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Abstract

In this thesis the exclusive rare semileptonic decays of B-mesons have been studied beyond the Standard

Model. In particular the decays B → K1(1270, 1400)ℓ
+ℓ− and Bc → D∗

sℓ
+ℓ− are considered. These

decays are induced by flavor changing neutral current (FCNC) transitions which at quark level arises as

b → sℓ+ℓ−. In the Standard model these FCNC decays are not allowed at tree level but are allowed at

loop level through Glashow-Iliopoulos-Maiani (GIM) mechanism. In addition they are also suppressed

in the Standard Model due to their dependence on weak mixing angles of the quark flavor rotation

matrix- the Cabibo Kobayashi Maskawa (CKM) matrix. These two circumstances make the FCNC

decays relatively rare and hence are important to study physics beyond the Standard Model, commonly

known as new physics. The main points of this thesis are:

• The implications of the fourth generation quarks in the decay B → K1(1270, 1400)ℓ
+ℓ− with

ℓ = µ, τ are studied, where the mass eigenstates K1(1270) and K1(1400) are mixture of 1P1

and 3P1 states with the mixing angle θK . In this context, we have studied various observables

like branching ratio (BR), forward-backward asymmetry (AFB) and longitudinal and transverse

helicity fractions (fL,T ) of K1 meson in B → K1ℓ
+ℓ− decays. To study these observables, we have

used the Light Cone QCD sum rules form factors and set the mixing angle θK = −34◦. It is noticed

that the BR is suppressed for K1(1400) as a final state meson compared to that of K1(1270). Same

is the case when the final state leptons are tauons rather than muons. In both the channels all

of the above mentioned observables are quite sensitive to the fourth generation effects. Hence the

measurements of these observables at LHC, for the above mentioned processes can serve as a good

tool to investigate the indirect manifestations of the fourth generation quarks.

• The same decay B → K1(1270, 1400)ℓ
+ℓ− is also studied in the standard model (SM) and in

universal extra dimension (UED) model. In this work we first relate the form factors through

Ward identities and then express their normalization atq2 = 0 in terms of a single constant g+(0)

which is extracted from the decays B → K1(1270, 1400)γ. These form factors are then used to

analyze the physical observables such as the branching ratio and the forward-backward asymmetry

in the SM. This analysis is then extended to the UED model where the dependency of the above

mentioned physical observables on the compactification radius R, the only unknown parameter in

the UED model. It is shown that the zero position of the forward-backward asymmetry for the

decay B → K1(1270, 1400)µ
+µ− is sensitive to the UED model, therefore the zero position of the

forward-backward asymmetry can serve as a handy tool to establish new physics predicted by the

UED model.



• The semileptonic Bc → D∗
sℓ

+ℓ− (ℓ = µ, τ) decays have been studied in the Standard Model (SM)

and in the Universal Extra Dimension (UED) model. In addition to the contribution from the

Flavor Changing Neutral Current (FCNC) transitions the weak annihilation (WA) contribution

is also important for this decay. It is found that the WA gives 6.7 times larger branching ratio

than the penguin contribution for the decay Bc → D∗
sµ

+µ−. The contribution from the WA and

FCNC transitions are parameterized in terms of the form factors. In this work we first relate the

form factors through Ward identities and then express them in terms of g+(0) which is extracted

from the decay Bc → D∗
sγ through QCD sum rules approach. These form factors are then used

to analyze the physical observables like branching ratio and helicity fractions of the final state

D∗
s meson in the SM. This analysis is then extended to the UED model where the dependency of

above mentioned physical observables depend on the compactification radius R. It is shown that

the helicity fractions of D∗
s are sensitive to the UED model especially when we have muons as the

final state lepton. This sensitivity is marked up at low q2 region, irrespective of the choice of the

form factors. It is hoped that in the next couple of years LHC will provide enough data on the

Bc → D∗
sℓ

+ℓ− channel, and then , these helicity fractions would serve as a useful tool to establish

new physics predicted by the UED model.



Chapter 1

Introduction

The Standard Model (SM) of particle physics was proposed by Glashow, Salam and Weinberg to unify

electromagnetism and weak nuclear forces. The SM is one of the successful theories of the 20th century

and has been tested with great precision.

Despite its many successes, it has some theoretical limitations which impedes its status as a funda-

mental theory. These limitations are as follows:

• Why is the electroweak unification scale so small (hierarchy problem)?

• What is the origin of the mass patterns among the fermions?

• Why only the three generations of quarks and leptons ?

• Neutrinos are massless but the experiments have shown that neutrinos have non-zero mass.

These problems indicate that there might be some new physics (NP) beyond the SM. Various extensions

of the SM are motivated to understand some of the above mentioned problems. The models proposed

are the two Higgs doublet model (2HDM), Minimal supersymmetric Standard Model (MSSM), Universal

extra dimension (UED) model, Standard Model with fourth generation (SM4) etc.

In this thesis we work exclusively in and beyond the SM, specifically in flavor sector. In flavor physics

the ideal laboratory system is B meson, which provides a window pan to study the physics in and beyond

the Standard Model. B-physics started in 1977 with the observation of a dimuon resonance at 9.5 GeV

in 400 GeV proton-nucleon collision at Fermilab [1] and was named Υ resonances, its quark content is

b̄b. The dedicated B-factories Babar [2] and Belle [3] started working in 1999 and added a large amount

of data to the results of CLEO [4],CERN [5]and Fermi lab experiments [6]. The recent experiment such

as Large Hadron collider (LHC) will not only provide a good testing ground to investigate the Standard

Model with great precision but also to study the new physics (NP) effects through the deviations of

measured observables from SM values.
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In general, there are two ways to search for the NP: one is the direct search where we can produce

the new particles by raising the energy of colliders, and the other one is the indirect search, i.e. to

increase the experimental data of different Standard Model processes where the NP effects can manifest

themselves. The processes that are suitable for indirect searches of NP are those which are rare in the

Standard Model and can be measured precisely. In this context the flavor physics plays an important role

in order to look for physics within and beyond the Standard model. In the Standard Model the flavor

symmetry is exact at tree level and its violation at loop level are very small. Thus the flavor changing

processes are important to study the physics within and beyond the Standard model. Such processes in

the flavor sector are rare B-meson decays. Rare B decays are mediated through Flavor changing neutral

current transitions (FCNC), which are induced only at loop level through Glashow-Iliopoulos-Maiani

(GIM) mechanism[7] in the Standard model. These FCNC transitions will provide a suitable tool to

investigate the physics within and beyond the Standard model.

The experimental observation of inclusive [8] and exclusive [9] decays has prompted a lot of theoretical

interest on rare B meson decays. Though the inclusive decays are theoretically better understood but are

difficult to study experimentally. In contrast, the exclusive decays are easier to detect experimentally but

are challenging to calculate theoretically; and the difficulty lies in describing the hadronic structure, which

involves non-perturbative physics and provides the main uncertainty in the predictions of exclusive rare

decays. In exclusive decays the long-distance effects in the meson transition amplitude of the effective

Hamiltonian are encoded in the meson transition form factors which are the functions of square of

momentum transfer and are model dependent quantities. In literature, some of the rare radiative and

rare semileptonic decays of B-meson such as B → γℓ+ℓ− [10, ?, 11], B → (K,K∗)ℓ+ℓ− [12, 13, 14, 15,

16, 17, 18, 19] and B → ϕℓ+ℓ− [20] have been studied using the framework of the constituent quark

model, Light cone sum rules(LCSR), QCD sum rules to describe the transition form factors of initial

and final state mesons.

The exploration of Physics beyond the SM through various inclusive B meson decays like B →

Xs,dℓ
+ℓ− and their corresponding exclusive processes, B → Mℓ+ℓ− with M = K,K∗,K1, ρ etc have

been done in literature [21, 22]. These studies showed that the above mentioned inclusive and exclusive

decays of B meson are very sensitive to the flavor structure of the Standard Model and provide a

windowpane for any NP model. There are two different ways to incorporate the NP effects in the rare

decays, one through the modification of Wilson coefficients and the other through new operators which

are absent in the Standard Model. It is necessary to mention, the FCNC decay modes like B → Xsℓ
+ℓ−,

B → K∗ℓ+ℓ− and B → Kℓ+ℓ− which are useful not only in the determination of precise values of Wilson

coefficients Ceff7 , Ceff9 and Ceff10 but also the sign of Ceff7 . In particular these decay modes involved

observables which can distinguish between the various extensions of the Standard Model.

The observables like branching ratio, forward-backward asymmetry and helicity fractions of final
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state mesons for the semileptonic B decays are greatly influenced by the different scenarios beyond the

Standard Model. Therefore, the precise measurement of these observables will play an important role in

the indirect searches of NP. The purpose of this thesis is to investigate the possibility of searching NP

related to the Universal extra dimension model (UED) and to Standard Model with a fourth generation

(SM4) in B → K1(1270, 1400)ℓ
+ℓ− and Bc → D∗

sℓ
+ℓ− decays using the above mentioned physical

observables. The study of these physical observables will provide a precision test of standard model and

NP when more data will be available at LHC.

The organization of this thesis is as follows. In Chapter 2 we discuss the theoretical framework

needed to study the said processes both in standard model and NP models. In section 2.1 we give the

expression of the effective Hamiltonian, the explicit form of the quark level operators and the amplitude

for the said processes, which at the quark level arises from b → sℓ+ℓ−. In sections 2.2 and 2.3 we give

a brief introduction to the fourth generation standard model and UED model which was proposed by

Appelquist, Cheng and Dobrescu.

In chapter 3 we present the Exclusive B → K1(1270, 1400)ℓ
+ℓ− beyond the third generation. In

section 3.1 we discuss how the NP effects arises in SM4. In section 3.2. we present the mixing of

K1(1270) and K1(1400) and the form factors used in this study. In section 3.3, we discuss the observables

of B → K1ℓ
+ℓ− in detail. In section 3.4, we give the numerical analysis of the physical observables and

discuss their sensitivity to the fourth generation SM scenario. We conclude our findings in section 3.5.

In chapter 4 we present the same decay as in chapter 3 in universal extra dimension model. Section

4.2 presents the matrix element for the decay B → K1ℓ
+ℓ−, Ward identities and develop the relations

between the form factors which results in reducing the number of unknown quantities. In section 4.3,

pole contribution of various form factors are discussed and relations among different coupling constants

are obtained with the help of Ward identities. In Section 4.4, we discuss the sensitivity of the physical

observables in UED model. Section 4.5, summarizes the main points of our study.

In Chapter 5 we present the semileptonic charm B-meson decays in universal extra dimension model.

In section 5.1 we give the introduction of charm B-meson decays and its importance in phenomenology.

In section 5.2 we present the matrix element and form factors for the decay Bc → D∗
sℓ

+ℓ− and we

also discuss the weak annihilation form factors for the said decay. Section 5.3 the pole contribution

for the said decay is discussed. In section 5.4 we give the formulas for the physical observables such as

branching ratio and helicity fractions of D∗
s -meson for the decay Bc → D∗

sℓ
+ℓ−. In section 5.5 we present

the numerical analysis of the above physical observables and also compare our form factors with QCD

sum rules for the same observables. Finally, we summarize the main points of our study in section 5.6.

This Ph.D. thesis is based upon the following publications.

1. K1(1270)−K1(1400) mixing and the fourth generation SM effects in B → K1ℓ
+ℓ− decays, Aqeel

Ahmed, Ishtiaq Ahmed, M. Ali Paracha, Abdur Rehman , Phys.Rev.D 84:033010, 2011.
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2. Form factors, branching ratio and forward-backward asymmetry in B → K1ℓ
+ℓ− decays, M. Ali

Paracha, Ishtiaq Ahmed and M. Jamil Aslam, Eur.Phys.J.C52:967-973,2007.

3. Exclusive B → K1ℓ
+ℓ− decay in model with single universal extra dimension, Ishtiaq Ahmed, M.

Ali Paracha and M. Jamil Aslam, Eur.Phys.J.C54:591-599,2008.

4. Semileptonic charmed B meson decays in Universal Extra Dimension Model, M.Ali Paracha, Ishtiaq

Ahmed and M.Jamil Aslam, Phys.Rev.D 84: 035003, 2011.
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Chapter 2

Theoretical Framework

In this chapter we present the theoretical framework appropriate to study the processesB → K1(1270, 1400)ℓ
+ℓ−

and Bc → D∗
sℓ

+ℓ− both in Standard Model and in NP models. We also include a brief introduction to

NP models such as Standard Model with fourth generation (SM4) and universal extra dimension model

(UED). The phenomenological implications of these models will be discussed in next chapters.

2.1 Effective Hamiltonian

The basic starting point to do phenomenology of weak decays of hadrons is the effective Hamiltonian

which has the following generic structure

Heff =
GF√
2

∑
i

VCKMCi(µ)Oi(µ) (2.1)

Here GF is the Fermi coupling constant, VCKM are the Cabibo-Kobayashi and Maskawa(CKM) matrix

elements, Oi(µ) are the four-quark operators and Ci(µ) are the corresponding Wilson coefficients at the

energy scale µ [23]. Now the amplitude for the decay of mesonM to a final state meson F can be written

as

A(M → F ) = ⟨F |Heff |M⟩

=
GF√
2

∑
i

V iCKMCi(µ) ⟨F |Oi(µ)|M⟩ (2.2)

Wilson coefficients give the short distance effects where as the long distance effects involve the matrix

elements of the operators in Eq.(2.2) between initial and final state mesons. The explicit form of the

operators which are sandwiched between the initial and final state meson can be written as [24]
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Current Current Operators

O1 = (c̄αbβ)V−A(s̄βcα)V−A (2.3)

O2 = (c̄b)V−A(s̄c)V−A (2.4)

QCD-Penguins

O3 = (s̄b)V−A

∑
q=u,d,s,c,b

(q̄q)V−A (2.5)

O4 = (s̄αbβ)V−A

∑
q=u,d,s,c,b

(q̄βqα)V−A (2.6)

O5 = (s̄b)V−A

∑
q=u,d,s,c,b

(q̄q)V+A (2.7)

O6 = (s̄αbβ)V−A

∑
q=u,d,s,c,b

(q̄βqα)V+A (2.8)

Electroweak penguins

O7 =
3

2
(s̄b)V−A

∑
q=u,d,s,c,b

eq (q̄q)V+A (2.9)

O8 =
3

2
(s̄αbβ)V−A

∑
q=u,d,s,c,b

(q̄βqα)V+A (2.10)

O9 =
3

2
(s̄b)V−A

∑
q=u,d,s,c,b

eq (q̄q)V−A (2.11)

O10 =
3

2
(s̄αbβ)V−A

∑
q=u,d,s,c,b

(q̄βqα)V−A (2.12)

Magnetic Penguins

O7γ =
e

8π2
mbs̄ασ

µν(1 + γ5)bαFµν (2.13)

O8G =
g

8π2
mbs̄ασ

µν(1 + γ5)T aαβbβG
a
µν (2.14)

Semileptonic Operators

O9 = (s̄b)V−A
(
ℓ̄ℓ
)
V

O10 = (s̄b)V−A
(
ℓ̄ℓ
)
A (2.15)

Oνν̄ = (s̄b)V−A (ν̄ν)V−A Oℓℓ̄ = (s̄b)V−A
(
ℓ̄ℓ
)
V−A

The above set of operators characterize the interplay of QCD and electroweak effects. As already men-

tioned earlier, this thesis deals with rare decays of B mesons into a final state hadron with lepton-

antilepton pair so the operators responsible for these decays are electromagnetic penguin operator O7γ

given in Eq.(2.12) and the semileptonic operators given in Eq.(2.15).
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At the quark level the said processes are induced by the transition b→ sℓ+ℓ−, which in the Standard

Model is described by the following effective Hamiltonian

Heff = −4GF√
2
VtbV

∗
ts

[ 10∑
i=1

Ci(µ)Oi(µ)

]
, (2.16)

In terms of the above Hamiltonian, the amplitude for b→ sℓ+ℓ− can be written as:

MSM (b→ sℓ+ℓ−) = −GFα√
2π

VtbV
∗
ts

{
Ceff9 (s̄γµLb)(ℓ̄γ

µℓ)

+ C10(s̄γµLb)(ℓ̄γ
µγ5ℓ)− 2mbC

eff
7 (s̄iσµν

qν

q2
Rb)(ℓ̄γµℓ)

}
(2.17)

where R,L = (1± γ5) /2 and q is the momentum transfer. The semileptonic operator O10 can not

be induced by the insertion of four-quark operators because of the absence of the neutral Z boson

in the effective theory. Hence, the Wilson coefficient C10 is not renormalized under QCD corrections

and therefore it is independent of the energy scale. In addition to this, the above quark level decay

amplitude can take contributions from the matrix-elements of four-quark operators,
∑6
i=1 ⟨l+l−s |Oi| b⟩,

which are usually absorbed into the effective Wilson coefficient Ceff9 (µ), which can be decomposed into

the following three parts [22, 25]

CSM9 = Ceff9 (µ) = C9(µ) + YSD(z, s
′) + YLD(z, s

′),

where the parameters z and s′ are defined as z = mc/mb, s
′ = q2/m2

b . YSD(z, s
′) describes the short-

distance contributions from four-quark operators far away from the cc̄ resonance regions, which can be

calculated reliably in the perturbative theory. The long-distance contributions YLD(z, s
′) from four-quark

operators near the cc̄ resonance cannot be calculated from first principles of QCD and are usually param-

eterized in the form of a phenomenological Breit-Wigner formula making use of the vacuum saturation

approximation and quark-hadron duality. The expressions for YSD(z, s
′) and YLD(z, s

′) can be written

as

YSD(z, s
′) = h(z, s′)(3C1(µ) + C2(µ) + 3C3(µ) + C4(µ) + 3C5(µ) + C6(µ))

−1

2
h(1, s′)(4C3(µ) + 4C4(µ) + 3C5(µ) + C6(µ))

−1

2
h(0, s′)(C3(µ) + 3C4(µ)) +

2

9
(3C3(µ) + C4(µ) + 3C5(µ) + C6(µ)) (2.18)

with

h(z, s′) = −8

9
lnz +

8

27
+

4

9
x− 2

9
(2 + x)|1− x|1/2

 ln
∣∣∣√1−x+1√

1−x−1

∣∣∣− iπ for x ≡ 4z2/s′ < 1

2 arctan 1√
x−1

for x ≡ 4z2/s′ > 1
,
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h(0, s′) =
8

27
− 8

9
ln
mb

µ
− 4

9
lns′ +

4

9
iπ . (2.19)

and

YLD (z, s′) =
3π

α2
C(0)

∑
Vi=ψi

κi
mViΓ (Vi → l+l−)

m2
Vi

− s′m2
b − imViΓVi

(2.20)

where C(0) = 3C1 + C2 + 3C3 + C4 + 3C5 + C6.

