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Abstract: In this work, we present a gauge principle that starts with the momentum space representa-

tion of the position operator (x̂i = ih̄ ∂
∂pi

), rather than starting with the position space representation

of the momentum operator (p̂i = −ih̄ ∂
∂xi

). This extension of the gauge principle can be seen as

a dynamical version of Born’s reciprocity theory, which exchanges position and momentum. We

discuss some simple examples with this new type of gauge theory: (i) analog solutions from ordinary

gauge theory in this momentum gauge theory, (ii) Landau levels using momentum gauge fields, and

(iii) the emergence of non-commutative space–times from the momentum gauge fields. We find that

the non-commutative space–time parameter can be momentum dependent, and one can construct

a model where space–time is commutative at low momentum, but becomes non-commutative at

high momentum.

Keywords: gauge theory; born reciprocity; momentum gauge fields

1. Gauge Theory in Momentum Space

Gauge theories have been one of the central ideas of theoretical physics in the past
hundred years [1,2]. The Standard Model of particle physics, which describes all known
non-gravitational interactions, is a gauge theory [3–6], and General Relativity can be viewed
as a gauge theory [7]. It is very important to emphasize the central role of Professor Steven
Weinberg in the development and applications of the gauge principle in the construction
of what we now call the Standard Model. Professor Weinberg was also very active in the
issue of extending the Standard Model, exploring the ideas of axions [8], supersymme-
try [9], string theory, and cosmological issues [10]. Much of Professor Weinberg’s work
dealt with symmetries in physics and their applications. In this work, we present a new
extension of the gauge symmetry principle, by extending the usual gauge symmetry to
momentum space.

In the standard formulation of a gauge theory, one starts with a space–time-dependent
matter field Ψ(x), which satisfies some matter field equation (e.g., Schrödinger equation,
Klein–Gordon equation, Dirac equation) and requires that this matter field satisfies a
local phase symmetry of the form Ψ(x) → e−iλ(x)Ψ(x). The gauge function, λ(x), can
depend on space and time. Along with this local phase symmetry of the matter field, one
needs to introduce the kinetic momentum/gauge covariant derivative pi → pi − eAi(x)

or ∂
∂xi

→ ∂
∂xi

− ieAi(x), where the vector potential obeys Ai(x) → Ai(x)− 1
e

∂λ(x)
∂xi

. This
standard construction is performed in position space: the matter field, Ψ, is a function
of position; the momentum operator is given as a derivative of position (pi = −i ∂

∂xi
,

and we take h̄ = 1); the vector potential and gauge function are functions of space and
time coordinates.

However, quantum mechanics can be carried out in momentum space as well with the
matter field being a function of momentum, Ψ(p), and the position operator being given
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by xi = i ∂
∂pi

. In this construction, the momentum operator is just multiplication by pi just

as the position operator in position space is multiplication by xi. The momentum space
gauge transformation of the matter field should be

Ψ(p) → e−iη(p)
Ψ(p) . (1)

The equivalent of the generalized position/gauge covariant derivative is

xi → xi − gCi(p) or
∂

∂pi
→

∂

∂pi
+ igCi(p). (2)

We used xi = i ∂
∂pi

; g is some momentum–space coupling, Ci(p) is a momentum–space

gauge function, which must satisfy

Ci(p) → Ci(p) +
1

g

∂η(p)

∂pi
. (3)

Finally, one can construct a momentum–space field strength tensor, which is invariant
under just (3), namely

Gij =
∂Ci

∂pj
−

∂Cj

∂pi
. (4)

This is the pi pj component of the momentum gauge field, field strength tensor. It is the
analog of the xixj component of the standard gauge field, field strength tensor Fij =
∂Ai
∂xj

−
∂Aj

∂xi
. The four-vector version of the standard gauge potential and field strength tensor

are Ai → Aµ and Fij → Fµν. One needs to make a similar 4-vector/4-tensor extension for the
momentum gauge field and associated field strength tensor via Ci(p) → Cµ(p) and Gij →
Gµν. The momentum generalized gauge field and field strength tensor are reminiscent of
the Berry connection and Berry curvature [11], where the Berry connection/Berry “gauge”
field is the function of some parameter, which is not necessarily the position. Here, Ci(p)
and Gij(p) are Berry connections and Berry curvatures, which are specifically functions
of momentum.

