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ABSTRACT

Context. Faraday rotation contains information about the magnetic field structure along the line of sight and is an important instrument
in the study of cosmic magnetism. Traditional Faraday spectrum deconvolution methods such as RMCLEAN face challenges in
resolving complex Faraday dispersion functions and handling large datasets.
Aims. We developed a deep learning deconvolution model to enhance the accuracy and efficiency of extracting Faraday rotation
measures from radio astronomical data, specifically targeting data from the MeerKAT Galaxy Cluster Legacy Survey (MGCLS).
Methods. We used semi-supervised learning, where the model simultaneously recreates the data and minimizes the difference between
the output and the true signal of synthetic data. Performance comparisons with RMCLEAN were conducted on simulated as well as
real data for the galaxy cluster Abell 3376.
Results. Our semi-supervised model is able to recover the Faraday dispersion for extended rotation measure (RM) components, while
accounting for bandwidth depolarization, resulting in a higher sensitivity for high-RM signals, given the spectral configuration of
MGCLS. Applied to observations of Abell 3376, we find detailed magnetic field structures in the radio relics, and several active
galactic nuclei. We also applied our model to MeerKAT data of Abell 85, Abell 168, Abell 194, Abell 3186, and Abell 3667.
Conclusions. We have demonstrated the potential of deep learning for improving RM synthesis deconvolution, providing accurate
reconstructions at a high computational efficiency. In addition to validating our data against existing polarization maps, we find new
and refined features in diffuse sources imaged with MeerKAT.

Key words. magnetic fields – polarization – methods: data analysis – techniques: polarimetric –
galaxies: clusters: intracluster medium

1. Introduction

The utilization of Faraday rotation in astrophysics spans a
diverse array of cosmic phenomena, ranging from the interstellar
medium of our own Galaxy to extragalactic sources. By study-
ing the amount of Faraday rotation that polarized radio emis-
sion suffers from the source to the observer, we learn about
the magnetic properties of the intervening medium. The so-
called Faraday depth contains information on the strength of
the magnetic field along the line of sight. The dispersion of
the Faraday depth gives us information about a possible tur-
bulent component of the magnetic field. Modern radio inter-
ferometers, such as MeerKAT (Jonas & MeerKAT Team 2016),
the LOw Frequency ARray (LOFAR; van Haarlem et al. 2013),
and the Australian Square Kilometre Array Pathfinder (ASKAP;
Johnston et al. 2007), allow us to study the radio sky across a
wide frequency band, while achieving unprecedented precision
in polarization measurements.

The MeerKAT radio interferometer
(Jonas & MeerKAT Team 2016), situated in South Africa,
is particularly suited to polarization studies, owing to its large
bandwidth. The dense inner configuration of the MeerKAT
array provides a high sensitivity to extended emission, while
its longest baseline, spanning 7698 m, offers a high angular
resolution. At the central frequency of 1283 MHz, the largest
? Corresponding author;
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resolved angular size is about 27.5′ together with a nominal
resolution of about 6′′.

Multiple methods of decomposing the Faraday rotating
signal have been proposed over the years, for example,
Faraday rotation measure (RM) synthesis (Burn 1966;
Brentjens & de Bruyn 2005; Bell & Enßlin 2012), wavelet
decomposition (Frick et al. 2010), compressive sampling
(Li et al. 2011; Andrecut et al. 2012), and QU fitting
(Farnsworth et al. 2011; O’Sullivan et al. 2012; Ideguchi et al.
2014). For a comparison between the algorithms, readers can
refer to Sun et al. (2015). Parametric fits for the spectra of
Faraday depth and Stokes Q and U typically assume a Gaussian
random distribution for the components of the turbulent mag-
netic field. Model-free descriptions have been developed, for
example, by Van Eck (2018).

In this work we focus on RM synthesis, which decom-
poses the polarized emission into its constituent Faraday rotat-
ing components in a computationally cost-effective way. How-
ever, due to the limited coverage in frequency space, uncertain-
ties and false positives in the form of side lobes arise in the
Fourier space, particularly for cases with multiple RM com-
ponents along the line of sight (e.g., Farnsworth et al. 2011;
Kumazaki et al. 2014; Miyashita et al. 2016). Methods such as
RMCLEAN (Heald et al. 2009) reconstruct the RM synthesis
signal iteratively, gradually adding point sources to a model
spectrum until the residual is below a specified threshold. While
this point source assumption is valid in cases where the emitted
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synchrotron radiation is separated from the Faraday rotating
medium, it breaks down for regions where the radiation is emit-
ted in a magnetized plasma. Examples of this include Galactic
diffuse emission, supernova remnants, nearby galaxies, and dif-
fuse radio emission in galaxy clusters (Sun et al. 2015).

Prior works have investigated the application of deep learn-
ing techniques to classify the complexity of RM spectra (e.g.,
Brown et al. 2019; Alger et al. 2021); however, deep learning
has not been applied to the deconvolution of RM spectra. In
analogy to radio interferometry, where the issue originates from
incomplete uv coverage, recent advancements in deep learn-
ing have addressed similar issues by methods such as uv-space
completion (Schmidt et al. 2022) and direct image reconstruc-
tion using diffusion models (Wang et al. 2023). In this study, we
propose a novel approach for the deconvolution of RM spectra
employing deep learning, by training on data from the MeerKAT
Galaxy Cluster Legacy Survey (MGCLS; Knowles et al. 2022),
together with simulated data, generated to match the distribution
of the observational data.

This paper is organized as follows: In Sect. 2 we describe
the basics of RM synthesis. In Sect. 3 we describe the obser-
vations used in this work. Section 4 explains the deep learning
model, including the data preprocessing, the neural network
architecture, and training. In Sect. 5 we present the results
from simulated and observational data and compare our results
to RMCLEAN. The discussion and conclusions are given in
Sects. 6 and 6.4.

2. Faraday rotation measure synthesis

In analogy to radio interferometry, the Faraday dispersion rela-
tion can be expressed by the measurement equation, relating the
Faraday depth φ, to the spectral dimension, defined by the wave-
length squared λ2. Following the notations from Burn (1966) for
the Faraday dispersion function F(φ) and the complex polarized
intensity P(λ2), the simplest form of the measurement equation
reads

P(λ2) =

∫ ∞

−∞

F(φ)e2iλ2φdφ + n(λ2), (1)

where n(λ2) is noise, which for this work is assumed to be uncor-
related in λ2 and Gaussian-distributed in the real and imaginary
parts. Additional terms, such as channel weights and a channel
dependent sensitivity window (Pratley & Johnston-Hollitt 2020)
that has been proposed to account for channel-averaging effects,
are not used in this work. As we are working with a limited band-
width, in both λ2 and φ, Eq. (1), reduces to the discrete inverse
Fourier transform

P̃(λ2) =

N∑
i

Fie2iλ2φi + n(λ2), (2)

or in matrix form

y = Φx + n, (3)

where Φ is the measurement operator of RM synthesis. Given the
increasingly large data sizes generated by modern interferome-
ters, data are often averaged over frequency. While this process
increases the signal-to-noise ratio and reduces the computational
cost of both calibration and imaging, it also carries the risk of
bandwidth depolarization. For Faraday rotating signals, where
the real and imaginary parts are a series of sinusoidal waves, the
averaging process can smear out the phase information across

Table 1. Spectral and RM synthesis configuration of MGCLS.

