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Preface

Our best scientific model of the Universe on large scales—ΛCDM cosmology—predicts that most of

the matter in the cosmos is dark. Without this gravitating substance, known as cold dark matter

(CDM), the cosmic structures we inhabit including galaxies, stars, and planets would never form.

ΛCDM cosmology does not hold the same status as physical theories like general relativity and

quantum mechanics because it is descriptive. This is highlighted by its two building blocks: dark

matter and dark energy. In particular, the CDM particle is assumed to be cold (i.e., to move slowly

on cosmological scales) and to have feeble—if any—non-gravitational interactions with both itself

and Standard Model particles. This begs the question: how cold and how feebly interacting is dark

matter?

The modern picture of galaxy formation in the ΛCDM context also sows its own foundational

questions. A vast and compelling body of evidence teaches us that galaxies live in dark matter halos,

and that more massive halos tend to host brighter galaxies. Open questions remain at the limits of

these generic statements: What is the smallest galaxy that can form? Does every dark matter halo

host a galaxy? And, are the answers to these questions influenced by non-gravitational dark matter

physics, or only by astrophysical processes?

This thesis addresses the intersection of dark matter and galaxy formation physics by modeling

and analyzing the faintest observable galaxies in the Universe in a cosmological context. Following

an introduction (Chapter 1), it proceeds in two parts. Part I (Chapters 2–5) develops an empirical

model for the connection between faint galaxies and small dark matter halos in a CDM context,

and applies this model to state-of-the-art observations of the Milky Way satellite galaxy population

to infer the properties of the dark matter halos that host dwarf galaxies. Part II (Chapters 6–10)

expands these analyses for several modifications to the CDM paradigm, and thereby places new

and stringent constraints on dark matter particle properties. Chapter 11 combines dark matter

constraints from dwarf galaxy abundances and strong gravitational lensing, paving the way for next-

generation surveys to deliver unprecedented insights into dark matter physics. Finally, Chapter 12

discusses the outlook for these upcoming surveys and Chapter 13 concludes.
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and PS1 satellite populations. Dark (light) blue bands correspond to 68% (95%)

confidence intervals from our fiducial eight-parameter model, dashed red lines show

the 68% confidence interval for a model using host halos without LMC analogs (“No

LMC”), and black lines show the observed size distributions. . . . . . . . . . . . . . 82

4.4 Left panel: total MW satellite luminosity function inferred from our joint fit to the

DES and PS1 satellite populations (blue) compared to the current census of confirmed

and candidate MW satellites (black) and the empirical estimate derived in Paper I

(gray), which assumes an isotropic satellite distribution and a cored NFW radial satel-

lite distribution. The 68% confidence intervals from hydrodynamic simulations of the

Local Group using the FIRE feedback prescription are shown in red [188]. Luminosity

function slopes predicted from hydrodynamic simulations with (solid green line) and

without (dashed green line) H2-based star formation are shown for comparison [330];

these predictions do not account for subhalo disruption due to the Galactic disk. Note

that the Paper I prediction (gray) differs from the “All Known Satellites” curve (black)

at the bright end because it does not include the LMC, SMC, or Sagittarius. Right

panel: The surface brightness distribution of MW satellites with MV < 0 mag and

r1/2 > 10 pc as a function of the limiting observable surface brightness of an all-sky

survey. Arrows indicate approximate detection limits for current surveys. Note that

LSST Y1 is expected to have similar detection sensitivity to HSC [237, 440, 214, 336]. 84

4.5 Posterior distribution from our fit to the DES and PS1 satellite populations. Dark

(light) shaded contours represent 68% (95%) confidence intervals. Shaded areas in

the marginal distributions and parameter summaries correspond to 68% confidence

intervals. Note that σM , σgal, and σlogR are reported in dex, M50 is reported as

log(M50/M�), and A is reported in pc. . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Left panel: fraction of halos that host galaxies, inferred from our fit to the DES and

PS1 satellite populations. The solid line shows the median inferred galaxy occupation

fraction, and dark (light) shaded contours represent 68% (95%) confidence intervals.

The resolution limit of our simulations is indicated by the dashed vertical line. Right

panel: SMHM relation inferred from our fit to the DES and PS1 satellite popula-

tions. An extrapolation of the mean SMHM relation derived from more luminous

field galaxies is shown in gray [45]. Stars illustrate the mean of the predicted Mpeak

range corresponding each observed DES and PS1 satellite, and top ticks indicate the

corresponding present-day virial masses of the halos that host these systems. . . . . 88
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4.7 Impact of modeling assumptions on the minimum subhalo mass inferred from the

observed DES and PS1 satellite populations. The first three models match the number

of subhalos to the number of confirmed DES and PS1 satellites, and the last two

models populate subhalos with galaxies to fit the position-dependent MW satellite

luminosity function and size distribution. . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Distribution of satellite number in SAGA hosts. The black stars show the data from

the SAGA Stage II sample of 36 complete hosts, and the error bars indicate incom-

pleteness corrections as described in [316] (note that the incompleteness-corrected

Nsat measurements are highly correlated). Dark blue (light blue) contours indicate

the predicted 68% (95%) confidence intervals based on our simulation and galaxy–

halo connection model. The MW (M31) is shown as a dashed (dashed–dotted) gray

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 SAGA Stage II satellite luminosity functions and incompleteness corrections (colored

lines and bands) compared to predictions from a cosmological dark matter–only simu-

lation populated with galaxies using the empirical satellite model in [336, 333], which

has been fit to the MW satellite population. Dark blue lines indicate the mean pre-

diction for each satellite population, and dark blue (light blue) contours indicate 68%

(95%) confidence intervals, which include the effects of host galaxy–halo abundance-

matching scatter, uncertainty in our galaxy–halo connection model (see Section 5.3.1),

and projection effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Comparison of predicted and observed radial satellite distributions, normalized to

the number of satellites within a projected distance of 300 kpc. The predicted mean

and confidence interval is identical to Figure 5.2, and the observed radial distribu-

tions are computed using all satellites above our Mr,o < −12.3 absolute magnitude

limit. Hence, no observed data are shown for systems that do not have any satellites

with Mr,o < −12.3. We do not correct the SAGA radial distributions because the

incompleteness model in [316] predicts that missing satellites should have the same

distribution as confirmed ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Forecasts for the average number of satellites per MW analog detected by a SAGA

Stage III-like survey. Dark (light) blue bands show the predicted 68% (95%) con-

fidence intervals for the average number of satellites predicted for 100 mock SAGA

observations as a function of one galaxy–halo connection model parameter. In each

panel, the remaining parameters are fixed to their best-fit value from our MW satel-

lite analysis in Chapter 4 [333] and vertical dashed lines show the corresponding 95%

confidence intervals inferred from MW satellites. . . . . . . . . . . . . . . . . . . . . 107
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6.1 Upper limits on the velocity-independent DM–proton scattering cross section as a

function of DM particle mass. The blue shaded region is excluded by the population

of classical and SDSS-discovered MW satellites with 95% confidence by our likeli-

hood analysis, which marginalizes over relevant astrophysical uncertainties (Section

6.4). The dashed line shows analytic upper limits derived from the existence of the

lowest-mass halos hosting satellites (Section 6.3). Green contours show cosmological

constraints from the CMB [67, 198] and the Lyman-α forest [489]. Gray contours

show experimental constraints from cosmic-ray scattering [88], the X-ray Quantum

Calorimeter (XQC; [162]), and direct-detection experiments including CRESST-III

[118], the CRESST 2017 surface run [27], and XENON1T [31], as interpreted by

[159]. Limits from Galactic center gas clouds [61, 463] overlap with parts of the XQC,

CMB, and Lyman-α contours for 10−3 GeV . mχ . 100 GeV, and are omitted for

clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Ratio of the linear matter power spectrum in a DM–baryon scattering cosmology to

that in CDM (solid lines), for a range of interaction cross sections (for 1 MeV DM

particles). Dashed lines show the same quantity for WDM models with matching

half-mode scales (denoted as black stars). Vertical lines indicate the critical scale

discussed in Section 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
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7.1 Left panel: Transfer functions for the WDM (orange), IDM (blue), and FDM (ma-

genta) models that are ruled out by our analysis at 95% confidence, corresponding to

mWDM = 6.5 keV, σ0 = 8.8× 10−29 cm2 (for DM particle mass mχ = 100 MeV), and

mφ = 2.9× 10−21 eV, respectively. These constraints are marginalized over our MW

satellite model and the properties of the MW system. Middle panel: SHMF suppres-

sion relative to CDM for each ruled-out non-CDM model. The vertical dashed line

indicates the 95% confidence upper limit on the lowest-mass halo inferred to host MW

satellite galaxies [333]. Note that the IDM SHMF is assumed to be identical to the

WDM SHMF in our analysis, and is offset slightly for visual clarity. Right panel: Pre-

dicted MW satellite galaxy luminosity functions for each ruled-out non-CDM model

compared to DES and PS1 observations, evaluated at the best-fit MW satellite model

parameters from Ref. [333]. The shaded band illustrates the uncertainty of our WDM

prediction due to the stochasticity of our galaxy-halo connection model and the lim-

ited number of simulations used in our analysis; the size of this uncertainty is very

similar to that in CDM and the other alternative DM models shown. This panel is

a simple one-dimensional representation of our MW satellite and DM model fit to

the luminosity, size, and spatial distribution of satellites in the DES and PS1 survey

footprints. The comparison of our CDM model to data is described in Ref. [333], and

full posterior distributions for our non-CDM analyses are provided in Supplemental

Material [188, 30, 219]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 Exclusion regions for WDM and IDM models from our analysis of MW satellites

observed with DES and PS1 (red) compared to previous constraints from classical and

SDSS satellites [335] (blue) and other experimental results. Left panel: Constraints

on the mass and mixing angle of resonantly produced sterile neutrino DM. These

constraints are derived by finding mass and mixing angle combinations that suppress

the linear matter power spectrum more strongly than the mWDM = 6.5 keV thermal

relic ruled out at 95% confidence by our analysis. The black point with error bars

shows the sterile neutrino interpretation of the 3.5 keV x-ray line [82]. The dark

gray region is ruled out by dwarf galaxy internal dynamics [83], and the gray contour

shows x-ray constraints [225, 363, 134]. Solid black lines indicate regions of parameter

space in which resonantly produced sterile neutrinos cannot constitute all of the DM

in the neutrino minimal standard model [34, 414]. Right panel: Constraints on the

interaction cross section and DM mass for velocity-independent DM-proton scattering.

Green contours show cosmological limits from the CMB [67, 198] and the Lyman-α

forest [489]. Light gray contours show experimental limits from the x-ray quantum

calorimeter [314] and direct detection results as interpreted by Ref. [159]. . . . . . . 128
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7.3 Constraints on ultralight axion particle mass versus axion-photon coupling from our

analysis of the MW satellite population (red). Limits from CMB polarization washout

[170] and the Lyman-α forest [233] are shown in green, and haloscope limits are shown

as gray vertical bands. Experimental constraints from the CAST experiment [32],

the lack of a γ-ray signal from SN1987A [357], and the x-ray transparency of the

intracluster medium [382] are shown in gray and do not require that the ultralight

axion makes up all of the DM. The dashed lines [386] span canonical QCD axion

models [263, 140]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.1 Linear matter power spectra (left) and transfer functions (right) for self-interacting

(magenta) and free-streaming (cyan) late-forming dark matter models, compared to

cold dark matter (dashed black) and thermal relic warm dark matter (dashed red).

Both LFDM models are shown with a transition redshift of zT = 1.5 × 106, corre-

sponding to a comoving wave number of kT = 7h Mpc−1. LFDM power spectra are

suppressed relative to CDM at wave numbers greater than kT , and they exhibit dark

acoustic oscillations on even smaller scales, beginning at ∼ 6kT (∼ 2kT ) for SI (FS)

LFDM. The cutoff in the SI LFDM power spectrum is very similar to that in WDM,

until the onset of DAOs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2 Transfer functions for self-interacting (left) and free-streaming (right) late-forming

dark matter models, compared to cold dark matter (dashed black) and thermal relic

warm dark matter (dashed red). SI LFDM models are shown for a range of transition

redshifts, with the highest transition redshift corresponding to the SI LFDM model

that is ruled out by the abundance of Milky Way satellites at 95% confidence: zT,SI >

5.5× 106. The light-blue FS LFDM model corresponds to the transition redshift that

is conservatively ruled out by our analysis: zT,FS > 2.1 × 106. Vertical dashed lines

show the comoving scale that approximately corresponds to the mass of the smallest

halo inferred to host observed MW satellite galaxies, 3.2× 108 M� [333]. In the left

panel, WDM transfer functions are slightly shifted horizontally for visual clarity. . . 144
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8.3 Constraints on the transition redshift for self-interacting late-forming dark matter,

versus the corresponding thermal relic warm dark matter mass based on the half-mode

mass relation in Equation 8.13. Our Milky Way satellite constraint on zT,SI and the

lower limit on the thermal relic WDM mass of 6.5 keV from which we derive this

limit [332] are shown by the shaded purple region. Limits on the SI LFDM transition

redshift from the cosmic microwave background (green), Sloan Digital Sky Survey

galaxy clustering (dashed blue [407]), the high-redshift galaxy luminosity function

(dot-dashed blue [115]) and the Lyman-α forest (dotted blue [407]) are shown as

vertical lines. Vertical lines indicate constraints derived specifically for LFDM, and

do not indicate other recent WDM constraints from small-scale structure probes.

LFDM must transition to CDM between matter-radiation equality (z ≈ 3× 103) and

big bang nucleosynthesis (z ≈ 1010), which are schematically indicated by arrows. . 145

9.1 Momentum transfer cross sections for our SIDM model variants as a function of

relative scattering velocity. Each model variant is labeled by w, the velocity scale

above which the SIDM cross section falls off as v−4. The velocity scale relevant for

interactions among host halo particles and between host halo and subhalo particles

is indicated by the “MW Host Halo” band. Shaded bands indicate characteristic

velocities for DM particles within the subhalos expected to host classical and ultrafaint

MW satellite galaxies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.2 SIDM effects on the host halo. Left panel: host halo density profiles for our SIDM

model variants. Right panel: corresponding velocity dispersion profiles. As the SIDM

cross section at the characteristic velocity scale of the MW host halo increases, the

inner regions of the host become increasingly cored and thermalized. Note that the

host halo density and velocity dispersion profiles are nearly indistinguishable in CDM

and w10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
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9.3 DM phase-space distributions for our zoom-in simulations of an MW-mass host halo

in CDM and SIDM. The density of DM particles in bins of radial velocity and radial

distance from the center of the host is plotted for CDM (top left) and for three of our

SIDM model variants: w10 (top right), w100 (bottom left), and w500 (bottom right).

These distributions qualitatively illustrate several of our main findings. For example,

the host halo (labeled A) has a very similar phase space distribution in CDM and

w10, while subhalos in w10 (e.g., subhalo B) are somewhat less dense because of the

large self-interaction cross section at low relative velocities in this case (see Figure

9.1). On the other hand, particles near the center of the host in w200 and w500 are

preferentially scattered onto tangential orbits, and many of the low-mass subhalos

that survive in CDM (e.g., subhalo C) are disrupted in these SIDM model variants

owing to a combination of ram pressure stripping caused by self-interactions with the

host and tidal stripping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.4 SIDM effects on subhalos before infall. Left panel: distributions of peak maximum

circular velocity for surviving and disrupted subhalos in each SIDM model variant

(unfilled histograms) vs. CDM (filled histogram). Right panel: cumulative distribu-

tions of the ratio of maximum circular velocity evaluated at the time of each subhalo’s

accretion onto the host divided by the peak maximum circular velocity along the main

branch of the subhalo. Although subhalo assembly is statistically identical in CDM

and SIDM, subhalos are mildly stripped by self-interactions prior to accretion onto

the host halo in our SIDM simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.5 Properties of surviving and disrupted subhalos. Top left panel: distribution of the dis-

tance of closest approach to the host at first pericentric passage for surviving subhalos

in each of our SIDM model variants (open histograms) vs. CDM (filled histogram).

Top right panel: same as the top left panel, but for disrupted subhalos (surviving

and disrupted subhalos are defined in Section 9.4.3). Bottom left panel: distribution

of the maximum relative velocity with respect to the host halo evaluated along the

orbit of each surviving subhalo. Bottom right panel: same as the bottom left panel,

but for disrupted subhalos. Many subhalos that survive in our CDM simulation dis-

rupt during early pericentric passages in our SIDM simulations, because ram pressure

stripping caused by self-interactions with the host at large relative velocities makes

subhalos more susceptible to tidal disruption. . . . . . . . . . . . . . . . . . . . . . . 164
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9.6 Surviving subhalo populations. Left panel: peak velocity function of subhalos in our

CDM simulation and in each of our SIDM model variants. Right panel: corresponding

radial subhalo distributions in units of the host halo virial radius in each simulation.

The abundance of surviving subhalos is reduced in SIDM, and the strength of this

effect increases with w owing to more significant ram pressure stripping caused by self-

interactions with the host. Subhalo disruption in our SIDM simulations is particularly

severe in the inner regions of the host halo. . . . . . . . . . . . . . . . . . . . . . . . 165

9.7 Orbital anisotropy profile of subhalos in our SIDM simulations. Surviving subhalos in

SIDM model variants with larger values of w occupy tangentially biased orbits relative

to CDM. This occurs because a combination of ram pressure and tidal stripping

preferentially disrupts subhalos on radial orbits. . . . . . . . . . . . . . . . . . . . . . 167

9.8 DM profiles of a matched set of surviving subhalos in our CDM and SIDM simula-

tions. Density profiles defined by the initial set of bound particles are shown for the

same subhalo with Vpeak ≈ 40 km s−1 and zacc ≈ 1 at the time of accretion onto

the host (left panel) and at z = 0 (middle panel). Subhalos in model variants with

larger values of w have lower-amplitude, flatter inner density profiles owing to self-

interactions with the host halo. The light-blue line in the middle panel shows the

density profile for a subhalo with similar Vpeak and zacc but with a large pericentric

distance (dperi ≈ 160 kpc). The discrepancy between this profile and that of the cor-

responding low-pericenter subhalo demonstrates that the impact of self-interactions

on subhalo density profiles depends sensitively on their orbital properties. The right

panel shows the corresponding circular velocity profile for each subhalo at z = 0. . . 169

10.1 Projections of the subhalo population in one of our MW-like simulations in CDM (top

left) and SIDM (top right), and for subhalos above a survival probability threshold

corresponding to the suppression of the peak velocity function in our WDM (bottom

left) and disk disruption (bottom right) models applied to the same CDM simulation.

Bold markers show subhalos with Vpeak > 20 km s−1, light gray markers show sub-

halos below this Vpeak threshold, and marker size is proportional to Vpeak. In each

panel, the black circle shows the virial radius of the MW host halo (∼ 300 kpc), the

diagonal line shows the plane defined by the current position of the MW (magenta

star) and LMC (cyan star), and transparent cyan stars show the LMC at previous

snapshots as it falls into the MW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
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10.2 The effects of SIDM, WDM, and the Galactic disk on the velocity function and radial

distribution of surviving subhalos in one of our MW-like simulations. Left panel:

number of subhalos as a function of peak maximum circular velocity Vpeak in our

CDM simulations of MW-like systems (black dashed), SIDM simulations (blue), and

predicted by applying our WDM (red) and disk disruption (green) models to our CDM

simulations. Disruption due to the Galactic disk is approximately mass-independent,

while SIDM and WDM preferentially disrupt less massive subhalos. Right panel: same

as the left panel, but for the cumulative radial distribution of subhalos in units of the

MW host halo virial radius. The suppression of subhalo abundance in WDM is not

a strong function of Galactocentric radius, while SIDM and the disk preferentially

disrupt subhalos at small radii. In the bottom panels, the dashed blue line shows

the suppression of the subhalo population for the same SIDM model in a MW-mass

system without a realistic LMC analog. . . . . . . . . . . . . . . . . . . . . . . . . . 184

11.1 Posterior distribution of WDM half-mode mass versus baryonic disruption efficiency

from our MW satellite analysis. B = 0 corresponds to zero additional subhalo dis-

ruption relative to CDM, and larger values of B correspond to more efficient subhalo

disruption due to baryons. The color map shows the probability density normalized

to its maximum value in this parameter space. Solid (dashed) white lines indicate 1σ

(2σ) contours for a two-dimensional Gaussian distribution. . . . . . . . . . . . . . . . 201

11.2 Projected SHMFs for MW-like host halos. Blue lines show the average results from

the zoom-in simulations used in our MW satellite inference as a function of baryonic

disruption efficiency B (B = 0 corresponds to CDM only and larger values of B
correspond to more efficient subhalo disruption due to baryons). Red lines show our

analytic SHMF (Equation 11.5) using the host halo mass and redshift scaling predicted

by Galacticus, evaluated at the average halo mass of our MW-like simulations with

a slope of α = −1.92. Σsub,MW is chosen such that the SHMF amplitude matches our

simulations at the subhalo mass corresponding to the faintest observed MW satellites,

Mmin (dashed vertical line). Dark (light) red contours show 68% (95%) confidence

intervals from Galacticus for host halos with characteristics matched to our MW-

like simulations. We impose the resolution cuts described in Appendix F.1 on the

simulation and Galacticus results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
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11.3 Left panel: posterior distribution of WDM half-mode mass versus projected subhalo

number density at the strong lensing scale inferred from the MW satellite posterior,

transformed according to the procedure in Section 11.6.2, with q = 1 (i.e., for equally

efficient subhalo disruption due to baryons at the MW and strong lensing host halo

mass and redshift scales). Right panel: posterior distribution in the same parameter

space from the [195] strong lensing analysis. The vertical band labeled “Σsub Prior”

shows the range of Σsub inferred from the MW satellite posterior in our fiducial joint

analysis (i.e., 0.015 kpc−2 ≤ Σsub ≤ 0.03 kpc−2). In both panels, color maps show the

probability density normalized to its maximum value in each parameter space, and

solid (dashed) white lines indicate 1σ (2σ) contours for a two-dimensional Gaussian

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

11.4 Joint marginal likelihood of WDM half-mode mass versus projected subhalo number

density at the strong lensing scales from our combined MW satellite–strong lensing

posterior, transformed according to the procedure in Section 11.6.2, with q = 1.

The colormap shows the probability density normalized to its maximum value in

this parameter space. Solid (dashed) white lines indicate 1σ (2σ) contours for a

2-dimensional Gaussian distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

11.5 Marginal distributions from our joint MW satellite–strong lensing likelihood (Figure

11.4) for projected subhalo number density at the strong lensing scale (left panel) and

WDM half-mode mass (right panel), assuming equally efficient subhalo disruption

due to baryons in the MW and strong lens systems (q = 1). The marginalized MW

satellite posterior is shown in blue, the marginalized strong lensing posterior is shown

in red, and results obtained from our probe combination and marginalized over the

remaining dimension are shown in purple. In the left panel, the vertical band labeled

“Σsub Prior” shows the range of Σsub inferred from the MW satellite posterior in our

fiducial joint analysis (i.e., 0.015 kpc−2 ≤ Σsub ≤ 0.03 kpc−2, slightly offset from the

posteriors for visual clarity), and the dashed red line on the right panel shows the

lensing half-mode mass posterior restricted to this range of Σsub values. . . . . . . . 212
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11.6 Left panel: the impact of systematics on the marginalized one-dimensional posterior

distributions of projected subhalo number density at the strong lensing scale. The

marginalized posterior distribution from our MW satellite analysis is shown in blue,

the marginalized strong lensing posterior is shown in red, the dashed blue distribu-

tions indicate additional uncertainty in our MW satellite inference due to the mass of

the MW halo, and the dotted–dashed green distribution illustrates the effects of sys-

tematic uncertainty in the differential efficiency of subhalo disruption due to baryons

at the MW and strong lensing host halo scales. Right panel: joint marginal likelihood

of WDM half-mode mass for our MW satellites plus strong lensing probe combina-

tion. Joint likelihoods are shown for equally efficient subhalo disruption in the MW

and strong lens host halo mass and redshift regimes (q = 1, purple), twice as efficient

disruption due to baryons in the MW relative to strong lens halos (q = 0.5, dotted–

dashed green), and twice as efficient disruption in strong lens halos relative to the

MW (q = 2, dashed green). The gray distribution shows the result of combining the

fully marginalized one-dimensional Mhm posteriors derived from strong lensing and

MW satellites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

12.1 Forecast for the minimum dark matter subhalo mass probed by LSST via observa-

tions of Milky Way satellites. The red band shows the 95% confidence interval from

our MCMC fits to mock satellite populations as a function of the true peak subhalo

mass necessary for galaxy formation. Note that we marginalize over the relevant nui-

sance parameters associated with the galaxy–halo connection—including the effects of

baryons using the Chapter 2 model calibrated on subhalo disruption in hydrodynamic

simulations [336]—in our sampling. We indicate the corresponding constraints on the

warm dark matter mass assuming Mhm =Mmin. . . . . . . . . . . . . . . . . . . . . 225
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12.2 Forecasts for the galaxy formation and dark matter sensitivity of LSST Milky Way

satellite observations using the satellite model from Chapters 4 and 7, which includes

realistic Large Magellanic Cloud analog systems. The x-axis shows the 95% confidence

upper limit onM50 and the y-axis shows the 95% confidence upper limit on Mhm for

warm dark matter from classical and SDSS-discovered satellites (blue star; Chapter

3 [336]), DES and Pan-STARRS1 satellites (red star; 4 [333]), and mock Milky Way

satellite observations as they approach LSST sensitivity (blue-green triangles). The

black dashed line shows the one-to-one relation and the gray dashed line shows the

current lower limit on the warm dark matter mass from our joint Milky Way satellite

and strong lensing analysis in Chapter 11. A cutoff in satellite abundances in Region

I. must be astrophysical in origin, a cutoff in Region II. can be caused by either galaxy

formation or dark matter physics, and the detection of halos below the lower limit of

theM50 axis at ∼ 5×107 M� would provide evidence for the existence of completely

dark halos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

A.1 Velocity functions for m12i (left) and m12f (right) predicted by the most probable

realization of our random forest classifier when trained only on subhalos from m12i

(orange) or m12f (green) with Vpeak > 10 km s−1. Blue lines show 200 realizations of

the prediction for our fiducial classifier, which is trained on subhalos from both hosts,

and red lines show the FIRE results. While there is a difference between the total

number of surviving subhalos predicted by classifiers trained only on m12i or m12f,

the scatter about the most probable prediction for our fiducial classifier is small. . . 233

A.2 Velocity functions and radial distributions of subhalos in m12i (left) and m12f (right)

predicted by the most probable realization of random forest classifiers trained on sub-

halos from both hydrodynamic simulations with Vpeak > 10 km s−1. The classifiers

use the features dperi (blue); dperi and aperi (red); dperi, aperi, and aacc (green); dperi,

aperi, aacc, and Macc (orange); and dperi, aperi, aacc, Macc, and Vacc (cyan), corre-

sponding to the rows of Table 2.1 and the columns of Figure 2.4. The solid red lines

show the FIRE results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

A.3 Velocity functions (top) and radial distributions (bottom) for subhalos hosted by m12i

(left) and m12f (right), predicted by the most probable realization of our random forest
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Chapter 1

Introduction

ΛCDM cosmology rests on assumptions about its fundamental constituents: dark energy is assumed

to behave as a cosmological constant (Λ), filling space with a constant energy density that drives the

late-time accelerated expansion of the Universe, and cold dark matter (CDM) is assumed to move

slowly and interact feebly on cosmological time and length scales, providing the backbone for the

gravitational formation and evolution of cosmic structure. A myriad of diverse data are consistent

with these simple hypotheses, indicating that dark energy, cold dark matter, and Standard Model

particles respectively constitute about 70%, 25%, and 5% of the Universe’s contents today [15].

New generations of cosmological and astrophysical observations promise to test the ΛCDM

paradigm in distinct ways. Surveys of the distribution of large-scale structure traced by galax-

ies are enabling percent-level measurements of cosmological parameters in the late-time Universe,

including their potential evolution (e.g., [130]). Meanwhile, probes of cosmic expansion at both early

times and the present day test for consistency between the physics governing these epochs, pointing

towards currently unresolved tensions (e.g., [458] and references therein).

One of the most compelling questions raised by the success of ΛCDM concerns the nature of dark

matter. Modified theories of gravity tailored to explain dynamical observations on galactic scales fail

to simultaneously match the detailed distribution of cosmic structure encoded in the matter power

spectrum and reflected in the cosmic microwave background (CMB). Thus, it is usually assumed

that CDM is composed of particles, but no known particle is cold or collisionless enough to account

for (even a small fraction of) the dark matter. Several decades of theoretical and experimental efforts

have been driven by the hope that discovering the microphysical properties of dark matter will lead

to a discovery of physics beyond the Standard Model.

Galaxies form and grow in the gravitational potential wells provided by dark matter, tracing its

distribution down to the smallest cosmic scales. The entire spectrum of galaxies therefore contains

crucial information about dark matter physics that must be understood in concert with the large-

scale observations described above. In turn, the formation and evolution of galaxies can in principle

1
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be influenced by non-gravitational dark matter physics in addition to astrophysical processes, and

the two must be addressed together in a self-consistent model.

This thesis studies the interface of galaxy formation and dark matter physics with an aim to

simultaneously derive insights into both. In particular, by focusing on the faintest observable galaxies

and their connection to the microphysical properties of dark matter, it explores the boundaries

of galaxy formation theory where any imprints of new dark matter physics are expected to be

most noticeable. This chapter provides a high-level overview of the underlying physics, including

cosmological assumptions in Section 1.1, the hierarchical buildup of cosmic structure that scaffolds

galaxy formation in Section 1.2, and the processes by which gas cools and forms stars in dark

matter halos in Section 1.3. Section 1.4 gives an observational overview of Milky Way dwarf satellite

galaxies, which inform many of the comparisons to data in this thesis, and Section 1.5 introduces the

connection between dwarf galaxies, dark matter halos, and microphysical dark matter properties.

1.1 Preliminaries

This thesis operates in a flat, homogeneous, isotropic, and expanding spacetime, referred to as a

Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmology. The metric for this spacetime,

ds2 = dt2 − a2(t)dx2, (1.1)

is characterized by the scale factor a(t), which describes the size of the Universe relative to today,

with a(ttoday) ≡ 1. The redshift z, which describes the ratio by which a photon’s wavelength is

stretched as it travels through the expanding Universe, is related to the scale factor via

z =
1

a
− 1. (1.2)

The evolution of the scale factor is governed by the Friedmann equation,

(
ȧ

a

)2

=
8πG

3
ρ, (1.3)

where the energy density can be written in units of the critical density today, ρc, as

ρ

ρc
= ΩΛ + Ωma

−2 + Ωrada
−4. (1.4)

In Equation 1.4, ΩΛ, Ωm, and Ωrad respectively represent the fraction of the Universe’s energy

density currently stored in a cosmological constant (ΩΛ ≈ 0.7), nonrelativistic matter (Ωm ≈ 0.3),

and relativistic species (Ωrad ≈ 10−4), which sum to unity in a flat FLRW spacetime. The matter

component is further decomposed into CDM and baryonic species, respectively denoted Ωc and Ωb.



CHAPTER 1. INTRODUCTION 3

Equation 1.4 implies that the contents of the Universe observed today were partitioned differ-

ently at early times. Extrapolating the energy densities backwards places the redshift of matter–

radiation equality at z ∼ 3000. Before this epoch—i.e., in the first 300,000 years after the Big

Bang—radiation pressure slowed the gravitational growth of matter perturbations. Structure grew

efficiently during a matter-dominated epoch over the next ∼ 10 Gyr, and the remaining portion

of the Universe’s 13.7 Gyr history was dominated by dark energy, which accelerates the late-time

expansion rate.

The matter perturbations imprinted on the CMB provide clear evidence for the fundamental

role that dark matter plays in structure formation. CMB temperature anisotropies, which trace

overdensities of baryonic matter, are observed at the level of (δT/T ) ∼ 10−5. However, matter

perturbations grow linearly with the scale factor during the matter-dominated epoch. Requiring

that overdensities become nonlinear by today in order to form galaxies therefore requires underlying

fluctuations of (δρ/ρ) ∼ 10−3 at the time of the CMB. These overdensities must be sourced by

non-baryonic dark matter. Furthermore, they are consistent with being drawn from a homogeneous

and isotropic Gaussian random field laid down at very early times, for example by a phase of rapid

inflationary expansion.

1.2 Dark Matter and Hierarchical Structure Formation

The arguments above imply that dark matter scaffolds structure formation. But how does dark

matter structure itself form and grow? Small initial overdensities attract matter and evolve into

self-gravitating systems referred to as dark matter halos. Halos are roughly spherical distributions

of dark matter with centrally concentrated density profiles; despite being approximately virialized,

they are not in equilibrium because they continuously accrete matter from their surroundings.

Because gravitational interactions are scale free, dark matter halos assemble in a roughly self-

similar fashion down to the mass scales impacted by dark matter microphysics. Unlike the CDM

limit, realistic particle dark matter candidates have a nonzero free-streaming length, defined as the

typical distance a dark matter particle travels before matter perturbations begin to grow efficiently

after matter–radiation equality [416]:

λfs =

∫ tMRE

0

v(t)

a(t)
dt. (1.5)

Halo formation is suppressed on mass scales smaller than those corresponding to λfs, moderately

suppressed up to about one decade in mass above this scale (e.g., [415]), and asymptotes to CDM

predictions at even higher masses. In linear theory, the mass M of a collapsed halo is sourced by



CHAPTER 1. INTRODUCTION 4

density perturbations on a scale λ with the relation

M =
4π

3
ρm

(
λ

2

)3

=
4π

3
ρm

(π
k

)3

, (1.6)

where the cosmological wavenumber k ≡ λ/2π.

The free-streaming scale is sensitive to a variety of dark matter physics. The most commonly

considered phenomenological model is that of thermal relic warm dark matter, in which dark matter

is produced with a Maxwell-Boltzmann distribution when the Universe drops below a temperature

corresponding to the particle mass mWDM. Chapters 6–8 of this thesis describe how velocity-

independent dark matter–baryon interactions and dark matter that forms relatively late in the

radiation-dominated epoch mimic the free-streaming effects of thermal relic warm dark matter.

Halo formation is hierarchical well above the free-streaming scale: small halos form first and

merge together to form larger halos, including populations of subhalos (i.e., halos embedded within

larger halos). The number density of halos per mass interval roughly obeys a power law [494]

dn

dm
∝ m−α, (1.7)

with α = −1.9, and internal halo structure is reasonably well-described by the double power-law

Navarro-Frenk-White (NFW; [338]) density profile. The weak scale-dependence in the NFW profile,

which sets the transition of its power-law slope and thus the concentration of dark matter halos,

reflects characteristic halo formation times (e.g., [473]).

The mass function, spatial distribution, and internal properties of subhalos are affected by non-

linear gravitational and astrophysical processes that are relevant for the satellite galaxy modeling

in this thesis. Chapters 3–4 address some of this physics in the CDM context, and Chapters 9–10

describe the effects of dark matter self-interactions on subhalos. Subhalos within the Milky Way

are crucial for understanding both the threshold of galaxy formation and the small-scale behavior

of dark matter because they host the faintest observable galaxies.

1.3 Galaxy Formation in Dark Matter Halos

Before the epoch of the CMB, baryons were distributed in an opaque plasma of protons and electrons.

As the Universe cools below the binding energy of hydrogen, these protons and electrons combine to

form a diffuse, transparent neutral hydrogen gas. This gas falls into the gravitational potential wells

provided by dark matter halos, gaining kinetic energy and shock-heating to the virial temperature

Tvir ≈ 105 K

(
Vvir

100 km s−1

)2

, (1.8)
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where Vvir is the virial velocity, which is directly related to halo mass. Gas heated to to sufficiently

high temperatures Tvir & 104 K efficiently cools through two-body radiative processes and sinks to

the center of its halo. This cool, dense gas can then begin forming stars, initiating the life cycle of

galaxy formation and evolution.

A rich set of astrophysical processes complicate this simple picture to shape the evolving relation

between galaxy and halo properties and assembly histories over cosmic time. The efficiency of star

formation peaks for systems with masses comparable to the Milky Way, corresponding to stellar

masses of M∗ ≈ 1010 M� and halo masses of Mhalo ≈ 1012 M� [45]. Note that this percent-

level conversion of mass to stars is significantly lower than the cosmic baryon fraction of ∼ 15%.

Star formation efficiency drops sharply both above and below the Milky Way mass, largely due to

feedback from active galactic nuclei at higher masses and supernovae at lower masses (e.g., see [474]

and references therein).

Combined with Equation 1.8, the requirement that gas is shock-heated to Tvir & 104 K implies

that sufficiently low-mass halos are not expected to form stars. Precisely predicting and measuring

this “galaxy formation threshold” represents an active area of study, and Chapters 3–4 in this

thesis derive new upper limits of ∼ 108 M� on the masses of the smallest halos that must form

at least a few hundred stars in order to account for the abundance of faint galaxies orbiting the

Milky Way. Late-time star formation in dwarf galaxies with masses just above the galaxy formation

threshold is inhibited by the photoionizing background emitted by other galaxies at early times,

further suppressing the star formation efficiencies in this regime (e.g., [98, 349, 56]).

1.4 Dwarf Galaxies around the Milky Way

The physics that dictates dwarf galaxy formation implies that the luminous counterparts of low-mass

dark matter halos are extremely challenging to detect. In particular, the faintest dwarf galaxies

can only be detected nearby as satellite galaxies orbiting within the Milky Way’s dark matter

halo. Among these satellite galaxies, the Large and Small Magellanic Clouds have been known and

recorded by indigenous peoples in the Southern Hemisphere throughout human history. In the 1900s,

astronomers including Shapley [420] discovered 9 more “classical” satellites by visually identifying

sub-degree scale overdensities on photographic plates. Classical satellites range in luminosity from

the Large Magellanic Cloud, with M∗ ≈ 109 M�, down to systems as faint as M∗ ≈ 106 M�. Beyond

the extent of the Milky Way’s dark matter halo (i.e., at distances beyond ∼ 300 kpc), only a few

comparably faint galaxies are known, mostly within the Local Group as satellites of Andromeda

(M31; [319]) and other Local Volume central galaxies (e.g., [104]).

The Sloan Digital Sky Survey (SDSS; [21]) revolutionized the search for Milky Way satellites

in the 2000s with systematic digital imaging of ∼ 1/3 of the Northern sky. Automated dwarf

galaxy searches run on SDSS data led to the discovery of 16 new Milky Way satellites. Many of



CHAPTER 1. INTRODUCTION 6

these galaxies are significantly fainter than the classical satellites, including systems like Segue I

with M∗ ≈ 300 M� [192, 426], which remains the faintest spectroscopically confirmed galaxy ever

observed. Galaxies with M∗ . 105 are referred to as “ultra-faint” dwarfs and exhibit uniformly

ancient stellar populations (e.g., [425] and references therein). These systems are distinct from

globular clusters of comparable luminosities because they are highly dark matter dominated, with

mass-to-light ratios much larger than unity and as high as ∼ 1000 inferred from stellar velocity

dispersion measurements.

The last decade has seen a renaissance of Milky Way satellite galaxy discovery and science

driven by new generations of photometric surveys including the Dark Energy Survey (DES; [130])

and Pan-STARRS1 (PS1; [108]). Combined with other community-led efforts using the Dark Energy

Camera, deep surveys of small areas like the Hyper Suprime-Cam Subaru Strategic Program, and

novel search techniques based on RR Lyrae clustering, our census of Milky Way satellites has doubled

again, reaching ∼ 60 confirmed and candidate dwarf galaxies [149]. In addition to the faintest known

galaxy, this population contains the lowest surface brightness galaxy ever observed (Antlia 2; [444]).

1.5 Connecting Dark Matter to Dwarf Galaxies

The remarkable nature of the Milky Way’s dwarf satellite galaxy population begs for a theoretical

explanation. Initial attempts to compare ΛCDM predictions to the classical satellite population

(e.g., [266, 325]) seemed to severely overpredict the abundance of observable dwarf galaxies, termed

the “missing satellites problem.” This apparent discrepancy inspired a plethora of solutions based

in both astrophysics and modifications to the CDM paradigm (e.g., see [96] and references therein).

For example, [98] noted that the observed Milky Way satellite luminosity function can be reconciled

with theoretical predictions if reionization significantly suppresses star formation in dwarf galaxies.

Meanwhile, many dark matter models that suppress the formation of dwarf galaxy halos were also

proposed (e.g., using warm dark matter particles of mWDM ∼ 1 keV; [200]), and such modifications

continue to drive dark matter theory development today (e.g., [228]).

Although this thesis does not address the physics of the very early Universe, it is worth noting

that the abundance of dwarf galaxy halos is also sensitive to the primordial matter power spectrum

and thus to non-standard models of inflation or early matter domination (e.g., [252, 189, 322, 435]).

Other potential problems concerning the inferred dark matter density profiles of dwarf galaxies

(e.g., [126])—and particularly the Milky Way’s brightest satellites (e.g., [84, 242])—have inspired

proposals for modifications to dark matter physics that deplete halos’ central densities at late times,

including self-interaction cross sections of ∼ 1 cm2 g
−1

(e.g., [432]). In parallel, improved feedback

prescriptions and resolution in hydrodynamic simulations subsequently revealed that astrophysical

processes can also create dark matter cores (e.g., [369, 378] and references therein). A careful

treatment of dwarf galaxy halo profiles and their connection to observations is beyond the scope of
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this thesis, although the self-interacting dark matter simulations of Milky Way-like systems presented

in Chapters 9–10 inform this question.

Returning to the missing satellites problem, Equation 1.6 implies that inhibiting the formation of

dwarf galaxy halos (roughly taken to be systems with Mhalo . 1010 M�, which will be made precise

in subsequent chapters) requires suppressing density perturbations on scales λ . 1 Mpc. These

scales correspond to cosmological modes with k & 10 h Mpc−1 and enter the horizon during the

radiation-dominated epoch at z & 105, when the Universe is less than a few months old. Because

observations on larger scales are consistent with CDM predictions, this sets the free-streaming scale

for particle dark matter models that affect dwarf galaxy halos. These simple arguments foreshadow

the upper limits derived on the free-streaming scale for warm dark matter-like models in Chapters 6,

7, and 8 based on the consistency of the Milky Way satellite galaxy population with CDM predictions

demonstrated in Chapters 3 and 4.

Early comparisons between cosmological simulations and Milky Way satellite galaxy observations

were hampered by resolution effects including artificial disruption and fragmentation (e.g., [467,

454]). Recent generations of N -body and hydrodynamic cosmological simulations using the “zoom-

in” technique ([258, 347]) have only recently reached sufficient resolution to accurately resolve the

halos expected to host dwarf galaxies as subhalos of a Milky Way-mass host. These simulations

reveal that key physics was missing in the early comparisons to data underlying the missing satellites

problem. In particular, central disks akin to the Milky Way galaxy tidally disrupt a large fraction

of orbiting subhalos, reducing the expected number of nearby dwarf galaxies. Chapter 2 studies this

phenomenon in detail using state-of-the-art hydrodynamic simulations.

Of equal importance, observational selection effects that dictate the probability dwarf galaxies

can be detected as a function of their position on the sky and structural parameters were not

developed in detail until the time of SDSS searches (e.g., [271, 465]). Chapter 3 uses these SDSS

selection functions to compare satellite population predictions to Milky Way satellite galaxy data,

and Chapter 4 uses new selection functions derived from DES and PS1 data [149], which explicitly

incorporate the effects of satellite galaxy size and sky position on detectability for the first time.

In one sense, this thesis demonstrates that careful treatments of the galaxy–halo connection,

observational selection effects, and subhalo disruption are sufficient to explain the missing satellites

problem. More importantly, by developing a comprehensive modeling framework that unifies dark

matter and galaxy formation physics, this work addresses the following questions:

1. What is the quantitative relationship between dwarf galaxy and dark matter halo properties?

2. What is the mass of the halo that hosts the faintest observed galaxy, and what is the mass of

the faintest galaxy that can form in a dark matter halo?

3. Does every dark matter halo host a galaxy?

4. What do the faintest galaxies teach us about the microphysical properties of dark matter?



Chapter 2

Modeling the Impact of Baryons

on Subhalo Populations

Abstract

We identify subhalos in dark matter-only (DMO) zoom-in simulations that are likely to be

disrupted due to baryonic effects by using a random forest classifier trained on two hydrodynamic

simulations of Milky Way (MW)-mass host halos from the Latte suite of the Feedback in Realistic

Environments (FIRE) project. We train our classifier using five properties of each disrupted and

surviving subhalo: pericentric distance and scale factor at first pericentric passage after accretion,

and scale factor, virial mass, and maximum circular velocity at accretion. Our five-property classifier

identifies disrupted subhalos in the FIRE simulations with an 85% out-of-bag classification score.

We predict surviving subhalo populations in DMO simulations of the FIRE host halos, finding

excellent agreement with the hydrodynamic results; in particular, our classifier outperforms DMO

zoom-in simulations that include the gravitational potential of the central galactic disk in each

hydrodynamic simulation, indicating that it captures both the dynamical effects of a central disk

and additional baryonic physics. We also predict surviving subhalo populations for a suite of DMO

zoom-in simulations of MW-mass host halos, finding that baryons impact each system consistently

and that the predicted amount of subhalo disruption is larger than the host-to-host scatter among

the subhalo populations. Although the small size and specific baryonic physics prescription of our

training set limits the generality of our results, our work suggests that machine-learning classification

algorithms trained on hydrodynamic zoom-in simulations can efficiently predict realistic subhalo

populations.

8
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2.1 Paper Status and External Contributions

This chapter is published in slightly modified form in the Astrophysical Journal, Volume 859, Issue

2, p.129-146 with the title, “Modeling the Impact of Baryons on Subhalo Populations with Machine

Learning,” on which I am the corresponding author. It is the result of a collaboration with Yao-

Yuan Mao and Risa Wechsler with contributions from co-authors Shea Garrison-Kimmel and Andrew

Wetzel. Shea and Andrew published and provided us with the simulations used in this work. Yao

provided initial analysis tools and he and Risa were involved in the development of the random

forest algorithm and its applications. In addition, Yao and Risa made editorial contributions to

the text. This work matured during the 2018 Kavli Institute for Theoretical Physics program “The

Galaxy–Halo Connection Across Cosmic Time,” during which conference participants made helpful

suggestions.

2.2 Introduction

The ΛCDM cosmological model provides a remarkably successful framework in which the observed

large-scale distribution of galaxies can be understood in terms of the underlying distribution of dark

matter halos. However, there are several outstanding “small-scale” problems associated with ΛCDM

cosmology (see [97] and [129] for recent reviews). For example, dark matter-only (DMO) simulations

predict large numbers of low-mass subhalos that contribute to an ever-rising low-mass end of the

subhalo mass function. If these low-mass subhalos exist and host galaxies, we should observe many

more dwarf satellites than currently detected around the Milky Way (MW) or the Andromeda

Galaxy (M31); this is often dubbed the missing-satellites problem [266, 325]. Meanwhile, the “too

big to fail” (TBTF; [84]) problem arises because the number of subhalos with high maximum circular

velocities (Vmax & 15 km s−1) found in DMO simulations of MW-mass systems substantially exceeds

the number of such subhalos inferred to exist around the MW and M31. Equivalently, observational

estimates for the masses of the subhalos that host the dwarf satellites of the MW and M31 fall below

the masses predicted by DMO simulations [85].

While these small-scale problems present challenges to the ΛCDM paradigm, a number of promis-

ing astrophysical solutions to each problem have been proposed. For example, it is now understood

that cosmic reionization suppresses star formation in low-mass subhalos, while supernova (SN)

feedback can suppress star formation in more massive subhalos, potentially resolving the missing-

satellites problem [98, 429]. Proposed solutions to the TBTF problem build on these ideas by invok-

ing stellar feedback to soften central density cusps and deplete subhalos of dark matter [201, 369],

along with enhanced subhalo disruption via tidal stripping or disk shocking, to destroy many of the

high-Vmax subhalos found in DMO simulations. Several authors have suggested that these mecha-

nisms can yield subhalo populations in agreement with those inferred observationally for the MW

and M31 [502, 91, 90, 478, 411].
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Indeed, recent high-resolution hydrodynamic simulations that self-consistently resolve star forma-

tion, stellar feedback, and the formation of central galactic disks indicate that the missing-satellites

and TBTF problems can largely be mitigated for the subhalo populations of MW-mass host halos.

For example, [478] and [190] (hereafter GK17) studied the subhalo populations of two MW-mass

host halos from the Latte simulation suite of the Feedback in Realistic Environments (FIRE) project

[223] using the ‘zoom-in’ simulation technique [258, 347]. These authors found that the total number

of subhalos in each simulation is reduced by about a factor of two relative to corresponding DMO

simulations with identical initial conditions, and they also found significantly fewer subhalos with

high circular velocities in the hydrodynamic runs. Moreover, the subhalo populations in both of

these systems are consistent with a variety of observational probes for the MW and M31, which

suggests that the missing-satellites and TBTF problems can be resolved in these particular simu-

lations [478]. [501] reached similar conclusions by comparing hydrodynamic zoom-in simulations of

MW-mass host halos from the Aquarius Project [433] to DMO simulations of the same hosts.

These results rely on a limited number of high-resolution simulations of MW-mass host halos;

unfortunately, studying a large, diverse sample of subhalo populations in hydrodynamic zoom-in

simulations is currently infeasible. While many authors have justifiably focused on the subhalo pop-

ulations of MW-mass host halos, since these are particularly relevant to the original TBTF problem,

it is important to assess whether analogous TBTF problems arise for the subhalo populations of more

massive host halos. In addition, understanding whether the TBTF problem is consistently mitigated

in a range of simulations with different baryonic physics implementations is necessary in order to

make robust conclusions. Quantifying the impact of baryonic physics on subhalo populations more

generally will be important in order to interpret results from large-scale surveys, including the Dark

Energy Spectroscopic Instrument [131] and the Vera C. Rubin Observatory Legacy Survey of Space

and Time (LSST; [301]), and from targeted searches for satellites of MW-like galaxies outside the

Local Group such as the Satellites Around Galactic Analogs Survey (SAGA; [193]).

Thus, models that can incorporate a variety of hydrodynamic simulations to predict realistic

subhalo populations directly from DMO simulations are worth exploring. As a first step toward

such a model, we present a machine-learning classification algorithm to identify subhalos in DMO

zoom-in simulations of MW-mass host halos that are likely to be disrupted due to baryonic effects

in hydrodynamic resimulations. In particular, we train a random forest classifier on disrupted and

surviving subhalos from the FIRE zoom-in simulations presented in GK17, and we use the classi-

fier to predict surviving subhalo populations in DMO zoom-in simulations. Our aim is to explore

whether this algorithm can capture the effects of baryons in existing hydrodynamic simulations and

how the particular baryonic physics in these simulations alters subhalo populations in independent

DMO simulations. Rather than providing a detailed comparison of different classification algorithms,

we show that a simple random forest classifier predicts subhalo populations in excellent agreement
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with hydrodynamic results when applied to DMO simulations of the FIRE host halos. This tech-

nique is efficient, since a trained classifier can immediately predict surviving subhalo populations

from relatively inexpensive DMO simulations. We view classification as a promising technique for

predicting subhalo disruption because classifiers will become more robust as the number of high-

resolution hydrodynamic simulations to train on increases. In particular, classification algorithms

can be trained on a variety of zoom-in simulations to capture the impact of baryons on subhalo

populations for a range of host halo masses, central galaxy types, formation histories, and subgrid

physics prescriptions.

In addition to the practical utility of our results for predicting realistic subhalo populations, our

work provides insights into subhalo disruption in hydrodynamic simulations and relates to the small-

scale challenges described above. For example, our random forest classifier determines how strongly

various subhalo properties correlate with disruption, which indicates the importance of different

disruption mechanisms, including tidal effects and stellar feedback, given the specific baryonic physics

prescription in these simulations. To explore the relative importance of these disruption mechanisms,

we compare the surviving subhalo populations that we predict from DMO simulations of the FIRE

host halos to the DMO-plus-disk simulations presented in GK17, which are designed to capture the

dynamical effects of the central galactic disk that develops in each hydrodynamic simulation. In

particular, by performing DMO zoom-in simulations of two systems with analytic disk potentials

tuned to match the galactic disks that develop in the corresponding hydrodynamic simulations,

GK17 found subhalo populations in good agreement with the hydrodynamic results, particularly in

the innermost regions (r . 100 kpc). This result suggests that, for MW-mass halos with a central

galactic disk, the tidal effects of the disk are largely responsible for disrupting both the low-Vmax

subhalos relevant to the missing-satellites problem and the high-Vmax subhalos relevant to the TBTF

problem. Our machine-learning predictions are consistent with the DMO-plus-disk simulations at

low Vmax, but we find enhanced disruption for subhalos with Vmax & 15 km s−1 and our results match

the FIRE simulations more closely for such subhalos. Interestingly, several authors have suggested

that baryonic physics efficiently creates cored subhalo density profiles in this regime [109, 442, 176].

We therefore argue that baryonic effects within subhalos, such as stellar feedback, can help to relieve

the tension between the subhalo populations predicted by DMO simulations and those inferred from

observations of the Local Group.