Irrespective of this, the non-factorizable effects [26] from the charm loop can bring about further

corrections to the radiative b→ sγ transition, which can be absorbed into the effective Wilson coefficient

Ceff7 . Specifically, the Wilson coefficient Ceff7 takes the form [27]

Ceff7 (µ) = C7(µ) + Cb→sγ(µ),

with

Cb→sγ(µ) = iαs

[
2

9
η14/23(G1(xt)− 0.1687)− 0.03C2(µ)

]
, (2.21)

G1(x) =
x(x2 − 5x− 2)

8(x− 1)3
+

3x2ln2x

4(x− 1)4
, (2.22)

where η = αs(mW )/αs(µ), x = m2
t/m

2
W . Cb→sγ is the absorptive part for the b → scc̄ → sγ re-

scattering and we have dropped out the small contributions proportional to CKM sector VubV
∗
us. In the

above mentioned NP physics models, the NP effects only modify the Wilson coefficients.

2.2 Fourth Generation Standard Model

It is well known that the SM includes three generations of fermions, but it does not prohibit the fourth

generation. The restrictions on the number of fermion generations come from the QCD asymptotic

freedom which constraint them to nine. Therefore, shortly after the measurement of the third generation,

a fourth generation was an obvious extension.

Interest in the fourth generation Standard Model (SM4) was fairly high in the 1980s until the elec-

troweak precision data seemed to rule it out. The other reason which stimulates the interest in the fourth

generation was the measurement of the number of light neutrinos at the Z pole that showed only three

light neutrinos could exist. However, the discovery of neutrino oscillations suggested the possibility of

a mass scale beyond the SM, and the models with the sufficiently massive neutrino became acceptable

[28].Though the early study of the EW precision measurements ruled out a fourth generation [29], how-

ever it was subsequently pointed out [30] that if the fourth generation masses are not degenerate, then the

EW precision data do not prohibit the fourth generation [31]. Therefore, the SM can be simply extended

with a sequential repetition as four quark and four lepton left handed doublets and corresponding right
8



handed singlets.

The possible sequential fourth generation may play an important role in understanding the well known

problem of CP violation and flavor structure of standard theory [32, 33, 34, 35, 36], electroweak symmetry

breaking [37, 38, 39, 40], hierarchies of fermion mass and mixing angle in quark/lepton sectors[41, 42].

A thorough discussion on the theoretical and experimental aspects of the fourth generation can be found

in ref [43].

On the experimental side, recent searches by the CDF collaboration for direct production of fourth

generation up-type quark (t′) and down-type quark (b′) found mt′ > 335 GeV [44] and mb′ > 385 GeV

[45], assuming Br(t′ → Wq, (q = d, s, b)) = 100% and Br(b′ → Wt) = 100% respectively. This indeed

suggests that the fourth generation fermion must be heavy, which supports the scenario of compositeness.

The underlying assumption to perform these searches is that mt′ − mb′ < MW and negligible mixing

of the (t′, b′) states with the two lightest quark generations. To account for EW precision data such

conditions are generally required for the SM4 with the one Higgs doublet [46]. Moreover, when a fourth

generation of fermions is embedded in theories beyond the SM, the large splitting case (mt′ −mb′ > MW )

and the inverted scenario (mt′ < mb′) have not been excluded. Recently, it has also been shown [47] that

the precision EW data can accommodate (mt′ −mb′ > MW ) if there are two Higgs doublets. Thus there

is no uniquely interesting set of assumptions under which experimental data must be interpreted [48]

and the determination of the allowed parameter space of fourth generation fermions will be an important

goal of the LHC era. The large values of the masses of fourth generation would provide special room

to new interactions originating at a higher scale and the precise determination of the fourth generation

quark properties may present the existence of physics beyond the SM.

The sequential fourth generation model with an additional up-type quark t′ and down-type quark b′

, a heavy charged lepton τ ′ and an associated neutrino ν′ is a simple and non-supersymmetric extension

of the SM, and as such does not add any new dynamics to the SM. Being the simplest extension of the

SM, it retains all the properties of the SM where the new top quark t′ like the other up-type quarks,

contributes to b→ s transition at the loop level. Therefore, the effect of the fourth generation shows up

by changing the values of Wilson coefficients C7 (µ), C9 (µ) and C10 via the virtual exchange of fourth

generation up-type quark t′, which then take the form:

λtCi → λtC
SM
i + λt′C

new
i , (2.23)

Here, λf = V ∗
fbVfs and the explicit forms of the Ci’s can be obtained from the corresponding expressions

for the Wilson coefficients in the SM by substituting mt → mt′ . By adding the extra family of quarks,

the CKM matrix of the SM is extended by an extra row and column, which now becomes 4× 4 unitary

matrix which requires six real parameters and three phases. These two extra phases imply the possibility

9



of extra sources of CP-violation. The unitarity of the CKM matrix now leads to

λu + λc + λt + λt′ = 0.

Since λu = V ∗
ubVus has a very small value compared to the others, we will neglect it. Then, λt ≈ −λc−λt′

and from Eq. (2.23) we have

λtC
SM
i + λt′C

new
i = −λcCSMi + λt′

(
Cnewi − CSMi

)
. (2.24)

One can clearly see that in the limits λt′ → 0 or mt′ → mt the term λt′
(
Cnewi − CSMi

)
vanishes, which

is the requirement of the GIM mechanism. Including the contribution of the t′ quark in the penguin

loop, the Wilson coefficients Ci’s can be written in the following form

Ctot7 (µ) = CSM7 (µ) +
λt′

λt
Cnew7 (µ) ,

Ctot9 (µ) = CSM9 (µ) +
λt′

λt
Cnew9 (µ) , (2.25)

Ctot10 = CSM10 +
λt′

λt
Cnew10 ,

where we factored out the λt = V ∗
tbVts term in the effective Hamiltonian given in Eq. (2.16) and the last

term in these expressions corresponds to the contribution of the t′ quark to the Wilson coefficients. λt′

can be parameterized as:

λt′ = |V ∗
t′bVt′s| eiϕsb (2.26)

where ϕsb is the new CP odd phase. The free quark decay amplitude in SM4 is exactly the same as

given in Eq.(2.17).

2.3 Appelquist Cheng and Dobrescu Model

In our usual universe we have 3 spatial +1 temporal dimensions and if an extra dimension exists and is

compactified, fields living in all dimensions would manifest themselves in the 3+1 space by the appearance

of Kaluza-Klein excitations. The most pertinent question is whether ordinary fields propagate or not in

all extra dimensions. One obvious possibility is the propagation of gravity in whole ordinary plus extra

dimensional universe, the “bulk”. Contrary to this there are the models with universal extra dimensions

(UED) in which all the fields propagate in all available dimensions [49] and the Appelquist, Cheng and

Dobrescu (ACD) model belongs to one of UED scenarios [50].

This model is the minimal extension of the SM in 4 + δ dimensions, and in literature a simple case

δ = 1 is considered [50]. The topology for this extra dimension is orbifold S1/Z2, and the coordinate

10



x5 = y runs from 0 to 2πR, where R is the the compactification radius. The Kaluza-Klein (KK) mode

expansion of the fields are determined from the boundary conditions at two fixed points y = 0 and

y = πR on the orbifold. Under parity transformation P5 : y → −y the fields may be even or odd. Even

fields have their correspondent in the 4 dimensional SM and their zero mode in the KK mode expansion

can be interpreted as the ordinary SM field. The odd fields do not have their correspondent in the SM

and therefore do not have zero mode in the KK expansion.

The significant features of the ACD model are:

i) the compactification radius R is the only free parameter with respect to SM

ii) no tree level contribution of KK modes in low energy processes (at scale µ ≪ 1/R) and no pro-

duction of single KK excitation in ordinary particle interactions is a consequence of conservation

of KK parity.

The detailed description of ACD model is provided in [51]; here we summarize main features of its

construction from [50].

Gauge group

As the ACD model is the minimal extension of SM therefore the gauge bosons associated with the

gauge group SU (2)L × U (1)Y are W a
i (a = 1, 2, 3, i = 0, 1, 2, 3, 5) and Bi, and the gauge couplings are

ĝ2 = g2
√
2πR and ĝ′ = g′

√
2πR (the hat on the coupling constant refers to the extra dimension). The

charged bosons are W±
i = 1√

2

(
W 1
i ∓W 2

i

)
and the mixing of W 3

i and Bi give rise to the fields Zi and Ai

as they do in the SM. The relations for the mixing angles are:

cW = cos θW =
ĝ2√

ĝ22 + ĝ′2
cW = sin θW =

ĝ′√
ĝ22 + ĝ′2

(2.27)

The Weinberg angle remains the same as in the SM, due to the relationship between five and four

dimensional constants. The gluons which are the gauge bosons associated to SU (3)C are Gai (x, y) (a =

1, . . . , 8).

Higgs sector and mixing between Higgs fields and gauge bosons

The Higgs doublet can be written as:

ϕ =

 iχ+

1√
2

(
ψ − iχ3

)
 (2.28)

with χ± = 1√
2

(
χ1 ∓ χ2

)
. Now only field ψ has a zero mode, and we assign the vacuum expectation

value v̂ to such mode, so that ψ → v̂ + H. H is the the SM Higgs field, and the relation between the

expectation values in five and four dimension is: v̂ = v/
√
2πR.

The Goldstone fields G0
(n), G

±
(n) arises due to the mixing of chargedW±

5(n) and χ
±
(n) , as well as neutral11



fields Z5(n). These Goldstone modes are then used to give masses to the W±µ
(n) and Zµ(n), and a

0
(n), a

±
(n),

new physical scalars.

Yukawa terms

In the SM, Yukawa coupling of the Higgs field to the fermion provides the fermion mass terms.

The diagonalization of such terms leads to the introduction of the CKM matrix. In order to have

chiral fermions in ACD model, the left and right-handed components of the given spinor cannot be

simultaneously even under the parity operator of fifth dimension P5. This makes the ACD model to be

the minimal flavor violation model, since there are no new operators beyond those present in the SM

and no new phase beyond the CKM phase and the unitarity triangle remains the same as in SM [51]. In

order to have 4-d mass eigenstates of higher KK levels, a further mixing is introduced among the left-

handed doublet and right-handed singlet of each flavor f . The mixing angle is such that tan
(
2αf(n)

)
=

mf

n/R (n ≥ 1) giving mass mf(n) =
√
m2
f +

n2

R2 , hence the mixing angle is negligible for all flavors except

the top [50].

Integrating over the fifth-dimension y gives the four-dimensional Lagrangian:

L4 (x) =

∫ 2πR

0

L5 (x, y) (2.29)

which describes: (i) zero modes corresponding to the SM fields, (ii) their massive KK excitations, (iii)

KK excitations without zero modes which do not corresponds to any field in SM. Feynman rules used in

the further calculation are given in Ref. [51].

In the ACD model the NP comes through the Wilson coefficients. Buras et al. have computed the

above coefficients at NLO in ACD model including the effects of KK modes [51, 52]; we use these results

to study B → K1(1270, 1400)ℓ
+ℓ− and Bc → D∗

sℓ
+ℓ− decays. As it has already been mentioned that

ACD model is the minimal extension of SM with only one extra dimension and it has no extra operator

other than the SM. Thus the whole contribution from all the KK states is in the Wilson coefficients, i.e.

now they depend on the additional ACD parameter, the inverse of compactification radius R. At large

value of 1/R the SM phenomenology should be recovered, since the new states, being more and more

massive, decoupled from the low-energy theory.

In the ACD model, the Wilson coefficients are modified and they contain the contribution from KK-

excitations which are not present in the SM, which comes as an intermediate state in penguin and box

diagrams. Thus, these coefficients can be expressed in terms of the functions F (xt, 1/R), xt =
m2

t

M2
W
,

which generalize the corresponding SM function F0 (xt) according to:

F (xt, 1/R) = F0 (xt) +

∞∑
n=1

Fn (xt, xn) (2.30)
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with xn =
m2

n

M2
W

and mn = n
R [50]. The relevant diagrams are Z0 penguins, γ penguins, gluon pen-

guins, γ magnetic penguins, Chormomagnetic penguins and the corresponding functions are C (xt, 1/R),

D (xt, 1/R), E (xt, 1/R), D
′ (xt, 1/R) and E′ (xt, 1/R) respectively. These functions can be found in

[51, 52] and to make the thesis self contained, we collect here the formulae needed for our analysis.

•C7

In place of C7, one defines an effective coefficient C
(0)eff
7 which is renormalization scheme independent

[53]:

C
(0)eff
7 (µb) = η

16
23C

(0)
7 (µw) +

8

3
(η

14
23 − η

16
23 )C

(0)
8 (µw) + C

(0)
2 (µw)

8∑
i=1

hiη
αi (2.31)

where η = αs(µw)
αs(µb)

, and

C
(0)
2 (µw) = 1, C

(0)
7 (µw) = −1

2
D′(xt,

1

R
), C

(0)
8 (µw) = −1

2
E′(xt,

1

R
); (2.32)

the superscript (0) stays for leading log approximation. Furthermore:

α1 =
14

23
α2 =

16

23
α3 =

6

23
α4 = −12

23

α5 = 0.4086 α6 = −0.4230 α7 = −0.8994 α8 = −0.1456

h1 = 2.996 h2 = −1.0880 h3 = −3

7
h4 = − 1

14

h5 = −0.649 h6 = −0.0380 h7 = −0.0185 h8 = −0.0057. (2.33)

The functions D′ and E′ are given in Eq. (2.33) with

D′
0(xt) = − (8x3t + 5x2t − 7xt)

12(1− xt)3
+
x2t (2− 3xt)

2(1− xt)4
lnxt (2.34)

E′
0(xt) = −xt(x

2
t − 5xt − 2)

4(1− xt)3
+

3x2t
2(1− xt)4

lnxt (2.35)

D′
n(xt, xn) =

xt(−37 + 44xt + 17x2t + 6x2n(10− 9xt + 3x2t )− 3xn(21− 54xt + 17x2t ))

36(xt − 1)3

+
xn(2− 7xn + 3x2n)

6
ln

xn
1 + xn

− (−2 + xn + 3xt)(xt + 3x2t + x2n(3 + xt)− xn)(1 + (−10 + xt)xt))

6(xt − 1)4
ln
xn + xt
1 + xn

(2.36)

E′
n(xt, xn) =

xt(−17− 8xt + x2t + 3xn(21− 6xt + x2t )− 6x2n(10− 9xt + 3x2t ))

12(xt − 1)3

+−1

2
xn(1 + xn)(−1 + 3xn) ln

xn
1 + xn

+
(1 + xn)(xt + 3x2t + x2n(3 + xt)− xn(1 + (−10 + xt)xt))

2(xt − 1)4
ln
xn + xt
1 + xn

(2.37)

13



Following [52] one gets the expressions for the sum over n :

∞∑
n=1

D′
n(xt, xn) = −xt(−37 + xt(44 + 17xt))

72(xt − 1)3

+
πMwR

2
[

∫ 1

0

dy
2y

1
2 + 7y

3
2 + 3y

5
2

6
] coth(πMwR

√
y)

+
(−2 + xt)xt(1 + 3xt)

6(xt − 1)4
J(R,−1

2
)

− 1

6(xt − 1)4
[xt(1 + 3xt)− (−2 + 3xt)(1 + (−10 + xt)xt)]J(R,

1

2
)

+
1

6(xt − 1)4
[(−2 + 3xt)(3 + xt)− (1 + (−10 + xt)xt)]J(R,

3

2
)

− (3 + xt)

6(xt − 1)4
J(R,

5

2
)] (2.38)

∞∑
n=1

E′
n(xt, xn) = −xt(−17 + (−8 + xt)xt)

24(xt − 1)3

+
πMwR

2
[

∫ 1

0

dy(y
1
2 + 2y

3
2 − 3y

5
2 ) coth(πMwR

√
y)]

−xt(1 + 3xt)

(xt − 1)4
J(R,−1

2
)

+
1

(xt − 1)4
[xt(1 + 3xt)− (1 + (−10 + xt)xt)]J(R,

1

2
)

− 1

(xt − 1)4
[(3 + xt)− (1 + (−10 + xt)xt)]J(R,

3

2
)

+
(3 + xt)

(xt − 1)4
J(R,

5

2
)] (2.39)

where

J(R,α) =

∫ 1

0

dyyα[coth(πMwR
√
y)− x1+αt coth(πmtR

√
y)]. (2.40)

•C9

In the ACD model and in the Naive dimensional regularization(NDR) scheme one has

C9(µ) = PNDR0 +
Y (xt,

1
R )

sin2 θW
− 4Z(xt,

1

R
) + PEE(xt,

1

R
) (2.41)

where PNDR0 = 2.60± 0.25 [54] and the last term is numerically negligible. Besides

Y (xt,
1

R
) = Y0(xt) +

∞∑
n=1

Cn(xt, xn)

Z(xt,
1

R
) = Z0(xt) +

∞∑
n=1

Cn(xt, xn) (2.42)

Y0(xt) =
xt
8
[
xt − 4

xt − 1
+

3xt
(xt − 1)2

lnxt]
14



Z0(xt) =
18x4t − 163x3t + 259x2t − 108xt

144(xt − 1)3

+[
32x4t − 38x3t + 15x2t − 18xt

72(xt − 1)4
− 1

9
] lnxt (2.43)

Cn(xt, xn) =
xt

8(xt − 1)2
[x2t − 8xt + 7 + (3 + 3xt + 7xn − xtxn) ln

xt + xn
1 + xn

] (2.44)

and
∞∑
n=1

Cn(xt, xn) =
xt(7− xt)

16(xt − 1)
− πMwRxt

16(xt − 1)2
[3(1 + xt)J(R,−

1

2
) + (xt − 7)J(R,

1

2
)] (2.45)

•C10

C10 is µ independent and is given by

C10 = −
Y (xt,

1
R )

sin2 θw
. (2.46)

The normalization scale is fixed to µ = µb ≃ 5 GeV.

