise from the large amount of material in the inner

detector, and therefore is η-dependent.

3.2.2 Electron identification

The major goal of the ATLAS electron identification algorithm is to separate the

electron signal from the huge multijet background arising from QCD mediated

processes. This is achieved by considering different sets of cuts based on several

variables. Three electron identification categories are built using this information,

referred to as Loose, Medium and Tight [49]
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3.2.2.1 Loose cuts

The loose set of cuts is based on the different shower shapes between jets and elec-

trons, as well as in their different level of penetration in the hadronic calorimeter.

They involve a cut in the lateral shower width, defined as

wη,2 =

√∑
iEiη

2
i∑

iEi
−
(∑

iEiηi∑
iEi

)2

(3.1)

The sum is calculated in a window of 3× 5 cells centred at the cluster position,

being Ei the cell energy and ηi its pseudorapidity. The loose cuts provide a

background rejection factor of about 500 and a high efficiency selection.

3.2.2.2 Medium cuts

The medium cuts provide a jet rejection factor of 5000. They include information

from both the calorimeter and the inner detector. The calorimetric cuts are

designed to provide a good rejection of the neutral pion decays to two photons,

π0 → γγ. In the case of π0 decays, the calorimeter is capable of resolving a second

maximum with energy Emax,2 in a window of size ∆η×∆ϕ = 0.125× 0.2 around

the cell with maximum energy deposit. The calorimetric variables also include

the total shower width, defined as

wstot =

√√√√[∑
i

Ei(i− imax)2

]∑
i

Ei (3.2)

In this case, the index i runs over all strips in a window of ∆η×∆ϕ = 0.0625×0.2,

and imax is the index of the maximum-energy strip. The tracking variables include

the number of pixel and SCT hits as well as the transverse impact parameter,

defined as the transverse distance of closest approach to the primary vertex. A

track-cluster matching within |∆ηct| < 0.01 is also applied.

3.2.2.3 Tight cuts

The tight cuts provide a rejection factor of 50000. They are based on the tight-

ening of the track-cluster spatial matching (|∆ϕ| < 0.02, |∆η| < 0.005) as well
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as in the coincidence of the cluster energy with the track momentum through the

ratio E/p. The transverse impact parameter cut is also tightened and the TRT

hit information is used for providing further rejection. Electrons from photon

conversions are discarded.

3.3 Muons

The ATLAS muon system is designed to precisely measure the momentum of

muons in an energy range which tipically goes from a few GeV to the TeV scale.

This is important for the reconstruction of many physics processes such as the

tt̄ production treated in this work or new physics searches such as Z ′ → µµ or

multilepton SUSY searches.

The muon algorithms available within ATLAS include three schemes for the re-

construction, depending on how the informations from the inner detector and

the muon spectrometer are used for the muon reconstruction: standalone muons,

combined muons and tagged muons. The standalone muon reconstruction starts

from the muon spectrometer information and extrapolates it to the beam line.

The spectrometer tracks are defined in terms of five parameters, tipically evalu-

ated at the perigee, i.e. the point of maximum approach to the beam axis. These

parameters include the transverse and longitudinal impact parameters d0 and z0;

the polar and azimuthal angles θ0 and ϕ0 and the ratio of the charge to the track

momentum, q/p. The matching of the spectrometer information with the inner

detector track results in the combined muon, whereas the tagged muon recon-

struction is done from the inner detector to the muon spectrometer. For each of

these strategies, two algorithms are available: Staco [51] and Muid [52].

3.3.1 Standalone muons

The standalone muon algorithm starts by building three track segments in the

spectrometer chambers. These segments are then linked with each other to form a

track, which is then extrapolated to the perigee by the Staco or Muid algorithms.

In the Staco case, the extrapolation algorithm is called Muonboy [51], while the

Moore [53] algorithm is used on the Muid side.
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This extrapolation is done in a way in which energy losses in the calorimeter are

taken into account. The Muonboy algorithm does this correction by estimating

the amount of material crossed by the muon depending on its pseudorapidity,

while Moore also includes calorimetric measurements, in case they are larger

than the typical value for the energy loss.

Muons produced in hadron decays in the calorimeter, such as π and K decays,

are normally reconstructed in the standalone scheme. They give an estimation

of these kind of backgrounds when the matching to the inner detector case is

performed.

3.3.2 Combined muons

The matching of the standalone muons to the inner detector tracks is done by the

Staco and Muid algorithms by using the five-parameter vector (d0, z0, θ0, ϕ0, q/p)

described before. The χ2 of this matching provides a measure of the quality of

the matching procedure and it is defined as

χ2
match = (TMS −TID)T(CID + CMS)−1(TMS −TID) (3.3)

Here, T denotes the five-parameter vector expressed at the perigee, while C is

its covariance matrix. The subscripts ID and MS stand for ‘inner detector’ and

‘muon spectrometer’ respectively. While Staco does a statistical combination of

the ID and MS measurements to obtain the combined muon parameters:

T = (CID
−1 + CMS

−1)(CID
−1TID + CMS

−1TMS) (3.4)

The Muid fit accounts for the calorimetric energy losses as well as for the magnetic

field in both the calorimeter and the muon spectrometer.

3.3.3 Tagged muons

The tagged muon algorithms MuTag [51] and MuGirl [54] do the extrapolation

in opposite direction as the combined muon algorithms. Starting from all inner

detector tracks over a certain pT threshold, MuTag defines a χ2 function using the
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extrapolation of the inner detector track and any spectrometer hits in its vicinity,

while MuGirl uses a neural-network based algorithm to define a discriminant

function. If muon segments are found in the spectrometer in the surrounding

region of the extrapolated track, the tagged muon is stored.

The tagged muon reconstruction is optimised for low pT muons. Since muons

appearing in tt̄ decays have a high-pT threshold, Muid combined muons will be

used for the analysis presented here.

3.4 Jets

Jets are the main object used in the analyses presented in this work. As already

discussed in Section 1.4, jets are collimated showers of hadrons, defined in an

attempt to reconstruct the kinematic properties of the partons from which they

originated. The primary objects used in ATLAS for jet building are topological

clusters, constructed from calorimeter cells and used as input four-momenta for

the anti-kt algorithm. Then, further calibrations are needed to correct the jet en-

ergy measurement for calorimetric non-compensation and leakage, together with

other detector effects.

3.4.1 Topological clusters

The basic idea of the topological clustering algorithms [48] is to combine groups

of cells with a significant amount of energy, well above the noise threshold. It

consists on two steps: cluster making and cluster splitting.

3.4.1.1 Cluster making

The procedure to construct clusters from calorimeter cells is illustrated in Fig.

3.1, and it consists on the following steps:

• Seeding: In the first step, the seeds for the clustering algorithm are con-

structed by selecting calorimeter cells with a signal energy which is greater

than four times the RMS of the noise of that cell, |E| > 4σ, where σ takes

into account both electronic and pileup noise.
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• Adding neighbouring cells: After the seeds are selected, their neigh-

bouring cells are considered. If a neighbouring cell has not been marked as

a seed and its signal energy is greater than two times the RMS of the noise,

|E| > 2σ, they are added to the proto-cluster. If the cell is neighbouring

two proto-clusters at the same time, the two proto-clusters are merged. In

the final step, all the perimeter cells are added to the cluster, regardless of

their signal to noise ratio threshold.

• Finalize: The cluster making algorithm is finalized by removing clusters

whose total energy is smaller than a given threshold.

Figure 3.1: Sketch of the formation of a 3-dimensional topological cluster attend-
ing to the signal to noise ratio of the constituent calorimeter cells.

3.4.1.2 Cluster splitting

The second part of the clustering algorithm is designed to avoid common sit-

uations where topological clusters grow to cover large parts of the calorimeter

system. It consists on the following steps:

• Finding local maxima: Groups of cells from the topological clusters

formed following the cluster making algorithm are selected attending to the

following criteria:
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– The group of cells has E > 500 MeV.

– The energy of the group is greater than that of any other neighbouring

cell.

– The number of neighbouring cells inside the initial cluster is above a

given threshold (usually 4).

• Finding neighbours: Once a local maximum is found, a seed list contain-

ing them is constructed. The originally clustered cells surrounding each seed

are listed in a neighbour seed list and included to adjacent proto-clusters.

If a cell is included into two different proto-clusters, those two whose neigh-

bours have the largest energy will share the cell. Those sharing cells are

removed from the list of neighbours and added to a shared cell list to be

processed later. In the next iteration, the neighbour list becomes the new

seed list. The algorithm finishes when the seed list is empty.

• Shared cells: The shared cell list produced in the previous step is expanded

by adding neighbours that, being in the original cell set, have not yet been

assigned to a proto-cluster. The cells in the expanded list is then added to

the two proto-clusters which were to share the cell, with weights given by

w1 =
E1

E1 + rE2

; w2 = 1− w1; r = ed1−d2 (3.5)

Here E1 and E2 are the energies of the close-by proto-clusters and di are the

distances of the shared cells to the centroids of each proto-cluster. These

weights (which in practice are usually close to either 0 or 1) give an estimate

of the probability of the shared cell to belong to either proto-cluster.

• Finalize: Once the previous steps have been accomplished, a proto-cluster

has been formed around each local maximum. All parent clusters without

a local maxima are also added to the proto-cluster list and converted to the

final list of clusters.
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3.4.1.3 Local cluster weighting calibration (LCW)

Once the topological clusters are formed using the procedure described in the

previous sections, two possibilities exist: to use these clusters as inputs to the jet

algorithms described in Sect. 1.4.1 and then apply the jet calibration procedure

(EM clusters), or to calibrate their energy individually before any attempt to

reconstruct the jets (LCW clusters). The second procedure is called the local

cluster weighting (LCW) calibration [55, 56] and it starts with the classification

of clusters in electromagnetic or hadronic attending to their energy, depth in the

calorimeter and cell energy density. Three weights are then applied separately to

account for different effects:

• The calorimeter cells in the clusters are weighted according to the cluster

energy and the energy density of the cell. This takes into account the

response to hadrons in the calorimeter.

• The cluster is weighted according to the energy deposits in the cluster neigh-

bourhood and to the longitudinal depth of the cluster barycenter λc. This

accounts for energy deposits not contained within the cluster.

• Finally, the cluster is weighted according to its energy and the fraction of

energy in each layer of the calorimeter. This accounts for energy deposited

in the calorimeter dead material.

The depth of the cluster barycenter is characterized by the distance λc from the

front of the calorimeter to the center of the shower. The center of the shower has

spatial coordinates given by

〈xi〉 =

∑
k Ekx

(k)
i∑

k Ek
(3.6)

The index i runs over the three spatial coordinates (x, y, z), and the index k runs

over all cells within the clusters with positive energy Ek > 0. The shower axis is

then determined from the spatial correlation matrix whose elements Cij are given

by

Cij =

∑
k E

2
k(x

(k)
i − 〈xi〉)(x(k)

j − 〈xj〉)∑
k E

2
k

(3.7)
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The shower axis is the eigenvector of this matrix closest to the vector joining the

interaction point and the shower center. As before, the index k runs over all cells

with positive energy. After these weighting techniques, the resulting energy of

the clusters is compared to the energy before the weighting (EM scale). Fig. 3.2

shows the cluster average response 〈Ecalib/EEM〉 as a function of the cluster energy

and pseudorapidity for the three different weighting procedures described above

to correct for the low hadronic response, energy deposits outside the topological

cluster and non-active material in the calorimeter. The jets used for these studies

have transverse momenta above 20 GeV.

br_Cluster_emscale_E
0 1 2 3 4 5 6 7 8 9 10

〉 
E

M
-s

ca
le

/E
ca

lib
W

 E〈

1.05
1.1

1.15
1.2

1.25

1.3
1.35
1.4

ATLAS
=7 TeVsData 2010  

PYTHIA MC10

|<0.3
jet

 > 20 GeV, |y
T
LCW+JESp

 [GeV]topo-clusterE
0 1 2 3 4 5 6 7 8 9 10

D
at

a/
M

C

0.85
0.9

0.95
1

1.05
1.1

1.15 br_Cluster_emscale_E
0 1 2 3 4 5 6 7 8 9 10

〉 
E

M
-s

ca
le

/E
ca

lib

W
+

O
O

C
 E〈

1.2

1.4

1.6

1.8

2 ATLAS
=7 TeVsData 2010  

PYTHIA MC10

|<0.3
jet

 > 20 GeV, |y
T
LCW+JESp

 [GeV]topo-clusterE
0 1 2 3 4 5 6 7 8 9 10

D
at

a/
M

C

0.85
0.9

0.95
1

1.05
1.1

1.15 br_Cluster_emscale_E
0 1 2 3 4 5 6 7 8 9 10

〉 
E

M
-s

ca
le

/E
ca

lib

W
+

O
O

C
+

D
M

 E〈
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2

ATLAS
=7 TeVsData 2010  

PYTHIA MC10

|<0.3 > 20 GeV, |y
T
LCW+JESp

 [GeV]topo−clusterE
0 1 2 3 4 5 6 7 8 9 10

D
at

a/
M

C

0.85
0.9

0.95
1

1.05
1.1

1.15

br_Cluster_emscale_eta
-5 -4 -3 -2 -1 0 1 2 3 4 5

〉 
E

M
-s

ca
le

/E
ca

lib
W

 E〈

1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4 ATLAS

=7 TeVsData 2010  

PYTHIA MC10

 > 20 GeV
T
LCW+JESp

topo-cluster
η

-5 -4 -3 -2 -1 0 1 2 3 4 5

D
A

T
A

/M
C

0.97
0.98
0.99

1
1.01
1.02
1.03 br_Cluster_emscale_eta

-5 -4 -3 -2 -1 0 1 2 3 4 5

〉 
E

M
-s

ca
le

/E
ca

lib

W
+

O
O

C
 E〈

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
ATLAS

=7 TeVsData 2010  

PYTHIA MC10

 > 20 GeV
T

LCW+JESp

topo-cluster
η

-5 -4 -3 -2 -1 0 1 2 3 4 5

D
at

a/
M

C

0.97
0.98
0.99

1
1.01
1.02
1.03 -5 -4 -3 -2 -1 0 1 2 3 4 5

〉 
E

M
-s

ca
le

/E
ca

lib

W
+

O
O

C
+

D
M

 E〈 1.5

2

2.5

3

3.5
ATLAS

=7 TeVsData 2010  

PYTHIA MC10

 > 20 GeV
T

LCW+JESp

topo-cluster
η

-5 -4 -3 -2 -1 0 1 2 3 4 5

D
at

a/
M

C

0.85
0.9

0.95
1

1.05
1.1

1.15

Figure 3.2: Average value of the topocluster response 〈Ecalib/EEM〉 for hadronic
response (left column), out-of-cluster weights (center column) and dead material
weights (right column). The top row presents the results as a function of the
cluster energy for jets with |y| < 0.3, while in the bottom row results are presented
as a function of the cluster pseudorapidity [56].

The results above show that the agreement between the data and the Monte

Carlo simulation for the average cluster responses to each weighting procedure is

within 5%, and it is better for low energy and central pseudorapidity clusters.
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3.4.2 Jet calibration

Jets seeded from the EM or LCW topological clusters described above are then

reconstructed using the anti-kt sequential recombination algorithm described in

Sect. 1.4.1. Once the jets four-momenta (E, pT, η, ϕ) are reconstructed, a jet

energy calibration algorithm restores the jet energy to that of the corresponding

particle level jet. This is done following a four-step process [57]

3.4.2.1 Pileup correction

Pileup interactions, understood as multiple pp scatterings in a single bunch cross-

ing, cause the reconstructed jet to have an energy offset with respect to the parti-

cle level. A correction is derived from MC simulation as a function of the number

of primary interaction vertices NPV, which is a measure of the actual number of

collisions in a given event or in-time pileup, and the average number of interac-

tions per bunch crossing µ, which is sensitive to the so-called out-of-time pileup

corresponding to crossed signals from previous events. This observable was de-

fined in Eq. 2.3.

The pileup offset correction O is derived from a given pileup condition (N ref
PV, µ

ref)

so that O(N ref
PV, µ

ref) = 0. One can therefore expand to first order in a Taylor

series around this point and write

preco
T = ptruth

T + O(N ref
PV, µ

ref) =

ptruth
T +

(
∂O

∂NPV

(ηdet)(NPV −N ref
PV) +

∂O

∂µ
(ηdet)(µ− µref)

)
=

ptruth
T + α(ηdet)(NPV −N ref

PV) + β(ηdet)(µ− µref) (3.8)

Here ηdet is the pseudorapidity of the reconstructed jet. The coefficient α(ηdet) is

extracted from the MC simulation as the slope of the relation between preco
T and

NPV in bins of ηdet and ptruth
T . Figure 3.3 shows these relations for two different

values of the jet radius parameter R in the Monte Carlo simulation. The slope

is found to be independent of the truth jet transverse momentum due to the fact

that the pileup interactions do not depend on the hard scattering process.
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Similarly, the coefficient β(ηdet) is extracted from the MC simulation as the slope

of the linear relation between the reconstructed jet transverse momentum and the

value of µ for given values of NPV and in bins of the truth jet pT. Figure 3.4 shows

the dependence of preco
T for EM calibrated jets. Once the pileup offset correction

OEM (LCW) has been calculated for the given pileup configuration (NPV, µ) in each

event and the pseudorapidity ηdet for each jet, the jet transverse momentum is

corrected according to

pcorr
T,EM = pjet

T,EM − OEM(NPV, µ, ηdet) (3.9)

pcorr
T,LCW = pjet

T,LCW − OLCW(NPV, µ, ηdet) (3.10)

3.4.2.2 Origin correction

After the pileup offset correction has been applied to a jet, its direction in the

calorimeter is corrected so that the jet points to the primary interaction vertex

instead of to the geometrical center of the detector. The jet energy remains

unchanged in this step.

3.4.2.3 Calibration from MC simulations

The calibration of the energy of a given jet is performed by multiplying it by

simple correction factors. To this end, it is useful to define the jet response

function as

REM (LCW) =
E

EM (LCW)
reco

Etruth

(3.11)

This response function is the inverse of the correction factors, calculated for

different values of the jet energy and pseudorapidity. Figure 3.5 shows the jet

response for jets constructed from both EM and LCW clusters in the full ηdet

range of the detector.

3.4.2.4 In situ corrections

The last step of the jet calibration is performed by deriving an in situ correction

using relative calibrations between the central and forward rapidity regions. This

is referred to as the η intercalibration and it is described in Ref. [57]. The
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Figure 3.5: Average value of the jet response as a function of the pseudorapidity
|ηdet| for several values of the jet energy E for both the EM (left) and the LCW
(right) calibration schemes [57].

jet calibration is also tested in data using the jet momentum balance in several

physics processes such as Z/γ∗ + 1 jet, γ + jet and the balance between a high-pT

jet and the recoiling hadronic system.

3.4.3 Uncertainties in the JES calibration procedure

In this section, the main components of the uncertainty due to the calibration

procedure, referred to as the JES uncertainty, are described. Mainly, the uncer-

tainty is derived using in situ measurements of the jet balance in event samples

for Z/γ∗ + jet, γ + jet and inclusive jet production. For jets with pT > 1 TeV,

the uncertainty is estimated using the calorimeter response to single pions [58].

These, together with the uncertainty in the η-intercalibration mentioned above

define the baseline JES uncertainty, which is shown in Fig. 3.6 as a function of

the jet pT for both the EM+JES and the LCW+JES calibrations.

Additional uncertainties due to the different response of the calorimeter to gluon

and quark jets, and the limited knowledge of the gluon fraction in the jet sample

are also included in the total JES uncertainty. For inclusive jet events, the nomi-

nal gluon fraction is taken to be the one in the Pythia AUET2B sample, while

the uncertainty is taken to be the average difference between the gluon fractions

in the Powheg + Pythia and the Herwig++ samples. This uncertainty has
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been also derived in top quark pair events in the semileptonic decay mode, with

one W boson decaying hadronically while the other one decays to a charged lep-

ton and a neutrino. In this case, the baseline MC sample used for the evaluation

of the jet response and the gluon fraction is MC@NLO, while its uncertainty

is estimated as the difference between the gluon fractions in the AcerMC and

Powheg samples. Figure 3.7 shows the flavour uncertainties derived in both the

inclusive jet sample and in the semileptonic tt̄ event sample.
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Figure 3.6: The baseline JES uncertainty as a function of the jet pT for EM (left)
and LCW (right) jets, derived from in situ methods in jets with η = 0.5 selected
in various physics processes [57]

The uncertainties in both terms of the pileup offset correction described in Sect.

3.4.2.1 are also included in the total JES uncertainty, as well as an additional

term due to effects related to nearby jets. This is derived from the comparison

of the jet transverse momenta of a calorimeter jet and the matching track-jet

for isolated and non-isolated jets, defined as those having a jet with pT > 7 GeV

within ∆R < 2.5×R, being R the radius parameter used in the anti-kt clustering.

The uncertainty is defined from the differences in the Data and MC distributions

on the pT ratios for isolated and non-isolated, cluster-seeded and track-seeded

jets (see Ref. [57] for details).

The flavour uncertainties are derived separately for light-quark jets and b-quark

jets due to different responses in the calorimeter. Figure 3.8 shows the relative

JES uncertainty for b-jets with η = 0.5 for the EM and LCW calibrations.

63



 [GeV]jet

T
p

20 30 40 210 210×2 310 310×2

F
ra

c
ti
o
n
a
l 
J
E

S
 u

n
c
e
rt

a
in

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

Total uncertainty

 JESin situBaseline 
Flav. composition, inclusive jets
Flav. response,  inclusive jets
Pileup,  average 2011 conditions

 = 0.7R∆Close-by jet,  

ATLAS
-1 dt = 4.7 fbL = 7 TeV,    sData 2011, ∫

 correctionin situ = 0.4, EM+JES + R tAnti-k

 = 0.5η

 [GeV]jet

T
p

20 30 40 210 210×2 310 310×2

F
ra

c
ti
o
n
a
l 
J
E

S
 u

n
c
e
rt

a
in

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

Total uncertainty

 JESin situBaseline 
Flav. composition, inclusive jets
Flav. response,  inclusive jets
Pileup,  average 2011 conditions

 = 0.7R∆Close-by jet,  

ATLAS
-1 dt = 4.7 fbL = 7 TeV,    sData 2011, ∫

 correctionin situ = 0.4, LCW+JES + R tAnti-k

 = 0.5η

 [GeV]jet

T
p

20 30 40 210 210×2 310 310×2

F
ra

c
ti
o
n
a
l 
J
E

S
 u

n
c
e
rt

a
in

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

Total uncertainty

 JESin situBaseline 
 decaytFlav. composition, semileptonic t

 decaytFlav. response, semileptonic t
Pileup,  average 2011 conditions

 = 0.7R∆Close-by jet,  

ATLAS
-1 dt = 4.7 fbL = 7 TeV,    sData 2011, ∫

 correctionin situ = 0.4, EM+JES + R tAnti-k

 = 0.5η

 [GeV]jet

T
p

20 30 40 210 210×2 310 310×2

F
ra

c
ti
o
n
a
l 
J
E

S
 u

n
c
e
rt

a
in

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

Total uncertainty

 JESin situBaseline 
 decaytFlav. composition, semileptonic t

 decaytFlav. response, semileptonic t
Pileup,  average 2011 conditions

 = 0.7R∆Close-by jet,  

ATLAS
-1 dt = 4.7 fbL = 7 TeV,    sData 2011, ∫

 correctionin situ = 0.4, LCW+JES + R tAnti-k

 = 0.5η

Figure 3.7: The flavour, pileup and close-by JES uncertainties for EM (left) and
LCW (right) jets with η = 0.5 in inclusive jet (top) and tt̄ event samples as a
function of the jet pT [57]

 [GeV]jet

T
p

20 30 40 210 210×2 310 310×2

F
ra

c
ti
o
n
a
l 
J
E

S
 u

n
c
e
rt

a
in

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

Total uncertainty

 JESin situBaseline 
-JESb

Pileup,  average 2011 conditions
 = 0.7R∆Close-by jet,  

ATLAS
-1 dt = 4.7 fbL = 7 TeV,    sData 2011, ∫

 correctionin situ = 0.4, EM+JES + R tAnti-k

 = 0.5η

 [GeV]jet

T
p

20 30 40 210 210×2 310 310×2

F
ra

c
ti
o
n
a
l 
J
E

S
 u

n
c
e
rt

a
in

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

Total uncertainty

 JESin situBaseline 
-JESb

Pileup,  average 2011 conditions
 = 0.7R∆Close-by jet,  

ATLAS
-1 dt = 4.7 fbL = 7 TeV,    sData 2011, ∫

 correctionin situ = 0.4, LCW+JES + R tAnti-k

 = 0.5η

Figure 3.8: The JES uncertainty for EM (left) and LCW (right) b-quark jets with
η = 0.5 as a function of the jet transverse momentum [57]

64



3.4.4 Jet quality criteria: the good, the bad and the ugly

Jets in ATLAS do not always arise from physics interaction processes, but some-

times they can be reconstructed from detector problems such as calorimeter noise

spikes. To avoid the jets arising from undesirable detector effects, a cleaning al-

gorithm has been developed based on the following variables

• fEM: The fraction of energy in the electromagnetic calorimeter.

• fmax: Maximum energy fraction in one calorimeter layer.

• fHEC: The fraction of energy in the HEC.

• QLAr: The fraction of energy corresponding to LAr cells with a cell Q-factor

greater than 4000. The cell Q-factor measures the difference between the

measured pulse shape (a
(m)
i ) and the predicted pulse shape (a

(p)
i ) that is

used to reconstruct the cell energy. It is computed summing over samples

as Q =
∑

i

(
a

(m)
i − a(p)

i

)2

and it is stored as 16-bit integer.

• QHEC: The same as QLAr, but calculated only for the HEC.

• Eneg: The negative energy in the jet.

• tjet: The jet time, computed by averaging the cell time over energy-squared

weighted cells, i.e. tjet =
∑
i E

2
i ti∑

i E
2
i

.

• ηEM: The pseudorapidity at the EM scale, i.e. before the JES calibration.

• fch: The jet charged fraction, defined as the sum of the pT for tracks asso-

ciated to the jet divided by the calibrated jet pT.

Attending to the variables described above, jets are classified into three categories:

good, bad and ugly jets.

3.4.4.1 Bad jets

Bad jets are jets not associated to real energy deposits in the calorimeter, but

rather to hardware problems such as HEC spikes or noise bursts in the calorimeter;

LHC beam conditions or cosmic ray showers. They come in three categories:

Loose, Medium and Tight, defined in Table 3.1
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3.4.4.2 Ugly jets

Ugly jets correspond to real energy depositions in regions of the calorimeter where

the energy reconstruction is not accurate. For example, jets reconstructed in the

transition region between the barrel and the end-cap or problematic calorimeter

regions would be marked as ugly jets. More precisely, if the fraction of energy in

the tile calorimeter gap is greater than 0.5 or the energy fraction corresponding

to dead cells or receiving large corrections is greater than 0.5, the jet is marked

as ugly.

3.4.4.3 Good jets

Good jets are defined as those jets not marked as bad neither as ugly jets. There

are three different definitions of good jets, depending on wether the rejection of

bad jets is done using the loose, medium or tight sets of cuts.

3.4.5 The JVF algorithm

In order to reject jets stemming from pileup interactions, an algorithm based

on the amount of transverse momentum associated to the primary vertex has

been developed. This is called the ‘Jet Vertex Fraction’ algorithm or JVF and is

defined for each jet i and vertex j in a given event. This variable is defined as

JVF(jeti, vtxj) =

∑
k pT (trkjeti

k , vtxj)∑
n

∑
l pT (trkjeti

l , vtxn)
(3.12)

Jets arising from pileup interactions typically have low values of this variable

with respect to the primary vertex, while jets produced from the hard scattering

process point towards the primary interaction vertex and thus have high values

of JVF.

3.5 Identification of jets containing B-hadrons

A crucial goal within ATLAS is the identification of jets containing hadrons com-

posed by at least one b-quark, or simply b-tagging. This is so because of the great
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physical importance of the identification of decays such as H → bb̄, where a Higgs

boson decays into a b-quark pair, or the top quark decays into one W boson and

a b-quark, t→ Wb.

