. entropy

Article

Quantum Distance Measures
Based upon Classical Symmetric
Csiszar Divergences

Diego G. Bussandri and Tristan M. Osan

Special Issue
Mathematics in Information Theory and Modern Applications

Edited by
Dr. Qian Yu and Dr. Yanjun Han



https://www.mdpi.com/journal/entropy
https://www.ncbi.nlm.nih.gov/pubmed/?term=1099-4300
https://www.mdpi.com/journal/entropy/stats
https://www.mdpi.com/journal/entropy/special_issues/7X90AE953W
https://www.mdpi.com
https://doi.org/10.3390/e25060912

Article

Quantum Distance Measures Based upon Classical Symmetric
Csiszar Divergences

Diego G. Bussandri *f

check for
updates

Citation: Bussandri, D.G.; Osan, T.M.
Quantum Distance Measures Based
upon Classical Symmetric Csiszar
Divergences. Entropy 2023, 25, 912.
https:/ /doi.org/10.3390/e25060912

Academic Editor: Vladimir I. Manko

Received: 3 April 2023
Revised: 23 May 2023
Accepted: 6 June 2023
Published: 8 June 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Tristan M. Osan 23*1

Instituto de Fisica La Plata (IFLP), Consejo Nacional de Investigaciones Cientificas y Técnicas de la Reptblica
Argentina (CONICET), Diagonal 113 /63 y 64, La Plata B1900, Argentina

Instituto de Fisica Enrique Gaviola (IFEG), Consejo Nacional de Investigaciones Cientificas y Técnicas de la
Reptblica Argentina (CONICET), Av. Medina Allende s/n, Cérdoba X5000HUA, Argentina

Facultad de Matematica, Astronomia, Fisica y Computacion, Universidad Nacional de Cérdoba,

Av. Medina Allende s/n, Ciudad Universitaria, Cérdoba X5000HUA, Argentina

*  Correspondence: diego.bussandri@unc.edu.ar (D.G.B.); tristan.osan@unc.edu.ar (T.M.O.)

1t These authors contributed equally to this work.

Abstract: We introduce a new family of quantum distances based on symmetric Csiszdr divergences,
a class of distinguishability measures that encompass the main dissimilarity measures between
probability distributions. We prove that these quantum distances can be obtained by optimizing over
a set of quantum measurements followed by a purification process. Specifically, we address in the
first place the case of distinguishing pure quantum states, solving an optimization of the symmetric
Csiszar divergences over von Neumann measurements. In the second place, by making use of the
concept of purification of quantum states, we arrive at a new set of distinguishability measures,
which we call extended quantum Csiszdr distances. In addition, as it has been demonstrated that a
purification process can be physically implemented, the proposed distinguishability measures for
quantum states could be endowed with an operational interpretation. Finally, by taking advantage of
a well-known result for classical Csiszér divergences, we show how to build quantum Csiszér true
distances. Thus, our main contribution is the development and analysis of a method for obtaining
quantum distances satisfying the triangle inequality in the space of quantum states for Hilbert spaces
of arbitrary dimension.

Keywords: Csiszar divergences; quantum metrics; distinguishability; Jensen—-Shannon divergence;
Hellinger distance; trace distance; triangular discrimination

1. Introduction

Quantum information theory aims to understand the fundamental principles regard-
ing the behavior of quantum systems and how they can be useful in the search for new
technologies. One of the central tasks in quantum information theory is to quantify the
difference between two quantum states—quantum mechanics allows for superpositions of
states, which can make it challenging to define proper notions of distance in the space of
quantum states [1]. In this paper, we present a novel set of distinguishability measures for
quantum states, termed Quantum Csiszdr divergences. We demonstrate that these measures
can be obtained through the maximization of classical Csiszar divergences over a set of von
Neumann measurements performed on the quantum system.

Csiszar divergences, also known as f-divergences, are a widely used family of di-
vergence measures between two probability distributions, with applications in a variety
of fields, including classical statistics and information theory, among others [2]. This set
includes a number of well-known divergences, such as the Jensen-Shannon divergence, the
Kulback-Liebler divergence, the total variation distance, the triangular discrimination, and
the Hellinger distance [3,4]. In addition, many f-divergences have interesting statistical
and physical interpretations [5].
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In the context of quantum information theory, in recent years, Csiszar divergences
have gained significant attention as a tool for quantifying the difference between two
quantum states. There has been a considerable amount of research in this direction. These
new divergences have been shown to be related to a wide range of fundamental concepts
in quantum information theory, such as entanglement theory, quantum error correction,
and quantum channel capacities [1,6-9]. In general terms, the approach employed in the
related literature is to introduce functionals depending on a defining Csiszar function f (1)
defined over a set of operators. These functionals are often defined as convex optimization
problems over a set of operators.

