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Abstract In this work, we investigate for the first time
Nariai-like black hole solutions in four dimensional space
time with spherical symmetry in the context of scale-
dependent gravity. In particular, we construct self-consistent
solutions in such a way that the classical one that coming
from Einstein theory) is also contained into our new results.
We start by considering a truncated effective Einstein–Hilbert
action with cosmological constant in which both the gravita-
tional and the cosmological couplings are elevated to scale-
dependent functions (instead of being coupling constants),
taking advantage of the scale-dependent scenario, which is
a concrete and simple approach strongly inspired by asymp-
totically safe gravity. We briefly discuss black hole thermo-
dynamics and and compare it with its classical counterpart.
The impact of non-Einsteinian features is encoded by the
scale-dependent parameter, ε. A few comments regarding the
topology of the solution and their impact are also mentioned.

1 Introduction

General Relativity (GR) is considered the most success-
ful theory to describe the gravitational interaction [1,2]. In
this respect, exact solutions to Einstein field equations (EFE
hereafter) are of paramount importance to reveal fundamen-
tal problems which already persist, such that, for instance,
the existence of space time singularities. Thus, albeit GR is
robust both from a theoretical and an experimental perspec-
tive, there are several good reasons to investigate alternative
theories of gravity. First, from a theoretical point of view,
we can reinforce two problems still present in GR: (i) the
presence of singularities [3,4], and (ii) the impossibility of a
renormalization (following standard processes of quantiza-
tion) [5]. Second, from an observational angle, the discov-

a e-mail: angel.rincon@ua.es
b e-mail: pedro.bargueno@ua.es (corresponding author)

ery of the dark sectors of the Universe makes evident the
necessity of fundamental physics. The latter reveals that the
inclusion of new physics to connect both the ultraviolet (UV)
and the infrared (IR) sectors is, therefore, mandatory. To get
insights about a possible modification of GR by the inclu-
sion of quantum features, the best approach is always take
advantage of exact solutions of EFE.

Some of the most-relevant solutions to EFE, albeit being
well understood and explored in detail, are not free of prob-
lems. To face these, we can assume alternative theories
of gravity as, for instance, (i) asymptotically safe grav-
ity applied to black holes, [6–9], (ii) improved black hole
formalisms [10–12], (iii) scale-dependent gravity [13–33]
among others. In what follows we will focus on the last
case, i.e., scale-dependent gravity. Such formalism is a well-
known approach used to introduce semi-classical corrections
in black hole solutions in 2+1 and 3+1 dimensional space-
times.

The main idea behind the scale-dependent scenario can be
summed up as follows: (i) taking as inspiration Weinberg’s
Asymptotic Safety program, we consider that the effective
action (a quantum corrected version of the classical action)
is the fundamental object; (ii) we derive the corresponding
equations of motion using this improved action; (iii) accept-
ing that the coupling constants can evolve, we take it into
account and supplement EFE with a some supplementary
condition. We have used a NEC-like constraint, given that
such a condition is the less restrictive of the energy condi-
tions. At this point, it should be mentioned that, albeit scale-
dependent gravity in 3 + 1 dimensions has been significantly
investigated, the case of Nariai black holes (or, more pre-
cisely, Nariai-like black hole,) is still pending to be studied.
Thus, taking these last ingredients into account, we shall anal-
yse how Nariai-like black holes suffer deviations with respect
to their classical counterparts.

This manuscript is organized as follows: after a short intro-
duction, Sect. 2 summarizes the main points of the scale-
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dependent gravitational theory. In Sect. 3, we give the very
basics of the classical Nariai black holes in 3 + 1 dimensions
and, subsequently, in Sect. 4, we apply the idea of scale-
dependent gravity to obtain Nariai-like solutions, where the
solution is investigated in detail, including the computation
of some invariants, the corresponding asymptotic behavior,
and the Hawking temperature as well as the Bekenstein–
Hawking entropy. Finally, in Sect. 5 we point out the main
features of the obtained solution.

