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Abstract: A novel approach to the quantum version of κ-entropy that incorporates it into

the conceptual, mathematical and operational framework of quantum computation is

put forward. Various alternative expressions stemming from its definition emphasizing

computational and algorithmic aspects are worked out: First, for the case of canonical

Gibbs states, it is shown that κ-entropy is cast in the form of an expectation value for an

observable that is determined. Also, an operational method named “the two-temperatures

protocol” is introduced that provides a way to obtain the κ-entropy in terms of the partition

functions of two auxiliary Gibbs states with temperatures κ-shifted above, the hot-system,

and κ-shifted below, the cold-system, with respect to the original system temperature. That

protocol provides physical procedures for evaluating entropy for any κ. Second, two novel

additional ways of expressing the κ-entropy are further introduced. One determined by

a non-negativity definite quantum channel, with Kraus-like operator sum representation

and its extension to a unitary dilation via a qubit ancilla. Another given as a simulation of

the κ-entropy via the quantum circuit of a generalized version of the Hadamard test. Third,

a simple inter-relation of the von Neumann entropy and the quantum κ-entropy is worked

out and a bound of their difference is evaluated and interpreted. Also the effect on the

κ-entropy of quantum noise, implemented as a random unitary quantum channel acting

in the system’s density matrix, is addressed and a bound on the entropy, depending on

the spectral properties of the noisy channel and the system’s density matrix, is evaluated.

The results obtained amount to a quantum computational tool-box for the κ-entropy that

enhances its applicability in practical problems.

Keywords: κ-Entropy; quantum computation; quantum information

1. Introduction

The κ-entropy introduced two decades ago in the trilogy of papers [1–3] assumes the

form

Sκ =
1

2κ

W

∑
i=1

(

ρ 1−κ
i − ρ 1+κ

i

)

, (1)

where ρ = {ρi} is the probability density. The above entropy arises naturally in the context

of Einstein’s special relativity and generates a self-consistent κ statistical mechanics, which

turns out to be a relativistic extension of classical Boltzmann–Gibbs statistical mechanics.

which is obtained in the κ → 0 classical limit.

The persistent power-law tails of the cosmic rays spectrum, spanning 13 decades in

terms of energy and 33 decades in terms of particle flux, turn out to be a purely relativistic
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effect correctly predicted by κ statistical mechanics and this result represents one of the

greatest successes of the new theory.

The statistical theory based on Sκ has an axiomatic structure and can also be intro-

duced without reference to special relativity [4], since it also has applications outside of

relativistic physics.

In the last two decades, many authors have studied the theoretical foundations of

the underlying thermodynamics, [5–13] and the mathematical structure of the theory,

c.f. [14–26].

On the other hand, specific applications of the theory have been considered in var-

ious areas of the science of complex physical, natural or artificial, classical or quantum

systems. With regard to the applications concerning quantum systems, we recall the studies

devoted in particular to quantum mechanics [27,28], quantum hadrodynamics [29], quan-

tum statistical mechanics, c.f. [30–32], quantum gravity [33–40] and quantum cosmology,

c.f. [41–45].

The content of the present paper frames the quantum version of κ-entropy and relates

it to the conceptual, mathematical and operational framework of quantum computation.

The relations developed are organized into three scopes, each one containing two proposi-

tions, that form the three main chapters of the paper, respectively. All proofs are deferred

to a final Appendix A. The following outline describes the matter:

Scope 1: The aim is to consider a canonical Gibbs state density matrix for some Hamil-

tonian and determine an operational form for its kappa canonical quantum entropy via

the expectation value of a quantum observable, Proposition 1; and further, to introduce a

two-temperatures protocol for measuring the canonical state kappa entropy, Proposition 2.

Scope 2: The aim (channel generating kappa entropy) is to express the kappa entropy

for a general density matrix via a positive and trace-preserving quantum channel as well

as via its unitary dilation, Proposition 3; and further, to simulate the kappa entropy via a

generalized form of the quantum circuit of the so-called Hadamard test, Proposition 4.

Scope 3: The aim is to relate the kappa and von Neumann quantum entropies between

them and to determine the bounds on their difference, Proposition 5; and further, to

examine the effect of a typical noise, i.e., a quantum random unitary channel acting on an

original quantum system, by evaluating bounds on the value of the kappa entropy of the

transformed density matrix. To gain full generality for the result, the bound is shown to

be determined by the spectral properties of both the channel and systems’ density matrix,

Proposition 6.

Motivations: κ-Entropy and its relations to other quantum entropies: Some of the

motivation for the development of κ entropy in quantum information language is based

on its relation to other standard quantum entropies, such as von Neumann (vNE) and

Renyi entropy. Operational interpretations of vNE supporting its wide use in the quantum

information field are well known, and two of them are invoked below. Here, they are useful

in motivating a similar interpretation for the quantum κ entropy, c.f. Proposition 2 below.

Similarly to vNE, the Renyi entropy shares common features with κ entropy, supporting

the treatment of the latter in quantum language as outlined below.

vN entropy intepretation 1: Suppose that Alice prepares a quantum state ρ. Bob

can then perform a particular POVM {Λx}x∈X to learn about the quantum system,

where X denotes the random variable corresponding to the classical output of the

POVM, i.e., x → Λx. The probability density function x → pX(x) of random vari-

able X is then pX(x) = Tr(ρΛx). The Shannon entropy of the POVM Λx is denoted

by Ssh(X) = −∑x∈X pX(x) log(pX(x)) = −∑x∈X Tr(ρΛx) log(Tr(ρΛx)). The minimum

Shannon entropy over all rank-1 POVMs is equal to a quantity which is identified with

the von Neumann entropy SvN(ρ) of the density operator ρ. Explicitly, this optimiza-



Entropy 2025, 27, 482 3 of 25

tion means that SvN(ρ) = min{Λx}{−∑x∈X Tr(ρΛx) log(Tr(ρΛx))}, where the minimum

is restricted to be over rank-1 POVMs, i.e., those with {Λx = |ψx⟩⟨ψx |}x∈X , satisfy-

ing ∑x∈X Λx = ∑x∈X |ψx⟩⟨ψx | = I, where the latter implies the completeness of states

{|ψx⟩}x∈X (p. 256, [46]).

vN entropy intepretation 2: Suppose that Alice generates a quantum state |ψx⟩ in her

lab according to some probability density pX(x) of a random variable X. Suppose further

that Bob has not yet received the state from Alice and does not know which one she sent.

The expected density operator from Bob’s point of view is then ρ = EX{|ψx⟩⟨ψx |} =

∑x∈X pX(x)|ψx⟩⟨ψx |. The interpretation of the entropy SvN(ρ) is that it quantifies Bob’s

uncertainty about the state Alice sent—his expected information gain is SvN(ρ) qubits upon

receiving and measuring the state that Alice sends (p. 254, [46]).

Remark: The development of κ entropy along the lines of quantum information put for-

ward in this paper opens the possibility of using it to quantify, e.g., quantum entanglement,

a procedure that has been carried out by other types of entropy, c.f. the entanglement Renyi

α-entropy (ERαE) index, c.f. [47] and references therein. Below an outline of the important

features of Renyi α-entropy and their comparison with those of κ entropy is provided that

supports this line of inquiry [48].

Renyi and κ entropy: The presence of a logarithm function of the probability density

in the expression of the von Neumann entropy −Tr(ρ ln ρ) implies that the entropy cal-

culation requires the computation of the complete spectrum of the density matrix for its

diagonalization, which can be computationally intensive for large systems. The Renyi

entropy 1
1−α ln(Trρα) instead involves a power of the probability density and is often com-

putationally easier to estimate than the von Neumann entropy. As a result, the Renyi

entropy is much more efficient and accessible for simulating complex quantum systems, as

it relies on power traces rather than full eigenvalue decompositions of the von Neumann

entropy, leading to faster and more scalable simulations.

The Renyi entropy is very flexible and depends on a free parameter that controls the

entropy value. This allows more flexible forms and different weighting schemes of the

probability distribution to be considered.

An important advantage of the variability of the free Renyi parameter is that by fixing

it appropriately, the entropy measure can emphasize different aspects of the probability

distribution of a quantum state by focusing on the most probable components or on the less

dominant contributions to better understand the complex nature of the entanglement and

quantum correlations. This versatility of the Renyi entropy can be particularly beneficial in

the study of critical phenomena where certain entanglement features might be obscured by

a single, fixed measure, or in phenomena where entanglement scaling and phase transitions

reveal subtle quantum effects.