Frequency range 856–1712 MHz
– Bandwidth 797 MHz
Number of channels
– initial 4096
– final 12
Frequency resolution δν
– initial 209 kHz
– final 62 MHz (mean)
Wavelength squared bandwidth ∆λ2 0.076 m2

– min resolution δλ2
min 0.0019 m2

– max resolution δλ2
max 0.0168 m2

Faraday depth bandwidth ∆φ 512 rad m−2

Faraday depth sampling δφ 1 rad m−2

frequency channels, leading to a loss of polarization information.
This effect becomes more pronounced for high rotation measures
or low frequencies, where the polarization angle rotates rapidly.
This can average the resulting signals to near zero. As a result,
the maximum Faraday depth to which one has more than 50%
sensitivity is approximately ‖φmax‖ =

√
3/δλ2.

Here we will write the channel-averaging operator as

Ayi =
1
N

N∑
j

y j, (4)

where yi is the average signal intensity of the i-th channel bin,
and N is the number of channels in each bin.

By expressing these operations in matrix form, we can lever-
age the broadcasting feature of matrix multiplication, enabling
efficient element-wise operations across arrays of different
shapes without explicit looping. This, coupled with the paral-
lel computing capabilities of GPUs, accelerates the execution of
the algorithm for processing large-scale datasets significantly.

3. Observation

The data used in this paper have been taken from MGCLS. For
imaging and calibration details see Knowles et al. (2022). Out
of the total number of 115 surveyed galaxy clusters, 44 were
imaged in full Stokes. The data products include image cubes
consisting of 12 frequency channels (908−1656 MHz), within
the L-band (856−1712 MHz), at the full 8′′ and 15′′ resolution
to help recover low-surface-brightness features, such as radio
relics. Table 1 provides the spectral and RM configuration of
this dataset.

The 12 spectral channels of the dataset provide an RM sensi-
tivity up to 173 rad m−2, where the sensitivity is reduced to half.
However, as we will see in Sect. 5.1, using deep learning, we can
detect higher values of RM by learning the sensitivity window of
our observation. Consequently, the selected RM search range is
set to [−256, 256) rad m−2, with a sampling in Faraday space of
1 rad m−2. Due to the limited bandwidth of our observation, each
point in φ will be convolved with the Rotation Measure Spread
Function (RMSF), shown in Figure 1, together with an example
Faraday spectrum from the Abell 3376 dataset.

The main focus in this paper is the Abell 3376 cluster, which
has previously been studied by, for example, Kale et al. (2012),
George et al. (2015), and Chibueze et al. (2023). The studies
mostly focused on the radio relics. In Hu et al. (2024), syn-
chrotron intensity gradient (SIG) mapping was used to infer

A248, page 2 of 19



Gustafsson, V., et al.: A&A 692, A248 (2024)

Fig. 1. Magnitude of the RMSF for the MGCLS band (left) and an
example Faraday spectrum taken from a pixel in the eastern relic (right).
The estimated noise level is shown as a dashed black line.

the magnetic field orientation in the radio relics. However,
no studies have yet been conducted with MeerKAT in full
polarization.

This cluster harbors two radio relics that extend for Mega-
parsecs. No radio halo has been detected in this cluster. The
orientation of the cluster relics, together with the extended
X-ray emission stretching in the northwest-southeast direction
(Kale et al. 2012), suggests that Abell 3376 is a merging cluster.

Furthermore, the cluster contains several radio galaxies and
active galactic nuclei (AGN). Most notably close to the east-
ern relic, with jets bent by ∼90◦ from their original direction,
which is suggested to be caused by the cluster magnetic field
(Chibueze et al. 2021).

In Appendix A we briefly go over the results of applying
the deep learning model to five more datasets from the MGCLS
DR1, and compare them with previous studies.

4. Deep learning deconvolution

The neural network model aims to invert Eq. (3), which gener-
ally lacks invertibility. However, we can approximate a highly
nonlinear function tailored to this specific task by fine-tuning
the parameters of a neural network. The parameter optimization
process uses the ADAM optimizer (Kingma & Ba 2017), aim-
ing to minimize the mean squared error (MSE) loss between the
observed data and the result obtained after applying the mea-
surement and channel-averaging operators to the network’s pre-
dictions, as given by:

L =
1
N

N∑
i

‖yi −AΦx̂i‖
2, (5)

where N is the number of samples in each batch, x̂i are the
model outputs in φ and yi are the data in λ2. The motivation
behind using the MSE loss lies in the assumption of Gaussian-
distributed noise in both the real and imaginary parts of the
complex polarized intensity. This choice is based on the obser-
vation that the log likelihood function for a Gaussian distri-
bution is directly linked to the squared Euclidean norm, as
seen in the MSE formulation. This approach ensures that our
loss function captures the statistical characteristics of the data
while minimizing the error between predicted and observed
values.

Minimizing Eq. (5) allows us to identify a solution that aligns
with the observed data. However, given the problem’s infinite
solution space, we require a prior to guide the optimization
toward a physically realistic solution. Previous work, such as

nonparametric QU fitting Pratley et al. (2021), incorporate an `1
regularization term to constrain the number of RM components,
essentially adopting a CLEAN prior approach. Instead, this
work includes a Faraday-thick prior by utilizing semi-supervised
learning, including samples with simulated Gaussian sources
in φ, in the training dataset, and allowing the model access to
the true signal of those samples. The model should thus find a
general solution, that reconstructs the simulated sources, while
also fitting the observed data. The full semi-supervised loss thus
reads

L =
β

Nobs

Nobs∑
i

‖yi −AΦx̂i‖
2 +

1
Nsim

Nsim∑
j

‖x j − x̂ j‖
2, (6)

where the loss is divided into contributions from real samples
(Nobs) and simulated samples (Nsim). The first term of the loss
function thus compares the spectra in λ2, while the second part
compares the output x̂ j with the true signal x j in φ. The factor β
is used for weighting the different loss terms, assuring that infor-
mation is passed from the supervised learning onto the observa-
tional data. The β value was set to balance the two loss terms so
that they were of the same order of magnitude. Since the signal
in λ2 spans the entire bandwidth, unlike the sparse peaks seen in
φ, the first loss term would dominate without appropriate weight-
ing. Thus, a value of 10−5 was found to be effective, though this
value was not extensively optimized.