Our work also has broader implications for studying the galaxy–halo connection. For example, by

using our classifier to predict surviving subhalo populations for the suite of DMO zoom-in simulations

of MW-mass host halos from [315], we find that the average amount of subhalo disruption due to

baryonic effects is larger than the host-to-host scatter among various subhalo populations. Thus,

models that utilize subhalo statistics from these simulations should account for enhanced subhalo

disruption when marginalizing over the effects of baryonic physics. Several semianalytic models

(e.g., [302, 303]) incorporate subhalo velocity functions predicted by DMO zoom-in simulations of



CHAPTER 2. MODELING THE IMPACT OF BARYONS ON SUBHALO POPULATIONS 12

MW-mass host halos in order to constrain the properties of the MW satellite galaxies and their host

halos, and it is plausible that the physical insights provided by these models could change when

more realistic subhalo populations are used as input.

This paper is organized as follows. In Section 2.3, we describe the FIRE simulations that we use

to train our random forest classifier, as well as the DMO and DMO-plus-disk simulations presented in

GK17 to which we compare our results. In Section 2.4, we describe our training and cross-validation

methods, and we test our classifier by predicting disrupted subhalos in two FIRE zoom-in simula-

tions. We present our main results in Section 2.5. In Section 2.5.1, we predict surviving subhalo

populations in DMO simulations of the FIRE host halos, and we present velocity functions and radial

distributions for our predicted subhalo populations; in Section 2.5.2, we predict surviving subhalo

populations for the suite of DMO zoom-in simulations from [315], and we discuss the implications

for satellite searches. We address avenues for future work and summarize our conclusions in Section

2.6.

We adopt cosmological parameters consistent with each simulation that we analyze. In particular,

we use h = 0.702, Ωm = 0.272, Ωb = 0.0455, and ΩΛ = 0.728 for our analysis of the FIRE simulations

and h = 0.7, Ωm = 0.286, Ωb = 0.047, and ΩΛ = 0.714 for our analysis of the MW zoom-in simulation

suite. Note that we express distances in physical kpc and velocities in km s−1.

2.3 Simulation Data

We train our random forest classifier using subhalos from the hydrodynamic zoom-in simulations

presented in GK17. These authors studied the subhalo populations of two MW-mass host halos,

referred to as m12i (Mvir = 1.1×1012 M�) and m12f (Mvir = 1.6×1012 M�), which were simulated

as part of the Latte suite from the FIRE project [223]. These simulations were performed using the

FIRE-2 code [224], which includes the same radiative heating and cooling, star formation, and stellar

feedback prescriptions as the original FIRE-1 code in addition to several numerical improvements.

The simulations were run in the same cosmological volume (side length 60 h−1 Mpc) as the AGORA

project [262]; the m12i and m12f zoom-in simulation regions each contain a single host halo at redshift

z = 0 that has no MW-mass neighbors within 3 Mpc. The m12i simulation was originally presented

in [478]; m12f, which was simulated using the same parameters and pipeline, was first presented

in GK17. The baryonic mass resolution in these simulations is ∼ 7000 M�, while the dark matter

particle mass is 3.5×104 M�, corresponding to a subhalo mass resolution of ∼ 3×106 M�. We refer

the reader to GK17 and [224] for details on the initial conditions, gravitational-force softenings, and

models for radiative heating/cooling, star formation, and stellar feedback in these simulations. Halo

catalogs were created using AHF [268] and merger trees were generated using the consistent-trees

merger code [48].
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We will compare our results to the m12i and m12f subhalo populations from three sets of simu-

lations: the hydrodynamic FIRE simulations described above, DMO simulations that were run with

identical initial conditions, and the dark matter-plus-disk potential (DISK) simulations presented in

GK17. The DISK simulations are identical to the corresponding DMO simulations, but they include

gravitational potentials designed to capture the effects of the central disks in the hydrodynamic

simulations. In particular, a disk potential is added to each DMO zoom-in simulation at z = 3, and

its parameters and evolution are tuned to match the central disk that develops in the corresponding

FIRE simulation. We refer the reader to GK17 for a detailed description of the DISK simulations.

Figure 1 in GK17 illustrates the dark matter substructure in m12i for each type of simulation.

The visual differences between the FIRE and DMO subhalo populations qualitatively show that

baryonic physics in the FIRE simulations lowers both the total number of surviving subhalos and

the number of high-Vmax subhalos that contribute to the TBTF problem. This figure also shows

that the DISK simulation captures the majority of the subhalo disruption in m12i, particularly

in the innermost regions (r . 100 kpc), which implies that the central disk is largely responsible

for the subhalo disruption in the corresponding hydrodynamic simulation. We have verified the

quantitative results in GK17 by calculating velocity functions and radial distributions for the m12i

and m12f subhalo populations in the FIRE, DISK, and DMO simulations. Note that, as in GK17,

we scale all subhalo masses by a factor of 1 − fb and all subhalo circular velocities by a factor of
√

1− fb in our post-processing of the DMO and DISK halo catalogs, where fb = Ωb/Ωm ' 0.17 is

the cosmic baryon fraction. The mass correction accounts for the fact that the baryonic mass in the

hydrodynamic simulations is included in the dark matter particles in the DMO simulations, and the

circular velocity correction is an approximate way to account for reduced subhalo densities due to

stellar feedback, similar to the prescription in [502]. Neither of these corrections affect our results.

To study disrupted subhalos in the FIRE simulations, we select subhalos that disappear from the

m12i and m12f halo catalogs after z = 3. We choose this redshift in order to match the initial redshift

of the DISK simulations in GK17; note that there are very few subhalos disrupted before z = 3 that

pass our subsequent minimum circular velocity cuts. We restrict our analysis to first-order subhalos

(i.e., we exclude subhalos of subhalos); thus, for a disrupted subhalo to be included in our catalog,

it must contribute to the host halo at z = 0. Operationally, each disrupted subhalo must have a

descendant ID equal to the ID of a main-branch progenitor of the final host halo. Meanwhile, we

define surviving subhalos as those that remain in the halo catalog at z = 0 and have a parent ID

that is equal to the host ID, which similarly excludes higher-order subhalos.

To ensure that we study well-resolved subhalos, we restrict both disrupted and surviving subhalos

to those with peak circular velocity Vpeak > 10 km s−1 in our fiducial model, where Vpeak is defined

as the largest maximum circular velocity a subhalo attains along its entire main branch. This is a

conservative choice; for example, GK17 presented velocity functions using the cut Vmax > 5 km s−1,

where Vmax is the maximum circular velocity at z = 0. However, this cut ensures that we train our
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algorithm on subhalos that are consistent with those we will classify in a lower-resolution zoom-in

simulation suite. By choosing a Vpeak threshold rather than a Vmax threshold, we also avoid biasing

our subhalo selection with a redshift-dependent cut, since Vpeak — unlike Vmax — is not defined at a

particular redshift. The Vpeak > 10 km s−1 cut results in a combined total of 566 surviving subhalos

and 872 disrupted subhalos from m12i and m12f, which we combine to form our fiducial training

set. In Appendix A, we examine the impact of different training sets and minimum circular velocity

cuts, and we present the results using the Vmax cut employed in GK17 for comparison.

2.4 Random Forest Classification

2.4.1 Overview

We use the random forest algorithm from the package Scikit-Learn [362] to classify disrupted

and surviving subhalos. We refer the reader to the Scikit-Learn documentation for a detailed

description of the algorithm, but we outline the most important aspects here. A random forest is a

collection of decision trees, each of which is tuned to classify objects based on their input properties.

Each tree in the forest is trained on a random sample of the training data with replacement, using a

random subset of the input features at each split in the learning process, with the goal of predicting

the classes of the objects in the training set as accurately as possible according to some metric. For

example, the default Scikit-Learn implementation minimizes the Gini impurity of the classifier’s

prediction. The random forest prediction for a given object is the majority vote of the tuned decision

trees, while the classification probability is equal to the fraction of trees that predict a certain class.

In this work, we label subhalos as either surviving until z = 0 or disrupted at some earlier time;

thus, our random forest objects are subhalos, and our decision trees vote for whether each subhalo

is disrupted or survives until z = 0. Note that our model does not explicitly include enhanced mass

stripping due to baryonic effects, since we simply label subhalos as disrupted or surviving.

We train our classifier using the disrupted and surviving subhalos from m12i and m12f described

above. We train on subhalo properties that depend on the entire history of each subhalo to avoid

biasing the classifier by using properties defined at specific redshifts — for example, at z = 0 for

surviving subhalos or at the final available redshift for disrupted subhalos. In particular, since we

aim to classify subhalos in DMO halo catalogs that have survived to z = 0 but are likely to be

disrupted in hydrodynamic resimulations, training our classifier with only present-day properties

results in too many surviving subhalos because of the systematic evolution of subhalo properties

over time.

Thus, we train on the following properties: pericentric distance and scale factor at first pericentric

passage after accretion (dperi, aperi), and scale factor, virial mass, and maximum circular velocity

at accretion (aacc, Macc, Vacc). In principle, we could train the classifier on additional subhalo

properties at pericenter or accretion; these properties could also include information about the host
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halo, such as subhalo scale radius in units of the host halo’s scale radius. Indeed, random forests

are well-suited to classifying objects using a large number of features because of the randomized

nature of the training process, so we could even use every available subhalo property at pericenter

and accretion to train the classifier. However, we will show that our five-property classifier performs

very well, so we adopt this model to simplify our analysis and avoid overfitting the training data.

In addition, we checked whether including the present-day properties Vmax and Mvir improves our

classifier, finding that these properties are much less informative than features defined at pericenter

or accretion. We discuss the correlations among the training features below, and we explore the

feature selection in more detail in Appendix A.

We calculate the aforementioned subhalo features from the merger trees as follows. We define

accretion as the last snapshot, working backward in time from z = 0 (for surviving subhalos) or from

the redshift of disruption (for disrupted subhalos), at which a subhalo’s host ID is equal to the main

halo’s ID. Physically, this occurs when a subhalo enters the virial radius of the host halo for the final

time.1 We then take aacc, Macc, and Vacc as the scale factor, virial mass, and maximum circular

velocity at the time of accretion for each subhalo. We define pericenter as the first snapshot after

accretion at which a subhalo reaches a local minimum in its three-dimensional distance from the

center of the host halo. We inspected individual subhalo orbits and determined that selecting the

distance from the center of the host halo at the first snapshot after accretion at which a subhalo’s

separation from the host increases provides an accurate estimate of dperi.
2 For subhalos that do not

reach a local minimum in their separation from the host halo after accretion, we define dperi as the

instantaneous distance from the center of the host. In particular, for surviving subhalos on infalling

orbits that have not experienced a pericentric passage by z = 0, we define dperi as the distance from

the host at z = 0. Analogously, for destroyed subhalos on infalling orbits that have not reached

pericenter by the time of disruption, we define dperi as the distance from the host at the time of

disruption.

2.4.2 Choice of Subhalo Features

We choose the subhalo properties listed above because we expect them to correlate with subhalo

disruption. Several of these properties are motivated by the results in GK17, which show that most

of the subhalo disruption in m12i and m12f is caused by the central galactic disk in each simulation.

For example, Figure 2.1 shows the joint and marginal distributions of dperi and aperi for disrupted

and surviving subhalos with Vpeak > 10 km s−1 in m12i and m12f. Disrupted subhalos, shown in

red, tend to have closer pericentric passages that occur at earlier times — or smaller values of aperi

— than their surviving counterparts, which are shown in blue. The dperi distributions make sense

1Note that a subhalo could have been contained within the host halo’s virial radius at an earlier time and later
reaccreted; we select the final accretion event for each subhalo.

2Given a spacing of ∼ 25 Myr between halo catalog snapshots and a generous subhalo orbital velocity of ∼
300 km s−1 at pericenter, the uncertainty in dperi is only ∼ 8 kpc.



CHAPTER 2. MODELING THE IMPACT OF BARYONS ON SUBHALO POPULATIONS 16

0.25 0.50 0.75 1.00
aperi

0

50

100

150

200

250

300

d p
er

i [
kp

c]

Surviving
Destroyed

Vpeak > 10 km s 1

Figure 2.1: Normalized joint and marginal distributions of pericentric distance and scale factor
at first pericentric passage after accretion for surviving (blue) and disrupted (red) subhalos with
Vpeak > 10 km s−1 in the m12i and m12f FIRE simulations. We select disrupted subhalos starting
at a = 0.25 (z = 3).
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Training Features OOB Score Accuracy (Disrupted) Accuracy (Surviving)

dperi 72% 80%± 3% 58%± 4%
dperi, aperi 82% 88%± 2% 72%± 3%
dperi, aperi, aacc 85% 87%± 2% 82%± 4%
dperi, aperi, aacc, Macc 85% 88%± 2% 81%± 3%
dperi, aperi, aacc, Macc, Vacc 85% 89%± 2% 80%± 4%

Table 2.1: Performance metrics for five different random forest classifiers trained on disrupted and
surviving subhalos from the m12i and m12f FIRE simulations with Vpeak > 10 km s−1. The first
column lists the subhalo features used to train each classifier. The second column lists the out-of-
bag classification score, which is the percentage of subhalos in the training data identified correctly
when each tree does not vote on subhalos in its own training set. The third and fourth columns list
the percentage of disrupted and surviving subhalos in the test set that are identified correctly by
each classifier, averaged over 100 test-training splits. The test set is the collection of subhalos from
the m12i and m12f FIRE simulations with Vpeak > 10 km s−1 that are not included in the training
set. We also indicate the standard deviation of each classification accuracy. Note that the ratio of
disrupted to surviving subhalos in our fiducial halo catalog is roughly 3:2.

physically; subhalos that pass close to the center of the host experience significant tidal forces due

to the galactic disk and are therefore more likely to disrupt.3 Next, consider the aperi dependence:

subhalos that reach pericenter earlier have relatively low masses at pericenter and tend to experience

more pericentric passages, both of which contribute to enhanced disruption. Although aperi and aacc

are somewhat degenerate properties, we find that including aacc improves our results, likely because

subhalos accreted at higher redshifts are tidally stripped for longer periods of time, making them

more susceptible to disruption.

Figure 2.2 illustrates the Vacc and Macc distributions for disrupted and surviving subhalos in m12i

and m12f. Interestingly, even though these features mainly contain information about internal rather

than orbital subhalo properties, they are useful for identifying disrupted subhalos; as we show below,

these properties account for 16% of the total feature importance score for our fiducial five-property

classifier. At the low-mass end of the subhalo population, subhalos with lower values of Vacc are

more likely to be disrupted. In particular, the survival of low-mass subhalos at fixed Macc is dictated

by tidal effects that preferentially disrupt lower-concentration subhalos, i.e., subhalos with smaller

values of Vacc at fixed Macc. However, at the high-mass end of the subhalo population, subhalos

with larger values of Vacc are more likely to be disrupted. This behavior suggests that baryonic

mechanisms, in addition to the tidal effects of the central disk, contribute to subhalo disruption

in the FIRE simulations. Specifically, it is plausible that Vacc and Macc encode information about

stellar feedback, which can soften central density cusps. In particular, we expect high-mass subhalos

3GK17 found that the amount of disruption is largely insensitive to the shape and mass of the central disk, so
subhalo disruption in these simulations is at least partly due to disk shocking rather than tidal stripping.
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Figure 2.2: Normalized joint and marginal distributions of maximum circular velocity and virial
mass at accretion for surviving (blue) and disrupted (red) subhalos with Vpeak > 10 km s−1 in the
m12i and m12f FIRE simulations. We select disrupted subhalos starting at a = 0.25 (z = 3); note
that Vacc < Vpeak for subhalos that are stripped prior to infall (e.g., see [46]).
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with larger values of Vacc to host more massive galaxies and to experience more significant baryonic

feedback, i.e., high-mass subhalos with larger values of Vacc are more likely to be disrupted. Thus,

even though Macc and Vacc are highly correlated, it is useful to train on both properties because

subhalo concentration determines Vacc at fixedMacc and provides physical information about whether

a subhalo subject to given tidal forces is disrupted. The advantage of random forest classification is

that it captures these complex relationships between subhalo properties and subhalo disruption.

2.4.3 Training and Validation

To train our classifier, we use the GridSearchCV function to search the space of random forest

hyperparameters and select the ones that yield the highest out-of-bag (OOB) classification score

averaged over ten cross-validation folds of the training data.4 These hyperparameters include the

number of trees in the forest, the depth of each tree, the maximum number of features used by each

tree, and the loss function. We train the classifier using a randomly selected 75% of the disrupted

and surviving subhalos from our fiducial training set, with replacement. The number of folds and

the ratio of the test-training split do not affect our results. The raw percentage of subhalos with

Vpeak > 10 km s−1 from the hydrodynamic m12i and m12f simulations that are identified correctly

by our classifier is 95%. We cross-validate this result by computing the OOB classification score,

which is defined as the percentage of subhalos from the training data that the random forest classifies

correctly when each tree does not vote on subhalos in its own training set. The optimal OOB score

for our fiducial five-property classifier is 85%, and we find that at least 20 trees are needed to achieve

this OOB score. Our classifier therefore identifies subhalos accurately, although the gap between the

overall classification accuracy and the OOB scores suggests that we mildly overfit the training data.

In particular, the raw accuracy is higher than the OOB score because decision trees are allowed to

vote on subhalos within their respective training sets when classifying all subhalos. To illustrate

the relative importance of each subhalo feature, Table 2.1 shows the OOB score along with the

percentage of correct and incorrect predictions for subhalos in the test set, which is the set of all

subhalos that are not included in the training set, for five different classifiers. We calculate these

scores for each classifier by using the hyperparameters determined by GridSearchCV and averaging

the results over 100 test-training splits. Each row of Table 2.1 lists the results for a classifier

trained using an additional subhalo feature; as we add training features, the OOB score and the

total classification accuracy generally improve. Note that there are more disrupted subhalos than

surviving subhalos in our fiducial training set, so the raw classification accuracy for each set of

features is higher than the mean classification accuracy inferred from Table 2.1. Thus, while the

classification accuracy for surviving subhalos decreases when Macc and Vacc are added, the increase

in classification accuracy for disrupted subhalos outweighs this effect. We emphasize, however, that

4In n-fold cross-validation, the training set is divided into n subsets of equal size; n− 1 of these subsets are used
for training, the remaining subset is used for cross-validation, and this procedure is repeated once for each possible
cross-validation subset.
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Figure 2.3: True- vs. false-positive classification rate for our fiducial five-property random forest
classifier, which is trained on subhalos from the m12i and m12f FIRE simulations with Vpeak >
10 km s−1. These classification rates apply to subhalos that are not included in the training set.
The AUC is equal to 1 for a perfect classifier (red), 0.93 for our random forest classifier (blue), and
0.5 for a random classifier (black).

dperi, aperi, and aacc contain most of the information about subhalo disruption in m12i and m12f.

Next, we examine our classifier’s receiver operating characteristic (ROC) curve, which illustrates

the rate of true- versus false-positive classifications for subhalos in the test set. The ROC Curve

for our five-property classifier is shown in Figure 2.3. The red and black lines illustrate perfect

(100% true-positive rate) and random (true-positive rate equal to false-positive rate) classifiers. We

quantify our classifier’s performance by calculating the area under the ROC curve (AUC), which

confirms that the random forest classifies subhalos in the FIRE simulations accurately: its AUC is

0.93, while a random classifier has an AUC equal to 0.5 and a perfect classifier has an AUC equal

to 1. Note that Figure 2.3 shows the ROC curve for a particular test-training split, but the scatter

in the ROC curves for different test-training splits is small.
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Figure 2.4: Feature importance scores for the five subhalo properties used to classify disrupted and
surviving subhalos in the m12i and m12f FIRE simulations. The colored bars above each property
indicate the feature importance scores averaged over 100 test-training splits when that property
is added to the training features. Thus, the columns correspond to the five different classifiers in
Table 2.1. For a given classifier, each property’s score indicates its relative importance for classifying
disrupted and surviving subhalos. Here dperi and aperi are the pericentric distance and scale factor
at first pericentric passage after accretion, and aacc, Macc, and Vacc are the scale factor, virial mass,
and maximum circular velocity at accretion.
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2.4.4 Importance of Subhalo Features

The random forest algorithm determines the feature importance of the various subhalo properties

included in the training process. The feature importance indicates the relative importance of each

property for predicting whether a given subhalo is disrupted or whether it survives until z = 0.

In particular, a property’s feature importance score is the suitably normalized change in the OOB

classification score when the property is randomly shuffled among the subhalos in the training set.

Thus, the property with the highest feature importance score is the most important for classifying

disrupted and surviving subhalos in the m12i and m12f simulations. Figure 2.4 illustrates the mean

feature importance scores for each classifier listed in Table 2.1; for a given classifier, the scores are

averaged over 100 test-training splits, and the same hyperparameters are used for each realization.

For our fiducial five-property classifier, which corresponds to the fifth column of Figure 2.4, we find

mean feature importance scores of 0.28 for dperi, 0.21 for aperi, 0.35 for aacc, 0.08 for Macc, and 0.08

for Vacc. The variance in the feature importance scores for different test-training splits is small, and

the scores depend very weakly on the random forest hyperparameters.

Figure 2.4 shows that pericentric distance is an important property for determining whether a

given subhalo is disrupted; subhalos with close pericentric passages are more likely to be destroyed.

The scale factors at accretion and at first pericentric passage after accretion are also important fea-

tures. In particular, subhalos that accrete and reach pericenter earlier are preferentially disrupted.

The fact that aacc has the highest feature importance score suggests that the number of pericentric

passages, rather than the distance and scale factor associated with each individual passage, is most

strongly correlated with subhalo disruption. However, we note that interpreting the feature impor-

tance scores for dperi and aperi is complicated by the fact that we defined these properties as the

instantaneous distance and scale factor at the final available snapshot for subhalos on infalling orbits

that have not reached their true pericenter. The true pericenters for such subhalos occur at smaller

values of dperi and larger values of aperi than we have assigned here; in a more detailed analysis, we

would need to calculate these features by fitting individual subhalo orbits. However, the fraction of

disrupted (surviving) subhalos in our fiducial training set that have not reached their true pericenter

by the time of disruption (z = 0) is only 17% (20%), so the feature importance for dperi and aperi is

reasonably accurate.

2.4.5 Model Limitations

Finally, we note that our classification method, like any other model, has its limitations. In partic-

ular,

1. our classifier is only trained on two zoom-in simulations of MW-mass host halos with a specific

baryonic physics prescription, and thus it is not clear how well our algorithm will perform on

subhalo populations associated with higher- or lower-mass host halos;
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2. neither of the hosts that we train on experience a recent major merger, so our classifier might

not apply to halos with significantly different formation histories;

3. both hosts form a central galactic disk that is responsible for most of the subhalo disruption,

so our classifier mainly captures the dynamical effects of a central disk.

We discuss these limitations in more detail and comment on how they might affect our results in

the following section.

2.5 Results

We now present our main results. In Section 2.5.1, we use our classifier to identify subhalos in DMO

simulations of m12i and m12f that are likely to be disrupted in hydrodynamic resimulations. We

analyze our predicted surviving subhalo populations by comparing the velocity functions and radial

distributions to those from the FIRE, DISK, and DMO simulations in GK17. In Section 2.5.2, we

predict surviving subhalo populations for the suite of DMO zoom-in simulations of MW-mass host

halos from [315], and we study the resulting velocity functions, radial distributions, and implications

for satellite searches.

2.5.1 Predictions for Dark Matter-only Simulations of the FIRE Halos

Subhalo Feature Distributions

There are about twice as many surviving subhalos at z = 0 in the DMO simulations of m12i and m12f

as in the corresponding hydrodynamic simulations. As we have discussed, we expect many of these

subhalos to be disrupted due to baryonic effects, including stellar feedback, enhanced tidal stripping,

and disk shocking, and our random forest classifier can identify such subhalos based on their internal

and orbital properties. In particular, to identify subhalos in the m12i and m12f DMO simulations

that are likely to be disrupted by baryonic effects, we select subhalos with Vpeak > 10 km s−1 at

z = 0, and we use our trained classifier to predict whether these subhalos should have been destroyed

at some earlier time using their values of dperi, aperi, aacc, Macc, and Vacc. Note that this method

does not require matching subhalos between DMO and hydrodynamic simulations.

Figure 2.5 shows the joint and marginal distributions of dperi and aperi for surviving subhalos from

the m12i and m12f DMO simulations predicted by our random forest classifier. The random forest

predicts a surviving subhalo population in dperi−aperi space that agrees well with the hydrodynamic

data; we also find good agreement in the spaces defined by the other subhalo features. Of course,

since our classifier is trained on subhalos from the m12i and m12f FIRE simulations, we expect it

to perform particularly well on the corresponding DMO simulations, which have identical initial

conditions. Nevertheless, these results are encouraging: even though there is no galactic disk or

stellar feedback in the DMO simulations, our classifier efficiently predicts subhalo populations that
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are in good agreement with the hydrodynamic results. In particular, once the classifier has been

trained on the hydrodynamic simulations, it can immediately predict surviving subhalo populations

from DMO halo catalogs. Simulations that include baryonic effects by hand, such as the DISK

simulations presented in GK17, are complementary to our approach, since they provide more direct

physical modeling at the expense of increased computational costs.

In general, at least three mechanisms contribute to enhanced subhalo disruption in the m12i and

m12f hydrodynamic simulations relative to the DMO simulations: tidal effects due to the central

galactic disk, stellar feedback, and characteristic changes in subhalo orbits due to the presence of

baryons. The results from the DISK simulations in GK17 indicate that the central disk is the

main source of subhalo disruption in these simulations, but the frequency of disruption events might

be enhanced by stellar feedback, which can soften central density cusps [201, 369, 502, 135]; as

noted above, we multiply all circular velocities in the DMO and DISK simulations by a factor of
√

1− fb to approximate this effect. Meanwhile, [500] analyzed the orbital properties of subhalos in

hydrodynamic and DMO zoom-in simulations of an MW-mass host halo from the Aquarius Project

and found that the distributions of subhalos in different orbital families change when baryons are

included. It is difficult to assess the importance of the characteristic differences in internal and

orbital subhalo properties between hydrodynamic and DMO simulations in general; however, the

fact that we predict subhalo feature distributions starting from DMO halo catalogs that agree with

hydrodynamic results suggests that these effects are relatively unimportant.

Subhalo Counts

Having shown that we can predict the feature distributions of surviving subhalos from DMO sim-

ulations of m12i and m12f, we turn to our predictions for the number of surviving subhalos as a

function of various properties. In Figure 2.6, we present our predictions for the m12i and m12f

velocity functions; the top panels show the velocity functions evaluated using Vmax, and the bottom

panels show the velocity functions evaluated using Vpeak. The blue lines show the most probable

surviving subhalo populations predicted by our random forest algorithm for each host halo; we also

plot the FIRE, DISK, and DMO results for comparison. We restrict the velocity functions to sub-

halos within 300 kpc of the center of their respective host at z = 0, since this roughly corresponds

to the virial radii of m12i and m12f. Similarly, Figure 2.7 shows the distribution of tangential and

radial orbital velocities for subhalos within 300 kpc of their respective host at z = 0, and Figure

2.8 shows the radial distribution of surviving subhalos at z = 0 within each host halo. In Figures

2.6–2.8, we only include subhalos with Vpeak > 10 km s−1 to match the cut used in our fiducial

training set. The bottom panels in these figures show the number of surviving subhalos predicted

by the most probable realization of our random forest classifier divided by the number of subhalos

found in each hydrodynamic simulation. We also plot the Poisson error associated with the random

forest predictions as shaded areas in each figure. In Appendix A, we show that the intrinsic scatter
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Figure 2.5: Normalized joint and marginal distributions of pericentric distance and scale factor at
first pericentric passage after accretion for surviving subhalos in the m12i and m12f FIRE simulations
(blue); surviving subhalos from the corresponding DMO simulations are shown in green. The unfilled
contour and purple histograms show the most probable surviving subhalo population from the m12i

and m12f DMO simulations predicted by our random forest classifier.
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in the random forest predictions is small.

There are several interesting aspects of Figures 2.6–2.8 that are worth exploring. Our random

forest algorithm predicts that the amount of substructure in each host is significantly reduced relative

to the DMO simulations, bringing the velocity functions and radial distributions into good agreement

with the FIRE results. The random forest predictions for the velocity functions are comparable to

the DISK simulations at low velocities, which indicates that the effects of the disk are largely encoded

in the subhalo properties that we use to train our classifier, at least for subhalos with low values

of Vmax or Vpeak. However, the random forest predicts more subhalo disruption than the DISK

simulations for Vmax & 15 km s−1 or Vpeak & 20 km s−1 and generally matches the FIRE results

more closely in these regimes. The minor discrepancies for Vmax & 15 km s−1 are likely caused by

enhanced mass stripping due to baryonic effects, which would shift the predictions toward smaller

velocities at high Vmax.

Our predicted radial distributions are also generally comparable to the DISK simulations; how-

ever, for 30 kpc . r . 100 kpc, where the disk should be particularly effective at disrupting subhalos,

our classifier predicts more subhalo disruption than the m12i DISK simulation and matches the FIRE

results more closely for both hosts. Finally, Figure 2.7 shows that our classifier predicts a substantial

reduction in the number of subhalos with low tangential velocities, even though it is not explicitly

trained on orbital velocities. Our predicted tangential and radial velocity distributions are similar

to the DISK results for m12i, while we slightly overpredict the number of high-Vtan and high-Vrad

subhalos for m12f. Comparing our predictions to the DISK simulations is a particularly useful way

to assess whether our classifier captures baryonic physics beyond the dynamical effects of a central

galactic disk, since the DISK simulations do not modify internal subhalo properties. Thus, Figures

2.6–2.8 suggest that our classifier captures both the tidal effects of a disk and additional baryonic

processes that contribute to subhalo disruption.

Our random forest classifier predicts that many subhalos with large values of Vmax and Vpeak

should be disrupted, while these subhalos are not necessarily destroyed in the DISK simulations (see

Figures 2.6 and A.3). These subhalos either orbit at large radii, so that they are not significantly

affected by the disk, or they are too tightly bound to be disrupted by the disk alone. We find

that 45% (84%) of the disrupted subhalos from m12i and m12f with Vpeak > 20 km s−1 have

pericentric passages within 50 kpc (100 kpc) of their respective hosts. The disk does not seem

to be the main factor that contributes to the destruction of the remaining subhalos, though a

combination of stellar feedback and tidal forces could lead to their disruption. Interestingly, the

region of the Vmax and Vpeak functions where we predict enhanced subhalo disruption relative to

the DISK simulations (Vmax & 15 km s−1 and Vpeak & 20 km s−1) corresponds to the regime where

baryonic physics can efficiently create cored subhalo density profiles [109, 442, 176]. It is also

intriguing that our classifier predicts both the Vmax and Vpeak functions accurately, even though

it does not account for enhanced mass stripping beyond the
√

1− fb circular velocity correction,
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Figure 2.6: Velocity functions for subhalos hosted by m12i (left) and m12f (right), predicted from
DMO simulations of these hosts by our random forest classifier (blue). The top panels show velocity
functions evaluated using the maximum circular velocity at z = 0, and the bottom panels show
velocity functions evaluated using the peak circular velocity Vpeak. Our classifier is trained on
subhalos with Vpeak > 10 km s−1 from both hydrodynamic simulations. The FIRE (red), DISK
(dot-dashed), and DMO (dashed) results are shown for comparison; recall that we scale circular
velocities in the DISK and DMO halo catalogs by a factor of

√
1− fb. Dotted lines show the DMO

results scaled by a factor of 1/2 for comparison. We restrict these velocity functions to subhalos
within 300 kpc of their respective host at z = 0. The bottom panels show the ratio Npred/NFIRE,
where Npred is the number of surviving subhalos predicted by the random forest and NFIRE is the
number of subhalos in each FIRE simulation. Shaded areas show the standard deviation about the
most probable random forest prediction for 1000 draws from a Poisson distribution with a mean
value of Npred at each value of Vmax or Vpeak.
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Figure 2.7: Distributions of tangential orbital velocities (top) and radial orbital velocities (bottom)
for subhalos with Vpeak > 10 km s−1 hosted by m12i (left) and m12f (right) at z = 0, predicted
from DMO simulations of these host by our random forest classifier (blue). The classifier is trained
on subhalos with Vpeak > 10 km s−1 from both FIRE simulations. We restrict these distributions
to subhalos within 300 kpc of their respective hosts at z = 0. The various curves and panels are
described in Figure 2.6.
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Figure 2.8: Radial distributions of subhalos with Vpeak > 10 km s−1 hosted by m12i (left) and m12f

(right) at z = 0, predicted from DMO simulations of these hosts by our random forest classifier
(blue). The classifier is trained on subhalos with Vpeak > 10 km s−1 from both FIRE simulations,
and the various curves and panels are described in Figure 2.6. The scaled DMO curve overpredicts
the number of surviving subhalos at small radii by an order of magnitude, highlighting the enhanced
subhalo disruption in the inner regions of the hydrodynamic simulation due to the central disk.



CHAPTER 2. MODELING THE IMPACT OF BARYONS ON SUBHALO POPULATIONS 30

which does not reproduce the hydrodynamic results on its own (for example, compare the ‘Raw

DMO’ and ‘DMO’ curves in GK17). Since Vmax and Vpeak are proxies for satellite luminosity, our

method can therefore be extended to predict satellite galaxy populations associated with MW-mass

host halos (see Figure 2.11); in addition, it can be used to constrain the cumulative mass functions of

dark and luminous substructures relevant to gravitational-lensing analyses. Clearly, a more diverse

training sample is required in order to make robust predictions regarding the populations of satellite

galaxies around the MW and around the MW analogs from the SAGA survey. Nonetheless, Figures

2.6 and 2.8 show that classification algorithms can predict subhalo populations in good agreement

with hydrodynamic simulations, providing an efficient way to explore the range of possible satellite

galaxy populations associated with a particular host halo.

One could argue that the efficiency of our approach is outweighed by the fact that we must train

our classifier on computationally expensive hydrodynamic simulations in order to predict surviving

subhalo populations for corresponding DMO simulations. However, as we demonstrate in the follow-

ing section, our method can be used to predict surviving subhalo populations when hydrodynamic

simulations are unavailable. Of course, the surviving subhalo populations we predict in this paper

are specific to the FIRE simulations that we use to train our classifier. Nonetheless, even though

the generality of our results is limited by the small size of our training set, our work suggests that

random forest classification can be used to predict realistic subhalo populations given a sufficiently

diverse sample of hydrodynamic training simulations. In addition, we emphasize that our classifier

is trained on simulations that yield satellite populations that are consistent with the observed mass

functions and velocity dispersion functions for satellites of the MW and M31.

2.5.2 Predictions for a Suite of Dark Matter-only Zoom-in Simulations

Subhalo Counts

We now use our classifier to identify subhalos from a suite of independent DMO zoom-in simulations

that are likely to be disrupted in hydrodynamic resimulations. In particular, we predict surviving

subhalo populations for the 45 zoom-in simulations of MW-mass host halos from [315]. We refer

the reader to [315] for a detailed description of the simulations, but we briefly highlight the most

important aspects for this work. The host halos lie in the mass range Mvir = 1012±0.03 M� and

have a variety of formation histories; we plot the mass accretion histories for these hosts in Figure

2.9. Note that m12i and m12f have formation histories that are consistent with these host halos,

so we expect our model to perform well on this simulation suite. Of course, our model would not

accurately predict subhalo disruption for hosts with significantly different formation histories due

to the limited size of our training set. The zoom-in simulations were run at a lower resolution

than the DMO simulations of m12i and m12f; the dark matter particle mass is 3 × 105 M�, and

[315] estimated that Vmax ∼ 9 km s−1 is a conservative lower limit for the subhalo circular velocity

resolution. Halo catalogs and merger trees were generated using the ROCKSTAR halo finder and the
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consistent-trees merger code [47, 48]. Again, we scale all subhalo masses by 1−fb and all subhalo

circular velocities by
√

1− fb in our post-processing of the halo catalogs. As noted at the end of

Section 2.2, the cosmological parameters for these simulations are slightly different than those used

in the FIRE simulations, and we adjust the parameters in our analysis accordingly.

In Figure 2.10, we plot the maximum circular velocity functions and radial distributions for the

subhalo populations from this simulation suite, along with those predicted by the most probable

realization of our random forest classifier for each simulation. We also plot the results from the

m12i and m12f FIRE simulations, along with the mean DMO curves scaled by a constant factor, for

comparison. In particular, we scale the mean DMO curves by a factor of 2/3 so that the average

number of subhalos with Vpeak > 10 km s−1 and r < 300 kpc matches the mean random forest

prediction. The random forest predictions were generated using the method described above. We

classify subhalos in each zoom-in simulation using the features dperi, aperi, aacc, Macc, and Vacc,

and we restrict the velocity functions to subhalos within 300 kpc of their respective host at z = 0.

We plot the most probable realization of the random forest prediction for each host. The intrinsic

scatter in our random forest predictions is small.

Figure 2.10 shows that the reduction in the total number of subhalos predicted by our random

forest classifier is larger than the host-to-host scatter for the subhalo populations in these zoom-in

simulations. In particular, our classifier predicts that the total number of subhalos with Vpeak >

10 km s−1 and r < 300 kpc is reduced by a factor of 2/3, while the 1σ host-to-host scatter corresponds

to an 87% reduction at most. This suggests that subhalo disruption due to baryonic effects, such

as stellar feedback and the tidal influence of a central galactic disk, should not be neglected in

semianalytic models that use the subhalo populations predicted by these DMO simulations as input.

In particular, for MW-mass host halos that contain a central galactic disk similar to those found

in the m12i and m12f FIRE simulations, the reduction in substructure due to the disk and other

baryonic processes is larger than the scatter in subhalo abundance from host to host, so the impact

of baryonic physics cannot be accounted for simply by marginalizing over the subhalo populations

of host halos with a range of formation histories.

While the average amount of subhalo disruption is larger than the host-to-host scatter among the

subhalo populations in these simulations, the impact of baryons on individual subhalo populations is

largely consistent. In particular, our classifier predicts that the hosts with the most subhalos tend to

have the largest number of surviving subhalos once baryonic effects are taken into account. Moreover,

the number of DMO subhalos and the predicted number of surviving subhalos above different Vmax

thresholds and within various hostcentric radii are highly correlated for this simulation suite. For

example, the Spearman rank correlation coefficient between the number of surviving subhalos with

Vpeak > 10 km s−1 and r < 300 kpc predicted by the DMO simulations and by our classifier is

0.74. This implies that the shapes of the velocity functions and radial distributions are not strongly

affected by baryonic physics; indeed, the scaled DMO curves in Figure 2.10 are very similar to the
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Figure 2.9: Mass accretion histories for the suite of DMO zoom-in simulations of MW-mass host
halos presented in [315]. The black line shows the mean mass accretion history for the 45 hosts, and
the shaded area shows the associated ±1σ standard deviation. Mass accretion histories for the m12i

and m12f FIRE simulations are shown in orange and green, respectively.
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Figure 2.10: Velocity functions (top) and radial distributions (bottom) for the suite of 45 zoom-
in simulations of MW-mass host halos presented in [315]. The thick lines show the mean number
of subhalos predicted by the DMO simulations (black) and by our random forest classifier (blue),
which is trained on the m12i and m12f FIRE simulations; the shaded areas show the ±1σ standard
deviation of these predictions. The thin lines show the DMO result and the most probable random
forest prediction for each host. The thick dotted lines show the mean DMO velocity function and
radial distribution scaled by a factor of 2/3 for visual comparison, and the orange and green lines
show the results for m12i and m12f, respectively. Note that the scaled DMO line in the top panel is
mostly obscured by the random forest prediction. The inset in the bottom panel shows the number
of predicted surviving subhalos with Vpeak > 10 km s−1 and within 300 kpc of their respective host
versus the number of such subhalos in the corresponding DMO simulations. The thick dotted line
in the inset shows the constant fraction of surviving subhalos corresponding to the scaled DMO
curves, and the thin dash-dotted line shows a 1 : 1 relationship for comparison. The vertical line at
Vmax = 9 km s−1 in the top panel represents a conservative resolution limit for these simulations.
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random forest predictions, except at small radii, where subhalos are preferentially disrupted in the

training data. The fractional amount of subhalo disruption is also consistent among the zoom-in

simulations. In particular, the number of predicted surviving subhalos with Vmax > 10 km s−1 and

r < 300 kpc for all 45 hosts is given by Npred/NDMO = 0.65 ± 0.09. To illustrate these results, the

inset in the bottom panel of Figure 2.10 shows the number of predicted surviving subhalos with

Vpeak > 10 km s−1 and r < 300 kpc for each host versus the corresponding number of subhalos in

each DMO simulation. The inset shows that the random forest predictions are consistent with an

overall scaling of the DMO subhalo populations. Thus, subhalo disruption due to baryonic effects

can be parameterized rather simply for these host halos in the context of our disruption model.

We leave a detailed exploration of such a parameterization to future work informed by a wider

range of hydrodynamic simulations, but we note that a simple one-parameter rescaling would not be

sufficient to model subhalo disruption in detail; for example, Figure 2.10 shows that the shape of the

mean radial subhalo distribution is somewhat altered by baryonic physics. Finally, we note that our

random forest classifier predicts that these zoom-in simulations typically contain more high-Vmax

subhalos than m12i or m12f and more subhalos at small radii than m12i. Determining whether these

differences represent statistical fluctuations or systematic differences between the FIRE simulations

and this simulation suite would require a larger sample of hydrodynamic results for comparison.

Implications for Satellite Searches

Our model, when applied to MW-size zoom-in simulations, suggests that MW-mass host halos are

somewhat less likely to host bright satellite galaxies such as the Magellanic Clouds and that they

have more extended radial satellite profiles than those inferred from DMO simulations. At face

value, both of these predictions seem to be in tension with observations of MW satellites (e.g., see

[264]). However, the MW itself could be an outlier, so here we also examine our model’s predictions

for the satellite populations of MW analogs.

To estimate the impact of baryonic physics on the luminosity functions of MW, which can be

compared to the results of the SAGA survey, we use the Vpeak-luminosity abundance-matching

relation tuned to the r-band luminosity function from the GAMA galaxy survey [295]; we refer the

reader to [193] for details on the abundance matching procedure. Figure 2.11 shows the resulting

luminosity functions for the MW zoom-in suite, along with the luminosity functions for these hosts

predicted by our random forest classifier. We neglect the scatter in the Vpeak-luminosity relation for

this simple estimate because the host-to-host scatter among the zoom-in simulations is larger than

the intrinsic scatter in the luminosity function introduced by abundance matching. Our classifier

predicts a significant reduction in the number of bright satellites associated with MW analogs;

the number of satellites with observed r-band magnitudes Mr,o < −12.3 inferred from the DMO

simulations is 3.0 ± 1.6, while our random forest predicts that only 1.5 ± 1.3 such satellites exist.

Although these estimates of surviving satellite populations are simplistic, it will be interesting to
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Figure 2.11: Luminosity functions for the DMO zoom-in simulations presented in [315] (black),
inferred using the Vpeak−luminosity abundance-matching relation tuned to the r-band luminosity
function from the GAMA survey [295]. We do not apply scatter in the Vpeak −Mr,o relation to
highlight the host-to-host variability. The blue line shows our mean prediction for the luminosity
function of surviving satellites, and shaded areas show ±1σ and ±2σ standard deviations. We also
plot luminosity functions for m12i (orange) and m12f (green). Here Mr,o is the observed r-band
luminosity, and the vertical line corresponds to the completeness limit of the SAGA survey.
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compare predictions informed by hydrodynamic simulations to observational results as the number

of systems with high completeness limits improves.

2.6 Conclusions and Discussion

To conclude, we summarize our main results as follows.

1. We train a random forest classifier on disrupted and surviving subhalos in two hydrodynamic

zoom-in simulations of MW-mass host halos from the FIRE project using five properties of

each subhalo: dperi, aperi, aacc, Macc, and Vacc.

2. Our classifier identifies subhalos in the FIRE simulations with an 85% OOB classification score

and predicts surviving subhalo populations from DMO simulations of these hosts that are in

excellent agreement with the hydrodynamic results, often outperforming the DMO-plus-disk

simulations presented in [190].

3. We argue that our classifier captures the effects of the central galactic disks that develop in

the FIRE simulations, in addition to other baryonic disruption mechanisms such as stellar

feedback.

4. We use our classifier to predict surviving subhalo populations for the suite of DMO zoom-in

simulations of MW-mass host halos presented in [315], finding that the average amount of

subhalo disruption is larger than the host-to-host scatter; however, the baryonic impact on

each subhalo population is largely consistent, with Npred/NDMO = 0.65 ± 0.09 for subhalos

with Vpeak > 10 km s−1 and r < 300 kpc.

We refer the reader to the end of Section 2.4 for a summary of the limitations of our classification

method.

There are several interesting avenues for future work. For example, since we find that the average

amount of subhalo disruption due to baryonic physics is larger than the host-to-host scatter among

the suite of zoom-in simulations analyzed above, this characteristic reduction in the number of

subhalos should be taken into account when marginalizing over the effects of baryonic physics for

MW-mass host halos that contain a central galactic disk. Thus, it is plausible that the reduced

number of surviving subhalos will change the conclusions drawn from semianalytic models that use

the subhalo populations predicted by such simulations (e.g., [302, 303]).

Another potential application of our results concerns the radial segregation of dark matter sub-

halos with respect to various subhalo properties. Subhalo segregation, as studied by [452], directly

depends on the subhalo populations predicted by DMO simulations. Since subhalo populations

that have been altered by baryonic effects systematically differ from those predicted by DMO sim-

ulations, subhalo segregation could be affected by baryonic physics, and our classifier provides an
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efficient method for predicting surviving subhalo populations in order to explore this possibility.

Meanwhile, resolving the disruption of individual subhalos in detail is an important challenge for

current simulations; for example, [451] estimated that 80% of all subhalo disruption in the Bolshoi

simulation is numerical, rather than physical. The Latte simulations have ∼ 4000× smaller dark

matter particle mass and ∼ 35× smaller dark matter force softening than Bolshoi, so these effects are

likely much less severe, but it is nevertheless worth exploring whether artificial disruption persists

in high-resolution hydrodynamic simulations and how these numerical artifacts might influence our

results.

The algorithm presented in this paper is extremely simple, using only five subhalo properties

as training features. Nevertheless, these properties encode the majority of the information about

subhalo disruption in the m12i and m12f FIRE simulations, yielding a classifier that predicts surviv-

ing subhalo populations from DMO simulations that are in excellent agreement with hydrodynamic

results. Of course, as the number of hydrodynamic training simulations grows, it will be worthwhile

to explore more sophisticated classification algorithms and to study the feature selection in more

detail. It will be interesting to assess how well a classifier can perform in principle, since there

are characteristic differences between DMO and hydrodynamic simulations, including changes in

subhalo orbits due to the presence of baryons [500], that our simple model cannot capture. Our

results hint that these characteristic differences are relatively unimportant, but further tests should

be performed using a larger sample of training simulations.

As more high-resolution zoom-in simulations become available, it will become feasible to train

classifiers on increasingly diverse datasets, allowing for more robust predictions. Once a classifier

has been trained on a wide variety of hydrodynamic simulations, it can predict a range of surviving

subhalo populations associated with different central galaxy types and halo formation histories di-

rectly from DMO simulations. It is worth exploring whether these predictions can be used as input

for neural networks in order to generate large samples of mock halo catalogs, perhaps eliminating

the need for certain types of simulations entirely.

Machine-learning algorithms have the potential to identify large samples of realistic subhalo pop-

ulations that can be used as input for models that populate subhalos with galaxies. Comparing the

surviving subhalo populations predicted by such algorithms for host halos on different mass scales

could provide insight into the original TBTF problem for MW-mass systems and into analogous

problems for host halos of different masses. Moreover, comparing the results of classification al-

gorithms that are trained on hydrodynamic simulations with different implementations of baryonic

physics would be a promising step toward parameterizing the impact of baryons on the abundance

and properties of dark matter subhalos.



Chapter 3

Modeling the Subhalo–Satellite

Connection

Abstract

We develop a comprehensive and flexible model for the connection between satellite galaxies

and dark matter subhalos in dark matter-only zoom-in simulations of Milky Way (MW)–mass host

halos. We systematically identify the physical and numerical uncertainties in the galaxy–halo con-

nection and simulations underlying our method, including (i) the influence of host halo properties;

(ii) the relationship between satellite luminosities and subhalo properties, including the effects of

reionization; (iii) the relationship between satellite and subhalo locations; (iv) the relationship be-

tween satellite sizes and subhalo properties, including the effects of tidal stripping; (v) satellite and

subhalo disruption due to baryonic effects; and (vi) artificial subhalo disruption and orphan satel-

lites. To illustrate our approach, we fit this model to the luminosity distribution of both classical

MW satellites and those discovered in the Sloan Digital Sky Survey by performing realistic mock

observations that depend on the luminosity, size, and distance of our predicted satellites, and we

infer the total satellite population that will be probed by upcoming surveys. We argue that galaxy

size and surface brightness modeling will play a key role in interpreting current and future observa-

tions, as the expected number of observable satellites depends sensitively on their surface brightness

distribution.

3.1 Paper Status and External Contributions

This chapter is published in slightly modified form in the Astrophysical Journal, Volume 873, Issue 1,

p.34-51 with the title, “Modeling the Connection between Subhalos and Satellites in Milky Way–like

38
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Systems,” on which I am the corresponding author. It is the result of a collaboration with Yao-

Yuan Mao, Gregory Green, and Risa Wechsler. Yao and Risa were involved in the development of

the model and the interpretation of the results, and Greg contributed to the development of the

statistical framework and constraints. In addition, Yao, Greg, and Risa made editorial contributions

to the text. This work matured during the 2019 Kavli Institute for Theoretical Physics program

“The Small-scale Structure of Cold(?) Dark Matter,” during which conference participants made

helpful suggestions.

3.2 Introduction

Since the turn of the century, high-resolution N -body simulations have convincingly demonstrated

that structure formation in a Lambda–Cold Dark Matter (ΛCDM) universe results in a significant

number of self-gravitating DM subhalos that reside within the virial radius of Milky Way (MW)–mass

host halos (e.g., [266, 325]). Relating these subhalos to observed satellite galaxies in MW-like systems

requires either empirical modeling to statistically associate satellites with subhalos (e.g., [91, 185]),

semi-analytic galaxy formation modeling (e.g., [290, 310, 211, 436, 209, 302]), or hydrodynamic

simulations (e.g., [365, 408, 478]), all of which can yield satellite populations that are consistent

with the luminosity function of the brightest MW satellites.

Modeling additional aspects of observed satellites such as their spatial, orbital, and size distri-

butions will be necessary in order to interpret the results of current and future satellite searches

in a cosmological context. Zoom-in simulations of MW-mass host halos are well-suited to this task

because they provide high-fidelity realizations of the subhalo populations in these systems (e.g.,

[433, 185, 315, 206]). However, modeling the corresponding satellite populations using hydrodynam-

ics is difficult because resolving MW-mass hosts along with their faint satellites requires exceptional

resolution [481, 478]. In addition, sub-grid baryonic physics and star formation models, which re-

main uncertain, can have a significant impact on galaxy formation in this regime [280, 330]. While

semi-analytic models offer flexible galaxy formation prescriptions that can be extended to ultra-faint

systems, these approaches yield insights into the detailed astrophysical nature of the subhalo–satellite

connection, rather than offering an easily interpretable coarse-grained description. The additional

layer of modeling needed to track galaxy properties over time also increases the complexity of semi-

analytic models relative to empirical approaches.

Predicting satellite populations directly from subhalo populations in dark matter-only (DMO)

zoom-in simulations is therefore an attractive alternative. Several authors [440, 273, 277, 214, 264,

241, 340] have taken this approach to estimate the total number of MW satellites or to constrain

the connection between subhalos and satellites. Many of these studies focus on specific aspects of

MW satellite modeling (e.g., correcting for the completeness of observed satellite populations) and

apply several distinct models to bracket the range of ΛCDM predictions.



CHAPTER 3. MODELING THE SUBHALO–SATELLITE CONNECTION 40

Ingredient Assumptions Parameterization Free?

3.4.1 Host Halo Fixed by zoom-in simulations None No

3.4.2 Luminosities

Abundance match to GAMA survey
Extrapolate luminosity function
Lognormal (MV |Vpeak) distribution
No satellites below Mpeak threshold

Non-parametric
Faint-end slope α
Constant scatter σM
Cut on Mpeak <Mmin

No
Yes
Yes
Yes

3.4.3 Locations
On-sky positions set by subhalos
Distances set by scaled subhalo radii

None
rsat ≡ χrsub

No
No

3.4.4 Sizes

[244] sizes at accretion
Size reduction set by stripping
Lognormal (r′1/2|Rvir) distribution

r1/2 ≡ A (c/10)γRvir

r′1/2 ≡ r1/2 (Vmax/Vacc)β

Constant scatter σR

No
No
No

3.4.5 Baryons [337] disruption model pdisrupt → p
1/B
disrupt Yes

3.4.6 Orphans

Correspond to disrupted subhalos
NFW host + dynamical friction
Stripping after pericentric passages
pdisrupt set by time since accretion

None
ln Λ = − ln(msub/Mhost)

ṁsub ∼ −msub

τdyn

(
msub

Mhost

)0.07

pdisrupt ≡ (1− aacc)O

No
No
No
No

Table 3.1: Summary of the physical ingredients, underlying assumptions, and parameterizations
of various processes that enter our model for the subhalo–satellite connection. The final column
indicates whether each component of the model is held fixed or allowed to vary for our fit to the
luminosity distribution of classical and SDSS-identified satellites in Section 3.5. Bold values corre-
spond to parameters that are varied in our fit to the observed luminosity function.