The Renyi entropy may be more accessible in experimental and computational set-

tings than techniques such as interference-based measurements. The advantages of the

Renyi entropy over the von Neumann entropy not only allow us to better characterize

quantum states and gain deeper insights into the distribution and exchange of information

between entangled particles, but also to improve error analysis and algorithm optimization

in quantum computing.

The properties of the Renyi entropy, which make it faster to compute and more flexible

than the von Neumann entropy, are due to its expression and, in particular, its dependence

on a power of the probability density with a free parameter as the exponent. Of course,

other entropies have also been considered in the literature, which share with the Renyi

entropy the fact that they are also constructed from powers of the probability density

and therefore share the main qualitative properties of the Renyi entropy. The choice of
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an entropy that generalizes the von Neumann entropy and uses powers instead of the

logarithm of the probability density in its definition is very difficult and subjective.

Here, the κ-entropy is considered as a new paradigm of quantum entropy for two

different reasons. The first is that the κ-entropy, like the Renyi entropy, is defined from the

power of the probability density and thus shares the main qualitative features of the Renyi

entropy. The second reason for choosing the κ-entropy, which makes it more interesting, is

that it has a physical origin. The κ parameter of entropy has its roots in Einstein’s theory

of special relativity. It is a relativistic generalization of the Boltzmann entropy of classical

statistical mechanics and thus of the von Neumann quantum entropy. The κ-entropy can

therefore be seen as the relativistic generalization of the von Neumann entropy, which

results when the parameter κ approaches zero. The study of κ-entropy in the context of

quantum computing and quantum information therefore allows us to consider quantum

systems that have relativistic properties. This gives us a more comprehensive view of the

nature of quantum-relativistic phenomena.

2. Kappa Entropy for Canonical States

The aim of this section is to consider a canonical Gibbs state density matrix for some

Hamiltonian and determine an operational form for its kappa canonical quantum entropy

via the expectation value of a quantum observable, Proposition 1; and further, to introduce

a two-temperatures protocol for measuring the canonical state kappa entropy of a give

quantum system, Proposition 2. Consider the following,

Definition 1. Let κ ∈ [0, 1) and let the density ρ ∈ DN =
{

ρ ∈ CN×N ; ρ† = ρ, ρ > 0, Trρ = 1
}

,

the kappa entropy reads

Sκ(ρ) = − 1

2κ
Tr(ρκ+1 − ρ−κ+1)

κ + 1 ∈ [1, 2),−κ + 1 ∈ [1, 0).

Next, we show how the canonical state kappa entropy is expressed via the expectation

value of a quantum observable.

Proposition 1. The kappa entropy of a canonical state ρcan = 1
ZT

e−βH , β = 1
kT , is cast in the form

of an expectation value of the measurement of the quantum observable Cκ = 1
κ sinh(κ(ln ZTI+

βH)), in state ρcan, i.e.,

Sκ(ρcan) = −Tr(ρcanCκ) = −⟨ρcan, Cκ⟩.

State and observable are commuting.

Next, we put forward a two-temperatures protocol for measuring the canonical state

kappa entropy,

Proposition 2. The kappa entropy of a canonical state ρcan = 1
ZT

e−βH of temperature T, and

partition function ZT = Tr
(
e−βH

)
, is simulated by two quantum systems described by the same

Hamiltonian each in the canonical Gibbs state of the respective κ-dependent temperatures Tcool =
T

1+κ < T (the cool system) and Thot =
T

1−κ > T (the hot system), with corresponding partition

functions Zcool ≡ Z T
1+κ

and Zhot ≡ Z T
1−κ

. The kappa entropy is expressed in terms of the partition

functions of the simulating systems as

Sκ(ρcan) = − 1

2κ

1

ZT

(

Z
T

1+κ

× 1

Zκ
T

− Z
T

1−κ

× Zκ
T

)

. (2)
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The protocol: For a given canonical density matrix ρcan with given Hamiltonian H and

reference temperature β = 1
kT , apply the following two-temperatures protocol in order to

determine the kappa entropy Sκ(ρcan). Suppose the κ parameter is fixed and not adjustable,

then introduce and control two temperatures: the high Thot ≡ T−κ = T
1−κ and the low

Tcool ≡ T+κ = T
1+κ temperatures, lying above and below the reference temperature T.

By varying the high-T and the low-T temperature independently and determining the

partition functions indicated in the last Equation (2), it is possible to simulate the value of

the kappa entropy of the initial Gibbs state for any value of T and κ. Operationally, that

would require letting two copies of the original system of temperature T interact with a

heat bath that will increase its temperature T → Thot =
T

1−κ in the first copy and decrease

its temperature T → Tcool =
T

1+κ in the second copy, and then form the combination of the

partition function expressed in Equation (2).

3. Quantum Channels for κ Entropy

The aim of this section is to express the kappa entropy for a general density matrix

via a positive and trace-preserving quantum channel as well as via its unitary dilation,

Proposition 3 [49–52]; and further, to simulate the kappa entropy via a generalized form

of the quantum circuit of the so-called Hadamard test, [53], Proposition 4. We introduce

the following:

Proposition 3. By means of the formalism of the vectorization of matrices A → | A⟩⟩ and the

purification of the density matrices ρ →
∣
∣
√

ρ
〉〉

, the κ entropy Sκ is expressed as

Sκ(ρ) = Tr(Tr2Eρ(| I⟩⟩⟨⟨I |)),

where for any ν ∈ CN×N ⊗CN×N , the positive semi-definite map Eρ : CN×N ⊗CN×N→CN×N ⊗
CN×N , is introduced as, Eρ(ν) = R+(ρ)νR+(ρ)− R−(ρ)νR−(ρ), with (Kraus-like) generators

R±(ρ) =
1√
κ
(ρ

±κ+1
2 ⊗ I).

Map Eρ is also expressed in an extended space, by adding an auxiliary qubit. The density

matrix of the total, auxiliary+system, is defined on matrix space C2×2 ⊗CN×N ⊗CN×N . Map Eρ

is explicitly obtained as

Eρ(ν) = Tr1

(

U(ρ)σ3 ⊗ νU†(ρ)
)

where the channel reads

Eρ(ν) = Tr1

(
1√
κ

R+(ρ)
1√
κ

R−(ρ)

)(

ν

−ν

)(
1√
κ

R+(ρ)
1√
κ

R−(ρ)

)†

.

Kappa entropy via generalized Hadamard test circuit:

Devise an operational construction which will enable the implementation of the

transformation ρ±κ → ρ1±κ , and further generate the quantity Sκ . To this end, next, we

provide a quantum measurement procedure that evaluates the trace Trρ1±κ , that is based

on an extension to the density matrix formalism of the idea of the so-called ’Hadamard

test’, initially used for pure states (see, e.g., [53]). The quantum circuit of the proposed

measurement is given below.

Notation: AdX stands for the adjoint action of operator X ∈ CN×N , as follows

AdX(.) = X(.)X†. E.g., let the control X gate VcX = P0 ⊗ X + P1 ⊗ IN , acting on the
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composite system with control on the qubit state and target on the reference system; the

notation AdVcX means the adjoint action, i.e.,

AdVcX(.) = VcX(.)V
†
cX = (P0 ⊗ X + P1 ⊗ I)(.)

(

P0 ⊗ X† + P1 ⊗ I
)

.

Simulation of kappa entropy via generalized Hadamard test quantum circuit

(Proposition 4; c.f. Figure 1).

Proposition 4. Consider attaching to the Hilbert space CN of the reference quantum system,

an auxiliary qubit so that the total state space is H ≈ C2 ⊗ CN . Next, consider the initial

state |0⟩⟨0| ⊗ ρ, where we denote by ρ the density matrix of the system for which we want to

evaluate the kappa entropy. For a matrix M ∈ End(CN) ≈ CN×N , introduce the following map

S [M] : D(H) → D(H) in the space of the density matrices D(H) ≈ D(C2⊗CN); explicitly,

for H as the Hadamard matrix, the map S [M] is determined by composing the transformations

AdH ⊗ IN and AdVcM, where both of them operate on the composite system of reference+qubit,

and reads,

S [M] ≡(AdH ⊗ IN)◦AdVcM◦(AdH ⊗ IN).