The identification of jets containing B-hadrons relies on several properties of

these jets. Due to the large lifetime τ of these hadrons, their flight distance with

respect to the primary interaction vertex can be resolved in a displaced vertex.

Additionally, the average impact parameter of the tracks within one of these jets

is greater than that of the tracks within a light jet. Figure 3.9 illustrates these

properties. Note that there is a large variety of b-tagging algorithms, each of

them with its own particularities. For this reason, this work only covers those

which will be later used for the analysis of jet shapes in tt̄ events presented in

the subsequent chapters. Figure 3.10 shows the light-jet rejection factor versus

the efficiency for some of these taggers, together with the efficiency as a function

of the jet pT.

Primary Vertex

Jet Axis

Decay Length

Track

Impact

Parameter

Secondary Vertex

Figure 3.9: Sketch of a jet containing a B-hadron, showing the largest impact
parameter of the tracks within the jet as well as the displaced secondary vertex
from the B-hadron decay.
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3.5.1 Track selection

The properties of the tracks used for b-tagging are descibed in Ref. [59]. This

selection is based on the following quality requirements for these tracks:

• At least seven precision hits (pixel or silicon micro-strip hits) on the track.

• At least two hits in the pixel detector, one or more of which must be in the

so-called B-layer, the innermost layer of the pixel tracker.

• The transverse momentum of the track must be above 1 GeV.

• The transverse impact parameter has to fulfill |d0| < 1 mm.

• The longitudinal impact parameter has to fulfill |z0| sin θ < 1.5 mm.

The tracks selected following the above criteria are then associated to jets de-

pending on their distance ∆R to the axis of a given jet. The association cut is

varied depending on the jet pT, because high-pT are more collimated, in order to

reduce tracks stemming from the underlying event or pileup interactions which

would reduce the discrimination. The cut varies from ∆R = 0.45 at 20 GeV to

0.25 for more energetic jets around 150 GeV. To avoid ambiguities, one track is

associated univocally to one jet, the one closest in ∆R.

The transverse and longitudinal impact parameters d0 and z0 of the selected

tracks are often signed. If the extrapolation of the track crosses the jet axis in

front of the primary interaction vertex, its impact parameter is considered as

positive, and otherwise negative. The discriminating variable used for b-tagging

purposes is the impact parameter significance, defined as the signed impact pa-

rameter divided by its error. Figure 3.11 shows the significances for both the

transverse and longitudinal impact parameters of tracks associated to jets.
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Figure 3.11: Data to MC comparison of the transverse impact parameter signifi-
cance (left) and the longitudinal impact parameter significance (right) for tracks
fulfilling the b-tagging quality criteria and associated to jets. The Monte Carlo
predictions are separated in jets arising from the hadronisation of light quarks
and gluons (blue), charm quarks (green) and bottom quarks (red) [59].

3.5.2 The IP3D algorithm

The IP3D algorithm uses the impact parameter information in the form of two-

dimensional histograms of the transverse significance d0/σd0 with respect to the

longitudinal significance z0/σz0 , taking advantage of the correlations between both

variables. These distributions, evaluated for both b and light-quark jets are then

smoothed and normalized to be used as inputs for the weight Wjet defined as

Wjet =

NC∑
i=1

N i
T∑

j=1

logWij =

NC∑
i=1

N i
T∑

j=1

log

(
bi(Sj)

ui(Sj)

)
(3.13)

Here, the index i runs over two different categories of tracks depending on wether

they have a shared hit with other track or not. For each track, the measured

value Sj of the impact parameter significances is compared to the probability

densities bi(Sj) and ui(Sj) for the track to be associated to a b-jet or to a light
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jet, respectively for both categories. Then, the likelihood ratio bi(Sj)/ui(Sj) is

used to define the per-jet weight in Eq. 3.13, where the index j runs over all

tracks associated to a given jet which fall in the i-th quality category. Figure

3.12 shows the resulting weight for the IP3D together with the fraction of jets

tagged by the algorithm as a function of the jet pT, for a fixed working point at

which the b-tagging efficiency is εb = 60%.
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Figure 3.12: Data to MC comparison of the IP3D weight as computed in Eq.
3.13 (left) and the fraction of jets tagged by the 60% efficiency working point of
the algorithm as a function of the jet pT (right). The Monte Carlo predictions
are separated in jets arising from the hadronisation of light quarks and gluons
(blue), charm quarks (green) and bottom quarks (red) [59].

3.5.3 The JetFitter algorithm

A different approach is followed by the JetFitter tagger [60]. This algorithm ex-

ploits the fact that hadrons containing b-quarks usually decay via the electroweak

interaction to hadrons containing c-quarks rather than to light hadrons, due to

the fact that the corresponding CKM matrix elements fulfill |Vcb| � |Vub|. The

algorithm makes use of a Kalman filter [47] to reconstruct the full decay chain

under the assumption of both secondary vertices arising from the decays of the
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B and C hadrons are aligned with respect to the position of the primary vertex.

Once the direction of the decay chain is reconstructed by the Kalman filter, the N

tracks intersecting the flight direction of the B-hadron are selected, the distances

L1, . . . , LN of the intersection points to the primary vertex are determined and

the following properties are measured:

• mdec: The invariant mass of the tracks attached to the decay chain.

• xE: The energy fraction of these tracks with respect to all the charged

particles associated to the jet.

• L/σL: The flight length significance of the weighted average vertex.

The invariant mass mdec and the energy fraction fE are shown in Fig. 3.13
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Figure 3.13: Data to MC comparison of the invariant mass of the JetFitter decay
chain (left) and of the energy fraction of the tracks intersecting the flight direction
of the B-hadron with respect to all charged particles within the jet [59].

The three variables described above are then used to define a per-jet likelihood

function of the form

Wjet =
∑
α

Cα × Pα(mdec)× Pα(xE)× Pα

(
L

σL

)
(3.14)
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where the index α runs over the three possible jet categories (light, charm and

bottom). The functions Pα(x) are the probability density functions of the jet to

be classified in these three categories given the variable x, and the coefficient Cα

represents how probable it is to find a certain topology for the flavour α. Figure

3.14 shows the resulting tagging weight for JetFitter, together with the fraction

of tagged jets as a function of the jet pT for the 60% efficiency working point.

JetFitter weight
-6 -4 -2 0 2 4 6

N
u

m
b

e
r 

o
f 

je
ts

 /
 0

.1
6

 

210

310

410

510

610

710

810
-1

 Ldt = 330pb∫
data 2011

High-performance tagger:
JetFitter

Pythia Dijet MC : light jets
Pythia Dijet MC : c jets
Pythia Dijet MC : b jets

ATLAS Preliminary

Untuned simulation & jet flavor fractions

JetFitter weight
-6 -4 -2 0 2 4 6

d
a

ta
/M

C
 r

a
tio

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

 [GeV]
T

Jet p
0 50 100 150 200 250 300 350 400 450 500

F
ra

ct
io

n
 o

f 
je

ts
 t

a
g

g
e

d
 b

y 
Je

tF
itt

e
r 

/ 
1

0
 G

e
V

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-1
 Ldt = 330pb∫

data 2011
High-performance tagger: JetFitter

Pythia Dijet MC : light jets
Pythia Dijet MC : c jets
Pythia Dijet MC : b jets

ATLAS Preliminary

Untuned simulation & jet flavor fractions

bε = 60%

 [GeV]
T

Jet p
0 100 200 300 400 500

d
a

ta
/M

C
 r

a
tio

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

Figure 3.14: Data to MC comparison of the JetFitter weight (left) and the fraction
of jets tagged by the 60% efficiency working point of the algorithm as a function
of the jet pT (right). The Monte Carlo predictions are separated in jets arising
from the hadronisation of light quarks and gluons (blue), charm quarks (green)
and bottom quarks (red) [59].

3.5.4 The JetFitterCOMBNN algorithm

The JetFitterCOMBNN algorithm, sometimes called IP3D+JetFitter [59] is based

on the combination of both the IP3D and the JetFitter taggers, together with

other variables related to the decay chain using an artificial neural network ap-

proach trained using Monte Carlo simulated samples for jets of a given flavour.

Figure 3.15 presents the tagging weight for this algorithm as well as the tag-

ging rate for the 70% efficiency working point as a function of the jet transverse
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momentum.
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Figure 3.15: Data to MC comparison of the JetFitterCOMBNN weight (left) and
the fraction of jets tagged by the 60% efficiency working point of the algorithm
as a function of the jet pT (right). The Monte Carlo predictions are separated
in jets arising from the hadronisation of light quarks and gluons (blue), charm
quarks (green) and bottom quarks (red) [59].

3.6 Missing transverse energy

Some SM particles such as neutrinos or some SUSY-predicted eigenstates such

as the neutralino are not expected to leave a physics signature in any of ATLAS

subsystems, because they interact very weakly with the matter of the detector.

However, their presence in physics events can be deduced from the fact that the

total momentum in the transverse plane has to be null due to the momentum

conservation. This can be used to define the missing transverse energy Emiss
T [61]

in events where the transverse momentum balance does not compensate. The x

and y components of the Emiss
T can be expressed as the sum of two terms, one

from the calorimeter and the other from the muon system

Emiss
x(y) = Emiss,calo

x(y) + Emiss,µ
x(y) (3.15)
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The missing transverse energy and its azimuthal angle are then defined as the

usual modulus and argument of a 2-dimensional vector

Emiss
T =

√
(Emiss

x )2 + (Emiss
y )2 (3.16)

ϕmiss = arctan

(
Emiss
y

Emiss
x

)
(3.17)

3.6.1 The calorimeter term

The calorimetric term in Eq. 3.15 is calculated from the cells forming all objects

reconstructed in the calorimeter. Therefore, it can be expressed as

Emiss,calo
x(y) = Emiss,e

x(y) + Emiss,γ
x(y) + Emiss,τ

x(y) + Emiss,jets
x(y) +

Emiss,soft
x(y) + Emiss,calo,µ

x(y) + Emiss,CellOut
x(y) (3.18)

where each term α in Eq. 3.18 is calculated as the negative sum of the x (y) com-

ponent of the calibrated cell energy inside the corresponding calorimeter objects

Emiss,α
x = −

Nα
cells∑
i=1

Ei sin θi cosϕi; Emiss,α
y = −

Nα
cells∑
i=1

Ei sin θi sinϕi (3.19)

Here, Ei is the cell energy, while θi and ϕi represent its polar and azimuthal

angles, respectively. All terms in Eq. 3.18 are defined as follows:

• Emiss,e
x(y) , Emiss,γ

x(y) and Emiss,τ
x(y) are calculated from cells inside clusters associated

to electrons, photons and hadronically decaying τ leptons, respectively.

• Emiss,jets
x(y) is calculated from cells inside clusters associated to jets with trans-

verse momentum pT > 20 GeV.

• Emiss,soft
x(y) is calculated from cells inside clusters associated to jets with trans-

verse momentum between 7 GeV and 20 GeV.

• Emiss,µ
x(y) is calculated from cells inside the cluster left by a muon in the

calorimeter (see Sect. 3.6.2).
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• Emiss,CellOut
x(y) is calculated from cells inside topological clusters which are not

associated to any other object.

3.6.2 The muon term

The calculation of the muon term in Eq. 3.15 is performed using the momenta

of muons within |η| < 2.7 in the following way

Emiss,µ
x(y) = −

Nµ∑
i=1

pµix(y) (3.20)

where the sum runs over well reconstructed muons. In the region |η| < 2.5, this

means that the spectrometer track has to be matched with an inner detector track

(combined muons, see Sect. 3.3.2). This drastically reduces the number of fake

muons (reconstructed muons not matching to a truth muon). The calorimeter

muon term in Eq. 3.18 is defined differently depending on wether the muon is

isolated or not, attending to the distance ∆R between the muon and a jet. If

∆R < 0.3, the muon is considered isolated. Otherwise, the muon is considered

as non-isolated.

• For isolated muons, the transverse momentum is determined by the combi-

nation of the two measurements by the muon spectrometer and the inner

detector. In this case, the energy lost by the muon in the calorimeter is not

added to the calorimetric term in Eq. 3.18, to avoid double counting in the

energy.

• For non-isolated muons, the energy lost in the calorimeter cannot be distin-

guished from the energy deposits from the particles inside the jet. Therefore,

the muon spectrometer track is used and the calorimeter term is added to

Eq. 3.18 [62]

For the region outside the inner detector range, 2.5 < |η| < 2.7, the muon spec-

trometer track is used and the calorimeter term is added to Eq. 3.18 accordingly.
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3.6.3 Performance in W → `ν events

In Ref. [61], the performance of this Emiss
T algorithm was investigated in terms

of Data / MC agreement in W → `ν events with one W boson decaying into a

charged lepton and a neutrino in the 2010 data sample. Figures 3.16 to 3.18 shows

the results for each of the involved terms in the missing transverse energy defini-

tion. The Monte Carlo expectations have been superimposed and normalised so

they have the same area as the histogram for data, after the expectation for each

of the signal and background samples is weighted according to its corresponding

cross section.
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Figure 3.16: The missing transverse energy Emiss
T (left) and its azimuthal angle

ϕmiss (right) as evaluated in W → eν events [61].
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Figure 3.17: Muon terms of the Emiss
T in W → µν events. Energy left in the

calorimeter by the muon (left) and the reconstructed muon term (right) [61].
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Figure 3.18: Performance in W → eν events of some of the calorimeter terms
involved in the definition of the missing transverse energy, calculated from cells
inside electron clusters (top left), jet clusters (top right), soft jet clusters (bottom
left) and clusters not associated to any object [61].
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Chapter 4

Jet shapes in tt̄ events

In this chapter, a measurement of the jet internal structure in top-quark pair

events is presented in terms of the density of transverse energy inside the jet

as a function of the distance to the jet axis, i.e. the so-called jet shapes. A

comparison is made between the jet shapes of jets originating from a b-quark and

those originating from the lighter u, d, c and s-quarks. The results obtained in

this chapter have been published by the ATLAS Collaboration in Ref. [96]

4.1 Introduction and motivation

Quarks and gluons generated in large momentum transfer interactions evolve into

hadron jets in a two step process. The first one is of a perturbative nature and

gives rise to a parton shower, while the second one is non-perturbative and is

responsible for the hadronisation. The internal structure of a jet is expected to

depend primarily on the type of parton it originated from and, to a lesser extent,

on the fragmentation. In particular, due to the different colour factors in gg and

qg QCD vertices, gluon jets are expected to be broader than quark jets. Also, due

to the dead cone effect described in section 1.7, jets induced by the hadronization

of a b-quark are expected to be broader than jets originating from lighter quarks.

For jets defined using of cone algorithms, jet shapes (see Sect. 1.6) have been

traditionally [63, 64, 65, 66, 67, 68, 20] used as a means of understanding the

metamorphosis of partons into hadrons in e+e−, ep and hadron-hadron colliders.
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Experimentally one finds that jets in e+e− and ep are narrower than those ob-

served in pp collisions and this is understood as a result of the different admixtures

of quark and gluon jets present in these different types of interactions. Further-

more, at high energies, where fragmentation effects become negligible, jet shapes

have been found to be in qualitative agreement with NLO QCD predictions and

in quantitative agreement with those including leading log corrections. Jet shapes

have been also proposed for top-tagging purposes [69] and also as a means for

new physics searches in final states with highly boosted particles [71, 72, 73].

The expectation of b-quark jets being broader than light-quark jets is supported

by observations by the CDF collaboration [70], where a comparison is presented

between jet shapes in a b-enriched sample with a purity between 20% and 30%

and an all inclusive sample where no distinction is made about its flavour or color

composition. We would like to remark that the b-jets selected in this sample come

from gluon splitting, g → bb̄ and populate a region in pT above 80 GeV, where

the b-tagger is more efficient.

The approach taken in this analysis is different, since here tt̄ final states are

considered. This final state provides a major source of b-jets, as the top quark

decays dominantly via t→ Wb. While the dileptonic sample is a clean and copi-

ous source of b-jets, the semileptonic one contains both types of b and light jets,

the latter ones being constrained by the W mass.

A comparison of the light and b-jet shapes measured in the tt̄ semileptonic de-

cays, is interesting per se in as much improves the CDF measurement to which

we referred above. Also, these data can have several other practical applications.

One of them is the determination of the b-quark mass which will be presented in

the next chapters. The analysis of this particular final state can also provide an

additional handle with which to improve the s and b-jet separation for a future

determination of the CKM matrix element |Vts| [74]. On the top of that, this

will help in tuning presently available MC for top quark pair production in a new

kinematic regime. Thus, jet shape measurements will deepen our understanding

of the tt̄ hadronic final states. This is the aim of this study.
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4.2 Monte Carlo samples

For this analysis, two main Monte Carlo samples are used. They implement

different hadronization and parton showering models. The generated events are

then processed with the ATLAS full detector simulation, based on the Geant4

software [75]. The baseline signal MC samples used here are generated with

MC@NLO [26] or Powheg [27] for the matrix element calculation, and the

parton shower and hadronization processes are generated with Herwig [24], us-

ing the parton distribution functions CTEQ6.6 [76]. Multiparton interactions

have been taken into account according to reference [25].

Additional MC samples are used to check the dependence of the jet shapes on the

hadronization model. These are generated using Powheg + Pythia [22, 27]

convoluted with the MRST2007LO* PDFs [77]. In addition, the AcerMC [78]

program interfaced to Pythia with the Perugia 2010 tune [23] is also used.

Table 4.1 summarizes the properties of these signal samples.

For the electroweak background studies, we have considered single and double vec-

tor boson production (W , Z, WW , WZ, ZZ) simulated in the Alpgen samples

[28] with the CTEQ6L PDFs [79]. The samples in which the gauge bosons are

produced in association with heavy flavour jets are also considered, removing the

overlaps between the heavy flavour samples and the standard ones. In addition,

the single top s and t-channel processes have been simulated using MC@NLO.

See tables 4.2 to 4.5 for a summary of the cross sections, filter efficiencies and

numbers of events.

Channel number Sample σ · εf (nb) Number of events
106206 TTbar McAtNlo Jimmy 175GeV 0.74× 10−1 1305569
105860 TTbar PowHeg Jimmy 5.48× 10−1 2997878
105861 TTbar PowHeg Pythia 0.79× 10−1 2994490
117240 AcerMCttbar Perugia2010 4.19× 10−2 1998585

Table 4.1: Monte Carlo signal samples used for the analysis
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Channel number Sample σ · εf (nb) Number of events
107680 AlpgenJimmyWenuNp0 pt20 6.92 3455037
107681 AlpgenJimmyWenuNp1 pt20 1.31 2499513
107681 AlpgenJimmyWenuNp2 pt20 3.78× 10−1 3768265
107682 AlpgenJimmyWenuNp3 pt20 1.02× 10−1 1009641
107683 AlpgenJimmyWenuNp4 pt20 2.57× 10−2 249869
107684 AlpgenJimmyWenuNp5 pt20 7.02× 10−3 69953
107685 AlpgenJimmyWmunuNp0 pt20 6.92 3466523
107690 AlpgenJimmyWmunuNp1 pt20 1.30 641867
107691 AlpgenJimmyWmunuNp2 pt20 3.78× 10−1 3768893
107692 AlpgenJimmyWmunuNp3 pt20 1.02× 10−1 1009589
107693 AlpgenJimmyWmunuNp4 pt20 2.56× 10−2 254879
107694 AlpgenJimmyWmunuNp5 pt20 6.99× 10−3 69958
107695 AlpgenJimmyWtaunuNp0 pt20 6.92 3416438
107700 AlpgenJimmyWtaunuNp1 pt20 1.30 641809
107701 AlpgenJimmyWtaunuNp2 pt20 3.78× 10−1 3768750
107702 AlpgenJimmyWtaunuNp3 pt20 1.02× 10−1 1009548
107703 AlpgenJimmyWtaunuNp4 pt20 2.57× 10−2 249853
107704 AlpgenJimmyWtaunuNp5 pt20 6.99× 10−3 63692
107280 AlpgenJimmyWbbFullNp0 pt20 4.73× 10−2 474933
107281 AlpgenJimmyWbbFullNp1 pt20 3.58× 10−2 204933
107282 AlpgenJimmyWbbFullNp2 pt20 1.74× 10−2 174942
107283 AlpgenJimmyWbbFullNp3 pt20 7.61× 10−3 69969
117293 AlpgenWcNp0 pt20 6.44× 10−1 6483825
117294 AlpgenWcNp1 pt20 2.05× 10−1 2069456
117295 AlpgenWcNp2 pt20 5.09× 10−2 517833
117296 AlpgenWcNp3 pt20 1.14× 10−2 114936
117297 AlpgenWcNp4 pt20 2.77× 10−3 29977
117284 AlpgenWccFullNp0 pt20 1.28× 10−1 1274737
117285 AlpgenWccFullNp1 pt20 1.05× 10−1 1049726
117286 AlpgenWccFullNp2 pt20 5.22× 10−2 524808
117287 AlpgenWccFullNp3 pt20 1.70× 10−2 33984

Table 4.2: Monte Carlo W + jets samples used for the analysis, including heavy
flavours
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Channel number Sample σ · εf (nb) Number of events
117910 st tchan enu McAtNlo Jimmy 175GeV 6.90× 10−3 89970
117911 st tchan munu McAtNlo Jimmy 175GeV 6.88× 10−3 89970
117912 st tchan taunu McAtNlo Jimmy 175GeV 6.96× 10−3 89973
117913 st schan enu McAtNlo Jimmy 175GeV 4.46× 10−4 10000
117914 st schan munu McAtNlo Jimmy 175GeV 4.44× 10−4 10000
117915 st schan taunu McAtNlo Jimmy 175GeV 4.43× 10−4 10000
117916 st Wt McAtNlo Jimmy 175GeV 1.39× 10−2 184876

Table 4.3: Monte Carlo single top samples used for the analysis, including Wt, t
and s-channels

Channel number Sample σ · εf (nb) Number of events
107650 AlpgenJimmyZeeNp0 pt20 6.70× 10−1 6612265
107651 AlpgenJimmyZeeNp1 pt20 1.34× 10−1 1333745
107652 AlpgenJimmyZeeNp2 pt20 4.07× 10−2 404873
107653 AlpgenJimmyZeeNp3 pt20 1.13× 10−2 109942
107654 AlpgenJimmyZeeNp4 pt20 2.86× 10−3 29992
107655 AlpgenJimmyZeeNp5 pt20 7.59× 10−4 8992
107660 AlpgenJimmyZmumuNp0 pt20 6.70× 10−1 6619010
107661 AlpgenJimmyZmumuNp1 pt20 1.35× 10−1 1334723
107662 AlpgenJimmyZmumuNp2 pt20 4.07× 102 403886
107663 AlpgenJimmyZmumuNp3 pt20 1.12× 10−2 109954
107664 AlpgenJimmyZmumuNp4 pt20 2.85× 10−3 29978
107665 AlpgenJimmyZmumuNp5 pt20 7.63× 10−4 9993
107670 AlpgenJimmyZtautauNp0 pt20 6.70× 10−1 6618801
107671 AlpgenJimmyZtautauNp1 pt20 1.35× 10−1 1334664
107672 AlpgenJimmyZtautauNp2 pt20 4.08× 10−2 404853
107673 AlpgenJimmyZtautauNp3 pt20 1.13× 10−2 109944
107674 AlpgenJimmyZtautauNp4 pt20 2.84× 10−3 29982
107675 AlpgenJimmyZtautauNp5 pt20 7.61× 10−4 9993
109300 AlpgenJimmyZeebbNp0 nofilter 6.57× 10−3 149971
109301 AlpgenJimmyZeebbNp1 nofilter 2.48× 10−3 99977
109302 AlpgenJimmyZeebbNp2 nofilter 8.85× 10−4 38985
109303 AlpgenJimmyZeebbNp3 nofilter 3.92× 10−4 9990
109305 AlpgenJimmyZmumubbNp0 nofilter 6.56× 10−3 149971
109306 AlpgenJimmyZmumubbNp1 nofilter 2.47× 10−3 99967
109307 AlpgenJimmyZmumubbNp2 nofilter 8.87× 10−4 39980
109308 AlpgenJimmyZmumubbNp3 nofilter 3.90× 10−4 9994
109310 AlpgenJimmyZtautaubbNp0 nofilter 6.57× 10−3 149968
109311 AlpgenJimmyZtautaubbNp1 nofilter 2.49× 10−3 98960
109312 AlpgenJimmyZtautaubbNp2 nofilter 8.93× 10−4 39978
109313 AlpgenJimmyZtautaubbNp3 nofilter 3.89× 10−4 9995

Table 4.4: Monte Carlo Z + jets samples used for the analysis, including heavy
flavours
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Channel number Sample σ · εf (nb) Number of events
107100 AlpgenJimmyWWlnulnuNp0 2.10× 10−3 49992
107101 AlpgenJimmyWWlnulnuNp1 9.96× 10−4 24997
107102 AlpgenJimmyWWlnulnuNp2 4.55× 10−4 14996
107103 AlpgenJimmyWWlnulnuNp3 1.76× 10−4 9995
107104 AlpgenJimmyWZincllNp0 6.72× 10−4 14994
107105 AlpgenJimmyWZincllNp1 4.14× 10−4 9998
107106 AlpgenJimmyWZincllNp2 2.25× 10−4 4999
107107 AlpgenJimmyWZincllNp3 9.50× 10−5 4997
107108 AlpgenJimmyZZincllNp0 5.10× 10−4 39989
107109 AlpgenJimmyZZincllNp1 2.31× 10−4 19989
107110 AlpgenJimmyZZincllNp2 8.70× 10−5 19984
107111 AlpgenJimmyZZincllNp3 3.91× 10−5 9995

Table 4.5: Monte Carlo diboson samples used for the analysis

4.3 Event selection

For this study, two samples of tt̄ events are selected. A dileptonic one, with

both W bosons decaying into leptons (e,µ), and a semileptonic one, where one W

decays into leptons and the other one into a qq̄′ pair, forming two jets (see figure

4.1). The selection criteria follow those in [80] for the dileptonic sample and [81]

for the semileptonic one. The dataset used for the analysis corresponds to 2011

ATLAS data, with a center of mass energy
√
s = 7 TeV and has an integrated

luminosity of 1.8 fb−1(up to period J). Release 16 recommendations have been

used for the analysis, and the top GoodRunsList has been used to filter the

LumiBlocks with detector or data integrity errors.

t

t̄

b

b̄

W+

W−

l+

νl

l−

ν̄l

t

t̄

b

b̄

W+

W−

l+

νl

q

q̄′

Figure 4.1: LO Feynman diagrams for gg → tt̄ in the dileptonic (left) and semilep-
tonic (right) decay modes
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4.3.1 Dileptonic sample

The dileptonic sample is selected as follows. First of all, the event is required to be

triggered by the HLT with the streams EF_e20_medium (e-channel) or EF_mu18

(µ-channel), and then the event is required to have two isolated leptons and

missing transverse energy Emiss
T from the leptonic W boson decays to an electron

(muon) and a neutrino.

To reject the non-collision background, the primary vertex is required to have

at least four tracks originating from it. The offline selection requires two iso-

lated leptons (e,µ) with ET (e) > 25 GeV and pT(µ) > 20 GeV), where ET =

Ecluster sin(θtrack). For electrons, clusters in the region |η| < 2.47 are selected,

avoiding the crack 1.37 < |η| < 1.52, and the dead region in the calorimeter due

to the LAr hardware problem affecting the 2011 data. This is done by cutting

off all electrons within this region. For muons, a certain number of hits in the

inner detector are required to have a track matched to the muon spectrometer,

which has to lie in the pseudorapidity range |η| < 2.5. At least one of the selected

leptons has to match the corresponding trigger object.

The jet selection is done by requiring at least 2 jets in the event, selected with

the anti-kt algorithm [32] with a radius R = 0.4. Their transverse momenta

have to be greater than 25 GeV and their pseudorapidity such that |η| < 2.5.

In addition, at least one of the selected jets has to be tagged with the JetFit-

terCombNN algorithm (see Sect. 3.5.4), with a cut placed in 2.4, leading to a

b-tagging efficiency of 57%.