One can ask about the units of the momentum coupling, g, and momentum gauge
field, Cµ, relative to the standard coupling, e, and standard gauge field, Aµ. From pi →
pi − eAi(x) and xi → xi − gCi(p), one sees that eAi(x) has units of momentum, while
gCi(p) has units of position. This leaves two options for the units of g and Cµ. First, one
can choose for g to have the same units as e, and then, the units of Cµ would be the units

of Aµ multiplied by
[position]

[momentum]
= [time]

[mass]
. Second, one can choose for Cµ and Aµ to have the

same units, and in this case, the units of g would be the units of e, again multiplied by the

same factor
[position]

[momentum]
= [time]

[mass]
.

One can ask if there is some deeper connection or condition between the standard
coupling e and momentum coupling g, perhaps something like the Dirac quantization
condition [12] between electric and magnetic charge. One idea might be to take the option
above, where e and g have the same units and, then, via Born reciprocity, require the
couplings to be exchangeable, i.e., e ↔ g. We leave this question for future work.

The above discussion shows that one can easily construct a momentum–space analog
of the canonical position–space gauge procedure. There are two questions this arise:
(i) What physical use/significance would this momentum gauge field construction have?
(ii) Why is this momentum gauge field construction not as common as the standard gauge
field construction? The first question will be addressed in the following sections, but here,
we will address the second question. The answer may lie in the asymmetric way in which
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the momentum and position operators appear the simplest, free particle Hamiltonian. For
a non-relativistic object of mass m, this Hamiltonian is

H =
1

2m
(p2

1 + p2
2 + p2

3) = −
h̄2

2m

(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)

= −
h̄2

2m
∇2 . (5)

The Hamiltonian in (5) is suited for the covariant derivative pi → pi − eAi(x) or ∂
∂xi

→ ∂
∂xi

−

ieAi(x), but there is no room, nor use for the momentum space version in (2). However, a
more symmetric starting point would be to consider the non-relativistic simple harmonic
oscillator Hamiltonian:

H =
1

2m
(p2

1 + p2
2 + p2

3) +
mω2

2
(x2

1 + x2
2 + x2

3) →
1

2
(p2

1 + p2
2 + p2

3) +
1

2
(x2

1 + x2
2 + x2

3) . (6)

In the last step, we chose the mass and frequency of the oscillator as m = 1 and ω = 1.
Looking at the last form in (6), one sees a symmetry between the momentum and position
of pi ↔ xi. This symmetry provides an argument to have the gauge principle apply not
only to the momentum via pi → pi − eAi, but also to the position via xi → xi − gCi. One

can argue for the naturalness of
p2

i
2m + mω2

2 x2
i over just

p2
i

2m by pointing to the quantum field
theory (QFT) vacuum, which can be viewed as a collection of harmonic oscillators [13], so
that having both the momentum and position terms in the Hamiltonian is more natural
than having only the momentum or only the position.

In the above, we exchanged the roles of the position and momentum operators in the
usual construction of a gauge theory. The momentum gauge fields provide a dynamical
model of Born reciprocity [14], which exchanges the position and momentum operators
as x̂ → p̂ and p̂ → −x̂, which would imply that, for every ordinary gauge field, there
should be a corresponding momentum gauge field. For example, the Hamiltonian in (6) is
invariant under this swap of position and momentum in units where m = 1 and ω = 1. The
minus sign in the momentum to the position transformation keeps the standard form of
the position–momentum commutator under this change, i.e., [x̂, p̂] = ih̄ is invariant under
x̂ → p̂ and p̂ → −x̂. The Hamiltonian in (6) is also invariant under the transformation
x̂ → p̂ and p̂ → x̂, but this would then change the sign of the position–momentum
commutator [x̂, p̂] = −ih̄. Nevertheless, this would still lead to the same uncertainty
principle since ∆x∆p = 1

2 |〈[x̂, p̂]〉|. The main difference between the model we lay out
here and that in [14] is that we included a momentum gauge field (3) and momentum field
strength tensor (4), thus making a dynamical model of Born reciprocity possible.

