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Resumo

Nesta tese investigamos alguns problemas envolvendo duas áreas

complementares, a saber: dinâmica estocástica e cosmologia. Na

primeira linha de desenvolvimento, estendemos o formalismo de forças

flutuantes desenvolvido por Langevin para uma classe de sistemas com

amortecimento variável e, em seguida, discutimos algumas aplicações no

domı́nio cosmológico. Nesse contexto, supondo que o efeito da radiação

(banho térmico) é semelhante ao de uma perturbação estocástica (forças

flutuantes), discutimos a evolução do campo escalar em cenários da nova

inflação e no chamado efeito Meszaros.

Inicialmente, utilizando um rúıdo colorido na equação de Langevin,

mostramos que as flutuações do campo “inflaton” experimentam um regime

de difusão anômala. Considerando que a componente de radiação atua

como uma posśıvel correção estocástica sobre o efeito Meszaros, discutimos

a influência do rúıdo sobre a evolução do contraste de densidade da matéria.

Seguindo outra abordagem estocástica, estudamos os modelos de

Friedmann-Robertson-Walker (FRW) como um fluido quântico na chamada

formulação de Madelung. Nessa análise, as equações de FRW para os

modelos fechados (k = 1) se reduzem a forma de um oscilador harmônico

simples e as soluções da equação de Schrödinger associada bem como

sua densidade de probabilidade são explicitamente obtidas. Mostramos

também que a principal influência f́ısica do processo estocástico é evitar o

colapso do modelo e, consequentemente, a singularidade cósmica.
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Investigamos ainda dois problemas relacionados com modelos de energia

escura (quintessência e gás de Chaplygin). Para o primeiro candidato,

discutimos um método anaĺıtico que permite calcular o potencial de campo

escalar numa mistura de um fluido perfeito e quintessência. Supondo que

a quintessência é descrita por uma matéria-X, diversas quantidades de

interesse cosmológico são determinadas. Para o gás de Chaplygin (versões

de quintessência e quartessência), o redshift de transição é utilizado como

um discriminador para se obter limites sobre os parâmetros cosmológicos

relevantes. Os resultados obtidos estão de bom acordo com alguns estudos

recentes utilizando observações de supernovas e dados da estrutura de

grande escala do universo.
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Abstract

In this thesis we investigate some problems involving two complemen-

tary areas, namely: Stochastic Dynamics and Cosmology. In the first line

of development, we extend the formalism of fluctuating forces as devel-

oped by Langevin for a class of systems with variable damping, and, next,

we discuss some applications to the cosmological domain. In this context,

assuming that the effect of the radiation (thermal bath) is similar to a

stochastic perturbation (fluctuating forces) we discuss the evolution of the

scalar field in the new inflation, and in the so-called Meszaros effect.

Initially, by using a colored noise in the Langevin equation, we show that

the fluctuations of the “inflaton” field undergoes an anomalous diffusion

regime. By considering that the radiative component acts like a possible

stochastic correction on the Meszaros effect, we discuss the influence of the

noise on the evolution of the density contrast of matter.

Following a different stochastic approach, we study the Friedmann-

Robertson-Walker (FRW) models as a quantum fluid in the so-called

Madelung formulation. In such analysis, the FRW equations for closed

models (k = 1) reduce to the form of a simple harmonic oscillator, and the

solutions of the associated Schrödinger type equation and the probability

density are explicitly computed. We also show that the main physical

influence of the stochastic process is to avoid the collapse of the model,

and, consequently, the cosmic singularity.

We also investigate two problems closely related to dark energy models
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(quintessence and the Chaplygin gas). For the first candidate, we

discuss an analytical method that permits to calculate the scalar field

potential for a mixture of a perfect fluid and quintessence. By assuming

that the quintessence is described by a X-matter component several

quantities of cosmological interest are determined. For the Chaplygin gas

(quintessence and quartessence versions), the transition redshift is used as a

descriminator for obtaining limits on the relevant cosmological parameters.

The results obtained here are in good agreement with recent studies based

on observations of supernovas and data from the large scale structure of

the Universe.
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próximos de zero a curva sólida representa uma função delta

centrada em torno da origem x = 0. Com o passar do

tempo a distribuição evolui como uma gaussiana de largura

variável. Como discutido no texto, a descrição de Einstein
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parabólica para valores espećıficos do tempo . . . . . . . . 52

2.4 As curvas mostram uma comparação entre as soluções da
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Ω0
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Introdução

Como é amplamente conhecido, a cosmologia é a parte da ciência que

estuda a origem, a evolução e a estrutura do universo como um todo,

tendo suas bases teóricas apoiadas fortemente na Teoria da Relatividade

Geral (TRG). Desde suas origens, a cosmologia tem como objetivo principal

construir modelos de universo que se adaptem fundamentalmente às

observações astronômicas.

Atualmente, os avanços tecnológicos das ciências espaciais, em

particular os grandes projetos de catalogação de supernovas Ia em altos

redshifts (z), permitiram a entrada da cosmologia num peŕıodo novo e

promissor considerado por todos como a era da precisão astronômica [1, 2].

Os esforços direcionados a este campo do conhecimento contam com

a participação de grandes grupos de pesquisa, empenhados em projetos

tais como o Supernova Cosmology Project (SCP) [3], High-z Supernova

Search (HSS) [4], Sloan Digital Sky Survey (SDSS) [5], além dos grandes

satélites como o WMAP (Wilkinson Microwave Anisotropy Probe), SNAP

(Supernova Accelerating Probe) e o PLANCK que será lançado num

futuro bem próximo. Em particular, as medidas das anisotropias da

radiação cósmica de fundo obtidas recentemente pelo satélite WMAP, tem

confirmado importantes aspectos do modelo cosmológico padrão [6, 7, 8].

Tais medidas têm revelado, de maneira cada vez mais convincente, que o

universo é aproximadamente plano, o que está em acordo com as previsões

do paradigma inflacionário [9].
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O grande empenho dos grupos acima permitiu traçar um panorama

desconhecido, até há pouco tempo atrás, pela comunidade acadêmica.

Particularmente, os grupos Supernova Search Team Collaboration liderado

por A. G. Ries e o Supernova Cosmology Project Collaboration liderado

por S. Perlmutter, obtiveram de forma independente a descoberta de que o

universo expande de forma acelerada, diferentemente do que se acreditava

tendo como base a gravitação newtoniana [10, 11].

Esse feito tornou a aceleração cósmica uma das descobertas mais

relevantes de todos os tempos para a cosmologia, trazendo profundas

implicações sobre a natureza do conteúdo material do universo. Os

inúmeros estudos, baseados nas observações de supernovas sobre uma

ampla variedade de modelos cosmológicos, justificam que a aceleração atual

deve-se exclusivamente a uma componente de energia com pressão negativa,

contribuindo com aproximadamente 73% para o conteúdo cósmico. A

componente de energia mencionada acima é usualmente chamada de

energia escura1.

Uma das conseqüências imediatas dos experimentos envolvendo

supernovas têm sido a medida com bastante precisão de vários parâmetros

cosmológicos, em especial o parâmetro de Hubble (H), o parâmetro de

densidade dos bárions (ΩB) e o parâmetro de densidade da matéria

escura (ΩME). Esses estudos permitiram traçar um perfil da composição

da matéria total do universo. As estimativas mais recentes mostram

que 23% da matéria do universo está distribúıda na forma de matéria

escura (ΩME), 4% correspondendo a matéria bariônica (ΩB), e o restante,

aproximadamente 73%, fazendo parte da energia escura (ΩEE) [12].

A descoberta desta componente escura tem motivado um intenso debate

na literatura, justificando o fato da expansão acelerada do universo poder

1A palavra escura aqui serve para designar a matéria que não emite radiação eletromagnética e que
poderá ser detectada apenas pelos seus efeitos gravitacionais
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ser explicada através de um fluido perfeito com uma pressão negativa (ou

seja, ω = p/ρ = −1, sendo p e ρ as densidades de pressão e energia,

respectivamente) [12, 13, 14]. Teoricamente, esta conclusão não poderia

ser justificada em termos da gravitação newtoniana, uma vez que o termo

de pressão que aparece nas equações de Einstein2 só é posśıvel em virtude

de um efeito relativ́ıstico geral. Entretanto, um termo de pressão positiva

em relatividade geral contribui para o colapso da matéria assim como

a sua densidade de energia. Este efeito puramente relativ́ıstico segue

naturalmente como um efeito do carater covariante da teoria [15].

As evidências observacionais recentes sugerem uma ampla variedade

de posśıveis candidatos à energia escura, dentre os quais uma constante

cosmológica (com equação de estado ω = −1) seria a solução mais natural

[16, 17, 18, 19]. As observações também sugerem que equações de estado

com ω < −1 também podem ser permitidas [20]. Em particular, este

caso espećıfico corresponde à então chamada energia escura fantasma

(phantom energy) [21, 22]. Outras possibilidades incluem modelos de

campos escalares [23, 24, 25, 26], gás de Chaplygin [27, 28, 29, 30] e matéria

- X [31, 32].

Apesar dos inúmeros modelos teóricos aliados aos experimentos de

supernovas, bem como análises conjuntas utilizando outros experimentos,

ainda não existe um consenso capaz de traduzir a verdadeira essência

da energia escura e, portanto, traçar um panorama mais reaĺıstico sobre

o status atual do universo. Essa dificuldade gera a necessidade de se

introduzir ingredientes novos que possam ser testados à luz das observações

futuras. Em particular, ingredientes interessantes a serem inclúıdos seriam

formulações estocásticas para compreender a evolução global do universo

[35]. Para esclarecer este ponto, é interessante notar que a suposição de

homogeneidade, imposta pelo prinćıpio cosmológico, naturalmente conduz

2Veja as equações (1.4) e (1.5) no caṕıtulo I.

3



a uma lei de Hubble determińıstica. Tal afirmação pode ser justificada

tendo como base o diagrama magnitude-redshift para galáxias e outros

objetos galáticos em baixos redshifts. Isso significa que para galáxias mais

próximas (baixos redshifts), a lei de Hubble induz um caráter puramente

determińıstico da evolução do universo. Entretanto, para objetos como

quasares em altos redshifts [33, 34] os dados de supernovas revelam um

espalhamento no diagrama magnitude-redshift, mostrando que o mesmo

está em desacordo com a lei de Hubble determińıstica. Portanto, para

estudar as propriedades do universo em altos redshifts (quando o universo

era jovem), é necessária a introdução de formalismos estocásticos (não

determińısticos).

Os estudos sobre teorias estocásticas em cosmologia têm melhorado con-

sideravelmente a nossa compreensão sobre a natureza não determińıstica

de alguns modelos cosmológicos. Em particular, a aplicação de formulações

estocásticas neste campo tem recebido uma considerável atenção na liter-

atura [35, 37, 38, 39, 40]. Recentemente, essa técnica tem sido utilizada

para calcular a evolução estocástica de alguns parâmetros cosmológicos

[41, 42].

Atualmente, os processos estocásticos constituem uma ferramenta

da f́ısica extremamente apropriada para se investigar sistemas de não

equiĺıbrio nos mais diferentes domı́nios, incluindo economia [36], biologia,

f́ısica da matéria condensada, astrof́ısica [43] e cosmologia [35]. Por

exemplo, no campo das ciências econômicas, é posśıvel investigar um

sistema que possui caracteŕısticas semelhantes a de um sistema randômico.

Nesse caso, conceitos de f́ısica estat́ıstica, tais como dinâmica estocástica,

correlação de curto e longo alcance e auto-similaridade, permitem um

entendimento do comportamento global do sistema. Usualmente, tais

sistemas estão entre os mais fascinantes e intrigantes sistemas complexos

que podem ser investigados.
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Portanto, é no contexto da cosmologia e na aplicação de formulações

estocásticas que se insere a presente tese. Nosso estudo será delimitado

por duas linhas básicas, a saber: (i) dinâmica estocástica e (ii) cosmologia.

Os objetivos básicos da tese podem ser delineados como segue:

• No caṕıtulo I é feito uma breve revisão do status atual da cosmologia

moderna, onde apontamos alguns posśıveis candidatos que possam explicar

a recente aceleração do universo, descoberta à luz das observações de

supernovas Ia.

• No caṕıtulo II, faremos uma revisão detalhada da teoria padrão

do movimento browniano e apresentamos quatro maneiras independentes

de reproduzir os mesmos resultados. Primeiramente, discutiremos o

tratamento de Einstein [44] que foi de fundamental importância para

a consolidação da teoria. Em seguida, discutiremos o tratamento

de Paul Langevin [45] obtido via uma equação diferencial estocástica.

Posteriormente, apresentaremos o tratamento em termos da equação

Fokker-Planck [46] e, finalmente, a abordagem via caminhadas aleatórias

proposta originalmente por M. Kac [47].

• No caṕıtulo III discutiremos o comportamento estocástico de uma

classe de sistemas f́ısicos descritos por uma viscosidade dependente do

tempo. Nossa análise é baseada na aplicação de uma equação de

Langevin com viscosidade variável na qual, por simplicidade, consideramos

inicialmente o caso com potencial nulo. As quantidades fisicamente

relevantes para um sistema clássico executando movimento browniano, tais

como o deslocamento quadrático médio e o deslocamento médio, bem como

a velocidade média e a velocidade quadrática média, são determinadas

analiticamente.

• No caṕıtulo IV estendemos o formalismo desenvolvido no caṕıtulo

III para o caso de potenciais quadráticos e endereçamos nossa análise ao

5



domı́nio cosmológico, especialmente no novo cenário inflacionário. Em

linhas gerais, estudamos a influência de um banho térmico assumindo que

ele é responsável pela evolução estocástica do campo escalar. Calculamos

o conjunto completo das soluções anaĺıticas, inclúındo os rúıdos branco e

colorido.

• No caṕıtulo V rediscutiremos o problema do Efeito Meszaros,

considerando que o banho térmico (componente de radiação) atua como

uma posśıvel correção estocástica. Aplicando o formalismo de Langevin,

analisaremos a maneira como a componente não relativ́ıstica evolui quando

o termo estocástico (rúıdo) é introduzido na equação de evolução para

contraste de densidade da matéria (δ). Para o caso de rúıdo branco,

mostraremos que o crescimento total do contraste δ até o equiĺıbrio matéria-

radiação é apenas 1,2 vezes o resultado padrão.

• No caṕıtulo VI desenvolvemos uma variante do formalismo estocástico

proposto por M. Novello na referência [35]. Em nossa análise, as equações

de Fridmann-Robertson-Walker (FRW) para um fluido relativ́ıstico são

reduzidas para a forma simples da equação de um oscilador harmônico, a

qual depende fortemente do parâmetro de curvatura (K) e do parâmetro

da equação de estado (ω). A dinâmica estocástica do oscilador, ou

equivalentemente, dos modelos de FRW, é formulada através de uma

perspectiva quântica, usualmente denominada de fluido de Madelung.

O conjunto completo das soluções são determinadas analiticamente e a

correção estocástica tem como objetivo exclusivo, evitar o colapso dos

modelos.

• No caṕıtulo VII, exploramos as implicações f́ısicas para o redshift de

transição sobre uma classe de modelos cosmológicos acelerados, comumente

chamada de gás de Chapligyn simplificado. Esses modelos são controlados

por um parâmetro livre (α) tornando-os mais interessantes por serem

mais maleáveis, ou seja, de mais fácil estudo. Em particular, usando o
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diagrama de magnitude de supernovas Ia, será mostrado que nos cenários

onde o gás de Chapligyn exerce o papel de uma quintessência, teremos

ΩME ≤ 0, 42, α ≥ 0, 7 e redshift de transição zT = 0, 46 ± 0, 13. Alguns

aspectos termodinâmicos também serão estudados. Para este caso especial

do gás de Chapligyn simplificado, será mostrado que a lei de evolução da

temperatura tem um comportamento semelhante aos modelos de energia

fantasma (phantom energy).

• No caṕıtulo VIII, será proposto um novo método anaĺıtico para

determinar o potencial escalar V (φ), para o caso de uma mistura de fluido

perfeito mais quintessência, em cosmologias do tipo FRW. O formalismo

desenvolvido é uma consequência imediata das equações de Einstein e será

aplicado para valores arbitrários do parâmetro de curvatura (K) e dos

parâmetros das equações de estado (γ , ω). O conjunto completo das

soluções descrevendo a evolução do potencial escalar (V (φ)), bem como o

valor do campo (φ) e as respectivas densidades de energia serão obtidas

analiticamente, e serão válidas para valores arbitrários dos parâmetros (γ

, ω).

• Finalmente, no caṕıtulo IX apresentaremos as conclusões. Faremos

um breve resumo dos principais resultados da tese e indicaremos algumas

perspectivas futuras. Nos apêndices A e B apresentaremos alguns

resultados complementares ao presente trabalho. Com o intuito de

facilitar uma eventual consulta por parte dos estudantes, professores e

pesquisadores interessados, observamos que as contribuições originais desta

tese encontram-se nos caṕıtulos III, IV, V, VI, VII e VIII, bem como no

apêndice A.
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Caṕıtulo 1

Cosmologia Moderna: Aceleração do

Universo e Energia Escura

1.1 Introdução

Conforme já definido na introdua̧ão desta tese, a Cosmologia estuda a

origem, a estrutura e evolução do universo como um todo. Sua base teórica

é solidamente apoiada na teoria da relatividade geral1 (TRG), que fornece

uma descrição quantitativa da estrutura geométrica do espaço-tempo [48].

Tal estrutura é determinada pela distribuição de matéria do universo e tem

suas relações matemáticas descrita pelas equações de Einstein.

O objetivo principal da Cosmologia é construir modelos matemáticos

que sejam consistentes com os resultados das observações astronômicas.

Atualmente, a maioria dos dados cosmológicos podem ser interpretados

dentro de uma estrutura coerente conhecida como o modelo cosmológico

padrão, o qual é baseado na teoria do Big Bang e no paradigma

inflacionário. Sabe-se que o presente status do modelo cosmológico padrão

é fortemente suportado por quatro grandes pilares, a saber, (i) existe

uma estrutura teórica baseada na teoria relatividade geral estabelecida por

1A teoria da Relatividade Geral é uma teoria relativ́ıstica para o campo gravitacional e foi formulada
por Einstein no começo do século 20 como uma extensão natural da Relatividade Especial afim de
incorporar os sistemas gravitacionais (acelerados).
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Einstein e Friedmann nos anos vinte [49], (ii) a descoberta da expansão

universal por Edwin Hubble no final da década de vinte [50], (iii) a

abundância relativa de elementos leves explicada por Gamov nos anos

quarenta2 [51], e finalmente, (iv) a descoberta da radiação cósmica de

fundo por Penzias e Wilson em 1965 [52]. Esse fundo de radiação cósmica

constitui o remanescente de uma fase extremamente densa e quente (Big

Bang) e reforçou consideravelmente a estrutura teórica e a confiança no

modelo cosmológico padrão.

Sabe-se hoje que a história do universo é dividida basicamente em quatro

fases. Inicialmente, existe uma fase inflacionária caracterizada por uma

dominação na densidade de energia de um campo escalar (φ). Em seguida,

devido as oscilações deste campo, e consequentemente o decaimento em

fótons3, ocorre uma fase dominada por radiação (part́ıculas relativ́ısticas).

Posteriormente, à medida que o universo esfria, ocorre uma fase dominada

por matéria que se extende até por volta do redshift z ∼ 1, quando o

universo passa a ser dominado pela energia escura e entra no presente

regime acelerado.

No presente caṕıtulo abordaremos, em linhas gerais, as propriedades

f́ısicas descrevendo o modelo cosmológico padrão e as recentes descobertas

que conduziram a idéia de um universo em expasão.

1.2 Modelos Cosmológicos do Tipo FRW

Teoricamente, a nossa compreensão atual sobre a evolução do universo

é baseado nos chamados modelos cosmológicos de Friedmann-Robertson-

Walker (FRW), que compreende uma classe de modelos onde a história do

2Os estudos de Gamov e colaboradores sugeriram, pela primeira vez, a possibilidade de todos os
elementos qúımicos terem sido formados no universo primitivo.

3Logo após a a expansão provocada pelo regime inflacionário, a temperatura do universo decai
consideravelmente, de modo que o campo escalar φ deve oscilar coerentemente em torno do seu valor
mı́nimo produzindo fótons para reaquecer o universo.
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universo começa a partir de uma grande explosão, comumente denominada

na literatura de Big Bang (palavra inglesa para designar uma grande

explosão).

A dinâmica do universo e os modelos acima mencionados nascem

das equações de campo da relatividade geral, também conhecidas como

equações de Einstein, as quais, são escritas na forma

Rμν − 1

2
Rgμν = 8πGTμν, (1.1)

onde Rμν é o tensor de Ricci definido por Rμν = Rλ
μλν, R = Rμ

μ é o escalar

de curvatura, Tμν é o tensor de energia-momento dos campos de matéria e

G é a constante de Newton da gravitação.

As equações acima estabelecem um compromisso entre a distribuição

de matéria do universo e a métrica que o mesmo deve satisfazer.

Essencialmente, as soluções desse conjunto de equações diferenciais não-

lineares e acopladas são extremamente dif́ıceis de se resolver sem que

nenhum insight seja dado a priori. Contudo, Einstein e Friedmann

sugeriram que uma hipótese fundamental deveria ser justificada em termos

das simetrias do universo, ou seja, quando observado em larga escala, o

universo deveria ser homogêneo e isotrópico4.

Esta hipótese junto com as equações de campo da Relatividade Geral,

equações (1.1), fornecem o elemento de linha (métrica) do espaço-tempo

conhecido na literatura como elemento de linha de Friedmann-Robertson-

Walker (FRW) [48, 53]

ds2 = c2dt2 − R2(t)

⎡
⎣ dr2

1 − kr2 + r2(sin2 θdθ2 + dφ2)

⎤
⎦ (1.2)

onde (r, θ, φ) são as coordenadas da hipersuperf́ıcie espacial, t é o tempo

cósmico, R(t) denota o fator de escala do universo e k (= 0,±1) descreve
4Em cosmologia, esta hipótese é conhecida como prinćıpio cosmológico e tem importância fundamental

para se obter as soluções das equações de campo da Relatividade Geral, a saber, o conjunto de equações
diferenciais e acopladas (1.1).
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o ı́ndice de curvatura da hipersuperf́ıcie. Os modelos com com k positivo,

negativo ou nulo são denominados, respectivamente, fechados (eĺıpticos),

abertos (hiperbólicos) ou planos (parabólicos).

Qualitativamente, as equações de campo escritas na forma (1.1) indicam

a forma pela qual a presença da matéria deve afetar a geometria do universo

e vice-versa. Dito de outra forma, como o conteúdo energético do espaço-

tempo deve satisfazer as leis de conservação, tendo em vista a sua relação

com as quantidades geométricas que são automaticamente conservadas.

Para ser consistente com a hipótese de homogeneidade e isotropia

mencionado acima, o conteúdo material do universo em larga escala é

descrito por um fluido perfeito satisfazendo um tensor de energia-momento

Tμν = (ρ + p)uμuν − pgμν, (1.3)

onde ρ é a densidade de energia e p é a pressão do fluido medidas no

referencial quadrimensional comóvel (uμuν = 1).

Utilizando o tensor de energia-momento dado acima, as equações (1.1)

assumem a seguinte forma

8πGρ = 3
Ṙ2

R2 + 3
k

R2 , (1.4)

8πGp = −2
R̈

R
− Ṙ2

R2 − k

R2 (1.5)

que são as equações governando a evolução do fator de escala cósmica

num universo preenchido por um fluido perfeito tal como descrito por

(1.3). Combinando o conjunto de equações acima, ou equivalentemente,

projetando a divergêcia do tensor de energia-momento (1.3), na direção

de uma quadrivelocidade (uμT
μν
;ν = 0), obtemos a lei de conservação da

energia

ρ̇ + 3H(t)(ρ + p) = 0, (1.6)

onde H = Ṙ/R é o parâmetro de Hubble medindo a taxa de variação do
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volume do universo5. A equação de conservação (1.6) também pode ser

reescrita na seguinte forma

d(ρR3) = −pd(R3). (1.7)

O significado f́ısico desta equação é muito claro: ela nos diz que a mudança

na densidade de energia de um elemento de volume comóvel d(ρR3), é igual

a menos a pressão vezes a mudança no volume.

Conforme mencionado antes, no contexto do modelo cosmológico

padrão, o conteúdo de matéria do universo é representado por um fluido

perfeito, satisfazendo o tensor de energia-momento descrito por (1.3).

Neste caso, é usualmente assumido que tal fluido satisfaz uma equação

de estado escrita na forma

p = (γ − 1)ρ, (1.8)

onde o parâmetro γ caracteriza os diversos estágios da evolução cósmica.

De um modo geral, argumentos teóricos [55] restrigem o parâmetro γ ao

intervalo [0, 2].

Como pode ser facilmente observado, inserindo a equação de estado

acima na lei de conservação da energia (1.6), obtemos a solução geral para

qualquer era cósmica

ρ(t) = ρ0

(
R

R0

)−3γ

, (1.9)

onde as quantidades com ı́ndice zero se referem aos valores atuais. Alguns

casos interessantes podem ser obtidos da expressão acima. Em particular, o

caso limite γ = 0 e γ = 2 delimita os regimes de estado de vácuo (constante

cosmológica) e stiff matter, uma espécie de matéria extremamente ŕıgida,

comumente conhecida na literatura como matéria de Zeldovich. Outro

regime interessante é obtido quando consideramos que a densidade de
5O valor atual do parâmetro de Hubble medidos pelo HST Key Project é Ho = (72±8) km Mpc−1s−1 e

pelo WMAP é Ho = 73, 4+2,8
−3,8 km Mpc−1s−1. Para mais detalhes sobre o corrente status na determinação

do parâmetro de Hubble, veja a referência [54].
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matéria do universo em média é da ordem de 10−30kg/cm3, ou seja, o

fluido é muito denso e pode ser descrito por uma matéria não relativ́ıstica

sem pressão (γ = 1). Com isso, de (1.9) obtemos

ρm(t) ∼ R−3, (1.10)

sendo ρm(t) a densidade de energia da matéria. Para o caso de universo

dominado por radiação (estágios iniciais), teremos γ = 4/3, e de (1.9) segue

imediatamente que

ρr(t) ∼ R−4, (1.11)

onde estamos considerando que ρr(t) é a densidade de energia da radiação.

1.3 Acerelação em altos redshift’s: Inflação

A descrição básica do que atualmente chamamos de inflação, é baseada na

idéia de que existiu uma época na qual a densidade de energia do vácuo

foi a componente dominante no universo. Como o próprio nome sugere,

inflação corresponde a uma era cósmica na qual o universo sofreu uma

transição de fase que gerou um estágio de expansão acelerada. Durante esse

regime, é usualmente suposto que a expansão do universo é dirigida por um

campo escalar φ(t) rolando lentamente em busca do valor mı́nimo do seu

potencial (regime slow roll). Do ponto de vista da cosmologia moderna, a

necessidade de um modelo inflacionário é de importância fundamental para

resolver algumas inconsistências presente no modelo cosmológico padrão.

Os primeiros desenvolvimentos da cosmologia inflacionária iniciou-se

ainda nos anos 70, com a descoberta de que a densidade de energia de um

campo escalar poderia ser interpretada como uma espécie de energia do

vácuo ou constante cosmológica [56]. Entretanto, o primeiro modelo com

uma motivação simples e realista, capaz de explicar propriedades tais como

homogeneidade e isotropia espacial só foi obtido no começo dos anos 80 e é
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popularmente conhecido como velho cenário inflacionário [62]. Desde a sua

construção há cerca de três décadas, o parad́ıgma inflacionário tornou-se

um modelo universalmente viável para resolver alguns problemas presentes

no modelo cosmológico padrão, tal como já mencionado acima.

Atualmente, o parad́ıgma inflacionário compreende uma extensa classe

de modelos que se destacam na literatura, dentre os quais podemos citar o

modelo original, comumente conhecido como velho cenário inflacionário

[57, 58, 62], modelos de inflação caótica [59], novo cenário inflacionŕio

[60, 61, 66, 63, 64], inflação natural [67], inflação h́ıbrida [68], inflação

quintessencial [69], inflação estocástica [70, 71, 72, 73, 74] e, mais

recentemente, os modelos de inflação morna proposto originalmente por

Berera [75, 76].

Seja qual for a versão, todas elas remetem ao mesmo significado f́ısico,

ou seja, um estágio de expansão acelerada do fator de escala cósmica. De

acordo com estes modelos, inflação é um expansão exponencial do universo

emergindo de um estado de falso vácuo, que corresponde a um estado meta-

estável sem part́ıculas ou campos, no entanto com um alto valor da energia

[77, 78]. Quando a inflação é vista como uma dinâmica do campo escalar, a

equação de estado relacionando as densidades de energia e pressão é dada

por pφ = ωρφ, ou equivalentemente,

ω =
pφ

ρφ
. (1.12)

Sabendo que as densidades de energia e pressão são escritas como pφ =

(1/2)φ̇2 − V (φ) e ρφ = (1/2)φ̇2 + V (φ), vemos portanto que quando o

termo de potencial (V (φ)) predomina sobre o termo cinético (φ̇2) teremos

ω = −1, ou seja, a expansão do universo é acelerada e o comportamento é

semelhante ao de uma constante cosmológica.

Na seção seguinte, veremos que o regime de aceleração atual do universo

(aceleração em baixos redshifts) pode ser explicado à luz de alguns
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candidatos a energia escura, tais como campo escalar (descrição semelhante

ao da inflação), constante cosmnológica, matéria-X e gás de Chapligyn.

1.4 Aceleração em Baixos Redshifts: Energia Escura

Em 1998, alguns resultados baseado nas observações de supernova tipo

Ia, publicados independentemente por dois grupos diferentes (Supernova

Cosmology Projet e High-z Supernova Search)6 mudaram drasticamente a

nossa visão sobre o status atual do universo [10, 11]. Os estudos realizados

por tais grupos conclúıram que o universo está expandindo de forma

acelerada, diferentemente do que se acreditava durante várias décadas.

Desde as primeiras publicações em 1998, recentemente o acúmulo de dados

obtidos através dos experimentos de supernova Ia têm reproduzido uma

extensa coleção de trabalhos na literatura sobre o assunto, sendo que que

todos eles confirmam, de forma cada vez mais precisa, a existência da

expansão acelerada do universo [79, 80, 81, 82].

Implicitamente, para explicar a aceleração atual, o experimento baseado

nas obervações de supernova Ia sugerem que a densidade de energia do

universo é repulsiva e aparece como uma componente de energia escura,

ou seja, uma forma desconhecida de energia com uma pressão negativa.

Essa idéia traz consequências que podem ser justificada através de um

formalismo termodinâmivo. Como é bem conhecido, o efeito da viscosidade

gerada pela expansão do universo tráz como consequência imediata a

diminuição da pressão efetiva. Em prinćıpio, tal efeito simula uma equação

de estado entre energia e pressão da seguinte forma: pef = −ρ, onde ρ é a

densidade de energia do universo e pef é a pressão termodinâmica.