Jets within the dead LAr region are removed, and the event is rejected if there is

a jet identified as calorimeter noise or out-of-time signal (LooseBad jets, see Sect.

3.4.4) with pT > 20 GeV. Jets overlapping with a selected electron are removed if

they are closer than ∆R = 0.2, while if a jet is closer than ∆R = 0.4 to a muon,

the muon is removed. For the missing transverse energy, a cut on Emiss
T > 60 GeV

is imposed for the ee and µµ channels. For the eµ channel, HT is required to be

greater than 130 GeV, where HT is the scalar sum of pT of all muons and jets

plus the scalar sum of the ET of all electrons in the case of the electron channels.

To reject the J/ψ and Z → `` background, the lepton pair is required to have an

invariant mass mee, mµµ greater than 15 GeV, and to lie outside of the Z mass
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window, rejecting all events where the two lepton invariant mass (for the ee and

µµ channels) satisfies

|m`` −mZ | < 10 GeV; mZ = 91 GeV (4.1)

4.3.1.1 Sample composition

The selected sample does not only contain dileptonic top events, but a set of other

background processes as W+ jets or Z+ jets, with the electroweak gauge bosons

decaying into leptons. To estimate the amount of these contaminations, Monte

Carlo datasets of all these processes are used, and the above event selection

is applied on them. The results are summarized in the following table, where

‘Other EW’ gives account for the W + jets and diboson (WW , WZ and ZZ)

contributions.

Process Expected number of events Percentage
tt̄ dileptonic 2098 94.9%

Z → `+`− + jets 9 0.4%
Z → `+`− + bb̄ 5 0.2%

Other EW (W , WW , WZ, ZZ) 4 0.2%
Single Top 95 4.3%

Total Expected 2211 100%
Total Observed 2067

Table 4.6: The expected composition of the tt̄ (dileptonic) sample

The dileptonic tt̄ events can be divided in six main groups according to the

leptons arising from the W decays, namely ee, eµ, eτ , µµ, µτ , ττ . The τ channels

represent a non negligible fraction of the total number of events, due to the decays

τ+ → `+νlν̄τ . Table 4.7 summarizes the situation for the background subtracted

sample.
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Process Expected number of events Percentage
tt̄→ e+e− 198 9.5%
tt̄→ e±µ∓ 1307 62.3%
tt̄→ µ+µ− 365 17.4%

tt̄→ e± + (τ∓ → `∓) 108 5.1%
tt̄→ µ± + (τ∓ → `∓) 112 5.3%
tt̄→ τ+τ− → `+`− 8 0.4%

Total 2098 100%

Table 4.7: The expected classification of the dileptonic sample

It can be noticed that these expected yields do not fit the expectations from the

branching fractions B(W± → `±ν) ' 11% alone. However, they respond to the

facts that the reconstruction efficiency is higher for muons than for electrons and

that the selection cuts are also different for the eµ channel than for the others,

not requiring the lepton pair to lay outside the Z mass range and not cutting on

Emiss
T , thus having a bigger acceptance for this particular channel.

4.3.2 Semileptonic sample

The selection criteria for the semileptonic sample is as follows. As above, the

event is required to be triggered by the corresponding EF streams for electrons

and muons. The offline object selection is done exactly in the same way, but

now, the event is required to have only one isolated lepton with ET > 25 GeV for

electrons and pT > 20 GeV for muons. To account for the neutrino in the leptonic

W decay, a cut is imposed on the missing transverse energy of Emiss
T > 35 GeV in

the electron channel and Emiss
T > 20 GeV in the muon channel. Moreover, if the

W transverse mass is defined as

mW
T =

√
2plTE

miss
T (1− cos ∆ϕ`ν) (4.2)

cuts of mW
T > 25 GeV are imposed in the e-channel and Emiss

T + mW
T > 60 GeV

in the µ-channel, where ∆ϕ`ν is the angle in the transverse plane between the

selected lepton and the neutrino direction, which is obtained from the components

Emiss
x and Emiss

y of the missing transverse energy.
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The jet selection is done in this case by requiring at least 4 selected jets (pT >

25 GeV and |η| < 2.5) in the final state, and at least one of them has to be tagged

as a b-jet using the JetFitterCombNN algorithm.

4.3.2.1 Sample composition

The main background contributions for the semileptonic channel are summarized

below. In this case, ‘Other EW’ includes Z + jets and diboson processes. All

backgrounds, with the exception of QCD, have been estimated using MC samples.

The multijet background has been estimated using the jet-electron method, which

quantifies the probability of a signal lepton (electron or muon) being faked by a

hadronic jet. This is done by selecting jets with a high fraction of electromagnetic

energy, which are then treated as leptons [86].

Process Expected number of events Percentage
tt̄ semileptonic 13963 77.4%

W± → `±νl + jets 559 3.1%
W± → `±νl + bb̄ 595 3.3%
W± → `±νl + cc̄ 794 4.4%
W± → `±νl + c(c̄) 361 2.0%

QCD multijet 902 5.0%
Other EW (Z, WW , WZ, ZZ) 198 1.1%

Single Top 668 3.7%
Total Expected 18040 100%
Total Observed 17019

Table 4.8: The expected composition of the tt̄ (semileptonic) sample

As in the previous case, the signal events can be divided into three main groups

according to the main lepton family including the leptonic τ decays. Table 4.9

summarizes the situation.
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Process Expected number of events Percentage
tt̄→ e± + jets 6074 43.5%
tt̄→ µ± + jets 6283 45.0%

tt̄→ τ±(→ `±) + jets 1606 11.5%
Total 13963 100%

Table 4.9: The expected classification of the semileptonic sample

The transverse momentum of the corresponding charged leptons, electrons and

muons, is shown in Fig. 4.2, compared to the MC expectations.
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Figure 4.2: The pT distributions for electrons and muons in the semileptonic
channel along with MC expectations

4.4 Jet selection

As discussed in previous sections, jets have been defined using the anti-kt algo-

rithm [32] with radius parameter R = 0.4, see [82] for more details. The input

objects to the jet algorithm, both for data and detector level simulation, are topo-

logical clusters in the calorimeter (see Sect. 3.4.1). These clusters are seeded by

calorimeter cells with |Ecell| > 4σ , with σ the RMS of the noise. Neighbouring

cells are added and clusters are formed following an iterative procedure.

Jets are calibrated using the EM+JES calibration procedure (see Sect. 3.4.2

and Refs. [56, 57]). This calibration procedure is different for b- and light jets

in as much they have different particle composition. See [82] and [84] for more
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details and for a discussion of the associated uncertainties.

In order to avoid pileup contamination in the jet samples, the jet vertex fraction,

defined as the fraction of tracks in the jet coming from the primary vertex, is

required to be |JVF| > 0.75 (see Sect. 3.4.5). This makes the average jet multi-

plicity independent of the number of vertices. The jet multiplicity obtained after

the JVF cleaning cut is shown in figure 4.3 for the semileptonic and dileptonic

channels.
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Figure 4.3: The jet multiplicities in the semileptonic (left) and dileptonic sample
(right)

Since the shape measurement is based on the energy deposits in the calorimeter,

jets which are not separated in η−ϕ by more than ∆R = 0.8, which is double the

jet radius, are discarded. This is done to take into account possible overlaps be-

tween the jet cones, which would bias the shape measurement. These overlapped

configurations are normally encountered in boosted W bosons, leading to light

jets which are not well separated. We would like to stress that this cut does not

affect much the b-jets, which coming from a massive top quark are well separated

from other jet activity, but strongly suppresses the light jet sample.

To select the b-jets, the JetFitterCombNN tagger is used with a working point

of 2.4. This leads to a b-tagging efficiency of 57%, while significantly reducing

the light jet background. All the Monte Carlo distributions shown in this chapter

are pileup reweighted, in order to fit the distributions for the average number of

interactions per bunch crossing in data and MC.

Additional scale factors (SF) are applied to make the Monte Carlo b-tagging effi-
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ciency agree with that of the data, and they are also applied to light-jets (which

are required to be anti-tagged) to correct for the inefficiencies. The scale factors

are provided by the b-tagging group depending on each jet pseudorapidity and

transverse momentum such that for each event, a weight w is calculated as the

product of all the b-tagged jets weights times the anti-tagged weights.

w =

Njets∏
i=1

wjet
i (4.3)

The jet-by-jet scale factors, as provided by the b-tagging working group for the

configuration used here (JetFitterCombNN with ε = 57%), together with

their uncertainties, are summarized in table 4.10 for b-jets (efficiency SF) and

tables 4.11 and 4.12 for light jets (inefficiency SF) in the central and forward

regions of the detector.

pT range Scale Factor Uncertainty
20 GeV < pT < 30 GeV 0.870 0.081
30 GeV < pT < 60 GeV 0.938 0.077
60 GeV < pT < 90 GeV 0.941 0.138
90 GeV < pT < 140 GeV 0.868 0.010
140 GeV < pT < 200 GeV 0.868 0.162

Table 4.10: b-tagging efficiency scale factors for b-jets

pT range Scale Factor Uncertainty
20 GeV < pT < 25 GeV 1.338 0.281
25 GeV < pT < 40 GeV 0.976 0.227
40 GeV < pT < 60 GeV 1.096 0.225
60 GeV < pT < 90 GeV 1.119 0.305
90 GeV < pT < 140 GeV 0.944 0.306
140 GeV < pT < 200 GeV 1.291 0.582
200 GeV < pT < 300 GeV 0.967 0.538
300 GeV < pT < 500 GeV 1.108 0.517

Table 4.11: b-tagging inefficiency scale factors for light-jets in the central region
|η| < 1.2
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pT range Scale Factor Uncertainty
20 GeV < pT < 25 GeV 1.046 0.230
25 GeV < pT < 40 GeV 1.295 0.311
40 GeV < pT < 60 GeV 1.102 0.377
60 GeV < pT < 90 GeV 0.774 0.237
90 GeV < pT < 140 GeV 1.098 0.322
140 GeV < pT < 200 GeV 1.182 0.574
200 GeV < pT < 300 GeV 1.282 0.577
300 GeV < pT < 500 GeV 1.039 0.299

Table 4.12: b-tagging inefficiency scale factors for light-jets in the forward region
1.2 < |η| < 2.5

The JVF and JetFitterCombNN distributions are shown in figure 4.4.
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Figure 4.4: JVF and JetFitterCombNN distributions for the semileptonic
sample

4.4.1 b-jet samples

To select the b-jet samples, the recommended cut JetFitterCombNN > 2.4 is

used. This cut is tuned to achieve an efficiency εb = 57% and a rejection factor

of about 500 [85, 89]. The b-tagging algorithm has additional operating points

tuned at b-tagging efficiencies of 70% and 80%, leading to light quark rejection

factors of 100 and 30 approx. Choosing an operating point other than that at 2.4

results in slightly different purities for both the b- and light-jet samples. This is
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discussed further in Sect. 4.8.3

The purity of the b-jet samples is defined as the number of selected jets which

are really b-jets over the total number of jets in the sample. It will be shown in

the following sections that the purity achieved using this b-tagging algorithm in

this b-enriched final state is nearly 90% for the semileptonic sample and is well

over this number for the dileptonic one.

The resulting number of b-jets selected in the dileptonic (semileptonic) sample is

2279 (resp. 16735). Figure 4.5 shows the b-jet transverse momentum distributions

for the dileptonic and semileptonic channels.
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Figure 4.5: The pT distributions for b-jets in the dileptonic (left) and the semilep-
tonic (right) samples along with MC expectations

The following comment is in order: The pT distributions for the b-jets in both

the dileptonic and semileptonic samples show a similar behaviour, as expected

since they all come from top quark decays. In the kinematic range relevant for

this study, they show a fall-off of about 2 orders of magnitude. This is in good

agreement with the Monte Carlo expectations as obtained from the MC@NLO

generator coupled to the Herwig fragmentation, as also shown in figures 4.5.

We also would like to note that the dileptonic sample is less affected by the back-

ground contamination than the semileptonic one, as it has been quantitatively

shown in tables 4.6 and 4.8. In particular, the QCD background is expected to
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be negligible.

4.4.2 Light jet sample

The hadronic decays W → qq̄′ are a clean source of light quark induced jets,

as gluons and b-jets are very supressed. The former because gluons would have

to come from radiative corrections of order O(αs), and the latter because of the

smallness of the CKM matrix elements |Vub| and |Vcb|. To define the light jet

sample, the jet pair in the event which has the closest invariant mass to the

nominal mass mW = 80.4 GeV is selected. This pair of jets is also required

to be anti-tagged by the JetFitterCombNN algorithm. The number of jets

satisfying these criteria is 8376. Figure 4.6 shows the transverse momentum

distribution of these jets and the invariant mass of the light-jet pair.
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Figure 4.6: The pT and invariant mass distributions for the light-jet pair along
with MC expectations

The pT distribution of the light jets coming from W decays exhibit a stronger

fall-off than those for the b-jets which were discussed in subsection 4.4.1. This

dependence is again in very good agreement with the Monte Carlo expectations.

Analogously to the b-jet sample, the light jet purity is defined as the fraction of

truth light jets (including u, d, c, s) selected in the light-jet sample. The result is

p
(l)
s = 66.16%. This purity can be raised to 83% by demanding two b-tagged jets

instead of one, but at the price of reducing the statistics by a factor of 4.
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4.4.3 Jet purities

To estimate the number of fake light or b-jets which have been selected using the

above criteria, the truth Monte Carlo information is used. For b-jets, the truth

flavor is known via a ∆R < 0.2 matching with a B-hadron. For light jets, it

is demanded that the parton with highest pT within the jet is a light (u, d, c, s)

quark. The purity is then defined as

p =
∑
k

αkpk; pk = 1−
N

(k)
f

N
(k)
T

(4.4)

where αk is the proportion of events in the k-th MC sample (signal or back-

ground), given in tables 4.6 and 4.8 and N
(k)
f , N

(k)
T are the number of fakes and

the total number of jets in a given sample, respectively.

The calculation for the dileptonic sample is summarized in table 4.13. The con-

tamination in the b-jet sample, as shown in table 4.14, is dominated by light-jet

fakes, with the gluon contamination being below 1%. For the light jet sample,

the fraction of gluon fakes amounts to 19.42%, while the b-jet fakes correspond

to 15%.

As stated in the tables below, the result for the dileptonic channel is p
(b)
d =

99.27%, whereas for the semileptonic channel the purity is found to be p
(b)
s =

88.5%. It is important to note that the purity achieved using top events is much

larger than that in inclusive measurements at Tevatron and the LHC [70, 84].

Process αk pk (b-jets)
tt̄ dileptonic 0.9490 0.9971

Z → `+`− + jets 0.0039 0.2467
Z → `+`− + bb̄ 0.0022 0.9913

Other (W,WW,WZ,ZZ) 0.0016 0.3752
Single Top 0.0433 0.9870

Weighted total - 99.27%

Table 4.13: Coefficients for the purity calculation in the dileptonic channel using
equation 4.4
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Process αk pk (b-jets) pk (light jets)
tt̄ semileptonic 0.7741 0.9606 0.7248

W± → `±νl + jets 0.0309 0.4803 0.3626
W± → `±νl + bb̄ 0.0326 0.9577 0.2989
W± → `±νl + cc̄ 0.0438 0.1389 0.4437
W± → `±νl + c(c̄) 0.0204 0.1301 0.2746

QCD multijet 0.0502 0.8869 0.4853
Z → `+`− + jets 0.0052 0.2326 0.3313
Z → `+`− + bb̄ 0.0055 0.9776 0.3429

Diboson (WW,WZ,ZZ) 0.0005 0.5181 0.4470
Single Top 0.0368 0.9577 0.7158

Weighted total - 88.50% 66.16%

Table 4.14: Coefficients for the purity calculation in the semileptonic channel
using equation 4.4

4.5 Jet shapes in the semileptonic channel

Jets are based on calorimetric measurements. The electromagnetic read-out cells

have a granularity of typically ∆η×∆ϕ = 0.025×0.025 at shower maximum, while

hadronic cells have a granularity of ∆η×∆ϕ = 0.1×0.1. Topological clusters are

built around seed calorimeter cells with energy deposition larger than four times

the r.m.s. of the noise energy distribution. In the iterative procees underlying

the jet definition, cells with energy larger than twice the r.m.s. of the noise are

considered. For the jet samples studied in this work, the jet axis resolution is

0.02 in η and 0.025 in ϕ.

The differential jet shape ρ(r) in an annulus of inner radius r −∆r/2 and outer

radius r + ∆r/2 from the axis of a given jet is defined as

ρ(r) =
1

∆r

pT(r −∆r/2, r + ∆r/2)

pT(0, R)
; r ≤ R (4.5)

where pT(r1, r2) is the scalar sum of the pT of the clusters in the annulus with

radii r1 and r2. The distributions for ρ(r) for several values of the jet internal

radius are shown in figure 4.7 for the b-jet sample.
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Figure 4.7: ρ(r) distributions for b-jets along with MC expectations

As it is seen, the values for ρ(r) decrease as r is increased, being well peaked at

0, which indicates that the majority of the energy is deposited at low values of r,

that is, in the internal parts of the jet cone. In a similar manner, the distributions

for ρ(r) in the light-jet sample are shown in figure 4.8
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Figure 4.8: ρ(r) distributions for light jets along with MC expectations

Alternatively, the integrated jet shape in a cone of radius r ≤ R (here R =

0.4 is used) around the jet axis is defined as the cumulative distribution of the

differential jet shape, i.e.

Ψ(r) =
pT(0, r)

pT(0, R)
; r ≤ R (4.6)

which satisfies Ψ(r = R) = 1. The distributions for Ψ(r) in steps of δr = 0.04

are shown in figure 4.9 for the b-jet sample selected in the semileptonic channel
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Figure 4.9: Ψ(r) distributions for b-jets along with MC expectations

The following comments are in order: As r increases, the distributions for Ψ(r)

shrinks to values closer to the upper limit of 1, and for low values of r, the

distributions show a very strong peak at the lower limit of 0 (note the logarithmic

scale). Both of these effects are fairly well reproduced by the Monte Carlo, though

some small discrepancies are observed, mostly at the kinematical ends.

Analogously, the Ψ(r) distributions for light jets are shown in figure 4.10.
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Figure 4.10: Ψ(r) distributions for light jets along with MC expectations

In the following, the mean values of these distributions will be used

〈ρ(r)〉 =
1

∆r

1

Njet

∑
jets

pT(r −∆r/2, r + ∆r/2)

pT(0, R)
; 〈Ψ(r)〉 =

1

Njet

∑
jets

pT(0, r)

pT(0, R)

(4.7)

where the sum is performed over all jets of a given sample, light (l) or b-jets

(b) and Njet is its number of elements. The crucial observation will be that

〈Ψ(r)〉b < 〈Ψ(r)〉l, as will be seen in more detail in the following sections.
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4.5.1 Shape dependence on pseudorapidity

In this section the dependence of the integrated shape with the jet pseudorapidity

is studied. To do this, the jets are classified in pseudorapidity bins, and for each

of them the mean value of Ψ(r) is plotted against r. From now on, to avoid

fluctuations due to limited statistics in the tail of the pT distributions, the range

30 GeV < pT < 200 GeV will be considered. The results are shown in figure 4.11.
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Figure 4.11: Ψ(r) dependence with radius for |η| < 2.5 along with MC expecta-
tions
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We want to remark that for every bin in pseudorapidity, the b-jet shapes are wider

than the light jets, as discussed in the previous subsection. It is also important to

note that the differences between b-jets and light jets are less pronounced when

integrated over pT due to the fact that the transverse spectra are different for

both samples.

Moreover, these plots are very similar to each other, which leads us to think

that the jet shape dependence on pseudorapidity is very weak. To quantify this

dependence, the mean value of the variable 1−Ψ(r = 0.2), which is the fraction

of energy in the outer half cone of the jet, is plotted versus the absolute value of

the pseudorapidity. Figure 4.12 shows the dependence of this variable with |η|,
which is found to be flat, in agreement with the Monte Carlo expectations. This

has also been observed in [63, 64, 65, 66, 67, 68, 20, 70].
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Figure 4.12: Shape dependence on pseudorapidity along with MC expectations

4.5.2 Shape dependence on transverse momentum

Once the dependence with pseudorapidity is clear, one can study the dependence

of Ψ(r) with the jet transverse momentum. To do this, the same procedure as

in the previous subsection is followed, dividing the jet pT spectra into bins and

plotting the average value of Ψ(r) versus r, separately for each bin, as shown in

figure 4.13.

103



r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

 (
r)

 >
Ψ

<
 

0

0.2

0.4

0.6

0.8

1

b­jet MC

b­jet data

light jet MC

light jet data

 < 40 GeV
T

30 GeV < p

 

r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

 (
r)

 >
Ψ

<
 

0

0.2

0.4

0.6

0.8

1

b­jet MC

b­jet data

light jet MC

light jet data

 < 50 GeV
T

40 GeV < p

 

r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

 (
r)

 >
Ψ

<
 

0

0.2

0.4

0.6

0.8

1

b­jet MC

b­jet data

light jet MC

light jet data

 < 70 GeV
T

50 GeV < p

 

r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

 (
r)

 >
Ψ

<
 

0

0.2

0.4

0.6

0.8

1

b­jet MC

b­jet data

light jet MC

light jet data

 < 100 GeV
T

70 GeV < p

 

r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

 (
r)

 >
Ψ

<
 

0

0.2

0.4

0.6

0.8

1

b­jet MC

b­jet data

light jet MC

light jet data

 < 150 GeV
T

100 GeV < p

 

r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

 (
r)

 >
Ψ

<
 

0

0.2

0.4

0.6

0.8

1

b­jet MC

b­jet data

light jet MC

light jet data

 < 200 GeV
T

150 GeV < p

 

Figure 4.13: Ψ(r) dependence with the jet internal radius in pT bins along with
MC expectations

Again, we would like to stress that 〈Ψ(r)〉b < 〈Ψ(r)〉l for each bin in pT [70].

Of course, the difference is more clearly seen for r values smaller than 0.12.
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Moreover, it is also observed that the jets are becoming more collimated as pT

increases. To quantify this effect, the variable 1−Ψ(r = 0.2) is again used. The

result is that Ψ(r) is very sensitive to the jet momentum scale, as also reported

in [63, 64, 65, 66, 67, 68, 20, 70], as it can be seen in figure 4.14 for the light and

b-jet samples. The agreement with the Monte Carlo expectations is good for the

light jets, and fair for the b-jets.
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Figure 4.14: The pT dependence of the jet shapes of the light and b-jet shapes
along with MC expectations

In order to make clearer the statement that b-jets have wider energy distributions

inside the jet cones, the radius r1/2 is calculated. This is the value of r at which

the energy flow is 50% of the total, i.e. Ψ(r1/2) = 0.5. To do this, the plots

above are interpolated using the cubic splines method, dividing the full range in

104 subranges and finding the point in this grid for which the function f(r) =

Ψ(r)− 1/2 changes sign. The result is, as expected, that r1/2 is greater for b-jets

than for light jets. Figure 4.15 shows the running of r1/2 with the jet transverse

momentum and pseudorapidity.
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Figure 4.15: The radius r1/2 as a function of the jet transverse momentum (left)
and pseudorapidity (right)

Results show that r1/2 is very dependent with the jet pT and not much dependent

with η. However, the dependence of r1/2 with the pseudorapidity is not negligible

in this case, as it was for Ψ(r) versus η.

4.6 Jet shapes in the dileptonic channel

In order to cross check the results discussed above, a sample of tt̄ events in the

dileptonic channel is selected according to the method described in section 4.3.1.

Here both W bosons decay in the W → `ν channel. The jet sample is selected

following the same procedure as in the semileptonic channel: jets are required to

have pT > 30 GeV and those with an overlap below ∆R = 0.8 are removed. Figure

4.16 shows the profiles of the b-jet shapes for the dileptonic sample compared to

those for the light jets in the semileptonic channel.
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Figure 4.16: Jet shapes for 30 GeV < pT < 200 GeV in the dileptonic channel
along with MC expectations

The results obtained are compatible with the ones discussed in the previous sec-

tion, thus confirming the observation that b-jets are wider than light ones. In

order to compare the shapes between the selected b-jets in both samples, the
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ratio αds is defined between the average b-jet shapes in the dileptonic (d) and the

semileptonic (s) samples, i.e.

αds(r) =
〈Ψb(r)〉d
〈Ψb(r)〉s

(4.8)

Figure 4.17 shows the ratio αds as a function of the jet internal radius
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Figure 4.17: Comparison between b-jet samples from dileptonic and semileptonic
tt̄ events along with MC expectations
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4.7 Results at the detector level

Once it has been proved that the b-jets from the dileptonic and the semileptonic

channel are compatible, they can be added in a single sample. The results for

the differential jet shape at the detector level are shown in figure 4.18, together

with the MC expectations from the reference generators discussed before. As it

is seen, the differential jet shapes are fairly well described by the MC samples.
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Figure 4.18: Differential jet shapes at the detector level.
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The results for the integrated jet shapes at the detector level are summarized in

figure 4.19.
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Figure 4.19: Integrated jet shapes at the detector level.
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4.8 Systematic uncertainties and stability checks

In this section, an estimation of some systematic uncertainties due to biases

induced by b-tagging cuts or jet purity is presented. It is observed that the

dominant effects (Jet energy scale & resolution) do not go beyond 10% in most

bins.

4.8.1 Jet Energy Scale

The propagation of the jet energy scale uncertainty [56, 57] to the jet shape

systematic uncertainty is discussed in this section. To study this effect, the jet

energy and transverse momentum are shifted by quantities ∆+ and ∆− in the

MC samples and before the event selection. Figure 4.20 shows the shifted pT

distributions for light and b-jets. Just in this case and for illustrative reasons,

jets with pT > 200 GeV are also considered.
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Figure 4.20: JES-shifted pT distributions for light and b-jets

This shift leads to asymetric uncertainties in the jet shape Ψ(r) due to the fact

that the number of jets is increased (decreased) differently as the jet pT is shifted

up (down) in to the jet selection criteria. An additional JES uncertainty affecting

only b-jets (bJES) is added in quadrature to the nominal JES uncertainty for jets

with true b-flavour. JES is the dominant systematic uncertainty for b-jets, not

representing more than 10% in any case.
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4.8.2 Jet Energy Resolution

The jet energy resolution in the ATLAS calorimeter is given by

σpT
pT

=
N

pT
⊕ S√

pT
⊕ C (4.9)

Where N, S and C are the noise, stochastic and constant terms. To compute

the uncertainty due to the effect of the jet resolution, the jet energy and trans-

verse momentum are smeared by convoluting these distributions with a gaussian

N(1, σ) with σ a standard deviation depending on the jet pT and pseudorapidity

[83]. The effect on the transverse momentum distributions can be seen in figure

4.21
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Figure 4.21: JER-smeared pT distributions for light and b-jets

This smearing is then propagated to the jet shapes, and added in quadrature

to the JES uncertainty in order to present both of them as a unique source of

systematic error.
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4.8.3 Bias due to jet purity

4.8.3.1 b-jets

This section contains an estimation of the bias induced in the b-jet sample by

cutting on JetFitterCombNN > 2.4. To study this effect, Monte Carlo b-

jets, for which the truth flavour is known, are selected. The differences with the

jets tagged by the b-tagging algorithm are studied. The JetFitterCombNN

variable does not depend much on the jet pT , as can be seen in figure 4.22, as

well as its dependence with the number of primary vertices.
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Figure 4.22: The JetFitterCombNN variable dependence with the jet pT (left)
and the number of primary vertices (right) for the b-jet sample

The analysis has been repeated using the working point JetFitterCombNN

> 0.35, yielding a b-tagging efficiency of 70% and purities of 82% for b-jets and

67% for light jets. The relative difference γ
(ρ)
l,b (r) defined, for light and b-jet

differential jet shapes as

γ
(ρ)
l,b (r) =

〈ρl,b(ε = 70%)〉 − 〈ρl,b(ε = 57%)〉
〈ρl,b(ε = 57%)〉 (4.10)

is shown in figure 4.23 for b-jets.
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Figure 4.23: Relative differences on differential b-jet shapes due to the variation
of the b-tagger working point

As one can see, the values of γ(r) are compatible with 0, mod. the statistical error.