2. Connection to Non-Commutative Space–Time

2.1. Constant Non-Commutativity Parameter

In this subsection, we point out the connection of the above momentum gauge theory
with non-commutative geometry, by which we mean coordinates obeying

[xi, xj] = iΘij , (7)

where Θij is an anti-symmetric, constant rank-two tensor. A review of non-commutative
field theory can be found in [15], and interesting applications of non-commutative geometry
to modifications of the hydrogen atom spectrum can be found in [16]. There is also a work
that looks at how non-commutative geometry may cure the singularities found in black
holes and other solutions in General Relativity [17]. The construction from the previous
section leads exactly to this kind of non-commutativity between the coordinates. We begin
with Equation (2) and define a generalized, gauge-invariant coordinate Xi = xi − gCi(p) =
i∂pi

− gCi(p). In its first form, this looks like coordinate translation by gCi(p). Calculating
the commutator of Xi and Xj gives

[Xi, Xj] = igGij , (8)
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with the momentum–space field strength Gij defined in (4). Equation (8) is of the form (7)
with Θij = gGij.

The result in (8) is reminiscent of the non-commutativity of the covariant derivative
for regular, minimally coupled fields, πi = pi − eAi(x) = −i∂xi

− eAi(x). Calculating the
commutator of πi with πj gives

[πi, πj] = ieFij = ieǫijkBk , (9)

where Bk = 1
2 ǫkij(∂xi

Aj − ∂xj
Ai) = 1

2 ǫkijFij is the regular magnetic field. Comparing (8)

with (9), one can define a momentum gauge field “magnetic field” as Bk = 1
2 ǫkij(∂pi

Cj −

∂pj
Ci) = 1

2 ǫkijGij. This, in turn, defines the non-commutation parameter of the spatial
coordinates on the right-hand side of (8) to be constant only if the momentum “magnetic”
field is constant.

One can easily arrange for such a constant “magnetic” field solution via

C0 = 0 , Ci =
1

2
ǫijkB j pk (10)

with B j being a constant. Taking the curl of (10), using momentum derivatives, and
performing index gymnastics yields ǫlmi∂pm

Ci = Bl ; one obtains a constant “magnetic”
field. This gives a constant non-commutative tensor Θij = gGij = gǫijkB

k, i.e., in this
way, one recovers a constant non-commutative parameter, which is the most-common
assumption in the literature [15,16].

A fully four-vector version of the spatial coordinate non-commutativity in (7) is
accomplished by promoting the three Latin indices to four Greek indices, giving

[xµ, xν] = iΘµν , (11)

where Θµν is an anti-symmetric four-tensor. In conjunction with (11), the four-tensor
version of (8) becomes

[Xµ, Xν] = igGµν , (12)

In order to obtain a constant Θµν for a component with one space index (e.g., µ = i) and
one time index (i.e., ν = 0), we need to have a constant momentum gauge field, “electric”
field. This is accomplished by selecting the momentum gauge field as

C0 = −E j pj ; Cj = 0 (13)

The momentum gauge “electric” field is given by G0i = ∂p0 Ci − ∂pi C0 = E i, which is the
sought after constant momentum gauge field “electric” field. Using Equations (11) and (12),
this gives the connection between the non-commutativity parameter and momentum gauge
field electric field of Θ0i = gG0i = gEi.

2.2. Variable Non-Commutativity Parameter

In the previous subsection, we looked at the momentum gauge field configuration with
constant “magnetic” and constant “electric fields” in Equations (10) and (13), respectively.
In this subsection, we examine momentum gauge field configurations that are variable.
These variable momentum gauge fields then imply a varying of the non-commutativity
parameter via the connection Θuv ∝ Gµν.

