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Zusammenfassung

Die Dynamik von klassischen Systemen wie von Quantensystemen kann im Wesent-
lichen in zwei Klassen eingeteilt werden: regulär und chaotisch. In klassischen Syste-
men zeichnet sich Chaos dadurch aus, dass infinitesimal kleine Störungen der Anfangs-
bedingungen große Auswirkungen zu späteren Zeiten haben. Für Quantensysteme, deren
klassischer Grenzfall nach dieser Definition chaotisch ist, ist bekannt, dass die Differen-
zen der Eigenenergien derselben statistischen Verteilung folgen wie die Abstände zwi-
schen Eigenwerten Gaußscher Zufallsmatrizen. Quantenchaos, im Sinne von “Chaos in
Quantensystemen”, kann daher mittels der Statistik der Energie-Eigenwerte definiert
werden. Da allerdings das Spektrum allein nicht ausreicht, um ein Quantensystem voll-
ständig zu charakterisieren, ist zu erwarten, dass die Eigenzustände über die spektralen
Eigenschaften hinaus weitere Charakteristika von Quantenchaos enthüllen.

In der vorliegenden Arbeit untersuchen wir detailliert, wie sich Quantenchaos in der
Struktur der Eigenzustände, charakterisiert durch deren fraktale Dimensionen in be-
stimmten natürlichen Basissätzen des Systems, äußert. Als Modell dient hierbei der Bose-
Hubbard-Hamiltonian, welcher Bosonen auf einem Gitter beschreibt, die zwischen be-
nachbarten Gitterplätzen tunneln können und lokal miteinander wechselwirken. Bei den
Energien, Tunnelstärken und Wechselwirkungsstärken, für welche dieses System gemäß
der Statistik des Spektrums quantenchaotisch ist, sind die Eigenzustände im Grenzfall
großer Systeme (d.h. viele Teilchen und Gitterplätze) delokalisiert in beiden natürlichen
Basissätzen. Gleichzeitig nehmen die Fluktuationen der fraktalen Dimensionen zwischen
Eigenzuständen ähnlicher Energie drastisch ab und weisen qualitativ basisunabhängige
Eigenschaften auf. Zudem zeigen sich die Grenzen der quantenchaotischen Region in den
Eigenzuständen durch sehr asymmetrische Verteilungen der faktalen Dimensionen.

Innerhalb der quantenchaotischen Region vergleichen wir die Lokalisierungseigenschaften
der Eigenzustände mit den entsprechenden Vorhersagen für Gaußsche Zufallsmatrizen
und für Zufallsmatrizen der sogenannten Eingebetteten Ensembles, die im Gegensatz zu
den Gaußschen Zufallsmatrizen die Zweiteilchen-Natur des Bose-Hubbard-Hamiltonian
abbilden. Der Mittelwert und die Varianz der fraktalen Dimensionen werden sehr gut
durch diese beiden Ensembles beschrieben. Dennoch wird die vollständige Wahrschein-
lichkeitsverteilung der fraktalen Dimensionen der Eigenzustände des Bose-Hubbard-
Hamiltonians mit zunehmender Systemgröße immer besser unterscheidbar von jener der
Zufallsmatrizen, womit systemspezifische Merkmale des Bose-Hubbard-Modells auch für
unendliche Systemgrößen zugänglich bleiben.

Zuletzt untersuchen wir, wie sich die Ununterscheidbarkeit der Teilchen auf das Auftreten
von Quantenchaos auswirkt und stellen fest, dass dieses umso schwächer wird, je besser
die Bosonen voneinander unterscheidbar sind.

iii





Abstract

The dynamics of classical and quantum systems can basically be divided into two classes,
regular and chaotic. Chaos in classical systems is characterized by the fact that infini-
tesimally small perturbations of the initial conditions have large effects at later times.
For quantum systems whose classical limit is chaotic according to this definition it is
known that the eigenenergy differences follow the same statistical distribution as the
eigenvalue distances of Gaussian random matrices. Quantum chaos, in the sense of
“chaos in quantum systems”, can hence be defined via the statistics of energy eigenvalues.
However, since the spectrum on its own is not sufficient to fully determine a quantum
system, one can expect the eigenstates to reveal further characteristics of quantum chaos,
beyond spectral properties.

In the present thesis, we investigate in detail how quantum chaos manifests itself in
the eigenstate structure, characterized by the eigenstates’ fractal dimensions in certain
natural basis sets of the system. As a model, we use the Bose-Hubbard Hamiltonian,
which describes bosons on a lattice that can tunnel between neighbouring lattice sites
and interact locally with each other. At the energies, tunneling strengths, and interaction
strengths for which the system is quantum-chaotic according to spectral statistics, the
eigenstates delocalize among the states of both natural basis sets, in the limit of large
system size (i.e., large numbers of particles and sites). Simultaneously, the fluctuations
of the fractal dimensions among close-in-energy eigenstates decrease drastically and show
qualitatively basis-independent properties. Furthermore, the boundaries of the quantum-
chaotic region are reflected in the eigenstates by strongly asymmetric distributions of
the fractal dimensions.

In the quantum-chaotic region, we compare the localization properties of the eigen-
states with the corresponding predictions for Gaussian random matrices and for so-called
embedded random-matrix ensembles, which, in contrast to the Gaussian random ma-
trices, reproduce the two-body nature of the Bose-Hubbard model. The mean and the
variance of the fractal dimensions are excellently well described by these two ensembles.
Nevertheless, as system size grows, the full probability distributions of the eigenstate
fractal dimensions of the Bose-Hubbard Hamiltonian becomes ever more distinguishable
from that of random matrices, such that distinctive features of the Bose-Hubbard model
remain accessible even for infinite system sizes.

Finally, we examine how particle indistinguishability affects the emergence of quantum
chaos, and observe that the latter is weaker the more distinguishable the bosons are from
each other.
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Errata

As of 19th July 2022, the author became aware of the following errors and typos in the
submitted version of the present thesis:

• page 15, line 11: replace “Conditions” by “For N = 2, conditions”

• page 15, line 13: after “up to an energy scale v that can be set to v = 1” add “and
up to a constant shift in energy which is here neglected”

• page 32, caption of Figure 2.6: before “for N = L = 5” add “, on the full Hilbert
space”

• page 34, line 16: after “governing the classical Hamiltonian” add “at fixed scaled
energy”

• page 40, line 5: replace “Appendix A.2.1” by “Appendix A.2.3”

• page 41, line 21: replace “as above” by “as on the facing page”

• page 48, line 16: add a comma after “edges and”

• page 56, line 20: add a comma after “populate the same site and”

• page 140: Reference [169] is now published as C. Berke, E. Varvelis, S. Trebst,
A. Altland, and D. P. DiVincenzo, “Transmon platform for quantum computing
challenged by chaotic fluctuations”, Nat. Commun. 13, 2495 (2022).
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Chapter 1.

Introduction

1.1. Classical and Quantum Chaos
In classical mechanics, research on chaos dates back at least to the works on celestial
mechanics by Henri Poincaré around the year 1900 [1], who theoretically showed the
existence of complicated orbits that are very easily distorted by perturbations. Since
then, chaos has been intensely studied in classical [2–8] and later also in quantum systems
[5, 6, 8–14]. In classical and quantum mechanics, chaos is a phenomenon of single-particle
as well as of many-particle systems and is found, for instance, in heavy atomic nuclei [15–
18], multi-electron atoms [19], the hydrogen atom in a strong magnetic field [20, 21] and
billiards of certain shapes [7, 12, 13, 22]. The latter are single-particle systems in which
the particle moves along straight lines in a confined two-dimensional domain and bounces
elastically whenever it hits the boundary, like a ball on a billiard table. Figures 1.1(a)–
(c) show three examples of billiards. While the motion on the rectangular billiard (a) is
regular (non-chaotic), the stadium billiard (b) and the Sinai billiard (c) are chaotic as
classical [23, 24] and as quantum systems [12, 22, 25, 26]. In the quantum domain, the
chaotic nature of the billiards is reflected in a rather involved structure of their quantum
eigenstates as compared to the regular case, as shown in Figures 1.1(d) and (e) (the
latter: reproduced from Reference [27]).

Classically, chaotic dynamics are characterized by an exponentially strong influence of
infinitesimally small changes of the initial conditions [3, 4, 7]. Related to chaos is the
concept of ergodicity [3, 6, 7], i.e., the emergence of classical trajectories that uniformly
visit all available phase space throughout their time evolution. These two concepts are,
however, not equivalent. For instance, the uniform motion of a single particle on a ring is
ergodic in the phase-space region defined by a constant momentum, since each trajectory
uniformly passes through all positions along the ring, but it is not chaotic, since two
trajectories with slightly different initial positions and momenta deviate from each other
just linearly in time.

In quantum mechanics, a similar definition of chaos via exponential sensitivity of the
dynamics to infinitesimally small perturbations of the initial conditions is intricate, since
positions and momenta are well defined only up to the order of ℏ, due to Heisenberg’s
uncertainty principle. Instead, random matrices yield a very powerful characterization of
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CHAPTER 1. INTRODUCTION

(a) (b) (c)

(d) (e)

Figure 1.1: Examples of regular (non-chaotic) (a) and chaotic (b), (c) billiards, and
contour lines of exemplary eigenfunctions of the rectangular (d) and the
stadium billiard (e). The shaded area in (c) is not part of the billiard area.
Subfigure (e) is reprinted with permission from S. Tomsovic and E. J. Heller,
“Semiclassical construction of chaotic eigenstates”, Phys. Rev. Lett. 70,
1405 (1993), Copyright 1993 by the American Physical Society.

quantum chaos. Random matrices were first introduced in physics by Wigner, to describe
the excitation spectra of complex nuclei [15–17]. Apart from nuclear spectra, random-
matrix theory has turned out to be of great use also for other fields of mathematics
and physics [28, 29], such as number theory [30–32], econophysics [33, 34] or disordered
systems [35]. In the field of quantum chaos, it was shown that the spectra of quantum
systems with a fully chaotic classical limit (for the symbolic limit “ℏ → 0”, which will be
qualified in Section 2.2.1) follow the statistics of Gaussian random-matrix ensembles [36–
39], which are a model for random Hamiltonians. In contrast, the spectra of quantum
systems with a strictly regular classical limit are, in general, well described by Poisson
statistics [40, 41]. These two limiting properties have thus been taken as a definition of
quantum chaos and regularity, respectively, even in cases where a well-defined classical
limit is not available.

While quantum chaos can thus be identified by spectral properties only, the spectrum
does not fully determine the dynamics of a quantum system, but further knowledge
of the energy eigenstates is needed [42]. To date, various slightly differing concepts of
quantum-chaotic eigenstates are used in the literature. For instance, quantum chaos
in the eigenstates has been characterized by their compliance with the eigenstate ther-
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1.1. CLASSICAL AND QUANTUM CHAOS

malization hypothesis [43–47]. This hypothesis, introduced to explain the emergence of
statistical mechanics from quantum dynamics in closed systems, states that the expecta-
tion values of local observables O in the energy eigenstates agree with the microcanonical
ensemble average of O at the corresponding energy, up to fluctuations decaying with
system size [8, 43, 44]. Alternatively, quantum-chaotic eigenstates have been defined by
their agreement with random-matrix predictions, for instance in terms of their entangle-
ment properties [48, 49] or according to their structural features in certain natural bases
of the system [11, 14, 50–56].

When investigating the structure of quantum states, the concept of multifractality [57–
60] turns out to play an important role. In the limit of infinite Hilbert space dimension,
multifractal states participate of a diverging number of basis states, which is nevertheless
a vanishing fraction of the full basis. This property has been found to be a generic
feature of many-particle ground states [61, 62] and of the eigenstates in many-body
localized systems [63–65], i.e., in disordered systems of interacting particles that exhibit
an insulating phase in their excitation spectrum [66–71]. Multifractal analysis has been
successfully applied to characterize the Anderson transition [72, 73] between localized
and delocalized single-particle states in a disordered lattice [73–78], to describe ground-
state phase transitions in many-body systems [79–81], and to analyse avoided crossings
in a many-particle energy spectrum [82, 83].

Recently, the multifractal properties of the eigenstates of quantum-chaotic spin systems
were investigated [84], finding qualitative agreement with the predictions of random-
matrix theory as well as quantitative deviations. Such differences could, however, be
expected, since the Gaussian random-matrix ensembles are ergodic by construction [85],
while classical dynamical systems typically show both chaotic and regular behaviours,
depending on the initial conditions (mixed phase space) [86], a feature that is also found
to be reflected by the time evolution [87–90] and the eigenstates [88, 91, 92] of the
corresponding quantum models.

Specifically for chaotic many-particle quantum systems, where typically only few particles
interact collectively with each other, further deviations from the Gaussian random-
matrix ensembles would be expected, since the latter do not capture such few-body
nature of the interactions. So-called embedded ensembles [93–98] have been introduced
to describe many-body quantum chaos more accurately. These ensembles are random,
like the Gaussian random-matrix ensembles, and they involve only few-body interactions,
like typical many-particle systems.

Besides interactions, also particle indistinguishability has a large impact on many-
particle dynamics via interference effects [99–103], which, e.g., influence the time evolu-
tion of quantum expectation values for few-particle observables and of their correspond-
ing fluctuations [100, 104–106]. In the context of quantum chaos, spectral statistics
in a system of partially distinguishable bosons were reported in Reference [105]. Nev-
ertheless, how particle indistinguishability is related to quantum chaos in many-body
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CHAPTER 1. INTRODUCTION

systems and whether this relation may set many-particle quantum chaos apart from
single-particle quantum chaos remain largely unanswered questions so far.

In recent years, the existence and absence of a quantum-chaotic regime has been intensely
investigated, particularly in many-particle systems subject to strong interactions and
disorder [66–71]. Typical models are given by spin chains [107–110] and by interacting
particles on a lattice [111–113]. These systems are also of high experimental relevance
since they can be implemented in a highly controllable manner with ultracold atoms in
optical lattices [114–129]. Specifically, on-site interacting bosons in a lattice described
by the Bose-Hubbard Hamiltonian provide a paradigmatic model for which traces of
quantum chaos have been found theoretically [56, 130–143] and experimentally [116,
117, 124, 127, 129]. These results are presented in more detail in the following section.

1.2. Quantum Chaos in the Bose-Hubbard Hamiltonian
In the Bose-Hubbard model of N bosons on L lattice sites, the bosons can tunnel between
nearest-neighbouring sites, with tunneling strength J , and interact with each other on
the same lattice site, with interaction strength U . When J and U are of comparable
magnitude, signatures of quantum chaos have been found theoretically with respect to
various figures of merit: Energy statistics was investigated via the distributions of level
spacings s and of level spacing ratios r for one spatial dimension [131, 135, 141] and also
for small two-dimensional Bose-Hubbard lattices [142], finding very good agreement with
the statistics of the corresponding Gaussian random-matrix ensemble. One of the first
examples of these results is shown in Figure 1.2(a) (reproduced from Reference [131]),
where the cumulative distribution function I(s) of level spacings is displayed in compar-
ison with the predictions from random-matrix theory and from Poisson statistics. For
the scaled tunneling strength J/UN = 0.292 shown in this figure, the spectral statis-
tics of a single symmetry-induced subspectrum and of two such subspectra are in good
agreement with the corresponding random-matrix predictions, while they clearly deviate
from Poisson statistics.

Another example is shown in Figure 1.2(b) (reproduced from Reference [141]), where
the numerically calculated distribution Pnum(r) of level spacing ratios for the Bose-
Hubbard Hamiltonian is compared to the random-matrix prediction PRMT(r), which is
known approximately analytically [144]. Here, the distance of these two distributions is
quantified via the L1 norm of their difference,

‖Pnum − PRMT‖ =
∫ 1

0
|Pnum(r) − PRMT(r)| dr. (1.1)

This distance becomes minimal for intermediate values 2 ≲ UN/J ≲ 20. For the small
two-dimensional lattices also the number variance Σ2(ℓ), which is very sensitive to long-
range correlations in the spectrum [29], was examined as a function of the energy interval
width ℓ, finding good agreement with the random-matrix prediction [142]. Furthermore,

4



1.2. QUANTUM CHAOS IN THE BOSE-HUBBARD HAMILTONIAN

Figure 1.2: Signatures of quantum chaos in the Bose-Hubbard Hamiltonian: (a) cumu-
lative level spacing distribution I(s) for N = L = 8, J/UN = 0.292, and
one and two symmetry-induced subspectra of the Bose-Hubbard model (solid
lines) compared to Poisson statistics (dash-dotted), and to random-matrix
predictions for one (dashed) and two independent spectra (dotted), (b) dis-
tance between the Bose-Hubbard distribution Pnum(r) of level spacing ratios
r and the random-matrix distribution PRMT(r) [Equation (1.1)] for L = 5,
N = 15 (red squares) and L = 5, N = 25 (black circles), and classical
ergodicity for L = 5, N = 25, (c) Shannon entropy S [Equation (1.2)] of
eigenstates in the eigenbasis of the interaction term, (d) expectation value
G1 of the tunneling operator [Equation (1.3)] versus eigenenergy Eα.
Copyright information: (a) reproduced from Reference [131], courtesy of
A. Buchleitner, (b) reprinted from R. Dubertrand and S. Müller, “Spectral
statistics of chaotic many-body systems”, New J. Phys. 18, 033009 (2016)
under the terms of the CC BY 3.0 license], (c) © IOP Publishing Ltd and
Sissa Medialab, reproduced from C. Kollath et al., “Statistical properties
of the spectrum of the extended Bose-Hubbard model”, J. Stat. Mech.
2010, P08011 (2010) by permission of IOP Publishing, all rights reserved,
(d) reprinted with permission from G. Biroli et al., “Effect of Rare Fluctu-
ations on the Thermalization of Isolated Quantum Systems”, Phys. Rev.
Lett. 105, 250401 (2010), Copyright 2010 by the American Physical Society.
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averages of the level spacing ratio r have been computed locally in the spectrum for spe-
cific values of the interaction and tunneling strengths, revealing that the spectral statis-
tics differ from those of Gaussian random matrices at the edges of the spectrum [135].
Spectral chaos was even demonstrated to be correlated with the emergence of classical
ergodicity [141], as shown in Figure 1.2(b). Here, the degree of classical ergodicity is
quantified by comparing the full energy shell, i.e., the set of all phase-space points with
the same energy, to the amount of phase space actually visited by the trajectories of the
corresponding classical system for N � 1.

In terms of the eigenstates, Shannon information entropies

S = −
∑

α

|ψα|2 ln |ψα|2 , (1.2)

of eigenstate intensities |ψα|2 in a given basis have been calculated as averages over all
eigenstates in the eigenbases of the Hamiltonian’s tunneling and interaction term [131]
as well as for individual eigenstates [131, 135]. Figure 1.2(c) (reproduced from Refer-
ence [135]) shows the Shannon entropy of individual eigenstates as a function of energy
for several values of U/J . Similarly, participation ratios and entanglement entropies of
eigenstates [140], as well as the probability distribution of the eigenstate amplitudes [56]
have been considered. All these quantifiers reveal that the eigenstates in the center of
the spectrum are on average distributed over a large portion of the basis states once U
and J are of similar magnitude.

One- and two-particle observables, such as the tunneling operator [134, 136, 137, 139],
the occupation numbers of the lattice sites [137, 139], the occupation numbers of single-
particle momentum states [136], and the correlation between on-site occupation numbers
[137, 139], have been investigated via their expectation values in energy eigenstates [134,
136], their eigenstate-to-eigenstate fluctuations [137] and via their off-diagonal matrix
elements in the energy eigenbasis [139]. These observables have been found to agree
with certain consequences of the eigenstate thermalization hypothesis [8, 43, 44] (as
introduced on page 3). As an example, Figure 1.2(d) (reproduced from Reference [134])
shows the expectation value

G1 = 1
L

∑
j

〈
a†

jaj+1
〉

(1.3)

of the scaled tunneling operator with respect to the energy eigenstates, for U = J .
Here, a(†)

j is a bosonic operator that annihilates (creates) a boson localized at the jth
site of the lattice. For energies below E/JL ≲ 1.5, this expectation value becomes
an approximately smooth function of the energy accompanied by small fluctuations, in
agreement with the eigenstate thermalization hypothesis.1

1Note that the eigenstate thermalization hypothesis entails the even stronger prediction that this smooth
function of energy is identical to the microcanonical ensemble average, a statement that goes beyond
the results presented in Reference [134] for G1.
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1.2. QUANTUM CHAOS IN THE BOSE-HUBBARD HAMILTONIAN

Also from the time evolution after a quench, traces of quantum chaos have been observed
in the Bose-Hubbard model [130, 132–134, 136, 138]. Quenching from an interaction-
dominated regime to a tunneling-dominated regime, or the other way around, leads
to nonequilibrium steady states with memory of the initial state, while quenching to
intermediate interactions gives approximately thermal values of correlations [132]. In
the latter regime, Bloch oscillations were found to decay irreversibly on short time scales
[130]. Also the time-dependent expectation values of observables fluctuate around values
that are reasonably well described by the canonical and microcanonical ensemble of
statistical mechanics [138]. Furthermore, dynamical signatures of quantum chaos were
also found in the survival probability of the initial state [143], even without resolving
the symmetries of the system.

Apart from these theoretical results, signatures of quantum chaos in the Bose-Hubbard
Hamiltonian have also been found experimentally in cold-atom systems [116, 117, 124,
127, 129]. An initially confined cloud of bosons was shown to expand diffusively for
intermediate values of U/J , while ballistic dynamics are observed for dominating inter-
action or dominating tunneling [116]. The theoretical result of Reference [130] on the
irreversible decay of Bloch oscillations has also been confirmed experimentally [117]. Dy-
namics after a quench show that the Bose-Hubbard system reaches a steady state that
locally, i.e., in subsystems of few sites, appears thermal, in agreement with the eigen-
state thermalization hypothesis and as measured by the particle number distribution
on individual sites, while the system globally remains in a pure, and hence nonthermal,
state [124]. In this regime, the entanglement entropy of few-site subsystems with the
remaining lattice increases linearly with the number of sites and is in good agreement
with the thermal entropy of statistical mechanics [124, 129]. Furthermore, also the cor-
relations between on-site occupation numbers were shown to agree with the predictions
for a thermal ensemble [127]

Additionally, the Bose-Hubbard model has been used as a paradigmatic model to study
theoretically the impact of particle indistinguishability on many-body dynamics in in-
teracting systems [100, 104–106]. It was shown that the expectation values of on-site
occupation numbers and the corresponding variances, as functions of time, fluctuate the
strongest for indistinguishable particles [100, 105, 106]. The influence of particle indis-
tinguishability on the dynamics seems to be more prominent for intermediate values of
U and J [100, 105], albeit with a strong dependence on the initial configuration. In addi-
tion, energy level statistics in the subspaces induced by particle permutation symmetry
were investigated for specific values of the interaction and tunneling strengths, finding
increasingly better agreement with the predictions from random-matrix theory as the
interaction strength is increased from small to intermediate values [105].

Despite the abundant literature, quantum chaos in the Bose-Hubbard Hamiltonian has
not been investigated thoroughly as a joint function of energy, interaction, and tunnel-
ing strength so far. Furthermore, spectral chaos in the Bose-Hubbard model has not
been unambiguously correlated with the eigenvector structure, which in turn has not
been connected systematically to Gaussian random-matrix theory and to the more re-
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CHAPTER 1. INTRODUCTION

fined embedded ensembles. Moreover, while some results about the influence of particle
indistinguishability on the dynamics of observables and on spectral chaos are known,
the exact relation between particle indistinguishability and many-body quantum chaos
remains unclear. These topics will be addressed in the following chapters.

1.3. Objectives and Outline of the Thesis
In this thesis, we use concepts from multifractal analysis to systematically relate spectral
signatures of quantum chaos in the Bose-Hubbard Hamiltonian to the structure of the
corresponding many-body eigenstates. In this way, we intend to identify the correct
parameter controlling the emergence of quantum chaos, as well as construct an accurate
energy-resolved picture of the quantum-chaotic domain. We compare the eigenstates’
structure in the quantum-chaotic region to predictions from the standard Gaussian and
embedded random-matrix ensembles, and unveil the asymptotic properties of the eigen-
states for increasingly larger Hilbert spaces. In particular, we scrutinize whether in the
quantum-chaotic regime specific features of the Bose-Hubbard model remain accessible
as the thermodynamic limit of infinite system dimension is approached, or whether, on
the contrary, only the universal behaviour dictated by random-matrix theory prevails.
Additionally, by generalizing the Hamiltonian to include distinguishable bosons, we in-
vestigate the interplay of many-body quantum chaos and particle indistinguishability.
Parts of the research presented here are already published in References [145, 146].

The remainder of this thesis is organized in the following way: In Chapter 2 the basic
concepts and methods applied throughout this thesis to investigate quantum chaos are
presented. We also introduce in this chapter the Bose-Hubbard Hamiltonian and dis-
cuss its properties in detail. In Chapter 3, we examine markers of quantum chaos in
the spectrum and the eigenstates of this model, as functions of the energy and of the
interaction and tunneling strengths. These quantum-chaos signatures are linked to Gaus-
sian random matrices and to an appropriate embedded ensemble in Chapter 4, finding
system-specific characteristics on top of the universal features predicted by random-
matrix theory. Chapter 5, which includes results obtained in cooperation with Eric
Brunner and Dr. Gabriel Dufour, addresses the impact of particle indistinguishability
on the emergence of quantum chaos. We discuss our results and conclude in Chapter 6.
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Chapter 2.

Theoretical Background and Methods

The aim of this chapter is to give an overview of the theoretical foundations and methods
developed in the literature and used throughout this thesis. The focus will be laid
on the specific aspects relevant for the scope of our work. For topics going beyond
those presented here, references to further literature are given at appropriate locations
throughout the text.

2.1. Classical Chaos and Integrability
In this section, we briefly discuss some aspects of classical chaos, following mainly
References [3, 4, 6, 7, 147], before we turn to the implications of classical chaos on
the quantum realm in the next section.

Classically, the state of a mechanical system with n degrees of freedom is described by
a point (q,p) = (q1, . . . , qn, p1, . . . , pn) in the 2n-dimensional phase space of general-
ized positions qi and generalized momenta pi. In the absence of dissipative forces, the
dynamics is governed by Hamilton’s equations of motion

q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
, (2.1)

where H = H(q,p) is the Hamiltonian function and the dot denotes time derivative.
With these equations, the (total) time derivative of a function A(q,p) is

dA
dt

=
∑

i

q̇i
∂A

∂qi
+
∑

i

ṗi
∂A

∂pi
= {A,H} , (2.2)

with the Poisson bracket

{A,B} :=
∑

i

∂A

∂qi

∂B

∂pi
−
∑

i

∂B

∂qi

∂A

∂pi
. (2.3)

To precisely describe chaos in such a mechanical system, one defines Lyapunov exponents
as

λ(x) = lim
t→∞

lim
|δX0(x)|→0

1
t

ln |δXt(x)|
|δX0(x)|

, (2.4)
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CHAPTER 2. THEORETICAL BACKGROUND AND METHODS

where x = (q,p) is a point in phase space, δX0(x) = x′ − x is the initial displacement
between x and another phase-space point x′ and δXt(x) is the corresponding differ-
ence after evolution for time t according to Equations (2.1). Here, the limit λ(x) can
depend on the initial orientation of δX0(x), such that each point in phase space can
be characterized by several Lyapunov exponents. Positive Lyapunov exponents roughly
correspond to exponential growth |δXt(x)| / |δX0(x)| ∼ eλ(x)t as t → ∞, while negative
values of λ(x) signal exponential decay towards 0, and λ(x) = 0 can correspond to any
type of sub-exponential growth or decay.

We consider systems as chaotic if their Lyapunov exponents for phase-space points with
bounded1 trajectories are positive for typical initial conditions, i.e., for all phase-space
points x and orientations of δX0(x) except for a set of measure zero [7]. In other
words, two solutions of Equations (2.1) starting from infinitesimally close initial condi-
tions depart from each other exponentially in time in a chaotic system. Note that the
infinitesimal nature of the difference of initial conditions is crucial here, since otherwise
the boundedness of the trajectories would prevent them from exponentially departing
from each other. We understand systems as regular if they are not chaotic according to
this definition. Typical Hamiltonian systems are neither fully regular nor fully chaotic,
but exhibit both types of dynamics for initial conditions in different regions of phase
space (“mixed phase space”) [86]. Note that chaos in a dynamical system can be defined
using quantifiers other than the Lyapunov exponents, which might, however, yield non-
equivalent definitions of chaos. The interested reader may find a discussion of further
concepts beyond the scope of this work, such as Kolmogorov-Sinai entropies, C-systems,
Bernoulli systems or mixing, for example in References [3, 4, 6–8].

An important property related to classical chaos is ergodicity, which, however, does not
necessarily imply chaos in the sense of Lyapunov exponents as described above [3, 6–8].
In an ergodic system, the phase-space average of any integrable function f of phase-
space points x = (q,p) equals the long-time temporal mean of f along a trajectory with
typical initial conditions x(0),∫

f(x) d2nx = lim
T →∞

1
T

∫ T

0
f(x(t)) dt. (2.5)

Here, “typical initial conditions” mean that x(0) may be any point of phase space except
for a set of measure zero. In ergodic systems, typical trajectories hence come arbitrarily
close to any point in phase space and therefore need to cover a phase-space volume of
the same dimension as the full phase space. Note that ergodicity is usually quite difficult
to prove exactly [3, 4, 7].

A relevant concept that is closely related to regular systems is integrability. We speak
of an integrable system, if it has as many independent conserved quantities in invo-
1I.e., the trajectory starting at x for time t = 0 stays within a ball of finite radius R for all times.
This property is introduced to rule out trivial cases such as the Hamiltonian H = pq with trajectories
(q(t), p(t)) = (q0e

t, p0e
−t), which does not show typical features related to chaos such as ergodicity as

defined in Equation (2.5), despite having positive Lyapunov exponents for typical initial conditions.
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2.1. CLASSICAL CHAOS AND INTEGRABILITY

lution (integrals of motion) as degrees of freedom [6, 7, 147], otherwise we speak of a
nonintegrable system. Here, we define a quantity A = A(q,p) as conserved if it fulfils

dA
dt

= {A,H} = 0. (2.6)

Independence entails that none of the conserved quantities can be expressed as a func-
tion of the others, and involution means that the dynamics generated by the conserved
quantity Ak, treating it as a “Hamiltonian”, leaves the other conserved quantities Al

unchanged:

{Al, Ak} = 0. (2.7)

Even if the Ak are independent, this involution property is not necessarily fulfilled.
Consider, for instance, the free particle in three dimensions: Here, all three components
of the angular momentum are conserved and obviously independent of each other, but
involution is not fulfilled, since

{Lx, Ly} = Lz, {Ly, Lz} = Lx, {Lz, Lx} = Ly.

In contrast to chaotic systems, where ergodicity implies that typical trajectories in the
2n-dimensional phase space fill a volume of dimension 2n, trajectories in an integrable
system are restricted to n-dimensional manifolds given by the conditions

Ak = ck, k = 1, . . . , n, (2.8)

where ck are constants. The involution condition restricts the shape of these manifolds to
n-dimensional (deformed) tori [2, 4]. The time evolution on these tori can be described
via action-angle variables (I1, . . . , In, θ1, . . . , θn) as

Ik(t) = Ik(0), θk(t) = ωkt+ θk(0), (2.9)

with ωk = ∂H/∂Ik, i.e., the trajectories show, in general, a quasiperiodic motion on
the torus surface with angular velocities ωk [2, 4, 7]. According to Equations (2.9), two
trajectories in an integrable system depart from each other maximally linearly with time.
Consequently, integrable systems are regular.

As an illustrative example, consider the Hamiltonian

H(p, θ, t) = p2

2
+K cos(θ)

∞∑
n=−∞

δ(t− n), p, θ ∈ [0, 2π], (2.10)

which is known as the standard map and which describes a particle on a ring subject
to a periodic kicking force of strength K [4, 7, 12, 13]. The corresponding equations of
motion are

ṗ = K sin(θ)
∞∑

n=−∞
δ(t− n), θ̇ = p, (2.11)
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Figure 2.1: Stroboscopic picture of the dynamics of the standard map, Equation (2.10),
for 300 randomly chosen initial configurations and 100 time steps for each
initial configuration, for K = 0.1 (left), K = 1 (center) and K = 2 (right).

which at integer times t = n yield the following momentum and angle

pn = pn−1 +K sin(θn−1) mod 2π, θn = θn−1 + pn mod 2π. (2.12)

The parameter K is known to tune between fully regular dynamics for K = 0 and
increasingly chaotic motion for K > 0 [7, 12, 13]. Figure 2.1 shows a visualization of the
phase-space dynamics for K = 0.1, K = 1 and K = 2 via the orbits

{(θn, pn) : n = 0, 1, . . . , 100} ,

for 300 randomly chosen initial configurations (θ0, p0). In such a stroboscopic picture [4,
7], the orbits of regular integrable motion reproduce the n-dimensional toroidal structure
(circles for n = 1) of the corresponding trajectory, while the orbits of chaotic motion fill
higher-dimensional portions of phase space without resembling any tori. Note that in the
representation of phase space as a two-dimensional plane, where p = 0 and θ = 0 have
to be identified with p = 2π and θ = 2π, respectively, tori can appear as lines instead
of circles. As expected, the picture shows mainly toroidal structures for K = 0.1, while
increasingly larger granular chaotic regions emerge between the tori with increasing K,
until these regions of chaos fill most of the picture for K = 2.

