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Resumo

Nesta tese investigamos alguns problemas envolvendo duas areas
complementares, a saber: dinamica estocastica e cosmologia. Na
primeira linha de desenvolvimento, estendemos o formalismo de forcas
flutuantes desenvolvido por Langevin para uma classe de sistemas com
amortecimento variavel e, em seguida, discutimos algumas aplicagoes no
dominio cosmolégico. Nesse contexto, supondo que o efeito da radiacao
(banho térmico) é semelhante ao de uma perturbagao estocdastica (forgas
flutuantes), discutimos a evolugdo do campo escalar em cenérios da nova
inflacao e no chamado efeito Meszaros.

Inicialmente, utilizando um ruido colorido na equacao de Langevin,
mostramos que as flutuacoes do campo “inflaton” experimentam um regime
de difusao anomala. Considerando que a componente de radiacao atua
como uma possivel correcao estocastica sobre o efeito Meszaros, discutimos
a influéncia do ruido sobre a evolucao do contraste de densidade da matéria.

Seguindo outra abordagem estocastica, estudamos os modelos de
Friedmann-Robertson-Walker (FRW) como um fluido quéantico na chamada
formulacao de Madelung. Nessa analise, as equacoes de FRW para os
modelos fechados (k = 1) se reduzem a forma de um oscilador harmoénico
simples e as solucoes da equacao de Schrodinger associada bem como
sua densidade de probabilidade sao explicitamente obtidas. Mostramos
também que a principal influéncia fisica do processo estocastico é evitar o

colapso do modelo e, consequentemente, a singularidade césmica.
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Investigamos ainda dois problemas relacionados com modelos de energia
escura (quintesséncia e gds de Chaplygin). Para o primeiro candidato,
discutimos um método analitico que permite calcular o potencial de campo
escalar numa mistura de um fluido perfeito e quintesséncia. Supondo que
a quintesséncia é descrita por uma matéria-X, diversas quantidades de
interesse cosmoldgico sdo determinadas. Para o gds de Chaplygin (versoes
de quintesséncia e quartesséncia), o redshift de transigao é utilizado como
um discriminador para se obter limites sobre os parametros cosmologicos
relevantes. Os resultados obtidos estao de bom acordo com alguns estudos
recentes utilizando observacgoes de supernovas e dados da estrutura de

grande escala do universo.
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Abstract

In this thesis we investigate some problems involving two complemen-
tary areas, namely: Stochastic Dynamics and Cosmology. In the first line
of development, we extend the formalism of fluctuating forces as devel-
oped by Langevin for a class of systems with variable damping, and, next,
we discuss some applications to the cosmological domain. In this context,
assuming that the effect of the radiation (thermal bath) is similar to a
stochastic perturbation (fluctuating forces) we discuss the evolution of the
scalar field in the new inflation, and in the so-called Meszaros effect.

Initially, by using a colored noise in the Langevin equation, we show that
the fluctuations of the “inflaton” field undergoes an anomalous diffusion
regime. By considering that the radiative component acts like a possible
stochastic correction on the Meszaros effect, we discuss the influence of the
noise on the evolution of the density contrast of matter.

Following a different stochastic approach, we study the Friedmann-
Robertson-Walker (FRW) models as a quantum fluid in the so-called
Madelung formulation. In such analysis, the FRW equations for closed
models (k = 1) reduce to the form of a simple harmonic oscillator, and the
solutions of the associated Schrodinger type equation and the probability
density are explicitly computed. We also show that the main physical
influence of the stochastic process is to avoid the collapse of the model,
and, consequently, the cosmic singularity:.

We also investigate two problems closely related to dark energy models



(quintessence and the Chaplygin gas). For the first candidate, we
discuss an analytical method that permits to calculate the scalar field
potential for a mixture of a perfect fluid and quintessence. By assuming
that the quintessence is described by a X-matter component several
quantities of cosmological interest are determined. For the Chaplygin gas
(quintessence and quartessence versions), the transition redshift is used as a
descriminator for obtaining limits on the relevant cosmological parameters.
The results obtained here are in good agreement with recent studies based
on observations of supernovas and data from the large scale structure of

the Universe.
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Introducao

Como é amplamente conhecido, a cosmologia é a parte da ciéncia que
estuda a origem, a evolucao e a estrutura do universo como um todo,
tendo suas bases tedricas apoiadas fortemente na Teoria da Relatividade
Geral (TRG). Desde suas origens, a cosmologia tem como objetivo principal
construir modelos de universo que se adaptem fundamentalmente as
observacoes astronomicas.

Atualmente, os avancos tecnoldgicos das ciéncias espaciais, em
particular os grandes projetos de catalogacao de supernovas Ia em altos
redshifts (z), permitiram a entrada da cosmologia num periodo novo e
promissor considerado por todos como a era da precisao astrondmica [1, 2].

Os esforcos direcionados a este campo do conhecimento contam com
a participacao de grandes grupos de pesquisa, empenhados em projetos
tais como o Supernova Cosmology Project (SCP) [3], High-z Supernova
Search (HSS) [4], Sloan Digital Sky Survey (SDSS) [5], além dos grandes
satélites como o WMAP ( Wilkinson Microwave Anisotropy Probe), SNAP
(Supernova Accelerating Probe) e o PLANCK que serda langado num
futuro bem préximo. Em particular, as medidas das anisotropias da
radiacao coésmica de fundo obtidas recentemente pelo satélite WMAP, tem
confirmado importantes aspectos do modelo cosmolégico padrao [6, 7, 8].
Tais medidas tém revelado, de maneira cada vez mais convincente, que o
universo é aproximadamente plano, o que esta em acordo com as previsoes

do paradigma inflacionario [9].



O grande empenho dos grupos acima permitiu tragar um panorama
desconhecido, até ha pouco tempo atras, pela comunidade académica.
Particularmente, os grupos Supernova Search Team Collaboration liderado
por A. G. Ries e o Supernova Cosmology Project Collaboration liderado
por S. Perlmutter, obtiveram de forma independente a descoberta de que o
universo expande de forma acelerada, diferentemente do que se acreditava
tendo como base a gravitagdo newtoniana [10, 11].

Esse feito tornou a aceleracao cdésmica uma das descobertas mais
relevantes de todos os tempos para a cosmologia, trazendo profundas
implicagoes sobre a natureza do conteido material do universo. Os
inumeros estudos, baseados nas observacoes de supernovas sobre uma
ampla variedade de modelos cosmoldgicos, justificam que a aceleracao atual
deve-se exclusivamente a uma componente de energia com pressao negativa,
contribuindo com aproximadamente 73% para o conteido césmico. A
componente de energia mencionada acima ¢ usualmente chamada de
energia escura!.

Uma das conseqiiéncias imediatas dos experimentos envolvendo
supernovas téem sido a medida com bastante precisao de varios parametros
cosmolégicos, em especial o parametro de Hubble (H), o parametro de
densidade dos barions (€2g) e o parametro de densidade da matéria
escura (§2y7p). Esses estudos permitiram tragar um perfil da composicao
da matéria total do universo. As estimativas mais recentes mostram
que 23% da matéria do universo estd distribuida na forma de matéria
escura (Qyrg), 4% correspondendo a matéria barionica (€2p), e o restante,
aproximadamente 73%, fazendo parte da energia escura (Qgpp) [12].

A descoberta desta componente escura tem motivado um intenso debate

na literatura, justificando o fato da expansao acelerada do universo poder

LA palavra escura aqui serve para designar a matéria que nio emite radiacio eletromagnética e que

poderd ser detectada apenas pelos seus efeitos gravitacionais



ser explicada através de um fluido perfeito com uma pressao negativa (ou
seja, w = p/p = —1, sendo p e p as densidades de pressao e energia,
respectivamente) [12, 13, 14]. Teoricamente, esta conclusdo nao poderia
ser justificada em termos da gravitacao newtoniana, uma vez que o termo
de pressao que aparece nas equacoes de Einstein? sé ¢ possivel em virtude
de um efeito relativistico geral. Entretanto, um termo de pressao positiva
em relatividade geral contribui para o colapso da matéria assim como
a sua densidade de energia. Este efeito puramente relativistico segue
naturalmente como um efeito do carater covariante da teoria [15].

As evidéncias observacionais recentes sugerem uma ampla variedade
de possiveis candidatos a energia escura, dentre os quais uma constante
cosmoldgica (com equacao de estado w = —1) seria a solugao mais natural
[16, 17, 18, 19]. As observagoes também sugerem que equagoes de estado
com w < —1 também podem ser permitidas [20]. Em particular, este
caso especifico corresponde a entao chamada energia escura fantasma
(phantom energy) [21, 22]. Outras possibilidades incluem modelos de
campos escalares [23, 24, 25, 26|, gas de Chaplygin [27, 28, 29, 30] e matéria
- X [31, 32].

Apesar dos inimeros modelos tedricos aliados aos experimentos de
supernovas, bem como analises conjuntas utilizando outros experimentos,
ainda nao existe um consenso capaz de traduzir a verdadeira esséncia
da energia escura e, portanto, tracar um panorama mais realistico sobre
o status atual do universo. Essa dificuldade gera a necessidade de se
introduzir ingredientes novos que possam ser testados a luz das observacoes
futuras. Em particular, ingredientes interessantes a serem incluidos seriam
formulacoes estocasticas para compreender a evolucao global do universo
[35]. Para esclarecer este ponto, é interessante notar que a suposigao de

homogeneidade, imposta pelo principio cosmoldgico, naturalmente conduz

2Veja as equacdes (1.4) e (1.5) no capitulo I.



a uma lei de Hubble deterministica. Tal afirmacao pode ser justificada
tendo como base o diagrama magnitude-redshift para galdxias e outros
objetos galaticos em baixos redshifts. Isso significa que para galaxias mais
préximas (baixos redshifts), a lei de Hubble induz um cardter puramente
deterministico da evolucao do universo. Entretanto, para objetos como
quasares em altos redshifts [33, 34] os dados de supernovas revelam um
espalhamento no diagrama magnitude-redshift, mostrando que o mesmo
estd em desacordo com a lei de Hubble deterministica. Portanto, para
estudar as propriedades do universo em altos redshifts (quando o universo
era jovem), é necessdria a introducdo de formalismos estocdsticos (nao
deterministicos).

Os estudos sobre teorias estocdsticas em cosmologia tém melhorado con-
sideravelmente a nossa compreensao sobre a natureza nao deterministica
de alguns modelos cosmolégicos. Em particular, a aplicacao de formulacoes
estocasticas neste campo tem recebido uma consideravel atencao na liter-
atura [35, 37, 38, 39, 40]. Recentemente, essa técnica tem sido utilizada
para calcular a evolucao estocastica de alguns parametros cosmologicos
[41, 42].

Atualmente, os processos estocasticos constituem uma ferramenta
da fisica extremamente apropriada para se investigar sistemas de nao
equilibrio nos mais diferentes dominios, incluindo economia [36], biologia,
fisica da matéria condensada, astrofisica [43] e cosmologia [35]. Por
exemplo, no campo das ciéncias econOmicas, é possivel investigar um
sistema que possui caracteristicas semelhantes a de um sistema randomico.
Nesse caso, conceitos de fisica estatistica, tais como dinamica estocastica,
correlacao de curto e longo alcance e auto-similaridade, permitem um
entendimento do comportamento global do sistema. Usualmente, tais
sistemas estao entre os mais fascinantes e intrigantes sistemas complexos

que podem ser investigados.



Portanto, é no contexto da cosmologia e na aplicacao de formulacoes
estocasticas que se insere a presente tese. Nosso estudo sera delimitado

por duas linhas bésicas, a saber: (i) dinamica estocéstica e (ii) cosmologia.
Os objetivos basicos da tese podem ser delineados como segue:

e No capitulo I é feito uma breve revisao do status atual da cosmologia
moderna, onde apontamos alguns possiveis candidatos que possam explicar
a recente aceleracao do universo, descoberta a luz das observacoes de
supernovas la.

e No capitulo II, faremos uma revisao detalhada da teoria padrao
do movimento browniano e apresentamos quatro maneiras independentes
de reproduzir os mesmos resultados. Primeiramente, discutiremos o
tratamento de Einstein [44] que foi de fundamental importancia para
a consolidacao da teoria. @ Em seguida, discutiremos o tratamento
de Paul Langevin [45] obtido via uma equagao diferencial estocastica.
Posteriormente, apresentaremos o tratamento em termos da equacao
Fokker-Planck [46] e, finalmente, a abordagem via caminhadas aleatérias
proposta originalmente por M. Kac [47].

e No capitulo III discutiremos o comportamento estocastico de uma
classe de sistemas fisicos descritos por uma viscosidade dependente do
tempo. Nossa analise é baseada na aplicacao de uma equacao de
Langevin com viscosidade variavel na qual, por simplicidade, consideramos
inicialmente o caso com potencial nulo. As quantidades fisicamente
relevantes para um sistema classico executando movimento browniano, tais
como o deslocamento quadratico médio e o deslocamento médio, bem como
a velocidade média e a velocidade quadratica média, sao determinadas
analiticamente.

e No capitulo IV estendemos o formalismo desenvolvido no capitulo

III para o caso de potenciais quadraticos e enderecamos nossa analise ao



dominio cosmolégico, especialmente no novo cendrio inflacionario. Em
linhas gerais, estudamos a influéncia de um banho térmico assumindo que
ele é responsavel pela evolucao estocastica do campo escalar. Calculamos
o conjunto completo das solucoes analiticas, incluindo os ruidos branco e
colorido.

e No capitulo V rediscutiremos o problema do Efeito Meszaros,
considerando que o banho térmico (componente de radia¢ao) atua como
uma possivel correcao estocdastica. Aplicando o formalismo de Langevin,
analisaremos a maneira como a componente nao relativistica evolui quando
o termo estocastico (ruido) é introduzido na equagado de evolugao para
contraste de densidade da matéria (0). Para o caso de ruido branco,
mostraremos que o crescimento total do contraste ¢ até o equilibrio matéria-
radiagao é apenas 1,2 vezes o resultado padrao.

e No capitulo VI desenvolvemos uma variante do formalismo estocastico
proposto por M. Novello na referéncia [35]. Em nossa andlise, as equagoes
de Fridmann-Robertson-Walker (FRW) para um fluido relativistico sao
reduzidas para a forma simples da equacao de um oscilador harmonico, a
qual depende fortemente do parametro de curvatura (K) e do parametro
da equacao de estado (w). A dinamica estocastica do oscilador, ou
equivalentemente, dos modelos de FRW, é formulada através de uma
perspectiva quantica, usualmente denominada de fluido de Madelung.
O conjunto completo das solucoes sao determinadas analiticamente e a
correcao estocastica tem como objetivo exclusivo, evitar o colapso dos
modelos.

e No capitulo VII, exploramos as implicacoes fisicas para o redshift de
transicao sobre uma classe de modelos cosmolégicos acelerados, comumente
chamada de gds de Chapligyn simplificado. Esses modelos sao controlados
por um parametro livre (a) tornando-os mais interessantes por serem

mais maleaveis, ou seja, de mais facil estudo. Em particular, usando o



diagrama de magnitude de supernovas la, serd mostrado que nos cenérios
onde o gas de Chapligyn exerce o papel de uma quintesséncia, teremos
Que < 0,42, a > 0,7 e redshift de transicao zp = 0,46 £+ 0,13. Alguns
aspectos termodinamicos também serao estudados. Para este caso especial
do gés de Chapligyn simplificado, serd mostrado que a lei de evolucao da
temperatura tem um comportamento semelhante aos modelos de energia
fantasma (phantom energy).

e No capitulo VIII, sera proposto um novo método analitico para
determinar o potencial escalar V' (¢), para o caso de uma mistura de fluido
perfeito mais quintesséncia, em cosmologias do tipo FRW. O formalismo
desenvolvido é uma consequéncia imediata das equacoes de Einstein e sera
aplicado para valores arbitrarios do parametro de curvatura (K) e dos
parametros das equagoes de estado (v , w). O conjunto completo das
solugbes descrevendo a evolugao do potencial escalar (V(¢)), bem como o
valor do campo (¢) e as respectivas densidades de energia serdo obtidas
analiticamente, e serdao validas para valores arbitrarios dos parametros (7
, W),

e Finalmente, no capitulo IX apresentaremos as conclusoes. Faremos
um breve resumo dos principais resultados da tese e indicaremos algumas
perspectivas futuras. Nos apéndices A e B apresentaremos alguns
resultados complementares ao presente trabalho. Com o intuito de
facilitar uma eventual consulta por parte dos estudantes, professores e
pesquisadores interessados, observamos que as contribuicoes originais desta
tese encontram-se nos capitulos III, IV, V, VI, VII e VIII, bem como no

apéndice A.



Capitulo 1

Cosmologia Moderna: Aceleracao do

Universo e Energia Escura

1.1 Introducao

Conforme ja definido na introduaao desta tese, a Cosmologia estuda a
origem, a estrutura e evolugao do universo como um todo. Sua base tedrica
é solidamente apoiada na teoria da relatividade geral! (TRG), que fornece
uma descrigado quantitativa da estrutura geométrica do espago-tempo [48].
Tal estrutura é determinada pela distribuicao de matéria do universo e tem
suas relacoes matematicas descrita pelas equacgoes de Einstein.

O objetivo principal da Cosmologia é construir modelos matematicos
que sejam consistentes com os resultados das observacoes astronomicas.
Atualmente, a maioria dos dados cosmoldgicos podem ser interpretados
dentro de uma estrutura coerente conhecida como o modelo cosmologico
padrao, o qual é baseado na teoria do Big Bang e no paradigma
inflacionario. Sabe-se que o presente status do modelo cosmolégico padrao
é fortemente suportado por quatro grandes pilares, a saber, (i) existe

uma estrutura teorica baseada na teoria relatividade geral estabelecida por

LA teoria da Relatividade Geral é uma teoria relativistica para o campo gravitacional e foi formulada
por Einstein no comego do século 20 como uma extensao natural da Relatividade Especial afim de

incorporar os sistemas gravitacionais (acelerados).



Einstein e Friedmann nos anos vinte [49], (i7) a descoberta da expansao
universal por Edwin Hubble no final da década de vinte [50], (iii) a
abundancia relativa de elementos leves explicada por Gamov nos anos
quarenta® [51], e finalmente, (iv) a descoberta da radiagdo césmica de
fundo por Penzias e Wilson em 1965 [52]. Esse fundo de radiagao cdsmica
constitui o remanescente de uma fase extremamente densa e quente (Big
Bang) e reforgou consideravelmente a estrutura tedrica e a confianca no
modelo cosmolégico padrao.

Sabe-se hoje que a historia do universo € dividida basicamente em quatro
fases. Inicialmente, existe uma fase inflacionaria caracterizada por uma
dominacgao na densidade de energia de um campo escalar (¢). Em seguida,
devido as oscilagoes deste campo, e consequentemente o decaimento em
fétons?, ocorre uma fase dominada por radiacao (particulas relativisticas).
Posteriormente, a medida que o universo esfria, ocorre uma fase dominada
por matéria que se extende até por volta do redshift z ~ 1, quando o
universo passa a ser dominado pela energia escura e entra no presente
regime acelerado.

No presente capitulo abordaremos, em linhas gerais, as propriedades
fisicas descrevendo o modelo cosmoldgico padrao e as recentes descobertas

que conduziram a idéia de um universo em expasao.

1.2 Modelos Cosmolégicos do Tipo FRW

Teoricamente, a nossa compreensao atual sobre a evolucao do universo
¢ baseado nos chamados modelos cosmolégicos de Friedmann-Robertson-

Walker (FRW), que compreende uma classe de modelos onde a histéria do

20s estudos de Gamov e colaboradores sugeriram, pela primeira vez, a possibilidade de todos os

elementos quimicos terem sido formados no universo primitivo.
3Logo apds a a expansdo provocada pelo regime inflaciondrio, a temperatura do universo decai

consideravelmente, de modo que o campo escalar ¢ deve oscilar coerentemente em torno do seu valor

minimo produzindo fétons para reaquecer o universo.



universo comeca a partir de uma grande explosao, comumente denominada
na literatura de Big Bang (palavra inglesa para designar uma grande
explosao).

A dinamica do universo e os modelos acima mencionados nascem
das equacoes de campo da relatividade geral, também conhecidas como

equacoes de Einstein, as quais, sao escritas na forma

1
R — 5 Rgu = 87G T, (1.1)

onde R, é o tensor de Ricci definido por R, = Rﬁ/\y, R = RJ é o escalar
de curvatura, 7, ¢ o tensor de energia-momento dos campos de matéria e
G ¢ a constante de Newton da gravitacgao.

As equagoes acima estabelecem um compromisso entre a distribuigao
de matéria do universo e a métrica que o mesmo deve satisfazer.
Essencialmente, as solugoes desse conjunto de equacoes diferenciais nao-
lineares e acopladas sao extremamente dificeis de se resolver sem que
nenhum insight seja dado a priori. Contudo, Einstein e Friedmann
sugeriram que uma hipotese fundamental deveria ser justificada em termos
das simetrias do universo, ou seja, quando observado em larga escala, o
universo deveria ser homogéneo e isotrépico®.

Esta hipdtese junto com as equacgoes de campo da Relatividade Geral,
equagoes (1.1), fornecem o elemento de linha (métrica) do espago-tempo
conhecido na literatura como elemento de linha de Friedmann-Robertson-
Walker (FRW) [48, 53]

dr?
k2"

onde (1,0, ¢) sdo as coordenadas da hipersuperficie espacial, t é o tempo

ds® = 2dt* — R(t) r?(sin® 0d6* + d¢?) (1.2)

cosmico, R(t) denota o fator de escala do universo e k (= 0,+1) descreve

4Em cosmologia, esta hipétese é conhecida como principio cosmolégico e tem importancia fundamental
para se obter as solugoes das equagdes de campo da Relatividade Geral, a saber, o conjunto de equagoes

diferenciais e acopladas (1.1).
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o indice de curvatura da hipersuperficie. Os modelos com com k positivo,
negativo ou nulo sdo denominados, respectivamente, fechados (elipticos),
abertos (hiperbdlicos) ou planos (parabdlicos).

Qualitativamente, as equacoes de campo escritas na forma (1.1) indicam
a forma pela qual a presenca da matéria deve afetar a geometria do universo
e vice-versa. Dito de outra forma, como o conteudo energético do espaco-
tempo deve satisfazer as leis de conservacao, tendo em vista a sua relacao
com as quantidades geométricas que sao automaticamente conservadas.

Para ser consistente com a hipotese de homogeneidade e isotropia
mencionado acima, o conteido material do universo em larga escala é

descrito por um fluido perfeito satisfazendo um tensor de energia-momento

T,uz/ = (P + p)uuuy — PYuv, (13)

onde p é a densidade de energia e p é a pressao do fluido medidas no
referencial quadrimensional comével (u#u, = 1).
Utilizando o tensor de energia-momento dado acima, as equagoes (1.1)

assumem a seguinte forma

Rk
R R k

que sao as equacoes governando a evolucao do fator de escala cosmica
num universo preenchido por um fluido perfeito tal como descrito por
(1.3). Combinando o conjunto de equagdes acima, ou equivalentemente,
projetando a divergécia do tensor de energia-momento (1.3), na dire¢ao
de uma quadrivelocidade (u,T%" = 0), obtemos a lei de conservagao da
energia

p+3H(t)(p+p) =0, (1.6)

onde H = R/ R é o parametro de Hubble medindo a taxa de variacao do

11



5

volume do universo®. A equagao de conservacao (1.6) também pode ser

reescrita na seguinte forma
d(pR?) = —pd(?). (1.7)

O significado fisico desta equacao é muito claro: ela nos diz que a mudanca
na densidade de energia de um elemento de volume comével d(pR?), é igual
a menos a pressao vezes a mudanca no volume.

Conforme mencionado antes, no contexto do modelo cosmolégico
padrao, o conteido de matéria do universo é representado por um fluido
perfeito, satisfazendo o tensor de energia-momento descrito por (1.3).
Neste caso, é usualmente assumido que tal fluido satisfaz uma equacao

de estado escrita na forma

p=(y—1p (1.8)

onde o parametro y caracteriza os diversos estagios da evolugao césmica.
De um modo geral, argumentos tedricos [55] restrigem o parametro v ao
intervalo [0, 2].

Como pode ser facilmente observado, inserindo a equacao de estado
acima na lei de conservagao da energia (1.6), obtemos a solugao geral para

qualquer era césmica

o =m(E)" 19)

onde as quantidades com indice zero se referem aos valores atuais. Alguns
casos interessantes podem ser obtidos da expressao acima. Em particular, o
caso limite v = 0 e v = 2 delimita os regimes de estado de vacuo (constante
cosmoldgica) e stiff matter, uma espécie de matéria extremamente rigida,
comumente conhecida na literatura como matéria de Zeldovich. Outro

regime interessante ¢ obtido quando consideramos que a densidade de

°Q0 valor atual do parametro de Hubble medidos pelo HST Key Projecté H, = (7248) km Mpc~1ts~le
pelo WMAP é H, = 73, 4:23:2 km Mpc—1's~!. Para mais detalhes sobre o corrente status na determinacio

do parametro de Hubble, veja a referéncia [54].
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matéria do universo em média é da ordem de 10™kg/cm?, ou seja, o
fluido é muito denso e pode ser descrito por uma matéria nao relativistica

sem pressao (7 = 1). Com isso, de (1.9) obtemos
p(t) ~ B2, (1.10)

sendo p,,,(t) a densidade de energia da matéria. Para o caso de universo
dominado por radiagao (estagios iniciais), teremos v = 4/3, e de (1.9) segue
imediatamente que

pr(t) ~ R4, (1.11)

onde estamos considerando que p,(t) é a densidade de energia da radiagao.

1.3 Acerelagcao em altos redshift’s: Inflacao

A descricao basica do que atualmente chamamos de inflacao, é baseada na
idéia de que existiu uma época na qual a densidade de energia do vacuo
foi a componente dominante no universo. Como o préoprio nome sugere,
inflacao corresponde a uma era coésmica na qual o universo sofreu uma
transicao de fase que gerou um estégio de expansao acelerada. Durante esse
regime, é usualmente suposto que a expansao do universo ¢ dirigida por um
campo escalar ¢(t) rolando lentamente em busca do valor minimo do seu
potencial (regime slow roll). Do ponto de vista da cosmologia moderna, a
necessidade de um modelo inflacionario é de importancia fundamental para
resolver algumas inconsisténcias presente no modelo cosmolégico padrao.
Os primeiros desenvolvimentos da cosmologia inflacionaria iniciou-se
ainda nos anos 70, com a descoberta de que a densidade de energia de um
campo escalar poderia ser interpretada como uma espécie de energia do
vacuo ou constante cosmolégica [56]. Entretanto, o primeiro modelo com
uma motivacao simples e realista, capaz de explicar propriedades tais como

homogeneidade e isotropia espacial s6 foi obtido no comeco dos anos 80 e é
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popularmente conhecido como velho cendrio inflaciondrio [62]. Desde a sua
construcao ha cerca de trés décadas, o paradigma inflacionario tornou-se
um modelo universalmente viavel para resolver alguns problemas presentes
no modelo cosmoloégico padrao, tal como ja mencionado acima.

Atualmente, o paradigma inflacionario compreende uma extensa classe
de modelos que se destacam na literatura, dentre os quais podemos citar o
modelo original, comumente conhecido como velho cenario inflacionério
[57, 58, 62], modelos de inflagdo cadtica [59], novo cendrio inflacionfio
[60, 61, 66, 63, 64], inflagdo natural [67], inflagdo hibrida [68], inflacdo
quintessencial [69], inflagdo estocdstica [70, 71, 72, 73, 74] e, mais
recentemente, os modelos de inflagao morna proposto originalmente por
Berera [75, 76].