We use these values of Wilson coefficients in the processes B → K1(1270, 1400)ℓ
+ℓ− and Bc →

D∗
sℓ

+ℓ− and will be discussed in Chapter 4 and Chapter 5.
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Chapter 3

Exclusive B → K1(1270, 1400)ℓ
+ℓ−

beyond the third generation

3.1 Introduction

As discussed in Chapter 1, there are several possible extensions of the SM. Among them the Standard

Model with fourth generation (SM4) seems to be the most economical one in the number of additional

particles and simpler in the sense that it does not introduce any new operators. It thus provides a natural

extension of the SM which has been searched for previously at the LEP and Tevatron and now will be

investigated at the LHC [55]. If a fourth family is discovered, it is likely to have consequences at least as

profound as those that have emerged from the discovery of the third family. The fourth-generation SM

not only provides a simple explanation of some of the experimental results which are difficult to reconcile

with SM including the CP violation anomaly seen in Bs − Bs mixing [56, 57] but also gives enough

CP-asymmetries to facilitate baryogenesis [58]. In addition, the fact that the heavier quarks (t′, b′)

and leptons (ν′, τ ′) of the fourth generation can play a crucial role in dynamical electroweak symmetry

breaking (DEWSB) [59] as an economical way to address the hierarchy puzzle in the SM. Furthermore,

the LHC will provide a suitable amount of data which enlighten these puzzles more clearly as well as

decide the belief in the extra generation and help us to enhance our theoretical understanding of these

puzzles.

In the past few years, a number of analysis showed: (a)the SM with fourth generation is consistent

with the electroweak precision tests (EWPT) [60, 61]. It is pointed out [62, 63, 64] that in the presence

of a fourth generation a heavy Higgs boson does not contradict with EWPT, (b) SU(5) gauge couplings

unification could be achieved without supersymmetry [65], (c) Electroweak baryogensis can be accommo-

dated [66] and (d) the DEWSB might be actuated by the presence of the extra generation. Moreover, the
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fourth-generation SM, in principle, could resolve certain anomalies present in flavor changing processes

[67]. Furthermore the mismatch in the CP-asymmetry in B → Kπ data [68] with the SM [69] as well as

CP violation in B → ϕKs decay may also provide some hint of NP [70]. Henceforth the measurement of

different observables in the rare B decays can be very helpful to put or to check the constraints on the

4th generation parameters.

The study of inclusive and exclusive processes of B-meson are very sensitive to flavor structure of the

SM and provides a windowpane for any NP including the fourth-generation SM. Since it is expected that

mt′ > mt, the fourth generation quark can manifest their indirect existence in the penguin loop diagrams.

Due to this reason FCNC transitions are at the forefront and one of the main research direction of all

operating B factories including CLEO, Belle, Tevatron and LHCb [55]. However, the studies that involve

the direct searches of the fourth generation quarks or their indirect searches via FCNC processes require

the values of the quark masses and mixing elements which are not free parameters but rather they are

constrained by experiments [71]. In the fourth generation SM the NP arises due to the modified Wilson

coefficients Ceff7 ,Ceff9 and Ceff10 as the fourth generation quark (t′) contributes in b → s(d) transition

at the loop level along with other quarks u, c and t of SM.

The complementary information from the rare B decays is necessary for the indirect searches of NP

including fourth generation. This complementary investigation improve the precision of SM parameters

which are helpful in discovery of the NP. In this connection, like the rare semileptonic decays involving

B → (Xs,K
∗,K)ℓ+ℓ−, the B → K1(1270, 1400)ℓ

+ℓ− decays are also rich in phenomenology for the NP

[76]. The physical states K1(1270) and K1(1400) are mixture of 3P1 and 1P1 states K1A and K1B .

|K1(1270)⟩ = |K1A⟩ sin θK + |K1B⟩ cos θK , (3.1a)

|K1(1400)⟩ = |K1A⟩ cos θK − |K1B⟩ sin θK , (3.1b)

where the magnitude of mixing angle θK has been estimated to be 34◦ ≤ |θK | ≤ 58◦ in Ref. [77].

Recently, from the study of B → K1(1270)γ and τ → K1(1270)ντ , the value of θK has been estimated

to be θK = −(34± 13)◦, where the minus sign of θK is related to the chosen phase of |K1A⟩ and |K1B⟩

[78].

Many studies have shown [76] that the observables like branching ratio (BR), forward-backward

asymmetry (AFB) and helicity fractions fL,T for semileptonic B decays are greatly influenced by the

different scenarios beyond the SM. Therefore, the precise measurement of these observables will play an

important role in the indirect searches of NP. In this respect, it is natural to ask how these observables

are influenced by the fourth generation parameters. The purpose of present study is to address this

question i.e. investigate the possibility of searching NP due to the fourth generation SM in B →

K1(1270, 1400)ℓ
+ℓ− decays with ℓ = µ, τ using the above mentioned observables.
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3.2 Form Factors and Mixing of K1(1270)−K1(1400)

The exclusive B → K1(1270, 1400)ℓ
+ℓ− decays involve the hadronic matrix elements of quark operators

given in Eq. (2.17) which can be parameterized in terms of the form factors as:

⟨K1(k, ε) |Vµ|B(p)⟩ = ε∗µ (MB +MK1)V1(q
2)

− (p+ k)µ (ε
∗ · q) V2(q

2)

MB +MK1

− qµ (ε · q)
2MK1

q2
[
V3(q

2)− V0(q
2)
]

(3.2)

⟨K1(k, ε) |Aµ|B(p)⟩ = 2iϵµναβ
MB +MK1

ε∗νpαkβA(q2) (3.3)

where Vµ = s̄γµb and Aµ = s̄γµγ5b are the vectors and axial vector currents, involved in the transi-

tion matrix, respectively. Also p(k) are the momenta of the B(K1) mesons and εµ correspond to the

polarization of the final state axial vector K1 meson. In Eq.(3.2) we have

V3(q
2) =

MB +MK1

2MK1

V1(q
2)− MB −MK1

2MK1

V2(q
2) (3.4)

with

V3(0) = V0(0)

In addition, there is also a contribution from the Penguin form factors which can be written as

⟨K1(k, ε) |s̄iσµνqνb|B(p)⟩

=
[(
M2
B −M2

K1

)
εµ − (ε · q)(p+ k)µ

]
F2(q

2)

+ (ε∗ · q)
[
qµ − q2

M2
B −M2

K1

(p+ k)µ

]
F3(q

2) (3.5)

⟨K1(k, ε) |s̄iσµνqνγ5b|B(p)⟩ = −iϵµναβε∗νpαkβF1(q
2) (3.6)

with F1(0) = 2F2(0).

As the physical states K1(1270) and K1(1400) are mixed states of the K1A and K1B with mixing

angle θK defined in Eqs. (3.1a-3.1b), the B → K1 form factors can be parameterized as

 ⟨K1(1270)|s̄γµ(1− γ5)b|B⟩

⟨K1(1400)|s̄γµ(1− γ5)b|B⟩

 = M

 ⟨K1A|s̄γµ(1− γ5)b|B⟩

⟨K1B |s̄γµ(1− γ5)b|B⟩

 , (3.7)
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 ⟨K1(1270)|s̄σµνqµ(1 + γ5)b|B⟩

⟨K1(1400)|s̄σµνqµ(1 + γ5)b|B⟩

 = M

 ⟨K1A|s̄σµνqµ(1 + γ5)b|B⟩

⟨K1B |s̄σµνqµ(1 + γ5)b|B⟩

 , (3.8)

where the mixing matrix M is

M =

 sin θK cos θK

cos θK − sin θK

 . (3.9)

So the form factors AK1 , V K1
0,1,2 and FK1

0,1,2 satisfy the following relation

 AK1(1270)

mB+mK1(1270)

AK1(1400)

mB+mK1(1400)

 = M

 AK1A

mB+mK1A

AK1B

mB+mK1B

 , (3.10)

 (mB +mK1(1270))V
K1(1270)
1

(mB +mK1(1400))V
K1(1400)
1

 = M

 (mB +mK1A)V
K1A
1

(mB +mK1B
)V K1B

1

 , (3.11)

 V
K1(1270)
2

mB+mK1(1270)

V
K1(1400)
2

mB+mK1(1400)

 = M

 V
K1A
2

mB+mK1A

V
K1B
2

mB+mK1B

 , (3.12)

 mK1(1270)V
K1(1270)
0

mK1(1400)V
K1(1400)
0

 = M

 mK1A
V K1A
0

mK1B
V K1B
0

 , (3.13)

 F
K1(1270)
1

F
K1(1400)
1

 = M

 FK1A
1

FK1B
1

 , (3.14)

 (m2
B −m2

K1(1270)
)F

K1(1270)
2

(m2
B +m2

K1(1400)
)F

K1(1400)
2

 = M

 (m2
B +m2

K1A
)FK1A

2

(m2
B +m2

K1B
)FK1B

2

 , (3.15)

 F
K1(1270)
3

F
K1(1400)
3

 = M

 FK1A
3

FK1B
3

 , (3.16)

For the numerical analysis we have used the light-cone QCD sum rules for the form factors [78],

summarized in Table 3.1, where the momentum dependence dipole parametrization is:

T X
i (q2) =

T X
i (0)

1− aXi (q2/m2
B) + bXi (q2/m2

B)
2 . (3.17)

where T is A, V or F form factors and the subscript i can take a value 0, 1, 2 or 3 the superscript X

belongs to K1A or K1B state.
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T X
i (q2) T (0) a b T X

i (q2) T (0) a b

V K1A
1 0.34 0.635 0.211 V K1B

1 −0.29 0.729 0.074

V K1A
2 0.41 1.51 1.18 V K1B

1 −0.17 0.919 0.855

V K1A
0 0.22 2.40 1.78 V K1B

0 −0.45 1.34 0.690
AK1A 0.45 1.60 0.974 AK1B −0.37 1.72 0.912

FK1A
1 0.31 2.01 1.50 FK1B

1 −0.25 1.59 0.790

FK1A
2 0.31 0.629 0.387 FK1B

2 −0.25 0.378 −0.755

FK1A
3 0.28 1.36 0.720 FK1B

3 −0.11 1.61 10.2

Table 3.1: B → K1A,1B form factors [78], where a and b are the parameters of the form factors in dipole
parametrization.

3.3 Physical Observables

In this section, we calculate some interesting observables like the branching ratio (BR), forward-backward

asymmetry (AFB) as well as the helicity fractions of the final state K1 meson and their sensitivity

for the NP due to fourth generation SM,. From Eq. (2.17), one can get the decay amplitudes for

B → K1(1270)ℓ
+ℓ− and B → K1(1400)ℓ

+ℓ− as

M(B → K1ℓ
+ℓ−) = − GFα

2
√
2π
VtbV

∗
ts

[
TµV ℓγµℓ+ TµAℓγµγ5ℓ

]
(3.18)

where the matrix elements TµA and TµV can be written in terms of auxiliary functions, as

TµA = Ctot10

⟨
K1(k, ϵ)

∣∣s̄γµ (1− γ5
)
b
∣∣B(p)

⟩
=

{
f4ϵ

µνρσε∗µpρkσ + if5ε
∗µ

− if6(q · ε)(pµ + kµ) + if0(q · ε)qµ
}

(3.19)

TµV = Ctot9

⟨
K1(k, ϵ)

∣∣s̄γµ (1− γ5
)
b
∣∣B(p)

⟩
− Ctot7

2imb

q2
⟨K1(k, ϵ)

∣∣s̄σµν (1 + γ5
)
qνb
∣∣B(p)⟩ = f1ϵ

µνρσε∗νpρkσ − if2ε
∗µ − f3(q · ε)(pµ + kµ) (3.20)

The auxiliary functions appearing in Eqs. (3.20) and (3.19) are defined as:

f1 = 4(mb +ms)
Ceff7

q2

{
FK1A
1 sin θK + FK1B

1 cos θK

}
+ 2Ceff9

{
AK1A

1 sin θK
mB +mK1A

+
AK1B

1 cos θK
mB +mK1B

}
(3.21)

f2 = 2(mb +ms)
Ceff7

q2

{
(m2

B −m2
K1A

)FK1A
2 sin θK + (m2

B −m2
K1B

)FK1B
2 cos θK

}
+Ceff9

{
(mB +mK1A)V

K1A
1 sin θK + (mB +mK1B )V

K1B
1 cos θK

}
(3.22)

f3 = 2(mb +ms)
Ceff7

q2

{(
FK1A
2 +

q2FK1A
3

m2
B −m2

K1A

)
sin θK +

(
FK1B
2 +

q2FK1B
3

m2
B −m2

K1B

)
cos θK

}

+Ceff9

(
V K1A
2 sin θK
mB +mK1A

+
V K1B
2 cos θK
mB +mK1B

)
(3.23)

f4 = 2Ceff10

(
AK1A sin θK
mB +mK1A

+
AK1B cos θK
mB +mK1B

)
(3.24)
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f5 = Ceff10

{
(mB +mK1A)V

K1A
1 sin θK + (mB +mK1B )V

K1B
1 cos θK

}
(3.25)

f6 = Ceff10

(
V K1A
2 sin θK
mB +mK1A

+
V K1B
2 cos θK
mB +mK1B

)
(3.26)

f0 = 2
Ceff10

q2

{
mK1A

(
V K1A
3 − V K1A

0

)
sin θK +mK1B

(
V K1B
3 − V K1B

0

)
cos θK

}
(3.27)

3.3.1 Branching ratio

The double differential decay rate for B → K1ℓ
+ℓ− can be written as [50, 78]

dΓ

dq2d cos θ
=

G2
Fα

2

211π5m3
B

|VtbV ∗
ts|

2
u(q2)× |M|2 (3.28)

with

|M|2 = A(q2) cos2 θ + B(q2) cos θ + C(q2) (3.29)

and

u(q2) ≡

√
λ

(
1−

4m2
ℓ

q2

)
, (3.30)

where

λ ≡ λ
(
m2
B ,m

2
K1
, q2
)

= m4
B +m4

K1
+ q4 − 2m2

K1
m2
B − 2q2m2

B − 2q2m2
K1
.