In this work, we present a different approach to link Csiszar divergences with the
quantum realm. We introduce the corresponding Csiszar extensions showing that they
are ultimately based on a measurement procedure. In this way, they form a set of distin-
guishability measures between quantum states [10,11]. Specifically, this article can be seen
as an extension of Ref. [12], in which a method was developed to obtain a distinguisha-
bility measure in the space of quantum states, starting from the classical Jensen-Shannon
divergence. Our findings lead to quantum distances based on any symmetric Csiszar
divergence. Moreover, by means of a well-known result for classical Csiszar divergences,
we show how to build quantum Csiszar distances fulfilling the triangle inequality. In this
way, we are able to obtain true distances (often called metrics) in the space of quantum
states. Even though from a mathematical viewpoint it is apparent that the feature of being
a true distance is a basic requirement for a suitable distance measure, true distances in
the quantum realm (i.e., distances in the space of quantum states that also satisfy the
triangle inequality) are interesting in their own right as they find applications in a number
of subjects of research related to quantum information theory and quantum information
processing, such as measures of quantum correlations (including entanglement) and the
evaluation of the convergence of iterative algorithms in quantum information processing,
among others [13-15]. In addition, the triangle inequality plays a significant role in a variety
of topics related to quantum information theory. Particularly, it allows one to improve
converse bounds in channel discrimination theory [16], to establish entropic bounds in the
study of non-Markovianity and information backflow in open quantum systems [17,18], to
test the presence of quantum entanglement [19], and to define new distance measures in
the space of quantum channels [20], among other uses [21-23]. This is an important step
towards the development of a robust and efficient generalized theory about quantum dis-
tance measures, which has numerous applications in quantum communication, quantum
computing, and quantum cryptography.

This work is organized as follows. The main theoretical framework is in the following
Section. The quantum Csiszdr distances, along with their extended version, are introduced
and physically motivated in Section 3. In Section 3.1, it is established how to attain quantum
true distances from symmetric Csiszar distances. The relevant Csiszar divergences are
particularized in Section 3.2: the variational distance, Hellinger and triangular discrim-
ination, and the Jensen—Shannon divergence are considered. This Section also includes
(cf. Section 3.2.5) a comparison between the extended quantum Csiszar distances between
quantum mixed states and the one obtained from the optimization over arbitrary von
Neumann measurements. Final remarks are in Section 4.

2. Preliminaries

We introduce the main notation we use in this work. Let R = (—oc0,00), R = [0, c0),
and Ry = (0, 00). Regarding distinguishability quantifiers, we employ the following terms.
A metric space comprises an ordered pair (x,d), where x represents a set and
d:x x x — R4 is a real-valued function on the set yx, such that for any x,y,z € y, the
following properties hold:
1. Non-negativity: d(x,y) > 0,
2. Identity of indiscernibles: d(x,y) = 0 if and only if x =y,
3. Symmetry: d(x,y) = d(y, x),
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4. Triangle inequality: d(x,y) < d(x,z) +d(z,y).
X may represent the set of probability distributions or quantum states. In addition, if a

distance measure d only satisfies property 1, we call it a divergence, while if d satisfies the
properties 1 to 3, we use the word distance [4,24].

2.1. Csiszdr Divergences

A Csiszar divergence (also known as an f-divergence) between the probability distri-
butions P = {p1,p2, - ,pnyand Q = {q1,92,- - - ,qgn} is defined as [2-4,14,25-27],

D(P,Q) = izflqi f<Z) (1)

where f : Ry — R belongs to the set F of convex functions that are finite on Ry and
continuous on R. The set of Csiszar divergences might involve divergences, distances,
and true distances (i.e., distances that also satisfy the triangle inequality 4) in the space of
probability distributions. In Section 3.2, we consider particular cases of symmetric Csiszar
divergences. Now, we introduce the main results of the properties of the Csiszér function
f(u) and the quantity D¢(P, Q).

2.1.1. Basic Properties of Csiszér Divergences

Let f* € F, the *~conjugate (convex) function of f, be defined as:

f(u) = uf(bll) for u € Ry. )
If f € F is strictly convex at 1 with f(1) =0, and
deeR | f(u) =f(u)+c(u—1),

then D¢ (P, Q) satisfies the following basic properties [28-30]:

1. Non-negativity and identity of indiscernibles: Df(P,Q) > 0 with D¢(P,Q) = 0 <=
P=Q,

2. Symmetry: D¢(P,Q) = D¢(Q, P),

3. Rangeof values: f(1) < Df(P,Q) < f(0) + limy_,o+ f*(¢).

Given a set of functions f(u), the corresponding Csiszar divergences may not be different.
In this regard, we have the following property.