2.2. Quantum Chaos and Random Matrix Theory
2.2.1. Fundamental Concepts
When quantum effects come into play, chaotic and regular systems can no longer be
distinguished from one another simply via the time evolution of trajectories with in-
finitesimally close initial conditions, since q and p can only be determined up to a
finite phase-space volume ∼ ℏn, according to Heisenberg’s uncertainty principle. A very
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2.2. QUANTUM CHAOS AND RANDOM MATRIX THEORY

straightforward alternative approach to define chaos in the quantum domain would be
to consider the dynamics of the corresponding classical systems. Here, correspondence
means that the classical Hamiltonian function Hclass is the limit of the quantum mechan-
ical Hamilton operator Hqu upon formally sending ℏ to 0, which in practice means that
the typical actions S of the system fulfil S/ℏ → ∞ [6, 148, 149]. Via this approach,
we call a quantum system chaotic (regular), if its corresponding classical analog shows
chaotic (regular) dynamics according to our discussion in the preceding section.2 How-
ever, the classical limit might be difficult to obtain or might not even exist, for instance
in nuclear systems with many constituents, where the exact forms of the interactions
are very complicated. A definition of quantum chaos that is applicable also in these
cases will be discussed in the next sections, where we introduce the concept of random
matrices.

In contrast to the concept of chaos, the notion of conserved quantities and hence also
of integrability directly translates from classical Hamiltonian mechanics to quantum
mechanics via the replacement of Poisson brackets {·, ·} by (scaled) commutators [·, ·]/iℏ:
A time-independent observable A is conserved if its commutator with the Hamiltonian
operator H vanishes,

[A,H] = 0, (2.13)

that is, if the underlying Hilbert space of the system has a basis of common eigen-
states |ψ〉 of A and H [42],

H |ψ〉 = E |ψ〉 , A |ψ〉 = a |ψ〉 , (2.14)

with quantum numbers E, a. We speak of an integrable system if it has as many degrees
of freedom n as independent conserved observables Ak that commute with each other,
i.e., if n observables are sufficient to define a complete set of commuting observables.
Hence, in an integrable system each eigenstate |ψ〉 of H can be described by a complete
set of n “good” quantum numbers ak such that

Ak |ψ〉 = ak |ψ〉 , (2.15)

and one can thus write

|ψ〉 = |a1, . . . , an〉 . (2.16)

These quantum numbers ak are the equivalent of the conserved actions Ik in classical
integrable systems.
2Note, however, that signatures of classical chaos such as ergodicity [Equation (2.5)] emerge on infinite
timescales only, such that one has to consider the simultaneous limits ℏ → 0 and t → ∞ to relate
quantum and classical dynamics appropriately. Since here we are interested in the classical dynamics
only, we may safely skip these details and refer the reader to Reference [148] for a thorough discussion
of these two simultaneous limits.
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2.2.2. Gaussian Random Matrices
A random matrix is a matrix in which all or at least some entries are random numbers.
To describe quantum observables and unitary time evolution with different underlying
symmetries, various ensembles of Hermitian and unitary random matrices have been
introduced in the literature throughout the years; for an overview, see References [13,
29, 38, 150]. In the following, we discuss only the Gaussian random-matrix ensembles,
which have turned out to be very powerful in the context of quantum chaos [13, 37, 38,
98, 150, 151].

The Gaussian orthogonal, unitary and symplectic ensembles (GOE, GUE, GSE) are
models for random Hamiltonians H, that is, they provide a probability density PGxE
(with x = O, U or S) on a subset M of the set of N × N Hermitian matrices. Their
defining properties are the stochastic independence of the individual matrix elements hij

(except for symmetry constraints given by hermiticity and by the definition of M),

PGxE(H) =
∏
i,j

PGxE(hij), (2.17)

and their invariance with respect to transformations H 7→ AHA−1 that leave the set M
invariant,

PGxE(H) = PGxE(AHA−1). (2.18)

Particularly for GOE, the Hamiltonian H is drawn from the set of real symmetric ma-
trices and the transformations that leave this set invariant are given by the orthogonal
group O(N ). Choosing this subset of the full set of Hermitian matrices is motivated
by the following: Generically, the time reversal operator T is an antiunitary operator,
〈Tφ|Tψ〉 = 〈φ|ψ〉∗, and it fulfils T 2 = +1 or T 2 = −1 [13, 98]. Now assume T 2 = +1 and
furthermore that the HamiltonianH is invariant under the action of T , i.e., THT−1 = H.
Then, for an arbitrary state |φ1〉 the state |ψ1〉 := |φ1〉 + T |φ1〉 is an eigenstate3 of T
with eigenvalue 1,

T |ψ1〉 = T |φ1〉 + T 2 |φ1〉 = T |φ1〉 + |φ1〉 = |ψ1〉 . (2.19)

Now choose an arbitrary state |φ2〉 orthogonal to |ψ1〉 and define |ψ2〉 = |φ2〉 + T |φ2〉.
Then T |ψ2〉 = |ψ2〉 and

〈ψ1|ψ2〉 = 〈ψ1|φ2〉 + 〈ψ1|Tφ2〉 = 0 + 〈Tψ1|Tφ2〉 = 〈ψ1|φ2〉∗ = 0. (2.20)

Iterating this procedure, one can construct a complete orthogonal basis of the Hilbert
space consisting of states |ψi〉 = T |ψi〉. In this basis, the Hamiltonian is a real matrix:

〈ψi|H |ψj〉 = 〈Tψi|TH |ψj〉∗ = 〈Tψi|HT |ψj〉∗ = 〈ψi|H |ψj〉∗ . (2.21)
3Note that such eigenstates cannot be found for T 2 = −1, since then the states |ψ〉 and T |ψ〉 are always
orthogonal to each other, 〈ψ|Tψ〉 = 〈Tψ|T 2ψ〉∗ = − 〈Tψ|ψ〉∗ = − 〈ψ|Tψ〉 = 0 [13].
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2.2. QUANTUM CHAOS AND RANDOM MATRIX THEORY

Hence, time-reversal invariant random Hamiltonians with T 2 = +1 are generically real
symmetric matrices and, consequently, GOE provides a suitable model for such Hamil-
tonians.

Other symmetry requirements with respect to time reversal and angular momentum lead
to GUE, which is defined on the full set of complex Hermitian matrices with the unitary
group U(N ) as the proper set of transformations, and to GSE, for which M is the set of
so-called quaternion real matrices, which is invariant under the action of the symplectic
group Sp(N ) [13, 29, 38, 98]. As we will show later, the physical model of interest in this
thesis belongs to the symmetry class described by GOE. We will therefore focus only on
GOE from now on, even though the properties of GUE and GSE are often very similar.

Conditions (2.17) and (2.18) uniquely define the probability density of GOE [13, 38, 98],

PGOE(H) ∼ exp
(

−Tr(H2)
4v2

)
= exp

−
∑
i,j

h2
ij

4v2

 , (2.22)

up to an energy scale v that can be set to v = 1. Writing this latter exponential as a
product of exponentials for the individual matrix elements hij and using the symmetry
constraint hij = hji,

exp

−
∑
i,j

h2
ij

4v2

 =
∏

i

exp
(

− h2
ii

4v2

)∏
j>i

exp
(

−2
h2

ij

4v2

)
, (2.23)

one can see that the numbers hij are independent Gaussian variables with mean

µ(hij) = 0 (2.24)

and variance

σ2(hij) = (1 + δij)v2. (2.25)

According to these properties, GOE random matrices are typically dense matrices with
hij 6= 0 for all indices i, j.

A variable transformation from the matrix elements hij to the eigenenergies Ei and to
N (N −1)/2 additional parameters that specify the eigenstates, followed by an appropri-
ate integration, yields the ensemble-averaged density of states (the probability density
of a single energy level) [13, 38, 98],

ρ̄GOE(E) =
{ 1

2πv2N (4N v2 − E2)1/2, |E| ≤ 2
√

N v2,

0, |E| > 2
√

N v2.
(2.26)

This result, which describes the upper half of an ellipse with semiaxes 2
√

N v2 and
1/
(
π

√
N v2

)
, is known as the Wigner semicircle law.
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2.2.3. Spectral Statistics as an Identifier of Quantum Chaos
An important feature of the Gaussian ensembles is given by the statistical properties of
their level spacings

sn = En+1 − En, (2.27)

where En is the nth eigenenergy (in ascending order) of the Hamiltonian H. For N = 2,
the distribution PGOE(s) can easily be deduced [13, 98]. In this case, the two eigenvalues
E± of H fulfil

E+ + E− = TrH = h11 + h22, E+E− = detH = h11h22 − h2
12. (2.28)

Consequently, for s = E+ − E− we have

s2 = (E+ + E−)2 − 4E+E− = (h11 − h22)2 + 4h2
12. (2.29)

For GOE, x1 := h11 − h22 and x2 := 2h12 are independent Gaussian variables with zero
mean and variance 4v2, according to Equations (2.24) and (2.25). Since x2

1 + x2
2 = s2,

they can be parametrized as x1 = s cosφ, x2 = s sinφ. Hence,

PGOE(s, φ) ds dφ = PGOE(x1, x2) dx1 dx2

= 1
2π(4v2)

exp
(

−x2
1 + x2

2
8v2

)
dx1 dx2

= 1
2π(4v2)

exp
(

− s2

8v2

)
s ds dφ,

which, after integrating over φ, yields

PGOE(s) = s

4v2 e
−s2/8v2

. (2.30)

The average spacing ∆ := 〈s〉 according to this distribution is

∆ =
∫ ∞

0
sPGOE(s) ds =

√
2πv, (2.31)

and, hence, with s̃ = s/∆:

PGOE(s̃) = πs̃

2
e− π

4 s̃2
. (2.32)

This distribution, even though it can be derived exactly only for N = 2, gives a good
approximation to the level spacing distribution of GOE also for larger dimensions [13,
38, 98], where, however, ∆ needs to be understood as a local (in energy) average spacing
defined by just few energy levels close to En. Note that, according to Equation (2.32),
the energy levels of GOE random matrices show level repulsion PGOE(s̃ = 0) = 0, i.e.,
the probability of finding two energy levels close to each other is strongly suppressed.
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It was shown [36–39] that the level spacing distribution of quantum systems with a fully
chaotic classical limit (via the procedure sketched in Section 2.2.1) follows closely the
predictions of GOE, GUE or GSE, depending on the system’s symmetries with respect
to angular momentum and time reversal (Bohigas-Giannoni-Schmit conjecture [37]).
This property provides a definition of quantum chaos even if a classical limit cannot be
easily established: Whenever the level spacing distribution of a quantum system follows
Equation (2.32) or the corresponding distributions for GUE or GSE, this system can be
understood as (quantum) chaotic.

For integrable systems, on the other hand, the energy levels are typically assumed to
follow Poisson statistics [13, 38, 40, 152]. In other words, the scaled level spacings s̃ =
s/∆, where ∆ is again defined locally in the spectrum, obey the exponential distribution

PPoisson(s̃) = e−s̃. (2.33)

This result is motivated by the following ideas [13, 40]: Consider a quantum system with
a Hamiltonian that depends on a continuous parameter λ that can induce avoided or
actual crossings of the energy levels. Furthermore, assume that, for any two energies E1,
E2, the probability of finding an energy level in the interval [E1, E1 +dE] is independent
of whether an energy level is found at E2 and depends only on the interval length dE.
This is a rather strong assumption and obviously not valid if avoided crossings occur as
functions of λ, since then two energy levels cannot come arbitrarily close. In integrable
systems, on the other hand, the emergence of avoided crossings is strongly reduced,
since the eigenstates involved in an avoided crossing mix with each other [42], which
contradicts the fact that eigenstates of integrable systems are uniquely specified by the
eigenvalues ak of the conserved quantities Ak. Under these assumptions, the conditional
probability density g of finding an energy level in [E + s,E + s + ds] given a level at
E is independent of E and s [13]. The probability density P (s) for the level spacing s
is the product of g, i.e., the probability density of finding an energy level at distance s
above the level E, and the probability that no other energy level is found between E
and E + s,

P (s) = g

(
1 −

∫ s

0
P (s′) ds′

)
. (2.34)

Differentiation with respect to s gives the equation

∂P (s)
∂s

= −gP (s), (2.35)

which, for the scaled level spacing s̃, is solved by Equation (2.33). Following a similar
reasoning, a Poissonian level spacing distribution is also expected if the spectrum is
the superposition of many independent subspectra. In this case, an energy level E1
of one subspectrum does not have an impact on the position of any energy level E2
belonging to another subspectrum, such that the probability of finding an energy level
in [E + s,E + s+ ds] is mostly independent of E and s.
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(a) (b)

Figure 2.2: Level spacing distributions P (s) of (a) a hydrogen atom in a strong magnetic
field and (b) a periodically kicked quantum spin, the so-called kicked quan-
tum top, compared to PGOE(s) [Equation (2.32), solid lines] and PPoisson(s)
[Equation (2.33), dashed line in (a)].
Copyright information: (a) reprinted with permission from D. Delande and
J. C. Gay, “Quantum Chaos and Statistical Properties of Energy Levels:
Numerical Study of the Hydrogen Atom in a Magnetic Field”, Phys. Rev.
Lett. 57, 2006 (1986), Copyright 1986 by the American Physical Society,
(b) reprinted by permission from Springer Nature Customer Service Cen-
tre GmbH: Springer, Z. Physik B, “Level-spacing distributions beyond the
Wigner surmise”, B. Dietz and K. Życzkowski, Copyright (1991).

There are, however, specific integrable systems, for which the above reasoning fails. For
instance, for the harmonic oscillator of frequency ω with energy levels [42]

En = ℏω
(
n+ 1

2

)
, (2.36)

the distribution of the scaled level spacing s̃ is

P (s̃) = δ(s̃− 1). (2.37)

A more thorough semiclassical derivation of Poissonian statistics for integrable systems
and for the superposition of many independent spectra can be found in References [13,
40]. Reference [13] furthermore discusses in more detail integrable systems that do not
obey Poissonian level statistics.

Figure 2.2 (reproduced from References [20, 153]) shows the comparison between the level
spacing distribution for two examples of quantum systems with a chaotic classical limit,
and the GOE and Poisson level spacing distributions. In both cases, the level spacing
distributions of these physical systems agree well with the prediction from GOE random-
matrix theory, while they deviate from the Poisson distribution predicted for integrable
systems. This figure thus confirms that chaotic and integrable quantum systems can
clearly be distinguished based on their level spacing distributions, and, hence, the above
definition of quantum chaos via the agreement of the level spacing distribution with the

18

https://doi.org/10.1103/PhysRevLett.57.2006
https://doi.org/10.1103/PhysRevLett.57.2006
https://doi.org/10.1007/BF01453768
https://doi.org/10.1007/BF01453768


2.2. QUANTUM CHAOS AND RANDOM MATRIX THEORY

predictions from the Gaussian random-matrix ensembles (see pages 16 and 17) is well
justified.

However, the calculation of the level spacing distribution requires knowledge of the mean
level spacing ∆, which can typically be defined only locally in the spectrum [13, 38, 98,
135], and the required unfolding procedure to scale the level spacings to ∆ = 1 through-
out the whole spectrum can generate long-range spectral correlations characteristic of
chaotic spectra, even for regular systems with originally uncorrelated eigenenergies [154,
155]. Furthermore, the number of levels taken into account for the unfolding can have a
serious impact on the result [135, 156]. To avoid these shortcomings of the level spacings
sn, one can instead use the level spacing ratios [135, 144, 157]

rn := min
{
sn

sn+1
,
sn+1
sn

}
(2.38)

as a measure of (short-range) spectral statistics. As long as the mean level spacing
∆ varies only on energy scales larger than ∆ itself, rn is obviously unaffected by any
unfolding procedure. However, higher-order level spacing ratios, such as

sn+k

sn
,

En+k+1 − En+1
En+k − En

,

with k � 1, might still see an influence of variations in the mean level spacing.

In a similar fashion as for PGOE(s) with dimension N = 2, an approximate analytical
expression of the probability distribution PGOE(r) has been derived [144] using N = 3,

PGOE(r) = 27
4

r + r2

(1 + r + r2)5/2 , (2.39)

which yields the mean level spacing ratio

〈r〉GOE = 4 − 2
√

3 ≈ 0.5359. (2.40)

This result compares well with high-precision numerical results for large N [144] giving

〈r〉GOE = 0.5307(1). (2.41)

For Poissonian level statistics, the probability density P (r) can easily be derived ana-
lytically (for details see Appendix A.1) and reads

PPoisson(r) = 2
(1 + r)2 , (2.42)

yielding the mean level spacing ratio

〈r〉Poisson = 2 ln 2 − 1 ≈ 0.3863. (2.43)
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Figure 2.3: Comparison of numerically obtained probability distributions Pnum of s̃ =
s/∆ (left) and of r (right) for GOE with their analytic approximations Pana
according to Equations (2.32) and (2.39), respectively (black lines). In the
lower panels, we show ∆P (x) = Pnum(x) − Pana(x), with x = s̃, r, where
Pana is evaluated at the center of each histogram bin. Orange histograms are
extracted from the full spectrum for r, and from 200 levels in the center of
the spectrum for s̃, for 1000 realizations of a 1000 × 1000 GOE matrix. The
blue curve in the upper left panel shows P (s̃) for the full spectrum.

P (r) has also been derived analytically for block-diagonal matrices of m GOE blocks with
identical dimensions [158]. Such matrices are a model for chaotic quantum Hamiltonians
with additional symmetries that lead to a separation of the underlying Hilbert space into
a direct sum of invariant subspaces. Particularly for m = 2, 〈r〉 evaluates to

〈r〉2 GOE = 0.423415. (2.44)

Figure 2.3 shows the numerically obtained distributions P (s̃) and P (r) for GOE matrices
of dimension N = 1000, the corresponding analytical predictions for small N [Equa-
tions (2.32) and (2.39)], and the differences ∆P (s̃), ∆P (r) between both. Here, the
unfolding from s to s̃ is performed naively by calculating the mean level spacing ∆ as a
global average over the full range of levels under consideration. Even though there are
small deviations between numerical data and analytics, as revealed by ∆P , an overall
good agreement is observed for s̃ in the center of the spectrum and for r throughout
the full spectrum. The level spacing distribution P (s̃) for the full spectrum deviates
clearly from the analytical prediction. This reveals that the mean level spacing ∆ may
in general not be assumed to be constant throughout the spectrum, and specific care
must be taken in the unfolding procedure in order to capture the energy dependence
of ∆. The distribution of level spacing ratios, on the other hand, does not show these
issues, which confirms that r is just weakly affected by variations of the mean level spac-
ing, even without unfolding, and is hence a more convenient quantifier of short-range
spectral statistics than s̃.
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2.2.4. Eigenvector Statistics of the Gaussian Orthogonal Ensemble
In addition to spectral properties, let us now discuss features of GOE eigenstates. As-
sume that

v = (v1, . . . , vN ) ∈ RN

is a normalized eigenvector of one realization H of GOE. Since

PGOE(H) = PGOE(OHOT ),

for any orthogonal matrix O, and since the vector Ov is an eigenvector of OHOT , the
probability to obtain the rotated vector Ov as an eigenvector of a GOE matrix is the
same as the probability to obtain v. Hence, the probability density PGOE(v) for a single
normalized GOE eigenvector needs to be independent of the direction of v, which means
that PGOE(v) is the uniform distribution on the N -dimensional unit sphere [13, 150],

PGOE(v) = Γ
(N

2

)
π− N

2 δ

( N∑
i=1

v2
i − 1

)
. (2.45)

Here, the first two terms are given by the normalization of the distribution and the delta
term encodes the normalization of v. Numerically, this distribution can be sampled
by generating vectors ṽ of independent Gaussian numbers ṽi with zero mean and unit
variance, and subsequent normalization of ṽ [159]. This procedure is justified by the
fact that the joint normal distribution of the vector components ṽi,

PGauss (ṽ) ∼ exp
(∑

i

ṽ2
i /2

)
,

depends only on the (Euclidean) norm of ṽ and not on its direction, in contrast to, e.g.,
the joint distribution of N independent uniformly distributed numbers. Integration of
Equation (2.45) over N −n vector components yields the joint probability density of the
remaining n entries [150, 151],

PGOE(v1, . . . , vn) =
Γ
(

N
2

)
π

n
2 Γ
(

N −n
2

) (1 −
n∑

i=1
v2

i

)(N −n−2)/2

, for
n∑

i=1
v2

i ≤ 1, (2.46)

and PGOE(v1, . . . , vn) = 0 otherwise. Particularly for n = 1 and n = 2, this formula
gives

PGOE(v1) =
Γ
(

N
2

)
√
π Γ

(
N −1

2

) (1 − v2
1

)(N −3)/2
, (2.47)

PGOE(v1, v2) = N − 2
2π

(
1 − v2

1 − v2
2

)N /2−2
. (2.48)

21



CHAPTER 2. THEORETICAL BACKGROUND AND METHODS

For n = 1, the variable transform u = N v2
1/2 yields

PGOE(u) =

√
2 Γ
(

N
2

)
√

Nπu Γ
(

N −1
2

) (1 − 2u
N

)(N −3)/2
, 0 ≤ u ≤ N/2, (2.49)

which in the limit N → ∞ reduces to the Porter-Thomas distribution [13, 150, 151]

PPT(u) = 1√
πu
e−u, 0 ≤ u < ∞. (2.50)

2.2.5. Embedded Random-Matrix Ensembles
As we have discussed in Section 2.2.3, Gaussian random matrices yield a definition of
quantum chaos even when the classical limit is not easily accessible. However, these
ensembles fail to reproduce the structure of many-particle Hamiltonians, since the latter
typically include only single-particle tunneling processes and few-body interactions, and
can hence be expressed as sparse matrices with correlated matrix elements, in contrast
to the dense and uncorrelated matrices provided by the Gaussian ensembles. To ob-
tain random-matrix ensembles that describe the structure of many-body systems more
faithfully, so-called embedded ensembles have been introduced [93–98], which consist of
Hamiltonians of the form

H = H1 +H2 + . . . Hn, (2.51)

where Hk is a k-particle operator.

In the following, assume a system of N identical particles, each having access to L
orthogonal single-particle states |i〉 associated with creation and annihilation operators
di, d†

i , such that d†
i |0〉 = |i〉 with the vacuum state |0〉. For simplicity, we focus only

on bosons and consider just single- and two-particle operators here. Then, the creation
operators d†

i act on the states |j〉, |i〉 as [42]

d†
i |j〉 = |ni = 1, nj = 1〉 (j 6= i), d†

i |i〉 =
√

2 |ni = 2〉 . (2.52)

Here, the states |ni, nj〉 are Fock states with ni particles in state |i〉 and nj particles
in state |j〉. We can now introduce operators D†

ij that create normalized (and correctly
symmetrized) two-particle states from the vacuum,

D†
ij = D†

ji = 1√
1 + δij

d†
id

†
j . (2.53)

Consequently, general single- and two-body Hamiltonians are given in second quantiza-
tion as

H1 =
L∑

i,j=1
h

(1)
ij d

†
idj , H2 =

L∑
i≥j,k≥l

h
(2)
ij,klD

†
ijDkl, (2.54)
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with Dkl =
(
D†

kl

)†
and h

(1)
ij =

(
h

(1)
ji

)∗
, h(2)

ij,kl =
(
h

(2)
kl,ij

)∗
. The bosonic two-body embed-

ded GOE ensemble is now defined by Hamiltonians

H = H1 + λH2, (2.55)

where the matrix elements h(1)
ij , h(2)

ij,kl are given by GOE random matrices as defined in
Section 2.2.2, i.e., they are independent Gaussian random variables with means

µ
(
h

(1)
ij

)
= µ

(
h

(2)
ij,kl

)
= 0 (2.56)

and variances

var(h(1)
ij ) = 1 + δij , var(h(2)

ij,kl) = 1 + δikδjl. (2.57)

The parameter λ sets the strength of the two-particle term and can induce a transition
between regular and chaotic spectra [98]. During the remainder of this thesis, whenever
we refer to “the” embedded ensemble, we always mean the bosonic two-body embedded
GOE ensemble defined in Equation (2.55).

By definition, matrix elements of embedded-ensemble Hamiltonians [Equation (2.55)]
may be nonzero only for those transitions between quantum states that are mediated
by at most two-particle processes, in contrast to GOE, which may yield nonzero matrix
elements between any two states. Consequently, every matrix element that is determin-
istically zero for the embedded ensemble vanishes also for any other two-body Hamilto-
nian, in any Fock basis. In addition to the enhanced sparsity as compared to GOE, also
the nonzero matrix elements are more strongly correlated in the embedded ensemble
due to the two-body character of the Hamiltonian. For example, consider the basis of
Fock states |n〉 = |n1, . . . , nL〉 associated with the creation and annihilation operators
d

(†)
i , such that

di |n〉 =
√
ni |n1, . . . , ni − 1, . . . , nL〉 ,

d†
i |n〉 =

√
ni + 1 |n1, . . . , ni + 1, . . . , nL〉 .

(2.58)

In this basis for N bosons and L single-particle states there are

N =
(
N + L− 1

N

)

diagonal entries

〈n|H |n〉 =
L∑

i=1
h

(1)
ii ni + λ

L∑
i≥j

h
(2)
ij,ij

ni(nj − δij)
1 + δij

,

which are, however, defined only by L+L(L+1)/2 independent numbers h(1)
ii and h(2)

ij,ij .
For GOE, on the contrary, all these diagonal entries would be independent random
variables.
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We note that the definition of H1 may vary slightly in the literature. For instance, in
References [98, 160]H1 is defined as a diagonal Hamiltonian in terms of the single-particle
states |i〉,

H1 =
L∑

i=1
Eid

†
idi, (2.59)

where the energies Ei might be given by the semicircle law of GOE, Equation (2.26),
or by any other distribution. However, we choose the form given in Equation (2.54) in
order to treat single- and two-particle terms on an equal footing.

To account for symmetries that a specific many-body Hamiltonian may have, one may
put additional constraints on the matrix elements of the embedded-ensemble Hamilto-
nians. For instance, let the single-particle states correspond to L sites on a linear lattice
labelled from 1 to L. Then, reflection symmetry about the center of the chain would
require

h
(1)
ij = h

(1)
(L+1−i)(L+1−j), h

(2)
ij,kl = h

(2)
(L+1−i)(L+1−j),(L+1−k)(L+1−l). (2.60)

If, in contrast, the single-particle modes |i〉 were to have a well-defined parity Π(i) = ±1
[98], reflection symmetry would imply

Π(i) 6= Π(j) ⇒ h
(1)
ij = 0, Π(i)Π(j) 6= Π(k)Π(l) ⇒ h

(2)
ij,kl = 0. (2.61)

2.3. Multifractality of Quantum States
In this section, we introduce and discuss the generalized fractal dimensions [57, 60, 76,
79, 81, 161], which provide a very useful tool to characterize basic structural features of
quantum states.

Let us consider a finite-dimensional Hilbert space H of dimension dim H = N with an
orthonormal basis {|α〉}, which we can understand as the eigenbasis of an observable
A =

∑
α α |α〉 〈α| with eigenvalues α. Given a state

|ψ〉 =
∑

α

ψα |α〉

with amplitudes ψα on the basis elements |α〉, i.e., measurement probabilities |ψα|2 of
the eigenvalue α of A, we define the q-moments of |ψ〉, for q ≥ 0, as

Rq =
∑

α

|ψα|2q. (2.62)

These q-moments are generalizations of the inverse participation ratio [162]

IPR :=
∑

α

|ψα|4 = R2. (2.63)
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Of these quantities, R0 just counts the number of nonzero intensities of |ψ〉, while R1 = 1
simply reproduces the normalization condition, independently of |ψ〉.

To investigate the scaling of Rq with system size, we define the finite-size generalized
fractal dimensions D̃q as

D̃q = − 1
q − 1

lnRq

ln N
= − 1

q − 1
ln
∑

α |ψα|2q

ln N
, (2.64)

whose limits for N → ∞ yield the generalized fractal dimensions

Dq = lim
N →∞

D̃q. (2.65)

In this work, instead of investigating the limit Dq for individual states |ψ〉, we will
typically consider averages and variances of D̃q over several energy eigenstates close to
each other in energy, and we will study the limit N → ∞ for these averages and variances
at a fixed energy.

The values of D̃q and of their limits Dq provide information about the localization of
the state |ψ〉 in the chosen basis: As an example, assume that the state |ψ〉 is equally
distributed onto n basis elements |α1〉 , . . . , |αn〉,

|ψ〉 =
n∑

i=1

1√
n

|αi〉 .

Assume furthermore that n is related to the Hilbert space dimension as n = cN D, where
c and 0 ≤ D ≤ 1 are constants. Then the corresponding q-moments are

Rq =
n∑

i=1
n−q = n1−q (2.66)

and the finite-size fractal dimensions read

D̃q = lnn
ln N

= D + ln c
ln N

N →∞−−−−→ D (2.67)

for all q. In other words, the fractal dimensions encode the scaling dimension of the
number of basis elements necessary to describe |ψ〉. In particular, we distinguish four
different cases (see also Figure 2.4):

• If D̃q → 0 for all q ≥ 1, we consider the underlying state as localized. The number of
basis states populated by such a state, or equivalently the number of eigenvalues α
of A with nonvanishing measurement probability, grows slower than any power
N D, D > 0. For example, states living on maximally c < ∞ basis states, where
c is independent of N , are localized in this sense. Note that for exponentially
localized states, i.e., the intensities on all but a finite number of basis states decay
with system size as |ψα|2 ∼ c−N , with c > 1 [163], all fractal dimensions converge
to Dq = 0 for all q ≥ 0, while states that are not exponentially localized may have
Dq = 0 for q ≥ 1 and Dq > 0 for certain q < 1. An example of such states is
discussed in Reference [163].
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Figure 2.4: Example fractal dimensions of localized, extended ergodic, fractal and multi-
fractal states, versus the index q.

• If D̃q → 1 for all q, we call the underlying state delocalized or extended ergodic.
These states live on a number of basis states that increases linearly with Hilbert
space dimension N , such that they populate a nonvanishing fraction of the basis
even in the limit N → ∞.

• If D̃q → D for all q and 0 < D < 1, the underlying state is fractal. In the limit
N → ∞, such a state lives on an infinite number of basis states, which nevertheless
constitute a vanishing fraction of the full basis.

• If D̃q → Dq and 0 ≤ Dq ≤ 1 depends on q, we call the underlying state multifractal.
Like fractal states, these states populate an infinite number of basis states in the
limit N → ∞, which, however, amount to a vanishing fraction of the full Hilbert
space basis.

It can be shown that Rq and D̃q are bounded functions of the state |ψ〉 with

1 ≤ Rq ≤ N −(q−1) (0 ≤ q < 1), N −(q−1) ≤ Rq ≤ 1 (q ≥ 1), (2.68)
0 ≤ D̃q ≤ 1 (all q). (2.69)

Hence, the four cases discussed above are the only possible limits of D̃q. A detailed
derivation of Equations (2.68) and (2.69) is given in Appendix A.2.1.

Of the uncountably many generalized fractal dimensions D̃q, we focus mainly on D̃1, D̃2
and D̃∞. By definition, D̃2 is the scaling dimension of the inverse participation ratio
R2. As we will see in the following, also D̃1 and D̃∞, which can be defined only via the
limits q → 1 and q → ∞ of Equation (2.64), have a simple interpretation in terms of
other quantities. For q = 1, L’Hôpital’s rule yields

D̃1 = − 1
ln N

∑
α

|ψα|2 ln |ψα|2. (2.70)
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For q → ∞, the maximum intensity of |ψ〉 gives by far the largest contribution to Rq,
and consequently (for more details see Appendix A.2.2)

D̃∞ = − 1
ln N

ln max
α

|ψα|2. (2.71)

These results show that D̃1 is the Shannon (information) entropy of the system, with
a logarithm in base N instead of the base-2 logarithm widely used in the context of
(quantum) information theory. D̃∞, in contrast, is the scaling dimension of the maximum
intensity of |ψ〉 in the given basis, and is hence defined by a single basis state only.

Furthermore, note that D̃q is a monotonically decreasing function of the index q,

D̃q1 ≤ D̃q2 for q1 ≥ q2, (2.72)

as we prove in Appendix A.2.3. Hence, for 1 ≤ q ≤ ∞, D̃1 and D̃∞ constitute upper
and lower bounds to the finite-size generalized fractal dimensions,

D̃1 ≥ D̃q ≥ D̃∞. (2.73)

2.4. The Bose-Hubbard Model
2.4.1. Definition and Fundamental Properties
The Bose-Hubbard Hamiltonian [164–167] in one dimension is given as the sum of a
tunneling and an interaction Hamiltonian,

H = Htun +Hint, (2.74)

with

Htun = −J
L∑

j=1

(
a†

jaj+1 + a†
j+1aj

)
, (2.75)

Hint = U

2

L∑
j=1

nj (nj − 1) = U

2

L∑
j=1

a†
ja

†
jajaj . (2.76)

This model, originally introduced to study the transition between a Mott-insulating and
a superfluid phase of interacting bosons [164], is nowadays of high experimental relevance
in the context of cold atoms in optical lattices [114–118, 120, 123–125, 127, 129] and is
also applied in the theory of superconducting qubits [168, 169]. It describes N bosonic
particles on a one-dimensional lattice of L sites, with nearest-neighbour tunneling energy
J , and repulsive on-site interaction U (compare the sketch in Figure 2.5). In the above
expressions, a†

j and aj are bosonic creation and annihilation operators in the basis of site-
localized states (Wannier modes) and nj = a†

jaj are the corresponding number operators.
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J
U

Figure 2.5: Sketch of the Bose-Hubbard model for 3 particles on 3 sites. Each particle
can tunnel through the potential barriers, with tunneling strength J , and
particles at the same site interact with each other repulsively, with interaction
strength U .