Seja qual for a versao, todas elas remetem ao mesmo significado fisico,
ou seja, um estagio de expansao acelerada do fator de escala cosmica. De
acordo com estes modelos, inflagao é um expansao exponencial do universo
emergindo de um estado de falso vacuo, que corresponde a um estado meta-
estdvel sem particulas ou campos, no entanto com um alto valor da energia
[77, 78]. Quando a inflacdo é vista como uma dinamica do campo escalar, a
equacao de estado relacionando as densidades de energia e pressao ¢ dada
por py = wpe, ou equivalentemente,

_ P

Py

w (1.12)

Sabendo que as densidades de energia e pressao sao escritas como py =
(1/2)¢* — V(¢) e ps = (1/2)¢* + V(¢), vemos portanto que quando o
termo de potencial (V(¢)) predomina sobre o termo cinético (¢?) teremos
w = —1, ou seja, a expansao do universo é acelerada e o comportamento é
semelhante ao de uma constante cosmologica.

Na secao seguinte, veremos que o regime de aceleracao atual do universo

(aceleragdo em baixos redshifts) pode ser explicado a luz de alguns
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candidatos a energia escura, tais como campo escalar (descri¢ao semelhante

ao da inflagao), constante cosmnolégica, matéria-X e gas de Chapligyn.

1.4 Aceleracao em Baixos Redshifts: Energia Escura

Em 1998, alguns resultados baseado nas observacoes de supernova tipo
Ia, publicados independentemente por dois grupos diferentes (Supernova
Cosmology Projet e High-z Supernova Search)® mudaram drasticamente a
nossa visao sobre o status atual do universo [10, 11]. Os estudos realizados
por tais grupos concluiram que o universo estda expandindo de forma
acelerada, diferentemente do que se acreditava durante varias décadas.
Desde as primeiras publicacoes em 1998, recentemente o acimulo de dados
obtidos através dos experimentos de supernova Ia tém reproduzido uma
extensa colecao de trabalhos na literatura sobre o assunto, sendo que que
todos eles confirmam, de forma cada vez mais precisa, a existéncia da
expansao acelerada do universo [79, 80, 81, 82].

Implicitamente, para explicar a aceleracao atual, o experimento baseado
nas obervacoes de supernova la sugerem que a densidade de energia do
universo € repulsiva e aparece como uma componente de energia escura,
ou seja, uma forma desconhecida de energia com uma pressao negativa.
Essa idéia traz consequéncias que podem ser justificada através de um
formalismo termodinamivo. Como é bem conhecido, o efeito da viscosidade
gerada pela expansao do universo trdz como consequéncia imediata a
diminuicao da pressao efetiva. Em principio, tal efeito simula uma equacao
de estado entre energia e pressao da seguinte forma: p.y = —p, onde p é a
densidade de energia do universo e p.¢ ¢ a pressao termodinamica.

A existéncia desta componente desconhecida de energia desconhecida

também pode ser confirmada independentemente (de forma indireta) pelos

60s sites na web desses dois projetos  sdo: http://supernova.LBL.gov e

http://cfa-www.harvard.edu/supernova.
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estudos baseado nas flutuacao da radiacao césmica de fundo (mantida a
temperatura de 3k) [83], estrutura de larga escala [84], idade de objetos em
altos redshifts [85], além de experimentos de raios-x obtidos de aglomerados
de galaxias [86]. Atualmente, o espectro de poténcia angular das flutuagoes
no background de micro-onda césmica favorece um modelo com parametro
de densidade Q;q; = 1, um valor ja previsto pela inflacao, enquanto
o parametro de densidade associado a matéria escura é €, ~ 0,3. A
diferenca Qprp = Qiota — 2m ~ 0,7, que corresponde ao parametro de
densidade associada a componente de energia escura.

Embora a energia escura mude a nossa visao tradicional sobre o universo,
a auséncia de um guia natural da teoria de fisica de particulas sobre a
sua natureza da origem a um intenso debate na literatura, bem como
a muitas especulagoes tedricas. Nas subsecoes seguintes, faremos uma

pequena discussao sobre cada um dos possiveis candidatos a energia escura.

1.4.1 Constante Cosmologica

A idéia de descrever essa componente desconhecida de energia através de
uma constante cosmolégica (A = Energia do Vacuo), vem a ser o mais
antigo e mais natural candidato, ja que a sua descricao é a mais simples
do ponto de vista matematico, mas nao a tunica possibilidade.

Historicamente, o termo A foi introduzido originalmente por Einstein
em 1917 numa tentativa de obter um modelo cosmolégico estatico, o qual
era baseado na relatividade geral e no principio cosmolégico [87]. Neste
caso, a constante cosmoldgica A corresponde a uma componente escura
espacialmente uniforme e independente do tempo, que deve ser interpretada
classicamente como um fluido perfeito simples obedecendo uma equacao de
estado p, = —py-

Classicamente, entende-se como vacuo, uma regiaao do espaco

desprovida de matéria, radiacao ou qualquer outra forma de energia,
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gerando assim um tensor de energia momento identicamente nulo (T} =
0). Entretanto, do ponto de vista da teoria quantica de campos, para cada
campo quantico deve existir o seu estado de vacuo no qual a sua energia é
minima. Sendo assim, devido as relacoes de incertezas, os campos quanticos
flutuam em torno do valor zero, mesmo na auséncia de particulas e so
podem ser considerados nulos quando se tomam os seus valores médios.
A existéncia das flutuagoes de vacuo se justificam por varios fenomenos
quanticos, dentre os quais, o deslocamento das linhas espectrais do atomo
de hidrogénio (Lamb Shift) e o efeito casimir’ (Casimir Effect) [88, 89].
Formalmente, do ponto de vista da teoria quantica de campos, a
presenca de A é devido a energia de ponto zero de todas as particulas
e campos preenchendo o universo. Sendo assim, o vacuo de um campo
quantico pode ser tratado como um conjunto infinito de osciladores
harmonicos independentes, cada um deles no estado fundamental,
contribuindo com suas préprias oscilagoes de ponto zero [91]. Neste caso,
cada modo de vibracao de um dado campo quantico contribui com %hw para
a energia total. Entretanto, existe um problema fundamental relacionado
ao candidato A que é usualmente conhecido na literatura moderna como o
problema da constante cosmoldgica [90]. A justificativa para este enigma
vem do fato de que a expectativa tedrica prever um valor A ~ 101 GeV*,
enquanto que o limite cosmolégico sugere um valor A ~ 10747GeV*. Vemos

0'20 ordens de grandeza entre os dois

portanto, que existe uma diferenca ~ 1
limites. Este problema localizado na interface da cosmologia, astrofisica
e a teoria quantica de campos tem sido considerado por alguns autores
como a maior crise da fisica moderna [90, 91]. A possibilidade de que
uma constante cosmolégica seja um candidato convincente para explicar a

expansao acelerada do universo tem inspirado varios autores e reproduzido

70 efeito Casimir é amplamente conhecido pela forca que surge entre duas placas planas e condutoras

dispostas paralelarmente e imersas num vacuo a uma distancia (.
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uma intensa colegao de reviews na literatura [92, 16, 17]. Para uma revisao
um pouco mais detalhada, veja como exemplo, as referéncias [18, 19]. Por
ora, proseguiremos examinando outras possibilidades que podem explicar

a atual aceleracao do universo.

1.4.2 Campo Escalar

Talvez a maneita mais simples e natural de descrever a componente de
energia escura responsavel pela atual aceleragao do universo seja através
de um campo escalar primordial [24, 25, 26, 2]. Para o caso de um universo
em expansao, um campo escalar espacialmente homogéneo com potencial
V(¢) e minimamente acoplado com a gravidade obedece a seguinte equagao

de movimento [93]
¢+ 3Ho+V'(¢) =0, (1.13)

onde o ponto (-) significa derivada em relacdo ao tempo e linha (')
indica derivadas com respeito ao campo ¢. Como vemos, a equacao
acima é semelhante a um sistema classico com a taxa de expansao 3H
desempenhado o papel de uma viscosidade. As densidades de energia e

pressao do associada ao campo ¢ sao dados respectivamente por

po= 582+ V(0) (1.1

po= 58"~ V(o) (1.15)

Assumindo uma equacao de estado da forma p = wp, vemos que

_pe_ 30 =V(9)
ps 50°+V(9)

Note que, se o campo varia lentamente o termo de potencial é dominante,

w (1.16)

ou seja, teremos V(¢) >> %¢2, o que implica em w ~ —1. Sendo assim,
o comportamento do campo escalar é semelhante ao de uma constante

cosmolégica tal como discutido na subsegao acima.
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1.4.3 Gas de Chapligyn

A primeira tentativa de explicar a expansao acelerada do universo
através de um gas do tipo Chapligyn foi introduzido originalmente por
Kamenshichik em 2001 [94]. Este modelo foi desenvolvido com mais
detalhes logo depois por Bilic et al. [95], Bento et all [27] e Benaoum [28].
Em geral, essa variante tem sido proposta como uma descricao unificada
de modelos contendo matéria escura e energia escura. Esta componente de
fluido exdtico pode ser caracterizada macroscopicamente por uma equacao

de estado da forma
DPe = _A/p?hﬂ (117)

onde A é uma constante positiva e o é um parametro pertencente ao
intervalo [0,1]. Nesta expressdo, o parametro o # 1 representa uma
generalizagdo da expressao original (o = 1) proposta por Kamenshichik
[94], enquanto para a = 0 ela descreve um modelo com constante
cosmoldgica (ACDM).

Recentemente, a possibilidade de unificar o setor escuro cosmolégico
por meio de um gas do tipo Chapligyn com equacao de estado (1.17),
tem recebido consideravel atencao na literatura, veja por exemplo, as
referécias [29, 30, 96, 97]. Em particular, o capitulo VIII desta tese é
dedicada ao estudo da aceleracao cosmica utilizando os modelos de gas de
Chapligyn aqui citados. Os resultados bésicos do nosso estudo inclui o
calculo do parametro de desaceleracdo como uma funcao do redshift ¢(z)
nos casos de quintesséncia e quartesséncia, bem como o calculo da evolucao
da temperatura. Os resultados basicos estao discutidos com mais detalhes
na referéncia [98].

A dinamica do gas de Chapligyn é discutida com mais detalhes no
capiitulo VIII. Por ora, mostraremos apenas que a densidade de energia

obtida via lei de conservacao
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, R
pc +3—=(pc+pc) =0 (1.18)

R
¢ dada por
R 3(14+a)] T+
pe = A+B<RO> } , (1.19)
ou equivalentemente,
R\ 30-+0) T
po = pay | A+ (1= 40 (7)) , (1.20)

onde p¢, é a densidade de energia atual e A, = A/ plcfga é uma quantidade

relacionada com o atual valor da velocidade do som no gas, veja por

exemplo a referéncia [97]. Como pode ser visto da equacao (1.19), o gas de

Chapligyn aqui discutido delimita dois regimes tedricos, a saber, matéria
VB

pe(R—0) = " (1.21)

nao relativistica

e energia escura

po(R — 00) ~ VA (1.22)

Tal comportamento motivou varios autores a proporem um sistema
unificado para tentar descrever a natureza do setor escuro cosmoldgico.
Muitas previsoes deste modelo ja foram confrontadas com alguns resultados
observacionais. Em particular, mostraremos no capitulo VIII que usando
diagrama de magnitude de supernovas Ia, os vinculos sobre o parametro
a para o caso de quartesséncia sugerem um valor 0.70 < a < 0.89 [98].

Outras previsoes ja foram confrontadas por diversos autores, como exemplo
veja as referéncias [99, 100, 101, 102].

1.4.4 matéria-X

Primeiramente introduzida por Turner e White [31] em 1997, a

possibilidade de explicar a aceleracao corrente a luz de uma matéria-X

20



tem recebido consideravel atencao na literatura. Tal matéria é descrita

pela equacoa de estado

onde w é um parametro livre. Como pode ser visto, para o valor particular
w = —1 temos como caso limite uma constante cosmolégica (p = —p),
que é uma condicao necessaria e suficiente para acelerar o universo. Em
geral, o intervalo relevante para o parametro w situa-se entre [0, —1].
Fisicamente, este intervalo delimita dois regimes tedricos, ou seja, para
w = 0 a dinamica do universo é determinada pela matéria escura (fluido
sem pressdo) enquanto que para w = —1 a dinamica é determinada
por uma constante cosmoldgica. Entretanto, alguns trabalhos publicados
recentemente na literatura consideram a possibilidade w < —1 [103, 104].
Esta condicao implica que os modelos de matéria-X podem ser divididos
em duas categorias, a saber, o modelo padrao onde —1 < w < 0 e o modelo
de matéria- X estendido com w < —1. Este ultimo é comumente chamado
na literatura de modelo Phantom Energy [22, 21|, palavra inglesa para
denominar energia fantasma.

Uma variante destes modelos de matéria-X (XCDM) considera ainda
a possibilidade do parametro w assumir uma dependéncia temporal ou,
equivalentemente, uma fungao do redshift, p, = w(z)p,. Isso significa que
os modelos com w constante saos os mais simples e seus parametros livres
sao basicamente dois (£2,,w), tornando assim o modelo mais facilmente
limitado pelos teste cosmoldgicos. Quanto a dependéncia funcional de w,
geralmente ela é assumida apriori e varia com alguma poténcia do redshift,
vejamos como exemplo o caso w(z) = wp(1 + 2)™ [105].

A descrigao dinamica dos modelos dirigidos por matéria-X ¢é baseada
numa soma de dois fluidos perfeitos. O primeiro representando a

componente dominante, que no caso seria a matéria-X, e o segundo é um
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fluido ordinario representando radiacao ou matéria. O tensor de energia

momento representando cada uma das componente por ser escrito na forma
Top = (P + Pu)Uatis — Prgas (1.24)

Top = (p+ p)uatis — Pgas (1.25)

onde p, e p;, p € p, representa, respectivamente, a densidade de energia e
pressao de cada uma das componentes. As equacoes de Einstein para esta

componente escura podem ser escritas como

R? k
87G(p + pu) = 35 + 315 (1.26)
R R k

Além disso, considerando que cada componente é conservada separada-

mente, teremos ainda:

R

px + SE(px + px) =0 (128)
(& .
_ R

,0+3§(p+p) =0. (1.29)

Considerando que a matéria-X (componente dominante) satisfaz a equagao
de estado (1.23) com w constante e a outra componente de fluido

satisfazendo uma equagao de estado do tipo (lei gamma)

p=(7—1)p, (1.30)

as equagoes de campo (1.26) - (1.27) podem ser facilmente integradas e

obtemos como resultado:

R -3y R -3(14w)
Py = Py <RO> € Pz = Pz <RO> ) (131)
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sendo p,, € pg, 0s valores atuais de cada uma das componentes. Note
que na fase atual, onde o fluido ordinédrio é a matéria escura (y = 1), as

equacoes acima podem ser reescritas como

pm~R3 e py~ RT3 (1.32)

desde que p,,(t) seja a densidade de energia da matéria e p,(t) a densidade
de energia da matéria-X. Note que os regimes de matéria (p,, ~ R™?)
e radiacao (p, ~ R™*) nao modificam a lei de escala da matéria-X.
Fisicamente, isso nos mostra que se o parametro w for negativo, a
matéria-X comecou a dominar recentemente, resultado esse que mantém
os processos fisicos na era da radiacao tal como a nucleosintese primordial.
E interessante notar também que, no caso w = —1 temos p, = —p,, ou
seja, este caso extremo descreve uma constante cosmoldgica e atua como
uma fronteira para comparar a consisténcia do modelo. Como vemos, essas
consideracoes justificam o valor —1 < w < 0 para o parametro da equacao
de estado da matéria-X. Entretanto, também ¢é interessante saber qual o
valor critico do parametro w para o qual teremos um universo acelerado.

Para esclarecer este ponto, note que uma combinacao das duas equacgoes
de Einstein, equagao (1.26) e (1.27), implica na seguinte expressao para a
aceleracao

AtG

R= —— P+ 430+ )R (1.33)

A expressao acima nos mostra que, teremos um modelo acelerado (R > 0)
somente se a mistura dos dois fluido violar a condicao de energia forte®

p+ pz+3(p+ p:) <0, ou equivalentemente,
p+3p+ (1+3w)p, <O. (1.34)

Para o caso de matéria (p = 0), o parametro da equagao de estado da

8Esta condicdo para o caso de uma mistura de dois fluidos perfeito implica que p+ p, +3(p+pz) >0
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matéria-X obtido da expressao acima é

1
w < —=

14 2
3 +

Px

que independe do parametro de curvatura do modelo. Como vemos, a

(1.35)

Pm]

imposicao de um modelo acelerado sera satisfeita somente se
1 Q
w< —= [1 + ==

3 7| (1.36)

Utilizando uma combinagao elementar das equagoes de campo (1.26)
e (1.27) juntamente com as definicdes dos parametros cosmoldgicos
bésicos? podemos mostrar facilmente que os parametros de curvatura e

desaceleracao podem ser escritos como

k
=+ — 1 1.
T + (1.37)
) 1
0 =3 Q4+ (1 + 3w)€2,], (1.38)

sendo €2, o parametro de densidade da matéria-X. Além do mais,
utilizando uma combinagdo das equacoes de campo (1.26) e (1.27), e as
mesmas definicoes dos parametros cosmoldgicos, é facil mostrar que a
integral primeira para o caso plano pode ser escrita como

3 3(1+w)
H? = H} [Qm <Ro> +Q, <R‘)>

- = (1.39)

Portanto, os testes que discutem essa classe de modelos sao de alguma
forma, baseado na equacao acima.

Como uma aplicacao do formalismos geral discutido aqui, dedicaremos
o capitulo VII desta tese ao calculo do potencial de campo escalar

que ao mesmo tempo ¢é compativel com os modelos de matéria-X

90 parametro de densidade da matéria é definido por Q,, = (pm/p.) onde p. é a densidade critica

definida por p. = 3HZ/87G. Similarmente, o parametro de densidade da matéria-X é definido por
Oy = (pz/pe), enquanto que o pardmetro de desaceleragio é qp = —%.
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aqui apresentados. Mostraremos que, se a matéria-X interage apenas
gravitacionalmente, ou seja, se nao existe transferéncia de energia e
processos de decaimento, somente uma classe restrita de potenciais é
matematicamente permitida e o conjunto completo das solucoes sera
determinada por este novo método. Em particular, mostraremos que o
potencial V(¢) para o caso de uma mistura contendo um fluido perfeito

mais uma componente de matéria-X pode ser escrito como [106]

l-w Qp, \ 7 . 2040 [3(y—w—1)V8T ¢
- p¢o< (b) [(7 ) ) (140)

2 3(]_ +W) mpl

onde v e w sao os parametros da equacao de estado para o fluido
relativistico e a matéria-X, pg, e €y sao os valores atuais do parametro

de densidade e densidade de energia do campo escalar.
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Capitulo 2

Movimento Browniano: Algumas

Abordagens

2.1 Introducao

O movimento irregular de pequenas particulas imersas numa solucao
foi originalmente observado em 1928 pelo botanico inglés Robert Brown
[107]. Ele notou que as particulas em suspensao adquiriam uma espécie
de movimento erratico que posteriormente ficaria popularmente conhecido
pelo nome de movimento browniano (MB).

Nas décadas seguintes, intmeras tentativas foram realizadas para
desvendar a natureza do movimento browniano.  Experimentos de
laboratério mostraram que o movimento fica mais intenso quando se
reduz a viscosidade do meio ou o tamanho das particulas brownianas, e
também quando se eleva a temperatura da solucao. Muitas causas possiveis
foram aos poucos sendo eliminadas, tais como: atragoes ou repulsoes
entre as particulas suspensas, agoes capilares ou higrométricas, bolhas
temporarias de ar, correntes de convecao no interior da solucao, gradientes
de temperatura ou algum tipo de perturbacao mecanica, além de outros
tipos de instabilidades no fluido.

Somente a partir de 1860 comecou a tomar forma o ponto de vista
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moderno de que o zigue-zague das particulas brownianas poderia ser devido
as colisoes com as moléculas do fluido. Verificou-se que suas trajetérias
nao apresentavam tangentes (ou seja, as curvas nao seriam diferencidveis),
e também que o movimento randomico aparentemente nunca cessava. No
entanto, a verdadeira causa do fendbmeno permaneceu um mistério até 1905,
quando finalmente foi elucidado por Einstein no seu artigo de 1905 [44].

O tratamento de Einstein para o MB é um dos trabalhos intelectuais
mais notaveis de todos os tempos. Sua solugao representou um grande
avanco cientifico nos campos da Quimica e da Fisica, tornando a teoria
atomico-molecular uma parte fundamental da estrutura da matéria. Como
uma espécie de bonus extra, o tratamento de Einstein também forneceu
uma estimativa do nimero de Avogadro que foi verificada, com grande
precisao, nos experimentos efetuados por Jean Perrin [108].

Posteriormente, um esforco consideravel foi canalizado por muitos
autores para generalizar e compreender o tratamento de Einstein.
Importantes contribui¢oes foram dadas por Smoluchowski [109], Langevin
[110], Fokker [111], Burger [112], Fiirther [113], Ornstein [114], Planck
[115], Kac [47] e muitos outros.

Atualmente, o movimento browniano permanece na fronteira da
pesquisa como um exemplo importante de processo estocastico, e constitui
uma ferramenta fundamental para o estudo de sistemas fisicos de nao
equilibrio. Tais sistemas sao encontrados em diferentes areas da fisica,
desde o nivel microscépico, como verificado na difusao de particulas num
solvente, até escalas de ordem astronomicas, tal como observado em
sistemas estelares [116]. Um exemplo interessante desse tltimo tipo é
representado por um Buraco Negro (BN) no centro de um sistema estelar
denso. Teoricamente, quando sua massa é muito grande, o BN pode
adquirir um movimento que é semelhante ao de uma particula em suspensao

num liquido ou num gés [43]. Em cosmologia, movimentos brownianos com
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Figura 2.1: A figura acima (publicada por J. Perrin) mostra a trajetéria de uma particula
executando movimento browniano. O movimento é extremamente irregular (a trajetéria
praticamente nao apresenta tangentes), sendo mais ativo para temperaturas mais altas
ou em fluidos menos viscosos. Observando-se uma mesma amostra por aproximadamente

20 anos concluiu-se que o movimento nunca cessa.
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barreiras fixas ou modveis sao também bastante empregados para estudar
os processos de formaccao da estrutura de larga escala, tais como galaxias,
aglomerados de galdxias e vazios [117]. Mais recentemente, outros tipos
de contribuicoes foram obtidas na investigacao de sistemas com memoria,
objetivando estabelecer relacoes entre os regimes de difusao andomala e
normal [118].

No presente capitulo, mostraremos como é possivel abordar o movimento
browniano de quatro maneiras distintas, a saber: o tratamento difusivo de
Einstein, o procedimento estocastico ou de forca flutuante proposto por
Paul Langevin, a abordagem via equacao de Fokker-Planck, e finalmente,
as caminhadas aleatdrias de Mark Kac [47]. Discutiremos também com
bastante detalhe, as limitacoes presentes na abordagem difusiva. Em
particular, mostraremos que a equagao parabdlica na qual Einstein baseou
sua explicagao deve ser substituida por uma equacao do tipo hiperbdlica
que também surge naturalmente no tratamento via caminhadas aleatorias.

Para ser mais preciso, as abordagens discutidas neste capitulo estao

delineadas com detalhes na referéncia [119].

2.2 MB e Equacao de Difusao: O Tratamento de

Einstelin

Para estudar o comportamento irregular das particulas em suspensao
que surge devido aos movimentos moleculares térmicos, suporemos que
cada particula executa um movimento completamente independente das
outras particulas. Como veremos, essa hipdtese é valida somente se os
intervalos de tempos considerados nao sao demasiadamente pequenos.
Seguindo o formalismo de Einstein [44], consideraremos um intervalo de
tempo 7, que é pequeno em comparacao com o tempo de observagao,

porém suficientemente longo, para que os movimentos executados por
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diferentes particulas neste intervalo de tempo possam ser considerados
eventos independentes.

Suponhamos que existam N particulas em suspensao no liquido. No
intervalo de tempo 7, as coordenadas x das particulas variam de Ax = pu,
onde p pode assumir valores diferentes (positivo ou negativo) para cada
particula. Uma determinada lei de distribuicao de probabilidades deve ser
satisfeita pela variavel u: A fracao de particulas que sofre um deslocamento

entre x e x+ u no intervalo de tempo 7, pode ser expressa por uma equacao
da forma [44]

AN/N = ¢(p)dp (2.1)

com a distribuigao ¢(u) satisfazendo a condi¢do de normalizacao

/_t: P(p)dp =1 (2.2)

onde ¢(p) é uma funcdo par, ¢(u) = ¢(—p), suposta diferente de zero
apenas para pequenos valores de p. Considere também que n(z,t) é
o numero de particulas por unidade de comprimento, e calculemos a
distribuicao de particulas no instante ¢ + 7, a partir da distribuicao delas
no instante t. Pela definigdo da fungao ¢(u), o nimero de particulas que

no instante ¢ + 7 se encontram entre x e x + u, ¢ dado por:

n(z,t+ 7)dx = dx /u:+oo

o+ s t)e(p)dp. (2.3)

U=—00

Como 7 ¢é muito pequeno, podemos fazer uma expansao temporal de n até

segunda ordem!

on(x,t 20n?(x,t
n(z,t) L T0n (z,1) N

ot 2 Ot?

!Einstein obteve seus resultados fazendo a expansao no tempo somente até primeira ordem [?]. Por

n(x,t+7) =z, t)+ 7 (2.4)

razoes que serao discutidas adiante, consideraremos termos até segunda ordem em 7 na expansao da

funcao n(z,t).
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e como u também é pequeno, para sermos consistentes devemos desenvolver

n(z + p,t) em poténcias até segunda ordem em g

on(e.t) | i, )
ox 2 Ox?

Inserindo os resultados acima na equagao (2.3) obtemos

on TR0 oo on +o O0%n oo
U+§T+5@ 77/ p)dp - x/_oo Mﬁb(ﬂ)dll*‘@ /_Oo 2¢(M()2dl6l)

No lado direito dessa equagao, o segundo termo ¢ identicamente nulo uma

n(@+ p,t) =nlz,t) + p (2.5)

vez que ¢(p) = ¢(—p). Logo, considerando a equagao (2.2), vemos que 7
satisfaz a seguinte equacao diferencial

0%  On 0°n

-+ —=D— 2.7

2o ot Vox (2.7)
onde definimos

D=L [T o 2:8)

A equacao (2.7) representa uma espécie de difusdo generalizada. A
quantidade n(x,t) é a concentragdo de particulas por unidade de
comprimento em torno de x num instante arbitrario e a constante D ¢é

o coeficiente de difusao. No limite

O __On
a equagao (2.7) se reduz para
on 0°n
—=D— 2.1
ot Ox? (2.10)

que é forma padrao da equacao de difusao, na qual Einstein baseou a
sua explicacdo do MB. A equacao (2.7) é do tipo hiperbdlica e generaliza
a equacao de difusao usual que é do tipo parabdlica’. Na secdo final

desse trabalho analisaremos a solucao analitica da equacao de difusao

2Uma classificacio das equacdes diferenciais parciais pode ser vista na referéncia [120].
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generalizada. Por enquanto, prosseguiremos com a descricao einsteiniana
do movimento browniano.