For Ω and M, operators on the auxiliary qubit and the reference systems, respectively, define

the map M → TΩ[M],

TΩ[M] ≡Tr1{(Ω ⊗ IN)◦S [M]}:D(H) → D(H),

parametrized by some Ω and M. Acting on an initial state |0⟩⟨0| ⊗ ρ, map TΩ[M] yields

T±σ3 [ρ
±κ ] = ± ρ1±κ . Denoting T±σ3 ≡ T± the kappa entropy Sκ(ρ) is generated acting on

|0⟩⟨0| ⊗ ρ as

Tr[
1

2κ

(
T+[ρκ ] + T −[ρ

−κ ]
)
(|0⟩⟨0| ⊗ ρ)]

= − 1

2κ
Tr[
(

ρ1+κ − ρ1−κ
)

]

= Sκ(ρ).

Figure 1. Quantum circuit of the map TΩ[M] for generating the κ entropy of a density matrix state.

The broken-line box represents the gate S[M], and the initial state is |0⟩⟨0| ⊗ ρ.

4. Set of Values and Bounds for κ Entropy

In this section, two questions are investigated: (i) What is the set of values of a

(scaled) difference between the von Neumann and κ entropy (Proposition 6)?; and (ii) If

an input density matrix is transformed by a unitary quantum channel, how is the output

density matrix κ-entropy Sκ affected? Explicit upper bounds on Sκ are estimated that are

determined by the stochastic properties of the channel generators, as well as by the spectral

properties of the input-output density matrices, (Proposition 6).
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Proposition 5. The κ quantum entropy within the validity of function sinhcπ approxima-

tion, [54–57], is

Sκ(ρ) = SvN(ρ)− lim
n→∞

Tr

(

ρ ln ρ
n

∑
m=1

1

(2m + 1)!
(πκ ln ρ)2m

)

(3)

so it reads as a κ-depended correction to the von Neumann quantum entropy.

The following bounds are applied for the kappa entropy in terms of the vN entropy:

Sκ(ρ) ≥ SvN(ρ)−
(

lim
n→∞

n

(2n + 1)!
λn

min

)

⟨umax |(Λ|ln Λ|)|umax⟩

Sκ(ρ) ≤ SvN(ρ)−
(

lim
n→∞

n

6
λmax

)

⟨umax |(Λ|ln Λ|)|umax⟩).

Also, in terms of the maximal eigenvalue and eigenvector of |ln ρ| and by virtue of

the Perron–Frobenius theorem, it is found that in the asymptotic limit (n → ∞), the scaled

difference of the two entropies has the interval of values:

Sκ(ρ)− SvN(ρ)

⟨umax |(Λ|ln Λ|)|umax⟩)
∈ [0, ∞).

Bounded change of the kappa entropy due to quantum random unitary channel

(Proposition 6) (see [58–60]):

Proposition 6. Let a quantum random unitary channel E that induces a transformation of ρ →
ρ′ = E(ρ) = ∑i pi AiρA†

i , with Ai be its unitary generators and p = (pi) the vector of its weights.

Also, let λ, λ′ be the eigenvalue stochastic vectors of ρ and the ρ′ density matrices, respectively. The

transformed density matrix is used together with the channel to derive or estimate the κ-entropy.

Its components ρ′±κ+1 are bounded by bounds determined by the spectral parameters of the input

density matrix, and by the spectral and stochastic parameters of the channel as follows:

Trρ′κ+1 ≤ ηκ(∥|p⟩∥∥|λ⟩∥)κ+1,

Trρ′−κ+1 ≤ η−κ(∥|p⟩∥∥|λ⟩∥)−κ+1.

In the proof, the variable ηκ = ∑i(
√

TrH(i)H(i)T)κ+1 has been introduced, where the

matrices H
(i)
jm ≡

(
hj
)

im
, and the circulant permutation h|n⟩ = |n + 1⟩, modN, have been

used along with the following lemma [61–64]:

Lemma 1. Let the quantum random unitary channel transformation of ρ → ρ′ = E(ρ) =

∑i pi AiρA†
i , with Ai be unitary. Let λ, λ′ be the eigenvalue vectors of the ρ and ρ′ density matrices,

respectively, which are related by the unistochastic matrix ∆E = ∑i pi Ai ◦ A∗
i , as λ′ = ∆Eλ. If, via

Birkhoff’s theorem, the bi-stochastic matrix ∆E is decomposed as a convex combination of circular

permutations
{

hi
}

, then ∆E = ∑i pih
i.

5. Summary and Outlook

The material covered in this paper provides tools and concepts from the field of

quantum computation-information in order to enable a useful interaction with the theory

of kappa entropy. The canonical state kappa entropy is shown to offer a framework where

quantum computing would inspire operational methods for analyzing further the kappa

entropy and motivate quantum mechanical measurements based on the entropy. Similarly,

the quantum channel formalism and the constructive method of the Hadamard circuit

that have been developed for κ entropy transformation and generation reveal an intimate



Entropy 2025, 27, 482 8 of 25

relation of those techniques with entropy, and applications along those lines would be

anticipated. Finally, the interrelations between the von Neumann entropy and κ entropy

place the latter within the broad field of entropies, a fact that would enable the κ entropy to

be applied in the fields of open quantum systems and master equations. Finally, we mention

some specific research topics that the formalism put forward here could help investigate.

Examples are as follows: (i) How does the κ entropy evolve in time for the density matrix

of a qubit system evolving temporally by means of a time-dependent unitary evolution

channel with a Kraus generator governed by a propagator determined by a coherent state

path integral SU(2)\SU(1, 1)? [65]. (ii) How can the κ entropy quantify the entanglement

developed among the coin system and the walker system in the course of diffusion of an

anyonic quantum walk? [66]. (iii) A similar question to (i) but now with a Kraus generator

governed by the Hamiltonian of a qubit that has developed a Berry adiabatic geometric

phase in the framework of sudden-adiabatic approximation [67]. Also, unlike the three

previous dynamic studies, a novel kinematical study for κ entropy is suggested. How

does the κ entropy of a bipartite quantum system of a composite number dimension d,

e.g., d = 6, change if the parent system decomposes naturally based on the so-called prime-

decomposition, and splits into two subsystems of dimension dA = 2 (qubit) and dB = 3

(qutrit)? [64]. Finally, addressing questions related to the relativistic origin and aspects of κ

entropy, [4], is an interesting, open area that would benefit from the present formalism.
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Appendix A. Proofs

Lemma A1 (Technical Lemma). The various powers of the density matrices that are pre-

sented throughout the paper are all derived via the spectral decomposition (canonical decompo-

sition) of the density matrix ρ. Recall that the density matrix in finite dimension ρ ∈ DN =
{

ρ ∈ CN×N ; ρ† = ρ, ρ > 0, Trρ = 1
}

, where N ≡ [0, 1, . . . , N − 1], as well as its version in

the infinite dimension ρ ∈ D∞ =
{

ρ ∈ CN0×N0 ; ρ† = ρ, ρ > 0, Trρ = 1
}

. Given the solution

of the eigenvalue/vector problem for ρ, its spectral decomposition follows as ρ = UΛU† =

∑λn∈N λnU|n⟩⟨n |U†, where ρU = UΛ, with Λ|n⟩ = λn|n⟩, the eigenvalues {λn}N−1
n=0

with properties λn ∈ [0, 1], ∑
N−1
n=0 λn = 1; and |un⟩ = U|n⟩ the corresponding eigenvectors

{|un⟩}N−1
n=0 expressed in the canonical basis {|n⟩}N−1

n=0 forming an orthonormal and complete basis.

Analogous properties are values for the infinite dimensional case D∞ where the set N is substituted

by N0. Powers of the density matrix are evaluated following the properties of the decomposition,

i.e., ρκ = UΛκU† = ∑λn∈N λκ
n|un⟩⟨un |. A negative power would require ρ not to be singular

and having all its eigenvalues non-zero, etc. [49].

Let κ ∈ [0, 1) and let the density ρ ∈ D =
{

ρ ∈ CN×N ; ρ† = ρ, ρ > 0, Trρ = 1
}

Proof of Proposition 1. Canonical distribution: Let ρ1±κ = e(1±κ) ln ρ, and let the canonical

Gibbs state ρcan = 1
Z e−βH , with Z = Tr(e−βH). Then,
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ln ρcan = ln
1

Z
e−βH = −(I ln Z + βH).