A existência desta componente desconhecida de energia desconhecida

também pode ser confirmada independentemente (de forma indireta) pelos

6Os sites na web desses dois projetos são: http://supernova.LBL.gov e
http://cfa-www.harvard.edu/supernova.
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estudos baseado nas flutuação da radiação cósmica de fundo (mantida à

temperatura de 3k) [83], estrutura de larga escala [84], idade de objetos em

altos redshifts [85], além de experimentos de raios-x obtidos de aglomerados

de galáxias [86]. Atualmente, o espectro de potência angular das flutuações

no background de micro-onda cósmica favorece um modelo com parâmetro

de densidade Ωtotal = 1, um valor já previsto pela inflação, enquanto

o parâmetro de densidade associado a matéria escura é Ωm ∼ 0, 3. A

diferença ΩEE = Ωtotal − Ωm ∼ 0, 7, que corresponde ao parâmetro de

densidade associada a componente de energia escura.

Embora a energia escura mude a nossa visão tradicional sobre o universo,

a ausência de um guia natural da teoria de f́ısica de part́ıculas sobre a

sua natureza dá origem a um intenso debate na literatura, bem como

a muitas especulações teóricas. Nas subseções seguintes, faremos uma

pequena discussão sobre cada um dos posśıveis candidatos a energia escura.

1.4.1 Constante Cosmológica

A idéia de descrever essa componente desconhecida de energia através de

uma constante cosmológica (Λ = Energia do Vácuo), vem a ser o mais

antigo e mais natural candidato, já que a sua descrição é a mais simples

do ponto de vista matemático, mas não a única possibilidade.

Historicamente, o termo Λ foi introduzido originalmente por Einstein

em 1917 numa tentativa de obter um modelo cosmológico estático, o qual

era baseado na relatividade geral e no prinćıpio cosmológico [87]. Neste

caso, a constante cosmológica Λ corresponde a uma componente escura

espacialmente uniforme e independente do tempo, que deve ser interpretada

classicamente como um fluido perfeito simples obedecendo uma equação de

estado pv = −ρv.

Classicamente, entende-se como vácuo, uma regiaão do espaço

desprovida de matéria, radiação ou qualquer outra forma de energia,
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gerando assim um tensor de energia momento identicamente nulo (T μν
V ≡

0). Entretanto, do ponto de vista da teoria quântica de campos, para cada

campo quântico deve existir o seu estado de vácuo no qual a sua energia é

mı́nima. Sendo assim, devido as relações de incertezas, os campos quânticos

flutuam em torno do valor zero, mesmo na ausência de part́ıculas e só

podem ser considerados nulos quando se tomam os seus valores médios.

A existência das flutuações de vácuo se justificam por vários fenômenos

quânticos, dentre os quais, o deslocamento das linhas espectrais do átomo

de hidrogênio (Lamb Shift) e o efeito casimir7 (Casimir Effect) [88, 89].

Formalmente, do ponto de vista da teoria quântica de campos, a

presença de Λ é devido a energia de ponto zero de todas as part́ıculas

e campos preenchendo o universo. Sendo assim, o vácuo de um campo

quântico pode ser tratado como um conjunto infinito de osciladores

harmônicos independentes, cada um deles no estado fundamental,

contribuindo com suas próprias oscilações de ponto zero [91]. Neste caso,

cada modo de vibração de um dado campo quântico contribui com 1
2h̄ω para

a energia total. Entretanto, existe um problema fundamental relacionado

ao candidato Λ que é usualmente conhecido na literatura moderna como o

problema da constante cosmológica [90]. A justificativa para este eńıgma

vem do fato de que a expectativa teórica prever um valor Λ ∼ 1071GeV 4,

enquanto que o limite cosmológico sugere um valor Λ ∼ 10−47GeV 4. Vemos

portanto, que existe uma diferença ∼ 10120 ordens de grandeza entre os dois

limites. Este problema localizado na interface da cosmologia, astrof́ısica

e a teoria quântica de campos tem sido considerado por alguns autores

como a maior crise da f́ısica moderna [90, 91]. A possibilidade de que

uma constante cosmológica seja um candidato convincente para explicar a

expansão acelerada do universo tem inspirado vários autores e reproduzido

7O efeito Casimir é amplamente conhecido pela força que surge entre duas placas planas e condutoras
dispostas paralelarmente e imersas num vácuo a uma distância l.
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uma intensa coleção de reviews na literatura [92, 16, 17]. Para uma revisão

um pouco mais detalhada, veja como exemplo, as referências [18, 19]. Por

ora, proseguiremos examinando outras possibilidades que podem explicar

a atual aceleração do universo.

1.4.2 Campo Escalar

Talvez a maneita mais simples e natural de descrever a componente de

energia escura responsável pela atual aceleração do universo seja através

de um campo escalar primordial [24, 25, 26, 2]. Para o caso de um universo

em expansão, um campo escalar espacialmente homogêneo com potencial

V (φ) e minimamente acoplado com a gravidade obedece a seguinte equação

de movimento [93]

φ̈ + 3Hφ̇ + V ′(φ) = 0, (1.13)

onde o ponto (·) significa derivada em relação ao tempo e linha (′)

indica derivadas com respeito ao campo φ. Como vemos, a equação

acima é semelhante a um sistema clássico com a taxa de expansão 3H

desempenhado o papel de uma viscosidade. As densidades de energia e

pressão do associada ao campo φ são dados respectivamente por

ρφ =
1

2
φ̇2 + V (φ) (1.14)

pφ =
1

2
φ̇2 − V (φ). (1.15)

Assumindo uma equação de estado da forma p = ωρ, vemos que

ω =
pφ

ρφ
=

1
2φ̇

2 − V (φ)
1
2φ̇

2 + V (φ)
. (1.16)

Note que, se o campo varia lentamente o termo de potencial é dominante,

ou seja, teremos V (φ) >> 1
2φ̇

2, o que implica em ω ∼ −1. Sendo assim,

o comportamento do campo escalar é semelhante ao de uma constante

cosmológica tal como discutido na subseção acima.
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1.4.3 Gás de Chapligyn

A primeira tentativa de explicar a expansão acelerada do universo

através de um gás do tipo Chapligyn foi introduzido originalmente por

Kamenshichik em 2001 [94]. Este modelo foi desenvolvido com mais

detalhes logo depois por Bilic et al. [95], Bento et all [27] e Benaoum [28].

Em geral, essa variante tem sido proposta como uma descrição unificada

de modelos contendo matéria escura e energia escura. Esta componente de

fluido exótico pode ser caracterizada macroscopicamente por uma equação

de estado da forma

pc = −A/ρα
ch, (1.17)

onde A é uma constante positiva e α é um parâmetro pertencente ao

intervalo [0, 1]. Nesta expressão, o parâmetro α �= 1 representa uma

generalização da expressão original (α = 1) proposta por Kamenshichik

[94], enquanto para α = 0 ela descreve um modelo com constante

cosmológica (ΛCDM).

Recentemente, a possibilidade de unificar o setor escuro cosmológico

por meio de um gás do tipo Chapligyn com equação de estado (1.17),

tem recebido considerável atenção na literatura, veja por exemplo, as

referêcias [29, 30, 96, 97]. Em particular, o caṕıtulo VIII desta tese é

dedicada ao estudo da aceleração cósmica utilizando os modelos de gás de

Chapligyn aqui citados. Os resultados básicos do nosso estudo inclui o

cálculo do parâmetro de desaceleração como uma função do redshift q(z)

nos casos de quintessência e quartessência, bem como o cálculo da evolução

da temperatura. Os resultados básicos estão discutidos com mais detalhes

na referência [98].

A dinâmica do gás de Chapligyn é discutida com mais detalhes no

caṕııtulo VIII. Por ora, mostraremos apenas que a densidade de energia

obtida via lei de conservação
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ρ̇C + 3
Ṙ

R
(ρC + pC) = 0 (1.18)

é dada por

ρC =

⎡
⎣A + B

(
R0

R

)3(1+α)⎤⎦
1

1+α

, (1.19)

ou equivalentemente,

ρC = ρC0

⎡
⎣As + (1 − As)

(
R0

R

)3(1+α)⎤⎦
1

1+α

, (1.20)

onde ρC0
é a densidade de energia atual e As = A/ρ1+α

C0
é uma quantidade

relacionada com o atual valor da velocidade do som no gás, veja por

exemplo a referência [97]. Como pode ser visto da equação (1.19), o gás de

Chapligyn aqui discutido delimita dois regimes teóricos, a saber, matéria

não relativ́ıstica

ρC(R → 0) �
√

B

R3 (1.21)

e energia escura

ρC(R → ∞) �
√

A. (1.22)

Tal comportamento motivou vários autores a proporem um sistema

unificado para tentar descrever a natureza do setor escuro cosmológico.

Muitas previsões deste modelo já foram confrontadas com alguns resultados

observacionais. Em particular, mostraremos no caṕıtulo VIII que usando

diagrama de magnitude de supernovas Ia, os v́ınculos sobre o parâmetro

α para o caso de quartessência sugerem um valor 0.70 ≤ α ≤ 0.89 [98].

Outras previsões já foram confrontadas por diversos autores, como exemplo

veja as referências [99, 100, 101, 102].

1.4.4 matéria-X

Primeiramente introduzida por Turner e White [31] em 1997, a

possibilidade de explicar a aceleração corrente à luz de uma matéria-X
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tem recebido considerável atenção na literatura. Tal matéria é descrita

pela equaçõa de estado

px = ωρx, (1.23)

onde ω é um parâmetro livre. Como pode ser visto, para o valor particular

ω = −1 temos como caso limite uma constante cosmológica (p = −ρ),

que é uma condição necessária e suficiente para acelerar o universo. Em

geral, o intervalo relevante para o parâmetro ω situa-se entre [0,−1].

Fisicamente, este intervalo delimita dois regimes teóricos, ou seja, para

ω = 0 a dinâmica do universo é determinada pela matéria escura (fluido

sem pressão) enquanto que para ω = −1 a dinâmica é determinada

por uma constante cosmológica. Entretanto, alguns trabalhos publicados

recentemente na literatura consideram a possibilidade ω < −1 [103, 104].

Esta condição implica que os modelos de matéria-X podem ser divididos

em duas categorias, a saber, o modelo padrão onde −1 ≤ ω ≤ 0 e o modelo

de matéria-X estendido com ω < −1. Este último é comumente chamado

na literatura de modelo Phantom Energy [22, 21], palavra inglesa para

denominar energia fantasma.

Uma variante destes modelos de matéria-X (XCDM) considera ainda

a possibilidade do parâmetro ω assumir uma dependência temporal ou,

equivalentemente, uma função do redshift, px = ω(z)ρx. Isso significa que

os modelos com ω constante sãos os mais simples e seus parâmetros livres

são basicamente dois (Ωx, ω), tornando assim o modelo mais facilmente

limitado pelos teste cosmológicos. Quanto a dependência funcional de ω,

geralmente ela é assumida apriori e varia com alguma potência do redshift,

vejamos como exemplo o caso ω(z) = ω0(1 + z)n [105].

A descrição dinâmica dos modelos dirigidos por matéria-X é baseada

numa soma de dois fluidos perfeitos. O primeiro representando a

componente dominante, que no caso seria a matéria-X, e o segundo é um
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fluido ordinário representando radiação ou matéria. O tensor de energia

momento representando cada uma das componente por ser escrito na forma

Tαβ = (px + ρx)uαuβ − pxgαβ (1.24)

Tαβ = (p + ρ)uαuβ − pgαβ (1.25)

onde px e ρx, p e ρ, representa, respectivamente, a densidade de energia e

pressão de cada uma das componentes. As equações de Einstein para esta

componente escura podem ser escritas como

8πG(ρ + ρx) = 3
Ṙ2

R2 + 3
k

R2 (1.26)

8πG(p + px) = −2
R̈

R
− Ṙ2

R2 − k

R2 . (1.27)

Além disso, considerando que cada componente é conservada separada-

mente, teremos ainda:

ρ̇x + 3
Ṙ

R
(px + ρx) = 0 (1.28)

e

ρ̇ + 3
Ṙ

R
(p + ρ) = 0. (1.29)

Considerando que a matéria-X (componente dominante) satisfaz a equação

de estado (1.23) com ω constante e a outra componente de fluido

satisfazendo uma equação de estado do tipo (lei gamma)

p = (γ − 1)ρ, (1.30)

as equações de campo (1.26) - (1.27) podem ser facilmente integradas e

obtemos como resultado:

ργ = ργ0

(
R

R0

)−3γ

e ρx = ρx0

(
R

R0

)−3(1+ω)

, (1.31)
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sendo ργ0
e ρx0

os valores atuais de cada uma das componentes. Note

que na fase atual, onde o fluido ordinário é a matéria escura (γ = 1), as

equações acima podem ser reescritas como

ρm ∼ R−3 e ρx ∼ R−3(1+ω), (1.32)

desde que ρm(t) seja a densidade de energia da matéria e ρx(t) a densidade

de energia da matéria-X. Note que os regimes de matéria (ρm ∼ R−3)

e radiação (ρr ∼ R−4) não modificam a lei de escala da matéria-X.

Fisicamente, isso nos mostra que se o parâmetro ω for negativo, a

matéria-X começou a dominar recentemente, resultado esse que mantém

os processos f́ısicos na era da radiação tal como a nucleośıntese primordial.

É interessante notar também que, no caso ω = −1 temos px = −ρx, ou

seja, este caso extremo descreve uma constante cosmológica e atua como

uma fronteira para comparar a consistência do modelo. Como vemos, essas

considerações justificam o valor −1 < ω < 0 para o parâmetro da equação

de estado da matéria-X. Entretanto, também é interessante saber qual o

valor cŕıtico do parâmetro ω para o qual teremos um universo acelerado.

Para esclarecer este ponto, note que uma combinação das duas equações

de Einstein, equação (1.26) e (1.27), implica na seguinte expressão para a

aceleração

R̈ = −4πG

3
[ρ + ρx + 3(p + px)]R. (1.33)

A expressão acima nos mostra que, teremos um modelo acelerado (R̈ > 0)

somente se a mistura dos dois fluido violar a condição de energia forte8

ρ + ρx + 3(p + px) < 0, ou equivalentemente,

ρ + 3p + (1 + 3ω)ρx < 0. (1.34)

Para o caso de matéria (p = 0), o parâmetro da equação de estado da

8Esta condição para o caso de uma mistura de dois fluidos perfeito implica que ρ + ρx + 3(p + px) ≥ 0
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matéria-X obtido da expressão acima é

ω < −1

3

[
1 +

ρm

ρx

]
, (1.35)

que independe do parâmetro de curvatura do modelo. Como vemos, a

imposição de um modelo acelerado será satisfeita somente se

ω < −1

3

[
1 +

Ωm

Ωx

]
. (1.36)

Utilizando uma combinação elementar das equações de campo (1.26)

e (1.27) juntamente com as definições dos parâmetros cosmológicos

básicos9 podemos mostrar facilmente que os parâmetros de curvatura e

desaceleração podem ser escritos como

k

H2
0 t

2
0

= Ωm + Ωx − 1 (1.37)

e

q0 =
1

2
[Ωm + (1 + 3ω)Ωx] , (1.38)

sendo Ωx o parâmetro de densidade da matéria-X. Além do mais,

utilizando uma combinação das equações de campo (1.26) e (1.27), e as

mesmas definições dos parâmetros cosmológicos, é fácil mostrar que a

integral primeira para o caso plano pode ser escrita como

H2 = H2
0

⎡
⎣Ωm

(
R0

R

)3

+ Ωx

(
R0

R

)3(1+ω)⎤⎦ . (1.39)

Portanto, os testes que discutem essa classe de modelos são de alguma

forma, baseado na equação acima.

Como uma aplicação do formalismos geral discutido aqui, dedicaremos

o caṕıtulo VII desta tese ao cálculo do potencial de campo escalar

que ao mesmo tempo é compat́ıvel com os modelos de matéria-X

9O parâmetro de densidade da matéria é definido por Ωm = (ρm/ρc) onde ρc é a densidade cŕıtica
definida por ρc = 3H2

0/8πG. Similarmente, o parâmetro de densidade da matéria-X é definido por
Ωx = (ρx/ρc), enquanto que o parâmetro de desaceleração é q0 = − R̈R

Ṙ2 .
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aqui apresentados. Mostraremos que, se a matéria-X interage apenas

gravitacionalmente, ou seja, se nao existe transferência de energia e

processos de decaimento, somente uma classe restrita de potenciais é

matematicamente permitida e o conjunto completo das soluções será

determinada por este novo método. Em particular, mostraremos que o

potencial V (φ) para o caso de uma mistura contendo um fluido perfeito

mais uma componente de matéria-X pode ser escrito como [106]

V (φ) =
1 − ω

2
ρφ0

⎛
⎝Ωφ0

Ωγ0

⎞
⎠

1+ω
γ−ω−1

sinh− 2(1+ω)
γ−ω−1

⎡
⎣3(γ − ω − 1)

√
8π

2
√

3(1 + ω)

φ

mpl

⎤
⎦ , (1.40)

onde γ e ω são os parâmetros da equação de estado para o fluido

relativ́ıstico e a matéria-X, ρφ0
e Ωφ0

são os valores atuais do parâmetro

de densidade e densidade de energia do campo escalar.
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Caṕıtulo 2

Movimento Browniano: Algumas

Abordagens

2.1 Introdução

O movimento irregular de pequenas part́ıculas imersas numa solução

foi originalmente observado em 1928 pelo botânico inglês Robert Brown

[107]. Ele notou que as part́ıculas em suspensão adquiriam uma espécie

de movimento errático que posteriormente ficaria popularmente conhecido

pelo nome de movimento browniano (MB).

Nas décadas seguintes, inúmeras tentativas foram realizadas para

desvendar a natureza do movimento browniano. Experimentos de

laboratório mostraram que o movimento fica mais intenso quando se

reduz a viscosidade do meio ou o tamanho das part́ıculas brownianas, e

também quando se eleva a temperatura da solução. Muitas causas posśıveis

foram aos poucos sendo eliminadas, tais como: atrações ou repulsões

entre as part́ıculas suspensas, ações capilares ou higrométricas, bolhas

temporárias de ar, correntes de conveção no interior da solução, gradientes

de temperatura ou algum tipo de perturbação mecânica, além de outros

tipos de instabilidades no fluido.

Somente a partir de 1860 começou a tomar forma o ponto de vista
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moderno de que o zigue-zague das part́ıculas brownianas poderia ser devido

às colisões com as moléculas do fluido. Verificou-se que suas trajetórias

não apresentavam tangentes (ou seja, as curvas não seriam diferenciáveis),

e também que o movimento randômico aparentemente nunca cessava. No

entanto, a verdadeira causa do fenômeno permaneceu um mistério até 1905,

quando finalmente foi elucidado por Einstein no seu artigo de 1905 [44].

O tratamento de Einstein para o MB é um dos trabalhos intelectuais

mais notáveis de todos os tempos. Sua solução representou um grande

avanço cient́ıfico nos campos da Qúımica e da F́ısica, tornando a teoria

atômico-molecular uma parte fundamental da estrutura da matéria. Como

uma espécie de bônus extra, o tratamento de Einstein também forneceu

uma estimativa do número de Avogadro que foi verificada, com grande

precisão, nos experimentos efetuados por Jean Perrin [108].

Posteriormente, um esforço considerável foi canalizado por muitos

autores para generalizar e compreender o tratamento de Einstein.

Importantes contribuições foram dadas por Smoluchowski [109], Langevin

[110], Fokker [111], Burger [112], Fürther [113], Ornstein [114], Planck

[115], Kac [47] e muitos outros.

Atualmente, o movimento browniano permanece na fronteira da

pesquisa como um exemplo importante de processo estocástico, e constitui

uma ferramenta fundamental para o estudo de sistemas f́ısicos de não

equiĺıbrio. Tais sistemas são encontrados em diferentes áreas da f́ısica,

desde o ńıvel microscópico, como verificado na difusão de part́ıculas num

solvente, até escalas de ordem astronômicas, tal como observado em

sistemas estelares [116]. Um exemplo interessante desse último tipo é

representado por um Buraco Negro (BN) no centro de um sistema estelar

denso. Teoricamente, quando sua massa é muito grande, o BN pode

adquirir um movimento que é semelhante ao de uma part́ıcula em suspensão

num ĺıquido ou num gás [43]. Em cosmologia, movimentos brownianos com
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Figura 2.1: A figura acima (publicada por J. Perrin) mostra a trajetória de uma part́ıcula

executando movimento browniano. O movimento é extremamente irregular (a trajetória

praticamente não apresenta tangentes), sendo mais ativo para temperaturas mais altas

ou em fluidos menos viscosos. Observando-se uma mesma amostra por aproximadamente

20 anos concluiu-se que o movimento nunca cessa.
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barreiras fixas ou móveis são também bastante empregados para estudar

os processos de formaccão da estrutura de larga escala, tais como galáxias,

aglomerados de galáxias e vazios [117]. Mais recentemente, outros tipos

de contribuições foram obtidas na investigação de sistemas com memória,

objetivando estabelecer relações entre os regimes de difusão anômala e

normal [118].

No presente caṕıtulo, mostraremos como é posśıvel abordar o movimento

browniano de quatro maneiras distintas, a saber: o tratamento difusivo de

Einstein, o procedimento estocástico ou de força flutuante proposto por

Paul Langevin, a abordagem via equação de Fokker-Planck, e finalmente,

as caminhadas aleatórias de Mark Kac [47]. Discutiremos também com

bastante detalhe, as limitações presentes na abordagem difusiva. Em

particular, mostraremos que a equação parabólica na qual Einstein baseou

sua explicação deve ser substitúıda por uma equação do tipo hiperbólica

que também surge naturalmente no tratamento via caminhadas aleatórias.

Para ser mais preciso, as abordagens discutidas neste caṕıtulo estão

delineadas com detalhes na referência [119].

2.2 MB e Equação de Difusão: O Tratamento de

Einstein

Para estudar o comportamento irregular das part́ıculas em suspensão

que surge devido aos movimentos moleculares térmicos, suporemos que

cada part́ıcula executa um movimento completamente independente das

outras part́ıculas. Como veremos, essa hipótese é válida somente se os

intervalos de tempos considerados não são demasiadamente pequenos.

Seguindo o formalismo de Einstein [44], consideraremos um intervalo de

tempo τ , que é pequeno em comparação com o tempo de observação,

porém suficientemente longo, para que os movimentos executados por
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diferentes part́ıculas neste intervalo de tempo possam ser considerados

eventos independentes.

Suponhamos que existam N part́ıculas em suspensão no ĺıquido. No

intervalo de tempo τ , as coordenadas x das part́ıculas variam de Δx = μ,

onde μ pode assumir valores diferentes (positivo ou negativo) para cada

part́ıcula. Uma determinada lei de distribuição de probabilidades deve ser

satisfeita pela variável μ: A fração de part́ıculas que sofre um deslocamento

entre x e x+μ no intervalo de tempo τ , pode ser expressa por uma equação

da forma [44]

dN/N = φ(μ)dμ (2.1)

com a distribuição φ(μ) satisfazendo a condição de normalização

∫ +∞
−∞ φ(μ)dμ = 1 (2.2)

onde φ(μ) é uma função par, φ(μ) = φ(−μ), suposta diferente de zero

apenas para pequenos valores de μ. Considere também que η(x, t) é

o número de part́ıculas por unidade de comprimento, e calculemos a

distribuição de part́ıculas no instante t + τ , a partir da distribuição delas

no instante t. Pela definição da função φ(μ), o número de part́ıculas que

no instante t + τ se encontram entre x e x + μ, é dado por:

η(x, t + τ)dx = dx
∫ μ=+∞
μ=−∞ η(x + μ, t)φ(μ)dμ. (2.3)

Como τ é muito pequeno, podemos fazer uma expansão temporal de η até

segunda ordem1

η(x, t + τ) ∼= η(x, t) + τ
∂η(x, t)

∂t
+

τ 2

2

∂η2(x, t)

∂t2
+ ... (2.4)

1Einstein obteve seus resultados fazendo a expansão no tempo somente até primeira ordem [?]. Por
razões que serão discutidas adiante, consideraremos termos até segunda ordem em τ na expansão da
função η(x, t).
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e como μ também é pequeno, para sermos consistentes devemos desenvolver

η(x + μ, t) em potências até segunda ordem em μ

η(x + μ, t) ∼= η(x, t) + μ
∂η(x, t)

∂x
+

μ2

2!

∂2η(x, t)

∂x2 + .... (2.5)

Inserindo os resultados acima na equação (2.3) obtemos

η+
∂η

∂t
τ +

τ 2

2

∂2η

∂t2
= η

∫ +∞
−∞ φ(μ)dμ+

∂η

∂x

∫ +∞
−∞ μφ(μ)dμ+

∂2η

∂x2

∫ +∞
−∞

μ2

2
φ(μ)dμ.

(2.6)

No lado direito dessa equação, o segundo termo é identicamente nulo uma

vez que φ(μ) = φ(−μ). Logo, considerando a equação (2.2), vemos que η

satisfaz a seguinte equação diferencial

τ

2

∂2η

∂t2
+

∂η

∂t
= D

∂2η

∂x2 (2.7)

onde definimos

D =
1

τ

∫ +∞
−∞

μ2

2
φ(μ)dμ. (2.8)

A equação (2.7) representa uma espécie de difusão generalizada. A

quantidade η(x, t) é a concentração de part́ıculas por unidade de

comprimento em torno de x num instante arbitrário e a constante D é

o coeficiente de difusão. No limite

τ
∂2η

∂t2
<<

∂η

∂t
(2.9)

a equação (2.7) se reduz para

∂η

∂t
= D

∂2η

∂x2 (2.10)

que é forma padrão da equação de difusão, na qual Einstein baseou a

sua explicação do MB. A equação (2.7) é do tipo hiperbólica e generaliza

a equação de difusão usual que é do tipo parabólica2. Na seção final

desse trabalho analisaremos a solução anaĺıtica da equação de difusão

2Uma classificação das equações diferenciais parciais pode ser vista na referência [120].
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generalizada. Por enquanto, prosseguiremos com a descrição einsteiniana

do movimento browniano.

Como um exemplo para ilustrar esse tratamento, vamos obter a solução

da equação (2.10) quando o processo difusivo satisfaz a seguinte condição

inicial

η(x, t = 0) = Nδ(x) (2.11)

onde N é o número total de part́ıculas e δ denota a função delta de Dirac.

Como seria esperado, tal condição implica que
∫ +∞
−∞ η(x, t = 0)dx =

∫ +∞
−∞ Nδ(x)dx = N. (2.12)

A solução de (2.10) pode ser facilmente obtida pela técnica das integrais

de Fourier. De acordo com esse método, a concentração pode ser definida

como

η(x, t) =
1√
2π

∫ +∞
−∞ ηk(t)e

ikxdk (2.13)

onde os coeficientes da expansão, ηk(t), são determinados pela

transformada inversa

ηk(t) =
1√
2π

∫ +∞
−∞ η(x′, t)e−ikx′

dx′. (2.14)

Calculando as derivadas temporal e espacial de η(x, t) e substituindo

suas expressões na equação de difusão (2.10), obtemos a seguinte forma

integral

1√
2π

∫ +∞
−∞ (

∂ηk

∂t
+ Dk2ηk)e

ikxdk = 0. (2.15)

Como a equação acima é válida para todo instante, seu integrando deve

ser identicamente nulo, ou seja,

∂ηk

∂t
+ Dk2ηk = 0 (2.16)
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cuja solução é da forma

ηk(t) = ηk0e
−Dk2t. (2.17)

Com este resultado, a definição (2.13) pode ser escrita como:

η(x, t) =
1√
2π

∫ +∞
−∞ ηk0e

−Dk2teikxdk. (2.18)

Por outro lado, considerando que

η(x, 0) =
1√
2π

∫ +∞
−∞ ηk0e

ikxdk (2.19)

temos para a transformada inversa

ηk0 =
1√
2π

∫ +∞
−∞ η(x′, 0)e−ikx′

dx′ (2.20)

e de (2.18) podemos escrever

η(x, t) =
1

2π

∫ +∞
−∞ η(x′, 0)dx′

∫ +∞
−∞ e−Dk2teik(x−x′)dk =

1

2π

∫ +∞
−∞ η(x′, 0)dx′

∫ +∞
−∞ e−Dk2t ×

(cos[k(x − x′)] + i sin[k(x − x′)]) dk. (2.21)

Note que a segunda parcela na expressão acima é igual a zero, pois se

trata do produto de uma função par por uma função ı́mpar, com a equação

se reduzindo para

η(x, t) =
1

2π

∫ +∞
−∞ η(x′, 0)dx′

∫ +∞
−∞ e−Dk2t cos[k(x − x′)]dk. (2.22)

A integração deste resultado é mais facilmente obtida considerando as

seguintes mudanças de variáveis: k = y, μ = x − x′ e α = Dt, com a

expressão (2.22) tomando a seguinte forma

η(x, t) =
1√

4πDt

∫ +∞
−∞ η(x′, 0)e−

(x−x′)2
4Dt dx′. (2.23)

Finalmente, observando que a condição (2.11), implica que as part́ıculas

estão inicialmente localizadas na origem, ou seja, η(x′, 0) = Nδ(x′), a

concentração pode ser escrita como

η(x, t) =
N√
4πDt

e−
x2

4Dt . (2.24)
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Figura 2.2: As curvas mostram a evolução temporal da distribuição η(x, t) no regime

difusivo unidimensional. Para tempos próximos de zero a curva sólida representa uma

função delta centrada em torno da origem x = 0. Com o passar do tempo a distribuição

evolui como uma gaussiana de largura variável. Como discutido no texto, a descrição de

Einstein é válida para tempos longos.

O resultado acima nos mostra que as part́ıculas se comportam como num

processo gaussiano difusivo. A função η(x, t) inicialmente representa uma

delta centrada em torno da origem x = 0. No entanto, à medida que o

tempo passa a distribuição evolui como uma gaussiana de largura variável

(ver Figura 2).

Tendo calculado a função η(x, t), é interessante determinar a

distribuição de probabilidade de que uma part́ıcula da amostra ocupe a

posição entre x e x + μ, quando em t = 0, iniciou seu movimento da

posição x0 com velocidade inicial v0. O conhecimento de tal função é de

fundamental importância para se calcular quantidades de interesse f́ısico,
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tais como o deslocamento quadrático médio e a variância. A distribuição

de probabilidade pode ser obtida dividindo-se a concentração pelo número

total de part́ıculas. Ou seja,

P (x, t) =
η(x, t)

N
=

1√
4πDt

e−
x2

4Dt . (2.25)

Comparando essa equação com a distribuição de probabilidades gaussiana

P (x) =
1√

2πσ2
e−

(x−<x>)2

2σ2 (2.26)

vemos que < x >= 0, enquanto para a variância temos σ2 = 2Dt.