Herein we build upon these efforts to develop a comprehensive framework that simultaneously

addresses the relevant observational and modeling uncertainties. In particular, we present a flexible

model for mapping subhalos to satellites and we use observations to infer the connection between

these systems. Our model addresses:

(i) The influence of host halo properties on satellite populations;

(ii) Satellite luminosities — including the impact of reionization on galaxy formation — by extrapo-

lating an abundance matching relation to faint systems and imposing a galaxy formation threshold;

(iii) The relationship between subhalo and satellite locations

(iv) Satellites sizes — including the effects of tidal stripping — by extrapolating a galaxy size–halo

size relation that accurately describes galaxy sizes in hydrodynamic simulations

(v) Satellite and subhalo disruption due to baryonic effects using an algorithm calibrated on hydro-

dynamic zoom-in simulations of MW-mass host halos

(vi) Orphan satellites using a semi-analytic model to track and reinsert disrupted subhalos

As an example application, we fit our model to the luminosity distribution of both classical

MW satellites and those discovered in the Sloan Digital Sky Survey (SDSS; [21]), and we show

that it predicts satellite populations that are qualitatively and quantitatively consistent with the
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luminosity function, radial distribution, and size distribution of these systems. We then forward-

model the total population of MW satellites and predict satellite abundance as a function of absolute

magnitude and limiting observable surface brightness; these predictions are relevant to upcoming

satellite searches with improved surface brightness limits that will be carried out by surveys like the

Dark Energy Survey1 (DES; [130]), the Hyper Suprime-cam Subaru Strategic Program (HSC-SSP;

[220])2, and the Vera C. Rubin Observatory Legacy Survey of Space and Time3 (LSST; [301]). We

argue that satellite sizes, which have not consistently been included in subhalo-based models, are

a key ingredient for interpreting current and future observations, as satellite detectability is highly

dependent on surface brightness.

This paper is organized as follows. In Section 3.3, we describe the zoom-in simulations used in

this work. We present our model for connecting subhalos to satellites in Section 3.4. In Section 3.5,

we qualitatively and quantitatively compare our mock satellite populations to classical and SDSS-

identified MW satellites. We describe an improved procedure for fitting the model to observed

satellite populations, which we implement by performing mock observations and comparing our

predictions to the luminosity distribution of classical and SDSS-identified systems. We discuss our

results, predictions for ongoing and future surveys, implications for the low-mass subhalo–satellite

connection, and caveats in Section 3.6. We summarize our model in Section 3.7. Throughout, we

refer to bound DM systems as “subhalos” and to luminous galaxies as “satellites.” Furthermore,

“log” refers to the base-10 logarithm.

3.3 Simulations

We primarily use six “MW-like” host halos (defined below) from the suite of forty-five MW-mass

DMO zoom-in simulations presented in [315]. These forty-five host halos have virial masses4 in

the range Mvir = 1012.1±0.03 M� and have a range of formation histories that are representative of

1012 M� hosts. The highest-resolution particles in these simulations have a mass of 3.0×105 M� h
−1,

and the softening length in the highest-resolution regions is 170 pc h−1. To test for convergence, we

compare the subhalo maximum circular velocity function, radial distribution, and size distribution

for one of these hosts (Halo 937) to a resimulation with a 4.0× 104 M� h
−1 high-resolution particle

mass and an 85 pc h−1 minimum softening length. These subhalo statistics are reasonably consistent

among the fiducial- and high-resolution simulations (for example, see Figure 3.3), although we find

a larger population of small-virial radius subhalos in the high-resolution run.

Halo catalogs and merger trees were generated using the Rockstar halo finder and the consistent-

trees merger code [47, 48]. [315] estimate that subhalos in these simulations are well-resolved down

1https://www.darkenergysurvey.org/
2https://hsc.mtk.nao.ac.jp/ssp/
3https://www.lsst.org/
4We define virial quantities according to the overdensity ∆vir ' 99.2 as appropriate for the cosmological parameters

used in our zoom-in simulations: h = 0.7, Ωm = 0.286, Ωb = 0.047, and ΩΛ = 0.714.

https://www.darkenergysurvey.org/
https://hsc.mtk.nao.ac.jp/ssp/
https://www.lsst.org/
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to a maximum circular velocity of Vmax ≈ 9 km s−1. To be conservative, we restrict our analysis to

subhalos with both Vmax > 9 km s−1 and peak maximum circular velocity Vpeak > 10 km s−1.

The MW might be an outlier compared to typical host halos and galaxies in the relevant mass

ranges (e.g., [86, 100, 393, 293]), and its subhalo and satellite populations might be particularly

influenced by the existence of the Large and Small Magellanic Clouds (LMC, SMC; e.g., [302, 145]).

In this work, we therefore select hosts that have two Magellanic Cloud analogs, defined as subhalos

with Vmax > 55 km s−1 following [302]; we find six such MW-like host halos in our simulation suite.

Although secondary properties of the MW in addition to the existence of the Magellanic Clouds

could also bias its subhalo population [173], we have checked that the results presented in Section

3.6 are not significantly affected if we randomly select host halos from our simulation suite.

3.4 Model

The following subsections describe the ingredients that enter our model for the subhalo–satellite

connection, which we summarize in Table 3.1. Our model encompasses the influence of host halo

properties on satellite populations (Section 3.4.1), the way in which satellites populate subhalos and

the relationship between satellite and subhalo properties (Sections 3.4.2–3.4.4), and modifications

to subhalo populations in DMO simulations (Sections 3.4.5, 3.4.6). We indicate the parameters

associated with our method in the subsection headers; these parameters define our physically moti-

vated empirical model. Note that unlike in semi-analytic approaches, we do not require our model

components to represent specific astrophysical processes such as star formation or quenching. In

addition, although we illustrate our model using the zoom-in simulations described previously, we

stress that our framework does not depend on the specific host halos used in this paper.

3.4.1 Host Halo Properties

Although we primarily use the six MW-like host halos described in Section 3.3, we note that our

model can be applied to different hosts by changing the underlying zoom-in simulations. While

the masses of our host halos are consistent with several observational constraints for the MW (e.g.,

[100, 354]; also see the review in [63]), recent studies based on astrometric data suggest a more

massive MW halo ([324, 370, 424, 471]; however, see [102]). Thus, studying how our predictions

vary as a function of host halo mass is an important avenue for future work.

At fixed host halo mass, subhalo abundance depends on the host’s formation history and sec-

ondary properties (e.g., [496, 173]). For example, lower-concentration hosts accrete the majority

of their subhalos later than higher-concentration hosts, leaving less time for subhalo disruption

and resulting in a larger population of surviving subhalos at fixed host mass [315]. Although our

MW-like host halos have lower concentration than average 1012 M� hosts, marginalizing over con-

centration using MW-mass hosts with a range of formation histories does not affect the results of
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the fit presented herein.

3.4.2 Satellite Luminosities

Next, we describe our procedure for assigning satellite luminosities to DM subhalos. We use abun-

dance matching to link subhalos’ peak maximum circular velocities Vpeak to their satellites’ absolute

r-band magnitudes Mr down to a certain magnitude. In particular, we follow [193] by tuning our

abundance matching relation to the GAMA galaxy survey [295] using the measured GAMA r-band

luminosity function k-corrected to z = 0 and the halo Vpeak function from a DMO simulation with

25603 particles and a side length of 250 Mpc h−1, run using the same cosmological parameters and

code as the Dark Sky Simulations [428]. We abundance match to the GAMA luminosity function

down to Mr = −13 mag, and we extrapolate this relation to fainter galaxies, assuming that the

faint-end satellite luminosity function follows a power law. We then convert our predicted r-band

magnitudes to V -band magnitudes using the empirical relation Mr ≈MV − 0.2 mag as in [193]. For

a particular faint-end luminosity function slope, this procedure yields a mean MV –Vpeak relation.

Note that by assigning magnitudes based on Vpeak, we have implicitly assumed that satellites’ abso-

lute magnitudes are not altered after accretion (see [358] for a detailed discussion of this assumption;

also see [491, 479, 376]). We now discuss our method for varying the faint-end slope and applying

scatter to our luminosity relation.

Faint-end Slope (α)

The faint-end slope α of the luminosity function that enters our extrapolated abundance matching

relation has been examined in previous MW satellite studies including [440]. Constraints on the faint-

end slope for dwarf galaxies are limited, but can in principle be derived from the total luminosity

function in the Local Volume [265] or from the satellite distributions around the MW, Andromeda

(M31), or MW analogs, such as those observed by the Satellites around Galactic Analogs Survey

(SAGA; [193]). For reference, [440] infer values of−2 . α . −1 by applying completeness corrections

to observed MW satellite populations. We find that a characteristic value of α = −1.3 maps subhalos

at our Vpeak ≈ 10 km s−1 resolution limit to satellites with MV ≈ 5 mag, which is significantly

dimmer than the faintest spectroscopically confirmed MW satellite, Segue I (MV = −1.5 mag;

[321]).

Luminosity Scatter (σM)

Galaxy properties such as stellar mass and luminosity derived from abundance matching are usually

assumed to follow lognormal distributions at fixed halo mass proxy, and the scatter in these properties

is relatively well constrained to ∼ 0.2 dex for host halos with masses above ∼ 1012 M� ([45, 379, 288];
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Figure 3.1: Example of the relation between satellite luminosity and subhalo peak circular velocity
used in our model. We treat the faint-end power-law luminosity function slope α and the constant
lognormal scatter σM as free parameters. Dark (light) shaded areas show ±1σM (±2σM ) scatter.
The dashed black line indicates a conservative upper bound on the resolution limit of our simulations,
and the red lines indicate the absolute magnitude of the faintest spectroscopically confirmed MW
satellite (Segue I; MV = −1.5 mag) and the mean inferred Vpeak of its subhalo for α = −1.3 and
σM = 0.2 dex.
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also see the review in [474]).5 However, this scatter is not well constrained in the MW satellite regime

[187, 328]. We therefore treat the scatter in our predicted absolute magnitudes at fixed Vpeak, which

we denote σM , as a free parameter with a lower bound of 0.2 dex. In particular, we apply scatter to

each satellite’s absolute magnitude by drawing from a lognormal distribution with a mean set by our

MV –Vpeak relation and a standard deviation of σM . Note that we do not deconvolve the abundance

matching relation when we vary the scatter for computational efficiency; we have checked that this

choice does not significantly affect the resulting MV –Vpeak relation. Although several semi-analytic

models (e.g., [209]) and hydrodynamic simulations (e.g., [410, 176]) suggest that the scatter between

galaxy properties and halo properties grows with decreasing halo mass, we treat σM as a constant

for the fit presented in this paper. It might be necessary to relax this assumption in future work

that addresses a more complete population of observed satellites.

Because we extrapolate our abundance matching relation to systems fainter than Mr = −13 mag,

our procedure is not designed to match the global luminosity function in this regime; however, the

global constraint is not our primary concern, and our power-law-plus-scatter parameterization results

in a more flexible model. We show an example MV –Vpeak relation in Figure 3.1 for fiducial choices

of α and σM , but we emphasize that these are free parameters in our model. Figure 3.1 illustrates

that our simulations should resolve all subhalos that host satellites with MV < 0 mag for this choice

of α and σM (however, see the discussion on artificial subhalo disruption and orphan satellites in

Section 3.4.6).

Galaxy Formation Threshold (Mmin)

Many authors have studied the impact of reionization on galaxy formation in low-mass subhalos,

finding that subhalos below a certain mass or Vpeak threshold are likely to be dark (e.g., [439,

98, 429]). Because we simply assign satellite luminosities to subhalos, we must account for this

effect; however, the details of the galaxy formation process for faint satellites are unclear. For

example, [280], [409], and [176] respectively find that most isolated halos with Mpeak ≈ 1010 M�

(Vpeak ≈ 45 km s−1), 3× 109 M� (Vpeak ≈ 33 km s−1), and 109 M� (Vpeak ≈ 25 km s−1) are dark.

Meanwhile, [241] find that the peak virial mass of the subhalo hosting Segue I (MV = −1.5 mag) is

below 2.4×108 M� (Vpeak ≈ 16 km s−1) at the 68% confidence level, and [64] find that star formation

can proceed after supernova feedback in subhalos with peak virial masses down to ∼ 107 M�

(Vpeak ≈ 7 km s−1).

These results are generally sensitive to the assumed redshift of reionization and ultraviolet back-

ground; to account for these uncertainties in a simple way, we treat the minimum peak virial mass

necessary for galaxy formation,Mmin, as a free parameter. In particular, for a given value ofMmin,

we discard satellites in all subhalos with Mpeak < Mmin. This mass cut clearly does not capture

5The observational uncertainties associated with the conversion from stellar mass to luminosity are likely larger
than the difference in scatter between these quantities [474], so we ignore this distinction here.
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the complexities of galaxy formation in low-mass subhalos, which likely result in a smoothly varying

galaxy occupation fraction rather than a sharp cutoff [409, 410, 175]. Although it is not necessary

to introduce Mmin because we fit to an incomplete sample of observed satellites, we will demon-

strate that the classical-plus-SDSS luminosity distribution sets an interesting upper bound on this

quantity, given our simple parameterization.

3.4.3 Satellite Locations

Next, we describe our procedure for assigning on-sky coordinates and radial distances to our mock

satellites.

On-sky Positions

In general, we expect the positions of satellite galaxies to correspond reasonably well to the positions

of their subhalos. Thus, we simply use the projected on-sky positions of subhalos in our zoom-

in simulations to assign on-sky coordinates to our satellites. Since our DMO simulations do not

contain galactic disks, we are free to perform arbitrary 3D rotations of our subhalo positions about

host halo centers before projecting them onto the sky; these rotations can be fixed based on the

positions of Magellanic Cloud–like subhalos in order to perform realistic mock MW satellite surveys.

In addition, we convert satellites’ Galactocentric coordinates to heliocentric coordinates by placing

mock observers 8 kpc from our host halo centers, as described in Section 3.5.

Radial Scaling (χ)

MW satellites seem to be unusually centrally concentrated compared to both the observed satel-

lite population in M31 and typical subhalo populations in zoom-in simulations (e.g., [492, 202];

however, see [289]). While this apparent discrepancy might be caused in part by misestimates of

observational incompleteness, several numerical effects could contribute to a mismatch between the

radial distribution of simulated subhalos and observed satellites. For example, simulations might

underestimate the amount of dynamical friction experienced by subhalos due to resolution effects

(although we expect this to be a subdominant source of error in MW-mass systems), and halo finders

might mis-track or fail to identify subhalos in dense, central regions [267]. We expect halo finder

incompleteness to be mitigated in our analysis, given that we use the phase-space-based halo finder

Rockstar and because we reinsert disrupted subhalos using the orphan model described in Section

3.4.6.

To model these potential biases in our radial satellite distributions, we define the parameter

χ ∈ (0, 1] as follows:

rsat ≡ χrsub, (3.1)

where rsat is a satellite’s distance from the center of its host halo (which we identify with its
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Galactocentric distance) and rsub is the Galactocentric distance of the corresponding subhalo. Thus,

χ = 1 corresponds to setting each satellite’s radial distance equal to that of its subhalo, while smaller

values of χ shift our mock satellites inward relative to their subhalos. Although we fix χ = 1 for

the fit to the luminosity distribution of classical and SDSS-identified satellites presented below, we

include it in our modeling framework for generality and as a useful phenomenological parameter for

future work.

3.4.4 Satellite Sizes

To assign sizes to our mock satellites, we use a modified version of the galaxy size–halo virial radius

relation from [244], which relates a galaxy’s 3D half-mass radius to its subhalo’s virial radius Rvir.

Since we will compare the sizes of our mock satellites to measured half-light radii, we simply identify

our satellites’ predicted 3D half-mass radii with their projected 2D half-light radii. This conversion

neglects mass-to-light weighting and projection effects; these are both reasonable approximations,

although the latter overestimates the sizes of highly elliptical dwarfs.

Mean Size Relation (A, γ)

We use the following relation from [244] to set satellite half-light radii at the time of accretion:

r1/2 ≡ A
( c

10

)γ
Rvir, (3.2)

where A = 0.02, γ = −0.7, and c denotes subhalo concentration measured at accretion.6 [244] find

that this relation yields galaxy sizes that are consistent with those found in in two hydrodynamic

simulations with a residual scatter of∼ 0.15 dex about the hydrodynamic results. Although Equation

3.2 is essentially untested for ultra-faint dwarf galaxies, we hold A and γ fixed at their fiducial values,

and we account for this uncertainty by allowing the amount of size reduction that satellites undergo

and the scatter in this relation to vary as described in the following subsections.

Size Reduction Due to Tidal Stripping (β)

One might expect the sizes of satellite galaxies to correlate tightly with their subhalos’ virial radii

at accretion. However, dynamical effects such as tidal stripping can alter subhalo and satellite sizes

after accretion, introducing scatter in this relationship (e.g., [276, 358]). To model these effects, we

calculate each satellite’s z = 0 half-light radius r′1/2 as follows:

r′1/2 ≡ r1/2

(Vmax

Vacc

)β
, (3.3)

6We have also tested the size model from [275], but we find that the concentration dependence in the [244] relation
leads to a more reasonable range of sizes compared to observed MW satellites.
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where Vmax denotes the corresponding subhalo’s maximum circular velocity at z = 0, Vacc denotes its

maximum circular velocity at accretion, and β ≥ 0 is a model parameter. Thus, β = 0 corresponds

to no change in satellite sizes after accretion, while larger values of β increase the amount by which

satellite sizes are reduced based on the degree of tidal stripping that their subhalos undergo. This

prescription does not capture the effects of tidal heating, which can enlarge satellites rather than

reduce their sizes. In addition, although Vmax/Vacc depends on the orbital history of each subhalo, the

amount of tidal stripping that their satellites undergo might also depend on orbital inclination with

respect to the central disk, an effect that is not modeled in our DMO simulations. Thus, Equation

3.3 will likely need to be recalibrated on the size evolution of ultra-faint satellites in upcoming

hydrodynamic simulations. Pending such results and a detailed model for stellar mass stripping,

we fix β = 0 for our fiducial model, and we demonstrate in Appendix B.2 that our constraints are

insensitive to this parameter.

Figure 3.2 compares the mean size distribution at accretion (β = 0) and at z = 0 using our

tidal stripping model (β = 1) for mock satellites in our six MW-like host halos. Satellite sizes

are reduced due to tidal stripping, as expected from Equation 3.3. Our extrapolation of the [244]

relation yields a reasonable range of sizes compared to observed MW satellites, which roughly span

10 pc . r1/2 . 3000 pc.

Size Scatter (σR)

The size relation that we have described has not been tested against hydrodynamic simulations for

galaxies with half-light radii smaller than ∼ 400 pc. Thus, for small systems, the uncertainty in this

relation might deviate from the ∼ 0.15 dex residuals found in [244]. We therefore apply scatter by

drawing each satellite’s size from a lognormal distribution with a mean given by Equation 3.3 and

a standard deviation of σR, and we impose a minimum size of 20 pc as appropriate for the classical

and SDSS-identified satellites studied herein. Although this scatter might be size-dependent, we

treat σR as a constant for simplicity.

3.4.5 Subhalo Disruption due to Baryonic Effects (B)

To model the enhancement in subhalo disruption due to baryonic effects such as the presence of a

central galactic disk, we apply the subhalo disruption algorithm from Chapter 2 [337], which uses

the orbital and internal properties of subhalos in DMO simulations to predict the probability that

they will be disrupted in hydrodynamic resimulations. This model was trained on two hydrodynamic

simulations of MW-mass host halos from the Feedback In Realistic Environments project (FIRE;

[223, 224]), both of which have classical satellite populations that are reasonably consistent with

those in the MW and M31 [478, 190]. [337] found that this disruption model predicts surviving

subhalo populations that are in better agreement with hydrodynamic results than DMO simulations

that include the gravitational potential of the galactic disk found in corresponding hydrodynamic



CHAPTER 3. MODELING THE SUBHALO–SATELLITE CONNECTION 49

101 102 103

r1/2 [pc]

0

0.005

0.01

P
(r

1/
2
)

MV < −1.5 mag

Sizes Set at z = 0

Sizes Set at Accretion

Figure 3.2: Size distributions for mock satellites in our six MW-like host halos, with satellite sizes set
by subhalo sizes at accretion (β = 0) and at z = 0 using our prescription for satellite size reduction
due to tidal stripping (β = 1). The distributions are weighted by survival probability using our
subhalo disruption model with B = 1.
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Figure 3.3: Vmax function (left panel) and radial distribution (right panel) of subhalos with
Vacc > 10 km s−1 and Vmax > 10 km s−1 in one of our zoom-in simulations, shown with (dashed lines)
and without (solid lines) our fiducial orphan model (O = 1). The dark blue lines show results from
a high-resolution simulation of this host halo, and the blue bands show the Poisson scatter for our
prediction that includes all disrupted subhalos tracked to z = 0 in the fiducial-resolution simulation.
The bottom panels show the ratio of the number of subhalos to the number of subhalos in the cor-
responding simulation including orphans for our fiducial-resolution (blue) and high-resolution (dark
blue) runs. Including orphans brings the fiducial-resolution Vmax function and radial distribution
into fairly good agreement with the high-resolution results.
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simulations. Our method therefore captures both the tidal influence of a central disk and additional

baryonic effects, so our work differs from studies that employ DM-plus-disk simulations to model

the effects of baryons on subhalo populations (e.g., [241, 340]).

[337] showed that baryonic subhalo disruption approximately rescales the subhalo Vmax functions

for the zoom-in simulations used in this work. However, the radial subhalo distributions are not

scaled by a constant factor due to enhanced subhalo disruption in the inner ∼ 50 kpc of host halos

caused by the dynamical influence of the central galactic disks in the FIRE simulations. To account

for the uncertainty associated with the limited training set in [337] — and particularly the limited

set of host halo accretion histories that the model is trained on — we define the parameter B to

characterize subhalo disruption due to baryonic effects as follows. We assign each surviving subhalo

in our DMO simulations a disruption probability by modifying the prediction from the [337] model

according to pdisrupt → p
1/B
disrupt. Thus, B = 1 corresponds to the unaltered disruption probabilities,

B > 1 (B < 1) corresponds to increased (decreased) disruption probabilities relative to our fiducial

model, and B = 0 corresponds to no additional subhalo disruption due to baryonic effects. We assume

that each satellite’s disruption probability is equal to that of its subhalo. Although this assumption

is reasonable for disruption mechanisms like disk shocking, it warrants further investigation using

controlled simulations.

3.4.6 Orphan Satellites (O)

Cosmological simulations often require a population of orphan galaxies (i.e., galaxies whose halos

are not detected by the halo finder) to match observational galaxy clustering constraints (e.g., [468,

210, 372]). The details of orphan modeling depend on the simulation and target galaxy population

in question; however, orphans should generally be included in analyses that are sensitive to systems

near a resolution threshold. Thus, despite the relatively high resolution of our zoom-in simulations,

orphans are potentially important in our study, since we aim to model faint MW satellites. Moreover,

if artificial subhalo disruption is a significant effect (e.g., [453, 454]), in the sense that disrupted

subhalos in our simulations should host observable satellite galaxies, then it becomes even more

important to include orphans.

To model orphans, we therefore identify all disrupted subhalos in each simulation that contribute

directly to the main host halo. We track the orbit of each disrupted subhalo until z = 0 using a

softened gravitational force law and dynamical friction as follows:

v̇ = − GM(< r)

(r + εRvir,host)2
r̂ +

Fdf

msub
. (3.4)

Here, r is a subhalo’s distance to the center of the host, msub is its virial mass, M(< r) is the

enclosed host halo mass7, Rvir,host is the host halo’s virial radius, and the gravitational softening

7We calculate M(< r) assuming an NFW host halo density profile—that is, M(< r) = Mhostf(cx)/f(c), where
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ε = 0.01 is chosen to avoid hard collisions with the host (we have checked that the resulting subhalo

orbits are insensitive to this choice for reasonably small values of ε). To calculate Fdf , we use the

[110] dynamical friction formula for an NFW host halo and a Maxwellian distribution of host particle

velocities, which yields

Fdf = −4π
(Gmsub

|vorb|
)2

ln Λ ρ(r)
[
erf(X)− 2X√

π
e−X

2
] vorb

|vorb|
, (3.5)

where vorb denotes subhalo orbital velocity, ln Λ is the Coulomb logarithm, ρ(r) is the host halo’s

density profile, and X ≡ vorb/[
√

2σ(r)] where σ(r) is the local host halo velocity dispersion. We

estimate σ(r) using the fitting formula in [497] and we set ln Λ = − ln(msub/Mhost) following [184].

To account for tidal stripping, we follow [44] by modeling mass loss for disrupted subhalos as

follows:

ṁsub,infalling = 0 (3.6)

ṁsub,outgoing = −1.18
msub

τdyn

( msub

Mhost

)0.07

, (3.7)

where τdyn = (4πGρvir/3)−1/2 is the dynamical timescale and derivatives are taken with respect to

time. This mass stripping model is motivated by several synthetic and cosmological tests that have

shown that the majority of subhalo mass loss occurs after pericentric passages [267, 46]. We use

a modified version of the fitting formula from [243] to model the corresponding reduction in each

disrupted subhalo’s maximum circular velocity,

d log Vmax

d logmsub
= 0.3− 0.4

msub

msub +msub,acc
, (3.8)

where msub,acc denotes subhalo virial mass at accretion. Finally, we calculate the sizes of our orphan

satellites using Equations 3.2–3.3.

To vary the contribution from orphan satellites, we define the parameter O by setting the disrup-

tion probability for each orphan equal to (1− aacc)O, where aacc is the final scale factor at which a

subhalo enters the virial radius of its host halo. We find that this formula with O = 1 describes the

disruption probabilities predicted by the [337] model for surviving subhalos fairly well, and we use it

because the uncertainties in the other features that enter the [337] model (e.g., pericentric distance)

are potentially large for disrupted subhalos. Thus, O = 0 corresponds to including zero orphan

satellites, larger values of O increase the contribution from orphans, and each orphan’s disruption

probability grows with the amount of time elapsed since accretion.

To test our orbit tracking and tidal stripping models, we calculate Vmax functions and radial

subhalo distributions for the fiducial- and high-resolution versions of Halo 937 described in Section

x ≡ r/Rvir,host, c is the host halo’s concentration, and f(ξ) ≡ ln(1 + ξ)− ξ/(1 + ξ).
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3.3 by selecting subhalos with Vacc > 10 km s−1 and Vmax > 10 km s−1 (recall that Vmax ≈ 9 km s−1

corresponds to the resolution threshold of our fiducial simulations). Figure 3.3 shows that our or-

phan model with O = 1 brings both the velocity function and radial distribution from the fiducial-

resolution simulation (light blue dashed lines) into fairly good agreement with the high-resolution

results (dark blue solid lines). While the change in the velocity function due to orphans is consis-

tent with a change in overall normalization (i.e., a constant scaling with respect to Vmax) at both

resolution levels, we find that orphans are preferentially added in the inner regions of our fiducial-

resolution simulation, where they are most likely to be needed. On the other hand, our orphan

model merely rescales the radial subhalo distribution in the high-resolution run, suggesting that

there is less spurious disruption in this case.

We note that our orphan model can be interpreted in terms of the amount of artificial subhalo

disruption that occurs in our simulations (e.g., [453, 454]). In particular, O = 0 (no orphans included)

corresponds to the assumption that all subhalo disruption in our simulations is both physical and

coincides with the disruption of their satellites. Meanwhile, O � 1 (all orphans included with zero

disruption probability) implies that all subhalo disruption in our DMO simulations and all additional

subhalo disruption due to baryonic effects in hydrodynamic simulations is artificial, in the sense that

all disrupted subhalos should host satellites. We find that these extreme possibilities are respectively

disfavored by the inner radial distribution and the total abundance of observed MW satellites, which

effectively set lower and upper bounds on O. We fix O = 1 for the fit presented as follows, which

roughly corresponds to the assumption that subhalo disruption in our DMO simulations is artificial

while subhalo disruption in the hydrodynamic simulations that we train our disruption model on is

physical. This assumption does not necessarily contradict the results of [454] and [453], since their

subhalo disruption tests were performed without central disk potentials. Our hope is that future

data will better constrain this parameter.

3.4.7 Comparison to Recent Models

Our approach differs from previous models for the subhalo–satellite connection in several regards.

To illustrate these differences, we compare our model to those recently presented in [241] and [340]:

1. Our procedure for assigning satellite luminosities to subhalos is tuned to match an observed

luminosity function for systems brighter than Mr = −13 mag, unlike the empirical stellar

mass–halo mass relations considered in [241]; meanwhile, [340] estimate the total number of

MW satellites by statistically comparing radial subhalo distributions in the Aquarius sim-

ulations to classical and SDSS-identified satellites without explicitly modeling the luminosity

distribution of these systems.

2. We model the sizes of our mock satellites, while recent empirical studies, including [241] and

[340], assume that all systems of a given luminosity have sufficient surface brightness to be
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observed (though see [99]).

3. Our model for baryonic subhalo disruption is similar to the prescriptions in [241] and [340],

which are based on DM-plus-disk simulations. However, our algorithm predicts surviving

subhalo populations that are in better agreement with hydrodynamic results compared to

DM-plus-disk simulations for the host halos that it was trained on [337].

4. We parameterize our baryonic disruption and orphan satellite models to allow for deviations

from our fiducial prescriptions, unlike [241] and [340].

3.5 Comparison to Observed Satellites

We now demonstrate that our model can produce satellite populations that are both qualitatively

and quantitatively consistent with classical and SDSS-identified MW satellites. We reiterate that

other satellite populations — including those associated with M31 or with MW-mass hosts outside

of the Local Volume — can be used to constrain our model, but we focus on the well-characterized

population of classical and SDSS-identified MW satellites for clarity. Thus, we do not utilize all

known MW satellites for the fit presented as follows.

3.5.1 Qualitative Comparison

Before fitting our model to observed MW satellites, we qualitatively compare its predictions to

the abundance and properties of classical and SDSS-identified systems. In particular, Figure 3.4

shows projections of the predicted satellite population for one of our MW-like host halos in the

observationally motivated parameter space of absolute magnitude, half-light radius, and heliocentric

distance using fiducial values of our free parameters. We compare our predictions to the following

classical and SDSS-identified MW satellites compiled in [321]: LMC, SMC, Sagittarius I, Fornax,

Leo I, Sculptor, Leo II, Sextans I, Carina, Draco, and Ursa Minor (classical), and Canes Venatici I,

Hercules, Boötes I, Leo IV, Ursa Major I, Leo V, Pisces II, Canes Venatici II, Ursa Major II, Coma

Berenices, Willman I, Boötes II, Segue II, and Segue I (SDSS). We exclude Pisces I and Pegasus

III because they were discovered using methods that do not adhere to our assumed SDSS detection

criteria (described as follows), and we exclude Leo T because it lies outside of our fiducial 300 kpc

reference radius. We refer the reader to [321] for references to the papers in which these systems

were discovered.

Figure 3.4 illustrates all mock classical satellites in one of our host halos, along with all systems

in a region corresponding to the area of the SDSS survey that points away from the LMC analog in

this simulation. We define mock classical satellites as objects with MV 6 −8.8 mag and we assume

that observations of these systems are complete. We plot systems within 300 kpc that pass both the

surface brightness limit of 30 mag arcsec−2 estimated in [271] and the distance–magnitude SDSS
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detection limit estimated in [273] as blue stars, while blue circles indicate systems in the mock SDSS

footprint that do not pass both detection criteria. The [273] heliocentric completeness radius can

be expressed as

Reff(MV ) = 10−aMV +b kpc, (3.9)

where a = 0.228 and b = 1.1. Thus, a satellite with magnitude MV passes this detection criterion if

it falls within the effective radius Reff(MV ) given by Equation 3.9. Adopting the [465] version of the

SDSS detection threshold, which corresponds to a = 0.187 and b = 1.42, yields similar constraints

for the fit presented herein. For each mock satellite, we calculate absolute surface brightness using

the relation

µV = MV + 36.57 + 2.5 log[2π(r′1/2/1 kpc)2], (3.10)

where we have left the units of mag arcsec−2 implicit. Together, these detection criteria depend on

the absolute magnitude, size, and radial distance of each mock satellite.

Figure 3.4 demonstrates that our predicted satellite populations agree fairly well with the abun-

dance and properties of classical and SDSS-identified systems; we discuss the apparent deficit of

satellites in the inner regions as follows.Although Figure 3.4 shows a particular realization of our

model for a single MW-like host halo, we have checked that this mock satellite population is rep-

resentative of our predictions for classical and SDSS systems. Our predicted satellite populations

are similar to those inferred from semi-analytic models that account for satellite sizes, including

[290], although we generally find fewer bright, compact systems than these works. Interestingly, the

population of undiscovered mock satellites that do not pass the SDSS detection criteria depends

sensitively on their size distribution. In particular, non-observations above the SDSS detection

threshold in the MV –r� plane would be counted as detections in models that assume all dwarfs

have sufficient surface brightness to be detected. This result suggests that size modeling will play an

important role in interpreting current and future MW satellite observations. In addition, Figure 3.4

shows that the number of systems that do not pass the SDSS detection thresholds depends strongly

on Mmin, which implies that the observed abundance and properties of MW satellites can be used

to place upper limits on the masses of the subhalos that host faint systems (e.g., [202, 241]).

Our fiducial model underpredicts the number of observed satellites at small radii (r� . 50 kpc)

relative to SDSS observations. Decreasing the strength of baryonic subhalo disruption does not

directly resolve this issue, since we predict too few surviving subhalos in this regime regardless of

their disruption probabilities, which can be seen from Figure 3.4. However, our simulations are

likely subject to spurious subhalo disruption and halo finder issues for subhalos in central regions, so

it is unclear whether the difference among the predicted and observed radial satellite distributions

reflects a physical shortcoming of our model or a numerical shortcoming of our simulations. We find

that increasing the contribution from orphan satellites (i.e., increasing O) alleviates the discrepancy,

which hints at the latter explanation, although scaling our satellite radii inward (i.e., decreasing χ)
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also reduces the tension. We revisit the effects of these parameters on the radial distribution in

Section 3.6.3.

3.5.2 Quantitative Comparison

We now describe our procedure for fitting the model described in Section 3.4 to observed satellite

populations; we then specialize to the luminosity distribution of classical and SDSS-identified MW

satellites. For each zoom-in simulation and each realization of our satellite model, we generate a

predicted satellite population by performing a mock survey with an appropriate footprint and de-

tection efficiency. We bin these satellites according to their physical properties s (e.g., absolute

magnitude, heliocentric distance, and half-light radius) by discretizing the space of satellite proper-

ties into bins of volume V; for example, choosing uniform bins for the parameter space plotted in

Figure 3.4 would correspond to setting V = ∆MV ∆r�∆r1/2, where, for example, ∆MV denotes the

width of our absolute magnitude bins. To include the effects of observational incompleteness and

satellite disruption, we count each satellite as pdetect × (1− pdisrupt) — rather than one — observed

system, where pdetect is the probability of detecting a given satellite (determined by its properties

and the survey sensitivity) and pdisrupt is its disruption probability.

We assume that observed satellites and mock satellites populate the parameter space in question

according to a multidimensional Poisson point process with a rate parameter λ that is constant in

each bin. Naively, λ can be calculated by averaging the number of mock satellites in each bin:

λi(θ) =
1

V 〈n̂i(θ)〉, (3.11)

where n̂i(θ) indicates the number of mock observed satellites in bin i, θ denotes the set of model

parameters, and the average can be taken over different zoom-in simulations and realizations of the

satellite population in each simulation (including different luminosity and size model realizations,

observer locations, and survey orientations). In this formulation, the likelihood of observing N

satellites s1, . . . , sN in the survey corresponding to these mock observations is given by

P (s1, . . . , sN |θ) ≈ exp
[
−
∑

bins j

λj(θ)Vj
] ∏

bins i

λi(θ)ni

ni!
, (3.12)

where i and j index the bins and ni is the number of observed satellites in bin i. This expression

is approximate because the integral that appears in the normalization factor for a Poisson point

process is replaced by a sum over discrete bins.

However, the estimate of λ obtained from Equation 3.11 is potentially noisy because we use a

finite number of independent simulations. In addition, although the stochasticity in our predicted

satellite populations is reduced because we restrict our analysis to host halos with two Magellanic

Cloud analogs, it is necessary to impose a small lower bound on λ to avoid realizations with zero
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Figure 3.4: Visualizations of the predicted satellite population in one of our MW-like host halos (blue
symbols) and the observed population of classical and SDSS-identified MW satellites (black stars) in
the absolute magnitude–half-light radius plane (top panels) and the absolute magnitude–heliocentric
distance plane (bottom panels) for Mmin = 5 × 108 M� (left panels) and Mmin = 108 M� (right
panels). All classical satellite analogs (MV 6 −8.8 mag) and all systems in a mock SDSS footprint
that pass both the SDSS surface brightness and completeness radius detection limits (dashed lines;
[271, 273]) are plotted as blue stars, while blue circles show systems in the mock SDSS footprint that
do not pass both detection criteria. The color bar indicates satellite disruption probability. This
realization uses a faint-end slope of α = −1.3, a luminosity scatter of σM = 0.2 dex, and a disruption
parameter of B = 1; we fix the remaining parameters according to Table 3.1. The error bars in the
top-left panel show characteristic uncertainties for MV and r1/2. Pisces I and Pegasus III, which
were discovered in SDSS using methods that do not adhere to our assumed detection criteria, are
plotted as unfilled stars.
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likelihood if we adopt Equations 3.11–3.12. This choice of lower bound is necessarily arbitrary.

We therefore approach the problem in a different manner. Rather than calculating a single

estimate of the rate parameter in each bin, λi (θ), from the mock observed satellites, we marginalize

over an unknown rate parameter in each bin. In particular, if we observe ni real satellites and n̂i,j

mock satellites in bin i, where j = 1, . . . , N̂ runs over all simulations and model realizations, we have

P (ni|n̂i,1, . . . , n̂i,N̂ ) =

∫
P (ni|λi)P (λi|n̂i,1, . . . , n̂i,N̂ ) dλi

=
1

P (n̂i,1, . . . , n̂i,N̂ )

∫
P (ni|λi)P (n̂i,1|λi) · · ·P (n̂i,N̂ |λi)P (λi) dλi

=
(N̂ + 1

N̂

)−(n̂i,1+···+n̂i,N̂+1)

× (N̂ + 1)−ni
(n̂i,1 + · · ·+ n̂i,N̂ + ni)!

ni!(n̂i,1 + · · ·+ n̂i,N̂ )!
, (3.13)

where we have left the dependence on the model parameters θ implicit, and we have assumed (i) a

flat prior on λi for λi > 0 and (ii) that ni and all n̂i,j are drawn from the same Poisson distribution

with rate parameter λi.

Because we produce non-integer numbers of mock satellites by counting each system as pdetect×
(1−pdisrupt) object, we replace the factorials in Equation 3.13 with the appropriate Gamma functions

to obtain the final form of the likelihood. Our results are unaffected if we enforce integer counts by

performing multiple mock observations of each predicted satellite population.

We note that Equation 3.13 is similar to the likelihood derived in [241]; however, these authors

marginalize over λi, given a single predicted satellite population from a particular simulation and

model realization, and then average the resulting probabilities, while our likelihood treats all simu-

lations and model realizations simultaneously. In Appendix B.1, we demonstrate that our likelihood

converges to the underlying Poisson distribution in the limit of many mock observations, while the

likelihood used in [241] does not.

Finally, we use Bayes’ theorem to compute the resulting posterior distribution over our free

parameters:

P (θ|s1, . . . , sN ) =
P (s1, . . . , sN |θ)P (θ)

P (s1, . . . , sN )
, (3.14)

where P (θ) is our prior distribution, P (s1, . . . , sN ) is the Bayesian evidence, and

P (s1, . . . , sN |θ) =
∏

bins i

P (ni|n̂i,1, . . . , n̂i,N̂ ) (3.15)

is the likelihood.

For our fit to classical and SDSS-identified satellites, we use the six MW-like host halos described

previously. For each host, we generate five mock satellite populations by simultaneously drawing (i)

satellite luminosities and sizes from our luminosity and size relations, (ii) random observer locations
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Parameter Prior Prior Set By

α arctanα ∼ unif(−1.1,−0.9) Uninformative prior for −2 . α . −1.25.
σM σM ∼ unif(0.2 dex, 1.0 dex) σM ≈ 0.2 dex for higher-mass halos.
Mmin log(Mmin/M�) ∼ unif(7.5, 10) Conservative upper bound based on [241].
B B ∼ Lognormal(µ = 1, σ = 0.5) B = 1 corresponds to hydrodynamic results.

Table 3.2: Prior distributions for the parameters varied in our fit to the luminosity distribution of
classical and SDSS-identified MW satellites.

8 kpc from the host halo center from the vertices of an octahedron, and (iii) random survey orien-

tations. We assume that mock classical satellites (MV ≤ −8.8 mag) over the entire sky are always

detected, and that mock satellites in the SDSS footprint that pass both of the detection criteria

described in Section 3.5.1 are always detected, and we fit our model to the luminosity distribution of

the classical and SDSS-identified systems listed in Section 3.5.1. We choose uniform absolute magni-

tude bins, and we assume that P (θ) factorizes into a product of independent prior distributions; we

list our choices for these priors in Table 3.2. We have checked that our results are not significantly

affected by our choice of magnitude bins and priors.

Due to the limited constraining power of the classical-plus-SDSS luminosity distribution, we only

vary the following parameters: α, σM ,Mmin, and B. We fix χ = 1, A = 0.02 and γ = −0.7 (i.e., the

fiducial [244] size relation), β = 1 (i.e., our fiducial satellite size reduction model), σR = 0.01 dex, and

O = 1 (i.e., our fiducial orphan model) for the fit presented here. Our choice of σR is motivated by

the fact that larger values of this scatter produce an overabundance of small observed mock satellites,

since systems that scatter to small sizes at fixed distance and absolute magnitude are more likely

to be observed. Thus, implementing an appreciable amount of size scatter likely requires modifying

our assumptions that satellite size follows a lognormal distribution at fixed subhalo properties and

that the scatter in our size relation is size-independent. In Appendix B.2, we test whether our

radial scaling, size reduction, and orphan models are preferred by the classical-plus-SDSS luminosity

distribution by computing Bayes factors for fits with χ = 1, β = 1, andO = 1 versus fits with χ = 0.8,

β = 0, and O = 0. We find very weak evidence in favor of χ = 0.8, β = 1, and O = 1, implying that

our fit to classical-plus-SDSS satellites is not sensitive to these effects and justifying our choice to

fix these parameters.

To sample the posterior distribution for our fit to the classical-plus-SDSS luminosity distribution,

we run 5× 104 iterations of the Markov Chain Monte Carlo (MCMC) sampler emcee [180] using 20

walkers, and we discard the first 5000 burn-in steps. We have verified that our results are stable to

changes in the number of walkers and that we have sampled a reasonable number of autocorrelation

lengths for each chain.
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3.6 Results and Discussion

The posterior distribution from our MCMC run is shown in Figure 3.5; we now summarize our main

results.

3.6.1 Derived Constraints

1. Our fit favors a faint-end luminosity function slope of α = −1.34+0.04
−0.03 (68% confidence inter-

val), which is shallower than most constraints from [440] and fairly consistent with the global

constraint from GAMA (α = −1.26 ± 0.07; [295]).8 The GAMA constraint is derived from

the luminosity function of galaxies with −24 mag . Mr . −13 mag, while we constrain the

power-law slope of the luminosity function for systems dimmer than Mr = −13 mag by fitting

to satellites with −18 mag .MV . −1 mag.

2. Our fit is consistent with the luminosity scatter inferred for higher-mass galaxies (σM ≈
0.2 dex), but it allows for significantly larger values, with σM = 0.21+0.36

−0.00 dex (68% confi-

dence interval).

3. Our fit strongly favors a galaxy formation threshold ofMmin < 5×108 M�, with log(Mmin/M�) =

7.54+0.60
−0.04 (68% confidence interval); our results are consistent with the upper bound of 2.4 ×

108 M� from [241]. DecreasingMmin below 108 M� rarely results in additional mock classical

or SDSS observations, so the marginal likelihood for Mmin is roughly flat in this regime.

4. Our fit is consistent with B = 1: we find B = 1.04+0.56
−0.33 (68% confidence interval), which implies

that our fiducial baryonic disruption model is compatible with the observed classical-plus-SDSS

luminosity distribution.

To test whether our model provides an adequate fit to the data, we draw samples from the

posterior distribution and plot the resulting 68% and 95% confidence intervals for the luminosity

distribution, radial distribution, and size distribution of classical and SDSS satellites in Figures 3.6

and 3.7. Our predictions are largely consistent with both the observed luminosity function and the

observed radial and size distributions of these systems, despite the fact that we have only fit to

their luminosities. As noted previously, our model slightly underpredicts the observed population

of satellites close to the center of the MW (r� . 50 kpc). However, since we have only fit to an

observed luminosity distribution using fixed radial scaling and orphan prescriptions, this discrepancy

might not persist for a joint fit to observed satellite luminosities, radii, and sizes that varies χ and

O. The dashed red lines in Figure 3.7 illustrate that decreasing χ reduces the tension among the

predicted and observed inner radial distributions.

8Note that [295] constrain the Schechter function faint-end slope while we measure the power-law luminosity
function slope itself.
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Figure 3.5: Posterior distribution from our fit to the luminosity distribution of classical and SDSS-
identified satellites. Dark (light) shaded contours show 68% (95%) confidence intervals, and shaded
areas in the marginal distributions show 68% confidence intervals. Note that σM is reported in dex
and Mmin is reported as log(Mmin/M�) in this plot.
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3.6.2 Predictions for Future Surveys

Given the sky coverage and detection efficiency of future MW satellite searches, we can use our

model to predict the abundance and properties of the satellites that we expect to be discovered. To

place our results in context, we first study the total number of satellites within 300 kpc of the MW

— independent of surface brightness — inferred from our fit to the classical-plus-SDSS luminosity

distribution. The left-hand panel of Figure 3.8 compares our prediction for the total number of

MW satellites as a function of absolute magnitude to the results in [440], [271], and [340], and

to the predictions derived in [241] based on three different stellar mass–halo mass relations. We

predict 95 ± 29 (134 ± 44) total satellites with MV < −1.5 mag (MV < 0 mag) within 300 kpc

of the MW at the 68% confidence level. Our estimate for the total number of MW satellites is

consistent with but more conservative than most previous results, likely due to the fact that our

subhalo disruption model captures both the effects of a central disk and additional baryonic physics.

We refer the reader to [340] for a discussion of the discrepancy between the [440] prediction and

other estimates. Finally, we note that the high-Mmin tail of our posterior results in a small number

of realizations with fewer total satellites than currently observed (including both spectroscopically

confirmed systems and candidate satellites); we choose not to incorporate this constraint in our fit

to restrict our analysis to classical and SDSS data alone.

Next, we make predictions for satellite searches with improved surface brightness limits by calcu-

lating the total number of MW satellites as a function of limiting observable surface brightness. In

particular, the right-hand panel of Figure 3.8 shows the total number of MW satellites within 300 kpc

inferred from our fit to the classical-plus-SDSS luminosity distribution, assuming that satellites over

the entire sky are observed to a limiting surface brightness µlim. We predict that 83± 26 (92± 29)

satellites with MV < −1.5 mag would be observed if the entire sky were covered to a limiting sur-

face brightness of 32 (34) mag arcsec−2. Similarly, we predict that ∼ 95% of all MW satellites with

MV < −1.5 mag would be observed if satellites down to 33 mag arcsec−2 were observed over the

entire sky. We emphasize that these estimates depend on the details of our size model and surface

brightness calculations.

To connect these predictions to ongoing and future surveys, we indicate approximate surface

brightness detection thresholds for SDSS, DES, and LSST in Figure 3.8. We estimate the sensi-

tivity of LSST satellite searches by comparing the 5σ limiting point-source magnitudes of a recent

HSC-SSP satellite search [220] to those expected for LSST. LSST will likely achieve comparable

sensitivity to this HSC-SSP survey in its first year of operation [237]; Equation 3.10 implies that the

two satellite candidates recently detected in HSC-SSP data have µV = 31.6 mag arcsec−2 (Virgo I)

and µV = 30.9 mag arcsec−2 (Cetus III), so we adopt an approximate surface brightness threshold

of 32 mag arcsec−2 for LSST Y1 (K. Bechtol 2019, private communication). We note that satellite

searches with surveys such as HSC-SSP and LSST face the unique challenge of distinguishing faint

stars associated with dwarf satellites in the Galactic halo from distant unresolved galaxies (e.g.,
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[484]), adding to the uncertainty in our limiting surface brightness estimate.

3.6.3 Implications for the Connection between Low-mass Subhalos and

Faint Satellites

The properties of the subhalos that host faint MW satellites can be used to constrain DM models

that produce a cutoff in the subhalo mass function (e.g., [309, 260, 241]), along with the impact

of reionization on galaxy formation (e.g., [327, 202]). Although we have not explicitly imposed a

relationship between the luminosity of our mock satellites and the present-day mass of their subhalos,

our model can be used to predict the joint distribution of subhalo mass and satellite luminosity, which

we illustrate in Figure 3.9 by populating our MW-like host halos using the best-fit model derived

previously with fixed Mmin = 108 M�. The tight correspondence between peak circular velocity

and absolute magnitude enforced by our MV –Vpeak relation is broadened by the mass–concentration

relation (which relates Vpeak to Mpeak) and further broadened by tidal stripping (which relates Mpeak

to Mvir).

By drawing from our full posterior distribution (i.e., allowing Mmin to vary) and repeatedly

populating our six MW-like host halos, we find that satellites with −6 mag .MV . 0 mag typically

reside in subhalos with present-day virial masses 2× 107 M� .Mvir . 2× 108 M� and peak virial

masses 108 M� .Mpeak . 5× 108 M� (68% confidence intervals). We caution that baryonic effects

can systematically reduce subhalo masses [349, 329, 409], so these results should be interpreted as

subhalo masses in DMO simulations; an additional layer of modeling calibrated on hydrodynamic

simulations would be necessary to modify these values to account for the presence of baryons. The

quoted lower bounds depend mildly on the low-mass cutoff in our prior for Mmin, since mock

satellites in low-mass subhalos can scatter into the absolute magnitude range of interest; however,

we caution that our adopted low-mass cutoff is near the resolution limit of our simulations. Our

upper bounds are consistent with the results in [241], who showed that mass thresholds in this range

can be used to place competitive constraints on warm dark matter models.

We find that the faint satellites considered previously typically inhabit subhalos with 14 km s−1 .

Vpeak . 22 km s−1 (68% confidence interval). This lower bound on Vpeak can potentially decrease

for a joint fit to the luminosities and radial distances of observed satellites; for example, [202] showed

that it might be necessary to populate subhalos down to Vpeak ≈ 10 km s−1 to match the observed

radial distribution of MW satellites. However, these bounds are also dependent on our radial scaling

and orphan satellite models, since decreasing χ or increasing O raises the predicted abundance of

mock satellites, particularly in the inner regions (r . 50 kpc). For example, by drawing from our

posterior and repeatedly populating our MW-like host halos with fixed O = 1, we predict 9 ± 3

satellites with r < 50 kpc and MV < 0 mag if satellite radii are set equal to subhalo radii (χ = 1),

and 14 ± 5 (37 ± 12) such satellites if χ = 0.8 (χ = 0.5). On the other hand, for fixed χ = 1, we
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Figure 3.6: Our prediction for the observed luminosity function of classical and SDSS satellites
inferred from our fit to the absolute magnitude distribution of these systems. Dark (light) shaded
areas show 68% (95%) confidence intervals.
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Figure 3.7: Left panel: the radial distribution of classical and SDSS satellites inferred from our fit
to the observed luminosity distribution of these systems. Dashed red lines show 68% confidence
intervals for a fit with satellite radii scaled inward relative to subhalo radii by a factor of 0.8. Right
panel: the corresponding size distribution, calculated by setting satellite sizes based on subhalo
properties at accretion (β = 0) with a constant lognormal scatter of σR = 0.01 dex. In both panels,
dark (light) shaded areas show 68% (95%) confidence intervals.
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predict 5 ± 2 satellites with r < 50 kpc and MV < 0 mag if no orphans are included (O = 0),

and 13 ± 4 such systems if all orphans are included with zero disruption probability (O � 1; 68%

confidence intervals). Our radial scaling and orphan parameters are therefore somewhat degenerate,

but the fact that 18 satellites with r < 50 kpc have been observed (including candidate satellites)

implies that it is difficult to reconcile models with fixed χ = 1 and O = 0 with the observed radial

distribution.

