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Abstract
We calculate how strong one can put constraints on Brans-Dicke parameter ωBD

using 0.1Hz space laser interferometers such as DECIGO and BBO. We consider
situations where neutron stars inspiral into small mass black holes whilst radiating
gravitational waves. Compared to General Relativity, gravitational waves in Brans-
Dicke theory have dipole radiation. For the amplitudes of the waveforms, we only
take the leading quadrupole term and for the phases, we take subleading terms up to
2PN including spin-spin coupling term. For simplicity, we assume that the orbits are
circular and we neglect the effect of spin precessions. We find that we can put 100
times stronger constraints on ωBD than the Cassini bound ωBD > 40000, which is the
current greatest constraint found by solar system experiments. This certainly gives a
big scientific significance for DECIGO/BBO projects.

1 Introduction

One of the approaches to solve dark energy problem is to modify gravitational thoery from general
relativity. The simplest modification is to add scalar degree of freedom to gravity. This theory is called
scalar-tensor theory. This theory also appears in inflation problem and superstring theory. A prototype
of scalar-tensor theory is Brans-Dicke theory. This theory is characterised by a parameter ωBD and by
taking the limit ωBD → ∞, it reduces general relativity. The current strongest bound on ωBD is the
Cassini bound obtained in the solar system experiment [1]; ωBD,Cassini > 40000.

The aim of our work is to investigate how strongly we can constrain ωBD in the strong field regime
by detecting gravitational waves from NS/BH binaries. Berti et al. [2] estimated this by using space
interferometer LISA [3] and we estimated this by using deci-Hz interferometer DECIGO [4]. We take
spin-spin coupling effect into account which Berti et al. [2] does not include. We find, by using DECIGO,
we can put at least 100 times stronger constraint on ωBD than the Cassini bound.

2 Binary Gravitational Waveforms in Brans-Dicke Theory

Gravitational waveforms in general depend on the orientations of the binaries and the orbital angular
momentum, but here, we average over these orientations. We adopt the restricted 2nd post-Newtonian
(2PN) waveforms in which the amplitude is expressed to the leading order in a post-Newtonian expansion
whilst the phase is taken up to 2PN order. (Post-Newtonian approximation is an expansion for slow-
motion, weak-field systems in powers of binary velocity v.) For point masses, the phase evolution is
calculated up to 3.5PN order but spin terms are known only up to 2PN order. Therefore to be consistent,
we take the phase up to 2PN. Under the stationary phase approximation, the Fourier component of the
waveform is [2]

h̃(f) =
√

3
2
Af−7/6eiΨ(f). (1)

Here, f is the frequency of the gravitational waves. The amplitude is given by
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A =
1√

30π2/3

M5/6

D
, (2)

where M = η3/5M is the chirp mass, with total mass M = m1 + m2 and dimensionless mass parameter
η = m1m2/M

2, and D is the luminosity distance to the source.
The phase is given by

Ψ(f) =2πftc − φc +
3
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(3)

where x = v2 = (πMf)2/3 = η−2/5(πMf)2/3. The first two terms are related to the time tc and
phase φc of coalescence. The first term (”1”) inside the brackets corresponds to the leading quadrupole
approximation of general relativity. The second term represents the dipole gravitational radiation in
Brans-Dicke theory. ω̄ ≡ ω−1

BD is the inverse of the Brans-Dicke parameter. S = s2− s1 where si is called
the sensitivity of the i-th body defined as

si ≡
(

∂(lnmi)
∂(lnGeff)

)

0

. (4)

Here, Geff is the gravitational constant at the location of the body and is proportional to the inverse of
the Brans-Dicke scalar field there. The subscript 0 denotes that we evaluate si at infinity. This sensitivity
roughly equals to the binding energy of the body per unit mass. For example, sWD ∼ 10−3 and sNS ∼ 0.2.
Because of No Hair Theorem, black holes cannot have scalar charges and sBH = 0.5. From Eq. (3), larger
the S, greater the contribution of dipole radiation. Binaries with large S are the ones with bodies of
different types. Here, we consider NS/BH binaries. The event rate of NS/BH mergers is still uncertain,
but it seems that it is considerably small for LISA, so only a lucky detection can constrain Brans-Dicke
parameter. In contrast, for DECIGO, it is said to be around 104 merger events per year so NS/BH
binaries should be the definite sources [5]. The rest of the terms in brackets are usual higher order PN
terms in general relativity.

The quantities β and σ represent spin-orbit and spin-spin contributions to the phase respectively,
given by

β =
1
12

2∑

i=1

χi

(
113

m2
i

M2
+ 75η

)
L̂ · Ŝi, (5)

σ =
η

48
χ1χ2(−247Ŝ1 · Ŝ2 + 721(L̂ · Ŝ1)(L̂ · Ŝ2)), (6)

where L̂ and Ŝi are unit vectors in the direction of the orbital angular momentum and spin angular
momenta respectively. The spin angular momenta are given by Si = χim

2
i Ŝi where χi are the dimen-

sionless spin parameters. For black holes, they must be smaller than unity, and for neutron stars, they
are generally much smaller than unity. It follows that |β| . 9.4 and |σ| . 2.5.