Denote β±κ := (1 ± κ)β and Z±κ := Z1±κ ; then similarly

ρ1±κ
can = e(1±κ) ln ρ = e−(1±κ)(I ln Z+βH) = e−(1±κ) ln Z Ie−(1±κ)βH

=
1

Z1±κ
e−(1±κ)βH ,

Proceed now to a quantum measurement determination of the kappa entropy: Let ρ1±κ =

ρρ±κ . Assume ρ = ρcan = 1
Z e−βH , then

ρ1±κ
can = ρcanρ±κ

can =
1

Z
e−βH 1

Z±κ
e−(±κ)βH

= ρcan
1

Z±κ
e−(±κ)βH

Computing the kappa entropy for the canonical state yields

Sκ(ρcan) = − 1

2κ
Tr(ρ1+κ

can − ρ1−κ
can )

= − 1

2κ
Tr(ρcan(ρ

κ
can

− ρ−κ
can

)

and further

Sκ(ρcan) =
1

2κ
Tr

(
1

Z
e−βH

(
1

Z−κ
eκβH − 1

Zκ
e−κβH

))

=
1

2κ
Tr

(
1

Z
e−βH

([
1

Z−κ
cosh(κβH)− 1

Zκ
cosh(κβH)

]

+

[
1

Z−κ
sinh(κβH) +

1

Zκ
sinh(κβH)

]))

.

This leads to

Sκ(ρcan) =
1

2κ
Tr

{
1

Z
e−βH

[(
1

Z−κ
− 1

Zκ

)

cosh(κβH) +

(
1

Zκ
+

1

Z−κ

)

sinh(κβH)

]}

.

By means of the expression 1
2 (

1
Z−κ − 1

Zκ ) = sinh(κ ln Z), and 1
2 (

1
Z−κ + 1

Zκ ) =

cosh(κ ln Z), we compute

Sκ(ρcan) =
1

κ
Tr{ρcan[sinh(κ ln Z) cosh(κβH) + cosh(κ ln Z) sinh(κβH)]},

and thanks to the identity sinh(x) cosh(y) + cosh(x) sinh(y) = sinh(x + y), we obtain

Sκ(ρcan) = Tr

[

ρcan ·
1

κ
sinh(κI ln Z + κβH)

]

. (A1)

Proof of Proposition 2. Two-temperatures simulation protocol of kappa entropy.

Always 1 ± κ > 0, so let (1 ± κ)β = (1 ± κ)
1

kT
︸ ︷︷ ︸

= 1
k( T

1±κ )
=

1

kT±κ
︸ ︷︷ ︸

,
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define the effective temperatures

Tcool ≡ T+κ =
T

1 + κ
< T ,

Thot ≡ T−κ =
T

1 − κ
≥ T .

So, compute the power ρ1±κ
can

ρ1±κ
can =

1

Z1±κ
e−

1±κ
kT H

=
1

Z1±κ
e
− 1

kT±κ
H

.

The kappa entropy reads

Sκ(ρcan) = − 1

2κ
Tr(ρ1+κ

can − ρ1−κ
can )

= − 1

2κ
Tr

(
1

Z1+κ
e
− 1

kT+κ
H − 1

Z1−κ
e
− 1

kT−κ
H
)

or

Sκ(ρcan) =: − 1

2κ
Tr

(
Zcool

Z1+κ
· ρcool −

Zhot

Z1−κ
· ρhot

)

,

where the two auxiliary canonical density matrices are

ρ
cool

=
1

Zcool
e
− 1

kTcool
H

; Zcool = Tre
− 1

kTcool
H

ρ
hot

=
1

Z
hot

e
− 1

kThot
H

; Z
hot

= Tre
− 1

kThot
H

.

Due to normalization Trρ
hot

= Trρ
cool

= 1, the following is true

Sκ(ρcan) = − 1

2κ

(
Z

cool

Z1+κ
· Trρ

cool
− Z

hot

Z1−κ
· Trρ

hot

)

= − 1

2κ

(
Z

cool

Z1+κ
− Z

hot

Z1−κ

)

= − 1

2κ

Z
cool

Z1−κ − Z
hot

Z1+κ

Z1+κZ1−κ

= − 1

2κ

Z
cool

Z1−κ − Z
hot

Z1+κ

Z2

or

Sκ(ρcan) = − 1

2κ

(

Z
cool

Z−1−κ − Z
hot

Z−1+κ
)

= − 1

2κ

(

Z
T

1+κ

Z−1−κ − Z T
1−κ

Z−1+κ

)

.

To emphasize, denote Z by ZT , so

Sκ(ρcan) = − 1

2κ

(

Z
T

1+κ

Z−1−κ
T − Z T

1−κ
Z−1+κ

T

)

Sκ(ρcan) = − 1

2κ

(

ZcoolZ
−1−κ − ZhotZ

−1+κ
)

Sκ(ρcan) = − 1

2κZ

(
Zcool

Zκ
− ZhotZ

κ

)

.
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Protocol: cooling, heating, post-processing

Example: let κ = 2/3.

Compute T → Tcool =
T

1+κ = 3
5 T and evaluate Zcool ,

Compute T → Thot =
T

1−κ = 3T and evaluate Zhot,

Compute (post-processing) Sκ(ρcan) in terms of Z, Zcool(κ), Zhot(κ) and κ.

These steps can be repeated for any κ.

Proof of Proposition 3. Preliminaries:

The “double-wedge” notation: Any bipartite quantum system may be described by the

state vector

|ψ⟩ =
n1

∑
i=1

n2

∑
j=1

cij|φi⟩ ⊗
∣
∣xj

〉
,

with
n1

∑
i=1

n2

∑
j=1

∣
∣cij

∣
∣2 = 1. Consider the following state vector |ψ⟩ of two qubits in {|0⟩, |1⟩}:

|ψ⟩ = c00|00⟩+ c01|01⟩+ c10|10⟩+ c11|11⟩ =
(

|0⟩ |1⟩
)
(

c00 c01

c10 c11

)(

|0⟩
|1⟩

)

There is an equivalent expression for bipartite systems called the “double-wedge” ket

vector | A⟩⟩. In particular, A is the matrix representation of a quantum system |ψ⟩, whose

element in position (i, j) is the respective coefficient cij of |ψ⟩. So, in this case:

| A⟩⟩ =
∣
∣
∣
∣
∣

(

A00 A01

A10 A11

)〉〉

Due to this description, a double-wedge ket | A⟩⟩ must also be normalized as a

prerequisite of the preservation of the probability constraint, meaning that ∥| A⟩⟩∥2 =

∥A∥F = 1, where the Euclidean vector norm equals the Frobenius matrix norm, i.e.,

∥| A⟩⟩∥2 =
√

⟨⟨A || A⟩⟩ =
√

Tr(A† A) = ∥A∥F. Moreover, the following local transforma-

tion A → (V ⊗ W)A, where the V, W are unitaries, preserves normalization as well as the

partial traces of the bipartite projector |A⟩⟩⟨⟨A| (see below).

This “double-wedge” notation exploits the isomorphism between vectors in H1 ⊗H2

and the rectangular n1 · n2 matrices, where n1 and n2 are the dimensions of H1 and H2,

respectively. Due to the isomorphism, the matrices A ∈ Cn1×n2 and vectors | A⟩⟩ ∈ Cn1·n2 ,

are expressed as follows:

A =
n1

∑
i=1

n2

∑
j=1

Aij|i⟩⟨j| ↔ | A⟩⟩ =
n1

∑
i=1

n2

∑
j=1

Aij|i⟩ ⊗ |j⟩

Similar to the vector representation, there is also a “double-wedge” bra vector:

⟨⟨A | = (| A⟩⟩)† =

〈〈(

A∗
00 A∗

01

A∗
10 A∗

11

)∣
∣
∣
∣
∣

Some notable properties of the double-wedge ket notation include the following:

(A ⊗ CT)|B⟩⟩ = | ABC⟩⟩
(A ⊗ I)|B⟩⟩ = | AB⟩⟩
(I⊗ CT)|B⟩⟩ = | AC⟩⟩

∥| A⟩⟩∥2 =
√

⟨⟨A || A⟩⟩ =
√

Tr(A† A) = ∥A∥F

⟨⟨A ||B⟩⟩ = Tr(A†B)

| A + B⟩⟩ = | A⟩⟩+ |B⟩⟩
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Several notable examples of double-wedge state vectors and matrices exist such that

the Bell states and Pauli matrices are presented as follows:

|X⟩⟩ =

∣
∣
∣
∣
∣

1√
2

(

0 1

1 0

)〉〉

=
1√
2
(|01⟩+ |10⟩)

| iY⟩⟩ =

∣
∣
∣
∣
∣

i√
2

(

0 −i

i 0

)〉〉

=
1√
2
(|01⟩ − |10⟩)

|Z⟩⟩ =

∣
∣
∣
∣
∣

1√
2

(

1 0

0 −1

)〉〉

=
1√
2
(|00⟩ − |11⟩)

| I⟩⟩ =

∣
∣
∣
∣
∣

1√
2

(

1 0

0 1

)〉〉

=
1√
2
(|00⟩+ |11⟩).