Como um exemplo para ilustrar esse tratamento, vamos obter a solugao
da equacao (2.10) quando o processo difusivo satisfaz a seguinte condicao

inicial

n(x,t =0) = Ni(z) (2.11)

onde N é o numero total de particulas e § denota a funcao delta de Dirac.

Como seria esperado, tal condicao implica que
[ et =0)dr = [ Né(a)de = N. (2.12)

A solugao de (2.10) pode ser facilmente obtida pela técnica das integrais
de Fourier. De acordo com esse método, a concentracao pode ser definida

como

+oo
n(z,t) V@;/ t)e dk (2.13)

onde os coeficientes da expansdo, 7n(t), sdo determinados pela

transformada inversa

1 +00 W
ne(t) = \/%/_OO n(a, t)e * dx. (2.14)

Calculando as derivadas temporal e espacial de n(x,t) e substituindo
suas expressoes na equagado de difusdo (2.10), obtemos a seguinte forma

integral

00 877k 2 ikx 7. _
%E/ + DIy dk = 0. (2.15)

Como a equacao acima € vahda para todo instante, seu integrando deve

ser identicamente nulo, ou seja,

877k 9
DEk™n, = 2.1
By + e =0 ( 6)
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cuja solucao é da forma
ne(t) = nkge_Dkzt. (2.17)
Com este resultado, a definicao (2.13) pode ser escrita como:
n(x,t) \/_/ e Pt g, (2.18)
Por outro lado, considerando que
+00 .
0) roe " dk 2.19
o 0) == [ (2.19)

temos para a transformada inversa

Mo = \/12_7r /_J;:O n(z’,0)e="* dz’ (2.20)
e de (2.18) podemos escrever
n(x,t) = 2177 _J:o n(z',0)dx’ /_J:O e DRt ik(e =) g —
Qlﬂ/t: n(z',0)dx’ /J;:O e DRt
(coslk(x — 2")] + isin[k(z — 2)]) dk. (2.21)

Note que a segunda parcela na expressao acima ¢ igual a zero, pois se
trata do produto de uma funcao par por uma funcao impar, com a equacao

se reduzindo para

1 o0 o0 2
n(x,t) = 2/+ n(z',0)da’ /+ e PFt cos[k(z — )] dk. (2.22)
T J—00 —00

A integracao deste resultado é mais facilmente obtida considerando as
seguintes mudancas de varidveis: k = y, u = x — 2’ e @« = Dt, com a

expressao (2.22) tomando a seguinte forma

1 400 _ (x— m)2
n(x,t) = \/m/oo n(x',0)e” i dx'. (2.23)

Finalmente, observando que a condic¢ao (2.11), implica que as particulas
estdo inicialmente localizadas na origem, ou seja, n(2’,0) = Né(z'), a

concentracao pode ser escrita como
N 22 4
r,t) = e Db, 2.2
(T (2:24)
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Figura 2.2: As curvas mostram a evolugao temporal da distribuigdo n(x,t) no regime
difusivo unidimensional. Para tempos proximos de zero a curva solida representa uma
funcao delta centrada em torno da origem x = 0. Com o passar do tempo a distribuicao
evolui como uma gaussiana de largura variavel. Como discutido no texto, a descricao de

Einstein é valida para tempos longos.

O resultado acima nos mostra que as particulas se comportam como num
processo gaussiano difusivo. A fungao n(x,t) inicialmente representa uma
delta centrada em torno da origem x = 0. No entanto, a medida que o
tempo passa a distribuicao evolui como uma gaussiana de largura variavel
(ver Figura 2).

Tendo calculado a fungdo n(z,t), ¢é interessante determinar a
distribuicao de probabilidade de que uma particula da amostra ocupe a
posicao entre x e x + u, quando em ¢t = 0, iniciou seu movimento da
posicao xy com velocidade inicial vg. O conhecimento de tal funcao é de

fundamental importancia para se calcular quantidades de interesse fisico,
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tais como o deslocamento quadratico médio e a variancia. A distribuicao
de probabilidade pode ser obtida dividindo-se a concentracao pelo nimero
total de particulas. Ou seja,

t 1 o2
Plo,t) = &0 _ e D, (2.25)

N VAar Dt

Comparando essa equacgao com a distribuicao de probabilidades gaussiana

1 (z—<z>)?
_— o 252
P(z) \/We (2.26)

vemos que < z >= 0, enquanto para a variancia temos o2 = 2Dt.

Este resultado significa que na teoria do movimento browniano, as
grandezas fisicamente relevantes estao diretamente relacionadas com os
primeiros e os segundos momentos da distribuicao, que é uma propriedade
geral da func@o gaussiana [120]. Tais momentos podem ser calculados da
relagao:

00
<" >= /_OO " P(x,t)dz. (2.27)

Utilizando a funcao distribuicao (2.26), o valor de < x > e 0 podem ser
obtidos diretamente por célculos algébricos considerando a expressao geral

acima. O primeiro momento é o deslocamento médio®

<z >= /+oo T e =0 (2.28)
— 4Dt

Seguindo a mesma prescricao, o segundo momento da distribuicao é o
deslocamento quadrético médio*

z2
<2t >= r?e 1idy = 2Dt (2.29)

2 /oo
VAamr Dt /0
que na teoria do MB é conhecida como relagao de Einstein. O coeficiente

de difusao D na equagao (2.29) deve ser uma funcao da temperatura e da

30 integrando de (2.28) é composto pelo produto de uma fungao par por uma fungio fmpar.

+ 2 _nt1
"Note que a 7 z"e " dz = o~ = ['(“}!) para n par.
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geometria das particulas. Einstein mostrou que para particulas esféricas
de raio a, o coeficiente D pode ser calculado a partir da mobilidade b e da
temperatura do meio no qual a particula se encontra. O parametro b pode
ser obtido da fluidodinamica, mais precisamente a partir da lei de Stokes
[122]. A relagao satisfeita por D é:

kT

D = kgTh =
b 67 Ba

(2.30)

onde kp é a constante de Boltzman, T é a temperatura, [ representa o
coeficiente de viscosidade do meio e b = 1/67fFa. Inserindo (2.30) em
(2.29), temos para o deslocamento quadratico médio no MB

RT

2
< >= — 1.
Y 7T 30N, Ba

(2.31)

Note que para obtermos a forma originalmente deduzida por Einstein [?],
utilizamos o fato de que a constante de Boltzman kg pode ser escrita como
kg = R/N,, onde R é a constante universal dos gases e IV, é o nimero de
Avogadro.

Portanto, vemos que a particula se comporta como um processo difusivo

com < 5172

> o t. Toda essa formulacao unidimensional pode ser
consistentemente generalizada para trés dimensoes. Neste caso, nao é dificil
demonstrar que (2.31) assume a seguinte forma [122]

RT
t. 2.32
mN,Ba ( )

< 1?2 >= 6kgTht =

E importante também mencionar que o resultado de Einstein (2.31),
ou equivalentemente, (2.32), foi um dos primeiros exemplos de uma
relacao onde uma flutuacao quadratica média estd associada com um
processo dissipativo (descrito pelo coeficiente de viscosidade (). Além
disso, como os valores das quantidades < r? >, t, 3 e a sdo diretamente
mensuraveis, isto significa que o nimero de Avogadro pode ser estimado

se tivermos um bom cronémetro e um microscopio [123]. Seguindo esse
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procedimento, Jean Perrin [108] obteve valores experimentais do desvio
quadratico médio que permitiram uma determinacao mais precisa do
numero de Avogadro [123, 124]. Tais resultados também contribuiram
significativamente para que a hipotese atomico-molecular tivesse aceitacao
geral como uma descricao realista da matéria.

Posteriormente, Einstein observou que seus resultados apresentavam
inconsisténcias para tempos curtos comparados aos tempos caracteristicos
do sistema. Uma forma simples de perceber tais dificuldades é calculando

a “velocidade média” da particula usando a relagao (2.31)

d/<z? > RT 1
dt 27N, Ba /112

Vemos que no limite ¢t — 0, a velocidade v — oo, sendo esta a raiz da
dificuldade. Outra maneira facil de compreender este problema pode ser
vista na Figura 2. Note que, para tempos proximos de zero temos uma
funcao ¢ de Dirac centrada em x = 0, mostrando que inicialmente todas as
particulas estao localizadas na origem. Por outro lado, para intervalos de
tempos tao pequenos quanto se queira (t = 0+¢€), a curva é uma gaussiana
que se estende a todo espaco, indicando que as particulas se difundiram
com uma velocidade infinita. Portanto, fica claro que os resultados de
Einstein s6 permanecem validos para um regime de tempo suficientemente
longo em comparacao a escala de tempo caracteristica do sistema.

Para corrigir tais dificuldades, precisariamos considerar o termo de
derivada segunda com respeito ao tempo na equacao de difusao (2.10).
Em outras palavras, é importante considerar a solucao analitica da equacao
(2.7), j& que ela incorpora naturalmente o termo 9?n/dt?, sugerindo que
para tempos curtos teremos uma descricao ondulatéria. Discutiremos
alguns detalhes dessa abordagem na secao final. Por enquanto, vamos
proseguir examinando as diversas variantes da teoria do movimento

browniano.
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2.3 MB e Forcgas Flutuantes: A Visao de Langevin

Poucos anos apds o trabalho de Einstein, o fisico francés Paul Langevin
[110], posteriormente seguido por Fiirther [113], Ornstein [114] e outros
mais, iniciaram uma série de estudos tentando uma possivel generalizacao
daqueles resultados. Tal abordagem, comumente conhecida como
tratamento de Langevin, serda examinada com detalhe nesta secao.

Segundo Langevin, o MB de uma particula na auséncia de um campo de
forca conservativo pode ser entendido com base numa equacao diferencial
estocastica, agora popularmente conhecida como equacao de Langevin
[110, 116, 121, 45]

dv

o= B E) (2.34)

onde v denota a velocidade da particula. Nesta equacao, a influéncia
do meio sobre o movimento da particula é decomposta em duas partes.
Em primeiro lugar, existe uma forca que varia lentamente, ' = —f(v,
representando uma friccao dinamica sobre o movimento da particula,
onde (3 é o coeficiente de viscosidade do meio. Existe também uma
forga aleatoria, £(t), que varia rapidamente em comparagdo com os
tempos de observacdo. Em outras palavras, {(t) é uma for¢a flutuante
que é uma caracteristica basica de uma equacao diferencial estocastica.
Langevin definiu as propriedades dessa fungao por duas condigoes (I' é

uma constante)

<&(t) >=0 <) >=To(t —t) (2.35)

que caracterizam o chamado ruido branco®.

0 ruido é branco (“white noise”) se o espectro de poténcia S(w) da funcio correlagio < £(¢)£(0) >
é independente da frequéncia, sendo S(w) = j_oooo e~ @t < £(t)€(0) > dt. No tratamento de Langevin,
< &(t)€(0) >=T4(t), temos S(w) =T.
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Para determinar a solugdo analitica de (2.34), vamos primeiramente

supor uma equacao de Langevin geral escrita na seguinte forma:

d
—+ f(tw =€) (2.36)
onde f(t) é uma fungao arbitraria. Definindo
_ 9

sendo ¢(t) também arbitréria e ¢(t) sua derivada, a equacao (2.36) pode

ser reescrita como

Cclltln(vg(t)) = 55}75) (2.38)

Note que (2.34) é recuperada para g(t) = e’
Portanto, a equacdo acima, ou equivalentemente, a equacao (2.36), pode

ser reescrita na forma

d t
o In(ve’) = 55}) (2.39)
que pela mudanca de varidvel, u = ve”, se reduz a forma elementar
du
— = &(t)e 2.40
W e(o)e (2.40)
com solucao
u(t) = up + /Otg(t’)eﬁt’dt’. (2.41)

Retornando para a antiga variavel v, vemos que a solugao geral da equacao

de Langevin é dada por
t :
o(t) = vge Pt 4 e P /0 (e dt'. (2.42)

O valor médio e a variancia na velocidade deve ser calculado através das

propriedades da fungao £(¢). Utilizando a condi¢ao (2.35) temos

< v(t) >=voe . (2.43)
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A wvariancia é mais facilmente obtida calculando-se primeiramente a

diferenca v— < v >, de onde obtemos
v— <v>=e M /Ot e e(tdt! (2.44)
ou ainda
(0= <v>) =2 [ [N B (" dtd (2.45)

Tomando a média, utilizando novamente a condigao (2.35) e afetuando a

integracao, obtemos facilmente

r
2 —28t
o;=—(1—e") (2.46)
v 2/8
onde 02 =< v?2 > — < v >? é a variancia na velocidade. Para

v

calcular a constante I', observemos que o regime estacionario é obtido para

tempos longos em comparagao com os tempos de flutuagao da funcao £(¢),

indicando que < v > se anula em (2.43), e de (2.46) temos que

c?>= 4,
20

Por outro lado, o teorema da equiparticao garante que a energia cinética

(2.47)

média de uma particula em movimento corresponde a %kBT para cada grau

de liberdade, mais precisamente

1 1

onde kp é a constante de Boltzmann. Combinando as duas tultimas
expressoes, obtemos a relacao exata entre I' e a temperatura do meio

externo o BhaT
p o 20kl (2.49)
m

Uma vez determinada a variancia da velocidade é conveniente calcular

o deslocamento quadratico médio, ja que este é uma grandeza,
experimentalmente mensuravel (mais detalhes nessa abordagem pode ser

vista em [45])

40



t
r =0+ /0 o(t)dt’ (2.50)
onde z( é a posicao da particula em ¢ = 0. Substituindo na integral acima

o valor de v(t) dado pela expressao (2.42), segue que
t oy t o 4 "
z(t) = 300+U0/0 e Pt dt’—i—/o e m/o (et at' at”

;g_@%§+;AQWM1—JWﬂMﬂ.@5D

Desta equacao obtemos o deslocamento médio

= o+ vy

1
<x>:xm+mﬁu—e%6 (2.52)

sendo o deslocamento quadratico médio obtido calculando-se primeira-

mente a diferenca
= <z >=— /5” — D) g (2.53)
de onde obtemos
T— <z >)? 5 )(1 — P01 = P arat”. (2.54
52

Na expressao acima, tomando a média, usando a condic¢ao (?7) e efetuando

as integrais obtemos facilmente

(Ax)? = {t»( ety 4 (11— e 2}, (2.55)

20
Observe que no limite de tempos longos o termo dominante é o primeiro,

mais precisamente

I kT
(Az)? = Ft= 275515 (2.56)
ou equivalentemente,
(Az)* = 2Dt (2.57)

que é a relacdo de Einstein (ver equacao (2.29)). Vemos portanto, que no

regime de tempos longos a abordagem de Langevin ¢ equivalente a descrigao
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de Einstein. Neste limite também pode ser mostrado que a distribuicao de
probabilidades relativa a variavel v obedece a uma distribuicao maxweliana

de velocidades [45]

m TI’LU2

kT eXp{_QkBT

Pv) = 1. (2.58)

2.4 A Equacao de Fokker-Planck

Como vimos na segao 3, a equagao de Langevin na forma (2.34) descreve
o movimento de uma particula de massa m imersa num fluido com
coeficiente de viscosidade (. Este mesmo sistema pode ser descrito por
uma equacao de movimento que governa a evolucao temporal de uma
distribuicao de probabilidade. Tal equagao é comumente conhecida como
equacao de Fokker-Planck e constitui o objeto de investigacao desta secao.
A equagao de Fokker-Planck é um tipo especial de equacao mestra [46, 45],
freqiientemente usada como uma boa aproximagao para descrever processos
markovianos mais gerais.

Considere uma equacao do tipo Langevin da seguinte forma

dx
— = f(z) + &) (2.59)
dt
onde a variavel z denota uma coordenada generalizada, que em principio,
pode ser a posicao ou velocidade. Para esta varidvel independente, a

equacao de Fokker-Planck dependente do tempo é comumente escrita como

46, 45] 2
a”g”’; J —;U[f(w)n(% t)] + 262(“ (2.60)

onde f(x) relaciona a natureza da forca atuando na equagao (2.59) e n(z,t)

representa a distribuicao de probabilidade de encontrar a particula no

intervalo entre x e x + u. A equacao acima também pode ser reescrita
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como

on(zx,t) N 0S(z,t)
ot ox

que representa uma equacao de continuidade para a densidade de

—0 (2.61)

probabilidade 7n(x,t), na qual a quantidade S(x,t) deve ser interpretada

como uma corrente de probabilidade definida por

S(e.t) = flamle, ) — 5 D (2.62)
A integracdo de (2.61) com x assumindo valores no intervalo [a,b] nos
fornece 5
b
&Ln@oM=S@@—smw (2.63)
e como
b
[ n(z,t)yde =1 (2.64)
segue que
S(a,t) = S(b,t), (2.65)

nos mostrando que a conservacao da probabilidade total é uma
conseqiiéncia direta das condicoes de contorno.

Vamos determinar a solucao da equacao de Fokker-Planck na forma
(2.61) para o caso estaciondrio, considerando que os valores extremos

S(z = a,t) e S(x = b,t) sao nulos. Nestas condigoes, segue de (2.62)

que
['on(x
fna) 5 1D~ (2.66)
cuja solucao é
n(z) = AexJ/@)de (2.67)

onde a constante A é fixada pela condigdo de normalizacao de n(z). Para
o caso de uma forga viscosa, f = —(v e a constante I' dada por (50), a

solucao acima assume a seguinte forma

va

 2%kpT

1/2
exp

m
27T]€BT

n(v) = (2.68)
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que é a distribuicao maxwelliana de velocidades.
A solugao nao estacionaria é obtida diretamente da equagao (2.60).
Utilizando a mesma forca viscosa do exemplo acima, tal equacao pode

ser representada como

on(v,t) 0 BkpT 0*n(v,t)
_ 37 2.
5 By, on(v, )] + = "——23 (2.69)
com solugao dada por [46, 45, 127]
1/2 —Bt\2
m m(v — vpe™"")
t) = — : 2.
N0 = | T = e—%t)] POk T (1 — 20 (2:70)

Comparando a expressao acima com a distribui¢ao gaussiana (veja (2.26)),

vemos que os valores da média < v > e da varidncia (Av)? sdo

respectivamente
< v >=yye (2.71)
) kT
(Av)? = 222 (1 — 720 (2.72)
m

que sao os mesmos valores obtidos no tratamento de Langevin (cf. Eqgs.
(2.43) e (2.46). Como seria esperado, vemos também de (2.70) que para
tempos suficientemente longos, o sistema relaxa para o estado de equilibrio,
pois a distribuicao de probabilidades se reduz para a distribuicao de

velocidades maxwelliana.

2.5 Caminhadas Aleatorias: O tratamento de M. Kac

O problema do caminhante aleatério, é dotado de um carater bastante
universal em fisica. No magnetismo, por exemplo, um atomo de spin 1/2
tem um momento magnético U e de acordo com a mecanica quantica,
o spin pode esta “up” ou “down”, com respeito a uma dada direcao.

Se essas possibilidades sao igualmente provaveis, entao qual o momento
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magnético médio < / > para uma amostra contendo N atomos? Um
outro problema bastante familiar, corresponde a difusao de particulas num
meio intermolecular. Suponha que uma particula percorre uma distancia
média [ entre duas colisoes sucessivas com as moléculas do meio. Qual sera
a distancia percorrida apos N colisoes?

A solucao para o problema da caminhada aleatdria, na sua forma mais
geral, é facilmente entendido considerando-se a versao mais simples do
problema em uma dimensao, tal como originalmente investigado por M.
Kac [47]. Suponha que um caminhante aleatério partindo da origem e se
deslocando em linha reta, realiza n; passos de comprimento fixo [ para a
direita com probabilidade p e ny passos para a esquerda com probabilidade
g =1—p, de modo que p+ g = 1. Além do mais, estamos considerando
que os passos sao eventos mutuamente independentes. O problema é
determinar qual a probabilidade Py(m) de encontrar o caminhante na
posicao x = ml, onde —N < m < N, depois de ter dado N passos. O
numero total de passos é

N =n; + ne (2.73)

sendo m a grandeza que parametriza a distancia liquida percorrida, isto é,
m=mn; — Ny (2.74)

e como cada passo tem comprimento [, a distancia que o caminhante

percorre a partir da origem é dada por:
r = (ny —ng)l = ml. (2.75)

Considerando que os passos sao estatisticamente independentes, de
probabilidades p e g, a probabilidade de realizar n; passos para a direita
e N9 passos para a esquerda é independente da sequéncia de passos e pode

ser escrita como [128]

P.P.P....p X q.q.q.....q = p" ¢ (2.76)
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Existem varias maneiras de arranjar os N passos de forma que n; seja
o numero de passos para a direita e no seja o nimero de passos para a
esquerda. Na verdade, descobrir o nimero de maneiras de arranjar os ny e
n9 passos, ¢ descobrir de quantas maneiras distintas podem ser arranjados
n1 + no objetos, sendo que a permutacao de qualquer um dos objetos
(n1 + no) é irrelevante. Tal fato significa que o nimero de possibilidades

distintas é exatamente [120]
N!

n1!n2!

(2.77)

e que a probabilidade total, Py(n;), de realizar ny passos para a direita
e ny para a esquerda num total de N passos, em qualquer ordem, é dada

pelo produto
N' pnqu—nl
?’Ll'(N — ?21)'

pois todas as sequéncias sao independentes. Como vemos, o valor de

Py(ni) =

(2.78)

Pn(n1) é uma distribuicao binomial. Lembrando que a expansao binomial

de (p+ q)", onde p e ¢ sdo dois niimeros quaisquer, é dada por

N N!
(p+q)N = mzzo - nl)!pquv_nl (2.79)
segue que a distribuigdo Py(n1) é normalizada, ou seja,
3 — S NI ni N—ng _ N
an_OPN(nl) —mZ_O (N —a? 4T (p+aq)" =1 (2.80)

Vamos determinar a probabilidade Py(m) do caminhante se encontrar

na posicao x = ml. Das equagoes (2.73) e (2.74), temos

N N -
- ;Lm e my= Qm. (2.81)

Substituindo esses resultados em (2.78), pode ser visto facilmente que a

ni

distribuicao Py(m) tem a forma

(2.82)



ou, equivalentemente,

(Nﬂn)]:[(!N mTlg T (1-p) (2.83)

Para estabeler uma conexao com o fenomeno de difusao, é necessario

PN(m) =

descrever o problema do caminhante aleatério por meio de uma equacao
diferencial envolvendo varidveis continuas [47, 45, 128]. Suponha que 7 seja
o tempo necessario para realizar um passo, entdo Py(m) dado por (2.83)
é a probabilidade da particula se encontrar na posicao x = ml no tempo
N7. Somente uma particula que esteja em x = (m—1)l ou z = (m+1)l no
tempo t = (N — 1)7 podera atingir a posigao = = ml. No passo seguinte,

a probabilidade Py(m) obedece a seguinte relagdo de recorréncia [47]
Pynii(m) =pPyx(m —1)+qPy(m+1) (2.84)

que representa um exemplo tipico de um Processo Markoviano®. Equacoes
estocasticas dessa natureza, nas quais os detalhes da dinamica de um
sistema fisico sao substituidos por leis probabilisticas, desempenham um
papel extremamente importante no estudo de sistemas fora do equilibrio.

Conforme visto anteriormente, se N é suficientemente grande, a funcao
discreta Py(m) pode ser substituida por uma fungao continua n(N7,ml) =

n(t,z). Reescrevendo a relagao de recorréncia (2.84) para n(t, x), temos
Pyii(m) =n((N + 1)7,ml) =n(N7 4+ ml) =n(t + 7, ) (2.85)
Py(m+1)=n(N7,(m+ 1)) =n(Nt,ml+1) =n(t,x + 1) (2.86)
Py(m —1)=n(Nt1,(m —1Il) =n(Nt,ml —1) =n(t,z —1). (2.87)
Substituindo esses resultados em (2.84) e expandindo ambos os lados em

série de Taylor até segunda ordem, obtemos

on 1 ,0% on 12 0%n
n+7§+27@—(p+qm+l(q 19)(7+(p+cz)2(9

6Nos chamados processos markovianos nao existe efeitos de meméria, ou seja, a probabilidade

(2.88)

condicional relativa a cada varidvel aleatéria ¢'(t) de uma particula, s6 depende do valor de ¢' = ¢

num instante anterior ¢o[46, 121].
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Considerando que a probabilidade total satisfaz p+¢q = 1, a equacao acima

se reduz para
T0n On 1 on  1? 9n
santa, =-@—p)5 + -5
2 0t ot 1 Oor 271 0x
que representa uma equagcao generalizada para a caminhada aleatéria. Por

(2.89)

se tratar de uma equacao diferencial do tipo hiperbdlica, devemos esperar
que sua solucao seja valida também no regime de pequenos tempos, ja
que ela incorpora naturalmente, uma derivada segunda com respeito ao
tempo na funcdo n(z,t). Como veremos na se¢do seguinte, esse fato é
de fundamental importancia para corrigir as inconsisténcias presentes na
descricao de Einstein.

Algumas aproximagoes interessantes devem ser discutidas na equacao
(2.89). Primeiramente, observamos que a conexao direta com o movimento
browniano difusivo é estabelecida quando assumimos que p = ¢ = 1/2.

Neste caso, definindo

D=1 (2.90)
a equacao (2.89) se reduz a

0? 0 0?
e 9 p2h (2.91)
20t Ot Ox?
que é precisamente a equacao (2.7). Novamente, a equagao de difusdo que
serviu de base para o tratamento de Einstein é recuperada quando fazemos
o mesmo tipo de aproximagao (veja a equagao (2.9)), ou seja,

T 0? 0
Ton o 9n
2 Ot? ot

Portanto, a conexao com o continuo ¢ estabelecida de maneira consistente,

(2.92)

de modo que todo o tratamento posterior, em particular, o calculo dos
valores médios das grandezas fisicamente relevantes, permanece idéntico

ao das segoes (2) e (3).
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2.6 A Equacao de Difusao Generalizada

Como vimos, a equacao comumente utilizada para descrever transmissao de
calor e difusao de particulas, constitui na verdade, um modelo aproximado,
ou seja, uma descricao menos rigorosa de tais fenomenos. Um argumento
favoravel a essa visao se baseia na idéia de que equagoes parabodlicas do tipo
(2.10) transmitem (em alguns regimes) sinais com velocidades infinitas.
Naturalmente, tal resultado é inconsistente ja que a velocidade méaxima
com a qual uma perturbacao se propaga num fluido ou meio elastico deve
ser da ordem da velocidade do som.

Se considerarmos que em cada intervalo de tempo 7 uma particula se
desloca aleatoriamente com velocidade v = /7, vemos que a equagao (2.91)
pode ser reescrita como

n  vPon 0%
= =0T (2.93)
ot2 Dot Ox?
que representa uma equacao de onda amortecida para a caminhada
aleatoria.