Este resultado significa que na teoria do movimento browniano, as

grandezas fisicamente relevantes estão diretamente relacionadas com os

primeiros e os segundos momentos da distribuição, que é uma propriedade

geral da função gaussiana [120]. Tais momentos podem ser calculados da

relação:

< xn >=
∫ +∞
−∞ xnP (x, t)dx. (2.27)

Utilizando a função distribuição (2.26), o valor de < x > e σ2 podem ser

obtidos diretamente por cálculos algébricos considerando a expressão geral

acima. O primeiro momento é o deslocamento médio3

< x >=
∫ +∞
−∞

x√
4πDt

e−
x2

4Dtdx = 0. (2.28)

Seguindo a mesma prescrição, o segundo momento da distribuição é o

deslocamento quadrático médio4

< x2 >=
2√

4πDt

∫ ∞
0

x2e−
x2

4Dtdx = 2Dt (2.29)

que na teoria do MB é conhecida como relação de Einstein. O coeficiente

de difusão D na equação (2.29) deve ser uma função da temperatura e da

3O integrando de (2.28) é composto pelo produto de uma função par por uma função ı́mpar.
4Note que a

∫ +∞
−∞ xne−αx2

dx = α−n+1
2 Γ(n+1

2 ) para n par.
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geometria das part́ıculas. Einstein mostrou que para part́ıculas esféricas

de raio a, o coeficiente D pode ser calculado a partir da mobilidade b e da

temperatura do meio no qual a part́ıcula se encontra. O parâmetro b pode

ser obtido da fluidodinâmica, mais precisamente a partir da lei de Stokes

[122]. A relação satisfeita por D é:

D = kBTb =
kBT

6πβa
(2.30)

onde kB é a constante de Boltzman, T é a temperatura, β representa o

coeficiente de viscosidade do meio e b = 1/6πβa. Inserindo (2.30) em

(2.29), temos para o deslocamento quadrático médio no MB

< x2 >=
RT

3πNaβa
t. (2.31)

Note que para obtermos a forma originalmente deduzida por Einstein [?],

utilizamos o fato de que a constante de Boltzman kB pode ser escrita como

kB = R/Na, onde R é a constante universal dos gases e Na é o número de

Avogadro.

Portanto, vemos que a part́ıcula se comporta como um processo difusivo

com < x2 > ∝ t. Toda essa formulação unidimensional pode ser

consistentemente generalizada para três dimensões. Neste caso, não é dif́ıcil

demonstrar que (2.31) assume a seguinte forma [122]

< r2 >= 6kBTbt =
RT

πNaβa
t. (2.32)

É importante também mencionar que o resultado de Einstein (2.31),

ou equivalentemente, (2.32), foi um dos primeiros exemplos de uma

relação onde uma flutuação quadrática média está associada com um

processo dissipativo (descrito pelo coeficiente de viscosidade β). Além

disso, como os valores das quantidades < r2 >, t, β e a são diretamente

mensuráveis, isto significa que o número de Avogadro pode ser estimado

se tivermos um bom cronômetro e um microscópio [123]. Seguindo esse
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procedimento, Jean Perrin [108] obteve valores experimentais do desvio

quadrático médio que permitiram uma determinação mais precisa do

número de Avogadro [123, 124]. Tais resultados também contribúıram

significativamente para que a hipótese atômico-molecular tivesse aceitação

geral como uma descrição realista da matéria.

Posteriormente, Einstein observou que seus resultados apresentavam

inconsistências para tempos curtos comparados aos tempos caracteŕısticos

do sistema. Uma forma simples de perceber tais dificuldades é calculando

a “velocidade média” da part́ıcula usando a relação (2.31)

v =
d
√

<x2 >

dt
=

√√√√ RT

2πNaβa

1√
t1/2

. (2.33)

Vemos que no limite t → 0, a velocidade v → ∞, sendo esta a raiz da

dificuldade. Outra maneira fácil de compreender este problema pode ser

vista na Figura 2. Note que, para tempos próximos de zero temos uma

função δ de Dirac centrada em x = 0, mostrando que inicialmente todas as

part́ıculas estão localizadas na origem. Por outro lado, para intervalos de

tempos tão pequenos quanto se queira (t = 0+ ε), a curva é uma gaussiana

que se estende a todo espaço, indicando que as part́ıculas se difundiram

com uma velocidade infinita. Portanto, fica claro que os resultados de

Einstein só permanecem válidos para um regime de tempo suficientemente

longo em comparação a escala de tempo caracteŕıstica do sistema.

Para corrigir tais dificuldades, precisaŕıamos considerar o termo de

derivada segunda com respeito ao tempo na equação de difusão (2.10).

Em outras palavras, é importante considerar a solução anaĺıtica da equação

(2.7), já que ela incorpora naturalmente o termo ∂2η/∂t2, sugerindo que

para tempos curtos teremos uma descrição ondulatória. Discutiremos

alguns detalhes dessa abordagem na seção final. Por enquanto, vamos

proseguir examinando as diversas variantes da teoria do movimento

browniano.
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2.3 MB e Forças Flutuantes: A Visão de Langevin

Poucos anos após o trabalho de Einstein, o f́ısico francês Paul Langevin

[110], posteriormente seguido por Fürther [113], Ornstein [114] e outros

mais, iniciaram uma série de estudos tentando uma posśıvel generalização

daqueles resultados. Tal abordagem, comumente conhecida como

tratamento de Langevin, será examinada com detalhe nesta seção.

Segundo Langevin, o MB de uma part́ıcula na ausência de um campo de

força conservativo pode ser entendido com base numa equação diferencial

estocástica, agora popularmente conhecida como equação de Langevin

[110, 116, 121, 45]

dv

dt
= −βv + ξ(t) (2.34)

onde v denota a velocidade da part́ıcula. Nesta equação, a influência

do meio sobre o movimento da part́ıcula é decomposta em duas partes.

Em primeiro lugar, existe uma força que varia lentamente, F = −βv,

representando uma fricção dinâmica sobre o movimento da part́ıcula,

onde β é o coeficiente de viscosidade do meio. Existe também uma

força aleatória, ξ(t), que varia rapidamente em comparação com os

tempos de observação. Em outras palavras, ξ(t) é uma força flutuante

que é uma caracteŕıstica básica de uma equação diferencial estocástica.

Langevin definiu as propriedades dessa função por duas condições (Γ é

uma constante)

< ξ(t) >= 0 < ξ(t)ξ(t′) >= Γδ(t − t′) (2.35)

que caracterizam o chamado rúıdo branco5.

5O rúıdo é branco (“white noise”) se o espectro de potência S(ω) da função correlação < ξ(t)ξ(0) >

é independente da frequência, sendo S(ω) =
∫∞
−∞ e−iωt < ξ(t)ξ(0) > dt. No tratamento de Langevin,

< ξ(t)ξ(0) >= Γδ(t), temos S(ω) = Γ.
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Para determinar a solução anaĺıtica de (2.34), vamos primeiramente

supor uma equação de Langevin geral escrita na seguinte forma:

dv

dt
+ f(t)v = ξ(t) (2.36)

onde f(t) é uma função arbitrária. Definindo

f(t) =
ġ(t)

g(t)
(2.37)

sendo g(t) também arbitrária e ġ(t) sua derivada, a equação (2.36) pode

ser reescrita como
d

dt
ln(vg(t)) =

ξ(t)

v
. (2.38)

Note que (2.34) é recuperada para g(t) = eβt.

Portanto, a equação acima, ou equivalentemente, a equação (2.36), pode

ser reescrita na forma
d

dt
ln(veβt) =

ξ(t)

v
(2.39)

que pela mudança de variável, u = veβt, se reduz a forma elementar

du

dt
= ξ(t)eβt (2.40)

com solução

u(t) = u0 +
∫ t

0
ξ(t′)eβt′dt′. (2.41)

Retornando para a antiga variável v, vemos que a solução geral da equação

de Langevin é dada por

v(t) = v0e
−βt + e−βt

∫ t

0
ξ(t′)eβt′dt′. (2.42)

O valor médio e a variância na velocidade deve ser calculado através das

propriedades da função ξ(t). Utilizando a condição (2.35) temos

< v(t) >= v0e
−βt. (2.43)
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A variância é mais facilmente obtida calculando-se primeiramente a

diferença v− < v >, de onde obtemos

v− < v >= e−βt
∫ t

0
eβt′ξ(t′)dt′ (2.44)

ou ainda

(v− < v >)2 = e−2βt
∫ t

0

∫ t

0
eβ(t′+t′′)ξ(t′)ξ(t′′)dt′′dt′. (2.45)

Tomando a média, utilizando novamente a condição (2.35) e afetuando a

integração, obtemos facilmente

σ2
v =

Γ

2β
(1 − e−2βt) (2.46)

onde σ2
v =< v2 > − < v >2 é a variância na velocidade. Para

calcular a constante Γ, observemos que o regime estacionário é obtido para

tempos longos em comparação com os tempos de flutuação da função ξ(t),

indicando que < v > se anula em (2.43), e de (2.46) temos que

< v2 >=
Γ

2β
. (2.47)

Por outro lado, o teorema da equipartição garante que a energia cinética

média de uma part́ıcula em movimento corresponde a 1
2kBT para cada grau

de liberdade, mais precisamente

1

2
m < v2 >=

1

2
kBT (2.48)

onde kB é a constante de Boltzmann. Combinando as duas últimas

expressões, obtemos a relação exata entre Γ e a temperatura do meio

externo

Γ =
2βkBT

m
. (2.49)

Uma vez determinada a variância da velocidade é conveniente calcular

o deslocamento quadrático médio, já que este é uma grandeza,

experimentalmente mensurável (mais detalhes nessa abordagem pode ser

vista em [45])
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x = x0 +
∫ t

0
v(t′)dt′ (2.50)

onde x0 é a posição da part́ıcula em t = 0. Substituindo na integral acima

o valor de v(t) dado pela expressão (2.42), segue que

x(t) = x0 + v0

∫ t

0
e−βt′dt′ +

∫ t

0
e−βt′

∫ t′

0
ξ(t′′)eβt′′dt′dt′′

= x0 + v0
1

β
(1 − e−βt) +

1

β

∫ t

0
ξ(t′′)(1 − eβ(t′′−t))dt′′. (2.51)

Desta equação obtemos o deslocamento médio

< x >= x0 + v0
1

β
(1 − e−βt) (2.52)

sendo o deslocamento quadrático médio obtido calculando-se primeira-

mente a diferença

x− < x >=
1

β

∫ t

0
ξ(t′′)(1 − eβ(t′′−t))dt′′ (2.53)

de onde obtemos

(x− < x >)2 =
1

β2

∫ t

0

∫ t

0
ξ(t′)ξ(t′′)(1 − eβ(t′−t))(1 − eβ(t′′−t))dt′dt′′. (2.54)

Na expressão acima, tomando a média, usando a condição (??) e efetuando

as integrais obtemos facilmente

(Δx)2 =
Γ

β2{t −
2

β
(1 − e−βt) +

1

2β
(1 − e−2βt)}. (2.55)

Observe que no limite de tempos longos o termo dominante é o primeiro,

mais precisamente

(Δx)2 =
Γ

β2 t = 2
kBT

mβ
t (2.56)

ou equivalentemente,

(Δx)2 = 2Dt (2.57)

que é a relação de Einstein (ver equação (2.29)). Vemos portanto, que no

regime de tempos longos a abordagem de Langevin é equivalente a descrição
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de Einstein. Neste limite também pode ser mostrado que a distribuição de

probabilidades relativa à variável v obedece a uma distribuição maxweliana

de velocidades [45]

P (v) =

√√√√ m

2πkBT
exp{− mv2

2kBT
}. (2.58)

2.4 A Equação de Fokker-Planck

Como vimos na seção 3, a equação de Langevin na forma (2.34) descreve

o movimento de uma part́ıcula de massa m imersa num fluido com

coeficiente de viscosidade β. Este mesmo sistema pode ser descrito por

uma equação de movimento que governa a evolução temporal de uma

distribuição de probabilidade. Tal equação é comumente conhecida como

equação de Fokker-Planck e constitui o objeto de investigação desta seção.

A equação de Fokker-Planck é um tipo especial de equação mestra [46, 45],

freqüentemente usada como uma boa aproximação para descrever processos

markovianos mais gerais.

Considere uma equação do tipo Langevin da seguinte forma

dx

dt
= f(x) + ξ(t) (2.59)

onde a variável x denota uma coordenada generalizada, que em prinćıpio,

pode ser a posição ou velocidade. Para esta variável independente, a

equação de Fokker-Planck dependente do tempo é comumente escrita como

[46, 45]
∂η(x, t)

∂t
= − ∂

∂x
[f(x)η(x, t)] +

Γ

2

∂2η(x, t)

∂x2 (2.60)

onde f(x) relaciona a natureza da força atuando na equação (2.59) e η(x, t)

representa a distribuição de probabilidade de encontrar a part́ıcula no

intervalo entre x e x + μ. A equação acima também pode ser reescrita
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como
∂η(x, t)

∂t
+

∂S(x, t)

∂x
= 0 (2.61)

que representa uma equação de continuidade para a densidade de

probabilidade η(x, t), na qual a quantidade S(x, t) deve ser interpretada

como uma corrente de probabilidade definida por

S(x, t) = f(x)η(x, t) − Γ

2

∂η(x, t)

∂x
. (2.62)

A integração de (2.61) com x assumindo valores no intervalo [a, b] nos

fornece
∂

∂t

∫ b

a
η(x, t)dx = S(a, t) − S(b, t) (2.63)

e como ∫ b

a
η(x, t)dx = 1 (2.64)

segue que

S(a, t) = S(b, t), (2.65)

nos mostrando que a conservação da probabilidade total é uma

conseqüência direta das condições de contorno.

Vamos determinar a solução da equação de Fokker-Planck na forma

(2.61) para o caso estacionário, considerando que os valores extremos

S(x = a, t) e S(x = b, t) são nulos. Nestas condições, segue de (2.62)

que

f(x)η(x) − Γ

2

∂η(x)

∂x
= 0 (2.66)

cuja solução é

η(x) = Ae
Γ
2

∫
f(x)dx (2.67)

onde a constante A é fixada pela condição de normalização de η(x). Para

o caso de uma força viscosa, f = −βv e a constante Γ dada por (50), a

solução acima assume a seguinte forma

η(v) =

[
m

2πkBT

]1/2
exp

⎡
⎣− mv2

2kBT

⎤
⎦ (2.68)
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que é a distribuição maxwelliana de velocidades.

A solução não estacionária é obtida diretamente da equação (2.60).

Utilizando a mesma força viscosa do exemplo acima, tal equação pode

ser representada como

∂η(v, t)

∂t
= β

∂

∂v
[vη(v, t)] +

βkBT

m

∂2η(v, t)

∂v2 (2.69)

com solução dada por [46, 45, 127]

η(v, t) =

⎡
⎣ m

2πkBT (1 − e−2βt)

⎤
⎦1/2

exp

⎡
⎣− m(v − v0e

−βt)2

2kBT (1 − e−2βt)

⎤
⎦. (2.70)

Comparando a expressão acima com a distribuição gaussiana (veja (2.26)),

vemos que os valores da média < v > e da variância (Δv)2 são

respectivamente

< v >= v0e
−βt (2.71)

e

(Δv)2 =
kBT

m
(1 − e−2βt) (2.72)

que são os mesmos valores obtidos no tratamento de Langevin (cf. Eqs.

(2.43) e (2.46). Como seria esperado, vemos também de (2.70) que para

tempos suficientemente longos, o sistema relaxa para o estado de equiĺıbrio,

pois a distribuição de probabilidades se reduz para a distribuição de

velocidades maxwelliana.

2.5 Caminhadas Aleatórias: O tratamento de M. Kac

O problema do caminhante aleatório, é dotado de um caráter bastante

universal em f́ısica. No magnetismo, por exemplo, um átomo de spin 1/2

tem um momento magnético �ν e de acordo com a mecânica quântica,

o spin pode está “up” ou “down”, com respeito a uma dada direção.

Se essas possibilidades são igualmente prováveis, então qual o momento
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magnético médio < �ν > para uma amostra contendo N átomos? Um

outro problema bastante familiar, corresponde a difusão de part́ıculas num

meio intermolecular. Suponha que uma part́ıcula percorre uma distância

média l entre duas colisões sucessivas com as moléculas do meio. Qual será

a distância percorrida após N colisões?

A solução para o problema da caminhada aleatória, na sua forma mais

geral, é facilmente entendido considerando-se a versão mais simples do

problema em uma dimensão, tal como originalmente investigado por M.

Kac [47]. Suponha que um caminhante aleatório partindo da origem e se

deslocando em linha reta, realiza n1 passos de comprimento fixo l para a

direita com probabilidade p e n2 passos para a esquerda com probabilidade

q = 1 − p, de modo que p + q = 1. Além do mais, estamos considerando

que os passos são eventos mutuamente independentes. O problema é

determinar qual a probabilidade PN(m) de encontrar o caminhante na

posição x = ml, onde −N ≤ m ≤ N , depois de ter dado N passos. O

número total de passos é

N = n1 + n2 (2.73)

sendo m a grandeza que parametriza a distância ĺıquida percorrida, isto é,

m = n1 − n2 (2.74)

e como cada passo tem comprimento l, a distância que o caminhante

percorre a partir da origem é dada por:

x = (n1 − n2)l = ml. (2.75)

Considerando que os passos são estatisticamente independentes, de

probabilidades p e q, a probabilidade de realizar n1 passos para a direita

e n2 passos para a esquerda é independente da sequência de passos e pode

ser escrita como [128]

p.p.p.....p × q.q.q.....q = pn1qn2. (2.76)
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Existem várias maneiras de arranjar os N passos de forma que n1 seja

o número de passos para a direita e n2 seja o número de passos para a

esquerda. Na verdade, descobrir o número de maneiras de arranjar os n1 e

n2 passos, é descobrir de quantas maneiras distintas podem ser arranjados

n1 + n2 objetos, sendo que a permutação de qualquer um dos objetos

(n1 + n2) é irrelevante. Tal fato significa que o número de possibilidades

distintas é exatamente [120]
N !

n1!n2!
(2.77)

e que a probabilidade total, PN(n1), de realizar n1 passos para a direita

e n2 para a esquerda num total de N passos, em qualquer ordem, é dada

pelo produto

PN(n1) =
N !

n1!(N − n1)!
pn1qN−n1 (2.78)

pois todas as sequências são independentes. Como vemos, o valor de

PN(n1) é uma distribuição binomial. Lembrando que a expansão binomial

de (p + q)N , onde p e q são dois números quaisquer, é dada por

(p + q)N =
N∑

n1=0

N !

n1!(N − n1)!
pn1qN−n1 (2.79)

segue que a distribuição PN(n1) é normalizada, ou seja,

N∑
n1=0

PN(n1) =
N∑

n1=0

N !

n1!(N − n1)!
pn1qN−n1 = (p + q)N = 1. (2.80)

Vamos determinar a probabilidade PN(m) do caminhante se encontrar

na posição x = ml. Das equações (2.73) e (2.74), temos

n1 =
N + m

2
e n2 =

N − m

2
. (2.81)

Substituindo esses resultados em (2.78), pode ser visto facilmente que a

distribuição PN(m) tem a forma

PN(m) =
N !

(N+m
2 )!(N−m

2 )!
p

N+m
2 q

N−m
2 (2.82)
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ou, equivalentemente,

PN(m) =
N !

(N+m
2 )!(N−m

2 )!
p

N+m
2 (1 − p)

N−m
2 . (2.83)

Para estabeler uma conexão com o fenômeno de difusão, é necessário

descrever o problema do caminhante aleatório por meio de uma equação

diferencial envolvendo variáveis cont́ınuas [47, 45, 128]. Suponha que τ seja

o tempo necessário para realizar um passo, então PN(m) dado por (2.83)

é a probabilidade da part́ıcula se encontrar na posição x = ml no tempo

Nτ . Somente uma part́ıcula que esteja em x = (m−1)l ou x = (m+1)l no

tempo t = (N − 1)τ poderá atingir a posição x = ml. No passo seguinte,

a probabilidade PN(m) obedece a seguinte relação de recorrência [47]

PN+1(m) = pPN(m − 1) + qPN(m + 1) (2.84)

que representa um exemplo t́ıpico de um Processo Markoviano6. Equações

estocásticas dessa natureza, nas quais os detalhes da dinâmica de um

sistema f́ısico são substitúıdos por leis probabiĺısticas, desempenham um

papel extremamente importante no estudo de sistemas fora do equiĺıbrio.

Conforme visto anteriormente, se N é suficientemente grande, a função

discreta PN(m) pode ser substitúıda por uma função cont́ınua η(Nτ,ml) =

η(t, x). Reescrevendo a relação de recorrência (2.84) para η(t, x), temos

PN+1(m) = η((N + 1)τ,ml) = η(Nτ + τml) = η(t + τ, x) (2.85)

PN(m + 1) = η(Nτ, (m + 1)l) = η(Nτ, ml + l) = η(t, x + l) (2.86)

PN(m − 1) = η(Nτ, (m − 1)l) = η(Nτ, ml − l) = η(t, x − l). (2.87)

Substituindo esses resultados em (2.84) e expandindo ambos os lados em

série de Taylor até segunda ordem, obtemos

η + τ
∂η

∂t
+

1

2
τ 2∂

2η

∂t2
= (p + q)η + l(q − p)

∂η

∂x
+ (p + q)

l2

2

∂2η

∂x2 . (2.88)

6Nos chamados processos markovianos não existe efeitos de memória, ou seja, a probabilidade
condicional relativa a cada variável aleatória qi(t) de uma part́ıcula, só depende do valor de qi = qi

0

num instante anterior t0[46, 121].
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Considerando que a probabilidade total satisfaz p+q = 1, a equação acima

se reduz para
τ

2

∂2η

∂t2
+

∂η

∂t
=

l

τ
(q − p)

∂η

∂x
+

l2

2τ

∂2η

∂x2 , (2.89)

que representa uma equação generalizada para a caminhada aleatória. Por

se tratar de uma equação diferencial do tipo hiperbólica, devemos esperar

que sua solução seja válida também no regime de pequenos tempos, já

que ela incorpora naturalmente, uma derivada segunda com respeito ao

tempo na função η(x, t). Como veremos na seção seguinte, esse fato é

de fundamental importância para corrigir as inconsistências presentes na

descrição de Einstein.

Algumas aproximações interessantes devem ser discutidas na equação

(2.89). Primeiramente, observamos que a conexão direta com o movimento

browniano difusivo é estabelecida quando assumimos que p = q = 1/2.

Neste caso, definindo

D =
l2

2τ
(2.90)

a equação (2.89) se reduz a

τ

2

∂2η

∂t2
+

∂η

∂t
= D

∂2η

∂x2 (2.91)

que é precisamente a equação (2.7). Novamente, a equação de difusão que

serviu de base para o tratamento de Einstein é recuperada quando fazemos

o mesmo tipo de aproximação (veja a equação (2.9)), ou seja,

τ

2

∂2η

∂t2
<<

∂η

∂t
. (2.92)

Portanto, a conexão com o cont́ınuo é estabelecida de maneira consistente,

de modo que todo o tratamento posterior, em particular, o cálculo dos

valores médios das grandezas fisicamente relevantes, permanece idêntico

ao das seções (2) e (3).
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2.6 A Equação de Difusão Generalizada

Como vimos, a equação comumente utilizada para descrever transmissão de

calor e difusão de part́ıculas, constitui na verdade, um modelo aproximado,

ou seja, uma descrição menos rigorosa de tais fenômenos. Um argumento

favorável a essa visão se baseia na idéia de que equações parabólicas do tipo

(2.10) transmitem (em alguns regimes) sinais com velocidades infinitas.

Naturalmente, tal resultado é inconsistente já que a velocidade máxima

com a qual uma perturbação se propaga num fluido ou meio elástico deve

ser da ordem da velocidade do som.

Se considerarmos que em cada intervalo de tempo τ uma part́ıcula se

desloca aleatoriamente com velocidade v = l/τ , vemos que a equação (2.91)

pode ser reescrita como

∂2η

∂t2
+

v2

D

∂η

∂t
= v2∂2η

∂x2 (2.93)

que representa uma equação de onda amortecida para a caminhada

aleatória.

Para estudar a influência do termo adicional na equação de movimento,

vamos considerar uma onda plana se deslocando num meio infinito. Em

x = 0 supomos que η(0, t) = eiωt, onde ω é a freqüência de vibração da

onda. Escrevendo a solução geral de (2.93) na forma

η(x, t) = eAxei(ωt−Bx) (2.94)

onde A e B são constantes, obtemos

A2 =
ω2

2v2

⎡
⎢⎣
⎛
⎝1 +

v4

D2ω2

⎞
⎠1/2

− 1

⎤
⎥⎦ (2.95)

e

B2 =
ω2

2v2

⎡
⎢⎣
⎛
⎝1 +

v4

D2ω2

⎞
⎠1/2

+ 1

⎤
⎥⎦ (2.96)

49



com a velocidade de propagação da onda escrita como

vp
2 =

ω2

B2 =
2v2[(

1 + v4

D2ω2

)1/2
+ 1

] < v2. (2.97)

Para o caso em que ω << v2/D, ou equivalentemente, ∂2η/∂t2 << ∂η/∂t

as relações anteriores se reduzem a

A2 = B2 =
ω

2D
(2.98)

vp
2 = 2ωD (2.99)

que são os resultados obtidos da equação de difusão usual. Por outro lado,

para o caso em que ω >> v2/D, os resultados são também fısicamente

consistentes, pois a velocidade de propagação da onda tem como limite a

velocidade das part́ıculas. De fato, a freqüência de vibração de uma onda

se deslocando num meio difusivo não deve exceder a freqüência de colisão

das part́ıculas do meio.

A solução da equação (2.93) para as condições gerais η(x, 0) = Nδ(x) e

(∂η/∂t)t=0 = 0, válida para | x |≤ vt pode ser escrita como [129]

η(x, t) = Ne−t/τ
[
1

2
δ(x + vt) +

1

2
δ(x − vt)

]
+

N

2vτ
J0[

(x2 − v2t2)1/2

vτ
] +

Nt

2τ

J1[(x
2 − v2t2)1/2/vτ ]

(x2 − v2t2)1/2 (2.100)

sendo J0 e J1 funções de Bessel de primeira espécie.

Para o caso | x |> vt, a solução de D’Alambert para uma onda plana

amortecida se deslocando na direção x é recuperada

η(x, t) = Ne−t/τ
[
1

2
δ(x + vt) +

1

2
δ(x − vt)

]
. (2.101)

Da expressão acima vemos também que a velocidade de propagação da

onda nunca excede a velocidade das part́ıculas. Como o produto vτ é da

ordem do livre caminho médio λ, o argumento das funções J0 e J1 cresce
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rapidamente quando | x | é muito menor que vt. Neste caso, a expansão

assintótica para as funções de Bessel fornecem

Jν(x) ≈
√√√√ 2

πx
cos

[
x − π

2
(ν +

1

2
)

]
. (2.102)

Portanto, (2.100) pode ser reescrita como

η(x, t) = Ne−t/τ
[
1

2
δ(x + vt) +

1

2
δ(x − vt)

]
+

Ne−
t
τ y2

4vτ

[
πt

2τ
(1 − y2)1/2

]−1/2 [
1 + (1 − y2)−1/2

]
(2.103)

que representa a solução geral da equação de onda modificada para a

caminhada aleatória, sendo y = x/vt < 1. Note que a expressão acima é

composta de duas partes. O primeiro termo relaciona a solução de onda de

D’Alambert que rapidamente se torna despreźıvel, enquanto que o segundo

se refere a difusão das part́ıculas.

No limite y << 1, ou equivalentemente x << vt (tempos longos), o

segundo termo da solução acima tende para

η(x, t) =
N

(2v2τtπ)1/2e
−x2/2v2τt =

N√
4πDt

e−x2/4Dt (2.104)

que é precisamente a solução da equação de difusão usual (Cf. (24)). Note

que D foi reintroduzido pela definição (2.90).

Portanto, vemos que a equação ondulatória hiperbólica (2.7), ou

equivalentemente (2.93), resolve o problema difusivo para tempos curtos,

cuja existência foi reconhecida pelo próprio Einstein ao propor sua teoria

do MB. Nesse aspecto, é importante ressaltar que muitos livros textos que

tratam o problema difusivo não discutem o problema de tempos curtos,

ou equivalentemente, se a propagação de uma perturbação com velocidade

infinita num meio cont́ınuo é conceitualmente correta.
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2.6.1 Alumas Soluções Numéricas

Para justificar que a solução (2.100) é fisicamente correta, mostraremos

nos gráficos seguintes algumas soluções numéricas da equação de difução

generalizada (2.93) e comparamos os resultados com a sua versão padrão,

tal como descrita por (2.10). Os detalhes podem ser vistos na referência

[130].

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

x

η(
t,x

)

Exact solution of diffusion equation
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Figura 2.3: As curvas acima mostram o comportamento da solução obtida da equação de

difusão parabólica (2.10) para valores espećıficos do tempo. Note que à medida em que o

tempo se aproxima de zero, a função distribuição tende para uma função delta centrada

em torno da origem x = 0, revelando um comportamento t́ıpico das equações parabólicas

do tipo (2.10).

Na figura abaixo, vemos que para tempos curtos, ou seja, para t → 0,

as duas soluções coincidem e são descritas por uma função delta tal como

deveŕıamos esperar.
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Figura 2.4: As curvas acima mostram uma comparação entre as soluções da equação de

difusão parabólica e a sua versão hiperbólica para diferentes valores do tempo. Note

que, para tempos curtos (tendendo a zero) o par de soluções coincidem, enquanto que,

para tempos ligeiramente diferentes de zero, as duas soluções exibem comportamentos

ligeiramente diferentes, ou seja, as curvas refrentes a equação parabólica se alargam mais

rapidamente do que as solução da equação hiperbólica.
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Caṕıtulo 3

Movimento Browniano: Efeitos da

Viscosidade Variável

3.1 Introdução

Tradicionalmente, os estudos endereçados a teoria do movimento

browniano em meios homogênios (num ĺııquido ou gás) revelam um

comportamento padrão para o deslocamento quadrático médio (Δx)2. Mais

precisamente, a evolução desta grandeza f́ısica é caracterizada por um

crescimento linear no tempo, veja por exemplo, as relações (2.29) e (2.57)

apresentadas no caṕıtulo anterior. Entretanto, alguns sistemas f́ısicos mais

complexos exibem comportamentos ligeiramente diferente na quantidade

(Δx)2. Mais recentemente, estudos mais modernos nesta área apontam

para uma relação do tipo lei de potência [131, 132]

(Δx)2 ∼ tν, (3.1)

sendo ν �= 1. Particularmente, para os casos onde ν > 1, o sistema descrito

pela relação acima exibe um comportamento superdifusivo [133, 134, 135,

136, 137] enquanto que ν < 1 o regime é subdifusivo [138]. O mesmo

tipo de comportamento pode ser encontrado em diferentes sistemas f́ısicos.