Analogously, one can study the differences due to this effect in the integrated jet

shapes by defining γ(Ψ)(r) in an equivalent way. Figure 4.24 shows this relative

difference for b-jets.
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Figure 4.24: Relative differences on integrated b-jet shapes due to the variation
of the b-tagger working point

As for the differential case, the values of γ(Ψ)(r) are compatible with 0 in each

and every bin, mod. the statistical error. This effect is taken into account by the

unfolding, as the effects due to purity are corrected as a detector effect.
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4.8.3.2 Light jets

For light jets, the bias associated to the purity comes from two sources, either b or

gluon jets. The first is due to inefficiencies in the anti-tagging requirement, while

gluon jets are produced from initial and final state radiation. A simple way to

estimate the uncertainty associated to the light jet purity is to compare the light

jet shapes obtained in the sample with one b-tagged jet, with those obtained when

demanding two b-tagged jets, which increases the purity of the light jet sample

to 82.5%. Figure 4.25 shows the relative difference β(r) =
Ψ

(p2)
l (r)−Ψ

(p1)
l (r)
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Figure 4.25: Comparison between light jet samples with one and with two b-
tagged jets
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It can be seen that in all cases β(r) > 0, which is consistent with the fact that

as the light jet purity is increased, the shape is increased too. Unfortunately

demanding two b-tagged jets reduces the statistics by roughly a factor of four

and β(r) shows large statistical errors at small r values. Analogously to the case

of b-jets, the differences in the light jet shapes coming from the variation of the

b-tagger working point can be estimated. Figure 4.26 and 4.27 show the relative

variations (eq. 4.4) for the differential and integrated jet shapes due to this effect.
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Figure 4.26: Relative differences for differential light jet shapes due to the varia-
tion of the b-tagger working point
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Similarly, the relative differences for Ψ are shown below
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Figure 4.27: Relative differences for integrated light jet shapes due to the variation
of the b-tagger working point

4.8.4 Bias due to the cut in ∆R

In this section, the possible bias due to the cut ∆R > 0.8, between the selected jets

and any other jet, is studied. To do this, the analysis is repeated using a slightly

different cut, ∆R > 1.0, and check the effect of this change. As done before, the
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relative difference between both, defined as λl,b(r) =
〈Ψl,b(∆Rm=1.0)〉−〈Ψl,b(∆Rm=0.8)〉

〈Ψl,b(∆Rm=0.8)〉 ,

is shown in figure 4.28 for b-jets.
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Figure 4.28: Relative differences on b-jet shapes due to the variation of the ∆R
cut between jets
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In the same manner, the results for light jets are shown in figure 4.29
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Figure 4.29: Relative differences on light jet shapes due to the variation of the
∆R cut between jets

4.8.5 In-time pileup dependence

In order to estimate the dependence of Ψ(r) with the number of in-time pileup

interactions, the mean value of the variable 1 − Ψ(r) is plotted for r = 0.04
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and r = 0.20, for both the light and b-jet samples as a function of the number

of primary vertices. The result is that jets get wider as the number of primary

vertices increases, due to the fact that pileup introduces a constant energy density

term in the {η, ϕ} plane. Figures 4.30 and 4.31 show the dependence of 1−Ψ(r =

0.04) and 1−Ψ(r = 0.20) with the number of primary vertices, respectively.
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Figure 4.30: Shape (r = 0.04) dependence with the number of primary vertices
along with MC expectations
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Figure 4.31: Shape (r = 0.20) dependence with the number of primary vertices
along with MC expectations

This is fairly well reproduced by the Monte Carlo expectations. Notice that the

dependence on the number of primary vertices is rather small for small values of r,

and very similar for both light and b-jets, thus not affecting the main conclusions

of this study.
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4.8.6 Bias induced by JVF cuts

The bias induced by the cut |JVF| > 0.75 is estimated in this section. Plots in

figure 4.32 show the dependence of 1−Ψ(r = 0.20) with the JVF variable, which

is weak and the same for light and b-jets.
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Figure 4.32: Shape (r = 0.20) dependence with the jet JVF for light and b-jets
along with MC expectations

To estimate the JVF uncertainty, the JVF cut is switched ON and OFF and the

differences are studied. They are not greater than 5%.

4.8.7 Cluster Energy Scale

Jet shapes are calculated using locally calibrated TopoClusters associated to jets.

These clusters have an uncertainty in both energy and transverse momentum

which depends on the transverse momentum. To take this into account [20] the

transverse momentum has been varied up and down using the formula

p′T = pT

[
1± 0.05

(
1 +

1.5 GeV

pT

)]
(4.11)

For illustrative reasons, figure 4.33 (left) shows the shifted and unshifted trans-

verse momentum of the individual cluster constituents of b-jets. The impact of

these shifts on the measured jet shapes varies from 2% to 10% as one approaches

the edge of the jets.
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4.8.8 Cluster Angular Resolution

The angular coordinates η and ϕ of individual clusters have been individually

smeared using a gaussian with an RMS of 5 mrad, according to the studies per-

formed in [93] using track to cluster extrapolation.

η′ = η +N(0, 0.005) (4.12)

ϕ′ = ϕ+N(0, 0.005) (4.13)

The impact on the jet shapes has been evaluated, and the influence has been

found to be smaller than 1% in most cases. In figure 4.33 (right) shows the

gaussian used for the smearing.
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Figure 4.33: pT distributions of the individual clusters before and after the scaling
(left) and gaussian used for angular smearing (right)

4.8.9 Detector Dead Material

The uncertainty associated to the probability of energy losses due to dead material

in the calorimeter is taken into account by discarding a fraction of low energy

clusters (E < 2.5 GeV) using the algorithm described below as a result of the

studies carried out in [94]. Clusters inside the jets are discarded if the condition

r ≤ P(E = 0)× e−2E (4.14)
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is fulfilled, where r ∈ [0, 1] is a random number satisfying a uniform distribution,

P(E = 0) is the measured probability (28%) of a particle leaving a track and zero

energy in the calorimeter, and E is the cluster energy. As a result, approximately

6% of the total number of clusters is dropped from the reconstruction. The impact

of this cluster-dropping algorithm in the measured jet shapes is smaller than 2%,

and increases as r is increased, being more important for low energy clusters close

to the edge of the jets. This uncertainty, added in quadrature to the cluster energy

scale and angular resolution is presented as the cluster reconstruction uncertainty

in further discussions.

4.9 Unfolding method

In order to correct the data for acceptance and detector effects, thus enabling

comparisons with different models, two alternative correction procedures are fol-

lowed: a bin-by-bin unfolding for the average differential and integrated jet shapes

i.e. 〈ρ(r)〉 and 〈Ψ(r)〉, and a Bayesian approach where the ρ(r) and Ψ(r) dis-

tributions themselves are unfolded, and from these unfolded distributions their

average values are determined.

In the first approach, correction factors F (r) are calculated separately for differ-

ential, 〈ρ(r)〉, and integrated, 〈Ψ(r)〉, jet shapes in both light- and b-jet samples.

They are defined as the ratio between the particle and detector level quantities

as described by the MC generators discussed in section 4.2, i.e.

F ρ
l,b(r) =

〈ρ(r)l,b〉MC,part

〈ρ(r)l,b〉MC,det

(4.15)

FΨ
l,b(r) =

〈Ψ(r)l,b〉MC,part

〈Ψ(r)l,b〉MC,det

(4.16)

The particle level values are calculated using particle level jets with the kinematic

requirements described in Sec. 4.4. These jets are built using all particles with a

lifetime above 10−11s, excluding muons and neutrinos. For particle level b-jets, a

B-hadron with pT > 5 GeV is required to be closer than ∆R < 0.3 from the jet

axis, while for light-jets, an equivalent selection to that of the detector level jets

is applied, selecting the non-b-jet pair with closest invariant mass to mW .
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4.9.1 Correction factors

The correction factors for the differential b and light-jet shapes as a function of

the internal radius r are shown in Fig. 4.34 and 4.35 respectively. They depend

mildly on the fragmentation model used.
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Figure 4.34: Correction factors for differential jet shapes in the b-jet sample
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Figure 4.35: Correction factors for differential jet shapes in the light-jet sample

In a similar manner, the correction factors for the integrated jet shapes in the b

and light-jet samples are shown here. In this case, they are defined as the ratio

between the average values of Ψ(r) at hadron level and detector level. Figures

4.36 and 4.37 show these coefficients for the b and light-jet sample respectively.
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Figure 4.36: Correction factors for integrated jet shapes in the b-jet sample
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Figure 4.37: Correction factors for integrated jet shapes in the light jet sample
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4.9.2 Unfolding of uncertainties

The main systematic uncertainties studied in the previous section are now propa-

gated to the hadron level distributions via the unfolding procedure. This is done

by shifting the nominal Monte Carlo distributions at the detector level by one

standard deviation σi for each source of uncertainty and correcting the shifted

distributions using the same factors used to correct the detector data. This is

done for each source separately, except for the bias due to the purity, as this

is already taken into account by the unfolding method. An additional source

of systematic uncertainty for the bin-by-bin unfolding procedure arises from the

different hadronisation models used for the calculation of the correction factors.

4.9.3 Total uncertainties

Every source of systematic uncertainty discussed in this and the preceding sec-

tions, is then unfolded and added in quadrature to obtain the total systematic

uncertainty at hadron level. Figure 4.38 shows the main sources of systematic

uncertainties for b-jet differential shapes, while figure 4.39 shows the analogous

for light jets. The relative systematic uncertainties for differential jet shapes in

the b-jet sample are summarized in tables 4.15 to 4.20 for each pT bin. Similarly,

the uncertainties for the differential shapes in the light jet sample are shown in

tables 4.21 to 4.26
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Figure 4.38: Main sources of systematic uncertainties for ρb(r)
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Figure 4.39: Main sources of systematic uncertainties for ρl(r)
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The systematic uncertainties for the integrated jet shapes have also been calcu-

lated. The relative values are shown in figures 4.40 and 4.41 for b and light-jets,

respectively.
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Figure 4.40: Main sources of systematic uncertainties for b-jets
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Figure 4.41: Main sources of systematic uncertainties for light jets

These plots show that the dominant sources of uncertainty are the jet energy scale

and resolution. The latter uncertainties could go beyond 5% at large transverse

momenta. In any case, these systematic uncertainties are not large enough so

133



as to preempt the observation that b-jets are wider than light jets over a large

kinematical range. The numerical values for the relative systematic uncertainties

on the integrated jet shapes for the b-jet sample are shown in tables 4.27 to 4.32.

Finally, the systematic uncertainties on the integrated jet shapes for the light jet

sample are shown in tables 4.33 to 4.38.
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4.9.4 Cross-checks to the unfolding method

In order to study the stability of the unfolding method, two additional checks

have been performed. On the one hand, an iterative bayesian unfolding is carried

out, and on the other, the directly unfolded integrated jet shapes are compared

with the ones obtained from the unfolded differential distributions.

4.9.4.1 Bayesian unfolding

An iterative Bayesian unfolding has been performed directly on the pT-binned ρ(r)

and Ψ(r) distributions for all values of r using RooUnfold [92]. This is done

to take into account possible migrations between the bins of these distributions.

As an example, figure 4.42 shows the unfolded data distributions, together with

the particle level MC, of ρ(r) in the first r bin and for the two first pT bins for

both b- and light-jets.
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Figure 4.42: Unfolded ρ(r = 0.02) distributions for b- and light-jets with
30 GeV < pT < 50 GeV using the Bayesian approach.
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After the 120 distributions for b- and light-jets for each r and pT bin are unfolded,

their mean values 〈ρ(ri)〉 are extracted. A comparison between the mean values

obtained in the bin-by-bin and the Bayesian methods is presented in figure 4.43.
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Figure 4.43: Comparison of the bin-by-bin to the bayesian unfolding for differen-
tial jet shapes
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Analogously, the comparison between the bin-by-bin unfolding and the Bayesian

unfolding for the integrated jet shapes is shown in figure 4.44
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Figure 4.44: Comparison of the bin-by-bin to the bayesian unfolding for integrated
jet shapes
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4.9.4.2 Integrated shape recalculation

As an additional check of the stability of the unfolding procedure, the directly

unfolded integrated jet shapes are compared with those obtained from integrating

the unfolded differential distributions. The results agree to better than 1%, see

Figure 4.45.
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Figure 4.45: Comparison of Ψ(r) obtained from direct unfolding with the cumu-
lative distribution of the unfolded ρ(r) values.
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As the unfolding methods for the differential and integrated jet shapes are inde-

pendent and the values for the comparison above agree at the 2% level, it can

be concluded that the bin-by-bin unfolding method used here is stable and, to a

large extent, independent of the bin-by-bin underlying correlations in the Ψ(r)

distributions.

4.10 Summary and conclusions

The jet structure of tt̄ final states has been studied in both the dileptonic and

semileptonic modes. The former proves to be a very clean and copious source of

b-jets, as the top decays predominantly via t → Wb. The latter is also a clean

source of light jets coming from the hadronic decays of one of the W ’s in the

final state. The differences between the b- and light quark jets obtained in this

environment have been studied in terms of the differential ρ(r) and integrated jet

shapes Ψ(r). These variables have been found to be very dependent on the jet

transverse momentum, while its dependence on pseudorapidity is very weak.

The results have shown that the mean value 〈Ψ(r)〉 is smaller for b- than for

light-jets in the region where it is possible to distinguish them, i.e. at low values

of the jet internal radius r. This means that b-jets are broader than light quark

induced jets, and therefore the cores of light jets are more energetically dense

than those of b-jets, which can be regarded as more donut-shaped jets.

The effects due to pileup are found to be small and affect both b- and light-

jets in a very similar manner.

The features discussed above, namely independence (strong dependence) of Ψ(r)

with |η| (resp. pT) and the differences between light and b-jets, have already been

reported in several experiments, but we would like to remark that this is the first

time that they are studied in tt̄ final states. The purity of the light and b-jet

samples is considerably higher than in previous inclusive jet based analysis [70],

as the fake probability is smaller due to the known presence of b-jets in tt̄ events.
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In order to summarize the observations made above, in figures 4.46 to 4.51, a

comparison is shown between the unfolded values for 〈ρ(r)〉 evaluated for both,

light and b-jets, while in figures 4.52 to 4.57, the comparison between the unfolded

values for 〈Ψl(r)〉 and 〈Ψb(r)〉 is shown. For the sake of comparison, the expec-

tations from state of the art Monte Carlos have also been included. Here, fixed

order matrix elements calculated up to NLO accuracy are matched to pT ordered

parton showers and to two fragmentation schemes, i.e. MC@NLO+Herwig as

baseline and Powheg coupled to Pythia. The agreement between these ref-

erence Monte Carlo samples and data is reasonable for both the light and b-jet

samples, except for small (' 10%) discrepancies for r < 0.04. Although the dif-

ferential and integrated shape variables are self-normalized, they are known to be

primarily sensitive to the matching of matrix elements and parton showers, and

to a lesser extent, to details of the fragmentation. Thus these data will help to

better constraint current Monte Carlo models and theoretical calculations.

Numerical results for the differential (integrated) jet shapes are given in tables

4.39 to 4.44 (resp. 4.45 to 4.50) for completeness. The uncertainties shown in-

clude statistical errors as well as all the systematics discussed in the previous

section, including those arising from the unfolding procedure.
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4.10.1 Differential jet shapes
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Figure 4.46: Unfolded values for 〈ρ(r)〉, with statistical and systematic uncer-
tainties for 30 GeV < pT < 40 GeV.

Collision data
√
s = 7 TeV; 30 GeV < pT < 40 GeV

r 〈ρb(r)〉 [b-jets] 〈ρl(r)〉 [light jets]

0.02 3.842 ± 0.147 (stat.) +0.291
−0.359 (sys.) 7.639 ± 0.269 (stat.) +0.927

−1.067 (sys.)

0.06 6.060 ± 0.144 (stat.) +0.312
−0.359 (sys.) 6.097 ± 0.156 (stat.) +0.480

−0.469 (sys.)

0.10 5.199 ± 0.114 (stat.) +0.245
−0.231 (sys.) 3.745 ± 0.099 (stat.) +0.323

−0.332 (sys.)

0.14 3.453 ± 0.085 (stat.) +0.119
−0.126 (sys.) 2.284 ± 0.067 (stat.) +0.142

−0.156 (sys.)

0.18 2.211 ± 0.055 (stat.) +0.131
−0.107 (sys.) 1.497 ± 0.046 (stat.) +0.144

−0.115 (sys.)

0.22 1.580 ± 0.041 (stat.) +0.101
−0.113 (sys.) 1.077 ± 0.033 (stat.) +0.091

−0.101 (sys.)

0.26 1.152 ± 0.030 (stat.) +0.130
−0.132 (sys.) 0.833 ± 0.026 (stat.) +0.107

−0.085 (sys.)

0.30 0.802 ± 0.020 (stat.) +0.076
−0.074 (sys.) 0.642 ± 0.019 (stat.) +0.074

−0.079 (sys.)

0.34 0.600 ± 0.015 (stat.) +0.056
−0.061 (sys.) 0.533 ± 0.015 (stat.) +0.068

−0.078 (sys.)

0.38 0.317 ± 0.009 (stat.) +0.043
−0.039 (sys.) 0.284 ± 0.009 (stat.) +0.037

−0.038 (sys.)

Table 4.39: Differential shapes 〈ρ(r)〉 for light and b-jets in both channels for
30 GeV < pT < 40 GeV
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Figure 4.47: Unfolded values for 〈ρ(r)〉, with statistical and systematic uncer-
tainties for 40 GeV < pT < 50 GeV.

Collision data
√
s = 7 TeV; 40 GeV < pT < 50 GeV

r 〈ρb(r)〉 [b-jets] 〈ρl(r)〉 [light jets]

0.02 4.663 ± 0.151 (stat.) +0.585
−0.605 (sys.) 9.391 ± 0.337 (stat.) +1.109

−1.078 (sys.)

0.06 7.231 ± 0.145 (stat.) +0.334
−0.349 (sys.) 6.141 ± 0.171 (stat.) +0.442

−0.433 (sys.)

0.10 5.218 ± 0.105 (stat.) +0.255
−0.275 (sys.) 3.266 ± 0.099 (stat.) +0.267

−0.268 (sys.)

0.14 3.117 ± 0.071 (stat.) +0.152
−0.151 (sys.) 1.853 ± 0.068 (stat.) +0.162

−0.117 (sys.)

0.18 1.829 ± 0.046 (stat.) +0.148
−0.165 (sys.) 1.277 ± 0.048 (stat.) +0.110

−0.113 (sys.)

0.22 1.115 ± 0.030 (stat.) +0.060
−0.062 (sys.) 0.949 ± 0.038 (stat.) +0.096

−0.109 (sys.)

0.26 0.835 ± 0.022 (stat.) +0.097
−0.094 (sys.) 0.687 ± 0.026 (stat.) +0.085

−0.055 (sys.)

0.30 0.593 ± 0.015 (stat.) +0.057
−0.060 (sys.) 0.559 ± 0.020 (stat.) +0.055

−0.054 (sys.)

0.34 0.458 ± 0.011 (stat.) +0.049
−0.050 (sys.) 0.413 ± 0.015 (stat.) +0.041

−0.045 (sys.)

0.38 0.263 ± 0.007 (stat.) +0.033
−0.028 (sys.) 0.228 ± 0.008 (stat.) +0.033

−0.033 (sys.)

Table 4.40: Differential shapes 〈Ψ(r)〉 for light and b-jets in both channels for
40 GeV < pT < 50 GeV
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Figure 4.48: Unfolded values for 〈ρ(r)〉, with statistical and systematic uncer-
tainties for 50 GeV < pT < 70 GeV.

Collision data
√
s = 7 TeV; 50 GeV < pT < 70 GeV

r 〈ρb(r)〉 [b-jets] 〈ρl(r)〉 [light jets]

0.02 6.193 ± 0.129 (stat.) +0.465
−0.441 (sys.) 10.817 ± 0.306 (stat.) +0.638

−0.840 (sys.)

0.06 8.139 ± 0.107 (stat.) +0.272
−0.286 (sys.) 6.170 ± 0.141 (stat.) +0.451

−0.441 (sys.)

0.10 4.615 ± 0.064 (stat.) +0.168
−0.179 (sys.) 2.916 ± 0.077 (stat.) +0.135

−0.153 (sys.)

0.14 2.504 ± 0.042 (stat.) +0.201
−0.206 (sys.) 1.559 ± 0.050 (stat.) +0.052

−0.059 (sys.)

0.18 1.403 ± 0.027 (stat.) +0.106
−0.100 (sys.) 1.039 ± 0.037 (stat.) +0.078

−0.079 (sys.)

0.22 0.867 ± 0.018 (stat.) +0.053
−0.039 (sys.) 0.745 ± 0.027 (stat.) +0.048

−0.046 (sys.)

0.26 0.597 ± 0.012 (stat.) +0.047
−0.044 (sys.) 0.540 ± 0.018 (stat.) +0.071

−0.064 (sys.)

0.30 0.453 ± 0.009 (stat.) +0.037
−0.036 (sys.) 0.439 ± 0.015 (stat.) +0.047

−0.040 (sys.)

0.34 0.359 ± 0.007 (stat.) +0.035
−0.036 (sys.) 0.341 ± 0.011 (stat.) +0.043

−0.046 (sys.)

0.38 0.215 ± 0.004 (stat.) +0.027
−0.026 (sys.) 0.229 ± 0.007 (stat.) +0.034

−0.036 (sys.)

Table 4.41: Differential shapes 〈Ψ(r)〉 for light and b-jets in both channels for
50 GeV < pT < 70 GeV
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Figure 4.49: Unfolded values for 〈ρ(r)〉, with statistical and systematic uncer-
tainties for 70 GeV < pT < 100 GeV.

Collision data
√
s = 7 TeV; 70 GeV < pT < 100 GeV

r 〈ρb(r)〉 [b-jets] 〈ρl(r)〉 [light jets]

0.02 8.984 ± 0.151 (stat.) +0.554
−0.535 (sys.) 12.366 ± 0.382 (stat.) +0.933

−1.047 (sys.)

0.06 8.135 ± 0.102 (stat.) +0.173
−0.171 (sys.) 5.444 ± 0.158 (stat.) +0.376

−0.390 (sys.)

0.10 3.802 ± 0.052 (stat.) +0.253
−0.248 (sys.) 2.424 ± 0.078 (stat.) +0.182

−0.208 (sys.)

0.14 1.744 ± 0.030 (stat.) +0.100
−0.102 (sys.) 1.516 ± 0.060 (stat.) +0.114

−0.129 (sys.)

0.18 1.000 ± 0.020 (stat.) +0.026
−0.031 (sys.) 0.888 ± 0.039 (stat.) +0.045

−0.051 (sys.)

0.22 0.658 ± 0.015 (stat.) +0.039
−0.041 (sys.) 0.681 ± 0.034 (stat.) +0.046

−0.041 (sys.)

0.26 0.471 ± 0.011 (stat.) +0.031
−0.028 (sys.) 0.447 ± 0.022 (stat.) +0.050

−0.036 (sys.)

0.30 0.337 ± 0.007 (stat.) +0.031
−0.030 (sys.) 0.378 ± 0.017 (stat.) +0.036

−0.039 (sys.)

0.34 0.259 ± 0.005 (stat.) +0.027
−0.027 (sys.) 0.280 ± 0.011 (stat.) +0.034

−0.033 (sys.)

0.38 0.174 ± 0.004 (stat.) +0.020
−0.020 (sys.) 0.185 ± 0.007 (stat.) +0.031

−0.031 (sys.)

Table 4.42: Differential shapes 〈Ψ(r)〉 for light and b-jets in both channels for
70 GeV < pT < 100 GeV
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Figure 4.50: Unfolded values for 〈ρ(r)〉, with statistical and systematic uncer-
tainties for 100 GeV < pT < 150 GeV.

Collision data
√
s = 7 TeV; 100 GeV < pT < 150 GeV

r 〈ρb(r)〉 [b-jets] 〈ρl(r)〉 [light jets]

0.02 11.483 ± 0.195 (stat.) +0.711
−0.740 (sys.) 13.894 ± 0.538 (stat.) +1.547

−1.684 (sys.)

0.06 7.076 ± 0.109 (stat.) +0.241
−0.254 (sys.) 4.676 ± 0.199 (stat.) +0.499

−0.374 (sys.)

0.10 2.943 ± 0.051 (stat.) +0.233
−0.233 (sys.) 2.307 ± 0.115 (stat.) +0.279

−0.292 (sys.)

0.14 1.370 ± 0.031 (stat.) +0.060
−0.058 (sys.) 1.266 ± 0.075 (stat.) +0.094

−0.102 (sys.)

0.18 0.845 ± 0.024 (stat.) +0.046
−0.045 (sys.) 0.744 ± 0.053 (stat.) +0.077

−0.068 (sys.)

0.22 0.584 ± 0.018 (stat.) +0.038
−0.034 (sys.) 0.581 ± 0.047 (stat.) +0.116

−0.103 (sys.)

0.26 0.389 ± 0.012 (stat.) +0.028
−0.024 (sys.) 0.389 ± 0.028 (stat.) +0.079

−0.064 (sys.)

0.30 0.288 ± 0.009 (stat.) +0.024
−0.022 (sys.) 0.307 ± 0.021 (stat.) +0.040

−0.032 (sys.)

0.34 0.214 ± 0.006 (stat.) +0.021
−0.019 (sys.) 0.244 ± 0.015 (stat.) +0.031

−0.035 (sys.)

0.38 0.145 ± 0.004 (stat.) +0.018
−0.019 (sys.) 0.149 ± 0.009 (stat.) +0.022

−0.020 (sys.)

Table 4.43: Differential shapes 〈Ψ(r)〉 for light and b-jets in both channels for
100 GeV < pT < 150 GeV
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Figure 4.51: Unfolded values for 〈ρ(r)〉, with statistical and systematic uncer-
tainties for 150 GeV < pT < 200 GeV.

Collision data
√
s = 7 TeV; 150 GeV < pT < 200 GeV

r 〈ρb(r)〉 [b-jets] 〈ρl(r)〉 [light jets]

0.02 15.151 ± 0.445 (stat.) +0.938
−1.068 (sys.) 17.476 ± 1.396 (stat.) +1.818

−2.068 (sys.)

0.06 5.468 ± 0.197 (stat.) +0.500
−0.516 (sys.) 3.418 ± 0.419 (stat.) +0.792

−0.629 (sys.)

0.10 2.074 ± 0.083 (stat.) +0.141
−0.132 (sys.) 1.952 ± 0.204 (stat.) +0.267

−0.263 (sys.)

0.14 1.091 ± 0.057 (stat.) +0.058
−0.069 (sys.) 1.118 ± 0.175 (stat.) +0.235

−0.228 (sys.)

0.18 0.711 ± 0.045 (stat.) +0.046
−0.059 (sys.) 0.499 ± 0.097 (stat.) +0.221

−0.136 (sys.)

0.22 0.499 ± 0.035 (stat.) +0.026
−0.028 (sys.) 0.491 ± 0.098 (stat.) +0.142

−0.096 (sys.)

0.26 0.353 ± 0.027 (stat.) +0.026
−0.025 (sys.) 0.419 ± 0.085 (stat.) +0.146

−0.139 (sys.)

0.30 0.258 ± 0.019 (stat.) +0.026
−0.028 (sys.) 0.179 ± 0.028 (stat.) +0.080

−0.074 (sys.)

0.34 0.167 ± 0.010 (stat.) +0.019
−0.019 (sys.) 0.210 ± 0.037 (stat.) +0.057

−0.040 (sys.)

0.38 0.128 ± 0.008 (stat.) +0.015
−0.017 (sys.) 0.094 ± 0.014 (stat.) +0.025

−0.015 (sys.)