Para estudar a influéncia do termo adicional na equacao de movimento,
vamos considerar uma onda plana se deslocando num meio infinito. Em
z = 0 supomos que 7(0,t) = €', onde w é a freqiiéncia de vibracao da

onda. Escrevendo a solugao geral de (2.93) na forma
n(z,t) = eArelt=B7) (2.94)

onde A e B sao constantes, obtemos

, w2 [ o 1/2 1
A= — |1 —1 2.95
202 ( + D%ﬂ) ( )
© r 1/2 1
w2 U4
B>="_||1 1 2.96
202 ( + D2w2) + ( )



com a velocidade de propagacao da onda escrita como

v2—w—2— 207 < v?
B (R R

(2.97)

Para o caso em que w << v?/D, ou equivalentemente, 9*n/0t> << On/ot

as relacoes anteriores se reduzem a

A2=pr= 2.
5D (2.98)
v,? = 2wD (2.99)

que sao os resultados obtidos da equacao de difusao usual. Por outro lado,
para o caso em que w >> v*/D, os resultados sao também fisicamente
consistentes, pois a velocidade de propagacao da onda tem como limite a
velocidade das particulas. De fato, a freqiiéncia de vibracao de uma onda
se deslocando num meio difusivo nao deve exceder a frequiéncia de colisao
das particulas do meio.

A solucao da equagao (2.93) para as condigoes gerais n(x,0) = Ni(x) e
(0On/0t)i=o = 0, véalida para | x |< vt pode ser escrita como [129]

n(z,t) = Ne /™ ;5(:c+vt) + ;5(3? —vt)| +

N (2% - v2t2)1/2] N Nt Ji[(x? — v*t2)V2 JuT]
20T T 21 (22 — v2t2)1/2

(2.100)

sendo Jy e J; funcgoes de Bessel de primeira espécie.
Para o caso | z |> vt, a solugao de D’Alambert para uma onda plana

amortecida se deslocando na direcao x é recuperada
1 1
n(z,t) = Ne /7 55(1’ + vt) + 5(5(:{; —vt)] . (2.101)

Da expressao acima vemos também que a velocidade de propagacao da
onda nunca excede a velocidade das particulas. Como o produto vr é da

ordem do livre caminho médio A, o argumento das funcoes Jy e J; cresce

20



rapidamente quando | x | é muito menor que vt. Neste caso, a expansao

assintética para as funcgoes de Bessel fornecem

2
Jy(x) = —_cos

Portanto, (2.100) pode ser reescrita como

s 1
e- T )] | (2.102)

1 1
n(z,t) = Ne /7 55(:C+vt)+§5(:c—vt) +
Ne %" [t —1/2
T — 22 14 (1—2-Y21 (91
5= =) (209

que representa a solucao geral da equacao de onda modificada para a
caminhada aleatéria, sendo y = x/vt < 1. Note que a expressao acima é
composta de duas partes. O primeiro termo relaciona a solugao de onda de
D’Alambert que rapidamente se torna desprezivel, enquanto que o segundo
se refere a difusao das particulas.

No limite y << 1, ou equivalentemente = << vt (tempos longos), o
segundo termo da solucao acima tende para

(1) = (20%]:;)1/2@‘”52/2“2” _ \/j:ﬁe—xQ/élDt (2.104)
que é precisamente a solu¢ao da equagao de difusao usual (Cf. (24)). Note
que D foi reintroduzido pela defini¢ao (2.90).

Portanto, vemos que a equagdo ondulatéria hiperbdlica (2.7), ou
equivalentemente (2.93), resolve o problema difusivo para tempos curtos,
cuja existéncia foi reconhecida pelo préprio Einstein ao propor sua teoria
do MB. Nesse aspecto, é importante ressaltar que muitos livros textos que
tratam o problema difusivo nao discutem o problema de tempos curtos,
ou equivalentemente, se a propagacao de uma perturbacao com velocidade

infinita num meio continuo é conceitualmente correta.
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2.6.1 Alumas Solucoes Numéricas

Para justificar que a solugao (2.100) ¢ fisicamente correta, mostraremos
nos graficos seguintes algumas solugoes numéricas da equacgao de difucao
generalizada (2.93) e comparamos os resultados com a sua versao padrao,

tal como descrita por (2.10). Os detalhes podem ser vistos na referéncia
[130].

Exact solution of diffusion equation

%102 D = 0.035
5 T T
——=0.001
a5l ——t=0.002 |
——=0.005
——1t=0.01
ar ——1t=0.02
t=0.05
3.5 —t=0.1 i
3t |
=
< 2.5 i
=
2t |
151 :
1t |
0.5 7 ]/ L W N |
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

Figura 2.3: As curvas acima mostram o comportamento da solugao obtida da equagao de
difusdo parabdlica (2.10) para valores especificos do tempo. Note que a medida em que o
tempo se aproxima de zero, a funcao distribuicao tende para uma funcao delta centrada
em torno da origem x = 0, revelando um comportamento tipico das equagoes parabélicas
do tipo (2.10).

Na figura abaixo, vemos que para tempos curtos, ou seja, para t — 0,
as duas solucoes coincidem e sao descritas por uma funcao delta tal como

deveriamos esperar.
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n(x.)

Exact solutions: Hyperbolic diffusion equation (HDE) and diffusion equation(DE)

X 10—3 1= 1e-06

3.5f

2.5

''''' HDE:t=0.001
— DE:t=0.001
----- HDE:t=0.002
- DE:t=0.002
----- HDE:t=0.005
DE:t=0.005
----- HDE:t=0.01
—— DE:t=0.01
----- HDE:t=0.02
— DE:t=0.02
‘‘‘‘‘ HDE:t=0.05
— DE:t=0.05
HDE:t=0.1
— DE:t=0.1

0 . -
—-0.08 —-0.06 -0.04 -0.02 0 0.02

0.04 0.06

Figura 2.4: As curvas acima mostram uma comparacao entre as solucoes da equagao de

difusao parabdlica e a sua versao hiperbdlica para diferentes valores do tempo.

Note

que, para tempos curtos (tendendo a zero) o par de solugoes coincidem, enquanto que,

para tempos ligeiramente diferentes de zero, as duas solugoes exibem comportamentos

ligeiramente diferentes, ou seja, as curvas refrentes a equagao parabdlica se alargam mais

rapidamente do que as solugao da equacao hiperbdlica.
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Capitulo 3

Movimento Browniano: Efeitos da

Viscosidade Variavel

3.1 Introducao

Tradicionalmente, os estudos enderecados a teoria do movimento
browniano em meios homogénios (num liiquido ou gds) revelam um
comportamento padrao para o deslocamento quadratico médio (Ax)2. Mais
precisamente, a evolucao desta grandeza fisica é caracterizada por um
crescimento linear no tempo, veja por exemplo, as relagoes (2.29) e (2.57)
apresentadas no capitulo anterior. Entretanto, alguns sistemas fisicos mais
complexos exibem comportamentos ligeiramente diferente na quantidade
(Az)?. Mais recentemente, estudos mais modernos nesta drea apontam

para uma relagao do tipo lei de poténcia [131, 132]
(Az)* ~ 1, (3.1)

sendo v # 1. Particularmente, para os casos onde v > 1, o sistema descrito
pela relacdo acima exibe um comportamento superdifusivo [133, 134, 135,
136, 137] enquanto que v < 1 o regime é subdifusivo [138]. O mesmo
tipo de comportamento pode ser encontrado em diferentes sistemas fisicos.

Em especial, resultados equivalentes foram obtidos para o caso de sistemas
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contendo efeitos de memdrias! [118, 139, 140], viscosidade dependente do
tempo [141], equagoes de difusdo e de Fokker-Planck nao linear e com
derivadas fraciondrias [142, 143, 144, 145, 146, 147]. Outros tipos de
sistemas axibindo difusao anomala foram obtidos recentemente para uma
classe especial de ruido colorido denominado de dichotomous, para o qual
foi proposto uma funcao de correlagao com uma exponencial dependente
do tempo [148, 149]. O interesse crescente sobre esses sistemas vem
da possibilidade de modificar substancialmente o comportamento padrao
previsto pelo formalismo de Langevin, e como bonus extra, fornecem uma
descrigao fisica mais realista dos sistemas ditos ndo Markovianos [126].

E nesse contexto de sistemas exibindo difusdo andomala que se insere o
presente capitulo. Em particular, mostraremos que a presenca de uma
viscosidade dependente do tempo na equacao de Langevin pode exibir
um regime de difusao andomala. Para ser mais preciso, neste capitulo
apresentaremos o comportamento estocastico de uma classe de sistemas
com amortecimento variavel, os quais sao descritos por uma lagrangiana
dependente do tempo. Este formalismo estocastico é obtido assumindo
uma dada expressao para o entao chamado ruido colorido [141]. A equagao
diferencial serd resolvida analiticamente e todas as quantidades fisicamente

relevantes serao obtidas.

3.2 Formalismo de Langevin para Viscosidade

Variavel

Como é bem conhecido, os efeitos de uma viscosidade constante sobre os
sistemas dissipativos sao introduzidos por uma lagrangiana dependente do

tempo, usualmente conhecida como lagrangiana de Batmann [150]. Nestes

ISistemas dete tipo sdo chamados de sistemas ndo Markovianos. Em tais sistemas, a probabilidade
condicional relativa a uma determinada varidvel aleatéria z°(t), s6 depende do valor ' = x{ num instante
anterior ¢y [126, 121]
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modelos de lagrangiana, tal viscosidade constante é introduzindo por uma
exponencial dependente do tempo e desempenha um papel fundamental
na descricao de sistemas oscilatorios. Por outro lado, muitos sistemas na
natureza exibem viscosidades dependente do tempo, e portanto, nao podem
ser descritos dentro do formalismo original de Batemann. Para contornar
essa dificuldade, foi proposto recentemente, uma classe paramétrica de
lagrangianas que incorporam uma viscosidade dependente do tempo sobre
o movimento de uma particula clasica [151]. Este novo modelo de
lagrangiana é descrito por um parametro continio ¢, assumindo valores
sobre o intervalo [0, 1] e se reduz ao caso padrao no limite ¢ — 1.

O modelo de lagrangiana acima mencionado, sera denominada de g¢-

lagrangiana, cuja representagdo matemética é dada por [151]

Ly(w,3,1) = e,(57)

onde 3 é uma constante com dimensao de inverso de tempo, aqui

;m:i:2 —Vi(x)], (3.2)

representando o coeficiente de viscosidade. A distribuigao e,(3t) representa
uma generalizacao da funcao exponencial padrao, proposta em 1988
por Constantino Tsallis [152] na formalagdo nao-extensiva da mecanica
estatistica.  Esta funcao distribuicao é comumente chamada de ¢-

exponencial, cuja relacao matematica é escrita como

e(Bt) = [L+ (1 —q)Bt]"/ 4, (3.3)

onde ¢ representa um ntumero real. Note que no limite ¢ — 1, a funcao
distribuicdo acima recupera a exponencial usual, pois e;(ft) = e’ e
portanto, o modelo padrao de lagrangiana de Batemann sera recuperado.
Seguindo esta mesma linha, a generalizacao de outras funcoes especiais bem
como a algebra relacionada a elas também tem sido estudadas na literatura,
como exemplo veja as referéncias [153, 154]. Para os casos estudados

nesta tese, consideraremos apenas a propriedade mais fundamental dessa
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g-exponencial, a qual pode ser definida pelo limite lim, ,; e,(y) = €Y.
Na presente secao, estudaremos em detalhe, o formalismo de Langevin

para a classe paramétrica de lagrangianas descrita pela relagao (3.2).

3.2.1 Derivacao da Equacao de Movimento

Utilizando calculos algébricos simples, pode ser mostrado facilmente que a
equacao de Euler-Lagrange obtida da lagrangiana (3.2) é escrita como:

d*z N 16 dr 1dV(z)
2 1+ (1—¢q)ftdt m dx

—0, (3.4)

que descreve um sistema geral com uma viscosidade efetiva dependente do

tempo (,) 5

W =T = g

Para o caso de um potencial quadrado, mais precisamente, para V(z) =

%mwQ:UQ, onde m é a massa e wy a frequéncia natural de oscilagcao, a equagao

acima (3.4) descreve uma categoria de sistemas gerais com viscosidade

(3.5)

dependente do tempo que serao genericamente denominados g-osciladores.

Mais precisamente, a equacao geral de movimento é dada por [151]

d?x dx 9
ﬁ + ﬁq(t)% + Wyl = 0, (36)

com a fungdo [,(t) sendo descrita pela relagdo (3.5). Um estudo mais

detalhado destes sistemas sera feito na secao seguinte.

3.2.2 Obtencao da Solugao Geral

Para uma melhor compreensao da fisica que sera discutida na secao seguinte
e no proximo capitulo, nesta secao daremos uma atencao especial aos
sistemas com viscosidade dependente do tempo, comumente chamado de

g-osciladores, tal como mencionado acima. Tais sistemas sao descritos por
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um parametro continuo ¢ tomando valores sobre os nimeros reais. No
Nnosso caso, 0 parametro ¢ assumira valores no intervalo 0 < g < 1.

Como vemos, a ¢-lagrangiana (3.2) efetivamente descreve um oscilador
amortecido com coeficiente de amortecimento dependente do tempo. Note
que, em t = 0 temos (3,(0) = [ para todos os valores de ¢, ou seja, o
movimento do sistema satisfaz a equacao familiar para o oscilador com
coeficiente de amortecimento constante. Porém, para tempos longos, ou
mais precisamente, para uma escala de tempo t >> |3(1 —¢q)|L, o sistema
descrito por (3.6) é um atrator natural para o oscilador harmoénico simples?.

O comportamento de [(3,(t) para diferentes valores de ¢ é mostrado nas
Figs. (3.1) e (3.2).

Para ¢ < 1, o coeficiente (,(t) diminue continuamente com o tempo
sendo a taxa de decrescimento mais rapida para menores valores de g¢.
Porém, para ¢ > 1, (3,(t) inicialmente aumenta se aproximando de um
valor infinito em ¢ = [3(¢g — 1)] !, e entdo muda abruptamente seu sinal, se
aproximando de zero para grandes valores do tempo. Naturalmente, estas
caracteristicas apontam um comportamento qualitativo bastante diferente
para uma distribuicao natural de g-osciladores em duas subclasses. A
primeira é um subconjunto bem comportado caracterizado por ¢ < 1,
enquanto a segunda (o caso anomalo) tem ¢ maior que a unidade.

Neste ponto, para obter solucoes analiticas da equacao de movimento
(3.6) vamos considerar o mais interessante dos g-osciladores do ponto de
vista fisico, aquele para o qual o parametro ¢ é menor que a unidade. Para

tal, é conveniente fazer uma mudanga de variavel para um tempo auxiliar

T =1+ (1—q)pt, com a equagao original se reduzindo a forma

d2x_ 1 l@
d1?  (¢—1)TdT

2
+ 62 =0, (3.7)

“Note que para t >> |3(1 — ¢)|~' >> 1, teremos (3,(t >> 1) = 0.
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Figura 3.1: Evolucao do coeficiente de fricgao (3,(t) para valores do parametro livre ¢ < 1.
Note que para o caso ¢ = 1, teremos uma friccao constante. Entretanto, a taxa de
decrescimento do coeficiente ,(t) aumenta continuamente com o tempo para valores de

q cada vez menores.

onde
wo

B(l—q)

Como devemos checar, a solucao geral de (3.7) pode ser escrita como [162]

5, = (3.8)

ﬂI(T) = TVCV((SQT)7 (3'9)

onde (, denota combinacoes lineares das funcoes de Bessel de ordem v, as

quais dependem do parmetro ¢ na forma v = (qﬁ 7

Retornando a antiga variavel t, pode ser visto facilmente que a solucao
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Figura 3.2: Evolucao do coeficiente de fricgao [,(t) para valores do parametro livre
g > 1. Inicialmente, o coeficiente (,(t) aumenta e se aproxima de um valor infinito
no t = [3(q—1)]7!, quando entdao muda abruptamente de sinal eventualmente indo a zero

para grandes valores do tempo.
geral da equagdo de movimento (3.6) é dada por [151]
z(t) = e (6t)] H{ AT, (wot + d;) + BY, (wot + 6,), } (3.10)

sendo J, e Y, sao funcoes de Bessel de primeira e segunda espécie
respectivamente, e A e B sao constantes a serem determinadas de acordo
com as condigoes iniciais. Para as condigoes iniciais arbitrarias x(0) = x
e ©(0) = vy as constantes A e B sao

A= 25, [0Y,1(5) — Y (6,) (3.11)

60



B = — 8w duor(8g) — S (8,)]. (3.12)
2 wWo

A Fig.(3.1) mostra os graficos do g-oscilador para alguns valores do

parametro ¢ sobre o intervalo 0 < ¢ < 1.

10

05

00 r

x(t)

Figura 3.3: Comportamento caracteristico da amplitude dos g-osciladores para o valor
g = 0.1. As curvas decaindo exponencialmente sao representadas para um particular de

6 = 0.1, que descreve o oscilador subamortecido.

Nestes graficos as condigoes iniciais foram escolhidas como sendo vy = 0,
xo = 1 e também consideramos wy = 83 e # = 0.1. Para o termo de
amortecimento, esses valores do par (wy, ) descreve o denominado caso
subamortecido. A ordem v das funcoes de Bessel sao ditadas pela escolha
particular do parametro ¢. Para comparagao, mostramos o envelope

de solucgoes decaindo exponencialmente para o correspondente oscilador
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Figura 3.4: Comportamento caracteristico da amplitude dos g-osciladores para o caso

£ = 0.1 e um valor do parametro livre ¢ = 0.5.

subamortecido. Apesar de ter a mesma relagdo wy/[3, verificamos que, para
g # 1 a amplitude do periodo transiente sempre decresce mais lentamente
que no caso padrao (¢ = 1). Como esperado, considerando que o parametro
q — 1, o g-oscilador se comporta como um oscilador subamortecido.

Em resumo, nesta secao apresentamos uma extensa classe de osciladores
harmonico com amortecimento dependente do tempo. Esta espécie
de sistema dinamico foi formalmente motivado por uma g¢-lagrangiana
dependente do tempo, generalizando a bem conhecida descricao de
Bateman para o oscilador amortecido padrao.

Para ¢ # 1, vimos que o oscilador harmonico simples é um atrator

estavel para a classe de g-osciladores. Fisicamente, um g-oscilador fornece
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Figura 3.5: Amplitude dos g-osciladores para = 0.1 e um valor partcular do parametro
livre ¢ = 0.99.

uma descricao realistica de fenomenos transientes, onde a energia do
sistema é parcialmente dissipada numa escala de tempo finita, e finalmente
oscila harmonicamente em um dado modo normal. Em principio, esta
classe de comportamento também pode ter conseqiiéncias interessantes
para o problema de quantizacao de sistemas vibracionais nao conservativos.
Recordamos que as relagoes de Heisenberg nao sao obedecidas para o
oscilador harmonico simples com coeficiente de amortecimento constante
desde que o produto AzAp decresce exponencialmente com o tempo?, indo
a zero para t >> 37! [163]. Entretanto, para os denominado g-osciladores

este problema é resolvido de uma maneira natural, ja que depois de um

- ) . 1
3Netse caso, a relacao exata é escrita como: ApAx = e~ 27,
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periodo transiente o sistema se comporta como um oscilador harmonico

simples.

3.2.3 Viscosidade variavel: Formalismo de Langevin

Inicialmente, para discutir o comportamento estocastico da equacao (3.6),
assumiremos apenas o caso com potencial nulo V(z) = 0. A formulagao
estocdstica completa, isto é, com o termo de potencial quadratico V(z) =
(1/2)mw?z? serd discutido em detalhes no capitulo seguinte. Com esta
simplificacqo, a versao estocéastica de (3.4), ou equivalentemente, da
equagao (3.6) é descrita por uma equagao tipo Langevin [141]

dv v

ar " 1—|—(1ﬁ—q)ﬁt B

(1), (3.13)

onde a quantidade £(t) é a forca estocéastica que flutua rapidamente no
tempo. As propiedades estatistica desta forca em geral sao definidas pelas
condigoes de Langevin (veja como exemplo, as expressoes em (2.35)), ou
mais precisamente, na versao moderna denominada de ruido branco [126].
Para esclarecer este ponto, mencionamos que uma melhor compreensao
desta espécie de ruido pode ser obtida em termos do seu espectro de
poténcia. No espago de Fourier, o espectro de poténcia S(w) da funcao

de correlagao < £(t)&(t') > ¢é definido como
Sw)=2 TemWh < g(DE(E) > dt. (3.14)

Note que, para qualquer fugdo de correlagao do tipo < &(¢)&(t) >=
['6(t—1t'), onde I' é uma constante, sempre teremos S(w) = 2I" =constante
, mostrando que o espectro de poténcia da teoria padrao de Langevin é
independente da frequéncia w. Fisicamente, isto significa que cada modo
de Fourier é contemplado com igual quantidade de energia. Esta é a
principal caracteristica definindo o ruido branco. Por outro lado, se I' é

descrita por uma fungao do tempo (I' = I'(t)), teremos sempre S = S(w),
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caracterizando assim o chamado ruido colorido [141, 126]. Portanto, nesta
versao os modos de Fourier sao contemplados com diferentes quantidades
de energia.

Voltando ao nosso caso, para fornecer uma descricao fisica mais
realista das quantidades relevantes?, definimos a forca estocéstica pelas
propriedades [169, 141]

< &(t) >= 0; < E()ER) > o(t —t'). (3.15)

T 1+ (1—q)pt
Note que a constante I' presente na funcao de correlacao padrao de
Langevin (< £(t)E(t) >=T9(t—1")), é efetivamente generalizada para uma
funcao do parametro livre ¢ e do tempo ¢, ou seja, I'y(t) = I'/[1+ (1 —q)5t].
Similarmente ao caso anterior, o espectro de poténcia desta nova categoria
de funcoes de correlacao é definida por

—iwt

S(w)=2F/O T (=gt

§(t —tdt = f(w). (3.16)

As condicoes fisicas especificadas acima definem o chamado ruido colorido,
conforme ja mencionado antes e tem como caso particular o ruido branco
de Langevin no limite ¢ — 1.

Sob tais condigoes especificadas acima, escrevemos a solucao geral da

equagao diferencial (3.13) como:

o(t) = woleq (B8] + [ea (B0 [ €(Weq(BEdt (3.17)

Como vemos, o ultimo termo representa a contribuicao do ruido colorido
sobre o movimento da particula browniana. Além do mais, no limite ¢ = 1,
a expressao acima reproduz a bem conhecida solugao de Langevin para o

caso de uma viscosidade constante, veja como exemplo a expressao (2.42).

2

4As quantidades fisicas a que nos referimos sido a varidncia na velocidade 02 =< v? > — < v >2

2 =< 2? > — < z >?. Quando a particula browniana tem deslocamento médio nulo
2

x

€ na posigao o

(< x >=0), sua variancia o2 é equivalente ao deslocamento quadratico médio < 2% >.
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A primeira condi¢ao em (3.15) define a velocidade média da particula

como a lei de poténcia

< v(t) >= voleg(B1)] ! = o[l + (1 — q)B] 7, (3.18)

se reduzindo a < v(t) >= vpe ! para ¢ = 1. Para calcular a quantidade

02, devemos quantificar primeiramente a diferenca

v— < u(t) >= [e,(6t)]” / E(te, (Bt)dt (3.19)
a qual, elevando ao quadrado e tomando a média obteremos
r
70 = 53 [1 = {e (30} . (3.20)

Note que no limite ¢ — 1, a lei de poténcia acima se reduze ao caso padrao
de Langevin, veja por exemplo a expressao (2.46) do capitulo II. Por outro
lado, para tempos longos em comparacao com o tempo caracteristico do
sistema (t >> 6‘1), a g-exponencial vai a zero e o teorema da equiparticao

da energia ¢é recurado consistentemente. Neste regime asintotico, teremos
v 26 m

ou seja, o sistema tem relaxado ao seu estado de equilibrio natural e a

(3.21)

o

distribuicio de probabilidade da varidvel aleatéria o2 é governada por uma
distribuicao de velocidades maxwelliana.

As expressoes mateméatica descrevendo a posicdo x(t) e variancia o2 (t)
sao obtidas da forma seguinte. A integragao x(t) = zo + [ v(t')dt’ conduz

imediatamente a expresséo

o) = @+ = [1— [eg(B)] 7

Bq

3 /5 {eqa(BE)} 7 — eg(BE){eq(B1)} ] dt', (3.22)

cujo valor médio é dado pela lei de poténcia

<alt) >=awo 5o (1= [+ (1= o] ) (3.23)
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A wvariancia é mais facilmente obtida calculando-se primeiramente a

diferenca x— < x >
r— <@ >= o [UEW) [{es (B} — (B en(B0} e (324

Tal como antes, elevando ao quadrado e considerando a média da funcao

de correlagdo em (3.15) teremos:

Y (1-g)pt*
oi(t) = G [t + T H,(t)], (3.25)
sendo a fucdo Hy(t) definida por
2 —q i —[e —2q
Hy(t) = 32— {1 = [eq(B)] 77} + 23 {1—le (B}, (3.26)

A expressao (3.25) nos mostra que no regime asintético ¢ >> 371, teremos
H, ~1/(28) — 2/(2 — q) e portanto, c2(t) o< t* j4 que H, nad é operante
neste limite. Fisicamente, isto significa que o sistema exibe um regime
de difusao anomala caracterizado por um comportamento superdifusivo.
Note também que, tomando o limite ¢ — 1, (3.25) se reduz ao resultado
usual, veja como exemplo a expressao (2.55). Entretanto, uma grande
variedade de comportamento estocastico pode ser observado a medida que
o parametro livre ¢ é modificado continuamente.

Para uma descricao mais rigorosa do comportamento difusivo mostrado
acima, na secao seguinte estudaremos a dinamica estocastica da equacao
(3.13) considerando uma generalizagao do ruido colorido (3.15) pelo par de

parametros arbitrarios n e q.

3.3 Ruido Colorido: O Caso Geral

Para unificar o formalismo discutido na secao prévia, propomos uma
classe de ruido colorido mais geral que deve exibir o mesmo tipo de

comportamento anomalo descrito por duas constantes arbitrarias. Nosso
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principal interesse é mostrar que esta espécie de ruido deve apresentar
difusao anomala assumindo valores especificos dos parametros n e ¢, desde
que 0 < g < 1en > 1. Este tipo de ruido colorido é descrito pelas
propriedades [141]

r
[+ (1 —q)pt]"

Isto significa que o ruido branco no qual é baseado a descricao de Langevin

< £(t) >=0, < EER) >= o(t —t). (3.27)

pode ser recuperado por duas naneiras distintas, a saber, (i) paran =0 e
q arbitrario ou (ii) para ¢ = 1 e n qualquer.
A solucao geral da equagao (3.13) considerando a primeira condigao

acima é independente do parametro n e pode ser escrita como antes

v(t) = voleg (B8] + [eg(B1)]” / §(t)ey(BE))dt (3.28)

Por outro lado, efetuando os calculos algébricos necessarios pode ser

mostrado facilmente que a quantidade o2 evolui como:

I'
o

0 5[3—61—”(1—@]{

A expressao acima merece uma atencao especial. Fisicamente, ela nos

1+ 1 —q)pt] " —{e,(B)} 7] (3.29)

mostra que a descrigao de ruido branco (n = 0) nao é compativel com o
teorema da equiparticao da energia, ja que o mesmo nao pode ser alcancado
no regime assintético. Para esclarecer este ponto, note que no limite
t >> 371 en =0 teremos 0  t, diferentemente do resultado mostrado
nas expressoes (2.46) e (2.47) do capitulo II. Por outro lado, para o caso

de ruido colorido com n = 1 a expressao acima é reescrita como

7 = (1= {eB) ). (3.30

23
a qual, para tempos longos t >> 371, teremos 02 = I'/(23) que é a mesma

expressao em (2.47). Portanto, a descrigdo de ruido colorido com n < 1

nao ¢ consistente com o teorema da equiparticao da energia.
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A solucao geral para a coordenada de posicao é feita como antes.