3 Parameter Estimation

The detected signal s(t) is the sum of the gravitational wave signal h(t;θ) and the noise n(t). We
use the matched filtering analysis to estimate the binary parameters θ. We assume that the noise is
stationary and Gaussian. Then, the probability that the GW parameters are θ given by [2]

p(θ|s) ∝ p(0)(θ) exp
[
−1

2
Γij∆θi∆θj

]
, (7)
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Figure 1: Noise curves for LISA(blue) [2] and DECIGO(red). Both horizontal and vertical axes are in log
scales. Horizontal axis represents frequency[Hz] and vertical axis shows noise spectral density[Hz−1/2].

where the Fisher matrix Γij is given by

Γij =

(
∂h

∂θi

∣∣∣∣∣
∂h

∂θi

)
. (8)

Here, we define the inner product as

(A|B) = 4Re
∫ ∞

0

df
Ã∗(f)B̃(f)

Sn(f)
, (9)

where Sn(f) is the noise spectral density. LISA and DECIGO noise strain sensitivity
√

Sn(f) are shown
in Fig.1. We denote estimates of rms errors as ∆θi = θi− θ̂i where θ̂i is the fitted parameters. Then, ∆θi

can be calculated by taking the square root of the diagonal elements of the covariant matrix Σij , which
is the inverse of the Fisher matrix Γij ;

〈
∆θi∆θj

〉
= Σij , Σij ≡ (Γ−1)ij . (10)

We take into account our prior information on the maximum spin by assuming

p(0)(θ) ∝ exp

[
−1

2

(
β

9.4

)2

− 1
2

( σ

2.5

)2
]

. (11)

The signal to noise ratio(SNR) for a given h is given by ρ[h] ≡
√

(h|h).

4 Numerical Calculations and Results

4.1 Set Up

We think of detecting NS/BH inspiralling gravitational waves by LISA and DECIGO, and calculate
how accurately we can deterimine the binary parameters, especially ωBD. We assume that the orbit is
circular and observation lasts 1 year. Also, we neglect spin precessions for simplicity.

The binary parameters are as follows; chirp mass lnM, dimensionless mass parameter ln η, coalescence
time tc, coalescence phase φc, distance to the source ln D, spin-orbit coupling β, spin-spin coupling σ,
and reciprocal of Brans-Dicke parameter ω̄. We assume tc = 0, φc = 0, β = 0, σ = 0, ω̄ = 0 and S = 0.3.
We fix mNS = 1.4M¯. We also fix the distance to be the one that gives SNR ρ = 10. We change mBH

and see how the constraints on ωBD change. Berti et al. did not take σ into binary parameters. We
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Table 1: Constraints on ωBD/104 with different mBH by using DECIGO and LISA. 1st row shows the
constraints with σ taken into parameters, and 2nd row shows the ones without σ.

DECIGO LISA
3M¯ 10M¯ 50M¯ 400M¯ 400M¯ 1000M¯ 5000M¯ 104M¯

parameters without σ 539.5 269.8 81.72 10.22 3.891 2.110 0.6432 0.3048
parameters with σ 429.4 162.9 35.94 4.254 2.472 0.8154 0.1916 0.0854

evaluate the constraints on ωBD in both cases where σ is not taken into binary parameters and where σ
is taken into parameters, and compare both results.

4.2 Results

Table 1 shows the estimated constraints on ωBD/104 with different mBH by using DECIGO and
LISA. The 1st row shows the constraints in the case where we do not take σ into binary parameters, and
the 2nd row shows the ones where we do take σ into binary parameters.

From the table, including σ into parameters reduces the constraint by a factor of a few. Generally,
the more the number of parameters increases, the worse the parameter determination accuracies are. You
can also see that DECIGO can put about 200 times stronger constraint than LISA. There are mainly
2 reasons for this. First reason is because the number of GW cycles NGW =

∫ ffin

fin
df (f/ḟ) are larger

for DECIGO sources than LISA sources. Another reason is that the sensitivity of DECIGO is much
better than that of LISA. Again from the table, you can see the constraint becomes more stringent as
the BH mass decreases. This is because the bodies of the binaries become slower, which makes the dipole
contribution greater. Even if we include σ as binary parameters, DECIGO can put at least 100 times
stronger constraint than the current strongest one (ωBD,Cassini > 40000).

5 Conclusions

We estimate how strongly we can put constraint on ωBD by detecting gravitational waves from
inspiralling NS/BH binaries using LISA and DECIGO. We found that including σ as binary parameters
reduces the constraint by a factor of a few. We also found that DECIGO can put at least 100 times
stronger constraint than the current strongest one.

We have also calculated the constraint including eccentricity of the orbit and the effect of spin preces-
sions [6]. We took the source orientation dependence into account. We performed following Monte Carlo
simulation. We randomly distribute 104 binaries, evaluate the parameter estimation accuracies for each
binary, and take the average. We found that for binaries with ρ = 10, DECIGO can put at least 10 times
stronger constraint than the Cassini bound. For binaries with D = 200Mpc, whose event rate is thought
to be roughly 1 merger per year, DECIGO can put 1000 times stronger constraint than Cassini bound.
This certainly gives a big scientific significance to DECIGO project.
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