We first write down two common, ordinary gauge field solutions, which have gauge
fields that vary with space and time, and then construct the varying momentum gauge
field analogs. The two ordinary gauge field solutions we consider are a plane wave and a
static point charge. The Lagrange density for standard gauge fields is LF = − 1

4 FµνFµν with

Fµν = ∂xµ
Aν − ∂xν

Aµ. The equations of motion from LF are

∂xµ(∂
xµ Aν − ∂xν Aµ) = 4π Jν(x) → ∂xµ ∂xµ Aν = 4π Jν(x) → �x Aν = 4π Jν(x) , (14)
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with Jν(x) being a conserved four-current coming from some matter source and �x is the
d’Alembertian with respect to the time–position coordinates. In the last line, we have taken
the Lorenz gauge ∂xµ Axµ = 0. Let us look at two common solutions to (14): the plane wave
vacuum solution and the point charge solution:

• In the vacuum (Jν = 0), (14) has the solution Aν ∝ ei(px−Et)ενδ(p2 − E2/c2), where the

δ-function enforces the mass shell condition E2

p2 = c2 and εν is the polarization vector.

• For a point charge at rest, one has the current Jν = (qδ3(r), 0, 0, 0), which has the

solution A0 = q
r and ~A = 0, since ∇2

x

(

1
r

)

= 4πδ(r).

We now examine how the above plays out for the momentum gauge fields. The
momentum gauge field Lagrange density is LG = − 1

4 GµνGµν with Gµν = ∂pµ Cν − ∂pν Cµ.
The equations of motions that follow from this Lagrange density are

∂pµ(∂
pµ Cν − ∂pν Cµ) = 4πJ ν(p) → ∂pµ ∂pµ Cν = 4πJ ν(p) → �pCν = 4πJ ν(p) , (15)

with J ν(p) being a four-current matter source that is a function of p and �p is the
d’Alembertian with respect to the energy–momentum. In the last expression, we use
the momentum space equivalent of the Lorenz gauge ∂pµ Cpµ = 0. The current conservation
in momentum space reads ∂pµJ

pµ = 0,
We now repeat the two types of solutions listed above for the standard gauge theory,

but for the momentum gauge theory:

• In the vacuum (J ν = 0), (15) has solution Cν ∝ ei(px−Et)ενδ(x2 − c2t2), where the

δ-function enforces the light cone condition x2

t2 = c2 and εν is the polarization vector.

• The momentum gauge equivalent of the charge at rest is given by J ν = (gδ3(p), 0, 0, 0),

with C0 = g
p and ~C = 0 since ∇2

p

(

1
p

)

= 4πδ(p).

Notice that the point source in momentum space, that is J ν = (gδ3(p), 0, 0, 0), is a
totally homogeneous solution in coordinate space, since it is concentrated at zero momen-
tum, which means, indeed, the assumption of a totally homogeneous state. More generally,
it is interesting to observe that any current of the form J ν = ( f (p), 0, 0, 0), with J 0 = f (~p)
being p0 independent, will satisfy the current conservation law of ∂pµJ

µ = 0. Perform-

ing a Fourier transformation on this to coordinate space yields xµJ̃ µ = 0, where J̃ µ is
the Fourier transformation of J µ. The equivalent statements for a a regular four-source
would be Jν = ( f (~x), 0, 0, 0), which satisfies the conservation law ∂xµ Jµ = 0 or Fourier

transforming to momentum space pµ J̃µ = 0.
One can construct other conserved current sources for momentum gauge fields that

satisfy xµJ̃ µ = 0. Starting with any four-vector Vµ, we construct J̃ µ = Vµ − xµVνxν/x2,
which is easily seen to satisfy xµJ̃ µ = 0.