We distinguish two types of boundary conditions, periodic boundary conditions (PBCs),
where tunneling between the edge sites 1 and L is allowed, and hard-wall boundary
conditions (HWBCs), where tunneling between sites 1 and L is forbidden. Depending
on the boundary conditions, the creation and annihilation operators a(†)

L+1 in Htun are
defined as

a
(†)
L+1 :=

{
a

(†)
1 , PBCs,

0, HWBCs.
(2.77)

The dimension of the underlying Hilbert space, defined by the number of ways to dis-
tribute N bosons onto L sites, is

N =
(
N + L− 1

N

)
=
(
N + L− 1
L− 1

)
, (2.78)

which scales exponentially withN and L. We treat this model numerically, calculating its
eigenenergies and the fractal dimensions of its eigenvectors. Details about the employed
numerical methods can be found in Appendix C.

According to Equations (2.75) and (2.76), the matrix elements 〈n|H |m〉 are real num-
bers in the basis of Fock states

|n〉 := |n1, . . . , nL〉 , (2.79)

which are the eigenstates of the on-site number operators with eigenvalues nj . Hence,
according to Section 2.2.2, GOE is the correct random-matrix model to benchmark
quantum chaos in the Bose-Hubbard Hamiltonian.

The creation and annihilation operators a(†)
j provide a diagonal representation of Hint,

according to Equation (2.76). To obtain a diagonal representation of Htun instead, one
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may perform a basis transformation from a
(†)
j to another set of creation and annihilation

operators b(†)
k , k = 1, . . . , L, defined as

bk :=



1√
L

L∑
j=1

e−2πikj/Laj , PBCs,

√
2

L+ 1

L∑
j=1

sin
(
πkj

L+ 1

)
aj , HWBCs.

(2.80)

The action of the operators b(†)
k annihilates (creates) a boson in a plane-wave state with

quasimomentum k (PBCs), or in a standing-wave state with k+1 nodes (HWBCs). One
can easily check that

[
bk, b

†
l

]
= δkl, as required for bosonic creation and annihilation

operators, and that

aj =



1√
L

L∑
k=1

e+2πikj/Lbk, PBCs,

√
2

L+ 1

L∑
k=1

sin
(
πkj

L+ 1

)
bk, HWBCs.

(2.81)

Inserting Equation (2.81) into Htun, and using that
L∑

j=1
e2πi(k−l)j/L = Lδkl,

2(L+1)∑
j=1

e2πi(k−l)j/(2(L+1)) = 2(L+ 1)δ̃kl,

with δkl = 1 ⇔ k = l mod L and δ̃kl = 1 ⇔ k = l mod 2(L+ 1), one obtains

Htun = −2J
L∑

k=1
cosφ(k)b†

kbk, (2.82)

with

φ(k) =


2πk
L
, PBCs,

πk

L+ 1
, HWBCs.

(2.83)

Via a similar calculation, Hint transforms into

Hint =



U

2L

L∑
k,l,m,n=1

δk+l,m+nb
†
kb

†
l bmbn, PBCs,

U

4(L+ 1)

L∑
k,l,m,n=1

 ∑
σ1,2,3=±1

σ1σ2σ3δ̃k+σ1l,σ2m+σ3n

 b†
kb

†
l bmbn, HWBCs.

(2.84)
Here, the (k, l,m, n)-dependent prefactor accounts for momentum conservation with
δkl = 1 ⇔ k = l mod L and δ̃kl = 1 ⇔ k = l mod 2(L+ 1).
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2.4.2. Symmetries, Integrable Limits and Natural Bases
The interaction term Hint, Equation (2.76), is obviously invariant under any permutation
of the site indices j and hence its symmetry group is the symmetric group SL of L objects.
The tunneling term Htun, Equation (2.75), is symmetric with respect to reflection about
the center of the chain, which is the specific permutation that maps each site j to the
site L− j + 1:

−J
L∑

j=1

(
a†

L−j+1aL−j + a†
L−jaL−j+1

)
= −J

0∑
j=L−1

(
a†

j+1aj + a†
jaj+1

)
= Htun.

Here, we made use of a(†)
0 = a

(†)
L for PBCs and a(†)

0 = 0 in the case of HWBCs. For PBCs,
the tunneling Hamiltonian is also invariant under translations, which are the mappings
j 7→ j + i mod L for a fixed i. Identifying a†

L+1aL+2 with a†
1a2, etc., this invariance is

immediately clear. Hence, the total Hamiltonian is invariant under reflections about the
center and, for PBCs, also under translations. Thus, its symmetry group is the dihedral
group DL (with 2L elements) for PBCs and the two-element group D1 ∼= C2 for HWBCs.

Representation theory states that eigenstates of H transform under the action of the
symmetry operations according to irreducible representations of these groups, which also
means that H is block-diagonal with respect to distinct irreducible representations [170,
171]. The two irreducible representations of D1 are one-dimensional and characterized
by the two eigenvalues

Π = ±1 (2.85)

of the reflection operator (even/odd parity), which consequently characterize also the
eigenstates of the Hamiltonian H with HWBCs. For DL there are two (odd L) or four
(even L) one-dimensional irreducible representations [171], characterized by the parities
Π = ±1 and by the eigenvalues

e2πiQ/L =
{

±1, even L, Q = 0, L
2 ,

1, odd L, Q = 0
(2.86)

of the translation operator. Additionally, DL has two-dimensional irreducible represen-
tations [171], which can be labelled by

Q = 1, . . . , L− 1
2

(odd L), Q = 1, . . . , L
2

− 1 (even L). (2.87)

For each of these irreducible representations there exists a basis in which the translation
operator is diagonal with eigenvalues e2πiQ/L, e2πi(L−Q)/L, and the reflection operator
swaps the two basis states. This means that the eigenstates of H with PBCs can be
characterized by their total quasimomentum

Q = 0, . . . , L− 1 (2.88)
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and in the case of Q = 0 or Q = L/2 furthermore by their parity

Π = ±1. (2.89)

Note that the degenerate eigenstates of H that belong to the two-dimensional irreducible
representations can also be combined such that they are eigenstates of the reflection op-
erator. In this case, they are characterized by their parity and by |Q| := min {Q,L−Q}
instead of the total quasimomentum. Due to the block-diagonal nature of the Hamilto-
nian, one can consider independent subspaces of the full Hilbert space, each labelled by
Q and/or Π according to the corresponding irreducible representation.

In the limit of vanishing tunneling (J = 0), the Hamiltonian (2.74) reduces to Hint. As
can be seen directly from the form of this operator [Equation (2.76)], its eigenstates
are simply the Fock states |n〉 [Equation (2.79)], i.e., the eigenstates of the on-site
number operators. Hence, the eigenstates of H in this limit are uniquely determined by
the eigenvalues of L independent commuting observables. Consequently, the system is
integrable for J = 0, since L is also the number of degrees of freedom: To see the latter,
replace the creation and annihilation operators by generalized coordinates and momenta
according to

qj = q0√
2

(
a†

j + aj

)
, pj = iℏ√

2q0

(
a†

j − aj

)
, (2.90)

like for the usual harmonic oscillator [42]. The Bose-Hubbard model then transforms
into L coupled (by the tunneling term, for J 6= 0) mechanical systems with Hamiltonians

Hj = U

8

(
q2

j

q2
0

+ q2
0
ℏ2 p

2
j − 1

)(
q2

j

q2
0

+ q2
0
ℏ2 p

2
j − 3

)
, (2.91)

each contributing one degree of freedom. Here, each Hj describes an anharmonic oscil-
lator positioned on site j.

Similarly, in the non-interacting limit U = 0, the system reduces to Htun. According to
Equation (2.82), the eigenstates of this Hamiltonian can be written as Fock states

|ñ〉 := |ñ1, . . . , ñL〉 , (2.92)

defined as the eigenstates of the number operators ñk = b†
kbk with eigenvalues ñk. Con-

sequently, the system is also integrable in this limit, since the number operators ñk

provide L independent commuting observables that uniquely characterize the eigenstates
of H for U = 0.

Natural bases to describe the Bose-Hubbard Hamiltonian are therefore the interaction
basis {|n〉} and the tunneling basis {|ñ〉}, which are the eigenbases of the integrable
limits Hint and Htun, respectively. To take into account also the symmetries discussed
previously in this section, the bare Fock states are projected onto the eigenspaces of the
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Figure 2.6: Basis transformation matrices from interaction to tunneling basis with
HWBCs (left) and PBCs (right) for N = L = 5. Each pixel shows the
absolute value of the corresponding matrix element according to the color
bar, which applies to both panels.

symmetry operations. As an illustrative example consider the Fock state |1, 2, 0〉 of 3
bosons on 3 sites. It can be decomposed into

|1, 2, 0〉 = |1, 2, 0〉 + |0, 2, 1〉
2

+ |1, 2, 0〉 − |0, 2, 1〉
2

,

where the first state is symmetric and the second is antisymmetric with respect to
reflection symmetry. Projecting onto the symmetric and antisymmetric subspaces and
normalizing the resulting states hence gives the two states

|1, 2, 0〉 ± |0, 2, 1〉√
2

. (2.93)

Note that the interaction and tunneling bases are conjugated to each other in the sense
that the states of one basis populate a large amount of the basis states in the other
basis. For a single particle, this is immediately clear from Equations (2.80) and (2.81).
As Figure 2.6 shows, the transformation matrix between the two bases is dense also for
N > 1, such that the states of one basis are transformed into widely spread states in the
other basis.4

Figure 2.7 shows the matrix structure of the Bose-Hubbard Hamiltonian in both bases
in comparison to the bosonic two-body embedded GOE ensemble introduced in Sec-
tion 2.2.5. In the interaction basis, only the single-particle term couples different Fock
4Note that some basis states with enhanced symmetries as compared to the others may still be rather
localized in the other basis, for example the fully symmetric state |1, 1, 1, 1, 1〉 in the interaction basis,
which is responsible for the “cross” structure visible in the right panel of Figure 2.6.
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2.4. THE BOSE-HUBBARD MODEL

Figure 2.7: Matrix structure of a single realization of the bosonic embedded ensemble
introduced in Section 2.2.5 (left), and of the Bose-Hubbard Hamiltonian with
HWBCs in the tunneling basis (center), and in the interaction basis (right),
for N = L = 5 (Hilbert space dimension N = 126). Black pixels indicate
nonzero matrix elements.

states via nearest-neighbour tunneling [Equation(2.75)], and, hence, the matrix is much
sparser than the more general embedded ensemble. In the tunneling basis, the two-body
interaction term [Equation (2.84)] is strongly off-diagonal and the matrix structure is
consequently much closer to that of the embedded ensemble, albeit with additional zero
elements due to momentum conservation.

2.4.3. Scaled Energy and Scaled Tunneling Strength
When tuning the number of bosons N and the system size L, the energy scales of H
change. For instance, the ground state energy in the limit of dominating tunneling
scales with N as Emin ≈ −2JN . Since the width of the spectra of Hint and Htun scales
differently with N , Emax − Emin = UN(N − 1)/2 ∼ N2 and Emax − Emin ≈ 4JN ∼ N ,
respectively, also the relative strength of Hint and Htun depends on N and L. Therefore,
it does not seem justified to naively compare the properties of Bose-Hubbard Hamiltoni-
ans with different system sizes at the same energies, interaction strengths and tunneling
strengths. Following References [92, 172, 173], we use the classical limit ℏ → 0 of the
Bose-Hubbard Hamiltonian (2.74) to motivate the correct scalings of these three system
parameters.

As discussed in Section 2.2.1, the classical limit physically means that the relevant actions
S fulfil S/ℏ → ∞. For bosonic many-body systems, the action typically increases with
particle number N . This can easily be seen from the definition of the classical action
along an orbit Γ with energy E [148, 174],

S(Γ) =
∫

Γ
p · dq − Et. (2.94)

Here, the energy typically increases with N , as discussed above for the spectral width of
the Bose-Hubbard Hamiltonian, and the same holds true for the (generalized) positions
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and momenta, since these are linear functions of the creation and annihilation operators
[see Equation (2.90) and Reference [42]], which scale with the particle number nj on
the jth site as a(†)

j ∼ √
nj . Consequently, one way of approaching the limit S/ℏ → ∞

in many-particle systems is given by N → ∞ [148, 175]. By rescaling the creation and
annihilation operators as

c
(†)
j := 1√

N
a

(†)
j , (2.95)

the commutator

[ci, c
†
j ] = 1

N
δij

vanishes for N → ∞, such that cj can be replaced by a complex number cj =
√
Ije

iφj

with c†
j = c∗

j . In these new variables, the Hamiltonian reads

H = −JN
L∑

j=1

(
c†

jcj+1 + c†
j+1cj

)
+ UN2

2

L∑
j=1

c†
jcj

(
c†

jcj − 1
N

)
. (2.96)

Rescaling H by UN2 and sending N to ∞ yields [92, 172, 173]

Hclass = H

UN2 = −2 J

UN

L∑
j=1

√
IjIj+1 cos(φj − φj+1) + 1

2

L∑
j=1

I2
j . (2.97)

Hence, the scaled tunneling strength

η := J

UN
(2.98)

is the only parameter governing the classical Hamiltonian. Motivated by this finding,
we therefore investigate whether η determines also the properties of the quantum model.
As we will see in chapters 3 and 4, this seems to be the case even for moderate particle
numbers, although the above calculation is strictly valid only for N → ∞.

Furthermore, we scale the energy E as

ε = E − Emin
Emax − Emin

, (2.99)

where Emin and Emax are the energies of the ground state and of the highest excited
state of the Bose-Hubbard Hamiltonian, respectively. For N → ∞, the spectral widths
of the individual terms Hint and Htun are

Emax − Emin ≈
{

U
2 N

2, for Hint,

4JN = 4ηUN2, for Htun,
(2.100)

and, hence, the spectral width of H behaves as Emax − Emin ∼ UN2 for any fixed η.
Since ε consequently scales as 1/UN2 like Hclass, this parameter effectively corresponds
to the relevant energy scale in the classical limit.
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Chapter 3.

Spectrum and Eigenstates of the
Bose-Hubbard Hamiltonian

In this chapter we thoroughly investigate the spectrum and the eigenstates of the Bose-
Hubbard Hamiltonian. In particular, we use the spectral statistics to determine the
region of quantum chaos as a function of energy ε and scaled tunneling strength η, and
we relate the emergence of quantum chaos in the spectral statistics to features of the
eigenstates as described by their fractal dimensions. If not stated differently, we always
consider unit filling factor throughout this chapter, that is, the same number of particles
and lattice sites, N = L.

3.1. Level Dynamics and Density of States
Before we discuss the features of quantum chaos in the level spacing statistics and the
eigenstate fractal dimensions, let us first consider general properties of the spectrum of
the Bose-Hubbard Hamiltonian. Figure 3.1 shows the level dynamics of the system, i.e.,
the evolution of the scaled eigenenergies ε [Equation (2.99)] as functions of the scaled
tunneling strength η = J/UN . Here, we consider N = 10 bosons on L = 10 sites with
PBCs, and the symmetry-induced block with total quasimomentum Q = 0 and parity
Π = +1, which gives a Hilbert space of dimension N = 4752.

For small η, i.e., dominating interaction, the energies cluster in distinct manifolds, sep-
arated by a certain fundamental spacing or integer multiples thereof. This can easily be
explained from the structural features of the Hamiltonian, which in this limit is close
to Hint. According to Equation (2.76), the eigenenergies of the interaction Hamiltonian
are integer multiples of U ,

E = U
L∑

j=1

nj(nj − 1)
2

, (3.1)

with on-site occupation numbers n1, . . . , nL. These energies are typically highly de-
generate, since all permutations of the occupation numbers yield the same energy.
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Figure 3.1: Level dynamics of the Bose-Hubbard Hamiltonian (2.74) as a function of the
parameter η, for N = L = 10, PBCs, total quasimomentum Q = 0 and parity
Π = +1 (N = 4752 states). Center and right panels are magnifications of
the areas outlined by boxes in the left panel.

Upon increasing η, the degenerate levels fan out and overlap with each other, starting
from the low-energy part of the spectrum and subsequently involving also higher energies.
For intermediate η, a complex structure emerges, as exemplified by the zoom into the
region ε ∈ [0.555, 0.585] and η ∈ [0.05, 0.065] (blue panel of Figure 3.1): Energy levels
heavily mix via a large number of avoided crossings. For instance, upon a rather small
change of η, the level highlighted in red subsequently mixes with the nearest lower and
higher levels.

In the regime of dominating tunneling, η � 1, the energies sort again into discrete
manifolds, which are much closer together in the center of the spectrum than at its
edges. This is illustrated by the magnification of the region ε ∈ [0.475, 0.525] and
η ∈ [7, 50] (red panel of Figure 3.1). In this limit, the Hamiltonian approaches Htun,
whose eigenenergies are the sum of N single-particle contributions

E1(k) = −2J cosφ(k) (3.2)

that are distributed symmetrically1 around the non-scaled energy E = 0 [see Equa-
tions (2.82) and (2.83)]. Due to this symmetry, the smallest many-particle energy Emin
is equal to −Emax, and, hence, E = 0 corresponds to the scaled energy ε = 0.5. Further-
more, various many-particle energies close to E = 0 (ε = 0.5) can occur, by combining
single-particle energies E1(k) of different sign and comparable magnitude. These many-
particle energies differ slightly from each other depending on the exact combination
of single-particle energies. On the other hand, many-particle energies far from E = 0
(ε = 0.5) can only be achieved as the addition of single-particle energies with the same

1Note that for PBCs and odd L, the single-particle spectrum is not exactly symmetric, but deviations
from symmetry decay with L. Some implications of these deviations will be discussed in Section 3.2.
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Figure 3.2: Density of states (DOS) for four different η, increasing from left to right, for
N = L = 12 with PBCs, total quasimomentum Q = 0 and parity Π = −1
(Hilbert space dimension N = 55 898).

sign and large magnitude, and, consequently, there are fewer energy levels at the edges
of the spectrum than around its center.

At 0.01 ≲ η ≲ 0.03, the first few excited states (lowest ε > 0) pass through avoided
crossings with the ground state [ε = 0 for all η, according to Equation (2.99)]. For the
thermodynamic limit N → ∞, L → ∞, N/L = const, it is known that the ground
state of the Bose-Hubbard model undergoes a phase transition between a superfluid
state at dominating J , in which each particle is spread out over the full lattice, and a
Mott-insulating state at dominating U , in which the particles are localized at specific
sites [81, 114, 164, 176]. For N/L = 1 in one dimension, like for the data shown in
Figure 3.1, the critical point of this transition is estimated to be around J/U ≈ 0.3 [167,
177–180]. If we fix N = L = 10, like we do here, this value translates to η ≈ 0.03, which
is in good agreement with the positions of the avoided crossings observed here. Further
research beyond the scope of this thesis would be needed to unambiguously relate the
superfluid-Mott transition of the Bose-Hubbard ground state to these avoided crossings.

In Figure 3.2, the density of states is shown for four exemplary values of η and for N = 12
particles on L = 12 sites with PBCs, considering the subspace of total quasimomentum
Q = 0 and parity Π = −1 (Hilbert space dimension N = 55 898). At small η = 0.0028,
the density of states consists mainly of discrete peaks, for intermediate η = 0.0252
and η = 0.2759 it progressively approaches a seemingly Gaussian shape, and for large
η = 2.5166 several peaks emerge on top of the Gaussian structure. For increasing η,
the maximum of the density of states moves from ε ≈ 0.2 to ε = 0.5 and the density of
states becomes almost symmetric around this maximum.

The peaked structure for small η reflects the discrete energy manifolds of Hint emerging
for dominating U , and the height of the peaks is associated with the degeneracy of a
given manifold’s energy levels at η = 0. This degree of degeneracy is equal to the number
of permutations of the on-site occupation numbers nj and is hence largest, ∼ O(L!), if
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most nj are different.2 In this case, all nj have to be roughly of order O(N/L) and each
particle interacts only with nj − 1 � N particles, such that the corresponding energy
lies in the lower part of the spectrum. Note that the peaks at η = 0.0028 already cover
a finite energy interval and their height is hence slightly reduced as compared to η = 0.

The highest energy levels, on the other hand, are given by states with N −n particles on
a single site and n � N particles occupying other sites. Hence, at least L− n− 1 sites
share the same occupation number nj = 0, and, consequently, the degree of degeneracy
of such an energy level (i.e., the number of permutations of occupation numbers) is
maximally

L!
(L− n− 1)!

, (3.3)

which is a number far smaller than L! for n � L. The density of states for η → 0 is thus
strongly reduced in the higher part of the spectrum as compared to the lower part.

In the opposite limit η → ∞, H approaches Htun, whose spectrum is the sum of N iden-
tical single-particle spectra. According to the central limit theorem, the density of states
should then converge to a Gaussian distribution for large N . Deviations from this shape
are expected for various reasons: Particle permutation symmetry ensures that many-
particle energies emerging from the exact same set of single-particle energies contribute
to the density of states just once. Furthermore, the density of states might be enhanced
for some many-particle levels if several combinations of single-particle energies sum up
to exactly the same value. For instance, single-particle states with quasimomenta k and
L − k for PBCs are degenerate, and, consequently, interchanging these two quasimo-
menta with one another does not change the many-particle energy. Finally, the discrete
nature of the single-particle spectrum might still be visible for finite L.

The finding that the maximum of the density of states is at ε = 0.5 for large η can be
explained from the separation into single-particle energies, following the same arguments
as for the level dynamics in preceding paragraphs of this section: Many energy values
around E = 0 can be found by combining single-particle terms with different sign and
similar magnitude, while just few many-particle energies, given as sums of single-particle
energies with the same sign and large magnitude, are available at the edges of the
spectrum.

3.2. Fractal Dimensions for Individual Eigenstates
In the following, we will investigate the structure of individual eigenstates, as exposed by
their fractal dimensions. Figure 3.3 correlates the scaled eigenenergies ε and the fractal
dimensions D̃1, D̃2 and D̃∞ of all eigenstates of the Bose-Hubbard Hamiltonian in both
natural bases, for the same four values of η and the same symmetry-induced subspace
2Note that for N = L, the occupation numbers nj cannot all be chosen different from one another, such
that the degree of degeneracy is typically not exactly L!, but slightly smaller.
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Figure 3.3: Generalized fractal dimensions D̃1 (blue), D̃2 (red) and D̃∞ (green) as de-
fined in Section 2.3, for the Bose-Hubbard eigenstates, in both natural bases,
versus scaled eigenenergy ε, for the same four η values and the same subspace
N = L = 12, PBCs, Q = 0, Π = −1 (N = 55 898) as for the density of states
in Figure 3.2. The left column of the panels shows the distribution of D̃q

over all eigenstates. 39
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as for the density of states in Figure 3.2. Furthermore, also the distribution of D̃q over
all eigenstates is shown.

Quantitatively, D̃1 is always shifted towards larger values and D̃∞ towards smaller values
than D̃2, as expected from the monotonicity of D̃q as a function of q [Equation (2.72),
proved in Appendix A.2.1]. Qualitatively, though, the three fractal dimensions behave
in an analogous manner and depend strongly on η, as well as on the choice of basis:

For small η, i.e., dominating interaction, the fractal dimensions of different eigenstates
belonging to the same degenerate manifold for η = 0 cover a wide range of values. In the
interaction basis, the fractal dimensions are much smaller than in the tunneling basis,
which is expected, given that the interaction basis is an eigenbasis of H for vanishing
tunneling. However, complete localization of the eigenstates in the interaction basis, i.e.,
D̃q → 0, is not found, and must not be expected either: At small η, Htun behaves as
a perturbation to Hint, and the actual eigenstates for η → 0 arise from diagonalizing
this perturbation in the degenerate subspaces [42]. Since Htun is off-diagonal in the
interaction basis, these eigenstates are typically delocalized over the interaction basis
states with the same energy. According to our discussion for the density of states in
Section 3.1 (see also Figure 3.2, leftmost panel), the levels at ε < 0.5 are typically
more degenerate than the levels close to the upper edge of the spectrum, such that
the eigenstates can be delocalized onto a larger portion of the interaction basis and the
corresponding fractal dimensions are typically larger. Note that the ground state at
unit filling and U = 0 is the nondegenerate Fock state |1, . . . , 1〉 such that the fractal
dimensions of this particular state indeed fulfil D̃q → 0, see also Reference [81].

Due to the conjugate nature of the two natural bases, as explained in Section 2.4.2,
the eigenstates at small η are widely spread in the tunneling basis, and, consequently,
their corresponding fractal dimensions are larger than in the interaction basis. However,
the fractal dimensions also cover a wide range of values, some of which are clearly
distinct from full delocalization in the sense of D̃q → 1. To understand the reason
for this, consider the interaction basis states |n〉 in the tunneling basis: According
to Equation (2.81), the creation operators a†

j are superpositions of operators b†
k with

plane-wave (PBCs) or standing-wave (HWBCs) coefficients. Hence, the coefficient cñ

of the tunneling basis state |ñ〉 in the given interaction basis state |n〉 is essentially a
sum of complex exponentials (PBCs) or of trigonometric functions (HWBCs). These
summands may add up constructively or destructively, enhancing the amplitude of some
tunneling basis states and reducing the amplitude of others. Furthermore, the sum in
cñ contains more terms for states |ñ〉 with many nonzero ñk than for states with just
few nonzero ñk. Hence, the amplitude of states such as |ñ1 = N, ñk 6=1 = 0〉 is further
reduced as compared to other tunneling basis states. Consequently, |n〉 is not uniformly
delocalized in the tunneling basis, and D̃q < 1.

For intermediate η, the distribution of D̃q among the eigenstates of similar energies
becomes very narrow. For η = 0.0252, this feature is found only in the lower half of the
spectrum, but as η increases to η = 0.276, almost all regions of the spectrum show this
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Figure 3.4: Generalized fractal dimensions D̃1 (blue), D̃2 (red) and D̃∞ (green) as de-
fined in Section 2.3, for the Bose-Hubbard eigenstates, in both natural bases,
versus scaled eigenenergy ε, for η = 2.52 and N = L = 11, with PBCs, Q = 0
and Π = −1 (N = 15 907). The left column of the panels shows the distri-
bution of D̃q over all eigenstates.

characteristic. This η dependence correlates with the behaviour of the density of states,
in particular with the shift of its maximum from ε ≈ 0.2 to ε = 0.5, and can also be
related to the level dynamics: The strong mixing of different energy levels is also found
predominantly in the lower part of the spectrum for η ≲ 0.05, before it starts emerging
also for larger energies. Hence we can interpret this “homogenization” of the fractal
dimensions among close-in-energy eigenstates as an effect of the strong mixing of these
states via avoided crossings.

Specifically in the interaction basis for η = 0.276, the fractal dimensions of different
eigenstates attain large values and become similar throughout a wide portion of the
spectrum. This feature is also visible in the distribution of D̃q over all eigenstates,
which becomes pronouncedly narrow. Such an effect is not seen in the tunneling basis,
where the fractal dimensions of eigenstates from different parts of the spectrum are rather
distinct and D̃q in fact tends to D̃q = 0 at the edges of the spectrum. Nevertheless, also
in this basis the fractal dimensions of close-in-energy eigenstates are very similar, which
therefore seems to be a basis-independent feature for intermediate η.

Upon further increasing η towards the limit of dominating tunneling, the distribution
of D̃q spreads again, in both bases. The fractal dimensions in the interaction basis are
still large, but slightly smaller than for intermediate η. For η → ∞, H approaches Htun
and the eigenbasis is close to the tunneling basis, which is constructed from plane-wave
(PBCs) or standing-wave (HWBCs) single-particle states according to Equation (2.80).
Following the same arguments as above for the tunneling basis in the opposite limit
η → 0, the eigenstate coefficients in the interaction basis are larger on some basis states
than on others, leading to D̃q < 1.
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As expected, fractal dimensions in the tunneling basis are small in the dominating-
tunneling limit η → ∞, where the tunneling basis becomes an eigenbasis. Like for the
interaction basis in the limit η → 0, full localization of all eigenstates in the tunneling
basis does not occur, since the eigenstates for η → ∞ follow from diagonalizing the
perturbation Hint on the degenerate energy levels of Htun. However, the fact that not
all eigenstates tend towards full localization is a specific feature of PBCs with even L
and of HWBCs. For these, the single-particle spectrum is exactly symmetric around the
energy E = 0, according to

cos
(2πk
L

)
= − cos

[2π
L

(
L

2
− k

)]
(PBCs), (3.4)

cos
(

πk

L+ 1

)
= − cos

[
π

L+ 1
(L+ 1 − k)

]
(HWBCs). (3.5)

Hence, many different combinations of single-particle energies yield exactly the same
many-particle energies around E = 0 (corresponding to ε = 0.5 for η → ∞) and,
consequently, the levels around ε = 0.5 are highly degenerate. For PBCs with odd L,
where (L/2) − k is not an integer, the single-particle spectrum is not exactly symmetric
around E = 0, such that the many-particle energies emerging from different sets of
single-particle energies are typically distinct and the spectrum is far less degenerate.
Figure 3.4 shows a similar scatter plot as the lowest panel of Figure 3.3, for η = 2.52
with PBCs, quasimomentum Q = 0 and parity Π = −1, using now N = L = 11
(N = 15 907) instead of N = L = 12. While the fractal dimensions in the interaction
basis are similarly large as for N = L = 12, they are much smaller in the tunneling
basis, in agreement with the less degenerate spectrum for PBCs with odd L. This is
best visible from the distribution of fractal dimensions: For N = L = 12, its strongest
weight is at small but finite D̃q between 0.1 and 0.4 (depending on q), while a strong
peak emerges at D̃q = 0 for N = L = 11.

3.3. Energy-Resolved Spectral Statistics and Eigenstate Fractal
Dimensions

In the previous two sections, we have discussed various features of the spectrum and
of the corresponding eigenstate fractal dimensions, such as a complicated level struc-
ture with many avoided crossings for intermediate η (Figure 3.1), accompanied by a
delocalization tendency of the eigenstates in both natural bases (Figure 3.3). In the
following, we systematically relate the spectral and eigenstate properties to the emer-
gence of quantum chaos as a function of the scaled energy ε and of the scaled tunneling
strength η.

3.3.1. Energy Statistics
To determine the chaotic region of the Bose-Hubbard Hamiltonian, we use short-range
spectral statistics as described in Section 2.2.3, and in particular the mean level spacing
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Figure 3.5: (a) Mean level spacing ratio 〈r〉 versus scaled tunneling strength η = J/UN
and scaled energy ε (Equation (2.99)), and (b) histogram of the level spacing
ratio r, for η = 0.100, N = L = 12, with PBCs, total quasimomentum
Q = 0, and parity Π = +1 (Hilbert space dimension N = 56 822). The green
dash-dotted line in (a) marks the trajectory of the maximum of the density
of states, and the red dotted lines delimit the inner 60 % of the levels, as
described in Section 3.4. Empty bars in (b) show P (r) for the full spectrum
[orange dashed line in (a)], filled bars give P (r) for 0.33 ≤ ε ≤ 0.39 [thick
red line in (a)] and the black line traces PGOE(r) [Equation (2.39)].

ratio 〈r〉, Equation (2.38). Figure 3.5(a) shows 〈r〉 as a function of η and ε, for N =
L = 12 with PBCs, considering the subspace given by Q = 0 and Π = +1 (N = 56 822).
To obtain this energy-resolved mean, the energy axis is divided into 100 equally spaced
bins and the level spacing ratio is calculated for all energies that fall into the same
bin. In this figure, white areas denote bins that host less than three levels, which is
the minimum number of energies necessary to define the level spacing ratio according
to Equation (2.38). These bins are predominantly found at small η, where the discrete
spectrum of Hint emerges, and at the edges of the spectrum, where the density of states
is always small, as shown in Figure 3.2.

For 10−2 ≲ η ≲ 1 and 0.1 ≲ ε ≲ 0.9, a slightly bent oval region emerges, in which 〈r〉
comes close to the value 0.5307 expected numerically for GOE. As discussed in Sec-
tion 2.2.3, this agreement with 〈r〉GOE is an indication of quantum chaos and we there-
fore identify this domain as the spectrally chaotic region. In terms of η, this chaotic
domain is widest around the center of the spectrum. Upon increasing the energy, the
low-η boundary of the chaotic region shifts towards higher η. This shape of the chaotic
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domain matches well with the region in which the degenerate energy levels fan out and
mix with each other, as the comparison of Figure 3.5(a) with the level dynamics in Fig-
ure 3.1 shows. Hence, the emergence of chaotic spectral statistics is directly connected
to the formation of a bulk of energy levels that interact with each other via a multitude
of avoided crossings. We indicate the maximum of the density of states as a function of
η by the green dash-dotted line in Figure 3.5(a). Within the chaotic region, this line is
always close to the center of the chaotic domain along the ε axis. This shows that the
drift of the center of the chaotic region with η is directly connected to the shift of the
density of states towards larger ε.