4. Uniqueness: D, (P,Q) = D¢(P,Q), <= Jc € R | fi(u) = f(u) +c(u—1).
Now, let us consider how to obtain true distances from symmetric Csiszar diver-

gences. Refs. [29-31] proved and analyzed a necessary condition for a symmetric Csiszar
divergence to satisfy the triangle inequality.

Theorem 1 (Csiszar True Distances). Let D¢ (P, Q) be a Csiszdr divergence, such that f(u) is
strictly convex at 1, f(1) = 0, and f*(u) = f(u) (required for symmetry under P < Q).
If the function
(1—us)/*
ho(u) = ———— 3)
S

is nonincreasing on u € [0,1) for « € Ry, then

duc(PlQ) = [Df(P/Q)](X 4)

satisfies the triangle inequality, i.e., do (P, Q) < da(P,R) + dx(R, Q). Correspondingly, d,(P, Q)
is a true distance in the space of probability distributions [29-31].
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In the next section, we introduce quantum Csiszar distances based on the previously
introduced Csiszér divergences for those f(u) leading to symmetric quantities, and we
show how to obtain true distances in the space of quantum states by using Theorem 1.

3. Quantum Csiszar Distances

Let us address the problem of deriving quantum distances starting from symmetric
Csiszar divergences between probability distributions. In the first place, we introduce the
quantum Csiszdr distance between pure quantum states and prove that it belongs to the
class of distinguishability measures in the quantum realm, i.e., distance measures based
on a measurement procedure [11]. Based on the previous result, we introduce a new
family of distinguishability quantifiers for arbitrary (even mixed) quantum states, by taking
the minimum quantum Csiszar distance over all possible purifications of the states to be
distinguished, leading in this way to a well-defined quantum distance.

Let us consider then the following definition.

Definition 1 (Quantum Csiszér Distance). Let f € F be a differentiable strictly convex function
at 1, satisfying,

a.  f(1)=0,

b.  Jc e R, suchthat f*(u) = f(u) +c(u—1) forallu € [0,00),

c. uf'(u) <cforalue€l01].

Given two pure states [1py) and |ip,), the quantum Csiszdr distance is

Dfﬂ‘/’p)z‘/’q))i(l— 1‘|<‘/’p‘/’q>|2>f 1+ 1_:§zp:zqi:z : ©®)
— V1= [(¥pltg

Before addressing and defining the extension of this quantity to arbitrary mixed states,
let us see how the previous quantity arises from an optimization procedure over a set of
measurements related to the states to be distinguished, having a clear interpretation as a
distinguishability measure based on measurements.

Let us consider two arbitrary quantum states represented by [¢,) and |¢;) belonging
to a finite-dimensional Hilbert space. Following the general ideas introduced in Ref. [12], a
natural starting point to define distinguishability measures can be summarized in the next
three steps:

1.  Take an arbitrary symmetric Csiszar divergence Dy (cf. Equation (1)) between two
classical probability distributions (see Section 2.1.1 for the properties of the defining
Csiszér function f(u)).

2. Evaluate Dy between the two classical probability distributions resulting from taking
a measurement over the quantum system in either state |¢;,) or [¢,).

3. Carry out an optimization of the resulting quantity obtained in the previous step over
a set of measurements performed upon the quantum system.

In general terms, if we consider an arbitrary measurement E = {E;}X | given by the
Positive Operator-Valued Measurement (POVM) formalism [14,32], for arbitrary quantum
states p and o, the probability distributions for the outcomes of E are:

Pg = A{pilpi = Te(Eip)}i (6)
Qe = {4qilgi = Tr(Eio)}i, )

respectively.

Given the complexity involved when one tries to solve the corresponding optimization
of Step 3 in the general case of POVMs, we shall focus on the optimization problem in
the case of pure states and for the subset of POVMs defined by projective measurements
(PVMs) represented by rank-1 projectors (also known as von Neumann measurements [32])



Entropy 2023, 25,912

50f16

in the subspace defined by the states to be distinguished. In this regard, we state the
following result.

Theorem 2. Let i) and |ip,) be two pure quantum states. Let f(u) be a Csiszdr function, such
that Dy stands for a quantum Csiszdr distance, see Definition 1. Then,

T+ 1|<4’p|‘l’q>’2) ®)

IIHE%XDJ‘(PEO/QEO) = (1 —Vi- |<¢p|¢q>|2>f(1 —y/1- |<¢P|¢q>|2

with Pey = {pilpi = Tr(Eilpp) (¥pl) i Qry = {4:la: = Tr(Eilyg) (g])}i, and Eo = {Ei}7,
is a projective measurement onto the subspace spanned by ) and |ipg).