Em especial, resultados equivalentes foram obtidos para o caso de sistemas
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contendo efeitos de memórias1 [118, 139, 140], viscosidade dependente do

tempo [141], equações de difusão e de Fokker-Planck não linear e com

derivadas fracionárias [142, 143, 144, 145, 146, 147]. Outros tipos de

sistemas axibindo difusão anômala foram obtidos recentemente para uma

classe especial de rúıdo colorido denominado de dichotomous, para o qual

foi proposto uma função de correlação com uma exponencial dependente

do tempo [148, 149]. O interesse crescente sobre esses sistemas vem

da possibilidade de modificar substancialmente o comportamento padrão

previsto pelo formalismo de Langevin, e como bônus extra, fornecem uma

descrição f́ısica mais realista dos sistemas ditos não Markovianos [126].

É nesse contexto de sistemas exibindo difusão anômala que se insere o

presente caṕıtulo. Em particular, mostraremos que a presença de uma

viscosidade dependente do tempo na equação de Langevin pode exibir

um regime de difusão anômala. Para ser mais preciso, neste caṕıtulo

apresentaremos o comportamento estocástico de uma classe de sistemas

com amortecimento variável, os quais são descritos por uma lagrangiana

dependente do tempo. Este formalismo estocástico é obtido assumindo

uma dada expressão para o então chamado rúıdo colorido [141]. A equação

diferencial será resolvida analiticamente e todas as quantidades fisicamente

relevantes serão obtidas.

3.2 Formalismo de Langevin para Viscosidade

Variável

Como é bem conhecido, os efeitos de uma viscosidade constante sobre os

sistemas dissipativos são introduzidos por uma lagrangiana dependente do

tempo, usualmente conhecida como lagrangiana de Batmann [150]. Nestes

1Sistemas dete tipo são chamados de sistemas não Markovianos. Em tais sistemas, a probabilidade
condicional relativa a uma determinada variável aleatória xi(t), só depende do valor xi = xi

0 num instante
anterior t0 [126, 121]
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modelos de lagrangiana, tal viscosidade constante é introduzindo por uma

exponencial dependente do tempo e desempenha um papel fundamental

na descrição de sistemas oscilatórios. Por outro lado, muitos sistemas na

natureza exibem viscosidades dependente do tempo, e portanto, não podem

ser descritos dentro do formalismo original de Batemann. Para contornar

essa dificuldade, foi proposto recentemente, uma classe paramétrica de

lagrangianas que incorporam uma viscosidade dependente do tempo sobre

o movimento de uma part́ıcula clásica [151]. Este novo modelo de

lagrangiana é descrito por um parâmetro cont́ınio q, assumindo valores

sobre o intervalo [0, 1] e se reduz ao caso padrão no limite q → 1.

O modelo de lagrangiana acima mencionado, será denominada de q-

lagrangiana, cuja representação matemática é dada por [151]

Lq(x, ẋ, t) = eq(βt)

[
1

2
mẋ2 − V (x)

]
, (3.2)

onde β é uma constante com dimensão de inverso de tempo, aqui

representando o coeficiente de viscosidade. A distribuição eq(βt) representa

uma generalização da função exponencial padrão, proposta em 1988

por Constantino Tsallis [152] na formalação não-extensiva da mecânica

estat́ıstica. Esta função distribuição é comumente chamada de q-

exponencial, cuja relação matemática é escrita como

eq(βt) = [1 + (1 − q)βt]1/1−q, (3.3)

onde q representa um número real. Note que no limite q → 1, a função

distribuição acima recupera a exponencial usual, pois e1(βt) = eβt, e

portanto, o modelo padrão de lagrangiana de Batemann será recuperado.

Seguindo esta mesma linha, a generalização de outras funções especiais bem

como a álgebra relacionada a elas também tem sido estudadas na literatura,

como exemplo veja as referências [153, 154]. Para os casos estudados

nesta tese, consideraremos apenas a propriedade mais fundamental dessa
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q-exponencial, a qual pode ser definida pelo limite limq→1 eq(y) = ey.

Na presente seção, estudaremos em detalhe, o formalismo de Langevin

para a classe paramétrica de lagrangianas descrita pela relação (3.2).

3.2.1 Derivação da Equação de Movimento

Utilizando cálculos algébricos simples, pode ser mostrado facilmente que a

equação de Euler-Lagrange obtida da lagrangiana (3.2) é escrita como:

d2x

dt2
+

β

1 + (1 − q)βt

dx

dt
+

1

m

dV (x)

dx
= 0, (3.4)

que descreve um sistema geral com uma viscosidade efetiva dependente do

tempo (βq)

βq(t) =
β

1 + (1 − q)βt
. (3.5)

Para o caso de um potencial quadrado, mais precisamente, para V (x) =
1
2mω2x2, onde m é a massa e ω0 a frequência natural de oscilação, a equação

acima (3.4) descreve uma categoria de sistemas gerais com viscosidade

dependente do tempo que serão genericamente denominados q-osciladores.

Mais precisamente, a equação geral de movimento é dada por [151]

d2x

dt2
+ βq(t)

dx

dt
+ ω2

0x = 0, (3.6)

com a função βq(t) sendo descrita pela relação (3.5). Um estudo mais

detalhado destes sistemas será feito na seção seguinte.

3.2.2 Obtenção da Solução Geral

Para uma melhor compreensão da f́ısica que será discutida na seção seguinte

e no próximo caṕıtulo, nesta seção daremos uma atenção especial aos

sistemas com viscosidade dependente do tempo, comumente chamado de

q-osciladores, tal como mencionado acima. Tais sistemas são descritos por
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um parâmetro cont́ınuo q tomando valores sobre os números reais. No

nosso caso, o parâmetro q assumirá valores no intervalo 0 < q < 1.

Como vemos, a q-lagrangiana (3.2) efetivamente descreve um oscilador

amortecido com coeficiente de amortecimento dependente do tempo. Note

que, em t = 0 temos βq(0) = β para todos os valores de q, ou seja, o

movimento do sistema satisfaz a equação familiar para o oscilador com

coeficiente de amortecimento constante. Porém, para tempos longos, ou

mais precisamente, para uma escala de tempo t >> |β(1− q)|−1, o sistema

descrito por (3.6) é um atrator natural para o oscilador harmônico simples2.

O comportamento de βq(t) para diferentes valores de q é mostrado nas

Figs. (3.1) e (3.2).

Para q < 1, o coeficiente βq(t) diminue continuamente com o tempo

sendo a taxa de decrescimento mais rápida para menores valores de q.

Porém, para q > 1, βq(t) inicialmente aumenta se aproximando de um

valor infinito em t = [β(q− 1)]−1, e então muda abruptamente seu sinal, se

aproximando de zero para grandes valores do tempo. Naturalmente, estas

caracteŕısticas apontam um comportamento qualitativo bastante diferente

para uma distribuição natural de q-osciladores em duas subclasses. A

primeira é um subconjunto bem comportado caracterizado por q < 1,

enquanto a segunda (o caso anômalo) tem q maior que a unidade.

Neste ponto, para obter soluções anaĺıticas da equação de movimento

(3.6) vamos considerar o mais interessante dos q-osciladores do ponto de

vista f́ısico, aquele para o qual o parâmetro q é menor que a unidade. Para

tal, é conveniente fazer uma mudaņa de variável para um tempo auxiliar

T = 1 + (1 − q)βt, com a equação original se reduzindo a forma

d2x

dT 2 − 1

(q − 1)

1

T

dx

dT
+ δ2

qx = 0, (3.7)

2Note que para t >> |β(1 − q)|−1 >> 1, teremos βq(t >> 1) = 0.
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Figura 3.1: Evolução do coeficiente de fricção βq(t) para valores do parâmetro livre q < 1.

Note que para o caso q = 1, teremos uma fricção constante. Entretanto, a taxa de

decrescimento do coeficiente βq(t) aumenta continuamente com o tempo para valores de

q cada vez menores.

onde

δq =
ω0

β(1 − q)
. (3.8)

Como devemos checar, a solução geral de (3.7) pode ser escrita como [162]

x(T ) = T νζν(δqT ), (3.9)

onde ζν denota combinações lineares das funções de Bessel de ordem ν, as

quais dependem do parm̂etro q na forma ν = q
(q−1) .

Retornando a antiga variável t, pode ser visto facilmente que a solução
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Figura 3.2: Evolução do coeficiente de fricção βq(t) para valores do parâmetro livre

q > 1. Inicialmente, o coeficiente βq(t) aumenta e se aproxima de um valor infinito

no t = [β(q−1)]−1, quando então muda abruptamente de sinal eventualmente indo a zero

para grandes valores do tempo.

geral da equação de movimento (3.6) é dada por [151]

x(t) = [eq(βt)]−q{AJν(ω0t + δq) + BYν(ω0t + δq), } (3.10)

sendo Jν e Yν são funções de Bessel de primeira e segunda espécie

respectivamente, e A e B são constantes a serem determinadas de acordo

com as condições iniciais. Para as condições iniciais arbitrárias x(0) = x0

e ẋ(0) = v0 as constantes A e B são

A =
π

2
δq[x0Yν−1(δq) − v0

ω0
Yν(δq)] (3.11)
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B = −π

2
δq[x0Jν−1(δq) − v0

ω0
Jν(δq)]. (3.12)

A Fig.(3.1) mostra os gráficos do q-oscilador para alguns valores do

parâmetro q sobre o intervalo 0 < q < 1.

0 20 40 60
t(s)

−1.0

−0.5

0.0

0.5

1.0

x
(t

)

Figura 3.3: Comportamento caracteŕıstico da amplitude dos q-osciladores para o valor

q = 0.1. As curvas decaindo exponencialmente são representadas para um particular de

β = 0.1, que descreve o oscilador subamortecido.

Nestes gráficos as condições iniciais foram escolhidas como sendo v0 = 0,

x0 = 1 e também consideramos ω0 = 8β e β = 0.1. Para o termo de

amortecimento, esses valores do par (ω0, β) descreve o denominado caso

subamortecido. A ordem ν das funções de Bessel são ditadas pela escolha

particular do parâmetro q. Para comparação, mostramos o envelope

de soluções decaindo exponencialmente para o correspondente oscilador
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Figura 3.4: Comportamento caracteŕıstico da amplitude dos q-osciladores para o caso

β = 0.1 e um valor do parâmetro livre q = 0.5.

subamortecido. Apesar de ter a mesma relação ω0/β, verificamos que, para

q �= 1 a amplitude do peŕıodo transiente sempre decresce mais lentamente

que no caso padrão (q = 1). Como esperado, considerando que o parâmetro

q → 1, o q-oscilador se comporta como um oscilador subamortecido.

Em resumo, nesta seção apresentamos uma extensa classe de osciladores

harmônico com amortecimento dependente do tempo. Esta espécie

de sistema dinâmico foi formalmente motivado por uma q-lagrangiana

dependente do tempo, generalizando a bem conhecida descrição de

Bateman para o oscilador amortecido padrão.

Para q �= 1, vimos que o oscilador harmônico simples é um atrator

estável para a classe de q-osciladores. Fisicamente, um q-oscilador fornece
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Figura 3.5: Amplitude dos q-osciladores para β = 0.1 e um valor partcular do parâmetro

livre q = 0.99.

uma descrição reaĺıstica de fenômenos transientes, onde a energia do

sistema é parcialmente dissipada numa escala de tempo finita, e finalmente

oscila harmonicamente em um dado modo normal. Em prinćıpio, esta

classe de comportamento também pode ter conseqüências interessantes

para o problema de quantização de sistemas vibracionais não conservativos.

Recordamos que as relações de Heisenberg não são obedecidas para o

oscilador harmônico simples com coeficiente de amortecimento constante

desde que o produto ΔxΔp decresce exponencialmente com o tempo3, indo

a zero para t >> β−1 [163]. Entretanto, para os denominado q-osciladores

este problema é resolvido de uma maneira natural, já que depois de um

3Netse caso, a relação exata é escrita como: ΔpΔx = e−
1
2 βt.
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peŕıodo transiente o sistema se comporta como um oscilador harmônico

simples.

3.2.3 Viscosidade variável: Formalismo de Langevin

Inicialmente, para discutir o comportamento estocástico da equação (3.6),

assumiremos apenas o caso com potencial nulo V (x) = 0. A formulação

estocástica completa, isto é, com o termo de potencial quadrático V (x) =

(1/2)mω2x2 será discutido em detalhes no caṕıtulo seguinte. Com esta

simplificacão¸ , a versão estocástica de (3.4), ou equivalentemente, da

equação (3.6) é descrita por uma equação tipo Langevin [141]

dv

dt
+

βv

1 + (1 − q)βt
= ξ(t), (3.13)

onde a quantidade ξ(t) é a força estocástica que flutua rapidamente no

tempo. As propiedades estat́ıstica desta força em geral são definidas pelas

condições de Langevin (veja como exemplo, as expressões em (2.35)), ou

mais precisamente, na versão moderna denominada de rúıdo branco [126].

Para esclarecer este ponto, mencionamos que uma melhor compreensão

desta espécie de rúıdo pode ser obtida em termos do seu espectro de

potência. No espaço de Fourier, o espectro de potência S(ω) da função

de correlação < ξ(t)ξ(t′) > é definido como

S(ω) = 2
∫ ∞
0

e−iωt < ξ(t)ξ(t′) > dt. (3.14)

Note que, para qualquer fução de correlação do tipo < ξ(t)ξ(t′) >=

Γδ(t− t′), onde Γ é uma constante, sempre teremos S(ω) = 2Γ =constante

, mostrando que o espectro de potência da teoria padrão de Langevin é

independente da frequência ω. Fisicamente, isto significa que cada modo

de Fourier é contemplado com igual quantidade de energia. Esta é a

principal caracteŕıstica definindo o rúıdo branco. Por outro lado, se Γ é

descrita por uma função do tempo (Γ = Γ(t)), teremos sempre S = S(ω),
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caracterizando assim o chamado rúıdo colorido [141, 126]. Portanto, nesta

versão os modos de Fourier são contemplados com diferentes quantidades

de energia.

Voltando ao nosso caso, para fornecer uma descrição f́ısica mais

realista das quantidades relevantes4, definimos a força estocástica pelas

propriedades [169, 141]

< ξ(t) >= 0; < ξ(t)ξ(t′) >=
Γ

1 + (1 − q)βt
δ(t − t′). (3.15)

Note que a constante Γ presente na função de correlação padrão de

Langevin (< ξ(t)ξ(t′) >= Γδ(t−t′)), é efetivamente generalizada para uma

função do parâmetro livre q e do tempo t, ou seja, Γq(t) = Γ/[1+(1−q)βt].

Similarmente ao caso anterior, o espectro de potência desta nova categoria

de funções de correlação é definida por

S(ω) = 2Γ
∫ ∞
0

e−iωt

1 + (1 − q)βt
δ(t − t′)dt = f(ω). (3.16)

As condições f́ısicas especificadas acima definem o chamado rúıdo colorido,

conforme já mencionado antes e tem como caso particular o rúıdo branco

de Langevin no limite q → 1.

Sob tais condições especificadas acima, escrevemos a solução geral da

equação diferencial (3.13) como:

v(t) = v0[eq(βt)]−1 + [eq(βt)]−1
∫ t

0
ξ(t′)eq(βt′)dt′. (3.17)

Como vemos, o último termo representa a contribuição do rúıdo colorido

sobre o movimento da part́ıcula browniana. Além do mais, no limite q = 1,

a expressão acima reproduz a bem conhecida solução de Langevin para o

caso de uma viscosidade constante, veja como exemplo a expressão (2.42).

4As quantidades f́ısicas a que nos referimos são a variância na velocidade σ2
v =< v2 > − < v >2

e na posição σ2
x =< x2 > − < x >2. Quando a part́ıcula browniana tem deslocamento médio nulo

(< x >= 0), sua variância σ2
x é equivalente ao deslocamento quadrático médio < x2 >.
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A primeira condição em (3.15) define a velocidade média da part́ıcula

como a lei de potência

< v(t) >= v0[eq(βt)]−1 = v0[1 + (1 − q)βt]−
1

1−q , (3.18)

se reduzindo a < v(t) >= v0e
−βt para q = 1. Para calcular a quantidade

σ2
v, devemos quantificar primeiramente a diferença

v− < v(t) >= [eq(βt)]−1
∫ t

0
ξ(t′)eq(βt′)dt′, (3.19)

a qual, elevando ao quadrado e tomando a média obteremos

σ2
v(t) =

Γ

2β

[
1 − {eq(βt)}−2

]
. (3.20)

Note que no limite q → 1, a lei de potência acima se reduze ao caso padrão

de Langevin, veja por exemplo a expressão (2.46) do caṕıtulo II. Por outro

lado, para tempos longos em comparação com o tempo caracteŕıstico do

sistema (t >> β−1), a q-exponencial vai a zero e o teorema da equipartição

da energia é recurado consistentemente. Neste regime asintótico, teremos

σ2
v =

Γ

2β
=

kBT

m
, (3.21)

ou seja, o sistema tem relaxado ao seu estado de equiĺıbrio natural e a

distribuição de probabilidade da variável aleatória σ2
v é governada por uma

distribuição de velocidades maxwelliana.

As expressões matemática descrevendo a posição x(t) e variância σ2
x(t)

são obtidas da forma seguinte. A integração x(t) = x0 +
∫ t
0 v(t′)dt′ conduz

imediatamente a expressão

x(t) = x0 +
v0

βq
[1 − [eq(βt)]−q]

+
1

βq

∫ t

0
ξ(t′)

[{eq(βt′)}1−q − eq(βt′){eq(βt)}−q
]
dt′, (3.22)

cujo valor médio é dado pela lei de potência

< x(t) >= x0 +
v0

βq

{
1 − [1 + (1 − q)βt)]−

q
1−q

}
. (3.23)
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A variância é mais facilmente obtida calculando-se primeiramente a

diferença x− < x >

x− < x >=
1

βq

∫ t

0
ξ(t′)

[{eq(βt′)}1−q − eq(βt′){eq(βt)}−q
]
dt′. (3.24)

Tal como antes, elevando ao quadrado e considerando a média da função

de correlação em (3.15) teremos:

σ2
x(t) =

Γ

β2q2

⎡
⎣t +

(1 − q)βt2

2
− Hq(t)

⎤
⎦ , (3.25)

sendo a fução Hq(t) definida por

Hq(t) =
2

β(2 − q)

{
1 − [eq(βt)]−q

}
+

1

2β

{
1 − [eq(βt)]−2q

}
. (3.26)

A expressão (3.25) nos mostra que no regime asintótico t >> β−1, teremos

Hq ∼ 1/(2β) − 2/(2 − q) e portanto, σ2
x(t) ∝ t2 já que Hq naõ é operante

neste limite. Fisicamente, isto significa que o sistema exibe um regime

de difusão anômala caracterizado por um comportamento superdifusivo.

Note também que, tomando o limite q → 1, (3.25) se reduz ao resultado

usual, veja como exemplo a expressão (2.55). Entretanto, uma grande

variedade de comportamento estocástico pode ser observado à medida que

o parâmetro livre q é modificado continuamente.

Para uma descrição mais rigorosa do comportamento difusivo mostrado

acima, na seção seguinte estudaremos a dinâmica estocástica da equação

(3.13) considerando uma generalização do rúıdo colorido (3.15) pelo par de

parâmetros arbitrários n e q.

3.3 Rúıdo Colorido: O Caso Geral

Para unificar o formalismo discutido na seção prévia, propomos uma

classe de rúıdo colorido mais geral que deve exibir o mesmo tipo de

comportamento anômalo descrito por duas constantes arbitrárias. Nosso
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principal interesse é mostrar que esta espécie de rúıdo deve apresentar

difusão anômala assumindo valores espećıficos dos parâmetros n e q, desde

que 0 < q < 1 e n > 1. Este tipo de rúıdo colorido é descrito pelas

propriedades [141]

< ξ(t) >= 0, < ξ(t)ξ(t′) >=
Γ

[1 + (1 − q)βt]n
δ(t − t′). (3.27)

Isto significa que o rúıdo branco no qual é baseado a descrição de Langevin

pode ser recuperado por duas naneiras distintas, a saber, (i) para n = 0 e

q arbitrário ou (ii) para q = 1 e n qualquer.

A solução geral da equação (3.13) considerando a primeira condição

acima é independente do parâmetro n e pode ser escrita como antes

v(t) = v0[eq(βt)]−1 + [eq(βt)]−1
∫ t

0
ξ(t′)eq(βt′)dt′. (3.28)

Por outro lado, efetuando os cálculos algébricos necessários pode ser

mostrado facilmente que a quantidade σ2
v evolui como:

σ2
v =

Γ

β[3 − q − n(1 − q)]

[
[1 + (1 − q)βt]1−n − {eq(βt)}−2

]
. (3.29)

A expressão acima merece uma atenção especial. Fisicamente, ela nos

mostra que a descrição de rúıdo branco (n = 0) não é compat́ıvel com o

teorema da equipartição da energia, já que o mesmo não pode ser alcançado

no regime assintótico. Para esclarecer este ponto, note que no limite

t >> β−1 e n = 0 teremos σ2
v ∝ t, diferentemente do resultado mostrado

nas expressões (2.46) e (2.47) do caṕıtulo II. Por outro lado, para o caso

de rúıdo colorido com n = 1 a expressão acima é reescrita como

σ2
v =

Γ

2β

[
1 − {eq(βt)}−2

]
, (3.30)

a qual, para tempos longos t >> β−1, teremos σ2
v = Γ/(2β) que é a mesma

expressão em (2.47). Portanto, a descrição de rúıdo colorido com n < 1

não é consistente com o teorema da equipartição da energia.
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A solução geral para a coordenada de posição é feita como antes.

Primeiro, notemos que a integração x(t) = x0 +
∫ t
0 v(t′)dt′ no fornece

x(t) = x0 +
v0

βq
[1 − [eq(βt)]−q +

1

βq

∫ t

0
ξ(t′)

[{eq(βt′)}1−q − eq(βt′){eq(βt)}−q
]
dt′, (3.31)

cujo valor médio é

< x(t) > = x0 +
v0

βq
[1 − [eq(βt)]−q . (3.32)

A variância é obtida calculando-se primeiramente a diferença x− < x >,

ou seja

x− < x >=
1

βq

∫ t

0
ξ(t′)

[{eq(βt′)}1−q − eq(βt′){eq(βt)}−q
]
dt′. (3.33)

Utilizando a condição (3.27) e o desenvolvimento σ2
x(t) =< (x− < x >)2 >,

finalmente obtemos:

σ2
x(t) =

Γ

(βq)2

⎡
⎣ 1

β(3 − n)(1 − q)

(
[eq(βt)]

1−q
3−n − 1

)
− fq + gq

⎤
⎦ , (3.34)

sendo as funções fq e gq escritas como

fq =
2

β(3 − 2q)

{
1 − [eq(βt)]−q

}
(3.35)

gq =
1

β[3 − q − n(1 − q)]

{
1 − [eq(βt)]−2q

}
. (3.36)

No limite de tempos longos, ou seja t >> β−1, a variância evolui como

σ2
x(t) =

Γ

(βq)2hq[(1 − q)βt]3−n, (3.37)

onde hq é a função

hq =

⎡
⎣ 1

(3 − n)(1 − q)
− 3 − n + q

β[3 − n − q(2 − n)][2 − n(1 − q)]

⎤
⎦ . (3.38)
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A interpretação f́ısica da expressão (3.37) é fundamental. Ela nos mostra

que no regime assintótico a variância satisfaz uma lei de potência da forma

σ2
x(t) ∼ t3−n, e recupera o caso previamente investigado para o valor n = 1.

Por outro lado, com o aux́ılio do teorema flutuação dissipação5, pode

ser mostrado facilmente que o coeficiente de difusão efetiva evolui como

D ∼ t2−n. Fisicamente, isto significa que o comportamento superdifusivo

(D → ∞) acontece para valores de n < 2, enquanto para n > 2 o regime é

subdifusivo (D → 0).

5Uma das primeiras versões do teorema da flutuação dissipação foi obtido por Einstein em 1905, cuja
representação é dado pela famosa relação de Eisntein (Δx)2 = 2Dt. Posteriormente, outras versões foram
obtidas ao longo dos anos por Nyquist [155], Callen [156, 157], Windon [158], Kubo [159], Mori [160],
Hohenback [161] e outros mais.
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Caṕıtulo 4

Descrição Estocástica do Campo

Inflaton

4.1 Introdução

Conforme já mencionado no caṕııtulo I, todos os modelos inflacionários

remetem a um peŕıodo de expansão acelerado do universo onde o fator de

escala cósmica R(t) cresce exponencialmente com o tempo e atinge uma

fase conhecida como fase de Sitter. Tal expansão é dirigida por um campo

escalar φ(t), o qual satisfaz uma equação de movimento que é semelhante

ao de um sistema clássico submetido a uma viscosidade constante

φ̈ + 3Hφ̇ +
dV

dφ
= 0, (4.1)

onde a derivada em φ(t), significa uma derivada com relação ao tempo,

V (φ) é o potencial do campo inflaton e H é o parâmetro de Hubble definido

por:

H(t) =
Ṙ

R
, (4.2)

sendo R(t) o fator de escala cósmica. Se o Universo expande satisfazendo

uma lei de potência R(t) ∼ tn, temos que H(t) = nt−1, e o campo φ(t) se

comporta como um sistema clássico amortecido, cuja descrição será a de

um oscilador harmônico para V (φ) = 1
2ω

2φ2, onde o termo de viscosidade
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está relacionado com a taxa de expansão do Universo. Neste caso temos

um regime com lei de potência (power law inflation).

Ao invés de R(t) ∼ tn, um cenário mais geral pode ser obtido se o fator

de escala cósmica satisfaz uma lei de potência do tipo:

R(t) = R0

{
1 +

3

2
γHit

}2/3γ

, (4.3)

onde R0 = R(t0) é o valor atual do raio do universo, Hi é o parâmetro de

Hubble e γ é um parâmetro livre da equação de estado assumindo valores no

intervalo [0, 2]. Para esta lei de expansão, vemos facilmente que a equação

de movimento (4.1) é extendida para

φ̈ + 3βγ(t)φ̇ +
dV

dφ
= 0, (4.4)

que é semelhante a equação diferencial (3.6) para o caso de um potencial

quadrático (V (φ) ∼ φ2). Na equação acima, o termo de viscosidade

dependente do tempo é dado por

βγ(t) =
Hi

1 + 3
2γHit

, (4.5)

que se reduz para a viscosidade constante e portanto a equação (4.1) no

limite γ → 0. Ainda neste limite a inflação exponencial R(t) ∼ eHit é

facilmente obtida. Como vemos, a equação de movimento (4.4) descreve

o comportamento do campo escalar quando a viscosidade provocada pela

taxa de expansão do universo é uma quantidade dependente do tempo.

Por outro lado, escolhendo Hit = 2
3γ vemos que (4.4) se reduz ao exemplo

prévio com viscosidade constante (βγ(t) = 3Hi).

No presente caṕıtulo, o nosso interesse principal é estudar a influência

de um banho térmico sobre a equação de movimento (4.4) assumindo que

ele é responsável pela evolução estocástica do campo inflaton φ(t). A

formulação estocástica aqui mencionada, transforma a equação (4.4) numa

equação de movimento do tipo Langevin, onde as flutuações do inflaton
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φ(t) assumem um papel fundamental nas perturbações de densidades

termicamente induzidas, especialmente no formalismo de inflação morna.

Para esclarecer melhor este ponto, na seção seguinte faremos um breve

resumo do modelo de inflação morna e a sua abordagen estocástica para

as flutuações do campo inflaton φ(t).

4.2 Modelos de Inflação Morna

Uma aplicação relevante da dinâmica de processos estocásticos no

domı́nio cosmológico foi endereçada, recentemente, aos chamados modelos

de inflação morna [76, 75]. Diferentemente do que acontece nos demais

modelos, a equação de movimento descrevendo a evolução temporal do

campo escalar é contemplada com um termo adicional Γφ̇2, representando

a transferência cont́ınua de energia do campo φ para o fluido de radiação. A

justificativa para introduzir este termo vem do fato de que, o acoplamento

entre o campo escalar e outros campos de matéria é tão finamente ajustado

que o campo escalar evolui o tempo todo num regime amortecido gerando,

assim, uma expansão isotérmica. Como uma consequência imediata, devido

o contato térmico persistir durante todo o tempo, não há necessidade

de gerar um mecanismo de reaquecimento no final da inflação [76, 75].

Em outras palavras, o decaimento cont́ınuo do campo escalar em fótons é

dilúıdo pela expansão do universo.

A equação de evolução do campo escalar neste modelo de inflação é

escrita como:

φ̈ + 3Hφ̇ + 3Γφ̇ + V ′φ = 0, (4.6)

ou equivalentemente, a ńıvel da lei de conservação da energia

ρ̇ + 3γHρ = 3Γφ̇2, (4.7)

onde ρ é a densidade de energia do campo e γ é o parâmetro da equação

de estado p = (γ − 1)ρ.
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As idéias discutidas acima significam que, devido a ausência de

mecanismos de reaquecimento, as perturbações de densidade podem ser

originadas por flutuações térmicas, com equação de evolução escrita como

[75]
dδφ

dt
+

H2 + V ′′(φ)

3H + Γφ
δφ = η. (4.8)

A força estocástica no lado direito da equação acima pode ser encontrada

com o aux́ılio do teorema flutuação-dissipação [159, 161]. Para o caso

onde a temperatura do banho térmico (fluido de radiação) é Tr, os valores

esperados de η são

< η(t) >= 0 < η(t)η(t′) >= Aδ(t − t′), (4.9)

caracterizando o chamado rúıdo branco [126]. A função de correlação das

flutuações do campo escalar obtida de (4.8) assume a forma

< δφ(t)δφ(t′) >= A
3H + Γφ

2H2 exp

⎧⎨
⎩−

(t − t′)
3H + Γφ

H2

⎫⎬
⎭ , (4.10)

onde A = (3π/2)H3Tr[3H + Γφ]
−1. Portanto, quando t = t′ a expressão

acima se reduz para

< (δφ)2 >= (3/4π)HTr. (4.11)

Esta expressão descreve o resultado central da análise de Berera, e dela

conclui-se que as flutuações térmicas do campo escalar, quando acopladas

ao banho térmico, podem ser maiores do que as flutuações quânticas

< (δφ)2 >QM≈ H2/2π. (4.12)

Na seção seguinte, mostraremos que os ingredientes discutidos acima

quando aplicados a cenários de nova inflação, as flutuações do campo

satisfazem a um regime de difusão anômala descrito pela expressão [169]

(δφ)2 ≈ Bεt
3−n. (4.13)
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Fisicamente, a expressão acima indica que o parâmetro n delimita três

regimes difusivos. Em particular, para n = 2 teremos uma difusão normal,

enquanto que para n �= 2, o campo experimenta regimes de difusão

anômala1.