2 Scale-dependent gravity

In the context of quantum-inspired theories of gravity, there
are a variety of possibilities in which the basic idea of incor-
porate quantum effects on classical gravity has been applied
on black hole physics. As the literature in this topic is vast, we
will only mention a few papers, the seminal ones and other
recent applications, where the inclusion of quantum features
are present. Of particular interest is the work of Bonanno and
Reuter [10], where a detailed study of how the renormaliza-
tion group effects could deviate the classical Schwarzchild
black hole solution is performed. Subsequently, following
same spirit, other works have been done, see [8,34,35]
to name a few. However, irrespectively of the physics we
will consider, the construction of a self-consistent and well-
defined solution should start by considering the object which
describes the “fundamental theory”, i.e., the action. As a dif-
ference with respect to the classical formalism, where EFE
are obtained from a classical action I0[gμν], scale-dependent
gravity is obtained from effective field equations coming
from an average effective action, Γ [k, gμν, · · · ], being k a
renormalization scale. Within this formalism based on an
effective action, some suitable properties of quantum field
theories should be present. Thus, it is known that the effec-
tive action for the gravitational field, at low-energy, acquires
a scale dependence. Such feature is included at the level of the
action: the coupling parameters are now functions which run
according to certain energy scale . Asymptotically safe grav-
ity is based on the existence of a non-trivial ultra-violet fixed
point for the leading dimensionless gravitational couplings
and that is, by far, where these ideas have been best imple-
mented up to now. In particular, it was Weinberg, in his sem-
inal work [36], who introduced this program and, after that,
substantial improvement has been made up to now [37–59].
The underlying idea has been considered in closely related
approaches, one of them the so-called scale-dependent grav-
ity, usually used to construct black hole solutions both by
improving classical solutions with the scale dependent cou-
plings from Asymptotic Safety [60–72] and by solving the
gap equations of a generic scale-dependent action [13–29].
Particularly, scale-dependent regular black holes [28] and
traversable (vacuum) scale-dependent wormholes [26] have

been found, showing that, in some sense and in particular sit-
uations, scale-dependent gravity might offer us light on how
to cure, or at least improve, certain classical problems related
to singularities and the appearance of exotic matter inside
wormholes. In the cosmological scenario, the idea of scale-
dependent couplings been used in Refs. [73–85]. In what
follows, we will show the details regarding how the simplest
formulation of scale-dependent gravity can be made. Let us
start by considering the average effective Einstein–Hilbert
action

Γ [gμν, k] =
∫

dnx
√−g

[
1

2κk

(
R − 2Λk

)
+ LM

]
, (1)

being LM the Lagrangian matter density and κk ≡ 8πGk is
the Einstein coupling.Gk and Λk refer to the scale-dependent
gravitational and cosmological couplings, respectively. For
simplicity, we will consider only vacuum solutions, i.e.,
LM ≡ 0. We proceed by obtaining the corresponding differ-
ential equations, i.e., the modified EFE, by taking variations
with respect to the metric field, gμν :

Gμν + gμνΛk = −Δtμν ≡ κkT
SD
μν . (2)

Notice that the so-called scale-dependent energy-momentum
tensor, Δtμν , is defined according to [78,86]

Δtμν = Gk

(
gμν� − ∇μ∇ν

)
G−1

k . (3)

Subsequently, the second step to obtain the complete set of
equations consists in taking the variation of the average effec-
tive action with respect to the additional field, k(x), i.e.,

δΓ [gμν, k]
δk

= 0, (4)

or, more precisely,

−
(
R − 2Λ

) d

dk
ln(G) = 2

dΛ

dk
. (5)

Such a computation provide us a supplementary equation to
close the set of equations and, in particular, using (4), we are
able to connect Gk with Λk . The auxiliary scalar field k(x)
is a real physical scale, identified with the momentum as a
function of any space-time point, xμ. The scale-dependence
of the theory is then modulated by k(x), and its modifies
the classical theory via the evolution of the classical cou-
plings to scale-dependent couplings. At this point we should
be careful: the dependence of k on the physical coordinates
is not unique and, therefore, we will avoid the problem in
light of the following observations: First we recognize that
O(k(x)) → O(x), and then we can ”ignore” a concrete
relation between k and the spatial (temporal) coordinates. In
what follows, we will consider that the couplings Gk and Λk

inherit the dependence on the space-time coordinates from

123



Eur. Phys. J. C           (2023) 83:836 Page 3 of 7   836 

the space-time dependence of the scale field, k(x). There-
fore, these couplings are written as G(x) and Λ(x) [18,87].
Taking into account the last idea, together with an appropri-
ate choice for the line element, we can solve the equations in
certain situations with a high degree of symmetry.