4.1. Preprocessing

Creating a balanced dataset of synthetic data is a relatively sim-
ple process. However, observational data are typically unbal-
anced and may include outliers, which can negatively affect the
training process. Among the samples, bright point sources have
the most significant impact. Additionally, to avoid training the
model on data predominantly comprised of noise, noise domi-
nated samples were also excluded from the training dataset. As
the polarized intensity map was significantly contaminated by
foreground emission, a threshold was instead set by the noise
level in total intensity σI , calculated as

σ2
I =

1
N

N∑
i

σ2
I,i, (7)

where N is the number of channels in the Stokes I cube, and σI,i
is the noise in the i-th channel, measured from an emission-free
region. The implications of setting the threshold in total intensity
is discussed in Sect. 6.2. Both noisy samples and bright sources
were excluded by clipping the dataset to within the range of
(3, 30)σI . The full preprocessing and training steps are shown
in Fig. 2.

After sampling the observed data, P̃obs(λ2), we extracted the
peak flux A, RM, and intrinsic polarization angle θ from the
RM synthesis signals F̃obs(φ). The full set of simulation param-
eters can be seen in Table 2. These parameters were then used to
create one-dimensional simulated samples, each consisting of a
Gaussian mixture model, with one to five Gaussian components
in φ. We note that these simulations are a significant simplifi-
cation of the true profile of Faraday spectra, and that realistic
Faraday spectra are expected to exhibit non-Gaussian features.
Examples of such features can be seen in Bell et al. (2011),
where sharply peaked and asymmetric profiles are obtained from
more advanced simulations.

The amplitude of each component was adjusted to conserve
the total flux of the sample by dividing it by the number of

A248, page 3 of 19



Gustafsson, V., et al.: A&A 692, A248 (2024)

Fig. 2. Flowchart illustrating our deep learning deconvolution model. The notations F and F −1 signify the transformations from λ2 to φ and back,
respectively. Initially, samples are extracted from the observed data and used to generate a simulated dataset with a similar distribution. Next, the
two datasets are combined and fed into the neural network. After the deconvolution process, the predictions F∗obs and F∗sim are separated once more
and evaluated against their corresponding targets using the MSE loss.

Table 2. Source parameters for creating a simulated dataset that matches
the data distribution.

Number of sources U(1, 5)
Amplitude A (µJy) ∼D

Rotation measure RM (rad m−2) ∼D

Intrinsic polarization angle θ (radians) ∼D

FWHM (rad m−2) U(1, 10)
Spectral index α U(−3, 0)
Breaking frequency νb (MHz) U(1, 10)

Notes. The amplitude A, RM, intrinsic polarization angle θ are drawn
from the dataD. The number of sources, full width at half max FWHM,
spectral index α, and breaking frequency are drawn from uniform dis-
tributions.

components. Since the peak flux of the RM synthesis signal cor-
responds to the integral of an unresolved source, the amplitude
was also adjusted by dividing it by the factor that relates the area
of a Gaussian to its amplitude, given by 2

√
log(2)/

√
π FWHM.

The full width at half maximum (FWHM) of each Gaussian
component was drawn from a uniform distribution between 1
and 10 rad m−2. Each simulated sample was then transformed
to λ2, where each signal was multiplied by a combination of a
power-law and an exponential:

P̃ = P̃0

(
ν

ν0

)α
e−ν/νb , (8)

where α is the spectral index, ν0 is set to the lowest frequency in
our band, 856 MHz, and νb is the breaking frequency. No noise
is added at this stage for reasons discussed in Section 6.2. Sam-
ples were then averaged to the 12 frequency channels provided
in the dataset. The simulated signals were then transformed
to φ, resulting in F̃sim(φ) and paired with their corresponding
true signal Fsim(φ) to create input-target pairs. Similarly, each
observed sample F̃obs(φ) was paired with its respective λ2 spec-
trum P̃obs(λ2) to create input-target pairs for the observation
dataset.

4.2. Network architecture

The network architecture for this work is a one-dimensional
U-Net (Ronneberger et al. 2015). The network consists of five

Table 3. Hyperparameters for the deep learning deconvolution model.

Number of levels 5
Minimum number of channels 64
Convolution kernel size 3
Dropout rate 0.2
Batch size 256
Initial learning rate 10−5

– min learning rate 10−7

– learning rate factor 0.1
– learning rate patience 5 epochs
Loss weighting factor β 10−5

levels, each consisting of a ResNet block (He et al. 2015). In the
contracting path, max-pooling is used to progressively down-
sample the input by a factor of two after each ResNet block,
while in the expanding path, nearest neighbor up-sampling is
applied. Additionally, the model employs skip connections with
attention gates (Oktay et al. 2018) to retain fine structural details.
At the bottleneck, the downsampled input should contain most
of the signal information in a compact latent space. From this
high-dimensional representation, the model should reconstruct
the signal, effectively performing the deconvolution process and
recovering the true Faraday dispersion function. In Table 3, the
set of hyperparameters used for deconvolving the Abell 3376
dataset are shown. The model uses a learning rate scheduler,
monitoring Eq. (6) during training and decreasing the learning
rate by a factor if the loss is not reduced after a set number of
epochs. This approach allows for starting with a relatively high
learning rate, thus speeding up convergence, while also reducing
the risk of overfitting.

4.3. Training

The model was trained with 80 000 real and 20 000 simulated
samples over 100 epochs, reaching convergence after approxi-
mately 80 epochs. The dataset was divided into 80% training,
10% validation, and 10% testing data. During training, the model
optimizes the network parameters using the training data. The
validation dataset is used to monitor the model’s performance
and tune hyperparameters, preventing overfitting by ensuring
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Fig. 3. Loss curves and learning rate during training on the Abell 3376
dataset. The plot shows the training loss (solid line) and validation loss
(dashed line) as a function of epoch, plotted on the left y-axis with a
logarithmic scale. The learning rate, plotted on the right y-axis with a
logarithmic scale, is also shown.

that the model generalizes well to unseen1 data. The final evalua-
tion of the model’s performance is conducted on the test dataset,
which provides an unbiased assessment of its predictive accu-
racy. In Fig. 3, Eq. (6) for the training and validation set is plot-
ted as a function of epochs during the training process, together
with the learning rate. We see that the model generalizes well
to unseen data, as the validation loss is always lower than the
training loss. This is due to the use of dropout, which randomly
sets a fraction of the neurons to zero during training, in order
to find a simpler and more general solution to the problem. We
observe that after 40 epochs, the model encounters a local mini-
mum, where the loss reduction slows down. However, the model
manages to escape this minimum and continues to reduce the
loss after approximately ten more epochs. At around 80 epochs,
the model stops reducing the loss further, prompting the learning
rate scheduler to lower the learning rate.

5. Results

In this section we present the results from applying our semi-
supervised model first to a set of simulated data, and second to a
MeerKAT observation of the galaxy cluster Abell 3376.

5.1. Simple model of Gaussian components

In order to evaluate the recovery of the true signal, we apply our
model to a dataset of simulated Gaussian sources. The simula-
tions were created similarly to Sect. 4.1, but with the parameters
in Table 4. The noise level σQU is added to the real and imag-
inary parts in λ2, set to the square root of the number of chan-
nels, resulting in a noise level of 1 µJy after averaging over all
channels.