The observed drift of the spectrally chaotic region with the energy and the tunneling
strength suggests that a scaling of the form ε = γmε0 and η = γnη0 in terms of a single
parameter γ might exist, such that the system properties do not change along curves
(ε(γ), η(γ)). Such a scaling would be analogous to the hydrogen atom in a magnetic
field [21, 181], where γ corresponds to the strength of the magnetic field.

The mean level spacing ratio, as a single statistical moment, does not fully determine
the distribution P (r), which could in principle have the same mean as PGOE(r) [Equa-
tion (2.39)] and still be a rather different distribution. To rule out this possibility, we
plot in Figure 3.5(b) the histograms P (r) at η = 0.100 for the full energy spectrum
and for the levels with 0.33 ≤ ε ≤ 0.39, and compare them to PGOE(r). As the orange
and red lines in Figure 3.5(a) show, this value of η is deep in the chaotic domain and
0.33 ≤ ε ≤ 0.39 represents a small energy bin around the maximum of the density of
states. This comparison reveals that not just the average 〈r〉 matches the predictions of
GOE, but also the distributions P (r) and PGOE(r) agree up to fluctuations.3

3.3.2. Statistics of Eigenstate Fractal Dimensions
After discussing quantum chaos in terms of spectral statistics, we now go on connecting
spectral chaos to eigenstate (de)localization in the two natural bases of the system. For
this aim, we study the distribution of fractal dimensions from different eigenstates via its
mean

〈
D̃q
〉
, its sample variance var

(
D̃q
)

and its skewness parameter skew
(
D̃q
)
, which

for a set of n eigenstates |ψi〉 with fractal dimensions D̃q(|ψi〉) are defined as

〈
D̃q
〉

= 1
n

n∑
i=1

D̃q(|ψi〉), (3.6)

var
(
D̃q
)

= 1
n− 1

n∑
i=1

(
D̃q(|ψi〉) −

〈
D̃q
〉)2

, (3.7)

skew
(
D̃q
)

=
1
n

∑n
i=1

(
D̃q(|ψi〉) −

〈
D̃q
〉)3

var
(
D̃q
)3/2 . (3.8)

3Note that these fluctuations can be expected, due to the finite number of eigenenergies available for the
Bose-Hubbard model and due to the fact that PGOE(r) as in Equation (2.39) is exact only for N = 3.
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Figure 3.6: Mean (left), variance (center) and absolute skewness (right) for the distri-
butions of D̃1 (top), D̃2 (center) and D̃∞ (bottom) among different Bose-
Hubbard eigenstates [Equations (3.6)–(3.8)], versus η and ε for N = L = 12
with PBCs, Q = 0 and Π = +1 (N = 56 822). Upper (lower) panels of each
subplot show the results upon evaluation in the interaction (tunneling) basis.
Color bars apply to all panels of the same column. Dashed contour lines in
the plots for D̃1 denote 〈r〉 = 0.5 [see Figure 3.5(a)]. 45
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Figure 3.6 shows
〈
D̃q
〉
, var

(
D̃q
)

and the absolute value of skew
(
D̃q
)

for the fractal
dimensions D̃1, D̃2 and D̃∞ as functions of the scaled tunneling strength η and of the
scaled energy ε. Here, the energy axis is divided into 100 equally spaced bins and the
three statistical quantifiers are calculated for all eigenstates that fall into the same bin at
fixed η. The considered subspace is that of quasimomentum Q = 0 and parity Π = +1,
for N = 12 particles on L = 12 sites with PBCs (Hilbert space dimension N = 56 822),
like for 〈r〉 in Section 3.3.1. Fractal dimensions are calculated in both natural bases.

This figure reveals that the region of quantum chaos as defined by 〈r〉 (approximately in-
dicated in Figure 3.6 by the contour lines given by 〈r〉 = 0.5) coincides with large average
fractal dimensions. These large values are manifestly visible for D̃q in the interaction
basis, where, e.g.,

〈
D̃1
〉

rises from
〈
D̃1
〉

≈ 0.5 to
〈
D̃q
〉
≳ 0.9 in a small ε-dependent

range of η that agrees with the low-η boundary of the chaotic region, and falls off again
to slightly smaller values around 0.85 on the high-η side of the chaotic domain. In the
tunneling basis, the fractal dimensions reach their largest values in the low-energy and
low-η range of the chaotic region and fall off already to intermediate values for larger η
and ε even deep within the region of quantum chaos. Nevertheless, a further decay from
these intermediate values to much smaller

〈
D̃q
〉

in a small range of η, for instance from〈
D̃1
〉

≈ 0.7 to
〈
D̃1
〉
≲ 0.3, unveils clearly the high-η boundary of the chaotic region also

in the tunneling basis.

An even stronger correlation with spectral chaos is exhibited by the variance of the
fractal dimensions, which is reduced by several orders of magnitude within the region of
quantum chaos. This effect is visible on both the high-η and the low-η edge of the chaotic
domain, in contrast to the mean fractal dimension, where the difference between the
chaotic and the non-chaotic region is significantly more pronounced on one edge. Slight
quantitative differences of the variance do occur between different bases, particularly in
the high-energy part of the chaotic region, where var

(
D̃q
)

is considerably smaller in the
interaction basis than in the tunneling basis. Nevertheless, this pronounced minimum of
var

(
D̃q
)

is qualitatively the same for both natural bases and for all fractal dimensions
considered. This decay of the variance might therefore serve as a basis-independent
quantifier of quantum chaos, in the sense that var

(
D̃q
)

might be strongly reduced in any
physically relevant basis.

This hypothesis is also supported by the results of Reference [112] for fermions and
hard-core bosons. In that work, the Shannon entropy and the inverse participation ratio
of the eigenstates were investigated in the tunneling basis and in the eigenbasis of the
integrable part of the Hamiltonian, finding that the fluctuations of these quantifiers
among close-in-energy eigenstates are smallest exactly in the parameter range of chaotic
spectral statistics, for both bases. However, our results presented in Figure 3.6 go beyond
the findings of Reference [112], by showing this relation also as a function of the energy.

At this point, we need to elaborate more on the term “physically relevant basis” and
stress that it should not be understood as “any arbitrary basis”: At a fixed value of η even
deep within the chaotic domain, one can always construct (typically highly nontrivial)
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Figure 3.7: Variance var
(
D̃1
)

in one basis chosen such that var
(
D̃q
)

is large for η =
0.0485 (left) and another basis such that var

(
D̃q
)

is large for η = 0.2117
(right), for N = L = 9 with PBCs, Q = 0 and Π = +1 (N = 1387), both
η selected arbitrarily within the chaotic region. See text for details on the
construction of these bases.

bases with quite large var
(
D̃q
)
, simply by applying a basis transformation such that the

eigenvectors have the exact same coefficients as the eigenvectors in one of the natural
bases for an η value far outside the chaotic domain. In a more technical sense, if the
eigenstates |ψn(η)〉 at a fixed η are given as

|ψn(η)〉 =
N∑

i=1
cni(η) |φi〉 , (3.9)

where {|φi〉 : i = 1, . . . ,N } is the tunneling or the interaction basis, then, for two values
η1 and η2, the eigenstate coefficients in the basis given by

|χj〉 =
N∑

n,i=1
c∗

nj(η1)cni(η2) |φi〉 (3.10)

at the scaled tunneling strength η2 are exactly the same as the eigenstate coefficients at
η1 in the basis {|φi〉}:

|ψn(η2)〉 =
N∑

i=1
cni(η2) |φi〉 =

N∑
j=1

cnj(η1) |χj〉 . (3.11)

However, due to the large number of avoided crossings in the chaotic region, the eigen-
states change strongly even for small variations of η. Hence, even though a deliberate
choice of basis may make var

(
D̃q
)

large for a fixed η in the chaotic region, the variance
in that same basis will probably vary drastically under just slight changes of η and might
become strongly reduced, similar to the behaviour in the two natural bases. This effect
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is exemplified in Figure 3.7, where var
(
D̃1
)

is shown for two bases constructed to have
a large variance for a specific value of η chosen arbitrarily deep in the chaotic domain
(η = 0.0485 and η = 0.2117, respectively). Even for small perturbations of η the variance
decreases strongly and stays similarly small throughout the chaotic domain. Hence, even
though we cannot expect var

(
D̃q
)

to be strongly reduced in any basis for all values of η
within the chaotic domain, the variance might still be a basis-independent quantifier of
quantum chaos in the sense that it is reduced throughout the chaotic region except for
a small range of η.

In the tunneling basis, var
(
D̃q
)

is very small also for large η at the edges of the spectrum,
where

〈
D̃q
〉

in the tunneling basis attains its smallest values. As discussed in Section 3.2,
the eigenstates for η → ∞ are typically delocalized over the degenerate tunneling basis
states. Due to the nonlinear dependence of the single-particle energies on the index k,
different sets of single-particle levels will typically not add up to the same many-particle
energy and only few states will be degenerate. Consequently, the fractal dimensions in
the tunneling basis are equally small for most close-in-energy eigenstates at the spectrum
edges and hence, var

(
D̃q
)

is strongly reduced. Note that the center of the spectrum, with
rather large var

(
D̃q
)

for large η, is an exception to this behaviour, since the symmetry
of the spectrum around E = 0 adds more degeneracies, as discussed towards the end of
Section 3.2.

The skewness, which quantifies the asymmetry of the distribution, also shows a quali-
tatively basis-independent behaviour like the variance. Particularly at the boundaries
of the chaotic region in terms of ε and η, the skewness registers a sharp surge by at
least one order of magnitude. Inspection of the data shows that the skewness is actually
negative in these ranges of η and ε, which means that a strong tail develops towards
smaller values of D̃q. Hence, not all eigenstates with similar energies acquire large D̃q

values at exactly the same η, but some states remain at smaller values for a wider range
of η, i.e., the delocalization of close-in-energy eigenstates onto the two natural bases
starts at slightly different values of η. Deep within the chaotic domain, the skewness is
strongly reduced for q = 1, 2, yielding values smaller than ≈ 0.1 as compared to values
larger than 1 at the boundaries. Hence, the distribution of D̃1,2 in the chaotic region
is highly symmetric. For q = ∞, the absolute skewness is larger than ≈ 0.4 even deep
within the region of quantum chaos, which shows that the distribution remains notably
asymmetric. We note that the skewness parameter on its own, even though it captures
the boundaries of the chaotic region quite well, does not serve to identify unambiguously
the center of the chaotic domain: In the tunneling basis, for instance, the distribution of
D̃1,2 for large η and intermediate ε is similarly symmetric as in the center of the chaotic
region.

The results for mean and variance of D̃q in the chaotic region give a clear connection
between spectral chaos and eigenstate localization properties as encoded into the fractal
dimensions. Whenever the short-range spectral correlations indicate quantum chaos,
the different eigenstates are similarly delocalized, in both natural bases. This can be
seen as an analogy to classical ergodicity: As discussed in Section 2.1, ergodic classical
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trajectories visit the whole phase space uniformly and are therefore widely spread with
respect to (generalized) position and momentum coordinates. In a similar way, for the
quantum Bose-Hubbard model investigated here, large values of D̃q indicate that the
eigenstates are widely distributed over the Fock bases given by number operators nj =
a†

jaj (j = 1, . . . , L) and ñk = b†
kbk (k = 1, . . . , L), respectively, and that this distribution

is essentially uniform (compare Section 2.3).

Additionally, while the range of momenta and positions visited by trajectories of classi-
cally integrable systems differs among individual trajectories, since each of them popu-
lates its own invariant torus, trajectories of chaotic systems cover a rather similar amount
of phase space as compared to each other. For instance, in the case of strictly ergodic
motion, all of them fill the entire phase space. Hence, classical localization properties,
understood as the amount of phase space that is visited throughout time evolution, are
very similar among different classical chaotic trajectories. This is directly analogous
to the comparable delocalization in Fock space of all chaotic quantum eigenstates, as
revealed by the sharp decay of var

(
D̃q
)

towards the center of the chaotic region.

The fact that the eigenstates within the chaotic region are widely distributed across the
interaction and tunneling basis states can furthermore be related to thermalization, in
analogy to classical ergodicity as defined in Equation (2.5): According to this definition,
the time average of a phase-space function f along an ergodic trajectory approaches
the corresponding phase-space average and hence becomes independent of the specific
trajectory at a certain fixed energy. Due to the wide distribution of eigenstates over
the basis states, we can expect in a similar way that a Bose-Hubbard system initialized
in a Fock state quickly becomes distributed over a large portion of the eigenstates,
independently of the specific initial state.

3.4. Spectrally Averaged Spectral Statistics and Eigenstate
Structure

In the preceding section, the Bose-Hubbard Hamiltonian was discussed considering sta-
tistical moments of the distributions of D̃q and r over fixed energy intervals. We now
investigate these distributions over the bulk of the spectrum instead. In the following, we
fix a certain percentage p ∈ [0, 100] and define the bulk as the inner p% of the spectrum,
neglecting the highest and the lowest (100 −p/2)% of the energy levels. In Figure 3.5(a)
of the preceding section, the evolution of the bulk defined by the inner 60 % is indicated
by red dotted lines on top of the energy-resolved 〈r〉. From this figure, it is clear that
the energy range occupied by the bulk shifts with η in a similar way as the maximum
of the density of states [green dash-dotted line in Figure 3.5(a)]. Hence, this approach
offers a different perspective on the emergence of the chaotic region as a function of η.
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Figure 3.8: Mean level spacing ratio 〈r〉 (left), mean fractal dimensions
〈
D̃1,∞

〉
(center),

and variance var
(
D̃1
)

(right) over the inner p% of the spectrum (p ∈ [40, 100])
corresponding to n levels as indicated in the legend, for N = L = 12 with
PBCs, total quasimomentumQ = 0 and parity Π = −1. Top (bottom) panels
show results in the interaction (tunneling) basis. Grey lines in the plot of
〈r〉 mark 〈r〉GOE (solid) and 〈r〉Poisson (dashed), Equations (2.41) and (2.43).
Blue dashed lines approximately indicate the η region where 〈r〉 ≈ 〈r〉GOE.
Error bars are contained within symbol size.

3.4.1. Averages over Different Percentages of the Spectrum
Figure 3.8 shows, as functions of η, the quantifiers 〈r〉,

〈
D̃1
〉
,
〈
D̃∞

〉
and var

(
D̃1
)

in the
interaction and tunneling bases calculated from the inner p% of the states, with p ranging
from 40 to 100. Here, we treat the individual level spacing ratios and fractal dimensions
as independent data points which sample a continuous probability distribution, such
that we can attach error bars to the data points according to standard errors δµ of the
mean and δv of the variance. These read for n � 1 data points x1, . . . , xn [182, 183]

δµ2 = var(x1, . . . , xn)
n

, δv2 = 1
n

(
µ4 − n− 3

n− 1
µ2

2

)
, (3.12)

with the usual variance, like in Equation (3.7), and the kth central moments

µk = 1
n

n∑
i=1

(xi − 〈x〉)k . (3.13)

The system under consideration is that of N = L = 12 with PBCs, and the subspace
defined by quasimomentum Q = 0 and parity Π = −1.

Also in the spectral average, the mean level spacing ratio shows a clear fingerprint of
quantum chaos for 1.3 × 10−2 ≲ η ≲ 0.8, where 〈r〉 ≈ 〈r〉GOE. This holds true even
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if the average is taken over the full spectrum, p = 100. This result confirms that
quantum chaos manifests itself not only in a large energy interval, as we discussed
in the previous section, but also in a large percentage of the levels. Note that these
two statements are not necessarily equivalent to each other, since, in principle, large
energy intervals can host just few states, and the majority of states can, in principle,
populate a rather small energy interval. The transition between 〈r〉 < 〈r〉GOE and
〈r〉 ≈ 〈r〉GOE is rather sharp and becomes ever sharper when reducing the percentage
of the states that are considered. This sharpening of the quantum-chaos transition is in
agreement with the energy dependence of the chaotic region observed in Figure 3.5(a)
of the preceding section: As the number of levels considered for the bulk is decreased,
also the corresponding energy interval becomes smaller, and hence the range of η values
within which the spectral statistics switches to GOE statistics gets narrower.

In the integrable limits, 〈r〉 changes just minimally with the percentage p. We stress that
this does not necessarily imply that the spectral statistics at the edges of the spectrum,
ε ≳ 0 and ε ≲ 1, is the same as in the center of the spectrum, ε ≈ 0.5: The highest
and lowest (100 − p/2)% of the levels might cover a quite large energy interval and their
average level spacing ratio could be dominated by energies clearly different from ε = 0
or ε = 1. For instance at η ≈ 10, the latter is a very likely scenario, since 〈r〉 is smaller
at the edges of the spectrum than around ε = 0.5 [see Figure 3.5(a)], while it barely
changes as a function of the percentage of the spectrum.

The limit of 〈r〉 for η → ∞ is clearly distinct from the Poisson prediction, [Equa-
tion (2.43)], even though the Hamiltonian is integrable in this limit. On the other hand,
〈r〉 seems to converge to 〈r〉Poisson in the opposite limit η → 0. Note, however, that the
exact limit η = 0 deviates from Poissonian level statistics again: Here, the only possible
level spacings are s = 0 and s = nU , with n ∈ N, such that the level spacing distribution
obeys a peaked structure rather than the exponential decay of Poisson, Equation (2.33).
Close inspection shows that our reasoning for Poissonian level statistics, as outlined
in Section 2.2.3, is not applicable to the integrable limits η = 0 and η = ∞ of the
Bose-Hubbard Hamiltonian: For these two points, the Hamiltonian depends on a single
parameter only (U or J , respectively), which governs just the global energy scale and
does not induce any level crossings, in contrast to the parameter dependence discussed
in Section 2.2.3 for the motivation of Poissonian level statistics.

The finding that 〈r〉 ≈ 〈r〉Poisson for η → 0 can be understood from the symmetries
of Hint and Htun. As discussed in Section 2.4.2, Hint is symmetric with respect to all
permutations of the sites, and its symmetry group is hence the symmetric group SL. On
the other hand, the full Hamiltonian just fulfils the symmetries of the dihedral group DL

for PBCs and of the two-element group D1 for HWBCs. At η = 0, the levels are sorted
into subspectra defined by the different irreducible representations of SL. Since DL

and D1 are subgroups of SL, each of these irreducible representations is also a (not
necessarily irreducible) representation of DL and D1 [170, 171]. As the symmetry is
reduced towards DL (D1), the irreducible representations of SL decompose into irre-
ducible representations of the smaller group DL (D1) [170, 171]. Since one irreducible
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representation of DL (D1) can appear in the decompositions of several irreducible rep-
resentations of SL, the energy levels at η = 0 will typically belong to various subspectra
induced by the symmetries of SL, even if we consider just the symmetry-induced sub-
space corresponding to one irreducible representation of DL (D1). If the subspectra of
different irreducible representations of SL can be treated as independent of each other,
levels from different subspectra undergo real crossings and our reasoning for the emer-
gence of Poissonian statistics, as outlined in Section 2.2.3, is applicable. Note that these
symmetry arguments are not valid in the limit η → ∞, since Htun has exactly the same
symmetries as the full Hamiltonian.

Also in terms of the spectral averages, quantum chaos as defined by 〈r〉 ≈ 〈r〉GOE is
accompanied by an increase in the average fractal dimensions in both natural bases, as
shown in Figure 3.8. Recall that D̃1 and D̃∞ constitute, respectively, upper and lower
bounds for the other D̃q with 1 ≤ q ≤ ∞. Consequently, also the other mean fractal
dimensions

〈
D̃q
〉

become large in the chaotic region. At the boundaries of the chaotic
domain,

〈
D̃q
〉

increases slightly when the influence of the spectral edges is reduced. In
the interaction basis, this effect is predominantly visible for the low-η edge of quantum
chaos, while in the tunneling basis it is more pronounced in the center of the chaotic
region and at its high-η boundary. These are also the ranges of η for which D̃q changes
the most as a function of η, as the eigenstates switch from being strongly localized in
one of the two natural bases to becoming delocalized in both of them. The influence
of non-chaotic states with lower D̃q is hence most noticeable at the low-η edge for the
interaction basis and the high-η edge for the tunneling basis.

As in the energy-resolved picture of Section 3.3, the variance of D̃1 over a certain per-
centage of the spectrum reduces by several orders of magnitude within the chaotic region,
for both natural bases. In the tunneling basis, var

(
D̃1
)

in the chaotic region decreases
strongly when the percentage of the states is reduced, while the minimum of var

(
D̃1
)

in
the interaction basis becomes only slightly more pronounced for the inner 40 % of states
as compared to the inner 80 %. This finding is in good agreement with the observation
from Figure 3.3 that D̃q of different eigenstates in the interaction basis become similar
throughout a wide energy range in the chaotic region. Quantitatively, the minimum of
var

(
D̃1
)

is at least one order of magnitude deeper in the interaction basis than in the
tunneling basis, and the minimal values of var

(
D̃q
)

are found at larger 0.2 ≲ η ≲ 0.4 for
the interaction basis as compared to 0.02 ≲ η ≲ 0.03 for the tunneling basis. Neverthe-
less, the η range in which the variance is strongly reduced, 10−2 ≲ η ≲ 1, is the same
for both bases.

3.4.2. Dependence on System Size
In the following, we discuss the dependence of quantum chaos on system size from the
perspective of spectral averages, considering always the inner 70 % of the spectrum, i.e.,
neglecting the highest and lowest 15 % of the levels. A similar investigation from the
energy-resolved perspective will follow in Section 4.3. In Figure 3.9, 〈r〉,

〈
D̃1
〉
,
〈
D̃∞

〉
and
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Figure 3.9: Mean level spacing ratio 〈r〉 (left), mean fractal dimensions
〈
D̃1,∞

〉
(center),

and variance var
(
D̃1
)

(right) over the inner 70 % of the spectrum (including n
levels as indicated in the parentheses in the legend), for the subspace Q = 0,
Π = −1 with PBCs, and for N = L from 8 to 12. Top (bottom) panels
show results in the interaction (tunneling) basis. Grey lines in the plot of
〈r〉 mark 〈r〉GOE (solid) and 〈r〉Poisson (dashed), Equations (2.41) and (2.43).
When not explicitly shown, error bars [calculated as in Equation (3.12)] are
contained within symbol size.

var
(
D̃1
)

are shown as functions of η, for particle numbers and lattice lengths ranging
from N = L = 8 to N = L = 12. Here, we consider PBCs with quasimomentum Q = 0
and parity Π = −1.

For 10−2 ≲ η ≲ 1 and for all system sizes considered, 〈r〉 approximately equals the predic-
tion of GOE, Equation (2.41). This holds true even for the smallest system N = L = 8,
even though fluctuations around 〈r〉GOE are large, due to the small number of levels avail-
able. Upon increasing system size, the region of spectral chaos, 〈r〉 ≈ 〈r〉GOE, slightly
increases towards smaller and larger η. The mean level spacing ratio for η outside the
region 10−2 ≲ η ≲ 1 is clearly different from 〈r〉GOE for all system sizes considered,
which shows that the region of spectral chaos can be identified even for the smallest L
investigated here.

Towards the limit η → ∞, 〈r〉 deviates from the prediction of Poissonian level statistics
for all system sizes, and the slope of 〈r〉 as a function of η differs among different system
sizes in this limit. There is hence no clear hint that for this range of η, 〈r〉 attains a
well-defined value 〈r〉∞ in the limit N,L → ∞. In contrast, the mean level spacing ratio
in the other limit η → 0 comes closer to 〈r〉Poisson as L grows, in agreement with the
symmetry-based discussion of the previous section.
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Figure 3.10: Mean level spacing ratio 〈r〉 (left), mean fractal dimensions
〈
D̃1,∞

〉
(center),

and variance var
(
D̃1
)

(right) over the inner 70 % of the spectrum, for the
boundary conditions and parities indicated in the legend, and N = L = 12
for PBCs, N = L = 10 for HWBCs. Top (bottom) panels show results in
the interaction (tunneling) basis. Grey lines in the plot of 〈r〉 mark 〈r〉GOE
(solid) and 〈r〉Poisson (dashed), Equations (2.41) and (2.43). Error bars are
contained within symbol size.

In both bases, the maximum of
〈
D̃q
〉

in the chaotic region takes larger values and gets
more pronounced as the system size increases, which is particularly visible for

〈
D̃∞

〉
. At

the same time, the region of maximal
〈
D̃q
〉

widens slightly on both ends, in agreement
with the increase of the chaotic region as defined by 〈r〉.

The minimum of var
(
D̃1
)

is also clearly visible even for the smallest system size consid-
ered, in both bases. Hence, the pronounced decrease of var

(
D̃q
)

can serve as a probe
of quantum chaos even for small systems. As N and L grow, the region of very small
variance widens on both ends, in unison with 〈r〉 and

〈
D̃q
〉
.

For the interaction basis in both limits η → 0, η → ∞ and for the tunneling basis
in the limit η → 0,

〈
D̃1,∞

〉
and var

(
D̃1
)

are of similar magnitude for all system sizes
considered, up to small deviations which decay with L. In contrast,

〈
D̃1,∞

〉
and var

(
D̃1
)

in the tunneling basis for η → ∞ are significantly smaller for odd N = L than for even
N = L. This reflects the enhanced localization of the eigenstates as η → ∞ for PBCs
with odd L, as discussed in Section 3.2.

3.4.3. Effect of Parity and Boundary Conditions
We now analyse how the spectral statistics and eigenstate fractal dimensions are affected
by boundary conditions and parity. Figure 3.10 shows the quantifiers 〈r〉,

〈
D̃1,∞

〉
and
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var
(
D̃1
)

as functions of η, for both boundary conditions (PBCs and HWBCs) and both
parities Π = ±1. Here, we consider the inner 70 % of the spectrum, and for PBCs we
choose the quasimomentum Q = 0. The particle numbers and lattice lengths (N = L =
12 for PBCs and N = L = 10 for HWBCs) are chosen to have comparable dimensions
of the different symmetry subspaces: N = 46 126 (Π = −1) and N = 46 252 (Π = +1)
for HWBCs, and N = 55 898 (Π = −1) and N = 56 822 (Π = +1) for PBCs. Note that
the even-parity subspace is always larger than the odd-parity subspace, since reflection-
symmetric Fock states, such as |n1 = 1, . . . , nL = 1〉, contribute only to the even-parity
subspace.

All quantifiers considered in Figure 3.10 have a qualitatively similar shape for both
boundary conditions. This shape is, however, shifted to smaller η for PBCs as compared
to HWBCs, which affects in particular the onset of quantum chaos as a function of
η. The minimum of the variance is marginally smaller for PBCs than for HWBCs,
especially in the tunneling basis, which we interpret as an effect of the larger Hilbert
space dimension, in a similar fashion as the reduction of var

(
D̃q
)

observed for larger
N = L in Section 3.4.2. The shift of all quantifiers towards smaller η for PBCs can
be understood as a consequence of the different structures of the Hamiltonian for the
two boundary conditions: Due to the link between sites 1 and L for PBCs, the effect of
tunneling in Fock space is stronger for PBCs than for HWBCs, such that smaller values
of the scaled tunneling strength η are sufficient to drive the system into quantum chaos.

For both boundary conditions and all quantifiers shown, positive and negative parity
essentially yield the same values and can barely be distinguished from one another.
Only for 〈r〉 at the boundaries of the chaotic region, small differences between Π = +1
and Π = −1 are visible. Numerical inspection shows that the relative deviations

|A(Π = +1) −A(Π = −1)|
A(Π = −1)

, A = 〈r〉 ,
〈
D̃q
〉
, var

(
D̃q
)
, (3.14)

are typically below 1 % and maximally ≲ 1.5 % for 〈r〉 and
〈
D̃q
〉
, while they reach

slightly larger values for var
(
D̃1
)
, typically below 5 % and in extreme cases reaching up

to ≲ 13 % (HWBCs in the interaction basis at η = 0.575). This large deviation, which is
found close to the minimum of the variance, is probably caused by a slight displacement
of this minimum for one parity as compared to the other, which has a large effect onto
the relative deviation due to the small values of var

(
D̃q
)
. Overall, we can confirm that

the spectral statistics as captured by 〈r〉 and the eigenstate localization properties as
described by

〈
D̃q
〉

and var
(
D̃q
)

are essentially the same for both parities.

Since the chaotic region emerges essentially in the same η range for both parities, one
should be able to detect quantum chaos also without resolving the parity symmetry.
This is exemplified in Figure 3.11(a) for HWBCs. Here, we plot the mean level spacing
ratio over the inner 70 % of the levels for the full Hilbert space including both parities
and compare it to the analytical prediction 〈r〉2 GOE = 0.423415, Equation (2.44). The
system sizes considered range from N = L = 7 (N = 1716) to N = L = 10 (N = 92 378).
Spectral chaos in the region 2 × 10−2 ≲ η ≲ 2 can clearly be identified by the good
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Figure 3.11: (a) Mean level spacing ratio 〈r〉 over the inner 70 % of the full spectrum
(including n levels as indicated in the legend), for N = L from 7 to 10 with
HWBCs. (b) Magnified spectrum at η = 9.01 × 10−4 for N = L = 7 with
HWBCs and both parities. Grey lines in (a) mark 〈r〉Poisson (dashed) and
〈r〉2 GOE (solid), Equations (2.43) and (2.44). When not explicitly shown,
error bars are contained within symbol size.

agreement of 〈r〉 with 〈r〉2 GOE. Here, the shift of the chaotic region as compared to the
range 10−2 ≲ η ≲ 1 identified in Sections 3.3 to 3.4.2 is just an effect of HWBCs versus
PBCs, as discussed in the preceding paragraphs.

It is worth noting that, in the limit η → 0, 〈r〉 does not converge to the Poisson prediction,
in contrast to the single-parity subspace discussed in Section 3.4.1. In principle, the
symmetry arguments of that section are applicable also to HWBCs with both parities.
Hence, if the energies of the different symmetry-induced subspectra were independent
of each other, one would expect Poissonian level statistics. Close inspection reveals,
however, that the subspectra for different parities are strongly correlated in the low-η
range: Figure 3.11(b) shows a magnification of the spectrum for N = L = 7 and HWBCs
at η = 9.01 × 10−4. The majority of levels with Π = +1 is accompanied by a level with
essentially the same energy and Π = −1. Hence, the spacings between these partner
levels of different parity are typically much smaller than the spacings between other
levels, and the corresponding level spacing ratios take values close to 0. Consequently,
also the mean level spacing ratio is strongly reduced.

3.5. Influence of the Filling Factor
In this section, we give a short overview of the emergence of quantum chaos in systems
with integer filling factors N/L > 1. Figure 3.12 shows the mean level spacing ratio
〈r〉 and the mean and variance of the distribution of D̃1 in the interaction basis among
close-in-energy eigenstates as functions of the scaled tunneling parameter η and the
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Figure 3.12: Mean level spacing ratio 〈r〉 (left), mean fractal dimension
〈
D̃1
〉

(center) and
variance var

(
D̃1
)

(right), in the interaction basis, among close-in-energy
Bose-Hubbard eigenstates, with HWBCs and parity Π = −1, versus η and
ε, for systems with different integer filling factors and comparable Hilbert
space dimensions: N = L = 9 (N = 12 120, upper panels), L = 7 and
N = 14 (N = 19 320, center panels), L = 6 and N = 18 (N = 16 797, lower
panels). Color bars apply to all panels in the same column. Blue dashed
lines at ε = 0.2, ε = 0.8, η = 0.01 and η = 1 are guides to the eye.
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scaled energy ε, for filling factors N/L = 1, 2, 3 and irreducible subspaces of comparable
dimension.

The chaotic region emerges in approximately the same ranges of η and ε for all three
systems considered, which is demonstrated by the blue dashed lines that indicate specific
values of η and ε close to the edges of the chaotic domain. Furthermore, the maximum
of D̃1 and the minimum of var

(
D̃1
)

are of similar magnitude for the three filling factors,
with small deviations in agreement with the different Hilbert space dimensions of the
three systems. Hence, the emergence of quantum chaos seems to be largely independent
of the integer filling factor as long as the Hilbert space dimension is kept approximately
constant. Slight deviations occur in the limit η → 0, however, where

〈
D̃1
〉

tends to be
smaller for larger filling. For given N and L, the number of discrete energy levels in
this limit, i.e., the number of sets {n1, . . . , nL} of site occupation numbers nj such that∑

j nj = N , can be calculated as the number of integer partitions of N with length ≤ L
and is found to increase with the filling factor for comparable Hilbert space dimensions.
Hence, the eigenstates at η → 0 delocalize over a smaller percentage of the full interaction
basis for larger filling factors, and consequently

〈
D̃1
〉

is smaller.

In previous works on fermions [113], hard-core bosons [112] and spin systems [108] it
was found that quantum chaos sets in at smaller interaction strengths for increasing N .
This finding is not necessarily in contradiction with our results, since in those systems
particles may not populate the same site and hence, the filling factor cannot be increased
beyond unity.