Proof. Given arbitrary |¢,) and |¢,) satisfying

Kwpltpg)| = cos¢,

we have to optimize D¢ (Pg,, Qg,) over the projective measurements Ey = {E;}?_, onto
the subspace defined by the states to be distinguished. The connection between all these
elements is summarized by the following parametrization [33-36],

|¢pp) = cosBpler) +sinfyler), 9)
|$pg) = sinbyler) + cosbyle), (10)

with E; = |e;)(e;|, i € {1,2}, and |e;) and |e;) are two orthogonal states. As [(,|9,)] =
cos(% — 6, — ;) holds, we have to impose the following constraints for 6, and 6y,

0<6,<m/2 (11)
0<6,<mn/2, (12)
0p+0,+¢ =m/2. (13)

At this point, and because of the symmetries of the optimization problem, it is conve-
nient to take a fixed measurement and to optimize over the angles 6, and 0, subject to the
constraints (11)—(13). Thus, the probabilities associated with each possible outcome (i.e.,
after the von Neumann measurement {|e;) (¢;| }; is performed on the quantum system) are
given by the following equations:

pr=p= Tr(El|l/’p><l/’p|) = cos’ Op, (14)
p2=1-p, (15)
01 = q = Te(Eq|gg) (¥g]) = sin®6,, (16)
gp=1-—4q. (17)

The optimization problem over the PVMs turns out to be equivalent to finding the values
of 0, and §; maximizing the following equation:

sin cos? 0,

. cos? 0 sin”
D¢(Pg,, Qg,) = sin? 0, f( 5 9: + cos? 0, f o, (18)

subject to the constraints (11)—(13). Let us apply the method of Lagrange multipliers to this
particular parametrization. The resulting Lagrangian can be written in the following way:

Z(0p,0q,A) = Dy (6p,0) — A (0p + 65+ ¢ — 71/2). (19)
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The critical points of .Z'(6, 0, A) need to satisfy the following set of equations:

0L 0L oY

E = @ =1 = 0. (20)
After some calculations, we arrive at
, sinz(Gp) , cosz((?p) )
[f <cosz(9q)> f (sinz(Gq) sin(26y) =
/ n2(9q) / COSZ(Qq) .
[f (COSz(Qp) ) f (sinz(ep) 511’1(29,1). (21)

Using the properties of f(u) and the mirror symmetry around 6y = J — %, it can be
seen that Equation (21) admits a unique solution of the form 9;"‘ = 9,}"‘ = 6.

It remains to prove that the previous critical point corresponds to a maximum value
of D¢(Pg,, Qg,). To achieve this, let us introduce 6, = 7/2 — ¢ — 6, in Equation (18),
obtaining:

cos? (¢ + 6,)
cos? 0

D¢ (Pg,, Qr,) = cos? GPf[ =: 8(6)),

)
) sin“(¢ +6))
+sin? 6, f| — 2
s, /|

which, additionally, is invariant under the transformation 6, — 26y — 0p. Therefore, by
considering that we have only one critical point, 6, = 6, the maximum condition is
demonstrated, if we prove

0,=0
Carrying out the required calculations, we can show that the previous inequality holds

for an arbitrary function f(u) satisfying uf’(u) < c for all u € [0, 1]. Finally, the resulting
maximum is:

max Dy Py, Qs,) = (1~ sm4>>f(”sm¢). (22)

sin ¢

We arrive to the final result by noting that cos¢ = |(¢p|y)|; therefore,

sing = /1= [(plgy)[". O

Having introduced the quantum Csiszar distance and established its operational
interpretation as a one-shot distinguishability measure [11], let us propose one interesting
extension of Dy to the general case of mixed states.

Definition 2 (Extended Quantum Csiszér Distance). Let us define

B (x) = (1—\/1—x)f<14__\/7 Vi:i) 23)

with f(u), such that Dy is a quantum Csiszdr distance, see Definition 1.
The extended quantum Csiszdr distance between two arbitrary states p and o, defined over a
finite-dimensional Hilbert space, is

D§(p, o) = ¢[F(p,0)], (24)

with

F(p,0) = {Tr( \/ﬁaﬁ)r, (25)
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as the Uhlmann—Jozsa fidelity.