In Figs. 4 and 5, we compare the performance of the deep
learning model and RMCLEAN. A fairer comparison would be
to use a multi-scale version of the CLEAN algorithm, similar to
Cornwell (2008), which adds components of gradually increas-
ing scale sizes to the model image. As no such implementation
exists for RMCLEAN, we should not compare the deep learning
model output with the clean components directly, but rather look
at peak flux, RM and polarization angle of the low-resolution
spectra.

Fig. 4 presents a case with a single source located at φ =
−85 rad m−2. Our model successfully recovers the signal and

1 Commonly used word in machine learning, data that the model has
not optimized its parameters to.

Table 4. Source parameters for a simulated testing dataset.

Number of sources U(1, 3)
Amplitude A (µJy) U(0, 50)
Rotation measure RM (rad m−2) U(−200, 200)
Intrinsic polarization angle θ (radians) U(−π/2, π/2)
FWHM (rad m−2) U(1, 10)
Spectral index α U(−3, 0)
Breaking frequency (GHz) νb U(1, 10)
σQU (µJy)

√
Nchannels

Notes. All parameters are drawn from uniform distribution except the
noise level σQU which is the same for all samples.

aligns well with the data in λ2. While there are minor differences
between the true source and the output, they are reduced when
the resolution is set to the theoretical limit.

RMCLEAN iteratively adds point sources until a specified
threshold is reached, usually stopping just before the model
starts cleaning the noise. In our specific example shown in Fig. 4,
RMCLEAN places point sources at locations of strong emis-
sion. However, rather than precisely recovering the true signal,
it overestimates the flux at these points, leaving regions near the
peak flux blank. To replicate the Faraday thick component in this
scenario, RMCLEAN also places sources further from the peak,
leading to a spread that does not accurately reflect the true dis-
tribution. While this behavior is observed in our case, especially
with Faraday thick components, it should be emphasized that
for Faraday thin components, RMCLEAN can more accurately
recover the true signal. The performance of RMCLEAN largely
depends on the specific characteristics of the signal and how the
algorithm is applied.

A more complex Faraday spectrum is shown in Fig. 5, with
three sources with different parameters as listed in Table 4.
While the deep learning model accurately recovers the strong
sources, it fails to detect the weaker source which lies close to
the noise level. For the complex spectrum, it becomes even more
evident that the RMCLEAN assumption is not valid for extended
emission in φ.

Figure 6 shows the predicted Gaussian parameters from the
reconstructed Faraday dispersion, where each sample includes a
single Gaussian component with parameters specified in Table 4.
Each detected signal is fitted with a Gaussian model, from which
the amplitude, FWHM, and peak RM are extracted. Since the fit
is computed using the least squares method, we cannot directly
fit a complex function. Hence, the complex phase is determined
from the obtained peak RM, using

θ =
1
2

arctan
=(F(RM))
<(F(RM))

, (9)

where < and = are operators that select the real and imaginary
parts, respectively.

For all parameters we obtain a clear correlation, but with
some having significant errorbars. We note that the amplitude
does not follow U(0, 50), due to the spectral scaling as shown
in Eq. (8). As a result, the model struggled to accurately pre-
dict high amplitudes, which are infrequent in the data. For the
FWHM, we observe a clear correlation down to 2 rad m−2, which
is unexpected given that the theoretical resolution, defined by
the FWHM of the RMSF, is 43 rad m−2. For the RM and intrin-
sic polarization angle, the errors are minimal, with only about
1.2% of the predicted polarization angles deviating by more than
5◦. Interestingly, the largest errors occur for high signal to noise
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Fig. 4. Comparison between deep learning model output (top) and RMCLEAN (bottom). The outputs are shown in φ (left) and λ2 domain (middle).
In the right plot the outputs are tapered to the theoretical resolution of 43 rad m−2.

Fig. 5. As Fig. 4, but with an assumed more complex Faraday spectrum.

(S/N) signals, likely due to the dataset imbalance, which causes
the model to perform better on the more common low S/N cases.

Since RMCLEAN focuses on one RM component at a time,
it cannot account for interactions between overlapping com-
ponents after RM synthesis. This limitation also applies to
extended RM components, which can be viewed as a collection
of signals that are closely spaced in φ. In contrast, the advan-
tage of the deep learning model is that it considers the entire
spectrum simultaneously, allowing it to learn and account for
potential interference between signals. This capability is shown
in Figure 7, in which we compare the predicted to the true intrin-
sic polarization angle for samples containing multiple RM com-
ponents, according to Table 4.

While the errors are larger than for a single Gaussian com-
ponent, we observe that the predictions are centered on the true
polarization angle. We also note that there is a larger spread

when the samples include multiple sources, as expected due to
greater interference between signals. Quantitatively, the mean
absolute errors are 3.7, 13, and 21◦ for samples containing one,
two, and three sources, respectively. As the number of sources
increases, the complexity of disentangling overlapping polariza-
tion signals rises, leading to higher errors. However, due to the
inherent nonlinearity of the neural network, averaging nearby
pixels, as demonstrated in Sect. 6.2, is expected to reduce errors,
even when individual samples exhibit some similarity. This pro-
cess leads to smoother variations that more accurately trace the
magnetic field lines. Nevertheless, this effect is not explored
further in this paper, and a more detailed analysis would be
necessary to quantify the extent of this error reduction and iden-
tify the conditions under which it is most effective. In con-
trast, as demonstrated in Miyashita et al. (2016), the predicted
polarization angles obtained by reconstructing interfering RM
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Fig. 6. Predicted versus true parameters from Gaussian fittings of the Faraday dispersion. The parameters are amplitude (top left), FWHM (top
right) RM (bottom left) and intrinsic polarization angle (bottom right). Predicted values are shown as black dots. The range is divided into 20 bins
from which the median ±25% are calculated and shown as red dots and errorbars respectively. A reference line where the predicted value equals
the true value is shown as a dashed blue line. Predictions of the polarization angle with an error larger than π/2 radians are adjusted by ±π to
account for the π-periodicity of the signal.

components with RMCLEAN exhibit systematic errors that do
not decrease when averaged over multiple pixels.

As mentioned in Sect. 2, the sensitivity of RM synthesis is
dependent on the channel width and the RM of the source, as
rapidly rotating signals will lead to small net signals in broad
channels. In Fig. 8 we compare the sensitivity of RMCLEAN
and the deep learning model. The test is conducted with a
single Gaussian with the rest of the parameters according to
Table 4, but with RMs up to ±512 rad m−2. While RMCLEAN
demonstrates high accuracy at lower RMs, we observe that its
sensitivity is significantly dependent on the RM value. After
±400 rad m−2, almost no signals are detected. The deep learn-
ing model has a lower accuracy at low RMs, but the sensitivity
remains almost constant over the entire search range, reaching
RMs up to 512 rad m−2. As the model is given access to the
intrinsic intensity of the source, it implicitly learns the sensitivity

window of the observation, and adjusts the output accordingly.
In total, the deep learning model and RMCLEAN are able to find
88% and 72%, respectively, out of the simulated signals.