Considering that a bipartite system is in a pure state, its respective density matrix

ρ is equal to |ψ⟩⟨ψ|, which is equivalent to | A⟩⟩⟨⟨A | with reference to its double-wedge

ket notation. In addition, the calculation of the reduced density matrices is performed

according to the following formulas:

Tr2(| A⟩⟩⟨⟨A |) = AA†

Tr1(| A⟩⟩⟨⟨A |) = AT A∗

and

⟨⟨A ||B⟩⟩ = Tr(A†B).

Purified mixed-state kappa entropy:

Consider ρ ∈ D and the map ρ →
∣
∣
√

ρ
〉〉

. The reduced systems obtained from the

bipartite system
∣
∣
√

ρ
〉〉

by partial tracing one of each subsystem are the original single

partite density matrix, i.e.,

Tr1|
√

ρ⟩⟩⟨⟨√ρ | =
√

ρ
√

ρ† = ρ

Tr2|
√

ρ⟩⟩⟨⟨√ρ | =
√

ρT√ρ∗ = ρ.

Purification is non-unique since the map ρ → WρW† of the initial mixed state by

a unitary operator W leads to the same reduce density matrix, i.e.,
√

ρ =
√

WρW† =

W
√

ρW†

Tr1

∣
∣
∣W

√
ρW†

〉〉〈〈

W
√

ρW†
∣
∣
∣ = W

√
ρW†W

√
ρW† = WρW†

Tr2

∣
∣
∣W

√
ρW†

〉〉〈〈

W
√

ρW†
∣
∣
∣ =

(

W
√

ρW†
)T

(W
√

ρW)∗ = WρW†.

Further, consider the spectral decomposition of the density matrix ρ = VDV†, then
√

ρ = V
√

DV†, and also
√

ρ∗ = V∗√DV†∗, then
√

ρ
√

ρ† =
(

V
√

DV†
)(

V∗√DV†∗
)

.

Next, elaborate on the purification map ρ →
∣
∣
∣V

√
DV†

〉〉

to obtain

|√ρ⟩⟩ =
∣
∣
∣V

√
DV†

〉〉

= V ⊗ V∗
∣
∣
∣

√
D
〉〉

= (V ⊗ V∗)
s

∑
i=1

√
pi|i⟩ ⊗ |i⟩.
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The 1-norm reads
∥
∥
∣
∣
√

ρ
〉〉∥
∥

1
=
∥
∥
∥

∣
∣
∣

√
D
〉〉∥
∥
∥

1
= ∑

s
i=1

√
pi, where Sch

( ∣
∣
√

ρ
〉〉)

= s is

the Schmidt number.

Next, we give various equivalent forms of expressing the density matrices of mixed

quantum systems via their associated (non-unique) pure state vectors of some bipartite

system:

first

ρ → |√ρ⟩⟩ =
√

N
√

ρ ⊗ I

∣
∣
∣
∣

1√
N
I

〉〉

=
√

ρ ⊗ I |I⟩⟩ = I⊗√
ρT |I⟩⟩,

and also

ρ → |ρ√ρ⟩⟩ =
√

Nρ
√

ρ ⊗ I

∣
∣
∣
∣

1√
N
I

〉〉

=
√

ρ ⊗ ρT |I⟩⟩
= ρ ⊗√

ρT |I⟩⟩ = I⊗ ρT√ρT |I⟩⟩
= I⊗√

ρTρT |I⟩⟩.

Main proof :

Utilizing the identity Tr2(| A⟩⟩⟨⟨A |) = AA† for the case

Tr2

∣
∣
∣ρ

κ+1
2

〉〉〈〈

ρ
κ+1

2

∣
∣
∣ = ρκ+1,

the following expression for the kappa entropy is obtained:

Sκ(ρ) = −1

κ
Tr[Tr2

(∣
∣
∣ρ

κ+1
2

〉〉〈〈

ρ
κ+1

2

∣
∣
∣−
∣
∣
∣ρ

−κ+1
2

〉〉〈〈

ρ
−κ+1

2

∣
∣
∣

)

= −1

κ
Tr2

(

ρ
κ+1

2 ⊗ I| I⟩⟩⟨⟨I |ρ κ+1
2 ⊗ I− ρ

−κ+1
2 ⊗ I| I⟩⟩⟨⟨I |ρ−κ+1

2 ⊗ I
)

].

The Sκ is expressed as

Sκ(ρ) = Tr2E(| I⟩⟩⟨⟨I |),

where for any ν ∈ CN×N ⊗ CN×N , the positive semi-definite map

E : CN×N ⊗CN×N→CN×N ⊗CN×N is introduced,

E(ν) = R+νR+ − R−νR−

with (Kraus-like) generators

R± =
1√
κ
(ρ

±κ+1
2 ⊗ I).

Via the relation ρ
±κ+1

2 = e
±κ+1

2 ln ρ, the generators are also expressed in the form

R± =
1√
κ

e
±κ+1

2 ln ρ⊗I

=
1√
κ
(
√

ρ ⊗ I)e
±κ
2 ln ρ⊗I.

Further, map E is also expressed in an extended space by adding an auxiliary qubit.

The density matrix of the total (auxiliary+reference) system is defined on matrix space

C2×2 ⊗CN×N ⊗CN×N . Map E is explicitly obtained as
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E(ν) = Tr1

(

Uσ3 ⊗ νU†
)

where σ3 is the state given to the auxiliary qubit and U is a conditional gate with genera-

tors ρ
±κ+1

2

U =

(
1√
κ

R+

1√
κ

R−

)

=





1√
κ

ρ
κ+1

2

1√
κ

ρ
−κ+1

2





=
1√
κ
(P0 ⊗ R+ + P1 ⊗ R−),

which reads explicitly

U =
1√
κ
(I⊗√

ρ ⊗ I)

(

e
κ
2 ln ρ⊗I

e
−κ
2 ln ρ⊗I

)

=
1√
κ
(I⊗√

ρ ⊗ I)e
κ
2 σ3⊗ln ρ⊗I.

So, the channel reads

E(ν) = Tr1

(
1√
κ

R+

1√
κ

R−

)(

ν

−ν

)(
1√
κ

R+

1√
κ

R−

)†

Addendum

Sκ= 1
2

via purification:

Utilizing this possibility of expressing a mixed state as a reduction of its associated

pure states, we express the kappa entropy Sκ for κ = 1
2 as

Sκ= 1
2
(ρ) = 2

(
∥ |√ρ⟩⟩∥1 − ∥ |ρ√ρ⟩⟩∥1

)

= 2(
N

∑
i=1

(pi)
1/2 −

N

∑
i=1

(pi)
3/2).

This result is valid for any density matrix ρ up to a unitary transformation, i.e.,

ρ → WρW† ⇒ ρ → √
ρ =

√

WρW† = W
√

ρW† =
√

WVDV†W† = WV
√

D(WV)†

then

ρ → |√ρ⟩⟩ =
∣
∣
∣
∣

√

WρW†

〉〉

= WV ⊗ (WV)∗
∣
∣
∣

√
D
〉〉

,

due the local unitary invariance of the 1-norm,

∥
∥
∥
∥

∣
∣
∣
∣

√

WρW†

〉〉∥
∥
∥
∥

1

= ∥ |√ρ⟩⟩∥1,

so, Sκ= 1
2
(WρW†) = Sκ= 1

2
(ρ).