The previous quantity D;Xt has a clear and interesting interpretation. It is the minimal

quantum Csiszar distance over all possible purifications of the quantum states p and ¢ to be
distinguished. We can see this clearly by considering

F(p,0) = max [(plg) |, (26)

where i) and |$) are purifications of p and ¢, respectively. Taking into account that ®¢(x)
is a monotonic-decreasing function, it follows that:

ext

D (p,) = min Dp(|y)19) = min & (|(le)*) = flF(p0). @)

3.1. Quantum Csiszdr True Distances

Now, let us explore how we can derive quantum Csiszar true distances using the
quantum Csiszér distances Dy, as defined in Equation (5). For any two arbitrary quantum
states p and o, we have demonstrated that the quantity Dje["t (p,0) is linked, through the
purification of quantum states, to an optimization process over projective measurements.
This ultimately leads to a correspondence between the quantum states to be distinguished
and the probability distribution for the outcomes of the optimal measurement, i.e., in
general terms, p <> Pg,, and ¢ <> Qp,,. This correspondence enables us to construct
quantum Csiszar distances that satisfy the triangle inequality by means of Theorem 1. The
following proposition summarizes the preceding concepts:

Proposition 1. Let f(u) be a function defining a quantum Csiszdr distance (cf. Definition 1).
If, additionally,

(u—u" =) f () < f(u), (28)

forall u € (0,1) and a fixed real positive number , then

pext “
dpalp,0) = [DF(p,0)] 29)
satisfies the triangle inequality and, therefore, is a true distance in the space of pure quantum states.

Proof. We have to prove the triangle inequality. Given the general correspondence be-
tween quantum states and probability distributions p <+ Pg_, and 0 <+ Qg,,, implied by
Theorem 2 and the purification procedure, we just have to apply Theorem 1. Therefore, we
have to find & > 0 such that h, (1) is a non-increasing function on the interval [0,1). In our
case, this is equivalent to 1, (u) < 0 for u € (0,1) (which immediately leads to 1,(0) < 0).
The calculation is

Mg() (1 —u®) & [ — ) f' (u) — u®f(u)]
ou uf(u)? ’ (30)

The sign of /), then is ruled by (u**! — u) f'(u) — u® f (u). Therefore, h, (1) is non-increasing,
if and only if (u — u!=%)f'(u) < f(u) forallu € (0,1). O

As final remarks, we have seen that Proposition 1 allows one to obtain a family of
distances satisfying the triangle inequality between quantum states defined over a Hilbert
space of arbitrary (but finite) dimension. Mainly because of its generality, this is a potentially
powerful tool for finding new informational inequalities.

Regarding the properties of the resulting quantum Csiszdr true distances d, (o, o)
(cf. Equation (29)), as they are functions of the Uhlmann-Jozsa fidelity, they inherit all
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the properties of F(p, 0), for example, the monotonicity under completely positive trace-
preserving quantum operations.

3.2. Examples

In this section, as examples of application, we apply the main result of this work
to some specific f-divergences between two probability distributions P = {p;}! ; and
Q= {q; ;7:1. In addition, in Table 1, we have included the expressions of the resulting
quantum Csiszar true distances with their corresponding range of suitable a values, given
by Proposition 1 and Equation (28).

Table 1. Quantum Csiszdr true distances dy, (p,«) and their corresponding suitable values of «,
satisfying Proposition 1, Equation (28), for the exemplary symmetric Csiszdr divergences treated in
Section 3.2.

Csiszar Distance, f(u) dfe(p, ) True Distance for
Yariational distance - Fp, U”% w e (0,1]
zlu—1]

Hellinger discrimination «

1—+/F(p, 0,1/2
Lo 1) 1~ V(o)) x€(0,1/2
Triangular discrimination N
1 (u—1)* [1—F(p,0)] a€(0,1/2]
2 u+tl
Jensen-Shannon divergence - JTF a
L[(1 + u) + ulog, (u) {1—H(%(’”))] e (0,1/2]

—(1+u)logy(1+4u)]

3.2.1. Variational Distance

The variational distance (often referred to as the trace distance or Kolmogorov distance [32])
between two probability distributions P and Q is defined as,

Dy(P,Q) = lpi — qil- (31)

N =
=

Il
—_

1

This distance belongs to the class of f-divergences (cf. Equation (1)). The corresponding
function f,(u) is given by:

felw) = Slu—1]. (32)

It is straightforward to verify that £ (u) — f,(u) = 0. Thus, the variational distance fulfills
the basic Csiszar properties 1-3 in Section 2.1.1, for ¢ = 0, leading to a well-defined distance
(see Section 2) between probability distributions. Moreover, it is worth mentioning that the
trace distance also defines a true distance, as it satisfies all the Properties 1-4 (cf. Section 2).