5.2. MeerKAT data of Abell 3376

Next, we proceeded to test our model on the Abell 3376 dataset
from the MGCLS. RMCLEAN was run to a level of 3σP (σP =
4.3 µJy) with a gain of 0.10. Observe that 3σP is a rough esti-
mate, computed from regions that contains foreground emis-
sion, resulting in an overestimate of the noise level. To have
a fair comparison between the models, both algorithms were
run without masking any pixels. The deep learning model was
run on a NVIDIA A100 80 GB GPU. The computation times
for training and inference were 10 and 15 minutes, respectively,
while RMCLEAN took 5 h on a single thread of a 64-core AMD
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Fig. 7. Predicted versus true intrinsic polarization angle for a test with
multiple Gaussian components generated according to Table 4. Pre-
dicted angles are shown as black, red and green markers for samples
containing one, two and three peaks respectively. The range is divided
into 20 bins from which the median ±25% are calculated for the full
dataset, and shown as red dots and errorbars respectively. A reference
line where the predicted angle equals the true angle is shown as a dashed
blue line. Predictions with an error larger than π/2 radians are adjusted
by ±π to account for the π-periodicity of the signal.

EPYC 7H12 CPU, running at a clock frequency of 2.6 GHz.
As the current version of RMCLEAN does not support multi-
threading, and only considers peaks above 3σP for cleaning, we
cannot compare the computation times between the two algo-
rithms fairly.

In Fig. 9 we show how the Faraday dispersion varies in the
relics and the bright AGNs. In the plot seven spectra are shown.
Five come from line-of-sights through the radio relics in the
cluster periphery, and two spectra from the bright AGNs close
to the northeastern relic. We observe that where there is strong
emission, the RM synthesis signals are deconvolved into narrow
peaks, indicating that the magnetic field remains uniform at the
scale of the beam. In contrast, at points of weaker emission, typ-
ically closer to the cluster center, the Faraday spectrum is more
complex. It is worth noting that the polarization cubes were con-
taminated by foreground emission, which dominates the regions
beyond the cluster relics. Therefore, signals in these areas should
be interpreted with caution. In the AGN, we observe a clear dou-
ble peak signal, separated by about 150 rad m−2.

In Fig. 10 the orientation of the polarization vectors, rotated
by 90◦ to show the projected magnetic field orientation is shown.
The image is produced after deconvolving the RM synthesis
spectra according to the procedure in Sect. 4 and extracting the
intrinsic polarization angle of the polarized emission from the
highest peak in φ. We observe that the magnetic field lines along
the outer edge of the cluster relics align with their shapes, partic-
ularly evident in the tail of the northeastern relic. This supports
the theory that relics are a tracer of merging events, as the com-
pression at the shock front is expected to align the magnetic field
with it (e.g., Enßlin et al. 1998; Domínguez-Fernández et al.
2021). As we move inward along the merger axis, the orientation
becomes more turbulent and in the regions of weak emission, the
orientation is seen as mostly random.

Fig. 8. Sensitivity comparison of the deep learning model and
RMCLEAN. The range is divided into 20 bins from which the median
±25% are calculated and shown as dots and errorbars, respectively.

We observe that in most regions, the magnetic field orienta-
tion aligns with the dominant filament. However, there are some
deviations from this trend, most notably at the upper part of the
eastern relic tail (RA = 6h03m00s, Dec =−40◦00′00′′), where the
magnetic field is oriented toward the inner part of the cluster.
This is one of the discrepancies with Hu et al. (2024), where the
orientation is perpendicular to the intensity gradient.

In Fig. 11, we present a close-up view of the radio galaxy
MRC 0600−399 (z = 0.04559). The image reveals that despite
the jets bending from their initial trajectory, they stay collimated
for approximately 100 kpc in the northern jet and 50 kpc in the
southern jet beyond the bend point. Additionally, to the east of
the galaxy, we observe a distinct structure, which, based on its
higher redshift (z = 0.0480), has previously been identified as a
separate galaxy (Chibueze et al. 2021). Furthermore, we observe
that in both galaxies, the magnetic field orientation far from the
AGN aligns with the direction of the jet outflow. This alignment
is expected, as the jets can influence the large-scale magnetic
field structure by dragging or stretching the field lines along
their paths. However, in regions closer to the AGN, where the
environment becomes more turbulent due to increased activity
and chaotic processes near the black hole, the magnetic field
no longer follows this alignment. In some cases, the field lines
appear perpendicular to the jet outflow. This deviation is likely
due to the complex interactions between the intense radiation
pressure, plasma dynamics, and rotational motion in the vicin-
ity of the AGN core, which disrupt the ordered structure of the
magnetic field.

In Fig. 12 we show the AGN connected to the eastern relic.
This AGN has been proposed by Chibueze et al. (2023), to pro-
vide the relic with seed electrons that potentially are reaccel-
erated by the shock. The link between the AGN and relic is
confirmed by the magnetic field connecting the two structures.
Additionally, there is a bright spot northwest of the protrud-
ing AGN. While the magnetic field in this region aligns with
that of the relic, the Faraday spectrum reveals a complex source
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Fig. 9. Total intensity map of Abell 3376 at a resolution of 8′′×8′′, with five example spectra from the cluster relics and two from the bright AGNs.
Each spectrum has been shifted by local estimates of the Galactic Faraday rotation. The spectra are color-coded as in Figs. 4 and 5, together with
the magnitude shown in red.

Fig. 10. Total intensity map of the relics in Abell 3376 at a resolution of 15′′ × 15′′. Overlaid are the projected magnetic field vectors.

extended in φ, in contrast to the narrow, well-defined peak in the
surrounding region.

The rotation measure map of Abell 3376 is shown in Fig. 13.
The image is produced by localizing the highest peak in
φ for each pixel, after which the galactic RM, taken from
Hutschenreuter et al. (2022), is subtracted. For the most part of
the relics, the RM appear to vary smoothly, except for the weak

emission regions, where the peak emission RM values become
very unstable, possibly indicating the sensitivity limit for the net-
work. Furthermore, the RMs in the AGN show strong fluctua-
tions, reaching values of up to ±100 rad m−2.

In Fig. 14 we show the fractional polarization map of
Abell 3376. The map is produced from the Stokes I,Q,U cubes
before RM synthesis, by summing along the frequency axis as
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Fig. 11. Total intensity map of the AGNs west of the eastern relic, at a
resolution of 8′′ × 8′′. Overlaid are the projected magnetic field vectors.
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i + U2
i
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· (10)

Due to the difficulty in accurately computing σP, the frac-
tional polarization is not corrected for Rician bias. Therefore,
the reported fractional polarization values should be considered
as upper limits. At the shock front of the southwestern relic,
where the magnetic field aligns with the shock, we observe
high fractional polarization, reaching up to 60%. Similarly, in
the tail of the northeastern relic, the fractional polarization also
reaches high values, up to 50%. While such values are expected
in regions with ordered magnetic fields, we also observe peaks
in the polarization fraction at the inner edge of the relics, where
the magnetic field is not ordered on large scales. These peaks
are likely not physical and may instead result from foreground
emission, which does not appear in the total intensity map.