3 Classical four dimensional Nariai solution

In this section we will briefly summarize the main ingredients
of the four-dimensional Nariai black holes obtained within
Einstein’s theory. Our starting point is the classical Einstein–
Hilbert action with cosmological constant, i.e.,

I0[gμν] =
∫

d4x
√−g

[
1

2κ0

(
R − 2Λ0

)]
, (6)

where the parameters involved have the usual meaning,
i.e., κ0 ≡ 8πG0 is the gravitational coupling, G0 is New-
ton’s constant and Λ0 is the cosmological constant. EFE are
obtained as usual, i.e., by varying the classical action (6) with
respect to the metric field, obtaining,

Rμν − 1

2
Rgμν = −Λ0gμν. (7)

The Nariai spacetime, as first presented in [88], can be under-
stood as a special limit of the Schwarzschild–de Sitter solu-
tion when the event and cosmological horizons coincide.
Under an appropriate coordinate transformation, the solution
can be expressed as the product AdS2 × S2. For instance, in
certain coordinates one can write the solution as

ds2 = 1

Λ2
0

[
− dτ 2 + sin2 τdρ2 + dθ2 + sin2 θdφ2

]
, (8)

or, introducing new coordinates for the AdS2 sector, as

ds2 = −
(

1 − r2

l2

)
dt2 +

(
1 − r2

l2

)−1

dr2 + l2dΩ2, (9)

where l is certain (constant) length scale.
In the following section, we will obtain scale-dependent

Nariai-like black holes by considering a spherically symmet-
ric line element given by

ds2 = −V (r)dt2 + V (r)−1dr2 + L2dΩ2
2 , (10)

where L is a constant value with units of length. In order to
do that, both the Newton and cosmological couplings will be
taken to be functions of the radial coordinate, G(r) and Λ(r),
respectively. Let us note that, although scale-dependent gen-
eralizations of the Schwarzschild–de Sitter solutions exist

[13], we will not try to construct a scale-dependent general-
ization of Nariai’s solution from the aforementioned scale-
dependent Schwarzschild–de Sitter one. The route we are
proposing is to impose an ansantz given by Eq. (10) in order
to look for vacuum scale-dependent solutions which gener-
alize the classical Nariai metric expressed by Eq. (9).

4 Scale-dependent four dimensional black hole solutions

The scale-dependent formalism implies that the classical
couplings evolve to scale-dependent functions which, in gen-
eral, depend on certain energy scale, k. Due to the symme-
tries we want to explore, we can make progress by assuming
that such a dependency is inherited to the radial coordinate.
Therefore, we will assume that

G0 →Gk → G(r), (11)

Λ0 →Λk → Λ(r), (12)

identifying such quantities as the quasi-dynamical New-
ton and cosmological couplings, respectively. Now, having
accepted that we have two additional functions, we have
to solve the effective EFE. To complete our set of dif-
ferential equations, we will use the following fact: for a
Schwarzschild-like ansantz, Gμν�

μ�ν = 0, being �μ a radial
null vector. Therefore, consistency of the vacuum scale-
dependent equations imply that Δtμν�

μ�ν = 0, which is
the additional equation to be included (usually referred to
as the NEC-like condition). Thus, as the unknown function
are G(r),Λ(r) and V (r), using two EFE plus the NEC-like
condition we can completely solve the problem.

4.1 NEC-like conditions in spherical symmetry

In four dimensional spacetime and in presence of spherical
symmetry, we can consider a convenient trick as advantage
to found the explicit form of the Newton’s gravitational cou-
pling. From the saturated version of the NEC we known that
Tμν�

μ�ν = 0, being �μ a radial null vector. Applying such
constraint on the right-hand side of Eq. (2) we obtain the
following second order differential equations

2

[
dG(r)

dr

]2

= G(r)
d2G(r)

dr2 , (13)

which produces the following scale-dependent gravitational
coupling

G(r) = G0

1 + εr
. (14)
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The running coupling found in [16–19] corresponds to
gtt · grr = −1, which is consistent with Eq. 14. Notice that
the ordinary differential equation for Newton’s coupling is of
second order, which means two free parameters to be consid-
ered. The first one, ε, encodes the scale-dependent effect, i.e.,
this parameter controls the strength of the scale-dependent
effect. Thus, when ε goes to zero we are in the classical
regimen, and when ε increases, the scale-dependent effect
increases too. After setting this parameter, the second free
parameter, G0, is taken in such a way that when ε goes to
zero, we recover a constant Newton’s coupling constant. Hav-
ing clarified and obtained the concrete value of G(r), we now
will obtain the Nariai-like solution in spherical symmetry in
the context of scale-dependent gravity.