(3.31)

By performing the integration on cos θ in Eq. (3.28), one gets the differential decay rate so

dΓ

dq2
=

G2
Fα

2

211π5m3
B

|VtbV ∗
ts|

2 1

3
[2A(q2) + 6B(q2)] (3.32)

where

A(q2) =
1

2
λ(q2 − 4m2

ℓ)
[
|f1|2 + |f4|2

]
− 1

m2
K1
q2
[
|f2|2 + |f5|2

]
− λ

m2
K1
q2
[
|f3|2 + |f6|2

]
+

2
(
m2
B −m2

K1
− q2

)
m2
K1
q2

{λℜ [f2f
∗
3 ] + ℜ [f5f

∗
6 ]} (3.33)

B(q2) = 4ℜ [f1f
∗
5 + f2f

∗
4 ]
√
q2(q2 − 4m2

ℓ)λ (3.34)

C(q2) = 1

2
(q2 − 4m2

ℓ)λ
[
|f1|2 + |f4|2 + 8|f5|2

]
+ 4|f2|2(2m2

ℓ + q2) +
λ

m2
K1
q2
[
|f2 + |f5|2 + λ(|f3|2 + |f6|2)

]
− 2ℜ(f2f∗3 ) + |f0|24m2

ℓq
2 + 2ℜ(f5f∗6 )

[
m2
B −M2

K1
− (4m2

ℓ − q2)
]

− 8m2ℜ(f5f∗6 )−ℜ(f0f∗6 (m2
B +m2

K1
)) +

1

m2
K1

[
|f6|22m2

ℓ(2(m
2
B +m2

K1
− q2))

]
(3.35)
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The kinematical variables used in the above equations are defined as u = (p− pl−)
2 − (p− pl+)

2
, u =

−u(q2) cos θ. Here λ is defined in Eq. (3.31) and θ is the angle between the moving direction of ℓ+ and

B meson in the centre of mass frame of the ℓ+ℓ− pair.

3.3.2 Forward-backward asymmetry

In this section we investigate the forward-backward asymmetry (AFB) of leptons. The measurement of

the AFB is significant due to the minimal dependence upon the form factors [80], hence this observable

has great importance to check the more clear signals of any NP than the other observables such as

branching ratio etc. The differential AFB of the final state lepton for the said decays can be written as

dAFB(q
2)

dq2
=

∫ 1

0
d2Γ

dq2d cos θd cos θ −
∫ 0

−1
d2Γ

dq2d cos θd cos θ∫ 1

−1
d2Γ

dq2d cos θd cos θ
(3.36)

The differential AFB for B → K1ℓ
+ℓ− decays can be obtained from Eq. (3.28), as

dAFB(q
2)

dq2
= − G2

Fα
2

211π5m3
B

|VtbV ∗
ts|

2
u
(
q2
)

× 3B(q2)
2A(q2) + 6C(q2)

(3.37)

where A(q2), B(q2) and C(q2) are defined in Eqs. (3.33, 3.34, 3.35).

3.3.3 Helicity Fractions of K1 meson

We now discuss helicity fractions of K1(1270, 1400) meson in B → K1ℓ
+ℓ− which are interesting observ-

ables and are insensitive to the uncertainties arising due to form factors and other input parameters.

Thus the helicity fractions can be a good tool to test the NP beyond the SM. The final state meson

helicity fractions were already discussed in the literature for B → K∗ (K1) ℓ
+ℓ− decays [50].

The explicit expression of the longitudinal (fL) and the transverse(fT ) helicity fractions for B →

K1ℓ
+ℓ− decay can be obtained by trading |M| to |ML| and |M±|, respectively, in Eq. (3.28). Here

|ML|2 = DL cos2 θ + EL (3.38)

|M±|2 = D± cos2 θ + E± (3.39)

By performing the integration on cos θ in Eq. (3.28), we get

dΓL
dq2

=
G2
Fα

2

211π5

|VtbV ∗
ts|

2

m3
B

u(q2)
2

3

[
DL(q2) + 3EL(q2)

]
(3.40)

dΓ±

dq2
=
G2
Fα

2

211π5

|VtbV ∗
ts|

2

m3
B

u(q2)
2

3
[D±(q

2) + 3E±(q2)] (3.41)

22



where DL(q2), D±(q
2), EL(q2) and E±(q2) can be parameterized in terms of the auxiliary functions [c.f.

Eqs. (3.21− 3.27)] as

DL(q2) =
1

2m2
K1

{
|f5|2

[(
m2
B −m2

K1
− q2

)2 − 16m2m2
K1

]
+ |f2|2

(
2m2

K1
q2 + λ

)
+λ2|f3|2 − 8m2λ|f5|2 + 4m2q2λ|f0|2 − 2ℜ(f5f∗6 )

(
m2
B −m2

K1
− q2

)
λ

−4λℜ(f2f∗3 )
(
m2
B −m2

K1
− q2

)
+ λ|f6|2

[
8
(
m2
B +m2

K1
− 4q2

)
m2 + λ

]}
(3.42)

D+(q
2) =

1

4

{(
q2 + 4m2

) [
λ|f4|2 + 4|f5|2 + 4

√
λ (ℑ(f∗1 f2) + ℑ(f∗4 f5))

]
+(q2 − 4m2)

(
λ|f1|2 + 4|f2|2

)}
(3.43)

D−(q
2) =

1

4

{(
q2 + 4m2

) [
λ|f1|2 + |f2|2

]
+ (q2 − 4m2)

[
λ|f4|2 + 4

√
λ (ℑ(f1f∗2 ) + ℑ(f4f∗5 ))

]}
(3.44)

EL(q2) =
1

2m2
K1

{(
4m2 − q2

) [
|f5|2

(
m4
B − (m2

K1
+ q2)m2

B

)
+ |f2|2

(
m2
B −m2

K1
− q2

)2
+2λ2

(
|f3|2 + |f6|2

)
− 4λ

(
m2
B −m2

K1
− q2

)
ℜ(f2f∗3 )

]
+ q2λℜ(f5f∗6 )

[(
m2
B −m2

K1

)
+ 4m2 − q2

]
−4m2λℑ(f5f∗6 )

(
m2
B −m2

K1

)
+
(
m2
K1

+ q2
)
|f5|2

[
q2
(
4m2 −m2

K1
− q2

)
+ 4m2

(
m2
K1

+ q2
)]}
(3.45)

E+(q2) =
1

4

(
q2 − 4m2

){
λ
(
|f1|2 + |f4|2

)
+
(
|f2|2 + |f5|2

)
+ 4

√
λ (ℑ(f∗1 f2) + ℑ(f∗4 f5))

}
(3.46)

E−(q2) =
1

4

(
q2 − 4m2

){
λ
(
|f1|2 + |f4|2

)
+
(
|f2|2 + |f5|2

)
+ 4

√
λ (ℑ(f1f∗2 ) + ℑ(f4f∗5 ))

}
(3.47)

Finally the longitudinal and transverse helicity fractions become

fL(q
2) =

dΓL(q
2)/dq2

dΓ(q2)/dq2
(3.48)

f±(q
2) =

dΓ±(q
2)/dq2

dΓ(q2)/dq2
(3.49)

fT (q
2) = f+(q

2) + f−(q
2) (3.50)

so that the sum of the longitudinal and transverse helicity amplitudes is equal to one i.e. fL(q
2)+fT (q

2) =

1 for each value of q2 [50].

3.4 Numerical Results and Discussion

In this section we shall calculate the physical observables like the branching ratio (BR), the forward-

backward asymmetry (AFB) and helicity fractions (fL,T ) ofK1(1270, 1400) meson for theB → K1(1270, 1400)ℓ
+ℓ−

decays with ℓ = µ, τ , as well as see their sensitivities to the SM4 effects. As K1(1270) and K1(1400)

are mixed states of |K1A⟩ and |K1B⟩ with mixing angle θK defined in Eq.(3.1b),many attempts had

been made in literature to constrain the value of θK . Recently from the studies of B → K1(1270)γ and
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τ → K1(1270)ντ , the values of θK was obtained to be θK = (−34±13)◦ [78]. Here we have taken the cen-

tral values of all the input parameters, the numerical values of which used in our numerical calculations

are given below

mB = 5.28 GeV, mb = 4.28 GeV, mµ = 0.105 GeV,

mτ = 1.77 GeV, fB = 0.25 GeV, |VtbV ∗
ts| = 45× 10−3,

α−1 = 137, GF = 1.17× 10−5 GeV−2,

τB = 1.54× 10−12 sec, mK1(1270) = 1.270 GeV,

mK1(1400) = 1.403 GeV, mK1A
= 1.31 GeV,

mK1B
= 1.34 GeV , θK = −34◦, ϕsb = 90◦.

First we discuss the (BRs) of B → K1(1270)µ
+µ−(τ+τ−) decays which we have plotted as a function

of q2 (GeV2), shown in figs 3.1 and 3.2, both in SM and in the fourth generation scenario. Fig 3.1 and

3.2 shows the BRs of B → K1(1270) with µ+µ− and τ+τ− respectively and figs (3.3,3.4) represents

the same for B → K1(1400). These figures show that the values of the BR strongly depend on the

fourth generation effects which come mainly through the Wilson coefficients with mt′ instead of mt as

well as from Vt′bVt′s which are encapsulated in Eq.(2.25). One can see clearly from these curves that

an increment in the values of fourth generation parameters increase the value of the branching ratio

accordingly, i.e. the BR is an increasing function of both mt′ and Vt′bVt′s.

As an exclusive decay, the new physics effects in the branching ratios are usually masked by the

uncertainties involved in different input parameters where the form factors are major contributors. How-

ever,for the present case the new physics effects are well prominent and lie well separated from the SM

values error bounds. Furthermore the constructive characteristic of the fourth generation effects to the

BR, manifests throughout the whole q2 region, particularly for the case of decays B → K1(1270)ℓ
+ℓ−

with ℓ = µ, τ . However for the decays B → K1(1400)ℓ
+ℓ− with ℓ = µ, τ the SM4 effects are mitigated by

the uncertainties in the form factors. Additionally, one can also extract the constructive characteristic

of the fourth generation effects to the BR from Table 3.2. Also, the quantitative analysis of the BR

shows that the NP effects due to the fourth generation are comparatively more sensitive to the case of

B → K1(1270)ℓ
+ℓ− than the case of B → K1(1400)ℓ

+ℓ−.

It is also important to emphasis here that the experimental and the statistical errors should be less

than the predictions of NP, otherwise these uncertainties precludes the NP. Similarly, the NP comes

through the different models are close to each other. Therefore it is hard to distinguish the results of

various NP models, unless the precise experimental data are available. It is expected that in the current

collider, the number of events will be large and statistical error will be small to test the predictions of

various physical observables considered in this thesis.

Moreover, Table 3.2 shows that the maximum deviation (when we set mt′ = 600 GeV, Vt′bVt′s =

1.5× 10−3) from the SM value due to the fourth generation effects: for the case of B → K1(1270)µ
+µ−
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is approximately 6 times, for the case of B → K1(1270)τ
+τ− is about 3.3 times, for B → K1(1400)µ

+µ−

is approximately 5.9 time and for B → K1(1400)τ
+τ− is about 2.9 times than that of SM values.

Furthermore it is difficult to measure the decay B → K1τ
+τ− experimentally, but if the technical

difficulties are overcome, then this decay channel can be used as a handy tool to investigate the NP.

BR(B → K1(1270)µ
+µ−), SM value: 1.97× 10−6

|Vt′bVt′s|
3× 10−3

1.5× 10−2

mt′ = 300 mt′ = 500 mt′ = 600
2.01× 10−6 2.18× 10−6 2.38× 10−6

3.04× 10−6 7.43× 10−6 1.22× 10−5

BR(B → K1(1400)µ
+µ−), SM value: 5.76× 10−8

|Vt′bVt′s|
3× 10−3

1.5× 10−2

mt′ = 300 mt′ = 500 mt′ = 600
5.88× 10−8 6.36× 10−8 6.90× 10−8

8.78× 10−8 2.09× 10−7 3.44× 10−7

BR(B → K1(1270)τ
+τ−), SM value: 6.06× 10−8

|Vt′bVt′s|
3× 10−3

1.5× 10−2

mt′ = 300 mt′ = 500 mt′ = 600
6.14× 10−8 6.38× 10−8 6.62× 10−8

8.12× 10−8 1.39× 10−7 2.01× 10−7

BR(B → K1(1400)τ
+τ−), SM value: 9.39× 10−10

|Vt′bVt′s|
3× 10−3

1.5× 10−2

mt′ = 300 mt′ = 500 mt′ = 600
9.51× 10−10 9.80× 10−10 1.01× 10−9

1.24× 10−9 1.98× 10−9 2.74× 10−9

Table 3.2: The values of branching ratio of B → K1(1270, 1400)ℓ
+ℓ− with ℓ = µ, τ for different values

of mt′ and |V ∗
t′bVt′s|.

Rµ = BR(B→K1(1400)µ
+µ−)

BR(B→K1(1270)µ+µ−) , SM value: 2.92× 10−2

|Vt′bVt′s|
3× 10−3

1.5× 10−2

mt′ = 300 mt′ = 500 mt′ = 600
2.92× 10−2 2.91× 10−2 2.90× 10−2

2.88× 10−2 2.81× 10−2 2.81× 10−2

Rτ = BR(B→K1(1400)τ
+τ−)

BR(B→K1(1270)τ+τ−) , SM value: 1.54× 10−2

|Vt′bVt′s|
3× 10−3

1.5× 10−2

mt′ = 300 mt′ = 500 mt′ = 600
1.54× 10−2 1.53× 10−2 1.52× 10−2

1.52× 10−2 1.42× 10−2 1.36× 10−2

Table 3.3: The values of branching fractions Rℓ, with ℓ = µ, τ , for different values of mt′ and |V ∗
t′bVt′s|.

It is also important to emphasis here that the change in branching ratios due to the uncertainty of

the mixing angle θK are small for the decays B → K1(1270)ℓ
+ℓ− and is shown in figs. 3.5 and 3.6.

However for the decays B1(1400)ℓ
+ℓ− the change due to the uncertainty in the mixing angle θK is large

and the NP effects are hidden in it particularly when tauons are the final leptons [79]. Therefore, any

dramatically increment in the measurement of the branching ratio for the decay B → K1(1270)ℓ
+ℓ− at

the current experiment will be a clear indication of NP effects. So the precise measurement of branching

ratio is very handy tool to extract the information about the fourth generation parameters.

To observe sensitivity on the fourth generation parameters, it is instructive to study the ratios of BR

Rℓ = BR(B → K1(1400)ℓ
+ℓ−)/BR(B → K1(1270)ℓ

+ℓ−), with ℓ = µ, τ , as a function of q2 shown in

Figs. 3.7 and 3.8. While Rµ, Rτ are sensitive to θK as was shown in ref.[78] the present study shows that

they are insensitive to the NP due to SM4. Therefore the ratios of branching ratio is a good observable
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Figure 3.1: The dependence of branching ratio of B → K1(1270)µ
+µ− on q2 for different values of mt′

and |V ∗
t′bVt′s|. In all the graphs, the band corresponds to the SM, small dashed , medium dashed, long

dashed correspond, mt′ = 300 GeV, 500 GeV and 600 GeV respectively. |V ∗
t′bVt′s| has the value 0.003

and 0.015 in (a) and (b) respectively.

to fix the value of θK . The numerical results of branching fractions corresponding to the values of mt′

and |Vt′bVt′s| are summarized in Table 3.3.

To illustrate the generic effects due to the fourth generation quarks on the forward-backward asym-

metry AFB , we plot d(AFB)
dq2 as a function of q2 in Figs. 3.9-3.13. As it is shown in Ref. [78] the zero

position of the AFB depends weakly on the value of θK but can be changed due to the variation of

the SM4. As it is clear from Figs.(3.9) and (3.10), the uncertainty in the zero position of AFB due

to hadronic uncertainties is negligible. Therefore, the zero position of the AFB could also provide a

stringent test for the NP effects. In the present study fig. 3.9 shows that for the case of muons as final

state leptons, the increment in the |Vt′bVt′s| and mt′ values shift the zero position of the AFB towards

the low q2 region, this behavior is compatible with B → K∗µ+µ− decay [82]. Moreover, the maximum

values of |Vt′bVt′s| and mt′ , shift the central value of SM (2.8 GeV2) of zero position of the AFB for the

case of B → K1(1270)µ
+µ− to the value 2.1 GeV2 (see Fig. 3.9-b). For the case of B → K1(1400)µ

+µ−

(see Fig. 3.11) the zero position of the AFB is shifted from its SM value (3.4 GeV2) to the value 2.4

GeV2. Besides the zero position of AFB , the magnitude of AFB is also an important tool (particularly,

when the tauons are the final state leptons where the zero of the AFB is absent) to investigate the NP.

A closer look on the pattern of Figs. 3.9-3.10 tells us that the fourth generation parameters decrease

the magnitude of AFB from its SM value. The analysis of AFB also demonstrate that in contrast to the

BR, the magnitude of the AFB is decreasing function of the fourth generation parameters. It is clear

from these graphs that decreasing behavior of the magnitude of AFB is irrespective of the final state

particles. It is suitable to comment here that just like the zero position of the AFB , the magnitude of
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Figure 3.2: The dependence of branching ratio of B → K1(1270)τ
+τ− on q2 for different values of mt′

and |V ∗
t′bVt′s|. The legends and the values of fourth generation parameters are same as in Fig. 3.1.

AFB depends on the values of the Wilson coefficient C7, C9 and C10. Thus the effects on the magnitude

of AFB are almost insensitive due to the uncertainties in the form factors. We have noticed that the

uncertainty due to the mixing angle θK , magnitude of AFB for the decay B → K1(1270)τ
+τ− is mildly

effected and is shown in fig 3.13. On the other hand the change in the magnitude of AFB due to the

fourth generation are very prominent and easy to measure experimentally and are insensitive to mixing

angle θK . In the last, precise measurement of the zero position and the magnitude of AFB for the decay

B → K1(1270)µ
+µ− are very good observables to yield any indirect imprints of NP including fourth

generation.