3.6. Summary
In this chapter, we have investigated the spectrum of the Bose-Hubbard model and its
eigenstates’ fractal dimensions, as functions of the scaled energy ε and of the scaled
tunneling strength η. In the energy-resolved picture, as well as in the bulk-averaged
perspective, clear fingerprints of quantum chaos are visible for intermediate values of
η. Quantum chaos, as defined via short-range spectral statistics captured by the level
spacing ratios, is connected to the emergence of complicated level dynamics dominated
by avoided crossings. The density of states attains a seemingly Gaussian shape within
the region of quantum chaos and the trajectory of its maximum correlates with the
position of the center of the chaotic domain in the ε-η parameter space.

Whenever the spectrum signals quantum chaos, the fractal dimensions reveal strong de-
localization of the corresponding eigenstates in both the interaction and the tunneling
basis. Most remarkably, the region of quantum chaos coincides with a strong reduc-
tion of the eigenstate-to-eigenstate fluctuations of the fractal dimensions. This effect is
qualitatively the same for both natural bases and hence qualifies as a basis-independent
hallmark of quantum chaos in any non-trivial basis. Additionally, the boundaries of
the chaotic region are unmistakeably indicated by the pronounced asymmetry of the
distribution of fractal dimensions.
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While the position of the chaotic domain as a function of the scaled tunneling strength
depends slightly on the boundary conditions due to their influence on the connectivity of
Fock space, the emergence of quantum chaos is essentially the same for different parity-
induced subspaces, and can even be identified if parity symmetry remains unresolved.
For systems of similar Hilbert space dimension, quantum chaos was found to be largely
independent of the integer filling factor N/L.

In addition to the eigenstate fractal dimensions discussed throughout this chapter, we
have investigated the structure of the Bose-Hubbard eigenstates via correlations of their
amplitudes and intensities in the interaction basis. These results are presented in Ap-
pendix B.
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Chapter 4.

Bose-Hubbard Model versus Random
Matrix Theory

In Chapter 3, we have seen how spectral chaos in the Bose-Hubbard Hamiltonian is re-
flected in the eigenstates by an increase of their fractal dimensions and by a strong reduc-
tion of the fractal dimensions’ eigenstate-to-eigenstate fluctuations. Since spectral chaos
is defined via the eigenvalue statistics of Gaussian random matrices (see Section 2.2.3), it
is natural to ask whether these random-matrix ensembles would also give a good approx-
imation to eigenvector properties of chaotic many-body quantum systems. As we will
see in the following, analytically calculated mean fractal dimensions

〈
D̃q
〉

and variances
var

(
D̃q
)

for GOE eigenvectors give a good approximation to the corresponding quanti-
ties for the Bose-Hubbard model, while, nevertheless, the full probability distribution of
fractal dimensions reveals clear differences. Furthermore, we compare the Bose-Hubbard
Hamiltonian in the chaotic domain to the embedded GOE ensemble, which, as discussed
in Section 2.2.5, contains only two-body interactions. It will be shown that the embed-
ded ensemble can reproduce certain Bose-Hubbard features more closely than GOE, but
deviations in terms of the full probability distributions of the fractal dimensions remain.

4.1. Analytical Results for Fractal Dimensions of GOE
eigenstates

In this section we derive analytical expressions of
〈
D̃q
〉

and var
(
D̃q
)
, q = 1, 2,∞, for the

eigenvectors of GOE random matrices of size N × N and obtain approximations to the
full distribution functions of D̃q.

In the following, let

v = (v1, . . . , vN )

be a vector whose components follow the joint distribution of GOE [Equation (2.45) on
page 21]. The probability distributions of a single component vi and a pair of components
(vi, vj) are consequently given by Equations (2.47) and (2.48), respectively (both on
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page 21). Then, the ensemble average of |vi|2 ln |vi|2, that is, the average over different
realizations of GOE matrices, reads

〈
|vi|2 ln |vi|2

〉
=
∫ 1

−1
|vi|2 ln |vi|2 PGOE(vi) dvi = −

hN /2 − 2 + ln 4
N

. (4.1)

Here, hn is the harmonic number [184, p. 206],

hn =
n∑

k=1

1
k

=
∫ 1

0

1 − xn

1 − x
dx, (4.2)

where the sum is the definition for positive integers n and the integral, which equals the
sum for these integers, defines hn also for non-integer values n ≥ 0. Consequently, the
corresponding GOE ensemble average of D̃1 reads

〈
D̃1
〉

GOE = − 1
ln N

N∑
i=1

〈
|vi|2 ln |vi|2

〉
=

hN /2 − 2 + ln 4
ln N

. (4.3)

In the limit N → ∞, this expression expands to〈
D̃1
〉

GOE
= 1 − 1

ln N

[
2 − γ − ln 2 − 1

N
+ 1

3N 2 + O
( 1

N 4

)]
, (4.4)

where γ is the Euler-Mascheroni constant (Equation 5.2.3 of Reference [185]),

γ = lim
n→∞

(hn − lnn) ≈ 0.577 215 665. (4.5)

In a similar fashion as for
〈
D̃1
〉

GOE, we can calculate var
(
D̃1
)
, using

〈
D2

1

〉
GOE

= 1
ln2 N

 N∑
i,j=1
i 6=j

〈
|vi|2 ln |vi|2 |vj |2 ln |vj |2

〉
+

N∑
i=1

〈(
|vi|2 ln |vi|2

)2
〉 ,

which leads to

var
(
D̃1
)

GOE =
〈
D̃2

1

〉
GOE

−
〈
D̃1
〉2

GOE

=
(
3π2 − 24

)
(N + 2) − 8

2(N + 2)2 ln2 N
−
ψ(1)

(
2 + N

2

)
ln2 N

. (4.6)

Here, ψ(1) is the first derivative of the digamma function ψ (Equations 5.2.1 and 5.2.2
of Reference [185]),

ψ(z) : = 1
Γ(z)

d
dz

Γ(z), with Γ(z) :=
∫ ∞

0
e−xxz−1 dx. (4.7)
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For N → ∞, the variance expands to

var
(
D̃1
)

GOE = 1
ln2 N

[
3π2 − 28

2N
+ 26 − 3π2

N 2 + O
( 1

N 3

)]
. (4.8)

We stress that the correlations between different vector components vi, vj , as described
by their joint probability distribution, Equation (2.48), cannot be neglected in the vari-
ance of D̃1: Without these correlations, var

(
D̃1
)

GOE would be given just by the single-
component variances as

1
ln2 N

N∑
i=1

[〈(
|vi|2 ln |vi|2

)2
〉

−
〈
|vi|2 ln |vi|2

〉2
]
,

whose scaling for N → ∞ is different from that of the full variance, with a leading
term ∼ 1/N instead of ∼ 1/

(
N ln2 N

)
.

For D̃2, we approximate the GOE average by a more accessible quantity,

〈
D̃2
〉

GOE ≈ − ln 〈R2〉GOE
ln N

= − 1
ln N

ln
N∑

i=1

〈
|vi|4

〉
. (4.9)

This expression is in fact always a lower bound for
〈
D̃2
〉

GOE [84], a statement that
follows directly from Jensen’s inequality (Equation 1.7.10 of Reference [185]) using that
the negative logarithm is a convex function. To find an approximation to the variance
of D̃2, we use propagation of uncertainty [186], which leads to

var
(
D̃2
)

GOE ≈

(∂D̃2
∂R2

)
R2=〈R2〉GOE

2

var(R2)GOE = var(R2)GOE

〈R2〉2
GOE ln2 N

. (4.10)

This approach yields

〈
D̃2
〉

GOE ≈ ln(N + 2) − ln 3
ln N

, (4.11)

var
(
D̃2
)

GOE ≈ 8(N − 1)
3(N + 4)(N + 6) ln2(N )

, (4.12)

which for N → ∞ expand to

〈
D̃2
〉

GOE ≈ 1 − 1
ln N

[
ln 3 − 2

N
+ 2

N 2 + O
( 1

N 3

)]
, (4.13)

var
(
D̃2
)

GOE ≈ 1
ln2 N

[ 8
3N

− 88
3N 2 + O

( 1
N 3

)]
. (4.14)

Hence, the first few orders of the large-N expansions have the same functional form for
q = 1 and q = 2.
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For D̃∞, we neglect the correlations induced by normalization of v, assuming that the
different vector components are independent of one another, and we choose N large
enough, such that the single-amplitude distribution, Equation (2.47), can be approxi-
mated by the Porter-Thomas distribution PPT(ui) of the scaled intensity ui := N v2

i /2,
Equation (2.50) on page 22. Then, the cumulative distribution function F (t) of the
maximum intensity t := maxi v

2
i , i.e., the probability that all intensities are bounded

from above by t, is just the product of the probabilities that the individual intensities
v2

i are smaller than or equal to t. Hence,

F (t) =
N∏

i=1

(∫ N t/2

0
dui PPT(ui)

)
=

Erf

√N t

2

N

, (4.15)

where Erf(x) is the error function (Equation 7.2.1 of Reference [185]),

Erf(x) = 2√
π

∫ x

0
e−y2 dy. (4.16)

Here, the normalization of v restricts t to the range 1/N ≤ t ≤ 1. From the cumulative
distribution function, the probability density is obtained as

PGOE(t) = d
dt
F (t) = N 3/2e−N t/2

√
2πt

Erf

√N t

2

N −1

, (4.17)

which, after partial integration and the variable substitution x =
√

N t/2, gives the kth
moment of the random variable D̃∞ = − ln t/ ln N as〈

D̃k
∞

〉
GOE

=
∫ 1

1/N

(
− ln t

ln N

)k

PGOE(t) dt

= 2k(−1)k−1

lnk N

∫ √
N /2

1/
√

2

Erf(x)N

x

[
ln
(

2x2

N

)]k−1

dx− Erf
( 1√

2

)N
.

(4.18)

Since the last term of Equation (4.18) decays exponentially with N , it can be neglected
for large N . Note that, in contrast to the approximate treatment of GOE discussed
here, expressions for F (t) and PGUE(t) for the Gaussian unitary ensemble are known
exactly [187].

In contrast to D̃1 and D̃2, obtaining the expansion of
〈
D̃∞

〉
GOE and var

(
D̃∞

)
GOE for

N → ∞ is rather involved and requires a suitable approximation of the error function in
the integrals. We therefore leave the details for Appendix A.3 and quote just the final
results: 〈

D̃∞
〉

GOE = 1 − ln(ln N ) + ln 2
ln N

+ ln(ln N )
ln2 N

+ O
( 1

ln2 N

)
, (4.19)

var
(
D̃∞

)
GOE = c1

ln4 N
+ c2 ln(ln N )

ln5 N
+ O

( 1
ln5 N

)
. (4.20)
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4.1. ANALYTICAL RESULTS FOR FRACTAL DIMENSIONS OF GOE
EIGENSTATES
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Figure 4.1: Numerical data [dots], analytical predictions [solid lines, Equations (4.3),
(4.6), (4.11), (4.12), (4.18)] and large-N expansions of the analytical pre-
dictions [dashed lines, Equations (4.4), (4.8), (4.13), (4.14), (4.19), (4.20)]
for

〈
D̃q
〉

GOE (left) and var
(
D̃q
)

GOE (right), q = 1, 2,∞. For the large-N
expansions, only the leading finite-size corrections are taken into account
(for

〈
D̃∞

〉
, only the first two corrections). The coefficient c1 for var

(
D̃∞

)
is

chosen as c1 = 2/
(
3 ln2 2

)
[compare Equation (A.34) in Appendix A.3].

Here, the exact values of the coefficients c1,2 depend on the precise approximation to
the error function, but the functional form of the finite-size corrections can be predicted
reliably.

In Figure 4.1, we compare the analytical formulas for
〈
D̃q
〉

GOE and var
(
D̃q
)

GOE, Equa-
tions (4.3), (4.6), (4.11), (4.12) and (4.18), to the means and variances of D̃q obtained
numerically by sampling the uniform distribution on the unit sphere, as described in
Section 2.2.4 on page 21. We also show the leading terms of the expansions for N → ∞,
Equations (4.4), (4.8), (4.13), (4.14), (4.19) and (4.20) (for

〈
D̃∞

〉
including also the first

subleading correction). For all three values of q, the numerical data is well described by
the analytical predictions, and for q = 1, 2, the large-N expansion to leading order agrees
exceptionally well with the exact analytical formula already for small N . For q = ∞,
the analytical expression for the mean and the corresponding expansion for N → ∞
to second order agree only for dimensions larger than those investigated numerically.
Hence, finite-size effects play a more significant role for

〈
D̃∞

〉
GOE. The first-order ex-

pansion for var
(
D̃∞

)
GOE at N → ∞ and the corresponding analytical formula show the

same qualitative behaviour as functions of N , but they appear slightly shifted. Hence,
our large-N expansion describes the functional form of the leading order correctly, while
the coefficient is probably not predicted exactly.

In addition to the mean and variance of D̃q, we now construct analytical approxima-
tions to the full probability densities PGOE(D̃q). For D̃∞, this function can directly
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Figure 4.2: Numerically calculated histograms of D̃q for vectors of dimension
N = 2 599 688 distributed according to GOE [Equation (2.45)], compared
to Gaussian distributions [Equation (4.22)] for q = 1, 2 and to the distribu-
tion function of Equation (4.21) for q = ∞. Upper (lower) panels show the
distributions in linear (logarithmic) scale.

be obtained from the probability density in terms of the maximum intensity t [Equa-
tion (4.17)], according to

PGOE(D̃∞) dD̃∞ = PGOE(t) dt.

This procedure yields

PGOE(D̃∞) = PGOE
(
t = N −D̃∞

)
N −D̃∞ ln N . (4.21)

Since D̃1 is the sum of identically distributed terms, the central limit theorem would,
for N → ∞, yield the Gaussian distribution

PGOE(D̃1) = 1√
2π var

(
D̃1
)

GOE

exp

−

(
D̃1 −

〈
D̃1
〉

GOE

)2

2 var
(
D̃1
)

GOE

 , (4.22)

if the different summands of D̃1 were independent. Numerical inspection reveals that
PGOE(D̃1) and also PGOE(D̃2) are very well approximated by a Gaussian distribution
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for sufficiently large N , even though the different vector components are correlated via
the normalization of v. This is demonstrated in Figure 4.2, where numerically obtained
histograms of D̃q for GOE are compared against Gaussian distributions with means and
variances according to Equations (4.3), (4.6), (4.11) and (4.12) for q = 1, 2 and against
Equation (4.21) for q = ∞. Here, the (linear) matrix dimension is N = 2 599 688, which
is the same dimensionality as the subspace of parity Π = −1 with N = L = 13 and
HWBCs for the Bose-Hubbard Hamiltonian.

4.2. Properties of the Bosonic Embedded Ensemble
In contrast to GOE, where spectral and eigenvector properties such as the distributions
of level spacing ratios r and of fractal dimensions D̃q can be accessed (approximately)
analytically, the corresponding quantities for the bosonic embedded GOE ensemble de-
fined in Section 2.2.5 are typically known only from numerical calculations [98]. In the
following, we briefly discuss their main features as functions of the parameter λ and of
the scaled energy ε, comparing the energy dependence also to the Bose-Hubbard model.

We apply reflection symmetry to the embedded ensemble, as discussed at the end of
Section 2.2.5, and consider only the corresponding symmetric or antisymmetric subspace
with respect to that symmetry. If not stated differently, the reflection symmetry is
implemented according to Equation (2.60) on page 24. The resulting Hilbert space
dimensions are the same as for the symmetry-induced subspaces of the Bose-Hubbard
Hamiltonian with HWBCs.

4.2.1. Parameter Dependence
As discussed in Section 2.2.5, the parameter λ of the embedded ensemble tunes the
strength of the two-body Hamiltonian in relation to the single-particle Hamiltonian [see
Equation (2.55) on page 23]. We now investigate how this parameter influences spectral
chaos, as described by the mean level spacing ratio 〈r〉, and the eigenstate structure, as
captured by the mean and the variance of D̃1.

Figure 4.3 shows the mean level spacing ratio 〈r〉 as a function of λ for the embedded
ensemble with N = 10 particles in L = 10 single-particle modes and parity Π = −1
(N = 46 126), averaged over 100 realizations of the ensemble. Here, 〈r〉 is calculated
from the full spectrum of each individual realization and subsequently averaged over
realizations (ensemble average). A good agreement with 〈r〉GOE, and hence a clear signal
of spectral chaos, appears already for small values λ ≳ 0.04. This is in accord with the
results of Reference [160], where the level spacing distribution of a bosonic embedded
ensemble with N ∈ [7, 16], L ∈ {4, 5} and single-particle energies Ei = i+ 1/i [diagonal
single-particle Hamiltonian H1 as in Equation (2.59) on page 24] was compared to GOE
and Poisson. There, the critical λ for GOE spectral statistics was found to be between
0.0148 and 0.02975, depending on N and L. The fact that the critical value of λ is rather
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Figure 4.3: Mean level spacing ratio 〈r〉 versus λ, for the full spectrum of the embedded
ensemble [Equation (2.55) with N = L = 10 and Π = −1 (N = 46 126),
averaged over 100 ensemble realizations. The solid line indicates 〈r〉GOE,
Equation (2.41) on page 19. Error bars are defined solely from the average
over realizations.

small raises the question whether in the limit of infinite Hilbert space dimension already
an infinitesimally small two-body contribution is sufficient to break the integrability at
λ = 0.1 However, note that we find a slightly larger critical λ than the values reported
in Reference [160], even though we consider a much larger Hilbert space dimension here.

To see how the emergence of quantum chaos in the spectrum is reflected by the eigen-
vector properties, we investigate in Figure 4.4 the mean and variance of D̃1 over close-in-
energy eigenstates as functions of λ, for different values of the energy. Here, we consider
the same N , L, and parity (N = L = 10, Π = −1) as for the level spacing ratios in
Figure 4.3. Mean and variance are obtained from the 100 eigenstates closest to the
scaled target energy ε ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} for each individual realization, and
are subsequently averaged over realizations. The scaled energy ε is defined according to
Equation (2.99) on page 34, as for the Bose-Hubbard model, where the minimum and
maximum energies Emin, Emax for the embedded ensemble are calculated per realization.

As a function of ε,
〈
D̃1
〉

gets larger and var
(
D̃1
)

gets smaller towards the center of
the spectrum, ε = 0.5. For the Bose-Hubbard Hamiltonian, we have found that large
fractal dimensions accompanied by a strong suppression of their eigenstate-to-eigenstate
fluctuations are characteristic of the chaotic regime. If we apply the same reasoning
here, quantum chaos for the embedded ensemble manifests itself more strongly in the
center of the spectrum than at its edges. This is clearly different from GOE, where

〈
D̃q
〉

and var
(
D̃q
)
, as discussed in Section 4.1, are independent of the energy. Furthermore,

the behaviour of the mean and the variance for the embedded ensemble is very similar
for scaled energies ε and 1 − ε. This symmetry is immediately clear from the definition
1Integrability at λ = 0 can easily be seen from the fact that the occupation numbers of the L eigenmodes
of the single-particle Hamiltonian with matrix elements h(1)

ij [compare Equation (2.54)] define a complete
set of L commuting observables.
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Figure 4.4: Mean
〈
D̃1
〉

(left) and variance var
(
D̃1
)

(right) for 100 states around specific
scaled energies ε as indicated, versus λ, for the embedded ensemble with
N = L = 10 and Π = −1 (N = 46 126), averaged over 100 ensemble realiza-
tions. Error bars are defined solely from the average over realizations.

of the embedded ensemble, Equations (2.54)–(2.57): Since the matrix elements of the
single- and two-body Hamiltonians H1,2 are distributed symmetrically around 0, the
probability densities for the Hamiltonians H and −H are the same. Consequently, after
ensemble average all spectral and eigenvector properties of the embedded ensemble are
symmetric around the non-scaled energy E = 0, which hence corresponds to ε = 0.5.

For λ ≤ 0.1,
〈
D̃1
〉

increases and var
(
D̃1
)

strongly decreases as a function of λ, even
though the mean level spacing ratio is already in good agreement with 〈r〉GOE for these
values of λ. Only for λ ≥ 0.5 do

〈
D̃1
〉

and var
(
D̃1
)

reach an essentially constant value.
By choosing λ = 1, as we do from now on, we can therefore ensure that the features
of quantum chaos in the eigenstates, as described by the latter two quantities, are well
developed for any value of the energy.

4.2.2. Spectral Properties in Comparison with Bose-Hubbard
In the left panels of Figure 4.5, the density of states and the mean level spacing ratio 〈r〉
are shown for the embedded ensemble (with λ = 1), as functions of the scaled energy ε,
for N = L = 10 and parity Π = −1 (N = 46 126). Here, the energy axis is divided into
100 equally spaced bins, and 〈r〉 is calculated for the levels that fall into the same bin,
before being averaged over 100 ensemble realizations.

The right panels of Figure 4.5 show the density of states and the mean level spacing
ratio for the Bose-Hubbard model with HWBCs, N = L = 10, and parity Π = −1.
Here, error bars are obtained as standard errors of the mean, for each of the 50 equally
spaced bins into which the energy axis is discretized. The value η = 0.1905 of the scaled
tunneling strength is chosen deep within the chaotic domain, as can be seen for instance
in Figures 3.5(a) and 3.6 on pages 43 and 45. To ease the comparison with the embedded
ensemble, whose properties are symmetric around ε = 0.5 on average, η is furthermore
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Figure 4.5: Density of states and mean level spacing ratio 〈r〉 versus scaled energy ε, for
the embedded ensemble and the Bose-Hubbard Hamiltonian with HWBCs
and η = 0.1905, for N = L = 10 and Π = −1 (N = 46 126). 〈r〉 is calcu-
lated separately for each of the 100 (50) bins into which the energy axis is
discretized for the embedded ensemble (for the Bose-Hubbard model), and
further averaged over 100 realizations for the embedded ensemble (error bars
defined only from this second average). Solid lines in the upper panels show
fits by a Gaussian distribution and by a second-order Edgeworth expansion,
Equation (4.23). The grey lines in the lower panels indicate 〈r〉GOE, Equa-
tion (2.41) on page 19.

chosen large enough, such that the density of states for the Bose-Hubbard Hamiltonian
is sufficiently symmetric around ε = 0.5.

The shape of the density of states for the embedded ensemble is clearly similar to a
Gaussian distribution, in stark contrast to GOE, where the density of states follows
the semicircle law [Equation (2.26) on page 15], but in very good agreement with the
behaviour of the density of states for the Bose-Hubbard Hamiltonian within the chaotic
regime, as discussed in Section 3.1 and as shown in the upper right panel of Figure 4.5.
However, close inspection shows deviations from Gaussianity for both the Bose-Hubbard
model and the embedded ensemble, as visible from the Gaussian fits (blue lines) in
Figure 4.5. To account for these deviations, we consider a correction in the form of an
Edgeworth expansion to second order [98, 188], which was previously found to give a
good description of the density of states for fermionic embedded ensembles [98]. For a
distribution with zero mean and unit variance, this expansion reads

PEdgeworth(x) = PGauss(x)
(

1 + k3
3!

He3(x) + k4
4!

He4(x) + k2
3

2! (3!)2 He6(x)
)
. (4.23)
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Here, PGauss is the probability density of a standard Gaussian random variable, kj are
the scaled cumulants of the distribution to be approximated,

kj = Kj

σj
, (4.24)

with the cumulants Kj [182] and the standard deviation σ, and Hen are the Hermite
polynomials defined as

Hen(x) = (−1)nex2/2 dn

dxn
e−x2/2, (4.25)

which yields

He3(x) = x3 − 3x, He4(x) = x4 − 6x2 + 3, He6(x) = x6 − 15x4 + 45x2 − 15.
(4.26)

Details on the derivation of this expansion can be found in References [98, 188]. For
the embedded ensemble as well as for the Bose-Hubbard Hamiltonian, the Edgeworth
expansion gives a much better description of the density of states. Hence, the embedded
ensemble qualitatively describes the deviations of the Bose-Hubbard density of states
from Gaussianity.

For both models, 〈r〉 agrees well with the GOE prediction and hence signals spectral
chaos for 0.2 ≲ ε ≲ 0.8, while it fluctuates strongly and clearly deviates from 〈r〉GOE
towards the edges of the spectrum, where the density of states is very small for both
models. (Note that the additional average over ensemble realizations leads to a smoother
behaviour of 〈r〉 for the embedded ensemble than for the Bose-Hubbard model.) Hence,
the embedded ensemble qualitatively describes the absence of quantum chaos and the
reduced density of states exhibited by the Bose-Hubbard model at the edges of the
spectrum, in contrast to GOE, whose short-range spectral statistics do not show any
energy dependence (compare Section 2.2.3). This result demonstrates that the sparsity
of the many-body Hamiltonian, or in other words the fact that Fock states are connected
via single- and two-body processes only, can be associated with non-chaotic behaviour
at the spectral edges, accompanied by a very small density of states.

4.2.3. Fractal Dimensions in Comparison with Bose-Hubbard
After investigating the spectrum, we now discuss the eigenstate fractal dimensions in
terms of their mean, variance and skewness as functions of the scaled energy ε. Here, we
note that for the embedded ensemble, the distribution of eigenstate fractal dimensions
can be defined in several ways. After discretizing the energy axis like in Section 4.2.2, the
energy-resolved mean, variance and skewness could be calculated incorporating all eigen-
states that belong to the same energy bin for all different realizations of the ensemble.
However, this procedure does not distinguish the uncorrelated eigenstates of different
ensemble realizations from the eigenstates of the same realization that are therefore cor-
related with each other. Alternatively,

〈
D̃q
〉
, var

(
D̃q
)

and skew
(
D̃q
)

could be calculated
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Figure 4.6: Mean
〈
D̃q
〉
, variance var

(
D̃q
)

and absolute skewness
∣∣∣skew

(
D̃q
)∣∣∣, q = 1, 2,∞,

as functions of the scaled energy ε for the embedded ensemble and the Bose-
Hubbard model with HWBCs and η = 0.1905, for N = L = 10 and Π = −1
(N = 46 126). Each quantity is calculated individually for the 100 (50)
equally spaced bins, into which the energy axis is discretized for the embed-
ded ensemble (for the Bose-Hubbard model), and in the case of the embedded
ensemble further averaged over 100 realizations, with error bars defined only
from this second average. Dashed lines indicate the corresponding GOE ex-
pectation, Equations (4.3), (4.6), (4.11), (4.12) and (4.18).

individually for each realization and for the eigenstates that belong to the same energy
bin, like for the Bose-Hubbard Hamiltonian in Section 3.3, subsequently averaging these
quantities over different realizations. This approach treats correlated eigenstates from
the same realization and uncorrelated eigenstates from distinct realizations on a differ-
ent footing. We will therefore use this type of averaging for the embedded ensemble,
where

〈
D̃q
〉
, var

(
D̃q
)

and skew
(
D̃q
)

are hence quantifiers of the distribution over close-
in-energy eigenstates of the same Hamiltonian, i.e. the same realization, and do not
describe the distribution over different ensemble realizations.

Figure 4.6 shows the mean, the variance and the absolute value of the skewness of the
distribution of fractal dimensions among different eigenstates versus scaled energy ε, for
the embedded ensemble and the Bose-Hubbard model in both natural bases. Here, we
use the same system parameters and energy discretization procedure as for Figure 4.5.
The mean fractal dimension for all three models rises to its maximum around the center
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Figure 4.7: Comparison of
〈
D̃q
〉

and var
(
D̃q
)

as functions of ε for the two possible im-
plementations of reflection symmetry into the embedded ensemble, the “site
approach” [filled circles, Equation (2.60)] and the “parity approach” [empty
squares, Equation (2.61)] as described in the main text, for N = L = 9 and
Π = −1 (N = 12 190).

of the spectrum, ε = 0.5, where the variance decays by several orders of magnitude
towards its minimum. For the embedded ensemble and the Bose-Hubbard model in the
interaction basis,

〈
D̃q
〉

and var
(
D̃q
)

become almost constant around the maximum or
minimum, respectively, exhibiting a good quantitative agreement for these two models.
Note, however, that the Bose-Hubbard Hamiltonian shares the symmetry of the em-
bedded ensemble around ε = 0.5 only in the limit η → ∞. As revealed by the dashed
horizontal lines, which indicate the corresponding

〈
D̃q
〉

GOE and var
(
D̃q
)

GOE, the max-
imum of

〈
D̃q
〉

and the minimum of var
(
D̃q
)

for these two models are furthermore well
described by GOE.

While the basic features, namely the much larger mean and much smaller variance in
the center than at the boundaries of the spectrum, are qualitatively the same also for
the Bose-Hubbard model in the tunneling basis, the embedded ensemble reproduces the
shape of

〈
D̃q
〉

and var
(
D̃q
)

as functions of ε only for the Bose-Hubbard Hamiltonian in
the interaction basis. This qualitative disagreement of

〈
D̃q
〉

and var
(
D̃q
)

between the
embedded ensemble and the Bose-Hubbard model in the tunneling basis is surprising,
given the strong resemblance of their matrix structure (see Figure 2.7 on page 33 and the
discussion towards the end of Section 2.4.2). At first glance, one might conjecture that
this deviation is caused by the way the reflection symmetry is applied to the embedded
ensemble. In Figure 4.6, reflection symmetry is implemented treating the L single-
particle modes as spatially localized Wannier states [“site approach”, Equation (2.60) on
page 24], like for the Bose-Hubbard Hamiltonian in the interaction basis. Alternatively,
reflection symmetry could also be applied assuming that each single-particle mode has
a well-defined parity [“parity approach”, Equation (2.61) on page 24], as is the case for
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the Bose-Hubbard Hamiltonian in the tunneling basis with HWBCs, where the single-
particle basis states are standing waves. In Figure 4.7,

〈
D̃q
〉

and var
(
D̃q
)

as functions
of the scaled energy ε are compared for these two approaches, using N = L = 9 and
parity Π = −1 (N = 12 120). While the plateau of constant values for

〈
D̃q
〉

and var
(
D̃q
)

around ε = 0.5 is slightly less pronounced for the “parity approach” and the values of〈
D̃q
〉

and var
(
D̃q
)

towards the edges of the spectrum differ between the two approaches,
the qualitative shape of mean and variance is comparable between both implementations
of reflection symmetry and also the maximum of

〈
D̃q
〉

and the minimum of var
(
D̃q
)

are
very similar. Hence, the much better agreement between the embedded ensemble and
the Bose-Hubbard Hamiltonian in the interaction basis cannot solely be explained by
the implementation of the reflection symmetry.

In contrast to the Bose-Hubbard Hamiltonian, whose matrix elements depend on just
two parameters J and U and are therefore highly correlated, the matrix elements of the
embedded ensemble are determined by

1
2
L(L+ 1) + 1

2
L(L+ 1)

2

(
L(L+ 1)

2
+ 1

)
independent numbers—namely the d(d+ 1)/2 independent elements of the d× d dimen-
sional symmetric matrices H1 and H2 [Equation (2.54) on page 22], with d = L and
d = L(L + 1)/2, respectively—and are therefore much less correlated. The mismatch
between the embedded ensemble and the Bose-Hubbard Hamiltonian in the tunneling
basis must therefore be related to the different correlations in the matrix elements.

The skewness of D̃q, as discussed for the Bose-Hubbard Hamiltonian in Section 3.3.2,
is particularly pronounced at the boundaries of the chaotic region. The lower panels of
Figure 4.6 show that this statement is true also for the embedded ensemble for q = 1, 2.
In this model, as well as in the Bose-Hubbard model for both natural bases, the absolute
value of the skewness is strongly reduced in the center of the chaotic domain, while it
becomes maximal at the boundaries of that region, where the errors of the skewness
are largest. For q = ∞, the skewness in the center of the spectrum clearly differs
from 0,

∣∣∣skew
(
D̃∞

)∣∣∣ ≈ 0.7, which indicates that the distribution of D̃∞ stays asymmetric
within the chaotic domain. These observations are in qualitative agreement with the
behaviour exhibited by the GOE distributions of D̃q discussed in Section 4.1 and shown
in Figure 4.2. There, it was found that the distributions of D̃1,2 are well approximated
by a Gaussian, which is symmetric by definition, while D̃∞ has a notably asymmetric
distribution.

4.3. Comparison of the Models around Specific Target Energies
In this section, we analyse the fractal dimensions of the eigenstates closest to certain tar-
get energies ε as functions of η, investigating the agreement between the random-matrix
predictions discussed in the preceding sections and the Bose-Hubbard Hamiltonian in
the chaotic domain.
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Figure 4.8: Energies εEGOE for the embedded ensemble with N = L = 10 and parity
Π = −1 (Hilbert space dimension N = 46 126), as a function of η, for
four values of εBHH, as defined by the maximum of the density of states
[Equation (4.27), filled circles] and by the condition that the same number
of levels lies between the energy target and ε = 0 for both models (open
squares). Dashed lines and thick shades on the axes indicate the η ranges
identified as the chaotic regions in Figures 4.9 and 4.10 and the corresponding
intervals of εEGOE.

As discussed in Section 4.2.1, the spectral and eigenvector properties of the embedded
ensemble are symmetric around ε = 0.5 after ensemble average, whereas the Bose-
Hubbard model obeys such a symmetry only for η → ∞. Consequently, the hallmarks
of quantum chaos in 〈r〉 and D̃q for the embedded ensemble are always strongest around
ε = 0.5, while the energy at which quantum chaos is maximally developed for the
Bose-Hubbard model depends on η. Therefore, one cannot directly compare the chaotic
properties of both models around the same energy value ε. Since the maximum of
the density of states lies deep in the center of the chaotic region for both models, as
shown in Figure 3.5(a) (page 43) for the Bose-Hubbard model and in Figure 4.5 for
the embedded ensemble, one may define comparable target energies, εBHH for the Bose-
Hubbard Hamiltonian and εEGOE for the embedded ensemble, as those energies that lie
at the same distance from the corresponding maximum of the density of states, ε∗

BHH(η)
and ε∗

EGOE = 0.5, that is,

εEGOE(εBHH, η) = εBHH − ε∗
BHH(η) + 0.5. (4.27)

Alternatively, εBHH and εEGOE could be defined as those energies that bound from above
the same number of energy levels.