The corresponding quantum Csiszar distance D, between two pure quantum states
|p) and [¢p,), obtained via the optimization problem summarized in Theorem 2, is

Du(19p), 199)) = /1 — [yl (33)

Given that D, (P, Q) satisfies the triangle inequality, D, is also a true distance between
quantum states.

On the other hand, the so-called quantum trace distance between two density operators
p and o, already introduced in the literature, is an example of a distance induced by a
norm, i.e., the trace norm of an operator or Schatten L;-norm. Indeed, the trace distance is
defined as

1 1
Dy (p,0) = Sllo =l = 5 Trlp — 0], (34)
2 2
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where |A| = vV At A. Notably, this quantity can also be obtained from its classical form as
a distance measure between two probability distributions (see Equation (31)) by means
of the optimization over arbitrary POVM measurements described at the beginning of
Section 3. Particularly, this distance constitutes an example of a procedure to define a
quantum distinguishability measure when a single measurement process is involved. In
this case, the problem at hand is to solve:

max D, (Pg, Qr), (35)

where the maximum is taken over all possible POVMs. The result of this maximization
procedure is summarized in the following theorem due to C. W. Helstrom [14,37]:

Theorem 3 ((Helstrom’s) [37]). Let p; = Tr(E;p), and q; = Tr(E;o). Then,

1
mfx D,(Pg,Qg) = 5 Trlp — 0| = Du(p, o), (36)

where the maximization is carried out over all POV Ms.

Remarkably, when we consider the pure quantum states p = |¢,)(¢p| and o =
|¢4) (Y|, the quantum trace distance turns out to be equal to the quantum Csiszar distance
corresponding to the variational distance, i.e.,

Dir([p), 199)) = /1 — [(plog) > = Dullp), 199))-

As we can seg, in this case, the maximization over arbitrary POVMs leads to the same
result as the optimization over the set of projective measurements we have employed in
Theorem 2.

It remains to analyze the differentiability of f,. Clearly, this function is not derivable at
u = 1. However, this fact does not affect our result in Theorem 2 because of the constraint
in Equation (13).

The extended quantum Csiszar distance resulting from the variational distance is

DY (p, o) = /1~ F(p,0). (37)

On the other hand, by introducing f, in Equation (28), it is possible to show that

NlR

dv,a(p,0) = [1 = F(p,0)]

turns out to be a true distance in the space of quantum states for « € (0, 1].

(38)

3.2.2. Hellinger Discrimination

The Hellinger discrimination between the two probability distributions P and Q is
defined as [38,39]:

1 n
Du(P,Q) = 5 - IVPi — Vail* (39)
i=1
The corresponding function f(u) is given by

fulu) =

As f¥(u) — fu(u) = 0 holds, the conditions of Theorem 2 are satisfied for ¢ = 0. The
quantum Csiszdr distance (cf. Definition 1) given by f(u) is

(Vi —1) (40)

N =

Du(l¥p), [g)) =1 — |(Wpltpg)|- (41)
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The previous quantity is not the only existing quantum extension of the Hellinger discrim-
ination. Ref. [38] introduced, by natural extension of the classical case, the Hellinger distance,

H(p,0) =1— A(p,0) with A(p,0) = Tr\/p\/o, (42)

as an informational distance on the quantum states” space. The quantity A(p, ) is called
quantum affinity, and it stands for the quantum extension of A(P, Q) = Y; \/7:q;- Note that
we have discarded the factor 2 in the expressions of H, and A (see Ref. [38]). The reason is
that we have the factor 1/2 in the definition of the classical distance (cf. Equation (39)). In
this way, if the quantum states p and ¢ do commute, then H, does coincide with Dy,

In the case of pure quantum states, A(|¢p),|¢,)) = |<1/Jp|lqu>|2,' therefore,
H6(|1Pp> W’q ‘<¢P|¢q>‘2- As we can see, He(‘ll)p>/|4’q>) > DH(|¢p>r‘qu>) for non-

orthogonal quantum states.
For the Hellinger discrimination, the extended quantum Csiszar distance is

D(p,0) =1—/F(p,0). (43)

In addition, taking into account Equation (28) in Proposition 1, we have that for
€(0,1/2],

dua(p,0) = [1 - F(p,v)r (44)

is a true distance in the space of quantum states.

3.2.3. Triangular Discrimination

The triangular discrimination between the two probability distributions P and Q is
defined as [40,41]

Z Ipi—ail? (45)
25 pitai
and it is a symmetrized version of the chi-square divergence [42], also known as the Le Cam

divergence [43]. The corresponding function f(u) defining this Csiszdr divergence can be written
as a Csiszdr divergence by taking the corresponding function f(u) as

1(u—1)
2 u+1 -

fr(u) = (46)

As in the previous cases, it is straightforward to see that f;(u) = f;(u); therefore, the
triangular discrimination satisfies the conditions of Theorem 2 for ¢ = 0.