We now discuss another interesting observable to get the complementary information about NP in

B → K1(1270, 1400)ℓ
+ℓ− transitions i.e. the helicity fractions of K1(1270, 1400) produced in the final

state. The measurement of longitudinal K∗ helicity fractions (fL) in the decay modes B → K∗ℓ+ℓ− by

the BABAR collaboration [83] put enormous interest in this observable. Therefore it is important to

study, the helicity fractions of final state meson, just like BR and AFB , are also very sensitive observables

the NP [50]. Current and future B factories will accumulate more data on this observable which will

be helpful not only to reduce the experimental errors but also get any possible hint of NP from this

observable. In this regard, it is natural to study the helicity fractions for the FCNC processes like B →

K1(1270, 1400)ℓ
+ℓ− in and beyond the SM. For this purpose, we have plotted the longitudinal (fL) and

transverse (fT ) helicity fractions of K1(1270, 1400) for SM and with different values of fourth generation

parameters in Figs.(3.14-3.17). In these figures the values of the longitudinal (fL) and transverse (fT )

helicity fractions of K1(1270, 1400) are plotted against q2 and one can clearly see that at each value of

q2 the sum of fL and fT is equal to one.

Fig.3.14 shows that for the case of muons as final state leptons, the effects of the fourth generation
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Figure 3.3: The dependence of branching ratio of B → K1(1400)µ
+µ− on q2 for different values of mt′

and |V ∗
t′bVt′s|. The legends and the values of fourth generation parameters are same as in Fig. 3.1.

on the longitudinal (transverse) helicity fractions of K1(1270) are marked up in the 0 < q2 ≤ 12 GeV2

region. On the other hand, for K1(1400) the physical region is 0 < q2 ≤ 6 GeV2. However we didn’t

mention here the curves of helicity fractions for the decays B → K1(1400)ℓ
+ℓ− as like other observables

the SM4 effects are mitigated by both the hadronic uncertainties and the uncertainties in the mixing

angle θK . It is clear from the figure 3.15 that although the influence of the fourth generation parameters

on the maximum (minimum) values of the K1(1270) helicity fractions are not very much effected (One

can see from Fig. 3.14 that for the case of B → K1(1270)µ
+µ−, the difference in the extremum values

of helicity fractions , even at the maximum values of fourth generation parameters, is negligible to the

SM value) but there is a reasonable shift in the position of these values which lies roughly at q2 ≃ 1.8

GeV2 for SM. Fig. 3.14 also show that how the position of the maximum (minimum) values of fL

(fT ) varies with the change in mt′ and |Vt′bVt′s| values. Furthermore, the position of these extremum

values are shifted towards the low q2 region and on setting the maximum values of the fourth generation

parameters this shift in the position is approximately 0.9 GeV2. Now we turn our attention to the

case, where tauons are the final state leptons and for this case the helicity fractions of K1(1270) are

plotted in Fig. 3.17. One can easily see that in contrast to the case of muons, there is no shift in the

position of the extremum values of the helicity fractions, and are fixed at q2 = 12.5 GeV2. However, the

change in the maximum (minimum) value of longitudinal (transverse) is more prominent as compared

to the previous case where the muons are the final state leptons. These figures have also highlighted

the variation in the extremum values of helicity fractions from the SM due to the change in the fourth

generation parameters. The change in extremum values are very well marked up as compared to the

uncertainties due to the mixing angle θK which is shown in figs.3.16 and 3.17, and uncertainties due to

the hadronic matrix element. For B → K1(1270)τ
+τ−, the maximum setting of the fourth generation
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Figure 3.4: The dependence of branching ratio of B → K1(1400)τ
+τ− on q2 for different values of mt′

and |V ∗
t′bVt′s|. The legends and the values of fourth generation parameters are same as in Fig. 3.1.

parameters the maximum (minimum) value of longitudinal (transverse) helicity fraction is changed from

its SM value 0.51(0.49) to 0.72(0.28) which is suitable amount of change to measure.

The numerical analysis of helicity fractions shows that the measurement of the maximum (minimum)

values of fL and fT and its position in the case of B → K1(1270)τ
+τ− and B → K1(1270)µ

+µ−

respectively can be used as a good tool in studying the NP beyond the SM and the existence of the

fourth generation quarks.

3.5 Conclusion

In our study on the rare B → K1(1270, 1400)ℓ
+ℓ− decays with ℓ = µ, τ , we have calculated branching

ratio (BR), the forward backward asymmetry AFB and helicity fractions fL,T of the final state mesons

and analyzed the implications of the fourth generation effects on these observable for the said decays.

We have found a strong dependency of the BR on the fourth generation parameters Vt′bVt′s and

mt′ particularly for the decay B → K1(1270)ℓ
+ℓ−. The study has shown that the BR is an increasing

function of these parameters. At maximum values of these parameters, i.e. |Vt′bVt′s| = 0.015 and

mt′ = 600 GeV, the values of BR increases approximately 6 to 7 times larger than that of SM values

when the final leptons are muons and for the case of of tauns these values are enhanced 3 to 4 times

to the SM value. Hence the accurate measurement of the BRs for these decays is an important tool to

reveal some signals of physics beyond the three generations of SM.

Besides the BR, our analysis shows that AFB is a very good observable to test the existence of the

fourth generation quarks, especially the zero position of the AFB . We have found that the value of the

AFB decreases with increasing values of Vt′bVt′s and mt′ . Thus the decrement in the values of the AFB

29



(a) (b)

0 5 10 15
0

5. ´ 10-8

1. ´ 10-7

1.5 ´ 10-7

2. ´ 10-7

q2HGeV2
L

B
rH

B
®

K
1H

12
70
L+
Μ
+
+
Μ
-
L

0 5 10 15
0

2. ´ 10-7

4. ´ 10-7

6. ´ 10-7

8. ´ 10-7

1. ´ 10-6

q2HGeV2
L

B
rH

B
®

K
1H

12
70
L+
Μ
+
+
Μ
-
L

Figure 3.5: The dependence of branching ratio of B → K1(1270)µ
+µ− on q2 for different values of mt′

and |V ∗
t′bVt′s|. The band represents the uncertainty in mixing angle θK = −34◦,−47◦,−21◦. The other

legends are exactly the same as that of Fig.3.1.

from the SM values is important imprint of NP, and also the shift in the zero position of AFB (which is

towards low q2 region) provides a prominent signature of the NP fourth generation quarks.

To further comprehend the fourth generation effects on these decays, we have calculated the helicity

fractions fL,T of final state mesons. We have first calculated the helicity fractions of final state mesons

in the SM and then analyzed their extension to the fourth generation scenario. The study has shown

that the deviation from the SM values of the helicity fractions are quite large when we consider tauons

as final state of leptons. It is also shown that there is a noticeable change due to fourth generation in the

position of the extremum values of the longitudinal and transverse helicity fractions of K1(1270) meson

for the case of muons as a final state leptons. Therefore, the helicity fraction of K1(1270) meson can be

a stringent test in finding the status of the fourth generation quarks.

It is also important to mention here that because we do not know the exact form of the NP, therefore

to determine the form of NP we need complimentary observables for process which are based on the

b → sℓ+ℓ− [84]. In this context the decay channel B → K1ℓ
+ℓ− is relevant to get the complimentary

information about the parameters of fourth generation SM to that of the information obtained from

other experiments such as the inclusive B → Xsℓ
+ℓ− and the exclusive B → M(K,K∗)ℓ+ℓ− decays.

It is also worth mentioning here that the information obtained about the fourth generation parameters

from the other experiments can be used to fix the mixing angle θK between the K1 states in our process.

Therefore, the fourth generation SM information obtained from the other experiments will not only

compliment our results but can be useful to understand the mixing nature of K1(1270) and K1(1400)

mesons.

To summarize, the more data to be available from Tevatron and LHCb will provide a powerful
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Figure 3.6: The dependence of branching ratio of B → K1(1270)µ
+µ− on q2 for different values of mt′

and |V ∗
t′bVt′s|. The band represents the uncertainty in mixing angle θK = −34◦,−47◦,−21◦. The other

legends are exactly the same as that of Fig.3.1.
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Figure 3.7: The dependence of branching fraction Rµ = BR(B → K1(1400)µ
+µ−)/BR(B →

K1(1270)µ
+µ−) on q2 for different values of mt′ and |V ∗

t′bVt′s|. The legends and the values of fourth
generation parameters are same as in Fig. 3.1.

testing ground for the SM and the possible existence of the fourth generation quarks and also put some

constraints on the fourth generation parameters such as Vt′bVt′s and mt′ . Our analysis of the fourth

generation on the observables for B → K1ℓ
+ℓ− decays are useful for probing or refuting the existence of

fourth family of quarks.
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Figure 3.8: The dependence of branching fraction Rτ = BR(B → K1(1400)τ
+τ−)/BR(B →

K1(1270)τ
+τ−) on q2 for different values of mt′ and |V ∗

t′bVt′s|. The legends and the values of fourth
generation parameters are same as in Fig. 3.1.
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Figure 3.9: The dependence of forward backward asymmetry of B → K1(1270)µ
+µ− on q2 for different

values of mt′ and |V ∗
t′bVt′s|. The legends and the values of fourth generation parameters are same as in

Fig. 3.1.
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Figure 3.10: The dependence of forward backward asymmetry of B → K1(1270)τ
+τ− on q2 for different

values of mt′ and |V ∗
t′bVt′s|. The legends and the values of fourth generation parameters are same as in

Fig. 3.1.
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Figure 3.11: The dependence of forward backward asymmetry of B → K1(1400)µ
+µ− on q2 for different

values of mt′ and |V ∗
t′bVt′s|. The legends and the values of fourth generation parameters are same as in

Fig. 3.1.
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Figure 3.12: The dependence of forward backward asymmetry of B → K1(1270)µ
+µ− on q2 for different

values of mt′ and |V ∗
t′bVt′s|. The legends and the values of fourth generation parameters are same as in

Fig. 3.5.
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Figure 3.13: The dependence of forward backward asymmetry of B → K1(1270)τ
+τ− on q2 for different

values of mt′ and |V ∗
t′bVt′s|. The legends and the values of fourth generation parameters are same as in

Fig. 3.5.
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Figure 3.14: The dependence the probabilities of the longitudinal (a, b) and transverse (c, d) helicity
fractions, fL,T , of K1 in B → K1(1270)µ

+µ− decays on q2 for different values of mt′ and |V ∗
t′bVt′s|. In all

the graphs, the solid line corresponds to the SM, small dashed , medium dashed, long dashed correspond,
mt′ = 300 GeV, 500 GeV and 600 GeV respectively. |V ∗

t′bVt′s| has the value 0.003 and 0.015 in (a, c) and
(b, d) respectively.
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Figure 3.15: The dependence the probabilities of the longitudinal (a, b) and transverse (c, d) helicity
fractions, fL,T , of K1 in B → K1(1270)τ

+τ− decays on q2 for different values of mt′ and |V ∗
t′bVt′s|. The

legends and the values of fourth generation parameters are same as in Fig. 3.14.
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Figure 3.16: The dependence the probabilities of the longitudinal (a, b) and transverse (c, d) helicity
fractions, fL,T , of K1 in B → K1(1270)µ

+µ− decays on q2 for different values of mt′ and |V ∗
t′bVt′s|. The

legends are the same as that of Fig.3.5.
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Figure 3.17: The dependence the probabilities of the longitudinal (a, b) and transverse (c, d) helicity
fractions, fL,T , of K1 in B → K1(1270)τ

+τ− decays on q2 for different values of mt′ and |V ∗
t′bVt′s|. The

legends are the same as that of Fig.3.5.
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Chapter 4

Exclusive semileptonic

B → K1(1270, 1400)ℓ
+ℓ− in single

universal extra dimension model

4.1 Introduction

There are various extensions of SM, but the models with extra dimensions are of viable interest as they

provide a unified framework for gravity and other interactions. In this way they give some hints of the

hierarchy problem and a connection with string theory. Among different models of extra dimensions,

which differ from one another depending on the number of extra dimensions, the most interesting ones

are the scenarios with universal extra dimensions. In these UED models all the SM fields are allowed to

propagate in the extra dimensions and compactification of an extra dimension leads to the appearance

of KaluzaKlein (KK) partners of the SM fields in the four-dimensional description of higher dimensional

theory. The Appelquist, Cheng and Dobrescu (ACD) model [49] with one universal extra dimension is

very attractive, because it has only one free parameter with respect to the SM and that is the inverse of

the compactification radius R [50].

By analyzing the signature of the extra dimensions in different processes, one can get bounds on the

size of the extra dimensions, which are different in different models. These bounds are accessible for the

processes already known at the particle accelerators or within the reach of planned future facilities. In

the case of UED these bounds are more severe, and constraints from Tevatron run I allow one to put the

bound 1/R ≥ 300 GeV [50].

Rare B decays can also be used to constrain the ACD scenario, and in this regard Buras and col-

laborators have already done some work [51, 52]. In addition to the effective Hamiltonian they have
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calculated for bs decays and also investigated the impact of UED on B0- B̄0 mixing as well as on the

CKM unitarity triangle . Due to availability of precise data on the decays B → K(K∗)ℓ+ℓ− , Colangelo

et al. studied these decays in ACD model by calculating the branching ratio and forward backward

asymmetry [50]. In this chapter we study the semileptonic decays of B → K1(1270, 1400)ℓ
+ℓ− in ACD

model. The theoretical understanding of exclusive decays is complicated mainly due to long-distance

non-perturbative quantities, which are modeled by form factors. One way of doing so is to use Ward

identities which relate various form factors in a model independent way. This enables us to make a clear

separation between non-pole and pole type contributions;the q2 → 0 behavior of the former is known in

terms of a universal function ξ⊥(0) ≡ g+(0) introduced in the large energy effective theory (LEET) of

heavy (B) to light (K1) form factors [86]. The residue of the pole is then determined in a self-consistent

way in terms of g+(0) or ξ⊥(0), which will give information on the couplings of B∗(1−) and B∗
A(1

+)

with BK1 channel. The form factors are then determined in terms of known parameters like g+(0) and

the masses of the particles involved, which are then used to calculate the physical observables such as

branching ratio and forward-backward asymmetry for the above mentioned decays both in the SM and

in ACD model.

We compare the results for the forwardbackward asymmetry for B → K∗ℓ+ℓ− using the double pole

parametrization of the form factors with the recent results obtained at LHCb [89] and is shown in fig 4.3.

These decays may provide us a step forward towards the study of the existence of new physics beyond

the SM and therefore deserve serious attention, both theoretically and experimentally.

4.2 Matrix Elements and Ward identities

The exclusive decayB → K1(1270, 1400)ℓ
+ℓ− involves the hadronic matrix elements and the parametriza-

tion in terms of form factors are given in Eqs.(3.2-3.6). The various form factors appearing in Eqs.(3.2-3.6)

can be related by the Ward identities as follows

⟨K1(k, ε) |s̄iσµνqνb|B(p)⟩ = −(mb +ms) ⟨K1(k, ε) |s̄γµb|B(p)⟩ (4.1)⟨
K1(k, ε)

∣∣s̄iσµνqνγ5b∣∣B(p)
⟩

= (mb −ms) ⟨K1(k, ε) |s̄γµγ5b|B(p)⟩

+(p+ k)µ ⟨K1(k, ε) |s̄γ5b|B(p)⟩ (4.2)

By putting Eq.(3.2)-(3.6) in Eq.(4.1) and (4.2)and comparing the coefficients of ε∗µ and qµ on both sides,

one can get the following relations between the form factors:

F1(q
2) =

(mb +ms)

MB +MK1

A(q2) (4.3)

F2(q
2) =

mb −ms

MB −MK1

V1(q
2) (4.4)
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F3(q
2) = −(mb −ms)

2MK1

q2
[
V3(q

2)− V0(q
2)
]

(4.5)

These are the model independent results and are derived by using Ward identities. The universal nor-

malization of the above form factors at q2 = 0 is obtained by defining

⟨
K1(k, ε)

∣∣s̄iσαβγ5b∣∣B(p)
⟩

= −iϵαβρσε∗ρ [(p+ k)σg+ + qσg−]− (ε∗ · q)ϵαβρσ(p+ k)ρqσh

−i [(p+ k)αεβρστε
∗ρ(p+ k)σqτ − α↔ β]h1 (4.6)

Using the Dirac identity

σµνγ5 = − i

2
ϵµναβσαβ (4.7)

in Eq.(4.6), one can write

⟨K1(k, ε) |s̄iσµνqνb|B(p)⟩ = ε∗µ
[
(M2

B −M2
K1

)g+ + q2g−
]

−q · ε∗
[
q2(p+ k)µg+ − qµg−

]
+q · ε∗

[
q2(p+ k)µ − (M2

B −M2
K1

)qµ
]
h (4.8)

Comparing the coefficients of qµ, ε
∗
µ and ϵµναβ from (3.5),(3.6),(4.6) and (4.8), we get

F1(q
2) =

[
g+(q

2)− q2h1(q
2)
]

(4.9)

F2(q
2) = g+(q

2) +
q2

M2
B −M2

K1

g−(q
2) (4.10)

F3(q
2) = −g−(q2)− (M2

B −M2
K1

)h(q2) (4.11)