As a final comment, the equation of motion for, Aµ, given in (14), leads to a propagator

in momentum space that is proportionate to ∝
1

p2+iǫ
. The imaginary infinitesimal term

iǫ is a convergence factor to deal with the divergence as p → 0. In turn, the momentum
gauge field equation of motion, Cµ, given in (15), leads to a position space propagator

proportional to ∝
1
x2 . Here, we have not inserted a factor of iǫ. This is because the limits

p → 0 and x → 0 are physically different. The p → 0 limit is the infrared/low-energy limit,
which is dealt with by inserting a convergence factor of iǫ, which is taken to zero at the
end. The x → 0 limit is the ultraviolet/high-energy limit, which is dealt with using the
renormalization procedure if the theory turns out to be renormalizable or by introducing a
cut off if the theory turns out to be non-renormalizable.

3. Generalized Landau Levels

In this section, we work on the case of generalized Landau levels with a particle of
mass m in a constant ordinary magnetic field and constant momentum “magnetic” field. We
take both the ordinary and momentum magnetic field to point in the 3/z-direction. We want
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to take these magnetic fields and minimally couple them to the free particle in Equation (6).
Applying minimal coupling for both coordinate gauge fields and momentum gauge fields
leads to pi → pi − eAi and xi → xi − gCi. Having a constant, ordinary magnetic field and a
constant, momentum magnetic field in the 3/z-direction can be obtained in the symmetric
gauge with A1 and A2 given by

A0 = 0 , A1 = −
1

2
By , A2 =

1

2
Bx , (16)

and with C1 and C2 also in the symmetric gauge given by

C0 = 0 , C1 = −
1

2
Bpy , C2 =

1

2
Bpx , (17)

The constant values of the ordinary magnetic field and momentum magnetic field from
(16) and (17) are B and B, respectively.

Therefore, the equation of motion for the double-gauged harmonic oscillator reads

H =
1

2m

(

px +
eBy

2

)2

+
1

2m

(

py −
eBx

2

)2

+
mω2

2

(

x +
gBpy

2

)2

+
mω2

2

(

y −
gBpx

2

)2

+
p2

z

2m
+

mω2

2
z2 (18)

or (we drop the part of the Hamiltonian associated with the kinetic energy and harmonic
oscillator in the z-direction)

H =

(

1 +
(gmωB)2

4

)

(

p2
x

2m
+

p2
y

2m

)

+

(

1 +
(eB)2

4m2ω2

)

mω2

2
(x2 + y2) + Lz(−g1B + g2B) . (19)

Here, Lz = xpy − ypx; this the angular momentum in the z-direction. g1 = e
2m and

g2 = gmω2

2 are the coupling strengths of the angular momentum to the coordinate magnetic
field B and the momentum magnetic field B, respectively.

The above results can be compared with the formulation of non-commutative quantum
mechanics [18] for the case of a harmonic oscillator potential, and the results agree with
those in [18], if the identification of the non-commutative parameter is made according to
Expression (8).

The coupling between B and Lz is exactly what one has from the standard analysis of
Landau levels. The coupling between Lz and B is a new feature arising from the momentum
gauge fields, but the two coupling terms to Lz have a dual symmetry between the regular
magnetic field, B, and momentum gauge “magnetic” field, B.

The first term in (19) shows that the system has now developed a new, effective mass
given by

me f f =
m

1 + (gmωB)2

4

. (20)

The effective mass depends on the momentum “magnetic” field and is always less than
m, i.e., me f f < m. In addition, the second term in (19) implies a new effective frequency.

Taking into account the effective mass in (20) to write this second term in the form
me f f ω2

e f f

2
gives a new effective frequency of

ωe f f = ω

√

(

1 +
(gmωB)2

4

)(

1 +
e2B2

4m2ω2

)

. (21)

Note that, in the effective frequency and the effective mass above, both momentum (i.e., B)
and coordinate magnetic (i.e., B) fields contribute.
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One can define an effective magnetic field as

Be f f =
−g1B + g2B
√

g2
1 + g2

2

, (22)

so that the coupling of the z-component of angular momentum to the two magnetic fields,