Primeiro, notemos que a integracao x(t) = xo + [ v(t')dt’ no fornece

o(t) = @+ 5o 1= le(B) "+
2o b OBy = (B e,(B0Y e (331
cujo valor médio é
<a(t)> = x0+;‘; 11— [e,(Bt)] . (3.32)

A variancia é obtida calculando-se primeiramente a diferenca r— < x >,

ou seja
T <o >= ;q ) [{eg(BOY — eqlB8){eg(B0)} 0] dt. (3.33)

Utilizando a condigao (3.27) e o desenvolvimento o2(t) =< (z— < x >)? >,
finalmente obtemos:

r 1

(Bq) {ﬁ(3 —n)(1—q)

sendo as funcgoes f, e g, escritas como

2
B(3 —2q)

oi(t) =

(la(B015 = 1) = fy+ 0 (330

fo= {1 = [eg(B6))77} (3.35)
_ 1 {
917 BB —qg—n(l—-q)

No limite de tempos longos, ou seja t >> 37!, a variancia evolui como

2 _ L . 3—n

1 — [eq(Bt)] 7%} (3.36)

onde h, ¢ a funcao

1 B 3—n+q
B-n)(1-q) BB—n—q2-n)2—n(l-q)

hy = (3.38)
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A interpretacao fisica da expressao (3.37) é fundamental. Ela nos mostra
que no regime assintético a variancia satisfaz uma lei de poténcia da forma

02(75) ~ t37" e recupera o caso previamente investigado para o valor n = 1.

x
Por outro lado, com o auxilio do teorema flutuacao dissipacao®, pode
ser mostrado facilmente que o coeficiente de difusao efetiva evolui como
D ~ t*>7". Fisicamente, isto significa que o comportamento superdifusivo
(D — o00) acontece para valores de n < 2, enquanto para n > 2 o regime é

subdifusivo (D — 0).

5Uma das primeiras versoes do teorema da flutuacio dissipacio foi obtido por Einstein em 1905, cuja
representacao é dado pela famosa relagio de Eisntein (Ax)? = 2Dt. Posteriormente, outras versoes foram
obtidas ao longo dos anos por Nyquist [155], Callen [156, 157], Windon [158], Kubo [159], Mori [160],

Hohenback [161] e outros mais.

70



Capitulo 4

Descricao Estocastica do Campo

Inflaton

4.1 Introducao

Conforme ja mencionado no capiitulo I, todos os modelos inflacionérios
remetem a um periodo de expansao acelerado do universo onde o fator de
escala césmica R(t) cresce exponencialmente com o tempo e atinge uma
fase conhecida como fase de Sitter. Tal expansao é dirigida por um campo
escalar ¢(t), o qual satisfaz uma equacao de movimento que é semelhante

ao de um sistema classico submetido a uma viscosidade constante

. . dV

onde a derivada em ¢(t), significa uma derivada com relagdo ao tempo,
V(¢) é o potencial do campo inflaton e H é o parametro de Hubble definido
por:

H(t) = — (4.2)
sendo R(t) o fator de escala césmica. Se o Universo expande satisfazendo
uma lei de poténcia R(t) ~ ", temos que H(t) = nt™!, e o campo ¢(t) se
comporta como um sistema classico amortecido, cuja descricao sera a de

um oscilador harmonico para V(¢) = %ngbQ, onde o termo de viscosidade
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esta relacionado com a taxa de expansao do Universo. Neste caso temos
um regime com lei de poténcia (power law inflation).

Ao invés de R(t) ~ t", um cendrio mais geral pode ser obtido se o fator
de escala césmica satisfaz uma lei de poténcia do tipo:

3 2/3y
R(t) = Ry {1 + 27Hit} | (4.3)

onde Ry = R(ty) é o valor atual do raio do universo, H; é o parametro de
Hubble e v é um parametro livre da equacao de estado assumindo valores no
intervalo [0, 2]. Para esta lei de expansao, vemos facilmente que a equagao

de movimento (4.1) é extendida para

¢+ 36,(t)p + —— =0, (4.4)

que ¢é semelhante a equacao diferencial (3.6) para o caso de um potencial
quadrético (V(¢) ~ ¢?). Na equacdo acima, o termo de viscosidade
dependente do tempo é dado por

I
By (t) Z

= 4.5
1+ 2yHt’ (4:5)

que se reduz para a viscosidade constante e portanto a equagao (4.1) no
limite ¥ — 0. Ainda neste limite a inflagao exponencial R(t) ~ eflit §
facilmente obtida. Como vemos, a equacao de movimento (4.4) descreve
o comportamento do campo escalar quando a viscosidade provocada pela
taxa de expansao do universo ¢ uma quantidade dependente do tempo.
Por outro lado, escolhendo H;t = % vemos que (4.4) se reduz ao exemplo
prévio com viscosidade constante (3,(t) = 3H;).

No presente capitulo, o nosso interesse principal é estudar a influéncia
de um banho térmico sobre a equacao de movimento (4.4) assumindo que
ele é responsavel pela evolugao estocastica do campo inflaton ¢(t). A
formulagao estocastica aqui mencionada, transforma a equagao (4.4) numa

equacao de movimento do tipo Langevin, onde as flutuacoes do inflaton
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¢(t) assumem um papel fundamental nas perturbagoes de densidades
termicamente induzidas, especialmente no formalismo de inflacao morna.
Para esclarecer melhor este ponto, na secao seguinte faremos um breve
resumo do modelo de inflagao morna e a sua abordagen estocastica para

as flutuagoes do campo inflaton ¢(t).

4.2 Modelos de Inflacao Morna

Uma aplicagao relevante da dinamica de processos estocasticos no
dominio cosmoloégico foi enderecada, recentemente, aos chamados modelos
de inflacdo morna [76, 75]. Diferentemente do que acontece nos demais
modelos, a equacao de movimento descrevendo a evolucao temporal do
campo escalar é contemplada com um termo adicional Fq32, representando
a transferéncia continua de energia do campo ¢ para o fluido de radiagao. A
justificativa para introduzir este termo vem do fato de que, o acoplamento
entre o campo escalar e outros campos de matéria é tao finamente ajustado
que o campo escalar evolui o tempo todo num regime amortecido gerando,
assim, uma expansao isotérmica. Como uma consequéncia imediata, devido
o contato térmico persistir durante todo o tempo, nao ha necessidade
de gerar um mecanismo de reaquecimento no final da inflagao [76, 75].
Em outras palavras, o decaimento continuo do campo escalar em fétons é
diluido pela expansao do universo.

A equacao de evolucao do campo escalar neste modelo de inflacao é
escrita como:

b+3Hp+3Tdp+V'd=0, (4.6)

ou equivalentemente, a nivel da lei de conservacao da energia
o+ 3vHp = 30¢?%, (4.7)

onde p ¢é a densidade de energia do campo e v é o parametro da equacao

de estado p = (v — 1)p.
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As idéias discutidas acima significam que, devido a auseéncia de
mecanismos de reaquecimento, as perturbacoes de densidade podem ser

originadas por flutuacoes térmicas, com equacao de evolucao escrita como
[75]

ddg  H?+V"(¢)
dt ' 3H+T,

A forca estocastica no lado direito da equacao acima pode ser encontrada

0o =n. (4.8)

com o auxilio do teorema flutuagao-dissipacao [159, 161]. Para o caso
onde a temperatura do banho térmico (fluido de radiagao) é T, os valores

esperados de 7 sao
<nt)>=0 <nt)n(t) >= Ad(t —1t), (4.9)

caracterizando o chamado ruido branco [126]. A fungao de correlagao das

flutuagoes do campo escalar obtida de (4.8) assume a forma

< 56()6(t)) >— AW@JJ}) {—MHQ} 410

onde A = (37/2)H*T,[3H + T'y]~'. Portanto, quando ¢ = t’ a expressao
acima se reduz para
< (6¢)* >= (3/4m)HT,. (4.11)

Esta expressao descreve o resultado central da andlise de Berera, e dela
conclui-se que as flutuacoes térmicas do campo escalar, quando acopladas

ao banho térmico, podem ser maiores do que as flutuacoes quanticas
< (0¢)* >~ H*/27. (4.12)

Na secao seguinte, mostraremos que os ingredientes discutidos acima
quando aplicados a cendrios de nova inflacao, as flutuacoes do campo

satisfazem a um regime de difusdo anomala descrito pela expressao [169]

(6¢)* ~ B>, (4.13)
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Fisicamente, a expressao acima indica que o parametro n delimita trés
regimes difusivos. Em particular, para n = 2 teremos uma difusao normal,
enquanto que para n # 2, o campo experimenta regimes de difusao

anomalal.

4.3 Campo Inflaton: Formalismo de Langevin

Os estudos relacionados a campos escalares e sua subsequente evolucao
cosmica [24, 25, 26] sao extremamente importantes para descrever cenérios
inflacionarios [62, 63, 64, 65, 66] e mais recentemente tem sido aplicado em
modelos de quintesséncia [32, 164].

No contexto da cosmologia inflacionaria, especialmente no novo cenério
inflacionério [165], por exemplo, o universo sofreu uma transicao de fase
conduzindo a um estagio de expansao acelerada. Conforme ja mencionado
extensivamente nesta tese, nos modelos do tipo Friedmann-Robertson-
Walker a expansao do universo durante a fase inflacao é dirigida por um
campo escalar ¢(t) satisfazendo a equagao de movimento (4.1). Supondo
que o fator de escala satisfaz a uma lei de poténcia do tipo R(t) ~ t" [166],
teremos H(t) = nt~! e, portanto, o comportamento do campo escalar é
semelhante ao de um sistema classico caracterizado por um coeficiente de
viscosidade ((t) = 3nt™!. Um cendrio mais geral é obtido se o fator de

escala obedece a seguinte lei de poténcia [167, 168|:
3 2
R(t) = R,[1+ Efsz-t]ﬂ, (4.14)

onde H; é uma constante e v ¢ um parametro adimensional da equacao
de estado do fuido césmico. Note que para H;t >> 1, o universo evolui
obedecendo a uma lei de poténcia, enquanto o caso limite v — 0 descreve

o espago-tempo de Sitter. Para a fungao de escala (4.14), o parametro de

!Para uma revisao mais detalhada de sistemas exibindo comportamento anémalo, veja a referéncia

[134] e referéncias 14 citadas.
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Hubble é definido como

R O,
Ht)=—==—=—F—— 4.15
Q R 1+ 3yHit’ (4.15)
e da equacao (4.1) obtemos
d?¢ 3H; d¢ dV
— + —=0. 4.16
w2 1 SyH;t dt * do (4.16)

Como vemos, o campo escalar ¢(f) se comporta como uma particula
cldssica submetida a uma viscosidade (3, (t) = 3H;/(1+ 3vH;t), ou seja, um
oscilador se o potencial V(¢) for quadratico. Em particular, para v — 0
(estagio de Sitter), a equagao acima se reduz ao oscilador harmoénico com
viscosidade constante (G = 3H;).

A presenca de um banho térmico durante a inflacao implica que uma
evolucao estocastica do campo inflaton deve ser considerada, visto que a
fisica relacionada deve ser relevante para a geracao do espectro primordial
das flutuagoes [75]. A analogia apresentada na segao anterior significa
dizer que necessitamos considerar apenas o problema classico equivalente
ao de uma particula cldssica imersa num banho térmico (ou um fluido
relativistico denso) sujeito ao potencial V(¢) = Zwj¢?. De agora em
diante, substituiremos a variavel x pela variavel ¢. Neste caso, a equacao
de movimento para o campo escalar assume a forma [169]

d*¢ & do
az 1t (1—q)B3t dt

+wid = £(t). (4.17)

Para que o lado esquerdo da equacao acima seja consistente com a equacao
(4.16) devemos notar que = 3Hi e ¢ = 1 — /2, ou equivalentemente,
By(t) = B/[1 + (1 —q)pBt]. A quantidade &(f) é a parte flutuante da
forga atuando sobre o campo ¢(t), a qual é estocasticamente definida pelas

seguintes propriedades [169, 141]

r

<EW) >=0 <EWEW) >= o

ot —1t), (4.18)
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onde n é um parametro arbitrario, §(t — t') é a fungdo Delta de Dirac e
os sinais <> indicam a média sobre o ensemble. Note que para n # 0 a
contribuicao da radiacao é semelhante ao ruido colorido [141] enquanto que
paran = 0, o ruido branco do formalismo padrao de Langevin é recuperado
[126]. Para esclarecer este ponto, mencionamos que lei de poténcias
do tipo (4.18), ao invés de apenas uma funcgao delta de Dirac, tem
como caracteristica principal, o surgimento de regimes anomalos devido
a auséncia de uma escala de tempo [134].

Seguindo o procedimento padrao e utilizando calculos algk’)ricos simples,
pode ser mostrado que a solugao geral da equagao (4.17) para o caso g < 1

¢é escrita como

8(t) = leaB0)] AT (ant +6) + Bt +8,)] + T ley(50]
X (Yo wot +8) [ leq(BO0) " (wot’ + ;) Ty (wot + 8,6 (')t

Tyt + ;) [ leg(BE))wut! + 6,)Y, (wot’ + 8,)&(¢)dt'},

(4.19)
sendo a constante C' dada por:
2
o=4zpﬁ;m>—ﬁyuﬂkﬂﬂw>—ﬁJ<>,cmm

onde J, e Y, sao funcoes de Bessel de primeira e segunda espécie,
respectivamente, enquanto qﬁo significa diferenciacao de ¢y com respeito
ao tempo. Note que na auséncia do banho térmico, isto é, para o caso
limite £(t) — 0, as duas integrais na expressao (4.19) tendem a zero e o
resultado se reduz a solucao do g-oscilador discutido na secao prévia, veja

por exemplo, a relagao (3.10).
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Para quantificar a variancia ((A¢)? =< ¢* > — < ¢ >?) do campo &
necessario calcular os valores médios de ¢(t) e ¢*(t). Utilizando as duas

condigbes em (4.18) obtemos o seguinte valor médio:
< ¢ > (t) = [e(Bt)] HAT (wot + d,) + BY, (wot + ;) }, (4.21)
e o deslocamento quadratico médio:

< ¢ > = [eg(B)] AT, (wot + 84) + BY, (wot + 8,)]° + T C?[ey(6t)] 77 x
{F() [ leg(B)) 200 (wnt + 6,)2Y 2wt + 8,)dt’ — G(t) X

/ [eg(Bt))] 270D (it + 6,)2 T, (wot’ + 64) Yy (wot’ + 0,)dt'}(4.22)
As fugoes F(t) e G(t) sdo dadas respectivamente por

F(t) = JX(wot + 0,) + Y, (wot + 6,), (4.23)

G(t) = 2J,(wot + 09) Y, (wot + ). (4.24)

Portanto, para o ruido colorido proposto em (4.18), a variancia do campo

escalar é dado por

(Ag)? =T C%[eg(Bt)] 7 %
(F ()/ [eq(B)] 727D (ot + 6,)2Y 2 (wot’ + 6,)dt’ — G(t) x

[ leaBON 2500 (it + 8,2, (wnf’ + 6,) Y (wnt’ -+ 5,)de(4.25)

O resultado acima merece uma atencao especial a duas situacao praticas.

(i) Em primeiro lugar, notemos que se wy << H;, significa dizer que o

78



termo de potencial pode ser neglegenciado e o comportamento do campo é
semelhante ao de uma particula classica executando movimento browniano
sob uma viscosidade dependente do tempo. (ii) Para tempos longos, ou
mais precisamente, para escalas de tempo ¢ >> H;, a dinamica estocastica
é exatamente a mesma de um oscilador harmonico simples submetido a
um ruido colorido. Portanto, é facil mostrar que se o termo de potencial é

desprezado a variancia do campo evolui como
(Ap)* ~ B,t7™", (4.26)

onde B, é uma constante.

Portanto, com o auxilio do teorema flutuagao-dissipagao [159], vemos
facilmente que o coeficiente de difusao do campo Inflaton evolui como
D, ~ B.t*™". Fisicamente, isto significa que o parametro n delimita
trés regimes difusivos. Em particular, quando n = 1 (ruido colorido), o
coeficiente de difusao aumenta linearmente com o tempo, caracterizando
um regime de superdifusdo. Por outro lado, se n > 2 (também ruido
colorido), o comportamento do campo é caracterizado por um regime de
subdifusao, pois como pode ser visto D, — 0. Portanto, o campo s6

experimenta difusao normal (D, — 0) para n = 2.
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Capitulo 5

Influéncia de Um Termo Estocastico

Sobre o Efeito Meszaros

5.1 Introducao

Estudos sobre a evolucao das perturbacoes em modelos de universos
dominado por uma componente de matéria nao relativistica mais particulas
relativisticas sao de fundamental importancia para entender os processos
de formacao de estruturas [170, 171, 172, 173].

Nos dltimos anos, foram desenvolvidos varios modelos nos quais as
diferentes formas de matéria nao barionica (neutrinos massivos, axions,
neutralinos, fotinos...etc) assumem um importante papel para teorias de
formacao de galaxias. Neste contexto, é fisicamente interesante estudar
a evolucao das perturbacoes de uma componente nao relativistica com
densidade p,, em um universo cuja expansao ¢ dirigida por um fluido
relativistico de densidade p,.. Um resultado analitico notavel neste campo
foi obtido por Meszaros ha mais de trinta anos [174]. Segundo Meszaros,
o modo de crescimento da perturbacao na compontente de matéria escura
permanece congelada até z = z,, o redshift para o qual as densidades
de matéria e radiacao sao iguais. Hoje em dia, esta estagnacao ou efeito

sobre a evolucao da perturbacao de densidade para a matéria é usualmente
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chamado de Efeito Meszaros (EM). Este efeito é muito importante para
modelos nos quais, galaxias e aglomerados de galaxias sao formados através
do crescimento das flutuagoes primordiais num universo dominado por
matéria escura fria.

Em principio, o efeito discutido aqui deve ser considerado para algum
cenario de formacao de estrutura envolvendo uma componente de matéria
escura fria mais uma fase inicial dominada por radiacao.

Qualitativamente, tal efeito acontece porque o tempo caracteristico
da perturbacao de densidade é quantificado pela escala de Jeans, 7; ~
(Gpm) 2, enquanto que o tempo caracteristico da expansio é medido pelo
tempo de Hubble, isto é, 7y ~ (GpT)_l/ 2. Destas expressoes, conclui-se que
as perturbacgoes na matéria deve crescer somente depois de z.,, desde que
antes disso as escalas de tempos satisfacam uma relacao do tipo 74 < 7.

Nesta secao analizaremos a possivel influéncia dos processos estocasticos
sobre o EM. A idéia fundamental é que as particulas de matéria escura
apresentam um acoplamento efetivo muito fraco com o banho térmico
(radiagd@o), semelhante a interagao delas com a matéria barionica. Além do
mais, é assumido que o efeito do banho térmico é modificar a equacao de
evolucao para o contraste de densidade tal como acontece em dinamica
estocastica, como por exemplo, sobre o formalismo desenvolvido por
Langevin. Em outras palavras, as flutuacoes da matéria escura fria em um
universo governado por um mar de radiacdao se comportam como particulas

brownianas num banho térmico.

5.2 Teoria de Perturbacao e a Evolucao do Contraste
de Densidade

Por razoes que nos serao uteis na secao seguinte, dedicaremos esta secao

ao estudo da evolucao temporal do contraste de densidade no processo de
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formagao de estruturas.

Historicamente, os primeiros estudos realizados sobre esse tema foi
proposto originalmente por James Jeans no comego do século XX [175].
Jeans propOs que o universo seria preenchido por um fluido perfeito

nao relativistico, cuja evolucao temporal seria descrito pela equacao da

continuidade 3
P
bl : — 1
L (v) =0, (51)
equacao de Euler
0 1
a‘t,jL(V-V)VijVerVcb:O (5.2)

e a equagao para o campo gravitacional
V3¢ = 4wGp. (5.3)

Nestas equacoes, a quantidade p representa a densidade de matéria e p a
sua pressao, enquanto que v descreve a velocidade local do fluido e ¢ é
o potencial gravitacional. Se os efeitos da gravitacao forem ignorados,
as solucoes mais simples para esse conjunto de equacoes, obviamente
sao aquelas para as quais a matéria estd em repouso e uniformemente
distribuida (caso estdtico). Neste caso, as solugoes nao perturbadas

correspondentes podem ser escritas como
p=cte, p=cte e v=0. (5.4)

Por outro lado, se for adiconado uma pequena perturbacao no fluido, as

quantidades p, p, v e ¢ devem ser expandidas para a forma

p=po+pr e p=po+p (5.5)
vV =vo+Vvy (5.6)
¢ = ¢o + ¢1. (5.7)
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Nestas expressoes, o indice zero se refere as quantidades homogéneas (nao
perturbadas), enquanto que o indice 1 se refere as quantidades perturbadas.
Além do mais, considerando a equacdo de estado p; = v2p;, onde v? é a
velocidade do som no fluido, é facil mostrar que a versao perturbada' das

equagoes (5.1) - (5.3) s@o escritas como

dp

8151 + oV - (pv1) =0, (5.8)
v v PR (5.9)
E
(&
V2, = 4nGps. (5.10)

Também ¢ facil mostrar que o conjunto acima pode ser combinado para
formar uma equagao diferencial de segunda ordem governando a evolucao

da densidade perturbada p;

0
;tl —v;V?p1 = dnGpopr. (5.11)

As solucoes sao da forma
pi(r,t) = AelkT=wh 5 (5.12)

da qual, calculando-se a derivada temporal (0p;/0t) deduz-se facilmente a

seguinte relacao de dispersao

w? = v?k? — 4G py, (5.13)

—

onde £ =| k | é o numero de onda. O resultado acima tem um

significado fisico muito interessante. Diferentemente do que acontece em

2

ondas de plamas®, o sinal negativo que vem da natureza atrativa da

'Por simplicidade, estamos considerando perturbacoes apenas de primeira ordem.
2Num sistema de plasma, a relacio de dispersdo para as oscilaces eletrostasticas tem uma estrutura

471'”662
Me

similar a expressao (5.13) e é definida como w? = v2k? + , onde as quantidades e, m, e n,

representam a carga, massa e a densidade de elétrons.
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gravitacao provoca naturalmente um comportamento instavel na expressao
(5.13). Fisicamente, a expressdo acima nos diz que, se w ¢é real a
perturbacao apenas oscila tal como acontece em ondas sonoras. Por outro
lado, se w ¢é imaginario as perturbagoes crescem exponencialmente. Este
comportamento delimita algum valor critico para k, o qual é chamado

numero de onda de Jeans

2
Us

1/2

ky = (MG’)O) . (5.14)

A analise classica de Jeans discutida aqui nao pode ser aplicdvel

diretamente a cosmologia, simplesmente pelo fato de que estas idéias tem

um carater puramente newtoniano e a taxa de expaao do universo foi

desconsiderada como uma primeira aproximacao. Portanto, para uma

descricao mais realista do tema em questao devemos incorporar o efeito

da expansao do universo, isto serda discutido em detalhe nas equacoes
seguintes.

Quando o universo é tratado como um fluido perfeito e a sua taxa de

expansao é levado em conta, as solugoes nao perturbadas (pg, vo € Vy)

sao dadas respectivamente por [48, 93]

_ R ArG
PO = po(to)R 3(t) Vo = EI‘ VQbO = 3 pOI', (515)
com as equagoes (5.8) - (5.10) sendo reescritas na forma:
0 R R
;;+3Rp1+R(r-V),01+pOV-V1 =0, (5.16)
ovi R R vs>
81&1 + Vit S V)vi+ EVpl + V=0 (5.17)
e
V2¢1 = 47TG,01. (518)

Neste ponto, definindo o constraste de densidade d = p1/py e seguindo o

procedimento das referéncias [48, 93], pode ser mostrado que a equagao
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fundamental descrevendo a evolucao do contraste de densidade num

universo em expansao ¢ escrita como:

k202

Note que o efeito da expansao provoca uma alteracao na relacao de
dispersao de Jeans, a qual, neste caso é dada pelo coeficiente de o

k%02
w? = = — 47 G py, (5.20)

onde o nimero de onda k é extendido para uma quantidade fisica (kpnys)

dado por kppys = k/R. Neste caso, o nimero de onda de Jeans (5.14)

também é alterado devido o efeito da expansao do universo

(5.21)

Note também que para R constante, a relacao de Jeans (5.13) é recuperada.

Além do mais, o comportamento qualitativo das solucoes depende da

diferenca (kjg —47TGp0>, ou equivalentemente, depende do ntumero de

onda kj;. Em outras palavras, a solucao exata da equagao (5.19) depende
da era césmica, ou seja, se o universo ¢ dominado por radiacao ou matéria.

Em particular, a solucao correspondente a era dominada por matéria
sera exibida para os modelos espacialmente planos de FRW. No caso de
universo dominado por matéria, ou seja, um fluido perfeito com pressao

nula, a equacao (5.19) deve ser reescrita na forma:

. R.

O + 2E5k — 4G pydy = 0, (5.22)
ja que o termo ’fg;? = 0 estd ligado a equacdo de estado p = v?p, ou
equivalentemente, v2 = (dp/dp). Considerando que o fator de escala

satisfaz a uma lei de poténcia R(t) o t*/3) teremos R/R = 2/3t e
po = 1/37Gt?, com a equacao acima se reduzindo para
2

.4
O + gék — 3t26k = 0. (5.23)
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A solucao geral desta equacao é composta de duas solucoes independentes,
um modo de crescimento designado por 6, e um modo de decaimento

descrito por d_, cuja dependéncia temporal é dada por [48, 93]
op(t) = Ad. + Bo_ = At*® 4+ Bt (5.24)

onde A e B sao duas constantes.
Na secao seguinte, essas idéias serao rediscutidas sob a 6tica do efeito

Meszaros.

5.3 Efeito Meszaros: O Tratamento Analitico

Para compreender qualitativamente o EM, vamos considerar um
universo descrito por uma mistura de dois fluidos, a saber, radiagao e
matéria escura. Como é amplamente conhecido, a equacao de movimento
descrevendo a evolucao do contraste de densidade da matéria o é escrita
como [170, 171, 172]

0 +2H6 — 4rGpnd = 0, (5.25)

onde H = R/R é o pardmetro de Hubble e R(t) é o fator de escala césmica,
G é a constante gravitacional e p,, representa a densidade de matéria.
Por outro lado, para uma mistura de matéria e radiacao, as equagoes de

Friedmann-Robertson-Walker (FRW) podem ser escritas na forma

) G
1= TR+ ) = TR0, (1 ), (5.26)
. 4G e

R= = Rip+3p) = ——"Rp.(2+) (5.27)

onde p,, € p, sao, respectivamente, as densidades de energia da matéria
e radiacao. A quantidade y nestas equacoes quantifica a razao entre as

densidades de energia da matéria e radiacao, ou seja:

pm R 142
= — = _= . 5.28
Y Pr Req 1+z ( )

86



E interessante mencionar que o conjunto de equacoes acima (5.25)-(5.28)
também pode ser derivado no contexto de um formalismo neo-newtoniano,
tal como proposto por Lima et al. em [176].

Neste ponto, para resolver a equagao (5.25) é mais conveniente reescreveé-
la em termos da quantidade adimensional y. Combinando as equacgoes
acima, é facil mostrar que a equacao de evolucao para o contraste de
densidade da matéria assume a seguinte forma [174]:

(Tl U (. R S} (5.29)
2y(L+y)  2y(1+y)
onde (') significa diferenciagao com respeito a variavel y.