6. Discussion and conclusions

In this section we discuss our results on, both, the simulated and
observational data. We also discuss some implications of our
deep learning model.

6.1. Simulations

In the simulations presented in Section 5.1, we assumed a con-
stant intrinsic polarization angle over each Gaussian component.
Thus, for individual sources, the projected magnetic field would
be aligned at each point of emission along the line of sight.
Although this simplification might not fully capture the physical
reality, modeling the intrinsic polarization variations along the
line of sight is challenging. Furthermore, due to the limited spa-
tial resolution, each pixel also contains information from neigh-
boring pixels. In the case of a Faraday thick component with

Fig. 12. Total intensity map of the AGN connected to the eastern relic,
at a resolution of 8′′ × 8′′. Overlaid are the projected magnetic field
vectors.

ordered magnetic fields, we would expect some kind of correla-
tion of the polarization angle along φ, while in the case of tur-
bulent fields, the polarization angle can be completely random.
It is crucial to note that the simulation outputs must still fit the
observational data. If the initial polarization angle assumption is
inaccurate, the model will adjust it accordingly.

While RMCLEAN is able to locate the peak position of the
spectra seen in Figs. 4 and 5, it does not extract the intrinsic
polarization angle in a correct manner for a scenario where the
polarized intensity follows extended Gaussian profiles. As the
algorithm extracts the real and imaginary parts of the Faraday
dispersion function from the rapidly varying RM synthesis sig-
nal, the polarization angle is not expected to be correct outside
of the peak location. This is seen in the secondary peaks in
Figs. 4 and 5, where the real and imaginary parts do not cor-
respond to the true signal. Furthermore, RMCLEAN uses the
shift theorem of Fourier theory to rotate the RM synthesis signal
to the average λ2. While no information is lost in this transform
(Rudnick & Cotton 2023), it means that a small error in the peak
position, will cause a significant error of the polarization angle
when rotated back to λ2 = 0 (Brentjens & de Bruyn 2005).

Fig. 6 shows that the model systematically underestimates
the signal amplitude, particularly for samples with high S/N.
This is likely because the dataset is unbalanced with respect to
signal strength, causing the model to be biased toward lower
amplitudes. To resolve this issue, one thus have to make sure
that the dataset is balanced, after applying Eq. (8), however, this
is left for future work.

From Fig. 6 we saw that the low resolution in Faraday depth,
φ, can be improved by deep learning, at least for a single unre-
solved source. While there is no way of confirming the super-
resolution on real data, where the true signal is unknown, we
can enhance our confidence in the model’s capabilities by using
neighboring pixels as additional information. Since the model
takes one-dimensional inputs and does not account for neighbor-
ing pixels, incorporating this spatial domain information should
make the super-resolution results more robust.
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Fig. 13. Rotation measure map of Abell 3376 at a resolution of 15′′ × 15′′. For contrast, the colorbar is clipped at ±30 rad m−2. Local estimates for
the Galactic Faraday rotation have been subtracted, with φ = 22 rad m−2 for the eastern relic and φ = 32 rad m−2 for the western relic. Only pixels
with a total intensity above 3σI (σI = 13 µJy) are shown.

When comparing the predicted intrinsic polarization angles
from Figs. 6 and 7, we observe greater deviations from the
true values when multiple sources are included in each sample.
This is expected due to the potential interference between sig-
nals that are close in φ. While this interference typically creates
an unsolvable system of equations, the simulated dataset helps
guide the model toward a reasonable solution.

In Fig. 8, we saw that depolarization effects, common in
regular RM synthesis, can be reduced by learning the sensitiv-
ity window. However, caution should be taken when increas-
ing the search range in φ, as this can produce false positives in
the output. This occurs because the first part of Eq. (6) is RM
sensitivity-dependent, as it includes the averaging operator.

6.2. Abell 3376

In this section we discuss the results from applying the model to
observational data, including some implications and suggestions
for future work.

While Fig. 10 captures the magnetic field orientation on large
scales, as the overlaid projected magnetic field vectors are an
average produced from a number of pixels, the small-scale fea-
tures reveal a different pattern. For example, in Fig. 12, we see
that while the magnetic field is ordered on small scales, it is also
tangled and complex, indicating turbulent processes at play. In
this figure we can more clearly see how the scales on which the
magnetic field is ordered are reduced as we move inward into
the relic. It thus becomes evident that the polarized fraction of
the total flux should decrease due to beam depolarization effects.
This effect is also seen in Fig. 14, where the regions far from the
shock fronts show a decrease in polarized fraction. This decrease
in polarized fraction aligns with expectations, as beam averag-
ing over disordered magnetic fields at smaller scales leads to
depolarization. Near the shock fronts, where the magnetic field
is compressed and aligned, the polarized fraction remains high,

showing the shock’s role in organizing the field. Further away,
increased turbulence causes the reduction in polarization.

As the data are imaged using the CLEAN algorithm, the
model image is convolved with a restoring beam to arrive at the
final images. While the higher 8′′ resolution cubes could have
revealed finer structures of the magnetic field, the 15′′ cubes
were used in this work to improve the signal to noise at the
regions of weak emission. Future telescopes such as the Square
Kilometer Array (SKA) will allow us to study the magnetic field
of radio relics in even greater detail, together with recovering
lower surface-brightness features of polarized emission, due to
greater sensitivity together with a higher angular resolution, thus
reducing the amount of beam depolarization.

From the peaks in Fig. 9, we see that Gaussian peaks are
favored by the model, most likely due to our Gaussian mixture
model prior, rather than the true underlying signal. As physi-
cally realistic magnetic fields likely do not follow Gaussian pro-
files in φ (Bell et al. 2011), future studies should investigate the
model’s ability to recover non-Gaussian features. From the upper
left plot in Fig. 9, we see that the flux increases toward higher
|φ|, which most likely is not the true reality of the relic magnetic
field. These features might arise due to the model’s confusion
caused by the use of a restrictive prior. Including more realistic
and non-Gaussian profiles in the simulated samples could thus
make the model more robust and reduce the amount of unphysi-
cal features.

As mentioned in Sect. 4.1, due to the polarization map being
contaminated by foreground emission, the threshold for train-
ing samples was set in total intensity. The result of this includes
training on strongly depolarized signals, such as regions of tur-
bulent magnetic fields, as well as unpolarized sources. While this
can bias the model toward lower flux, and cause confusion due to
the low S/N, it was preferred over including foreground signals
in the training data, which would lead to poor reconstruction of
the relic Faraday dispersion.
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Fig. 14. Fractional polarization map of Abell 3376 at a resolution of 15′′ × 15′′. Only pixels with a total intensity above 3σI (σI = 13 µJy) are
shown. The map has not been corrected for Rician bias.