Thus, in the context of our model, it is unclear whether the observed radial distribution requires

a lower galaxy formation threshold than expected in standard reionization quenching scenarios.

Future work that addresses a larger population of faint MW satellites will shed light on this issue;

for example, including the ultra-faint dwarfs discovered by DES [42, 150] in a joint fit to satellite

luminosities and radii can potentially decrease our upper bound onMmin and break the degeneracies

necessary to constrain our radial scaling and orphan models. Such a study will require a careful

treatment of LMC satellites, which is beyond the scope of this paper.

3.6.4 Caveats and Future Work

There are several caveats and possible extensions to the model presented in this paper. Most

notably, the fact that we underpredict the number of satellites in the inner regions can potentially

bias our parameter constraints and predictions for future surveys. However, we find that refitting

the classical-plus-SDSS luminosity distribution with χ = 0.8 to alleviate this tension (see Figure 3.7)

does not significantly affect our results.

Although we have focused on modeling the observed absolute magnitudes, radial distances, and

physical sizes of MW satellites, stellar velocity dispersion measurements provide an additional con-

straint on the subhalos that host these systems. The Vmax distribution of the subhalos that host

our mock classical satellites extends to significantly higher values than those inferred from stellar

velocity dispersion measurements using the [487] Vmax estimator; thus, our model suffers from the

canonical “too big to fail” problem [84, 85], despite the fact that we include subhalo disruption

due to baryonic effects. This shortcoming can likely be mitigated by incorporating the effects of

stellar feedback on the inner density profiles of subhalos, along with a more sophisticated conversion

between Vmax values and observed stellar velocity dispersions ([502, 311, 92, 103, 457]; see [242] and

[97] for comprehensive discussions of the “too big to fail” problem).

By construction, our approach relies on zoom-in simulations; however, given an analytic method

for generating subhalo Vpeak functions, radial distributions, and size distributions, along with pa-

rameterizations of tidal stripping, subhalo disruption due to baryonic effects, and the contribution

of orphan satellites, mock satellite populations could potentially be generated without using a par-

ticular set of simulations (see [213] for work along these lines). Such an approach would effectively

combine our empirical framework with semi-analytic models to increase the level of detail at which

we model satellite properties.
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Exploring how our results depend on host halo mass would require either a different set of

simulations or an analytic model, and characterizing this dependence might be particularly important

in light of recent results that favor a relatively massive MW halo ([324, 370, 424, 471]; however, see

[102]). In addition, although we have focused on satellite luminosities, radii, and sizes, comparing

the orbital properties of observed and simulated systems will likely be fruitful in the era of precision

astrometric measurements.

3.7 Summary

We have described a flexible model for populating subhalos in DMO zoom-in simulations of MW-

mass hosts with satellite galaxies. We demonstrated that this model produces reasonable satellite

populations in the regime of classical and SDSS-identified MW satellites, and we presented an

improved method for fitting the model to observed satellite populations. Our fit to the classical-plus-

SDSS luminosity distribution produces satellite populations that are qualitatively and quantitatively

consistent with the luminosity function, radial distribution, and size distribution of observed systems,

modulo modest tension in the inner radial distribution.

We briefly summarize the key aspects of our approach and highlight several open questions:

(i) Host halo properties: We fix host halo properties based on our zoom-in simulation suite. Our host

halos lie in the mass range 1012.1±0.03 M� and have a variety of accretion histories and secondary

properties. For our fit to observed MW satellites, we select host halos with two Magellanic Cloud-like

systems. How do our predicted satellite populations vary as a function of host halo mass?

(ii) Satellite luminosities: We assign satellite luminosities to DMO subhalos by abundance matching

to the GAMA survey down to Mr = −13 mag and extrapolating this relation to fainter systems

assuming a power-law luminosity function. We set the threshold for galaxy formation due to reion-

ization using a cut on peak subhalo virial mass. Are constraints on the subhalo–satellite connection

derived from MW satellites consistent with those from M31, the Local Volume, and SAGA hosts?

What galaxy formation threshold is consistent with observations of ultra-faint satellites discovered

since SDSS? What is the lowest subhalo mass that future observations of MW satellites can probe?

(iii) Satellite locations: We model the locations of our mock satellites by scaling the radial distances

of subhalos in our zoom-in simulations and projecting these systems onto the sky. Is the seemingly

centrally concentrated radial distribution of MW satellites rare, or is it an artifact of misestimated

observational incompleteness?

(iv) Satellite sizes: We assign satellite sizes to DMO subhalos using the size relation from [244].

Is there evidence (e.g., from hydrodynamic simulations) that this size relation holds for ultra-faint

dwarf galaxies?
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(v) Baryonic effects: We model subhalo disruption due to baryonic physics, such as the tidal influ-

ence of a galactic disk, using a model calibrated on hydrodynamic simulations. Were MW subhalos

and satellites tidally disrupted in a manner that is consistent with hydrodynamic results?

(vi) Orphan satellites: We include orphan satellites by tracking the orbits and modeling the tidal

stripping of disrupted subhalos in our simulations. If subhalo disruption is a numerical artifact (e.g.,

[453, 454]), such that a significant population of disrupted subhalos should host observable satellite

galaxies, can it be accounted for by modeling orphans? What is the relationship between subhalo

disruption and satellite disruption?



Chapter 4

Galaxy–Halo Connection

Constraints Including the LMC

Abstract

The population of Milky Way (MW) satellites contains the faintest known galaxies and thus

provides essential insight into galaxy formation and dark matter microphysics. Here we combine a

model of the galaxy–halo connection with newly derived observational selection functions based on

searches for satellites in photometric surveys over nearly the entire high Galactic latitude sky. In

particular, we use cosmological zoom-in simulations of MW-like halos that include realistic Large

Magellanic Cloud (LMC) analogs to fit the position-dependent MW satellite luminosity function.

We report decisive evidence for the statistical impact of the LMC on the MW satellite population

due to an estimated 6± 2 observed LMC-associated satellites, consistent with the number of LMC

satellites inferred from Gaia proper-motion measurements, confirming the predictions of cold dark

matter models for the existence of satellites within satellite halos. Moreover, we infer that the LMC

fell into the MW within the last 2 Gyr at high confidence. Based on our detailed full-sky modeling,

we find that the faintest observed satellites inhabit halos with peak virial masses below 3.2×108 M�

at 95% confidence, and we place the first robust constraints on the fraction of halos that host galaxies

in this regime. We predict that the faintest detectable satellites occupy halos with peak virial masses

above 106 M�, highlighting the potential for powerful galaxy formation and dark matter constraints

from future dwarf galaxy searches.

4.1 Paper Status and External Contributions

This chapter is published in slightly modified form in the Astrophysical Journal, Volume 893, Issue

1, p.48-70 with the title, “Milky Way Satellite Census. II. Galaxy–Halo Connection Constraints

70
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Including the Impact of the Large Magellanic Cloud,” on which I am the corresponding author. It

is the result of a collaboration with the Dark Energy Survey (DES) Milky Way Working Group

(MWWG) and particularly Risa Wechsler, Keith Bechtol, Yao-Yuan Mao, Gregory Green, and Alex

Drlica-Wagner. Along with other members of the MWWG including Mitch McNanna and Sidney

Mau, Alex and Keith led the observational effort to characterize the census of Milky Way satellite

galaxies in DES and Pan-STARRS1 data along with their observational selection function, providing

key input for this work. Risa, Keith, Yao, Greg, and Alex all provided helpful feedback on interfacing

and interpreting the satellite model with this data, and they all made editorial contributions to

the text. As with other DES papers, this work would not have been possible without significant

collaboration, and I am particularly grateful to MWWG conveners and members (both past and

present) for facilitating these efforts.

4.2 Introduction

The sample of confirmed and candidate Milky Way (MW) satellite galaxies has more than doubled

in the last 5 years. Modern imaging surveys have driven these discoveries; in particular, following

the successes of the Sloan Digital Sky Survey (SDSS) in the early 2000s [485, 486, 54, 53, 50, 52, 51,

207, 208, 399, 503, 234, 464], the Dark Energy Survey (DES) and the Panoramic Survey Telescope

and Rapid Response System Pan-STARRS1 (PS1) have discovered 17 and three new satellite galaxy

candidates, respectively [42, 150, 261, 272, 282, 283, 305]. These systems are identified as arcminute-

scale overdensities of individually resolved stars, and many have already been spectroscopically

confirmed. Meanwhile, other surveys with the Dark Energy Camera and VST ATLAS have recently

discovered several additional satellites [318, 148, 445, 446, 443, 274, 320].

Nonetheless, the current census of MW satellites is likely highly incomplete, particularly for

faint systems in the outer regions of the MW halo. This is evidenced by the detection of three new

ultrafaint satellites in the first ∼ 676 deg2 of Hyper Suprime-Cam Strategic Survey Program (HSC-

SSP) imaging data [222, 220, 221] and by the discovery of Antlia II, the lowest surface brightness

galaxy currently known, using RR Lyrae member stars identified in Gaia DR2 [444]. In the near

future, the Legacy Survey of Space and Time (LSST) conducted from the Vera C. Rubin Observatory

will be able to detect satellites over the entire southern sky down to a surface brightness of µV ∼
32 mag arcsec−2 [237, 440, 214, 336].

Interpreting the cosmological and astrophysical implications of these discoveries requires a de-

tailed understanding of the observational selection effects for each survey under consideration. In

a companion paper ([149], hereafter Paper I), we derive observational selection functions for DES

and PS1 based on searches for simulated satellites in each dataset. These selection functions en-

code the probability that satellites in either survey are detectable as a function of their absolute

magnitude, heliocentric distance, physical size, and position on the sky. They incorporate realistic
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photometric error models, selection masks that exclude highly reddened regions near the Galactic

disk, and the influence of local stellar density on satellite detectability. Detection sensitivity is linked

to sky position because various surveys have imaged different parts of the sky at varying depths,

and accurately modeling this effect is crucial in order to disentangle anisotropy in the underlying

MW satellite system from selection effects.

In this paper, we combine the observational selection functions derived in Paper I with a detailed

model of the galaxy–halo connection and high-resolution cosmological zoom-in simulations of MW-

mass host halos to infer the position-dependent MW satellite luminosity function. Although several

empirical models have recently been used to study subsets of the MW satellite population [241,

264, 340, 336], this is the first analysis that is directly based on imaging data over more than

∼ 15, 000 deg2; indeed, our analysis covers 75% of the high Galactic latitude sky. Moreover, our

galaxy–halo connection model allows us to marginalize over astrophysical uncertainties in our fit

to the observed DES and PS1 satellite populations. We quantify the impact of the largest MW

satellite, the Large Magellanic Cloud (LMC), and its associated satellites on the observed DES

and PS1 satellite populations. We find that the satellites accreted with a realistic LMC analog—

defined in terms of its mass, heliocentric distance, and infall time—are essential to fit the DES

and PS1 luminosity functions simultaneously; this finding constitutes a remarkable confirmation

of hierarchical structure formation. We predict that 4.8 ± 1.7 (1.1 ± 0.9) of the known satellites

observed by DES (PS1) fell into the MW with the LMC, consistent with the number of LMC-

associated satellites inferred from Gaia proper-motion measurements [249, 356].

Our analysis constrains the properties of the lowest-mass halos that host observed satellites,

which we infer to have peak virial masses below 3.2 × 108 M� at 95% confidence. This finding,

along with constraints on the faint-end slope of the luminosity function, can be used to inform

feedback prescriptions in hydrodynamic simulations [410, 175, 427, 330, 482]. Constraints on the

minimum halo mass also hold broad implications for the microphysical properties of dark matter

(e.g., [151, 335]). Crucially, our model can be extended to explore the degeneracies between baryonic

physics and deviations from the cold dark matter (CDM) paradigm.

This paper is organized as follows. We first provide an overview of our framework in Section

4.3. We then describe the simulations (Section 4.4), galaxy–halo connection model (Section 4.5),

observational selection functions (Section 4.6), and statistical framework (Section 4.7) used in our

analysis. We present our results in Section 4.8, focusing on the observed DES and PS1 satellite

populations (§4.8.1), the impact of the LMC system (§4.8.2), the total MW satellite population

(§4.8.3), galaxy–halo connection model constraints (§4.8.4), the properties of halos that host the

faintest observed satellites (§4.8.5), and the implications of our findings for dark matter micro-

physics (§4.8.6). We discuss the main theoretical uncertainties in our analysis in Section 4.9, and

we conclude in Section 4.10. Appendices provide additional details on our galaxy–halo connection

model (Appendix C.1) and statistical framework (Appendix C.2), the robustness of our results to
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observational systematics (Appendix C.3) and resolution effects (Appendix C.4), and the observed

DES and PS1 satellite populations (Appendix C.5).

Throughout, we use the term “galaxy–halo connection model” to refer to a model that describes

how the properties of galaxies, including luminosity and size, are related to the properties of halos,

such as peak virial mass. Furthermore, “log” refers to the base-10 logarithm.

4.3 Analysis Overview

Using the observed population of MW satellites to constrain our galaxy–halo connection model

requires the following ingredients (see Figure 4.1 for a visualization of each step).

1. A model that predicts the underlying MW satellite population.

2. An observational selection function that, convolved with the prediction in the previous step,

yields a prediction for the observed satellite population.

3. A model for the likelihood of producing the true MW satellite population given the prediction

from the previous step.

The first step above can either be performed using either a hydrodynamic simulation, in which

galaxy formation is modeled at the simulation level, or an empirical prescription for painting galaxies

onto halos. We take the latter approach in this paper, which allows for a more flexible modeling

framework, as well as the use of simulations that are closer approximations to the MW system.

Indeed, our results may help to constrain feedback prescriptions in hydrodynamic simulations. Note

that the assumed dark matter model (e.g., cold vs. warm dark matter or collisionless vs. inter-

acting dark matter) affects the underlying satellite population and often manifests as a cutoff in

the abundance of halos—and thus faint galaxies—below a halo mass threshold determined by the

microphysical properties of dark matter.

The steps outlined above each rely on tools that have been developed in previous studies and in

Paper I. Here we simply provide a brief description of each step, and we defer additional details to

the Appendices.

4.4 Simulations

4.4.1 General Description

Our model of the underlying MW satellite population is built on high-resolution dark matter–only

zoom-in simulations of MW-mass host halos selected from the suite of 45 hosts presented in [315],
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Figure 4.1: Visualization of our MW satellite modeling framework. In the first step, we perform
high-resolution zoom-in simulations of MW-like halos selected from a larger cosmological volume
(Section 4.4); in the second step, we paint galaxies onto subhalos using a parametric model for the
galaxy–halo connection (Section 4.5); in the third step, we use the observational selection functions
derived in Paper I to compute the probability that these satellites would be observed in DES or
PS1 imaging data (Section 4.6); and in the final step, we calculate the likelihood of producing the
true DES and PS1 satellite populations given many mock satellite population realizations at fixed
galaxy–halo connection model parameters (Section 4.7). We then iterate this process to constrain
our galaxy–halo connection model.
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which have virial masses between 1.2 and 1.6× 1012 M�.1 The highest-resolution particles in these

simulations have a mass of 3×105 M� h
−1, and the softening length in the highest-resolution regions

is 170 pc h−1.

Halo catalogs and merger trees were generated using the Rockstar halo finder and the consistent-

trees merger code [47, 48]. Subhalos in these simulations are well resolved down to a present-day

maximum circular velocity of Vmax ≈ 9 km s−1 [315]. To be conservative, we only use subhalos

with both Vmax > 9 km s−1 and peak maximum circular velocity Vpeak > 10 km s−1. In Appendix

C.4, we show that these resolution thresholds are sufficient for modeling the satellite populations of

interest here.

4.4.2 Host Halo and LMC Analog Selection

The MW might be atypical compared to the average halos of a similar mass (e.g., [86, 100, 393, 173]);

in particular, its satellite population is likely affected by the existence of the LMC system and the

“satellites of satellites” that accreted with the LMC into the virial radius of the MW [306, 143,

302, 145]. In addition, the detailed merger history of the MW—such as the early accretion of an

LMC-mass galaxy inferred from Gaia data—might affect its faint satellite population [78].

Thus, we select MW-like host halos that each have an LMC analog with realistic internal and or-

bital properties; both of these hosts experience an early major merger similar to the Gaia-Enceladus

accretion event (see Appendix C.1.3 for details). We define realistic LMC analogs as subhalos with

1. present-day maximum circular velocity Vmax > 55 km s−1,

2. present-day heliocentric distance 40 kpc < D < 60 kpc, and

3. time of accretion onto the MW less than 2 Gyr ago.

These criteria yield two MW-like host halos with virial masses of 1.57 and 1.26 × 1012 M�, re-

spectively. Both of these hosts were used in the less restrictive host halo set defined in Chapter

3 [336], and both have a Navarro–Frenk–White (NFW) concentration parameter that is consistent

with constraints set using the combination of satellite and globular cluster dynamics measured by

Gaia [102, 471]. The LMC analogs in these two simulations have present-day virial masses of 1.6

and 2.5 × 1011 M� respectively, and both have peak virial masses of 3.0 × 1011 M�. These LMC

analogs accreted onto their host halos 1 and 1.5 Gyr ago, respectively, and their orbital dynamics

are consistent with LMC proper-motion measurements (e.g., [250]).

Our fiducial LMC analogs have masses that are consistent with LMC mass estimates based

on stellar stream dynamics, satellite dynamics, and the orbital histories of both Magellanic Clouds

1We define virial quantities according to the Bryan–Norman virial overdensity [93], with ∆vir ' 99.2 as appropriate
for the cosmological parameters adopted in our zoom-in simulations: h = 0.7, Ωm = 0.286, Ωb = 0.047, and ΩΛ =
0.714 [315].
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[60, 360, 164, 163].2 However, different studies have adopted various definitions of “LMC mass,” and

precision in the LMC mass definition (and particularly in the distinction between peak and present-

day halo mass) is crucial going forward. We expect that our inference is most sensitive to the peak

mass rather than the present-day mass of the LMC because peak mass correlates more directly with

the expected abundance of LMC satellites, particularly for recent infall scenarios. Other probes

of LMC mass are likely sensitive to these quantities in different ways, and some—including timing

arguments (e.g., [360]) and orbit-rewinding to infer LMC satellite abundances (e.g., [356])—might

be most sensitive to the ratio of the LMC and MW halo masses.

Although the masses of our host halos are consistent with observational constraints for the MW

(e.g., [100, 63, 355]), our simulations span a narrower range of host mass relative to the uncertainty

on this quantity inferred from Gaia measurements. For example, [102] found that the MW host virial

mass lies between 1.0 and 1.8×1012 M� at the 95% confidence level (also see [106, 292, 291]). Since

subhalo abundance is proportional to host halo mass, predicted satellite abundances scale linearly

with MW mass, modulo second-order changes in subhalo disruption due to variations in the mass

accretion history of the central galaxy [259, 404]. Ideally, our analysis would be performed using

MW-like host halos—all of which include realistic LMC analogs—that bracket the current range of

allowed MW host mass; however, the availability of such MW-like systems is limited by the statistics

of our simulations. Thus, we do not marginalize over the full range of allowed MW host masses in

this work. We estimate the potential impact of this uncertainty in Appendix C.1.1.

4.5 Galaxy–Halo Connection Model

To associate satellite galaxies with subhalos in the simulations described above, we use a modified

version of the model developed in Chapter 3 [336]. This model parameterizes the relationship between

satellite and subhalo properties and the effects of baryonic physics on subhalo populations in flexible

ways, which allows us to marginalize over the relevant theoretical uncertainties. Additional model

details and tests are presented in Appendix C.1.

4.5.1 Satellite Luminosities

To associate satellite luminosities with subhalos, we follow [336] by employing an abundance-

matching procedure that monotonically relates the absolute V -band magnitude of satellites, MV ,

to the peak circular velocity of subhalos, Vpeak.3 This relation is constrained by the GAMA survey

[295, 193] for bright systems (MV < −13 mag) and is extrapolated into the regime of dim satellites

2Although detailed exploration of Magellanic Cloud binary systems is beyond the scope of this work, we note that
[419] and [107] found that LMC analogs with SMC-like companions are typically more massive than isolated LMC
analogs.

3We perform abundance matching using Vpeak to incorporate the effects of halo assembly bias and to mitigate the
impact of subhalo tidal stripping [379, 288].
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by treating the faint-end slope of the satellite luminosity function, α, and the lognormal scatter in

luminosity at fixed Vpeak, σM as free parameters. We assume that this scatter is lognormal and con-

stant as a function of halo properties in our fiducial analysis; we explore a mass-dependent scatter

model in Appendix C.1.2.

Our abundance-matching model is a simple, empirical prescription for assigning satellite lu-

minosities that is not designed to capture the complexities of star formation in ultrafaint dwarf

galaxies. For example, [79] argued that star formation in systems dimmer than MV ∼ −5 mag is

effectively shut down by reionization, resulting in two distinct galaxy populations today. While our

abundance-matching model is consistent with the current data, which are fit fairly well by a single

power-law luminosity function (see Paper I), it will be valuable to investigate more detailed models

of stellar mass growth and to compare against a wider range of observables, including the inferred

star formation histories of MW satellites, in future work.

4.5.2 Satellite Sizes

We assign physical sizes to satellites by extrapolating a modified version of the size–virial radius

relation from [275], which links a galaxy’s stellar 3D half-mass radius to its halo’s virial radius, into

the faint satellite regime. In particular, we set the mean predicted size of each satellite at accretion

according to

r1/2 ≡ A
(
Rvir

R0

)n
, (4.1)

where A and n are free parameters, Rvir denotes the subhalo virial radius measured at accretion,

and R0 = 10 kpc is a normalization constant. Following [336], we equate the 3D half-mass radii

predicted by Equation 4.1 to azimuthally averaged projected half-light radii; this conversion neglects

mass-to-light weighting and projection effects. Nonetheless, this size relation yields reasonable mean

sizes when compared to the observed population of classical and SDSS-discovered satellites [336].

We draw the size of each satellite from a lognormal distribution with a mean given by Equation 4.1

and a standard deviation of σlogR, which is a free parameter in our model. When fitting the observed

satellite populations, we only compare predicted and mock satellites with r1/2 > 10 pc in order to

exclude likely star clusters from the analysis. We explore a more conservative cut of r1/2 > 20 pc in

Appendix C.3.2.

The size prescription described above assumes that satellite sizes are fixed after accretion onto

the MW. However, post-infall effects such as tidal stripping and tidal heating can shrink or enlarge

satellites depending on their orbital histories [359, 165, 169]. In Appendix C.1.4, we show that our

key results are not sensitive to these effects using a simple model for satellite size evolution due to

tidal stripping.
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4.5.3 Subhalo Disruption Due to Baryonic Effects

To incorporate the effects of baryonic physics—and particularly the tidal influence of the Galac-

tic disk—on our simulated subhalo populations, we apply a random forest algorithm trained on

hydrodynamic simulations to predict the probability that each subhalo will be disrupted in a hydro-

dynamic resimulation based on its orbital and internal properties [190, 337]. We model the strength

of this disruption effect using the free parameter B, which is defined such that B = 1 corresponds to

fiducial hydrodynamic predictions [337] and larger (smaller) values of B correspond to more effective

(less effective) subhalo disruption. For each subhalo, we set

pdisrupt ≡ (pdisrupt,0)1/B, (4.2)

where pdisrupt,0 is the fiducial disruption probability returned by the machine-learning algorithm in

[337].

4.5.4 Galaxy Formation Efficiency

The stochastic, nonlinear nature of galaxy formation in low-mass halos likely leads to a smoothly

varying fraction of occupied halos, rather than a sharp cutoff in the efficiency of galaxy formation

[410, 175, 330, 482]. Thus, in our fiducial model, we parameterize the fraction of halos that host

galaxies of any mass, referred to as the galaxy occupation fraction, following [202],

fgal(Mpeak) ≡ 1

2

[
1 + erf

(Mpeak −M50√
2σgal

)]
, (4.3)

whereMpeak is the largest virial mass a subhalo ever attains, which typically occurs before infall into

the MW;M50 is the peak halo mass at which 50% of halos host galaxies of any mass; and σgal is the

width of the galaxy occupation fraction. In our fiducial model, M50 and σgal are free parameters.

Note that in the limit σgal → 0, this reduces to a model in which all halos with Mpeak >M50 host

a galaxy.

Although our analysis does not constrain σgal, Equation 4.3 is a simple, physically motivated

form of the occupation fraction that will be interesting to explore in future work. Note that we

parameterize the occupation fraction in terms of peak halo mass (rather than, e.g., Vpeak) because

Mpeak is more easily interpretable and connects directly to constraints on alternative dark matter

models (e.g., [335]).

4.5.5 Orphan Satellites

Because we model faint galaxies that can potentially inhabit subhalos near the resolution limit of our

simulations, it is important to account for artificially disrupted subhalos that might host “orphan”
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satellites ([211], and see [78] for a recent example of the importance of orphans in satellite modeling).

To model orphans, we follow the prescription in Chapter 3 [336], which identifies disrupted subhalos

in each simulation, interpolates their orbits to z = 0 using a softened gravitational force law and

a dynamical friction model, and accounts for tidal stripping with a mass-loss model calibrated on

high-resolution test simulations. We parameterize the effective abundance of orphans by setting

their disruption probabilities equal to

pdisrupt ≡ (1− aacc)O, (4.4)

where aacc is the final scale factor at which each subhalo enters the virial radius of the MW, and O
is a parameter that captures deviations from disruption probabilities in hydrodynamic simulations,

which are well fit by O = 1 [336]. Thus, larger (smaller) values of O correspond to a greater (smaller)

contribution from orphan satellites.

Following [336], we include orphan satellites by fixing O = 1 in our fiducial model. Thus, we

effectively assume that subhalo disruption in dark matter–only simulations is a numerical artifact

[453, 454] but that subhalo disruption in hydrodynamic simulations is a physical effect. We show

that our results are largely insensitive to the value of O in Appendix C.1.6.

4.6 Observational Selection Functions

We employ the DES and PS1 survey selection functions derived in Paper I, which have been publicly

distributed as machine-learning classifiers that predict satellite detection probability given absolute

magnitude, MV ; heliocentric distance, D; azimuthally averaged projected half-light radius, r1/2;

and sky position.4 The predicted detection probabilities are derived from searches for simulated

satellites in catalog-level DES and PS1 data, and they employ geometric cuts that restrict observable

satellites to lie within the respective survey footprint and that mask regions where satellite detection

is challenging due to interstellar extinction, bright nearby stars, and bright extragalactic objects.

We self-consistently apply these position-dependent detection criteria to our predicted satellite

populations by matching the on-sky position of our LMC analogs to the true on-sky position of

the LMC. In particular, we choose random observer locations 8 kpc from the halo center, and we

perform appropriate rotations to our subhalo populations for each observer location to match the

true LMC position. We apply the DES selection function for satellites within the overlap region of

the two surveys, and we only count satellites within a fiducial heliocentric distance of 300 kpc.

4The DES Y3A2 and PS1 DR1 selection functions are publicly available at https://github.com/des-science/mw-
sats.

https://github.com/des-science/mw-sats
https://github.com/des-science/mw-sats
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4.7 Statistical Framework

To fit our galaxy–halo model to the DES and PS1 luminosity functions derived in Paper I, we

generate predicted satellite populations given a set of galaxy–halo connection model parameters,

θ, by performing mock DES-plus-PS1 surveys using the selection functions described above. For

each host halo and each realization of our satellite model, we bin mock-observed satellites according

to their absolute magnitude. We further split satellites in each absolute magnitude bin into high

(µV < 28 mag arcsec−2) and low (µV > 28 mag arcsec−2) surface brightness samples to incorporate

satellite size information in our fit.5 We list the DES and PS1 satellites used in this analysis in

Table C.2.

Next, we calculate the number of predicted satellites in each bin i via

ni =
∑

si

pdetect,si × (1− pdisrupt,si)× fgal,si , (4.5)

where si indexes the satellites in bin i, pdetect is the detection probability returned by the appro-

priate observational selection function, pdisrupt is the disruption probability due to baryonic effects

(Equation 4.2), and fgal is the galaxy occupation fraction (Equation 4.3). For objects that lie in the

overlap region of the DES and PS1 footprints, we calculate pdetect using the DES selection function.

We note that detection probability mainly depends on surface brightness and present-day he-

liocentric distance (see Paper I), disruption probability mainly depends on orbital properties [337],

and galaxy occupation depends on Mpeak according to Equation 4.3. Thus, our model for satellite

detectability is coupled to our galaxy occupation fraction model, since surface brightness is directly

linked to Mpeak due to our abundance-matching assumption. Nonetheless, our results are largely

unaffected if we exclude the galaxy occupation fraction from our model, confirming that fgal can be

interpreted as the probability that a halo hosts a satellite brighter than MV = 0 mag, corresponding

to the faintest satellite in our observational sample.

We assume that satellites populate each bin in absolute magnitude–surface brightness parameter

space according to an independent Poisson point process with a rate parameter λ that depends on

absolute magnitude, surface brightness, and our galaxy–halo connection model parameters. Because

our model yields noisy estimates of λ, we marginalize over its range of possible values in each

bin, following [336]. The likelihood of observing the set of DES and PS1 satellites, sDES and sPS1

(specified by their absolute magnitudes and surface brightnesses), given a set of model parameters

θ is then

P (sDES, sPS1|θ) =
∏

bins i

P (nDES,i|n̂DES,i)× P (nPS1,i|n̂PS1,i), (4.6)

where nDES,i (nPS1,i) is the observed number of DES (PS1) satellites in bin i, and n̂DES,i (n̂PS1,i) is

5In particular, we calculate the effective surface brightness averaged within the half-light radius as µV = MV +
36.57 + 2.5 log(2πr2

1/2
), where r1/2 is measured in units of kpc.
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Figure 4.2: Predicted DES and PS1 satellite luminosity functions resulting from a joint fit to these
satellite populations. Dark (light) blue bands correspond to 68% (95%) confidence intervals from our
fiducial eight-parameter galaxy–halo connection model, dashed red lines show the 68% confidence
interval for a model using host halos without LMC analogs (“No LMC”), and black lines show
the observed luminosity functions within each survey footprint. Our fiducial model, which includes
realistic LMC analogs, is decisively favored over the No LMC scenario, with a Bayes factor of ∼ 104.

a vector of the number of mock DES (PS1) satellites in bin i from several realizations of our model

at fixed θ. These realizations include draws over host halos, observer locations, and our galaxy–halo

connection model, which is stochastic at fixed θ. Note that steps 1–3 in Figure 4.1 generate mock

satellite populations n̂DES and n̂PS1, and step 4 compares these to the observed populations nDES

and nPS1. The explicit forms of P (nDES,i|n̂DES,i) and P (nPS1,i|n̂PS1,i) are given in Equation C.7.

Finally, we use Bayes’s theorem to compute the posterior distribution over galaxy–halo connec-

tion model parameters,

P (θ|sDES, sPS1) =
P (sDES, sPS1|θ)P (θ)

P (sDES, sPS1)
, (4.7)

where P (θ) is our prior on the galaxy–halo connection model parameters (given in Appendix C.2.2),

P (sDES, sPS1) is the Bayesian evidence, and P (sDES, sPS1|θ) is given by Equation 4.6. To sample

from this posterior, we run 105 iterations of the Markov Chain Monte Carlo (MCMC) sampler emcee

[180] to sample the eight free parameters θ = (α, σM ,M50,B, σgal,A, σlogR, n) using 32 walkers. We

discard a burn-in period of 20 autocorrelation lengths, corresponding to ∼ 104 steps, which leaves

more than 100 independent samples.

4.8 Results

We now present our results, focusing on the observed DES and PS1 satellite populations (§4.8.1),

the impact of the LMC system (§4.8.2), the total MW satellite population (§4.8.3), the galaxy–halo
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Figure 4.3: Size distributions derived by fitting our galaxy–halo connection model to the DES and
PS1 satellite populations. Dark (light) blue bands correspond to 68% (95%) confidence intervals
from our fiducial eight-parameter model, dashed red lines show the 68% confidence interval for a
model using host halos without LMC analogs (“No LMC”), and black lines show the observed size
distributions.

connection model constraints (§4.8.4), the properties of the halos that host faint satellites (§4.8.5),

and the implications for dark matter microphysics (§4.8.6).

4.8.1 Observed Satellite Populations

Figure 4.2 shows the 68% and 95% confidence intervals for the observed DES and PS1 satellite

luminosity functions given by draws from the posterior of our fiducial model, which is consistent

with both datasets. We note that the DES and PS1 likelihoods individually yield consistent results.

Figure 4.3 shows the corresponding satellite size distributions drawn from our fiducial posterior.

Our model is consistent with the sizes of both the observed DES and PS1 satellites. It very slightly

overpredicts the sizes of observed DES systems; however, we reiterate that our size model does not

allow for size reduction due to tidal stripping or size enlargement due to tidal heating, which affect

satellites with close pericentric passages to the Galactic disk (e.g., [24]). Our findings in Appendix

C.1.4 suggest that the post-infall size evolution of satellites in subhalos with Vpeak > 10 km s−1

and Vmax > 9 km s−1 does not significantly affect our inference.

Our fiducial model is consistent with the outer radial distributions of both DES and PS1 satellites,

but it slightly underpredicts the number of satellites near the center of the MW (D . 100 kpc),

particularly in PS1. We explore this minor discrepancy in Appendix C.1.3, where we show that

our galaxy–halo connection model constraints and inferred total MW satellite population are largely

unaffected if the radial distribution is forced to match the data.
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4.8.2 The Impact of the LMC

To assess the impact of the LMC and its satellites on the MW satellite population, we test the

following models in addition to our fiducial model, which includes a realistic, recently accreted LMC

system by construction.

1. No LMC: a model with four host halos that have the same mean concentration as our fiducial

hosts but no LMC analog.

2. Misplaced LMC: a model with our fiducial host halos in which subhalo positions are reflected,

effectively placing the DES footprint in the northern hemisphere.

3. Early LMC Infall: a model with two host halos that have the same mean concentration as our

fiducial hosts with LMC analogs that pass our LMC Vmax and heliocentric distance cuts but

fall into the MW 2 and 6 Gyr ago, respectively.

For each alternative LMC scenario listed above, we refit the observed DES and PS1 satellite popu-

lations, sampling over the same eight parameters used in our fiducial analysis.

Our fiducial model is favored over the No LMC, Misplaced LMC, and Early LMC Infall scenarios

with Bayes factors of ∼ 104, 104, and 103, respectively. In addition, both host halos in the Early

LMC Infall case are individually disfavored with Bayes factors of ∼ 103. Thus, we find decisive

statistical evidence for the impact of the LMC on the MW satellite population, particularly within

and near the DES footprint. Moreover, we infer that the LMC system fell into the MW within the

last 2 Gyr at high confidence. We also note that, in our fiducial host with more massive MW and

LMC halos, the LMC reaches pericenter near the second-to-last simulation snapshot (i.e., ∼ 150 Myr

ago). Performing our analysis using the final snapshot for this host noticeably degrades the fit due

to the dispersal and disruption of LMC satellites during the LMC’s pericentric passage. Thus, we

use the second-to-last snapshot for this host in our fiducial analysis, and we remark that satellite

abundances can potentially constrain the number of allowed pericentric passages for the LMC.

The alternative LMC scenarios defined above are strongly disfavored relative to our fiducial

model because they cannot produce a sufficient number of dim satellites in the DES footprint

without overpredicting the number of observed PS1 satellites. This is a direct consequence of the

spatial overdensity of subhalos near the LMC analogs in our fiducial simulations; in particular, the

projected density of resolved subhalos within 50◦ of the LMC on the sky is enhanced by ∼ 50%

relative to the density on a random patch of sky.

To quantify the number of satellites in our fiducial model that are associated with the LMC, we

explore the following definitions of LMC-associated subhalos.

1. Fiducial definition. A subhalo is associated with the LMC if it is within the virial radius of

the LMC halo at the time of LMC infall into the MW.
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Figure 4.4: Left panel: total MW satellite luminosity function inferred from our joint fit to the DES
and PS1 satellite populations (blue) compared to the current census of confirmed and candidate MW
satellites (black) and the empirical estimate derived in Paper I (gray), which assumes an isotropic
satellite distribution and a cored NFW radial satellite distribution. The 68% confidence intervals
from hydrodynamic simulations of the Local Group using the FIRE feedback prescription are shown
in red [188]. Luminosity function slopes predicted from hydrodynamic simulations with (solid green
line) and without (dashed green line) H2-based star formation are shown for comparison [330]; these
predictions do not account for subhalo disruption due to the Galactic disk. Note that the Paper I
prediction (gray) differs from the “All Known Satellites” curve (black) at the bright end because it
does not include the LMC, SMC, or Sagittarius. Right panel: The surface brightness distribution of
MW satellites with MV < 0 mag and r1/2 > 10 pc as a function of the limiting observable surface
brightness of an all-sky survey. Arrows indicate approximate detection limits for current surveys.
Note that LSST Y1 is expected to have similar detection sensitivity to HSC [237, 440, 214, 336].
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2. Gravitationally influenced definition. A subhalo is associated with the LMC if it has ever

passed within the virial radius of the LMC halo.

Here LMC infall is defined as the snapshot at which the center of the LMC halo crosses within the

MW virial radius. Note that nearly all systems that satisfy our strict definition are bound to the

LMC at the time of LMC infall.

Under the fiducial (gravitationally influenced) definitions above, we predict that 52±8 (181±25)

total LMC-associated subhalos (above our cuts of Vpeak > 10 km s−1 and Vmax > 9 km s−1) exist

within the virial radius of the MW today, where the 95% confidence interval is estimated by drawing

from our fiducial posterior. We predict that 48 ± 8 (164 ± 25) of these subhalos form galaxies

with MV < 0 mag and r1/2 > 10 pc (in agreement with an earlier estimate by [241]), and that 41±7

(118 ± 21) of these satellites survive tidal disruption due to the Galactic disk. Of these surviving

LMC-associated satellites, we predict that 4.8 ± 1.7 (11 ± 3.6) are currently observed by DES and

that 1.1± 0.9 (6.1± 2.1) are currently observed by PS1.

Our statistical probe of LMC satellite association is remarkably consistent with the number of

observed LMC satellites inferred from Gaia proper-motion measurements, which indicate that four

galaxies in or near the DES footprint—excluding the Small Magellanic Cloud (SMC)—are associated

with the LMC, and that two satellites in or near the PS1 footprint are potentially associated with

the LMC ([249, 356]).6. In addition, the orbital dynamics of our predicted LMC satellites are

consistent with Gaia proper-motion measurements for these likely LMC-associated systems. These

predictions are also consistent with other empirical models [127, 240, 145, 400, 249, 164, 498] and

with hydrodynamic simulations of isolated LMC analogs [238].

In Appendix C.4, we show that the properties of our LMC-like systems are not significantly

affected by the realizations of small-scale power in our fiducial simulations. However, we caution

that the number of predicted LMC satellites observed by DES and PS1 depends on the particular

properties of our two LMC analogs. Thus, exploring the robustness of these results using a suite of

zoom-in simulations selected to contain realistic LMC systems with a range of internal and orbital

properties is an important avenue for future work.

4.8.3 The Total MW Satellite Population

Figure 4.4 shows the total MW satellite luminosity function and surface brightness distribution re-

sulting from our fit to the DES and PS1 satellite populations. We infer that a total of 220 ± 50

satellites with MV < 0 mag and r1/2 > 10 pc exist within the virial radius of the MW, where uncer-

tainties correspond to 68% confidence intervals calculated by sampling from our fiducial posterior.

Thus, we predict that ∼ 150 satellites remain undiscovered in a standard CDM scenario, roughly

one-fourth of which are associated with the LMC. This is larger than the fraction of satellites that

6A recent analysis based on Gaia proper-motion measurements and hydrodynamic simulations suggests that two
bright satellites in or near DES, Fornax and Carina, may also be LMC-associated ([353]; however, see [356])
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Parameter Physical Interpretation Confidence Interval

α Power-law slope of satellite luminosity function −1.46 < α < −1.39
σM Scatter in luminosity at fixed Vpeak 0 dex∗ < σM < 0.19 dex
M50 Mass at which 50% of halos host galaxies 7.5∗ < log(M50/M�) < 7.93
B Strength of subhalo disruption due to baryons 0.3 < B < 2.1
σgal Scatter in galaxy occupation fraction 0 dex∗ < σgal < 0.67 dex
A Amplitude of galaxy–halo size relation 0∗ pc < A < 110 pc
σlogR Scatter in half-light radius at fixed halo size 0 dex∗ < σlogR < 1.2 dex
n Power-law index of galaxy–halo size relation 0∗ < n < 1.8

Table 4.1: Galaxy–halo connection model constraints derived from our fit to the DES and PS1
satellite populations. Asterisks mark prior-driven constraints.

have ever fallen into the MW that are associated with the LMC because our fiducial LMC analogs

accreted recently, making their satellites less likely to be disrupted. Our prediction for the total

number of MW satellites is consistent with several recent studies [241, 264, 340, 336], and it is lower

than the empirical estimate in Paper I, which was recognized to be inflated due to the assumption of

an isotropic satellite distribution. This prediction will be tested by upcoming deep imaging surveys;

indeed, HSC-SSP has already started to probe this population of distant, low surface brightness

MW satellites by discovering three new ultrafaint satellite candidates in ∼ 676 deg2 of imaging data

[222, 220, 221].

To estimate whether our predictions are consistent with HSC-SSP observations, we draw real-

izations of the MW satellite population from our fiducial posterior and calculate the number of

systems within the DES or PS1 footprints that would not be observed by the appropriate survey.

We then estimate the number of these systems currently observed by an HSC-like survey covering

676 deg2 that detects all satellites (i.e., systems with MV < 0 mag and r1/2 > 10 pc) down to a

surface brightness of µV = 32 mag arcsec−2 and out to a heliocentric distance of 300 kpc, assuming

an isotropic satellite distribution at high Galactic latitudes and accounting for subhalo disruption.

There are six known satellites in the HSC footprint, but two of the six (Sextans and Leo IV) are

detected at high significance in PS1 by at least one of the search algorithms in Paper I. We find

that our mock HSC survey detects 1.75 ± 0.6 satellites, which is in slight tension with the number

of systems detected by HSC (four, after discounting Sextans and Leo IV).

Figure 4.4 illustrates several predictions from hydrodynamic simulations of isolated and satellite

dwarf galaxies. Our results are largely consistent with the luminosity function of bright MW satellites

in hydrodynamic simulations of the Local Group using the Feedback In Realistic Environments

(FIRE) feedback prescription, down to the FIRE resolution limit of ∼ −6 mag [188]. Note that these

FIRE simulations do not include LMC or SMC analogs, which accounts for the discrepancy with

both our predictions and the observed luminosity function at MV < −16 mag. Interestingly, other

recent hydrodynamic simulations indicate that different star formation prescriptions significantly
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Figure 4.6: Left panel: fraction of halos that host galaxies, inferred from our fit to the DES and
PS1 satellite populations. The solid line shows the median inferred galaxy occupation fraction, and
dark (light) shaded contours represent 68% (95%) confidence intervals. The resolution limit of our
simulations is indicated by the dashed vertical line. Right panel: SMHM relation inferred from
our fit to the DES and PS1 satellite populations. An extrapolation of the mean SMHM relation
derived from more luminous field galaxies is shown in gray [45]. Stars illustrate the mean of the
predicted Mpeak range corresponding each observed DES and PS1 satellite, and top ticks indicate
the corresponding present-day virial masses of the halos that host these systems.

impact the amplitude and faint-end slope of the luminosity function for satellites of isolated LMC-

like halos [330]. Thus, our constraints on the faint-end slope, which are driven by satellites with

MV > ∼ −6 mag (corresponding to stellar mass M∗ < ∼ 105 M�), can be used to inform subgrid

star formation prescriptions.

4.8.4 Galaxy–Halo Connection Model Constraints

The posterior distribution for our fiducial model is shown in Figure 4.5, and the corresponding

galaxy–halo connection model constraints are listed in Table 4.1. Note that we obtain statistically

consistent results when fitting the DES and PS1 satellite populations with either of our two fiducial

simulations individually in terms of both the Bayesian evidence and the galaxy–halo connection

model constraints. In particular, no parameter constraints shift by more than 1σ relative to the

fiducial values reported below when the fit is performed using either simulation individually. We

now discuss each constraint in detail.

1. The inferred faint-end slope of the satellite luminosity function is steeper than that reported

in our study based on classical and SDSS satellites in Chapter 3 [336]. Our constraint is

consistent with the faint-end slope derived from higher-luminosity field galaxies in the GAMA

survey [295, 488], even though it is based on a sample that extends nearly 10 mag fainter
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than that used in GAMA. We note that α is the most sensitive parameter in our analysis to

modeling assumptions and details of the observed satellite population.

2. The scatter in luminosity at fixed Vpeak is constrained to σM < 0.19 dex at 95% confidence,

which may inform hydrodynamic feedback prescriptions that predict a steep increase in lumi-

nosity scatter at low masses (e.g., see [474]). Our lack of a lower limit on σM is consistent

with previous studies of faint galaxy samples (e.g., [288]). Meanwhile, large values of σM

are not allowed because too many low-Vpeak satellites upscatter to observable luminosities,

resulting in overpredicted luminosity functions. To confirm that this upper limit is robust,

we calculate Bayes factors by drawing samples from the posterior in bins of σM , finding that

σM = 0.15 dex (σM = 0.2 dex) is disfavored relative to σM = 0 dex with a Bayes fac-

tor of 30 (100).7 These upper limits are comparable to the scatter typically inferred from

abundance-matching analyses of brighter systems (σM ∼ 0.2 dex) and smaller than that from

hydrodynamic simulations of dwarf galaxies (e.g., [381]); however, we caution that our con-

straint might be impacted by the use of only two independent realizations of the MW satellite

population. In addition, it is potentially misleading to compare global constraints on scatter

to those derived from the MW alone. Both of these caveats are important to explore in future

work.

3. The peak mass at which 50% of halos host galaxies is inferred to be less than 8.5 × 107 M�

at 95% confidence. Note that this summary statistic depends on the lower limit of our prior

on M50, since the M50 posterior flattens near its lower limit, which is chosen based on the

resolution of our simulations. Thus, we also calculate Bayes factors by drawing from the

posterior in bins ofM50 to confirm that this summary statistic is robust. We find thatM50 =

8.5 × 107 M� (M50 = 1.5 × 108 M�) is disfavored relative to arbitrarily low values of M50

with a Bayes factor of 50 (100). The current data are not able to place a lower limit on M50,

which would correspond to the detection of a cutoff in galaxy formation.

4. Our posterior is consistent with B = 1, corresponding to our fiducial baryonic disruption

model. Although a large spread in disruption strength is allowed by the data, extremely

efficient (B > 2.1) and inefficient (B < 0.3) subhalo disruption relative to hydrodynamic

simulations is strongly disfavored. These constraints widen when our lognormal prior on B is

relaxed; however, zero subhalo disruption (corresponding to B = 0) is robustly ruled out.

5. The scatter in the galaxy occupation fraction is consistent with zero, which makes sense given

our lack of a lower limit onM50. Models with large scatter in the occupation fraction (σgal <

0.67 dex), corresponding to extremely stochastic galaxy formation, are disfavored relative to a

step function occupation fraction at 95% confidence. Note that the slope of the σgal posterior

is driven by the lower limit of ourM50 prior; as this limit decreases, the σgal posterior flattens.

7We provide details on our Bayes factor calculations in Appendix C.2.3.
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6. The amplitude of the galaxy–halo size relation, defined as the typical size of a satellite in a halo

with Rvir = 10 kpc at accretion, is constrained to lie between 12 and 73 pc at 68% confidence.

For larger values of A, satellites are too large to be detected with high probability, and the

DES and PS1 luminosity functions are underpredicted; for smaller values of A, many predicted

satellites do not pass our r1/2 > 10 pc cut, and the luminosity functions are underpredicted.

7. The scatter in the galaxy–halo size relation is constrained to lie between 0.33 and 0.91 dex

at 68% confidence. For larger values of σlogR, faint satellites upscatter to large sizes too

frequently, which results in underpredicted luminosity functions. Our 68% confidence lower

limit on σlogR of 0.33 dex is consistent with the value estimated in [275]. Lower values of σlogR

lead to slightly too many predicted DES and PS1 satellites; however, our results are consistent

with σlogR = 0 dex at 95% confidence.

8. The power-law index of the galaxy–halo size relation is constrained to lie between 0.5 and 1.45

at 68% confidence. For shallower power-law slopes, satellite sizes do not change appreciably

as a function of halo size, which results in a worse joint fit to the observed absolute magnitude

and surface brightness distribution. We note that the posterior widens when our Gaussian

prior on n is relaxed.

4.8.5 Properties of Halos that Host the Faintest Satellites

We now explore the properties of the lowest-mass halos inferred to host MW satellites. The left

panel of Figure 4.6 shows the galaxy occupation fraction derived from our statistical inference, where

uncertainties are estimated by drawing from our fiducial posterior. By sampling from our fiducial

posterior, we infer that halos with a peak virial mass below 2.5× 108 M� and peak circular velocity

below 19 km s−1 host at least one of the faintest observed satellites. To convert these into maximally

conservative upper limits, we account for the uncertainty in MW host halo mass using the procedure

described in Appendix C.1.1, which yields limits on the minimum halo mass and peak circular

velocity of Mmin < 3.2 × 108 M� and Vpeak,min < 21 km s−1 at 95% confidence. Furthermore, we

predict that the faintest observed satellite inhabits a halo withMpeak = 1.5× 108 M�, on average.8

These results improve upon the minimum halo mass constraint derived from classical and SDSS

satellites [336] by a factor of 2, and they are consistent with the constraints reported in [241].

Moreover, these upper limits are not in significant tension with the expected atomic cooling limit

of Vpeak ≈ 20 km s−1, contrary to recent studies based on the radial MW satellite distribution (e.g.,

[202]) and consistent with the findings in [78].

We caution that the median galaxy occupation fraction shown in Figure 4.6 is driven by the

assumed functional form in Equation 4.3 and is therefore arbitrary. Although the functional form

8The faintest observed satellite in our analysis, Cetus II, is detected by DES with MV = 0.02 mag ([150]; Table
C.2).
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in Equation 4.3 is consistent with results from hydrodynamic simulations forMpeak & 109 M�, this

particular functional form is not required to fit the DES and PS1 luminosity functions. Rather, we

have evidence that fgal > 50% above a peak virial mass of ∼ 108 M�. To verify that the assumed

form of the galaxy occupation fraction does not impact our constraints, we also test a binned model

in which we fit for M50 and a corresponding 90% occupation mass. We find that the resulting 50%

and 90% occupation constraints are consistent with those inferred from our fiducial analysis.

A wide range of galaxy occupation fractions have been reported in hydrodynamic simulations,

with some placingM50 as high as ∼ 109 M� [410, 175]. However, recent hydrodynamic simulations

run at higher resolution result in efficient galaxy formation in significantly lower-mass halos, and

some claim that all halos down to the resolution limit consistently host star particles [482]. In

addition, simulations of galaxy formation at early pre-reionization epochs show that stellar systems

form in halos with masses as low as ∼ 107 M� (e.g., see Fig. 13 in [116] for a compilation of recent

simulation results). Most recently, high-resolution simulations of high-redshift galaxy formation that

include the effects of spatially and temporally inhomogeneous reionization findM50 ∼ 108 M� [257].

Our galaxy occupation fraction constraint implies that models with M50 > 108 M� are in

significant tension with the observed MW satellite population, as long as MW satellite formation is

representative of galaxy formation at this halo mass scale, on average. This assumption may not be

true if the reionization history of the MW’s Lagrangian volume differs from the average reionization

history of an MW-mass halo hosting dwarf galaxies of the masses considered here (however, see

[22, 101]). Note that analyses based on H I surveys of Local Group dwarfs indicate a suppression

mass scale similar to our M50 constraint [441].

Due to our abundance-matching assumption, the lowest-mass halos in our model host the faintest

galaxies, on average. Thus, our constraints on the masses of these halos are conservative, since the

most massive halos in our simulations are forced to host more easily observable satellites at fixed

distance and size, modulo baryonic disruption effects and abundance-matching scatter. In other

words, our abundance-matching model yields a testable prediction: the faintest galaxies should

inhabit the halos with the lowest pre-infall virial masses. We expect this correlation to be weakened

by post-infall effects, including tidal stripping, but we can nevertheless infer the present-day joint

distribution of halo mass and satellite luminosity or stellar mass. We illustrate this stellar mass–halo

mass (SMHM) relation in the right panel of Figure 4.6. Our inferred SMHM relation is generally

consistent with recent results (e.g., [241]). Like the faint-end slope of the luminosity function, the

SMHM relation can be used to discriminate between different subgrid models of star formation and

stellar feedback [330]. As in previous studies, we find that the SMHM relation in the ultrafaint regime

falls off more steeply than extrapolations of abundance-matching relations derived using higher-mass

field galaxies [45]. Interestingly, [14] found that full on-the-fly radiative transfer is necessary to match

the steepness and normalization of our inferred SMHM relation for a fixed hydrodynamic feedback

prescription.
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Ultimately, our predictions must be confronted with the dynamical mass function of observed

satellites, measurements of which will improve significantly in the era of upcoming spectroscopic fa-

cilities and giant segmented mirror telescopes [423]. A preliminary comparison of our joint predicted

distribution of luminosity and Vmax with the measured stellar velocity dispersions of DES and PS1

satellites suggests that our model is consistent with the inferred central densities of low-luminosity

satellites (MV > −6 mag). Although there is a systematic discrepancy between observed and pre-

dicted values of Vmax for brighter systems (the “too big to fail” problem), our simple comparison

does not account for the conversion from line-of-sight velocity dispersion measured within observed

half-light radii to Vmax or the tidal effects of the Galactic disk on the density profiles of surviving

subhalos. Moreover, the systems for which predicted densities are higher than those inferred obser-

vationally are susceptible to baryonic feedback processes that core the inner regions of halos [136],

and this effect has been shown to alleviate the too big to fail problem [91, 408, 478, 300, 188].