Recall next the triangular inequality for the l1 norm, ∥x∥1 + ∥y∥1 ≤ ∥x + y∥1,

|∥x∥1 − ∥y∥1| ≤ ∥x − y∥1, and applying it to the last equation leads to an upper bound for
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the kappa entropy, this time determined only by the spectrum of the related density matrix;

it reads

∣
∣
∣Sκ= 1

2
(ρ)
∣
∣
∣ = 2

∣
∣∥ |√ρ⟩⟩∥1 − ∥ |ρ√ρ⟩⟩∥1

∣
∣ ≤ 2∥ |√ρ − ρ

√
ρ⟩⟩∥1

≤ 2
N

∑
i=1

((pi)
1/2 − (pi)

3/2).

Proof of Proposition 4. Consider attaching to the Hilbert space CN of the reference quan-

tum system, an auxiliary qubit so the total state space is H ≈ C2 ⊗ CN . Next, consider

the initial state |0⟩⟨0| ⊗ ρ, where we denote with ρ the density matrix of the system for

which we want to evaluate the kappa entropy. Introduce the following map on the density

matrices S [M] : D(H) → D(H) explicitly composed of maps acting on the composite

system of reference+qubits,

S [M] ≡AdH ⊗ I◦AdVcM◦AdH ⊗ I:D(H) → D(H),

on an initial state, i.e., |0⟩⟨0| ⊗ ρ → S [M](|0⟩⟨0| ⊗ ρ),

|0⟩⟨0| ⊗ ρ
AdH⊗I→ AdVcM→ AdH⊗I→ |0⟩⟨0| ⊗ ρ

where the adjoint action A → XAX† has been denoted as A → AdX(A). Specifically,

AdH ⊗ I stands for the local adjoint action of the Hadamard gate H on the auxiliary qubit

state, i.e., Ad(H ⊗ I)ρ2 ⊗ ρN = Hρ2H† ⊗ ρN . Also, AdVcM stands for the control M gate

VcM = P0 ⊗ M + P1 ⊗ I, acting on the composite system with control on the qubit state and

the target on the reference system.

AdVcM(.) = VcM(.)V†
cM = (P0 ⊗ M + P1 ⊗ I)(.)

(

P0 ⊗ M† + P1 ⊗ I
)

Next, let M : CN → CN as the matrix introduced before and also Ω : C2 → C2 for a matrix

acting on an the auxiliary qubit space. Define map TΩ[M],

TΩ[M] ≡Tr1(Ω ⊗ I)◦S [M]:D(H) → D(H),

parametrized by some Ω and M. Map T describes the action taken after S [M] on the

total auxiliary qubit+reference density matrix state, e.g., |0⟩⟨0| ⊗ ρ. On the resulting

state S [M](|0⟩⟨0| ⊗ ρ), the mean value of the qubit space operator Ω is measured next,

i.e., Tr1(Ω ⊗ I)S [M](|0⟩⟨0| ⊗ ρ.

Examples: the choice Ω = I leads to

Tr1(Ω ⊗ I)S [M](|0⟩⟨0| ⊗ ρ) =
1

2
(MρM† + ρ),

the choice Ω = |0⟩⟨0| − |1⟩⟨1| ≡ σ3 leads to

Tr1(Ω ⊗ I)S [M](|0⟩⟨0| ⊗ ρ) =
1

2
(ρM† + Mρ).

Also, if M = ρ, then S [ρ](|0⟩⟨0| ⊗ ρ) = ρ2. The choices M = ρ±κ , then give

S [ρ±κ ](|0⟩⟨0| ⊗ ρ) = ρ1±κ .

In explicitly matrix form:
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S [M]

((

ρ .

. .

))

=
1

4

(

I I

I −I

)(

M .

. I

)(

I I

I −I

)

︸ ︷︷ ︸

(

ρ .

. .

)(

I I

I −I

)(

M† .

. I

)(

I I

I −I

)

︸ ︷︷ ︸

=
1

4

(

M + I M − I

M − I M + I

)

︸ ︷︷ ︸

(

ρ .

. .

)(

M† + I M† − I

M† − I M† + I

)

︸ ︷︷ ︸

=
1

4

(

ρ
(

M† + I
)
+ Mρ

(
M† + I

)
Mρ
(

M† + I
)
− ρ
(

M† + I
)

ρ
(

M† − I
)
+ Mρ

(
M† − I

)
Mρ
(

M† − I
)
− ρ
(

M† − I
)

)

.

The choice Ω = σ3, i.e., Ω ⊗ I =

(

I

−I

)

leads to

Tr1

(

(Ω ⊗ I)S [M]

((

ρ .

. .

)))

= Tr1
1

4

(

I

−I

)(

ρ
(

M† + I
)
+ Mρ

(
M† + I

)
Mρ
(

M† + I
)
− ρ
(

M† + I
)

ρ
(

M† − I
)
+ Mρ

(
M† − I

)
Mρ
(

M† − I
)
− ρ
(

M† − I
)

)

=
1

4
Tr1

(

ρ
(

M† + I
)
+ Mρ

(
M† + I

)
Mρ
(

M† + I
)
− ρ
(

M† + I
)

−ρ
(

M† − I
)
− Mρ

(
M† − I

)
−Mρ

(
M† − I

)
+ ρ
(

M† − I
)

)

.

Which yields

Tr1

((

I

−I

)

S [M]

((

ρ .

. .

)))

=
1

4

{(

ρ
(

M† + I
)

+ Mρ
(

M† + I
)

− Mρ
(

M† − I
)

+ ρ
(

M† − I
))}

=
1

4
{ρM† + ρ + MρM† + Mρ − MρM† + Mρ + ρM† − ρ}

=
1

2
(ρM† + Mρ).

Moreover,

Tr1

(

(σ3 ⊗ IN)S [ρκ ]

((

ρ .

. .

)))

= ρ1+κ ,

Tr1

(

(−σ3 ⊗ IN)S [ρ−κ ]

((

ρ .

. .

)))

= −ρ1−κ .

So, T±σ3 [ρ
±κ ] =± ρ1±κ . Abbreviating T±σ3 to T± yields the kappa entropy

−Tr
1

2κ

(
T+[ρκ ] + T −[ρ

−κ ]
)
(|0⟩⟨0| ⊗ ρ) = −Tr

1

2κ

(

ρ1+κ − ρ1−κ
)

= Sκ(ρ).

Proof of Proposition 5. The following work-flow outlines the content of the proof.
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Sκ(ρ)
↗
↘

sinhc modulation

sinhc approximation

→
→

Sκ(ρ) ∼ sinh c(ρ)SvN(ρ)

Sκ(ρ) = SvN(ρ)− limn→∞ Tr
(
ρ|ln ρ|R̂n

)

↓
PF-Thm

↓
what’s limn→∞ R̂n

↓
1
ν (Sκ(ρ)− SvN(ρ)) ∈ [0, ∞)

The proof starts with the κ entropy Sκ of a density matrix ρ = UΛU†, and shows,

by employing the sinhc function, that it admits two decompostions; one multiplicative, in

which Sκ is shown to equal a von Neumann entropy SvN , that is modulated with sinhc as

the modulation kernel function, and one additive, in which Sκ equals SvN plus an operator

limiting function. This limiting function is shown to be computed by invoking the Perron–

Frobenius theorem for positive matrices, that involve the operator |ln Λ|. Finally, the κ

weighted difference of Sκ and SvN entropies is shown to be non-negative real.

Let ρ = ∑
N
i=1 pi|ui⟩⟨ui| = UΛU† be the spectral decomposition of the density matrix.

Consider the real powers of the density matrix

ρ±κ+1 = UΛ±κ+1U† = UΛ±κU†

= ∑
i

p±κ
i |ui⟩⟨ui|,

where p±κ
i := e±κ ln pi . Define the hyperbolic cardinal sine function [54],

sinhc(x) =

{

1 for x = 0
sinh x

x for x ∈ R\{0} or x ∈ C\{0}

or its normalized form

sinhcπ(x) =

{

1 for x = 0
sinh πx

πx for x ∈ R\{0} or x ∈ C\{0}

where sinh x = 1
2 (e

x − e−x).