While this work has focused on polarization data from the
MGCLS, the model should perform similarly well in other fre-
quency bands and with other telescopes. One only has to change
the RM search range and resolution, as well as the FWHM of
the sources that one expects to find. While it is possible to train
the network on data from a range of instruments, we expect
higher performance when tailored to a specific spectral band.
Furthermore, the option of training on one dataset and inferring
on another has not been studied in this work. This should in the-
ory not be an issue, as long as the two datasets have a similar
dynamic range and noise level. One could also create a training
dataset from a variety of datasets which collectively represent a
wide range of conditions, thereby improving the robustness and
generalizability of the model.

6.3. Limitations and challenges

As discussed in Sect. 4.1, we do not add noise to the mock training
data. A consequence of not including noise in the simulated sam-
ples is that the model sometimes produces false positives. Since
the model is only trained at producing sparse representations, the
model puts all the noise in peaks at locations that agree with the
data. Examples can be seen in the upper middle and lower left plot
in Fig. 9, where we have a low baseline, but small peaks separated
from the main peaks. As the noise in the real and imaginary parts
should ideally be Gaussian-distributed, the noise of their magni-
tude should follow a Rician distribution, that is, positive definite
and asymmetric when the Gaussian noise have zero mean. Usu-
ally, before doing any quantitative analysis on the signal flux, one
should therefore subtract the Rician bias from the Faraday spec-
trum. In this work, however, the opposite effect was observed,
where the model systematically underestimated the total flux of
signals. As this effect was not observed when noise was removed
from the synthetic data, we believe there could be two reasons
behind this. Either the model overestimates the noise level, lead-
ing to a conservative bias in the flux estimation, or some of the
signal flux is put into the noise peaks.

The decision to omit noise was made for two main rea-
sons: Firstly, accurately modeling the true noise statistics is dif-

ficult. Our model assumes that the noise is Gaussian with zero
mean and uncorrelated in λ2. However, in radio astronomical
images, the noise is often correlated and non-Gaussian. Thus,
adding purely Gaussian noise led to a decreased model per-
formance, as the model struggled to transfer knowledge from
simulations to real data and vice versa. We also attempted to
create more realistic noise by extracting samples without signif-
icant signal from the data and then inserting a simulated signal
into those samples. While this approach helped to reduce false
positives in the outputs, it falls short of accurately reproducing
the data.

The second reason concerns the loss function, which
becomes problematic when incorporating noise in the simula-
tions. The first component of Eq. (6) seeks to minimize the
difference between the output in λ2 and the observed data,
including the noise. However, the second component aims to
replicate the underlying signal, excluding the noise. Thus, the
two loss terms compete against each other, and requires careful
tuning of the β parameter in order for the model to benefit from
both terms. By excluding noise in the simulated samples, both
components of the loss function should aim to find a solution to
the data, regardless of the noise statistics.

Furthermore, it is possible that Eq. (1) does not accu-
rately capture the true measurement operation. One could thus
draw inspiration from various techniques used in interferometric
imaging, where terms are included to account for variations in
the primary beam and the w-component. Similar effects in RM
synthesis would include varying channel widths and bandwidth
depolarization effects.

6.4. Summary

In this paper, we have developed a deep learning model to per-
form RM synthesis deconvolution. The model was trained using
a Gaussian mixture model prior alongside observational data
from MGCLS DR1. It is important to note that only 20% of
the training data were simulated, meaning that while the sim-
ulated dataset guides the model to some extent, the majority of
information was derived from the observational dataset, ensuring
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the model remains primarily influenced by real-world data. We
tested the model on simulations as well as observational data
from the MeerKAT galaxy cluster data. The model was able to
recover extended and high-RM components better than the tra-
ditional CLEAN algorithm. For future studies, it would be ben-
eficial to compare the deep learning model with an algorithm
designed to deconvolve Faraday thick components, such as a
multi-scale variant of RMCLEAN or a multicomponent adap-
tation of QU fitting. When applied to data from the Abell 3376
galaxy cluster, the model was able to deconvolve Faraday spectra
from various parts of the intracluster medium, and map the mag-
netic field structure of the cluster relics in fine detail. We find
that while the dominant filament largely determines the mag-
netic field orientation, there are regions where this assumption
does not hold. One should thus be cautious when using methods
such as the synchrotron intensity gradient mapping, as study-
ing clusters in full polarization can yield more comprehensive
information. The model was also applied to five other datasets
from MGCLS, out of which only two had previously been stud-
ied with MeerKAT in full Stokes. The results generally agree
with those from previous studies, with the main difference being
the great sensitivity of the MeerKAT telescope, providing a great
amount of detail to, for example, the Abell 85 cluster where we
have mapped the magnetic field structure of a complex phoenix.
Furthermore, the model was able recover the magnetic field ori-
entation from regions of weak emission from, for example, the
Abell 3667 cluster, revealing ordered magnetic fields on mega-
parsec scales. The high accuracy and low computational cost of
the model makes it a good candidate for forthcoming surveys,
where an automated pipeline will be crucial to handle the large
data sizes.
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Appendix A: Results from other galaxy clusters
observed with MeerKAT

We also applied our deep learning deconvolution model to other
clusters from the MGCLS DR1. For some of these clusters RM
data have already been published and for others we show the
polarization data for the first time. In this appendix we present
results from some interesting sources. A more detailed physical
interpretation is going to be presented in separate papers.

Abell 3186 The cluster Abell 3186 (also called MCXC J0352.4-
7401) has been studied by, for example, Duchesne et al. (2021a)
using the Murchison Widefield Array (MWA) and ASKAP tele-
scopes. Most recently it has been observed by Hu et al. (2024)
with MeerKAT, using the SIG method to study the magnetic
field structure of the relics. In Fig. A.1 the two radio relics
in Abell 3186 are shown. We see that in both relics the mag-
netic field aligns well with the orientation of the relics, par-
ticularly near the shock front. Overall, the results align well
with Hu et al. (2024), as the polarization vectors generally fol-
low the orientation of the dominant filament. However, at the
inner edge of the southwestern relic, some differences are notice-
able. In Fig. A.1, the magnetic field is oriented toward the inner
region of the cluster, while the SIG method consistently results
in field vectors perpendicular to the local gradient. A similar pat-
tern is observed in the north-eastern relic, although it is less
pronounced. These findings suggest that SIG might not cap-
ture certain details revealed by polarization studies, particularly
when the magnetic field exhibits unexpected orientations. Fur-
thermore, studying the polarization properties at a pixel-by-pixel
basis allow us to obtain a unbiased result, independent on the
surrounding region.