Finally, we explore the properties of the halos inferred to host the faintest potentially detectable

galaxies. In particular, we calculate the minimum peak halo mass necessary for halos to contain

a stellar population of at least 100 M�, chosen to represent the approximate threshold for which

it would be possible to observationally confirm a stellar system as a dark matter–dominated dwarf

galaxy.9 By populating a higher-resolution version of one of our fiducial simulations and sampling

from the posterior of our abundance-matching relation, we find that systems at the observational

threshold occupy halos with Mpeak > 106 M� at 95% confidence. To detect even lower-mass halos,

gravitational probes of dark matter that are independent of baryonic content, e.g. gravitational

lensing or stellar streams, must be employed.

4.8.6 Implications for Dark Matter Microphysics

Many deviations from CDM lead to a cutoff in the abundance of low-mass halos. Several authors

have used MW satellite abundances to constrain a free-streaming cutoff induced by warm dark

matter (e.g., [309, 260, 299, 241]). [335] showed that similar constraints apply to other dark matter

models, resulting in limits on the velocity-independent scattering cross section between dark matter

and baryons. Our statistical detection of halos with peak virial masses below 3.2×108 M� therefore

translates directly into constraints on various microphysical properties of dark matter.

In Chapter 6 [335], we find that the minimum halo mass inferred in this fashion is comparable

to the limit on the half-mode mass Mhm, which corresponds to the scale at which the matter power

spectrum is suppressed by a critical amount relative to CDM due to dark matter free streaming or

interactions. Performing a statistical inference in which the half-mode mass is varied will constrain

it to lie below our upper limit on M50, since the abundance of halos at and above the half-mode

mass is reduced relative to CDM.

Thus, for a simple and conservative estimate of the dark matter constraints resulting from our

9For many MW satellites, this will likely require spectroscopy with giant segmented mirror telescopes [423].
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Figure 4.7: Impact of modeling assumptions on the minimum subhalo mass inferred from the ob-
served DES and PS1 satellite populations. The first three models match the number of subhalos to
the number of confirmed DES and PS1 satellites, and the last two models populate subhalos with
galaxies to fit the position-dependent MW satellite luminosity function and size distribution.

analysis, we set the upper limit on Mhm equal to our upper limit on the minimum halo mass, i.e.,

Mhm < 3.2×108 M�, which corresponds to a lower limit on the half-mode scale of khm > 36 h Mpc−1.

Using the relations in [335] with the cosmological parameters h = 0.7 and Ωm = 0.286 corresponding

to the simulations used in our analysis (see Section 4.4.1), this yields a lower limit of 3.4 keV on

the mass of thermal relic warm dark matter and an upper limit of 6 × 10−30 cm2 on the velocity-

independent dark matter–baryon scattering cross section for a 10 keV dark matter particle mass,

both at 95% confidence. We leave a detailed investigation of dark matter constraints to future work.

4.9 Theoretical Uncertainties

We aim to present a thorough galaxy–halo connection model that allows us to marginalize over the

most important theoretical uncertainties when modeling the MW satellite population. Nonetheless,

our modeling choices necessarily affect the predicted number of detected low-mass halos and thus

our upper limit on the minimum halo mass, Mmin. In this section, we briefly discuss the main

uncertainties in this analysis and their impact on our Mmin constraint.

To do so, we consider the upper limit on Mmin as a function of modeling assumptions, starting

with the most conservative model possible and adding one assumption at a time. We illustrate the

results of this exercise in Figure 4.7 for upper limits calculated as follows.
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1. Minimal CDM. Assuming a maximally massive MW halo given Gaia constraints (i.e., a virial

mass of 1.8× 1012 M�; [102, 106, 292, 291]), count the subhalos within the virial radius of the

MW in order of decreasing Vpeak until the number of kinematically confirmed DES and PS1

satellites is matched, and set the lowest corresponding value ofMpeak equal to the upper limit

on Mmin.

2. MW Host Mass. Repeat the previous step with the MW host mass fixed to its average value

in our two fiducial simulations (i.e., an average virial mass of 1.4× 1012 M�).

3. Subhalo Disruption. Repeat the previous step many times with the subhalo number weighted

by disruption probability, sampling B from our fiducial posterior, to calculate an upper limit

on Mmin at 95% confidence.

4. Satellites (confirmed). Repeat the previous step including the observational detection proba-

bilities for mock satellites in the DES and PS1 footprints by drawing satellite properties from

our fiducial posterior.

5. Satellites (unconfirmed). Repeat the previous step including the unconfirmed candidate satel-

lites detected by DES and PS1 in the observed tally.

This yieldsMmin < (17, 14, 12, 6.5, 2.5)×108 M� for models (i)–(v), respectively. Note that models

(i)–(iii) are extremely conservative, since subhalos are counted in order of decreasing Vpeak; however,

these models do not reproduce the observed position-dependent MW satellite luminosity function

or radial distribution. Model (iv) yields the conservative limit presented in Appendix C.3.1, and

model (v) yields our fiducial constraint, uncorrected for MW host halo mass. Although we have

not explicitly considered artificial subhalo disruption in this list of theoretical uncertainties (e.g.,

[453, 454]), our fiducial orphan satellite model effectively assumes that subhalo disruption in dark

matter–only simulations is entirely artificial, which is a conservative choice.

Figure 4.7 shows that both fitting the satellite luminosity function and including the population of

faint, kinematically unconfirmed satellite galaxies in our fit yield significant increases in constraining

power. We emphasize that our galaxy–halo connection model is conservative from the perspective

of upper limits on the minimum halo mass, since we assume that high-mass halos host the brightest

observed satellite galaxies. Moreover, we marginalize over many uncertainties in the connection

between low-mass halos and faint galaxies. Thus, the largest gain in constraining power likely results

from our detailed use of observational selection functions, i.e., from the fact that some satellites are

not detected in DES or PS1 data. Given our extensive validation of the DES and PS1 selection

functions in Paper I, we are therefore confident in our minimum halo mass constraints.
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4.10 Conclusions

We have presented the results of a forward-modeling framework for MW satellites applied to recent

searches for satellites in photometric surveys over nearly the entire high Galactic latitude sky. Our

analysis includes position-dependent observational selection effects that faithfully represent satel-

lite searches in DES and PS1 imaging data, and our galaxy–halo connection model allows us to

marginalize over theoretical uncertainties in the relationship between galaxy and halo properties,

the effects of baryonic physics on subhalo populations, and the stochastic nature of galaxy forma-

tion in low-mass halos. By performing a Bayesian analysis of the observed DES and PS1 satellite

populations, we find decisive statistical evidence for the following.

1. The LMC impacts the observed MW satellite population, contributing 4.8 ± 1.7 (1.1 ± 0.9)

LMC-associated satellites to the DES (PS1) satellite populations.

2. The LMC fell into the MW within the last 2 Gyr.

3. The faintest satellites currently known occupy halos with peak virial masses less than 3.2 ×
108 M�.

4. The faintest detectable satellites (i.e., dark matter–dominated systems with M∗ > 100 M�)

occupy halos with peak virial masses greater than 106 M�.

These results have broad implications for galaxy formation and dark matter physics. For exam-

ple, comparing our inferred luminosity function and galaxy occupation fraction to predictions from

hydrodynamic simulations will help break degeneracies among subgrid star formation and feedback

models. Meanwhile, extending our model to study the evolution of the luminosity function will

shed light on high-redshift faint galaxy populations (e.g., [87, 475]) and the MW’s local reionization

history (e.g., [101, 304, 257]).

Finally, our statistical detection of low-mass halos translates directly into constraints on a suite of

dark matter properties, including warmth in thermal production scenarios, initial velocity distribu-

tion in nonthermal production scenarios, self-interaction cross section, interaction strength with the

Standard Model, formation redshift, stability, and quantum mechanical behavior on astrophysical

scales. Exploring the interplay between galaxy formation physics and alterations to the standard

CDM paradigm will be crucial in order to extract these signals from upcoming observations of ultra-

faint galaxies, and forward-modeling approaches like the one developed here will drive these studies

forward.



Chapter 5

Placing the Milky Way in Context

Abstract

The Satellites Around Galactic Analogs (SAGA) Survey aims to measure the satellite galaxy

populations of 100 Milky Way (MW) analogs in the very low-redshift Universe (z ∼ 0.01) down

to an absolute magnitude of Mr,o = −12.3. Here, we test for consistency between the galaxy–

halo connection constraints from previous chapters—which are derived using only the MW satellite

population—and SAGA Stage II measurements of 36 MW analog satellite populations. We show

that this model provides a reasonable statistical description of SAGA Stage II data, indicating that

our galaxy–halo connection constraints are cosmologically representative for satellites brighter than

Mr,o = −12.3. We also forecast the galaxy–halo connection constraining power of the complete

SAGA Stage III sample of 100 MW analogs, which will break degeneracies among the baryonic

disruption and galaxy–halo size relation components of the model while reducing uncertainties in

the inferred stellar mass–halo mass relation in the regime of the brightest MW satellites.

5.1 Paper Status and External Contributions

Section 5.3 of this chapter is published in slightly modified form in the Astrophysical Journal, Volume

907, Issue 2, p.85-119 with the title, “The SAGA Survey. II. Building a Statistical Sample of Satellite

Systems around Milky Way–like Galaxies,” on which I am a co-author; the rest of this chapter is

unpublished and authored by me. This work is the result of a collaboration with members of the

Satellites Around Galactic Analogs (SAGA) Survey and particularly Yao-Yuan Mao, Risa Wechsler,

and Marla Geha. I am grateful to the entire SAGA team for their input and support.
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5.2 Satellites of Milky Way Analogs and the SAGA Survey

The galaxy–halo connection constraints derived in the previous chapters and the dark matter con-

straints that follow this chapter are based on Milky Way (MW) satellite galaxies alone, which

necessitates a modeling approach that accounts for the specific characteristics of the MW system

that influence its satellite population. It is therefore crucial to understand the extent to which

the MW satellite population is cosmologically representative to draw robust and general inferences

about galaxy formation and dark matter physics. For example, several authors have argued that the

abundance and properties of MW satellites may be biased relative to satellite galaxies of comparable

luminosities around typical MW-mass hosts (e.g., [374, 242]). There are also potential differences

between characteristics of MW and M31 satellites including their radial profiles (e.g., [492]) and star

formation histories (e.g., [477, 476]), although comparisons between these populations are compli-

cated by their differing host halo and central galaxy properties and formation histories.

Until recently, our census of satellites around MW-mass central galaxies has been dominated

by the MW (∼ 60 satellites; [149]), M31 (∼ 25 satellites; [319]), and a plethora of systems in the

Sloan Digital Sky Survey (SDSS) main galaxy sample (∼ 1 satellite per host; [401]). Only satellites

comparable in luminosity to the Large Magellanic Cloud (LMC; Mr,o ∼ −19) have been detected

around these SDSS centrals, while satellites as faint as Mr,o ∼ 0 have been measured nearby in

the MW. New observations of satellites around Local Volume (LV) hosts using surface brightness

fluctuations, which are sensitive to satellites as faint as Mr,o ∼ −9, have uncovered ∼ 5 satellites

per MW-mass central down to this luminosity threshold [104, 105]. The luminosity functions of

these LV satellite systems are in reasonable agreement with ΛCDM predictions, including for the

host-to-host scatter among satellite populations at comparable host halo mass, contrary to some

previous claims (e.g., [55]). Meanwhile, their radial distributions are potentially more concentrated

than expected, although it is challenging to robustly predict satellite radial distributions due to

both numerical challenges in N -body simulations (e.g., [205]) and the nontrivial connection between

satellite galaxies and subhalos (e.g., [277] and references therein).

The Satellites Around Galactic Analogs (SAGA) Survey [193, 316] is designed to bridge the

gaps in MW analog sample size and satellite luminosity threshold left by current observations. In

particular, SAGA aims to measure the satellite populations of 100 MW analog systems between

∼ 20 to 40 Mpc down to Mr,o = −12.3, corresponding to the Milky Way’s fifth-brightest satellite,

Leo I. This sample size and satellite luminosity threshold will yield a precise measurement of the

cosmological distribution of satellite populations around Milky Way-mass central galaxies outside

of the LV, thereby placing MW, M31, and LV measurements in context. Stage I of the SAGA

Survey [193] presented complete spectroscopic coverage around 8 MW analogs, discovering 27 new

satellite galaxies, and Stage II [316] increased this sample to 36 complete hosts and 127 satellites.

The MW satellite luminosity function is consistent with being drawn from the distribution of
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SAGA Stage II luminosity functions, foreshadowing the consistency of the corresponding galaxy–

halo connection constraints described below. Several independent hydrodynamic simulations also

predict satellite populations that are reasonably consistent with SAGA Stage I (e.g., [404]) and Stage

II (e.g., [179, 160]) data. Intriguingly, the fraction of quenched satellites around SAGA centrals is

significantly lower than that observed for MW or M31 satellites (and that predicted by hydrodynamic

simulations) down to the same luminosity threshold. Placing this finding into a theoretical context

while accounting for the disparate observational techniques used to measure the respective quenched

fractions is beyond the scope of this work.

Here, we focus on the implications of current and future SAGA satellite abundances for the

galaxy–halo connection. Section 5.3 compares the predictions of the galaxy–halo connection model

presented in Chapters 3–4, which is constrained only by the MW satellite population, with SAGA

Stage II data. Section 5.4 then forecasts the galaxy–halo connection constraining power of the entire

SAGA Stage III sample of 100 MW analogs.

5.3 SAGA Stage II: Implications for the Galaxy–Halo Con-

nection

5.3.1 The Model

To place SAGA Stage II results in the context of galaxy–halo connection models, we combine an

abundance-matching procedure that associates SAGA host galaxies with dark matter halos with

the empirical satellite galaxy model from Chapters 3–4 [336, 333]. This model populates subhalos

with satellite galaxies by extrapolating an abundance-matching relation between luminosity and peak

maximum circular velocity (calibrated to the GAMA luminosity function from [295] for Mr,o < −13)

and a galaxy size–halo size relation (calibrated to [275] for galaxies with half-light radii r1/2 & 1 kpc)

into the regime of faint satellites. In addition, it includes a model for satellite disruption due to a

central disk potential, which is calibrated to the Feedback in Realistic Environments (FIRE) baryonic

simulations. We update the disruption prescription from [336], which was originally based on the

machine-learning algorithm from [337] and the FIRE simulations in [190], using the analytic fit to

subhalo disruption in the FIRE simulations presented in [404].

As described in [336, 333], this model accurately describes the luminosity, size, and radial distri-

bution of MW satellite galaxies, including the population of satellites accreted with the LMC, when

combined with recent observational MW satellite selection functions [149]. To incorporate theoret-

ical uncertainties in our prediction for SAGA satellite populations, we sample from the posterior

distribution over the galaxy–halo connection and baryonic disruption model parameters presented

in [333], which is derived by fitting the model to most of the known MW satellite population.

To predict the satellite population for each SAGA host, we first follow the procedure in [193] to
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map each SAGA host galaxy to a set of potential dark matter host halos in the c125-2048 cosmo-

logical simulation (a higher-resolution version of the box used in [315]) using abundance matching.

We assume that the scatter in central luminosity at fixed halo properties is 0.15 dex, and we select

all halos mapped to absolute magnitudes within 0.15 mag of the SAGA host galaxy in question,

which roughly corresponds to the quadrature sum of the estimated photometric and distance errors

for our hosts. We also impose the host MK cut and the environment cut described in [316].1 This

procedure yields ∼2000 halos per SAGA host galaxy, on average, from which we select a random

subset of 300 matched halos for each model realization to capture the probabilistic relation between

host galaxy and host halo properties. In particular, these mock host halos have the cosmologically

representative range of masses and formation histories that is expected for each host galaxy lumi-

nosity, which allows us to estimate the uncertainty in satellite populations resulting from the scatter

in these quantities at a fixed central luminosity.

For each potential host halo in a given model realization, we then select all other halos above

a resolution threshold of Vpeak = 40 km s−1 that satisfy the ±300 kpc and ±275 km s−1 projected

distance and velocity criteria in various projections of our simulation to mimic the SAGA satellite

definition; thus, our model self-consistently includes interloping galaxies. We populate (sub)halos

with (satellite) galaxies using the model described above, and we measure the “observed” satellite

population for each host halo matched to a given SAGA host galaxy for several draws of satellite

model parameters from the [333] posterior. We perform three sets of mock observations of galaxies

in the z = 0 snapshot of the simulation by projecting the simulation along perpendicular axes and

imposing the Mr,o < −12.3 SAGA completeness threshold and a surface brightness completeness

limit of µeff < 26 mag arcsec−2.2 Mock-observed satellites are weighted by their survival probability

according to our baryonic subhalo disruption model, and mock-observed interlopers are assumed to

have survival probabilities of unity.

With these procedures, the model predicts that, at 68% confidence, SAGA hosts inhabit dark

matter halos with virial masses in the range 7×1011 < Mvir/M� < 2×1012 and that SAGA satellites

are hosted by halos with peak virial masses in the range 2× 1010 < Mpeak/M� < 1011, and typical

present-day virial masses a factor of ∼1–6 lower.

5.3.2 Comparing Model Predictions with SAGA Results

Figure 5.1 shows the comparison between the observed and predicted distributions of the total

number of satellites (Mr,o < −12.3) among the 36 complete SAGA systems. The error bars on the

observed number are generated using the incompleteness correction procedure described in [316].

1We do not implement the stellar foreground cuts in this mock selection because our simulation does not include
stars or a Galactic disk. We do not implement the maximum halo mass cut because the abundance-matching procedure
yields very few potential SAGA host halos with present-day virial mass > 1013 M�.

2The model predicts a very small number of satellites with Mr,o < −12.3 and µeff > 26 mag arcsec−2; however,
there are no satellites or satellite candidates at this low surface brightness in the SAGA object catalog or in the
matched Hyper Suprime-Cam catalog.
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To generate the predicted distribution, we repeatedly draw sets of mock host halos corresponding

to the 36 SAGA systems; thus, the “predicted” contour includes both statistical uncertainties (due

to the limited host sample size) and systematic uncertainties (due to scatter in the host galaxy–halo

connection and our satellite model). Since this plot shows predicted and incompleteness-corrected

realizations of the SAGA sample, adjacent data points are anticorrelated. We find good agreement

between the total predicted Nsat distribution and SAGA observations.

To compare our predictions to the data in more detail, Figure 5.2 shows predicted luminosity

functions, and Figure 5.3 shows predicted radial distributions (normalized to the number of satel-

lites with Mr,o < −12.3 within a projected distance of 300 kpc) compared to the observed radial

distribution for each complete SAGA system. Again, contours indicate 68% and 95% confidence

intervals due to scatter in the host galaxy–halo connection, draws from our satellite galaxy model

parameters, and projections of our simulation. Our predictions are largely consistent with the ob-

served luminosity functions, and they are in excellent agreement with the observed normalized radial

distributions. However, for SAGA hosts with the largest numbers of observed satellites, our model

underpredicts both the total number of satellites, particularly the number of bright (Mr,o < −15)

satellites, for which SAGA observations are highly complete (e.g., see the right panel of Figure 5 in

[316]).

To quantify this potential bright-end tension, we estimate that 0.13 (0.09) predicted satellites

with Mr,o < −15 must be added to our fiducial prediction per host to bring it into agreement with

the data at 68% (95%) confidence assuming Poisson errors on the observed counts, which corresponds

to an ∼1σ–2σ discrepancy. This is consistent with Figure 5.2, which shows that roughly five SAGA

hosts have one additional bright satellite relative to our predicted 95% confidence interval. There is

also a hint that the model overpredicts the number of dim satellites, although it is formally consistent

with the data given our current incompleteness estimates.

Overall, it is encouraging that the model predictions are in broad agreement with SAGA data,

reinforcing our finding that the MW satellite population is not highly atypical.

5.3.3 Implications

Before we discuss the implications of the bright-end tension noted above, we emphasize several

caveats associated with our current predictions. The satellite model we employed has specifically

been fit to the MW satellite population; thus, our predictions for subhalo and satellite galaxy

disruption do not account for the varying masses, morphological properties, and host halo density

profiles of SAGA host galaxies relative to the MW. In addition, we have not included “orphan”

satellites in the model3, nor have we explored exactly how our predictions depend on galaxy–halo

connection parameters within the region of parameter space allowed by the MW satellite population.

3In N -body simulations, a dark matter subhalo may be disrupted by tidal stripping earlier than in reality due to
the lack of concentrated baryonic content or spurious numerical effects. Modeling this effect is commonly referred to
as including “orphan” satellites.
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Figure 5.1: Distribution of satellite number in SAGA hosts. The black stars show the data from the
SAGA Stage II sample of 36 complete hosts, and the error bars indicate incompleteness corrections as
described in [316] (note that the incompleteness-corrected Nsat measurements are highly correlated).
Dark blue (light blue) contours indicate the predicted 68% (95%) confidence intervals based on our
simulation and galaxy–halo connection model. The MW (M31) is shown as a dashed (dashed–dotted)
gray line.
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Figure 5.2: SAGA Stage II satellite luminosity functions and incompleteness corrections (colored
lines and bands) compared to predictions from a cosmological dark matter–only simulation populated
with galaxies using the empirical satellite model in [336, 333], which has been fit to the MW satellite
population. Dark blue lines indicate the mean prediction for each satellite population, and dark
blue (light blue) contours indicate 68% (95%) confidence intervals, which include the effects of host
galaxy–halo abundance-matching scatter, uncertainty in our galaxy–halo connection model (see
Section 5.3.1), and projection effects.
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Figure 5.3: Comparison of predicted and observed radial satellite distributions, normalized to the
number of satellites within a projected distance of 300 kpc. The predicted mean and confidence
interval is identical to Figure 5.2, and the observed radial distributions are computed using all
satellites above our Mr,o < −12.3 absolute magnitude limit. Hence, no observed data are shown for
systems that do not have any satellites with Mr,o < −12.3. We do not correct the SAGA radial
distributions because the incompleteness model in [316] predicts that missing satellites should have
the same distribution as confirmed ones.
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Nonetheless, the potential bright-end discrepancy is reminiscent of similar tensions noted for LV

field [339] and satellite [104] galaxies when compared with models that differ from ours in detail,

hinting at a more systematic issue that may exist in various theoretical predictions, including those

from hydrodynamical simulations. The flexibility of our model allows us to quantify the possible

sources of the tension and study potential solutions. We therefore briefly describe possible solutions

in the context of our model, leaving a more thorough investigation to future work.

1. Stellar mass–halo mass relation. Forcing the halos that host the richest SAGA satellite systems

to be a factor of ∼ 3 more massive resolves the bright-end discrepancy. However, this will signif-

icantly alter the well-validated stellar mass–halo mass relation in the MW-mass regime [474].4

Alternatively, this halo mass shift can be achieved if SAGA host magnitudes are systematically

biased dim by ∼ 0.5 mag, which we also regard as unlikely.

2. Disruption model. Removing subhalo disruption from our model reduces the bright-end tension

to less than ∼ 1σ. It is unlikely that subhalos that host bright satellites undergo no disruption;

however, disruption prescriptions calibrated to hydrodynamical zoom-in simulations are dom-

inated by low-mass subhalos and therefore might overpredict disruption efficiencies for more

massive subhalos.

3. Global luminosity function. Our abundance-matching prediction is calibrated to the GAMA

luminosity function down to Mr,o = −13; this luminosity function contains both statistical

errors (captured by uncertainties in the Schechter function fit to GAMA data) and potential

systematic errors (e.g., due to survey incompleteness). While there is no evidence that the

GAMA survey is incomplete down to r = −19.8, we find that varying the GAMA luminosity

function amplitude from [295] within its quoted 2σ error can fully resolve the bright-end

tension.

In future work, we plan to address these questions in detail and to explicitly test for consistency

between the MW and SAGA satellite populations by refitting the satellite model to the SAGA data.

We also plan to compare SAGA results with additional models and hydrodynamical simulations.

5.4 Forecasts for SAGA Stage III

Stage III of the SAGA Survey aims to measure complete luminosity functions for 100 MW analogs

down to Mr,o = −12.3, roughly tripling the Stage II sample size. Using MW, LV, and SAGA satellite

populations to jointly constrain our galaxy–halo connection model will require a careful treatment

of the modeling discrepancies discussed in Section 5.3.3. Here, we simply forecast the galaxy–halo

4We note that varying the 0.15 dex scatter by ±0.1 dex in our host abundance-matching relation does not signifi-
cantly affect the bright-end tension.
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connection constraining power of SAGA Stage III data by evaluating our model on mock SAGA

satellite populations as follows.

First, we populate host halos in c125-2048 with central galaxies using the abundance-matching

procedure described above with a fixed scatter of 0.15 dex. Each abundance-matching realization

yields ∼ 104 halos that can correspond to one or more SAGA centrals, assuming the same MK

measurement uncertainty of 0.15 mag described above. For a given set of galaxy–halo connection

model parameters, we then predict observed satellite populations (including interlopers) following

the same mock procedure used for the SAGA Stage II comparison above. We modify our satellite

model to efficiently encompass many mock SAGA satellite populations by writing the likelihood of

observing a set of SAGA satellite populations, sSAGA (specified by their absolute magnitudes and

surface brightnesses), given a set of model parameters θ as

P (sSAGA|θ) =
∏

hosts i

∏

bins j

P (nSAGA,ij |n̂SAGA,ij), (5.1)

where nSAGA,ij is the observed number of satellites in SAGA host i in bin j, and n̂SAGA,ij is a vector

of the number of mock SAGA satellites corresponding to host i in bin j from a realization of our

model at fixed θ. For each SAGA central, we weight mock SAGA hosts by the probability they fall

within the host’s measured MK range assuming either a step function or Gaussian likelihood (our

results are not sensitive to the shape of this likelihood). The explicit form of P (nSAGA,ij |n̂SAGA,ij)

is given in Equation C.7.

To explore how these mock SAGA predictions respond to our satellite model parameters, we

predict observed satellite populations using the planned SAGA Stage III central luminosity distri-

bution, sampling from halos in a sub-volume of ∼ (30 Mpc h−1)3 from c125-2048 for computational

efficiency. Figure 5.4 shows the dependence of the average number of observed satellites per host for

a SAGA Stage III-like survey, 〈Nsat(Mr,o < −12.3, µ < 26)〉, where Nsat is fully forward-modeled

including projection effects. The baryonic disruption efficiency (B) and galaxy–halo size relation

scatter (σlogR) produce the largest variations in 〈Nsat〉 within the parameter ranges allowed by MW

satellites, indicating that SAGA Stage III data will complement or improve current constraints on

these parameters.5 Nonetheless, we emphasize that comparing the constraints derived from MW,

LV, and SAGA data will be fruitful even for parameters that are primarily constrained by nearby

satellites to test for consistency.

Finally, we fold these mock satellite populations through our likelihood framework to forecast

the constraining power of SAGA Stage III data. As expected from Figure 5.4, we find that the

abundance-matching parameters α and σM as defined in [333] are not well constrained from SAGA

data alone, producing variations in the log-likelihood of ∆ lnL . −0.5 relative to its maximum.

Nonetheless, SAGA data may inform the stellar mass–halo mass relation slope at higher luminosities

5Note that we do not vary galaxy occupation fraction parameters because they are best constrained by galaxies
fainter than the SAGA satellite luminosity limit.
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than captured by the current definition of α as well as the mass dependence of the luminosity

scatter. Meanwhile, our forecast indicates that the input value of the disruption efficiency B can

be measured moderately well (∆ lnL ∼ −1). This measurement will complement MW constraints

because hydrodynamic simulations used to calibrate subhalo disruption models (e.g., Chapter 2) are

tuned to match aspects of the MW satellite population. Large values of the satellite size amplitude

A & 200 pc are ruled out because they produce too few observed satellites, and the remaining size

model parameters are not strongly constrained.

Thus, our results indicate that SAGA Stage III results will inform both subhalo disruption ef-

ficiency as a function of central galaxy properties and environment at fixed stellar mass and the

size–virial radius relation in a regime where it is not well constrained (e.g., see [275, 244]). In addi-

tion, addressing the potential tensions discussed in Section 5.3.3 may help calibrate the luminosity

function and stellar mass–halo mass relation for −12 . Mr,o . −19; these measurements will be

systematically pursued in future work. Finally, we note that these updated galaxy–halo connec-

tion measurements are not expected to significantly improve the constraints on microphysical dark

matter properties derived in the following chapters, which are driven by the population statistics of

ultra-faint dwarf galaxies that have only been detected as satellites of the MW.
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Figure 5.4: Forecasts for the average number of satellites per MW analog detected by a SAGA
Stage III-like survey. Dark (light) blue bands show the predicted 68% (95%) confidence intervals
for the average number of satellites predicted for 100 mock SAGA observations as a function of one
galaxy–halo connection model parameter. In each panel, the remaining parameters are fixed to their
best-fit value from our MW satellite analysis in Chapter 4 [333] and vertical dashed lines show the
corresponding 95% confidence intervals inferred from MW satellites.



Chapter 6

Dark Matter Constraints. I.

DM–SM Interactions

Abstract

Alternatives to the cold, collisionless dark matter (DM) paradigm in which DM behaves as a

collisional fluid generically suppress small-scale structure. Herein we use the observed population

of Milky Way (MW) satellite galaxies to constrain the collisional nature of DM, focusing on DM–

baryon scattering. We first derive analytic upper limits on the velocity-independent DM–baryon

scattering cross section by translating the upper bound on the lowest mass of halos inferred to host

satellites into a characteristic cutoff scale in the linear matter power spectrum. We then confirm

and improve these results through a detailed probabilistic inference of the MW satellite population

that marginalizes over relevant astrophysical uncertainties. This yields 95% confidence upper limits

on the DM–baryon scattering cross section of 2×10−29 cm2 (6×10−27 cm2) for DM particle masses

mχ of 10 keV (10 GeV); these limits scale as m
1/4
χ for mχ � 1 GeV and mχ for mχ � 1 GeV. This

analysis improves upon cosmological bounds derived from cosmic-microwave-background anisotropy

measurements by multiple orders of magnitude over a wide range of DM masses, excluding regions

of parameter space previously unexplored by other methods, including direct-detection experiments.

Our work reveals a mapping between DM–baryon scattering and other alternative DM models, and

we discuss the implications of our results for warm and fuzzy DM scenarios.

6.1 Paper Status and External Contributions

This chapter is published in slightly modified form in the Astrophysical Journal Letters, Volume

878, Issue 2, p.L32-37 with the title, “Constraints on Dark Matter Microphysics from the Milky Way

Satellite Population,” on which I am the corresponding author. An Erratum that corrects a minor
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error in the transfer functions predicted by our Boltzmann solver is published in the Astrophysical

Journal Letters, Volume 897, Issue 2, p.L46-47, and these corrections are reflected below. This work

is the result of a collaboration with Vera Gluscevic, Kimberly Boddy, and Risa Wechsler. Vera

and Kim led the development of the DM–proton interaction Boltzmann solver, and all of us worked

together to interface these models with Milky Way satellite data; in addition, Vera, Kim, and Risa

all made editorial contributions to the text. This work was stimulated by workshops hosted by the

Dark Energy Science Collaboration’s Dark Matter Working Group, and I am grateful to all of hhe

members of this group for their support and insights.

6.2 Introduction

In the standard cold, collisionless dark matter (CDM) paradigm, structure forms from initial con-

ditions described by a featureless power spectrum of matter perturbations, giving rise to a present-

day dark matter (DM) halo mass function that extends uninterrupted down to sub-solar masses

[204, 137]. Non-standard DM scenarios, such as warm DM (WDM; [4, 11]) and fuzzy DM (FDM;

[227, 228]), often involve smoothing of matter perturbations and suppression of structure on small

scales.

Herein we focus on the framework inspired by the weakly interacting-massive-particle paradigm,

in which DM scatters with Standard Model particles (i.e., baryons), through a velocity-independent

contact interaction. These interactions transfer heat and momentum between the photon–baryon and

DM fluids in the early universe, and damp matter perturbations on scales that enter the cosmological

horizon while scattering is efficient (e.g., [67]). The damping scale is set by the interaction strength,

and the cumulative effect is largest for the smallest modes, which spend the most time inside the

horizon.

As perturbations grow, this distinct fingerprint of DM microphysics is propagated to visible

tracers of matter throughout cosmic history as a suppression of small-scale structure relative to

CDM. Currently, the best cosmological limits on DM–baryon scattering come from measurements

of damping tails in the cosmic-microwave-background (CMB) temperature and polarization power

spectra from Planck [67, 198, 489] and the Lyman-α forest flux power spectrum from the Sloan

Digital Sky Survey (SDSS; [156, 489, 352]). Moving beyond probes of quasi-linear cosmological

perturbations, the suppression imprinted on the matter power spectrum at early times leads to an

underabundance of collapsed objects—notably, low-mass DM halos in our Galactic neighborhood,

and the faint galaxies that reside within them. As low-mass halos arise from matter fluctuations

on scales far smaller than those captured by the CMB and other high-redshift probes, population

studies of nearby dwarf galaxies could deliver dramatic improvements in sensitivity to DM–baryon

interactions.

In this work, we analyze the observed population of Milky Way (MW) satellite galaxies to



CHAPTER 6. DARK MATTER CONSTRAINTS. I. DM–SM INTERACTIONS 110

place stringent limits on velocity-independent DM–baryon elastic scattering.1 We present both

an analytic derivation of these limits and a rigorous likelihood analysis in which we marginalize

over uncertainties related to the connection between galaxies and halos and the impact of baryonic

physics on subhalo abundances. Our population analysis yields 95% confidence upper limits on

the DM–baryon scattering cross section of (2× 10−29, 8× 10−29, 3× 10−28, 6× 10−27) cm2 for DM

particle masses of (10−5, 10−3, 10−1, 10) GeV, improving upon CMB limits by multiple orders of

magnitude (see Figure 6.1). This analysis probes unexplored regions of DM parameter space, and

it is complementary to direct-detection constraints that rely on the local DM distribution.

This Letter is organized as follows: in Section 6.3, we derive analytic limits on DM–baryon

scattering from the existence of low-mass halos; in Section 6.4, we present our likelihood analysis of

the MW satellite population and the corresponding DM–baryon scattering limits; in Section 6.5, we

translate our results into constraints on other non-CDM models; we discuss caveats and conclude in

Section 6.6. Throughout, we adopt the best-fit Planck cosmology with Hubble parameter h = 0.6727,

DM density Ωmh
2 = 0.1199, and baryon density Ωbh

2 = 0.0222 [367], and we set c = kB = 1.

6.3 Analytic Estimate from Individual Halos

To develop physical intuition for the effects of DM–baryon interactions on the late-time population

of DM halos, we first derive an analytic estimate for the mass of the smallest halo allowed to form

in an interacting cosmology.2 We then translate upper limits on the minimum halo mass into upper

limits on the DM–baryon scattering cross section. The limits we obtain in this Section do not

depend strongly on observational completeness corrections or on galaxy–halo connection modeling,

as demonstrated in Section 6.3.2.

6.3.1 Minimum Halo Mass in an Interacting Cosmology

In a non-standard cosmology with DM–baryon interactions, linear matter perturbations smaller than

a critical length scale λcrit = 2π/kcrit are substantially suppressed relative to CDM. As the universe

expands, collision damping affects progressively larger scales; when scattering becomes inefficient,

the DM and baryon fluids kinetically decouple. The size of the largest perturbation entirely erased

by DM collisions corresponds to the size of the cosmological horizon when the rate of momentum

transfer Rχ between the DM and baryon fluids drops below the Hubble rate aH

aH = Rχ |z=zcrit , (6.1)

1We consider DM–proton interactions, and therefore constrain both the spin-independent and spin-dependent
DM–nucleon scattering cross section. Because we neglect helium, our constraints for spin-independent scattering are
conservative for DM masses above ∼1 GeV [68].

2Note that [70, 71] perform similar derivations for DM–photon and DM–neutrino scattering models.
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Figure 6.1: Upper limits on the velocity-independent DM–proton scattering cross section as a
function of DM particle mass. The blue shaded region is excluded by the population of classical and
SDSS-discovered MW satellites with 95% confidence by our likelihood analysis, which marginalizes
over relevant astrophysical uncertainties (Section 6.4). The dashed line shows analytic upper limits
derived from the existence of the lowest-mass halos hosting satellites (Section 6.3). Green contours
show cosmological constraints from the CMB [67, 198] and the Lyman-α forest [489]. Gray contours
show experimental constraints from cosmic-ray scattering [88], the X-ray Quantum Calorimeter
(XQC; [162]), and direct-detection experiments including CRESST-III [118], the CRESST 2017
surface run [27], and XENON1T [31], as interpreted by [159]. Limits from Galactic center gas
clouds [61, 463] overlap with parts of the XQC, CMB, and Lyman-α contours for 10−3 GeV . mχ .
100 GeV, and are omitted for clarity.
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where zcrit is the corresponding redshift. To calculate zcrit, we use the expression for the velocity-

averaged momentum transfer rate for velocity-independent DM–proton scattering [67]

Rχ = N0aρbYp
σ0

mχ +mp

( Tb
mp

+
Tχ
mχ

)1/2

, (6.2)

where N0 ≡ 27/2/(3
√
π); a is the scale factor; ρb is the baryon energy density; Yp is the proton

mass fraction; σ0 is the velocity-independent DM–proton scattering cross section; mχ is the DM

particle mass; mp is the proton mass; and Tb and Tχ are the temperatures of the baryon and DM

fluids, respectively. The term (Tb/mp + Tχ/mχ)
1/2

is the thermal dispersion of the relative velocity

between the DM and baryon fluids. At early times, the interactions keep the fluids in thermal

equilibrium. In particular, the heat transfer rate R′χ ≡ (mχ/(mχ + mp))Rχ exceeds the Hubble

rate, driving the DM temperature to that of the photon–baryon fluid, Tχ = Tb = T0(1 + z), where

T0 is the CMB temperature today. Thermal decoupling occurs at zth, when the heat transfer rate

decreases sufficiently, such that

aH = R′χ |z=zth . (6.3)

Note that zth occurs deep within the radiation-dominated era, when H ≈ H0

√
Ωradz

2, where Ωrad ≈
10−4 is the radiation energy density divided by the critical density today, ρ̄. After thermal decoupling

(z < zth), DM cools adiabatically and Tχ = T0(1 + z)2/(1 + zth).

Solving Equation (6.3) for zth, accounting for the thermal evolution of the DM and baryon fluids

in Equation (6.2), and making appropriate substitutions in Equation (6.1), we can find zcrit given the

parameters σ0 and mχ that describe our DM–baryon scattering model. Next, requiring the critical

mode to undergo a full oscillation within the cosmological horizon, we compute the corresponding

wavenumber kcrit via

kcrit = 2
( 1

aH

)−1
∣∣∣∣
z=zcrit

. (6.4)

Modes with k > kcrit in the linear matter power spectrum are extremely suppressed (see Figure 6.2).

The next step is to determine the mass of a collapsed halo arising from perturbation modes that

correspond to kcrit. For this purpose, we use the relation

Mcrit =
4π

3
ρm

(λcrit

2

)3

=
4π

3
Ωmρ̄

( π

kcrit

)3

. (6.5)

Combining with Equation (6.4), this yields

Mcrit(σ0,mχ) ≈ π4

6

(N0YpΩb)
2Ωmρ̄

3

(H0

√
Ωrad)5

T0

mp

( σ0

m̃χ

)2

, (6.6)

where m̃χ asymptotes to mχ for mχ � mp and to (mχm
3
p)

1/4 for mχ � mp; the expression for

intermediate DM mass does not have a closed form. Halos that are less massive thanMcrit (σ0,mχ) do
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not form in a cosmology with DM–baryon interactions because power vanishes on the corresponding

scales due to early-time scattering.

6.3.2 Limits on the Interaction Cross Section

If halos are detected down to a minimum mass Mmin, interpreting an upper limit on Mmin as an

upper limit on Mcrit yields an upper bound on σ0, at fixed mχ. Thus, detecting halos with M < Mcrit

excludes cross sections that correspond to kcrit.

Many independent astrophysical probes testify to the existence of low-mass halos and set upper

limits on Mmin. For example, substructure detections in strongly lensed systems [456, 217] and the

dynamical masses of dwarf galaxies obtained from spectroscopy (e.g., [426]) both imply that halos

exist down to a mass of ∼109 M�. Recent studies of the MW satellite population that model the

galaxy–halo connection, completeness corrections of observed satellites, and the impact of baryonic

physics on galaxy formation and subhalo abundances have pushed the upper bound on Mmin even

lower. For example, Chapter 3 [336] reports Mmin < 5.4 × 108 M� with 95% confidence using

classical and SDSS-discovered MW satellites, and [241] derived consistent results. These studies do

not include ultra-faint satellites discovered in recent years [42, 150, 148, 272, 274, 282, 283, 222];

accounting for these systems will further improve limits on Mmin. In addition, upcoming surveys

including The Rubin Observatory Legacy Survey of Space and Time (LSST; [301]) are expected

to discover even more faint MW satellites, which could lower Mmin by a factor of ∼5 compared to

current constraints [151].

The observed MW satellite population likely contains several halos that are near the current

limit on the minimum halo mass. Thus, we set Mcrit < 5.4 × 108 M� to derive a bound of kcrit >

30 h Mpc−1. Using this scale in our analytic prescription yields σ0 < 2 × 10−29 cm2 for a DM

particle mass of 10 keV. Constraints for other DM particle masses are shown in Figure 6.1.

It is important to note that these limits scale weakly with Mmin. In particular, the upper limit

on σ0 scales as M
1/2
crit , so increasing Mmin by an order of magnitude only weakens the limit on σ0

by a factor of ∼3. Thus, these constraints do not depend sensitively on the galaxy–halo connection

and completeness correction modeling used to derive Mmin, and they shift by small amounts if

halo masses obtained from strong lensing or spectroscopic measurements are instead chosen as the

reference.

6.4 Satellite Population Likelihood Analysis

Halo formation is affected at masses well above Mcrit due to the gradual power suppression caused

by DM–baryon interactions (see Figure 6.2). Thus, using a population of low-mass halos should

yield more stringent limits than the existence of a single low-mass halo. In this section, we therefore

perform a probabilistic analysis of the MW satellite population to place more realistic constraints
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on DM–baryon scattering; our results are shown in Figure 6.1.

In principle, accounting for the detailed effects of DM–baryon scattering on the late-time halo

population requires simulations that self-consistently include both the initial linear power suppression

described above as well as late-time DM–baryon interactions. However, we find that the power

suppression in the DM–baryon scattering case is remarkably similar to that in WDM, as shown in

Figure 6.2. Moreover, we expect late-time interactions to be a small effect for the interaction model

that we consider. Taken together, these facts allow us to use the results of WDM simulations run

with nearly identical initial conditions as the DM–baryon scattering model under consideration.

To derive the correspondence between DM–baryon scattering and WDM, we use a modified

version of the Boltzmann solver CLASS (described in [67, 68, 198]), which evolves linear cosmological

perturbations in the presence of DM–baryon interactions. We generate linear matter power spectra

as a function of σ0 and mχ, and we compare these to WDM power spectra using the transfer

function in [415] by matching the half-mode scale khm, i.e., the wavenumber at which the transfer

function T (k) = (Pcollisional(k)/PCDM(k))1/2 is equal to 50%. We compute khm(σ0,mχ) numerically

using our Boltzmann solver by varying σ0 at several values of mχ.

The correspondence shown in Figure 6.2 allows us to map the suppression in MW subhalo

abundances found in WDM simulations to our interacting cosmology. In particular, we use the

subhalo mass function from [299], which is fit to cosmological zoom-in simulations of thermal relic

sterile neutrino WDM
dN

dM

∣∣∣∣
collisional

=
dN

dM

∣∣∣∣
CDM

(
1 + γ

Mhm

M

)−β
, (6.7)

where γ = 2.7, β = 0.99, M is the peak subhalo virial mass output by the halo finder, and Mhm is

the mass corresponding to khm via a relation equivalent to Equation (6.5).

Next, to forward-model the MW satellite population, we modify the framework presented in

Chapter 3 [336]. In particular, we supplement high-resolution DM-only simulations of MW-mass

host halos [315] with a flexible model for the galaxy–halo connection and the impact of both baryonic

physics and DM–baryon scattering on subhalo populations. We then fit the luminosity function of

classical and SDSS-discovered MW satellites using a Poisson likelihood in bins of satellite luminosity.

As in [336], free parameters in our fit include the slope and scatter in the galaxy–halo connection

and the strength of subhalo disruption due to baryonic effects. These are nuisance parameters with

large uncertainties that should be marginalized over for the purpose of placing robust limits on DM

microphysics. We use the ratio of the collisional-to-CDM subhalo mass functions in Equation (6.7)

to assign a “survival probability” to each subhalo in our CDM simulations, following [241]. Thus, the

final free parameter in our fit is Mhm, and we obtain a marginalized posterior distribution P (Mhm)

using a flat prior on log(Mhm). To be conservative, we assume that all subhalos host galaxies,

even though the galaxy occupation fraction is likely low and mass-dependent in this regime (e.g.,

[410, 175]). A non-trivial occupation fraction could force lighter subhalos to host observed satellites,

further strengthening our constraints. However, we find that marginalizing over a step-function
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galaxy formation threshold does not significantly affect our results.

Finally, we map P (Mhm) to P (σ0|mχ) using our half-mode scale calculation. We find Mhm <

3.1×108 M� (corresponding to khm > 36 h Mpc−1) with 95% confidence, yielding upper limits on σ0

of (2×10−29, 8×10−29, 3×10−28, 6×10−27) cm2 for DM particle masses of (10−5, 10−3, 10−1, 10) GeV,

as shown in Figure 6.1. These limits improve upon CMB constraints by multiple of magnitude for

mχ . 1 GeV, and can be extrapolated to higher masses. However, for mχ . 10 keV, relativistic

effects become important. Moreover, in the following section we show that thermal DM lighter than

∼3 keV is ruled out at all cross sections.

6.5 Implications for Other Non-CDM Models

The methods developed in this work apply to any model in which DM behaves similarly to a

collisional fluid on small scales. For example, we can translate our Mhm constraint to a lower limit

on WDM mass by combining the transfer function derived in [415] for a thermal relic sterile neutrino

of mass mWDM with the half-mode mass equivalent of Equation (6.5), which yields

mWDM = 2.32
( Ωm

0.25

)0.4( h

0.7

)0.8( Mhm

109M�

)−0.3

keV. (6.8)

We find mWDM > 3.26 keV with 95% confidence, which is consistent with previous MW satellite

results [241] and competitive with Lyman-α forest constraints [459, 232].

Our results also constrain FDM models, in which ultra-light axions comprise DM and small-

scale structure is suppressed due to quantum interference effects [227, 228]. We translate our Mhm

constraint into a lower limit on FDM mass mφ using the mWDM–mφ relation from [33] in Equation

(6.8), which gives

mφ = 1.3× 10−21
( Ωm

0.25

)0.95( h

0.7

)1.9( Mhm

109M�

)−0.71

eV. (6.9)

We find mφ > 2.9 × 10−21 eV, which is again competitive with Lyman-α forest constraints [233].

We note that the high-redshift galaxy luminosity function and the epoch of reionization provide

WDM and FDM constraints that are complementary to—but currently weaker than—our limits

(e.g., [115]).

We expect that a re-analysis of the MW satellite population using our method will yield even

more stringent limits for velocity-dependent DM–baryon scattering, i.e., for any scattering model in

which the cross section scales as the relative particle velocity to a positive power. Such interactions

arise in DM effective theory (e.g., [67]), and we leave an investigation of this scenario to future work.
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6.6 Conclusions and Discussion

Small-scale tracers of the matter distribution in the universe provide insights into DM microphysics

that are complementary to other probes. In this work, we report stringent upper bounds on DM–

baryon scattering for a velocity-independent contact interaction by analyzing the population of

classical and SDSS-discovered MW satellite galaxies. Based on the consistency of the satellite

population with CDM expectations down to a halo mass scale of ∼108 M�, we place robust limits

on a range of DM interaction cross sections and particle masses. Our analysis closes unexplored

gaps in DM–baryon scattering parameter space, improving upon previous cosmological bounds by

several orders of magnitude, and it is not subject to uncertainties in the local DM distribution or

cosmic-ray propagation.

In our likelihood analysis, we have accounted for several astrophysical uncertainties, including

the slope and scatter of the low-mass galaxy–halo relation and the impact of baryonic physics on

subhalo abundances. We have made the conservative assumption that all subhalos host galaxies,

though marginalizing over a step-function galaxy formation threshold does not affect our results.

Moreover, [336] verified that potential spurious numerical effects in our simulations (e.g., artificial

subhalo disruption) do not alter the inferred minimum halo mass.

There are several possible caveats to our analysis that we leave for future work. First, we have not

investigated how our results depend on cosmological parameters. However, we expect uncertainties

on cosmological parameters to play a minimal role; for example, Equation (6.6) implies that limits

on σ0 scale as Ω
−1/2
m . Future analyses that marginalize over cosmological parameters are needed

to confirm this weak dependence. Next, we relied on simulations with a narrow range of host halo

mass, even though the uncertainty on the mass of MW is relatively large (e.g., [128]). We do not

expect this uncertainty to affect our results significantly, as Mmin scales linearly with host mass

and our limits depend weakly on Mmin. To further improve our constraints, it will be necessary to

understand how a mass-dependent galaxy occupation fraction and baryonic effects beyond enhanced

subhalo disruption affect satellite populations in detail.

This work demonstrates that the MW satellite population places competitive constraints on a

class of non-CDM models. Moreover, it paves the way for joint probabilistic analyses of forthcoming

small-scale structure datasets. For example, upcoming imaging surveys such as LSST will facilitate

systematic searches for density gaps in Galactic stellar streams, which potentially trace even lower-

mass subhalos than those inferred from satellites (e.g., [76]). In addition, gravitational lensing

measurements with the Atacama Large Millimeter/submillimeter Array will map out low-mass DM

substructure in a complementary manner to faint galaxies (e.g., [216]). Finally, future spectroscopic

surveys like DESI [131] will provide improved Lyman-α forest measurements, allowing for important

high-redshift consistency tests of local small-scale structure constraints. Distinct systematic and

modeling uncertainties accompany each of these DM probes, and joint likelihood analyses of all

available datasets—enabled by approaches similar to ours—will be crucial in order to study the
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nature of DM in the era of next-generation surveys.



Chapter 7

Dark Matter Constraints. II.

Warm, Interacting, & Fuzzy DM

Abstract

We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fun-

damental properties of dark matter (DM). This analysis fully incorporates inhomogeneities in the

spatial distribution and detectability of MW satellites and marginalizes over uncertainties in the

mapping between galaxies and DM halos, the properties of the MW system, and the disruption

of subhalos by the MW disk. Our results are consistent with the cold, collisionless DM paradigm

and yield the strongest cosmological constraints to date on particle models of warm, interacting,

and fuzzy dark matter. At 95% confidence, we report limits on (i) the mass of thermal relic warm

DM, mWDM > 6.5 keV (free-streaming length, λfs . 10h−1 kpc), (ii) the velocity-independent DM-

proton scattering cross section, σ0 < 8.8× 10−29 cm2 for a 100 MeV DM particle mass (DM-proton

coupling, cp . (0.3 GeV)−2), and (iii) the mass of fuzzy DM, mφ > 2.9× 10−21 eV (de Broglie wave-

length, λdB . 0.5 kpc). These constraints are complementary to other observational and laboratory

constraints on DM properties.

7.1 Paper Status and External Contributions

This chapter is published in slightly modified form in Physical Review Letters, Volume 126, Issue 9,

p.091101-091111 with the title, “Constraints on Dark Matter Properties from Observations of Milky

Way Satellite Galaxies,” on which I am the corresponding author. It is the result of a collaboration

with the Dark Energy Survey (DES) Milky Way Working Group (MWWG) and particularly Alex

Drlica-Wagner, Keith Bechtol, Sidney Mau, Risa Wechsler, Vera Gluscevic, and Kimberly Boddy
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and culminates the Milky Way satellite census led by Alex and Keith and the galaxy–halo connec-

tion interpretation presented in Chapter 4. Alex, Keith, Sid, and Risa all provided helpful input

throughout the project and made editorial contributions to the text. As with other DES papers, this

work would not have been possible without significant collaboration, and I am particularly grateful

to the conveners and members of the MWWG (both past and present) for facilitating these efforts.