4.3 Campo Inflaton: Formalismo de Langevin

Os estudos relacionados a campos escalares e sua subsequente evolução

cósmica [24, 25, 26] são extremamente importantes para descrever cenários

inflacionários [62, 63, 64, 65, 66] e mais recentemente tem sido aplicado em

modelos de quintessência [32, 164].

No contexto da cosmologia inflacionária, especialmente no novo cenário

inflacionário [165], por exemplo, o universo sofreu uma transição de fase

conduzindo a um estágio de expansão acelerada. Conforme já mencionado

extensivamente nesta tese, nos modelos do tipo Friedmann-Robertson-

Walker a expansão do universo durante a fase inflação é dirigida por um

campo escalar φ(t) satisfazendo a equação de movimento (4.1). Supondo

que o fator de escala satisfaz a uma lei de potência do tipo R(t) ∼ tn [166],

teremos H(t) = nt−1 e, portanto, o comportamento do campo escalar é

semelhante ao de um sistema clássico caracterizado por um coeficiente de

viscosidade β(t) = 3nt−1. Um cenário mais geral é obtido se o fator de

escala obedece a seguinte lei de potência [167, 168]:

R(t) = Ro[1 +
3

2
γHit]

2
3γ , (4.14)

onde Hi é uma constante e γ é um parâmetro adimensional da equação

de estado do fuido cósmico. Note que para Hit >> 1, o universo evolui

obedecendo a uma lei de potência, enquanto o caso limite γ → 0 descreve

o espaço-tempo de Sitter. Para a função de escala (4.14), o parâmetro de

1Para uma revisão mais detalhada de sistemas exibindo comportamento anômalo, veja a referência
[134] e referências lá citadas.

75



Hubble é definido como

H(t) =
Ṙ

R
=

Hi

1 + 3
2γHit

, (4.15)

e da equação (4.1) obtemos

d2φ

dt2
+

3Hi

1 + 3
2γHit

dφ

dt
+

dV

dφ
= 0. (4.16)

Como vemos, o campo escalar φ(t) se comporta como uma part́ıcula

clássica submetida a uma viscosidade βγ(t) = 3Hi/(1+ 3
2γHit), ou seja, um

oscilador se o potencial V (φ) for quadrático. Em particular, para γ → 0

(estágio de Sitter), a equação acima se reduz ao oscilador harmônico com

viscosidade constante (β0 = 3Hi).

A presença de um banho térmico durante a inflação implica que uma

evolução estocástica do campo inflaton deve ser considerada, visto que a

f́ısica relacionada deve ser relevante para a geração do espectro primordial

das flutuações [75]. A analogia apresentada na seção anterior significa

dizer que necessitamos considerar apenas o problema clássico equivalente

ao de uma part́ıcula clássica imersa num banho térmico (ou um fluido

relativ́ıstico denso) sujeito ao potencial V (φ) = m
2 ω2

0φ
2. De agora em

diante, substituiremos a variável x pela variável φ. Neste caso, a equação

de movimento para o campo escalar assume a forma [169]

d2φ

dt2
+

β

1 + (1 − q)βt

dφ

dt
+ ω2

0φ = ξ(t) . (4.17)

Para que o lado esquerdo da equação acima seja consistente com a equação

(4.16) devemos notar que β = 3Hi e q = 1 − γ/2, ou equivalentemente,

βq(t) = β/[1 + (1 − q)βt]. A quantidade ξ(t) é a parte flutuante da

força atuando sobre o campo φ(t), a qual é estocasticamente definida pelas

seguintes propriedades [169, 141]

< ξ(t) >= 0; < ξ(t)ξ(t′) >=
Γ

[1 + (1 − q)βt]n
δ(t − t′), (4.18)
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onde n é um parâmetro arbitrário, δ(t − t′) é a função Delta de Dirac e

os sinais <> indicam a média sobre o ensemble. Note que para n �= 0 a

contribuição da radiação é semelhante ao rúıdo colorido [141] enquanto que

para n = 0, o rúıdo branco do formalismo padrão de Langevin é recuperado

[126]. Para esclarecer este ponto, mencionamos que lei de potências

do tipo (4.18), ao invés de apenas uma funcção delta de Dirac, tem

como caracteŕıstica principal, o surgimento de regimes anômalos devido

a ausência de uma escala de tempo [134].

Seguindo o procedimento padrão e utilizando cálculos algb́ricos simples,

pode ser mostrado que a solução geral da equação (4.17) para o caso q < 1

é escrita como

φ(t) = [eq(βt)]−q[AJν(ω0t + δq) + BYν(ω0t + δq)] +
Cπ

2
[eq(βt)]−q

×{Yν(ω0t + δq)
∫ t

0
[eq(βt′)]−q(ω0t

′ + δq)Jν(ω0t
′ + δqξ(t

′)dt′

−Jν(ω0t + δq)
∫ t

0
[eq(βt′)]−q(ω0t

′ + δq)Yν(ω0t
′ + δq)ξ(t

′)dt′},

(4.19)

sendo a constante C dada por:

C = −π2

4

⎡
⎣φ0Yν−1(δq) − φ̇0

ω0
Yν(δq)

⎤
⎦
⎡
⎣φ0Jν−1(δq) − φ̇0

ω0
Jν(δq)

⎤
⎦ , (4.20)

onde Jν e Yν são funções de Bessel de primeira e segunda espécie,

respectivamente, enquanto φ̇0 significa diferenciação de φ0 com respeito

ao tempo. Note que na ausência do banho térmico, isto é, para o caso

limite ξ(t) → 0, as duas integrais na expressão (4.19) tendem a zero e o

resultado se reduz à solução do q-oscilador discutido na seção prévia, veja

por exemplo, a relação (3.10).
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Para quantificar a variância ((Δφ)2 =< φ2 > − < φ >2) do campo é

necessário calcular os valores médios de φ(t) e φ2(t). Utilizando as duas

condições em (4.18) obtemos o seguinte valor médio:

< φ > (t) = [eq(βt)]−q{AJν(ω0t + δq) + BYν(ω0t + δq)}, (4.21)

e o deslocamento quadrático médio:

< φ2 > = [eq(βt)]−2q[AJν(ω0t + δq) + BYν(ω0t + δq)]
2 + ΓC2[eq(βt)]−2q ×

{F (t)
∫ t

0
[eq(βt′)]−2q+n(1−q)(ω0t

′ + δq)
2Y 2

ν (ω0t
′ + δq)dt′ − G(t) ×

∫ t

0
[eq(βt′)]−2q+n(1−q)(ω0t

′ + δq)
2Jν(ω0t

′ + δq)Yν(ω0t
′ + δq)dt′}.(4.22)

As fuções F (t) e G(t) são dadas respectivamente por

F (t) = J2
ν (ω0t + δq) + Y 2

ν (ω0t + δq), (4.23)

G(t) = 2Jν(ω0t + δq)Yν(ω0t + δq). (4.24)

Portanto, para o rúıdo colorido proposto em (4.18), a variância do campo

escalar é dado por

(Δφ)2 = ΓC2[eq(βt)]−2q ×

{F (t)
∫ t

0
[eq(βt′)]−2q+n(1−q)(ω0t

′ + δq)
2Y 2

ν (ω0t
′ + δq)dt′ − G(t) ×

∫ t

0
[eq(βt′)]−2q+n(1−q)(ω0t

′ + δq)
2Jν(ω0t

′ + δq)Yν(ω0t
′ + δq)dt′}.(4.25)

O resultado acima merece uma atenção especial a duas situação práticas.

(i) Em primeiro lugar, notemos que se ω0 << Hi, significa dizer que o
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termo de potencial pode ser neglegenciado e o comportamento do campo é

semelhante ao de uma part́ıcula clássica executando movimento browniano

sob uma viscosidade dependente do tempo. (ii) Para tempos longos, ou

mais precisamente, para escalas de tempo t >> Hi, a dinâmica estocástica

é exatamente a mesma de um oscilador harmônico simples submetido a

um rúıdo colorido. Portanto, é fácil mostrar que se o termo de potencial é

desprezado a variância do campo evolui como

(Δφ)2 ∼ Bγt
3−n, (4.26)

onde Bγ é uma constante.

Portanto, com o aux́ılio do teorema flutuação-dissipação [159], vemos

facilmente que o coeficiente de difusão do campo Inflaton evolui como

Dγ ∼ Bγt
2−n. Fisicamente, isto significa que o parâmetro n delimita

três regimes difusivos. Em particular, quando n = 1 (rúıdo colorido), o

coeficiente de difusão aumenta linearmente com o tempo, caracterizando

um regime de superdifusão. Por outro lado, se n > 2 (também rúıdo

colorido), o comportamento do campo é caracterizado por um regime de

subdifusão, pois como pode ser visto Dγ → 0. Portanto, o campo só

experimenta difusão normal (Dγ → 0) para n = 2.
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Caṕıtulo 5

Influência de Um Termo Estocástico

Sobre o Efeito Meszaros

5.1 Introdução

Estudos sobre a evolução das perturbações em modelos de universos

dominado por uma componente de matéria não relativ́ıstica mais part́ıculas

relativ́ısticas são de fundamental importância para entender os processos

de formação de estruturas [170, 171, 172, 173].

Nos últimos anos, foram desenvolvidos vários modelos nos quais as

diferentes formas de matéria não bariônica (neutrinos massivos, axions,

neutralinos, fotinos...etc) assumem um importante papel para teorias de

formação de galáxias. Neste contexto, é fisicamente interesante estudar

a evolução das perturbações de uma componente não relativ́ıstica com

densidade ρm em um universo cuja expansão é dirigida por um fluido

relativ́ıstico de densidade ρr. Um resultado anaĺıtico notável neste campo

foi obtido por Meszaros há mais de trinta anos [174]. Segundo Meszaros,

o modo de crescimento da perturbação na compontente de matéria escura

permanece congelada até z = zeq, o redshift para o qual as densidades

de matéria e radiação são iguais. Hoje em dia, esta estagnação ou efeito

sobre a evolução da perturbação de densidade para a matéria é usualmente
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chamado de Efeito Meszaros (EM). Este efeito é muito importante para

modelos nos quais, galáxias e aglomerados de galax́ias são formados através

do crescimento das flutuações primordiais num universo dominado por

matéria escura fria.

Em prinćıpio, o efeito discutido aqui deve ser considerado para algum

cenário de formação de estrutura envolvendo uma componente de matéria

escura fria mais uma fase inicial dominada por radiação.

Qualitativamente, tal efeito acontece porque o tempo caracteŕıstico

da perturbação de densidade é quantificado pela escala de Jeans, τJ ∼
(Gρm)−1/2, enquanto que o tempo caracteŕıstico da expansão é medido pelo

tempo de Hubble, isto é, τH ∼ (Gρr)
−1/2. Destas expressões, conclui-se que

as perturbações na matéria deve crescer somente depois de zeq, desde que

antes disso as escalas de tempos satisfaçam uma relação do tipo τH < τJ .

Nesta seção analizaremos a posśıvel influência dos processos estocásticos

sobre o EM. A idéia fundamental é que as part́ıculas de matéria escura

apresentam um acoplamento efetivo muito fraco com o banho térmico

(radiação), semelhante a interação delas com a matéria bariônica. Além do

mais, é assumido que o efeito do banho térmico é modificar a equação de

evolução para o contraste de densidade tal como acontece em dinâmica

estocástica, como por exemplo, sobre o formalismo desenvolvido por

Langevin. Em outras palavras, as flutuações da matéria escura fria em um

universo governado por um mar de radiação se comportam como part́ıculas

brownianas num banho térmico.

5.2 Teoria de Perturbação e a Evolução do Contraste

de Densidade

Por razões que nos serão úteis na seção seguinte, dedicaremos esta seção

ao estudo da evolução temporal do contraste de densidade no processo de
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formação de estruturas.

Historicamente, os primeiros estudos realizados sobre esse tema foi

proposto originalmente por James Jeans no começo do século XX [175].

Jeans propôs que o universo seria preenchido por um fluido perfeito

não relativ́ıstico, cuja evolução temporal seria descrito pela equação da

continuidade
∂ρ

∂t
+ ∇ · (ρv) = 0, (5.1)

equação de Euler

∂v

∂t
+ (v · ∇)v +

1

ρ
∇p + ∇φ = 0 (5.2)

e a equação para o campo gravitacional

∇2φ = 4πGρ. (5.3)

Nestas equações, a quantidade ρ representa a densidade de matéria e p a

sua pressão, enquanto que v descreve a velocidade local do fluido e φ é

o potencial gravitacional. Se os efeitos da gravitação forem ignorados,

as soluções mais simples para esse conjunto de equações, obviamente

são aquelas para as quais a matéria está em repouso e uniformemente

distribúıda (caso estático). Neste caso, as soluções não perturbadas

correspondentes podem ser escritas como

ρ = cte , p = cte e v = 0. (5.4)

Por outro lado, se for adiconado uma pequena perturbação no fluido, as

quantidades ρ, p, v e φ devem ser expandidas para a forma

ρ = ρ0 + ρ1 e p = p0 + p1 (5.5)

v = v0 + v1 (5.6)

φ = φ0 + φ1. (5.7)
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Nestas expressões, o ı́ndice zero se refere às quantidades homogêneas (não

perturbadas), enquanto que o ı́ndice 1 se refere às quantidades perturbadas.

Além do mais, considerando a equação de estado p1 = v2
sρ1, onde v2

s é a

velocidade do som no fluido, é fácil mostrar que a versão perturbada1 das

equações (5.1) - (5.3) são escritas como

∂ρ1

∂t
+ ρ0∇ · (ρv1) = 0, (5.8)

∂v1

∂t
+

v2
s

ρ0
∇ρ1 + ∇φ1 (5.9)

e

∇2φ1 = 4πGρ1. (5.10)

Também é fácil mostrar que o conjunto acima pode ser combinado para

formar uma equação diferencial de segunda ordem governando a evolução

da densidade perturbada ρ1

∂ρ1

∂t
− v2

s∇2ρ1 = 4πGρ0ρ1. (5.11)

As soluções são da forma

ρ1(r, t) = Ae(i�k·�r−iωt)ρ0, (5.12)

da qual, calculando-se a derivada temporal (∂ρ1/∂t) deduz-se facilmente a

seguinte relação de dispersão

ω2 = v2
sk

2 − 4πGρ0, (5.13)

onde k ≡| �k | é o número de onda. O resultado acima tem um

significado f́ısico muito interessante. Diferentemente do que acontece em

ondas de plamas2, o sinal negativo que vem da natureza atrativa da

1Por simplicidade, estamos considerando perturbações apenas de primeira ordem.
2Num sistema de plasma, a relação de dispersão para as oscilações eletrostásticas tem uma estrutura

similar a expressão (5.13) e é definida como ω2 = v2
sk2 + 4πnee2

me
, onde as quantidades e, me e ne

representam a carga, massa e a densidade de elétrons.
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gravitação provoca naturalmente um comportamento instável na expressão

(5.13). Fisicamente, a expressão acima nos diz que, se ω é real a

perturbação apenas oscila tal como acontece em ondas sonoras. Por outro

lado, se ω é imaginário as perturbações crescem exponencialmente. Este

comportamento delimita algum valor cŕıtico para k, o qual é chamado

número de onda de Jeans

kJ =

⎛
⎝4πGρ0

v2
s

⎞
⎠1/2

. (5.14)

A análise clássica de Jeans discutida aqui não pode ser aplicável

diretamente a cosmologia, simplesmente pelo fato de que estas idéias têm

um caráter puramente newtoniano e a taxa de expaão do universo foi

desconsiderada como uma primeira aproximação. Portanto, para uma

descrição mais realista do tema em questão devemos incorporar o efeito

da expansão do universo, isto será discutido em detalhe nas equações

seguintes.

Quando o universo é tratado como um fluido perfeito e a sua taxa de

expansão é levado em conta, as soluções não perturbadas (ρ0, v0 e ∇φ0)

são dadas respectivamente por [48, 93]

ρ0 = ρ0(t0)R
−3(t) v0 =

Ṙ

R
r ∇φ0 =

4πGρ0

3
r, (5.15)

com as equações (5.8) - (5.10) sendo reescritas na forma:

∂ρ1

∂t
+ 3

Ṙ

R
ρ1 +

Ṙ

R
(r · ∇)ρ1 + ρ0∇ · v1 = 0, (5.16)

∂v1

∂t
+

Ṙ

R
v1 +

Ṙ

R
(r · ∇)v1 +

vs2

ρ0
∇ρ1 + ∇φ1 = 0 (5.17)

e

∇2φ1 = 4πGρ1. (5.18)

Neste ponto, definindo o constraste de densidade δ = ρ1/ρ0 e seguindo o

procedimento das referências [48, 93], pode ser mostrado que a equação
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fundamental descrevendo a evolução do contraste de densidade num

universo em expansão é escrita como:

δ̈k + 2
Ṙ

R
δ̇k +

⎛
⎝k2v2

s

R2 − 4πGρ0

⎞
⎠ δk = 0. (5.19)

Note que o efeito da expansão provoca uma alteração na relação de

dispersão de Jeans, a qual, neste caso é dada pelo coeficiente de δ

ω2 =
k2v2

s

R2 − 4πGρ0, (5.20)

onde o número de onda k é extendido para uma quantidade f́ısica (kphys)

dado por kphys = k/R. Neste caso, o número de onda de Jeans (5.14)

também é alterado devido o efeito da expansão do universo

kJ =

⎛
⎝4πGρ0R

2

v2
s

⎞
⎠1/2

. (5.21)

Note também que para R constante, a relação de Jeans (5.13) é recuperada.

Além do mais, o comportamento qualitativo das soluções depende da

diferença
(

k2v2
s

R2 − 4πGρ0

)
, ou equivalentemente, depende do número de

onda kJ . Em outras palavras, a solução exata da equação (5.19) depende

da era cósmica, ou seja, se o universo é dominado por radiação ou matéria.

Em particular, a solução correspondente a era dominada por matéria

será exibida para os modelos espacialmente planos de FRW. No caso de

universo dominado por matéria, ou seja, um fluido perfeito com pressão

nula, a equação (5.19) deve ser reescrita na forma:

δ̈k + 2
Ṙ

R
δ̇k − 4πGρ0δk = 0, (5.22)

já que o termo k2v2
s

R2 = 0 está ligado a equação de estado p = v2
sρ, ou

equivalentemente, v2
s = (∂p/∂ρ). Considerando que o fator de escala

satisfaz a uma lei de potência R(t) ∝ t2/3, teremos Ṙ/R = 2/3t e

ρ0 = 1/3πGt2, com a equação acima se reduzindo para

δ̈k +
4

3t
δ̇k − 2

3t2
δk = 0. (5.23)
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A solução geral desta equação é composta de duas soluções independentes,

um modo de crescimento designado por δ+ e um modo de decaimento

descrito por δ−, cuja dependência temporal é dada por [48, 93]

δk(t) = Aδ+ + Bδ− = At2/3 + Bt−1, (5.24)

onde A e B são duas constantes.

Na seção seguinte, essas idéias serão rediscutidas sob a ótica do efeito

Meszaros.

5.3 Efeito Meszaros: O Tratamento Anaĺıtico

Para compreender qualitativamente o EM, vamos considerar um

universo descrito por uma mistura de dois fluidos, a saber, radiação e

matéria escura. Como é amplamente conhecido, a equação de movimento

descrevendo a evolução do contraste de densidade da matéria δ é escrita

como [170, 171, 172]

δ̈ + 2Hδ̇ − 4πGρmδ = 0, (5.25)

onde H = Ṙ/R é o parâmetro de Hubble e R(t) é o fator de escala cósmica,

G é a constante gravitacional e ρm representa a densidade de matéria.

Por outro lado, para uma mistura de matéria e radiação, as equações de

Friedmann-Robertson-Walker (FRW) podem ser escritas na forma

Ṙ2 =
8πG

3
R2(ρm + ρr) =

8πG

3
R2ρr(1 + y), (5.26)

R̈ = −4πG

3
R(ρ + 3p) = −4πG

3
Rρr(2 + y) (5.27)

onde ρm e ρr são, respectivamente, as densidades de energia da matéria

e radiação. A quantidade y nestas equações quantifica a razão entre as

densidades de energia da matéria e radiação, ou seja:

y ≡ ρm

ρr
=

R

Req
=

1 + zeq

1 + z
. (5.28)
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É interessante mencionar que o conjunto de equações acima (5.25)-(5.28)

também pode ser derivado no contexto de um formalismo neo-newtoniano,

tal como proposto por Lima et al. em [176].

Neste ponto, para resolver a equação (5.25) é mais conveniente reescrevê-

la em termos da quantidade adimensional y. Combinando as equações

acima, é fácil mostrar que a equação de evolução para o contraste de

densidade da matéria assume a seguinte forma [174]:

δ
′′
+

2 + 3y

2y(1 + y)
δ
′ − 3

2y(1 + y)
δ = 0, (5.29)

onde (′) significa diferenciação com respeito a variável y.

Para ser consistente com o efeito originalmente estudado por Meszaros,

a solução geral da equação acima é obtida para o caso δ
′′

= 0 e contém

dois termos

δ(y) = c1δ+ + c2δ−, (5.30)

sendo δ+ o fator de crescimento da perturbação, δ− o fator de atenuação

e c1 e c2 são constantes. É fácil mostrar que a solução para o fator de

crescimento no intervalo [∞, zeq] é dada por:

δ+ ∝ y + 2/3. (5.31)

Também é posśıvel derivar o modo de atenuação. Isto se torna mais simples

para a fase dominada por radiação, uma vez que y << 1. Neste caso

teremos δ− ∝ (ln y)−1.

Claramente, a solução (5.31) acima nos mostra que o fator de

crescimento total no intervalo acima considerado é escrito como

δ+(y = 1, z = zeq)

δ+(y = 0, z = ∞)
=

5

2
. (5.32)

Por razões que será útil mais adiante, pode ser facilmente mostrado que o

crescimento quadrático médio total é:

< δ2
+(y = 1, z = zeq) >

< δ2
+(y = 0, z = ∞) >

= 6.25. (5.33)
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O significado f́ısico deste resultado é muito claro: antes de zeq (y < 1),

a energia dominante da radiação dirige a expansão do universo de forma

tão rápida que a instabilidade gravitacional na densidade de matéria é

despreźıvel, e, como tal, o contraste de densidade δ+, para todas as

propostas práticas, é mantido a um valor constante. Entretanto, logo

após zeq (y > 1) o universo desenvolve a fase dominada por matéria e

o contraste de densidade aumenta suavemente à fase de Einstein-de Sitter,

ou seja, δ+ ∝ R(t) ∝ t2/3.

5.4 Áxions como WIMPs

Conforme amplamente conhecido na literatura, WIMPs (Weakly Interact-

ing Massive Particles), sigla em inglês para designar part́ıculas materiais

que se acoplam fracamente a matéria ordinária e sua origem remonta a fase

dominado por radiação, quando o universo ainda era muito jovem [93, 177].

Atualmente, um forte debate na literatura aponta os áxions e neutralinos

como dois dos candidatos mais prováveis, embora outros como neutrinos

sem massa e fotinos possam também ser considerados como posśıveis can-

didatos.

Os mecanismos responsáveis pela geração dos áxions no começo do

universo é baseado em alguns processos de transição de fase [178].

Entretanto, do ponto de vista teórico ainda existe um outro mecanismo

de criação fundamentado no decaimento de cordas cósmica [179].

Para justificar o estudo que será feito na seção seguinte, será suposto

que as part́ıculas de matéria escura (áxions e neutralinos) se acoplam pelo

menos fracamente com o background de radiação. Esta suposição é uma

condição essencial para uma descrição do EM baseado no tratamento de

movimento browniano, tal como investigado antes para o caso de uma

part́ıcula massiva imersa num banho térmico. Em outras palavras, o
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acoplamento da matéria escura com a radiação contribui com um termo de

natureza estocástica aparecendo na equação de movimento para o contraste

de densidade. Isto será o objeto de nosso estudo na seção seguinte.

5.5 A Influência do Termo Estocástico

De agora por diante, assumiremos que o acoplamento da matéria escura

com o banho térmico contribui com um termo de natureza estocástica

(rúıdo) na equação de movimento para o contraste de densidade. Portanto,

tal como acontece no formalismo de Langevin para o movimento browniano,

reescrevemos a equação de movimento (5.29) como uma equação forçada

para o contraste [180]

δ
′′
+

2 + 3y

2y(1 + y)
δ
′ − 3

2y(1 + y)
δ = ξ(y), (5.34)

onde ξ(y) é a força estocástica (rúıdo) definida pelas propriedades

< ξ(y) >= 0, < ξ(y)ξ(y′) >=
Γ

[1 + αy]n
δ(y − y′) (5.35)

sendo Γ, n e α constantes. Esta espécie de rúıdo foi aplicado recentemente

no contexto da dinâmica do campo escalar em modelos inflacionários [169],

mais precisamente, para o então chamado cenários de inflação morna

[75, 76, 181, 182]. Neste caso, sempre que o potencial do campo escalar for

nulo, foi mostrado que o sistema descreve um regime de difusão anômala.

Note que para n �= 0 teremos sempre um rúıdo colorido, enquanto n = 0

ele se reduz ao rúıdo branco do formalismo de Langevin [126].

Seguindo o procedimento padrão, pode ser visto facilmente que para um

rúıdo branco (n = 0), a solução geral para o fator de crescimento é dada

por3

δ+(y) =

(
y +

2

3

)
+

(
y +

2

3

) ∫ 2y(1 + y)

3(y + 2
3)

2 ξ(y)dy. (5.36)

3Para ser consistente com o tratamento anaĺıtico do Efeito Meszaros discutido anteriormente,
procuramos soluções com a condição δ′′ = 0.
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Claramente, a expressão acima nos mostra que para ξ(y) = 0 ela se

reduz ao resultado em (5.31), como deveŕıamos esperar. Neste ponto, é

interessante calcular algumas quantidades fisicamente relevantes, tais como

a média < δ >, o deslocamento quadrático médio < δ2 > e a variância das

flutuações σ2 =< δ2
+ > − < δ >2

+ para que possamos comparar com o caso

padrão.

Inicialmente, notamos que a primeira condição de Langevin, < ξ(y) >=

0, combinada com a expressão acima implica que:

δ+(y) = y +
2

3
, (5.37)

que é precisamente o resultado (5.31), obtido para o caso usual sem

acoplamento entre radiação e matéria escura. Em adição, considerando

a segunda condição de Langevin em (5.35) e depois de alguma ágebra,

pode ser mostrado que o deslocamento quadrático médio da perturbação é

dado por [180]:

< δ2
+ >=

(
y +

2

3

)2
+

4

9
Γ

⎡
⎣y

(
y +

2

3

)2
+

13

3

(
y +

2

3

)
−

4

243
(
y + 2

3

) +
8

3

(
y +

2

3

)2
ln

(
y +

2

3

)
− 20

27

⎤
⎦ ,

(5.38)

com a seguinte variância

σ2 =
4

9
Γ

⎡
⎣y

(
y +

2

3

)2
+

13

3

(
y +

2

3

)
− 4

243
(
y + 2

3

)

+
8

3

(
y +

2

3

)2
ln

(
y +

2

3

)
− 20

27

⎤
⎦ . (5.39)

A expressão (5.38) acima implica que o fator de crescimento total para o

contraste de densidade da matéria escura no intervalo [∞, zeq] é dado por

< δ2
+(y = 1, z = zeq) >

< δ2
+(y = 0, z = ∞) >

�
25
9 + 5.79Γ
4
9 + 0.70Γ

. (5.40)
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Fisicamente, isto significa que as posśıveis correções estocásticas sobre o

EM, para uma contribuição de rúıdo branco de Langevin, é controlado

pelos valores do coeficiente Γ. Em particular, para o caso em que Γ ∼ 1

teremos
< δ2

+(y = 1, z = zeq) >

< δ2
+(y = 0, z = ∞) >

∼ 7.45, (5.41)

enquanto que a variância total no intervalo [∞, zeq] é

σ(z = zeq)

σ(z = ∞)
= 2.7. (5.42)

Portanto, comparando o resultado (5.41) com (5.33) vemos que o fator de

crescimento total no intervalo acima considerado é modificado somente por

um pequeno fator. Note também que tal resultado é pouco modificado se

o coeficiente Γ >> 1. Neste caso, por exemplo, o deslocamento total é

simplesmente
< δ2

+(y = 1, z = zeq) >

< δ2
+(y = 0, z = ∞) >

∼ 8.27. (5.43)

O resultado acima quando comparado com (5.33), revela que a influência

de correções estocásticas para o caso de rúıdo branco, praticamente não

altera a dinâmica do EM original. Estas considerações f́ısicas nos mostram

que na expressão acima a máxima correção é equivalente a 1.77 vezes o

caso padrão. Em outras palavras, o efeito é extremamente robusto sobre

essa classe particular de rúıdos.

5.5.1 O Efeito do Rúıdo Colorido

Uma análise detalhada do EM para o caso de rúıdo colorido requer um

tratamento mais eficaz, o qual deve ser baseado num método numérico.

Um estudo dessa natureza é de extrema importância para explorar as

propriedades f́ısicas das equações básicas e comparar com os resultados

discutido aqui. Isto será feito futuramente. Por ora, apresentaremos nesta
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tese apenas as expressões formais, a saber, o deslocamento quadrático

médio e variância.

Utilizando a condição (5.35) para o rúıdo colorido, podemos mostrar que

o deslocamento quadrático médio para o fator de crescimento δ2
+ satisfaz

uma relação do tipo

< δ2
+ > =

(
y +

2

3

)2
+

4

9
Γ

(
y +

2

3

)2 ∫ y2(1 + y)2dy

(y + 2
3)

4(1 + αy)n
, (5.44)

enquanto a variância assume a forma

σ2 =
4

9
Γ

(
y +

2

3

)2 ∫ y2(1 + y)2

(y + 2
3)

4(1 + αy)n
dy. (5.45)

Nas duas equações acima, pode ser facilmente mostrado que quando n = 0

elas se reduzem às expressões (5.38) e (5.39) obtidas para o caso de rúıdo

branco.

Em suma, neste caṕıtulo obtemos as expressões anaĺıticas e formais,

descrevendo a influência estocástica de um banho térmico (componente de

radiação) sobre o EM. As correções são controladas por um parâmetro Γ

assumindo valores reais. Particularmente, para o caso de rúıdo branco, as

correções no fator de crescimento entre o intervalo [0, te], é no máximo, 1.77

vezes o resultado padrão. Isto sugere que o EM é robusto com respeito a

uma posśıvel existência de correções estocásticas. Além do mais, a análise

discutida nesta tese não inclui o efeito da derivada de segunda ordem em

δ. Um estudo mais eficaz das equações básicas, baseado num tratamento

numérico para o termo de derivada segunda e rúıdo colorido, será feito em

detalhe num futuro próximo.
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Caṕıtulo 6

Formulação Estocástica dos Modelos

Friedmann

6.1 Introdução

O modelo mais simples de Universo, o então chamado modelo de

Friedmann-Robertson-Walker (FRW) ou, mais comumente, o modelo do

Big Bang, é baseado na hipótese de que o conteúdo de matéria total do

universo é distribúıdo de forma homogênea e isotrópica, tal como discutido

no ińıcio do caṕıtulo I. A grosso modo, esses dois conceitos significam que

diferentes observadores que estejam participando da expansão cosmológica,

devem ter a mesma interpretação f́ısica das propriedades do Universo.