Table 4.44: Differential shapes 〈Ψ(r)〉 for light and b-jets in both channels for
150 GeV < pT < 200 GeV
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4.10.2 Integrated jet shapes
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Figure 4.52: Unfolded values for 〈Ψ(r)〉, with statistical and systematic uncer-
tainties for 30 GeV < pT < 40 GeV.

Collision data
√
s = 7 TeV; 30 GeV < pT < 40 GeV

r 〈Ψb(r)〉 [b-jets] 〈Ψl(r)〉 [light jets]

0.04 0.154 ± 0.006 (stat.) +0.012
−0.014 (sys.) 0.306 ± 0.011 (stat.) +0.037

−0.043 (sys.)

0.08 0.395 ± 0.007 (stat.) +0.023
−0.028 (sys.) 0.550 ± 0.009 (stat.) +0.031

−0.037 (sys.)

0.12 0.602 ± 0.006 (stat.) +0.025
−0.026 (sys.) 0.706 ± 0.007 (stat.) +0.028

−0.034 (sys.)

0.16 0.739 ± 0.004 (stat.) +0.025
−0.025 (sys.) 0.802 ± 0.005 (stat.) +0.025

−0.030 (sys.)

0.20 0.825 ± 0.003 (stat.) +0.020
−0.023 (sys.) 0.863 ± 0.004 (stat.) +0.020

−0.025 (sys.)

0.24 0.887 ± 0.003 (stat.) +0.016
−0.017 (sys.) 0.907 ± 0.003 (stat.) +0.016

−0.019 (sys.)

0.28 0.934 ± 0.002 (stat.) +0.012
−0.012 (sys.) 0.942 ± 0.002 (stat.) +0.011

−0.014 (sys.)

0.32 0.964 ± 0.001 (stat.) +0.007
−0.007 (sys.) 0.967 ± 0.001 (stat.) +0.007

−0.008 (sys.)

0.36 0.988 ± 0.001 (stat.) +0.004
−0.002 (sys.) 0.989 ± 0.001 (stat.) +0.003

−0.003 (sys.)

0.40 1.000 ± 0.000 (stat.) +0.000
−0.000 (sys.) 1.000 ± 0.000 (stat.) +0.000

−0.000 (sys.)

Table 4.45: Integrated shapes 〈Ψ(r)〉 for light and b-jets in both channels for
30 GeV < pT < 40 GeV
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Figure 4.53: Unfolded values for 〈Ψ(r)〉, with statistical and systematic uncer-
tainties for 40 GeV < pT < 50 GeV.

Collision data
√
s = 7 TeV; 40 GeV < pT < 50 GeV

r 〈Ψb(r)〉 [b-jets] 〈Ψl(r)〉 [light jets]

0.04 0.187 ± 0.006 (stat.) +0.023
−0.024 (sys.) 0.376 ± 0.013 (stat.) +0.044

−0.043 (sys.)

0.08 0.475 ± 0.007 (stat.) +0.033
−0.034 (sys.) 0.621 ± 0.011 (stat.) +0.032

−0.034 (sys.)

0.12 0.683 ± 0.005 (stat.) +0.027
−0.029 (sys.) 0.757 ± 0.008 (stat.) +0.025

−0.027 (sys.)

0.16 0.805 ± 0.004 (stat.) +0.023
−0.025 (sys.) 0.832 ± 0.006 (stat.) +0.021

−0.022 (sys.)

0.20 0.876 ± 0.003 (stat.) +0.017
−0.018 (sys.) 0.885 ± 0.004 (stat.) +0.017

−0.018 (sys.)

0.24 0.918 ± 0.002 (stat.) +0.015
−0.016 (sys.) 0.925 ± 0.003 (stat.) +0.012

−0.014 (sys.)

0.28 0.950 ± 0.002 (stat.) +0.010
−0.011 (sys.) 0.953 ± 0.002 (stat.) +0.010

−0.011 (sys.)

0.32 0.973 ± 0.001 (stat.) +0.007
−0.006 (sys.) 0.976 ± 0.001 (stat.) +0.006

−0.006 (sys.)

0.36 0.990 ± 0.001 (stat.) +0.003
−0.002 (sys.) 0.992 ± 0.001 (stat.) +0.003

−0.003 (sys.)

0.40 1.000 ± 0.000 (stat.) +0.000
−0.000 (sys.) 1.000 ± 0.000 (stat.) +0.000

−0.000 (sys.)

Table 4.46: Integrated shapes 〈Ψ(r)〉 for light and b-jets in both channels for
40 GeV < pT < 50 GeV
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Figure 4.54: Unfolded values for 〈Ψ(r)〉, with statistical and systematic uncer-
tainties for 50 GeV < pT < 70 GeV.

Collision data
√
s = 7 TeV; 50 GeV < pT < 70 GeV

r 〈Ψb(r)〉 [b-jets] 〈Ψl(r)〉 [light jets]

0.04 0.248 ± 0.005 (stat.) +0.019
−0.018 (sys.) 0.433 ± 0.012 (stat.) +0.026

−0.034 (sys.)

0.08 0.573 ± 0.005 (stat.) +0.024
−0.023 (sys.) 0.686 ± 0.009 (stat.) +0.020

−0.024 (sys.)

0.12 0.753 ± 0.004 (stat.) +0.025
−0.025 (sys.) 0.807 ± 0.006 (stat.) +0.017

−0.019 (sys.)

0.16 0.851 ± 0.003 (stat.) +0.019
−0.018 (sys.) 0.868 ± 0.004 (stat.) +0.017

−0.019 (sys.)

0.20 0.905 ± 0.002 (stat.) +0.015
−0.015 (sys.) 0.909 ± 0.003 (stat.) +0.014

−0.016 (sys.)

0.24 0.938 ± 0.001 (stat.) +0.012
−0.013 (sys.) 0.939 ± 0.002 (stat.) +0.012

−0.014 (sys.)

0.28 0.961 ± 0.001 (stat.) +0.008
−0.009 (sys.) 0.960 ± 0.002 (stat.) +0.008

−0.009 (sys.)

0.32 0.978 ± 0.001 (stat.) +0.005
−0.005 (sys.) 0.977 ± 0.001 (stat.) +0.006

−0.006 (sys.)

0.36 0.992 ± 0.000 (stat.) +0.003
−0.002 (sys.) 0.990 ± 0.001 (stat.) +0.003

−0.003 (sys.)

0.40 1.000 ± 0.000 (stat.) +0.000
−0.000 (sys.) 1.000 ± 0.000 (stat.) +0.000

−0.000 (sys.)

Table 4.47: Integrated shapes 〈Ψ(r)〉 for light and b-jets in both channels for
50 GeV < pT < 70 GeV
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Figure 4.55: Unfolded values for 〈Ψ(r)〉, with statistical and systematic uncer-
tainties for 70 GeV < pT < 100 GeV.

Collision data
√
s = 7 TeV; 70 GeV < pT < 100 GeV

r 〈Ψb(r)〉 [b-jets] 〈Ψl(r)〉 [light jets]

0.04 0.359 ± 0.006 (stat.) +0.022
−0.021 (sys.) 0.495 ± 0.015 (stat.) +0.037

−0.042 (sys.)

0.08 0.678 ± 0.005 (stat.) +0.023
−0.023 (sys.) 0.718 ± 0.010 (stat.) +0.032

−0.037 (sys.)

0.12 0.827 ± 0.003 (stat.) +0.017
−0.018 (sys.) 0.818 ± 0.007 (stat.) +0.019

−0.021 (sys.)

0.16 0.891 ± 0.002 (stat.) +0.012
−0.013 (sys.) 0.883 ± 0.005 (stat.) +0.012

−0.014 (sys.)

0.20 0.928 ± 0.002 (stat.) +0.011
−0.012 (sys.) 0.919 ± 0.004 (stat.) +0.010

−0.011 (sys.)

0.24 0.954 ± 0.001 (stat.) +0.009
−0.009 (sys.) 0.947 ± 0.003 (stat.) +0.008

−0.009 (sys.)

0.28 0.972 ± 0.001 (stat.) +0.006
−0.007 (sys.) 0.965 ± 0.002 (stat.) +0.007

−0.008 (sys.)

0.32 0.984 ± 0.001 (stat.) +0.004
−0.004 (sys.) 0.981 ± 0.001 (stat.) +0.004

−0.005 (sys.)

0.36 0.993 ± 0.000 (stat.) +0.002
−0.002 (sys.) 0.992 ± 0.001 (stat.) +0.002

−0.002 (sys.)

0.40 1.000 ± 0.000 (stat.) +0.000
−0.000 (sys.) 1.000 ± 0.000 (stat.) +0.000

−0.000 (sys.)

Table 4.48: Integrated shapes 〈Ψ(r)〉 for light and b-jets in both channels for
70 GeV < pT < 100 GeV
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Figure 4.56: Unfolded values for 〈Ψ(r)〉, with statistical and systematic uncer-
tainties for 100 GeV < pT < 150 GeV.

Collision data
√
s = 7 TeV; 100 GeV < pT < 150 GeV

r 〈Ψb(r)〉 [all] 〈Ψl(r)〉 [light]

0.04 0.459 ± 0.008 (stat.) +0.028
−0.030 (sys.) 0.556 ± 0.022 (stat.) +0.062

−0.067 (sys.)

0.08 0.734 ± 0.005 (stat.) +0.019
−0.020 (sys.) 0.743 ± 0.014 (stat.) +0.033

−0.036 (sys.)

0.12 0.852 ± 0.004 (stat.) +0.013
−0.012 (sys.) 0.843 ± 0.010 (stat.) +0.021

−0.017 (sys.)

0.16 0.904 ± 0.002 (stat.) +0.010
−0.010 (sys.) 0.898 ± 0.007 (stat.) +0.017

−0.014 (sys.)

0.20 0.937 ± 0.002 (stat.) +0.008
−0.008 (sys.) 0.928 ± 0.005 (stat.) +0.014

−0.011 (sys.)

0.24 0.960 ± 0.001 (stat.) +0.006
−0.006 (sys.) 0.954 ± 0.003 (stat.) +0.008

−0.007 (sys.)

0.28 0.975 ± 0.001 (stat.) +0.005
−0.005 (sys.) 0.970 ± 0.002 (stat.) +0.006

−0.006 (sys.)

0.32 0.986 ± 0.001 (stat.) +0.003
−0.003 (sys.) 0.983 ± 0.001 (stat.) +0.003

−0.003 (sys.)

0.36 0.994 ± 0.000 (stat.) +0.001
−0.001 (sys.) 0.994 ± 0.001 (stat.) +0.001

−0.001 (sys.)

0.40 1.000 ± 0.000 (stat.) +0.000
−0.000 (sys.) 1.000 ± 0.000 (stat.) +0.000

−0.000 (sys.)

Table 4.49: Integrated shapes 〈Ψ(r)〉 for light and b-jets in both channels for
100 GeV < pT < 150 GeV
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Figure 4.57: Unfolded values for 〈Ψ(r)〉, with statistical and systematic uncer-
tainties for 150 GeV < pT < 200 GeV.

Collision data
√
s = 7 TeV; 150 GeV < pT < 200 GeV

r 〈Ψb(r)〉 [b-jets] 〈Ψl(r)〉 [light jets]

0.04 0.606 ± 0.018 (stat.) +0.038
−0.043 (sys.) 0.699 ± 0.056 (stat.) +0.073

−0.083 (sys.)

0.08 0.801 ± 0.011 (stat.) +0.020
−0.022 (sys.) 0.788 ± 0.029 (stat.) +0.060

−0.034 (sys.)

0.12 0.874 ± 0.007 (stat.) +0.008
−0.012 (sys.) 0.874 ± 0.022 (stat.) +0.044

−0.019 (sys.)

0.16 0.916 ± 0.005 (stat.) +0.006
−0.007 (sys.) 0.923 ± 0.015 (stat.) +0.034

−0.018 (sys.)

0.20 0.944 ± 0.003 (stat.) +0.005
−0.006 (sys.) 0.941 ± 0.011 (stat.) +0.018

−0.011 (sys.)

0.24 0.964 ± 0.002 (stat.) +0.005
−0.005 (sys.) 0.962 ± 0.008 (stat.) +0.011

−0.007 (sys.)

0.28 0.978 ± 0.002 (stat.) +0.003
−0.004 (sys.) 0.981 ± 0.004 (stat.) +0.009

−0.005 (sys.)

0.32 0.988 ± 0.001 (stat.) +0.002
−0.002 (sys.) 0.987 ± 0.003 (stat.) +0.005

−0.002 (sys.)

0.36 0.994 ± 0.001 (stat.) +0.001
−0.001 (sys.) 0.997 ± 0.001 (stat.) +0.002

−0.001 (sys.)

0.40 1.000 ± 0.000 (stat.) +0.000
−0.000 (sys.) 1.000 ± 0.000 (stat.) +0.000

−0.000 (sys.)

Table 4.50: Integrated shapes 〈Ψ(r)〉 for light and b-jets in both channels for
150 GeV < pT < 200 GeV
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Chapter 5

Determination of the b-quark

mass from the jet shape data.

This chapter is dedicated to the precise determination of the b-quark mass using

the jet shape data described in the previous chapter. The results obtained in this

chapter have been published in Ref. [97]

5.1 Introduction and motivation

The theory of angular screening effects described in Sect. 1.7 suggests that the

heavier mass of the b-quark is the key feature of the observations made in the

previous chapter, namely the wider energy distribution of b-quark jets over light-

quark jets. The greater the b-quark mass, the wider the region spanned under

the angle θ0 = m/E, where the radiation is highly suppressed and therefore,

the particle content. This discussion makes the jet shape data suitable for a

determination of the b-quark mass parameter for the splitting functions in shower

Monte Carlos, as described in Ref. [98]. Additionally, jet shapes do also depend

on the coupling strength of the strong interaction, which will also be studied in

the following sections.

177



5.2 Monte Carlo predictions

Top-quark pair events have been generated using the Pythia 6.4 program. Ad-

ditionally, the MSTJ(42)=3 switch has been used to take into account the larger

mass of the b-quark on the angular distribution of the decay products [98]. Also,

the switch MSTJ(43)=3 has been used to set the fragmentation variable z as

the fraction of energy in the centre-of-mass frame of the showering partons [22].

Jet shapes naturally depend on the strong coupling constant αs, as it controls the

radiation emitted by strongly-interacting partons, and have been in fact a precise

way to determine its value in Ref. [67]. Therefore, one needs to take this effect

into account for a precise determination of the b-quark mass. At the one-loop

order, the scale dependence of the strong coupling can be parametrised by [6]

αs(Q
2) =

1

β0 log
(
Q2

Λ2

) ; β0 =
1

4π

(
11− 2

3
nf

)
(5.1)

Eq. 5.1 incorporates the QCD scale Λ, which can be varied for the Pythia time-

like parton showers arising from a resonant decay using the PARJ(81) switch.

Finally, the b-quark mass mb is varied around its nominal value mb = 4.8 GeV

using the PMAS(5) and PARF(105) switches, which control the kinematical

mass of the b-quark and its constituent mass, respectively. Additionally, tt̄ sam-

ples have been generated using the Herwig++ Monte Carlo program [99]. The

differences between the value of mb obtained in Herwig++ and that obtained

using Pythia will be discussed later, and assigned as a theoretical uncertainty.

5.3 Jet selection and jet shape calculation

The final-state particles from the Pythia simulation are clustered using the

anti-kt algorithm [32] as implemented in FastJet [34], with a radius parameter

R = 0.4. As specified before, muons and neutrinos are left out of the clustering

algorithm.

All jets with transverse momentum pT > 30 GeV are pre-selected. To select

the jets induced by b-quarks from the top decays, a matching procedure is used

between the clustered jets and any hadron containing b-quarks. If one of these
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hadrons with pT > 5 GeV is found at a distance ∆R =
√

(∆η)2 + (∆φ)2 < 0.3

from the axis of a given jet, this jet is selected as a b-jet. Alternatively, light-

quark jets are selected as the pair of jets which, not containing B-hadrons closer

than ∆R = 0.3 to the jet axis, have the closest invariant mass to the nominal W

boson mass mW = 80.4 GeV.

The differential jet shape is then calculated for both samples following the formula

〈ρ(r)〉 =
1

∆r

1

Njets

∑
jets

pT(r −∆r/2, r + ∆r/2)

pT(0, R)
(5.2)

5.4 Analysis procedure

As b-jet shapes depend on both the parton shower QCD scale Λs and the b-

quark mass mb, both need to be determined for a precise result. A simultaneous

determination of both parameters is not possible because a variation of one of

them can be compensated by an opposite variation of the other one, leading to a

set of degenerate minima in the plane (mb,Λs). However, it is expected that the

light-jet shapes depend only in Λs and not in mb. Therefore, one can determine

the parameter Λs from the light-jet shapes and use it for the extraction of mb

from the b-jet data.

The method used for the extraction of a physical parameter β = Λs,mb from a

theoretical distribution scan relies on the minimisation of a standard χ2 for each

pT bin using Minuit [102]. The χ2 function is defined in a way which takes

into account the correlations between the experimental uncertainties via a set of

nuisance parameters {λi}. In terms of the parameter β to be extracted and the

nuisance parameter vector ~λ, it can be written as

χ2(β;~λ) =
∑
k

(xk − Fk(β;~λ))2

∆x2
k + ∆τ 2

k

+
∑
i

λ2
i (5.3)

Fk(β;~λ) = φk(β)

(
1 +

∑
i

λiσik

)
(5.4)

In Eq. 5.3, the index k runs over all r bins in a given pT bin, with a given value

xk of the jet shape and with statistical uncertainty ∆xk. Here, ∆τk represents the
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statistical uncertainty on the theoretical predictions. The nuisance parameters

λi, one for each source of uncertainty, are also involved in Eq. 5.4, where the

functions φk(β) correspond to the nominal dependence of the jet shape with the

parameter β in bin k. They are parametrised in terms of a parabola throughout

this paper. Finally, σik are the relative uncertainties for source i in the bin k,

discussed in Sect. 4.9.3.

Each nuisance parameter corresponds to a different uncertainty on the data. Ta-

ble 5.1 shows the identification of each λi with the corresponding source, ordered

from larger to smaller impact.

Nuisance parameter Source of uncertainty Impact on data

λ1 Pileup 2%− 10%

λ2 Cluster systematics 2%− 10%

λ3 Unfolding-modelling 1%− 8%

λ4 Jet energy scale ' 5%

λ5 Jet energy resolution ' 5%

λ6 JVF < 1%

Table 5.1: Identification of the nuisance parameters λi with the sources of exper-
imental uncertainty.

5.5 Determination of the parton shower scale Λs

In order to determine the QCD scale of the parton shower Monte Carlo which

best fits the jet shape data, the dependence of the light-quark jet shapes on Λs

is studied. Figure 5.1 shows the comparison of the light-jet shape data and the

Pythia expectations for several values of Λs. The dependence of the jet shapes

on Λs is clearly seen from the figure.
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Figure 5.1: Results of the Λs scan compared to the light-jet data.

In order to parametrise this dependence and obtain the interpolating functions

φk(Λs) in Eq. 5.4, samples with Λs varying from 20 MeV to 300 MeV in steps

of 20 MeV have been generated. To illustrate this dependence, Figure 5.2 shows

the points obtained from this scan together with the fitted functions φk(Λs) for

r = 0.02 in each pT bin.

The fits using Eqs. 5.3 and 5.4 have been performed for every pT bin separately,

and finally all of them are combined into a global fit to the three bins with

30 GeV < pT < 70 GeV. Fig. 5.3 shows the values of the nuisance parameters

{λi} involved in the fit, as well as the correlation matrix between them. The
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values of the nuisance parameters are always compatible with the ±1σ band, fact

which gives us confidence on the quality of the fit. The results of the fits to Λs

are summarised in Table 5.2, together with the fit uncertainties and the values of

χ2/Ndof .

Bin Λs value (MeV) Fit error (MeV) χ2/Ndof

30 GeV < pT < 40 GeV 187.5 24.0 10.6 / 9

40 GeV < pT < 50 GeV 193.5 24.2 11.0 / 9

50 GeV < pT < 70 GeV 137.7 17.3 7.8 / 9

Global fit 162.1 9.6 39.0 / 29

Table 5.2: Summary of the results of the fit for Λs using the light-jet shape data.

The nominal results obtained here have been derived using the one-loop solution

to the renormalisation group equation (RGE) for the Pythia parton shower. In

addition, the values of Λs have also been extracted using Herwig++ with the

solutions to the RGE implemented up to two loops. The resulting value at one

loop is Λs = 160.7±15.3 MeV, in good agreement with the nominal value quoted

above. For the two-loop case, the expression for the running strong coupling is

[6]

αs(Q
2) =

1

β0 log x

[
1− β1

β2
0

log (log x)

log x

]
; x =

Q2

Λ2
(5.5)

where β0 is given in Eq. 5.1 and β1 = 1
(4π)2

(
102− 38

3
nf
)
. In this case, a value of

Λs = 276.1 ± 17.3 MeV is obtained, which is compatible with the value quoted

in Ref. [103] within the uncertainties. The effect of the two-loop running of the

shower αs on the b-quark mass will be explained in Sect. 5.7.5.
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Figure 5.3: Results for the nuisance parameters involved in the Λs extraction (left
column) and correlation matrices between them (right column) for each pT bin
considered. The results obtained for the global fit are shown at the bottom row.
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5.6 Determination of the b-quark mass mb

Once the parton shower scale Λs is determined, the result is used to generate

Pythia samples with several different values of the b-quark mass. The scan is

performed in this case by varying this parameter from 4.0 GeV to 6.0 GeV in steps

of 250 MeV. Figure 5.4 shows the comparison of the b-jet shape data with the

expectations from Pythia for several values of mb, including those for mb = 3.0

and 7.0 GeV. The value of the parton shower scale for the predictions shown in

Fig. 5.4 is the one corresponding to the global fit to the light-jet shape data,

namely Λs = 162.1± 9.6 MeV.
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Figure 5.4: Results of the mb scan compared to the b-jet data. The QCD scale
involved in the parton shower has been taken to be the one corresponding to the
global fit to the light-jet data, Λs = 162.1± 9.6 MeV
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The b-jet shapes show a turn-over close to the jet cores due to the angular screen-

ing caused by the heavy mass of the b-quark. The larger mb is, the wider is the

jet in the sense that the inner core has smaller energy deposits. The description

of all bins provided by Pythia is excellent, showing that it is possible to perform

a safe fit to the data. The parametrisation of the interpolating functions φk(mb)

describing the dependence of the differential b-jet shapes with the b-quark mass is

done using second-order polynomials as in the case of the shower scale Λs. Figure

5.5 shows the dependence for r = 0.02 in each pT bin, as predicted by Pythia

The global fit has been performed including all pT bins and using the global value

of the parton shower scale, Λs = 162.1± 9.6 MeV. As a cross-check, for each pT

bin, extra samples have been generated using the partial values of Λs shown in

Table 5.2. The agreement between all the extracted values of mb is excellent, as

can be seen in Table 5.3.

Bin mb value (GeV) Fit error (GeV) χ2/Ndof

30 GeV < pT < 40 GeV 5.00 0.14 8.28 / 9

40 GeV < pT < 50 GeV 4.82 0.19 10.41 / 9

50 GeV < pT < 70 GeV 4.82 0.13 11.99 / 9

Global fit 4.86 0.08 43.04 / 29

Table 5.3: Summary of the results of the fits for mb using the b-jet shape data
and the corresponding value of Λs for each bin listed in table 5.2. The global
fit is performed using the globally extracted value of the parton shower scale
Λs = 162.1 MeV.

As before, the values of the nuisance parameters and the correlation matrices

between them are shown in Figure 5.6 for the fits performed using each extracted

value of the shower scale. As in the previous case, we find that the nuisance

parameters are well behaved, being always compatible with the ±1σ contour

band. This is specially important for the global fit, as its result will be taken

as the central value for our determination. As can be seen in the lower part of

Figure 5.6, the behaviour of the fit parameters is very good.
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Figure 5.6: Results for the nuisance parameters involved in the mb extraction
(left column) and correlation matrices between them (right column) for each pT

bin considered. The results obtained for the global fit are shown at the bottom
row. For each pT bin, the corresponding value of Λs listed in Table 5.2 has been
used. For the global fit, the globally extracted value is Λs = 162.1 MeV.
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5.7 Theoretical uncertainties

In this section, the uncertainties on the theory are discussed. They come from

several sources, including the modelling of the parton shower, hadronisation and

multiple parton interactions. Other effects such as the amount of initial and final-

state radiation, the colour reconnection model and the error on the determination

of the parton shower scale Λs are also studied. The generator modelling uncer-

tainty is the main source of uncertainty for these analysis, not being greater than

400 MeV in terms of the extracted b-quark mass. All variations of the theoretical

distributions are performed with respect to the nominal sample, produced using

the fitted values of Λs and mb.

5.7.1 Generator modelling

The Pythia predictions use virtuality-ordered parton showers and the Lund

string model for the hadronisation. In order to study the impact of this choice

on the extraction of mb, a sample of tt̄ events has been generated using the Her-

wig++ Monte Carlo program [99], which incorporates angular-ordered parton

showers as well as the cluster hadronisation model. The modelling of the under-

lying event (multiparton interactions) is also different between both approaches.

For Herwig++, the LHC-UE7-2 tune has been chosen. This is based on the

ATLAS measurements of the underlying event using charged particles [104]. On

the other hand, Pythia uses the so-called Tune A as default [105], which is

based on the correct description of many Tevatron measurements.

In Figure 5.7, the nominal prediction by Pythia is compared to the nominal

predictions by Herwig++. In order to study the impact of these differences

on the determination of mb, the full analysis has been repeated using Her-

wig++. In this case, the b-quark mass is scanned by varying both the Nom-

inalMass and the ConstituentMass flags for /Herwig/Particles/b and

/Herwig/Particles/bbar. The value of Λs has been set to 160.7± 15.3 MeV,

which is the value obtained in Section 5.5 for the Herwig++ approach. The re-

sult for the b-quark mass is mb = 5.25±0.09 GeV, and the difference with respect

to the nominal value is symmetrised and ascribed as a theoretical uncertainty.
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5.7.2 Initial-state radiation

The amount of initial-state radiation (ISR) can lead to differences in the jet

shapes. To test this effect, two additional samples with reduced and enhanced

levels of ISR are generated. The ISR is controlled in Pythia using the parameters

PARP(67) and PARP(64). To decrease the ISR, the parameters are set to 0.5

and 4.0 respectively. To increase ISR, they are set to 6.0 and 0.25, respectively.

These specifications have been widely used in several ATLAS analyses such as

the study of tt̄ production with a veto on central jet activity [100]. The effects

of these changes on the prediction and the comparison to the nominal Pythia

sample are shown in Fig. 5.8. The effect of these variations on the b-quark mass is

around 20 MeV, which is negligible for the final result, compared to the generator

uncertainty.

5.7.3 Final-state radiation

The effect of the amount of final-state radiation (FSR) on the b-jet shape distri-

butions is studied by varying the parameters PARP(72) and PARJ(82). These

two parameters represent the value of ΛQCD in the time-like showers responsible

of the FSR (not arising from a resonant decay), and the infrared invariant mass

cutoff, below which partons are not assumed to radiate. To increase the levels

of FSR, these values are set to 0.384 and 0.5, respectively. To decrease the FSR

activity, they are set to 0.096 and 2.0, respectively. This represents a change of a

factor of 2 with respect to their nominal values 0.192 and 1.0. Fig. 5.9 shows the

effect of these variations on the b-jet shapes, as well as the ratio to the nominal

Pythia prediction. The impact of the FSR on the extracted b-quark mass is

around 180 MeV.

5.7.4 Colour reconnection

The effect of the modelling of the colour reconnection (CR) between final-state

partons is studied by using the ACR [101] tuning of the Pythia Monte Carlo.

This tune incorporates a new colour reconnection model, which assumes an en-

hanced amount of colour connections between partons with respect to the nominal
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Tune A sample. Figure 5.10 shows that the effect of the new CR modelling is

to increase the energy deposit on the jet cores on about 2%. The impact on the

b-quark mass is estimated by multiplying the nominal predictions by the ratio

Tune ACR/Tune A, and it has an effect of around 170 MeV.