B and B, in (19) can be written as
√

g2
1 + g2

2Be f f Lz. One can also define a generalized

magnetic field orthogonal to Be f f via

Bnc =
g1B + g2B
√

g2
1 + g2

2

. (23)

The subscripts nc stand for “non-coupling” since Bnc, unlike Be f f , does not couple to Lz.
The definition of the two generalized magnetic fields in (22) and (23) is mathematically

identical to the definition of the Z0 boson and photon in the Standard Model [2,3,6].
Furthermore, from (23) and (22), we can define an analog of the “Weinberg angle” via
the definition:

cos(θmixing) =
g1

√

g2
1 + g2

2

. (24)

Putting all of the above together, the total Hamiltonian is then

H =
1

2me f f
(p2

x + p2
y) +

1

2
ω2

e f f me f f (x2 + y2) +
√

g2
1 + g2

2Be f f Lz (25)

Note that Be f f couples to the angular momentum, while Bnc does not. This is similar to the

Standard Model, where Z0 has a mass term, while the photon remains massless.
Following [19], one can define creation/annihilation operators in terms of px, py and

x, y as

x =

√

h̄

2ωe f f me f f

(

a1 + a†
1

)

; y =

√

h̄

2ωe f f me f f

(

a2 + a†
2

)

and (26)

px = i

√

h̄ωe f f me f f

2

(

a†
1 − a†

1

)

; py = i

√

h̄ωe f f me f f

2

(

a†
2 − a†

2

)

.

The creation and annihilation operators obey the usual relationship [ai, a†
j ] = δij. With

these definitions, we find Lz = xpy − ypx = ih̄(a1a†
2 − a2a†

1), and the Hamiltonian in (25)

becomes H = h̄ωe f f (a†
1a1 + a†

2a2 + 1) + ih̄
√

g2
1 + g2

2Be f f (a1a†
2 − a2a†

1). The first two terms

can be seen to be the normal 2D harmonic oscillator. The third term looks like a coupling
between the generalized magnetic field and the angular momentum in the z-direction.

4. Momentum Dependent Non-Commutativity Parameter

In this section, we examine two simple examples where the non-commutativity pa-
rameter, Θµν, is not a constant, but depends on the momentum. Recently, other authors [20]
have considered momentum-dependent non-commutative parameters. However, in this
work, the inspiration is quite different as it exploits some geometry in momentum space.
Furthermore, the non-commutativity parameter in [20] depends on both momentum and
position, while in our construction below, the non-commutativity parameter depends
only on momentum, which is closer to the energy–momentum dependence of masses and
couplings in QFT that one finds from the renormalization group.
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The examples we chose are the momentum gauge field version of a capacitor and
solenoid, with the momentum gauge fields being piecewise constant in different momentum
ranges, leading to different Θµνs in these different ranges.

4.1. Capacitor-Type Momentum Electric Field Configuration

The standard, infinite parallel plate capacitor has a four-current source of

Jν = ( f (z), 0, 0, 0) with f (z) = σ[δ(z + a)− δ(z − a)] (27)

This source represents two infinite planes of surface charge ±σ placed perpendicular to the
z-axis at z = ∓a. This source gives an electric field of

Ez = 4πσ for − a ≤ z ≤ a and Ez = 0 for |a| ≤ |z| , (28)

i.e., non-zero between the planes and zero outside the planes.
The momentum gauge field analog of this standard capacitor system has a constant

momentum “electric” field similar to that in Equation (13), but it should be restricted in
momentum rather than position as is the case in Equation (28). Actually, for the momentum
gauge field system, we want the inverse of the above standard capacitor; we want the
momentum “electric” field to be zero between the planes (i.e., at small momentum) and
non-zero outside the planes (i.e., at large momentum). The capacitor-like configuration for
the momentum gauge fields that we want has a four-current source of

J ν = ( f (p), 0, 0, 0) with f (p) = Σ[δ(pz + pa) + δ(pz − pa)]. (29)

The planes are symmetrically placed at pz = ±pa, and in contrast to the sources for the
standard capacitor in (27), the momentum planes now have the same “surface charge”, Σ.
This same “surface charge” setup leads to a momentum “electric” field in the pz direction
given by

Ez = 4πΣ for pz ≥ pa , Ez = −4πΣ for pz ≤ −pa,

and Ez = 0 for − pa ≤ pz ≤ pa. (30)

The momentum “electric” field of (30) is zero between the plates and non-zero outside the
plates, which is the inverse of the standard capacitor (28).