The above results ensure that F1(0) = F2(0). In terms of g+(0),g−(0) and h, the form factors A(q2),V1(q
2)

and V2(q
2) become

A(q2) =
MB +MK1

mb +ms

[
g+(q

2)− q2h1(q
2)
]

(4.12)

V1(q
2) = −

(
MB +MK1

mb −ms

)[
g+(q

2) +
q2

M2
B −M2

K1

g−(q
2)

]
(4.13)

V2(q
2) = −

(
MB +MK1

mb −ms

)[
g+(q

2)− q2h(q2)
]
− 2MK1

MB −MK1

V0(q
2) (4.14)

By looking at the above expressions one can see that the normalization of the form factors A and V1 at

q2 = 0 is determined by the single constant g+(0), whereas that of V2 is determined by g+(0) and V0(q
2).
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4.3 Pole contribution

The pole contribution for B to ρ has been studied in detail by Gilani etal.[85]. This remains the same for

the B to K1 transition except that the role of vector and axial vector is interchanged and again only h1,

g−, h and V0 get contributions from B∗
s (1

−), B∗
A(1

+) and Bs(0
−) mesons which can be parameterized

as

h1|pole = −1

2

gB∗
sBK1

M2
B∗

s

fB
∗

T

1− q2/M2
B∗

=
RV
M2
B∗

s

1

1− q2/M2
B∗

s

(4.15)

g−|pole = −
gB∗

sABK1

M2
B∗

sA

f
B∗

sA

T

1− q2/M2
B∗

sA

=
RSA
M2
B∗

sA

1

1− q2/M2
B∗

sA

(4.16)

h|pole =
1

2

fB∗
SABK1

M2
B∗

sA

f
B∗

SA

T

1− q2/M2
B∗

sA

=
RDA
M2
B∗

sA

1

1− q2/M2
B∗

sA

(4.17)

V0(q
2)|pole =

gB∗
sBK1

M2
B∗

s

fBs

q2/M2
Bs

1− q2/M2
Bs

= R0

q2/M2
Bs

1− q2/M2
Bs

(4.18)

where RV , RSA , RDA and R0 are related to the coupling constants gB∗BK1 , gB∗
ABK1 , fB∗

ABK1 and

gBBK1 , respectively. Thus one can write the form factors A(q2) , V1(q
2) and V2(q

2) in terms of these

quantities as

A(q2) =
MB +MK1

mb +ms

[
g+(q

2)− RV
M2
B∗

s

q2

1− q2/M2
B∗

s

]
(4.19)

V1(q
2) = −

(
MB −MK1

mb −ms

)[
g+(q

2) +
q2

M2
B −M2

K1

g̃−(q
2) +

RSA
M2
B∗

sA

q2

1− q2/M2
B∗

sA

]
(4.20)

V2(q
2) = −

(
MB +MK1

mb −ms

)[
g+(q

2)− RDA
M2
B∗

As

q2

1− q2/M2
B∗

sA

]
− 2MK1

MB −MK1

V0(q
2) (4.21)

The behavior of g+(0) , g̃−(q
2) and V0(q

2) near q2 → 0 is known from LEET and their form is given as

g+(q
2) =

ξ⊥(0)

(1− q2/M2
B)

2
= −g̃−(q2) (4.22)

A0(q
2) =

(
1−

M2
K1

MBEK1

)
ξ∥(0) +

MK1

MB
ξ⊥(0) (4.23)

EK1 =
MB

2

(
1− q2

M2
B

+
M2
K1

M2
B

)
(4.24)

g+(0) = ξ⊥(0) (4.25)

The pole term given in Eqs.(4.19)- (4.21) dominate near q2 =M2
B∗

s
and q2 =M2

B∗ . One can make a

remark here that the relations obtained from the Ward identities can not be expected to hold for the

whole range of q2. Therefore, near q2 = 0 and that near the pole following parametrization is suggested

[85].

F (q2) =
F (0)

(1− q2/M2) (1− q2/M ′2)
(4.26)
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where M2 is M2
B∗

s
or M2

B∗
sA
, and M ′ is the radial excitation of M. The parametrization given in Eq.

(4.26) not only takes into account the corrections to single pole dominance suggested by the dispersion

relation approach [87, 88] but also give the correction of off-mass shell-ness of the couplings of B∗
s and

B∗
sA with the BK1 channel.

Since g+(0) and g̃−(q
2) have no pole at q2 =M2

B∗
s
, we get

A(q2)(1− q2

M2
B∗

)|q2=M2
B∗

= −RV
(
MB +MK1

mb −ms

)

so that from Eq.(4.19)

RV ≡ −1

2
gB∗

sBK1fB∗
s
= − g+(0)

1−M2
B∗/M ′2

B∗
(4.27)

and similarly

RDA ≡ 1

2
fB∗

sABK1f
B∗

sA

T = − g+(0)

1−M2
B∗

sA
/M ′2

B∗
sA

(4.28)

We cannot use the parametrization given in Eq.(4.26) for the form factor V1(q
2), since near q2 = 0, the

behavior of V1(q
2) is g+(q

2)
[
1− q2/

(
M2
B −M2

K1

)]
, therefore we can write V1(q

2) as follows

V1(q
2) = − g+(0)(

1− q2/M2
B∗

s

)(
1− q2/M ′2

B∗
s

) (1− q2

M2
B −M2

K1

)
(4.29)

Until now we have expressed everything in terms of g+(0), which is the only unknown parameter in

the calculation. The value of g+(0) was calculated in Light cone sum rules (LCSR) with mixing angle

θK = −34◦ for the decay B → K1(1270)γ and B → K1(1400)γ by H. Hatanka and K.C.Yang[78] and

are given below

g
K1(1270)
+ (0) = −(0.38+0.06+0.08+0.02

−0.04−0.07−0.04)

g
K1(1400)
+ (0) =

(
0.12+0.03+0.02+0.08

−0.02−0.00−0.09

)
Using the value of decay constant fB = 180 MeV we have a prediction from Eq.(4.27) that

gB∗
sBK1(1270) = 17.5 GeV−1 (4.30)

gB∗
sBK1(1400) = 5.55 GeV−1 (4.31)

The parametrization of the form factors for the decay B → K1 in terms of the mixing angle θK was

given in Eqs. (3.7), (3.8) and (3.9). As already mentioned above that the only unknown parameter in

the calculations of form factors for the said decay are g+(0) and θK , since final state meson K1(1270)

and K1(1400) are mixed states of the K1A and K1B with mixing angle θK given in Eqs. (3.1a) and
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Table 4.1: Values of the form factors at q2 = 0.

AK1A(0) AK1B (0) V K1A
1 (0) V K1B

1 (0) Ṽ K1A
2 (0) Ṽ K1B

2 (0)

0.44 −0.35 −0.26 0.21 −0.42 0.33

(3.1b).Using the value of θK = -34◦, the value of unknown parameter g+(0) is found to be gK1A
+ (0) =

0.31 and gK1B
+ (0) = −0.25 [78].

The final expressions of the form factors which we will use for our numerical work are

Aχ(q2) =
Aχ(0)(

1− q2/M2
B∗

sA

)(
1− q2/M ′2

B∗
sA

) (4.32)

V χ1 (q2) = − V χ1 (0)(
1− q2/M2

B∗
s

)(
1− q2/M ′2

B∗
s

) (1− q2

M2
B −M2

K1

)
(4.33)

V χ2 (q2) = − Ṽ χ2 (0)(
1− q2/M2

B∗
s

)(
1− q2/M ′2

B∗
s

) − 2Mχ

MB −Mχ

V0(0)

(1− q2/M2
B) (1− q2/M ′2

B )
(4.34)

where

Aχ(0) =

(
MB +Mχ

mb −ms

)
gχ+(0) (4.35)

V χ1 (0) = −
(
MB −Mχ

mb −ms

)
gχ+(0) (4.36)

V χ2 (0) = −
(
MB +Mχ

mb −ms

)
gχ+(0)−

2Mχ

MB −Mχ
V0(0) (4.37)

and χ = K1A and K1B. The values of form factors for the decay B → K1(1270, 1400) at q2 = 0 were

given in Table 4.1

4.4 Branching ratio and forward-backward asymmetry for the

decay B → K1(1270, 1400)ℓ
+ℓ−

In this section we will discuss the physical observables such as branching ratio (BR) and forward backward

asymmetry (AFB) for the above mentioned decay both in the SM and in ACD model. The detailed

expressions for both these observables were given in section 3.3. It has already been mentioned in

chapter 2 that the Wilson coefficient Ceff9 , contains the long distance contribution resulting from the cc̄

resonances such as J/ψ and its excited states.

We first discuss the (BR) of B → K1(1270, 1400)ℓ
+ℓ− with (ℓ=µ,τ) decays presented in fig 4.1 both

in SM and in ACD model. Figs 4.1a and 4.1b show the branching ratio of B → K1(1270, 1400)µ
+µ−

and figs 4.1c and 4.1d represent the same final state hadrons but the final state leptons are tauons.
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Table 4.2: The values of branching ratio without long distance effects for decays B → K1(1270, 1400)ℓ
+ℓ−

with ℓ=µ, τ for different values of 1/R.

Br(B → K1(1270)ℓ
+ℓ−) Br(B → K1(1270)µ

+µ−)× 10−6 Br(B → K1(1270)τ
+τ−)× 10−8

SM value 2.12 4.34

1/R =300 GeV 2.35 5.00

1/R =500 GeV 2.14 4.56

Br(B → K1(1400)ℓ
+ℓ−) Br(B → K1(1400)µ

+µ−)× 10−7 Br(B → K1(1400)τ
+τ−)× 10−9

SM value 1.53 1.82

1/R =300 GeV 1.73 2.09

1/R =500 GeV 1.56 1.91

Table 4.3: The values of branching ratio with long distance effects for decays B → K1(1270, 1400)ℓ
+ℓ−

with ℓ=µ, τ for different values of 1/R.

Br(B → K1(1270)ℓ
+ℓ−) Br(B → K1(1270)µ

+µ−)× 10−5 Br(B → K1(1270)τ
+τ−)× 10−6

SM value 2.99 7.68

1/R =300 GeV 3.01 7.69

1/R =500 GeV 2.97 7.66

Br(B → K1(1400)ℓ
+ℓ−) Br(B → K1(1400)µ

+µ−)× 10−6 Br(B → K1(1400)τ
+τ−)× 10−7

SM value 1.65 5.22

1/R =300 GeV 1.67 5.23

1/R =500 GeV 1.66 5.22

From the figs of branching ratios one can see that there is a significant enhancement in the (BR) due to

KK-contribution for 1/R = 300 GeV, whereas this value is shifted towards the SM at large values of 1/R.

The enhancement is more prominent in the low value of q2 region, for the case of muon as a final state

lepton. However for the case of taun as a final state lepton the NP effects are negligibly small. It is also

important to point out the NP effects in the branching ratios are usually masked up by the uncertainties

involved in different input parameters where form factors are the major contributors. However, there

exists some other observables which have weak dependence on the choice of form factors. Among this

the zero position of the forward-backward asymmetry which is almost free from hadronic uncertainties,

in particular at low value of q2 region, and hence serve as a handy tool to investigate NP. The numerical

values of the (BR) for the decay B → K1(1270, 1400)ℓ
+ℓ− in the SM as well as in ACD model with and

without long distance contributions are given in table 4.2 and 4.3 respectively.

Figs 4.2(a) and 4.2(b) describe the behavior of the forward-backward asymmetry ofB → K1(1270, 1400)µ
+µ−

with q2. Here one can see that the value of the forward-backward asymmetry passes from its zero posi-

tion at a particular value of q2 both in SM as well as in ACD model. This is because of the destructive

interference between the photon penguin (Ceff7 ) and the Z-penguin (Ceff9 ). As one can see from the

expression of AFB which is given in Eq.(3.37) that the AFB depends on the Wilson coefficients which
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Figure 4.1: Branching ratio for the B → K1(1270)ℓ
+ℓ− decays with (ℓ = µ, τ) using the form factors

given in Eqs.(3.48)-(3.50). Solid line corresponding to SM value, the dashed line is for 1/R = 300 GeV,
and the long dashed lines are for 1/R = 500 GeV.
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in turn contain the effects of extra dimensions. Thus one expects that the zero crossing of the AFB will

be different from the SM. This fact is illustrated in figs.(4.2a) and (4.2b) for K1(1270) and K1(1400)

respectively. We can also see that the value of AFB shifts significantly towards left from the SM value

when we set 1/R= 300 GeV. However this value approaches the SM value at large value of 1/R.

Now for B → K1(1270, 1400)τ
+τ− decays the AFB is presented in fig.4.2(c) and 4.2(d). In this case

the zero crossing of the AFB is absent both in SM and in ACD model, however there is a deviation in

the magnitude of AFB for 1/R =300 GeV particularly for the case of B → K1(1270)τ
+τ−. Moreover

for the case of B → K1(1400)τ
+τ− the deviation in the magnitude of AFB is not very large from its SM

value. Since the analysis showed that the magnitude of AFB is also an important tool to establish the

NP, therefore, the experimental study of this observable will be helpful to investigate the status of extra

dimension. Recently the LHCb collaboration has collected over 300 events for B → K∗µ+µ−, with signal

to background ratio above three which is the largest data sample in the world, and also cleaner than the

sample used by the other B factories [89]. The collaboration found that the distribution of AFB vs q2 is

in good agreement with the SM, but still the LHCb collaboration said that they will continue to collect

more data and try to see possible deviation in the data if there is any signal to NP. We have plotted the

AFB with LHCb data points shown in fig 4.3. for the decay B → K∗µ+µ− by using the form factors

calculated in the framework of Ward identities.

4.5 Conclusion

This chapter deals with the study of semileptonic decay B → K1(1270, 1400)ℓ
+ℓ− in ACD model with

single universal extra dimension which is strong contender to study physics beyond SM and has received a

lot of interest in the literature. We have studied the dependence of the physical observables such as decay

rate and zero position of forward-backward asymmetry(AFB) on the inverse of compactification radius

1/R. The value of the branching ratio is found larger than the corresponding SM value. It is also found

that the zero position of the AFB is sensitive to 1/R for the decays B → K1(1270, 1400)µ
+µ− and it is

seen that the zero position of AFB shifts significantly towards left of the SM value. The shift in the zero

position of AFB is large at 1/R = 300 GeV and when we increase the value of 1/R it approaches towards

SM value. Therefore the measurement of these observables for B → K1(1270, 1400)ℓ
+ℓ− at current

experiments such as LHCb where more data will be available in future, will put stringent constraints on

the compactification radius so as to indicate the possible existence of extra dimensions.
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Figure 4.2: The forward-backward asymmetry for the decay B → K1(1270, 1400)ℓ
+ℓ− with (ℓ = µ, τ)

as a function of q2 is plotted using the form factors as a function of q2 given in Eqs.(3.48)-(3.50). Solid
line corresponding to SM value, the dashed line is for 1/R = 300 GeV, and the long dashed lines are for
1/R = 500 GeV.
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Figure 4.3: The forward-backward asymmetry for the decay B → K∗µ+µ− with LHCb data points as a
function of q2 is plotted using the form factors calculated in the framework of Ward identities.
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Chapter 5

Exclusive charm B meson decays in

universal extra dimensions

5.1 Introduction

The charmed Bc meson is a bound state of two heavy quarks, bottom b and charm c, and was first

observed in 1998 at Tevatron in Fermilab [90]. Because of two heavy quarks, the Bc mesons are rich in

phenomenology compared to the other B mesons. At the Large Hadron Collider (LHC) the expected

number of events for the production of the Bc meson are about 108 − 1010 per year [91, 92] which is a

reasonable number to work on the phenomenology of the Bc meson. It also provides a frame work to study

physics in and beyond the SM. In the literature, some of the possible radiative and semileptonic exclusive

decays of Bc mesons like Bc → (ρ,K∗, D∗
s , B

∗
u) γ,Bc → ℓνγ ,Bc → B∗

uℓ
+ℓ−, Bc → D0

1ℓν,Bc → D∗
s0ℓ

+ℓ−

and Bc → D∗
s,dℓ

+ℓ− have been studied using the frame work of relativistic constituent quark model [93],

QCD Sum Rules and the Light Cone Sum Rules [13]. In this chapter we will focus on the Bc → D∗
sℓ

+ℓ−

decay.

Theoretically, what makes the Bc → D∗
sℓ

+ℓ− more important compared to the other B meson decays

such as B0 → (K∗,K1, ρ, π)l
+l− is that this decay can occur in two different ways i.e. through FCNC

transitions and due to Weak Annihilations (WA). In ordinary B meson decays the WA contributions

are very small and can be ignored. However, for the Bc meson the WA contributions are proportional

to the CKM matrix elements VcbV
∗
cs and hence can not be ignored. While working on the exclusive

B-meson decays, the main job is to calculate the form factors which are the non perturbative quantities

and are scalar functions of the momentum transfer squared. In the literature the form factors for

Bc → D∗
sℓ

+ℓ− decay were calculated using different approaches, such as light front constituent quark

models, a relativistic quark model and the QCD sum rules [93, 94]. In this work we calculate the form
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factors for the above mentioned decay through Ward identities, which was earlier applied to B → ρ, γ

[85, 95] and B → K1 decays [76]. This approach enables us to make a clear separation between the pole

and non pole type contributions, the former is known in terms of a universal function ξ⊥(q
2) ≡ g+(q

2).