De um ponto de vista f́ısico, o modelo cosmológico padrão sugere

fortemente que os efeitos quânticos, bem como os efeitos da gravidade

quântica, devem ser significativamente importantes durante o universo

primordial ou, mais precisamente, no ińıcio da evolução cósmica,

de modo que a era de Planck deve começar com condições iniciais

não determińısticas. Entretanto, na ausência de uma formulação

verdadeiramente quântica para a gravitação, e consequentemente para a

era de Planck, essa dificuldade pode ser contornada com a introdução de

uma formulação puramente estocástica na evolução do Universo. De fato,
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o crescente interesse na aplicação de métodos estocásticos para estudar

modelos cosmológicos tem crescido consideravelmente e colecionado uma

série de trabalhos na literatura, veja por exemplo, as referências [37,

38, 39, 35, 40]. Outras mais tratam de modelos estocásticos clássicos

para a cosmologia, justificando que a evolução temporal dos parâmetros

cosmolóicos1 seguem um caráter não determińıstico [41, 42].

Como é conhecido, um dos problemas mais interessantes e desafiadores

da cosmologia contemporânea, é a tarefa de incorporar os efeitos das

flutuações quânticas na evolução global do universo. Este problema

assumiu uma importância especial desde a sugestão de que um campo

escalar deve dirigir o universo num estágio de expansão exponencial,

chamado de inflação e, simultaneamente, gerar as perturbações de

densidades necessárias para produzir as galáxias e as estruturas de grande

escalas observadas atualmente.

O interesse na aplicação de métodos estocásticos em Cosmologia não se

resume apenas a modelos inflacionários. De fato, vários autores usaram

técnicas estocásticas para estudar o posśıvel comportamento do universo

quando as flutuações quânticas desempenham um papel fundamental na

sua evolução. Em geral, o formalismo estocástico é introduzindo através

da equação de estado de um fluido perfeito, já que esta é a possibilidade

mais viável imposta pelas equações de Friedmann. Um formalismo desse

tipo foi introduzido nas referências [37, 39] e desenvolvido com mais detalhe

por Burd e Coles em [40].

No presente caṕıtulo, desenvolveremos um modelo que generaliza a

formulação estocástica dos modelos de FRW proposto por M. Novello [35].

1Na referência [41] os autores mostraram que o parâmetro da equação de estado de um fluido
perfeito (ω), bem como a densidade de energia da matéria ρm, seguem um comportamento puramente
aleatório. Para este caso, foi mostrado também que a probabilidade para ρm mudar de um valor
ρm a um valor final ρ′m durante o tempo (t − t′), é dado pela expressão P (ρm, t | ρ′m, t′) =

1√
4πD(t−t′)

exp
{
− [(

√
ρ′

m−√
ρm)−

√
6πGρmρ′

m(t−t′)]2

24πGρmρ′
mD(t−t′)

}
.
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Inicialmente, mostraremos que usando uma transformação de coordenada

adequada as equações de Friedmann podem ser reduzidas à equação de

um oscilador harmônico simples [183, 184]. Em seguida, trataremos o

problema quântico do oscilador seguindo uma abordagem chamada “Fluido

de Madelung” [185]. Como veremos, o formalismo estocástico discutido

aqui quando aplicado aos modelos do FRW com equação de estado p = ωρ,

é essencial para compreender a dinâmica e a evolução do universo.

6.2 A Dinâmica do Universo: Um Formalismo

Determińıstico

Nos modelos cosmológicos do tipo FRW o elemento de linha é descrito

pela expressão:

ds2 = dt2 − R2(t)

⎛
⎝ dr2

1 − Kr2 + r2dθ2 + r2sin2θdφ2

⎞
⎠ , (6.1)

onde R(t) é o fator de escala e K = (±1, 0) é o parâmetro de curvatura

espacial. Em tais modelos, as equação de campo de Einstein para um fluido

relativ́ıstico simples são escritas como [184, 186, 187, 188, 189]:

8πGρ = 3
Ṙ2

R2 + 3
K

R2 (6.2)

8πGp = −2
R̈

R
− Ṙ2

R2 − K

R2 , (6.3)

onde ρ(t) e p(t) são as densidades de energia e pressão respectivamente.

Note que neste sistema existem três quantidades desconhecidas, a saber,

R(t), ρ(t) e p(t), enquanto existe apenas duas equações independentes.

Neste caso, para especificar a solução geral é necessário um v́ınculo

adicional. No contexto cosmológico, como é usualmente assumido, o

conteúdo de matéria obedece a uma equação de estado da forma:

p = ωρ. (6.4)
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A dinâmica cósmica é determinada por uma combinação elementar

do conjunto de equações (6.2) - (6.4). Neste caso, utilizando cálculos

algébricos simples, pode ser mostrado facilmente que a evolução temporal

do fator de escala cósmica obedece a uma equação diferencial de segunda

ordem do tipo [184, 186]:

RR̈ + ΔṘ2 + ΔK = 0, (6.5)

sendo Δ uma função do parâmetro ω, a saber; Δ = (1 + 3ω)/2.

Em prinćıpio, o correspondente comportamento dinâmico deve ser

fortemente dependente da escolha do par de parâmetros: (i) o parâmetro

de curvatura K, e (ii) o parâmetro da equação de estado ω.

A integral primeira da equação (6.5) pode ser representada por

Ṙ2 =

(
R0

R

)2Δ

− K, (6.6)

que para K = 0 (modelos planos), tem como solução particular a lei de

potência:

R(t) = R0 [1 + (1 + Δ)(t − t0)/R0]
1

1+Δ , (6.7)

ou equivalentemente,

R(t) = R0

[
1 +

3

2
(1 + ω)(t − t0)/R0

] 2
3(1+ω)

. (6.8)

Na lei de potência acima, t0 representa uma escala de tempo arbitrária e

R0 = R(t = 0) é o valor atual do fator de escala.

A partir deste ponto, focalizaremos nossa atenção na obtenção da

solução geral da equação (6.5), considerando valores arbitrários do par de

parâmetros (ω,K). Para tal, é necessário fazer uma mudança de variável

na escala de tempo. Ao invés do tempo f́ısico (ou cosmológico), usaremos

o tempo conforme obedecendo a relação dη = R−1(η)dt. Neste caso, a

equação diferencial (6.5) assume a forma [183, 186]:

RR′′ + (Δ − 1)R′2 + ΔKR2 = 0, (6.9)
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onde a linha (′) denota derivadas com respeito ao tempo conforme e

R = R(η).

A solução geral da equação acima é mais facilmente obtida utilizando o

fator de escala auxiliar

Z(η) = RΔ, se Δ �= 0 (6.10)

e

Z(η) = ln R, se Δ = 0. (6.11)

Neste caso, usando a transformação (6.10) vemos que (6.9) pode ser

reescrita numa forma mais conveniente:

Z ′′(η) + Δ2KZ(η) = 0 se Δ �= 0, (6.12)

ou

Z ′′(η) = 0 se Δ = 0. (6.13)

Note que a equação (6.12) depende fortemente dos parâmetros K e ω

tendo um significado f́ısico muito claro: O movimento descrito por ela é

equivalente ao movimento classical de uma part́ıcula sujeita a uma força

linear, a qual pode ser restauradora ou repulsiva, dependendo apenas do

sinal do parâmetro de curvatura. Em particular, para modelos fechados

(K = 1), a dinâmica cósmica neste caso é semelhante ao movimento de um

oscilador harmônico simples. Também é interessante notar que para valores

positivos de Δ, este movimento oscilatório entre as singularidades bing-

bang e big-crunch reforça, consideravelmente, a conexão com a idéia de um

universo pulsante. Por outro lado, Para o caso de universos espacialmente

planos (K = 0), o sistema descrito pela equação (6.12) se comporta como

uma part́ıcula livre e o mesmo acontece se Δ = 0. Finalmente, para para

universos do tipo hiperbólicos (K = −1), o sistema se comporta como um

anti-oscilador, ou seja, o comportamento é semelhante ao de uma part́ıcula

livre sujeita a uma força repulsiva proporcional a distância.
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Neste ponto, considerando a relevância das identidades matemáticas

limα→0
sin(αx)

α = x e sin(ix) = isinhx, pode ser facilmente mostrado que a

solução unificada da equação (6.12) é dado por [183, 186]:

Z(η) =
Z0√
K

sin
√

K[| Δ | (η − δ)] (6.14)

onde Z0 = RΔ
0 e δ são constantes de integração.

Escolhendo a constante δ = 0, vemos que a solução geral relacionando

o fator de escala e o tempo cosmológico é

R(η) = R0

⎡
⎣sin

√
K | Δ | η√

K

⎤
⎦

1/Δ

(6.15)

t(η) = R0

∫ ⎡
⎣sin

√
K | Δ | η√

K

⎤
⎦

1/Δ

dη + Cte. (6.16)

Para o caso de modelos eĺıptico (K = 1), estas soluções podem ser reescritas

como

R(η) = R0 [sin | Δ | η]1/Δ (6.17)

t(η) = R0

∫
[sin | Δ | η]1/Δ dη + Cte, (6.18)

e para modelos hiperbólicos (K = 1)

R(η) = R0 [sinh | Δ | η]1/Δ (6.19)

t(η) = R0

∫
[sinh | Δ | η]1/Δ dη + Cte. (6.20)

As integrais presentes em (6.18) e (6.20) devem ser representadas em termos

de funções gaussianas hipergeométricas.

Por razões que será útil mais adiante, na seção seguinte será feita

uma descrição do formalismo estocástico que será aplicado na equação de

movimento 6.12.
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6.3 O Fluido de Madelung

Antes de introduzir a formulação estocástica da equação (6.12), é

conveniente fazer um breve resumo do formalismo geral que é baseado na

chamada descrição Madelung [185]. Este sistema hidrodinâmico quântico,

foi proposto originalmente por Madelung em 1926. Convencionalmente,

tal sistema não consiste de um modelo de part́ıculas com trajetórias bem

definidas, mas sim de um modelo hidrodinâmico descrito pela equação

de Schrödinger, onde a densidade do fluido é associada, por analogia, a

densidade de probabilidade da teoria quântica. Para um entendimento

mais geral do sistema discutido aqui, veremos em mais detalhes, a discussão

seguinte.

Consideremos um sistema mecânico simples, o qual, no espaço das

configurações e dos momentos (p, q), pode ser descrito pela hamiltoniana

H = p2/2m + V (q). (6.21)

A equação de Schrödinger relacionada com a hamiltoniana acima assume

a forma:

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + V ψ, (6.22)

onde h̄ é a constante de Planck e ψ = ψ(x, t) é a função de onda. Para

todas as regiões onde a função de onda é diferente de zero, a equação acima

admite uma classe de soluções escritas na forma [191, 192, 193]

ψ(x, t) = exp

{
F (x, t) +

i

h̄
S(x, t)

}
, (6.23)

onde F (x, t) e S(x, t) são funções reais.

Substitúındo a equação acima em (6.22) e considerando somente a parte

imaginária, obteremos como resultado a relação matemática:

∂F

∂t
=

1

2m
(∇2S + 2∇F · ∇S) = 0. (6.24)
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Definindo o campo de velocidade do fluido de Madelung

v(x, t) =
1

m
∇S(x, t) (6.25)

e a sua densidade

ρ(x, t) =| ψ(x, t) |2= exp{2F (x, t)}, (6.26)

podemos identificar claramente (6.24) como a equação da continuidade

∂ρ

∂t
+ ∇ · (ρv) = 0. (6.27)

Por outro lado, substitúındo (6.23) em (6.22) e considerando somente a

parte real, obteremos:

∂S

∂t
=

h̄2

2m

⎡
⎣∇2F + ∇F · ∇F − (∇S)2

h̄2

⎤
⎦− V (x). (6.28)

Considerando que ∇eF = (∇F )eF e ∇2eF = [(∇2F ) + (∇F )2]eF , então a

equação acima pode ser equivalente a

∂S

∂t
+

1

2m
(∇S)2 + V (x) − h̄2

2m

⎡
⎣∇2eF

eF

⎤
⎦ = 0. (6.29)

Portanto, denominamos Fluido de Madelung, um sistema hidrodinâmico

descrito pelo conjunto de equações (6.25), (6.27) e (6.29). Note que, no

limite semi-clássico (h̄ → 0), o sistema descrito acima recupera a estrutura

padrão do Fluido de Hamilton-Jacobi em mecâncica clássica.

Como vemos, a dinâmica do sistema é determinada basicamente pela

equação acima, a qual pode ser reescrita numa forma mais conveniente

∂S

∂t
+ HM = 0, (6.30)

onde HM é a hamiltoniana total do sistema. Comparando as expressões

(6.29) e 6.30), vemos facilmente que HM contém dois termos: uma

contribuição clássica (Hcl) e outra difusiva (Hdif) oriunda da teoria

quântica, de tal modo que

Hcl =
1

2m
(∇S)2 + V (x) =

p2

2m
+ V (x) (6.31)

100



e

Hdif = − h̄2

2m

⎡
⎣∇2 exp(F )

exp(F )

⎤
⎦ . (6.32)

Na seção seguinte, faremos um tratamento unificado das idéias

discutidas aqui e o tratamento estocástico das equações de Fridmann

reduzidas a forma simples de um oscilador harmônico, equação (6.12).

6.4 Modelos de FRW na formulação de Madelung

A partir deste ponto, introduziremos um formalismo estocástico

unificado entre as idéias dicutidas na seção anterior e a equação do oscilador

(6.12).

Inicialmente notemos que, no espaço das configurações (p, q) a

hamiltoniana do sistema (6.12) é escrita como

H(pc, qc) =
p2

c

2m
+ V (qc) =

p2
c

2m
+

1

2
mΔ2Kq2

c , (6.33)

com as equações canônicas de movimento dadas por

q̇c =
pc

m
, ṗc = −ω2

0qc, (6.34)

onde pc e qc significam quantidades clássicas e ω0 = Δ2K. As soluções

gerais das equações acima podem ser escritas como

pc(t) = p0 cos ω0t − mω0q0 sin ω0t, (6.35)

qc(t) = q0 cos ω0t +
p0

mω0
sin ω0t, (6.36)

onde as quantidades p0 e q0 são obtidas da condição inicial t = 0.

A equação de Schrödinger para a função de onda ψ(Z, t) associada a

estrutura clássica do oscilador harmônico (6.12) é escrita de forma usual

ih̄
∂Ψ(Z, t)

∂t
= − h̄2

2m

∂2Ψ(Z, t)

∂Z2 +
1

2
mω2

0Z
2Ψ(Z, t). (6.37)
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Uma equação deste tipo admite uma classe especial de soluções dadas em

termos dos estados coerentes, onde a cada um deles se associa uma solução

{pc(t), qc(t)} [190].

Seguindo o procedimento das referências [191, 192, 193] e para ser

consistente com o formalismo geral da seção anterior, escrevemos a solução

geral da equação (6.37) na forma:

Ψ(Z, t) = (2πσ)−1/4 exp

{
− 1

4σ
(Z − qc)

2 − i

h̄
Zpc +

i

h̄
pcqc − i

ω0

2
t

}
, (6.38)

onde a função F (Z, t) e a fase S(Z, t) são escritas como

F (Z, t) = − 1

4σ
(Z − qc)

2, (6.39)

S(Z, t) = Zpc − 1

2
pcqc − 1

2
h̄ω0t. (6.40)

A quantidade σ é a variância calculada da forma usual, σ2 = h̄/2mω0.

Neste ponto, introduziremos a densidade de probabilidade ρ(Z, t), tal

como é usualmente definida na teoria quântica

ρ(Z, t) =| Ψ(Z, t) |2 . (6.41)

Note que, usando a solução geral para ψ(Z, t) dado em (6.38) e o complexo

conjugado ψ∗(Z, t), teremos

ρ(Z, t) =
1√

2πσ2
exp{2F (Z, t)} (6.42)

ou equivalentemente, usando a expressão (6.39),

ρ(Z, t) =
1√

2πσ2
exp

{
− 1

2σ
(Z − qc)

2
}

, (6.43)

onde qc é dado pela solução clássica (6.36). Como vemos, devido ao

caráter estocástico (flutuante), a densidade do fluido é descrita por uma

distribuição de probabilidade gaussiana.

Comparando a expressão acima com a distribuição gaussiana

P (Z) =
1√

2πσ2
exp

{
− 1

2σ2 (Z− < Z >)2
}

, (6.44)
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vemos facilmente que o valor médio < Z > e a variância σ2 =< Z2 >

− < Z >2 são dados respectivamente por < Z >= qc e σ2 = h̄/2mω0. Os

mesmos resultados também podem ser obtidos por meio de cálculos direto

utilizando a função distribuição (6.43), a saber:

< Z >=
∫

ρ(Z, t)ZdZ = qc (6.45)

e

< Z2 >=
∫

ρ(Z, t)Z2dZ = σ2 + q2
c , (6.46)

o que significa

σ2 =< Z2 > − < Z >2=
h̄

2mω0
. (6.47)

Utilizando a função densidade (6.43) podemos calcular a velocidade

osmótica do fluido δv definida como

δv = ν∇ρ/ρ, (6.48)

onde ν = h̄/2m é o coeficiente de difusão. Como pode ser facilmente visto,

o lado direito da equação acima é reescrito como

ν∇ρ/ρ = − h̄

2m

(Z− < Z >)

σ2 , (6.49)

e usando a definição de σ2, obtemos

δv = −ω0(Z− < Z >). (6.50)

Seguindo o procedimento das referências [35, 191, 192], obtemos as

velocidades

v(+) = v + δv =
pc

m
− ω0[Z− < Z >] (6.51)

e

v(−) = v − δv =
pc

m
+ ω0[Z− < Z >]. (6.52)

Neste ponto, mostraremos que as idéias discutidas até aqui nos permite

assumir que q(t) satisfaz a uma equação diferencial estocástica do tipo

Langevin

dq(t) = v(+)(q(t), t)dt + dw(t), (6.53)
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onde dw(t) é um processo de Winer [126] tal que

E[dwi(t)] = 0 E[dwi(t)dwj(t)] = 2νδij, (6.54)

sendo que a notação E[] significa um procedimento de médias sobre um

ensemble. Sendo assim, para o caso de universo de Sitter, obteremos

dZ =
[
Żc − ω0(Z− < Z >)

]
dt + dw(t), (6.55)

onde Żc = pc/m e < Z >= qc conforme mostrado na equação (6.45).

Portanto, vemos que a natureza gaussiana do problema tal como descrito

em (6.43), implica que

E[Z(η)] =
Z0√
K

sin
√

K[| Δ | (η − δ)] (6.56)

E[Z2(η)] =
Z2

0

K
sin2

√
K[| Δ | (η − δ)] + σ2, (6.57)

ou equivalentemente, utilizando a transformação Z = RΔ como definida

na equação (6.10):

E[R(η)] =
R0

(K)1/2Δ sin
1
Δ

√
K[| Δ | (η − δ)], (6.58)

E[R2(η)] =
R2

0

(K)1/Δsin
2
Δ

√
K[| Δ | (η − δ)] + σ2. (6.59)

Note que as duas expressões acima são generalizações das equações (28a)

e (28b) obtidas na referência [35]. Note também que os resultados acima

são válidos para qualquer valor do par de parâmetros (K,ω). Fisicamente,

estas equações significam que o efeito ĺıquido do meio é evitar o colapso do

modelo, ou seja, a singularidade cosmológica (não estocástica) desaparece

devido a contribuição dos efeitos quânticos.
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Caṕıtulo 7

Potencial Escalar e Cenários de

Quintessência

7.1 Introdução

Conforme discutido no caṕıtulo I, um número cada vez maior de

observações astronômicas sugerem fortemente que a razão entre a densidade

de matéria (bariônica mais matéria escura) e a densidade cŕıtica é

significativamente menor que a unidade [10, 11, 79, 80, 81]. Naturalmente,

este fato está em desacordo com alguns argumentos teóricos derivados

da cosmologia inflacionária, que prever um universo espacialmente plano

[196]. Logo, para que tenhamos um parâmetro de densidade da matéria

de ordem unitário (Ωtotal = 1), o universo deve ser preenchido por uma

forma desconhecida de energia em adição à contribuição da matéria escura

ordinária. Conforme já mencionamos, esta conclusão é reforçada pelas

medidas recentes da relação redshift-luminosidade [10] de uma ampla classe

de supernovas do tipo Ia, sugerindo indiretamente que essa forma de energia

possui uma pressão negativa. Em virtude de um efeito relativ́ıstico geral,

uma pressão negativa corresponde a um estado gravitacional repulsivo (veja

discussão no caṕıtulo I), cujo resultado principal é acelerar a expansão

do universo, como indicado pelos experimentos envolvendo supernovas Ia
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[197].

Tradicionalmente, um candidato mais provável para esta componente

desconhecida, atualmente chamada de energia escura, é a densidade de

energia do vácuo ou constante cosmológica (Λ), que é equivalente a um

fluido perfeito obedecendo a uma equação de estado do tipo p = −ρ [10, 11].

Uma outra possibilidade mais genérica corresponde a um campo escalar

dependente do tempo φ(t) evoluindo em direção ao valor mı́nimo do seu

potencial, o qual é também conhecido como energia escura ou quintessência

[198]. Esta última pode ser caracterizada por uma equação de estado

efetiva, contendo um parâmetro dependente do tempo ω(t) que quantifica

a razão entre as densidades de energia e pressão. Dependendo da forma

do potencial V (φ), o parâmetro ω pode ser constante, monotonicamente

crescente (decrescente) ou sempre oscilatório [198, 199]. Se ω é constante

e satisfaz a ω ≥ −1, o cenário de quintessência é usualmente chamado

matéria-X [204], que também inclui o modelo de constante cosmológica

(ΛCDM) como o caso limite ω = −1. Atualmente, os exemplos mais

comuns de potenciais de quintessência são funções exponenciais ordinárias

V (φ) = V0 exp(−λφ) [24, 26, 200], leis de potências simples V (φ) =

V0φ
−n [201, 202], combinações de funções exponenciais e senos V (φ) =

V0 exp(−λφ)[1 + A sin(−νφ)] [203] entre outros.

Para este modelo de matéria-X, v́ıculos obtidos dos testes de estruturas

de grandes escalas (cuja sigla em inglês é LSS) e das anisotropias do fundo

de microondas cósmica (sigla em inglês CMB) complementadas pelos dados

de SN Ia, indicam que 0, 6 ≤ Ωx ≤ 0, 7 e ω < −0, 6 com 95% de confiança

estat́ıstica para um universo plano [199, 204], enquanto que para universos

com curvatura espacial arbitrária o limite é ω < −0, 4 [204].

Neste caṕıtulo, focalizaremos nossa atenção sobre esta espécie de

cosmologias com quintessência ou matéria-X. Conforme amplamente

conhecido, potenciais de campo escalar para modelos de quintessência
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são inspirados em alguns exemplos espef́ıcos, originalmente propostos

em modelos de teorias quântica de campos. Entretanto, nós estamos

interessados num formalismo um pouco diferente. Nosso objetivo principal

é determinar a forma anaĺıtica geral do potencial de campo escalar que é

simultaneamente compat́ıvel com a matéria-X e as simetrias do elemento

de linha de FRW. Apesar deste problema já ter sido abordado na literatura,

apenas soluções especiais foram derivadas até o momento [205, 206, 207].

Como veremos, se a matéria-X interage apenas gravitacionalmente, ou

seja, se não existe transferência de energia ou a presença de processos

de decaimento, apenas uma classe muito restrita de potenciais pode ser

matematicamente permitida. O espectro completo das soluções (para o

caso plano) será determinado por um novo método aqui proposto [106].

Em particular, para valores espećıficos dos parâmetros livres, as soluções

são ligeiramente diferentes de algumas expressões recentemente obtidas

na literatura. Para o caso de modelos de universo aberto ou fechado, as

soluções anaĺıticas são obtidas apenas para valores particulares do par de

parâmetros livres (γ e ω).

7.2 As Equações Básicas

Nesta seção focalizaremos nossa análise em cosmologias homogênia e

isotrópica descritas pelo elemento de linha de FRW [48]

ds2 = dt2 − R2(t)

⎛
⎝ dr2

1 − kr2 + r2dθ2 + r2 sin2 θdφ2

⎞
⎠ (7.1)

onde R(t) é o fator de escala e k = 0,±1 é o parâmetro de curvatura.

Agora vamos cansiderar um universo preenchido por um fluido perfeito

mais um campo escalar φ(t). Na métrica de FRW (7.1), as equações de

campo de Einstein podem ser escritas como:

8π

m2
pl

(ργ + ρφ) = 3
Ṙ2

R2 + 3
k

R2 (7.2)
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8π

m2
pl

(pγ + pφ) = − 2
R̈

R
− Ṙ2

R2 − k

R2 (7.3)

onde Ṙ significa diferenciação com respeito ao tempo e m2
pl = 1/G é a

massa de Planck. As quantidades ργ, ρφ, pγ e pφ são as densidades de

energia e pressão do fluido perfeito e do campo escalar, respectivamente.

Neste ponto, será assumido que o fluido perfeito obedece a uma equação

de estado do tipo lei gama

pγ = (γ − 1) ργ, (7.4)

onde o parâmetro constante γ pertence ao intervalo (0,2). Similarmente,

definimos uma equação de estado efetiva para o campo escalar φ(t)

w(t) =
pφ

ρφ
=

1
2φ̇

2 − V (φ)
1
2φ̇

2 + V (φ)
, (7.5)

sendo V (φ) o potencial associado com o campo φ. Em particular, se o

campo é representado por uma matéria-X conforme considerado aqui, o

parâmetro ω é constante e assume os valores pertencente ao intervalo [0,-1]

[31].

As equações de conservação da energia para cada uma das componentes

satisfaz as relações

ρ̇γ + 3γHργ = 0 (7.6)

ρ̇φ + 3(1 + w)Hρφ = 0, (7.7)

onde H = Ṙ/R é o parâmetro de Hubble. Estas equações podem ser

resolvidas explicitamente, e suas soluções anaĺıticas assumem a forma:

ργ = ργ0

(
R

R0

)−3γ

e ρφ = ρφ0

(
R

R0

)−3(1+w)

, (7.8)

sendo ργ0, ρφ0
e R0 os valores destes parâmetros no tempo t = t0.

Naturalmente, é a segunda solução acima é válida somente para valores

constantes de ω. Seguindo o procedimento usual, inserindo as expressões
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de ρφ e pφ na lei de conservação para o campo escalar, obtemos a equação

de movimento

φ̈ + 3Hφ̇ +
dV (φ)

dφ
= 0. (7.9)

Se V (φ) é dado a priori, devemos seguir o formalismo padrão para integrar

diretamente a equação acima. Para uma classe restrita de potenciais, isto

é equivalente a vincular o parâmetro ω(t) tal como definido em (7.5). Isto

será o tema central de nosso interesse, que será estudado em detalhes na

sessão seguinte para o caso da matéria-X.

7.3 Potencial do Campo Escalar e Matéria-X

Para encontrar o potencial escalar correspondente a uma matéria-X

genérica preenchendo todo o universo, vamos combinar as equações para

pφ e ρφ definidas em (7.5), de onde seguem as relações

V (φ) =
(1 − w)

2(1 + w)
φ̇2 e ρφ =

1

(1 + w)
φ̇2, (7.10)

mostrando que V (φ) e ρφ deve ser facilmente determinado se φ̇2 é conhecido

como uma função de φ.

Substituindo a derivada de V (φ) com respeito a φ na equação (7.9),

obteremos a seguinte equação diferencial [32]

φ̈

φ̇
+

3(1 + w)

2

Ṙ

R
= 0, (7.11)

cuja primeira integral é dada por:

φ̇ =
√

(1 + w)ρφ0

(
R

R0

)− 3(1+w)
2

=
√

(1 + w)ρφ0
x− 3(1+w)

2 , (7.12)

onde a variável x = R/R0 foi introduzida na segunda igualdade. Note que

o caso limite ω = −1 (constante cosmológica) implica em φ̇ = 0. Como

vemos na expressão acima, a solução para o nosso problema será posśıvel

somente se o fator de escala for determinado como uma função de φ.
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Para contornar essa dificuldade, será necessário derivar uma equação

diferencial generalizada para o fator de escalar R(φ) obtida a partir

das equações básicas. Para tal, note que uma combinação elementar

do conjunto de equações (7.2)-(7.4) e (7.8) implica na seguinte equação

diferencial [32]

RR̈ + ΔṘ2 + Δ k +
3

2
H2

0(1 − γ + w)Ωφ0
R

3(1+w)
0 R−(1+3w) = 0

(7.13)

onde Δ ≡ 3γ−2
2 . Este tipo de equação de FRW governa o comportamento

do fator de escala R na presença de um fluido perfeito γ mais matéria-X.

A primeira integral desta equação é escrita como

Ṙ2 =
A

R3γ−2 − k + H2
0Ωφ0

R
3(1+w)
0 R−(1+3w), (7.14)

sendo A = H2
0 Ωφ0

R3γ
0 uma constante de integração positiva. Por outro

lado, de (7.2) pode ser mostrado facilmente que o parâmetro de curvatura

k satisfaz uma relação do tipo

Ωγ0 + Ωφ0
− 1 =

k

H2
0R

2
0
. (7.15)

Da mesma forma, inserindo os valores de A e k na equação (7.14) e

introduzindo a variável x = R/R0 segue que

dt

dx
=

H−1
0√

1 − Ωγ0 − Ωφ0
+ Ωγ0 x−(3γ−2) + Ωφ0

x−(1+3w)
, (7.16)

onde H0 é o parâmetro de Hubble no tempo atual (t = t0), Ωγ0 e Ωφ0
são,

respectivamente, os parâmetros de densidades do fluido e da componente

de energia escura. Finalmente, introduzindo a equação acima em (7.12),

obteremos [32]

dφ = H−1
0

√
(1 + w)ρφ0

x− 3
2 (1+w) dx√

1 − Ωγ0 − Ωφ0
+ Ωγ0 x−(3γ−2) + Ωφ0

x−(1+3w)
.

(7.17)
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Portanto, a integração da equação acima e sua consequente inversão conduz

a uma expressão anaĺıtica para o fator de escala R(φ). Entretanto, ela nao

pode ser resolvida analiticamente para valores arbitrários do parâmetro de

curvatura. Como discutiremos a seguir, uma solução anaĺıtica geral só é

posśıvel para o caso plano (k = 0). Os casos com k = ±1 só são posśıveis

para valores espećıficos do par de parâmetros (γ, ω).