7.2 Introduction

In the concordance model of cosmology, collisionless cold dark matter (CDM) makes up ∼ 25% of

the matter-energy density of the Universe [15]. While dark matter (DM) has the potential to solve a

number of outstanding challenges in the standard model (SM) of particle physics [361, 246, 59], the

only positive empirical evidence for DM comes from cosmological and astrophysical observations.

Furthermore, by studying the astrophysical distribution of DM, it is possible to probe its particle

nature [97, 95]. Specifically, the formation, abundance, and structure of gravitationally bound DM

structures, known as “halos,” provide valuable information about viable ranges of the DM particle

mass, production mechanism, and couplings to the SM. In particular, the abundance and properties

of the smallest DM halos have the potential to indicate a departure from the CDM paradigm [97, 95].

The smallest known DM halos host the ultrafaint dwarf satellite galaxies of the Milky Way (MW)

[425]. In these systems, star formation is highly suppressed by reionization and stellar feedback,

leading to mass-to-light ratios that are hundreds of times larger than the universal average [98,

425]. Ultrafaint satellite galaxies are, thus, pristine laboratories for studying DM; in particular, the

abundance of these systems is a sensitive probe of any DM physics that suppresses the formation

or present-day abundance of small halos [309, 364, 368, 26, 260, 3, 72, 398].

Here, we study the following theoretical paradigms for DM that affect the properties of the MW

satellite population:

(i) Warm dark matter (WDM) is produced in the early Universe with a temperature of O(1 keV),

although its momentum distribution can be nonthermal. Any viable WDM candidate must

be cold enough to reproduce the observed large-scale structure, but its non-negligible free-

streaming length suppresses the formation of the low-mass halos that host MW satellite

galaxies [309, 368, 26, 3, 299, 260]. One of the most popular WDM candidates is a sterile

neutrino [4, 11].

(ii) Interacting dark matter (IDM) couples strongly enough to the SM to be heated by interactions

with the photon-baryon fluid before recombination. This collisional damping washes out small-

scale structure, even if the DM is produced nonthermally [70, 71, 335]. DM-nucleon interactions

arise in generalizations of the weakly-interacting-massive-particle (WIMP) scenario [67, 68,

198], and the impact of DM-radiation interactions on low-mass halos has also been studied [72,

412, 167]. Here, we consider a velocity- and spin-independent DM-proton coupling, cp.
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(iii) Fuzzy dark matter (FDM) consists of an ultralight boson with a sufficiently small mass,

O(10−22 eV), such that its de Broglie wavelength is comparable to the sizes of dwarf galax-

ies, O(1 kpc); this inhibits the formation of low-mass halos due to the uncertainty princi-

ple [227, 228, 154, 153]. Ultralight axions constitute one popular class of FDM [317].

In this Chapter, we use novel measurements and modeling of the MW satellite galaxy population

to constrain each DM paradigm described above. Specifically, we combine a census of MW satel-

lites [149] from the Dark Energy Survey (DES) [5] and Pan-STARRS1 (PS1) [108] with a rigorous

forward-modeling framework [333] to fit the position-dependent MW satellite luminosity function

in each of these DM paradigms. This procedure fully incorporates inhomogeneities in the observed

MW satellite population and marginalizes over uncertainties in the mapping between MW satellite

galaxies and DM halos, the efficiency of subhalo disruption due to the MW disk, and the properties

of the MW system.

Our analysis yields stringent constraints on each DM paradigm based on the abundance of ob-

served MW satellites. These limits are complementary to constraints from the Lyman-α forest

[459, 232, 233, 395], strongly lensed systems [226, 195], and MW stellar streams [40]. Our results

imply that CDM is consistent with astrophysical observations down to the smallest currently ac-

cessible scales (k ∼ 40hMpc−1) and strongly reinforce previous work demonstrating that there is

no discrepancy between the number of MW satellites predicted by CDM and current observations

[264]. Throughout this work, we fix cosmological parameters at h = 0.7, Ωm = 0.286, ΩΛ = 0.714,

σ8 = 0.82, and ns = 0.96 [218].

7.3 Analysis Overview

Before discussing our treatment of each DM paradigm in detail, we describe the main components

of our analysis used to connect non-CDM scenarios to the observed MW satellite population. For

each paradigm, we assume that the non-CDM component constitutes the entirety of the DM. Figure

7.1 illustrates how our analysis proceeds: Non-CDM physics suppresses the linear matter power

spectrum on small scales (left panel), which manifests as an underabundance of subhalos (middle

panel) and faint MW satellite galaxies (right panel) relative to CDM predictions.

7.3.1 Transfer Function

The linear matter power spectrum, normalized to that of CDM, is used to generate initial conditions

for simulations of structure formation. In particular, the transfer function is defined as

T 2(k) ≡ PDM(k)

PCDM(k)
, (7.1)
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Figure 7.1: Left panel: Transfer functions for the WDM (orange), IDM (blue), and FDM (magenta)
models that are ruled out by our analysis at 95% confidence, corresponding to mWDM = 6.5 keV,
σ0 = 8.8×10−29 cm2 (for DM particle mass mχ = 100 MeV), and mφ = 2.9×10−21 eV, respectively.
These constraints are marginalized over our MW satellite model and the properties of the MW
system. Middle panel: SHMF suppression relative to CDM for each ruled-out non-CDM model.
The vertical dashed line indicates the 95% confidence upper limit on the lowest-mass halo inferred
to host MW satellite galaxies [333]. Note that the IDM SHMF is assumed to be identical to the
WDM SHMF in our analysis, and is offset slightly for visual clarity. Right panel: Predicted MW
satellite galaxy luminosity functions for each ruled-out non-CDM model compared to DES and PS1
observations, evaluated at the best-fit MW satellite model parameters from Ref. [333]. The shaded
band illustrates the uncertainty of our WDM prediction due to the stochasticity of our galaxy-
halo connection model and the limited number of simulations used in our analysis; the size of this
uncertainty is very similar to that in CDM and the other alternative DM models shown. This panel
is a simple one-dimensional representation of our MW satellite and DM model fit to the luminosity,
size, and spatial distribution of satellites in the DES and PS1 survey footprints. The comparison of
our CDM model to data is described in Ref. [333], and full posterior distributions for our non-CDM
analyses are provided in Supplemental Material [188, 30, 219].
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where k is the cosmological wave number, PCDM(k) is the CDM linear matter power spectrum,

and PDM(k) is the linear matter power spectrum of a non-CDM model [69]. PDM(k) is obtained

by integrating the relevant Boltzmann equation (which may include DM-SM interactions) given the

initial DM phase-space distribution. The left panel in Figure 7.1 illustrates the transfer function for

the three DM paradigms we consider.

It is convenient to define the half-mode scale khm as the wave number satisfying T 2(khm) = 0.25

[415]. The corresponding half-mode mass,

Mhm =
4π

3
Ωmρ̄

(
π

khm

)3

(7.2)

is a characteristic mass scale below which the abundance of DM halos is significantly suppressed

relative to CDM. Here, ρ̄ is the critical density of the Universe today.

7.3.2 Subhalo Mass Function

The abundance of subhalos within the virial radius of the MW is expressed as the cumulative

number of subhalos as a function of subhalo mass M . We follow Chapter 6 [335] by using peak virial

mass, defined according to the Bryan-Norman overdensity [93] with ∆vir ' 99.2 (consistent with our

cosmological parameters). We define

(
dNsub

dM

)

DM

≡ fDM(M,θDM)

(
dNsub

dM

)

CDM

, (7.3)

where fDM(M,θDM) is the suppression of the SHMF relative to CDM and θDM are DM model

parameters; both fDM and θDM depend on the DM model in question. The middle panel in Figure

7.1 shows SHMF suppression for the three DM paradigms we consider.

7.3.3 MW Satellite Model

Here, we describe the additions to our MW satellite model pertaining to the non-CDM paradigms

described above. We comprehensively discuss the underlying galaxy-halo connection model in Sup-

plemental Material. We combine the SHMF suppression in Equation 7.3 with a state-of-the-art

satellite modeling framework [333] to predict the abundance of observed MW satellites in each DM

paradigm. Our modeling framework combines cosmological zoom-in simulations of two halos from

Ref. [315]—which are chosen to have masses, concentrations, and assembly histories similar to those

inferred for the MW halo and include realistic analogs of the Large Magellanic Cloud system—with a

statistical model of the galaxy-halo connection in order to populate subhalos with satellite galaxies.

We implement SHMF suppression by multiplying the detection probability of each mock satellite,
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which includes terms that model tidal disruption due to the MW disk, the efficiency of galaxy for-

mation, and observational detectability, by a factor of fDM(M,θDM), following Refs. [241, 335]. This

procedure assumes that the shape of the observed radial satellite distribution (which our model pre-

dicts reasonably well [333]) is unchanged in alternative DM scenarios, which is consistent with results

from cosmological WDM simulations of MW-mass halos [299, 80]. The validity of this assumption

is less certain for FDM, because dynamical friction operates differently for wavelike versus particle

DM [284], although this results in negligible differences in disruption timescales for the ∼ 108 M�

subhalos that drive our constraints [154]. The right panel in Figure 7.1 shows the predicted satellite

luminosity function for each non-CDM model under consideration evaluated with model parameters

that are ruled out at 95% confidence.

7.3.4 Fitting Procedure

We fit predicted satellite populations to the observed satellite population from DES and PS1 using

the observational selection functions derived in Ref. [149], assuming that satellite surface brightness

is distributed according to a Poisson point process in each survey footprint following Chapters 3–4

[336, 333]. We use the Markov chain Monte Carlo (MCMC) code EMCEE [180] to simultaneously fit

for seven parameters governing the galaxy-halo connection, one parameter governing the impact of

the MW disk on subhalo disruption, and one parameter governing the impact of the DM model in

question, which we express as a subhalo mass scale. In particular, our thermal relic WDM constraint

is derived by fitting for Mhm, and our FDM limit is derived by fitting for a characteristic mass scale

M0. Further details on our fitting procedure are provided in Supplemental Material.

Subhalo abundance is known to scale linearly with host halo mass [315], and we assume that

satellite luminosity is a monotonic function of subhalo mass, modulo scatter [333]. We therefore

expect a higher-mass MW host halo to yield weaker constraints on non-CDM models, because

observed satellites would inhabit correspondingly higher-mass subhalos. The average virial mass of

the host halos in our two realistic MW-like simulations is 1.4 × 1012 M�, which is consistent with

the 95% confidence range for the virial mass of the MW halo inferred from Gaia measurements of

satellite kinematics [102, 106]. To be conservative, we account for the uncertainty in MW halo mass

on our DM constraints by assuming that the mass scale describing the suppression of the SHMF

in each DM paradigm is linearly related to the virial mass of the MW halo, following the scaling

for minimum halo mass derived in Ref. [333]. In particular, we multiply the upper limit on the

characteristic mass scale in each of our non-CDM fits by the ratio of the largest allowed MW halo

mass to the average host halo mass in our simulations. We validate this procedure by fitting the

observed satellite population using each of our two MW-like simulations separately, which yields

reasonable agreement with the linear scaling expectation. This conservative scaling mitigates the

largest uncertainty associated with the limited statistics of our two realistic simulations.

In summary, our fit to the MW satellite population incorporates both intrinsic inhomogeneities
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DM Model Parameter Constraint Derived property Constraint

WDM mWDM mWDM > 6.5 keV Free-streaming length λfs . 10h−1 kpc
IDM σ0 σ0 < 8.8× 10−29 cm2 DM-Proton coupling cp . (0.3 GeV)−2

FDM mφ mφ > 2.9× 10−21 eV de Broglie wavelength λdB . 0.5 kpc

Table 7.1: Constraints on the WDM, IDM, and FDM paradigms from observations of MW satellite
galaxies. Limits for each non-CDM model are derived by assuming that it constitutes the entirety of
the DM. The first column lists the DM paradigm, the second column describes the particle physics
parameters constrained by this analysis, the third column lists the corresponding constraints at 95%
confidence, the fourth column describes the derived property constrained for each DM model, and
the fifth column lists constraints on the derived parameters. Limits on the DM-proton scattering
cross sections depend on the DM particle mass, mχ (see Figure 7.2); for simplicity, we present our
constraint for mχ = 100 MeV.

in the spatial distribution of MW satellites and those introduced by the varying coverage and depth

of current surveys. We assume that alternative DM physics modifies only the SHMF, via Equation

7.3, and we report 95% confidence limits on DM model parameters that are marginalized over

uncertainties in our MW satellite model and the properties of the MW system.

7.4 WDM Analysis

Thermal relic WDM with particle mass, mWDM, has been studied extensively in the literature (e.g.,

Refs. [460, 299]) and serves as a benchmark model for our analysis.

Transfer function. The transfer function for thermal relic WDM is given as a function of mWDM

by Ref. [460]. This transfer function is commonly assumed in cosmological studies of WDM and

facilitates a well-defined comparison to other small-scale structure results [459, 232, 226, 195, 40].

However, the simple thermal relic transfer function is inadequate to describe specific particle models

of WDM, such as resonantly produced sterile neutrinos [296]. Thus, constraints on specific DM

candidates must be inferred using transfer functions appropriate for the particle model in question,

as we discuss below.

SHMF. Several authors have implemented the thermal relic WDM transfer function from Ref.

[460] in cosmological zoom-in simulations to estimate the suppression of the SHMF in MW-mass

host halos [415, 28, 299, 80]. These results depend on the algorithm used to remove spurious halos

[467, 28] and, therefore, vary among studies. Following Ref. [297], SHMF suppression for thermal

relic WDM can be expressed as

fWDM(M,mWDM) =

[
1 +

(
αMhm(mWDM)

M

)β]γ
, (7.4)
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where α, β, and γ are constants and Mhm is related to mWDM in our fiducial cosmology via

Mhm(mWDM) = 5× 108
(mWDM

3 keV

)−10/3

M�. (7.5)

To facilitate comparison with recent WDM constraints from analyses of the MW satellite pop-

ulation [335], strong gravitational lenses [226, 195], and stellar streams [40], we adopt the SHMF

from Ref. [299], which corresponds to Equation 7.4 with α = 2.7, β = 1.0, and γ = −0.99. We

note that the recent estimate of the SHMF from Ref. [297]—which specifically models resonantly

produced sterile neutrino WDM—is significantly less suppressed than the thermal relic SHMF from

Ref. [299]. Thus, our fiducial WDM constraint applies directly only to thermal relic DM.

Fitting procedure. We implement Equation 7.4 in our fit to the MW satellite population to obtain

a marginalized posterior distribution over Mhm. In particular, we fit for log10(Mhm) using a uniform

prior on this logarithmic quantity, and we translate the resulting limit to mWDM using Equation 7.5.

We translate our thermal relic WDM limit into constraints on resonantly produced sterile neutrinos

by following Refs. [414, 308]. Specifically, we analyze sterile neutrino transfer functions over a grid of

mass and mixing angle values [111], and we constrain sterile neutrino models that produce transfer

functions which are strictly more suppressed than our 95% confidence ruled-out thermal relic WDM

model. This procedure is described in detail in Supplemental Material.

7.5 IDM Analysis

Our treatment of IDM follows the prescription of Chapter 6 [335]. For concreteness, we focus on the

case of velocity-independent DM-proton scattering.

Transfer function. Following Chapter 6 [335], the transfer function in our fiducial IDM model is

obtained using the modified version of the Boltzmann solver CLASS described in Refs. [67, 68, 198],

which we use to evolve linear cosmological perturbations in the presence of velocity-independent

DM-proton interactions. These interactions are described by the velocity-independent scattering

cross section σ0 and the DM particle mass mχ. As noted in Chapter 6 [335], transfer functions for

this model are very similar to those of thermal relic WDM, modulo dark acoustic oscillations that

occur at very small scales and are significantly suppressed for our parameter space of interest.

SHMF. Because cosmological zoom-in simulations including DM-proton scattering have not been

performed, we follow Chapter 6 [335] by mapping the SHMF suppression of IDM to that of WDM

based on the correspondence of the transfer functions. In particular, we match the half-mode scales

in the transfer functions to construct a relation between mWDM and (σ0,mχ), and we assume

that the IDM SHMF is identical to the corresponding thermal relic WDM SHMF from Ref. [299].

This procedure neglects late-time DM-proton scattering, which has a negligible impact on subhalo

abundances in our IDM model, even in regions with high baryon densities.

Fitting procedure. Following Chapter 6 [335], we use the mapping procedure described above to
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translate our 95% confidence limit on thermal relic WDM into limits on σ0 for several values of mχ

in our fiducial IDM model.

7.6 FDM Analysis

Finally, we provide details on each step for the FDM paradigm. We focus on the case of ultralight

scalar field DM with negligible self-interactions and SM couplings.

Transfer function. The FDM transfer function is given as a function of the FDM mass mφ by

Ref. [227]. We note that this transfer function features steeper power suppression than thermal relic

WDM for a fixed half-mode scale.

SHMF. We assume that the FDM SHMF suppression takes the form of Equation 7.3, and we fit

the results of the semianalytic model in Refs. [154, 153] with a function of the form

fFDM(M,mφ) =

[
1 +

(
M0(mφ)

M

)β̃(mφ)
]γ̃(mφ)

, (7.6)

where β̃(mφ) and γ̃(mφ) are provided in Supplemental Material. The characteristic subhalo mass

scale M0 is related to the FDM mass via [413]

M0(mφ) = 1.6× 1010
( mφ

10−22 eV

)−4/3

M�. (7.7)

The SHMF suppression in Equation 7.6 encapsulates the effects of tidal stripping on subhalos

with solitonic cores, which was explicitly included by Refs. [154, 153]. This SHMF suppression is

significantly less severe than that estimated from the FDM simulations in Ref. [413]. As described

in Supplemental Material, using the SHMF from Ref. [413] in our fit yields a limit on the FDM mass

that is roughly 3 times more stringent than our fiducial result. This confirms that the FDM SHMF

is a key theoretical uncertainty that must be addressed [228].

Fitting procedure. We implement the SHMF in Equation 7.6 in our fit to the MW satellite

population to obtain a marginalized posterior distribution overM0. In particular, we fit for log10(M0)

using a uniform prior on this logarithmic quantity, and we translate the resulting limit to mφ using

Equation 7.7. We note that our procedure for constraining FDM uses the detailed shape of the

SHMF suppression in this model rather than mapping the half-mode scale of the FDM transfer

function to that of thermal relic WDM as in Chapter 6 [335] or bounding the FDM SHMF by ruled-

out thermal relic WDM SHMFs as in Ref. [418]. This is necessary because both the shape of the

FDM transfer function and the resulting suppression of the SHMF differ in detail from thermal relic

WDM (see Figure 7.1).
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Figure 7.2: Exclusion regions for WDM and IDM models from our analysis of MW satellites observed
with DES and PS1 (red) compared to previous constraints from classical and SDSS satellites [335]
(blue) and other experimental results. Left panel: Constraints on the mass and mixing angle of
resonantly produced sterile neutrino DM. These constraints are derived by finding mass and mixing
angle combinations that suppress the linear matter power spectrum more strongly than the mWDM =
6.5 keV thermal relic ruled out at 95% confidence by our analysis. The black point with error bars
shows the sterile neutrino interpretation of the 3.5 keV x-ray line [82]. The dark gray region is
ruled out by dwarf galaxy internal dynamics [83], and the gray contour shows x-ray constraints
[225, 363, 134]. Solid black lines indicate regions of parameter space in which resonantly produced
sterile neutrinos cannot constitute all of the DM in the neutrino minimal standard model [34, 414].
Right panel: Constraints on the interaction cross section and DM mass for velocity-independent DM-
proton scattering. Green contours show cosmological limits from the CMB [67, 198] and the Lyman-α
forest [489]. Light gray contours show experimental limits from the x-ray quantum calorimeter [314]
and direct detection results as interpreted by Ref. [159].
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7.7 Results

Table 7.1 presents our constraints on the WDM, IDM, and FDM paradigms. We describe these

results below and translate the limits into constraints on specific models corresponding to each DM

paradigm.

(i) WDM.—Our fit using the thermal relic WDM SHMF suppression from Ref. [299] yields Mhm <

3.0 × 107 M�, or mWDM > 7.0 keV, at 95% confidence. Linear scaling with MW halo mass

yields our fiducial constraint of Mhm < 3.8×107 M�, corresponding to mWDM > 6.5 keV. This

translates to an upper limit on the free-streaming length of λfs . 10 h−1 kpc, corresponding to

the virial radii of the smallest halos that host MW satellite galaxies, and improves on previous

mWDM constraints from the MW satellite population by a factor of ∼ 2 [335].

Our constraint on thermal relic WDM translates to a lower limit of 50 keV on the mass of

a nonresonant Dodelson-Widrow sterile neutrino [141, 460]. We also translate our thermal

relic WDM limit into constraints on the mass and mixing angle of resonantly produced sterile

neutrinos assuming a Shi-Fuller production mechanism [422], following the conservative pro-

cedure described above. As shown by the red exclusion region in the left panel in Figure 7.2,

our analysis rules out nearly the entire remaining parameter space for resonantly produced

sterile neutrinos in the neutrino minimal standard model [34] at greater than 95% confidence.

(A small region of parameter space is not excluded at the lowest viable mixing angles and

ms & 30 keV.) In addition, we robustly rule out the resonantly produced sterile neutrino

interpretation of the 3.5 keV x-ray line [82].

(ii) IDM.—Mapping our mWDM > 6.5 keV constraint to the DM-proton scattering model following

the procedure in Chapter 6 [335] yields constraints on the velocity-independent interaction

cross section of (7.0× 10−30, 2.6× 10−29, 8.8× 10−29, 1.7× 10−27) cm2 for DM particle masses

of (10−5, 10−3, 10−1, 10) GeV, respectively, at 95% confidence. As shown by the red exclusion

region in the right panel in Figure 7.2, these constraints are highly complementary to direct

detection limits, particularly at low DM masses [335]. We note that these constraints scale as

m
1/4
χ (mχ) for mχ � 1 GeV (mχ � 1 GeV). At a DM mass of 100 MeV, our limit translates

into an upper bound on the DM-proton coupling of cp . (0.3 GeV)−2 [67].

Despite our conservative marginalization over MW halo mass, these results improve upon

those in Chapter 6 [335] by a factor of ∼ 3 at all DM masses. This is stronger than the

improvement expected from the analytic prediction for cross section constraints derived in

Chapter 6 [335] due to a more precise determination of the SHMF, resulting from the sky

coverage and sensitivity of DES and PS1.

Several complementary astrophysical and cosmological measurements probe the DM-proton

scattering cross section. Stringent limits have been derived by reinterpreting direct detection
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constraints in the context of cosmic ray upscattering [88]. We do not show these results in

Figure 7.2, because they constrain the DM-proton scattering at relativistic energies, which

precludes a straightforward mapping to the velocity-independent cross section constrained

here. The IDM model we consider contributes to the energy density of relativistic species at

big bang nucleosynthesis, which sets a lower on its mass that depends on the spin statistics of

the DM particle [73, 346, 279]. Understanding the interplay of these results with our limits is

an important area for future work.

(iii) FDM.—We obtain M0 < 1.4×108 M� at 95% confidence from our fiducial FDM fit. Applying

linear MW-host mass scaling yields M0 < 1.8 × 108 M� at 95% confidence, or mφ > 2.9 ×
10−21 eV. This translates to an upper limit on the de Broglie wavelength of λdB . 0.5 h−1 kpc,

roughly corresponding to the sizes of the smallest MW satellite galaxies. Thus, the 10−22 eV

FDM model invoked to reconcile the apparent mismatch between the predicted and observed

inner dark matter density profiles of dwarf galaxies [228], and to fit the internal dynamics of

low-surface-brightness [58, 89] and ultradiffuse [470] galaxies, is strongly disfavored by MW

satellite abundances.

To connect to particle models of FDM, we plot this limit in the well-motivated parameter

space of ultralight axion mass versus axion-photon coupling in Figure 7.3. For the range

of axion-photon couplings that we consider, this mixing has a negligible effect on structure

formation. We reiterate that our constraint was derived assuming a light scalar field without

self-interactions; this assumption may be violated in specific ultralight axion models. Although

our analysis and Lyman-α forest studies exclude a similar region of parameter space [233, 395],

our work probes structure on complementary physical scales with distinct theoretical and

observational systematics.

7.8 Discussion

In this Letter, we used a state-of-the-art model of the MW satellite galaxy population to place

stringent and robust limits on three fundamental DM paradigms: WDM, IDM, and FDM. Although

some of these alternative DM models gained popularity by solving apparent small-scale structure

“challenges” facing CDM, recent observational and theoretical advances have reversed this scenario.

In particular, astrophysical and cosmological observations of the smallest DM structures are now

among the strongest constraints on the microphysical properties of DM.

This analysis improves upon previous work by using MW satellite observations over nearly the

entire sky and rigorously accounting for both satellite detectability and uncertainties in the galaxy-

halo connection. Our constraints are comparable in sensitivity to Lyman-α forest, strong lensing,

and stellar stream perturbation analyses. Future cosmic surveys promise to further improve these
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measurements and to enable a detailed comparisons to the internal dynamics of these galaxies

[151, 438].

As the observational data improve, there are several uncertainties in the current modeling frame-

work that are important to address. In particular, our use of only two realistic MW simulations

limits the range of host halos and subhalo populations that enter our analysis; sampling a wider

range of host halo masses, formation histories, and environments will improve the accuracy and pre-

cision of DM constraints derived from MW satellite galaxies. We describe other model uncertainties

in Supplemental Material.

The breadth of DM models constrained by observations of MW satellites is particularly important

given the growing interest in a wide range of theoretical possibilities following nondetections in

collider, direct, and indirect searches for canonical WIMPs. In addition to the three DM paradigms

considered in this work, small-scale structure measurements are also sensitive to the initial DM

velocity distribution in nonthermal production scenarios [322], the DM formation epoch [407, 123],

the DM self-interaction cross section [461, 493, 448, 334], and the DM particle lifetime [364, 469].

Future work could generalize our approach by measuring deviations in the small-scale linear

matter power spectrum relative to a baseline CDM scenario rather than setting constraints in the

context of particular DM models. Features in the power spectrum on extremely small scales are

a hallmark of many inflationary models [252, 483], and it is conceivable that DM substructure

measurements can be used to infer the nature of the corresponding primordial density fluctuations.



Chapter 8

Dark Matter Constraints. III. DM

Formation Epoch

Abstract

A small fraction of thermalized dark radiation that transitions into cold dark matter (CDM)

between big bang nucleosynthesis and matter-radiation equality can account for the entire dark

matter relic density. Because of its transition from dark radiation, “late-forming dark matter”

(LFDM) suppresses the growth of linear matter perturbations and imprints the oscillatory signatures

of dark radiation perturbations on small scales. The cutoff scale in the linear matter power spectrum

is set by the redshift zT of the phase transition; tracers of small-scale structure can therefore be

used to infer the LFDM formation epoch. Here, we use a forward model of the Milky Way (MW)

satellite galaxy population to address the question: How late can dark matter form? For dark

radiation with strong self-interactions, which arises in theories of neutrinolike LFDM, we report zT >

5.5 × 106 at 95% confidence based on the abundance of known MW satellite galaxies. This limit

rigorously accounts for observational incompleteness corrections, marginalizes over uncertainties in

the connection between dwarf galaxies and dark matter halos, and improves upon galaxy clustering

and Lyman-α forest constraints by nearly an order of magnitude. We show that this limit can also

be interpreted as a lower bound on zT for LFDM that free-streams prior to its phase transition,

although dedicated simulations will be needed to analyze this case in detail. Thus, dark matter

created by a transition from dark radiation must form no later than one week after the big bang.

8.1 Paper Status and External Contributions

This chapter is published in slightly modified form in Physical Review D, Volume 103, Issue 4,

p.043517-043526 with the title, “Constraints on the epoch of dark matter formation from Milky

133
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Way satellites,” on which I am the corresponding author. It is the result of a collaboration with

Subinoy, who developed the theory and linear Boltzmann solver for late–forming dark matter and

made editorial contributions to the text.

8.2 Introduction

Despite intensive experimental searches in recent decades, the nature of dark matter (DM) remains

a mystery. Combined with a cosmological constant (Λ), the simple hypothesis of a cold, collisionless

dark matter (CDM) particle that interacts extremely weakly with Standard Model (SM) particles is

consistent with all cosmological observations to date, on scales ranging from individual galaxies [397],

to galaxy clusters [504], to the cosmological horizon as probed by large-scale structure [35] and cosmic

microwave background (CMB) measurements [16, 59]. However, particle physics experiments have

not detected canonical weakly interacting-massive-particle (WIMP) CDM, and several astrophysical

anomalies have been claimed to provide evidence for physics beyond the collisionless CDM paradigm

[97].

In this work, we explore and strongly constrain one such alternative scenario, known as “late-

forming dark matter” (LFDM), where DM appears much later in cosmic history than WIMPs

and other popular DM candidates [124, 199]. Instead of focusing on a specific particle physics

construction of LFDM, we consider a general class of models in which DM is produced from an excess

(dark) radiation component that undergoes a phase transition due to nontrivial interactions in the

dark sector. Measurements from the Planck mission rule out the existence of a fully thermalized extra

radiation component during the epoch of the CMB [16]. However, as we will demonstrate, LFDM

can account for the entire DM content of the Universe while remaining compatible with Planck limits

on the number of excess light degrees of freedom if even a tiny fraction of dark radiation transitions

into CDM between the epoch of big bang nucleosynthesis (BBN) and the CMB.

LFDM is intriguing because it can be realized as a light, neutrinolike particle [124, 199], reviv-

ing the possibility of ∼ eV-mass neutrinolike DM, which is incompatible with structure formation

constraints if produced thermally [49, 6, 15, 332]. Intriguingly, there are tentative hints of a fourth

sterile neutrino generation from short-baseline neutrino oscillation experiments [17, 18, 19]. How-

ever, this signal does not appear ubiquitously (e.g., [8]) and its interpretation as a sterile neutrino is

difficult to reconcile with cosmological observables (e.g., [212]). Moreover, within the “3+1” neutrino

oscillation framework, these results are difficult to reconcile with the absence of anomalies in νµ dis-

appearance as probed by recent atmospheric [2, 1] and short-baseline [9, 2, 25] experiments. Thus, if

the existence of a fourth sterile neutrino generation is confirmed by future analyses, it is likely that

new physics beyond sterile-plus-active oscillation models is necessary to resolve the tension between

neutrino appearance and disappearance data. Whether LFDM models can be connected to these

anomalies is a compelling question for sterile neutrino model building, and is not the aim of this
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paper. Instead, we focus on cosmological signatures of the LFDM phase transition.

The LFDM phase transition affects linear matter perturbations and imprints its effects on various

tracers of the DM density field throughout cosmic history. In particular, the linear matter power

spectrum P (k) is suppressed on scales smaller than the size of the cosmological horizon at the LFDM

transition redshift, zT , because the corresponding modes entered the horizon while LFDM behaved

like radiation. Thus, later phase transitions suppress power on larger scales. This phenomenology

pertains to any cosmic fluid that transitions into CDM from a (dark) radiation component. More-

over, because the absence of cold, heavy DM particles always dilutes gravitational potentials, it also

pertains to any scenario in which DM is absent until late times.

In this work, we leverage this power suppression signal to address the question: “What is the

latest epoch after which dark matter must behave exactly like CDM?” We show that the answer

depends on whether the LFDM fluid has strong self-interactions prior to its transition into CDM (we

refer to this case as self-interacting, or SI), or whether it free-streams prior to the phase transition

(we refer to this case as free-streaming, or FS). In the SI LFDM case, the linear matter power

spectrum contains the oscillatory signatures of dark radiation perturbations, the amplitude of which

depends on the strength of the LFDM self-interactions prior to the phase transition [124, 121]. These

self-interactions are expected in neutrinolike LFDM models, including in theories of neutrino dark

energy [124] and in a model of sterile fermion DM that has been proposed to have some observable

effects on CMB [199]. Meanwhile, the limit in which LFDM transitions to CDM from a free-

streaming dark radiation component without self-interactions yields a sharper cutoff in the matter

power spectrum.

Analyses of the Lyman-α forest, galaxy clustering, and the high-redshift galaxy luminosity func-

tion have set a lower limit on the SI LFDM transition redshift of zT,SI & 9×105 based on the lack of

observed power spectrum suppression relative to CDM on quasilinear scales corresponding to wave

numbers k ∼ 1h Mpc−1 [407, 115]. Following the reasoning above, tracers of matter fluctuations

on even smaller scales contain information about earlier LFDM transition redshifts. Indeed, LFDM

initially gained popularity because of its ability to address several “small-scale crises” historically

attributed to CDM, including the “missing satellites” [266, 325] and “too big to fail” [84, 186] prob-

lems for Milky Way (MW) satellite galaxies, which occupy DM halos that arise from fluctuations on

nonlinear scales of k & 10h Mpc−1.

State-of-the-art empirical models [241, 340, 264, 336, 333] and hydrodynamic simulations [408,

478, 188] combined with rigorous estimates for the incompleteness of current MW satellite searches

provide strong evidence that the observed MW satellite population is consistent with CDM pre-

dictions. In Chapter 7 [332], we used the MW satellite model in Chapters 3–4 [336, 333]—which

accurately describes the observed MW satellite population over nearly three-fourths of the sky, in-

cluding satellites associated with the Large Magellanic Cloud—to derive constraints on a variety of

non-CDM models that suppress the linear matter power spectrum on small scales. In particular,
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[332] reported that the observed MW satellite population is consistent with CDM predictions down

to a halo mass scale of ∼ 3×108 M�, corresponding to characteristic wave numbers k ∼ 40h Mpc−1,

and ruled out thermal relic warm dark matter (WDM) lighter than 6.5 keV at 95% confidence. Im-

portantly, this constraint is marginalized over uncertainties in the connection between faint galaxies

and low-mass halos and the properties of the MW system. Independent studies of other small-scale

structure probes, including the Lyman-α forest, strong gravitational lenses, and stellar streams, have

derived consistent WDM constraints [459, 232, 226, 195, 41].

Here, we extend the analysis of Chapter 7 [332] to place limits on the LFDM formation epoch.

We show that SI LFDM imprints a cutoff in the linear matter power spectrum that is very similar

to thermal relic WDM, and we exploit this correspondence to constrain the model. Based on the

abundance of MW satellite galaxies, our analysis yields a lower bound of zT,SI > 5.5 × 106 on the

SI LFDM transition redshift at 95% confidence, which improves upon previous results [407, 115] by

a factor of ∼ 6. This implies that SI LFDM must form no later than one week after the big bang.

In addition, we show that our constraint on zT,SI can be interpreted as a lower limit on the FS

LFDM transition redshift, and we estimate the improvement that future simulation-based analyses

can provide for this model.

Throughout, we assume that LFDM constitutes the entire DM relic density, and we hold cosmo-

logical parameters fixed at the ΛCDM best-fit values from [10].

8.3 Late-forming Dark Matter Models

We begin with a brief overview of LFDM physics. We consider LFDM models in which an excess

radiation component ∆Neff undergoes a phase transition to a CDM state at redshift zT . In this

scenario, the initial number of relativistic degrees of freedom Neff is generically larger than in a

standard ΛCDM cosmology. However, we will see that even a tiny fractional increase in Neff suffices

to produce the observed CDM relic density, provided that the LFDM phase transition occurs a few

e-foldings before matter-radiation equality (MRE).

Since the epoch of its phase transition to the present, LFDM redshifts identically to CDM,

implying that

ρLFDM(z) = ρLFDM(zT )
(1 + z)3

(1 + zT )3
, (8.1)

where ρLFDM(z) is the LFDM density evaluated at redshift z. Assuming that a fraction of excess

radiation is converted into the entire CDM density at redshift zT , this yields the following decrement

in the effective number of neutrino degrees of freedom:

∆Neffρν(zT ) = ρLFDM(0)(1 + zT )3, (8.2)

where ρν(zT ) is the energy density of one neutrinolike radiation species at the formation epoch.
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Thus, we have

∆Neff =
ρCDM(0)

ρν(0)
≈ 0.2

(
ΩCDMh

2

0.1199

)(
105

1 + zT

)
. (8.3)

Note that ∆Neff is inversely proportional to the redshift of the LFDM phase transition. Because the

effective number of neutrino degrees of freedom changes dynamically in this model, observational

constraints on Neff must be interpreted with caution.

For most LFDM phase transition epochs between BBN and the CMB, the resulting value of ∆Neff

is smaller than the precision of current observational constraints on this quantity; for instance,

Equation 8.3 implies that zT = 105 corresponds to ∆Neff = 0.2, assuming the best-fit Planck

value of ΩCDMh
2 = 0.1199 [16]. Recent constraints on Neff from Planck and WMAP prefer the

existence of a fractional dark radiation component, with ∆Neff = 0.15 at 95% confidence [15].

This bound is relaxed in the presence of nontrivial dark radiation self-interactions, which modify

standard cosmological behavior during the radiation-dominated epoch [278]. Thus, LFDM is in

complete agreement with ∆Neff constraints if the phase transition occurs before z ∼ 105, in which

case ∆Neff � 0.2 is sufficient to account for the entire DM relic density. Such a small fractional

change in ∆Neff from an ∼ eV neutrinolike particle also affects CMB density perturbations; in

particular, modes with ` > 200 that enter the horizon between BBN and the CMB respond to the

presence of this tiny dark radiation excess. Constraints from this effect are compatible with the

typical values of ∆Neff required for LFDM to constitute the entirety of DM [417].

Importantly, unlike WIMPs (which couple to the SM through the weak interaction) or QCD

axions (which primarily couple to the SM through electromagnetic interactions), LFDM need not

have any interactions with the visible sector. Direct detection signatures are therefore not guaranteed

for LFDM, although they are possible for specific constructions of the model. On the other hand,

the suppression of the linear matter power spectrum, which manifests as a suppression of the power

inferred from various tracers throughout cosmic history (e.g., [407, 115]), is inevitable in LFDM. In

addition, dark acoustic oscillations (DAOs) imprinted prior to the phase transition can leave distinct

signatures; for example, the 21-cm brightness power spectrum may be enhanced in LFDM models

relative to CDM [122].

8.3.1 Self-interacting LFDM

SI LFDM is a natural model in which the phase transition from a dark radiation component to

a CDM state can easily be achieved. Recently, it has been shown that ∼ eV sterile neutrinolike

dark fermions, which have strong self-interactions mediated by a sub-eV scalar field, can be trapped

into DM “nuggets” in the radiation-dominated era, a few e-foldings before the CMB [199]. The

phase transition occurs when the attractive scalar fifth force overcomes free-streaming, which traps

all of the ∼ eV fermions within a Compton volume into degenerate DM nuggets. Collectively,

these nuggets behave exactly like CDM and are produced with negligible thermal velocities due to
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their ∼ TeV mass, unlike other LFDM models with non-negligible peculiar velocities that evolve

ballistically after the phase transition [121]. The stability of the nuggets is achieved by fermion

degeneracy pressure, which balances the scalar fifth force, and the duration of the phase transition

is negligible compared to the Hubble time for any transition redshift prior to the epoch of the CMB.

Because of the heavy, composite nature of the nuggets resulting from their nonlinear formation

process, the initial distribution function of the thermal dark fermions is not conserved. Thus, the

nuggets avoid the Tremaine-Gunn phase-space bound derived from the internal dynamics of dwarf

galaxies that applies to other light fermionic dark matter and WDM candidates [447, 83, 23]. This

model therefore provides a concrete construction of a phase transition in which a fluid that initially

behaves like dark radiation changes its equation of state almost instantaneously at a transition

redshift zT,SI.

Bosonic SI LFDM appears in theories of neutrino dark energy, in which neutrinos interact with

multiple scalar fields and behave like a single thermalized fluid [124]. In these theories, the scalars

generally have hybrid potentials reminiscent of hybrid inflationary potentials. As the neutrino tem-

perature dilutes near the epoch of MRE, one of the scalar fields that was stuck in a metastable

minimum becomes tachyonic and begins to oscillate around a new minimum. The coherently oscil-

lating field then behaves exactly like CDM, similar to the transition axion dark matter undergoes

when the Hubble rate drops below its oscillation frequency.

From a theoretical perspective, the epoch of the LFDM phase transition in neutrino dark energy

theories is expected to be very late, and is therefore subject to constraints arising from linear

perturbation theory. In particular, the relevant range of LFDM formation epochs can be estimated

by assuming that the coupling of the particle model is of O(1), which yields 1 eV . T (zT,SI) . 103 eV

for the temperature of the Universe at the phase transition [124]. The wave numbers corresponding

to horizon entry for this range of transition epochs are 2 × 10−2h Mpc−1 . kT,SI . 20h Mpc−1.

We reiterate that this is an order-of-magnitude estimate that only assumes natural values of the

coupling constants.

8.3.2 Free-streaming LFDM

In the FS LFDM model, a noninteracting dark radiation component that free-streams until the DM

phase transition starts to oscillate coherently and behave like CDM at redshift zT,FS. It is shown in

[124] that a thermal field theory correction can in principle make this phase transition possible. In

particular, consider a scalar field φ with mass m and a zero-temperature potential

V (φ) = V0 −
m2φ2

2
− εφ3 +

λφ4

4
, (8.4)
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where V0 is the zero-point energy and ε, λ are coupling constants. This potential can pick up a

correction due to the presence of other fermionic fields at finite temperature, resulting in fluctuations

δV = DT 2φ2 (8.5)

where D depends on the spin, coupling, and number of degrees of freedom of the other fields.

Here we have assumed that φ is not in thermal equilibrium with other fields, which implies that

φ is noninteracting in a cosmological sense. With such a potential, the field is trapped in a minimum

at φ = 0 for T ≥ m/
√

2D [124]. After the Universe cools below this temperature, the field becomes

tachyonic about the origin and settles into the true minimum, after which it coherently oscillates

and behaves like CDM. This model is therefore a concrete example of FS LFDM.

8.4 Linear Perturbations

8.4.1 Free-streaming LFDM

Despite the variety of particle models described above, the initial conditions for LFDM matter

perturbations after its phase transition are identical to that of a dark radiation component at the

transition epoch. If the dark radiation component has no self-interactions, then matter perturba-

tions can be treated exactly as in the case of neutrinos, and the evolution of FS LFDM density

perturbations is obtained by solving a series of coupled differential equations [307]:

δ̇ = −4

3
θ − 2

3
ḣ,

θ̇ = k2

(
δ

4
− σ

)
,

2σ̇ =
8

15
θ − 3

15
kF3 +

4

15
ḣ+

8

5
η̇, and

Ḟ` =
k

2`+ 1
(`F`−1 − (`+ 1)F`+1) , (8.6)

where δ is the LFDM overdensity field, θ is its velocity divergence, h and η are metric perturbations

in synchronous gauge, σ is the shear stress, F` is the `th Legendre component of the momentum-

averaged LFDM distribution function, k is the cosmological wave number, and overdots denote

derivatives with respect to conformal time [307]. The solution for δ is an exponentially damped

oscillator at subhorizon scales; physically, this represents the free-streaming of highly relativistic

neutrinos.

To compute the growth of linear matter perturbations for the FS LFDM model, we modify the

Boltzmann solver CAMB to evolve matter fluctuations up to a redshift zT,FS without CDM, and

we extract the transfer function for neutrino perturbations at this redshift according to Equation
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8.6. We then use these neutrino (dark radiation) perturbations as initial conditions for LFDM

density fluctuations at the epoch of its formation, and we evolve LFDM perturbations identically

to CDM thereafter to obtain the linear matter power spectrum at later times. Thus, oscillations at

small scales in the linear matter power spectrum arise because LFDM obtained its initial density

fluctuations from neutrinolike perturbations at zT,FS, which were damped and oscillatory at scales

smaller than the size of the horizon at that time.

8.4.2 Self-interacting LFDM

Equation 8.6 provides the initial conditions for a neutrinolike particle that transitions to CDM. For

SI LFDM, the situation is simplified because a strongly self-interacting neutrinolike fluid can be

treated in the tight-coupling approximation, in which the anisotropic stress and higher-order terms

are neglected (analogous to the treatment of the photon-baryon fluid). The following equations then

describe linear perturbations for the SI LFDM model:

δ̇ = −4

3
θ − 2

3
ḣ,

θ̇ = k2

(
δ

4
− σ

)
. (8.7)

We note that the above perturbation equations for a tightly coupled dark matter-radiation fluid

are only valid until then epoch of the phase transition, and that—once LFDM forms—it behaves

identically to cold, collisionless CDM. In our modified CAMB implementation, we therefore evolve

matter perturbations until the redshift of the phase transition, zT,SI, according to Equation 8.7. We

then use the solution as the initial condition for subsequent evolution, which is identical to CDM.

8.5 Transfer Functions

To compare linear matter power spectra in our LFDM models to CDM, we compute the transfer

function

T 2(k) ≡ PLFDM(k)

PCDM(k)
, (8.8)

where PLFDM(k) [PCDM(k)] is the LFDM (CDM) linear matter power spectrum evaluated at z = 0.

The half-mode scale khm is defined as the wave number at which T 2(k) = 0.25.

Linear matter power spectra and transfer functions for our SI and FS LFDM models with zT =

1.5× 106 (kT = 7h Mpc−1) are shown in Figure 8.1. We note that the transition redshift shown in

Figure 8.1 is marginally consistent with Lyman-α forest and galaxy clustering data [407]; however,

as we demonstrate below, it is robustly ruled out for both LFDM models by our MW satellite

population analysis.
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The right panel of Figure 8.1 illustrates three main features of LFDM transfer functions that are

common to both of our model variants:

1. There is a cutoff in power relative to CDM at the comoving wave number kT , which corresponds

to the size of the horizon at the epoch of the LFDM phase transition. In particular, power is

significantly suppressed on scales smaller than those corresponding to

kT =
aHT

c
≈ H0

√
ΩradzT
c

, (8.9)

where HT is the Hubble rate at the LFDM transition, H0 = 100h km s−1 Mpc−1 is the

present-day Hubble rate, and Ωrad ≈ 10−4 is the energy density in radiation.1

2. There are damped DAOs at scales smaller than those corresponding to kT , resulting from dark

radiation perturbations prior to the LFDM phase transition.

3. Cutoffs in the transfer functions for both model variants exhibit k-translation invariance.

Specifically, given two SI or FS LFDM models with transition redshifts zT,1 and zT,2 and

transfer functions T 2
1 (k) and T 2

2 (k), we have

T 2
2 (k) = T 2

1

(
zT,2
zT,1

k

)
(8.10)

along the initial cutoff. This symmetry follows from the linear relation between kT and zT in

Equation 8.9 and from the scale invariance of Hubble expansion in the radiation-dominated

epoch. We emphasize that Equation 8.10 only holds along the initial power spectrum cutoff;

this is sufficient for our purposes because DAOs occur at extremely small scales for the typical

transition redshift values we consider. Equation 8.10 is useful because it allows us to analyti-

cally compute LFDM transfer functions as a continuous function of zT using the power spectra

that were computed with CAMB for discrete transition redshifts.

8.5.1 Self-interacting LFDM

The SI LFDM transfer function exhibits a smooth cutoff that is remarkably similar to that in thermal

relic WDM until the onset of DAOs. The tight correspondence between the cutoff in these transfer

functions is reminiscent of the mapping between thermal relic WDM and velocity-independent DM-

proton scattering found in Chapter 6 [335], and (to a lesser extent) a similar mapping identified

for models with DM-radiation interactions [72, 167]. Despite different dark matter microphysics,

the transfer function for our SI LFDM model is also similar to that for self-interacting dark matter

models in which massive dark photon mediators decay to dark fermions [229]. More generally, [74, 71]

1As discussed above, CMB constraints on ∆Neff set a limit of zT & 4× 105. Later transitions also result in severe
suppression of the matter power spectrum on quasilinear scales according to Equation 8.9.
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Figure 8.1: Linear matter power spectra (left) and transfer functions (right) for self-interacting
(magenta) and free-streaming (cyan) late-forming dark matter models, compared to cold dark matter
(dashed black) and thermal relic warm dark matter (dashed red). Both LFDM models are shown with
a transition redshift of zT = 1.5×106, corresponding to a comoving wave number of kT = 7h Mpc−1.
LFDM power spectra are suppressed relative to CDM at wave numbers greater than kT , and they
exhibit dark acoustic oscillations on even smaller scales, beginning at ∼ 6kT (∼ 2kT ) for SI (FS)
LFDM. The cutoff in the SI LFDM power spectrum is very similar to that in WDM, until the onset
of DAOs.

have shown that interacting DM models often impact the linear matter power spectrum such that

they are effectively “warm.” The existence of the mapping between SI LFDM and thermal relic

WDM is therefore not surprising given its strong self-interactions prior to the phase transition.

To make this correspondence quantitative, we construct a relation between the SI LFDM and

thermal relic WDM models following a half-mode scale matching procedure similar to [167, 335]. In

particular, we derive the following relation from our CAMB output:

khm,SI ≈ 2.8kT,SI ≈ 1.3
(zT,SI

105

)
h Mpc−1. (8.11)

Meanwhile, the half-mode scale in WDM is given by [460]

khm,WDM =
2π

λhm,WDM
= 9.2

(mWDM

1 keV

)1.11
(

Ωm
0.25

)−0.11(
h

0.7

)−1.22

h Mpc−1, (8.12)

where mWDM is the thermal relic WDM mass. Solving for the transition redshift that causes the

half-mode scales of the WDM and SI LFDM transfer functions to match yields the relation

zT,SI ≈ 7× 105
(mWDM

1 keV

)1.11
(

Ωm
0.25

)−0.11(
h

0.7

)−1.22

. (8.13)
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We find that LFDM and WDM transfer functions matched in this way agree to better than ∼ 5%

along the initial cutoff over the entire SI LFDM parameter space of interest.

Examples of SI LFDM transfer functions along with matched WDM transfer functions are shown

in the left panel of Figure 8.2. On this plot, we indicate the comoving wave number corresponding

to the minimum halo mass, i.e., the lowest-mass halo inferred to host MW satellite galaxies. In

particular, from an analysis of the MW satellite population using DES and PS1 data over nearly

three-fourths of the sky, [333] found that the lowest peak virial halo mass corresponding to observed

MW satellite galaxies is less than Mmin = 3.2 × 108 M� at 95% confidence, corresponding to a

comoving wave number of kcrit ≈ 36h Mpc−1. We also indicate the WDM transfer function ruled

out by these observations of the MW satellite population at 95% confidence, corresponding to a

6.5 keV thermal relic [332].

8.5.2 Free-streaming LFDM

The power spectrum cutoff in FS LFDM is significantly sharper than in SI LFDM, as expected due

to its free-streaming behavior prior to the phase transition. Thus, it is difficult to directly map FS

LFDM to WDM, which forces us to take a more conservative approach in order to derive constraints.

Nonetheless, we can still construct a relation between the half-mode scale and the transition

redshift for FS LFDM based on our CAMB output. This yields

khm,FS ≈ 1.4kT,FS ≈ 0.65
(zT,FS

105

)
h Mpc−1. (8.14)

For a fixed transition redshift, khm,FS < khm,SI, which makes sense given the sharper power spectrum

cutoff in FS LFDM relative to SI LFDM. FS LFDM transfer functions are shown in the right panel

of Figure 8.2.

8.6 Constraints from Milky Way Satellites

We use the relations derived above to translate thermal relic WDM limits from the MW satellite

population into LFDM constraints. Given that halos with masses lower than 3.2 × 108 M� are

required to host currently observed MW satellite galaxies [333], there must be enough power to form

bound DM halos on the corresponding comoving scales—i.e., down to a critical wave number of

kcrit =
2π

λmin
= π

(
4πρm

3Mmin

)1/3

≈ 36h Mpc−1, (8.15)

where ρm is the LFDM density today,Mmin is the minimum halo mass, and λmin is the corresponding

length scale in linear theory. Halos at this mass scale need not merely exist, but must be formed

in enough abundance to match the observed MW satellite population population. Thus, we will
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Figure 8.2: Transfer functions for self-interacting (left) and free-streaming (right) late-forming dark
matter models, compared to cold dark matter (dashed black) and thermal relic warm dark matter
(dashed red). SI LFDM models are shown for a range of transition redshifts, with the highest
transition redshift corresponding to the SI LFDM model that is ruled out by the abundance of Milky
Way satellites at 95% confidence: zT,SI > 5.5× 106. The light-blue FS LFDM model corresponds to
the transition redshift that is conservatively ruled out by our analysis: zT,FS > 2.1 × 106. Vertical
dashed lines show the comoving scale that approximately corresponds to the mass of the smallest
halo inferred to host observed MW satellite galaxies, 3.2 × 108 M� [333]. In the left panel, WDM
transfer functions are slightly shifted horizontally for visual clarity.
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Figure 8.3: Constraints on the transition redshift for self-interacting late-forming dark matter, ver-
sus the corresponding thermal relic warm dark matter mass based on the half-mode mass relation
in Equation 8.13. Our Milky Way satellite constraint on zT,SI and the lower limit on the thermal
relic WDM mass of 6.5 keV from which we derive this limit [332] are shown by the shaded purple
region. Limits on the SI LFDM transition redshift from the cosmic microwave background (green),
Sloan Digital Sky Survey galaxy clustering (dashed blue [407]), the high-redshift galaxy luminosity
function (dot-dashed blue [115]) and the Lyman-α forest (dotted blue [407]) are shown as vertical
lines. Vertical lines indicate constraints derived specifically for LFDM, and do not indicate other
recent WDM constraints from small-scale structure probes. LFDM must transition to CDM be-
tween matter-radiation equality (z ≈ 3 × 103) and big bang nucleosynthesis (z ≈ 1010), which are
schematically indicated by arrows.
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obtain a lower limit on the transition redshift in both LFDM models based on the lower limit on

the thermal relic WDM mass.