The Csiszar quantum distance associated with this notion of distinguishability is
(cf. Definition 1)

Dillp), [99)) = 1= |(wplwg) | (47)

To the best of our knowledge, there is no other quantum extension based on the
triangular discrimination D,. Nevertheless, it is noteworthy that

Di(lp). [$g)) = He([9p), [¥g)) (48)

holds, where H,(|¢p,), |14)) is the Hellinger distance proposed in Ref. [38] by Luo and Zhang.
The extended quantum Csiszér distance for the triangular discrimination can be
expressed as follows:

DX(p,0) =1—F(p,0). (49)
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In addition, Equation (28) implies that for any « € (0,1/2], the expression,

dra(p,0) = [1—F(p,0)]", (50)

fulfills the triangle inequality in the quantum-state space. As we can see, the quantum
Csiszdr true distances given by the Hellinger and the variational distance are equivalent,
although the corresponding quantum Csiszar distances are different.

3.2.4. Jensen-Shannon Divergence

The Jensen—Shannon divergence between two probability distributions P and Q can be
written in the following form [44]:

Dy(P,Q) = [KL< P;Q>+DKL<Q,P;Q>}, (51)

where Dy (P, Q) = Y, pi log2 is the Kullback-Leibler divergence. The Csiszar function
corresponding to the ]ensen—Shannon divergence is

fo(u) = = [(1+u>+ulogz() (1+u)logy(1+u)] (52)

for u € Ry. Additionally, this Csiszar divergence satisfies f:(u) = fis(u); therefore, the
basic properties for having a distance in the space of probability distributions are fulfilled
for ¢ = 0 (see Section 2.1.1). Moreover, in the classical case, it was shown that the square
root of Dis(P, Q) satisfies the triangle inequality [45-48].

The resulting quantum Csiszér distance corresponding to the Jensen-Shannon diver-
gence can be written in terms of the binary entropy function H(p) = —plog,(p) — (1 —

p)log,(1—p),

(53)

1—4/1— 2
DJS(|IPP>/‘7~P11>) = 1—H( 2|<lp}7|lzbq>| )

This particular measure of distinguishability was analyzed in Ref. [12] in which it was
shown that Dis(|9p), [{4)) is equal to the accessible information associated with the ensemble
{I¥p), [94)}, for the equiprobable case, and given by the projection measurement we
considered in Theorem 2.

Another quantum extension of the Jensen-Shannon divergence was proposed in
Ref. [44] by natural extension of the classical quantity. The quantum Jensen—Shannon diver-
gence (QJSD) can be written as:

QISD(p,0) = 3 S+(plIp) + S (pllP)], (54)

where g = 37, and S, (p||¢) = Trp(log, p — log, &) is the quantum relative entropy. For

pure quantum states, the QJSD reduces to

QSDA(19,) [9) = H(W) 65)

Additionally, the QJSD is the Holevo bound (often called Holevo information) related to
the ensemble {p, 0}, in the equiprobable case.
The extended quantum Csiszér distance for the Jensen-Shannon divergence is given by:

Dgxt<p,a):1—H<1_ 12_F(p"’)>. (56)




Entropy 2023, 25,912

12 0of 16

Finally, bearing in mind Proposition 1, it is easy to show that

dua(p,0) = [1—H<1_ 1;“”"”)] 67

defines a true distance in the space of quantum states for « € (0,1/2]. This was firstly
addressed in Ref. [12].

3.2.5. Comparison between D}nax and DJ‘E’“

Given two arbitrary quantum states p and o, let us define
D}nax (Pr 0') = HIIEalX Df (PIEl , QE1 ) (58)

where E; is a von Neumann measurement, and Pg, and Qp, are the probability distributions
given by Equations (6) and (7), respectively.

One may ask about the difference between D}“ax and D]"(Xt, defined in Equation (24).
Based on the numerical simulation shown in Figure 1, we state the following conjecture:

Conjecture 1. Let p and o be two quantum states defined over an n-dimensional Hilbert space.
D (p,0) > D™ (p,0)

holds. In addition, in the case of the Hellinger discrimination (cf. Equation (39)), the equality
D (p, ) = D™ (p, 0)

holds.

In Figure 1, we show the results of D}“ax and D?Xt evaluated for two thousand pairs of

qubit quantum states, generated pseudo-randomly according to the uniform distribution
over the Bloch ball.