In Figure 4.8, the target energies εEGOE are shown as functions of η for both defini-
tions and for four different values of εBHH. The system under consideration is that of
N = L = 10 particles and sites with parity Π = −1, for the Bose-Hubbard model further-
more with HWBCs (N = 46 126). While the two definitions do yield different results for
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Figure 4.9: Mean, variance and absolute skewness of D̃1, in both natural bases, versus
η = J/UN , for the 100 Bose-Hubbard eigenstates closest to εBHH = 0.2 and
εBHH = 0.4, with HWBCs, Π = −1, N = L ∈ [7, 13] (N ∈ [848, 2 599 688]).
Shaded regions highlight corresponding results for the embedded ensemble
as described in the main text. Dashed vertical lines indicate the η range of
the chaotic domain [blue, Equation (4.28)] and the η values investigated in
Figures 4.12 and 4.13 (black). When not shown, error bars are contained
within symbol size (not included for the skewness to ease visualization).76
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Figure 4.10: Same as Figure 4.9, for εBHH = 0.6 and εBHH = 0.8.
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εEGOE at small η,2 the values are essentially equivalent in the relevant chaotic domains
for η. Note that, at large η, the energies εEGOE according to Equation (4.27) become
equal to the energies εBHH, since the density of states becomes symmetric around ε = 0.5
for the Bose-Hubbard Hamiltonian.

Figures 4.9 and 4.10 (pages 76 and 77) show the evolution of the mean
〈
D̃1
〉
, the variance

var
(
D̃1
)

and the absolute value of the skewness
∣∣∣skew

(
D̃1
)∣∣∣ over the 100 Bose-Hubbard

eigenstates closest to the target energies εBHH = 0.2, 0.4, 0.6 and 0.8, for HWBCs, parity
Π = −1, and system sizes from N = L = 7 (N = 848) to N = L = 13 (N = 2 599 688).
For each εBHH, we identify the range of η values defining the chaotic domain, making
sure that it covers the variance minimum in both natural bases. These η intervals are

εBHH = 0.2 7→ η ∈ [0.03, 0.15], εBHH = 0.4 7→ η ∈ [0.08, 1.0],
εBHH = 0.6 7→ η ∈ [0.15, 1.0], εBHH = 0.8 7→ η ∈ [0.25, 0.9].

(4.28)

Then the corresponding εEGOE intervals are read off from Figure 4.8, according to Equa-
tion (4.27):

εBHH = 0.2 7→ εEGOE ∈ [0.23, 0.515], εBHH = 0.4 7→ εEGOE ∈ [0.395, 0.54],
εBHH = 0.6 7→ εEGOE ∈ [0.595, 0.67], εBHH = 0.8 7→ εEGOE ∈ [0.795, 0.81],

(4.29)

as highlighted by the dashed lines and the thick shades in Figure 4.8. For each of the
intervals, we consider the values of εEGOE closest to and furthest from ε = 0.5, since
these yield the extremal values of

〈
D̃q
〉

and var
(
D̃q
)
, according to Figure 4.6. Around

these target energies, we then calculate
〈
D̃1
〉

and var
(
D̃1
)

for 100 eigenstates of the
embedded ensemble, averaging the results over 100 ensemble realizations, and show in
Figures 4.9 and 4.10 the corresponding ranges of

〈
D̃1
〉

and var
(
D̃1
)
. Note that system

sizes N ≥ 12 are out of numerical reach for the embedded ensemble.

For all εBHH and all system sizes considered, the mean fractal dimension in the inter-
action basis registers a sharp increase as a function of η towards an almost constant
plateau around its largest values, which is accompanied by a sharp decrease of the
variance by several orders of magnitude into an equally constant plateau of minimal
values. Furthermore, the skewness increases at the boundaries of the plateau region
and is strongly reduced around the center of that domain. As discussed in Sections 3.3
and 3.4, these three features, particularly the sharp minimum of the variance, indicate
quantum chaos in terms of the fractal dimensions.

The extension of the plateau depends on the energy, in agreement with our preceding
discussion of D̃q versus εBHH and η in Section 3.3: For increasing εBHH, the onset of the
plateau is shifted to larger η, and the plateau width is maximal for intermediate energies
εBHH = 0.4 and εBHH = 0.6. Within the plateau, the values of

〈
D̃1
〉

for εBHH ≥ 0.4
and of var

(
D̃1
)

for all εBHH are in good agreement with the corresponding embedded-
ensemble data. Hence, when the correspondence between εBHH and εEGOE is correctly
2Note that for εBHH = 0.8, Equation (4.27) leads to unphysical values εEGOE > 1 for small η and is
hence not applicable here.
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Figure 4.11:
〈
D̃1
〉

versus η = J/UN (left) and J/U (right), for the 100 Bose-Hubbard
eigenstates closest to εBHH = 0.6, with HWBCs, Π = −1, and N = L ∈
[7, 13] (N ∈ [848, 2 599 688]). When not shown explicitly, error bars are
contained within symbol size.

established, the embedded ensemble captures also the energy dependence of the chaotic
domain in the Bose-Hubbard model.

The emergence of the plateaux in terms of
〈
D̃1
〉

and var
(
D̃1
)

is strongest for εBHH ≤ 0.6.
These energies belong to the bulk of the spectrum for an η interval within the chaotic
range: In that η range, they come close to the maximum of the density of states and
they belong to the inner 60 % of the states, as shown in Figure 3.5(a). But even for
εBHH = 0.8, which is far from the maximum of the density of states for all η and can
hence be considered as the edge of the spectrum, a clear fingerprint of quantum chaos
can be seen in the strong reduction of var

(
D̃1
)
.

In the tunneling basis,
〈
D̃1
〉

reaches a maximum and var
(
D̃1
)

decays by several orders
of magnitude within similar ranges of η as for the interaction basis. However, a plateau
is emerging only for

〈
D̃1
〉

at energies εBHH ≤ 0.4 and in a rather limited η interval. The
embedded ensemble describes the Bose-Hubbard data in the tunneling basis well only for
εBHH = 0.2, where, however, the agreement is even better than with the Bose-Hubbard
model in the interaction basis. This result shows the strong basis dependence of the
emergence of quantum chaos in terms of the mean fractal dimensions. Nevertheless, the
behaviours of var

(
D̃1
)

and skew
(
D̃1
)

are qualitatively the same for both bases, which
confirms their importance as qualitatively basis-independent markers of quantum chaos.

For energies εBHH ≥ 0.4, the low-η boundary of the plateau region for
〈
D̃1
〉

and var
(
D̃1
)

in the interaction basis clearly attains a system-size independent value for increasing L, a
behaviour which the available data strongly suggests also for εBHH = 0.2 and L currently
out of numerical reach. This shows that η = J/UN is indeed the correct parameter to
describe the transition to quantum chaos at fixed energies εBHH. In contrast, the high-η
boundary of the plateau keeps increasing with L, which indicates that the chaotic region
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might extend to arbitrarily large η in the thermodynamic limit N → ∞ at fixed density
N/L, and the integrable point η = ∞ might thus become a discontinuity. This finding
is in agreement with previous results for fermions [113], hard-core bosons [112] and spin
systems [108], where it was found that the critical strength of an integrability-breaking
perturbation decays with linear system size L, and hence quantum chaos sets in for
arbitrarily small perturbation strengths at L → ∞.

To further strengthen the claim that the semiclassically inspired parameter η = J/UN
correctly describes the onset of quantum chaos in the Bose-Hubbard Hamiltonian at fixed
values of ε, we compare in Figure 4.11 (page 79) the behaviour of the mean

〈
D̃1
〉

as a
function of η and of J/U around εBHH = 0.6 for increasing N = L. While the onset of the
plateau for

〈
D̃q
〉

is found at approximately the same η for all system sizes, the position
of this surge keeps drifting to larger J/U upon increasing system size. Hence, our results
show that in the limit N = L → ∞ the chaotic region will disappear for any finite value
of J/U , but not for finite values of η. This finding can also be understood intuitively:
For fixed J/U , the different scalings of 〈Htun〉 and 〈Hint〉, linear versus quadratic in
N (compare Section 2.4.3 on page 33), effectively make the system flow towards the
integrable limit of infinite interactions upon increasing the number of particles.

4.4. Scaling of Fractal Dimensions with Hilbert Space
Dimension in the Chaotic Region

We have seen in the preceding section that the maximum of the mean
〈
D̃q
〉

and the
minimum of the variance var

(
D̃q
)

of Bose-Hubbard eigenstates in the tunneling basis at
εBHH = 0.2 and in the interaction basis at εBHH = 0.4 and εBHH = 0.6 agree very well
with the embedded ensemble for εEGOE in the center of the spectrum3 and, consequently,
also with GOE (for the latter, see Figure 4.6). Therefore, one might ask whether the
eigenstates of the Bose-Hubbard model in the chaotic domain become ergodic in the
sense of D̃q → 1 for N → ∞, just like the corresponding eigenstates of GOE random
matrices (see the finite-size scalings discussed in Section 4.1). To answer this question,
we compare in this section the fractal dimensions as functions of Hilbert space dimension
N for the three models (Bose-Hubbard, embedded ensemble and GOE), investigating
specifically the mean

〈
D̃q
〉
, the variance var

(
D̃q
)

and the full distributions of D̃q.

4.4.1. Mean and Variance
In the following, we fix three different pairs of values (εBHH, η) = (0.2, 0.04), (0.4, 0.2),
(0.6, 0.3) (highlighted by black dashed lines in Figures 4.9 and 4.10) within the chaotic
domain of the Bose-Hubbard model. We investigate

〈
D̃q
〉

and var
(
D̃q
)

for the 100 eigen-

3Note that for εBHH = 0.2, the interval εEGOE ∈ [0.23, 0.515] shown in Figure 4.9 is quite broad, but
the maximum of

〈
D̃q

〉
and the minimum of var

(
D̃q

)
in the tunneling basis for the largest L agree best

with the upper limit of that energy range, i.e., εEGOE ≈ 0.5.
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Figure 4.12: Dependence of
〈
D̃q
〉
, q = 1, 2,∞, in the interaction basis (upper panels)

and in the tunneling basis (lower panels) on the Hilbert space dimension
N , for three values of (εBHH, η), and for boundary conditions and pari-
ties/quasimomenta as indicated in the legend. Bose-Hubbard data points
are calculated from the 100 eigenstates closest to the given εBHH at the
given η. Dotted lines indicate

〈
D̃q
〉

GOE, Equations (4.3), (4.11), (4.18),
and solid lines show numerically calculated embedded-ensemble data for
energies εEGOE obtained from (εBHH, η) according to Equation (4.27) and
given in Equation (4.30). The black dashed line in the lower central panel is
a fit of f(N ) = a+ b/ ln N to the last three

〈
D̃1
〉

data points, for HWBCs,
Π = −1, yielding a ≈ 0.9647, b ≈ −0.6165. Error bars are contained within
symbol size.

states closest to the given εBHH at the given η for all available system sizes, considering
the subspaces of HWBCs and parity Π = ±1 as well as the subspaces given by quasi-
momentum Q = 0 and parity Π = ±1 for PBCs. Figure 4.12 shows the mean of D̃q,
with q = 1, 2,∞, for the Bose-Hubbard model in both natural bases, for the embedded
ensemble and for GOE, as functions of 1/ log N , which is the functional form of the
leading-order finite-size correction to

〈
D̃1,2

〉
GOE [Equations (4.4) and (4.13)]. Similar-

ly, Figure 4.13 shows the variance of D̃q, with q = 1, 2,∞, for these three models, as
functions of 1/N log2 N , i.e., the leading-order finite-size correction to var

(
D̃1,2

)
GOE

[Equations (4.8) and (4.14)]. Here, the GOE curves are calculated according to the
analytical predictions, Equations (4.3), (4.6), (4.11), (4.12) and (4.18). Data for the
embedded ensemble is calculated numerically from the 100 eigenstates closest to the
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Figure 4.13: Dependence of var
(
D̃q
)
, q = 1, 2,∞, in the interaction basis (upper panels)

and in the tunneling basis (lower panels) on the Hilbert space dimension N ,
for three different values of (εBHH, η), and for boundary conditions and par-
ities/quasimomenta as indicated in the legend. Bose-Hubbard data points
are calculated from the 100 eigenstates closest to the given εBHH at the
given η. Dotted lines indicate var

(
D̃q
)

GOE, Equations (4.6), (4.12), (4.18),
and solid lines show numerically calculated embedded-ensemble data for
energies εEGOE obtained from (εBHH, η) according to Equation (4.27) and
given in Equation (4.30). Error bars are contained within symbol size.

energy target εEGOE, for N = L ∈ [7, 11], averaging each data point over 100 ensemble
realizations and subsequently joining the data points of different N by straight lines.
Two embedded-ensemble curves are shown for the two parities Π = ±1, which are, how-
ever, barely distinguishable from one another. Like in the preceding section, εEGOE is
calculated from η and εBHH according to Equation (4.27), and can be read off from
Figure 4.8:

(εBHH = 0.2, η = 0.04) 7→ εEGOE = 0.5,
(εBHH = 0.4, η = 0.2) 7→ εEGOE = 0.45,
(εBHH = 0.6, η = 0.3) 7→ εEGOE = 0.6.

(4.30)

For these three values of εEGOE, which are well in the center of the spectrum of the
embedded ensemble,

〈
D̃q
〉

and var
(
D̃q
)

for the two random ensembles are very close to
each other and can barely be distinguished for the largest numerically accessible system
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sizes. Hence, the large-N behaviour coincides for these two models, and, in particular,
the dominant finite-size corrections for the embedded ensemble follow the same functional
forms as for GOE, Equations (4.4), (4.8), (4.13), (4.14), (4.19), (4.20).

Whether the Bose-Hubbard data is in agreement with the two random-matrix mod-
els depends strongly on εBHH and on the basis considered: In the tunneling basis at
εBHH = 0.2, and in the interaction basis at εBHH = 0.4 and εBHH = 0.6, the mean and
the variance of D̃q quickly converge towards the random-matrix data. At the largest
system sizes accessible for the tunneling basis at εBHH = 0.2, the deviation between〈
D̃1,2

〉
and

〈
D̃1,2

〉
GOE is already below

〈
D̃1,2

〉
GOE −

〈
D̃1,2

〉
≲ 10−2. In the interaction

basis at εBHH = 0.4 and εBHH = 0.6, where larger system sizes are numerically accessible,
an even smaller difference

〈
D̃1,2

〉
GOE −

〈
D̃1,2

〉
≲ 2 × 10−3 is reached. A convergence to

the random-matrix predictions is also observed in the interaction basis at εBHH = 0.2,
where, however, finite-size effects are stronger. Given this good agreement with GOE
and with the embedded ensemble already for finite system sizes, we can expect that the
leading-order finite-size corrections to the mean and the variance of D̃q for the Bose-
Hubbard model follow the same functional form as for GOE, and that

〈
D̃q
〉

and var
(
D̃q
)

converge to the same values as the two random-matrix models in the limit N → ∞, that
is, 〈

D̃q
〉

→ 1, var
(
D̃q
)

→ 0. (4.31)

In other words, the eigenstates of the Bose-Hubbard Hamiltonian become extended
ergodic (as defined in Section 2.3) for N → ∞ in both bases at (εBHH, η) = (0.2, 0.04)
and in the interaction basis at (εBHH, η) = (0.4, 0.2) and (εBHH, η) = (0.6, 0.3).

On the other hand, for the tunneling basis at εBHH = 0.4 and εBHH = 0.6, differences
between the Bose-Hubbard model and the random-matrix models remain clearly visible
for all available system sizes. Nevertheless, the overall qualitative tendency of

〈
D̃q
〉

and var
(
D̃q
)

with N is the same for the three models, and, hence, the Bose-Hubbard
eigenstates might become extended ergodic for N → ∞ also in the tunneling basis at
εBHH = 0.4 and εBHH = 0.6. However, the available data indicates that the leading-order
corrections to

〈
D̃q
〉

cannot follow the same functional form as for GOE, if
〈
D̃q
〉

→ 1.
This is exemplified by the black dashed line in the lower central panel of Figure 4.12,
which is a linear fit of the function

f(N ) = a+ b

N
, (4.32)

with parameters a, b, to
〈
D̃1
〉

with HWBCs and parity Π = −1, for the three largest
system sizes. If

〈
D̃1
〉

converges to 1 in the limit N → ∞ with the same functional form
of the leading-order correction as for GOE, one would expect a = 1, which is not true
here: Instead, one obtains a ≈ 0.9647 and b ≈ −0.6165.

This result reveals that the Bose-Hubbard Hamiltonian does not follow the “weakly
ergodic” regime introduced and discussed in Reference [84]. This regime is characterized
by convergence of the eigenstates to ergodicity in the limit N → ∞, following the
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Figure 4.14: Eigenstate fractal dimensions D̃1 (red) and D̃2 (blue) in the tunneling
basis versus scaled eigenenergies εBHH, for the 100 eigenstates closest to
εBHH = 0.2 at η = 0.04, for N = L = 9 with HWBCs and Π = +1
(N = 12 190).

functional form of the leading-order finite-size corrections predicted by GOE, but with
a different coefficient. In that work, it was concluded from investigating

〈
D̃q
〉

for the
quantized standard map and for spin systems that chaotic many-body Hamiltonians
generically follow this weakly ergodic behaviour. As we have shown here, this is not
true for the Bose-Hubbard Hamiltonian in the tunneling basis, which reveals that this
weakly ergodic regime cannot be as universal as claimed in Reference [84].

The behaviour of var
(
D̃q
)

for εBHH = 0.2 in both natural bases shows some features
that deserve further discussion. For the interaction basis and HWBCs, the variance as
a function of N first decreases much slower than the GOE prediction, then drops by
several orders of magnitude and subsequently decays qualitatively similar to the GOE
variance. This behaviour is in agreement with the shift of the chaotic region with N = L
at εBHH = 0.2, as observed in Figure 4.9: For the smallest system sizes, η = 0.04 does not
yet belong to the plateau of var

(
D̃q
)

in the interaction basis, which explains the larger
variances for small N . As soon as the onset of the plateau shifts to η < 0.04, var

(
D̃q
)

decreases by several orders of magnitude and then matches well with the functional form
given by GOE.

For the tunneling basis, HWBCs and parity Π = +1, var
(
D̃q
)

is strongly enhanced for
N = L = 9 (N = 12 190) as compared to the tendency of the other system sizes. In
Figure 4.14, the fractal dimensions D̃1 and D̃2 of all the eigenstates entering this variance
for N = L = 9 are shown as functions of the corresponding scaled eigenenergies. This
figure reveals that the anomalously large variance is caused by just two states with
significantly smaller fractal dimensions. This shows that, for N = 9, quantum chaos has
not fully developed yet for all eigenstates at these values of εBHH and η.
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4.4.2. Comparison of Full Distributions

As revealed by the results of the preceding section, the distribution of fractal dimensions
from different Bose-Hubbard eigenstates deep in the chaotic regime shows clear agree-
ment with the universal predictions of random-matrix theory in terms of its first two
moments

〈
D̃q
〉

and var
(
D̃q
)
. We will see in the following that, despite this emergence

of universal features, the full D̃q distributions of the Bose-Hubbard model become ever
more distinguishable from those of GOE and of the embedded ensemble as system size
increases. For this analysis, we consider the Bose-Hubbard eigenvectors in the inter-
action basis at εBHH = 0.5, which is between the energies εBHH = 0.4 and εBHH = 0.6,
for which

〈
D̃q
〉

and var
(
D̃q
)

in the chaotic domain are closest to GOE and the embedded
ensemble.

In Figure 4.15 on the next page, the probability density functions of D̃q are shown for
the three models, for HWBCs with Π = −1, and system dimensions ranging up to
N = L = 13 (N = 2 599 688). For the embedded ensemble, which is numerically more
challenging than the Bose-Hubbard model, due to a larger number of nonzero matrix
elements, the largest system size shown is N = L = 11 (N = 176 232). Here, the Bose-
Hubbard distributions are calculated from a total of 500 values of D̃q deep in the chaotic
domain, which are obtained from five values of η in [0.25, 0.38] and, for each η, from 100
eigenstates around εBHH = 0.5. Data for the embedded ensemble is obtained numerically
from 100 realizations and, per realization, from 100 eigenstates around εEGOE = 0.5
[obtained from εBHH and η according to Equation (4.27), as described in Section 4.3].

As system size increases, instead of converging towards each other, the distributions of
the three models become ever more distinguishable from one another. At the two largest
system sizes N = L = 12 and N = L = 13, for q = 1, 2, the distributions for the Bose-
Hubbard model and for GOE do not even overlap. The distribution for the embedded
ensemble is always between the Bose-Hubbard and GOE distributions, and, for q = 1, 2,
it departs from both of them. This observation shows that the distance between the
Bose-Hubbard and GOE distributions is partially explained by the two-body nature of
the former Hamiltonian, which is also a feature of the embedded ensemble, but not
of GOE. Nevertheless, the two-body nature of the embedded ensemble is not enough
to describe the distribution P (D̃q) of the Bose-Hubbard model in the chaotic domain
completely: Instead, the more specific nearest-neighbour character of the tunneling and
the on-site nature of the interactions in the Bose-Hubbard Hamiltonian, as well as the
enhanced correlations between its matrix elements due to their dependence on J and U
alone, need to play a major role.

We quantify the distance between two probability distributions P1(D̃q), P2(D̃q) via the
relative separation of their means,

dq(P1, P2) =

∣∣∣〈D̃q
〉

1 −
〈
D̃q
〉

2

∣∣∣√
var

(
D̃q
)

1

, (4.33)
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Figure 4.15: Probability density functions P (D̃q) for the Bose-Hubbard model in the
interaction basis [filled histograms], for the embedded ensemble [outlined
histograms] and for GOE [solid lines, Equations (4.21) and (4.22)], for
HWBCs with Π = −1, and system sizes from N = L = 9 (N = 12 120),
to N = L = 13 (N = 2 599 688). To enhance visibility, P (D̃1,2) is multi-
plied by a factor of 2 (L = 12), 4 (L = 11), 8 (L = 10) and 16 (L = 9),
respectively. Bose-Hubbard distributions are calculated from five η values
in [0.25, 0.38] and, for each η, from 100 eigenstates closest to εBHH = 0.5.
Embedded-ensemble data is obtained from 100 realizations and, per real-
ization, from 100 eigenstates around εEGOE = 0.5.
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BHH - GOE

EGOE - GOE
BHH - EGOE

d1
√KL1

√N / ln N
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Figure 4.16: Distance measures dq [Equation (4.33)] and
√
KLq [Equation (4.34)] be-

tween the probability distributions of D̃1 (left) and of D̃∞ (right) shown in
Figure 4.15, for the Bose-Hubbard model (BHH), the embedded ensemble
(EGOE), and GOE, versus Hilbert space dimension N , for HWBCs with
Π = −1. Solid lines denote the scalings of dq (as indicated in the legend)
that would emerge if the finite-size correction coefficients in leading order
were to be different for the three models (orange) and if P (D̃q) followed the
same functional form for the three models, with different effective dimen-
sions Ñ (purple).

and via the Kullback-Leibler divergence (information entropy) [189, 190],

KLq(P1, P2) =
∫ 1

0
P1(D̃q) ln P1(D̃q)

P2(D̃q)
dD̃q. (4.34)

Here, we always choose P1 as the Bose-Hubbard distribution and P2 as GOE or the
embedded ensemble, depending on the comparison. Note that an accurate calculation of
KLq requires detailed knowledge of P2(D̃q) in the range where P1(D̃q) is large, since this
is the region which contributes the most to KLq. Hence, for the numerically obtained
distributions of the Bose-Hubbard Hamiltonian and of the embedded ensemble, the
Kullback-Leibler divergence for the largest accessible system size N = L = 11 cannot be
calculated reliably, due to the small overlap of the distributions.

For two Gaussian distributions of D̃q with identical variances var
(
D̃q
)

1 = var
(
D̃q
)

2, the
Kullback-Leibler divergence can be calculated exactly and reads√

KLq(P1, P2) = 1√
2
dq(P1, P2). (4.35)

Hence, the comparison between
√
KLq and dq also provides insight into the Gaussian

shape of the distributions and deviations from Gaussianity.

As shown in Figure 4.16 for the distributions displayed in Figure 4.15, both distance
measures increase with system size for q = 1 and all three models, which confirms and
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quantifies the departure of the underlying probability distributions. For the largest sys-
tem size considered (N = L = 13), the means of D̃1 for the Bose-Hubbard Hamiltonian
and for GOE already differ by more than ten standard deviations, and extrapolation sug-
gests that the distance between the embedded ensemble and the Bose-Hubbard model
will be of similar magnitude for this system size.

While the distance measures d∞ and KL∞ between the Bose-Hubbard Hamiltonian and
any of the random-matrix models increase with system size, they decrease for GOE and
the embedded ensemble, suggesting that the distributions P (D̃∞) of these two models
approach each other for increasing N . Hence, the two random-matrix models cannot
be distinguished solely from the statistics of the largest eigenvector intensity (which
fully defines D̃∞), but this single intensity is sufficient to distinguish the Bose-Hubbard
Hamiltonian in the chaotic domain from the two random-matrix models.

The measures d1 and KL1 show a very good qualitative agreement with each other.
Given that the variances converge to one another and that the shape of the distributions
looks Gaussian, this behaviour is expected from Equation (4.35). On the other hand,
d∞ and KL∞ for the Bose-Hubbard Hamiltonian versus GOE clearly deviate from one
another, in agreement with the obviously non-Gaussian shape of P (D̃∞) observed in
Figure 4.15.

The behaviour of dq as a function of N provides insight into the source of the deviations
between the distributions. The good agreement of

〈
D̃q
〉

and var
(
D̃q
)

among the three
models already for rather small N , as discussed in Section 4.4.1, indicates that their
leading-order finite-size corrections have the same functional form. With the known
finite-size expansions of GOE, Equations (4.4), (4.8), (4.13), (4.14), (4.19) and (4.20),
this means that

1 −
〈
D̃1,2

〉
∼ 1

ln N
, 1 −

〈
D̃∞

〉
∼ ln (ln N )

ln N
, (4.36)

var
(
D̃1,2

)
∼ 1

N ln2 N
, var

(
D̃∞

)
∼ 1

ln4 N
, (4.37)

in leading order for the embedded ensemble and the Bose-Hubbard Hamiltonian in the
interaction basis around ε = 0.5. Regarding the scaling of

〈
D̃q
〉
, three scenarios are

possible:

1. The models share the same functional form of the leading-order correction, but
the coefficient is different. This means that the distance between the means of any
two of the models scales as∣∣∣〈D̃1,2

〉
1 −

〈
D̃1,2

〉
2

∣∣∣ ∼ 1
ln N

,
∣∣∣〈D̃∞

〉
1 −

〈
D̃∞

〉
2

∣∣∣ ∼ ln (ln N )
ln N

,

and hence dq scales as

d1,2 ∼
√

N , d∞ ∼ ln (ln N ) ln N . (4.38)

These scalings are shown in Figure 4.16 as orange solid lines.
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2. The coefficient of the leading-order correction is the same for the models, and the
first subleading correction that is different decays slower than

√
var

(
D̃q
)
. In this

case, dq increases with N , but slower than the scalings given in Equation (4.38).

3. The finite-size corrections of the means agree up to an order that decays faster
than

√
var

(
D̃q
)
. The distance dq would then decrease with N .

The increase of d1 with N clearly rules out the third case for q = 1 and all three
models. Particularly between the Bose-Hubbard model and GOE, D1 grows slower with
N than the scaling suggested in Equation (4.38) (orange solid line in Figure 4.16), which
indicates that the second case holds. Note that dq between the Bose-Hubbard model
and the embedded ensemble is bounded from above by dq between the Bose-Hubbard
Hamiltonian and GOE, since

〈
D̃q
〉

GOE is always larger than
〈
D̃q
〉

for the embedded
ensemble in the accessible range of N , and the departure of the distributions indicates
that this holds true also for larger N . Hence, the second scenario needs to apply also
for d1 between the Bose-Hubbard Hamiltonian and the embedded ensemble. The three
models thus share exactly the same leading-order correction, but differ in higher orders.
Note that, according to Equation (4.4), the second finite-size correction to

〈
D̃1
〉

GOE is
already of order 1/N ln N and, hence, decays faster than the square root of var

(
D̃1
)
.

Consequently, the second finite-size correction of the Bose-Hubbard model and of the
embedded ensemble cannot have the same functional form as for GOE, since then one
would see a decay of d1. Note that d2, which is not shown in Figure 4.16, is very similar
to d1, also quantitatively, such that the findings discussed here hold also for d2.

The distance d∞ between the Bose-Hubbard model and any of the two random-matrix
ensembles increases, and, hence, the third scenario discussed above does not hold here
either. In this case, however, a definite conclusion about whether the scaling of Equa-
tion (4.38) holds cannot be drawn, due to the slow logarithmic increase of d∞ and
since the leading-order correction is not sufficient to capture the finite-size behaviour
of
〈
D̃∞

〉
GOE for the accessible system sizes (see Figure 4.1). Note that the first three

finite-size corrections to
〈
D̃∞

〉
GOE, Equation (4.19), decay slower than 1/ ln2 N , which

is the scaling of the square root of var
(
D̃∞

)
, and, hence, an increasing behaviour of d∞

is compatible with the three models sharing the first three finite-size corrections. On
the other hand, the decrease and the convergence to a non-zero value of d∞ between the
embedded ensemble and GOE reveals that the first term of the finite-size expansion of〈
D̃∞

〉
for which the two random-matrix models differ scales as 1/ ln2 N , like the square

root of the variance.

From the scaling of dq with N , we can furthermore check the hypothesis that the D̃q

distributions of the Bose-Hubbard model in its chaotic domain and of the embedded
ensemble comply with GOE, but with an effective dimension Ñ = N −n. This possibility
is suggested by the fact that the Bose-Hubbard and embedded-ensemble distributions
shown in Figure 4.15 seem compatible with shifted GOE distributions. Additionally,
due to the orthogonalization requirement, the absence of quantum chaos at the edges of
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the spectrum (see, e.g., Figures 3.3 and 4.6 on pages 39 and 72), which manifests itself
in higher localization of the corresponding eigenstates in Fock space, effectively reduces
the available basis on which the chaotic eigenstates can delocalize. For instance, in the
extreme case of an eigenstate that is fully localized on a single basis state |α〉, every
other eigenstate has vanishing amplitude on |α〉, due to orthogonality.

With this assumption about the D̃q distributions and with the GOE results of Equa-
tions (4.3) and (4.11), we obtain for q = 1, 2 to leading order〈

D̃1,2
〉

GOE (N ) −
〈
D̃1,2

〉
GOE (N − n) ∼ n

N ln2 N
, (4.39)

which is the leading order of var
(
D̃q
)

multiplied by n. For q = ∞, inserting Ñ = N −n
into the first few finite-size corrections to

〈
D̃∞

〉
GOE [Equation (4.19)] and expanding the

result for N → ∞ yields

〈
D̃∞

〉
GOE (N ) −

〈
D̃∞

〉
GOE (N − n) ∼ n ln(ln N )

N ln2 N
. (4.40)

Hence, the assumption that the D̃q distributions for the three models are the same
function with different effective dimensions Ñ is compatible with an increase of d1,2
(of d∞) only if n grows faster than

√
N ln N (than N/ ln(ln N )). Specifically, if the

effective dimension scales linearly with N , Ñ = cN , the same reasoning as above yields,
to leading order,

d1,2 ∼
√

N
ln N

, d∞ ∼ ln(ln N ). (4.41)

As the solid purple line in the left panel of Figure 4.16 shows, the scaling of Equa-
tion (4.41) is in good agreement with the slope of d1 for large N . Hence, one may
interpret the deviations between the D̃1 probability distribution of the Bose-Hubbard
model and the Gaussian orthogonal ensemble as an effect of the enhanced localization
of the eigenstates at the edges of the spectrum, which, due to orthogonality, prevents
the chaotic eigenstates from delocalizing on the full interaction basis. On the other
hand, the scaling of Equation (4.41) for d∞ increases similarly slowly as the scaling of
Equation (4.38) and as the data, and a definite conclusion can hence not be drawn here.

4.5. Summary
In the current chapter, we have compared the Bose-Hubbard Hamiltonian to GOE and
to the embedded ensemble, in terms of their short-range spectral statistics, as described
by the level spacing ratios, and in terms of their eigenstate localization properties, as
captured by the fractal dimensions. We have found that the embedded ensemble quali-
tatively reproduces the energy dependence of the chaotic domain in the Bose-Hubbard
model and in particular the absence of quantum chaos at the edges of the spectrum, in
contrast to GOE, whose properties are independent of the energy. This latter feature
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can be attributed to the few-body nature of the Bose-Hubbard and embedded-ensemble
Hamiltonians. The finding that the agreement of the embedded ensemble with the
Bose-Hubbard model in the tunneling basis is limited, despite the very similar matrix
structure of these two models, reveals furthermore the importance of the additional cor-
relations between the Bose-Hubbard matrix elements due to their dependence on just
two parameters, J and U .