Para ser consistente com o efeito originalmente estudado por Meszaros,
a solucdo geral da equacio acima é obtida para o caso § = 0 e contém
dois termos

d(y) = 164 + 20—, (5.30)

sendo ¢, o fator de crescimento da perturbacao, d_ o fator de atenuacao
e ¢ e co sao constantes. E facil mostrar que a solucao para o fator de

crescimento no intervalo |00, 2.,| é dada por:
5y o y+2/3. (5.31)

Também é possivel derivar o modo de atenuacao. Isto se torna mais simples
para a fase dominada por radiacao, uma vez que y << 1. Neste caso
teremos §_ oc (Iny) 1.

Claramente, a solugdo (5.31) acima nos mostra que o fator de

crescimento total no intervalo acima considerado é escrito como

dr(y=1,2=24) 5
= —. 5.32

Por razoes que sera ttil mais adiante, pode ser facilmente mostrado que o

crescimento quadratico médio total é:

<P(y=12=2,) >
;(y =) > o (5.33)
<2(y=0,z=00) >
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O significado fisico deste resultado é muito claro: antes de z., (y < 1),
a energia dominante da radiacao dirige a expansao do universo de forma
tao rapida que a instabilidade gravitacional na densidade de matéria é
desprezivel, e, como tal, o contraste de densidade 0., para todas as
propostas praticas, ¢ mantido a um valor constante. Entretanto, logo
apés Zeg (y > 1) o universo desenvolve a fase dominada por matéria e
o contraste de densidade aumenta suavemente a fase de Einstein-de Sitter,

ou seja, 0, o< R(t) oc t2/3,

5.4 Axions como WIMPs

Conforme amplamente conhecido na literatura, WIMPs ( Weakly Interact-
ing Massive Particles), sigla em inglés para designar particulas materiais
que se acoplam fracamente a matéria ordinaria e sua origem remonta a fase
dominado por radiacao, quando o universo ainda era muito jovem [93, 177].
Atualmente, um forte debate na literatura aponta os daxions e neutralinos
como dois dos candidatos mais provaveis, embora outros como neutrinos
sem massa e fotinos possam também ser considerados como possiveis can-
didatos.

Os mecanismos responsaveis pela geragao dos axions no comecgo do
universo ¢ baseado em alguns processos de transi¢do de fase [178].
Entretanto, do ponto de vista tedrico ainda existe um outro mecanismo
de criagao fundamentado no decaimento de cordas césmica [179].

Para justificar o estudo que sera feito na secao seguinte, sera suposto
que as particulas de matéria escura (dxions e neutralinos) se acoplam pelo
menos fracamente com o background de radiacao. Esta suposicao é uma
condicao essencial para uma descricao do EM baseado no tratamento de
movimento browniano, tal como investigado antes para o caso de uma

particula massiva imersa num banho térmico. Em outras palavras, o

88



acoplamento da matéria escura com a radiagao contribui com um termo de
natureza estocastica aparecendo na equacao de movimento para o contraste

de densidade. Isto serda o objeto de nosso estudo na secao seguinte.

5.5 A Influéncia do Termo Estocastico

De agora por diante, assumiremos que o acoplamento da matéria escura
com o banho térmico contribui com um termo de natureza estocéstica
(ruido) na equagao de movimento para o contraste de densidade. Portanto,
tal como acontece no formalismo de Langevin para o movimento browniano,
reescrevemos a equagao de movimento (5.29) como uma equagao forcada

para o contraste [180]
" 2 + 3y ’ _ 3
2y(1+y)  2y(1+y)
onde £(y) é a forga estocastica (ruido) definida pelas propriedades
I
< >=0, < No>= ————6(y — 5.35
§(y) EW)EW) 1T oyl (v -9 (5.35)

sendo I', n e a constantes. Esta espécie de ruido foi aplicado recentemente

6 =&(y), (5.34)

no contexto da dinamica do campo escalar em modelos inflacionérios [169],
mais precisamente, para o entao chamado cendarios de inflacao morna
[75, 76, 181, 182]. Neste caso, sempre que o potencial do campo escalar for
nulo, foi mostrado que o sistema descreve um regime de difusao anomala.
Note que para n # 0 teremos sempre um ruido colorido, enquanto n = 0
ele se reduz ao ruido branco do formalismo de Langevin [126].

Seguindo o procedimento padrao, pode ser visto facilmente que para um

ruido branco (n = 0), a solu¢ao geral para o fator de crescimento é dada

por®
)= (4 3) + (v 3) [ o ahendn. 630)

3Para ser consistente com o tratamento analitico do Efeito Meszaros discutido anteriormente,

procuramos solugoes com a condigéo ¢ = 0.

89



Claramente, a expressao acima nos mostra que para £(y) = 0 ela se
reduz ao resultado em (5.31), como deverifamos esperar. Neste ponto, é
interessante calcular algumas quantidades fisicamente relevantes, tais como
a média < § >, o deslocamento quadratico médio < 4% > e a variancia das
flutuagoes 0% =< 0% > — < § > para que possamos Comparar com o caso
padrao.

Inicialmente, notamos que a primeira condigao de Langevin, < £(y) >=
0, combinada com a expressao acima implica que:

2
0r(y) =y + 3, (5.37)
que é precisamente o resultado (5.31), obtido para o caso usual sem
acoplamento entre radiacao e matéria escura. Em adicao, considerando
a segunda condicao de Langevin em (5.35) e depois de alguma &dgebra,
pode ser mostrado que o deslocamento quadratico médio da perturbacao é

dado por [180]:

2\ 2 4 2\2 13 2
T R ER

3 9 3 3 3
4 +8<+2>21<+2> 20
° V1 4y _ 2
3 (y+2) 3\ "3 VT3 T ar)
(5.38)
com a seguinte variancia
0—2_%I‘ <+2>2+B< +2>_4
o |PVUT3) T3\ T3 Tas(y 1)
8 2\ 2 2\ 20
- )1 ) p——_ 5.39
+3(y+3> n<y+3> 27] (5.39)

A expressao (5.38) acima implica que o fator de crescimento total para o
contraste de densidade da matéria escura no intervalo [0, z.,| ¢ dado por

<B(y=1,2=24) > N %4—5.791“
<2(y=0,z=00)> 5+0.70"

(5.40)
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Fisicamente, isto significa que as possiveis correcoes estocasticas sobre o
EM, para uma contribuicao de ruido branco de Langevin, é controlado
pelos valores do coeficiente I'. Em particular, para o caso em que I' ~ 1

teremos
<O2(y=1,2=24) >

<0 (y=0,2=00) >

~ 745, (5.41)

enquanto que a variancia total no intervalo [00, 2] é

0(2 = Zeq) B
oo 2T (5.42)

Portanto, comparando o resultado (5.41) com (5.33) vemos que o fator de
crescimento total no intervalo acima considerado é modificado somente por
um pequeno fator. Note também que tal resultado é pouco modificado se

o coeficiente I' >> 1. Neste caso, por exemplo, o deslocamento total é

simplesmente
<OW=Lz=20)> ¢o (5.43)
<62 (y=0,z2=00) > o '

O resultado acima quando comparado com (5.33), revela que a influéncia
de correcoes estocasticas para o caso de ruido branco, praticamente nao
altera a dinamica do EM original. Estas consideracoes fisicas nos mostram
que na expressao acima a maxima correcao ¢ equivalente a 1.77 vezes o
caso padrao. Em outras palavras, o efeito é extremamente robusto sobre

essa classe particular de ruidos.

5.5.1 O Efeito do Ruido Colorido

Uma andlise detalhada do EM para o caso de ruido colorido requer um
tratamento mais eficaz, o qual deve ser baseado num método numeérico.
Um estudo dessa natureza é de extrema importancia para explorar as
propriedades fisicas das equacoes basicas e comparar com os resultados

discutido aqui. Isto serd feito futuramente. Por ora, apresentaremos nesta
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tese apenas as expressoes formais, a saber, o deslocamento quadratico
médio e variancia.

Utilizando a condigao (5.35) para o ruido colorido, podemos mostrar que
o deslocamento quadratico médio para o fator de crescimento 53 satisfaz
uma relacao do tipo

2 2>2 4 < 2>2 y?(1+y)°dy
z Ty+Z= 44
<o <y 3 o \"73 /@+éﬂﬂ+aw” 544

enquanto a variancia assume a forma

2_4 2)* v (1 +y)?
7= 9F <y + 3) / (y + %)4(1 + Qy)ﬂdy' (5.45)

Nas duas equacoes acima, pode ser facilmente mostrado que quando n =0
elas se reduzem as expressoes (5.38) e (5.39) obtidas para o caso de ruido
branco.

Em suma, neste capitulo obtemos as expressoes analiticas e formais,
descrevendo a influéncia estocastica de um banho térmico (componente de
radiacao) sobre o EM. As corregdes sao controladas por um parametro I’
assumindo valores reais. Particularmente, para o caso de ruido branco, as
corregoes no fator de crescimento entre o intervalo [0, t.], é no maximo, 1.77
vezes o resultado padrao. Isto sugere que o EM é robusto com respeito a
uma possivel existéncia de correcoes estocasticas. Além do mais, a andlise
discutida nesta tese nao inclui o efeito da derivada de segunda ordem em
0. Um estudo mais eficaz das equacoes basicas, baseado num tratamento
numeérico para o termo de derivada segunda e ruido colorido, serd feito em

detalhe num futuro préximo.
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Capitulo 6

Formulacao Estocastica dos Modelos

Friedmann

6.1 Introducao

O modelo mais simples de Universo, o entao chamado modelo de
Friedmann-Robertson-Walker (FRW) ou, mais comumente, o modelo do
Big Bang, é baseado na hipdtese de que o conteiido de matéria total do
universo é distribuido de forma homogeénea e isotrépica, tal como discutido
no inicio do capitulo I. A grosso modo, esses dois conceitos significam que
diferentes observadores que estejam participando da expansao cosmologica,
devem ter a mesma interpretacao fisica das propriedades do Universo.

De um ponto de vista fisico, o modelo cosmolégico padrao sugere
fortemente que os efeitos quanticos, bem como os efeitos da gravidade
quantica, devem ser significativamente importantes durante o universo
primordial ou, mais precisamente, no inicio da evolugao cdsmica,
de modo que a era de Planck deve comecar com condigoes iniciais
nao deterministicas. Entretanto, na auséncia de uma formulacao
verdadeiramente quantica para a gravitacao, e consequentemente para a
era de Planck, essa dificuldade pode ser contornada com a introducao de

uma formulacao puramente estocastica na evolugao do Universo. De fato,
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o crescente interesse na aplicacao de métodos estocasticos para estudar
modelos cosmoldgicos tem crescido consideravelmente e colecionado uma
série de trabalhos na literatura, veja por exemplo, as referéncias [37,
38, 39, 35, 40]. Outras mais tratam de modelos estocdsticos classicos
para a cosmologia, justificando que a evolucao temporal dos parametros
cosmoldicos! seguem um carater nao deterministico [41, 42].

Como é conhecido, um dos problemas mais interessantes e desafiadores
da cosmologia contemporanea, ¢ a tarefa de incorporar os efeitos das
flutuacoes quanticas na evolucao global do universo. Este problema
assumiu uma importancia especial desde a sugestao de que um campo
escalar deve dirigir o universo num estagio de expansao exponencial,
chamado de inflacao e, simultaneamente, gerar as perturbacoes de
densidades necessarias para produzir as galaxias e as estruturas de grande
escalas observadas atualmente.

O interesse na aplicacao de métodos estocasticos em Cosmologia nao se
resume apenas a modelos inflacionarios. De fato, varios autores usaram
técnicas estocasticas para estudar o possivel comportamento do universo
quando as flutuacoes quanticas desempenham um papel fundamental na
sua evolucao. Em geral, o formalismo estocastico é introduzindo através
da equacao de estado de um fluido perfeito, ja que esta é a possibilidade
mais viavel imposta pelas equacoes de Friedmann. Um formalismo desse
tipo foi introduzido nas referéncias [37, 39] e desenvolvido com mais detalhe
por Burd e Coles em [40)].

No presente capitulo, desenvolveremos um modelo que generaliza a

formulagao estocastica dos modelos de FRW proposto por M. Novello [35].

INa referéncia [41] os autores mostraram que o parametro da equacio de estado de um fluido
perfeito (w), bem como a densidade de energia da matéria p,,, seguem um comportamento puramente
aleatério. Para este caso, foi mostrado também que a probabilidade para p,, mudar de um valor

pm a um valor final p/ durante o tempo (¢t — t'), é dado pela expressdo P(pm,t | pl,,t') =

—L exp {_ [(M_m)—m(t_t/)]z }
(t—t’) .

4nD 247 Gpmp;, D(t—t")
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Inicialmente, mostraremos que usando uma transformacao de coordenada
adequada as equacgoes de Friedmann podem ser reduzidas a equacao de
um oscilador harmonico simples [183, 184]. Em seguida, trataremos o
problema quantico do oscilador seguindo uma abordagem chamada “Fluido
de Madelung” [185]. Como veremos, o formalismo estocdstico discutido
aqui quando aplicado aos modelos do FRW com equacao de estado p = wp,

é essencial para compreender a dinamica e a evolucao do universo.

6.2 A Dinamica do Universo: Um Formalismo

Deterministico

Nos modelos cosmologicos do tipo FRW o elemento de linha é descrito

pela expressao:

dr?

2 12 p2
ds* =dt° — R (t)(l—KTQ

+ rdf* + r2sz'n29d¢2) : (6.1)

onde R(t) é o fator de escala e K = (£1,0) é o parametro de curvatura
espacial. Em tais modelos, as equacao de campo de Einstein para um fluido

relativistico simples sao escritas como [184, 186, 187, 188, 189]:

R K
R R K

onde p(t) e p(t) sao as densidades de energia e pressao respectivamente.
Note que neste sistema existem trés quantidades desconhecidas, a saber,
R(t), p(t) e p(t), enquanto existe apenas duas equagoes independentes.
Neste caso, para especificar a solucao geral é mnecessario um vinculo
adicional. No contexto cosmolégico, como é usualmente assumido, o

conteido de matéria obedece a uma equacao de estado da forma:

p = wp. (6.4)
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A dinamica cosmica é determinada por uma combinacao elementar
do conjunto de equagoes (6.2) - (6.4). Neste caso, utilizando célculos
algébricos simples, pode ser mostrado facilmente que a evolucao temporal

do fator de escala césmica obedece a uma equagao diferencial de segunda
ordem do tipo [184, 186]:

RR+ AR’ + AK =0, (6.5)

sendo A uma fungao do parametro w, a saber; A = (1 + 3w)/2.

Em principio, o correspondente comportamento dinamico deve ser
fortemente dependente da escolha do par de parametros: (i) o parametro
de curvatura K, e (ii) o parametro da equacao de estado w.

A integral primeira da equagao (6.5) pode ser representada por

. R\ 2A
R? = (RO> ~ K, (6.6)
que para K = 0 (modelos planos), tem como solugao particular a lei de
poténcia:
R(t) = Ro [L+ (1 + A) (¢ — to)/Ro] ™= (6.7)
ou equivalentemente,

2

R(t) = Ry |1 + ;’(1 L)t —to)/Ro| (6.8)
Na lei de poténcia acima, t; representa uma escala de tempo arbitraria e
Ry = R(t = 0) ¢é o valor atual do fator de escala.

A partir deste ponto, focalizaremos nossa atencao na obtencao da
solugao geral da equagao (6.5), considerando valores arbitrarios do par de
parametros (w, K). Para tal, é necessario fazer uma mudanca de varidvel
na escala de tempo. Ao invés do tempo fisico (ou cosmolégico), usaremos
o tempo conforme obedecendo a relacio dn = R™!(n)dt. Neste caso, a

equacao diferencial (6.5) assume a forma [183, 186]:
RR"+ (A —1)R* + AKR* =0, (6.9)
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onde a linha (') denota derivadas com respeito ao tempo conforme e
R = R(n).
A solucao geral da equacgao acima é mais facilmente obtida utilizando o

fator de escala auxiliar

Z(n) = R®, se A#0 (6.10)

Z(n) =R, se A =0. (6.11)

Neste caso, usando a transformacao (6.10) vemos que (6.9) pode ser

reescrita numa forma mais conveniente:
Z"(n) + A K Z(n) =0 se A #0, (6.12)

ou
Z"(n) =0 se A =0. (6.13)

Note que a equagao (6.12) depende fortemente dos parametros K e w
tendo um significado fisico muito claro: O movimento descrito por ela é
equivalente ao movimento classical de uma particula sujeita a uma forca
linear, a qual pode ser restauradora ou repulsiva, dependendo apenas do
sinal do parametro de curvatura. Em particular, para modelos fechados
(K = 1), a dinamica cdsmica neste caso é semelhante ao movimento de um
oscilador harmonico simples. Também ¢ interessante notar que para valores
positivos de A, este movimento oscilatério entre as singularidades bing-
bang e big-crunch reforca, consideravelmente, a conexao com a idéia de um
universo pulsante. Por outro lado, Para o caso de universos espacialmente
planos (K = 0), o sistema descrito pela equacao (6.12) se comporta como
uma particula livre e 0 mesmo acontece se A = 0. Finalmente, para para
universos do tipo hiperbdlicos (K = —1), o sistema se comporta como um
anti-oscilador, ou seja, o comportamento é semelhante ao de uma particula

livre sujeita a uma forca repulsiva proporcional a distancia.
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Neste ponto, considerando a relevancia das identidades matemaéticas

sin(ax)

lim,, = x e sin(ix) = isinhz, pode ser facilmente mostrado que a

solugao unificada da equagao (6.12) é dado por [183, 186]:

Z(n) = f%smﬁu INICEE)) (6.14)

onde Zy = R§ e d sdo constantes de integracao.
Escolhendo a constante 6 = 0, vemos que a solucao geral relacionando

o fator de escala e o tempo cosmoldgico é

: 1/A
Rl = o[ LB (6.15)
sinv/ K | A|n e
t(n) = Ro/ [ NI dn + Cte. (6.16)

Para o caso de modelos eliptico (K = 1), estas solugbes podem ser reescritas

como

R(n) = Ro[sin | A | ]2 (6.17)
tn) = Ry [ [sin | A | n)"/® dn + Cte, (6.18)

e para modelos hiperbdlicos (K = 1)
R(n) = Ro [sinh | A | n]''* (6.19)

tn) = Ry [ [sinh | A | n)"/® dn + Cte. (6.20)

As integrais presentes em (6.18) e (6.20) devem ser representadas em termos
de funcoes gaussianas hipergeométricas.

Por razoes que sera util mais adiante, na secao seguinte serd feita
uma descricao do formalismo estocastico que sera aplicado na equacao de

movimento 6.12.
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6.3 O Fluido de Madelung

Antes de introduzir a formulagao estocdstica da equagao (6.12), é
conveniente fazer um breve resumo do formalismo geral que é baseado na
chamada descrigio Madelung [185]. Este sistema hidrodinamico quantico,
foi proposto originalmente por Madelung em 1926. Convencionalmente,
tal sistema nao consiste de um modelo de particulas com trajetérias bem
definidas, mas sim de um modelo hidrodinamico descrito pela equacao
de Schrodinger, onde a densidade do fluido é associada, por analogia, a
densidade de probabilidade da teoria quantica. Para um entendimento
mais geral do sistema discutido aqui, veremos em mais detalhes, a discussao
seguinte.

Consideremos um sistema mecanico simples, o qual, no espaco das

configuragoes e dos momentos (p, ¢), pode ser descrito pela hamiltoniana
H = p*/2m +V(q). (6.21)

A equacao de Schrodinger relacionada com a hamiltoniana acima assume
a forma: )
o h

h— — — /2 22
ih o ZmV Y+ Vi, (6.22)

onde h é a constante de Planck e ¥ = 9¢(x,t) é a funcao de onda. Para
todas as regioes onde a funcao de onda é diferente de zero, a equacao acima

admite uma classe de solugoes escritas na forma [191, 192, 193]

7
v(a.t) =exp{Flat) + 3 S(.1) (623
onde F(z,t) e S(x,t) sdo fungdes reais.
Substituindo a equac@o acima em (6.22) e considerando somente a parte
imaginaria, obteremos como resultado a relacao matematica:
or 1

o =5, (VS +2VF-VS) =0. (6.24)
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Definindo o campo de velocidade do fluido de Madelung

1
v(z,t) = —VS(x,t) (6.25)
m
e a sua densidade
p(a,t) =] (x,1) [P= exp{2F (2,1)}, (6.26)
podemos identificar claramente (6.24) como a equagao da continuidade
0
af LV - (pv) = 0. (6.27)

Por outro lado, substituindo (6.23) em (6.22) e considerando somente a
parte real, obteremos:
os 1
at  2m
Considerando que Vel = (VF)el" e V2! = [(V2F) + (VF)?|e!, entdo a
equacao acima pode ser equivalente a
25+]$JVSV+V%®—-#

Portanto, denominamos Fluido de Madelung, um sistema hidrodinamico

V?F +VF-VF — (vhgﬁ] — V(z). (6.28)

v?eF
F

— 0. (6.29)

2m | e
descrito pelo conjunto de equagoes (6.25), (6.27) e (6.29). Note que, no
limite semi-classico (A — 0), o sistema descrito acima recupera a estrutura
padrao do Fluido de Hamilton-Jacobi em mecancica classica.

Como vemos, a dinamica do sistema é determinada basicamente pela

equacao acima, a qual pode ser reescrita numa forma mais conveniente

03
22 Hy = .
o+ Hu =0, (6.30)

onde H); é a hamiltoniana total do sistema. Comparando as expressoes
(6.29) e 6.30), vemos facilmente que Hj; contém dois termos: uma
contribuicao classica (H.) e outra difusiva (Hgy) oriunda da teoria

quantica, de tal modo que

H, = 27171(VS)2 +V(z) = 2297721 + V(z) (6.31)
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Hyip = (6.32)

" 2m

h? [VQexp(F)]
exp(F) |

Na segao seguinte, faremos um tratamento unificado das idéias
discutidas aqui e o tratamento estocastico das equacoes de Fridmann

reduzidas a forma simples de um oscilador harmoénico, equacao (6.12).

6.4 Modelos de FRW na formulacao de Madelung

A partir deste ponto, introduziremos um formalismo estocastico
unificado entre as idéias dicutidas na secao anterior e a equacgao do oscilador
(6.12).

Inicialmente notemos que, no espago das configuragdes (p,q) a
hamiltoniana do sistema (6.12) é escrita como

2

2m

2
g
= Pe Ak, (6.33)

H(pe, q.) = o T3

+ V(ge)

com as equacoes canonicas de movimento dadas por

. De . 2
c= L Pe= —Wiqe, 6.34
Ge= p woq (6.34)

onde p. e g. significam quantidades cldssicas e wy = A?K. As solucoes

gerais das equagoes acima podem ser escritas como

pe(t) = po cos wot — mwyqo sin wt, (6.35)

q.(t) = qo cos wyt + PO in wot, (6.36)

muwo
onde as quantidades py e gy sao obtidas da condicao inicial ¢ = 0.

A equagao de Schrodinger para a funcao de onda ¥ (Z,t) associada a

estrutura classica do oscilador harmonico (6.12) é escrita de forma usual

ma\p(z,t)_ h? P (Z,t) 1

5 = am a2 +§mw§Z2\If(Z,t). (6.37)
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Uma equacao deste tipo admite uma classe especial de solugoes dadas em
termos dos estados coerentes, onde a cada um deles se associa uma solucao
{pe(?), qc(t)} [190].

Seguindo o procedimento das referéncias [191, 192, 193] e para ser
consistente com o formalismo geral da secao anterior, escrevemos a solucao

geral da equagao (6.37) na forma:

| . :
\Ij(Za t) - (270-)_1/4 eXp {_40_<Z T qc)2 o ;ch + ;_LPCQC - ZU;Ot} ) (638)
onde a funcao F(Z,t) e a fase S(Z,t) sdo escritas como
1
F(Zt)=——(Z —q.)>, 6.39
(Z1) =~ (Z ) (6.39)
1 1
S(Z,t) = Zp. — SPele — ihwot. (6.40)

A quantidade o é a variancia calculada da forma usual, o? = h/2muwy.
Neste ponto, introduziremos a densidade de probabilidade p(Z,t), tal

como ¢é usualmente definida na teoria quantica

p(Z.4) = W(Z,0) . (6.41)
Note que, usando a solugao geral para 1(Z,t) dado em (6.38) e o complexo
conjugado ¥*(Z,t), teremos

p(Z,t) - !

2ro

exp{2F(Z,t)} (6.42)

2

ou equivalentemente, usando a expressao (6.39),

p(2,1) = <= e {57~ ). (6.43)

onde ¢. é dado pela solucdo cldssica (6.36). Como vemos, devido ao

cardter estocastico (flutuante), a densidade do fluido é descrita por uma
distribuicao de probabilidade gaussiana.

Comparando a expressao acima com a distribui¢ao gaussiana

P(Z) = \/%exp {—2}‘2(2— <Z >)2}, (6.44)
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vemos facilmente que o valor médio < Z > e a variancia o? =< Z% >
— < Z >? sdo dados respectivamente por < Z >= q. e 02 = h/2mwy. Os
mesmos resultados também podem ser obtidos por meio de calculos direto

utilizando a fungao distribuigao (6.43), a saber:

<Z>= [p(2,t)2dZ = q. (6.45)
e
<2 >= [ p(2,t)2%Z = o + ¢, (6.46)
o que significa
h

ot =< 7> - < 7 >= (6.47)

2mwy
Utilizando a fungao densidade (6.43) podemos calcular a velocidade

osmotica do fluido dv definida como
v =vVp/p, (6.48)

onde v = h/2m é o coeficiente de difusao. Como pode ser facilmente visto,

o lado direito da equacao acima ¢é reescrito como

h (Z—<Z>)
\V4 = — 6.49
e usando a definicao de o2, obtemos
v =—wy(Z— < Z>). (6.50)
Seguindo o procedimento das referéncias [35, 191, 192], obtemos as
velocidades
Vi) = 0+ 60 = 2w Z— < Z 5] (6.51)
m
e
U(,):v—év:&—l—wo[Z—<Z>]. (6.52)
m

Neste ponto, mostraremos que as idéias discutidas até aqui nos permite
assumir que q(t) satisfaz a uma equagao diferencial estocastica do tipo
Langevin

dq(t) = v (q(t), t)dt + dw(t), (6.53)
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onde dw(t) é um processo de Winer [126] tal que
Eldw'(t)] =0 Eldw'(t)dw’ (t)] = 2v6", (6.54)

sendo que a notagao FE|| significa um procedimento de médias sobre um

ensemble. Sendo assim, para o caso de universo de Sitter, obteremos
dZ = [Z. — wo(Z— < Z >)| dt + dw(¢), (6.55)

onde Z, = p. /m e < Z >= q, conforme mostrado na equagao (6.45).
Portanto, vemos que a natureza gaussiana do problema tal como descrito

em (6.43), implica que

E[Z(n)] = jﬁ sinVE[ A | (g — 6) (6.56)
E[ZQ(n)] — f{gsin2 \/EH Al(n—20)]+ o2, (6.57)

ou equivalentemente, utilizando a transformacio Z = R® como definida

na equagao (6.10):

E[R(n)] = (KJf/A sink VE[ A | (- ), (6.58)
B[R ()] = (K}?g asinSVE[ A (- 8)] + 0, (6.59)

Note que as duas expressoes acima sao generalizagoes das equagoes (28a)
e (28b) obtidas na referéncia [35]. Note também que os resultados acima
sao validos para qualquer valor do par de parametros (K,w). Fisicamente,
estas equacoes significam que o efeito liquido do meio é evitar o colapso do
modelo, ou seja, a singularidade cosmoldgica (nao estocastica) desaparece

devido a contribuicao dos efeitos quanticos.
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Capitulo 7

Potencial Escalar e Cenarios de

Quintesséncia

7.1 Introducao

Conforme discutido no capitulo I, um nimero cada vez maior de
observagoes astronomicas sugerem fortemente que a razao entre a densidade
de matéria (barionica mais matéria escura) e a densidade critica é
significativamente menor que a unidade [10, 11, 79, 80, 81]. Naturalmente,
este fato estd em desacordo com alguns argumentos tedricos derivados
da cosmologia inflacionaria, que prever um universo espacialmente plano
[196]. Logo, para que tenhamos um parametro de densidade da matéria
de ordem unitério (Qq = 1), 0 universo deve ser preenchido por uma
forma desconhecida de energia em adicao a contribuicao da matéria escura
ordinaria. Conforme ja mencionamos, esta conclusao é reforcada pelas
medidas recentes da relagao redshift-luminosidade [10] de uma ampla classe
de supernovas do tipo Ia, sugerindo indiretamente que essa forma de energia
possui uma pressao negativa. Em virtude de um efeito relativistico geral,
uma pressao negativa corresponde a um estado gravitacional repulsivo (veja
discussao no capitulo I), cujo resultado principal é acelerar a expansao

do universo, como indicado pelos experimentos envolvendo supernovas Ia
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[197].