The residue of the pole is then determined in a self consistent way in terms of g+(0) which will give

information about the couplings of B∗
s (1

−) and B∗
sA(1

+) in BcD
∗
s channel. The above mentioned coupling

arises at lower pole masses because the higher pole masses of Bc meson do not contribute to the decay

Bc → D∗
sℓ

+ℓ−. The form factors are then determined in terms of a known parameter g+(0) and the pole

masses of the particles involved, which will then be used to calculate different physical observables like

the branching ratios and the helicity fractions of final state meson (D∗
s) for these decays.

In this chapter we will analyze the branching ratio and helicity fractions of D∗
s meson for Bc →

D∗
sℓ

+ℓ− decay both in the SM and ACD model. The chapter is organized as follows. In Sec. 5.2 we

present the theoretical framework for the decay Bc → D∗
sℓ

+ℓ− as well as the weak annihilation amplitude.

Section 5.3 provides the definitions as well as the detailed calculation of the form factors using Ward

Identities. Here we compare the dependence of our form factors on q2 with the ones calculated using

QCD sum rules [97]. In Sec. 5.4 we present the basic formulas for physical observables like decay rate

and helicity fractions of D∗
s meson where as the numerical analysis of these observables will be given in

Section 5.5. Section 5.6 gives the summary of the results.

5.2 Theoretical framework for Bc → D∗
sℓ

+ℓ− decays

5.2.1 Weak Annihilation Amplitude

The weak annihilation amplitude (WA) for the decay Bc → D∗
sℓ

+ℓ− can be written in analogy of

Bc → D∗
sγ [98, 99].

MWA=
GFα

2
√
2π

fD∗
s
fBc

q2
VcbV

∗
cs

[
−iϵµναβε∗νpαqβF

D∗
s

V (q2) + (ε · qpµ + p · qεµ)F
D∗

s

A (q2)
]
l̄γµl (5.1)

where fBc and fD∗
s
are the decay constants of Bc and D∗

s mesons, respectively. The functions F
D∗

s

V (q2)

and F
D∗

s

A (q2) are the weak annihilation form factors which are calculated in QCD Sum Rules and can be

parameterized as [97]:

F
D∗

s

V,A(q
2) =

F
D∗

s

V,A(0)

1 + αq̂ + βq̂2
(5.2)

where q̂ = q2/M2
Bc
. In the present study we have also parameterized the form factors in terms of double

poles as follows

F
D∗

s

V (q2) =
(mb +ms)

MB−
c
+MD∗−

s

F
D∗

s

V (0)

(1− q2/M2
B∗

s
)(1− q2/M ′2

B∗
s
)

(5.3)
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Figure 5.1: Weak annihilation diagram for the decay Bc → D∗
sℓ

+ℓ−

F
D∗

s

A (q2) =
mb −ms

MB−
c
−MD∗−

s

F
D∗

s

A (0)

(1− q2/M2
B∗

sA
)(1− q2/M ′2

B∗
sA
)

(
1− q2

M2
B−

c
−M2

D∗
s

)
(5.4)

The values of the form factors at q2 = 0 are determined by using QCD sum rules [100]. The two set

of form factors given in Eq.(5.2) and Eqs.(5.3-5.4) give the branching ratios 2.20 × 10−6 and By using

the form factors given in Eq.(5.2) it is found that the branching ratio for Bc → D∗
sµ

+µ− is 2.82× 10−6

respectively. It follows that the branching ratios are independent on the choice of form factors. These

values of the branching ratios are almost five times larger than the penguin one which is given in table

5.2, therefore, one cannot ignore the weak annihilation contribution for the process under consideration.

At quark level the semileptonic decay Bc → D∗
sℓ

+ℓ− is governed by the FCNC transition b→ sℓ+ℓ−

which effective Hamiltonian is given in Eq.(2.1). The ACD model is the most economical one because it

has only one additional parameter R i.e. the radius of the compactification, leaving the same operators

basis as that of the SM. At the low values of 1/R the KK states couples with the low energy theory and

modified the Wilson coefficients which are now become the functions of the compactification radius R.

The explicit form of these modified Wilson coefficients Ceff7 , Ceff9 and Ceff10 were given in Chapter 2.

However, at large values of 1/R the new states become more and more massive, and will be decoupled

from the low-energy theory,therefore one can recover the SM phenomenology.

5.3 Matrix Elements and Form Factors

The exclusive Bc → D∗
sℓ

+ℓ− decay involves the hadronic matrix elements which can be obtained by

sandwiching the quark level operators give in Eq. (2.17) between initial state Bc meson and final state

D∗
s meson. These can be parameterized in terms of form factors which are the scalar functions of the

square of the four momentum transfer(q2 = (p−k)2). The non vanishing matrix elements for the process

Bc → D∗
s can be parameterized exactly in the same fashion as that of B → K1 decay in chapter 3. The

form factors for the decay Bc → D∗
s can be related through Ward identities[85] as

⟨D∗
s(k, ε) |s̄iσµνqνb|Bc(p)⟩ = −(mb +ms) ⟨D∗

s(k, ε) |s̄γµb|Bc(p)⟩ (5.5)⟨
D∗
s(k, ε)

∣∣s̄iσµνqνγ5b∣∣Bc(p)⟩ = (mb −ms) ⟨D∗
s(k, ε) |s̄γµγ5b|Bc(p)⟩

+(p+ k)µ ⟨D∗
s(k, ε) |s̄γ5b|Bc(p)⟩ (5.6)
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By using the parametrization of form factors in Eq.(5.5) and (5.6) and comparing the coefficients of ε∗µ

and qµ on both sides, one can get the following relations between the form factors:

F1(q
2) =

(mb +ms)

MB−
c
+MD∗−

s

V (q2) (5.7)

F2(q
2) =

mb −ms

MB−
c
−MD∗−

s

A1(q
2) (5.8)

F3(q
2) = −(mb −ms)

2MD∗−
s

q2
[
A3(q

2)−A0(q
2)
]

(5.9)

The results given in Eqs. (5.7, 5.8, 5.9) are derived by using Ward identities and therefore are the model

independent.

The universal normalization of the above form factors at q2 = 0 is obtained by defining [85]

⟨D∗
s(k, ε) |s̄iσαβb|Bc(p)⟩ = −iϵαβρσε∗ρ [(p+ k)σg+ + qσg−]− (ε∗ · q)ϵαβρσ(p+ k)ρqσh

−i [(p+ k)αεβρστε
∗ρ(p+ k)σqτ − α↔ β]h1 (5.10)

Making use of the Dirac identity

σµνγ5 = − i

2
ϵµναβσαβ (5.11)

in Eq.(5.10), we get

⟨
D∗
s(k, ε)

∣∣s̄iσµνqνγ5b∣∣Bc(p)⟩ = ε∗µ

[
(M2

B−
c
−M2

D∗−
s

)g+ + q2g−

]
−q · ε∗

[
q2(p+ k)µg+ − qµg−

]
+q · ε∗

[
q2(p+ k)µ − (M2

B−
c
−M2

D∗−
s

)qµ

]
h (5.12)

On comparing coefficients of qµ, ε
∗
µ and ϵµναβ from the parametrization of the form factors, we have

F1(q
2) =

[
g+(q

2)− q2h1(q
2)
]

(5.13)

F2(q
2) = g+(q

2) +
q2

M2
B−

c
−M2

D∗−
s

g−(q
2) (5.14)

F3(q
2) = −g−(q2)− (M2

B−
c
−M2

D∗−
s

)h(q2) (5.15)

One can see from Eqs. (5.13, 5.14) that at q2 = 0, F1(0) = F2(0). The form factors V (q2), A1(q
2) and

A2(q
2) can be written in terms of g+, g− and h as

V (q2) =
MB−

c
+MD∗−

s

mb +ms

[
g+(q

2)− q2h1(q
2)
]

(5.16)

A1(q
2) =

MB−
c
+MD∗−

s

mb −ms

[
g+(q

2) +
q2

M2
B−

c
−M2

D∗−
s

g−(q
2)

]
(5.17)
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A2(q
2) =

MB−
c
+MD∗−

s

mb −ms

[
g+(q

2)− q2h(q2)
]
−

2MD∗−
s

MB−
c
−MD∗−

s

A0(q
2) (5.18)

By looking at Eq. (5.16) and Eq. (5.17) it is clear that the normalization of the form factors V and

A1 at q2 = 0 is determined by a single constant g+(0), where as from Eq. (5.18) the form factor A2 at

q2 = 0 is determined by two constants i.e. g+(0) and A0(0).

5.3.1 Pole Contribution

In Bc → D∗
sℓ

+ℓ− decay, there will be a pole contribution to h1, g−, h and A0 from B∗
s (1

−), B∗
sA(1

+) and

Bs(0
−) mesons which can be parameterized as

h1|pole = −1

2

gB∗
sBcD∗

s

M2
B∗

s

fB
∗

T

1− q2/M2
B∗

=
RV
M2
B∗

s

1

1− q2/M2
B∗

s

(5.19)

g−|pole = −
gB∗

sABcD∗
s

M2
B∗

sA

f
B∗

sA

T

1− q2/M2
B∗

sA

=
RSA
M2
B∗

sA

1

1− q2/M2
B∗

sA

(5.20)

h|pole =
1

2

fB∗
SABcD∗

s

M2
B∗

sA

f
B∗

SA

T

1− q2/M2
B∗

sA

=
RDA
M2
B∗

sA

1

1− q2/M2
B∗

sA

(5.21)

A0(q
2)|pole =

gB∗
sBcD∗

s

M2
B∗

s

fBs

q2/M2
B

1− q2/M2
B

= R0

q2/M2
Bs

1− q2/M2
Bs

(5.22)

where the quantities RV , R
S
A, R

D
A and R0 are related to the coupling constants gB∗

sBcD∗
s
, gB∗

sABcD∗
s
and

gB∗
sABcD∗

s
, respectively. Here we would like to mention that the above mentioned couplings arises as the

lower pole mass, because the higher pole masses of Bc meson do not contribute for the Bc → D∗
sℓ

+ℓ−

decay. The form factors A1(q
2), A2(q

2) and V (q2) can be written in terms of these quantities as

V (q2) =
MB−

c
+MD∗

s

mb +ms

[
g+(q

2)− RV
M2
B∗

s

q2

1− q2/M2
B∗

s

]
(5.23)

A1(q
2) =

MB−
c
−MD∗−

s

mb −ms

[
g+(q

2) +
q2

M2
B−

c
−M2

D∗−
s

g̃−(q
2) +

RSA
M2
B∗

sA

q2

1− q2/M2
B∗

sA

]
(5.24)

A2(q
2) =

MB−
c
+MD∗−

s

mb −ms

[
g+(q

2)− RDA
M2
B∗

As

q2

1− q2/M2
B∗

sA

]
−

2MD∗−
s

MBc −MD∗−
s

A0(q
2) (5.25)

Now, the behavior of g+(q
2), g̃−(q

2) and A0(q
2) is known from LEET and their form is [85]

g+(q
2) =

ξ⊥(0)

(1− q2/M2
B)

2
= −g̃−(q2) (5.26)

A0(q
2) =

(
1−

M2
D∗−

s

MBcED∗−
s

)
ξ∥(0) +

MD∗−
s

MBc

ξ⊥(0) (5.27)

ED∗
s

=
MBc

2

(
1− q2

M2
Bc

+
M2
D∗

s

M2
Bc

)
(5.28)

g+(0) = ξ⊥(0) (5.29)
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The pole terms given in Eqs.(5.23-5.25) dominate near q2 = M2
B∗

s
and q2 = M2

B∗
sA
. Just to make a

remark that relations obtained from the Ward identities can not be expected to hold for the whole q2.

Therefore, near q2 = 0 and near the pole following parametrization is suggested [85]

F (q2) =
F (0)

(1− q2/M2) (1− q2/M ′2)
(5.30)

where M2 is M2
B∗

s
or M2

B∗
sA
, and M ′ is the radial excitation of M. The parametrization given in Eq.

(5.30) not only takes into account the corrections to single pole dominance suggested by the dispersion

relation approach [87, 88] but also give the correction of off-mass shell-ness of the couplings of B∗
s and

B∗
sA with the BcD

∗
s channel.

Since g+(0) and g̃−(q
2) have no pole at q2 =M2

B∗
s
, we get

V (q2)(1− q2

M2
B∗

)|q2=M2
B∗

= −RV
(
MBc +MD∗

s

mb −ms

)

This becomes

RV ≡ −1

2
gB∗

sBcD∗
s
fB∗

s
= − g+(0)

1−M2
B∗/M ′2

B∗
(5.31)

and similarly

RDA ≡ 1

2
fB∗

sABcD∗
s
f
B∗

sA

T = − g+(0)

1−M2
B∗

sA
/M ′2

B∗
sA

(5.32)

We cannot use the parametrization given in Eq.(5.30) for the form factor A1(q
2), since near q2 = 0, the

behavior of A1(q
2) is g+(q

2)
[
1− q2/

(
M2
B−

c
−M2

D∗−
s

)]
, therefore we can write A1(q

2) as follows

A1(q
2) =

g+(0)(
1− q2/M2

B∗
sA

)(
1− q2/M ′2

B∗
sA

) (1− q2

M2
B−

c
−M2

D∗
s

)
(5.33)

The only unknown parameter in the above form factors calculation is g+(0) and its value can be extracted

by using the central value of branching ratio for the decay B−
c → D∗−

s γ [100]. From the formula of decay

rate

Γ (Bc → D∗
sγ) =

G2
Fα

32π4
|VtbV ∗

ts|
2
m2
bM

3
Bc

×

(
1−

M2
D∗

s

M

2

Bc

)3 ∣∣∣Ceff7

∣∣∣2 |g+(0)|2 (5.34)

From Eq.(5.34), the value of unknown parameter g+(0) is found to be g+(0) = 0.42. Using fBc = 0.35

GeV we have prediction from Eq.(5.31) that

gB∗
sBcD∗

s
= 10.38GeV −1. (5.35)
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Similarly the ratio of S and D wave couplings are found to be

gB∗
sABcD∗

s

fB∗
sABcD∗

s

= −0.42GeV 2 (5.36)

The different values of the F (0) are

V (0) =
MB−

c
+MD∗−

s

mb +ms
g+(0) (5.37)

A1(0) =
MB−

c
−MD∗−

s

mb −ms
g+(0) (5.38)

A2(0) =
MB−

c
+MD∗−

s

mb −ms
g+(0)−

2MD∗−
s

MB−
c
−MD∗−

s

A0(0) (5.39)

The calculation of the numerical values of V (0) and A1(0) is quite trivial but for the value of A2(0),

the value of A0(0) has to be known. Although LEET does not give any relationship between ξ||(0) and

ξ⊥(0), but in LCSR ξ||(0) and ξ⊥(0) are related due to numerical coincidence [96]

ξ||(0) ≃ ξ⊥(0) = g+(0) (5.40)

Thus from Eq. (5.27) we have

A0(0) = 1.12g+(0)

For the other values of q2 the form factors can be extrapolated as follows:

V (q2) =
V (0)

(1− q2/M2
B∗

s
)(1− q2/M ′2

B∗
s
)

(5.41)

A1(q
2) =

A1(0)

(1− q2/M2
B∗

sA
)(1− q2/M ′2

B∗
sA
)

(
1− q2

M2
B−

c
−M2

D∗
s

)
(5.42)

A2(q
2) =

Ã2(0)

(1− q2/M2
B∗

sA
)(1− q2/M ′2

B∗
sA
)

−
2MD∗−

s

MB−
c
−MD∗−

s

A0(0)

(1− q2/M2
Bs

)(1− q2/M ′2
Bs

)

(5.43)

The behavior of the form factors V (q2), A1(q
2) and A2(q

2) which are given in Eqs.(5.41-5.43) are plotted

as a function of q2 shown in Fig.5.1. One can see that the value of the form factors increases with

increasing q2 except for A2(q
2) where the second term starts dominating at large q2. This behavior of

form factors also differs from the one calculated using three point QCD sum rules shown in Fig.5.2. The

form factors obtained by QCD sum rules for the decay Bc → D∗
sℓ

+ℓ−[97] are given in Table 5.1
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Table 5.1: The values of form factors at q2 = 0 obtained by three point QCD sum rules [97]

Bc → D∗
s l

+l−

AV (0) 0.54± 0.018

A0(0) 0.30± 0.017

A+(0) 0.36± 0.013

A−(0) −0.57± 0.04

F1(0) 0.31± 0.017

F2(0) 0.33± 0.016

F3(0) 0.29± 0.034
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Figure 5.2: Form factors are plotted as a function of q2. Solid line, dashed line and long-dashed line
correspond to g+(0) equal to 0.42, 0.32 and 0.22 respectively.