Deep in the chaotic region, the mean fractal dimensions over different eigenstates and
the corresponding variances imply that the eigenstates of the Bose-Hubbard Hamiltonian
become ergodic in the limit N → ∞. Their finite-size behaviour differs between the two
natural bases and also depends on the energy: While

〈
D̃q
〉

and var
(
D̃q
)

for the Bose-
Hubbard Hamiltonian in the tunneling basis, in the center of the spectrum, deviate
clearly from the two random-matrix models, very good agreement between the three
models is achieved for the tunneling basis in the low-energy part of the chaotic region
and for the interaction basis in the center of the spectrum. The latter suggests that the
functional forms of the dominant finite-N corrections are the same for all three models
in these bases and energy regions.

Even though, in the chaotic region, the first two moments of the probability distributions
P (D̃q) for the Bose-Hubbard Hamiltonian in the interaction basis around the center of
the spectrum agree exceptionally well with the universal predictions of GOE and with
the embedded ensemble, the full probability densities P (D̃q) deviate from each other and
become ever more distinguishable from one another as system size increases. The relative
deviation of the mean fractal dimensions shows that this departure is a consequence
of different subleading corrections in the finite-N expansion of

〈
D̃q
〉
. Hence, specific

features of the Bose-Hubbard Hamiltonian in its chaotic phase remain accessible even in
the limit N → ∞, enabling an unambiguous distinction from the universal GOE model
and also from random two-body Hamiltonians provided by the embedded ensemble.
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Chapter 5.

Chaos and Distinguishability

The results of this chapter were obtained in a joint project with Eric Brunner and Dr.
Gabriel Dufour.

As we have seen in the previous chapters, the interplay of tunneling and interactions
in the Bose-Hubbard Hamiltonian leads to complex spectral and eigenvector properties
and induces chaos. In the following, we study particle indistinguishability as a second
source of complexity in quantum many-body systems and analyse its influence on the
emergence of chaos in the Bose-Hubbard model.

The impact of particle indistinguishability on many-particle dynamics was first demon-
strated experimentally in 1987 by Hong, Ou and Mandel [99]. In their experiment [see
the sketch in Figure 5.1(a)], two photons from a coherent light source are sent through
a symmetric beam splitter from two different sides (in the sketch: from above and
from below) and are subsequently detected. By manipulating the time delay between
the two photons, the temporal overlap of the underlying wave functions and hence the
distinguishability of the two photons is tuned. When the particles are maximally indis-
tinguishable, the coincidence probability of jointly detecting one photon on each side of
the beam splitter is strongly reduced.

This observation can be explained as follows: Initially, one photon enters the beam
splitter from above, and the other one from below, which we can encode into states
|a〉 and |b〉. These two states are orthogonal to each other, since they correspond to
classically distinct paths. Furthermore, each photon carries a distinguishability label,
which is here given by the temporal overlap of the two photonic wave functions and
which we can model by a state |σa,b〉. The full state of each photon is hence the product
state

|d〉 |σd〉 , (5.1)

with d = a or d = b. Since the two photons are identical bosons, the state of the full
system is given by the symmetrization of the two-particle product state [42],

|Φ〉 = |a〉 |b〉 |σa〉 |σb〉 + |b〉 |a〉 |σb〉 |σa〉√
2

. (5.2)
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Figure 5.1: (a) Sketch of the Hong-Ou-Mandel experiment. Orange lines correspond to
the photon paths from the light source to the detectors. (b) Theoretically
expected coincidence probability P1,1 in a Hong-Ou-Mandel experiment, as
a function of the scaled time delay ∆t/τ , Equation (5.6).

For later convenience, we have here sorted the distinguishability labels to the right of
the product states. The beam splitter acts on the “above” and “below” states as the
unitary matrix1

U = 1√
2

(
1 1
1 −1

)
, (5.3)

while it leaves the distinguishability labels unchanged. Here, the prefactor 1/
√

2 encodes
the fairness of the beam splitter, and the unitarity of U makes sure that the state after
the action of the beam splitter is still a properly normalized quantum state. The action
of U on |Φ〉 yields the state

U |Φ〉 = 1√
2

[( |a〉 |a〉 − |b〉 |b〉√
2

)( |σa〉 |σb〉 + |σb〉 |σa〉√
2

)
+
( |b〉 |a〉 − |a〉 |b〉√

2

)( |σa〉 |σb〉 − |σb〉 |σa〉√
2

) ]
.

(5.4)

The coincidence probability P1,1, i.e., the probability to detect one photon in each detec-
tor, is then given by the intensity of the projection onto the state (|b〉 |a〉 − |a〉 |b〉) /

√
2,

P1,1 = 1
2

∣∣∣∣( |σa〉 |σb〉 − |σb〉 |σa〉√
2

)∣∣∣∣2 = 1
2

(
1 − | 〈σa|σb〉 |2

)
. (5.5)

1Note that some phase factors are neglected here, since they do not alter the final result. For a detailed
discussion of beam splitters, see, e.g., Chapter 8 of Reference [191].
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If the overlap of |σa〉 and |σb〉 is given specifically by a time delay ∆t between Gaussian
wave packets of identical temporal variance τ2, this probability is

P1,1 = 1
2

[
1 − exp

(
−∆t2

4τ2

)]
. (5.6)

Figure 5.1(b) shows this probability as a function of the time delay. While for large time
delays, the coincidence probability approaches 1/2 like for classical particles, coincidence
events are strongly suppressed as the time delay vanishes and the two photons become
mutually indistinguishable. This result can be interpreted as an interference effect: Each
photon may be reflected at the beam splitter or transmitted through it, leading to four
different two-photon paths, two of which yield one photon per detector. When the
photons are indistinguishable, these two paths, i.e., the path in which both photons are
reflected and the path in which both are transmitted, interfere destructively with each
other, leading to the suppression of the coincidence events.

5.1. Theoretical Framework
In this section, we introduce the general methods used throughout the rest of the chapter
to describe (partially) distinguishable particles. Assume that the Hilbert space H1 of a
single particle can be decomposed into a tensor product

H1 = Hext ⊗ Hint (5.7)

of an “external” Hilbert space Hext spanned by L orthogonal modes |m〉 and an “internal”
Hilbert space Hint of S orthogonal species states |σ〉 [100, 105, 106, 192–194]. The L
modes could, for instance, be photonic modes like |a〉 and |b〉 in the Hong-Ou-Mandel
experiment discussed above or spatial modes like in the Bose-Hubbard model. The S
species, which describe the distinguishability of the particles, might for example be given
by photon polarizations or by spin degrees of freedom. The N -particle Hilbert space is
then the tensor product [192, 193]

H = H⊗N
1

∼= H⊗N
ext ⊗ H⊗N

int . (5.8)

States of this Hilbert space are hence linear combinations of the product states

|m1〉 ⊗ . . .⊗ |mN 〉 ⊗ |σ1〉 ⊗ . . .⊗ |σN 〉 =: |m1, . . . ,mN 〉 ⊗ |σ1, . . . , σN 〉 (5.9)

of external modes and internal species states. For identical bosons, only the subspace
SH of fully symmetrized states is physically relevant. A projector onto this subspace is
given by the symmetrization operator [193, 194]

S = 1√
N !

∑
π∈SN

π ⊗ π, (5.10)
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where SN is the symmetric group of N objects [170, 171] and where π ⊗ π acts on the
internal and external states by permuting the particles. For instance, product states

|Ψ〉 = |m1, . . . ,mN 〉 ⊗ |σ1, . . . , σN 〉

are symmetrized to

S |Ψ〉 = 1√
N !

∑
π∈SN

∣∣∣mπ−1(1), . . . ,mπ−1(N)

〉
⊗
∣∣∣σπ−1(1), . . . , σπ−1(N)

〉
. (5.11)

The Hamiltonian of the system is assumed to act only on the external degrees of freedom,

H = Hext ⊗ 1int, (5.12)

such that the system dynamics leave the internal configurations unchanged. In fact, this
property of the Hamiltonian is what sets apart internal from external degrees of freedom.
The internal states nevertheless influence the dynamics, since they are responsible for
the particle distinguishability and hence for the emergence of many-particle interference.
In particular, the species-blind Bose-Hubbard Hamiltonian reads [106]

H = −J
L∑

j=1

S∑
σ=1

(
a†

j,σaj+1,σ + a†
j+1,σaj,σ

)
+ U

2

L∑
j=1

S∑
σ,µ=1

nj,σ (nj,µ − δσµ) . (5.13)

Here, a†
j,σ, aj,σ are creation and annihilation operators of a boson at the jth lattice site

in the internal state |σ〉, with

a
(†)
L+1,σ :=

{
a

(†)
1,σ, PBCs,

0, HWBCs
(5.14)

(compare Section 2.4).

Since the Hamiltonian does not affect the internal states, H commutes with all permu-
tations

πint := 1ext ⊗ π, π ∈ SN , (5.15)

of the species labels,

[H,πint] = 0. (5.16)

According to representation theory, the Hamiltonian can thus be made block diagonal,
where each block corresponds to an irreducible representation of SN [106, 170, 171].
The eigenvalues of different blocks corresponding to the same irreducible representation
are identical, and hence these blocks of H are equal up to a basis transformation. Note
that, due to the symmetrization of the full state, πint is equivalent to the permutation

πext = π−1 ⊗ 1int, (5.17)
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which acts only on the external degrees of freedom.

We now discuss how to obtain this block-diagonal form of the Hamiltonian. The irre-
ducible representations of SN are labelled by the integer partitions λ of N [170, 171],
that is, by the tuples

λ = (λ1, . . . , λn), λi ∈ N, λ1 ≥ . . . ≥ λn > 0, (5.18)

such that
n∑

i=1
λi = N. (5.19)

Each such partition is associated to a Young diagram [170], which consists of N boxes in
n rows, with λi boxes in the ith row. For instance, the partition λ = (2, 2, 1) of N = 5
corresponds to the Young diagram

λ = . (5.20)

From a given Young diagram, we obtain a Young tableau by filling the diagram with
numbers 1, . . . , N , such that each number appears once [170]. For example, a possible
numbering of the Young diagram shown above is

1 2
3 4
5

. (5.21)

Each Young tableau defines two subgroups of the symmetric group [170],

Rλ = {π ∈ SN : π preserves the rows of the tableau} ,
Cλ = {π ∈ SN : π preserves the columns of the tableau} .

(5.22)

The Young tableau of Equation (5.21), for instance, yields the two subgroups

Rλ = S{1,2} × S{3,4},

Cλ = S{1,3,5} × S{2,4}.
(5.23)

Here, S{i1,...,in} is the symmetric group of all permutations of the set {i1, . . . , in} and the
cross denotes the (internal) direct product of two subgroups of SN , that is, the group

G1 ×G2 := {g1g2 : g1 ∈ G1, g2 ∈ G2} , (5.24)
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where the subgroups G1, G2 ⊆ SN fulfil g1g2 = g2g1 for all g1 ∈ G1 and g2 ∈ G2.
The subgroups Rλ and Cλ define, respectively, the row symmetrizer sλ and the column
antisymmetrizer aλ as [170]

sλ = 1ext ⊗
∑

π∈Rλ

π, aλ = 1ext ⊗
∑

π∈Cλ

sgn(π)π. (5.25)

Here, sgn denotes the signature of the group element π [171]: Each π ∈ SN can be
written as a product of transpositions (permutations of just two elements). If ν is the
number of transpositions in such a product, the signature is defined as sgn(π) = (−1)ν

and is uniquely determined by π. The action of sλ on a state |Ψ〉 yields a state that
transforms symmetrically under the action of any π ∈ Rλ, whereas aλ results in states
that are antisymmetric with respect to π ∈ Cλ. The product of sλ and aλ defines the
Young symmetrizer yλ associated with the Young tableau [170],

yλ = sλaλ. (5.26)

A classic result of representation theory [170] states that yλ is a projector, up to a
normalization factor, and that the action of yλ (by multiplication from the right) on the
group algebra CSN yields one realization of the irreducible representation labelled by
λ. The group algebra is the vector space

CSN =

 ∑
π∈SN

cπeπ : cπ ∈ C

 , (5.27)

in which every basis element eπ is associated with a group element π, and multiplication
by elements π′ ∈ SN from the right is defined as eππ

′ = eππ′ . This result essentially
means that the subspace

{yλ |Ψ〉 : |Ψ〉 ∈ H} (5.28)

onto which yλ projects yields one block of the Hamiltonian corresponding to the irre-
ducible representation labelled by λ. Natural bases for the Bose-Hubbard model with
distinguishable particles are therefore obtained from the interaction and tunneling basis
states, respectively, by acting on them with yλ and orthogonalizing the resulting set of
states. Note that, since the projection by yλ does not change the occupation numbers
nm of the external modes |m〉, the orthogonalization can be performed independently
on the subspaces with a fixed set of nm, which is numerically much more efficient than
orthogonalizing the full set of states at once.

Let us now discuss in further detail the characteristics of these subspaces and how they
are related to particle indistinguishability. For the partitions λ = (N) and λ = (1, . . . , 1),
which correspond to Young diagrams consisting of a single row and a single column,
respectively, one can easily check that the Young symmetrizer is

y(N) = 1ext ⊗
∑

π∈SN

π, y(1,...,1) = 1ext ⊗
∑

π∈SN

sgn(π)π. (5.29)
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Hence, y(N) (y(1,...,1)) fully symmetrizes (antisymmetrizes) the species labels, and the
Hamiltonian on this block is identical to that of indistinguishable bosons (fermions). For
other λ, the subspaces induced by yλ correspond to mixed symmetries, which become
more symmetric (antisymmetric) the more elements are contained in Rλ (Cλ), i.e., the
longer the rows (columns) of the Young diagram are.

To understand the connection of the λ subspaces to the number of species S, it is
convenient to use semistandard Young tableaux [106, 170]. These are obtained from a
Young diagram by filling it with numbers 1, . . . , N such that they do not decrease (from
left to right) within one row and they strictly increase (from top to bottom) within
one column. For example, a semistandard Young tableau to the Young diagram of
Equation (5.20) is given by

1 1
2 3
3

. (5.30)

Now consider a state |Ψ〉 with a well-defined number of particles in each internal state |σ〉,
σ = 1, . . . , S. Then, under the action of the Young symmetrizer yλ, |Ψ〉 is projected
to zero if the list of internal states (σ1, . . . , σN ) cannot fill the Young diagram λ to
form a semistandard Young tableau. Furthermore, it can be shown that the number
of possible fillings for a given species configuration defines the number of blocks in H
associated with the same λ [106]. As an example, consider the partition λ = (2, 1) for
N = 3 particles. For a single species, S = 1, and hence fully indistinguishable bosons,
no semistandard Young tableau is possible for this λ, while for S = 2 and S = 3, with
species configurations (1, 1, 2) and (1, 2, 3), respectively, the following fillings are allowed:

S = 2 :
1 1
2

, S = 3 :
1 2
3

,
1 3
2

. (5.31)

A possible column antisymmetrizer for λ = (2, 1) is

aλ = 1 − (σ1 7→ σ3, σ3 7→ σ1), (5.32)

which is defined by the Young tableau

1 2
3

. (5.33)

While the state

|Ψ1〉 = |σ1 = 1, σ2 = 1, σ3 = 1〉 (5.34)

of three indistinguishable bosons (mode occupations neglected here for simplicity) is
projected to zero by this antisymmetrizer, the states

|Ψ2〉 = |σ1 = 1, σ2 = 1, σ3 = 2〉 , |Ψ3〉 = |σ1 = 1, σ2 = 2, σ3 = 3〉 (5.35)
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Figure 5.2: Sketch of the block structure of the Bose-Hubbard Hamiltonian for
N = L = 3 and S = 1 (left), S = 2 (center) and S = 3 (right) particle
species, compare Reference [106]. The coloured areas correspond to the ir-
reducible representations labelled by λ = (3) (red), λ = (2, 1) (blue) and
λ = (1, 1, 1) (green), and their size indicates the dimension of each block.

of (partially) distinguishable particles are not. Consequently, the species configuration
defines which particle permutation symmetries can be realized, i.e., which irreducible
representations of SN , labelled by λ, appear in the block-diagonal decomposition of H.
In particular, for S = N , i.e., fully distinguishable particles, each Young diagram can be
filled to form a semistandard Young tableau, and, hence, each mixed symmetry given
by λ is accessible, while the only allowed block of H for fully indistinguishable bosons,
S = 1, is the fully symmetric one, λ = (N). An example of the block structure of the
Hamiltonian for N = 3 particles in L = 3 modes and up to S = 3 species is sketched in
Figure 5.2.

By virtue of the equivalence between πint and πext, the same statements as for states
with a well-defined number of particles per species hold also for states with a well-defined
number of particles per mode |m〉. Hence, states with more than λ1 particles in a single
mode, or, more generally, more than λ1 + . . .+ λi particles in i modes, are forbidden in
the subspace labelled by λ.

5.2. Spectral Statistics and Eigenstate Structure as Functions
of Permutation Symmetry

In the following, we investigate the Bose-Hubbard Hamiltonian of (partially) distinguish-
able bosons, using the spectral averages that were discussed for fully indistinguishable
particles in Section 3.4. Figure 5.3 shows, as functions of the scaled tunneling strength
η = J/UN , the mean level spacing ratio 〈r〉, as well as the mean and the variance of
the eigenstate fractal dimension D̃1 in the interaction basis, over the inner 70 % of the
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Poisson〈r〉

〈r〉

λ=(6,1)         (N = 2376)
λ=(4,2,1)      (N = 3670)
λ=(3,2,1,1)   (N = 1472)

λ=(3,1,1,1,1)     (N = 264)
λ=(2,2,2,1)        (N = 392)
λ=(2,1,1,1,1,1)  (N = 24)
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Figure 5.3: Mean level spacing ratio 〈r〉 (upper panel), mean fractal dimension
〈
D̃1
〉

(center panel) and variance var
(
D̃1
)

(lower panel) in the interaction basis
over the inner 70 % of the spectrum for different symmetry-induced subspaces
labelled by partitions λ as indicated in the legend, for N = L = S = 7, with
HWBCs and parity Π = −1. Grey lines in the plot of 〈r〉 mark 〈r〉GOE
[solid, Equation (2.41) on page 19] and 〈r〉Poisson [dashed, Equation (2.43) on
page 19]. Dashed lines in the center panel indicate

〈
D̃1
〉

GOE [Equation (4.3)
on page 62] for the same Hilbert space dimensions N as the symmetry-
induced subspaces. When not shown, error bars are contained within symbol
size. Note that the seemingly good agreement of

〈
D̃1
〉

with GOE for λ =
(2, 1, 1, 1, 1, 1) is merely a coincidence, see the discussion on page 102.
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energy levels. Various symmetry-induced subspaces are shown for N = 7 fully distin-
guishable particles on L = 7 sites, with HWBCs and parity Π = −1. Note that, while
all irreducible representations of S7 are accessible for fully distinguishable particles, as
discussed in Section 5.1, only a selection is shown to ease visualization.

For partitions λ of short length, such as λ = (6, 1) or λ = (4, 2, 1), chaos can clearly
be identified for 0.03 ≲ η ≲ 1: The mean level spacing ratio 〈r〉 approaches the GOE
prediction 〈r〉GOE, the mean fractal dimension

〈
D̃1
〉

reaches a maximum and the variance
var

(
D̃1
)

decreases by several orders of magnitude. At its maximum, the mean fractal
dimension for λ = (6, 1) and λ = (4, 2, 1) agrees well with the predictions from GOE
(indicated by dashed lines). As we have discussed in Section 5.1, the short-length λ
correspond to more symmetric subspaces with respect to species permutations, since the
rows of the corresponding Young diagram are longer than its columns.

As the symmetry-induced subspace becomes more antisymmetric, i.e., the partitions λ
become longer, signatures of chaos are reduced in 〈r〉,

〈
D̃1
〉

and var
(
D̃1
)
. The spectral

statistics is no longer in agreement with GOE, the maximum of
〈
D̃1
〉

is smaller and
differs from GOE (except for λ = (2, 1, 1, 1, 1, 1), see next paragraph), and the minimum
of var

(
D̃1
)

is less sharp. Note that also the subspace dimension N tends to be smaller for
the more antisymmetric subspaces, and as we have seen previously for indistinguishable
bosons (see, for instance, Figures 3.9, 4.9, and 4.10 on pages 53, 76, and 77, respectively),
the maximum of

〈
D̃q
〉

and the minimum of var
(
D̃q
)

are less pronounced for smaller N .
For λ = (3, 1, 1, 1, 1), however, the maximum of

〈
D̃1
〉

is larger and the minimum of
var

(
D̃1
)

is deeper than for λ = (2, 2, 2, 1), even though the corresponding dimensions
suggest the opposite behaviour. This result is a clear sign that the species permutation
symmetry impacts the signatures of chaos in the fractal dimensions.

Note that for the most antisymmetric subspace shown, λ = (2, 1, 1, 1, 1, 1), the mean
fractal dimension is in very good agreement with GOE for all values of η. However,
this is a coincidence caused by the very small Hilbert space dimension and cannot be
interpreted as a signature of chaos: The variance shows no minimum as a function of η
and the spectral statistics clearly deviate from GOE in a wide range of η values.

The finding that chaos is weaker in the more antisymmetric subspaces is directly con-
nected to the structure of the Hamiltonian on the different symmetry-induced subspaces.
As discussed towards the end of Section 5.1, states with more than λ1 + . . .+λi particles
in i modes (here: spatial modes) are forbidden in the symmetry subspace given by λ,
thus reducing the influence of the on-site interaction for the more antisymmetric sub-
spaces. Consequently, the emergence of chaos, as an effect of the interplay of interaction
and tunneling, is suppressed. Note that the effect discussed here is similar to defining
a maximum occupation number per site, but not exactly the same: For λ = (2, 2, 2, 1)
and λ = (2, 1, 1, 1, 1, 1) maximally two particles per spatial mode are allowed due to
symmetry, but the chaos signatures, for instance the minimum of var

(
D̃1
)
, are much

weaker in λ = (2, 1, 1, 1, 1, 1) since states with two particles in more than one spatial
mode are forbidden in this subspace.
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As we have discussed in Section 5.1, the species configuration directly influences which
λ subblocks contribute to the Hamiltonian. Hence, the results of the current section
show that the emergence of chaos in the Bose-Hubbard Hamiltonian depends on particle
indistinguishability. This finding has implications for dynamical studies, as typically
performed in experiments [124, 127, 195]: If, on the one hand, the system is initialized
in a Fock state of fully indistinguishable particles, this initial state lives only on the fully
symmetric subspace λ = (N) and hence the system should thermalize for long times (as
defined, for instance, by the expectation value of single-particle observables) in the η
ranges of the chaotic domain. On the other hand, an initial Fock state of distinguishable
particles overlaps with several symmetry-induced subspaces with different degrees of
chaos, which should give rise to different signatures in the equilibrium dynamics as
compared to the fully indistinguishable case [196].
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Chapter 6.

Conclusions and Outlook

In this thesis, we have thoroughly investigated the quantum-chaotic and regular phases
of the Bose-Hubbard Hamiltonian, as functions of the scaled energy and of the scaled
tunneling strength, via short-range spectral statistics and via the eigenstate localization
properties encoded into the eigenstates’ fractal dimensions. Spectral chaos reflects the
complicated level dynamics, which is dominated by a multitude of avoided crossings
in the chaotic region, and is furthermore correlated with eigenstate delocalization and
with strongly reduced eigenstate-to-eigenstate fluctuations of the fractal dimensions, in
both natural bases of the Hamiltonian (the eigenbases of the interaction term and of the
tunneling term). In particular, these fluctuations behave qualitatively similarly in the
two natural bases, and hence appear as a qualitatively basis-independent quantifier of
the emergence of quantum chaos. Additionally, as signalled by the skewness parameter,
the distribution of the eigenstate fractal dimensions becomes strongly asymmetric at the
boundaries of the chaotic domain, indicating that the onset of delocalization for close-
in-energy eigenstates occurs at slightly different values of the scaled tunneling strength.

Since spectral chaos is defined via the agreement of the spectral statistics with that
of GOE random matrices, we have compared the eigenstate fractal dimensions of the
Bose-Hubbard model with the corresponding GOE predictions and furthermore with the
bosonic two-body embedded GOE ensemble, which captures the two-body nature of the
Bose-Hubbard Hamiltonian. The chaotic region in the embedded ensemble depends on
the energy in qualitatively the same way as in the Bose-Hubbard model. In particular,
the disappearance of quantum chaos at the edges of the spectrum, accompanied by
a strongly reduced density of states, is well described by the embedded ensemble, in
contrast to GOE, which indicates that this feature of the chaotic region is rooted in
the few-body character of the Hamiltonians and hence in their sparsity as matrices in
Fock space. Even though the sparsity of the embedded-ensemble matrices is close to
the Bose-Hubbard Hamiltonian in the eigenbasis of the tunneling term, the eigenstates’
structural features (described by the fractal dimensions) agree much better between
the embedded ensemble and the Bose-Hubbard Hamiltonian in the eigenbasis of the
interaction term. Hence, besides the two-body character of the Hamiltonian, additional
correlations between Bose-Hubbard matrix elements, all of which depend on the same
two parameters (interaction and tunneling strength), need to play an important role in
the formation of the chaotic domain.
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The scaling of the averaged fractal dimensions and of their eigenstate-to-eigenstate vari-
ance with Hilbert space dimension N reveals that the eigenstates in the chaotic domain
become ergodic for N → ∞ in both natural bases of the Bose-Hubbard Hamiltonian,
albeit with a strong basis dependence of the convergence to ergodicity. Specifically for
the eigenbasis of the interaction term in the center of the spectrum and for the eigenbasis
of the tunneling term at small energies, the mean fractal dimensions of close-in-energy
eigenstates and the corresponding variances agree exceptionally well between the Bose-
Hubbard Hamiltonian in its quantum-chaotic phase, the embedded ensemble and GOE
for the numerically reachable system sizes.

Despite this agreement of the three models in terms of low-order statistical moments,
their full fractal-dimension distributions become ever more distinguishable from one an-
other with increasing Hilbert space dimension. Since the Bose-Hubbard model departs
from GOE as well as from the embedded ensemble, the difference between the Bose-
Hubbard model and GOE cannot solely be explained by the two-body nature of the
Bose-Hubbard Hamiltonian, but one needs to take into account also the more specific
on-site and nearest-neighbour structure of the interaction and tunneling terms, respec-
tively. These results show that distinctive features of the Bose-Hubbard Hamiltonian
remain accessible in the chaotic domain for N → ∞, on top of the universal random-
matrix predictions, which hints towards a statistical way to differentiate among distinct
many-body Hamiltonians in the chaotic regime. Our findings are thus related to the
certification problem of system-specific properties in complex quantum systems for an-
alytically and numerically intractable Hamiltonians [103, 197–200].

As a second source of complexity in quantum many-body systems besides interactions,
we also investigated the influence of particle distinguishability on the spectral statistics
and the eigenstate fractal dimensions of the Bose-Hubbard model, finding a clear impact
on the emergence of quantum chaos. In particular, the signatures of quantum chaos
vanish in the more antisymmetric subspaces induced by particle permutation symmetry.
This result is directly related to the specific structure of the Bose-Hubbard Hamiltonian,
since states with many particles per site are forbidden in the more antisymmetric sub-
spaces, and hence the interaction term is strongly suppressed due to its on-site nature.
Further investigations with models that include longer-range interaction terms would be
needed to understand on a deeper level how particle distinguishability affects quantum
chaos. Additionally, relating quantum chaos, as discussed in this thesis, to the dynamics
of (partially) distinguishable bosons would shed light on the interplay between many-
particle interference, whose presence or absence is a dynamical signature of the particles’
(in)distinguishability [99–101, 103, 105, 106, 192], and the emergence of chaos.

Another interesting topic for further investigation is the question of how exactly the
additional correlations in the Bose-Hubbard Hamiltonian affect the eigenstates and lead
to the observed departure of this Hamiltonian in its chaotic domain from GOE and the
embedded ensemble. One clear difference between the matrix structures of the Bose-
Hubbard Hamiltonian and of the two random-matrix models is that the former changes
under basis transformations between Fock bases. Hence, one could investigate which
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Fock basis yields the strongest or the weakest signature of quantum chaos in terms of
eigenstate delocalization. The structure of these “preferred” bases and of the underlying
single-particle modes might reveal in more detail how correlations in the matrix elements
influence the eigenstate structure.

In this work we have investigated the emergence of quantum chaos for integer filling
factors only. It is known that some properties of the Bose-Hubbard Hamiltonian change
for non-integer filling, e.g., the Mott insulating phase of the ground state (for dominating
interactions) is absent in this case [80, 164]. Hence, one may ask whether the filling
factor impacts also the formation of the chaotic region. Furthermore, the limit N → ∞
could be approached for a fixed number of lattice sites and increasing particle number,
instead of keeping the filling factor fixed as investigated in this thesis. Whether or
not the distinctiveness of the Bose-Hubbard Hamiltonian in its chaotic phase versus
random-matrix universality is equally observable in this alternative limit remains to be
confirmed.
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Additional Calculations

A.1. Level Spacing Ratios for the Poisson Distribution
In the following, we derive the probability distribution P (r) and the corresponding mean
〈r〉 of the level spacing ratio for Poissonian level statistics [Equations (2.42) and (2.43)
in the main text, page 19]. We start with the probability P(r̃n ≤ α) that the number

r̃n := sn

sn+1
≥ 0 (A.1)

is smaller than a certain α > 0, where the level spacings sn = En+1 − En and sn+1 =
En+2−En+1 are independently distributed according to Poisson statistics [Equation (2.33)
on page 17]:

P(r̃n ≤ α) = P(sn ≤ αsn+1)

=
∫ ∞

0
e−sn+1

∫ αsn+1

0
e−sn dsn dsn+1

= α

1 + α
. (A.2)

Now we can calculate the cumulative distribution function for rn = min {r̃n, 1/r̃n} based
on the fact that rn ≤ α for 0 ≤ α ≤ 1 is equivalent to r̃n = rn ≤ α or r̃n = 1/rn ≥ 1/α:

P(rn ≤ α) = P(r̃n ≤ α) + P
(
r̃n ≥ 1

α

)
= α

1 + α
+
(

1 −
1
α

1 + 1
α

)

= 2α
1 + α

. (A.3)

The probability density of r is hence the derivative

PPoisson(r) =
( d

dα
2α

1 + α

)
α=r

= 2
(1 + r)2 . (A.4)

In particular the mean level spacing ratio evaluates to

〈r〉Poisson =
∫ 1

0

2
(1 + r)2 r dr = 2 ln 2 − 1. (A.5)
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A.2. Limits of Fractal Dimensions and q-Moments
In this section we give detailed proofs of some properties of fractal dimensions and q-
moments discussed in Section 2.3. In particular, we will deduce maxima and minima of
the fractal dimensions and q-moments as functions of the state |ψ〉, we will determine
the limit of D̃q for q → ∞, and we will show that Rq and D̃q are monotonic functions
of the parameter q. In the following, let

|ψ〉 =
∑

α

ψα |α〉 (A.6)

be an arbitrary normalized state belonging to the Hilbert space H spanned by the basis
{|α〉}, dim H = N .

A.2.1. Dependence on the State
Let q ≥ 0 be fixed. For a single index α and q ≥ 1, the term

|ψα|2 (1 − |ψα|2(q−1)) (A.7)

is always greater than or equal to 0, since |ψα|2 ≥ 0 and |ψα|2(q−1) ≤ 1q−1 = 1. For
q < 1, the same arguments yield

|ψα|2 (1 − |ψα|2(q−1)) ≤ 0. (A.8)

In both cases, equality holds if and only if one of the factors vanishes, that is, if
|ψα|2 ∈ {0, 1}. Summation yields

∑
α

|ψα|2
(
1 − |ψα|2(q−1)

){≥ 0, q ≥ 1,
≤ 0, q < 1,

(A.9)

where the equality holds if and only if all |ψα|2 ∈ {0, 1}, i.e. if and only if |ψ〉 is localized
on a single basis state |α〉. This inequality translates into

Rq =
∑

α

|ψα|2q ≤
∑

α

|ψα|2 = 1 (A.10)

for q ≥ 1 and, similarly, Rq ≥ 1 for q < 1, where the equality holds exactly for |ψ〉 = |α〉,
with a single basis state |α〉.

On the other hand, to determine the minimum of Rq for q ≥ 1 (maximum for q < 1),
consider the gradient of Rq with respect to |ψα|2, whose α component, with α = 1, . . . ,N ,
reads

(∇Rq)α = q|ψα|2(q−1). (A.11)
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Additionally, the normalization condition∑α |ψα|2 = 1 needs to be fulfilled, which means
that, by the method of Lagrange multipliers, we have to subtract[

∇λ
(∑

α

|ψα|2 − 1
)]

α

= λ (A.12)

from the α component of the gradient in order to find an extremum. For all α, this
ansatz leads to

q|ψα|2(q−1) − λ = 0 ⇒ |ψα|2(q−1) = λ

q
. (A.13)

Consequently, all vector intensities are the same, i.e., the state |ψ〉 is equally distributed
over all basis elements |α〉. This condition, together with normalization, yields |ψα|2 =
1/N and hence

Rq = N −(q−1). (A.14)

This point is a minimum for q > 1 (maximum for q < 1), as can be checked from the
Hessian matrix of Rq as a function of the vector intensities |ψα|2.