7.3.1 Solução Geral para o Caso Plano (k = 0)

Para k = 0 vemos de (7.15) que Ωγ0+Ωφ0
= 1 e, inserindo este resultado

em (7.16), aequação assume a forma:

dφ = H−1
0

√
(1 + w)ρφ0

x− 3
2 (1+w) dx√

Ωγ0x−(3γ−2) + Ωφ0
x−(1+3w)

. (7.18)

A integração da expressão acima é mais facilmente obtida introduzindo-

se uma coordenada auxiliar θ definida por

Ωφ0

Ωγ0
x3(γ−w−1) = sinh2 θ. (7.19)

Com esta escolha, a integração de (7.18) é facilmente computada cujo

resultado é [32]

R(φ) = R0

⎛
⎝Ωγ0

Ωφ0

⎞
⎠

1
3(γ−w−1)

sinh
2

3(γ−w−1)

⎡
⎣3 (γ − w − 1)

√
8 π

2
√

3(1 + w)

φ

mpl

⎤
⎦ , (7.20)

ou equivalentemente,

φ(R)

mpl
=

2
√

3(1 + w)

3 (γ − w − 1)
√

8 π
arcsinh

⎡
⎢⎣
√√√√Ωφ0

Ωγ0

(
R

R0

) 3(γ−w−1)
2

⎤
⎥⎦ , (7.21)

onde a constante de integração foi fixada a zero sem nenhuma perda de

generalidade. Neste ponto, para derivar o potencial do campo escalar, é

necessário apenas inserir a expressão (7.20) em (7.12); utilizando a relação

(7.10) obtemos
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V (φ) =
(1 − w)

2
ρφ0

⎛
⎝Ωφ0

Ωγ0

⎞
⎠

(1+w)
(γ−w−1)

sinh− 2(1+w)
(γ−w−1)

⎡
⎣3 (γ − w − 1)

√
8 π

2
√

3(1 + w)

φ

mpl

⎤
⎦ .

(7.22)

As correspondentes densidades de energia para o fuido perfeito γ e

campo escalar φ são dadas por [32]

ργ(φ) = ργ0

⎛
⎝Ωγ0

Ωφ0

⎞
⎠

γ
γ−w−1

sinh− 2 γ
(γ−w−1)

⎡
⎣3 (γ − w − 1)

√
8 π

2
√

3(1 + w)

φ

mpl

⎤
⎦ , (7.23)

ρφ(φ) = ρφ0

⎛
⎝Ωφ0

Ωγ0

⎞
⎠

(1+w)
(γ−w−1)

sinh− 2(1+w)
(γ−w−1)

⎡
⎣3 (γ − w − 1)

√
8 π

2
√

3(1 + w)

φ

mpl

⎤
⎦ . (7.24)

As relações (7.20) - (7.24) representam as soluções gerais e unificadas

descrevendo as principais quantidades f́ısicas para um universo plano

preenchido por um fluido perfeito mais uma componente de matéria-X

caracterizadas pelo par (γ, ω). Portanto, todas as soluções conhecidas são

casos peculiares dela através de uma escolha apropriada dos parâmetros

correspondentes. Em particular, o par (γ, ω) permite-nos calcular o valor

das expressões em diferentes épocas. Por exemplo, para modelos de poeira

(γ = 1) e radiação (γ = 4/3), teremos respectivamente,

V (φ) =
(1 − w)

2
ρφ0

⎛
⎝ΩM0

Ωφ0

⎞
⎠

(1+w)
w

sinh
2(1+w)

w

⎡
⎣ −3 w

√
8 π

2
√

3(1 + w)

φ

mpl

⎤
⎦ , (7.25)

V (φ) =
(1 − w)

2
ρφ0

⎛
⎝Ωφ0

Ωr0

⎞
⎠

3(1+w)
(1−3w)

sinh− 6(1+w)
(1−3w)

⎡
⎣(1 − 3w)

√
8 π

2
√

3(1 + w)

φ

mpl

⎤
⎦ . (7.26)

A solução (7.25) foi proposta independentemente por Ureña-Lopes et

al. [206] e Di Pietro et al. [208] usando métodos diferente. Entretanto,

nossa solução geral (7.22) revela analiticamente a influência de diferentes
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regimes sobre o comportamento do potencial V (φ), como pode ser visto

das expressões acima para a fase de radiação e poeira. Mais informação

também pode ser obtida da expressão (7.22) no tempo t << t0. Neste caso,

quando R << R0, o campo escalar satisfaz a condição

∣∣∣∣∣3(γ−w−1)
√

8π

2
√

3(1+w)
φ

mpl

∣∣∣∣∣ � 1,

e de (7.22) obtemos

V (φ) ∼ (1 − w)

2
ρφ0

⎛
⎝Ωφ0

Ωγ0

⎞
⎠

(1+w)
(γ−w−1)

⎧⎨
⎩

3(γ − w − 1)
√

8π

2
√

3(1 + w)

φ

mpl

⎫⎬
⎭
− 2(1+w)

(γ−1−w)

. (7.27)

Particularmente, para γ = 1 e γ = 4/3, as expressões descrevendo esses

modelos de potenciais se reduzem às seguintes formas:

V (φ) ∼
⎧⎨
⎩
−3w

√
8 π ΩM0

2
√

3(1 + w)Ωφ0

φ

mpl

⎫⎬
⎭

2(1+w)
w

(7.28)

e

V (φ) ∼
⎧⎨
⎩

(1 − 3w)
√

8 π Ωr0

2
√

3(1 + w)Ωφ0

φ

mpl

⎫⎬
⎭
− 6(1+w)

(1−3w)

, (7.29)

que devem ser obtidas diretamente das equações (7.25) e (7.26). Este

caso limite para radiação (expressão acima) não foi obtido na literatura,

enquanto a expressão (7.28) foi proposto por Ureña-Lopes et al. na

referência [206].

É interessante notar que a expressão (7.25) também pode ser expressa

em termos de funções exponenciais, a saber:

V (φ) =
(1 − ω)

2
ρφ0

⎛
⎝ΩM0

Ωφ0

⎞
⎠

2(1+ω)
ω

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − exp

(
3ω

√
8π√

3(1+ω)
φ

mpl

)

2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

2(1+ω)
ω

× exp

⎡
⎣−√

24π(1 + ω)
φ

mpl

⎤
⎦ . (7.30)

A expressão acima nos mostra que a condição ( 3w
√

8π√
3(1+w)

φ
mpl

) � 1 (w < 0)
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implica que o potencial evolui como

V (φ) ∼ exp

⎛
⎝−√

24π(1 + w)
φ

mpl

⎞
⎠ , (7.31)

conforme encontrado na literatura1 [205].

7.3.2 Solução para k �= 0

No caso presente, lembramos que a equação geral (7.17) não possui uma

solução geral anaĺıtica. Entretanto, soluções especiais podem ser derivadas

para valores particulares do par de parâmetros (γ, ω).

• Caso I: γ arbitrário e ω = −1/3

Neste caso, substituindo o valor particular de ω = −1/3 na expressão

(7.17) ela se reduz a

dφ = H−1
0

√√√√2

3
ρφ0

x−1 dx√
1 − Ωγ0 + Ωγ0 x−(3γ−2)

, (7.32)

onde, redefinindo
(

1−Ωγ0

Ωγ0

)
x(3γ−2) = sinh2 θ, obtemos

R(φ) = R0

⎧⎨
⎩

Ωγ0

1 − Ωγ0

⎫⎬
⎭

1
3γ−2

sinh
2

3γ−2

⎡
⎣(3γ − 2)

√
π

√√√√1 − Ωγ0

Ωφ0

φ

mpl

⎤
⎦ (7.33)

ou equivalentemente,

φ(R)

mpl
=

1

(3γ − 2)
√

π

√√√√ Ωφ0

1 − Ωγ0
arcsinh

⎡
⎢⎣
√√√√1 − Ωγ0

Ωγ0

(
R

R0

) 3γ−2
2

⎤
⎥⎦ . (7.34)

Por outro lado, as expressões descrevendo as densidades de energia das

duas componentes (radiação e campo escalar) são escritas como

ργ = ργ0

⎧⎨
⎩

1 − Ωγ0

Ωγ0

⎫⎬
⎭

3γ
3γ−2

sinh− 6γ
3γ−2

⎡
⎣(3γ − 2)

√
π

√√√√1 − Ωγ0

Ωφ0

φ

mpl

⎤
⎦ , (7.35)

1Neste modelo o universo é completamente dominado pela densidade de energia do campo escalar.
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ρφ = ρφ0

⎧⎨
⎩

1 − Ωγ0

Ωγ0

⎫⎬
⎭

2
3γ−2

sinh− 4
3γ−2

⎡
⎣(3γ − 2)

√
π

√√√√1 − Ωγ0

Ωφ0

φ

mpl

⎤
⎦ . (7.36)

Finalmente, o potencial V (φ) é obtido substituindo-se a expressão acima

nas em (7.10)

V (φ) =
2

3
ρφ0

⎧⎨
⎩

1 − Ωγ0

Ωγ0

⎫⎬
⎭

2
3γ−2

sinh− 4
3γ−2

⎡
⎣(3γ − 2)

√
π

√√√√1 − Ωγ0

Ωφ0

φ

mpl

⎤
⎦ .

(7.37)

Naturalmente, o comportamento para diferentes épocas deve ser obtido

a partir de uma escolha apropriada do parâmetro γ. Em particular, para

γ = 1, vemos que o potencial V (φ) na expressão acima se reduz ao resultado

encontrado por Di Pietro et al. [208].

• Caso II: γ arbitrário e ω = −2/3

Aplicando o mesmo método utilizado acima, obtemos

V (φ) =
5

6
ρφ0

⎧⎨
⎩

Ωγ0

2Ωφ0

sinh

⎛
⎝√8π

φ

mpl

⎞
⎠ +

(Ωγ0 + Ωφ0
− 1)

4Ωφ0

× (7.38)

⎡
⎣Ωγ0 + Ωφ0

− 1

Ωγ0
e
−√

8π φ
mpl + 2

⎤
⎦ +

⎛
⎝Ωγ0 − 4Ωφ0

4Ωφ0

⎞
⎠ e

−√
8π φ

mpl

⎫⎬
⎭
−1

. (7.39)

Este potencial foi obtido na literatura por Di Pietro et al. [208] a menos

do termo
(

Ωγ0−4Ωφ0

4Ωφ0

)
e
−√

8π φ
mpl .

• Caso III: γ arbitrário e ω = −1/6

Neste caso, o potencial V (φ) é obtido em termos de funções eĺıpticas

conforme mencionado na referência [207]. A solução geral para V (φ) é

dada por:

V (φ) =
7

12
ρφ0

ζ5sc−10(ξ
φ

mpl
,m), (7.40)
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onde as constantes ζ e ξ são escritas como

ζ =
2(1 − Ωγ0 + Ωφ0

)

(Ωφ0
− √

(Ωφ0
+ 2Ωγ0)2 − 4Ωγ0)

,

ξ =

√
π

2

√√√√√1 +

√
(Ωφ0

+ 2Ωγ0)2 − 4Ωγ0

Ωφ0

,

e m, dado por

m =
2
√

(Ωφ0
+ 2Ωγ0)2 − 4Ωγ0

Ωφ0
+

√
(Ωφ0

+ 2Ωγ0)2 − 4Ωγ0
,

representa o parâmetro da função eĺıptica correspondente [209].

7.4 Cálculo do Redshift de Transição

Na presente seção, calcularemos o redshift de transição zt no qual o universo

passa do regime desacelerado para o acelerado, ou equivelentemente, o

redshift no qual o parâmetro de desaceleração q0 é nulo.

Como é amplamente conhecido, o parâmetro de desaceleração é definido

pela relação q(R) = −RR̈/R, ou equivalentemente, −RR̈ = 0. Por outro

lado, a equação de evolução (7.13), descrevendo o comportamento do fator

de escalar R(t), nos fornece

ΔṘ2 + Δ k +
3

2
H2

0(1 − γ + w)Ωφ0
R

3(1+w)
0 R−(1+3w) = 0, (7.41)

onde, com sua primeira integral definida por (7.14), obtemos

R = R0

[
3

2Δ
(γ − ω − 1) − 1

] 1
3(1+ω−γ)

⎛
⎝Ωφ0

Ωγ0

⎞
⎠

1
3(1+ω−γ)

. (7.42)

Se considerarmos que R = Rt, o raio no qual o universo passa do regime

desacelarado para o acelerado, teremos

Rt =
R0

1 + zt
. (7.43)
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Portanto, o redshift de transição zt é dado por:

zt =

⎧⎨
⎩
[

3

2Δ
(γ − ω − 1) − 1

] ⎛⎝Ωφ0

Ωγ0

⎞
⎠
⎫⎬
⎭
− 1

3(1+ω−γ)

− 1. (7.44)

Para checar a validade desta expressão, é interessante calcular o valor

do parâmetro de desaceleração para casos particulares das quantidades γ,

ω, Ωγ0
e Ωφ0

. Em particular, para um modelo de universo dominado por

uma componente de matéria (γ = 1) e constante cosmológica (ω = −1),

obtemos zt ∼ 0, 66, em perfeito acordo com os dados observacionais.

Resumindo, nesta seção estudamos cosmologias do tipo FRW com

uma componente de matéria e energia escura. Quando a componente de

quintessência é representada por uma matéria-X com equação de estado

pφ = ωρφ, as equações de campo de Einstein determinam univocamente

a forma do potencial escalar. Em outras palavras, não podemos postular

simultaneamente uma forma arbitrária para o potencial e a matéria-X.

A solução geral para V (φ) foi obtida para valores arbitrários do par de

parâmetros (γ, ω). Neste caso, a solução geral fornece o comportamento

do potencial em diferentes épocas. Naturalmente, o modelo cosmológico

discutido nesta seção é útil para universos preenchidos apenas por duas

componentes.
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Caṕıtulo 8

Aceleração cósmica em modelos de

gás Chapligyn simplificado

8.1 Introdução

Conforme já menionamos antes, os experimentos envolvendo as

observações de supernovas sugerem fortemente que o universo possui uma

componente extra usualmente chamada de energia escura ou quintessência

que seria a responsável pela expansão acelerada do universo [10, 79, 211,

80, 92]. Alguns dos posśıveis candidatos a esta componente são velhos

conhecidos, sendo a constante cosmológica o candidato mais antigo.

Historicamente, as primeiras evidências teóricas justificando a acel-

eração cósmica em termos de um fluido do tipo gás de Chapligyn, foram

discutidas originalmente por Kamenshchik et al. [94], e posteriormente de-

senvolvidas por Bilić et al. [95], Bento et al. [27] e Benaoum [28]. Recen-

temente, alguns desenvolvimentos nesta linha e generalizações do modelo

original foram propostos por Cunha et al. [29, 30, 96] e Lima et al. [97].

A seguir, usaremos um modelo de gás de Chapligyn para deduzir o

redshift de transição e utilizá-lo como um discriminador cosmológico para

vincular alguns parâmetros cosmológicos, bem como calcular o parâmetro

de desaceleração para o qual o universo evolui de um regime desacelerado
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para um outro acelerado.

A componente de fluido exótico discutida nesta tese pode ser

caracterizada macroscopicamente pela seguinte equação de estado [224]

pc = −A/ρα
ch, (8.1)

onde A é um parâmetro positivo e α um número puro. A equação de estado

originalmente proposta na referência [94] é recuperada para o caso α = 1,

enquanto que para α = 0, o modelo descreve um cenário de matéria escura

(modelo CDM) mais uma constante cosmológica (modelo ΛCDM).

A possibilidade de justificar a expansão cósmica por meio de um gás

de Chapligyn com equação de estado (8.1), recentemente tem provocado

um intenso debate na literatura. Os argumentos favoráveis a esta visão se

baseiam nos diversos tipos de conexões que a componente descrita por (8.1)

pode desenvolver. Em particular, conexões entre a equação de estado do

gás de Chapligyn e teoria das cordas têm sido discutidas intensamente por

vários autores [212, 213, 214]. Outra conexão se relaciona com o fato de

que em altos redshifts o gás de Chapligyn torna-se um fluido sem pressão,

possibilitando um esquema de unificação para o setor escuro cosmológico,

uma idéia interessante que tem sido aplicada em vários contextos [215, 216].

Finalmente, uma conexão com fluido taquiônico também pode ser posśıvel,

veja como exmplo a referência [217].

Neste caṕıtulo, estudaremos em detalhe, as implicações f́ısicas para o

redshift de transição zt sobre uma nova classe de cosmologias aceleradas

denominadas de gás de Chapligyn simplificado [224]. Em particular,

calcularemos explicitamente o parâmetro de desaceleração q(z) para o

qual o universo emerge de um estágio desacelerado para um regime

acelerado. Estes modelos são caracterizados por um parâmetro α que

torna-os mais interessantes e de mais fácil análise. Mostraremos também

que, nos cenários onde o gás de Chapligyn simplificado exerce o papel

de quintessência, o melhor ajuste para o parâmetro de densidade da

119



matéria escura é Ωdm ≤ 0, 42, o parâmetro α assume valores ≥ 0, 7 e o

zt = 0, 46 ± 0, 13. Como veremos, esses resultados estão em bom acordo

com os estudos recentes de Supernovas Ia e as estruturas de grande escala

[30, 96].

8.2 Equações Básicas do Modelo

Nesta seção, concentraremos nossa atenção sobre uma classe de modelos

cosmológicos com uma equação de estado descrita pela expressão (8.1)

[224, 27, 29]

Num artigo recente, Lima et al. [97] mostraram que utilizando

argumentos sobre velocidade do som adiabática é posśıvel estabelecer uma

relação entre os parâmetros α e As, onde As = Aρ−(1+α)
c e A é uma

constante. Foi mostrado que a escolha mais simples é As = α, com a

equação de estado assumindo a forma

pch = −αρcho

(
ρcho

ρc

)α

, (8.2)

de modo que uma pressão negativa capaz de acelerar o universo só é obtida

para valores positivos de α. Este argumento naturalmente estabelece um

v́ınculo sobre este parâmetro, que deve assumir os valores 0 < α < 1.

Considerando modelos de cosmologias do tipo FRW, é fácil mostrar que

inserindo a expressão (8.1) na lei de conservação uμT
μν
;ν , obtemos a seguinte

expressão para a densidade de energia

ρch =

⎡
⎣A + B

(
R0

R

)3(1+α)⎤⎦
1

1+α

, (8.3)

ou equivalentemente

ρch = ρch0

⎡
⎣As + (1 − As)

(
R0

R

)3(1+α)⎤⎦
1

1+α

, (8.4)
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onde ρch0
é a densidade de energia atual e R(t) é o fator de escala

cósmica. Na expressão acima, utilizamos a condição inicial R(t0) = R0

para encontrar o valor da constante B = ρ1+α
ch0

− A.

As equações de Fridmann para esses modelos são dadas por:
⎛
⎝Ṙ

R

⎞
⎠

2

= H2
0

⎧⎪⎪⎨
⎪⎪⎩Ωm

(
R0

R

)3

+ (1 − Ωm)

⎡
⎣As + (1 − As)

(
R0

R

)3(1+α)⎤⎦
1

1+α

⎫⎪⎪⎬
⎪⎪⎭ ,

(8.5)

onde H0 = 100hkm/s/MPc é o valor presente do parâmetro de Hubble

e Ωm = Ωdm + Ωb é o parâmetro de densidade da matéria, composto por

matéria escura (Ωdm) e bariônica (Ωb).

Para estudar o fenômeno de aceleração nestes cenários, obteremos o

parâmetro de desaceleração da maneira usual

q(z) = −R̈R

Ṙ2
, (8.6)

onde as derivadas R̈ e Ṙ2 são dadas pelas equações de Friedmann

R̈ = −4

3
πG(ρch + ρm + 3pch)R (8.7)

Ṙ2 =
8

3
πG(ρch + ρm)R2. (8.8)

Substituindo as duas equações acima em (8.6) obteremos como resultado

q(z) =
1

2

ρch + ρm + 3pch

ρc + ρm
, (8.9)

sendo pch a densidade de pressão do gás de Chapligyn e ρm é a densidade

de matéria dada por

ρm = ρm0

(
R0

R

)3

. (8.10)

Neste ponto, substituindo as expressões (8.1) e (8.3) na equação (8.9),

é fácil mostrar que a solução descrevendo o parâmetro de desaceleração

assume a forma geral [224]

q(z) =
1

2

⎧⎨
⎩1 − 3As(1 − Ωm0

)[f(z)]
α

1+α

Ωm0
(1 + z)3 + (1 − Ωm0

)[f(z)]
1

1+α

⎫⎬
⎭ , (8.11)
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onde utilizamos a relação (R0/R) = (1 + z)−1, e f(z) é a função definida

como

f(z) =
[
As + (1 − As)(1 + z)3(1+α)

]
. (8.12)

8.2.1 Quintessência

Os modelos de quintessência podem ser obtidos para uma escolha

particular do parâmetro As na expressão (8.11). A escolha mais adequada

para garantir a estabilidade destes modelos cosmológicos é descrita pelo

valor As = α, com a expressão (8.11) sendo representada por

q(z) =
1

2

⎧⎨
⎩1 − 3As(1 − Ωm0

)[f(z)]
α

1+α

Ωm0
(1 + z)3 + (1 − Ωm0

)[f(z)]
1

1+α

⎫⎬
⎭ , (8.13)

e f(z) sendo redefinida por

f(z) =
[
α + (1 − α)(1 + z)3(1+α)

]
. (8.14)

Note que, se a condição α = 1 for satisfeita, este modelo de gás de

Chapligyn simplificado tem sua evolução cosmológica análoga aos modelos

com constante cosmológica (ΛCDM). Por outro lado, se a condição α = 1

for satisfeita, é fácil mostrar que a expressão (8.13) se reduz a q = 1/2,

consistente com o modelo padrão (SCDM).

A fig. 8.1 mostra o comportamento do parâmetro de desaceleração q(z)

como uma função do redshift para modelos de universo descritos por um

gás de Chapligyn simplificado mais matéria escura (CDM). Note que para

altos valores de z o universo é desacelerado, conforme esperado para um

fluido sem pressão. Entretanto, devido ao comportamento de matéria-x

em baixos redshifts, o universo acelera sua expansão e tem sua evolução

semelhante ao de uma constante cosmológica (ΛCDM).

Uma visão mais detalhada do modelo de gás de Chapligyn discutido

aqui pode ser observada nas figuras 8.2 e 8.3. Nossa análise é baseada no
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Figura 8.1: Parâmetro de desaceleração versus diagrama de redshif. As curvas

correspondem a vários valores dos parâmetros Ωdm e α para cosmologias do tipo

quintessência como indicado acima e considerando Ωb = 0, 044.

redshift de transição zt obtido da equação (8.13) para Ωdm, α e Ωb = 0, 044

em comparação com o redshift de transição zt = 0, 46 ± 0, 13 das medidas

de SN Ia [79].

Inicialmente, vemos que altos valores do parâmetro α são compat́ıveis
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Figura 8.2: a) Plano Ωdm-zt para valores do redshift de transição no intervalo 0, 33 ≤
zt ≤ 0, 59, de acordo com Ries et al. [79]. As curvas correspondem a vários valores

selecionados para α. b) Plano α-zt com a região estimada do redshift de transição zt

para alguns valores escolhidos de Ωdm. Note que apenas altos valores do parâmetro α são

permitidos.

somente com a região observada. Isto pode ser entendido considerando

que em nosso formalismo, os modelos com α = 1 são semelhantes

ao modelo com constante cosmológica (ΛCDM). Por outro lado, para

pequenos valores do parâmetro α, o modelo é equivalente ao modelo de

poeira (SCDM). Outro fato extremamente importante é que o aumento do

conteúdo material diminui as possibilidades para o redshift de transição.

Em particular, para Ωdm ∼ 0, 7 não existe zt, enquanto que para Ωdm ∼ 0, 2

existe uma ampla possibilidade para zt. Estas considerações estão muito

claras nas figuras 8.2a e 8.2b.

Para α = 1, a região permitida é 0, 288 ≤ Ωdm ≤ 0, 415. Sendo

assim, para Ωdm = 0, 347 e redshift de transição zt = 0, 46, encontramos

q0 = −0, 41. Em particular, utilizando o melhor best fit (ajuste) para
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Figura 8.3: Plano α-Ωdm com zt = 0, 46 ± 0, 13 conforme medidas de SN Ia. Vemos que

valores de α ≥ 0, 7 são compat́ıveis com a região observada.

ΩM = 0, 27 e α = 1, obtido de BAO1 + SNLS2 [97], encontramos zt = 0, 71

e q0 = −0, 59.

Na figura 8.3 vemos que os valores permitidos para o par de parâmetros

ΩM e α são razoavelmente restritos em comparação com o modelo padrão

de gás de Chapligyn [29]. Em particular, se ΩM é maior que 0, 43, ou

ainda, se α < 0, 7 os modelos estão fora da região amparada pelos valores

observacionais para a fase de transição. Portanto, a região desta figura

está em acordo com aquela obtida por Lima e colaboradores em estudos

utilizando dados de supernovas (SN Ia) e estruturas de grandes escalas

1Sigla inglêsa para Oscilações acústicas nos bárions.
2Sigla em inglês para o projeto Supernovae Legacy Survey
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(LSS) [97].

8.2.2 Quartessência

Os modelos de gás de Chapligyn descrevendo o papel de quartessência são

baseados nas equações

⎛
⎝Ṙ

R

⎞
⎠

2

= H2
0

⎧⎪⎪⎨
⎪⎪⎩Ωb

(
R0

R

)3

+ (1 − Ωb)

⎡
⎣As + (1 − As)

(
R0

R

)3(1+α)⎤⎦
1

1+α

⎫⎪⎪⎬
⎪⎪⎭
(8.15)

e

q(z) =
1

2

⎧⎨
⎩1 − 3α(1 − Ωb0

)[f(z)]
α

1+α

Ωb0
(1 + z)3 + (1 − Ωb0

)[f(z)]
1

1+α

⎫⎬
⎭ , (8.16)

sendo f(z) dado pela relação (8.12) e Ωb0
o parâmetro de densidade dos

bárions. Note que, se a condição α = 1 for satisfeita, a dinâmica exercida

por esta componente é semelhante aos modelos de constante cosmológica

mais bárions.

O modelo de quartessência descrito pelas duas equações acima pode

ser caracterizado completamente apenas pelos valores do parâmetro α.

Sendo assim, para cosmologias do tipo planas, de acordo com medidas

do CMB [218] e assumindo Ωb = 0, 044, nossa análise pode ser enriquecida

construindo um plano da forma α - zt.

8.2.3 Lei de Evolução da Temperatura

A seguir, deduziremos a lei de evolução da temperatura para o modelo de

gás de Chapligyn discutido nesta tese.

Começaremos nossa análise relembrando que o estado termodinâmico

de um fluido relativ́ıstico simples é caracterizado por um tensor de energia

momento T αβ, uma corrente de part́ıcula Nα e uma corrente de entropia
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Figura 8.4: Parâmetro de desaceleração versus diagrama redshift para modelos de

quartessência. As curvas correspondem a vários valores do parâmetro α com Ωb fixo

em 0, 044.

Sα. Assumindo que o gás de Chapligyn é um fluido relativ́ıstico simples,

tais quantidades são definidas pelas seguintes relações [223, 221]

T αβ = (pch + ρch)u
αuβ − pchg

αβ, T αβ
;β = 0 (8.17)

Nα = nuα, Nα
;α = 0 (8.18)

Sα = nσuα, Sα
;α = 0 (8.19)

onde (; ) significa a derivada covariante, n é a densidade de part́ıcula, σ é

a entropia espećıfica (por part́ıcula) ρch e pch são as densidades de energia

e pressão, representadas pelas relaçõs (8.1) e (8.4), respectivamente. As
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Figura 8.5: Plano α - zt com valor estimado do redshift de transição. Neste gráfico, a

linha sólida restringe os valores permitidos do parâmetro α, além do mais, delimita a

existência de um limite superior/inferior deste parâmetro.

quantidades ρch, pch, n e σ estão relacionadas com a temperatura T pela

lei de Gibbs

nTdσ = dpch − ρch + pch

n
dn. (8.20)

Considerando T e n como variáveis termodinâmicas independentes e

usando o fato de que dσ é uma diferencial exata, obtemos facilmente

Ṫ

T
=

(
∂pch

∂ρch

)
n

ṅ

n
, (8.21)

que representa a taxa de variação da temperatura de um fluido simples

(perfeito) no limite adiabático [219, 220].

O caso onde a energia escura é descrita por um fluido simples do tipo
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matéria-x, um formalismo termodinâmico similar foi obtido por Lima e

Alcaniz (para mais detalhes veja a referência [223]). Para os casos onde

os fluidos são imperfeitos, a análise matemática é mais sofisticada. Em

particular, um estudo sobre esse tema foi abordado por Silva et al. na

referência [221].

No nosso caso, onde a dinâmica da energia escura é descrita pelo gás

de Chapligyn simplificado, mais precisamente pelas relações (8.1) e (8.4),

é fácil mostrar que a equação acima pode ser reescrita na forma [222]

Ṫ

T
=

3αAsρ
−(1+α)
cho

As + (1 − As)
(

Ro

R

)3(1+α)
Ṙ

R
(8.22)

ou, equivalentemente,

ln
T

To
= 3αAsρ

−(1+α)
cho

∫ u

1

du

u[As + (1 − As)u3(1+α)]
, (8.23)

onde u = R/Ro é uma variável de integração conveniente. A integração da

equação acima nos fornece uma relação para a evolução da temperatura

T = T (R). Para tanto, a integral acima pode ser reescrita na forma

I =
∫ R/R0

1

du

u + au1−b
= ln

⎡
⎣ub + a

1 + a

⎤
⎦1/b

, (8.24)

sendo a = (1−As)/As e b = 3(1 + α). Retornando a variável R/R0, é fácil

mostrar que a temperatura é uma função do fator de escala R, e evolui de

acordo com a lei de potência [222]

T (R) = T0

⎡
⎣1 − As + As

(
R

R0

)3(1+α)⎤⎦
1

3(1+α)

. (8.25)

A expressão acima nos mostra que a evolução da temperatura do fluido

é controlada pelo par de parâmetros (As, α). Em particular, escolhendo a

condição As = 1, teremos T (R) ∝ R3 ∝ V . Por outro lado, escolhendo a

condição As = α, ou equivalentemente, para o caso de um gás de Chapligyn
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simplificado, é direto mostrar que a lei de evolução é dada por [222]:

T = To

⎡
⎣1 − α + α

(
R

Ro

)3(1+α)⎤⎦
α

1+α

. (8.26)

Note que no caso limite α = 0 teremos T (R) = T0, enquanto que para

α = 1 a lei de evolução é T = To(R/Ro)
3 ∝ V . Fisicamente, isto significa

que a temperatura do fluido aumenta se ele expande adiabaticamente. Em

outras palavras, este resultado nos mostra que o universo torna-se mais

quente se ele sofre uma expansão adiabática, descrição semelhante ao da

phanton energy investigada recentemente por Lima e Alcaniz [224].
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Caṕıtulo 9

Conclusões e Perspectivas

O desenvolvimento desta tese envolveu duas linhas de insvetigação

complemetares: dinâmica estocástica e cosmologia.