Then, (assuming pi ̸= 0 for all i’s), the spectral decomposition of the kappa entropy

reads

Sκ(ρ) = − 1

2κ
Tr(ρκ+1 − ρ−κ+1) = − 1

2κ
Tr(ρ(ρκ − ρ−κ))

= −1

κ
Tr(ρ(∑

i

sinh(κ ln pi)|ui⟩⟨ui|))

= −Tr(∑
i

pi ln pi
sinh(κ ln pi)

κ ln pi
︸ ︷︷ ︸

|ui⟩⟨ui|) (A2)

rearranging

Sκ(ρ) = −1

κ
Tr(∑

i

pi × κ ln pi sinhc(κ ln pi)|ui⟩⟨ui|),

Sκ(ρ) = −1

κ
Tr ∑

i

pi(ln pκ
i sinhc(ln pκ

i ))|ui⟩⟨ui|.

Remark: The above Equation (A2), Sκ(ρ) = TrSvN(ρ)sinhc(κ ln ρκ) shows that the

κ-entropy of a density operator ρ is expressed as a self-modulation of its von Neumann

entropy SvN(ρ) by a kernel function identified with the sinhc function with the argument



Entropy 2025, 27, 482 18 of 25

depending on κ ln pi, i.e., sinhc(κ ln pi), in the eigenbasis of the ρ operator. This property

provides a direct relation between Sκ and SvN . Treating Sκ as SvN with sinhc modulation for

any discrete probability distribution function (d-pdf) would suggest another application.

The κ entropy could be applied when studying the sequences of d-pdf’s p1 ≻ p2 ⊁

p3 ≻ · · · ≻ pn−1 ≻ pn that violate the majorization condition ≻ ([68]), and exhibit an

evolution to an equilibrium state where the entropy is allowed to decrease locally, while it

increases globally in the asymptotic limit. Such a phenomenon appears in the study of the

evolution of a quantum walk ([69]). The evolution of d-pdf in that case, due to the braking

of majorization ordering, exhibits a modulation of an otherwise monotonic sequence of

entropy values in small subsets, c.f. Figure 7, and related discussion ([69]).

Next, we proceed to introduce two approximations in the above equation for Sκ(ρ):

first, denote by x the sequence, x = (xi)i ≡ (ln pκ
i )i to cast the kappa entropy in the form

Sκ(ρ) = −1

κ
Tr ∑

i

pi(xi (sinhc(xi))|ui⟩⟨ui|. (A3)

Recall the necessary numerical-algebraic background: The Chebyshev–Stirling num-

bers of both kinds are known in the literature ([55–57]) as the case γ = 1
2 of the Jacobi–

Stirling numbers of both kinds determined by means of the recurrence relations

[

n

k

]

γ

=

[

n − 1

k − 1

]

γ

+ (n − 1)(n + 2γ − 2)

[

n − 1

k

]

γ

and {

n

k

}

γ

=

{

n − 1

k − 1

}

γ

+ k(k + 2γ − 1)

{

n − 1

k

}

γ

with initial conditions

[

n

0

]

γ

=

{

n

0

}

γ

= δ0n and

[

0

k

]

γ

=

{

0

k

}

γ

= δ0k.

We proceed with the following two approximations of the function sinhc in terms of the

Jacobi–Stirling (JS) numbers

[

a

b

]

m

.

Approximation 1: an asymptotic formula for the Chebyshev–Stirling numbers of the

first kind ([56])

sinhcπ(x) ∼ 1

(n!)2

n

∑
m=0

[

n + 1

m + 1

]

1/2

x2m, n → ∞

x sin hcπ(x) ∼ 1

(n!)2

n

∑
m=0

[

n + 1

m + 1

]

1/2

x2m+1, n → ∞.

A second approximation of the JS numbers is valid:

Approximation 2: For m = 0, . . . , n, ([57])

1

(n!)2

[

n + 1

m + 1

]

1/2

∼ π2m

(2m + 1)!
, n → ∞.

Combining approximations 1 and 2 yields the following expansion:

x sin hcπ(x) ∼
n

∑
m=0

π2m

(2m + 1)!
x2m+1, n → ∞.
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Back to the kappa entropy

Sκ(ρ) = − lim
n→∞

Tr
N

∑
i=1

n

∑
m=0

(πκ)2m

(2m + 1)!
pi(ln pi)

2m+1|ui⟩⟨ui|.

which is now expressed as

Sκ(ρ) = − lim
n→∞

Tr
n

∑
m=0

(πκ)2m

(2m + 1)!
ρ(ln ρ)2m+1,

or in terms of the vN entropy SvN(ρ) = −Tr(ρ ln ρ), equivalently as

Sκ(ρ) = SvN(ρ)− lim
n→∞

Tr
n

∑
m=1

(πκ)2m

(2m + 1)!
ρ(ln ρ)2m+1. (A4)

We turn next to the evaluation of the bounds: first, c.f. the spectral decompositions

ρ = UΛU†, Λ = ∑
M
i=1 pi|ui⟩⟨ui |, and

ρ(ln ρ)2m+1 =
N

∑
i=1

pi(ln pi)
2m+1|ui⟩⟨ui |

= U
(

Λ(ln Λ)2m+1
)

U†

and observe that since 0 < pi < 1, then ln pi is negative real, i.e., ln pi = −|ln pi|, so

(ln pi)
2m+1 = (−(|ln pi|))2m+1 = −|ln pi|2m+1. Then,

Sκ(ρ) = SvN(ρ) + lim
n→∞

Tr
N

∑
i=1

n

∑
m=1

(πκ)2m

(2m + 1)!
pi|ln pi|2m+1|ui⟩⟨ui|,

Sκ(ρ) = SvN(ρ) + lim
n→∞

Tr
N

∑
i=1

pi|ln pi|
(

n

∑
m=1

1

(2m + 1)!
(πκ|ln pi|)2m

)

|ui⟩⟨ui|.

Then, by means of the eigen-projectors Pi = |ui⟩⟨ui| and the defining property Pi =

P2
i = PiPjδij, we obtain that

Sκ(ρ) = SvN(ρ) + lim
n→∞

Tr

{

(ρ|ln ρ|)
n

∑
m=1

1

(2m + 1)!
(πκ|ln ρ|)2m

}

. (A5)

Bounds: Next, bounds will be worked out for the second term in the rhs of the last

equation above. First, we invoke the content of the Perron–Frobenius theorem.

The bounds to be worked out will be evaluated by means of the relations

1

(2n + 1)!

n

∑
m=1

(πκ|ln pi|)2m ≤
n

∑
m=1

1

(2m + 1)!
(πκ|ln pi|)2m ≤ 1

(2 + 1)!

n

∑
m=1

(πκ|ln pi|)2m

or

n

(2n + 1)!

1

n

n

∑
m=1

(πκ|ln pi|)2m

︸ ︷︷ ︸

≤
n

∑
m=1

1

(2m + 1)!
(πκ|ln pi|)2m ≤ n

6

1

n

n

∑
m=1

(πκ|ln pi|)2m

︸ ︷︷ ︸

.

(A6)

The special case of matrix A, by means of the previous assumptions and the properties: (i)

λ1
max is the largest of all powers of λmax and λmin; (ii) λn

min is the smallest of all powers of

λmax and λmin, yields the bounds
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n

(2n + 1)!

1

n

n

∑
m=1

λm
max

(

(πκ|ln pi|)2

λmax

)m

︸ ︷︷ ︸

≤
n

∑
m=1

1

(2m + 1)!
(πκ|ln pi|)2m

≤ n

6

1

n

n

∑
m=1

λm
max

(

(πκ|ln pi|)2

λmax

)m

︸ ︷︷ ︸

(A7)

or

n

(2n + 1)!
λn

min
1

n

n

∑
m=1

(

(πκ|ln pi|)2

λmax

)m

︸ ︷︷ ︸

≤
n

∑
m=1

1

(2m + 1)!
(πκ|ln pi|)2m

≤ n

6
λmax

1

n

n

∑
m=1

(

(πκ|ln pi|)2

λmax

)m

︸ ︷︷ ︸

(A8)

Next, we work out the lower and the upper limit of the concerned sum

Tr

{

(ρ|ln ρ|) lim
n→∞

n

∑
m=1

1

(2m + 1)!
(πκ|ln ρ|)2m

}

,

by means of PF-Thm, and complete the proof by showing that the set of values of the scaled

difference of κ and the vN entropy is the interval [0, ∞).