Tradicionalmente, um candidato mais provavel para esta componente
desconhecida, atualmente chamada de energia escura, é a densidade de
energia do vacuo ou constante cosmoldgica (A), que é equivalente a um
fluido perfeito obedecendo a uma equacao de estado do tipo p = —p [10, 11].
Uma outra possibilidade mais genérica corresponde a um campo escalar
dependente do tempo ¢(t) evoluindo em dire¢gao ao valor minimo do seu
potencial, o qual é também conhecido como energia escura ou quintesséncia
[198]. Esta ultima pode ser caracterizada por uma equacao de estado
efetiva, contendo um parametro dependente do tempo w(t) que quantifica
a razao entre as densidades de energia e pressao. Dependendo da forma
do potencial V(¢), o parametro w pode ser constante, monotonicamente
crescente (decrescente) ou sempre oscilatério [198, 199]. Se w é constante
e satisfaz a w > —1, o cenario de quintesséncia é usualmente chamado
matéria-X [204], que também inclui o modelo de constante cosmolégica
(ACDM) como o caso limite w = —1. Atualmente, os exemplos mais
comuns de potenciais de quintesséncia sao funcoes exponenciais ordinarias
V(p) = Voexp(—Ap) [24, 26, 200], leis de poténcias simples V(¢) =
Voo™ ™ [201, 202], combinagoes de fungbes exponenciais e senos V(¢) =
Voexp(—A¢)[1 + Asin(—v¢)| [203] entre outros.

Para este modelo de matéria-X, viculos obtidos dos testes de estruturas
de grandes escalas (cuja sigla em inglés é LSS) e das anisotropias do fundo
de microondas césmica (sigla em inglés CMB) complementadas pelos dados
de SN Ia, indicam que 0,6 < Q, < 0,7 e w < —0,6 com 95% de confianca
estatistica para um universo plano [199, 204], enquanto que para universos
com curvatura espacial arbitraria o limite é w < —0,4 [204].

Neste capitulo, focalizaremos nossa atencao sobre esta espécie de
cosmologias com quintesséncia ou matéria-X. Conforme amplamente

conhecido, potenciais de campo escalar para modelos de quintesséncia
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sao inspirados em alguns exemplos espeficos, originalmente propostos
em modelos de teorias quantica de campos. Entretanto, nés estamos
interessados num formalismo um pouco diferente. Nosso objetivo principal
¢ determinar a forma analitica geral do potencial de campo escalar que é
simultaneamente compativel com a matéria-X e as simetrias do elemento
de linha de FRW. Apesar deste problema ja ter sido abordado na literatura,
apenas solugoes especiais foram derivadas até o momento [205, 206, 207].
Como veremos, se a matéria-X interage apenas gravitacionalmente, ou
seja, se nao existe transferéncia de energia ou a presenca de processos
de decaimento, apenas uma classe muito restrita de potenciais pode ser
matematicamente permitida. O espectro completo das solugdes (para o
caso plano) sera determinado por um novo método aqui proposto [106].
Em particular, para valores especificos dos parametros livres, as solucoes
sao ligeiramente diferentes de algumas expressoes recentemente obtidas
na literatura. Para o caso de modelos de universo aberto ou fechado, as
solucoes analiticas sao obtidas apenas para valores particulares do par de

parametros livres (v e w).

7.2 As Equacoes Basicas

Nesta secao focalizaremos nossa andalise em cosmologias homogénia e

isotrépica descritas pelo elemento de linha de FRW [48]
dr?
1 — kr?

onde R(t) é o fator de escala e k = 0,1 é o parametro de curvatura.

ds® = dt* — Rz(t)( + r2df* + r? sin’ 0d¢2) (7.1)

Agora vamos cansiderar um universo preenchido por um fluido perfeito
mais um campo escalar ¢(t). Na métrica de FRW (7.1), as equagoes de

campo de Einstein podem ser escritas como:

87 R? k
mgl(/?vﬂqub) = 3@ + 3@ (7.2)
D
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— (Py + = —2—- - = - — 7.3
m}Q)l (p'Y p¢) R R2 R2 ( )
onde R significa diferenciacio com respeito ao tempo e mgl =1/G ¢é a

massa de Planck. As quantidades p., ps, py € py sao as densidades de
energia e pressao do fluido perfeito e do campo escalar, respectivamente.
Neste ponto, sera assumido que o fluido perfeito obedece a uma equacao

de estado do tipo lei gama

Py = (v=1)py, (7.4)

onde o parametro constante v pertence ao intervalo (0,2). Similarmente,

definimos uma equacao de estado efetiva para o campo escalar ¢(t)

w(t) = Po — %qﬁz ~ Vo)

po 30 + V(9)

sendo V(¢) o potencial associado com o campo ¢. Em particular, se o

(7.5)

campo ¢ representado por uma matéria-X conforme considerado aqui, o
parametro w é constante e assume os valores pertencente ao intervalo [0,-1]
[31].
As equacoes de conservacao da energia para cada uma das componentes
satisfaz as relagoes
py + 3vHpy = 0 (7.6)

po + 3(1+w)Hpy = 0, (7.7)

onde H = R/ R é o parametro de Hubble. Estas equacgoes podem ser

resolvidas explicitamente, e suas solugoes analiticas assumem a forma:

R —3y R —3(1+w)
Py = Pyo <RO> e P = Pgo <RO> , (7.8)

sendo p,0, pg, € o os valores destes parametros no tempo ¢t = {.
Naturalmente, é a segunda solucao acima ¢ valida somente para valores

constantes de w. Seguindo o procedimento usual, inserindo as expressoes
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de py e py na lei de conservacao para o campo escalar, obtemos a equacao

. . dV(qﬁ) B
¢+ 3HO + — = =0, (7.9)

Se V(¢) é dado a priori, devemos seguir o formalismo padrao para integrar

de movimento

diretamente a equacao acima. Para uma classe restrita de potenciais, isto
é equivalente a vincular o parametro w(t) tal como definido em (7.5). Isto
serda o tema central de nosso interesse, que sera estudado em detalhes na

sessao seguinte para o caso da matéria-X.

7.3 Potencial do Campo Escalar e Matéria-X

Para encontrar o potencial escalar correspondente a uma matéria-X
genérica preenchendo todo o universo, vamos combinar as equacoes para
Po € py definidas em (7.5), de onde seguem as relagoes
(1—w) 1

20+ w) i (710

V(g) = ¢’ e po =

mostrando que V(¢) e ps deve ser facilmente determinado se ¢? é conhecido
como uma funcao de ¢.
Substituindo a derivada de V(¢) com respeito a ¢ na equagao (7.9),

obteremos a seguinte equacgao diferencial [32]
bo3(1
¢, 30+w)
o) 2

cuja primeira integral é dada por:

R
— =0 7.11
R ) ( )

3(14+w)
. RN~ 2  3(14w)
b=V wn () = Vw1

onde a varidvel x = R/ R, foi introduzida na segunda igualdade. Note que

o caso limite w = —1 (constante cosmoldgica) implica em ¢ = 0. Como
Vemos na expressao acima, a solucao para o nosso problema sera possivel

somente se o fator de escala for determinado como uma fungao de ¢.
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Para contornar essa dificuldade, serd necessario derivar uma equacao
diferencial generalizada para o fator de escalar R(¢) obtida a partir
das equacoes basicas. Para tal, note que uma combinacao elementar
do conjunto de equagoes (7.2)-(7.4) e (7.8) implica na seguinte equagao
diferencial [32]

(7.13)

onde A = # Este tipo de equacao de FRW governa o comportamento

do fator de escala R na presenca de um fluido perfeito v mais matéria-X.

A primeira integral desta equacao é escrita como

A

= mps — kb HiQ R R, (7.14)

R2

sendo A = HEQy, RgW uma constante de integracao positiva. Por outro
lado, de (7.2) pode ser mostrado facilmente que o parametro de curvatura
k satisfaz uma relacao do tipo

ok
- HER§

Q70 + Q% —1 (7.15)

Da mesma forma, inserindo os valores de A e k na equacao (7.14) e
introduzindo a varidvel x = R/ Ry segue que

a Hy
dr /1 — Q0 — Qg + Qyo 2~ B172) 4 Qg (1H30)

(7.16)

onde Hj é o parametro de Hubble no tempo atual (¢t = ty), 2,9 e Qg, sao,
respectivamente, os parametros de densidades do fluido e da componente
de energia escura. Finalmente, introduzindo a equagao acima em (7.12),
obteremos [32]

dop = [—IO_1 V (1 + w)p%

g2 () g

\/1 — ny() — Q% + Q’yO r—(37-2) + Q% r—(1+3w) '
(7.17)
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Portanto, a integracao da equacao acima e sua consequente inversao conduz
a uma expressao analitica para o fator de escala R(¢). Entretanto, ela nao
pode ser resolvida analiticamente para valores arbitrarios do parametro de
curvatura. Como discutiremos a seguir, uma solucao analitica geral s6 é
possivel para o caso plano (k = 0). Os casos com k = +1 s6 s@o possiveis

para valores especificos do par de parametros (v, w).

7.3.1 Solugao Geral para o Caso Plano (k = 0)

Para k = 0 vemos de (7.15) que Q2,9+, = 1 e, inserindo este resultado

m (7.16), aequacao assume a forma:

—3(1+w) 4
X i
\/ 1+ w)pg, ik (7.18)

\/Qo 372—{—9(;5

A integracao da expressao acima é mais facilmente obtida introduzindo-

se uma coordenada auxiliar 6 definida por

Q
ﬂx?}(’y—w—l) —= Sinh2 9 (719)
Q0

Com esta escolha, a integracao de (7.18) é facilmente computada cujo
resultado é [32]

Q0| T 3 —1)VB
R(¢) = Ry (70) sinh3 -0 { (y=w - Dv8r ¢ ] (7.20)
Q¢0 2 3(1 + 'lU) mp;
ou equivalentemente,
3(y—w—1)
»(R) 2/3(1 4+ w) ) Qg, < R 2
— = arcsinh — : 7.21
o 3(v—w—1)v8m Q50 \ Ry (720)

onde a constante de integracao foi fixada a zero sem nenhuma perda de
generalidade. Neste ponto, para derivar o potencial do campo escalar, é
necessario apenas inserir a expressao (7.20) em (7.12); utilizando a relagao
(7.10) obtemos
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(1+w)

(1—w) (Q%)wil>, _ativy FCy—uw—DMSW ¢]
" Pdy sinh™ G-w=1) :
2 20 23(L+w) My

(7.22)

As correspondentes densidades de energia para o fuido perfeito v e

V(p) =

campo escalar ¢ sao dadas por [32]

Qoo \ 7t 2y
pv(¢) = Pr0 (QWO> sinh ™ G-»-D {

bo

3(y—w—-1)v87 ¢
2 3(1 +U}) Myl

L (7.23)

(1+w)

Q, | 0—v=D s [3 (v — w — 1)V/3
,0¢(¢) = Pgy % sin _(7(—;1) (v —w V8T ¢
& 2 B +w)  my

I (7.24)

As relagoes (7.20) - (7.24) representam as solugoes gerais e unificadas
descrevendo as principais quantidades fisicas para um universo plano
preenchido por um fluido perfeito mais uma componente de matéria-X
caracterizadas pelo par (7v,w). Portanto, todas as solugoes conhecidas sao
casos peculiares dela através de uma escolha apropriada dos parametros
correspondentes. Em particular, o par (v, w) permite-nos calcular o valor
das expressoes em diferentes épocas. Por exemplo, para modelos de poeira

(v =1) e radiagao (y = 4/3), teremos respectivamente,

(L4w)
1 — Q Tw 214w —
V(gb):( w)%o ( Mo) sinh(tj){ 3wv8m ¢
2 Qg 2,/3(1 + w) my

], (7.25)

3(14w)
(1 — w) Do, Q% (1-3w) Sinh_((al(l_gzu); (1 — 3”LU)\/ 8m qb
2 QTO 2 3(1 + UJ) mpl

Vig) = I (7.26)

A solugao (7.25) foi proposta independentemente por Urena-Lopes et
al. [206] e Di Pietro et al. [208] usando métodos diferente. Entretanto,

nossa solucgao geral (7.22) revela analiticamente a influéncia de diferentes
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regimes sobre o comportamento do potencial V' (¢), como pode ser visto
das expressoes acima para a fase de radiacao e poeira. Mais informacao

também pode ser obtida da expressao (7.22) no tempo t << t;. Neste caso,
3(y—w—1)V8r ¢ <1

24/3(1+w) Ml

quando R << Ry, o campo escalar satisfaz a condigao

e de (7.22) obtemos

V() ~

1w (w) G {3@ w—1)V/57 ¢

(’Y 1 w)
. (7.27
2 Q 2./3(1 + w) mpl} (7.27)

~0

Particularmente, para v =1 e v = 4/3, as expressoes descrevendo esses

modelos de potenciais se reduzem as seguintes formas:

2(14w)
—3wv/ 87T Qg @ v
O~ 5 it e ma) (29
€
6(1+w)
(1—3w)/8r o & | 0
v(cb)N{ 3 0T mpl} , (7.29)

que devem ser obtidas diretamente das equagoes (7.25) e (7.26). Este
caso limite para radiagao (expressdo acima) nao foi obtido na literatura,
enquanto a expressao (7.28) foi proposto por Urena-Lopes et al. na
referéncia [206].

E interessante notar que a expressao (7.25) também pode ser expressa
em termos de fungoes exponenciais, a saber:

2(1+w)

w

2(14w) _ 3wV/8m
1-w) AN exp(

0

X exp _—\/247(1 )¢] : (7.30)

mpl

A expressao acima nos mostra que a condigao ( 3;”(‘1/? W%) > 1 (w<0)
w P

~
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implica que o potencial evolui como

V() ~ exp (—mj) | (731)

conforme encontrado na literatura® [205].

7.3.2 Solucgao para k # 0

No caso presente, lembramos que a equagao geral (7.17) nao possui uma
solucao geral analitica. Entretanto, solucoes especiais podem ser derivadas

para valores particulares do par de parametros (v, w).
e Caso I: v arbitrario e w = —1/3

Neste caso, substituindo o valor particular de w = —1/3 na expressao
(7.17) ela se reduz a

2 rldx
7p¢0 —(3v—2)’
3 \/1—9704‘970% (7 )

onde, redefinindo (159070> 372 = sinh? §, obtemos
2l

dp = H,* (7.32)

Qo 7 L2 1-Qy ¢
= h3-2 —2 — .
R(¢) = Ry { - Q’yO} sin [(37 W T (7.33)
ou equivalentemente,

Qb(R) o 1 Q¢0 T

arcsinh

1 - < R >2
— — . 7.34
ma 3y -2\ O Qo \Rs (734)
Por outro lado, as expressoes descrevendo as densidades de energia das

duas componentes (radiagao e campo escalar) sao escritas como

1 -0y
Py = Pr0 0

!'Neste modelo o universo é completamente dominado pela densidade de energia do campo escalar.

R =y ¢]
sinh™ 522 | (37 — 2)y/m | ——20 P | (735
" } [(7 W 0u oy (7.35)
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1 - Q)72 , -0
Py = P { 0O 70} sinh~#-2 [(37 o 2)ﬁ s ¢] : (736)
70

Q¢o Myl
Finalmente, o potencial V' (¢) é obtido substituindo-se a expressao acima
nas em (7.10)

_ ) -
Vig) = §p¢o {1 szvo} sinh~ -2 {(37 Al QSVO nfpz] .
(7.37)
Naturalmente, o comportamento para diferentes épocas deve ser obtido
a partir de uma escolha apropriada do parametro v. Em particular, para
v = 1, vemos que o potencial V' (¢) na expressao acima se reduz ao resultado

encontrado por Di Pietro et al. [208].
e Caso II: v arbitrario e w = —2/3

Aplicando o mesmo método utilizado acima, obtemos

V(g) = Zp%{ h0 Ginh (F ¢ ) (o + 8 = 1) (7.38)

20, My 40,
~1
o 8 = 1 —VErl | of 4 (P — ) B (7.39)
Qo 40, ‘ '

Este potencial foi obtido na literatura por Di Pietro et al. [208] a menos

_\/Rr_®
do termo (9”0_4%0) e 877%1.

e Caso III: v arbitrario e w = —1/6

Neste caso, o potencial V(¢) é obtido em termos de fungdes elipticas
conforme mencionado na referéncia [207]. A solucao geral para V(¢) é

dada por:

7

V(0) = ypuc’se (e m). (7.40)
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onde as constantes ( e £ sao escritas como

2(1 - QVO + Q%)

¢ = ,
(o — /(Qg, + 2040)% — 4020)
Q) 20).0)2 — 4Q)
2 Q¢O

e m, dado por

- 21/(Qg + 2Q40)% — 4040
Qo + /(L + 2050)% — 420

representa o parametro da fungao eliptica correspondente [209].

7.4 Calculo do Redshift de Transicao

Na presente secao, calcularemos o redshift de transicao z; no qual o universo
passa do regime desacelerado para o acelerado, ou equivelentemente, o
redshift no qual o parametro de desaceleracao gy é nulo.

Como é amplamente conhecido, o parametro de desaceleracao é definido
pela relacdo q(R) = —RR/R, ou equivalentemente, —RR = 0. Por outro
lado, a equacao de evolugao (7.13), descrevendo o comportamento do fator

de escalar R(t), nos fornece
. 3 W) e
AR+ Ak + D HF(1 =7+ w)Qy RYTI R = o (7.41)

onde, com sua primeira integral definida por (7.14), obtemos

3 m be 3(1+1J—"/)
R="Ro|oitr—w-1-1] (Q) (7.2

Se considerarmos que R = R;, o raio no qual o universo passa do regime
desacelarado para o acelerado, teremos
B 1+ Zt.

Ry (7.43)
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Portanto, o redshift de transicao z; é dado por:

zt:{ 21(7—50— 1) — ] (g‘b)}() 1 (7.44)

Yo
Para checar a validade desta expressao, é interessante calcular o valor

do parametro de desaceleracao para casos particulares das quantidades 7,
w, §1y, e Q4,. Em particular, para um modelo de universo dominado por
uma componente de matéria (7 = 1) e constante cosmoldgica (w = —1),
obtemos z; ~ 0,66, em perfeito acordo com os dados observacionais.
Resumindo, nesta secao estudamos cosmologias do tipo FRW com
uma componente de matéria e energia escura. Quando a componente de
quintessencia ¢é representada por uma matéria-X com equagao de estado
Py = wWpe, as equagoes de campo de Einstein determinam univocamente
a forma do potencial escalar. Em outras palavras, nao podemos postular
simultaneamente uma forma arbitraria para o potencial e a matéria-X.
A solugao geral para V(¢) foi obtida para valores arbitrarios do par de
parametros (7y,w). Neste caso, a solugao geral fornece o comportamento
do potencial em diferentes épocas. Naturalmente, o modelo cosmoldgico
discutido nesta secao é util para universos preenchidos apenas por duas

componentes.
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Capitulo 8

Aceleracao cosmica em modelos de

gas Chapligyn simplificado

8.1 Introducao

Conforme ja menionamos antes, os experimentos envolvendo as
observagoes de supernovas sugerem fortemente que o universo possui uma
componente extra usualmente chamada de energia escura ou quintesséncia
que seria a responsavel pela expansao acelerada do universo [10, 79, 211,
80, 92]. Alguns dos possiveis candidatos a esta componente sao velhos
conhecidos, sendo a constante cosmoldgica o candidato mais antigo.

Historicamente, as primeiras evidéncias teodricas justificando a acel-
eracao cosmica em termos de um fluido do tipo gas de Chapligyn, foram
discutidas originalmente por Kamenshchik et al. [94], e posteriormente de-
senvolvidas por Bili¢ et al. [95], Bento et al. [27] e Benaoum [28]. Recen-
temente, alguns desenvolvimentos nesta linha e generalizagoes do modelo
original foram propostos por Cunha et al. [29, 30, 96] e Lima et al. [97].

A seguir, usaremos um modelo de gas de Chapligyn para deduzir o
redshift de transicao e utiliza-lo como um discriminador cosmolégico para
vincular alguns parametros cosmolégicos, bem como calcular o parametro

de desaceleracao para o qual o universo evolui de um regime desacelerado
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para um outro acelerado.
A componente de fluido exdtico discutida nesta tese pode ser

caracterizada macroscopicamente pela seguinte equagao de estado [224]

pe = —A/pep; (8.1)
onde A é um parametro positivo e & um niimero puro. A equacao de estado
originalmente proposta na referéncia [94] é recuperada para o caso o = 1,
enquanto que para a = (0, o modelo descreve um cendario de matéria escura
(modelo CDM) mais uma constante cosmolégica (modelo ACDM).

A possibilidade de justificar a expansao césmica por meio de um gas
de Chapligyn com equacao de estado (8.1), recentemente tem provocado
um intenso debate na literatura. Os argumentos favoraveis a esta visao se
baseiam nos diversos tipos de conexoes que a componente descrita por (8.1)
pode desenvolver. Em particular, conexoes entre a equacao de estado do
gas de Chapligyn e teoria das cordas tém sido discutidas intensamente por
véarios autores [212, 213, 214]. Outra conexao se relaciona com o fato de
que em altos redshifts o gas de Chapligyn torna-se um fluido sem pressao,
possibilitando um esquema de unificagao para o setor escuro cosmolégico,
uma idéia interessante que tem sido aplicada em vérios contextos [215, 216].
Finalmente, uma conexao com fluido taquionico também pode ser possivel,
veja como exmplo a referéncia [217].

Neste capitulo, estudaremos em detalhe, as implicagoes fisicas para o
redshift de transicao z; sobre uma nova classe de cosmologias aceleradas
denominadas de gds de Chapligyn simplificado [224]. Em particular,
calcularemos explicitamente o parametro de desaceleracdo ¢(z) para o
qual o universo emerge de um estagio desacelerado para um regime
acelerado. Estes modelos sao caracterizados por um parametro o que
torna-os mais interessantes e de mais facil analise. Mostraremos também
que, nos cenarios onde o gas de Chapligyn simplificado exerce o papel

de quintesséncia, o melhor ajuste para o parametro de densidade da
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matéria escura € Qg, < 0,42, o parametro « assume valores > 0,7 e o
2z = 0,46 £ 0,13. Como veremos, esses resultados estao em bom acordo

com os estudos recentes de Supernovas la e as estruturas de grande escala
(30, 96].

8.2 Equacoes Basicas do Modelo

Nesta secao, concentraremos nossa atencao sobre uma classe de modelos
cosmolégicos com uma equagao de estado descrita pela expressao (8.1)
(224, 27, 29|

Num artigo recente, Lima et al. [97] mostraram que utilizando
argumentos sobre velocidade do som adiabatica é possivel estabelecer uma
relacdo entre os parametros o e Ay, onde A, = Ap; 17 e A é uma
constante. Foi mostrado que a escolha mais simples é A, = «, com a

equacao de estado assumindo a forma

DPech = —APcho (IOChO> ’ (82)

pe

de modo que uma pressao negativa capaz de acelerar o universo sé é obtida
para valores positivos de a. Este argumento naturalmente estabelece um
vinculo sobre este parametro, que deve assumir os valores 0 < o < 1.
Considerando modelos de cosmologias do tipo FRW, é facil mostrar que
inserindo a expressao (8.1) na lei de conservagao u, T", obtemos a seguinte

expressao para a densidade de energia

Ry 30+0)] T
Pch = [A +B <RO> ] ) (83)
ou equivalentemente
R 3(14«) H%
Pch = Pchg [As + (1 - As) <RO> ] ) (84)
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onde pq,, ¢ a densidade de energia atual e R(t) é o fator de escala
cosmica. Na expressdo acima, utilizamos a condic¢ao inicial R(tg) = Ry
para encontrar o valor da constante B = p}j{(}o‘ — A

As equacoes de Fridmann para esses modelos sao dadas por:

() = ifon ()"0 fae 0= ()]

(8.5)
onde Hy = 100hkm/s/M Pc é o valor presente do parametro de Hubble
e Q= Qugm + 4 € o parametro de densidade da matéria, composto por
matéria escura (€24,,) e barionica (£2).

Para estudar o fenomeno de aceleracao nestes cenarios, obteremos o

parametro de desaceleracao da maneira usual

RR
q(z) = T (8.6)
onde as derivadas R e R? sdao dadas pelas equacoes de Friedmann
. A
R = —ng(pch + pm + 3pen) R (8.7)
: 8
R? = gﬂ'G(pch + pm) R%. (8.8)

Substituindo as duas equagoes acima em (8.6) obteremos como resultado
o 1 Pch + Pm + 3pch
q(2) = 5
2 petpm
sendo p., a densidade de pressao do gés de Chapligyn e p,, ¢ a densidade

: (8.9)

de matéria dada por

Ro\?
o= s (73 (5.10)

Neste ponto, substituindo as expressoes (8.1) e (8.3) na equagao (8.9),
é facil mostrar que a solucao descrevendo o parametro de desaceleracao

assume a forma geral [224]

1

e 3A,(1 — Qmo)[f(z)]”%
1) =5 {1 Qo (1 + 2)8 + (1 — ﬂmo>[f<z>11+1a} |
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onde utilizamos a relagao (Ry/R) = (1 + 2)7!, e f(z) é a fungao definida

cOo1mo

F(z) = [As+ (1 — Ay) (1 + z)30+)]. (8.12)

8.2.1 Quintesséncia

Os modelos de quintesséncia podem ser obtidos para uma escolha
particular do parametro A, na expressao (8.11). A escolha mais adequada
para garantir a estabilidade destes modelos cosmoldgicos é descrita pelo

valor Ay = a, com a expressao (8.11) sendo representada por

1 3A45(1 —Q,, Ta

2 Qg (1+ 2)% 4 (1 = Q) [ (2)] 7+
e f(z) sendo redefinida por

f@)=la+ (1 —-a)(l+ z)g(HO‘)] : (8.14)
Note que, se a condicao o = 1 for satisfeita, este modelo de gas de

Chapligyn simplificado tem sua evolugao cosmoldgica andloga aos modelos
com constante cosmoldgica (ACDM). Por outro lado, se a condi¢ao a = 1
for satisfeita, é facil mostrar que a expressao (8.13) se reduz a q = 1/2,
consistente com o modelo padrao (SCDM).