No caṕıtulo I revisamos o status atual da cosmologia moderna dando

ênfase aos posśıveis candidatos que possam explicar a expansão acelerada

do universo. No caṕıtulo II nós rediscutimos as diversas abordagens que

podem ser adotadas na chamada teoria padrão do movimento browniano,

a saber: (i) o tratamento de Einstein, cuja base é a equação de

difusão; (ii) o tratamento de Langevin, baseado numa equação diferencial

estocástica; (iii) o tratamento via caminhadas aleatórias tal como proposto

originalmente por Kac e, finalmente, (iv) a abordagem via equação de

Fokker-Planck. Para tempos longos as abordagens acima coincidem e

reproduzem os mesmos resultados. Por outro lado, para tempos curtos a

descrição de part́ıcula deve ser estendida para um formalismo ondulatório.

No caṕıtulo III aplicamos o formalismo de Langevin para uma classe

especial de langrangiana dependente do tempo, aqui denominada de q-

langrangiana. Inicialmente consideramos o caso com potencial V(x) = 0.

Essa categoria de lagrangiana representa uma generalização natural da bem

conhecida formulação lagrangiana de Batman e foi proposta recentemente

no escopo da mecâncica estat́ıstica não extensiva. A q-langrangiana

é descrita por um parâmetro livre (q) assumindo valores no intervalo
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(0,1). Nesse contexto, estendemos o formalismo de forças flutuantes

(rúıdo) de Langevin para estudar uma ampla variedade de sistemas

f́ısicos caracterizados por uma viscosidade variável. Em linhas gerais, as

expressões descrevendo as quantidades de interesse f́ısico foram modificadas

consideravelmente, mostrando que os resultados da teoria padrão são

recuperados como um caso particular quando o limite q → 1 é tomado.

Nossos estudos também revelaram um comportamento superdifusivo para

o deslocamento quadrático médio.

No caṕıtulo IV estendemos a formulação estocástica proposta no

caṕıtulo III para potenciais quadráticos e dirigimos nossa análise para o

domı́nio da cosmologia, especialmente no novo cenário inflacionário. Em

particular, estudamos a influência do banho térmico descrita pelo fluido

de radiação, assumindo que ele é responsável pela evolução estocástica do

campo inflaton. Assumindo que as flutuações dinâmicas do campo são

descritas por uma equação de movimento do tipo Langevin, nós derivamos

um conjunto de soluções anaĺıticas inclúındo os rúıdos branco e colorido.

Dependendo da escolha do parâmetro livre n, interpolando entre os rúıdos

branco e colorido, nossos estudos mostraram que o campo delimita três

regimes difusivos, a saber; superdifusivo, difusão normal e subdifusivo.

No caṕıtulo V, rediscutimos o efeito Meszaros do ponto de vista

da dinâmica estocástica. Aplicando o formalismo estendido de forças

flutuantes, nós analizamos o comportamento da componente de matéria

não relativ́ıstica quando o fluido de radiação é considerado como uma

perturbação estocástica. As soluções anaĺıticas e formais descrevendo o

contraste de densidade da matéria (δm) foram derivadas e as correções

estocásticas são controladas por uma constante Γ. Particularmente, para

o caso de rúıdo branco, se Γ é unitário, o crescimento do contraste δm no

intervalo (0, te) é apenas 1,2 vezes o resultado padrão, indicando que o efeito

é extremamente robusto com respeito a posśıvel existência de processos
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estocásticos.

No caṕıtulo VI, fizemos uma extensão do formalismo estocástico

proposto por M. Novello [35]. Neste caso, as equações de Fridmann-

Robertson-Walker para um fluido relativ́ıstico foram reduzidas à forma

simples de um oscilador harmônico, a aprtir do qual, a dinâmica

estocástica é formulada através de uma perspectiva quântica, usualmente

denominada de fluido de Madelung. O conjunto completo das soluções

foram determinadas analiticamente e a correção estocástica tem como

objetivo exclusivo, evitar o colapso dos modelos. As soluções obtidas do

nosso estudo são mais interessantes pelo fato de contemplar os modelos

com parâmetro de curvatura (K) arbitrário, o mesmo acontecendo com o

parâmetro da equação de estado (ω).

No caṕıtulo VII, estudamos as implicações f́ısicas para o redshift de

transição sobre os modelos de cosmologias descritas pelo gás de Chapligyn

simplificado. Tais modelos são controlados por um parâmetro α tornando-

os mais interessante e de mais fácil estudo. Para os casos onde o gás

de Chapligyn exerce o papel de quintessência ou quatessência, derivamos

as expressões anaĺıticas descrevendo o parâmetro de desaceleração q(z)

para modelos planos. Mostramos também que os cenários de quintessência

limitam o parâmetro de densidade da matéria escura ao valor ΩME ≤ 0, 42

e α ≥ 0, 7, enquanto que os modelos de quartessência o parâmetro α varia

no intervalo 0, 7 ≤ α ≤ 0, 89. Alguns aspectos termodinâmicos também

foram estudados, em especial, derivamos a lei de evolução da temperatura

e conclúımos que seu comportamento é semelhante aos modelos de energia

fantasma (phantom energy). Finalmente, no caṕıtulo VIII propomos um

método anaĺıtico para determinar o potencial escalar V (φ) para uma

mistura de fluido perfeito mais quintessência em modelos do tipo FRW.

Este formalismo é uma consequência imediata das equações de Einstein

e contempla valores arbitrários do parâmetro de curvatura (K) e dos
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parâmetros (γ, ω) das equações de estado do fluido e quintessência.

Determinamos as soluções anaĺıticas gerais descrevendo a evolução do

potencial escalar (V (φ)) bem como o valor do campo (φ). Derivamos

também as densidades de energia do fluido perfeito γ e campo escalar

φ, além da lei descrevendo o fator de escala R(φ). Mostramos que os

resultados encontrados são válidos para valores arbitrários dos parâmetros

(γ , ω).

As perpectivas para trabalhos futuros envolvendo dinâmica estocástica

abordam diversos problemas cosmológicos e astrof́ısicos. Em particular, o

problema envolvendo movimento browniano com uma barreira de potencial

(absorvedora ou refletora) é de importância fundamental para esse domı́nio

e será um dos principais objetos de investigação futura. Para este caso em

especial, a barreira de potencial absorvedora é equivalente ao horizonte de

evento de um buraco negro e seu movimento aleatório é determinado pelas

interações gravitacionais do meio interestelar. Outra aplicação relevante

da dinâmica estocástica será o estudo da viscosidade variável e forças

flutuantes estendidas para os cenários de inflação morna. Esse estudo é

considerado de extrema importância, pois possibilitará obter informações

a respeito das flutuações térmicas e sua subsequente evolução temporal.
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Apêndice A

Campo de Força Conservativa na

Estat́ıstica de Kaniadakis

No presente apêndice, utilizaremos o formalismo da mecânica estat́ıstica

de Kaniadakis [225, 226, 227, 228] para deduzir a função κ-distribuição

para um gás na presença de um campo de força externa possuindo um

potencial U(r). Como veremos, para o caso de um gás dilúıdo, mostraremos

que uma função distribuição do tipo lei de potêcia, incluindo o fator de

energia potencial pode ser rigorosamente deduzida baseado em argumentos

puramente teóricos (Equação de Vlasov).

Conforme amplamente conhecido, um gás clássico sob condições estáveis

e imerso em um campo de força conservativa, F = −∇U(r), é descrito

por uma função distribuição que difere da distribuição de velocidades

maxwelliana apenas por um fator exponencial extra envolvendo a energia

potencial. Neste caso, a função distribuição total no equilibrio é escrita

como

f(r, v) = no

(
m

2πkBT

)3/2
exp

⎛
⎝−

1
2mv2 + U(r)

kBT

⎞
⎠ , (A.1)

onde m é a massa das part́ıculas, T é a temperatura e no é o número de

part́ıculas na ausência do campo de força externa. Em adição, desde que

a distribuição acima seja normalizada, é fácil mostrar que a densidade de
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part́ıculas é dada por

n(r) = no exp

⎡
⎣−U(r)

kBT

⎤
⎦ , (A.2)

onde o fator exp[−U(r)/kBT ], que é responsável pela inomogeneidade da

função f(r, v), é usualmente chamado de fator de Boltzmann. A expressão

(A.1) segue naturalmente de uma integração da equação de Boltzmann sem

o termo colisional, a saber,

∂f

∂t
+ v · ∂f

∂r
+

F

m
· ∂f

∂v
= 0. (A.3)

Adotando a condição estacionária (∂f/∂t = 0), a função pode ser fatorada

na forma

f(r, v) = f0(v)χ(r), (A.4)

onde f0(v) representa a função distribuição de equiĺıbrio (maxwelliana) e

χ(r) é uma função escalar de r.

Depois de uma simples normalização, pode ser facilmente mostrado que

a expressão resultante para χ(r) é exatamente o fator de Boltzmann para

a energia potencial do campo de força externa

χ(r) = exp

⎡
⎣−U(r)

kBT

⎤
⎦ , (A.5)

e combinando esta com a equação (A.4), vemos que a distribuição

estacionária de Boltzmann (A.1) é facilmente obtida.

Por outro lado, recentes enfoques sobre as bases cinéticas (clássica

e relativ́ıstica) da κ-estat́ıstica proposta recentemente por Kaniadakis

[225, 226, 227] substitui as funções distribuições da forma (A.1) por uma

função distribuição do tipo lei de potência [229].

Do ponto de vista matemático, o κ-formalismo é baseado nas funções

κ-exponencial e κ-logaŕıtmo, as quais são definidas por

expκ(f) = [
√

1 + κ2f 2 + κf ]1/κ, (A.6)
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e

lnκ(f) = [fκ − f−κ]/2κ. (A.7)

Note que no limite κ → 0 as identidades acima reproduzem as propriedades

usuais das funções exponencial e logaŕıtmo.

Recentemente, foi mostrado que a função distribuição de velocidades

no equiĺıbrio (A.1) utilizando o κ-formalismo pode ser escrita como

[225, 226, 227, 230]

f0(v) =
1

z

⎡
⎢⎢⎣
√√√√√1 + κ2

⎛
⎝−mv2

2kT

⎞
⎠2

+ κ

⎛
⎝− mv2

2kBT

⎞
⎠
⎤
⎥⎥⎦

1
κ

. (A.8)

Nesta expressão o parâmetro κ está associado a entropia do gás, cujo

principal efeito a ńıvel da função districuição é substituir a forma gaussiana

padrão por uma lei de potência e a quantidade z é a constante de

normalização. Como pode ser visto, a expressão acima se reduz a

maxwelliana no limite κ = 0.

Agora, vamos considerar um gás dilúıdo e espacialmente inomogêneo

suposto em equiĺıbrio na temperatura T . Suponha também que o gás

em questão está imerso num campo de força externa, de maneira que

f(r, v)d3vd3r representa o número de part́ıculas com velocidade v dentro

do elemento de volume d3v e posição r no volume d3r. Neste caso, vemos

de (A.3) que a equação de Boltzmann estacionária pode ser reescrita como

v · ∇rf − 1

m
∇rU · ∇vf = 0. (A.9)

Neste ponto, para introduzir os efeitos da κ-estat́ıstica, primeiramente

devemos notar que a condição de fatorabilidade é modificada neste

formalismo estendido. Isto significa que a suposição inicial de fatorização,

isto é, a expressão (A.4) deve ser estendida. No esṕırito do κ-

formalismo, uma generalização consistente de (A.4) pode ser representada
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pela expressão [229]

f(r, v) =
1

z
expκ [lnκ (zf0) + lnκ χ(r)] , (A.10)

onde z é uma constante de normalização introduzida por conveniência

matemática, e as funções expκ(f) e lnκ(f) são definidas pelas expressões

(A.6) and (A.7). Por razões que serão úteis mais adiante, as propriedades

de diferenciação das funções κ-exponencial e κ-logaŕıtmo [225]

d lnκ f

dx
=

⎛
⎝fκ−1 + f−(κ+1)

2

⎞
⎠ df

dx
, (A.11)

d expκ(f)

dx
=

expκ(f)√
1 + κ2f 2

df

dx
, (A.12)

será intensamente usada. Assim, para obter a solução geral da equação

(A.9), basta calcular os gradientes ∇rf e ∇vf . Neste caso, pode ser

mostrado que tais quantidades podem ser escritas como [229]

∇rf(r, v) =
expκ[lnκ f0(v) + lnκ χ(r)]

expκ
κ[lnκ f0(v) + lnκ χ(r)]

∇r lnκ χ(r) ×
⎧⎪⎪⎨
⎪⎪⎩1 +

κ
(
lnκ χ(r) − mv2

2kBT

)

[1 + κ2(lnκ f0(v) + lnκ χ(r))2]1/2

⎫⎪⎪⎬
⎪⎪⎭ , (A.13)

e

∇vf(r, v) =
expκ[lnκ f0(v) + lnκ χ(r)]

expκ
κ[lnκ f0(v) + lnκ χ(r)]

(
− mv

kBT

)
×

⎧⎪⎪⎨
⎪⎪⎩1 +

κ
(
lnκ χ(r) − mv2

2kBT

)

[1 + κ2(lnκ f0(v) + lnκ χ(r))2]1/2

⎫⎪⎪⎬
⎪⎪⎭ . (A.14)

Substituindo os dois resultados acima na equação de Boltzmann

estacionária (A.9), e simplificando os termos comuns, obtemos a equação

∇r ln χ · dr = − 1

kBT
∇U(r) · dr, (A.15)
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a qual, tem como solução

χ(r) = expκ

⎛
⎝−U(r)

kBT
+ C

⎞
⎠ , (A.16)

onde C é uma constante arbitrária.

Inserindo (A.16) na expressão (A.10) e integrando o resultado no espaço

das velocidade, segue que
∫

z−1 expκ

[
lnκ (zf0) − U

kBT
+ C

]
d3v = n(r). (A.17)

Agora, substituindo a expressão de f0(v) dado por (A.8) e considerando a

região onde U(r) = 0, encontramos

z−1
∫

expκ

⎛
⎝− mv2

2kBT
+ C

⎞
⎠ d3v = n0, (A.18)

e da condição de normalização, n0 =
∫
f0(v)d3v, segue que o único valor

permitido para a constante de integração é C = 0. Consequentemente,

(A.18) torna-se

χ(r) = expκ

⎡
⎣−U(r)

kBT

⎤
⎦ , (A.19)

que é a generalização do fator de Boltzmann no formalismo da mecânica

estat́ıstica de Kaniadakis.

Finalmente, inserindo este resultado em (A.10), obteremos a κ-

distribuição completa na presença de um campo de força externa [229]

f(r, v) = z−1

⎡
⎢⎢⎣
√√√√√1 + κ2

⎛
⎝− mv2

2kBT
− U(r)

kBT

⎞
⎠2

+ κ

⎛
⎝− mv2

2kBT
− U(r)

kBT

⎞
⎠
⎤
⎥⎥⎦

1/κ

≡ z−1 expκ(−E/kBT ), (A.20)

onde a quantidade E representa a energia total das part́ıculas. Portanto,

segue que o fator κ-exp generalizado para a termoestat́ıstica de

Kaniadakis pode ser deduzido exatamente se o formalismo padrão for

ligeiramente modificado. Note que, no limite κ → 0 a expressão (A.1)

é consistentemente recuperada.
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Figura A.1: A figura acima representa a função distribuição (A.20) para os valores

κ = 0, 1, κ = 0, 5, κ = 0, 7 e κ = 0, 9.
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Apêndice B

Movimento Browniano de Sistemas

Interagindo Gravitacionalmente

Historicamente, os primeiros estudos nesse campo foram realizados por

Chandrashekar na década de quarenta [116, 232] e nos últimos anos tem

reproduzido uma extensa literatura.

Atualmente, um exemplo interessante de processos estocásticos aplicado

ao campo da astrof́ısica é a descrição de um buraco negro (BN) no centro de

um sistema estelar denso [43]. Fisicamente, quando a massa de tal objeto

é muito maior que a massa das estrelas da vizinhança, este adquire um

movimento aleatório semelhante ao movimento browniano (MB) de uma

part́ıcula imersa num ĺıquido ou gás. Em sistemas estelares densos, como

aglomerados globulares e núcleos de galáxias, o análogo do gás molecular

é representado pela distribuição de estrelas, enquanto que a part́ıcula

executando o MB corresponde a um BN. Fisicamente, a causa principal

desse fenômeno em aglomerados globulares e em núcleos de galáxias, deve-

se principalmente, ao surgimento de três forças: (i) A primeira tem origem

na distribuição média de matéria do sistema estelar e varia lentamente com

a posição e o tempo. Esta força, geralmente é proporcional à velocidade,

denominada força dissipativa, fricção dinâmica ou força viscosa, cujo efeito

é desacelerar o movimento do BN [233]. (ii) Em segundo lugar, existe outra
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força devido às interações gravitacionais do BN com cada uma das estrelas

na sua vizinhança e é chamada de força estocástica ou aleatória. Esta, por

sua vez, flutua muito rapidamente. (iii) Finalmente, o BN experimenta

uma terceira força, denominada de força restauradora F = −m∇Φ(r),

devido o potencial da distribuição de matéria.

Recentemente, o MB de BN em aglomerados globulares e núcleos de

galx́ias tem sido investigado por vários autores [43, 235, 234, 236]. Para o

caso unidimensional, a equação de movimento governando esse fenômeno

é escrita como

mẍ(t) + βẋ(t) + kx(t) = Fx(t). (B.1)

Classicamente, esta equação representa o movimento de uma part́ıcula

harmonicamente ligada a um potencial U(x). Na equação acima m denota

a massa do BN, β é a viscosidade em devido a distribuição de estrelas, k é

uma constante que se origina da força restauradora e Fx(t) caracteriza um

rúıdo branco, o qual satisfaz as propriedades de Langevin [110, 126]

< Fx(t) >= 0 < Fx(t)Fx(t
′) >= Cδ(t − t′), (B.2)

sendo C uma constante.

As equações (B.1) e (B.2) podem ser combinadas com a equação de

Fokker-Planck [46] para derivar uma distribuição de probabilidade para

a posição e velocidade do BN. Estas funções de distribuição podem ser

escritas como [43]

W (x) =
√

2γ/πC exp{−(2γ/C)ω2m2x2} (B.3)

W (vx) =
√

2γ/πC exp{−(2γC)m2x2}, (B.4)

onde γ = β/2m, ω =
√

k/m e a constante C = 4γmm�
∫∞
0 f(r, u)/f(r, 0).

Neste caso, m é a massa do BN e m� é a massa individual de cada estrela

do background.
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Para modelos politrópicos de distribuição estelar [237], a densidade e o

potencial das estrelas são dados respectivamente por

ρ(r) =
3Ma2

4π

1

(r2 + a2)5/2 (B.5)

Φ(r) = −GM

4π

1

(r2 + a2)5/2 , (B.6)

onde M é a massa total do sistema de estrela, G é a constante gravitacional

e a é um parâmetro de comprimento. Para este modelo estelar a

constante C presente nas duas últimas equações acima é dada por

C = (8GM/9a)γmm�, e as quantidades de interesse f́ıcos, a saber, o

deslocamento quadrático médio do BN movendo-se no background estelar

e sua respectiva velocidade quadrática média são dados por

< x2 >= 2a2m�/9m (B.7)

< v2
x >= 2GMm�/9am (B.8)

O significado f́ısico destas relações é muito claro: elas nos mostram que

quanto maior for a massa do BN (m), mais lentamente será sua velocidade,

comportamento semelhante ao de uma part́ıcula clássica imersa num fluido

ou gás tal como previsto pelo formalismo padrão de Langevin.
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[137] J. M. Porrà, K. Wang and J. Masoliver, “Generalized Langevin

equations: Anomalus diffusion and probability distributions”, Phys.

Rev. E 53(6), 5872 (1996).

[138] S. Havlin and D. Ben-Avraham, “Invited Review Article: Diffusion

in Disordered Media.” , Adv. Phys. 36, 695-798 (1987).

[139] T. Srokowski, “Nonstationarity Induced by Long-Time Noise

Correlations in the Langevin Equation”, Phys. Rev. Lett. 85, 2232

(2000).

[140] T. Srokowski e M. Ploszajczac, “Solving the generalized Langevin

equation with the algebraically correlated noise” , Phys. Rev. E 57,

3829 (1998).

[141] J. A. S. Lima and J. M. Silva, “Brownian motion with a time-

dependent viscosity”, (Em preparação).

[142] P. C. Assis Jr et al, “Nonlinear diffusion equation, Tsallis formalism

and exact solution”, J. Math. Phys. 46, 123303 (2005).

[143] P. C. Assis Jr et al, “Nonlinear diffusion equation and nonlinear

external force: exact solution” J. Math. Phys. 47, 103302 (2006).

[144] P. C. Assis Jr et al, “Non-Markovian Fokker-Planck equation:

Solution and first passage time distribution” , Phys. Rev. E 73,

032101 (2006).

[145] P. C. da Silva et al, “Anomalous diffusion and anisotropic nonlinear

Fokker-Planck equation” , Phys. A 342, 16-21 (2004).

157



[146] L. Borland, “Microscopic dynamics of the nolinear Fokker-Planck

equation: A phenomenological model” , Phys. Rev. E 57, 6634 (1998).

[147] L. Borland et al, “The nolinear Fokker-Planck equation with state-

dependent diffusion - a nonextensive maximum entropy approach”,

Eur. Phys. J. B 21, 285-297 (1999).

[148] J. Masoliver, “Second-order processes driven by dichotomous noise”

Phys. Rev. A 45(2), 706-713 (1992).

[149] J. Masoliver, “Second-order dichotomous processes: Damped free

motion, critical behavior, and anomalous diffusion” , Phys. Rev. E

48(1), 121-135 (1993).

[150] H. Bateman, “On dissipative systems and related variational

principles” Phys. Rev. 38, 815 (1931).

[151] J. A. S. Lima e J. Santos, “The q-Oscillator: A Langrangian

description for variable damping”, Phys. Lett. A 267, 213 (2000).

[152] C. Tsallis, “Possible Generalization of Boltzmann-Gibbs Statistics”,

J. Stat. Phys. 52, 479 (1988).

[153] E. P. Borges, “On a q-Generalization of Circular and Hiperbolic

Functions”, J. Phys. A: Math. Gen. 31, 5281 (1998).

[154] E. P. Borges, “A possible deformed algebra and calculus inspired in

nonextensive thermostatistic”, Phys. A 340, 95-101 (2004).

[155] H. Nyquist, “Thermal Agitation of Electric Charge in Conductors”,

Phys. Rev. 32, 110 (1928).

[156] H. B. Callen e T. A. Welton, “Irreversibility and Generalised Noise”

Phys. Rev. 83(1), 34 (1951).

158



[157] W. Bernard e H. B. Callen, “Irreversible termodynamics of nonlinear

processes and noise in driven sistems” , Rev. Mod. Phys. 31(4), 1017

(1959).

[158] A. Widom, “Velocity fluctuations of a hard-core brownian particle”,

Phys. Rev. A 3(4), 1394 (1971).

[159] R. Kubo, “The Fluctuation-Dissipation Theorem” Rep. Prog. Phys.

29, 255 (1966).

[160] H. Morri, “Transport, Collective Motion, and Brownian Motion”,

Prog. Theor. Phys. 33(3), 423 (1965).

[161] P. C Hohenberg e B. I. Halperin, “Theory of dynamic critical

fenomena”, Rev. Mod. Phys. 49(3), 435 (1977).

[162] M. Abramowitz and I. A. Stegun, “Handbook of Mathematical

Functions”, (Dover Publications, 1972).

[163] H. Gzyl, “Quantization of the damped harmonic oscillator”, Phys.

Rev. A 27, 2297 (1983).

[164] S. A. Pavluchenko “Generality of inflation in closed cosmological

models with some quintessence potentials”, Phys. Rev. D 67, 103518

(2003).

[165] A. Albrecht, P. J. Steinhadt, M. S. Turner and F. Wilczec “Reheating

an Inflationary Universe”, Phys. Rev. Lett. 48(20), 1437 (1982).

[166] F. Lucchin and S. Matarrese, “Power-law Inflation” Phys. Rev. D

32, 1316 (1985). “Reheating an Inflationary Universe” , Phys. Rev.

Lett. 48(20), 1437 (1982).

159



[167] M. J. D. Assad and J. A. S. Lima, “General and Unified Solution

for Perfect Fluid Homogeneous and Isotropic Cosmological Models”,

Gen. Rel. Grav. 20, 527 (1988).

[168] J. A. S. Lima, “Note on Solving for the Dynamics of the Universe”,

Am. J. Phys. 69, 1245 (2001).

[169] J. M. Silva and J. A. S. Lima, “On the Stochastic Evolution of the

Inflaton Field” , Int. J. Mod. Phys. D 13(7), 1315 (2004).

[170] P. J. E. Peebles, Principles of Physical Cosmology, Princeton

University Press, 1993.

[171] M. S. Longair, Galaxy formation, Springer-Verlag, 1993.

[172] P. Coles and F. Lucchin, Cosmology: The Origin and Evolution of

Cosmic Structure, John Wiley & Sons, 1995.

[173] J. A. Peacock, Cosmological Physics, Cambridge Univerty Press,

1999.

[174] P. Meszaros, “The behavior of point masses in an expanding

cosmological substratum” , Atron. & Astrophys. 37, 225 (1974).

[175] J. Jeans, Phil. Trans. Roy. Soc. A 199, 49 (1902); Astronomy and

Cosmology (2a ed., primeiro publicado por Cambridge University

Press em 1928, reimpresso por Dover Publications, New York, 1961)

pág. 345-350.

[176] J. A. S. Lima, V. T. Zanchin and R. H. Brandenberger, “On the

Newtonian cosmology equations with pressure”, MNRAS 291, L1-L4

(1997).

[177] M. S. Turner, “Early-Universe Phermal Production of Not-So-

Invidible Axions”, Phys. Rev. Lett. 59, 2489 (1987).

160



[178] R. D. Pecei and H. R. Quin , “CP conservation in the presense of

pseudoparticles”, Phys. Rev. Lett. 38, 1440 (1977).

[179] R. L. Davis, “Cosmic axions from cosmic strings”, Phys. Lett. B180,

225 (1986).

[180] J. M. Silva, “Influence of a Stochastic term on the Meszaros Effect”,

Int. J. Mod. Phys. D, 16(2&3), 439-444 (2007).

[181] A. Berera and R. O. Ramos, “Construction of a robust warm inflation

mechanism”, Phys. Lett. B567, 294 (2003).

[182] J. M. F. Maia and J. A. S. Lima, “Extended warm inflation” ,

Phys. Rev. D60, 101301 (1999); Idem, “Scalar field description of

decaiyng-Λ cosmologies” ,Phys. Rev. D65, 083513 (2002); J. A. S.

Lima and J. A. Espichan Carrillo, “Thermodynami approach to warm

inflation” , astro-ph/0201168; J. P. Mimoso, A. Nunes and Diego

Pavon, “Assymptotic behavior of the warm inflation scenario with

viscous pressure”, gr-qc/0512057.

[183] J. A. S. Lima, “Note on solving for the dynamivs of the Universe” ,

Am. J. Phys. 69(12), 1245 (2001).

[184] V. Faraoni, “Solving for the dynamics of the Universe” , Am. J. Phys.

67(8), 732 (1999).

[185] E. Madelung, “Quantentheorie in hydrodynamischer Form” , Z. Phys.

40, 322-326 (1927).

[186] M. J. D. Assad and J. A. S. Lima, “General and Unified solution for

perfect fluid homogeneous and isotropic cosmological models”, Gen.

Rel. Grav. 20, 527 (1988).

[187] L. D. Landau and E. M. Lifshitz, “The Classical Theory of Fields”

(Pergamon, Oxford, 1989) pp. 363-367.

161



[188] R. D’Inverno, “Introducing Einstein’s Relativity” (Claredon, Oxford,

1992) pp. 334-344.

[189] H. Stephani, “General Relativity” (Cambridge University Press,

Cambridge, 1990) pp. 265-271.

[190] S. Howard and S. K. Roy, “Coherent States of a Harmonic

Oscillator”, Am. J. Phys. 55(12), 1109-1117 (1987).

[191] E. Nelson, “Dynamical Theories of Brownian Motion” (Princeton

University Press, Princeton, 1967) pp. 129-135.

[192] F. Guerra, “Structural Aspect of Stochastics Mechanics and

Stochastic Field Theory”, Phys. Rep. 77(3), 263-312 (1981).

[193] F. Guerra and L. M. Morato, “Quantization of dynamical systems and

stochastic control theory”, Phys. Rev. D 27(8), 1774-1786 (1983).

[194] F. Guerra and R. Marra, “Origin of the quantum observable operator

algebra in the frame of stochastic mecanics” , Phys. Rev. D 28(8),

1916-1921 (1983).

[195] P. Garbaczewski, “Stochastic mecanics and the Keppler problem”,

Phys. Rev. D 33(10), 2916-2921 (1986).

[196] J. P. Ostriker and P. J. Steinhardt, “The observational case for a

low-density Universe with a non-zero cosmological constant” , Nature

377, 600 (1995) e referências lá citadas.

[197] R. R. Caldwell and P. J. Steinhardt, in The Non-Sleeping Universe,

eds. A. Blanchard and M. Lago (World Scientific: Singapore, 1998).

[198] M. S. Turner and M. White, “CDM models with a smooth component”

, Phys. Rev. D 56, R4439 (1997); T. Chiba, N. Sugiyama and T.

Nakamura, “Cosmology with x matter”, MNRAS , 289, L5-L9 (1997).

162



[199] S. Perlmutter, M. S. Turner and M. White, “Constraining Dark

Energy with Type Ia Supernovae and Large-Scale Structure” , Phys.

Rev. Lett. 83, 670 (1999).

[200] C. Wetterich, “An asypntotically vanishing time-dependent cosmolog-

ical constant”, Astron. and Astrophys. 301, 321 (1995).

[201] P. J. E. Peebles and B. Ratra, “Cosmology with a time-variable

cosmological constant” , Astrophys. J. Lett. 325, 17 (1988).

[202] I. Zlatev, L. Wang and P. J. Steinhardt, “Quintessence, Cosmic

coincidence, and the cosmological constant” , Phys. Rev. Lett. 82,

896 (1999).

[203] S. Dodelson et al, “Solving the Coincidence Problem: Tracking

Oscillating Energy” , Phys. Rev. Lett. 85, 5276 (2000).

[204] G. Efstathiou, “Constraining the equation of state of the Universe

from distant Type Ia supernovae and cosmic microwave background

anisotropies”, MNRAS 310(3), 842-850 (1999).

[205] T. Matos, F. S. Guzmán and L. A. Ureña-López, “Scalar field as dark
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