8.6.1 Self-interacting LFDM

The LFDM-WDM mapping constructed above allows us to translate thermal relic WDM limits

derived from the MW satellite population into LFDM constraints. High-resolution cosmological

simulations have been performed in order to predict the WDM subhalo mass function in MW-

mass halos [415, 299, 28, 80], and these have been used in conjunction with the observed MW

satellite population to place stringent constraints on thermal relic WDM. Chapter 7 [332] reports

mWDM > 6.5 keV at 95% confidence, which we directly translate into a constraint on SI LFDM via

Equation 8.13, yielding zT,SI > 5.5 × 106, also at 95% confidence. This limit implies that the dark

radiation which transitions to LFDM causes ∆Neff . 4 × 10−3, assuming that LFDM constitutes

the entire DM relic density [Equation 8.3]. Exploring the generality of this indirect constraint on

∆Neff from small-scale structure measurements is a compelling avenue for future work.

Figure 8.3 compares this limit to constraints on zT,SI derived from the CMB (resulting from Neff

constraints), low-redshift galaxy clustering from the Sloan Digital Sky Survey [407], the high-redshift

galaxy luminosity function [115], and the Lyman-α forest [407]. Our limit improves upon the Lyman-

α forest result by a factor of ∼ 6, which can be understood in terms of the comoving scales probed by

the MW satellite population. Specifically, the lowest-mass halo inferred to host an observed satellite

is ∼ 3 × 108 M� [333], which roughly corresponds to a wave number of k ∼ 40h Mpc−1, while the

Lyman-α forest data used in [407] reaches k ∼ 5h Mpc−1. We expect zT,SI to scale linearly with

the wave number corresponding to the smallest scale probed in an observational analysis, and the

improvement we observe relative to this Lyman-α constraint is consistent with this expectation.2

Other small-scale probes that achieve comparable sensitivity to thermal relic WDM, including strong

gravitational lensing [195, 226] and stellar streams [41], will yield similar LFDM constraints.

Our SI LFDM limit relies on an analytic mapping to thermal relic WDM and is therefore not

directly validated using LFDM simulations. We note that [115] ran simulations of these models

with similar half-mode scales and found that the high-redshift (z > 4) LFDM halo mass function

is comparable to that in WDM. Those findings are further consistent with the suite of LFDM

simulations from [13], which show that oscillatory features in the linear matter power spectrum

are erased in the z = 0 halo mass function. Meanwhile, [75]—working in the Effective Theory of

Structure Formation (ETHOS) framework [119]—found the peak heights of interest for our SI LFDM

constraints lead to negligible differences in the high-redshift halo mass function relative to thermal

relic WDM. Finally, [229] showed that the halo mass function for self-interacting dark matter models

with similar transfer functions to our SI LFDM model are nearly indistinguishable from matched

2More recent Lyman-α forest analyses (e.g., [395, 394]) probe smaller scales and a wider range of redshifts, and
will therefore improve upon the LFDM constraints in [407].
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WDM models, and used this correspondence along with a conservative treatment of the subhalo

population inferred from MW satellites to place constraints similar in spirit to ours. All of these

results lend confidence to the robustness of our result when framed as a conservative limit.

8.6.2 Free-streaming LFDM

The right panel of Figure 8.2 demonstrates the reason that it would be dangerous to set a constraint

on FS LFDM based on matching its half-mode scale to WDM. In particular, because the FS LFDM

power spectrum cutoff is much steeper than in thermal relic WDM, the half mode-matched model is

significantly less suppressed than the corresponding WDM model along the initial power spectrum

cutoff. Thus, we bracket the range of allowed FS LFDM transition redshifts as follows:

1. We place a fiducial lower limit on zT,FS by finding the FS LFDM transfer function that yields

strictly greater power suppression than the ruled-out thermal relic WDM model for all wave

numbers k > 10h Mpc−1, roughly corresponding to halo masses below 1010 M�.3 Below

this wave number, small differences between the FS LFDM and WDM transfer functions are

negligible for the FS LFDM models of interest. This yields a conservative limit of zT,FS >

2.1× 106 and is shown by the light-blue transfer function in Figure 8.2.

2. We forecast an optimistic limit on zT,FS by matching it to the half-mode scale of the thermal

relic WDM model that is ruled out at 95% confidence by the MW satellite population. This

yields zT,FS > 1.1 × 107 and is shown by the dark-blue transfer function in Figure 8.2. This

constraint is optimistic because the abundance of subhalos that host MW satellites are sensitive

to a convolution of power on (nonlinear) scales, rather than a single mode at which the power

spectrum is suppressed by a characteristic amount (e.g., khm); thus, transfer functions with

different cutoff shapes cannot be matched in detail.

Because the FS LFDM model has not previously been considered in the context of small-scale

structure measurements, we do not have a direct point of comparison for our constraints on its

transition redshift. However, our fiducial FS LFDM is extremely conservative. It is therefore clear

that zT,FS must be of the same order-of-magnitude zT,SI, which is physically reasonable.

Like our SI LFDM constraint, our forecasted optimistic limit on zT,FS is analytic and therefore

must be confirmed with measurements of the subhalo mass function in dedicated LFDM simulations

of MW-like systems. This situation is reminiscent of that for fuzzy dark matter (FDM), which also

features steeper power suppression (for a fixed half-mode scale) than thermal relic WDM. Half-mode

matching predicts a stringent limit on the FDM mass (e.g., Chapter 6 [335]); however, constraints

based directly on the FDM subhalo mass function are less strict [418, 332]. We are therefore confident

that the correct limit on zT,FS lies between our fiducial and optimistic constraints.

3This procedure is similar to that used to constrain resonantly produced sterile neutrinos in [414, 332] and developed
by [308] to constrain velocity-dependent DM-proton interactions.
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8.7 Conclusion

In this study, we set novel constraints on the dark matter formation epoch using state-of-the-art limits

on the suppression of the small-scale matter power spectrum from the Milky Way satellite population.

Specifically, we focused on the theoretically motivated paradigm of late-forming dark matter, which

transitions to collisionless, cold dark matter from a dark radiation state. We showed that the epoch

of the LFDM transition determines the cutoff scale in the linear matter power spectrum, which is

processed into a suppression of power throughout cosmic history. By exploiting the correspondence

between the power spectrum cutoff in a LFDM model with strong self-interactions prior to the phase

transition versus that in thermal relic warm dark matter, we used the latest WDM constraint from

the MW satellite population to place a stringent lower limit on the LFDM transition redshift. This

constraint improves upon previous results by nearly an order of magnitude. We also estimated lower

limits on the transition redshift for free-streaming LFDM.

Crucially, several independent tracers of small-scale structure corroborate the dark matter con-

straints set by recent MW satellite studies; thus, our constraints are not highly dependent on the

particular probe used to set the WDM limit we exploited in this paper. In particular, analyses of

the Lyman-α forest flux power spectrum [459, 232], strongly lensed quasar flux ratio anomalies and

magnifications [226, 195], and perturbations in Galactic stellar streams [41] have achieved similar

sensitivity to thermal relic WDM relative to the MW satellite population, even though the obser-

vational and theoretical systematics of these probes differ. Thus, these other small-scale structure

probes can also be used to constrain the dark matter transition redshift. This is particularly im-

portant because the dark acoustic oscillations imprinted prior to the LFDM phase transition can

potentially have distinct consequences for different tracers of the matter power spectrum at various

epochs (e.g., [122]).

Extending the sensitivity of dark matter formation epoch measurements to even earlier times

requires probing the linear matter power spectrum on extremely small scales. For example, ruling

out the possibility that LFDM forms after BBN requires sensitivity to linear modes with k ∼
105h Mpc−1, or halos with masses of ∼ 10−2 M�. These tiny, baryon-free halos are only detectable

through their gravitational effects, which next-generation pulsar timing arrays [375] and gravitational

wave lensing measurements [348] can potentially discover.



Chapter 9

Dark Matter Self-interactions in

Milky Way-mass Halos

Abstract

We explore the impact of elastic, anisotropic, velocity-dependent dark matter (DM) self-interactions

on the host halo and subhalos of Milky Way (MW)–mass systems. We consider a generic self-

interacting dark matter (SIDM) model parameterized by the masses of a light mediator and the DM

particle. The ratio of these masses, w, sets the velocity scale above which momentum transfer due

to DM self-interactions becomes inefficient. We perform high-resolution zoom-in simulations of an

MW-mass halo for values of w that span scenarios in which self-interactions either between the host

and its subhalos or only within subhalos efficiently transfer momentum, and we study the effects

of self-interactions on the host halo and on the abundance, radial distribution, orbital dynamics,

and density profiles of subhalos in each case. The abundance and properties of surviving subhalos

are consistent with being determined primarily by subhalo–host halo interactions. In particular,

subhalos on radial orbits in models with larger values of the cross section at the host halo veloc-

ity scale are more susceptible to tidal disruption owing to mass loss from ram pressure stripping

caused by self-interactions with the host. This mechanism suppresses the abundance of surviving

subhalos relative to collisionless DM simulations, with stronger suppression for larger values of w.

Thus, probes of subhalo abundance around MW-mass hosts can be used to place upper limits on

the self-interaction cross section at velocity scales of ∼ 200 km s−1, and combining these measure-

ments with the orbital properties and internal dynamics of subhalos may break degeneracies among

velocity-dependent SIDM models.

149
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9.1 Paper Status and External Contributions

This chapter is published in slightly modified form in the Astrophysical Journal, Volume 896, Issue

2, p.112-128 with the title, “Signatures of Velocity-dependent Dark Matter Self-interactions in Milky

Way-mass Halos,” on which I am the corresponding author. It is the result of a collaboration with

Arka Banerjee, Susmita Adhikari, Yao-Yuan Mao, and Risa Wechsler. Arka and Susmita led the

development of the self-interacting dark matter cosmological simulation algorithm and all of us

worked together to run and analyze the simulations presented below. In addition, all coauthors

made editorial contributions to the text. This work was stimulated by workshops hosted by the

Dark Energy Science Collaboration’s Dark Matter Working Group, and I am grateful to all of the

members of this group for their support and insights.

9.2 Introduction

Self-interacting dark matter (SIDM) has long been an attractive alternative to purely cold, colli-

sionless dark matter (CDM) owing to several potential “small-scale problems” attributed to CDM

(see [97] for a review of these problems, and see [448] for a review of their potential resolutions in

SIDM). Historically, SIDM was motivated by the core–cusp problem, which concerns the apparent

discrepancy between the steep, cuspy NFW profiles ubiquitous among DM halos in CDM simula-

tions and the flatter, cored profiles inferred from the dynamics of various tracers in dwarf galaxies

[174, 432, 125, 113]. The core–cusp problem is sensitive to the impact of baryonic feedback, and it

remains an active area of study (e.g., [157]). In particular, it has recently been cast in terms of the

diversity of inner DM density profiles for field [350, 251, 254, 380, 495, 406] or satellite [450, 247]

galaxies at fixed halo properties. For Milky Way (MW) satellite galaxies, self-interactions in the

presence of the tidal field of the Galactic disk may accelerate gravothermal core collapse, and this

process has been proposed as a unique signature of SIDM ([256, 345, 403]).

Self-interactions can also affect the abundance of DM substructure in a statistical fashion. In

particular, many authors have studied the subhalo populations of MW-mass hosts in the context

of SIDM (e.g., [125, 113, 142, 461, 392, 493, 147, 462, 391]), and a few cosmological SIDM-plus-

hydrodynamic simulations of isolated dwarfs [182, 215, 177] and MW-mass systems [390] have been

performed.

The consensus of these studies has been that SIDM models that do not drastically reduce the

number counts of surviving subhalos have little effect on subhalo abundances in MW-mass systems

(see, e.g., the discussion in [448]). However, this is a model-dependent statement that warrants

scrutiny in light of increasingly precise constraints on the abundance of subhalos in MW-mass

systems enabled by recent measurements of the luminosity function of satellite galaxies around the

MW (e.g., [149]) and around MW analogs (e.g., [193, 270, 55]). In addition, theoretical predictions

for gaps and perturbations in nearby stellar streams (e.g., [41, 76]), direct and indirect detection
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experiments (e.g., [230, 235]), and flux ratios in strongly lensed systems (e.g., [195, 226]) are all

sensitive to the abundance and internal properties of DM substructure in distinct ways.

Many of the aforementioned SIDM studies only consider isotropic, velocity-independent self-

interactions, at least on the velocity scales relevant for the MW host halo and its subhalos. Nonethe-

less, there are theoretical and observational arguments in favor of a velocity-dependent SIDM cross

section, which is a generic consequence of interactions in a nonminimal dark sector (see, e.g.,

[171, 294, 449, 66, 255, 448]). While velocity-dependent SIDM models have been explored on galaxy

cluster scales (e.g., [389, 39]), a thorough study of the corresponding predictions on Galactic scales

is now crucial. This is particularly relevant because the increasingly well-measured abundance and

internal properties of MW satellites can be affected by self-interactions at both the host halo velocity

scale (which depend on satellites’ typical velocities relative to the host) and subhalo velocity scales

(which depend on the internal velocity dispersion of individual subhalos).

Herein we investigate the effects of an SIDM model with a generic, velocity-dependent self-

interaction cross section on the DM host halo and subhalos of MW-mass systems. We focus on the

physical mechanisms that shape the abundance and properties of surviving and disrupted subhalos,

setting the stage for future analyses to constrain the SIDM cross section at the velocity scale of

MW-mass systems. This paper is organized as follows: We describe our SIDM model in Section 9.3

and our simulations in Section 9.4. We then present our results, focusing on the properties of our

host halos in Section 9.5 and their subhalo populations in Section 9.6. We discuss challenges and

caveats in Section 9.7, we compare to previous studies in Section 9.8, we consider prospects for SIDM

constraints in Section 9.9, and we conclude in Section 9.10.

9.3 SIDM Model

We consider an SIDM model in which a DM particle χ interacts under the exchange of a light

mediator, which can be either a scalar particle φ or a vector particle φµ. These scenarios are

respectively described by the interaction Lagrangians [448]

Lint =

{
gχχ̄χφ, scalar mediator

gχχ̄γ
µχφµ, vector mediator,

(9.1)

where gχ is a coupling constant and γµ are Dirac matrices.

Self-interactions governed by Equation 9.1 can be described by a Yukawa potential

V (r) = ±αχ
r
e−mφ/r, (9.2)

where r is the separation between DM particles, αχ ≡ g2
χ/4π is the analog of the fine-structure

constant in the dark sector, and mφ is the mediator mass.
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We focus on t-channel scattering, which leads to an effective differential scattering cross section

[231, 281]
dσ

dΩ
=

σ0

2
[
1 + v2

w2 sin2
(
θ
2

) ]2 , (9.3)

where v is the relative velocity between interacting DM particles with mass mχ, w ≡ mφ/mχ is a

characteristic velocity scale, σ0 ≡ 4πα2
χm

2
χ/m

4
φ is the amplitude of the cross section, and θ is the

scattering angle in the center-of-mass frame. For w � v (in natural units), typically corresponding

to an MeV-scale mediator for a GeV-scale DM particle mass, Equation 9.3 reduces to Rutherford-like

scattering; for a heavy mediator, it reduces to velocity-independent isotropic scattering.

The corresponding momentum transfer cross section for identical particles is given by [248]

σT =

∫
dσ

dΩ
(1− |cos θ|) dΩ. (9.4)

Note that σT is a function of v, w, and σ0. Finally, the total cross section

σ =

∫
dσ

dΩ
dΩ (9.5)

determines the probability of DM self-interactions in our numerical implementation (see Section

9.4.2). For the case of isotropic, velocity-independent self-interactions, the total cross section is

related to σT and σ0 via σ = 2σT = 2πσ0.

At velocity scales v > w, the momentum transfer cross section falls off as v−4; meanwhile, for

v � w, it flattens toward its asymptotic value. Thus, for values of w that are small relative to the

typical velocities in a virialized system, interactions at low relative velocities are more effective at

transferring momentum than interactions at high relative velocities. In the context of MW-mass

systems, this implies that interactions among host halo particles and between host halo and subhalo

particles are less effective than interactions among subhalo particles if w is small relative to the

characteristic velocity scale of the host (∼ 200 km s−1). On the other hand, as w increases toward

the velocity scale of the host halo, subhalo–host halo and host halo–host halo interactions become

more significant.

The characteristic velocity scale w is an easily interpretable quantity that captures much of the

key physics that shapes MW-mass systems in our two-parameter SIDM model. Thus, we param-

eterize and refer to our simulations in terms of w, and we choose σ0/mχ for each model so that

the momentum transfer cross section at the velocity scales of interest yields enough self-interactions

to produce observable effects, but not so many that the models are likely ruled out already. In

particular, we study the four following SIDM model variants:

1. w10: a model with w = 10 km s−1, σ0/mχ = 8/π cm2 g
−1

, for which self-interactions within

subhalos are significant, but self-interactions at the host halo velocity scale are negligible;



CHAPTER 9. DARK MATTER SELF-INTERACTIONS IN MILKY WAY-MASS HALOS 153

10 20 30 50 100 300

v [km s−1]

0.01

0.1

1

10

σ
T
/m

χ
[c

m
2

g−
1
]

M
W

H
os

t
H

al
o

w10

w100

w200

w500

U
lt

ra
-F

ai
nt

S
at

el
lit

es

C
la

ss
ic

al
S

at
el

lit
es

Figure 9.1: Momentum transfer cross sections for our SIDM model variants as a function of relative
scattering velocity. Each model variant is labeled by w, the velocity scale above which the SIDM
cross section falls off as v−4. The velocity scale relevant for interactions among host halo particles
and between host halo and subhalo particles is indicated by the “MW Host Halo” band. Shaded
bands indicate characteristic velocities for DM particles within the subhalos expected to host classical
and ultrafaint MW satellite galaxies.
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2. w100: a model with w = 100 km s−1, σ0/mχ = 2/π cm2 g
−1

, for which self-interactions within

low-mass subhalos are less significant than in w10, but self-interactions at the host halo velocity

scale are more significant;

3. w200: a model with w = 200 km s−1, σ0/mχ = 2/π cm2 g
−1

, for which self-interactions within

low-mass subhalos are identical to w100, but self-interactions at the host halo velocity scale are

more significant;

4. w500: a model with w = 500 km s−1, σ0/mχ = 1/π cm2 g
−1

, for which self-interactions

within low-mass subhalos are the least significant among our model variants, while interactions

at the host halo velocity scale are similar to w200 (though slightly more effective at high

velocities). Scattering in this model is isotropic and velocity independent on the scales relevant

for MW-mass systems, meaning that self-interactions with large scattering angles at high

relative velocities are potentially significant.

Figure 9.1 shows the momentum transfer cross section corresponding to each model variant, and

their main properties are summarized in Table 9.1.

9.4 Simulations

9.4.1 General Description

For each SIDM model variant, we resimulate the same MW-mass halo using fixed initial conditions.

This host halo is chosen from the suite of CDM-only MW-mass zoom-in simulations presented in

[315]. The highest-resolution particles in our zoom-in simulations have a mass of 3× 105 M� h−1,

and the softening length in the highest-resolution regions is 170 pc h−1. Halo catalogs and merger

trees were generated using the Rockstar halo finder and the consistent-trees merger tree code

[47, 48]. Throughout we define virial quantities using the [93] critical overdensity ∆vir ' 99.2, as

appropriate for the cosmological parameters in our simulations: h = 0.7, Ωm = 0.286, Ωb = 0.047,

and ΩΛ = 0.714.

9.4.2 SIDM Implementation

To implement DM self-interactions in our zoom-in simulations, we follow the prescription in [39].

Briefly, self-interactions are implemented using a modified version of the GADGET-2 N -body code

that allows DM particles to transfer momentum and energy with an interaction probability set by

the total SIDM cross section in Equation 9.5 and a scattering angle drawn from the distribution

given by Equation 9.3. We refer the reader to [39] for the details of our SIDM implementation.
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Simulation w σ0/mχ Cored Host? Cored Subs? RPS? NSIDM/NCDM

CDM · · · · · · X X X 1.0
w10 10 8/π X X X 0.82
w100 100 2/π X X X 0.64
w200 200 2/π X X X 0.65
w500 500 1/π X X X 0.44

Table 9.1: Summary of SIDM model variants and simulation results. SIDM model variants consid-
ered in this work and the main qualitative results of our zoom-in simulation of an MW-mass system
for each case. The first column lists the DM model, the second and third columns list the charac-

teristic velocity scale (in km s−1 and amplitude of the self-interaction cross section (in cm2 g
−1

) for
our SIDM model variants, the fourth (fifth) column lists whether the host halo (subhalos) are cored
by self-interactions, the sixth column lists whether subhalos are affected by ram pressure stripping
due to self-interactions with the host, and the seventh column lists the fraction of subhalos among
our matched subhalo populations that survive to z = 0 relative to the number of surviving subhalos
with Vpeak > 20 km s−1 in our CDM simulation.

9.4.3 Subhalo Definitions and Resolution Cuts

Throughout we employ the following definitions when referring to “subhalos”:

1. Surviving subhalos: DM systems identified by Rockstar as distinct bound objects within the

virial radius of the MW host halo at z = 0;

2. Disrupted subhalos: DM systems that have crossed within the virial radius of the MW halo

at any simulation snapshot (where the virial radius of the MW halo is evaluated as a function

of time) but are no longer identified as distinct bound objects by Rockstar at z = 0 because

they have deposited the majority of their particles onto the main-branch progenitor of the host

at any earlier snapshot. Operationally, we require the descendant of each disrupted subhalo

to be on the main branch of the host, following Chapter 2 [337].1

Subhalos in our CDM simulation are well resolved down to a maximum peak circular velocity

of Vpeak ≈ 10 km s−1, where Vpeak is the largest maximum circular velocity a halo attains over

its entire history ([315, 336]). However, we caution that Rockstar is optimized for halo finding

in collisionless DM simulations and therefore might be unable to reliably identify the more diffuse

halos present in SIDM simulations, particularly near the resolution limit (X. Du, A. Peter, & C. Zeng

2019, private communication). Thus, we study subhalos above a very conservative resolution limit

of Vpeak > 20 km s−1 in our CDM simulation. This cut is applied to both surviving and disrupted

subhalos, and it corresponds to subhalos resolved with more than ∼ 1000 particles at the time Vpeak

is achieved.

1For concreteness, we find that the average virial mass of disrupted subhalos in our CDM simulation is ∼ 108 M�
at the time of disruption, and that ∼ 90% of these disrupting subhalos have virial masses below 109 M�. These
values do not change significantly in our SIDM simulations.
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Figure 9.2: SIDM effects on the host halo. Left panel: host halo density profiles for our SIDM model
variants. Right panel: corresponding velocity dispersion profiles. As the SIDM cross section at the
characteristic velocity scale of the MW host halo increases, the inner regions of the host become
increasingly cored and thermalized. Note that the host halo density and velocity dispersion profiles
are nearly indistinguishable in CDM and w10.

Due to this conservative resolution cut, we expect that artificial subhalo disruption (e.g., [454,

453]) is not a large source of error relative to accurate halo finding in the analysis of our SIDM simula-

tions. It is important to note that our working definition of “subhalo disruption” cannot distinguish

truly unbound systems from those that fall below the resolution limit of our simulations or the

detection capabilities of our halo finder. Nonetheless, convergence tests based on higher-resolution

resimulations of CDM and w500 presented in Appendix E.1 confirm that the trends reported in this

paper, and particularly the correlation between w and the severity of subhalo disruption, are robust

to the resolution of our simulations.

9.4.4 Subhalo Matching Procedure

For a fixed Vpeak threshold, different numbers of surviving and disrupted subhalos may exist in

our CDM and SIDM simulations at z = 0. Thus, to ensure that we analyze the same population

of subhalos in CDM and SIDM, we adopt a variable Vpeak threshold for our SIDM simulations,

denoted by Vthresh. We define Vthresh such that the number of surviving-plus-disrupted subhalos

with Vpeak > Vthresh is equal to the number of such subhalos in CDM with Vpeak > 20 km s−1.2 This

yields thresholds of Vthresh = [19.5, 19.05, 18.75, 18.7] km s−1 for [w10, w100, w200, w500], respectively.

2There are 154 surviving and disrupted subhalos in our CDM simulation with Vpeak > 20 km s−1.
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We have verified that these resolution cuts result in the same population of subhalos on an object-

by-object basis by inspecting the initial phase-space region corresponding to each subhalo. We

explore less conservative subhalo resolution thresholds in Appendix E.2, where we show that our

main findings are robust to the chosen Vpeak threshold.

We reiterate that authors have used various halo-finding algorithms and SIDM implementations

to study the effects of self-interactions in MW-mass systems. Thus, direct comparisons of different

simulations should be performed with care, particularly near the resolution limit, where halo finder

shortcomings and other spurious numerical effects are expected to be most severe. We compare our

findings to previous results in Section 9.8.

9.5 SIDM Effects on the MW Host Halo

We now present our results, focusing on the properties of the MW host halo and its subhalo popu-

lation in each SIDM model variant described above. Table 9.1 lists the main qualitative results of

each simulation.

The virial mass of the MW host halo is virtually identical in all of our simulations. However, the

DM profile in the inner regions of the host varies significantly as a function of w. This is illustrated

in Figure 9.2, which shows the density and velocity dispersion profiles of the host in CDM and

in each of our SIDM model variants. As expected, SIDM models with larger self-interaction cross

sections at the velocity scale set by the host’s velocity dispersion (∼ 200 km s−1) exhibit cored

density profiles, and the DM distribution in the inner regions of these hosts is roughly isothermal,

consistent with previous findings (e.g., [125, 113, 461, 462, 392, 391]). In contrast, the host halo in

w10 is very similar to that in CDM because self-interactions at the host’s velocity scale are negligible

in this case.3

As demonstrated by several authors (e.g., [253, 402, 391]), these results are expected to change

in the presence of a central baryonic component such as the Galactic disk. In particular, because

DM dynamically responds to the total (i.e., DM-plus-baryonic) gravitational potential, we expect

our host halos to exhibit much smaller cores or even cusps in the presence of baryons. Importantly,

this implies that the findings discussed below on the disruption of SIDM subhalos are strictly lower

limits, since tidal disruption and ram pressure stripping would be more severe for the denser, hotter

host halo expected in the presence of baryons.

To visualize the present-day DM structure in our simulations, Figure 9.3 shows the DM particle

density in the phase space of radial distance versus radial velocity with respect to the center of the

host. We observe that the DM profiles of both the host halo and its subhalos are less concentrated

3We have also examined the ellipticity profile of the host halo in each simulation. We find that hosts in model
variants with larger values of w are more spherical, with typical ellipticities near unity, while the ellipticity profiles in
w10 and CDM rise from ∼ 0.9 in the inner regions to ∼ 1 at the virial radius; these findings are consistent with many
previous studies (see, e.g., [448]).
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Figure 9.3: DM phase-space distributions for our zoom-in simulations of an MW-mass host halo in
CDM and SIDM. The density of DM particles in bins of radial velocity and radial distance from
the center of the host is plotted for CDM (top left) and for three of our SIDM model variants: w10

(top right), w100 (bottom left), and w500 (bottom right). These distributions qualitatively illustrate
several of our main findings. For example, the host halo (labeled A) has a very similar phase space
distribution in CDM and w10, while subhalos in w10 (e.g., subhalo B) are somewhat less dense
because of the large self-interaction cross section at low relative velocities in this case (see Figure
9.1). On the other hand, particles near the center of the host in w200 and w500 are preferentially
scattered onto tangential orbits, and many of the low-mass subhalos that survive in CDM (e.g.,
subhalo C) are disrupted in these SIDM model variants owing to a combination of ram pressure
stripping caused by self-interactions with the host and tidal stripping.
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Figure 9.4: SIDM effects on subhalos before infall. Left panel: distributions of peak maximum circu-
lar velocity for surviving and disrupted subhalos in each SIDM model variant (unfilled histograms)
vs. CDM (filled histogram). Right panel: cumulative distributions of the ratio of maximum cir-
cular velocity evaluated at the time of each subhalo’s accretion onto the host divided by the peak
maximum circular velocity along the main branch of the subhalo. Although subhalo assembly is
statistically identical in CDM and SIDM, subhalos are mildly stripped by self-interactions prior to
accretion onto the host halo in our SIDM simulations.

in our SIDM simulations. This effect is more significant for larger values of w; for example, visual

inspection of Figure 9.3 suggests that many prominent substructures that survive in CDM are

completely disrupted in w500. We also find that the phase-space density at small radii and low

radial velocities with respect to the host center increases with w, implying that particles on radial

orbits (i.e., those with high radial velocities in our CDM simulation) are scattered onto tangential

orbits owing to self-interactions. Finally, we note that specific substructures in w10 appear more

diffuse than their counterparts in CDM, which arises as a result of the large momentum transfer

cross section at low relative velocities for w10 (see Figure 9.1).

The differences in the host halo’s density and velocity dispersion profiles discussed above impact

the post-infall evolution of subhalos. In particular, it is expected that the present-day (z = 0) abun-

dance and properties of subhalos are affected by ram-pressure-like stripping due to self-interactions

between subhalo and host halo particles, as well as by tidal effects in the host halo’s gravitational

field. We investigate these effects in Section 9.6.2.

Thus, the host halo is cored and thermalized in the absence of baryons if self-interactions are

significant at the velocity scale set by the host’s velocity dispersion. These effects will be weakened

in the presence of baryons.
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9.6 SIDM Effects on MW Subhalos

Next, we examine the pre- and post-infall evolution of all subhalos that fall into the host in each of

our simulations. We then compare the corresponding surviving subhalo populations at z = 0.

9.6.1 Pre-infall Subhalo Evolution

In this subsection, we explore the formation and evolution of subhalos before they fall into the host.

Subhalo Assembly

First, we investigate the formation and initial properties of subhalos in each of our simulations. To

do so, we plot the distribution of Vpeak for each SIDM model variant in the left panel of Figure 9.4,

and we compare these to CDM. The Vpeak distributions are calculated using the matched subhalo

populations defined in Section 9.4.4, and they include both subhalos that survive to z = 0 and those

that fall into the host halo before disrupting. We find that the Vpeak distributions are unchanged

relative to CDM. In addition, the distributions of the time at which Vpeak is achieved are nearly

identical among the simulations, although there is a small amount of scatter on a subhalo-by-subhalo

basis.

Thus, the formation times and initial properties of subhalos in all of our SIDM simulations—

defined in terms of Vpeak and the time at which Vpeak occurs—are statistically identical to the

corresponding quantities in our CDM simulation.

Effects of Early Self-interactions

Next, we assess the effects of self-interactions on subhalos before infall into the host. In particular, the

right panel of Figure 9.4 shows the cumulative distribution of maximum circular velocity evaluated

at the time of accretion onto the host, Vacc, divided by Vpeak.4 This quantity captures the impact of

self-interactions between the early time at which Vpeak is usually achieved (zpeak ∼ 3 for surviving

subhalos, on average) and the time of accretion (zacc ∼ 1 for surviving subhalos, on average). These

characteristic peak and infall times are very similar among our CDM and SIDM simulations.

We observe a subtle but systematic trend in Vacc/Vpeak as a function of the characteristic self-

interaction velocity scale w. In particular, the low-Vacc/Vpeak tail of this distribution, which is

present in CDM and results from pre-infall tidal stripping (e.g., [46, 480]), is more prominent in

SIDM. This difference becomes increasingly pronounced for SIDM model variants with larger values

of w, indicating that self-interactions at the typical relative velocity scale affect subhalos during

pre-infall tidal stripping.

4Accretion is defined as the snapshot at which the center of a subhalo crosses into the virial radius of the host.
Note that the virial radius is measured as a function of time using the Rockstar output.
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This finding is consistent with the fact that regions outside the conventional virial radius of the

host halo can be quite dense (note that the self-interaction rate depends on the physical density,

rather than the comoving density). In particular, typical splashback boundaries for MW-mass halos

extend to ∼ 1.5 times the conventional virial radius (e.g., [12, 139, 326]). Accordingly, we find that

there is a noticeably smaller difference in the low-Vacc/Vpeak tail relative to CDM if Vacc is evaluated

when subhalos cross within twice the virial radius of the host.

In Section 9.6.3, we show that the density profiles of subhalos in our SIDM model variants that

exhibit appreciable changes to their Vacc/Vpeak distribution relative to CDM (i.e., all model variants

other than w10) already exhibit cored density profiles at infall. We provide a physical interpretation

of the scaling with w in Section 9.6.2.

Thus, subhalos in our SIDM simulations are affected by self-interactions before accretion onto

the host, leading to lower values of Vacc/Vpeak relative to subhalos in CDM.

9.6.2 Post-infall Subhalo Evolution

We now explore the evolution of subhalos in our SIDM model variants after infall into the host. In

particular, we describe the physical effects that influence subhalos after infall, and we investigate

subhalo disruption in our simulations.

Physical Effects

After infall, two main effects shape the subhalo populations in our SIDM simulations:

1. Tidal stripping : The gravitational field of the host halo tidally strips material from subhalos.

Note that this effect is velocity independent; in particular, assuming spherical symmetry and

considering tidal interactions with the host halo only, the mass-loss rate due to tidal stripping

can be written as [454] (
Ṁsub

Msub

)

tidal

= − 1

α

1

τorb

Msub(> rt)

Msub
, (9.6)

where M(> rt) is the mass of a subhalo contained outside of its tidal radius, τorb is the orbital

timescale, and α is an order-unity constant. Note that the tidal radius (i.e., the distance from

the center of the subhalo at which the host’s tidal force is balanced by the subhalo’s own

gravity) depends on both the host halo and subhalo density profiles and the distance of the

subhalo from the center of the host. Although tidal stripping occurs in CDM-only simulations,

differences in the strength of this effect may arise in SIDM owing to changes in the density

profiles of both the host halo and its subhalos caused by self-interactions. In particular, we

expect that the cored density profile of the host halo in SIDM reduces the efficacy of tidal

stripping relative to CDM for a fixed subhalo profile. However, as discussed in, e.g., [247],
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the cores induced in SIDM subhalos make them more susceptible to disruption in a fixed tidal

field.

2. Ram pressure stripping : Self-interactions with host halo particles drive material out of subha-

los. Taken to the extreme, this process can completely dissociate subhalos in a phenomenon

known as subhalo evaporation (see, e.g., [462]). Unlike tidal stripping, which strips mass from

the outskirts of subhalos, ram pressure interactions remove material throughout their extent.

In particular, subhalos experience an effective pressure owing to interactions with the host;

the mass-loss rate due to these ram-pressure-like interactions can be written as [281]

(
Ṁsub

Msub

)

ram−pressure

= −χe(vsub, vesc,sub)ρhost(r)vsub(r)
σ(vsub)

mχ
, (9.7)

where χe is an order-unity factor, vsub(r) is the velocity of the subhalo relative to the host

evaluated along its orbit, vesc,sub is the escape velocity from the subhalo (which depends on the

subhalo’s density profile), ρhost(r) is the density of the host halo evaluated along the subhalo’s

orbit, and σ(vsub)/mχ is the total SIDM cross section evaluated at vsub.

The mass-loss rate due to ram pressure stripping depends on the SIDM cross section at

the typical relative velocity scale between the host halo and its subhalos, which is set by the

gravitational potential of the host. Because SIDM models with larger values of w have larger

self-interaction cross sections at this velocity scale, the strength of ram pressure stripping

increases with w.

By integrating Equation 9.7 over the course of a typical orbit, we find that subhalos with close

pericentric passages to the center of the host (dperi . 70 kpc) can lose∼ 10% of their infall mass owing

to ram pressure stripping alone, for an isotropic cross section of σ/mχ = 2 cm2 g
−1

. Combined with

tidal effects, and particularly the fact that subhalos with cored density profiles are more susceptible

to tidal disruption, our calculations suggest that self-interactions at the relevant velocity scales

are sufficient to severely strip subhalos in SIDM model variants with large values of w. We have

confirmed that this behavior—i.e., increased mass loss relative to CDM followed by disruption due

to tidal forces at pericenter—is indeed the dominant disruption mechanism in our simulations by

inspecting the histories of matched subhalos that survive in CDM but disrupt in our SIDM model

variants.

Thus, the evolution of subhalos after infall in our SIDM simulations is driven by a combination

of tidal forces and ram-pressure stripping. Ram-pressure stripping is more effective for models with

larger values of w, which have larger self-interaction cross sections at the host halo velocity scale.

This mass-loss mechanism makes subhalos more susceptible to tidal disruption, particularly during

pericentric passages.
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Subhalo Disruption

We now analyze our simulation results to quantitatively assess the impact of the effects described in

the previous section. In our CDM simulation, roughly half of all subhalos with Vpeak > 20 km s−1

that fell into the host disrupt by z = 0. We find that even larger fractions of subhalos disrupt

in our SIDM simulations, as indicated by the surviving subhalo fractions in Table 9.1. Based on

the arguments in Section 9.6.2, we expect that extra subhalo disruption relative to CDM should

be correlated with the SIDM cross section at the typical relative velocity scale set by the host’s

gravitational potential, such that subhalos are disrupted more efficiently in SIDM model variants

with larger values of w. As demonstrated below, our results are consistent with this hypothesis.

To build intuition about subhalo disruption in our SIDM model, we first investigate the distribu-

tion of pericentric distance, dperi, for disrupted subhalos in each simulation. We define dperi as the

distance of closest approach to the center of the host halo during each subhalo’s first orbit around

the host after infall.5 The top left and top right panels of Figure 9.5 show the distributions of dperi

for surviving and disrupted subhalos in each of our simulations. We observe that the amount of

subhalo disruption at large pericentric distances increases strongly as a function of w, and we have

verified that most of this disruption occurs during early pericentric passages. Subhalos in our SIDM

simulations therefore disrupt at distances at which subhalos in our CDM simulation almost never

disrupt, indicating that disruption is driven by tidal effects during early pericentric passages that

are enhanced by ram-pressure-like interactions with the host.

To explore the data further, the bottom left and bottom right panels of Figure 9.5 show the

distributions of maximum relative velocity with respect to the host evaluated along the orbit of

each surviving and disrupted subhalo. The maximum relative velocity distributions for disrupted

subhalos in our SIDM model variants peak strongly relative to CDM above ∼ 200 km s−1, and the

strength of this effect is correlated with w. This demonstrates that extra subhalo disruption relative

to CDM is mainly driven by self-interactions at relative velocities above ∼ 200 km s−1, and that

subhalos are more easily disrupted in SIDM model variants with larger momentum transfer cross

sections at these velocity scales.6

This picture is consistent with the fact that w500—which has the largest momentum transfer cross

section at large relative velocity scales—exhibits the most subhalo disruption among our SIDM model

variants (see Section 9.6.3). Thus, our findings support the hypothesis that a combination of ram

pressure and tidal stripping increases the amount of subhalo disruption relative to CDM.

Thus, a significant fraction of the subhalos that survive in our CDM simulation are disrupted in

our SIDM simulations due to extra mass loss caused by ram-pressure stripping from self-interactions

with the host at large relative velocities, which makes these subhalos more susceptible to tidal

5For infalling subhalos that have not completed a pericentric passage, we set dperi equal to the distance from the
center of the host at z = 0 (for surviving subhalos) or at the time of disruption (for disrupted subhalos).

6The bottom left panel of Figure 9.5 also indicates that a small fraction of surviving subhalos are impacted by ram
pressure stripping owing to high-velocity interactions; we return to this point in Section 9.6.3.
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Figure 9.5: Properties of surviving and disrupted subhalos. Top left panel: distribution of the
distance of closest approach to the host at first pericentric passage for surviving subhalos in each
of our SIDM model variants (open histograms) vs. CDM (filled histogram). Top right panel: same
as the top left panel, but for disrupted subhalos (surviving and disrupted subhalos are defined in
Section 9.4.3). Bottom left panel: distribution of the maximum relative velocity with respect to
the host halo evaluated along the orbit of each surviving subhalo. Bottom right panel: same as the
bottom left panel, but for disrupted subhalos. Many subhalos that survive in our CDM simulation
disrupt during early pericentric passages in our SIDM simulations, because ram pressure stripping
caused by self-interactions with the host at large relative velocities makes subhalos more susceptible
to tidal disruption.
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Figure 9.6: Surviving subhalo populations. Left panel: peak velocity function of subhalos in our
CDM simulation and in each of our SIDM model variants. Right panel: corresponding radial subhalo
distributions in units of the host halo virial radius in each simulation. The abundance of surviving
subhalos is reduced in SIDM, and the strength of this effect increases with w owing to more significant
ram pressure stripping caused by self-interactions with the host. Subhalo disruption in our SIDM
simulations is particularly severe in the inner regions of the host halo.

disruption. This effect is more severe for models with larger values of w.

9.6.3 Surviving Subhalo Populations

We now examine the population statistics and properties of surviving subhalos in our SIDM simu-

lations.

Population Statistics

In the left panel of Figure 9.6, we plot the cumulative number of surviving subhalos as a function of

Vpeak in each of our simulations. We find that the abundance of surviving subhalos monotonically

decreases as a function of w. In particular, subhalo abundances are re-scaled in an approximately

Vpeak-independent fashion, and the number of surviving subhalos in SIDM divided by the number

of surviving subhalos in CDM ranges from ∼ 0.8 in w10 to ∼ 0.4 in w500. We have chosen to

present these results in terms of Vpeak because this quantity is expected to correlate more directly

with satellite luminosity than, e.g., present-day virial mass or maximum circular velocity (e.g.,

[379, 288, 336, 333]).

We have verified that similar trends hold for the present-day Mvir and Vmax functions; however,

because these distributions mix the pre-infall properties and post-infall evolution of surviving sub-

halos, their shapes differ in detail from the corresponding peak functions. For example, we observe

an enhancement in subhalo abundance at large values of Vmax for all of our SIDM model variants
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relative to CDM. We speculate that this is a consequence of less effective tidal stripping for sur-

viving subhalos in our SIDM simulations, which occupy tangential orbits around a cored host halo.

Previous authors have also found hints of this trend (e.g., [392]; also see Section 9.8).

In the right panel of Figure 9.6, we plot the radial distribution of surviving subhalos in each

simulation. Similar to the Vpeak functions, we find that the radial distributions are approximately

rescaled in the outer regions. However, disruption becomes increasingly severe near the center of

the host (i.e., r/Rvir . 0.5), causing NSIDM/NCDM to decrease sharply in that region, except for the

“spikes” at small radii observed for w10 and w200. These correspond to either one or two additional

subhalos near the center of these hosts; we investigate these subhalos further in Appendix E.3.

Thus, subhalo disruption due to self-interactions approximately re-scales the number of surviving

subhalos relative to CDM as a function of Vpeak. Subhalo disruption is particularly effective in the

inner regions of the host halo, and it is more severe for models with larger values of w.

Orbital Anisotropy Profile

An immediate consequence of the ram-pressure-plus-tidal-stripping disruption mechanism described

above is that subhalos on radial orbits are preferentially disrupted. We therefore expect surviving

subhalos in SIDM to preferentially occupy tangential orbits relative to surviving subhalos in CDM.

We test this by measuring the orbital anisotropy profile

β(r) ≡ 1− σt(r)
2

2σr(r)2
, (9.8)

where σr and σt denote the radial and tangential velocity dispersion of subhalos, respectively. Note

that β < 0 corresponds to a tangentially biased orbital distribution, β = 0 corresponds to an isotropic

orbital distribution, and the maximum allowed value of β = 1 corresponds to a purely radial orbital

distribution.

We measure β(r) by calculating the radial and tangential velocity distributions of subhalos in the

frame of the host halo, binning subhalos in distance from the center of the host. The result is shown

in Figure 9.7. We find that the orbital anisotropy profile rises toward the outskirts of the host halo in

our SIDM simulations, while it is roughly flat in CDM. As expected based on the results in Section

9.6.2, surviving subhalos preferentially occupy tangential orbits in our SIDM simulations, and this

effect is more significant for model variants with larger values of w, for which subhalo disruption

via ram pressure plus tidal stripping is more severe.7 We observe a similar trend for anisotropy

profiles computed using the DM particles belonging to the host halo in each simulation, although

the magnitude of the effect is less severe in this case. An interesting consequence of this effect is that,

at fixed Vpeak, surviving subhalos in our SIDM simulations tend to be more massive on average than

7The amplitudes of the β(r) profiles at small radii are sensitive to the choice of radial binning because there are
few resolved subhalos in the inner regions. However, the overall shape of β(r) and the trends with w are robust.
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Figure 9.7: Orbital anisotropy profile of subhalos in our SIDM simulations. Surviving subhalos in
SIDM model variants with larger values of w occupy tangentially biased orbits relative to CDM. This
occurs because a combination of ram pressure and tidal stripping preferentially disrupts subhalos
on radial orbits.

their counterparts in CDM, since they are less susceptible to tidal stripping on tangential orbits;

however, this difference largely vanishes if subhalos are matched based on their orbital properties.

These results are interesting in light of recent high-precision measurements of the orbital prop-

erties of MW satellites enabled by Gaia (e.g., [181, 183, 424]). In particular, recent studies of the

orbital anisotropy profile find that the typically flat β(r) profiles found in DM–only simulations are

in tension with the observed velocity anisotropy profile of MW satellites [385]. Baryonic effects, and

particularly the tidal influence of the Galactic disk, affect the β(r) profile in a similar manner to

ram pressure stripping in our SIDM simulations by disrupting subhalos on radial orbits near the

center of the host. However, as noted by [385], the changes to β(r) due to baryonic physics only

resolve the discrepancy with the observed profile if the Galactic disk is sufficiently massive, which in

turn depends on the prescription for baryonic feedback and the mass accretion history of the MW

system. Adding baryonic subhalo disruption to an orbital distribution that is already tangentially
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biased owing to self-interactions may result in even more tangential bias than observed in the inner

regions of the MW, potentially yielding an upper limit on the SIDM cross section at ∼ 200 km s−1.

Thus, surviving subhalos in SIDM occupy tangentially biased orbits relative to subhalos in CDM,

leaving a systematic imprint on the orbital anisotropy profile.

Subhalo Profiles

Because the momentum transfer cross section in our SIDM model scales as v−4 above the char-

acteristic velocity scale w, self-interactions at low relative velocities are strictly more efficient at

transferring momentum than interactions at high relative velocities. Thus, we expect the density

profiles of low-mass subhalos in our SIDM simulations to be impacted by self-interactions. In con-

trast to subhalo disruption, it is not clear a priori which SIDM model variants will most significantly

affect subhalo profiles, since both self-interactions within subhalos and self-interactions with the host

halo potentially impact subhalo density profiles.

To investigate the impact of self-interactions on subhalo density profiles, we select representative

subhalos in our CDM simulation, and we find the corresponding subhalos in our SIDM simulations

by matching on Vpeak, accretion time, and pericentric distance. We then select the particles in the

initial phase-space region associated with these matched subhalos and we track the evolution of

their density profiles until z = 0. Figure 9.8 shows the results of this procedure for a particular

set of subhalos matched to a CDM subhalo with Vpeak ≈ 40 km s−1 and accretion time zacc ≈ 1

that passes close to the center of the host (dperi ≈ 70 kpc). We show the density profiles of these

matched subhalos at the time of accretion onto the host and at z = 0; we also show the density

profile of a subhalo in w500 with similar Vpeak and zacc that does not pass close to the center of its

host (dperi ≈ 160 kpc).

We find that subhalos in SIDM model variants with larger values of w have lower inner densities

and are more cored, i.e., their inner density profiles are flatter as a function of distance from the

center of the subhalo than in CDM. We interpret this as a consequence of ram pressure stripping; even

though self-interactions within subhalos are more effective for SIDM models with smaller values of w,

interactions with the host at large relative velocities significantly alter the inner profiles of subhalos

in model variants with larger values of w. As indicated by Figure 9.8, we find that—at fixed Vpeak

and zacc—subhalos with closer pericentric passages to the center of the host are significantly more

cored. Detailed orbital modeling of satellites in MW-mass systems is therefore crucial in order to

interpret the inferred DM density profiles of their subhalos.

We find that the circular velocity profiles of subhalos with close pericentric passages are sig-

nificantly altered relative to CDM, as expected based on the changes to their density profiles and

consistent with previous findings [461, 493, 390, 391, 177, 403]. This has implications for SIDM

solutions to the diversity and “too big to fail” problems concerning MW satellites [247, 495], al-

though baryonic feedback mechanisms, including heating from supernova feedback, can also reduce
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Figure 9.8: DM profiles of a matched set of surviving subhalos in our CDM and SIDM simulations.
Density profiles defined by the initial set of bound particles are shown for the same subhalo with
Vpeak ≈ 40 km s−1 and zacc ≈ 1 at the time of accretion onto the host (left panel) and at z = 0
(middle panel). Subhalos in model variants with larger values of w have lower-amplitude, flatter
inner density profiles owing to self-interactions with the host halo. The light-blue line in the middle
panel shows the density profile for a subhalo with similar Vpeak and zacc but with a large pericentric
distance (dperi ≈ 160 kpc). The discrepancy between this profile and that of the corresponding
low-pericenter subhalo demonstrates that the impact of self-interactions on subhalo density profiles
depends sensitively on their orbital properties. The right panel shows the corresponding circular
velocity profile for each subhalo at z = 0.

and flatten subhalos’ central density profiles [369, 91, 117, 405, 378]. However, if cores are created

by stellar feedback, then subhalos’ inner density profiles are expected to be correlated with their

galaxies’ star formation histories (e.g., [378]). Meanwhile, in SIDM, we expect the inner amplitude

and flatness of subhalos’ density profiles to correlate most directly with their orbital histories, which

can be encapsulated by their infall times and orbital eccentricities.

Thus, surviving subhalos in SIDM models with larger values of w have lower-amplitude, flatter

density profiles relative to their CDM counterparts. The magnitude of this effect depends on sub-

halos’ orbital properties such as their infall time and distance of closest approach to the center of

the host, and this effect is more significant for larger values of w.

9.7 Challenges

We now discuss several caveats and systematics associated with our analysis and main results.

9.7.1 Numerical Effects

Various halo-finding algorithms, including Subfind, AHF, and Rockstar have been used to iden-

tify and track halos in cosmological SIDM simulations. Several authors have thoroughly compared
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these algorithms in the context of CDM simulations (e.g., [267, 434]). However, the pros and cons

of different halo finders and merger tree algorithms are largely unknown for SIDM simulations, and

a comprehensive comparison study is crucial in order to go beyond the statistical halo matching

technique employed in this paper. Such a study would also be relevant for robust halo finding in

hydrodynamic simulations, where baryonic effects like supernova feedback can substantially alter

density profiles relative to CDM.

Meanwhile, resolution effects (including artificial disruption; [454, 453]) are always important to

mitigate when analyzing substructure in cosmological simulations, particularly if the abundance of

objects near the resolution limit is important. Thus, a detailed study of the underlying mechanisms

and numerical stability of subhalo disruption in the presence of self-interactions using extremely

high-resolution simulations is another important avenue for future work.

9.7.2 Sample Variance

Because we have simulated a fixed realization of an MW system for various SIDM model variants, we

have clearly not sampled a cosmologically representative range of host halo mass accretion histories.

Doing so will add scatter to the prediction for the amount of subhalo disruption in SIDM relative to

CDM because the number of infalling subhalos and their properties depend on the mass accretion

history of the host (e.g., [315]). However, the main physical trends we report, and particularly

the correlation between the severity of subhalo disruption and the SIDM cross section evaluated at

the host halo velocity scale, should not be affected by marginalizing over mass accretion histories.

We plan to test this explicitly by running a suite of zoom-in SIDM simulations. When analyzing

MW satellites specifically, certain features of the MW system, such as the properties of the Large

Magellanic Cloud system and major accretion events inferred from Gaia data, may lessen the impact

of this uncertainty by constraining the allowed range of assembly histories (e.g., [333]).

9.7.3 Baryonic Effects

Our analysis is meant to provide insights into the basic physical mechanisms that shape the properties

of the MW system in the presence of DM self-interactions. Although we do not include baryonic

effects in our simulations, a number of authors have studied SIDM effects on MW and dwarf galaxy

scales in the presence of baryons [253, 182, 390, 391, 158, 402, 177]. These studies have revealed

that including baryons impacts both the host halo and subhalos in SIDM-only simulations. We now

discuss these effects in light of our findings.

Changes to Density Profiles

One of the key predictions of the above studies is that the presence of baryons changes SIDM host

halo profiles. This occurs because SIDM dynamically responds to the total (i.e., DM-plus-baryonic)
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gravitational potential (e.g., [253, 402, 391]). This response results in a cuspier host that is nearly

indistinguishable from the host halo in a CDM-plus-baryon simulation. Because this process makes

the host cuspier, the subhalo disruption effects reported in this paper should be viewed as lower

limits, since both tidal effects and ram pressure stripping will be enhanced in the presence of baryons

owing to the host’s cuspier inner density profile and increased velocity dispersion. As discussed by

[247], we do not expect the change to the host halo’s density profile to significantly alter surviving

subhalo populations, since the host’s profile only changes within the few inner kiloparsecs, where very

few subhalos survive in our SIDM simulations (see, e.g., Figures 9.5 and 9.6). However, including

the Galactic disk significantly enhances the likelihood of disruption for subhalos with dperi . 20 kpc

(e.g., [190]).