The reason for building our momentum gauge field capacitor system as the inverse of
the normal capacitor is due to the connection between the non-commutativity parameter,
Θµν, and the momentum gauge field tensor, Gµν, as given Equations (11) and (12) i.e.,
Θµν = gGµν. We want to have a normal position–position commutator (i.e., [Xµ, Xν] = 0)
for momenta near zero (i.e., for −pa ≤ pz ≤ pa), but we want non-commutative space–time
effects for large momenta, i.e., we want Θµν ∝ Gµν 6= 0 for large momenta, |pa| ≤ |pz|.
This is different from the usual non-commutative space–time approach, where the non-
commutative parameter is “turned on” for all momenta. Here, the non-commutativity, at
least for the Θ0i components, is turned on only for the z-momentum magnitude satisfying
|pa| < |pz|.

4.2. Current Sheet-Type Momentum Magnetic Field

In this subsection, we carry out a similar construction as in the preceding subsection,
but for the space/space components of Θµν and Gµν. In this case, the standard gauge field
system we want to build a momentum gauge field analog of is two infinite plane sheet
currents located at z = ±a. These current sheets are symmetrically placed on the z-axis
around z = 0. The explicit surface currents are

~K = ±Jŷ at z = ∓a (31)
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This leads to a regular magnetic field of

~B = 4π Jx̂ for − a ≤ z ≤ a and ~B = 0 for |a| ≤ |z| (32)

i.e., the magnetic field is a non-zero constant between the sheets and zero outside the sheets.
The momentum gauge field analog of this is two momentum gauge field current sheets

at the momentum planes, pz = ±pa. These planes are symmetric around the origin through
the pz-axis. Explicitly, the “momentum” current sheets are

~K = J ŷ at pz = ±pa (33)

Note that, here, we have the currents in the same direction, rather than the opposite
direction, as for the regular gauge field current sheets of (31). The reason for this is the
same as for the momentum gauge field, capacitor-like system of the preceding subsection:
we want the non-commutativity parameter to be zero for momentum in the range −pa ≤
pz ≤ pa, and we want a non-zero non-commutativity parameter for momentum in the
range |pa| ≤ |pz|. Putting this all together, the momentum gauge field “magnetic” field is

~B = 4πJ x̂ for pa ≤ pz and ~B = −4πJ x̂ for pz ≤ −pa

and ~B = 0 for − pa ≤ pz ≤ pa . (34)

The momentum gauge “magnetic” field is a non-zero, constant outside the current sheets
and zero between the current sheets. This implies that the space/space non-commutativity
parameter, Θij, is zero for momenta in the range −pa ≤ pz ≤ pa, while for large-magnitude
momenta (i.e., |pa ≤ |pz|), the space/space component Θyz = gGyz = gǫyzxBx = ±gB
is a non-zero constant. Both this simple example and the example from the preceding
subsection show that one can construct non-commutative space–times where the non-
commutativity only “turns” on at some large-enough momentum, rather than being on all
the time.

5. Summary and Conclusions

In this paper, we studied the formulation of the gauge principle in momentum space,
or energy–momentum space in the relativistic case. Instead of only starting with the
momentum operator and introducing a covariant momentum as pi → pi − eAi(x), we also
considered the position operator and introduced a covariant position as xi → xi − gCi(p).
The preference for having only the covariant momentum and not the covariant position
comes from the fact that, in general, one starts with a free Hamiltonian (5), which has only
momentum dependence. However, a more symmetric treatment, motivated by the fact that
the QFT vacuum can be seen as a collection of oscillators, leads to a Hamiltonian of the
form given in (6), which then calls for both covariant momentum and covariant position.