Since the logarithm and the exponential are monotonically increasing functions, the
minima (maxima) of Rq are also minima (maxima) of lnRq and vice versa. However, the
extremum D̃q = 1 for Rq = N −(q−1), i.e., fully delocalized states, is always a maximum,
since the factor −(q− 1)−1 in the definition of D̃q [Equation (2.64) on page 25] flips the
sign and hence interchanges maxima and minima for q > 1, while the sign is preserved for
q < 1. D̃q = 0 for Rq = 1, i.e., fully localized states, is always a minimum for the same
reasons. By deducing these bounds we have shown that it is exactly the fully delocalized
(fully localized) states with respect to the given basis that obey D̃q = 1 (D̃q = 0), and
no other states with larger D̃q > 1 (smaller D̃q < 0) exist.

A.2.2. The Fractal Dimension D̃∞

To determine the limit q → ∞ of the generalized fractal dimensions D̃q, define Amax as
the set of indices α for which |ψα|2 = maxβ |ψβ|2. Let c be the number of elements in
Amax. Now consider

lim
q→∞

(
ln

∑
α |ψα|2q

cmaxα |ψα|2q

)
= lim

q→∞
ln

 ∑
α∈Amax

1
c

+
∑

α 6∈Amax

|ψα|2q

c (maxα |ψα|2)q


= ln lim

q→∞

1 +
∑

α 6∈Amax

|ψα|2q

c (maxα |ψα|2)q


= ln 1 = 0.
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In the second step of this calculation we have used that the logarithm is continuous and
hence one can interchange it with the limit. With this result we can write

ln
∑

α

|ψα|2q = ln max
α

|ψα|2q + ln c+ ϵ(q) (A.15)

with lim
q→∞

ϵ(q) = 0, and hence

D̃∞ = − 1
ln N

lim
q→∞

q ln maxα |ψα|2 + ln c+ ϵ(q)
q − 1

= − 1
ln N

ln max
α

|ψα|2, (A.16)

as stated in Equation (2.71) of the main text (page 27).

A.2.3. Monotonicity as Functions of the Index q

In the following, we keep the state |ψ〉 fixed. Since 0 ≤ |ψα|2 ≤ 1, it is clear that |ψα|2q

and, in consequence, also Rq are monotonically decreasing functions of q. To obtain the
monotonicity of D̃q, we calculate its derivative with respect to q,

ln N dD̃q

dq
= −

(q − 1)
∑

α |ψα|2q ln(|ψα|2)/
∑

β |ψβ|2q − ln
∑

α |ψα|2q

(q − 1)2

= − 1
(q − 1)2

∑
α

ln

|ψα|2q/(|ψα|2
∑

β

|ψβ|2q)

 |ψα|2q/
∑

β

|ψβ|2q

= − 1
(q − 1)2

∑
α

zα ln(zα/|ψα|2), (A.17)

where zα := |ψα|2q/
∑

β |ψβ|2q. Since the logarithm is a strictly concave function,
Jensen’s inequality (Equation 1.7.10 of Reference [185]) holds, that is, for pα ≥ 0 and∑

α pα = 1, we have

∑
α

pα ln(xα) ≤ ln
(∑

α

pαxα

)
. (A.18)

In our case, ∑α zα = 1 and zα ≥ 0 are fulfilled by definition; therefore∑
α

−zα ln(zα/|ψα|2) =
∑

α

zα ln(|ψα|2/zα)

≤ ln
(∑

α

zα(|ψα|2/zα)
)

= ln
∑

α

|ψα|2

= ln 1 = 0. (A.19)

Inserting this result into the derivative of D̃q yields dD̃q

dq ≤ 0, and, hence, D̃q is a
monotonically decreasing function of q.
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Figure A.1: (a) [Erf (x)]N , with x = N (1−D̃∞)/2/
√

2, versus D̃∞ for N = 100, 1000,
10 000, (b) relative deviation ∆x⋆ [Equation (A.32)] of x⋆, according to
Equation (A.31), from the numerical solution x⋆

num of Equation (A.23), as a
function of dimension N .

A.3. Scaling of the Fractal Dimension D̃∞ for the Gaussian
Orthogonal Ensemble

This section provides details on the scaling of
〈
D̃∞

〉
GOE and var

(
D̃∞

)
GOE with Hilbert

space dimension N in the limit N → ∞ [see Equations (4.19) and (4.20) on page 64]. As
a first step, we approximate the integrand in Equation (4.18) appropriately. This works
best using an alternative representation of

〈
D̃k

∞

〉
substituting the integration variable x

by

D̃∞ = 1 − ln 2x2

ln N
(A.20)

and neglecting the exponentially decaying term:
〈
D̃k

∞

〉
GOE

= k

∫ 1

0

[
Erf

(
N (1−D̃∞)/2

√
2

)]N

D̃k−1
∞ dD̃∞. (A.21)

As can be seen in Figure A.1(a), the error function term in this integral becomes essen-
tially a step function for large Hilbert space dimensions N , which changes between 1
and 0 in a small range of D̃q. In order to capture also this finite interval of the decay
from 1 to 0, we approximate the error function term as a piecewise function,

[
Erf

(
N (1−D̃∞)/2

√
2

)]N

≈



1, 0 ≤ D̃∞ ≤ D(1),

1 − a1
(
D̃∞ − D(1)

)2
, D(1) < D̃∞ ≤ D⋆,

a2
(
D̃∞ − D(2)

)2
, D⋆ < D̃∞ ≤ D(2),

0, D(2) < D̃∞ ≤ 1.

(A.22)
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Here, D⋆ is the solution of[
Erf

(
N (1−D⋆)/2

√
2

)]N

= 1
2
, (A.23)

and D(1), D(2), a1, a2 are determined such that the piecewise function is continuously
differentiable at D⋆ and its derivative at D⋆ is equal to

α :=

 d
dD̃∞

[
Erf

(
N (1−D̃∞)/2

√
2

)]N
D̃∞=D⋆

= −
21/N N N (1−D⋆)/2

√
2 e− N 1−D⋆

2 ln N
2
√
π

.

(A.24)

These conditions yield

D⋆ − D(1) = −
(
D⋆ − D(2)

)
= − 1

α
, a1 = a2 = α2

2
. (A.25)

By this construction, the piecewise function is continuously differentiable for all D̃∞.
Mean and variance of D̃∞ within this approximation read

〈
D̃∞

〉
GOE = D⋆, var

(
D̃∞

)
GOE = 1

6α2 . (A.26)

Note that a simpler approximation of the error function term by a Heaviside step func-
tion, assuming an immediate change from 1 to 0, would give the same mean, but the
variance, and also any other central moment, would vanish exactly. Hence, we need a
more sophisticated approximation than the step function, such as the piecewise function
provided here.

To solve Equation (A.23) approximately for

x⋆ = N (1−D⋆)/2
√

2
, (A.27)

we expand 2−1/N for large N ,

2− 1
N = 1 − ln 2

N
+ O

( 1
N 2

)
, (A.28)

and we use an expansion of the error function for large arguments, Equation 7.12.1 of
Reference [185],

Erf(x) = 1 − e−x2

√
π

[1
x

+ O
( 1
x2

)]
. (A.29)
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Doing such an expansion for the error function is justified for large enough N , since
2−1/N converges to 1 in the limit N → ∞, and Erf(x) is close to 1 only for x → ∞.
With these two expansions, we obtain the approximate equation

(x⋆)2 = ln N − 1
2

ln π − ln(ln 2) − ln x⋆, (A.30)

which can be solved iteratively by replacing x⋆ in ln x⋆ by the right-hand side of this
equation, and which yields after one iteration the approximate solution

(x⋆)2 = ln N − 1
2

ln π − ln(ln 2) − 1
2

ln
(

ln N − 1
2

ln π − ln(ln 2)
)
. (A.31)

As shown in Figure A.1(b), the relative difference

∆x⋆ = x⋆
num − x⋆

x⋆
num

(A.32)

between Equation (A.31) and a direct numerical solution x⋆
num of Equation (A.23) is

maximally of order 10−3 for large enough N , which confirms the quality of the approx-
imation. Inserting Equation (A.31) into Equations (A.24) and (A.26) and doing an
expansion for N → ∞ finally yields the expressions presented in Equations (4.19) and
(4.20) of the main text,

〈
D̃∞

〉
GOE = 1 − ln(ln N ) + ln 2

ln N
+ ln(ln N )

ln2 N
+ O

( 1
ln2 N

)
, (A.33)

var
(
D̃∞

)
GOE = 2

3 ln2 2 ln4 N
+ ln(ln N )

3 ln2 2 ln5 N
+ O

( 1
ln5 N

)
. (A.34)

An alternative approach, approximating the decay of the error function term by its
tangent at D⋆,

[
Erf

(
N (1−D̃∞)/2

√
2

)]N

≈


1, 0 ≤ D̃∞ ≤ D(1),

α
(
D̃∞ − D(2)

)
, D(1) < D̃∞ ≤ D(2),

0, D(2) < D̃∞ ≤ 1,
(A.35)

where D(1) is chosen such that the piecewise function is continuous, would lead to the
same mean, but to a different prefactor of the variance. Therefore, the coefficients of
the scaling of var

(
D̃∞

)
GOE depend on the precise treatment of the error function term

and are difficult to obtain exactly, but, as is also revealed in Figure 4.1 of the main text
(page 65), the functional form of the leading terms in N is correctly captured by this
method.
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Appendix B.

Correlations of Eigenvector Coefficients

In this appendix we give an overview of our study of the correlations

ψαψβ, |ψα|2 |ψβ|2 (B.1)

between eigenvector coefficients ψα = 〈α|ψ〉, ψβ = 〈β|ψ〉 in the chaotic domain.

B.1. Spatial Correlations for Chaotic Wave Functions and at
the Anderson Transition

Let us first discuss several known results about correlations of eigenstate coefficients for
single-particle wave functions. In a semiclassical setting, Berry [201, 202] studied the
autocorrelation functions

C(x, r) = ψ

(
r + 1

2
x

)
ψ∗
(

r − 1
2

x

)
/|ψ(r)|2 (B.2)

of energy eigenfunctions ψ(r) for chaotic and regular systems with a 2n-dimensional
phase space spanned by n (generalized) positions and n (generalized) momenta (compare
Section 2.1). Here, x and r are positions in real space and the bar denotes a local
average over the coordinates r in a small phase-space volume. Approximating the Wigner
function

Ψ(r,p) = 1
(2πℏ)n

∫
dnx e−ip·x/ℏ ψ

(
r − 1

2
x

)
ψ∗
(

r + 1
2

x

)
(B.3)

of positions r and momenta p by the classical phase-space density given by the cor-
responding classical trajectory (for integrable motion, equidistribution on a torus; for
chaotic motion in the absence of any traces of mixed phase space [7], equidistribution
on all available phase space at fixed energy), and using the relation

C(x, r) =
∫

dnp eip·x/ℏ Ψ(r,p)/|ψ(r)|2, (B.4)
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he showed that in the chaotic regime the autocorrelation function behaves as [201, 203]

C(x, r) = Γ
(
n

2

) Jn/2−1
(
|x|
√

2m(E − V (r))/ℏ
)

(
|x|
√

2m(E − V (r))/(2ℏ)
)n/2−1 , (B.5)

if the Hamiltonian is of the form

H(r,p) = p2

2m
+ V (r). (B.6)

Here, Jk is the Bessel function of index k (Equation 10.2.2 of Reference [185]), E is the
energy of the eigenfunction ψ(r), and Γ(n/2) accounts for normalization. This Bessel-
function shape of the autocorrelation is known as Berry’s conjecture.

Another relevant result on wave function correlations in real space was given in the
context of Anderson localization. Anderson localization describes the disorder-induced
transition between extended and localized single-particle wave functions ψ(r) on a d-
dimensional lattice of length L [72], where the wave functions at the critical point of
the transition are multifractal according to our definition in Section 2.3 of the main text
[73–75]. One now defines the anomalous dimensions ∆q as [73]

∆q = −d(1 −Dq)(q − 1). (B.7)

In particular the anomalous dimension ∆2 was found to determine the scaling with
distance and system size of spatial correlations between intensities of a multifractal
wave function [73],

L2d
〈
|ψ(r)|2 |ψ(r + x)|2

〉
∼
( |x|
L

)∆2

, (B.8)

where 〈 · 〉 is an average over disorder realizations. Higher-order correlations of the
intensities are known to depend on ∆q in a similar way [73], e.g.,

Ld(q1+q2)
〈
|ψ(r)|2q1 |ψ(r + x)|2q2

〉
∼ L−q1−q2

( |x|
L

)∆q1+q2 −∆q1 −∆q2
. (B.9)

Motivated by these results, we investigate the correlations of eigenstate amplitudes and
intensities in the Bose-Hubbard model. In contrast to the wave functions discussed
above, which are defined in real space, we will consider many-body eigenstates in the
interaction basis, i.e., the Fock basis built on single-particle states localized in real space.
The first task is therefore to come up with an adequate definition of distances in Fock
space.
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B.2. Distances in Fock Space
For the following discussion, let

|n〉 = |n1, . . . , nL〉 , |m〉 = |m1, . . . ,mL〉 (B.10)
be two Fock states of N particles in L single-particle modes.

One possible distance between Fock states is the Hamming distance dh [204]. For mode
occupation numbers ni, mi ∈ {0, 1}, this distance is defined as the number of pairs
(ni,mi) such that ni 6= mi. It can be generalized to higher occupation numbers in two
ways, either by defining dh, again, as the number of occupation numbers ni 6= mi, or by
summing up the differences between the occupation numbers, i.e.,

dh(|n〉 , |m〉) =
L∑

i=1
|ni −mi|. (B.11)

Since the latter takes into account how many particles need to be moved from one single-
particle mode to another in order to transform |n〉 into |m〉, this second generalization
seems more appropriate for bosonic Fock states. Note that the distance defined in
Equation (B.11) is also known as the 1-distance, the taxicab distance, or the Manhattan
distance of the two vectors n and m.

Another possible distance is the tunneling distance dt. It is defined as the minimum
number of tunneling processes that connect the two Fock states. For instance, the states

|n〉 = |1, 0, 2〉 , |m〉 = |2, 0, 1〉 (B.12)
have distance dt = 1 for nearest-neighbour tunneling with PBCs and dt = 2 for nearest-
neighbour tunneling with HWBCs. In contrast to the Hamming distance, the tunneling
distance depends on the connectivity of the single-particle modes provided by a tunnel-
ing Hamiltonian. Note that for all-to-all connectivity of the single-particle modes the
tunneling distance agrees with the Hamming distance up to a constant factor, dh = 2dt.

When reflection and, for PBCs, translation symmetries are taken into account, the inter-
action basis states are typically linear combinations of few Fock states. In this case, we
define the distance dk, k = h, t, of two basis states

|φ〉 =
∑

i

αi |ni〉 , |ψ〉 =
∑

i

βj |mj〉 (B.13)

that belong to the same symmetry-induced subspace as the minimum of the distances
between the Fock states |ni〉, |mj〉 contributing to the basis states,

dk(|φ〉 , |ψ〉) = min
i,j

dk(|ni〉 , |mj〉). (B.14)

Note that, by construction, each Fock state contributes to maximally one interaction
basis state per symmetry-induced subspace and hence dk(|φ〉 , |ψ〉) > 0 for |φ〉 6= |ψ〉. The
distance between two basis states belonging to different symmetry-induced subspaces can
be set to infinity, since the dynamics respect the symmetry and hence do not couple the
different symmetry-induced subspaces.
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Figure B.1: Correlations 〈ψαψβ〉 [Equation (B.15)] of eigenstate amplitudes in the in-
teraction basis, versus tunneling distance dt as defined in Section B.2, for
100 eigenstates around ε = 0.5 at η = 0.3760, N = L = 11, HWBCs,
and Π = +1 (N = 176 484). Each blue point corresponds to one eigen-
state after averaging over all basis states |β〉 at the same distance from a
reference basis state |α〉. Red lines (all panels) and red circles (right pan-
els) denote the additional average over all eigenstates. The chosen reference
state in the upper (lower) panels is |α〉 = |1, . . . , 1〉 (the symmetrized version
of |α〉 = |3, 1, 0, 1, 0, 2, 0, 2, 1, 0, 1〉). The right panels are magnifications for
1 ≤ dt ≤ 10.

B.3. Correlations in the Bose-Hubbard Model
In the following, we present results about correlations of the eigenstate amplitudes ψα =
〈α|ψ〉 and of the corresponding intensities for the Bose-Hubbard model, where the set
{|α〉} is the interaction basis. Figure B.1 shows the amplitude correlations

〈ψαψβ〉 (d) := 1
#B(d)

∑
|β〉∈B(d)

ψαψβ (B.15)

as functions of the tunneling distance dt, where B(d) := {|β〉 : dt(|α〉 , |β〉) = d} is the
set of basis states with tunneling distance d from |α〉, and #B(d) is the number of
elements in B(d). In other words, we fix a reference state |α〉 and average ψαψβ over all
basis states |β〉 with the same tunneling distance from |α〉. Here, we consider the 100
eigenstates closest to ε = 0.5 at η = 0.3760, and we choose N = L = 11 with HWBCs
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〈ψαψβ〉
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Figure B.2: Correlations of eigenstate amplitudes [Equation (B.15)] on the interaction
basis versus tunneling distance, averaged over all interaction basis states |β〉
at the same distance from |α〉 = |1, . . . , 1〉 and, furthermore, over 100 eigen-
states around ε = 0.5 at η = 0.3760 (red, compare Figure B.1, upper panels),
for N = L = 11, HWBCs and Π = +1 (N = 176 484). To benchmark the
behaviour of 〈ψαψβ〉 against Berry’s conjecture [Equation (B.5)], the blue
curve represents a fit of the parametrized version f(dt) [Equation (B.16)]
of Equation (B.5) to the correlation function 〈ψαψβ〉, for the first six data
points, 0 ≤ dt ≤ 5.

and parity Π = +1 (Hilbert space dimension N = 176 484). As reference states, we
consider the fully symmetric state |α〉 = |1, . . . , 1〉, which is in the center of the lattice
defined by the Fock states as vertices and their tunneling connections as edges, and
the symmetrized version of |α〉 = |3, 1, 0, 1, 0, 2, 0, 2, 1, 0, 1〉, which was picked randomly.
For both states |α〉 considered here, the amplitude correlations quickly decay to 0 as
a function of dt. For large distances, the correlations attain large absolute values and
fluctuate strongly among different eigenstates. The latter is likely a finite-size effect
when approaching the boundary of the lattice defined by the Fock states.

At small positive distances, the correlations show an oscillating pattern. When dt is
increased by 2, the correlations change sign. This holds true on average over differ-
ent eigenstates as well as for individual eigenstates and is most clearly visible in the
right panels of Figure B.1. Note that this pattern is found for both reference states |α〉
and is hence not an effect of the specific symmetries of the one reference state or the
other. Such an oscillatory behaviour is qualitatively in agreement with Berry’s conjec-
ture, Equation (B.5). However, naively fitting the function

f(dt) = a
Jn/2−1 (kdt)
(kdt)n/2−1 , (B.16)

with parameters a, k, n, to the data does not seem to yield a reliable result. This is
exemplified in Figure B.2 by fitting to the first six data points of the correlation 〈ψαψβ〉,
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Figure B.3: Linear (left), semi-logarithmic (center) and log-log graph (right) of the cor-
relations of eigenstate intensities [Equation (B.17)] in the interaction basis,
versus tunneling distance dt as defined in Section B.2, averaged over all in-
teraction basis states |β〉 at the same distance from |α〉 = |1, . . . , 1〉 and over
100 eigenstates around ε = 0.5 at η = 0.3181, for N = L = 13, PBCs, Q = 0
and Π = +1 (N = 200 474). Red lines are fits with f(dt) = a(1 − b dt) (left),
g(dt) = a e−b dt (center), h(dt) = a d−b

t (right), for 7 ≤ dt ≤ 30.

with |α〉 = |1, . . . , 1〉. The fit f(dt) reproduces the values of the correlation at the given
discrete distances dt, but, nevertheless, its oscillation pattern shows some deviations from
the one suggested by the correlation data: Consider, e.g., the minimum of f(dt) between
dt = 3 and dt = 4, where the numerical data suggests a maximum of 〈ψαψβ〉. Further
analysis would be needed to understand whether and how the oscillation of 〈ψαψβ〉 with
the tunneling distance is related to Berry’s conjecture.

To check whether the decay of the intensity correlations is connected to the fractal
dimension D2 like for the single-particle Anderson problem, we plot in Figures B.3
and B.4 the averaged correlations

〈
|ψα|2 |ψβ|2

〉
(d) := 1

100

100∑
i=1

1
#B(d)

∑
|β〉∈B(d)

∣∣∣ψ(i)
α

∣∣∣2 ∣∣∣ψ(i)
β

∣∣∣2 , (B.17)

as functions of the tunneling distance (Figure B.3) and of the Hamming distance (Figure
B.4). Here, for dk = dt or dk = dh, respectively, the set B(d) := {|β〉 : dk(|α〉 , |β〉) = d}
contains exactly the basis states with distance dk = d from the reference state |α〉,
#B(d) is the number of such basis states contained in B(d), and the index i labels the
100 eigenstates closest to a target energy ε at a fixed value of η, i.e., Equation (B.17)
describes a joint average over basis states |β〉 with the same distance from |α〉 and over
eigenstates. Specifically, we consider the reference state |α〉 = |1, . . . , 1〉, and we fix
ε = 0.5 and η = 0.3181. The system under consideration is that of N = L = 13 with
PBCs, quasimomentum Q = 0, and parity Π = +1 (dimension N = 200 474).
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Figure B.4: Same as Figure B.3, for the Hamming distance dh [Equation (B.11)] instead
of the tunneling distance dt. The fits are done in the range 4 ≤ dh ≤ 16.

According to the linear and the semi-logarithmic graph (left and center panels of Figure
B.3), the intensity correlations for intermediate tunneling distances seem compatible
with both a linear decay,〈

|ψα|2 |ψβ|2
〉

∼ 1 − b dt, (B.18)

and with an exponential decay,〈
|ψα|2 |ψβ|2

〉
∼ e−b dt , (B.19)

while a polynomial decay,〈
|ψα|2 |ψβ|2

〉
∼ d−b

t , (B.20)

can be ruled out from the log-log graph (right panel of Figure B.3). This finding is
clearly different from the results for multifractal states at the Anderson transition, where
a polynomial decay is observed [Equation (B.8)].

As a function of the Hamming distance, the intensity correlation becomes almost con-
stant for intermediate distances dh. Such a behaviour would be compatible with the
polynomial decay of Equation (B.8), with ∆2 = 0 and hence D2 = 1. This value of D2
is consistent with the finding that the Bose-Hubbard eigenstates become ergodic in the
chaotic region for N → ∞, as discussed in Chapter 4. However, distance-independent
correlations can be equally well described by a linear or an exponential “decay”, with
decay constants b = 0 in Equations (B.18) and (B.19), respectively. Further research
on the intensity correlations for eigenstates in the non-chaotic domain, where Dq < 1,
would be needed to clarify whether or not

〈
|ψα|2 |ψβ|2

〉
as a function of the Hamming

distance shows a polynomial decay like in Equation (B.8).

Note that the distance dependence of the eigenvector correlations clearly distinguishes
the Bose-Hubbard model from GOE, since for the latter, the joint probability distri-
bution of two vector components is the same for any pair of basis states |α〉, |β〉 [see
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Equation (2.48), page 21]. For GOE, correlations such as 〈ψαψβ〉 hence depend only on
whether |α〉 and |β〉 are equal or different, i.e., whether their (Hamming or tunneling)
distance vanishes or not. Since the Hamiltonian of the embedded ensemble provides
all-to-all connectivity of the single-particle modes [see the definition in Section 2.2.5],
we expect that the correlations of embedded-ensemble eigenstates does depend on the
Hamming distance but not on other tunneling distances.
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Numerical Methods

In the following, we give a short overview of the numerical methods used to diagonalize
the Bose-Hubbard Hamiltonian (2.74). Our numerical programs are written in Fortran95
and are run on the high performance computing clusters “bwUniCluster”, “bwUniCluster
2.0”, “Justus” and “Justus 2” provided by the bwHPC consortium (www.bwhpc.de).

C.1. Exact Diagonalization

The term “exact diagonalization” describes algorithms which directly compute the di-
agonalization of a square matrix H (in our case the Hamiltonian) with a finite number
of operations and would hence in theory be capable of finding the (numerically) exact
eigenvalues and eigenvectors. A simple, yet numerically impractical, example of such a
method is the following: First calculate the characteristic polynomial det(H−E1), e.g.,
by transforming H−E1 to a triangular matrix via Gaussian elimination, and determine
its roots. Once the eigenvalues Ei are known, the eigenvectors vi can be computed
exactly, solving (H − Ei1)vi = 0 via Gauss’s elimination method.

We use the function syevr of the Intel MKL library [205] to obtain the full set of
eigenvalues and eigenvectors of our Hamiltonian via exact diagonalization. This routine
first transforms the symmetric matrix H into a tridiagonal matrix T similar to H and
then uses the dqds algorithm [206] to compute eigenvalues and eigenvectors of T . Since
this procedure requires operations on dense matrices, it is necessary to store the full
Hamiltonian in memory, which limits the usage of this function on the computing clusters
to Hilbert space dimensions N ≲ 105. Due to the exponential increase of the Hilbert
space dimension with particle number N and lattice length L [see Equation (2.78) on
page 28], this limit is reached already for rather small system sizes. The largest system
that we were able to treat with this function is the subspace of quasimomentum Q = 0
and both parities Π = ±1 for N = 12 bosons on L = 12 sites with PBCs, corresponding
to the Hilbert space dimension N = 112 720 and to approximately 101.6 GB of memory
to store the Hamiltonian in double precision (8 bytes per real number).
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C.2. Iterative Solvers and Shift-Invert Technique
Since the Bose-Hubbard Hamiltonian is a sparse matrix (see Figure 2.7), the memory
limitations of the exact-diagonalization methods can be overcome if one uses diagonaliza-
tion algorithms that operate on sparse matrices. This is possible with Krylov subspace
methods, e.g., the Lanczos or Arnoldi algorithms [207]. These are iterative solvers, which
in each step yield a better approximation to the eigenvalues and eigenvectors. Since for
m eigenvalues, at least m iteration steps are necessary [207], these methods are unfeasible
for the calculation of the full spectrum.

One issue of a naive implementation of these algorithms is that eigenvalues in the center
of the spectrum are typically exponentially close to each other and are therefore very hard
to resolve. In the Bose-Hubbard Hamiltonian, for example, the width ∆E = Emax − Emin
of the spectrum scales maximally with N2 (see for instance the classical limit discussed in
Section 2.4.3, page 33) while the dimension N grows exponentially [see Equation (2.78)
on page 28], such that the average distance ∆E/N between levels decays exponentially
with N . As can be seen from the density of states in Figure 3.2 on page 37, the energy
levels of the Bose-Hubbard Hamiltonian are typically much closer to each other in the
center of the spectrum than at its edges. One way to circumvent this problem and to
be able to calculate eigenvalues efficiently also deep within the bulk of the spectrum is
to consider

G := (H − ε)−1 (C.1)

instead of the Hamiltonian H, where ε is a target energy far from the edges of the spec-
trum (shift-invert technique) [208]. The eigenvalues of H slightly larger (smaller) than ε
correspond to eigenvalues of G close to the upper (lower) edge of its spectrum, and small
distances between eigenvalues of H are transformed into large distances between the cor-
responding eigenvalues of G. Since matrix inversion is numerically unstable [209] and
since Krylov subspace methods require only the calculation of matrix-vector products
Gx, G2x etc. with specific vectors x [207], solving the system of linear equations

(H − ε)y = x, (C.2)

e.g., by Gaussian elimination or by iterative solvers, is more feasible than directly cal-
culating G and applying it to x.

We implement these iterative solvers and the shift-invert technique using the libraries
PETSc [210] and SLEPc [211]. With this implementation, the largest Hilbert space di-
mension that can be reached for the Bose-Hubbard Hamiltonian in the interaction basis
is N ≈ 2.6 × 106, corresponding to the subspace of a single parity for N = L = 13
with HWBCs and for N = L = 15 with PBCs and quasimomentum Q = 0, respec-
tively (compare Table D.1). Due to the reduced sparsity, the largest system sizes that
can be reached for the Bose-Hubbard Hamiltonian in the tunneling basis (one parity,
N = L = 12 with HWBCs, N = L = 14 with PBCs and Q = 0) and for the embedded
ensemble (one parity, N = L = 11) are slightly smaller. Table C.1 gives an overview of
the necessary resources for exemplary computations.
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system cluster nodes MPI OMP memory per node time
N = L ≤ 11, HWBCs, int Justus 2 1 1 48 192 GB < 10 minutes
N = L = 12, HWBCs, int Justus 2 4 1 48 192 GB ≈ 5 to ≈ 15 minutes
N = L = 13, HWBCs, int Justus 2 30 1 48 192 GB ≈ 35 to ≈ 50 minutes
N = L = 13, HWBCs, int bwUniCluster 2.0 1 (fat) 1 160 ≈ 900 GB ≈ 5 hours

N = L ≤ 13, PBCs(Q = 0), int Justus 2 1 1 48 192 GB < 10 minutes
N = L = 14, PBCs(Q = 0), int Justus 2 4 1 48 192 GB ≈ 15 to ≈ 30 minutes
N = L = 15, PBCs(Q = 0), int bwUniCluster 2.0 1 (fat) 1 160 ≈ 2.2 TB ≈ 13 to ≈ 14 hours
N = L ≤ 10, HWBCs, tun Justus 2 1 1 48 192 GB < 10 minutes
N = L = 11, HWBCs, tun Justus 2 1 1 48 192 GB ≈ 20 to ≈ 30 minutes
N = L = 12, HWBCs, tun bwUniCluster 2.0 1 (fat) 1 160 ≈ 1.5 TB ≈ 7 to ≈ 9:30 hours

N = L ≤ 12, PBCs(Q = 0), tun Justus 2 1 1 48 192 GB < 10 minutes
N = L = 13, PBCs(Q = 0), tun Justus 2 1 1 48 192 GB ≈ 20 to ≈ 30 minutes
N = L = 14, PBCs(Q = 0), tun bwUniCluster 2.0 1 (fat) 1 160 ≈ 1.5 TB ≈ 8 to ≈ 9 hours

EGOE, N = L = 10 Justus 2 1 1 48 192 GB ≈ 2 minutes
EGOE, N = L = 11 Justus 2 1 1 48 192 GB ≈ 20 minutes

Table C.1: Typical resources for the computation of 100 eigenstates closest to the energy target ε ∈ {0.2, 0.4, 0.5, 0.6, 0.8}, for
one parity Π = ±1. Exact times may vary depending on ε, J and U . Entries in columns “MPI” and “OMP” denote,
per compute node, the number of MPI tasks (i.e., separate processes running in parallel and communicating with
each other by sending messages; each process accesses its own memory) and Open MP threads (i.e., parallel
processes which all share their memory and hence need to run on the same node), respectively. EGOE is an
abbreviation for the bosonic embedded ensemble, and “int” and “tun” denote the interaction and the tunneling
basis, respectively. The keyword “fat” in the column “nodes” denotes a fat compute node of bwUniCluster2.0,
which contains 80 cores with a total memory of 3 TB, as compared to 40 nodes and a total memory of 96 GB on
normal nodes.
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Appendix D.

Hilbert Space Dimensions of the
Bose-Hubbard Model for Different Particle
Numbers and Lattice Lengths

HWBCs PBCs, Q = 0
N , L both Π Π = −1 Π = +1 both Π Π = −1 Π = +1

N = L = 7 1716 848 868 246 113 133
N = L = 8 6435 3200 3235 810 370 440
N = L = 9 24 310 12 120 12 190 2704 1317 1387
N = L = 10 92 378 46 126 46 252 9252 4500 4752
N = L = 11 352 716 176 232 176 484 32 066 15 907 16 159
N = L = 12 1 352 078 675 808 676 270 112 720 55 898 56 822
N = L = 13 5 200 300 2 599 688 2 600 612 400 024 199 550 200 474
N = L = 14 20 058 300 10 028 292 10 030 008 1 432 860 714 714 718 146
N = L = 15 77 558 760 38 777 664 38 781 096   5 170 604 2 583 586 2 587 018

Table D.1: Hilbert space dimensions N of the Bose-Hubbard model for the particle num-
bers N , lattice lengths L (at unit filling), and symmetry subblocks considered
throughout this thesis. Entries in red correspond to data out of numerical
reach, while dimensions in blue are out of numerical reach only for the tun-
neling basis and can still be reached for the interaction basis.

Table D.1 gives an overview of the Hilbert space dimensions of the Bose-Hubbard model
for the various boundary conditions (PBCs or HWBCs), symmetry blocks (parity Π =
±1, total quasimomentum Q for PBCs), particle numbers N , and lattice lengths L
investigated at unit filling, N = L. Note that the parity-symmetric subspace is always
larger than the parity-antisymmetric one, for all N and L, since certain interaction
basis states such as |1, . . . , 1〉 are already symmetric and hence contribute only to the
symmetric subspace.
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