Perron–Frobenius theorem: Let the positive matrix A = (Aij)
N
i,j=1 with Aij > 0. Let the

simple eigenvalues of A ordered as |λ1| ≥ |λ2| ≥ · · · ≥ |λN |. Denote λmin = λN , and by

λmax ≡ λ1 < 1, the spectral radius or maximal or dominant eigenvalue, and let |umax⟩ be

its associated eigenvector.

(1) Power limit: Then, it is valid that

lim
n→∞

(
A

λmax

)n

= |umax⟩⟨umax |.

(2) Cesaro summation limit: With a matrix A as above, it is valid that

lim
n→∞

1

n

n

∑
m=1

(
A

λmax

)m

= |umax⟩⟨umax |.

Below the PF-Thm, the special case of the matrix A ≡ (πκ|ln Λ|)2, where the eigen-

values of the ρ density matrix form a discrete probability distribution, will be denoted by

pi, i = 1, . . . , N, and also where the matrix A′s maximal eigenvalue λmax will be assumed

to be 0 < λmax ≤ 1.

Lower bound: For the rhs of Equation (A5), we obtain via the inequalities of

Equation (A6)

Tr

{

(ρ|ln ρ|) lim
n→∞

n

∑
m=1

1

(2m + 1)!
(πκ|ln ρ|)2m

}

≥
(

lim
n→∞

n

(2n + 1)!

n

(2n + 1)!
λn

min

)

Tr









(ρ|ln ρ|) lim
n→∞

1

n

n

∑
m=1

(

(πκ|ln ρ|)2

λmax

)m

︸ ︷︷ ︸

R̂









.
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Next, the evaluation of the operator limit R̂ ≡ lim
n→∞

1
n ∑

n
m=1

(

(πκ|ln ρ|)2

λmax

)m

will be based

on the Perron-Frobenius theorem (PF-Thm) in one of its equivalent expressions that involves

the so-called Cesaro summation ([49,51,70]).

Applying the PF-Thm in its Cesaro summation limit for matrix A ≡ (πκ|ln ρ|)2 yields

Tr







(ρ|ln ρ|)· lim

n→∞

1

n

n

∑
m=1

(

(πκ|ln ρ|)2

λmax

)m

︸ ︷︷ ︸

R








= Tr((ρ|ln ρ|) · |umax⟩⟨umax |)
= ⟨umax |(Λ|ln Λ|)|umax⟩.

Then, due to the limit lim
n→∞

n
(2n+1)!

= 0, the previous evaluation yields the lower bound

Tr

{

(ρ|ln ρ|) lim
n→∞

n

∑
m=1

1

(2m + 1)!
(πκ|ln ρ|)2m

}

≥
(

lim
n→∞

n

(2n + 1)!
λn

min

)

⟨umax |(Λ|ln Λ|)|umax⟩. (A9)

Upper bound: Next, recalling again Equation (A6), consider the sum

Tr

{

(ρ|ln ρ|) lim
n→∞

n

∑
m=1

1

(2m + 1)!
(πκ|ln ρ|)2m

}

≤
(

lim
n→∞

n

(2 + 1)!

)

λmaxTr




(ρ|ln ρ|) lim

n→∞

1

n

n

∑
m=1

(πκ|ln ρ|)2m

λmax
︸ ︷︷ ︸






≤
(

lim
n→∞

n

6

)

λmaxTr((Λ|ln Λ|)|umax⟩⟨umax |)

≤
(

lim
n→∞

n

6

)

λmax⟨umax |(Λ|ln Λ|)|umax⟩. (A10)

Referring to Equation (A4), and combining the last inequalities in Equations (A9) and (A10),

we obtain that Sκ(ρ) is bounded as

Sκ(ρ) ≥ SvN(ρ) +

(

lim
n→∞

n

(2n + 1)!
λn

min

)

⟨umax |(Λ|ln Λ|)|umax⟩

Sκ(ρ) ≤ SvN(ρ) +
(

lim
n→∞

n

6
λmax

)

⟨umax |(Λ|ln Λ|)|umax⟩).

Elaborating on the bounds of the scaled difference between the κ and von Neumann

entropies leads to

(

lim
n→∞

n

(2n + 1)!
λn

min

)

≤ Sκ(ρ)− SvN(ρ)

⟨umax |(Λ|ln Λ|)|umax⟩)
≤
(

lim
n→∞

n

6
λmax

)

.

Finally, the asymptotic interval of values of the scaled difference of the two entropies

becomes

Sκ(ρ)− SvN(ρ)

⟨umax |(Λ|ln Λ|)|umax⟩)
∈ [ lim

n→∞

n

(2n + 1)!
λn

min, lim
n→∞

n

6
λmax)

∈ [0, ∞). (A11)
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Proof of Proposition 6. Let the trace of the transformed density matrix, and recall from

the previous proposition, be λ′ = ∆Eλ, where ∆E = ∑i pi Ai ◦ A∗
i , then

Trρ′κ+1 = TrΛ′κ+1 = ∑
i

λ′κ+1
i = ∑

i

((∆Eλ)i)
κ+1 = ∑

i




∑

j

pj(h
jλ)i

︸ ︷︷ ︸






κ+1

.

Elaborate the last sum

∑
j

pj(h
jλ)i = ∑

j

pj ∑
m

(

hj
)

im
λm = ∑

j
∑
m

pj

(

hj
)

im
λm

= ∑
j

∑
m

pj H
(i)
jm λm = pT H(i)λ

where H
(i)
jm ≡

(
hj
)

im
, and H = ∑i H(i). Returning to the trace expression

Trρ′κ+1 = ∑
i

(pT H(i)λ)
κ+1

= ∑
i

(TrH(i)λpT)
κ+1

= ∑
i

(⟨p|H(i)|λ⟩)κ+1

= ∑
i

(Tr(H(i)|λ⟩⟨p|)κ+1

where |λ⟩ = ∑
N−1
i=0 λi|i⟩, and |p⟩ = ∑

N−1
i=0 pi|i⟩.

Next, we look for an upper bound to the last sum above. Since

⟨p|H(i)|λ⟩ = Tr(H(i)|λ⟩⟨p|) ≤
√

TrH(i)H(i)T
√

Tr|λ⟩⟨p|(|λ⟩⟨p|)T

=
√

TrH(i)H(i)T
√

Tr|λ⟩⟨p||p⟩⟨λ|

=
√

TrH(i)H(i)T
√

Tr|λ⟩⟨p||p⟩⟨λ|

=
√

TrH(i)H(i)T
√

⟨p|p⟩⟨λ|λ⟩

we find

Trρ′κ+1 ≤ ∑
i

(
√

TrH(i)H(i)T)κ+1(
√

⟨p|p⟩⟨λ|λ⟩)κ+1 = ηκ(
√

⟨p|p⟩⟨λ|λ⟩)κ+1

where ηκ = ∑i(
√

TrH(i)H(i)T)κ+1. Summarizing

Trρ′κ+1 ≤ ηκ(∥|p⟩∥∥|λ⟩∥)κ+1

Trρ′−κ+1 ≤ η−κ(∥|p⟩∥∥|λ⟩∥)−κ+1

Comment on the result obtained. The constants are expressed in terms of the matrix

norms of the h elements,

ηκ = ∑
i

(
√

TrH(i)H(i)T)κ+1 = Σi

∥
∥
∥H(i)

∥
∥
∥

κ+1

η−κ = Σi

∥
∥
∥H(i)

∥
∥
∥

−κ+1

Proof of Lemma. Let ρ′ = UΛ′U†, ρ = VΛV†, the canonical decomposition of the density

matrices with Λ′ = diag(λ′) and Λ = diag(λ). Schematically,
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ρ
E→ ρ′

↓ ↓
VΛV† → UΛ′U†

↓ ↓
Λ = diag(λ) → Λ′ = diag(λ′)

↓ ↓
λ →

∆E
λ′ = ∆Eλ

Here, h = ∑
N−1
i=0 |i + 1⟩⟨i|, where i + 1 is compute mod N, the generator of circulant

matrices
{

h0 = hN = I, h1, h2, . . . , hN−1
}

. It follows that λ′ = ∆Eλ, where ∆E = ∑i pi Ai ◦
A∗

i .
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