5.7.5 Uncertainty on the Λs determination.

The effects of the uncertainties in the determination of the parton shower scale

have been also studied. To this end, the full set of mb variations have been gener-

ated again using the values of Λs which define the envelope of its determination.

Because the value obtained in section 5.5 was Λs = 162.1 ± 9.6 MeV, the full

scan on mb variations has been repeated using the values Λs = 152.5 MeV and

Λs = 171.7 MeV, which define the endpoints of the interval in which Λs can vary

due to its experimental uncertainty. This is done in this way, instead of simply

shifting each theoretical prediction by the nominal variation on the jet shapes

due to this effect because the jet shapes are highly dependent on both parame-

ters mb and Λs at the same time. To keep track of this correlation, the full set of

theoretical predictions has to be recalculated.

The fits with the varied values of Λs are then repeated, and the differences be-

tween both of them and the central value are taken as the systematic uncertainties

on the b-quark mass, which are in principle asymmetric. It is found that the im-

pact on mb of the determination of the parton shower scale is around 60 MeV at

maximum, which represents the 1.2% of the b-quark mass.

Another source of uncertainty related to the way in which Λs is determined arises

from the fixed order at which the running of αs is evaluated. To estimate this

uncertainty, the value of mb has been extracted using the running of αs(Q
2) up to

two loops, which is implemented for the Herwig++ parton shower. The value

of the two-loop shower scale was determined to be Λs = 276.1 ± 17.3 MeV, and

the corresponding value of the b-quark mass is mb = 5.39± 0.08 GeV. This value

is to be compared with the value obtained for the one-loop running coupling in

Herwig++, which was mb = 5.25 ± 0.09 GeV, and therefore gives a relative

uncertainty of 2.7%. For the nominal value of mb = 4.86 GeV, this represents an

additional uncertainty of 0.13 GeV, to be added in quadrature to the result of the
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propagation of the experimental uncertainty in Λs, and therefore has a maximum

value of 0.14 GeV.

Discrepancies between data and MC on the description of the transverse momen-

tum of light jets can lead to a biased result on the value of Λs. In order to check

such effect, the light jet shapes were weighted and the fits were redone. These

weights were estimated, in a very conservative way, matching the shape of the pT

distributions of light and b-jets. The differences on Λs with respect to the nom-

inal value were found to be small (∼ 3%). This difference is perfectly covered

by the error on the fit procedure (∼ 6%), thus ensuring the robustness of the Λs

determination.

As a further cross-check on the way in which Λs is propagated throughout the

analysis, the parton shower scale has been determined using the b-jet shapes ob-

tained with the fitted value of mb. The results are found to be fully compatible

with the previous results obtained in Table 5.2, which reassures us on the extrap-

olation of Λs from light-jets to b-jets.

After the evaluation of the theoretical uncertainties, the final value of the b-quark

mass obtained in this analysis can be expressed as

mb = 4.86± 0.08 (exp.) ± 0.39 (Gen.) +0.02
−0.01 (ISR) +0.18

−0.00 (FSR)

+0.17
−0.00 (CR) +0.14

−0.13 (PS scale) . (5.6)

5.8 Summary and conclusions

This study presents a determination of the mass of the b-quark using jet sub-

structure techniques. It is found that the angular screening effects which were

predicted in [41, 42] are confirmed and consistent with a reasonable value of the

b-quark mass parameter. The dead cone effect was similarly exploited in [106] to

determine the c-quark mass in ep collisions at HERA.

Experimental uncertainties have been propagated using nuisance parameters for

each source of uncertainty. This ensures that the correlations between all sources

are explicitly taken into account. Systematic effects on the theoretical distribu-

tions have also been studied. The modelling of the jet shapes by different Monte

Carlo generators is the main uncertainty on this analysis, accounting for an 8%
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impact on the final value for mb. Other systematic effects on the theoretical pre-

dictions have been studied, such as the amount of initial and final-state radiation,

the colour reconnections and the uncertainty on the determination of the parton

shower scale Λs. Our final result reads

mb = 4.86± 0.08 (exp.) ± 0.39 (Gen.) +0.02
−0.01 (ISR) +0.18

−0.00 (FSR)

+0.17
−0.00 (CR) +0.14

−0.13 (PS scale) . (5.7)

Figure 5.11 shows the projection of the χ2 function on the mb axis, normalized to

the number of degrees of freedom, for the central value of the determined mass.
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Figure 5.11: The mb-projection of the χ2(mb, ~λ) function normalized to the num-
ber of degrees of freedom Ndof .

Although there is a significant numerical similarity of this value with the value of

the pole mass quoted by the Particle Data Group in [6] and also with the values

obtained by the LEP Collaborations in Refs. [107] and [108], the value extracted

here should not be confused with the QCD pole mass of the b-quark. It should

rather be regarded as the on-shell mass parameter affecting the parton shower

kinematics, as calculated in Ref. [98]. In any case, it would be theoretically

very interesting to define a way in which the Monte Carlo masses for hadronising

quarks can be related to the poles of their respective fermionic propagators.
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Chapter 6

Measurement of transverse

energy-energy correlations and

determination of αs(mZ)

This chapter is dedicated to the measurement of transverse energy-energy corre-

lations in multijet events and the determination of the strong coupling constant

from a χ2 fit of these data to next-to-leading order QCD predictions worked

out in Ref. [36]. The results obtained in this chapter have been submitted for

publication to Phys. Lett. B at the time of writing this thesis.

6.1 Introduction and motivation

Transverse energy-energy correlations (TEEC, see Sect. 1.5) provide a precise test

of perturbative QCD and a way to determine the strong coupling constant αs in

ATLAS. This is so because of the high precision of the calorimetric measurement

of the jet angular coordinates η, ϕ and the cancellation of the systematic uncer-

tainties associated to the jet energy measurement due to the xTixTj weighting.

The asymmetry ATEEC, also defined in Sect 1.5 has the experimental advantage

of reducing uncertainties which are constant in φ, i.e. isotropic effects and also

reducing theoretical uncertainties due to the choice of the renormalisation and

factorisation scales. This makes these tools excellent allies for a precise determi-
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nation of the strong coupling constant.

6.2 Monte Carlo samples

For this analysis, two different Monte Carlo approaches are used, depending on

whether the underlying hard process is considered to be 2 → 2 or 2 → n. The

generated events are then processed with the ATLAS full detector simulation,

based on the GEANT4 software (see [75]).

The baseline MC samples used here are generated with Pythia [22], with the

amplitudes calculated at leading order using the MRST2007LO* PDFs (see [77])

and matched to pT ordered parton showers with the AUET2B tune [138, 139]

for the modelling of the underlying event. The hadronisation follows the Lund

string model. Since the p̂T distribution of the basic 2→ 2 underlying QCD pro-

cess is known to be a very steeply falling function, the events are generated in

eight p̂T bins and each sample is weighted according to the corresponding cross-

sections. For the sake of completeness, the files used are summarised in Table

6.1. These samples have been thoroughly used by the ATLAS Collaboration for

jet calibration and production purposes [57, 140]

Channel Sample p̂T( GeV) σ (nb) Events
207011 J4b 220 - 280 7.31× 100 2744973
105014 J5 280 - 560 2.60× 100 2796405
105015 J6 560 - 1120 3.55× 10−2 2791826
105016 J7 1120 - 2240 1.33× 10−4 1398937
105017 J8 2240 - ∞ 5.68× 10−9 1397377

Table 6.1: The Pythia samples used for the analysis

Samples generated with Herwig++ (see [24]) have also been used, using the

parton distribution functions CTEQ6.6 (see [76]). Multiparton interactions have

been taken into account according to [25]. Here the overall approach is similar,

the main subtle differences come from the fact that Herwig++ uses angular

ordered parton showers, a cluster hadronisation scheme and its own underlying
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event parametrisation. The Herwig++ samples are generated in the same p̂T

bins as in the Pythia case, and they are known to describe the gross features of

the multihadronic final states both at LEP and the Tevatron. As in the previous

case, the samples are enumerated in table 6.2. These Monte Carlo samples have

been used by the ATLAS Collaboration together with the ones discussed in the

preceeding paragraph to estimate systematic uncertainties in the modelling of the

hadronic final states.

Channel Sample p̂T( GeV) σ (nb) Events
207010 J4b 220 - 280 7.00× 100 1999480
113209 J5 280 - 560 2.48× 100 999689
113210 J6 560 - 1120 3.41× 10−2 982772
113211 J7 1120 - 2240 1.28× 10−4 998356
113212 J8 2240 - ∞ 4.55× 10−9 949940

Table 6.2: The Herwig samples used for the analysis

Another different approach to simulate multijet final states is followed by Alpgen

[28]. This approach is based on exact matrix element calculations for 2→ nmulti-

parton final states, with n ≤ 6, interfaced with Herwig+Jimmy to provide the

parton shower, hadronisation and underlying event model. In order to properly

sample the available phase space, event samples for a fixed value of n are also

generated in several pT bins. Alpgen is known to provide a good description of

the multijet final states as measured by ATLAS [141].

6.3 Data sample, trigger and event selection

The data sample used in this analysis corresponds to the full 2011 dataset, having

a total integrated luminosity of Ld = 4.6 fb−1. The data have been collected by

the EF j135 a4tc EFFS trigger, which requires 135 GeV of transverse energy

deposit in the EF jet object. The total luminosity recorded by this trigger, taking

the prescales into account, is Lr = 157.74 pb−1. It has been shown in Ref. [142]

that this trigger is fully efficient when the transverse energy of the leading jet

is above 240 GeV, while the cut on pT1 + pT2 > 500 GeV, also used in previous
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event shape analyses [114], ensures that the pT (and therefore the ET ≥ pT) of

the leading jet is always above 250 GeV. Figure 6.1 shows the efficiency curves

for the EF J100, EF j135 and EF j180 triggers.
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Figure 6.1: The trigger efficiency curves for the EF J100, EF j135 and EF j180
triggers. The cut on pT1 + pT2 > 500 GeV ensures that the EF j135 trigger is
fully efficient in the kinematical regime for this analysis. Figure taken from [142]

Events are required to have at least one primary vertex, PV, with five or more

tracks with ptrackT ≥ 400 MeV. If there are more than one primary vertex, the one

maximizing
∑
p2
T is chosen. To take into account the fact that pileup conditions

are different in the Monte Carlo and in the Data samples, a reweighting algorithm

has been applied to the MC. This consists on applying a weight to each event

depending on the average number of interactions per bunch crossing, 〈µ〉, and

has been implemented using PileupReweighting-00-02-12. Fig. 6.2 shows

the 〈µ〉 distributions before and after the reweighting, where the agreement has

been forced to be perfect.

Jets are reconstructed with the anti-kT algorithm [32] with radius parameter

R = 0.4. The input objects to the jet algorithm, both for data and detector level
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simulation, are topological clusters in the calorimeter. These clusters are seeded

by calorimeter cells with |Ecell| > 4σ , with σ the RMS of the noise. Neighbouring

cells are added and clusters are formed following an iterative procedure.

The baseline calibration for these clusters corrects their energy using local hadronic

calibration [143]. Effects due to non-compensation, energy losses in the dead ma-

terial, shower leakage, as well as inefficiencies in energy clustering and jet recon-

struction have to be taken into account. This is done by matching calorimeter

jets with MC particle jets in bins of η and pT. This jet calibration also subtracts

pileup effects. This is called the jet energy scale, thoroughly discussed in [56, 57].

See [82] for more details and for a discussion of its uncertainties.

The selected events should have at least two jets. The two leading jets are

required to fulfill pT1 + pT2 > 500 GeV. All jets in the event are required to

have a transverse momentum pT > 50 GeV. All selected jets should lie in the

central region |η| < 2.5. These two cuts ensure that the selected jets are well

reconstructed and have an optimal energy calibration. The resulting number of

selected events is 380000 with an average jet multiplicity 〈Njet〉 = 2.6. Both Bad

and Ugly jets are removed (see Sect. 3.4.4), removing all jets with isBadTight

== 1 and isUgly == 1. In addition jets are required to satisfy |JVF| > 0.75

(see Sect. 3.4.5) in order to minimize pile-up effects. The resulting fraction of

jets removed by these cuts is 0.16% and 0.28%, respectively.
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Figure 6.2: Comparison of the 〈µ〉 distributions in data and MC before (left) and
after the reweighting (right)

6.3.1 Control plots

The resulting distributions in the transverse momentum pT and the rapidity η

of the selected jets are shown in Fig. 6.3 and 6.4, respectively, along with a

comparison with Pythia and Alpgen.
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Figure 6.3: Transverse momentum distributions for inclusive jets compared to
Pythia (left) and Alpgen (right).
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Figure 6.4: Pseudorapidity distributions for inclusive jets compared to Pythia
(left) and Alpgen (right).

The leading and subleading jet transverse momenta are shown in Fig. 6.5
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Figure 6.5: Transverse momentum of the leading (left) and subleading (right) jets
compared to Pythia expectations.

The resulting jet multiplicity as well as the total transverse energy, calculated

as the scalar sum of the selected jet transverse energies, are shown in Figs. 6.6

and 6.7 along with a comparison with the Pythia expectations. The agreement

between data and MC is good for the jet multiplicity and pseudorapidity, while

the transverse spectra are harder for the data than for the MC. These differences

are well-known and do not represent a problem for the analysis, as the Pythia

AUET2B is the one describing best the main observables of this analysis, namely
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the TEEC and the ATEEC, with less statistical fluctuations. Therefore, this is

the Monte Carlo sample used in the unfolding, uncertainty propagation, etc.
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Figure 6.6: Distribution of the jet multiplicity compared to Pythia (left) and
Alpgen (right).
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Figure 6.7: Scalar sum of transverse energy of all jets compared to Pythia (left)
and Alpgen (right).

Finally, the distribution of the difference in azimuthal angle between any pair of

jets in the event is shown in Fig. 6.8
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Figure 6.8: Distribution of the differences in azimuthal angle between pairs of
jets

6.3.2 Transverse energy versus transverse momentum

Due to the fact that jets have non vanishing masses, the energy and the modulus

of the momentum do not necessarily coincide. This is illustrated in Fig. 6.9,

where a correlation plot is shown between the transverse energy ET = E sin θ

and the jet transverse momentum pT = |~p| sin θ, with θ the polar angle of the jet

axis. The distribution of the relative difference (ET− pT)/ET is also shown. One

can clearly see that the effect of the mass is marginal.
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6.4 Results at the detector level

The TEEC and its associated assymetry ATEEC, as defined in equations 1.55

and 1.59 have been calculated using anti-kt jets with pT > 50 GeV in events

with pT1 + pT2 > 500 GeV. Effectively, the TEEC distribution is measured by

calculating the cosine of the angle in the transverse plane between all possible

pairs of jets in the event. Every pair (i, j) represents an entry on the histogram,

which is then weighted with the normalised product of the transverse energies

defined in equation 6.1

wij =
ETiETj

(
∑

k ETk)
2 (6.1)

These weights are defined in such a way that every event is equally weighted, as

the sum of these over all possible pairs is always unity (see Eq. 6.2).

Njets∑
i=1

Njets∑
j=1

ETiETj

(
∑

k ETk)
2 =

1

(
∑

k ETk)
2

Njets∑
i=1

E2
Ti + 2

∑
i>j

ETiETj

 = 1 (6.2)

The resulting distribution is then normalised to unit area.

This weighting procedure has many experimental advantages, as reducing the

sensitivity to the jet energy scale and resolution. It has also theoretical advantages

such as reducing the sensitivity to soft divergencies. This is so because amplitudes

for bremsstrahlung processes like q → qg have a singularity in the mass of the

qg pair, which is given by the scalar product of their four-momenta, which for

massless partons is pi ·pj = 2EiEj(1−cos θij). Since the energies are not invariant

under Lorentz boosts along the beam direction, the appropriate generalisation to

hadron colliders is to use transverse energies.

For the calculation of the statistical error two approaches were followed. In the

first approach, if X is the sum of weights per event in a given cosφ bin, since the

TEEC function is nothing but 〈X〉 in that bin, the statistical error was calculated

as usual i.e.

∆〈X〉 =
σ√
N

(6.3)
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with N the total number of events in the sample and

σ =
√
〈X2〉 − 〈X〉2 (6.4)

This underestimates the error slightly because it neglects correlations as the sum

of the weights is one and the sum of the angles 2π. To take these effects into

account, for the nominal result a bootstrap method was followed, generating per

bin and event one thousand replicas obtained from a Poisson distribution.

Figs. 6.10 and 6.11 show the TEEC and ATEEC distributions along with compar-

isons with reco level Pythia, Herwig and Alpgen expectations. The binning

has been chosen as the best compromise between having a fine-binned measure-

ment and avoiding fluctuations. The TEEC exhibits two peaks at φ = 0 (self

correlations) and near φ = π (back-to-back region) with a rather flat central

plateau. These features are similar to those observed in e+e− annihilation [126].

The central plateau is expected to be dominated by hard radiation processes

while soft multiple radiation is expected to be important in the small and large

angular regions. The ATEEC exhibits a steep fall-off, being poorly determined

for cosφ ' 0.

Pythia is the Monte Carlo which describes the data best. The Pythia samples

have aproximately ten times the statistics of the Herwig ones and this is the rea-

son why they show smaller fluctuations. This is also the reason why Pythia is

chosen as the reference Monte Carlo generator for unfolding purposes.

Alpgen also describes the data well, although it has limited statistics. The

description of the TEEC by Pythia and Alpgen is good but for the very for-

ward regions, where discrepancies can reach to about 15%.

The description by Herwig++ is significantly poorer. The ATEEC is fairly

described by Pythia and Alpgen with Herwig++ showing discrepancies of

the order of 20%.
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Figure 6.10: The detector level distribution for transverse energy-energy cor-
relation along with comparisons with current Monte Carlo expectations. The
uncertainties shown are only statistical.
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Figure 6.11: The detector level distribution for transverse energy-energy correla-
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The uncertainties shown are only statistical.
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6.5 Unfolding to particle level

In this section, the correction of the data to the hadron level to take detector

effects into account is discussed. This allows a direct comparison with existing and

future theoretical calculations, as well as with other experiments. To this end, two

different approaches are followed: The bin-by-bin and the Bayesian procedures.

The hadron-level jets used here contain both muons and non-interacting particles

(neutrinos). Therefore, the unfolding procedure fully corrects for energy losses

due to partial or total inefficiencies in the detection of these particles by the

calorimeter system. The detector level Monte Carlo also accounts for problems

related to the LAr hole in some periods of the 2011 data. This is automatically

taken into account in the pileup reweighting of the detector level, by weighting

the MC events simulating this problem with the fraction of luminosity suffering

from this problem in the real data.

6.5.1 Efficiency and Purity

Here, the efficiency and purity in the cos(φ) reconstruction is discussed. Efficiency

and purity are defined as

ε =
TEEC(Reco, Matched)

TEEC(Truth, No matching)
(6.5)

$ =
TEEC(Reco, Matched)

TEEC(Reco, No matching)
(6.6)

Here ‘matched’ means that there is a one-to-one correspondence between the

hadron-level and the reconstructed-level jet pairs. This matching is performed

using the distance in the ηϕ plane, ∆R =
√

(∆η)2 + (∆ϕ)2. A truth jet pair

is considered as ‘matched’ if both truth jets are matched to reco jets. A truth

jet is considered to be matched if the closest reconstructed level jet is within

∆R < 0.4. ‘No matching’ means that the distribution is calculated using all jet

pairs irrespective of whether they fulfill the ∆R condition discussed above or not.

Equation 6.5 illustrates how the efficiency is defined as the ratio between the

reconstructed jets and the actual number of generated truth jets per cosφ bin.
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Equation 6.6 defines the purity as the fraction between the number of recon-

structed jets matched to truth jets and the total number of reconstructed jets on

a given bin. Figure 6.12 shows that both variables are close to 90% in the full

kinematical range for the TEEC measurement.

φcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

E
ff
ic

ie
n
c
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pythia

Herwig++

Alpgen

φcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

P
u
ri
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pythia

Herwig++

Alpgen

Figure 6.12: Efficiency (left) and Purity (right) of the reconstruction of the dif-
ferences in azimuth as predicted by the three different Monte Carlos investigated.

6.5.2 Bin-by-bin correlations

Here possible statistical correlations are discussed between bins of the TEEC and

ATEEC distributions at the detector level. To extract the correlation coefficients

between the values of the bins, the bootstrap method has been used. This method

consists in generating N replicas {h(α)}Nα=1 of the measured distribution h(0) (for

our case, let N = 1000), weighting each entry of the histogram with N different

weights distributed following a Poisson distribution centered in 1. The covariance

matrix elements between the bin i and the bin j is then defined as

Vij =
N∑
α=1

[
h

(α)
i − h(0)

i

] [
h

(α)
j − h(0)

j

]
(6.7)

The correlation matrix is the covariance matrix normalised to unity, taking into

account the statistical uncertainties σi for each bin

Cij =
N∑
α=1

[
h

(α)
i − h(0)

i

] [
h

(α)
j − h(0)

j

]
σiσj

(6.8)

212



Ideally, in the case of no bin-by-bin correlations, the correlation matrix is the

identity matrix, i.e Cij = δij. In our case, as it is shown in Fig. 6.13, the

crossed bin-by-bin correlations are small except for the endpoints of the TEEC

distribution, which is correlated with the rest of the distribution, and the first

point of the ATEEC distribution, which also has non-negligible correlations with

their neighbouring bins. As it will be seen later, these points do not represent a

problem for the extraction of the strong coupling as they will be excluded from the

fit for theoretical reasons regarding the dominance of leading-log effects over the

fixed order perturbative calculation. Figure 6.13 shows the correlation matrices

for the TEEC and ATEEC.
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Figure 6.13: Bin-by-bin correlation matrices of the TEEC (left) and ATEEC
(right). It is observed that in the central region, away from the endpoints cosφ ∼
±1, the correlations are negligible, while they could have an important effect on
the back-to-back and forward regions.

6.5.3 Bin-by-bin unfolding

The bin-by-bin method is based on the calculation of Hadron/Reco correction

factors of the form

FTEEC(cosφ) =

[
1

σ′
dΣ′

d cosφ

]MC

HAD

/[
1

σ′
dΣ′

d cosφ

]MC

DET

(6.9)

These correction factors differ from unity in just a few percent. Then, the data

is corrected to the hadron level by multiplying bin by bin the full distributions
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by these factors:[
1

σ′
dΣ′

d cosφ

]DATA

HAD

= FTEEC(cosφ)

[
1

σ′
dΣ′

d cosφ

]DATA

DET

(6.10)

The hadron and reconstructed level TEEC distributions, as well as the correction

factors are shown in Fig. 6.14.
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Figure 6.14: Pythia expectations for the TEEC at reco and truth level (left)
and the correction factors obtained with different Monte Carlo generators (right).

6.5.3.1 Propagation of the statistical uncertainty.

In this section, the propagation of the statistical uncertainty on the unfolded

distributions is discussed. It will be assumed that the numerator and the de-

nominator in Eq. 6.9 are fully correlated. This could be justified because they

correspond to the same distributions in the same set of events, with the only dif-

ference that the denominator is smeared by the detector effects on the Geant 4

simulation. To take this correlations into account, the bootstrap method has been

used to generate N = 1000 replicas of the MC sample. This is done by weighting

each replica with a random number following a Poisson distribution. The relative

difference between the nominal measurement and each of these replicas is shown

as a function of cosφ in Fig. 6.15 for the truth and reco level distributions, while

the corresponding relative differences in the unfolding factors are shown in Fig.

6.16. The statistical uncertainty in the reconstructed level data is derived in the

same way.
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The statistical error in the unfolding factor is then calculated as the RMS of the

resulting distribution of relative differences in each cosφ bin. Figure 6.17 shows

these distributions for high and low statistics bins.
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Figure 6.17: Distributions of the relative differences of each bootstrap sample with
respect to the nominal unfolding factor for high (left) and low (right) statistics
bins of the TEEC distribution. The RMS of the distributions (the statistical
errors in each bin) are indicated with red vertical lines.

Once the statistical uncertainty is obtained for the unfolding factor F , the sta-

tistical error in the unfolded distribution U is calculated as

∆U

U
=

√(
∆F

F

)2

+

(
∆D

D

)2

(6.11)

where D is the reco-level data distribution. Figure 6.18 shows each component of

the uncertainty, together with the total one for each bin of the TEEC distribution.

The total statistical uncertainty is at the level of 1%.
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Figure 6.18: The breakdown of the statistical error on the TEEC distribution after
the unfolding, showing the MC fraction corresponding to the unfolding factor (in
red) and the data fraction corresponding to the raw data (in green).

6.5.4 Bayesian Unfolding

In order to cross-check the bin-by-bin unfolding procedure for any possible effect

of migrations in φ, a Bayesian unfolding is performed using RooUnfold [92].

Figure 6.19 shows the evolution of the unfolding procedure with the number of

iterations, while Figure 6.20 shows the comparison of the Bayesian unfolding out-

put after 5 iterations, where it stabilises, with the bin-by-bin procedure described

above. The transfer matrix is shown in Fig. 6.31.
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6.6 Systematic uncertainties

In this section, the experimental sources of uncertainty for the measurement are

discussed. They include the Jet Energy Scale and Resolution and the uncertain-

ties associated with the JVF cut, unfolding, the shower modelling and Pileup.

6.6.1 Jet Energy Scale

The Jet Energy Scale (JES) uncertainty [56, 57] is calculated in Monte Carlo

by shifting up and down each jet’s energy and momentum by 1 sigma for each

63 nuisance parameters depending on the jet transverse momentum and pseudo-

rapidity. The total JES uncertainty for each bin i is calculated as the sum in

quadratures of every independent source of uncertainty.

∆JESX =

(∑
α∈N

(∆αX)2

) 1
2

(6.12)

The full set of nuisance parameters for both the TEEC and ATEEC are described

in detail in appendix B. The total uncertainty is approximately constant around

4% and is the dominant uncertainty in the analysis.

In order to investigate the effect of the correlations between JES sources in the

analysis, two alternative scenarios have been considered, with weaker and stronger

correlations. As it will be shown later, the impact of the change of configurations

in the value of αs(mZ) and its experimental uncertainty is negligible.

6.6.1.1 Flavour composition of the sample

In order to better constrain the flavour-dependent components of the JES uncer-

tainty, the fraction of gluon-induced jets has been estimated and used as an input

for the calculation of the relevant JES nuisance parameters. Figure 6.21 shows

the gluon fraction of the sample as a function of the jet transverse momentum

and pseudorapidity, obtained from both the Pythia and Alpgen samples. The

differences between these two predictions has been used as the uncertainty on

this parameter.
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Figure 6.21: The fraction of gluon-induced jets as a function of the jet transverse
momentum for the pseudorapidity bins relevant for this analysis
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6.6.2 Jet Energy Resolution

The jet energy resolution uncertainty [83] is calculated by smearing each jet’s

energy and momentum by the pT and η-dependent resolution factor σr. The size

of this uncertainty on the TEEC function is below 1%.

6.6.3 Uncertainty due to the JVF cut

The uncertainty related to the JVF cut is estimated by analysing the modelling

of the JVF cut inefficiencies in Monte Carlo. This is done using the double ratio.

RJVF =

(
TEEC(Without JVF)

TEEC(With JVF)

)
Data(

TEEC(Without JVF)
TEEC(With JVF)

)
MC

(6.13)

The corresponding uncertainty is of the order of a few per mille in the full TEEC

range and therefore it is neglected on the final result. Fig. 6.22 shows the relative

value of this uncertainty.
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Figure 6.22: The uncertainty due to the JVF cut for the TEEC (left) and the
ATEEC (right)

6.6.4 Pileup uncertainty

The pileup uncertainty is estimated by evaluating the description of the pileup

dependence of the TEEC and ATEEC functions made by the MC. The estimation
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is based on high and low pileup samples selected in both the data and the MC

samples. These pileup-varied samples are selected by placing a cut on the average

number of interactions per bunch crossing, 〈µ〉. The low pileup samples are

defined to have 〈µ〉 < 6, while the high pileup samples are selected by cutting on

〈µ〉 ≥ 6. Figure 6.23 shows the comparison of the nominal TEEC and ATEEC

distributions with those obtained in the pileup-varied samples in the Monte Carlo,

while Fig. 6.24 shows this comparison for the data.
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Figure 6.23: The impact of the variation of the average number of interactions
per bunch crossing 〈µ〉 on the TEEC (left) and ATEEC (right) distributions in
the Monte Carlo.