Abell 168 Next we show the results from the cluster Abell 168.
This double relic cluster has previously been studied by, for
example, Dwarakanath et al. (2018) using the Karl G. Jansky
Very Large Array (VLA) and the Giant Meterwave Radio Tele-
scope (GMRT). However, polarization studies have not been
conducted of the cluster. In Fig. A.2 the cluster is shown
together with the projected magnetic field orientation. While
an arc-shaped relic is located, the second relic found by
Dwarakanath et al. (2018) is not visible. The reason for this
is that regions far from the pointing center are blanked in the
MGCLS enhanced products, which is the case for the relics in
this cluster. In the relic detected here it is striking how uniform
the magnetic field orientation is throughout the relic. At least
at our angular resolution it does not show the variance that is
observed in some of the other relics.

Abell 3667 The cluster Abell 3667 has recently been stud-
ied extensively in full polarization with MeerKAT L-band by
de Gasperin et al. (2022). The authors discovered that the relics
are composed of a network of synchrotron filaments with vary-
ing spectral and polarization properties. These are likely linked
to multiple regions of particle acceleration and localized mag-
netic field enhancements. In Fig. A.3 we show the magnetic field
orientation of the two radio relics. We see that the magnetic field
is ordered on scales comparable to the relic extension, and that
the main contributor to the field orientation is the local orienta-
tion of the dominant filament. When comparing our results with
de Gasperin et al. (2022), we find that the magnetic field in our
analysis appears to remain ordered even in regions of weak emis-

sion, whereas de Gasperin et al. (2022) indicates turbulent mag-
netic fields in these areas. Since both studies are based on the
same set of visibilities, the differences might stem from either
the CLEANing process to a higher resolution or the threshold-
ing methods used by de Gasperin et al. (2022). Furthermore, the
authors use a Faraday depth sampling of 2 rad m−2, as opposed
to 1 rad m−2 in this work. As the regions of weak emission are
expected to be Faraday depolarized, a small change in φ would
potentially result in a great difference in the observed polariza-
tion angle. Additionally, the authors used a Högbom algorithm
similar to RMCLEAN to produce the polarization maps, but it is
uncertain if this is the cause of the divergent results.

Abell 85 In Fig. A.4 we show a cutout from the cluster Abell 85,
displaying some interesting sources. It is worth mentioning that
we did not include the radio halo at the center of the clus-
ter identified by Knowles et al. (2022), as its emission is very
weak. Most notably in our map to the north-west we find a com-
plex phoenix (revived fossil plasma source), which has previ-
ously been studied by, for example, Slee & Reynolds (1984),
Giovannini & Feretti (2000) and Duchesne et al. (2021b). How-
ever, the classification varies between a phoenix and a relic. It
is interesting to note that in the northern and southern filaments
the magnetic field vectors follow the geometry of the filaments.
Furthermore, southeast of the phoenix, we identify an AGN with
wide angle jets, whose magnetic field orientation align well with
the outflow direction. Slee et al. (2001) could not determine the
field vectors because they could not Faraday-derotate their data.
Also they only saw the central and northern parts of this phoenix.
But they found significant variation in the polarization fraction
in A85, ranging from 35% in the northern part to 10% in the
central part of the phoenix (they label it as southeastern arc).
In Fig. A.5 the fractional polarization map from the MGCLS is
shown. The map is produced from the mean of

√
Q2 + U2 over

the entire band. As the resulting polarized flux is not corrected
for Rician bias, the polarized fractions should be considered as
upper limits. Similar to Slee et al. (2001) we find a polarization
fraction of about 10% in the central part of the phoenix, but with
some regions below 5%. In the filaments the polarized fraction
is generally higher, around 10-15%, with some hotspots with a
fractional polarization between 20% and 30%.

In Fig. A.6 the magnetic field orientation of the inner region
of the phoenix is shown, in order to highlight the vortex-like
structures. We see that the magnetic field of this region is very
complex and in some regions ordered on just the scale of the
angular resolution. In the regions of the bright torus structures,
the field lines appear to follow the orientation of the filament,
while where there is weak emission the magnetic field is more
chaotic. These rapid rotations of the magnetic field are likely the
cause of the depolarization effects seen in the central region of
Fig. A.5. Enßlin & Brüggen (2002) proposed that the torus struc-
tures seen in Fig. A.6 are formed by light radio plasma moving
through a shock wave. At the shock front, the ram pressure of
the pre-shock gas and the thermal pressure of the post-shock gas
are in balance. When the lighter radio plasma comes in contact
with the shock front, the ram pressure is reduced at the point of
contact. This causes the post-shock gas to expand into the vol-
ume occupied by the low-pressure radio plasma. This process
disrupts the radio plasma, eventually forming a torus structure,
similar to a smoke-ring. The similarity between the simulations
of Enßlin & Brüggen (2002), and the magnetic field in Fig. A.6
strengthen the argument that these toroidal structures are a result
of such a compression scenario.
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Fig. A.1. Radio emission from the Abell 3186 galaxy cluster relics at a resolution of 15′′ × 15′′, overlaid with the polarization B-vectors.

Fig. A.2. Radio emission from the Abell 168 galaxy cluster relic at a resolution of 15′′ × 15′′, overlaid with the polarization B-vectors.
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Fig. A.3. Radio emission from the Abell 3667 galaxy cluster relics at a resolution of 15′′ × 15′′, overlaid with the polarization B-vectors.

Fig. A.4. Radio emission from the galaxy cluster Abell 85 at a resolution of 8′′ × 8′′, overlaid with the polarization B-vectors.

Abell 194 Finally, in Fig. A.7 we show the radio emission
together with the polarization B-vectors for two radio galaxies
in the galaxy cluster Abell 194. The same dataset has previously
been studied by Rudnick et al. (2022), including an extensive
RM study of the two radio galaxies, together with a map of
the magnetic field of the long eastern filament. The eastern fila-
ments are around 50% polarized, with no detectable net RM with

respect to the Galactic foreground, and only small rms variations
(9 rad m−2) along their length. This enables a mapping between
Faraday depth and distance along the line-of- sight. The mag-
netic field vector is shown to follow the length of the filament,
supporting the interpretation that these are magnetic flux tubes.
In Fig. A.8 a comparison between this work and Rudnick et al.
(2022) is shown for the filament. We see that our results are
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Fig. A.5. Fractional polarization map (908-1656 MHz) of the phoenix
in Abell 85, at a resolution of 8′′ × 8′′. Only pixels with a total intensity
above 5σI (σI = 12 µJy) are shown.

Fig. A.6. Radio emission from the central region of the phoenix in
Abell 85 at a resolution of 8′′ × 8′′, overlaid with the polarization B-
vectors.

similar to those of Rudnick et al. (2022). The field vectors in our
work seem to vary more smoothly over the filament. However,
this might just be to different vector lengths and number of sam-
ples used to produce such vectors.
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Fig. A.7. Radio emission from two radio galaxies in the galaxy cluster Abell 194 at a resolution of 8′′×8′′, overlaid with the polarization B-vectors.
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Fig. A.8. Comparison between this work (top) and Rudnick et al. (2022) (bottom), of the magnetic field orientation in the long eastern filament.
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