4.2 Compatibility of scale-dependent scenario and the
asymptotic safety program

Scale-dependent gravity and asymptotically safe gravity are
two distinct approaches that address the issue of how quan-
tum effects perturb classical and widely recognized solu-
tions. Both approaches take advantage of an effective action
in which the coupling parameters are presumed to be spa-
tially and temporally varying functions, deviating from the
conventional assumption of fixed values. In both scenarios,
the impact of the renormalization scale k becomes evident.
Specifically, within spherically symmetric black holes, such
a function encapsulates how the quantum corrections mani-
fest in terms of the radial coordinate only. Therefore, when
examining asymptotically safe gravity within black holes, by
employing the effective action, utilizing the Wetterich equa-
tion, and ultimately deriving the solution, we essentially dis-
regard the specific form of k. When incorporating quantum
corrections into a classical solution, we substitute the clas-
sical coupling constant, G0, with a position-dependent run-
ning coupling,G(r). This final step necessitates an additional
scale identification between k and the coordinate variable, r ,
which is commonly approximated as k r = constant for sim-
plicity (albeit different parametrizations are still possible, for
instance, kr3/2 = constant [10] or krα/2 = constant [92]). In
this regard, such a choice guarantees that: (i) Quantum effects
manifest in the “appropriate” sector, namely the UV sector.
(ii) The standard sector remains unaltered, corresponding
to the IR sector. When considering scale-dependent grav-
ity, on the other hand, notable corrections emerge within the
lower range of k values, particularly in the IR region. Conse-
quently, this leads to modifications occurring in the opposite
sector compared to what is anticipated in approaches pre-
sented within the framework of the Asymptotic Safety pro-
gram. While one might initially assume that scale-dependent
gravity and the asymptotic safety programs are incompatible,
certain studies within the asymptotic safety program have
addressed significant corrections for small values of k (see

for instance [89,90]). This suggests that in certain regions,
the two approaches can coexist and, therefore, the solution
(14) can be a well-defined solution for Newton’s coupling
(see also the discussion in [91]).

4.3 Black hole solution

Using Eq. (2) plus the concrete form of the Newton’s cou-
pling, (14), we can obtain the lapse function, V (r), and the
cosmological function, Λ(r). After some manipulations, the
relevant equation for the lapse function takes the simple form

d2V (r)

dr2 +
(

ε

1 + εr

)
dV (r)

dr
+ 2

L2 = 0, (15)

which implies the exact solution

V (r) = B − (rε + 2)r

2L2ε
+

(
1 + AL2ε

)
L2ε2 ln(1 + εr), (16)

where we have two free parameters to be specified. Thus,
A, B are selected in such a way that the classical solution
is recovered when ε goes to zero. So, to maintain the clas-
sical solution as limit case, we take A = 0 and B = 1 and,
therefore, the solution acquires the simple form

V (r) = 1 − r2

2L2 − 1

L2ε2

(
rε − ln(1 + εr)

)
. (17)

Finally, the cosmological function can be found by simple
substitution, i.e.,

Λ(r) = 1

L2 + d

dr
ln

(√
G(r)

) d

dr
V (r), (18)

obtaining

Λ(r) = 1

L2

(
3

2
− 1

2(1 + εr)2

)
. (19)

As a final check, we observe that we effectively recover the
classical case when ε goes to zero, i.e.,

lim
ε→0

G(r) = G0, (20)

lim
ε→0

V (r) = 1 − r2

L2 ≡ V0(r), (21)

lim
ε→0

Λ(r) = 1

L2 ≡ Λ0. (22)

At this point, let us mention that the cosmological function,
Λ(r), tends to be a constant different to its classical value,
when ε is taken to be large (see Fig. 1 left). Thus, the scale-
dependent scenario not only modifies Λ0 by Λ(r) but also
affects the cosmological coupling when the scale-dependent
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effect is strong (ε large). Similarly, we show, in Fig. 1 right,
how the metric potentialV (r) presents a single horizon. What
is more, such horizon could be larger that its classical coun-
terpart. Thus, the modified potential is consistent with the
classical case but, in this case, the black hole horizon is larger
that its classical counterpart.

4.4 Some invariants

It is usually convenient to check how a new solution looks
in terms of its invariants. Specifically, we will compute the
Ricci and Kretschmann scalars, R and K , respectively. They
are given as follows:

R = 3

L2

(
1 + 1

3(rε + 1)2

)
, (23)

K = 8

L4

(
1 − rε(rε + 2)(3rε(rε + 2) + 4)

8(1 + εr)4

)
. (24)

In both cases, we observe that the classical solution is pre-
served and also recovered when we demand ε → 0 as it
should be. We can observe that some critical points could
appear, however, given that we are interested in solutions
with ε > 0 and as r > 0, the combination εr = −1 is not
possible.