1.0 W
0.7} , v
7
7
L 06 7
0.8 g
0.5
0.6 %
= 2T04
o Q
Q
0.4f 0.3
0.2+
0.2
0.1+
0.0 . . . . 0.0t L L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Din‘dx Dglax
(a) Trace distance (b) Hellinger discrimination

Figure 1. Cont.
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Figure 1. Comparison between D}“ax (cf. Equation (58)) and D;’(Xt (cf. Equation (24)) for two thousand
pairs of qubit quantum states, generated pseudo-randomly from the uniform distribution over the
Bloch ball, for the symmetric Csiszér divergences considered in Section 3.2.

4. Concluding Remarks

In this paper, we extended previous results in order to develop a procedure to build
quantum distances starting from a set of symmetric f-divergences used as measures of
dissimilarity between two probability distributions. The procedure involved a set of
measurements performed upon the system of interest. Starting from different initial
quantum states, probability distributions were obtained in association with the different
possible outcomes obtained after performing a measurement upon the quantum system.
Given the complexity of the general problem, we focused on the problem of distinguishing
between two given pure states in the case of measurements represented by the projective
measurement of rank 1. As a consequence, the posed problem was expressed in the form of
an optimization procedure for a given f-divergence between the probability distributions
associated with the different possible outcomes, over the set of rank-1 projectors. Thus, the
resulting quantum distance belongs to the set of distinguishability measures in the quantum
realm [10,11]. We found a closed form for this optimization process (cf. Definition 1), which
allows one to obtain quantum distances starting from a set of symmetric f-divergences (cf.
Theorem 2). Next, we showed that these quantum distances could be extended to the case of
mixed quantum states by means of a procedure known as purification (see Definition 2). As
it has been shown that a purification process can be physically implemented, this last result
implies that an operational interpretation could be given to the obtained distinguishability
measures between quantum states. In addition, we also analyzed the possibility of defining
quantum distances satisfying the triangle inequality (i.e., true distances ) by revisiting a
criterium to be fulfilled by a particular function f(u) defining a Csiszar divergence (cf.
Section 2); this can be found in Proposition 1. Thus, in the case of symmetric f-divergences,
we also obtained the quantum distances, which satified the triangle inequality. In order
to present some specific examples, we applied the general result to some relevant cases of
Csiszar divergences such as the Variational Distance, Hellinger and triangular discrimination,
and the Jensen—Shannon divergence (see Section 3.2). In the case of the Variational Distance and
the Jensen—Shannon divergence, we also verified that our procedure was in agreement with
the known results. In addition, we demonstrated that the resulting quantum Csiszar true
distances for the triangular discrimination and the variational distance were equivalent. In
the case of the Hellinger discrimination, we compared the corresponding Csiszar quantum
distance, Definition 1, with the Hellinger distance considered in Ref. [38], demonstrating
that the one obtained in this work was lower than the one introduced in Ref. [38]. This was
linked also to the case of triangular discrimination. The quantum Csiszar distance given
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by the triangular discrimination was equal to the Hellinger distance proposed in Ref. [38],
showing a connection between the preceding quantity and the measurement procedure.

Additionally, we presented numerical simulations—involving pairs of qubit states
pseudo-randomly distributed over the Bloch ball—contrasting two quantities: the extended
quantum Csiszér distance, Equation (24), and the optimized Csiszar divergence over
arbitrary von Neumann measurements, Equation (58). This calculation allowed us to
propose a conjecture, i.e., extended quantum Csiszér distances are generally greater than
or equal to the ones resulting from taking the maximum of the Csiszar divergence over
arbitrary measurements (for example, the equality is attained in the case of the Hellinger
discrimination), see Conjecture 1.

The derivation of true distances in the quantum realm induced by fidelity is interesting
and clearly well motivated as these magnitudes find applications in a variety of research
subjects related to quantum information theory and quantum information processing,
such as non-locality, quantum correlations, open quantum systems, quantum phase tran-
sitions, quantum coherence, among others [23,49-55]. In particular, due to the fact that
the quantum Csiszar true distances introduced in this work satisfy the triangle inequality
and can be given an operational interpretation in terms of the measurement and purifi-
cations processes, they are promising quantities that could find applications in channel
discrimination theory [16], the study of non-Markovianity and information backflow in
open quantum systems [17,18], the evaluation of the presence of quantum correlations [19],
and the definition of new distance measures in the space of quantum channels [20].

In addition, the well-known results of the harmonic analysis allow us to determine,
at least in principle, a map from a metric space into a Hilbert space in such a way that
the true distance between two points is equal to the distance between the corresponding
points in the Hilbert space [46,56,57]. Therefore, we believe that our results may also
contribute to strengthening the link between geometric aspects of information theory and
quantum information.
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