We presented several simple examples of this momentum formulation of the gauge
principle, showing that one could construct momentum gauge field analogs to plane wave
solutions, point charge solutions, and Landau levels. All these examples are underpinned
by a dual-symmetry, exchange symmetry, or reciprocity [14] between momentum and
position, namely x̂ → p̂ and p̂ → −x̂ (or also, x̂ → p̂ and p̂ → x̂), which then relates
the regular gauge fields to the momentum gauge fields. A criticism of this momentum
formulation of the gauge principle is whether or not it has any concrete physical application
or use. In this regard, we mention that the model presented here is similar to Born’s
reciprocity theory [14], which Born had hoped would play a role in the theory of elementary
particles. The new feature here is that our version of Born’s reciprocity is dynamical since
we have introduced momentum gauge fields (3) and momentum field strength tensors (4).
We will explore physical consequences of this idea in future work.

One potentially interesting application of this momentum gauge theory is that it
naturally lead to non-commutative geometry, as given in Equations (8) and (12). This non-
commutativity of space–time has been studied previously as a way to extend QFT [15], as a
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way to test for extensions to QED [16], and as a way to deal with the singularities of general
relativity [17]. The non-commutativity of these works rests on non-trivial space–time
commutators of the form (11), where the non-commutativity parameter, Θµν, is a constant.
In our formulation, since the non-commutativity parameter is a momentum gauge field,
field strength tensor, gGµν, it can vary with momentum, since the momentum gauge field,
Cµ, can vary with momentum. In Section 4, we constructed a very simple system, based
on the infinite charge sheets and infinite current sheets of introductory E&M, where the
non-commutativity parameter, gGµν, would only turn on when the magnitude of the
momentum becomes large enough, i.e., when the momentum satisfies |pa| ≤ |pz| for some
large, fixed pa. This could have interesting consequences since one could have commutative
space–time below pa, which turns into non-commutative space–time above pa.

These are examples to show that the non-commutativity parameters can be screened
by “charges” in the infrared or ultraviolet regions. This screening has been studied here
by introducing external momentum currents, but they could also arise from quantum
fluctuation, as in ordinary gauge theories, where coupling constants are screened in the
infrared (i.e., in QED) or ultraviolet (i.e., in QCD) regions. Another subject that could be
studied is the possibility of coordinate gauge fields and momentum gauge field mixing
and/or oscillating. This is suggested, for example, by the result that minimally coupling
both coordinate gauge fields and momentum gauge fields produces a very specific linear
combination (22) that couples to the angular momentum of matter. Thus, after integrating
out the matter, we should be left with coordinate gauge fields and momentum gauge
field mixing and/or oscillating. There are also no obstacles to considering non-Abelian
momentum gauge fields. Furthermore, a connection between momentum gauge fields and
curved momentum space can be established, where the momentum gauge field appears
from a higher-dimensional curved momentum space from a Kaluza–Klein mechanism [21].
This momentum space Kaluza–Klein approach could be further extended and could provide
additional insights into higher-dimensional theories. Lastly, the present authors have
worked on other ways to modify the gauge principle with non-vector gauge fields [22–24]
or by gauging a dual-symmetry [25]. Furthermore, the “Curtright generalized gauge fields”
presents yet another way to generalize the gauge principle [26]. However, the present way
of modifying the gauge principle can have an additional symmetry principle underlying it,
namely the exchange symmetry or Born reciprocity, where x̂ → p̂ and p̂ → −x̂ or x̂ → p̂
and p̂ → x̂, i.e., the role of momentum and position are exchanged.

Motivated by the Born reciprocity, we may suspect that the simultaneous existence of
momentum and coordinate gauge fields could have important consequences; for example,
in [27] it was found that the simultaneous momentum-like Coulomb solution for momen-
tum gauge fields, given by C0 = g

p and ~C = 0, together with the regular configuration

space Coulomb solution, given by A0 = e
r and ~A = 0, can be related to the generation of an

emergent space–time.
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