5.4 Physical Observables for Bc → D∗
sℓ

+ℓ−

In this section we will present the calculations of the physical observables like the decay rates and

the helicity fractions of D∗
s meson using the weak annihilation (WA) and the penguin amplitude that

corresponds to the FCNC. From Eq. (2.17) it is straightforward to write the penguin amplitude

MPENG = − GFα

2
√
2π
VtbV

∗
ts

[
T 1
µ(l̄γ

µl) + T 2
µ

(
l̄γµγ5l

)]
where

T 1
µ = f1(q

2)ϵµναβε
∗νpαkβ − if2(q

2)ε∗µ + if3(q
2)(ε∗ · q)Pµ (5.44)

T 2
µ = f4(q

2)ϵµναβε
∗νpαkβ − if5(q

2)ε∗µ + if6(q
2)(ε∗ · q)Pµ (5.45)

The functions f1 to f6 in Eq.(5.44) and Eq. (5.45) are known as auxiliary functions, which contain

both long distance (form factors) and short distance (Wilson coefficients) effects and these can be written
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Figure 5.3: Form factors are plotted as a function of q2. Solid line is drawn by using Ward Identities
(our case) and dashed line is drawn by using 3 point QCD sum rules. In both cases we took the central
value of the form factors.

as

f1(q
2) = 4(mb +ms)

Ceff7

q2
F1(q

2) + 2Ceff9

V (q2)

MBc +MD∗
s

f2(q
2) =

Ceff7

q2
2(mb −ms)F2(q

2)
(
M2
Bc

−M2
D∗

s

)
+ Ceff9 A1(q

2) (MBc +MD∗)

f3(q
2) =

4Ceff7

q2
(mb −ms)

F2(q
2) + q2

F3(q
2)(

M2
Bc

−M2
D∗

s

)
+ Ceff9

A2(q
2)

MBc +MD∗
s


f4(q

2) = C10
2V (q2)

MBc +MD∗
s

f5(q
2) = C10A1(q

2)
(
MBc +MD∗

s

)
f6(q

2) = C10
A2(q

2)

MBc +MD∗
s

f0(q
2) = C10A0(q

2) (5.46)

The next task is to calculate the decay rate and the helicity fractions of the D∗
s meson in terms of these

auxiliary functions.

5.4.1 The Differential Decay Rate of Bc → D∗
sℓ

+ℓ−

In the rest frame of Bc meson the differential decay width of Bc → D∗
sℓ

+ℓ− can be written as

dΓ(Bc → D∗
sµ

+µ−)

dq2
=

1

(2π)
3

1

32M3
Bc

∫ +u(q2)

−u(q2)
du |A|2 (5.47)

where

A = MWA +MPENG (5.48)

q2 = (pl+ + pl−)
2 (5.49)
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u = (p− pl−)
2 − (p− pl+)

2
(5.50)

Now the limits on q2 and u are

4m2
l ≤ q2 ≤ (MBc −MD∗

s
)2 (5.51)

−u(q2) ≤ u ≤ u(q2) (5.52)

with

u(q2) =

√
λ

(
1−

4m2
l

q2

)
(5.53)

and

λ ≡ λ(M2
Bc
,M2

D∗
s
, q2) =M4

Bc
+M4

D∗
s
+ q4 − 2M2

Bc
M2
D∗

s
− 2M2

D∗
s
q2 − 2q2M2

Bc

Here ml corresponds to the mass of the lepton which for our case are the µ and τ . The total decay rate

for the decay Bc → D∗
sℓ

+ℓ− can be expressed in terms of WA, penguin amplitude and interference of

these two which takes the form

dΓ

dq2
=
dΓWA

dq2
+
dΓPENG

dq2
+
dΓWA-PENG

dq2
(5.54)

with

dΓWA

dq2
=

G2
F |VcbV ∗

cs|
2
α2

211π53M3
Bc
M2
D∗

s
q2
u(q2)× g

(
q2
)

(5.55)

dΓPENG

dq2
=

G2
F |VtbV ∗

ts|
2
α2

211π53M3
Bc
M2
D∗

s
q2
u(q2)× h

(
q2
)

(5.56)

dΓWA-PENG

dq2
=

G2
F |VcbV ∗

cs| |VtbV ∗
ts|α2

211π53M3
Bc
M2
D∗

s
q2

u(q2)× I
(
q2
)
. (5.57)

The function u(q2) is defined in Eq. (5.53) and g(q2), h(q2) and I(q2) are

g
(
q2
)

=
1

2

(
2m2

l + q2
)
κ2
[
8λM2

D∗
s
q2
(
F
D∗

s

V (q2)
)2

+
(
F
D∗

s

A (q2)
)2

[12M2
D∗

s
q2(λ

+4M2
Bc
q2) + λ2 + λ(λ+ 4q2M2

D∗
s
+ 4q4)]

]
h(q2) = 24

∣∣f0(q2)∣∣2m2
lM

2
D∗

s
λ+ 8M2

D∗
s
q2λ(2m2

l + q2)
∣∣f1(q2)∣∣2 − (4m2

l − q2)
∣∣f4(q2)∣∣2]

+λ(2m2
l + q2)

∣∣∣f2(q2) + (M2
Bc

−M2
D∗

s
− q2)f3(q

2)
∣∣∣2 − (4m2

l − q2)|f5(q2)

+(M2
Bc

−M2
D∗

s
− q2)f6(q

2)|2] + 4M2
D∗

s
q2[(2m2

l + q2)(3
∣∣f2(q2)∣∣2 − λ

∣∣f3(q2)∣∣2)
−(4m2

l − q2)(3
∣∣f5(q2)∣∣2 − λ

∣∣f6(q2)∣∣2)] (5.58)

I(q2) = 2κ[f2(q
2)F

D∗
s

A (q2)q2(2m2
l + q2)(λ+ 6M2

D∗
s
(M2

Bc
−M2

D∗
s
+ q2))

−(λ(2f1(q
2)F

D∗
s

V (q2)M2
D∗

s
q4 + f3(q

2)F
D∗

s

A (q2)(2m2
l + q2)(λ+ q4 + 4MBcMD∗

s
))].
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where

κ =
8π2MD∗

s
fBcfD∗

s

(m2
c −m2

s) q
2

(5.59)

5.4.2 Helicity Fractions Of D∗
s In Bc → D∗

sℓ
+ℓ−

We now discuss the helicity fractions of D∗
s in Bc → D∗

sℓ
+ℓ− which are interesting variables and as

such are independent of the uncertainties arising due to form factors and other input parameters. The

final state meson helicity fractions were already discussed in literature for B → K∗ (K1) ℓ
+ℓ− decays

[50, 76]. Even for the K∗ vector meson, the longitudinal helicity fraction fL has been measured by

Babar collaboration for the decay B → K∗l+l−(l = e, µ) in two bins of momentum transfer and the

results are [83]

fL = 0.77+0.63
−0.30 ± 0.07, 0.1 ≤ q2 ≤ 8.41GeV 2

(5.60)

fL = 0.51+0.22
−0.25 ± 0.08, q2 ≥ 10.24GeV 2

while the average value of fL in full q2 range is

fL = 0.63+0.18
−0.19 ± 0.05, q2 ≥ 0.1GeV 2 (5.61)

The explicit expression of the decay rate for B−
c → D∗−

s l+l− decay can be written in terms of longitudinal

ΓL and transverse components ΓT as

dΓL(q
2)

dq2
=

dΓWA
L (q2)

dq2
+
dΓPENG

L (q2)

dq2
+
dΓWA-PENG

L (q2)

dq2
(5.62)

dΓ±(q
2)

dq2
=

dΓWA
± (q2)

dq2
+
dΓPENG

± (q2)

dq2
+
dΓWA-PENG

± (q2)

dq2
(5.63)

dΓT (q
2)

dq2
=

dΓ+(q
2)

dq2
+
dΓ−(q

2)

dq2
. (5.64)

where

dΓWA
L (q2)

dq2
=

G2
F |VcbV ∗

cs|
2
α2

211π5

u(q2)

M3
Bc

× 1

3
AWA
L (5.65)

dΓPENG
L (q2)

dq2
=

G2
F |VtbV ∗

ts|
2
α2

211π5

u(q2)

M3
Bc

× 1

3
APENG
L (5.66)

dΓWA-PENG
L (q2)

dq2
=

G2
F |VcbV ∗

cs| |VtbV ∗
ts|α2

211π5

u(q2)

M3
Bc

× 1

3
AWA-PENG
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dΓWA
± (q2)

dq2
=

G2
F |VcbV ∗

cs|
2
α2

211π5

u(q2)

M3
Bc

× 2

3
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(5.69)
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The different functions appearing in above equation can be expressed in terms of auxiliary functions (c.f.

Eq. (5.46)) as
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(5.72)

Finally the longitudinal and transverse helicity amplitude becomes

fL(q
2) =

dΓL(q
2)/dq2

dΓ(q2)/dq2

f±(q
2) =

dΓ±(q
2)/dq2

dΓ(q2)/dq2

fT (q
2) = f+(q

2) + f−(q
2) (5.73)
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so that the sum of the longitudinal and transverse helicity amplitudes is equal to one i.e. fL(q
2) +

fT (q
2) = 1 for each value of q2.

5.5 Numerical Analysis.

In this section we present the numerical analysis of the branching ratio and helicity fractions of D∗
s meson

both in the SM and in ACD model. Among the different input parameters the important one are the form

factors which are the major source of uncertainties. To study the above mentioned physical observables

we use two different form factors, in one where we parameterized the form factors in terms of double pole

and then relate them through the Ward identities which are given in Section 5.3, the other one obtained

by three point QCD sum rules given in Table 5.1 . The differences in the results obtained in physical

observables using two different approaches of form factors represents an indication of the error related to

the hadronic uncertainty. We have used next-to-leading order approximation for the Wilson Coefficients

at the renormalization scale µ = mb. It has already been mentioned that besides the contribution in

the Ceff9 , there are long distance contributions resulting from the cc̄ resonances like J/ψ and its excited

states. For the present analysis we do not take into account these long distance effects. The numerical

results for the branching ratio and helicity fractions of D∗
s for the decay mode Bc → D∗

sℓ
+ℓ− using the

form factors given in section 5.3 and QCD sum rules are depicted in Figs. 5.4-5.9, both in the SM and

the ACD model. Figs. (5.4-5.5) represents the branching ratio of Bc → D∗
sℓ

+ℓ− decay. One can clearly

see from the Figs.(5.4) and (5.5) that the branching ratio is increased due to the increment in the inverse

of the compactification radius R of the KK-contribution, while at the larger values of the inverse of the

compactification radius R the branching ratio is shifted towards the SM. We have also displayed the

numerical results of the branching ratio for the decay Bc → D∗
sℓ

+ℓ− separately for penguin, WA and

combination of both are given in Table 5.2.

Table 5.2: Branching ratio for Bc → D∗
sµ

+µ−(τ+τ−) decay in the SM.

Form factors defined in section 5.3 QCD Sum Rule

BR(PENG)(Bc → D∗
sµ

+µ−(τ+τ−)) 4.17× 10−7(2.22× 10−8) 2.57× 10−7
(
1.13× 10−8

)
BR(WA)(Bc → D∗

sµ
+µ−(τ+τ−)) 2.82× 10−6

(
0.92× 10−9

)
2.20× 10−6

(
0.35× 10−9

)
BR(Total)(Bc → D∗

sµ
+µ−(τ+τ−)) 3.24× 10−6

(
3.03× 10−8

)
2.46× 10−6

(
1.49× 10−8

)
From table 5.2 one can also see that the branching ratio for the decay Bc → D∗

sµ
+µ− obtained from

the WA is about 5 times larger than the corresponding penguin one. It is therefore expected that these

WA contributions will reduce the new physics effects in helicity fractions of the final state meson.

In general the sensitivity of NP on the branching ratio is effected by the uncertainties which arises due

to the number of different input parameters. Among them the major one lies in the numerical analysis

of Bc → D∗
sℓ

+ℓ− decay originated from the Bc → D∗
s transition form factors. The large uncertainties
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Figure 5.4: (a)Branching ratio using double pole parametrization and (b) using three point QCD sum
rules for the B → D∗

sµ
+µ− decay as functions of q2 for different values of 1/R. Solid line correspond to

SM value,dashed line is for 1/R = 300, long dashed is for 1/R = 500.
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Figure 5.5: Branching ratio for the decay Bc → D∗
sτ

+τ−. The legends are same as that of Fig.5.4

involved in the form factors are mainly from the variations of the decay constant of Bc meson and

also there are some uncertainties from the strange quark mass ms. The latter are expected to be tiny

on account of the negligible role of ms suppressed by the much larger energy scale of mb. Moreover,

the uncertainties of the charm quark and bottom quark mass are at the 1% level, which will not play

significant role in the numerical analysis and can be dropped out safely. It also needs to be stressed

that these hadronic uncertainties almost have no influence on the various asymmetries including the

polarization asymmetries of final state meson on account of the cancelation among different polarization

states and this make them as one of the best tools to look for physics beyond the SM.

Figs. 5.6 (a, b, c, d) and 5.7(a, b, c, d) show the longitudinal and transverse helicity fractions of

D∗
s for the decay Bc → D∗

sµ
+µ− as a function of q2, where we have used the form factors calculated in
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Section 5.3. Choosing the different values of the compactification radius 1/R, one can see from these

figures that the effect of extra dimensions are visible at low q2 region. In this case these effects interfere

constructively to the SM value for the case of transverse helicity fraction and destructive for the case

of longitudinal helicity fraction. Just to see their dependence on the choice of the form factors we have

plotted these longitudinal and transverse helicity fractions of D∗
s in Figs. 6 (a, b) using three point QCD

sum rules form factors (c.f. Table 5.1). Here we want to emphasize that the behavior of longitudinal and

transverse helicity fraction changes when we consider WA (c.f. Figs. 5.6(b,d) and 5.7(b,d)) contribution

in addition to the penguin one (c.f. Figs. 5.6(a,c) and 5.7(a,c)). This is due to the large contribution of

WA amplitude in the decay rate of Bc → D∗
sµ

+µ−.

Figs. 5.8(a, b, c, d) and 5.9(a, b, c, d) show the longitudinal and transverse helicity fractions of D∗
s

for the decay Bc → D∗
sτ

+τ− decay as a function of q2 for the form factors given in section 5.3 and three

point QCD sum rules. Here one can see that the shift from the SM value is very mild for both choices

of form factors as well as due to the WA contribution.

Here one can see that the helicity fractions of the final state meson have mild dependence on the

choice of form factors and NP effects are quite significant in the lower q2 region. Moreover from Figs.

5.6-5.9 it is clear that for each value of the momentum transfer q2 the sum of the longitudinal and

transverse helicity fractions are equal to one, i.e. fL(q
2) + fT (q

2) = 1.

5.6 Conclusion:

We have investigated the semileptonic decay Bc → D∗
sℓ

+ℓ− by including both the penguin and WA

contributions. In particular we found that branching ratio obtained from WA amplitude is 6.7 times

large as compared to penguin amplitude for Bc → D∗
sℓ

+ℓ− decay. In order to calculate the WA form

factors F
D∗

s

V (q2) and F
D∗

s

A (q2), we use Eqs. (5.2, 5.3, 5.4), where the value of the form factors at q2 = 0

can be obtained from QCD sum rules [100]. However for the penguin amplitude the form factors for

the above mentioned decay are calculated using the framework of Ward identities which is discussed in

Section-5.3. Here we have also compared the values of our form factors with the ones calculated using

three point QCD sum rules [97].

The form factors contributing to the penguin amplitudes were calculated in the framework of Ward

identities which can be expressed in terms of a single universal constant g+(0). The value of g+(0) =

(0.42) is obtained from the decay Bc → D∗
sγ [100]. Considering the radial excitation at lower pole

masses M ( where M = MB∗
s
and MB∗

sA
) one can predict the coupling of B∗

s with BcD
∗
s channel as

indicated in Eq.(5.35) which is gB∗
sBcD∗

s
= 10.38 GeV−1. Also we predicted the ratio of S and D wave

couplings
gB∗

sA
BcD∗

s

fB∗
sA

BcD∗
s

= −0.42 GeV 2 given in Eq.(5.36). We have studied the physical observables such as

the branching ratio and the helicity fraction of D∗
s in the decay Bc → D∗

sℓ
+ℓ− both in SM and in the
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Figure 5.6: Longitudinal helicity fraction for the B → D∗
sµ

+µ− as a function of q2 for different values of
1/R.The legends are same as that of Fig 5.4.
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Figure 5.7: Transverse helicity fraction for the B → D∗
sµ

+µ− as a function of q2 for different values of
1/R.The legends are same as that of Fig 5.4.
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Figure 5.8: Longitudinal helicity fraction for the B → D∗
sτ

+τ− as a function of q2 for different values of
1/R.The legends are same as that of Fig 5.4.
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Figure 5.9: Transverse helicity fraction for the B → D∗
sτ

+τ− as a function of q2 for different values of
1/R. The legends are same as that of Fig 5.4.
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ACD model. We have seen that the effects of ACD model in the helicity fractions of D∗
s meson for the

decay Bc → D∗
sµ

+µ− are quite significant at low q2 region. Furthermore to see the sensitivity of the said

physical observables on the choice of form factors against q2 using the three point QCD sum rules form

factors. We have shown that the helicity fractions of the final state meson have weak dependence on the

choice of form factors which make them good tool to look for NP which we hope to be seen at LHC.

In short, the experimental measurements of the extra dimensions effects in the above mentioned

observables at LHC will be a useful tool to describe the status of physics beyond the SM. Further we are

hopeful that when more data will be collected at LHC, it will not only test the SM but also puts some

stringent constraints on the compactification radius 1/R.
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