The description of the 〈µ〉 dependence of both observables is then estimated using

the double ratios

R
↑
PU =

(
TEEC(High PU)
TEEC(Nominal)

)
Data(

TEEC(High PU)
TEEC(Nominal)

)
MC

; R
↓
PU =

(
TEEC(Low PU)
TEEC(Nominal)

)
Data(

TEEC(Low PU)
TEEC(Nominal)

)
MC

(6.14)

and the uncertainty is defined as the envelope of these two, i.e.

∆PU = max
{∣∣∣R↑PU − 1

∣∣∣ , ∣∣∣R↓PU − 1
∣∣∣} (6.15)
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Figure 6.24: The impact of the variation of the average number of interactions
per bunch crossing 〈µ〉 on the TEEC (left) and ATEEC (right) distributions in
the data.

The relative value of this uncertainty is shown in Fig. 6.25
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Figure 6.25: The pileup uncertainty for the TEEC (left) and the ATEEC (right)

Due to the fact that this uncertainty is larger than the sum in quadratures of the

two pileup terms in JES, these two terms are removed from the jet energy scale

uncertainty in favour of this better estimation of the pileup impact.
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6.6.5 Jet angular resolution

The jet resolution in the azimuthal angle ϕ is obtained using the Pythia simula-

tion. Figure 6.26 shows this angular resolution ϕreco−ϕtruth together with the

best gaussian fit of this distribution. The obtained resolution is σϕ = 10 mrad.

This is much smaller than the bin width used for the TEEC measurement, thus

explaining why the transfer matrix shown in Fig. 6.31 is so close to diagonal.
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Figure 6.26: The jet angular resolution on the azimuthal angle ϕ, as obtained
from the Pythia AUET2B sample.

The jet angular component ϕ is then smeared in the Monte Carlo as of 10%

of the obtained resolution σS = 1 mrad. This is motivated by track to cluster

matching studies done for the azimuthal decorrelation analysis in Ref. [93]. The

resulting distributions for the TEEC differ from the nominal in less than 2 per

mille and therefore are not taken as a systematic uncertainty. Figure 6.27 shows

the comparison of the nominal TEEC and ATEEC distributions with the ones

obtained by applying the angular smearing.
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Figure 6.27: The impact of the azimuthal smearing on the TEEC (left) and
ATEEC (right) distributions.

Figure 6.28 shows the jet angular resolution uncertainty for both TEEC and

ATEEC.
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Figure 6.28: Relative uncertainty arising from the jet angular resolution for the
TEEC (left) and ATEEC (right) distributions.

6.6.6 Parton shower modelling

To estimate the uncertainty due to the shower modelling, the unfolded data is

compared in the cases where Pythia and Herwig++ are used in the unfolding

procedure. The shower and hadronisation models in both samples are different, as

Pythia sample uses the string hadronisation model, whereas Herwig++ uses

the cluster hadronisation model. Moreover, the tuning of the underlying event
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in both samples is also different, as multiparton interactions in Pythia have

been modelled using the AUET2B tune, whereas Herwig++ uses the UE7000

model. Figure 6.29 shows the differences in both TEEC and ATEEC when using

these two different samples for the unfolding. The impact of this uncertainty is

smaller than 3.5% in the full cosφ range for the TEEC.

Since Herwig++ gives a poorer description of the TEEC and ATTEC than

Pythia it has been checked that the systematic differences between data unfolded

with these two generators are the same after reweighting the MC samples to fully

match the data at reco level following the prescription discussed in subsection

7.8. This is expected since the unfolding factors relate to differences between

generator and reco level.
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Figure 6.29: The differences in TEEC (left) and ATEEC (right) arising from the
parton shower and UE modelling, investigated using Pythia and Herwig++
in the unfolding procedure.

6.6.7 Jet cleaning

In a similar fashion to the uncertainty on the JVF cut, the uncertainty arising

from the jet cleaning cuts is estimated using the double ratio between the TEEC

distribution obtained by lowering the cleaning cut to Medium while keeping the
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removal of Ugly jets in data and MC.

Rclean =

(
TEEC(Tight cut)

TEEC(Medium cut)

)
Data(

TEEC(Tight cut)
TEEC(Medium cut)

)
MC

(6.16)

Figure 6.30 shows that the impact of the jet cleaning mismodelling is negligible

in terms of Rclean. This uncertainty is smaller than the statistical uncertainty,

and therefore it is not considered as a final systematic uncertainty.

φcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

M
C

/(
T

ig
h
t/
M

e
d
iu

m
)

D
A

T
A

(T
ig

h
t/
M

e
d
iu

m
)

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

φcos 

­1 ­0.9 ­0.8 ­0.7 ­0.6 ­0.5 ­0.4 ­0.3 ­0.2 ­0.1 0

M
C

/(
T

ig
h
t/
M

e
d
iu

m
)

D
A

T
A

(T
ig

h
t/
M

e
d
iu

m
)

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

Figure 6.30: The uncertainty due to the jet cleaning cuts for the TEEC (left) and
ATEEC (right) distributions.

6.6.8 Uncertainty due to the unfolding procedure

To estimate the uncertainty associated to the unfolding approach, a data-driven

closure test is used. This is done by reweighting the transfer matrix between

the truth (Y axis) and the Reco (X axis) as obtained using Pythia AUET2B

following the schema below

• 1. The transfer matrix is reweighted row by row (truth distribution), such

that the agreement between Data and MC Reco is enhanced.

• 2. The reweighted matrix is projected on the X axis to obtain the so-

modified Reco level distribution.
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• 3. The modified Reco level distribution is unfolded using the correction

factors calculated using equation 6.9.

• 4. The modified truth level distribution obtained in (1) is compared

with the unfolded modified reco distribution obtained in (3). The relative

difference between both is taken as the systematic uncertainty.

Figure 6.31 shows the ratio between Data and the Monte Carlo expectations

before and after the reweighting, so that an enhancement on the agreement is

clearly seen. Figure 6.32 shows the impact of this uncertainty in both TEEC and

ATEEC, which is very small due to the fact that the transfer matrix is, to a good

level of approximation, diagonal.
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Figure 6.31: Transfer matrix for the TEEC (left), and ratio between Data and
MC before and after the reweighting of the truth-level MC (right).
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Figure 6.32: The uncertainty due to the unfolding procedure for the TEEC (left)
and ATEEC (right) distributions.
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6.6.9 Total uncertainty

The uncertainty on the TEEC function is then obtained by adding every inde-

pendent source in quadratures. The uncertainties are then propagated to the

ATEEC function by calculating the forward-backward asymmetry of each of the

distributions obtained by variating the TEEC by each independent source of un-

certainty. Figures 6.33 and 6.34 show the breakdown of the uncertainties for

both the TEEC and ATEEC functions. To avoid statistical fluctuations in the

tail of the asymmetry, the five last bins of the ATEEC distributions have been

combined for the estimation of the uncertainty. Also, each source of uncertainty

has been separately smoothed to avoid statistical fluctuations for both the TEEC

and ATEEC.
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Figure 6.33: Sources of experimental uncertainty for the TEEC function.
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Figure 6.34: Sources of experimental uncertainty for the ATEEC function.

The total uncertainty does not go beyond 5% for the TEEC, being approximately

constant. For the ATEEC, it increases as cosφ is increased, varying from 1% to

about 5%. A detailed summary of the numerical values of the relative uncertain-

ties is presented in Tables 6.3 and 6.4 for TEEC and ATEEC, respectively

231



cosφ JES (↑) JES (↓) JER Shower PU Unfolding Total (↑) Total (↓)
( -1.00 , -0.96 ) 0.33 % 0.34 % 0.09 % 0.37 % 0.07 % 0.08 % 0.52 % 0.53 %

( -0.96 , -0.92 ) 0.54 % 0.49 % 0.13 % 0.53 % 0.43 % 0.06 % 0.89 % 0.86 %

( -0.92 , -0.88 ) 0.76 % 0.68 % 0.15 % 0.73 % 0.73 % 0.05 % 1.29 % 1.25 %

( -0.88 , -0.84 ) 1.02 % 0.96 % 0.16 % 0.99 % 0.93 % 0.06 % 1.71 % 1.67 %

( -0.84 , -0.80 ) 1.37 % 1.34 % 0.16 % 1.34 % 1.12 % 0.10 % 2.23 % 2.21 %

( -0.80 , -0.72 ) 1.80 % 1.78 % 0.16 % 1.78 % 1.33 % 0.14 % 2.87 % 2.86 %

( -0.72 , -0.64 ) 2.24 % 2.25 % 0.16 % 2.26 % 1.52 % 0.17 % 3.54 % 3.54 %

( -0.64 , -0.56 ) 2.62 % 2.66 % 0.16 % 2.68 % 1.50 % 0.19 % 4.04 % 4.07 %

( -0.56 , -0.48 ) 2.91 % 3.01 % 0.16 % 2.95 % 1.16 % 0.25 % 4.32 % 4.38 %

( -0.48 , -0.36 ) 3.11 % 3.29 % 0.18 % 3.06 % 0.68 % 0.37 % 4.43 % 4.56 %

( -0.36 , -0.24 ) 3.24 % 3.53 % 0.20 % 3.02 % 0.34 % 0.45 % 4.47 % 4.68 %

( -0.24 , -0.12 ) 3.32 % 3.71 % 0.20 % 2.95 % 0.24 % 0.44 % 4.47 % 4.77 %

( -0.12 , 0.00 ) 3.36 % 3.81 % 0.16 % 2.93 % 0.29 % 0.32 % 4.48 % 4.83 %

( 0.00 , 0.12 ) 3.38 % 3.80 % 0.13 % 3.01 % 0.42 % 0.18 % 4.55 % 4.88 %

( 0.12 , 0.24 ) 3.41 % 3.70 % 0.14 % 3.19 % 0.80 % 0.10 % 4.74 % 4.95 %

( 0.24 , 0.36 ) 3.47 % 3.54 % 0.19 % 3.38 % 1.53 % 0.07 % 5.08 % 5.14 %

( 0.36 , 0.48 ) 3.52 % 3.40 % 0.23 % 3.51 % 2.27 % 0.06 % 5.46 % 5.39 %

( 0.48 , 0.56 ) 3.52 % 3.31 % 0.24 % 3.49 % 2.45 % 0.04 % 5.53 % 5.40 %

( 0.56 , 0.64 ) 3.48 % 3.33 % 0.23 % 3.31 % 1.91 % 0.06 % 5.18 % 5.08 %

( 0.64 , 0.72 ) 3.48 % 3.49 % 0.23 % 3.02 % 1.06 % 0.13 % 4.74 % 4.74 %

( 0.72 , 0.80 ) 3.59 % 3.78 % 0.22 % 2.65 % 0.44 % 0.23 % 4.50 % 4.65 %

( 0.80 , 0.84 ) 3.75 % 4.07 % 0.22 % 2.26 % 0.24 % 0.36 % 4.40 % 4.68 %

( 0.84 , 0.88 ) 3.73 % 4.09 % 0.22 % 1.84 % 0.28 % 0.49 % 4.20 % 4.53 %

( 0.88 , 0.92 ) 3.21 % 3.50 % 0.20 % 1.37 % 0.33 % 0.57 % 3.55 % 3.82 %

( 0.92 , 0.96 ) 2.01 % 2.17 % 0.14 % 0.84 % 0.26 % 0.42 % 2.24 % 2.38 %

( 0.96 , 1.00 ) 0.34 % 0.32 % 0.05 % 0.26 % 0.07 % 0.07 % 0.44 % 0.42 %

Table 6.3: Relative systematic uncertainties for the TEEC function
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cosφ JES (↑) JES (↓) JER Shower PU Unfolding Total (↑) Total (↓)
( -1.00 , -0.96 ) 0.66 % 0.46 % 1.00 % 0.54 % 0.07 % 0.01 % 1.32 % 1.23 %

( -0.96 , -0.92 ) 0.02 % 0.00 % 0.03 % 0.16 % 0.51 % 0.01 % 0.54 % 0.54 %

( -0.92 , -0.88 ) 0.43 % 0.27 % 0.41 % 0.77 % 0.98 % 0.10 % 1.38 % 1.34 %

( -0.88 , -0.84 ) 0.57 % 0.37 % 0.45 % 1.23 % 1.51 % 0.13 % 2.08 % 2.04 %

( -0.84 , -0.80 ) 0.69 % 0.53 % 0.39 % 1.51 % 2.11 % 0.05 % 2.71 % 2.67 %

( -0.80 , -0.72 ) 0.97 % 0.92 % 0.34 % 1.66 % 2.61 % 0.07 % 3.26 % 3.25 %

( -0.72 , -0.64 ) 1.42 % 1.56 % 0.34 % 1.76 % 2.88 % 0.20 % 3.68 % 3.74 %

( -0.64 , -0.56 ) 1.89 % 2.26 % 0.39 % 1.85 % 2.96 % 0.38 % 4.01 % 4.20 %

( -0.56 , -0.48 ) 2.21 % 2.81 % 0.45 % 1.97 % 3.07 % 0.66 % 4.34 % 4.68 %

( -0.48 , -0.36 ) 2.35 % 3.08 % 0.50 % 2.11 % 3.29 % 1.20 % 4.74 % 5.14 %

( -0.36 , -0.24 ) 2.37 % 3.13 % 0.51 % 2.23 % 3.48 % 2.05 % 5.21 % 5.60 %

( -0.24 , -0.12 ) 2.34 % 3.09 % 0.51 % 2.31 % 3.54 % 3.04 % 5.73 % 6.07 %

( -0.12 , 0.00 ) 2.32 % 3.04 % 0.50 % 2.36 % 3.47 % 3.15 % 5.76 % 6.09 %

Table 6.4: Relative systematic uncertainties for the ATEEC function.
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6.7 Hadron level results

To obtain the hadron-level results, the bin-by-bin correction factors discussed in

Sect. 6.5.3 have been applied. The systematic uncertainties described in the

previous section are propagated through the unfolding procedure. The TEEC

and ATEEC distributions, once corrected for detector effects, together with their

total uncertainties are shown in Figures 6.35 and 6.36. For completeness, the

numerical values are also given in Tables 6.5 and 6.6.

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

)φ
/d

(c
o
s
 

Σ
) 

d
σ

(1
/

­210

­110

1

10

 = 7 TeVs

Data 2011

Pythia

Herwig++

Alpgen

Preliminary ATLAS

 jets R = 0.4tanti­k

­1
 L dt = 158 pb∫

φcos 
­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

M
C

 /
 D

a
ta

0.8

1

1.2

Figure 6.35: The corrected distribution for transverse energy-energy correlation
along with comparisons with current Monte Carlo expectations. The statistical
uncertainties are shown with error bars, while systematic uncertainties are in-
cluded into the shaded band. The light blue band on the ratio panel includes
both statistical and systematic sources.
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Figure 6.36: The corrected distribution for transverse energy-energy correlation
asymmetry along with comparisons with current Monte Carlo expectations. The
statistical uncertainties are shown with error bars, while systematic uncertainties
are included into the shaded bands. The light blue band on the ratio panel
includes both statistical and systematic sources.
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cosφ TEEC Stat. JES JER Shower PU Unf.

( -1.00 , -0.96 ) 10.0078 0.0078 +0.0334
−0.0342 0.0094 0.0374 0.0075 0.0078

( -0.96 , -0.92 ) 0.8218 0.0047 +0.0044
−0.0040 0.0011 0.0044 0.0036 0.0005

( -0.92 , -0.88 ) 0.3848 0.0029 +0.0029
−0.0026 0.0006 0.0028 0.0028 0.0002

( -0.88 , -0.84 ) 0.2324 0.0022 +0.0024
−0.0022 0.0004 0.0023 0.0022 0.0001

( -0.84 , -0.80 ) 0.1612 0.0017 +0.0022
−0.0022 0.0003 0.0022 0.0018 0.0002

( -0.80 , -0.72 ) 0.1095 0.0009 +0.0020
−0.0020 0.0002 0.0020 0.0015 0.0002

( -0.72 , -0.64 ) 0.0767 0.0008 +0.0017
−0.0017 0.0001 0.0017 0.0012 0.0001

( -0.64 , -0.56 ) 0.0574 0.0006 +0.0015
−0.0015 0.0001 0.0015 0.0009 0.0001

( -0.56 , -0.48 ) 0.0472 0.0005 +0.0014
−0.0014 0.0001 0.0014 0.0005 0.0001

( -0.48 , -0.36 ) 0.0400 0.0004 +0.0012
−0.0013 0.0001 0.0012 0.0003 0.0001

( -0.36 , -0.24 ) 0.0329 0.0004 +0.0011
−0.0012 0.0001 0.0010 0.0001 0.0001

( -0.24 , -0.12 ) 0.0302 0.0003 +0.0010
−0.0011 0.0001 0.0009 0.0001 0.0001

( -0.12 , 0.00 ) 0.0273 0.0003 +0.0009
−0.0010 0.0000 0.0008 0.0001 0.0001

( 0.00 , 0.12 ) 0.0262 0.0003 +0.0009
−0.0010 0.0000 0.0008 0.0001 0.0000

( 0.12 , 0.24 ) 0.0264 0.0003 +0.0009
−0.0010 0.0000 0.0008 0.0002 0.0000

( 0.24 , 0.36 ) 0.0272 0.0003 +0.0009
−0.0010 0.0001 0.0009 0.0004 0.0000

( 0.36 , 0.48 ) 0.0286 0.0003 +0.0010
−0.0010 0.0001 0.0010 0.0006 0.0000

( 0.48 , 0.56 ) 0.0306 0.0004 +0.0011
−0.0010 0.0001 0.0011 0.0008 0.0000

( 0.56 , 0.64 ) 0.0340 0.0004 +0.0012
−0.0011 0.0001 0.0011 0.0006 0.0000

( 0.64 , 0.72 ) 0.0391 0.0004 +0.0014
−0.0014 0.0001 0.0012 0.0004 0.0001

( 0.72 , 0.80 ) 0.0487 0.0004 +0.0017
−0.0018 0.0001 0.0013 0.0002 0.0001

( 0.80 , 0.84 ) 0.0639 0.0007 +0.0024
−0.0026 0.0001 0.0014 0.0002 0.0002

( 0.84 , 0.88 ) 0.0780 0.0008 +0.0029
−0.0032 0.0002 0.0014 0.0002 0.0004

( 0.88 , 0.92 ) 0.0955 0.0009 +0.0031
−0.0033 0.0002 0.0013 0.0003 0.0005

( 0.92 , 0.96 ) 0.1025 0.0009 +0.0021
−0.0022 0.0001 0.0009 0.0003 0.0004

( 0.96 , 1.00 ) 11.4484 0.0029 +0.0391
−0.0364 0.0055 0.0295 0.0084 0.0077

Table 6.5: Corrected values for the energy-energy correlation function (TEEC),
together with the absolute statistical and systematic uncertainties.
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cosφ ATEEC Stat. JES JER Shower PU Unf.

( -1.00 , -0.96 ) -1.4406 0.0083 +0.0094
−0.0066 0.0144 0.0078 0.0010 0.0001

( -0.96 , -0.92 ) 0.7193 0.0048 +0.0002
−0.0000 0.0002 0.0012 0.0037 0.0001

( -0.92 , -0.88 ) 0.2893 0.0030 +0.0012
−0.0008 0.0012 0.0022 0.0028 0.0003

( -0.88 , -0.84 ) 0.1544 0.0023 +0.0009
−0.0006 0.0007 0.0019 0.0023 0.0002

( -0.84 , -0.80 ) 0.0973 0.0019 +0.0007
−0.0005 0.0004 0.0015 0.0020 0.0000

( -0.80 , -0.72 ) 0.0608 0.0010 +0.0006
−0.0006 0.0002 0.0010 0.0016 0.0000

( -0.72 , -0.64 ) 0.0376 0.0009 +0.0005
−0.0006 0.0001 0.0007 0.0011 0.0001

( -0.64 , -0.56 ) 0.0235 0.0007 +0.0004
−0.0005 0.0001 0.0004 0.0007 0.0001

( -0.56 , -0.48 ) 0.0165 0.0007 +0.0004
−0.0005 0.0001 0.0003 0.0005 0.0001

( -0.48 , -0.36 ) 0.0115 0.0005 +0.0003
−0.0004 0.0001 0.0002 0.0004 0.0001

( -0.36 , -0.24 ) 0.0057 0.0004 +0.0001
−0.0002 0.0000 0.0001 0.0002 0.0001

( -0.24 , -0.12 ) 0.0038 0.0004 +0.0001
−0.0001 0.0000 0.0001 0.0001 0.0001

( -0.12 , 0.00 ) 0.0011 0.0004 +0.0000
−0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.6: Corrected values for the asymmetry on the energy-energy correlation
function (ATEEC), together with the absolute statistical and systematic uncer-
tainties.
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6.8 Theoretical predictions

The pQCD next-to-leading order calculations of the TEEC and ATEEC func-

tions are performed using NLOJet++ [37] interfaced with the MSTW 2008

[13], CT10 [134], NNPDF 2.3 [135] and HERAPDF 1.5 [10] parton distribu-

tion functions at NNLO. They have been obtained generating O(1010) events. The

results of this programme have been checked by a number of independent NLO

jet calculations [36, 133] and have been thoroughly compared with experimental

data at ep and hadron colliders. Schematically, this entails the calculation of the

2 → 3 partonic subprocesses in the NLO accuracy and of the 2 → 4 partonic

processes in the LO in αs(µ), which contribute to the numerator of the r.h.s of

Eq. 3. The azimuthal angle range is restricted to (−0.92, 0.92), which somehow

expands the region originally investigated in [36], which was (−0.8, 0.8). Exclud-

ing the endpoints removes the self-correlations and frees us from calculating the

two-loop virtual corrections to the 2 → 2 processes. Thus, the denominator in

Eq. 1.56 includes the 2→ 2 and 2→ 3 processes, which are calculated up to and

including O(α3
s) corrections.

The calculations have been reported in [36], where furthermore they have been

shown to exhibit only a little sensitivity to the PDF choice, MSTW 2008 versus

CT10.

For both the numerator and the denominator, the nominal renormalisation and

factorisation scales in jet studies, which are inherent in any pQCD calculation,

are usually taken to reflect the typical transverse momentum of the process under

investigation. For the TEEC and ATEEC measurements, they are taken to be

µR = µF ≡ 〈pT12〉 =
pT,1 + pT,2

2
(6.17)

where pT,1 and pT,2 are the transverse momenta of the leading and the subleading

jet, respectively. This is also the choice in [136].

The theoretical uncertainties on the renormalisation and factorisation scales, as

well as on the PDFs are also calculated using NLOJet++. Example distribu-
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tions of the NLO theory predictions for the TEEC and ATEEC were shown in

Fig. 6.55.

6.8.1 Theoretical uncertainties

The theoretical uncertainties for this analysis are divided into three classes: those

corresponding to the renormalisation and factorisation scale variations, the ones

corresponding to the PDF eigenvectors, and the ones on the non-perturbative

corrections. It has been shown in [36] that the TEEC being defined as the ratio

between the 3-jet and the 2-jet inclusive cross sections is not very sensitive to the

PDF choice.

6.8.1.1 Scale uncertainties

For calculating the theoretical uncertainty on the renormalisation and factorisa-

tion scales, the TEEC and ATEEC distributions have been computed varying

independently each of them by a factor of two, with the additional requirement

that 1/2 ≤ µR/µF ≤ 2. The combinations for the scale variations are therefore(
µR
µ0

,
µF
µ0

)
∈
{(

1

2
,
1

2

)
,

(
1

2
, 1

)
,

(
1,

1

2

)
, (1, 2) , (2, 1) , (2, 2)

}
(6.18)

where µ0 is the nominal scale choice. From those, the ones giving the highest

uncertainty are those where the scales are shifted in the same direction simulta-

neously, this is {(
1

2
,
1

2

)
, (2, 2)

}
(6.19)

The impact of the variations in Eq. 6.18 on the TEEC and ATEEC functions are

summarised in Figs. 6.37 to 6.42. The two combinations in Eq. 6.19 define the

envelope of the scale uncertainty for both the TEEC and ATEEC functions, and

therefore, the combination of both will be taken as the total scale uncertainty

on these distributions. The total scale uncertainty has been smoothed to avoid

statistical fluctuations. Several other choices for the factorization and renormal-

ization scales have been tried, namely the pT of the leading jet pT,1, the sum

pT,1 + pT,2 or the total ET of the event. They all give larger uncertainties.
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Figure 6.37: The impact on the TEEC (left) and ATEEC (right) of the (1/2, 1/2)
scale variation.
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Figure 6.38: The impact on the TEEC (left) and ATEEC (right) of the (1/2, 1)
scale variation.
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Figure 6.39: The impact on the TEEC (left) and ATEEC (right) of the (1, 1/2)
scale variation.
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Figure 6.40: The impact on the TEEC (left) and ATEEC (right) of the (1, 2)
scale variation.
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Figure 6.41: The impact on the TEEC (left) and ATEEC (right) of the (2, 1)
scale variation.
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Figure 6.42: The impact on the TEEC (left) and ATEEC (right) of the (2, 2)
scale variation.
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6.8.1.2 PDF eigenvectors

The CT10 parton density functions provide 50 variations for the 25 fitted param-

eters at the 90% confidence level. Each of the 25 varied parameters are shifted

up and down following the CT10 recommendations in [134], and are combined

for each bin of the TEEC and ATEEC functions by using the master formula

∆X =
1

2

√√√√ n∑
k=1

[
X(S↑k)−X(S↓k)

]2

(6.20)

6.8.1.3 Non-perturbative corrections

In order to compare the theoretical parton-level predictions with the hadron-

level data, the non-perturbative corrections are needed for taking into account

effects due to the hadronisation and the underlying event modelling. To this end,

Pythia6 AUET2B, Pythia6 AMBT2B and Herwig++ UE7000 samples,

as well as Pythia8 AU2 and Pythia8 4C, each with different hadronisation

and underlying event models, have been generated with hadronisation and UE

turned OFF, and correction factors have been computed for these effects, com-

bined into a total correction factor F.

In Pythia, the switches controlling the hadronisation and the underlying event

are given by MSTP(111) = 0 and MSTP(81) = 20, respectively. In Her-

wig++, the hadronisation switch is given by

set /Herwig/EventHandlers/LHCHandler:HadronisationHandler NULL

While the switch corresponding to the underlying event is given by

set /Herwig/Shower/ShowerHandler:MPIHandler NULL

The correction factors are then calculated as the ratio between the TEEC with

hadronisation and UE and the TEEC with these effects turned off.

F =
TEEC(Had = ON,UE = ON)

TEEC(Had = OFF,UE = OFF)
(6.21)

Figures 6.43 shows the correction factors to be applied to the theoretical predic-

tions.
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Figure 6.43: The non-perturbative correction factors

The central value used for the correction is chosen to be Pythia AUET2B. The

theoretical uncertainty due to the non-perturbative correction is then calculated

as the maximum difference between Pythia AUET2B and any of the other

choice. This defines the envelope of the uncertainty, as shown in Fig. 6.43.

6.8.1.4 αs uncertainty

The theoretical uncertainty due to the determination of αs is estimated, following

the PDF4LHC recommendations, by varying the value of the strong coupling in

0.0012. The result is a plain 1% uncertainty on the TEEC. Fig. 6.44 shows the

results of this estimation
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6.8.2 Comparison with data

In this section, the nominal theoretical predictions are compared with the un-

folded data. Figures 6.45 to 6.48 show these comparisons for both the TEEC

and ATEEC. The agreement is good for the TEEC, being always within the

uncertainties, and very good for the ATEEC.
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Figure 6.45: Ratios of the measured TEEC and ATEEC functions with respect to
the theoretical predictions using NLO pQCD convoluted with the MSTW PDF.
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Figure 6.47: Ratios of the measured TEEC and ATEEC functions with respect
to the theoretical predictions using NLO pQCD convoluted with the NNPDF
2.3 PDF.
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Figure 6.48: Ratios of the measured TEEC and ATEEC functions with respect to
the theoretical predictions using NLO pQCD convoluted with the HERAPDF
1.5 PDF.
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6.9 Determination of the strong coupling

The evaluation of the strong coupling constant αs(mZ) is made by minimizing

a standard χ2 function with correlations between the systematic uncertainties,

which are parametrised using the nuisance parameters λk categorised in tables

6.7 and 6.8, ordered as a function of increasing impact on the TEEC measurement.