A fig. 8.1 mostra o comportamento do parametro de desaceleragao ¢(z)
como uma funcao do redshift para modelos de universo descritos por um
gas de Chapligyn simplificado mais matéria escura (CDM). Note que para
altos valores de z o universo é desacelerado, conforme esperado para um
fluido sem pressao. Entretanto, devido ao comportamento de matéria-z
em baixos redshifts, o universo acelera sua expansao e tem sua evolucao
semelhante ao de uma constante cosmolégica (ACDM).

Uma visao mais detalhada do modelo de gas de Chapligyn discutido

aqui pode ser observada nas figuras 8.2 e 8.3. Nossa andlise é baseada no
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Figura 8.1: Parametro de desaceleracao versus diagrama de redshif.

correspondem a varios valores dos parametros {24, e « para cosmologias do tipo

quintesséncia como indicado acima e considerando €2, = 0, 044.

redshift de transigao z; obtido da equagao (8.13) para Qgp,, « e €, = 0,044

em comparacao com o redshift de transicao z; = 0,46 + 0, 13 das medidas

de SN Ia [79].

Inicialmente, vemos que altos valores do parametro « sao compativeis
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Figura 8.2: a) Plano {4,-z; para valores do redshift de transi¢do no intervalo 0,33 <
2z < 0,59, de acordo com Ries et al. [79]. As curvas correspondem a varios valores
selecionados para . b) Plano a-z; com a regiao estimada do redshift de transicao z
para alguns valores escolhidos de 24,,. Note que apenas altos valores do parametro « sao

permitidos.

somente com a regiao observada. Isto pode ser entendido considerando
que em nosso formalismo, os modelos com a = 1 sao semelhantes
ao modelo com constante cosmoldgica (ACDM). Por outro lado, para
pequenos valores do parametro «, o modelo é equivalente ao modelo de
poeira (SCDM). Outro fato extremamente importante é que o aumento do
conteido material diminui as possibilidades para o redshift de transicao.
Em particular, para €24, ~ 0,7 nao existe z;, enquanto que para g4, ~ 0, 2
existe uma ampla possibilidade para z;. Estas consideragoes estao muito
claras nas figuras 8.2a e 8.20.

Para o = 1, a regiao permitida ¢ 0,288 < g, < 0,415. Sendo
assim, para g, = 0,347 e redshift de transicao z; = 0,46, encontramos

¢ = —0,41. Em particular, utilizando o melhor best fit (ajuste) para
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Figura 8.3: Plano a-{2y,, com z; = 0,46 4+ 0, 13 conforme medidas de SN Ia. Vemos que

valores de v > 0,7 sao compativeis com a regiao observada.

Qu = 0,27 e a = 1, obtido de BAO! + SNLS? [97], encontramos z; = 0, 71
e qo = —0,59.

Na figura 8.3 vemos que os valores permitidos para o par de parametros
Q) e a sao razoavelmente restritos em comparagao com o modelo padrao
de gas de Chapligyn [29]. Em particular, se Q3; é maior que 0,43, ou
ainda, se a < 0,7 os modelos estao fora da regiao amparada pelos valores
observacionais para a fase de transicao. Portanto, a regiao desta figura
esta em acordo com aquela obtida por Lima e colaboradores em estudos

utilizando dados de supernovas (SN Ia) e estruturas de grandes escalas

1Sigla inglésa para Oscilagdes actisticas nos bdrions.

2Sigla em inglés para o projeto Supernovae Legacy Survey
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(LSS) [97].

8.2.2 Quartesséncia

Os modelos de gas de Chapligyn descrevendo o papel de quartesséncia sao

baseados nas equacoes

(R)2:H§ Q (%)3“1_%) [As+(1—,45) <R()>3(1+a)ll+1a

U Ba(l- o))
q<z>‘2{1 Qb0<1+z>3+<1—Qbonf(z)]#a}’ (510

sendo f(z) dado pela relacao (8.12) e 2, o parametro de densidade dos
barions. Note que, se a condicao o = 1 for satisfeita, a dinamica exercida
por esta componente é semelhante aos modelos de constante cosmoldgica
mais barions.

O modelo de quartesséncia descrito pelas duas equagoes acima pode
ser caracterizado completamente apenas pelos valores do parametro a.
Sendo assim, para cosmologias do tipo planas, de acordo com medidas
do CMB [218] e assumindo €2, = 0,044, nossa analise pode ser enriquecida

construindo um plano da forma « - z.

8.2.3 Lei de Evolugao da Temperatura

A seguir, deduziremos a lei de evolucao da temperatura para o modelo de
gas de Chapligyn discutido nesta tese.

Comecaremos nossa analise relembrando que o estado termodinamico
de um fluido relativistico simples é caracterizado por um tensor de energia

momento 7%, uma corrente de particula N e uma corrente de entropia
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Figura 8.4: Parametro de desaceleracao versus diagrama redshift para modelos de

quartesséncia. As curvas correspondem a varios valores do parametro « com €2, fixo
em 0,044.

S%. Assumindo que o gas de Chapligyn é um fluido relativistico simples,

tais quantidades sao definidas pelas seguintes relagoes [223, 221]

T = (pen + pen)uu” = peng®”, T;aﬁ =0 (8.17)
N = nu®, Ng =0 (8.18)
S* =nou®, S, =0 (8.19)

onde (;) significa a derivada covariante, n é a densidade de particula, o é
a entropia especifica (por particula) p., e pe, sdo as densidades de energia

e pressdo, representadas pelas relagos (8.1) e (8.4), respectivamente. As
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Figura 8.5: Plano « - 2z; com valor estimado do redshift de transicao. Neste gréfico, a
linha sélida restringe os valores permitidos do parametro «, além do mais, delimita a

existéncia de um limite superior/inferior deste parametro.

quantidades p., pen, 1 € o estao relacionadas com a temperatura 7' pela
lei de Gibbs

Peh + Deh

nTdo = dp., — dn. (8.20)

Considerando 7' e n como varidveis termodinamicas independentes e

usando o fato de que do é uma diferencial exata, obtemos facilmente

T (0 i

= <p0h> z (8.21)
apch

)
n

T

que representa a taxa de variagao da temperatura de um fluido simples
(perfeito) no limite adiabético [219, 220].

O caso onde a energia escura é descrita por um fluido simples do tipo
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matéria-r, um formalismo termodinamico similar foi obtido por Lima e
Alcaniz (para mais detalhes veja a referéncia [223]). Para os casos onde
os fluidos sao imperfeitos, a andlise matematica é mais sofisticada. Em
particular, um estudo sobre esse tema foi abordado por Silva et al. na
referéncia [221].

No nosso caso, onde a dinamica da energia escura é descrita pelo gas
de Chapligyn simplificado, mais precisamente pelas relagoes (8.1) e (8.4),

é facil mostrar que a equacao acima pode ser reescrita na forma [222]

T_ 3adipu, ™ R (8.22)
T A+ (1— A (%) R
ou, equivalentemente,
T —(1+a) [ du
In — = 3aAq , 8.23
n TO 84 pcho /1 U[AS + (1 . AS)U3(1+Q)] ( )

onde u = R/R, é uma variavel de integragao conveniente. A integracao da
equacao acima nos fornece uma relacao para a evolucao da temperatura

T = T(R). Para tanto, a integral acima pode ser reescrita na forma

ub+a]1/b

R/Ro du
U

— 8.24
u 4+ aul=? ( )

1+a

sendo a = (1 — Ay)/As e b = 3(1 4+ a). Retornando a varidavel R/ Ry, é facil
mostrar que a temperatura é uma funcao do fator de escala R, e evolui de

acordo com a lei de poténcia [222]

1

R 3(1+a)] 3(0+a)
T(R) = T, [1—A5+AS<RO> ] |

A expressao acima nos mostra que a evolucao da temperatura do fluido

(8.25)

é controlada pelo par de parametros (Ag, ). Em particular, escolhendo a
condicio Ay = 1, teremos T'(R) oc R* o< V . Por outro lado, escolhendo a

condicao As = a, ou equivalentemente, para o caso de um gas de Chapligyn
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simplificado, é direto mostrar que a lei de evolugao é dada por [222]:

R\ 3(+0)] e
) ] | (8.26)

T=1T,|1- —
[ oz+oz<R0

Note que no caso limite &« = 0 teremos T'(R) = Tj, enquanto que para
a =1 a lei de evolucao é T = T,(R/R,)? oc V. Fisicamente, isto significa
que a temperatura do fluido aumenta se ele expande adiabaticamente. Em
outras palavras, este resultado nos mostra que o universo torna-se mais
quente se ele sofre uma expansao adiabatica, descricao semelhante ao da

phanton energy investigada recentemente por Lima e Alcaniz [224].
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Capitulo 9

Conclusoes e Perspectivas

O desenvolvimento desta tese envolveu duas linhas de insvetigacao
complemetares: dinamica estocastica e cosmologia.

No capitulo I revisamos o status atual da cosmologia moderna dando
énfase aos possiveis candidatos que possam explicar a expansao acelerada
do universo. No capitulo IT noés rediscutimos as diversas abordagens que
podem ser adotadas na chamada teoria padrao do movimento browniano,
a saber: (i) o tratamento de Einstein, cuja base é a equagao de
difusdo; (ii) o tratamento de Langevin, baseado numa equagao diferencial
estocdstica; (iii) o tratamento via caminhadas aleatérias tal como proposto
originalmente por Kac e, finalmente, (iv) a abordagem via equagao de
Fokker-Planck. Para tempos longos as abordagens acima coincidem e
reproduzem os mesmos resultados. Por outro lado, para tempos curtos a
descricao de particula deve ser estendida para um formalismo ondulatoério.

No capitulo III aplicamos o formalismo de Langevin para uma classe
especial de langrangiana dependente do tempo, aqui denominada de g-
langrangiana. Inicialmente consideramos o caso com potencial V(x) = 0.
Essa categoria de lagrangiana representa uma generalizagao natural da bem
conhecida formulacao lagrangiana de Batman e foi proposta recentemente
no escopo da mecancica estatistica nao extensiva. A g¢-langrangiana

é descrita por um parametro livre (q) assumindo valores no intervalo

131



(0,1). Nesse contexto, estendemos o formalismo de forgas flutuantes
(ruido) de Langevin para estudar uma ampla variedade de sistemas
fisicos caracterizados por uma viscosidade variavel. Em linhas gerais, as
expressoes descrevendo as quantidades de interesse fisico foram modificadas
consideravelmente, mostrando que os resultados da teoria padrao sao
recuperados como um caso particular quando o limite ¢ — 1 é tomado.
Nossos estudos também revelaram um comportamento superdifusivo para
o deslocamento quadratico médio.

No capitulo IV estendemos a formulacao estocastica proposta no
capitulo III para potenciais quadraticos e dirigimos nossa andlise para o
dominio da cosmologia, especialmente no novo cenario inflacionario. Em
particular, estudamos a influéncia do banho térmico descrita pelo fluido
de radiacao, assumindo que ele é responsavel pela evolucao estocastica do
campo inflaton. Assumindo que as flutuagoes dinamicas do campo sao
descritas por uma equacao de movimento do tipo Langevin, nds derivamos
um conjunto de solugoes analiticas incluindo os ruidos branco e colorido.
Dependendo da escolha do parametro livre n, interpolando entre os ruidos
branco e colorido, nossos estudos mostraram que o campo delimita treés
regimes difusivos, a saber; superdifusivo, difusao normal e subdifusivo.

No capitulo V, rediscutimos o efeito Meszaros do ponto de vista
da dinamica estocédstica. Aplicando o formalismo estendido de forcas
flutuantes, nés analizamos o comportamento da componente de matéria
nao relativistica quando o fluido de radiacao é considerado como uma
perturbacao estocastica. As solugoes analiticas e formais descrevendo o
contraste de densidade da matéria (d,,) foram derivadas e as corregdes
estocasticas sao controladas por uma constante I'. Particularmente, para
o caso de ruido branco, se I' é unitario, o crescimento do contraste ¢,, no
intervalo (0, t.) é apenas 1,2 vezes o resultado padrao, indicando que o efeito

é extremamente robusto com respeito a possivel existéncia de processos
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estocasticos.

No capitulo VI, fizemos uma extensao do formalismo estocéstico
proposto por M. Novello [35]. Neste caso, as equagoes de Fridmann-
Robertson-Walker para um fluido relativistico foram reduzidas a forma
simples de um oscilador harmonico, a aprtir do qual, a dinamica
estocastica é formulada através de uma perspectiva quantica, usualmente
denominada de fluido de Madelung. O conjunto completo das solucoes
foram determinadas analiticamente e a correcao estocéastica tem como
objetivo exclusivo, evitar o colapso dos modelos. As solucoes obtidas do
nosso estudo sao mais interessantes pelo fato de contemplar os modelos
com parametro de curvatura (/) arbitrario, o mesmo acontecendo com o
parametro da equagao de estado (w).

No capitulo VII, estudamos as implicagoes fisicas para o redshift de
transicao sobre os modelos de cosmologias descritas pelo gas de Chapligyn
simplificado. Tais modelos sao controlados por um parametro « tornando-
os mais interessante e de mais facil estudo. Para os casos onde o gés
de Chapligyn exerce o papel de quintesséncia ou quatesséncia, derivamos
as expressoes analiticas descrevendo o parametro de desaceleragao q(z)
para modelos planos. Mostramos também que os cendrios de quintesséncia
limitam o parametro de densidade da matéria escura ao valor ;5 < 0,42
e a > 0,7, enquanto que os modelos de quartesséncia o parametro « varia
no intervalo 0,7 < a < 0,89. Alguns aspectos termodinamicos também
foram estudados, em especial, derivamos a lei de evolucao da temperatura
e concluimos que seu comportamento é semelhante aos modelos de energia
fantasma (phantom energy). Finalmente, no capitulo VIII propomos um
método analitico para determinar o potencial escalar V(¢) para uma
mistura de fluido perfeito mais quintesséncia em modelos do tipo FRW.
Este formalismo é uma consequéncia imediata das equacgoes de Einstein

e contempla valores arbitrarios do parametro de curvatura (K) e dos
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parametros (v, w) das equagdes de estado do fluido e quintesséncia.
Determinamos as solucoes analiticas gerais descrevendo a evolucao do
potencial escalar (V(¢)) bem como o valor do campo (¢). Derivamos
também as densidades de energia do fluido perfeito v e campo escalar
¢, além da lei descrevendo o fator de escala R(¢). Mostramos que os
resultados encontrados sao validos para valores arbitrarios dos parametros
(v, w).

As perpectivas para trabalhos futuros envolvendo dinamica estocéstica
abordam diversos problemas cosmoldgicos e astrofisicos. Em particular, o
problema envolvendo movimento browniano com uma barreira de potencial
(absorvedora ou refletora) é de importancia fundamental para esse dominio
e sera um dos principais objetos de investigacao futura. Para este caso em
especial, a barreira de potencial absorvedora é equivalente ao horizonte de
evento de um buraco negro e seu movimento aleatério é determinado pelas
interagoes gravitacionais do meio interestelar. Outra aplicacao relevante
da dinamica estocdstica serda o estudo da viscosidade variavel e forcas
flutuantes estendidas para os cenarios de inflacao morna. Esse estudo é
considerado de extrema importancia, pois possibilitara obter informacoes

a respeito das flutuacoes térmicas e sua subsequente evolucao temporal.
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Apéendice A

Campo de Forca Conservativa na

Estatistica de Kaniadakis

No presente apéndice, utilizaremos o formalismo da mecanica estatistica
de Kaniadakis [225, 226, 227, 228] para deduzir a fungao k-distribuicao
para um gas na presenca de um campo de forca externa possuindo um
potencial U(r). Como veremos, para o caso de um gés diluido, mostraremos
que uma funcao distribuicao do tipo lei de potécia, incluindo o fator de
energia potencial pode ser rigorosamente deduzida baseado em argumentos
puramente tedricos (Equagao de Vlasov).

Conforme amplamente conhecido, um gas classico sob condigoes estaveis
e imerso em um campo de for¢a conservativa, F = —VU(r), é descrito
por uma funcao distribuicao que difere da distribuicao de velocidades
maxwelliana apenas por um fator exponencial extra envolvendo a energia

potencial. Neste caso, a funcao distribuicao total no equilibrio é escrita

B m \3/2 Imv? + U(r)
f(r,u)_no(%kBT) exp (—2 — ) (A1)

onde m ¢é a massa das particulas, T é a temperatura e n, é o nimero de

como

particulas na auséncia do campo de forca externa. Em adicao, desde que

a distribuicao acima seja normalizada, é facil mostrar que a densidade de
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particulas é dada por

n(r) = n, exp [— gg] , (A.2)

onde o fator exp[—U(r)/kpT], que é responséavel pela inomogeneidade da
funcao f(r,v), é usualmente chamado de fator de Boltzmann. A expressao
(A.1) segue naturalmente de uma integracao da equacao de Boltzmann sem

o termo colisional, a saber,

of of F Of

“) T a— Y A.

ot P o T v (A-3)
Adotando a condigéo estacionaria (0f /0t = 0), a funcao pode ser fatorada

na forma
f(r,v) = fo(v)x(r), (A.4)
onde fy(v) representa a funcgao distribui¢ao de equilibrio (maxwelliana) e
x(r) é uma fungao escalar de r.
Depois de uma simples normalizacao, pode ser facilmente mostrado que
a expressao resultante para x(r) é exatamente o fator de Boltzmann para
a energia potencial do campo de forca externa
Ul(r)
kgT

x(r) = exp , (A.5)

e combinando esta com a equagao (A.4), vemos que a distribuicao
estacionaria de Boltzmann (A.1) é facilmente obtida.

Por outro lado, recentes enfoques sobre as bases cinéticas (cldssica
e relativistica) da k-estatistica proposta recentemente por Kaniadakis
[225, 226, 227] substitui as fungoes distribui¢oes da forma (A.1) por uma
fungao distribuicao do tipo lei de poténcia [229].

Do ponto de vista mateméatico, o k-formalismo é baseado nas funcoes

k-exponencial e x-logaritmo, as quais sao definidas por

exp,(f) = [V1+ K2f2 + k f]/", (A.6)
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In,(f) = [f" = f7"]/2k. (A7)

Note que no limite k — 0 as identidades acima reproduzem as propriedades
usuais das funcgoes exponencial e logaritmo.

Recentemente, foi mostrado que a funcao distribui¢ao de velocidades
no equilibrio (A.1) utilizando o k-formalismo pode ser escrita como
[225, 226, 227, 230]

1 mu?\’ mu? g

Nesta expressao o parametro s esta associado a entropia do gas, cujo

principal efeito a nivel da funcao districuicao é substituir a forma gaussiana
padrao por uma lei de poténcia e a quantidade z é a constante de
normalizacao. Como pode ser visto, a expressao acima se reduz a
maxwelliana no limite k = 0.

Agora, vamos considerar um gas diluido e espacialmente inomogéneo
suposto em equilibrio na temperatura 7. Suponha também que o gas
em questao estd imerso num campo de forca externa, de maneira que
f(r,v)d®vd®r representa o niimero de particulas com velocidade v dentro
do elemento de volume d3v e posicdo r no volume d®r. Neste caso, vemos

de (A.3) que a equagao de Boltzmann estaciondria pode ser reescrita como
1

V- v'rf - 7V7"U * Vfuf — O- (A.g)
m

Neste ponto, para introduzir os efeitos da k-estatistica, primeiramente
devemos notar que a condicao de fatorabilidade é modificada neste
formalismo estendido. Isto significa que a suposicao inicial de fatorizacao,
isto é, a expressao (A.4) deve ser estendida. No espirito do k-

formalismo, uma generalizagao consistente de (A.4) pode ser representada
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pela expressao [229]

1
fr,v) = —expy [Ing (2fo) + I x(r)], (A.10)
onde z é uma constante de normalizacao introduzida por conveniéncia
matematica, e as fungdes exp,(f) e In,(f) sdo definidas pelas expressoes
(A.6) and (A.7). Por razoes que serao uteis mais adiante, as propriedades

de diferenciacao das fungoes k-exponencial e k-logaritmo [225]

ding [ (fr71 4 700N df
oS _ ( : )dm, (A.11)
dexp,.(f)  exp.(f) df (A.12)

de 1+ r22de’
serda intensamente usada. Assim, para obter a solucao geral da equacao

(A.9), basta calcular os gradientes V.f e V,f. Neste caso, pode ser

mostrado que tais quantidades podem ser escritas como [229]

_ exp,.[In, fo(v) + In, x(r)]
Vrf(r, U) o expg[lnﬁ fO(U) +1In, X(T)] V., In, X(r) %
s (inex(r) = 425
{1 + [1+li2(lﬂ,ﬁ fO(U) +1nmX(7“))2]1/2} , (Alg)

_exp,[lng fo(v) +Ing x(r)] [ mw
Vi) expy[Iny fo(v) + Iny x(r)] ( kBT> "

(. x(0) - 4f57)
{1 " [1+ r2(Ing fo(v) + In, X(r))Q]l/z} . (A14)

Substituindo os dois resultados acima na equacao de Boltzmann

estaciondria (A.9), e simplificando os termos comuns, obtemos a equacao

1
Velnx-dr=—-—=VU(r) - dr, (A.15)
kpT
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a qual, tem como solucao

X(r) = exp, (

onde C' é uma constante arbitraria.

_U(r)
kT

+ c) , (A.16)

Inserindo (A.16) na expressao (A.10) e integrando o resultado no espacgo

das velocidade, segue que
U
In, (zfp) — —+C

/ 71 exp, kT

Agora, substituindo a expressao de fy(v) dado por (A.8) e considerando a

d*v = n(r). (A.17)

regiao onde U(r) = 0, encontramos

2
z7! /exp,i ( ACA A C) d*v = ny, (A.18)

~ 2kpT
e da condicao de normalizagao, ng = [ fo(v)d®v, segue que o tinico valor

permitido para a constante de integracao é C' = 0. Consequentemente,

(A.18) torna-se
Ulr)
kT

que ¢é a generalizacao do fator de Boltzmann no formalismo da mecanica

, (A.19)

X(r) = exp, [—

estatistica de Kaniadakis.
Finalmente, inserindo este resultado em (A.10), obteremos a k-

distribui¢ao completa na presenga de um campo de forga externa [229]

1/k
2 2
_ o[ mv:  Ulr) ~mv® U(r)
flrv) =2 JH“ ( s k) N\ T2kpT T kT
= 2 texp,(—E/kgT), (A.20)

onde a quantidade F representa a energia total das particulas. Portanto,
segue que o fator k-exp generalizado para a termoestatistica de
Kaniadakis pode ser deduzido exatamente se o formalismo padrao for
ligeiramente modificado. Note que, no limite k — 0 a expressao (A.1)

¢ consistentemente recuperada.
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Figura A.1: A figura acima representa a fungao distribuigdo (A.20) para os valores
k=0,1,k=0,5,k=0,7Tex=0,9.
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Apeéendice B

Movimento Browniano de Sistemas

Interagindo Gravitacionalmente

Historicamente, os primeiros estudos nesse campo foram realizados por
Chandrashekar na década de quarenta [116, 232] e nos ultimos anos tem
reproduzido uma extensa literatura.

Atualmente, um exemplo interessante de processos estocasticos aplicado
ao campo da astrofisica é a descrigao de um buraco negro (BN) no centro de
um sistema estelar denso [43]. Fisicamente, quando a massa de tal objeto
¢ muito maior que a massa das estrelas da vizinhanca, este adquire um
movimento aleatério semelhante ao movimento browniano (MB) de uma
particula imersa num liquido ou gas. Em sistemas estelares densos, como
aglomerados globulares e nicleos de galaxias, o analogo do gas molecular
¢ representado pela distribuicao de estrelas, enquanto que a particula
executando o MB corresponde a um BN. Fisicamente, a causa principal
desse fenomeno em aglomerados globulares e em nicleos de galaxias, deve-
se principalmente, ao surgimento de trés forcas: (i) A primeira tem origem
na distribuicao média de matéria do sistema estelar e varia lentamente com
a posicao e o tempo. Esta forca, geralmente é proporcional a velocidade,
denominada forca dissipativa, friccao dinamica ou forga viscosa, cujo efeito

é desacelerar o movimento do BN [233]. (ii) Em segundo lugar, existe outra

141



forca devido as interagoes gravitacionais do BN com cada uma das estrelas
na sua vizinhanca e é chamada de forca estocastica ou aleatéria. Esta, por
sua vez, flutua muito rapidamente. (iii) Finalmente, o BN experimenta
uma terceira forga, denominada de forca restauradora F' = —mV®(r),
devido o potencial da distribuicao de matéria.

Recentemente, o MB de BN em aglomerados globulares e ntcleos de
galkias tem sido investigado por vérios autores [43, 235, 234, 236]. Para o
caso unidimensional, a equacao de movimento governando esse fenomeno

é escrita como
mi(t) + () + kx(t) = Fi(t). (B.1)

Classicamente, esta equacao representa o movimento de uma particula
harmonicamente ligada a um potencial U(z). Na equagao acima m denota
a massa do BN, 3 é a viscosidade em devido a distribuicao de estrelas, k é
uma constante que se origina da forga restauradora e F,(t) caracteriza um

ruido branco, o qual satisfaz as propriedades de Langevin [110, 126]
<F,(t)>=0 < F,(t)F,(t") >=C(t -1, (B.2)

sendo C' uma constante.

As equagoes (B.1) e (B.2) podem ser combinadas com a equagao de
Fokker-Planck [46] para derivar uma distribuicao de probabilidade para
a posicao e velocidade do BN. Estas funcoes de distribuicao podem ser

escritas como [43]
W(x) = \/27/7C exp{—(2v/C)w*m?z?} (B.3)

W(v,) = /2v/7C exp{—(27C)m?*2?}, (B.4)
onde v = 3/2m, w = \/k/m e a constante C' = 4dymm, [§° f(r,u)/f(r,0).

Neste caso, m é a massa do BN e m, é a massa individual de cada estrela

do background.
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Para modelos politrépicos de distribuicao estelar [237], a densidade e o

potencial das estrelas sao dados respectivamente por

3Ma? 1
— B.
p(r) At (r2 + a2)5/2 (B.5)
GM 1

o(r) = (B.6)

4w (12 4 a2)5/?
onde M ¢é a massa total do sistema de estrela, G' é a constante gravitacional
e a é um parametro de comprimento. Para este modelo estelar a
constante C' presente nas duas ultimas equagoes acima ¢é dada por
C = (8GM/9a)ymm,, e as quantidades de interesse ficos, a saber, o
deslocamento quadratico médio do BN movendo-se no background estelar

e sua respectiva velocidade quadratica média sao dados por
< 2 >= 2a’m, /9Im (B.7)

< v? >=2GMm,/9%m (B.8)

O significado fisico destas relagoes é muito claro: elas nos mostram que
quanto maior for a massa do BN (m), mais lentamente sera sua velocidade,
comportamento semelhante ao de uma particula classica imersa num fluido

ou gas tal como previsto pelo formalismo padrao de Langevin.
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