The asymptotic behavior is usually required to interpre-
tate our results and check, if possible, differences between the
classical and the scale-dependent solutions. Thus, we com-
pute the previous invariants and lapse function in two differ-
ent regimes: (i) for small values of the running parameter ε

and (ii) for large values of the radial coordinate. In concrete,
we have:

R = 4

L2

(
1 − 1

2
εr

)
+ O(ε2), (25)

K = 8

L4

(
1 − εr

)
+ O(ε2), (26)

V = V0(r) + εr3

3L2 + O(ε2), (27)

and

R = 3

L2

(
1 + 1

3

(
1

εr

)2
)

+ O
(

1

r

)
, (28)

K = 5

L4

(
1 + 2

5

(
1

εr

)2
)

+ O
(

1

r

)
, (29)

V = − r2

2L2 − r

εL2 + O
(

1

r

)
. (30)

At this point, some comments are in order. First, we notice
that the invariants for ε ∼ 0 decrease with respect to the
classical solution but for r ∼ ∞, they increase with respect

to their classical counterpart. Thus, the asymptotic structure
is slightly disturbed when Newton’s coupling can vary.

4.5 Thermodynamics

In this subsection we will briefly review the basic thermo-
dynamic properties and its differences with respect to the
classical Nariai black hole solution. Firstly, we should com-
pute the black hole horizon given that all the thermodynamic
quantities are evaluated there. To obtain the horizon we need
to compute V (rH ) = 0, however, albeit simple, the loga-
rithm term prevents a simple computation to be performed.
Despite of that, the lapse function can be rewritten conve-
niently and subsequently identified as a generalized Lambert
W (·) function. Thus, using the change of variable z = 1+εr ,
replacing it into the lapse function at the horizon, we obtain
the following more friendly equation

w(zH )ew(zH ) = ξ(L , ε), (31)

where we used the following definitions: w(z) ≡ z2 and
ξ(L , ε) ≡ −e−1−2L2ε2

. Thus, solving for w(zH ) we obtain
the now trivial solution:

w(zH ) = W
(
ξ(L , ε)

)
, (32)

and restoring the original variables we have the two solutions:

r± = −1

ε

(
1 ±

√
−W

(
ξ(L , ε)

))
, (33)

where the black hole hole horizon corresponds to the external
solution, i.e., rH ≡ max{r±}. Finally, note that LambertW (·)
function is a multi-valued function and we should specify the
branch of interest for us. In particular, for arbitrary branches,
we use the symbol Wk(·), being k an integer number. Taking
into account only real numbers, there are just two branches:
W0 and W−1. We then just choose the solution with k = −1,
given the range of parameters involved.

To make progress, we could take a first order approxima-
tion of the lapse function to obtain closed expressions for
the horizon, temperature and entropy. We prefer to maintain
the discussion in general terms, given that we can express
all the relevant quantities implicitly. The temperature can be
obtained using the well-known expression

T = 1

4π

∣∣∣∣ lim
r→rH

∂r gtt√−gtt grr

∣∣∣∣ , (34)

or more precisely,

TH =
(

1

2
+ 1

2(1 + εrH )

)
T0, (35)
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Fig. 1 Left panel: cosmological running coupling Λ(r) against the
radial coordinate assuming L = 1,G0 = 1, for different values of the
scale-dependent parameter ε. Right panel: lapse potential V (r) against

the radial coordinated obtained in our model assuming L = 1,G0 = 1,
for different values of the scale-dependent parameter ε

being T0 the black hole temperature in the classical case. The
last expression converges to its classical counterpart after
demanding ε → 0. The Bekenstein–Hawking entropy, S,
can be computed directly using the expression from a Brans–
Dicke theory, i.e.,

SH = AH

4G(rH )
, (36)

being AH the black hole area, defined as follows:

AH =
∮

d3x
√
h = 4πr2

H . (37)

5 Concluding remarks

In this work we have obtained, for the first time, a four dimen-
sional Nariai-like black hole solution assuming (i) varying
Newton and (ii) cosmological couplings, in the context of
scale-dependent gravity. The constants of integration have
been chosen in such a way that the classical Nariai solution
is obtained when the scale-dependent parameter, ε, is taking
to be zero. After a brief study pointing out the finiteness of
some geometric invariants, we have explored some essential
features of black hole thermodynamics in presence of run-
ning couplings, showing their main differences with respect
to their classical counterparts. We conclude by noting that it
would constitute a nice problem to see if the black hole solu-
tion we have presented in the present work coincides with that
obtained from the scale-dependent Schwarzschild–de Sitter
black hole of Ref. [13] when both cosmological and event
horizons coincide.
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