The minimum of the χ2 function is found in a 66-dimensional space, one dimension

corresponding to αs(mZ) and the rest to the nuisance parameters associated with

the experimental errors. The function to be minimised is defined as

χ2(αs, ~λ) =
∑
bins

(xi − Fi(αs, ~λ))2

∆x2
i + ∆ξ2

i

+
∑
k

λ2
k (6.22)

where the theoretical predictions are varied according to

Fi(αs, ~λ) = ψi(αs)

(
1 +

∑
k

λkσ
(i)
k

)
(6.23)

In this expressions, xi correspond to the data points in each distribution (TEEC

or ATEEC), and ∆xi are their statistical uncertainties. ∆ξi are the statistical

errors on the theoretical predictions, while σ
(i)
k correspond to the k-th source

of systematic uncertainty in the bin i. In a conservative way, the asymmetric

systematic uncertainties are symmetrised to their maximum value for the χ2

definition.

σ
(i)
k = max

{
σ

(i)↑
k , σ

(i)↓
k

}
(6.24)

The functions ψi(αs) are analytical expressions parametrizing the dependence of

each observable (TEEC or ATEEC) on the strong coupling constant. They are

obtained by fitting the predictions for each bin as a function of αs(mZ). This

function is chosen to be a parabola of the form

ψi(αs) = aiα
2
s + biαs + ci (6.25)
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As an example, Fig. 6.49 shows these parameterizations for the first and last bins

of the TEEC function, while Fig. 6.50 shows the parabolas ψ(αs) for the first

two bins of the ATEEC function
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Figure 6.49: Dependence of the TEEC function on the strong coupling constant
at the Z mass pole for −0.92 < cosφ < −0.88 (left) and 0.88 < cosφ < 0.92
(right)
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Figure 6.50: Dependence of the ATEEC function on the strong coupling constant
at the Z mass pole for −0.92 < cosφ < −0.88 (left) and −0.88 < cosφ < −0.84
(right)

The quality of the fit to the NLO predictions is found to be excellent for each bin

on both TEEC and ATEEC. This is expected, as the dependence on αs(mZ) on

an NLO calculation is a polynomial of order 2.
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The theoretical uncertainties on the predictions are treated by shifting the theo-

retical distributions by each independent source of uncertainty (scale variations,

all independent PDF uncertainties and non-perturbative corrections) and repeat-

ing the fit using the modified theoretical inputs. For the scale uncertainty, the fits

are repeated for each different variation of (µR, µF ), and the two values of αs(mZ)

which separate most from the nominal value are taken as the ones defining the

envelope of the uncertainty.

Nuisance parameter number λk Associated uncertainty σ
1 Insitu Stat32
2 Insitu Stat33
3 SingleParticle HighPt
4 RelativeNonClosure MC11b
5 Insitu Stat31
6 Insitu Stat28
7 Insitu Stat29
8 Insitu Stat30
9 Insitu Stat27
10 Insitu Stat23
11 Insitu Stat13
12 Insitu Stat15
13 Insitu Stat25
14 Insitu Stat22
15 Insitu Stat14
16 Insitu Stat12
17 Insitu Stat26
18 Insitu Stat16
19 Insitu Stat24
20 Insitu Stat17
21 MJB Beta
22 MJB Alpha
23 InSitu Stat18
24 InSitu Stat21
25 MPF JER
26 InSitu Stat3
27 InSitu Stat20
28 InSitu Stat2
29 InSitu Stat19
30 InSitu Stat10
31 Zjet JVF
32 Zjet Kterm

Table 6.7: The nuisance parameters used in the αs extraction, ordered as a a
function of increasing impact on the TEEC measurement (I)

249



Nuisance parameter number λk Associated uncertainty σ
33 MJB ISRFSR
34 InSitu Stat4
35 MJB CBJR
36 Insitu Stat11
37 MJB Threshold
38 InSitu Stat8
39 InSitu Stat5
40 InSitu Stat9
41 InSitu Stat1
42 MPF J2
43 MJB Intercalibration
44 JER
45 MJB Fragmentation
46 InSitu Stat7
47 InSitu Stat6
48 Zjet Extrapolation
49 MJB Asym
50 Zjet Width
51 MPF Generator
52 MPF Pileup
53 EtaIntercalibration TotalStat
54 MPF Purity
55 MPF OOC
56 Zjet Veto
57 Zjet MC
58 Unfolding (Closure Test)
59 InSitu LArEMScale
60 EtaIntercalibration Modelling
61 Close By
62 Pileup
63 Shower modelling
64 Flavor Comp
65 Flavor Response

Table 6.8: The nuisance parameters used in the αs extraction ordered as a func-
tion of increasing impact on the TEEC measurement (II)
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6.9.1 TEEC fits

In this section, the fits for the energy-energy correlation function are presented

using four different PDFs, namely MSTW, CT10, NNPDF and HERAPDF,

al of them at the NNLO level of precision. Figure 6.51 shows the fit result for each

nuisance parameter, together with the correlation coefficients between nuisance

parameters for the different choices of the PDF.
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Figure 6.51: Extracted values of the nuisance parameters (left) and correlation
matrices (right) for the TEEC fits using different PDFs.
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The left hand plots on Fig. 6.51 show that most nuisance parameters remain

stable at values close to 0. However, some of them deviate from this value,

specially those accounting for the topological and flavor JES sources (Close By,

Flavor Comp and Flavor Response), together with the Jet Energy Resolution. In

any case, all of these deviations are within 1σ. On the right-hand side of Fig.

6.51, one can see that those parameters that are deviating from 0 show some

anticorrelations between them. These fits were repeated using the reduced set of

JES nuisance parameters, with very similar results. The results for the value of

the strong coupling constant are summarised in Table 6.9
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All values are compatible within the PDF uncertainties obtained using the eigen-

vector variations, as discussed in Sect. 6.8.1.2. The uncertainties for the case

of HERAPDF are significantly smaller because of the different shape of the

parabolic behaviour of the TEEC function with αs.

The χ2 profile for the nominal value of αs is shown in Fig 6.52 for the case of the

MSTW parton densities.
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Figure 6.52: The αs-projection of the χ2 function for the nominal TEEC fit.

Table 6.10 shows the values of αs from the scale variations, while Fig. 6.53 shows

their χ2 profiles

Scale Variation αs(mZ) Exp. error χ2/Ndof

(1/2, 1/2) 0.1164 0.0010 49.5 / 21
(1/2, 1) 0.1156 0.0010 33.2 / 21
(1, 1/2) 0.1163 0.0010 27.9 / 21
(1, 2) 0.1188 0.0009 30.6 / 21
(2, 1) 0.1216 0.0009 32.6 / 21
(2, 2) 0.1233 0.0009 33.9 / 21

Table 6.10: The αs values for the scale variations
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Figure 6.53: The αs-projections of the χ2(αs, ~λ) functions for the scale variations
in the TEEC fit
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Table 6.11 shows the values of αs from NP variations, while Fig. 6.54 shows their

χ2 profiles

NP Variation αs(mZ) Exp. error χ2/Ndof

Up 0.1177 0.0010 29.7 / 21
Down 0.1173 0.0010 29.2 / 21

Table 6.11: The αs values for the scale variations
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Figure 6.54: The αs-projections of the χ2(αs, ~λ) functions for the NP variations
in the TEEC fit

To illustrate the meaning of tables 6.10 and 6.11 let us look at table 6.11. The

difference between αs(mZ) with the Up variation for the NP correction in Table

6.11, 0.1178, and the nominal value in Eq. 6.9 is ascribed to the negative system-

atic error due to the NP correction, 0.0002. Similarly, the maximum differences

between the nominal value and the scale variations obtained in Tab. 6.10 are

identified as the scale uncertainties. The numerical values for the Data/Theory

comparison after the fit are shown in Table 6.12, together with the partial values

of the χ2 function. From this table, it is clear that the quality of the fit is good

overall, with the exception of the points near cosφ ∼ 1, i.e. the region where

self-correlations are important, though no clear systematic effects are seen.
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cosφ Data Data Stat. Theory Theory Stat. Partial χ2

( -0.92 , -0.88 ) 0.3848 0.0029 0.3826 0.0020 0.3948

( -0.88 , -0.84 ) 0.2324 0.0022 0.2353 0.0016 1.1816

( -0.84 , -0.80 ) 0.1612 0.0017 0.1594 0.0013 0.6784

( -0.80 , -0.72 ) 0.1095 0.0009 0.1102 0.0007 0.3480

( -0.72 , -0.64 ) 0.0767 0.0008 0.0746 0.0006 4.6344

( -0.64 , -0.56 ) 0.0574 0.0006 0.0583 0.0005 1.1605

( -0.56 , -0.48 ) 0.0472 0.0005 0.0468 0.0005 0.1997

( -0.48 , -0.36 ) 0.0400 0.0004 0.0394 0.0004 1.4070

( -0.36 , -0.24 ) 0.0329 0.0004 0.0337 0.0004 2.5587

( -0.24 , -0.12 ) 0.0302 0.0003 0.0293 0.0003 3.4666

( -0.12 , 0.00 ) 0.0273 0.0003 0.0278 0.0003 1.1616

( 0.00 , 0.12 ) 0.0262 0.0003 0.0265 0.0003 0.3654

( 0.12 , 0.24 ) 0.0264 0.0003 0.0264 0.0003 0.0036

( 0.24 , 0.36 ) 0.0272 0.0003 0.0270 0.0003 0.1453

( 0.36 , 0.48 ) 0.0286 0.0003 0.0287 0.0003 0.1426

( 0.48 , 0.56 ) 0.0306 0.0004 0.0303 0.0004 0.3150

( 0.56 , 0.64 ) 0.0340 0.0004 0.0345 0.0004 0.9510

( 0.64 , 0.72 ) 0.0391 0.0004 0.0394 0.0004 0.2150

( 0.72 , 0.80 ) 0.0487 0.0004 0.0490 0.0005 0.2396

( 0.80 , 0.84 ) 0.0639 0.0007 0.0625 0.0007 1.8771

( 0.84 , 0.88 ) 0.0780 0.0008 0.0769 0.0008 1.0198

( 0.88 , 0.92 ) 0.0955 0.0009 0.0978 0.0009 3.5268

Table 6.12: The numerical comparison of the TEEC data versus the theory after
the fit, together with the partial χ2 values.
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The λ-term in the χ2 function (the quadratic sum of all the nuisance parameters)

amounts up to 3.01 for the TEEC fit. Figure 6.55 shows the comparison of the

data with the theory after the fit, where the systematic uncertainty is calculated

taking into account the correlations between the systematic uncertainties, i.e.

∆x2 =
∑
ij

Cijσiσj =
∑
i

σ2
i + 2

∑
i<j

Cijσiσj (6.26)

Additionally, to estimate the impact of the statistical uncertainty on the total

experimental uncertainty, the fit was redone setting all nuisance parameters to

0. The result is that the statistical uncertainty represents a 0.3% of the value of

αs(mZ), in contrast with the total 0.7%.
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Figure 6.55: Comparison of the TEEC data and the theoretical predictions (mod-
ified using the optimal nuisance parameters) for the TEEC-fitted value of αs. The
green band shows the theoretical uncertainties, including the αs uncertainty.
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6.9.2 ATEEC fits

In this section, the fits for the energy-energy correlation asymmetry function are

presented. Figure 6.56 shows the fit results for each nuisance parameter, together

with the correlation coefficients between nuisance parameters for the different

PDFs used in the analysis.

 [AEEC]
i

λNuisance parameter 

0 10 20 30 40 50 60

F
it 

R
e
su

lt

­2

­1

0

1

2

3

4 NP Values

 contourσ 1 ±

 contourσ 2 ±

MSTW 2008

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

 [AEEC]
i

λNuisance parameter 

0 10 20 30 40 50 60

 [
A

E
E

C
]

i
λ

N
u
is

a
n
ce

 p
a
ra

m
e
te

r 

0

10

20

30

40

50

60 MSTW 2008

 [AEEC]
i

λNuisance parameter 

0 10 20 30 40 50 60

F
it 

R
e
su

lt

­2

­1

0

1

2

3

4 NP Values

 contourσ 1 ±

 contourσ 2 ±

CT10

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

 [AEEC]
i

λNuisance parameter 

0 10 20 30 40 50 60

 [
A

E
E

C
]

i
λ

N
u
is

a
n
ce

 p
a
ra

m
e
te

r 

0

10

20

30

40

50

60 CT10

 [AEEC]
i

λNuisance parameter 

0 10 20 30 40 50 60

F
it 

R
e
su

lt

­2

­1

0

1

2

3

4 NP Values

 contourσ 1 ±

 contourσ 2 ±

NNPDF 2.3

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

 [AEEC]
i

λNuisance parameter 

0 10 20 30 40 50 60

 [
A

E
E

C
]

i
λ

N
u
is

a
n
ce

 p
a
ra

m
e
te

r 

0

10

20

30

40

50

60 NNPDF 2.3

 [AEEC]
i

λNuisance parameter 

0 10 20 30 40 50 60

F
it 

R
e
su

lt

­2

­1

0

1

2

3

4 NP Values

 contourσ 1 ±

 contourσ 2 ±

HERAPDF 1.5

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

 [AEEC]
i

λNuisance parameter 

0 10 20 30 40 50 60

 [
A

E
E

C
]

i
λ

N
u
is

a
n
ce

 p
a
ra

m
e
te

r 

0

10

20

30

40

50

60 HERAPDF 1.5

Figure 6.56: Extracted values of the nuisance parameters (left) and correlation
matrices (right) for the ATEEC fits using different PDFs.
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In this case, as one can see in the left-hand side of Fig. 6.56, the values of the

nuisance parameters always remain well behaved, as their values are very close to

0 and therefore the quality of the fits in terms of the values of the χ2 are better

than in the TEEC case. Here again, the correlation matrices shown in the right-

hand side of Fig. 6.56 are pretty diagonal and exhibits small anticorrelations.

The results for the value of the strong coupling constant are summarised in Table

6.13
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Here, once again all values are compatible within the uncertainties. The un-

certainties for the case of HERAPDF are significantly smaller because of the

different shape of the parabolic behaviour of the ATEEC function with αs.

The χ2 profile for the nominal value of αs is shown in Fig 6.52 for the extraction

using the MSTW 2008 PDFs
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Figure 6.57: The αs-projection of the χ2(αs, ~λ) functions for the nominal ATEEC
fit.

Table 6.14 shows the values of αs from the scale variations, while Fig. 6.58 shows

their χ2 profiles

Scale Variation αs(mZ) Exp. error χ2/Ndof

(1/2, 1/2) 0.1191 0.0017 11.9 / 10
(1/2, 1) 0.1181 0.0017 11.3 / 10
(1, 1/2) 0.1185 0.0017 12.1 / 10
(1, 2) 0.1207 0.0016 13.2 / 10
(2, 1) 0.1235 0.0016 14.3 / 10
(2, 2) 0.1251 0.0016 14.7 / 10

Table 6.14: The αs values for the scale variations in the ATEEC fit.
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Figure 6.58: The αs-projections of the χ2(αs, ~λ) functions for the scale variations
in the ATEEC fit.
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Table 6.15 shows the values of αs from NP variations, while Fig. 6.59 shows their

χ2 profiles

NP Variation αs(mZ) Exp. error χ2/Ndof

Up 0.1196 0.0017 12.1 / 10
Down 0.1195 0.0017 13.3 / 10

Table 6.15: The αs values for the scale variations
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Figure 6.59: The αs-projections of the χ2(αs, ~λ) functions for the NP variations
in the ATEEC fit.

The numerical values for the Data/Theory comparison after the fit is shown in

Table 6.16, together with the partial values of the χ2 function. In this case, the

goodness of the fit extends to the whole fitted region, with partial χ2 values below

1 in most of the bins.

The λ-term in the χ2 function (the quadratic sum of all the nuisance parameters)

amounts up to 0.45 for the ATEEC fit. Figure 6.60 shows the comparison of the

data with the theory after the fit, with the systematic uncertainties estimated

according to Eq. 6.26. The statistical uncertainty in the fit was estimated in the

same way as for the TEEC fit, by setting all nuisance parameters to 0. The result

is that the statistical uncertainty represents a 0.6% of the value of αs(mZ), to be

compared with the 1.2% of the total experimental uncertainty.
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cosφ Data Data Stat. Theory Theory Stat. Partial χ2

( -0.92 , -0.88 ) 0.2893 0.0030 0.2862 0.0022 0.6970

( -0.88 , -0.84 ) 0.1544 0.0023 0.1578 0.0017 1.3875

( -0.84 , -0.80 ) 0.0973 0.0019 0.0965 0.0015 0.1002

( -0.80 , -0.72 ) 0.0608 0.0010 0.0615 0.0009 0.2570

( -0.72 , -0.64 ) 0.0376 0.0009 0.0357 0.0008 2.9757

( -0.64 , -0.56 ) 0.0235 0.0007 0.0244 0.0007 0.8482

( -0.56 , -0.48 ) 0.0165 0.0007 0.0170 0.0006 0.2838

( -0.48 , -0.36 ) 0.0115 0.0005 0.0111 0.0005 0.3269

( -0.36 , -0.24 ) 0.0057 0.0004 0.0070 0.0005 3.7010

( -0.24 , -0.12 ) 0.0038 0.0004 0.0031 0.0005 1.4017

( -0.12 , 0.00 ) 0.0011 0.0004 0.0014 0.0004 0.2207

Table 6.16: The numerical comparison of the data versus the theory after the fit,
together with the partial χ2 values in the ATEEC fit.
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Figure 6.60: Comparison of the ATEEC data and the theoretical predictions
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of αs. The green band shows the theoretical uncertainties, including the αs
uncertainty.
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6.9.3 Cross checks: Alternative JES configurations

As it was mentioned in section 6.6.1, two alternative JES scenarios have been in-

vestigated: one with stronger correlations between the JES nuisance parameters

and one with weaker ones with respect to the default. The stronger correla-

tion configuration contains a total of 54 parameters, including those accounting

for pileup, flavor response and composition and event topology. On the other

hand, the weaker correlation scenario has a total of 65 nuisance parameters, also

including those for pileup, flavor and topology.

6.9.3.1 Fits with stronger correlation configuration

The fits described in the previous sections have been repeated using the stronger

correlation configuration. The results for both αs and its uncertainties agree very

well with the default ones. In Figure 6.61, the values of the nuisance parameters

and their correlation matrix are shown for the fit to the TEEC function, while

Figure 6.62 shows the same for the ATEEC fit.
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Figure 6.61: Extracted value of the nuisance parameters (left) and correlation
matrix (right) for the TEEC fit in the JES stronger correlation scenario.
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Figure 6.62: Extracted value of the nuisance parameters (left) and correlation
matrix (right) for the ATEEC fit in the JES stronger correlation scenario.

The αs value obtained for the TEEC fit is

αs(mZ) = 0.1175± 0.0010 (exp.) +0.0058
−0.0019 (scale)

+0.0006
−0.0006 (PDF) +0.0002

−0.0002 (NPC) (6.27)

While the value obtained for the ATEEC fit is

αs(mZ) = 0.1195± 0.0017 (exp.) +0.0055
−0.0014 (scale)

+0.0006
−0.0006 (PDF) +0.0000

−0.0000 (NPC) (6.28)

The χ2/n.d.o.f values are 29.0/21 for the TEEC and 12.6/10 for the ATEEC,

very close to those obtained in the default JES scenario. Comparing these values

with those in Tables 6.9 and 6.13 for MSTW leads to the conclusion that the use

of stronger correlations for JES has no significative impact in either the values of

αs or their uncertainties.

6.9.3.2 Fits with weaker correlation configuration

The fits are now repeated using the weaker correlation configuration. In Figure

6.63, the values of the nuisance parameters and their correlation matrix are shown

for the fit to the TEEC function, while Figure 6.64 shows the same for the ATEEC

fit.
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Figure 6.63: Extracted value of the nuisance parameters (left) and correlation
matrix (right) for the TEEC fit in the JES weaker correlation scenario.
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Figure 6.64: Extracted value of the nuisance parameters (left) and correlation
matrix (right) for the ATEEC fit in the JES weaker correlation scenario.

The αs value obtained for the TEEC fit is

αs(mZ) = 0.1175± 0.0009 (exp.) +0.0058
−0.0019 (scale)

+0.0006
−0.0006 (PDF) +0.0002

−0.0002 (NPC) (6.29)

While the value obtained for the ATEEC fit is

αs(mZ) = 0.1195± 0.0017 (exp.) +0.0055
−0.0015 (scale)

+0.0006
−0.0006 (PDF) +0.0000

−0.0000 (NPC) (6.30)

The χ2/n.d.o.f values are 28.9/21 for the TEEC and 12.6/10 for the ATEEC,
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which are also very close to those obtained in the default JES scenario. The

comparison of these values with those in Tables 6.9 and 6.13 for the MSTW

PDFs leads to the conclusion that the use of weaker correlations for JES has no

significative impact in either the values of αs or their uncertainties.

6.10 Summary and conclusions

The jet-wise energy-energy correlation measurement at the LHC constitutes a

high-precision test of QCD at the TeV scale, and a sensitive way to extract the

strong coupling constant. Its reduced dependence on the parton densities inside

the proton makes it ideal for this purpose. The experimental uncertainties are

also reduced due to the fact that the TEEC and its asymmetry exhibit a very

small sensitivity to both migration effects and jet energy uncertainties. This anal-

ysis is the first look at the TEEC and its asymmetry in terms of jets and at energy

scales much higher than those available from past colliders such as LEP or HERA.

Figure 6.65 shows the ATEEC distribution obtained in this study together with

the ones obtained in TASSO for e+e− center-of-mass energies of 34.8 and 45.3

GeV (see Ref. [124]). Note that the shape of both distributions are very simi-

lar, with the ATLAS data, which is at a higher scale, lying consistently below

the curves from TASSO. This comparison has to be taken with a grain of salt

since the TASSO (ATLAS) data are measured at the hadron (jet) level, and the

TASSO (ATLAS) data refers to angles measured in full space (the transverse

plane). However since the fragmentation effects for the asymmetry at large an-

gles are very small, the comparison is justified.

The results show that both the TEEC and its forward-backward asymmetry

ATEEC are stable with respect to changes in the jet energy scale and resolution

and they exhibit a small sensitivity to pileup activity.
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Figure 6.65: Comparison of the data obtained in this analysis with those from
TASSO in Ref. [124]

The final result for αs(mZ) determined using the TEEC is

αs(mZ) = 0.1173± 0.0010 (exp.) +0.0063
−0.0020 (scale)

+0.0017
−0.0017 (PDF) +0.0002

−0.0002 (NPC) (6.31)

while the value obtained using the ATEEC is

αs(mZ) = 0.1195± 0.0018 (exp.) +0.0060
−0.0015 (scale)

+0.0016
−0.0016 (PDF) +0.0000

−0.0000 (NPC) (6.32)

These values are in very good agreement with the world average αs(mZ) =

0.1185 ± 0.0006, as well as with several other αs extractions from the data col-

lected at the LHC [136, 137]. These two values are obtained using the CT10

PDF. Similar results have been obtained with MSTW 2008, NNPDF 2.3 and

HERAPDF 1.5 as discussed in the previous sections. The present determina-

tion of αs(mZ) is limited by the theoretical uncertainties due to the choice of

the renormalisation and factorisation scales, which reflect our lack of knowledge

about NNLO corrections. This limitation has also been found in other jet stud-

ies at LHC energies [136]. This is in contrast with processes like top-quark pair

production or Higgs production, for which corrections beyond NLO do exist [144].
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A Data to MC comparisons for jet shapes

In this appendix, several Monte Carlo tunes are compared to the jet shape data

in tt̄ events presented in Chapter 4. The investigated samples include Alpgen

coupled to Pythia P2011 and Herwig + Jimmy, Powheg+Pythia P2011C

and AcerMC coupled to Pythia P2010, P2011, TuneA Pro and Tune A

CR Pro. Figures 66 to 70 show this comparison for the differential jet shapes,

while Fig. 71 to 75 includes the comparison for the integrated jet shape. It is

found that the Pythia parton shower with tune A with different models of colour

reconnection give the best description of the data, while the Perugia tunes are

found to be slightly disfavoured.
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Figure 66: Comparison of the tt̄ differential jet shape data for 30 GeV < pT <
40 GeV with several MC event generators.
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Figure 67: Comparison of the tt̄ differential jet shape data for 40 GeV < pT <
50 GeV with several MC event generators.
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Figure 68: Comparison of the tt̄ differential jet shape data for 50 GeV < pT <
70 GeV with several MC event generators.
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Figure 69: Comparison of the tt̄ differential jet shape data for 70 GeV < pT <
100 GeV with several MC event generators.
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Figure 70: Comparison of the tt̄ differential jet shape data for 100 GeV < pT <
150 GeV with several MC event generators.
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Figure 71: Comparison of the tt̄ integrated jet shape data for 30 GeV < pT <
40 GeV with several MC event generators.
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Figure 72: Comparison of the tt̄ integrated jet shape data for 40 GeV < pT <
50 GeV with several MC event generators.
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Figure 73: Comparison of the tt̄ integrated jet shape data for 50 GeV < pT <
70 GeV with several MC event generators.
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Figure 74: Comparison of the tt̄ integrated jet shape data for 70 GeV < pT <
100 GeV with several MC event generators.
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Figure 75: Comparison of the tt̄ integrated jet shape data for 100 GeV < pT <
150 GeV with several MC event generators.
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B Independent sources of JES uncertainty for

TEEC

This appendix is dedicated to the most important sources of the jet energy scale

uncertainty described in Sect. 6.6.1. Figures 76 to 88 show these sources for both

the TEEC and ATEEC functions.
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Figure 76: The impact of the Insitu LArEMscale JES parameter in the TEEC
(left) and ATEEC (right)
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Figure 77: The impact of the Zjet MC JES parameter in the TEEC (left) and
ATEEC (right)
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Figure 78: The impact of the Zjet Veto JES parameter in the TEEC (left) and
ATEEC (right)
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Figure 79: The impact of the Zjet Width JES parameter in the TEEC (left)
and ATEEC (right)
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Figure 80: The impact of the MPF Generator JES parameter in the TEEC
(left) and ATEEC (right)
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Figure 81: The impact of the MPF OOC JES parameter in the TEEC (left)
and ATEEC (right)
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Figure 82: The impact of the MPF Purity JES parameter in the TEEC (left)
and ATEEC (right)
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Figure 83: The impact of the EtaIntercalibration TotalStat JES param-
eter in the TEEC (left) and ATEEC (right)
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Figure 84: The impact of the EtaIntercalibration Modelling JES param-
eter in the TEEC (left) and ATEEC (right)
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Figure 85: The impact of the Pileup: Offset, NPV term JES parameter in
the TEEC (left) and ATEEC (right)
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Figure 86: The impact of the Flavor Comp JES parameter in the TEEC (left)
and ATEEC (right)
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Figure 87: The impact of the Flavor Response JES parameter in the TEEC
(left) and ATEEC (right)

283



φcos 

­1 ­0.8 ­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6 0.8 1

J
E

S
 U

n
c
e
rt

a
in

ty
 (

E
E

C
)

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

Flavor_Response

φcos 

­1 ­0.9 ­0.8 ­0.7 ­0.6 ­0.5 ­0.4 ­0.3 ­0.2 ­0.1 0

J
E

S
 U

n
c
e
rt

a
in

ty
 (

A
E

E
C

)

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Flavor_Response

Figure 88: The impact of the Close By JES parameter in the TEEC (left) and
ATEEC (right)
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