Unlike the host halo, we do not expect the density profiles of subhalos in our SIDM simulations

to change appreciably in the presence of baryons, although they may become more cored owing to

tidal interactions with the cuspier host halo and with the Galactic disk. In particular, faint satellites

have extremely low stellar masses, which makes both heating from supernova feedback and adiabatic

contraction of the DM profile negligible (e.g., [157, 158]). In other words, the presence of a central

dwarf galaxy has little effect on the DM profile of its subhalo.

Accelerated Core Collapse

By choosing SIDM model variants with reasonably small self-interaction cross sections at all but

the lowest velocity scales, we have explicitly avoided studying gravothermal core collapse [38, 20,

269]. Of particular relevance for subhalos orbiting the MW, recent analyses demonstrate that the

timescale for core collapse can be significantly shortened owing to tidal stripping by the Galactic

disk [247, 345]. This accelerated core collapse mechanism has been used to argue that the survival

of dense satellites near the center of the MW, and particularly the apparent anticorrelation between

satellites’ pericentric distances and their inferred central DM densities, is a unique signature of SIDM

[256].

We have chosen to study models in which core collapse is not likely to occur over the timescale

of our simulations because this generally requires a very large SIDM cross section, at least at low

velocities (e.g., σT /mχ & 3 cm2 g
−1

at v ∼ 30 km s−1; [247, 345]). This makes the effect somewhat

model dependent because such large cross section amplitudes are likely ruled out by MW satellite

abundances for velocity-independent scattering. Furthermore, it is important to study the region

of parameter space for velocity-dependent SIDM models that does not result in core-collapsed MW

subhalos, since it is not clear whether core collapse is required by the current data.



CHAPTER 9. DARK MATTER SELF-INTERACTIONS IN MILKY WAY-MASS HALOS 172

9.8 Comparison to Previous Studies

Comparing our results to previous studies of SIDM effects on MW-mass systems is not straightfor-

ward. For clarity, we limit this discussion to a comparison of results for subhalo abundances. The

following theoretical systematics should be kept in mind throughout the discussion in this section:

1. SIDM cross section (amplitude and velocity dependence): Authors have studied a variety of

velocity-dependent SIDM models with different cross section amplitudes. We comment on

case-by-case comparisons with our model below.

2. SIDM implementation: Most SIDM implementations in the literature are functionally identical

to ours, with the exception of [461] (and, by extension, [493] and [147]). In particular, we

determine whether a given DM particle scatters by calculating the interaction probability with

all neighboring particles within a sphere of radius equal to the softening length, while [461]

calculate interaction probabilities using the k = 38 nearest neighbors of each particle.

3. Halo finding : Various halo-finding algorithms have been used to analyze SIDM simulations of

MW-mass systems.

Our findings are in reasonable agreement with [461]. These authors claim that a velocity-

independent SIDM model with σT /mχ = 10 cm2 g
−1

(i.e., our w500 model with a 10 times higher

cross section) is ruled out by the abundance and density profiles of bright MW satellites. These

authors find that subhalo disruption in this velocity-independent model is driven by evaporation due

to subhalo–host halo interactions, similar to our conclusion that ram pressure stripping plus tidal

effects drive subhalo disruption in w500. [461] also find that two velocity-dependent SIDM models,

both of which are similar to our w10 model but with slightly larger momentum transfer cross sec-

tions at the host halo velocity scale, are allowed by the MW satellite data. By visual inspection, it

appears that subhalo abundances are suppressed by ∼ 20% relative to CDM in these models, with

the largest differences at low subhalo masses. The amount of subhalo disruption in our w10 model

is consistent with this result (see, e.g., Figure 9.6), although we find that the suppression of subhalo

abundance relative to CDM is a much weaker function of subhalo mass, possibly due to our use of

a matched subhalo sample.

[392] find that the abundance of MW subhalos in SIDM models with velocity-independent cross

sections of σ/mχ = 0.1 and 1 cm2 g
−1

is very similar to that in CDM. However, they find that

∼ 20% fewer subhalos survive near the inner regions of their host halo (r . 0.5Rvir) for σ/mχ =

1 cm2 g
−1

, corresponding to σT /mχ = 0.5 cm2 g
−1

. Our w100 model, in which ∼ 35% of subhalos are

disrupted relative to CDM, has a similar momentum transfer cross section at the MW-mass host halo

velocity scale. Thus, our results are roughly consistent with [392], although further investigation

into halo finder differences is needed to assess whether the remaining ∼ 15% discrepancy is due

to the velocity dependence of our w100 model. Interestingly, [392] find that subhalo abundances
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for σ/mχ = 0.1 cm2 g
−1

are identical to CDM at low Vmax, and that there are actually more high-

Vmax subhalos than CDM in this case. Although we cannot compare our results to their 0.1 cm2 g
−1

model directly, we similarly find that the high-Vmax tail of the surviving subhalo distribution is

enhanced in our SIDM simulations relative to CDM, which might be due to the fact that surviving

subhalos occupy tangential orbits on which tidal stripping is less severe.

[493] simulate velocity-independent SIDM models with σT /mχ = 0.1, 1, and 10 cm2 g
−1

, as well

as two velocity-dependent models that lie between our w10 and w100 models at the MW-mass host

halo velocity scale, but which rise more steeply at low relative velocities. They find that the only

model that leads to a difference in substructure abundance relative to CDM is σT /mχ = 10 cm2 g
−1

,

in stark contrast to our finding that subhalo disruption is significant in all of our model variants.

This may be explained by the difference in SIDM implementation, since interactions between subhalo

and host halo particles are less likely in the [493] implementation than in ours. In particular, our

implementation allows interactions between any DM particles within a softening-length-sized sphere,

while the k-nearest neighbors technique used in [493] does not. Although [493] use the same SIDM

implementation as [461], we speculate that there is less of a discrepancy between our results and

those of [461] because these authors only study models in which the cross section is either negligible

or extremely large at the host halo velocity scale.

We note that [147] study stellar stripping using the same set of SIDM models and implementation

as [493]. These authors reiterate that substructure is only affected in the most extreme SIDM model,

although they remark that subhalos with close pericentric passages in any of the models typically

evaporate within ∼ 6 Gyr, which is qualitatively consistent with our findings.

Finally, although they focus on the impact of adding a Galactic disk to SIDM simulations, [391]

simulate MW host halos without disks in CDM and SIDM. The subhalo Vmax functions and radial

distributions shown in [391] suggest that ∼ 60% of subhalos survive in their σT /mχ = 1 cm2 g
−1

model relative to CDM, which is in reasonable agreement with our findings. Again, this effect is only

noticeable at low Vmax. Like the results in [392], and consistent with our findings, the SIDM-only

model in [391] shows an enhancement in the abundance of high-Vmax subhalos relative to CDM.

9.9 Prospects for SIDM Constraints

The effects reported in this work can be incorporated in models of DM substructure in MW-mass

systems in order to constrain the SIDM cross section at relatively low velocity scales. For example,

several authors have recently proposed forward-modeling frameworks in which various DM properties

can be constrained based on the abundance of observed MW satellites (e.g., [241, 335, 336]). These

constraints are set by the fact that deviations from CDM yield a suppression in the abundance of

the low-mass subhalos that are inferred to host faint satellite galaxies. Incorporating our finding

that subhalo disruption is driven by the self-interaction cross section at the host halo velocity scale
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will therefore yield an upper limit on the SIDM cross section at ∼ 200 km s−1. The precise value of

this limit is difficult to forecast given the theoretical uncertainties discussed above; thus, we plan to

carry out this study comprehensively in future work. Meanwhile, gaps and perturbations in stellar

streams—which are also sensitive to the abundance, radial distribution, and density profiles of both

surviving and disrupted subhalos in the MW—can be used to place complementary constraints (e.g.,

[81]).

Our results suggest that placing an upper limit on the SIDM cross section at velocity scales be-

low ∼ 200 km s−1 by probing subhalo abundances is challenging, or at least highly model dependent,

since the abundance of surviving subhalos is not very sensitive to the SIDM cross section below the

velocity scale of the host. However, if observations of the inner density profiles of the faintest MW

satellites unambiguously favor cored or cuspy inner DM density profiles, it may be possible to place

a stringent limit on σT /mχ at low relative velocities (e.g., ∼ 10 km s−1). [377] claim that the cuspy

halo profile inferred for the MW satellite Draco places an upper bound on the velocity-independent

SIDM cross section of σ/mχ . 0.6 cm2 g
−1

(σT /mχ . 0.3 cm2 g
−1

) at 99% confidence. However,

as we have argued, modulations to subhalos’ density profiles in the presence of self-interactions are

highly dependent on their orbital histories; in addition, it is not clear how the constraint in [377]

translates to the velocity-dependent SIDM model considered here. We also note that the stellar

profiles of surviving satellites can evolve differently depending on whether they occupy a cored or

cuspy halo (e.g., [165]).

High-resolution spectroscopy on giant segmented mirror telescopes (e.g., [423]), along with im-

provements in mass profile modeling techniques (e.g., [194, 378, 286]), will increase the precision of

density profile measurements and constraints. However, observational systematics associated with

inferring the underlying DM density profiles (e.g., [366, 351]), and degeneracies with baryonic coring

mechanisms (e.g., [378]), will likely make a detection of DM self-interactions at low relative veloci-

ties challenging. On a positive note, our results demonstrate that observables that cover a range of

velocity scales related to MW-mass systems—such as the inferred abundances and density profiles

of low-mass subhalos—are highly complementary. In particular, combining such observables informs

the velocity dependence of the SIDM cross section, which is a key facet of many well-motivated

SIDM models.

9.10 Conclusions

Given increasingly precise constraints on the abundance and internal properties of DM substructure

enabled by observations of satellite galaxies, strongly lensed systems, and stellar streams, a detailed

examination of DM models at the edge of allowed parameter space is crucial. SIDM is particularly

interesting in this context, since constraints on the velocity-dependent self-interaction cross section at

relative velocities that are small compared to those typical for galaxy clusters provide an important
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handle on particle physics in the dark sector. In this paper, we studied the phenomenology of a

generic, velocity-dependent SIDM model in the context of the DM host halo and subhalos of MW-

mass systems. Due to its velocity dependence, the effects of our SIDM model are inherently scale

dependent. Thus, observations of MW-mass halos and their subhalos provide a range of velocity

scales with which to probe DM self-interactions.

We have demonstrated that the characteristic velocity above which momentum transfer due to

self-interactions becomes inefficient, which is related to the DM and mediator masses in our SIDM

model, has a variety of phenomenological consequences for MW-mass host halos and their subhalos.

Our main findings are as follows:

1. In the absence of baryons, the DM distribution in the inner regions of the host is cored and

thermalized owing to self-interactions (Figure 9.2). This effect is stronger for larger values

of the cross section at the host halo velocity scale, corresponding to our model variants with

larger values of w.

2. The initial assembly of subhalos in our SIDM simulations, quantified by Vpeak and the time at

which Vpeak is achieved, is statistically similar to that in CDM (Figure 9.4).

3. Subhalos are mildly affected by self-interactions before infall into the host, leading to lower

maximum circular velocity values and moderately cored density profiles at infall relative to

subhalos in CDM (Figures 9.4 and 9.8).

4. A significant fraction of the subhalos that survive in CDM are not found in SIDM owing to

extra mass loss from ram pressure stripping caused by self-interactions with the host halo,

which makes subhalos more susceptible to tidal disruption. This effect is more severe for

models with larger values of w (Table 9.1, Figures 9.5 and 9.6).

5. Surviving subhalos in SIDM occupy tangentially biased orbits relative to those in CDM, causing

a systematic trend in the orbital anisotropy profile that is more significant for models with

larger values of w (Figure 9.7).

6. Surviving subhalos in SIDM models with larger values of w are less dense and more cored than

surviving subhalos in CDM, and the magnitude of this effect depends sensitively on orbital

properties such as infall time and pericentric distance, with more severe coring for subhalos

that pass closer to the center of their host (Figure 9.8).

Given these findings, we plan to carry out a comprehensive study of these effects for a simulated

MW-like host halo that includes a realistic Large Magellanic Cloud analog system, which has recently

been used to fit the full-sky MW satellite luminosity function [333]. This analysis will allow us to

constrain the SIDM cross section at the MW host halo velocity scale (∼ 200 km s−1) using the

abundance, surface brightness distribution, and radial distribution of observed MW satellites.
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We emphasize that self-interactions also affect the orbital distribution and density profiles of

subhalos in MW-mass systems. Comparing these quantities to data in a forward-modeling approach

will help break degeneracies among SIDM models that are not ruled out by subhalo abundances alone,

and will therefore inform the velocity dependence of the SIDM cross section. For example, surviving

subhalos in our SIDM simulations preferentially occupy tangential orbits, and this prediction can be

compared to the measured orbital distribution of MW satellites using proper-motion measurements

from Gaia and its future data releases. Meanwhile, surviving subhalos in SIDM exhibit cored density

profiles, and the strength of this effect is a function of both microphysical SIDM parameters and the

orbital history of each subhalo.

We expect that combining high-precision spectroscopic and proper-motion measurements of satel-

lite galaxies with analyses of strongly lensed systems and perturbations in stellar streams will test

these predictions, providing a new window into velocity-dependent DM self-interactions.



Chapter 10

Disentangling Dark Matter and

Baryonic Physics

Abstract

We compare the signatures of different dark matter models and baryonic physics on proper-

ties of the MW subhalo population. In particular, we consider the effects of self-interacting dark

matter (SIDM), warm dark matter (WDM), and the Galactic disk on the peak velocity function,

radial distribution, and spatial distribution of MW subhalos using cosmological zoom-in simula-

tions of MW-like systems that include realistic Large Magellanic Cloud (LMC) analogs. For a fixed

abundance of subhalos expected to host dwarf galaxies (Vpeak & 20 km s−1), SIDM and WDM can

produce a similar mass-dependent suppression of the subhalo velocity function, while disruption due

to the MW disk is mass-independent. Subhalos in the inner regions of the MW are preferentially

disrupted by both self-interactions and the Galactic disk, while WDM suppression is radially inde-

pendent. Spatial anisotropy in the MW subhalo population due to the LMC system persists in our

disk disruption model and is not strongly affected in WDM. Meanwhile, enhanced tidal disruption

in SIDM caused by self-interactions within the LMC halo at early times and during LMC infall can

erase this anisotropy. These effects provide avenues to distinguish dark matter models and bary-

onic physics by combining multiple properties of the MW subhalo population as traced by satellite

galaxies and stellar streams.

10.1 Paper Status and External Contributions

This chapter is in preparation, to be submitted to the Astrophysical Journal with the title, “Dis-

entangling the Effects of SIDM, WDM, and Baryons on the Milky Way Subhalo Population,” on

which I will be the corresponding author. It is the result of a collaboration with Arka Banerjee,

177
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Susmita Adhikari, Yao-Yuan Mao, and Risa Wechsler. Arka and Susmita led the development of the

self-interacting dark matter cosmological simulation algorithm, and all of us worked together to run

and analyze the simulations presented below. In addition, all coauthors made editorial contributions

to the text.

10.2 Introduction

Dark matter subhalos within the Milky Way (MW) provide a powerful means to test theories of

structure formation and dark matter physics on the smallest observationally accessible cosmic scales.

For decades, the “missing satellites problem” concerning MW satellite galaxies [266, 325] inspired

dark matter model-building efforts focused on reducing the abundance of low-mass subhalos. This

can be achieved by suppressing the primordial matter power spectrum—as in models of warm [11], in-

teracting [74, 335], and fuzzy [227, 228] dark matter—or dynamically, as in models of self-interacting

dark matter (SIDM; [432, 448]).

Our understanding of the MW subhalo population will drastically improve in the near future

due to surveys including the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST;

e.g., see [151, 43]). These surveys will probe both surviving subhalos, which are traced by satellite

galaxies and may perturb stellar streams, and disrupted subhalos, which contribute to the buildup

of the MW’s dark matter halo and may deposit their luminous content in the stellar halo.

A plethora of dark matter microphysics can impact the formation, internal structure, and dis-

tribution of subhalos within the MW (e.g., see Chapter 7 [332]). This situation is complicated by

baryonic physics, which also impacts the survival and internal structure of subhalos orbiting the

MW, largely due to the tidal effects of the Galactic disk (e.g., [144, 190]). It is therefore crucial to

understand how different aspects of the MW subhalo population respond to both dark matter physics

and baryons and to identify summary statistics that break degeneracies between these scenarios.

To explore these questions, we study the subhalo populations in simulations of MW-like systems

that include realistic Large Magellanic Cloud (LMC) analogs. We present new SIDM re-simulations

of these MW-like systems, and we compare the subhalo populations to those in a warm dark mat-

ter (WDM) model and in the presence of a Galactic disk using an analytic model calibrated to

hydrodynamic simulations. We describe how the velocity function, radial distribution, and spatial

distribution of MW subhalos can be used to disentangle SIDM, WDM, and disk suppression based on

the distinct physical mechanisms that impact the formation or survival of subhalos in each scenario.

Our results demonstrate that current observations of the MW satellite galaxy population, which

probe the velocity function and radial distribution of low-mass subhalos in the MW, can already

begin to distinguish dark matter models from both each other and baryonic effects.

Because of its recent, high-velocity infall into the MW, the LMC system provides a unique

testing ground for dark matter physics. The LMC is accompanied by several ultra-faint dwarf
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Model Mass-dependent
suppression

Radially-dependent
suppression

Anisotropic
suppression

fsub,LMC Physical driver

SIDM X X X 48± 13% Ram-pressure
+ tidal stripping

WDM X X∗ X 58± 11% Free-streaming
Disk X X X 60± 10% Tidal disruption

Table 10.1: Impact of SIDM, WDM, and the Galactic disk on the MW subhalo population. The
first column lists the MW subhalo population model. The second and third columns describe the
suppression of the subhalo velocity function and radial distribution. The fourth column describes
whether the suppression of the subhalo population is anisotropic. The fifth column lists the fraction
of subhalos with Vpeak > 20 km s−1 in the hemisphere that points from the MW halo center towards
the LMC, averaged over our two MW-like simulations. The final column describes the main physical
effect that impacts the MW subhalo population. The asterisk indicates that the shape of the WDM
radial distribution may change for subhalos below our Vpeak threshold.

galaxies [250, 356], , yielding an overabundance of satellites—and thus subhalos—in its vicinity, at

a distance of only ∼ 50 kpc [149, 333]. By using simulations tailored to match the LMC’s orbit

and satellite population, our analysis accounts for effects specific to the MW–LMC system. We

find that a significant fraction of the subhalos associated with the LMC are disrupted in our SIDM

simulations due to self-interactions within the LMC halo at early times. Due to the LMC’s plunging,

radial orbit, remaining LMC-associated subhalos are heavily stripped due to self-interactions with

particles in the MW halo. This signature of SIDM physics erases the spatial anisotropy in the

MW subhalo population caused by the LMC system in our CDM simulations, unlike WDM and

disk disruption scenarios. This phenomenon is also relevant for interpreting rapidly advancing

observations of satellite systems beyond the MW (e.g., [193, 316, 104]) in the context of SIDM.

This paper is organized as follows. In Section 10.3, we describe our MW-like CDM simulations,

our new SIDM re-simulations of these systems, and our WDM and disk disruption models. We

describe how each scenario impacts the MW subhalo population in Section 10.4. We discuss our

results and conclude in Section 10.5. Throughout, we define virial quantities using the [93] critical

overdensity ∆vir ' 99.2, set by the cosmological parameters in our simulations: h = 0.7, Ωm = 0.286,

Ωb = 0.047, and ΩΛ = 0.714 [315].

10.3 Methods

10.3.1 MW-like CDM Simulations

Our analysis is based on two CDM dark matter–only zoom-in simulations of MW-like halos origi-

nally presented in [315]. The highest-resolution particles in these simulations have a mass of 3 ×
105 M� h−1, and the Plummer-equivalent softening length in the highest-resolution regions is

170 pc h−1. Subhalos are well resolved down to a peak maximum circular velocity of Vpeak ≈
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Figure 10.1: Projections of the subhalo population in one of our MW-like simulations in CDM (top
left) and SIDM (top right), and for subhalos above a survival probability threshold corresponding
to the suppression of the peak velocity function in our WDM (bottom left) and disk disruption
(bottom right) models applied to the same CDM simulation. Bold markers show subhalos with
Vpeak > 20 km s−1, light gray markers show subhalos below this Vpeak threshold, and marker size is
proportional to Vpeak. In each panel, the black circle shows the virial radius of the MW host halo
(∼ 300 kpc), the diagonal line shows the plane defined by the current position of the MW (magenta
star) and LMC (cyan star), and transparent cyan stars show the LMC at previous snapshots as it
falls into the MW.
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10 km s−1, where Vpeak is the largest maximum circular velocity a halo attains over its entire his-

tory [315]. Halo catalogs and merger trees were generated using the Rockstar halo finder and the

consistent-trees merger tree code [47, 48].

These two simulations include both Gaia-Enceladus-like mergers at early times and realistic

LMC analog systems that fall into the MW within the last ∼ 2 Gyr on orbits consistent with LMC

proper motion measurements [250]. The subhalo populations in these simulations associated with

observable satellite galaxies are consistent with current Dark Energy Survey and Pan-STARRS1

measurements of the MW satellite population down to a peak virial subhalo mass of ∼ 108 M�. As

visualized in the top-left panel of Figure 10.1, there is an overabundance of subhalos in the vicinity

of the LMC, consistent with the number of LMC-associated satellites inferred from Gaia proper

motion measurements [333].

10.3.2 SIDM Simulations

We re-run both simulations described above in the presence of dark matter self-interactions using the

modified version of GADGET-2 presented in [39]. As emphasized in Chapter 9 [334], Rockstar is

not optimized for halo finding in SIDM simulations. To avoid difficulties introduced by halo finder

incompleteness, we only study subhalos with Vpeak > 20 km s−1, which are resolved with more

than ∼ 1000 particles at the time Vpeak is achieved. In addition, this threshold roughly corresponds

to the minimum Vpeak associated with observed MW satellite galaxies based on abundance matching

[333]. Thus, our results directly inform the interpretation of the subhalo population inferred from

MW satellite observations.

Chapter 9 [334] reported significant levels of subhalo disruption in SIDM simulations of a MW-

mass halo for SIDM models with cross sections of ∼ 1 cm2 g−1. The efficiency of subhalo disruption

is most sensitive to the self-interaction cross section at the orbital velocity scale, which is set by

the potential of the MW host halo (∼ 200 km s−1). We therefore study an SIDM model with a

total cross section of 0.1 cm2 g−1 that is velocity independent on the scales of interest for our study,

and we expect our main results to generalize to velocity-dependent models with larger cross sections

at lower velocities. Because there are potentially significant quantitative differences between the

subhalo populations predicted by various SIDM N -body codes (e.g., see the discussion in Chapter 9

[334]), we only focus on the qualitative trends imprinted by SIDM on the MW subhalo population.

The top-right panel of Figure 10.1 shows the subhalo population in one of our SIDM simulations,

which is clearly anisotropically suppressed relative to CDM, particularly at low subhalo masses.

10.3.3 WDM Model

We study the impact of thermal relic WDM on the subhalo populations in our MW-like simulations

analytically. In particular, we assign a weight to each subbhalo in our CDM simulations based on

the probability it survives in a corresponding WDM simulation. We estimate this probability using a
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fitting function that describes the suppression of the WDM subhalo mass function in simulations of

MW-mass systems. Several fitting functions have been reported based on different WDM simulations

[415, 26, 28, 299, 80]. Although these results vary, particularly below the cutoff scale [28], they are

in reasonable agreement for the WDM particle masses and subhalo masses relevant for our study.

We express the suppression of the WDM subhalo mass function relative to that in CDM as

dNWDM

dM
≡ fWDM (M,Mhm)

dNCDM

dM
, (10.1)

where dNWDM/dM (dNCDM/dM) is the WDM (CDM) subhalo mass function. Here, fWDM is

a suppression factor that depends on peak subhalo mass virial mass M and WDM particle mass

mWDM via the half-mode mass [332]

Mhm(mWDM) = 5× 108
(mWDM

3 keV

)−10/3

M�. (10.2)

We adopt the [299] suppression

fWDM(M,mWDM) =

[
1 +

(
αMhm(mWDM)

M

)β]γ
, (10.3)

where α = 2.7, β = 1.0, and γ = −0.99.

When evaluating subhalo population statistics below, we assign each subhalo a weight equal to

fWDM. We choose mWDM such that the abundance of WDM subhalos predicted by Equation 10.3

matches that in our SIDM simulations for Vpeak > 20 km s−1. This yields mWDM = 2.8 keV. This

WDM particle mass is ruled out by a variety of small-scale structure probes (e.g., [459, 232, 195, 226,

341, 332]), but we emphasize that there are large theoretical uncertainties underlying the detailed

relation between SIDM cross section and subhalo disruption [334]. We therefore leave a detailed

investigation of SIDM constraints to future work.

The procedure outlined above assumes that the impact of WDM on the MW subhalo population

can be expressed purely as a function of peak subhalo mass. Thus, our WDM model does not explic-

itly alter additional properties of the MW subhalo population, including its radial distribution (e.g.,

see [298]). Because subhalos of different masses above our Vpeak threshold do not exhibit signifi-

cantly different radial distributions in our CDM simulation, our predicted WDM and CDM subhalo

populations therefore have similar radial profiles, consistent with the results of WDM simulations

for the subhalo masses considered in this study (e.g., [26, 299, 80, 298]). The bottom-left panel of

Figure 10.1 shows that WDM significantly suppresses the abundance of low-mass subhalos in our

simulations relative to CDM.
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10.3.4 Disk Disruption Model

In analogy to our WDM procedure, we model the impact of baryonic physics on the MW subhalo

population by assigning a weight to each subhalo based on the probability it survives in a corre-

sponding simulation with baryons. To estimate this probability, we adopt the fitting function from

[404], which is derived using a suite of zoom-in simulations of MW-mass halos from the Feedback

in Realistic Environments (FIRE) project.1 The main physical driver of subhalo disruption in these

hydrodynamic simulations is tidal disruption due to the central galaxy’s disk; this mechanism most

strongly impacts subhalos with close pericentric passages (e.g., [190, 337, 383, 472]).

[404] find that subhalo disruption in hydrodynamic simulations can be described as a function

of subhalo Galactocentric radius,

dNdisk

dM
≡ fdisk (r)

dNCDM

dM
, (10.4)

where

fdisk(r) =





0, 0 ≤ r < r0,

a
[
1− exp

(
− r−r0r1

)]
, r ≥ r0.

(10.5)

We use the best-fit parameters from [404] for the differential suppression of subhalos with peak

virial mass M > 8× 108 M�, which are most relevant for our results. This corresponds to a = 0.8,

r0 = 8 kpc, and r1 = 78 kpc in Equation ??. Following our WDM treatment, we assign each subhalo

a weight of fdisk when evaluating subhalo population summary statistics.

Several other algorithms and fitting functions have been proposed to model the impact of baryons

on subhalo populations in MW-mass systems. The prescription above predicts subhalo populations

that agree reasonably well with those predicted by the Chapter 2 [337] model, with slightly more

severe disruption at small Galactocentric radii. These predictions are also in broad agreement

with other embedded disk potential (e.g., [190, 259, 391]) and hydrodynamic (e.g., [501, 383, 472])

simulations. We therefore adopt Equation 10.5 as our fiducial disk disruption model. The bottom-

right panel of Figure 10.1 illustrates the suppression of subhalos in the inner regions of the MW

caused by the Galactic disk.

10.4 Results

10.4.1 Subhalo Velocity Function

The left panel of Figure 10.2 shows the number of surviving subhalos as a function of Vpeak in each

model.2 Disk disruption results in a roughly mass-independent suppression of subhalo abundance

1https://fire.northwestern.edu/
2Our results are qualitatively similar when expressed in terms of subhalo mass functions (e.g., using peak virial

mass) rather than velocity functions.

https://fire.northwestern.edu/
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Figure 10.2: The effects of SIDM, WDM, and the Galactic disk on the velocity function and radial
distribution of surviving subhalos in one of our MW-like simulations. Left panel: number of sub-
halos as a function of peak maximum circular velocity Vpeak in our CDM simulations of MW-like
systems (black dashed), SIDM simulations (blue), and predicted by applying our WDM (red) and
disk disruption (green) models to our CDM simulations. Disruption due to the Galactic disk is ap-
proximately mass-independent, while SIDM and WDM preferentially disrupt less massive subhalos.
Right panel: same as the left panel, but for the cumulative radial distribution of subhalos in units
of the MW host halo virial radius. The suppression of subhalo abundance in WDM is not a strong
function of Galactocentric radius, while SIDM and the disk preferentially disrupt subhalos at small
radii. In the bottom panels, the dashed blue line shows the suppression of the subhalo population
for the same SIDM model in a MW-mass system without a realistic LMC analog.
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relative to CDM. This is due to the fact that subhalos in our disk disruption model are only sup-

pressed based on their Galactocentric radius, which is not significantly correlated with subhalo mass

in our CDM simulations. The subhalo Vpeak function in our disk disruption model therefore retains

an approximate power-law form with a lower normalization than in CDM.

Meanwhile, WDM and SIDM both preferentially reduce the abundance of low-mass subhalos

relative to CDM. In WDM, this results from free-streaming effects that suppress the linear matter

power spectrum on small scales and inhibit the formation of low-mass halos (e.g., [416]). In SIDM,

this mass-dependent suppression is caused by enhanced tidal stripping in the presence of ram-

pressure interactions between subhalos and the MW host halo, as described in Chapter 9 [334].

Thus, unlike for WDM, the reduction in subhalo abundance in our SIDM simulations does not

necessarily imply a corresponding reduction in the abundance of satellite galaxies.

While we match the amplitude of WDM and SIDM subhalo abundances by construction, the

detailed agreement between the corresponding Vpeak functions shown in Figure 10.2 is coincidental.

In particular, these Vpeak functions deviate for Vpeak < 20 km s−1 or for a different choice of the Vpeak

threshold at which subhalo abundances are matched. This is expected because low-mass subhalos

are dynamically disrupted in SIDM, while their formation is suppressed in WDM due to the effects

of free-streaming on the linear matter power spectrum. Nonetheless, our qualitative result—i.e.,

that the abundance of lower-mass subhalos is preferentially suppressed in WDM and SIDM, unlike

in a disk disruption scenario—remains robust.

Interestingly, the suppression of the subhalo velocity function for the same SIDM model run on

a MW-mass system without a realistic LMC analog (shown by the dashed blue line in the bottom

panel of Figure 10.2) is less severe in terms of both amplitude and mass dependence. The difference

between this alternate simulation and our fiducial results is consistent with the enhanced disruption

of LMC subhalos in our MW-like simulations discussed in Section 10.4.3.

Thus, the Galactic disk suppresses the abundance of subhalos relative to CDM in a mass-independent

manner, while the abundance of lower-mass subhalos is preferentially suppressed in WDM and SIDM.

10.4.2 Subhalo Radial Distribution

The right panel of Figure 10.2 shows the radial distribution of surviving subhalos in units of the

MW host halo virial radius. We observe the following trends:

1. Zero subhalos with Vpeak > 20 km s−1 survive within a Galactocentric distance of ∼ 30 kpc in

our fiducial disk disruption model;

2. SIDM subhalo abundances are suppressed relative to CDM at small Galactocentric radii;

3. The suppression of subhalo abundance in WDM is roughly independent of Galactocentric

radius.
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These results are consistent with simulations that include disk disruption (e.g., [190, 383, 472])

and SIDM physics (e.g., [391, 334, 435]). We emphasize that—in both the disk disruption and

SIDM cases—the radius within which subhalos are most strongly disrupted is model and resolution-

dependent. For example, [205] show that the abundance of surviving subhalos predicted by cosmo-

logical simulations within ∼ 0.1 Rvir is strongly resolution-dependent due to both stripping below the

mass resolution limit and artificial disruption. These numerical uncertainties may be exacerbated

in SIDM simulations due to imperfect halo finding [334].

Thus, disk disruption and SIDM preferentially suppress the abundance of subhalos in the inner

regions of the MW, while WDM-like models that inhibit the formation of low-mass halos suppress

the abundance of subhalos that are expected to host dwarf galaxies in a radially-independent manner.

10.4.3 Spatial Anisotropy in the MW Subhalo Population

We are uniquely poised to study the spatial distribution of MW subhalos because our simulations

include realistic LMC analog systems. Averaged over our two CDM simulations, 60 ± 10% of the

total MW subhalo population with Vpeak > 20 km s−1 (including higher-order subhalos) is found in

the hemisphere pointing towards the LMC from the host halo center, where uncertainties indicate

1σ Poisson scatter. This anisotropy results from the population of low-mass subhalos that fall into

the MW with the LMC; we refer to subhalos that were within the LMC’s virial radius at the time of

LMC infall as “LMC-associated.” In particular, ∼ 80% of the LMC-associated subhalos above our

Vpeak threshold are found in the LMC hemisphere at z = 0, contributing ∼ 33% to the total MW

subhalo population in this direction. Recent discoveries and proper motion measurements of satellite

galaxies in the Southern hemisphere indicate similar anisotropy and LMC association statistics in

the data (e.g., [149, 356]).

The spatial anisotropy of the CDM subhalo distribution responds differently to various mech-

anisms that suppress the formation or survival of low-mass subhalos. In the presence of baryons,

“pre-processing” in the LMC halo may reduce subhalo abundances by up to ∼ 30%, which is signif-

icantly lower than the ∼ 50% disruption effect due to the MW disk [238]. Because the efficiency of

subhalo disruption due to the LMC galaxy is highly uncertain, our disk disruption model only ac-

counts for the impact of the MW disk on subhalo abundances. This model does not affect anisotropy

statistics compared to our CDM simulations (although Poisson uncertainties increase due to the over-

all decrement in subhalo abundance) because the radial distribution of LMC-associated subhalos is

approximately unbiased relative to the rest of the MW subhalo population.

The spatial anisotropy introduced by the LMC system is slightly reduced in WDM but remains

consistent with our CDM result within 1σ Poisson uncertainty. This is due to the fact that the mass

distributions for MW and LMC-associated subhalos are similar. Thus, WDM does not preferentially

suppress the formation of LMC-associated subhalos relative to other MW subhalos with similar

masses.
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SIDM has the most noticeable impact on the spatial distribution of surviving subhalos, erasing

the anisotropy in our CDM simulations. In particular, 48±13% of subhalos with Vpeak > 20 km s−1

are found in the LMC hemisphere, averaged over our two SIDM simulations. Two effects reduce the

anisotropy of the MW subhalo population in SIDM:

1. Pre-processing in the LMC halo: self-interactions with LMC halo particles disrupt ∼ 50% of

LMC-associated subhalos above our Vpeak threshold prior to LMC infall into the MW. These

disrupted subhalos typically have orbital velocities above ∼ 200 km s−1; thus, this mechanism

mainly depends on the SIDM cross section at the same velocity scale that influences disruption

within the MW halo.

2. Ram-pressure stripping and tidal disruption by the MW halo: our LMC analogs are on plunging

radial orbits, which enhances ram-pressure stripping due to self-interactions and makes LMC-

associated subhalos more susceptible to tidal disruption.3

Both of these effects depend on the specific history of the MW–LMC system; it is therefore crucial

to study the impact of dark matter physics on subhalo populations in realistic settings constrained by

the accretion history of the MW and the orbital properties of its most massive satellites. Although

the anisotropy of the MW subhalo population is only affected at the ∼ 1σ level for subhalos with

Vpeak > 20 km s−1, Poisson uncertainties shrink quickly as this lower limit is decreased. Thus, probes

of the MW subhalo population below the galaxy formation threshold—including the statistics and

density profiles of stellar streams over the full sky—hold valuable information about SIDM physics.

Thus, the overabundance of subhalos in the direction of the LMC expected in CDM is largely unaf-

fected by the Galactic disk and WDM, while SIDM can erase this anisotropy due to self-interactions

within the LMC halo at early times and during its infall into the MW.

10.5 Discussion and Conclusion

We have demonstrated that the velocity function, radial distribution, and spatial anisotropy of the

MW subhalo population respond in distinct ways to different kinds of dark matter and baryonic

physics. These properties of the MW subhalo population can be inferred by forward modeling MW

satellite galaxies and by studying the abundance, spatial distribution, and density perturbation

profiles of stellar streams. Measurements of both probes are expected to rapidly progress in the

coming years [151, 43].

Although we restricted our study to subhalos with Vpeak > 20 km s−1, which MW satellite

observations currently probe, many of our qualitative results hold for lower-mass subhalos probed

by other tracers of surviving and disrupted substructure in the MW. For example, inferring the

3The same mechanism disrupts subhalos associated with the Gaia-Enceladus analogs in our simulations as they
approach pericenter, exacerbating the effect discussed in [152].
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population of low-mass subhalos that perturb stellar streams is a promising avenue for studying

dark matter physics (e.g., [76, 41, 120]), and our results inform predictions for subhalo–stream

encounters. For example, we predict that the relative rate of subhalo–stream encounters towards

and away from the LMC is sensitive to SIDM physics. The velocity function, radial distribution, and

spatial anisotropy trends we report also impact the interpretation of direct and indirect detection

results that rely on estimates of the nearby subhalo population.

Additional properties of the MW subhalo population are altered in each scenario we consider. For

example, surviving subhalos in our SIDM simulations can be “cored” by self-interactions and often

have lower present-day maximum circular velocities than their counterparts in other models [334].

This effect is expected to be less prevalent in the WDM and disk disruption models we consider

because disruption due to the Galactic disk is impulsive [190], while WDM free–streaming does not

produce significant cores for the WDM particle masses and subhalos of interest (e.g., [312]).

We considered SIDM, WDM, and disk disruption separately because the efficiency of subhalo

disruption due to the Galactic disk is not known in detail. For example, the [333] MW satellite

population analysis finds that as few as ∼ 30% (and up to ∼ 90%) of subhalos can survive disk

disruption while remaining compatible with MW satellite observations. These constraints on dis-

ruption efficiency also depend on uncertainties in the MW halo mass (e.g., [341]). Combining SIDM

or WDM physics with the effects of the disk may introduce degeneracies (e.g., between the SIDM

and disk disruption radial distributions); thus, it is necessary to thoroughly understand the impact

of each scenario separately.

Finally, we note that [391] performed a similar study, and we highlight several synergies and

differences between this analysis and our work. [391] studied the subhalo Vmax function and radial

distribution in CDM, SIDM, and disk disruption scenarios, finding that CDM and SIDM subhalo

populations are similar in terms of their Vmax functions and radial distributions in the presence

of an embedded disk potential. The radial distributions in our SIDM simulations are consistent

with these findings, while our subhalo velocity functions are more suppressed relative to CDM at

low masses. We emphasize that SIDM simulation codes may not be converged even with respect

to the abundance of surviving subhalos (e.g., see the discussion in Chapter 9 [334]). Exploring

these potential discrepancies in a dedicated code comparison study is essential before using the MW

subhalo population to constrain the SIDM cross section.

Our results indicate that the impact of dark matter physics on the MW subhalo population can

depend on the specific history of the MW–LMC system. Future work that expands the available suite

of MW-like simulations ([94] in prep.) and explores modifications to initial conditions to engineer

appropriate mass accretion histories (e.g., [396, 437]) is therefore compelling.



Chapter 11

Combining Milky Way Satellites

and Strong Lensing

Abstract

Joint analyses of small-scale cosmological structure probes are relatively unexplored and promise

to advance measurements of microphysical dark matter properties using heterogeneous data. Here,

we present a multidimensional analysis of dark matter substructure using strong gravitational lenses

and the Milky Way (MW) satellite galaxy population, accounting for degeneracies in model predic-

tions and using covariances in the constraining power of these individual probes for the first time.

We simultaneously infer the projected subhalo number density and the half-mode mass describing

the suppression of the subhalo mass function in thermal relic warm dark matter (WDM), Mhm, using

the semianalytic model Galacticus to connect the subhalo population inferred from MW satellite

observations to the strong lensing host halo mass and redshift regime. Combining MW satellite

and strong lensing posteriors in this parameter space yields Mhm < 107.0 M� (WDM particle mass

mWDM > 9.7 keV) at 95% confidence and disfavors Mhm = 107.4 M� (mWDM = 7.4 keV) with a

20:1 marginal likelihood ratio, improving limits on mWDM set by the two methods independently

by ∼ 30%. These results are marginalized over the line-of-sight contribution to the strong lensing

signal, the mass of the MW host halo, and the efficiency of subhalo disruption due to baryons and

are robust to differences in the disruption efficiency between the MW and strong lensing regimes

at the ∼ 10% level. This work paves the way for unified analyses of next-generation small-scale

structure measurements covering a wide range of scales and redshifts.

189
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11.1 Paper Status and External Contributions

This chapter is in press in the Astrophysical Journal with the title, “Dark Matter Constraints from

a Unified Analysis of Strong Gravitational Lenses and Milky Way Satellite Galaxies,” on which I am

the corresponding author. It is the result of a collaboration with Simon Birrer, Daniel Gilman, Risa

Wechsler, Xiaolong Du, Andrew Benson, Anna Nierenberg, and Tommaso Treu. Simon and Daniel

led the strong lensing analysis that we combine with Milky Way satellite galaxies in this chapter;

along with Risa, they worked with me to interface the analyses and interpret the joint constraints.

Xiaolong and Andrew provided the Galacticus output used to facilitate this comparison, and all

of the coauthors made editorial contributions to the text.

11.2 Introduction

The ΛCDM cosmological paradigm assumes a cold, collisionless dark matter (CDM) particle and

therefore predicts a plethora of dark matter structure and substructure on extremely small cosmic

scales (e.g., [204, 137, 466]). It is often argued that small-scale structure measurements represent

an outstanding test to this prediction (e.g., see [97] for a review); yet, our understanding of the

distribution of dark matter structure on nonlinear scales is rapidly progressing. Recent analyses of

Milky Way (MW) satellite galaxies using data over nearly the full sky—including the population of

ultrafaint dwarf galaxies discovered by deep photometric surveys over the last decade—have only

recently been performed (e.g., [149, 333, 332]). Meanwhile, measurements of stellar streams from the

Gaia mission are beginning to reach the requisite precision to infer the signatures of perturbations

from nearby low-mass subhalos [41, 76]. On extragalactic scales, the number of compact-source

strong gravitational lenses available for substructure analyses has drastically increased in recent

years (e.g., [344, 343, 342]), and modeling efforts have advanced in step (e.g., [196, 195, 226]).

Analyses of resolved distortion in extended strong lensing observations from adaptive optics and

space-based imaging have also rapidly progressed (e.g., [217, 62, 455]).

All of the recent small-scale structure measurements outlined above are consistent with the

CDM paradigm and have therefore been used to constrain microphysical properties of dark matter

that would reduce its small-scale clustering [41, 195, 332]. Although analyses of different probes

reach consistent dark matter constraints, to date they have been performed independently and

with different modeling assumptions to address heterogeneous astrophysical systematics. Crucially,

if evidence for a departure from the CDM paradigm arises, it must be confirmed across different

redshifts and physical scales. It is therefore critical to jointly model and analyze small-scale structure

probes. This effort will be particularly important to maximize small-scale structure measurements

from next-generation surveys including the Rubin Observatory Legacy Survey of Space and Time

(LSST), which will enable the discovery of vastly more strong gravitational lenses (e.g., [114]) and

revolutionize the search for dwarf galaxies and measurements of stellar streams in the local universe
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(e.g., [151]).

Jointly modeling the low-mass halo and subhalo populations relevant for various small-scale

structure measurements requires precise theoretical predictions for the abundance and structure of

these small systems—which probe highly nonlinear cosmological modes—as a function of redshift

and environment. Even cosmological parameters play an important role given the precision of

current data; for example, varying the running of the spectral index within Planck uncertainties

significantly affects predictions for subhalo abundances [435], while other cosmological parameters

including Ωm and σ8 have subleading effects that may become important to incorporate in models

of next-generation small-scale structure data [146]. Moreover, a variety of other theoretical and

numerical uncertainties must be marginalized over in joint likelihood analyses to robustly claim

evidence for non-CDM physics. For example, specific systematics of interest for modeling the MW

satellite galaxy population include the faint end of the galaxy–halo connection, the total mass of

the MW halo, and the mass and accretion time of the Large Magellanic Cloud (LMC; [341, 332]).

Meanwhile, the orbits of dark matter subhalos in the inner regions of the MW halo must be predicted

precisely in a statistical sense while accurately modeling the effects of specific baryonic structures

to infer dark matter properties from stellar stream measurements. For strong lensing, the mass–

concentration relation in both CDM and alternative dark matter models is a key uncertainty that

must be accounted for [217, 195, 197, 323], along with the host halo properties and selection functions

of strong lenses, all while accurately modeling the differential signal contributed by substructure and

small halos along the line of sight [133, 196].

Here, we perform a joint analysis of small-scale dark matter measurements by combining the

results of recent strong gravitational lensing and MW satellite inferences in a multidimensional

parameter space to break modeling degeneracies.1 In particular, we combine these results in a

parameter space that includes the mass scale describing the suppression of the subhalo mass function

for thermal relic warm dark matter (WDM) and the amplitude of the projected subhalo mass function

at the strong lensing host halo mass and redshift scale. In particular, we combine the constraints

on these quantities derived from (i) the magnification and flux ratio data from quadruply imaged

strong gravitational lenses presented in [344, 343, 342] and modeled in [195], and (ii) the abundance

and properties of MW satellite galaxies over ∼ 75% of the sky presented in [149] and modeled in

Chapters 4–7 [333, 332]. We employ the semianalytic model Galacticus [56, 373] to translate the

subhalo population inferred from MW satellite measurements to the strong lensing host halo mass

and redshift scale by calibrating its predictions using cosmological zoom-in simulations of MW-like

halos [315]. Thus, our work lays the foundation for joint semianalytic models of small-scale structure

that are benchmarked by high-resolution simulations at each halo mass and redshift scale.

1A joint small-scale structure analysis by [161] appeared during the preparation of this manuscript. We comment
on the differences between the methodology and results of our study and this work in Section 11.8.2.
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Our joint analysis breaks degeneracies among the amplitude of the projected subhalo mass func-

tions inferred from MW satellite and strong lensing observations, thereby improving limits on devi-

ations from the CDM paradigm that have been derived independently from these data. Specifically,

we show that our combined analysis improves the lower limit on the WDM particle mass by ∼ 30%.

The framework we develop for combining MW satellite and strong lensing data is particularly im-

portant because strong lensing is potentially sensitive to the presence of halos with masses below the

threshold for galaxy formation, a mass scale that dwarf galaxy observations constrain. We therefore

quantify the observational and theoretical advances necessary to robustly infer the presence of such

dark halos, showing that this outcome is within the reach of next-generation small-scale structure

measurements.

This paper is organized as follows. In Section 11.3, we describe the analytic model of dark matter

substructure that underlies our joint analysis. We then describe the MW satellite data and model

that enters our analysis in Section 11.4 and the strong lensing data and model in Section 11.5. We

combine these analyses in Section 11.6, present our results in Section 11.7, discuss key systematics

and compare them to previous work in Section 11.8, and conclude in Section 11.9. Throughout, we

adopt the following cosmological parameters, following both [195] and [332]: h = 0.7, Ωm = 0.286,

ΩΛ = 0.714, σ8 = 0.82, and ns = 0.96 [218].

11.3 Dark Matter Substructure Model

We begin by describing the analytic model of dark matter substructure used to connect the subhalo

populations probed by MW satellite and strong lensing observations. In particular, we describe our

model for the projected subhalo mass function (SHMF; Section 11.3.1), its dependence on host halo

mass and redshift (Section 11.3.2), and the efficiency of subhalo disruption due to baryons (Section

11.3.3). We then describe our model for the impact of WDM physics on subhalo abundances (Section

11.3.4) and concentrations (Section 11.3.5).

11.3.1 Projected subhalo mass function

Strong lensing and MW satellites probe low-mass subhalos within host halos at different mass and

redshift scales. Specifically, strong lensing probes both the projected dark matter substructure in

the lens system and small-scale structure along the line of sight, while MW satellites probe the three-

dimensional distribution of subhalos traced by luminous satellite galaxies within the MW. Because

current strong lensing analyses are not highly sensitive to the radial distribution of subhalos within

the host halo of the lens, we focus on the statistics of projected subhalo populations in this paper,

although we will describe how observations of the radial distribution of MW satellites break model

degeneracies.

To simultaneously predict the subhalo populations relevant for MW satellite and strong lensing
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studies, we construct an analytic model for projected subhalo abundances that depends on the

host halo mass, Mhost, and redshift, zhost. In particular, we express the projected SHMF—i.e., the

differential number of subhalos within a host halo, in projection—by generalizing the form in [195],

d2Nsub

dMdA
≡ Σsub(Mhost, zhost)

M0

(
M

M0

)α
FCDM(Mhost, zhost), (11.1)

where M denotes subhalo mass, A denotes the unit area, M0 = 108 M� and α is the power-law

slope of the SHMF. In Equation 11.1, Σsub(Mhost, zhost) is the projected number density of subhalos

within the virial radius of a host halo of mass Mhost at redshift zhost, including the effects of baryonic

physics, and FCDM(Mhost, zhost) captures the dependence of the projected SHMF on Mhost and zhost

in CDM only (i.e., modulo the effects of baryonic physics) as described in Section 11.3.2. We discuss

the impact of halo boundary definitions in Section 11.6.

Our model of the MW satellite population is based on the Chapter 7 [332] analysis, which defines

subhalo mass using the peak Bryan–Norman virial mass Mpeak (see Appendix F.1 for details).

Meanwhile, our strong lensing constraints are based on the [195] analysis, which uses M200 values

relative to the critical density at z = 0, with subhalo masses evaluated at infall to compute the WDM

SHMF and mass–concentration relation. Here, we simply interpret the peak virial mass values from

our MW satellite analysis as M200 values at infall. The peak virial masses of subhalos relevant for our

work are on average a factor of ∼ 2 larger than their M200 values at infall in the cosmological zoom-

in simulations our MW satellite analysis is based on, largely due to pre-infall tidal stripping (e.g.,

[46, 480]). Thus, converting Mpeak to M200 would further strengthen our joint WDM constraints;

however, because changing this mass definition would nontrivially affect the abundance-matching

model used in our satellite analysis, we leave a detailed investigation of this point to future work

that combines satellite and lensing inferences at the likelihood level.

11.3.2 CDM host mass and redshift dependence

We model the dependence of the projected SHMF on host halo mass and redshift with the functions

Σsub(Mhost, zhost) and FCDM(Mhost, zhost). Both of these terms play a key role in our joint analysis

because they allow us to relate the subhalo populations corresponding to low-redshift, group-mass

strong lens host halos (Mlens ∼ 1013 M�, zlens ∼ 0.5) to the regime of the MW halo today (MMW ∼
1012 M�, zMW = 0).

FCDM(Mhost, zhost) captures the dependence of the SHMF on host halo mass and redshift in

CDM only (i.e., without baryons), including the effects of tidal disruption by the dark matter host

halo. This scaling depends on both the statistics of subhalo populations at infall, which can be

predicted reasonably precisely using extensions of the Press–Schechter formalism [371], and on the

dynamical evolution of subhalos after infall into a host. Detailed semianalytic models calibrated

to N -body simulations are necessary to model this evolution; we therefore follow [195] in using the
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Galacticus model [56, 373, 490], which predicts

logFCDM(Mhost, zhost) = k1 log

(
Mhost

1013 M�

)
+ k2 log(zhost + 0.5), (11.2)

where k1 = 0.88 and k2 = 1.7.

Section 11.3.3 describes our model for subhalo disruption due to baryons, which captures the

leading-order corrections to FCDM(Mhost, zhost). We do not model the impact of additional host

halo, central galaxy, and environmental variables on the projected SHMF, noting that this is an

important area for future work that ongoing observational efforts like the Satellites Around Galactic

Analogs (SAGA) survey are informing at the MW-mass scale [193, 316]. However, we emphasize that

the Chapter 7 [332] MW satellite analysis our work is based on self-consistently uses simulations that

are consistent with key secondary MW halo properties, including concentration, the existence of a

realistic LMC analog system, and a formation history constrained by Gaia observations. Meanwhile,

the [195] lensing analysis is not sensitive to host-to-host variation in Σsub beyond that modeled by

FCDM(Mhost, zhost) given the current number of strong lenses studied and the information available

per lens.

11.3.3 Subhalo disruption efficiency Due to baryons

We model Σsub(Mhost, zhost) with explicit host halo mass and redshift dependence to capture the

impact of baryonic physics on the projected SHMF. This extra dependence relative to the CDM

scaling is not captured by the FCDM(Mhost, zhost) term predicted by Galacticus, although baryonic

effects can be modeled in future Galacticus implementations. Although Σsub is not modeled with

explicit host mass and redshift dependence in [195], we include this dependence here because the

subhalo populations probed by strong lensing and MW satellites are subject to baryonic effects

that potentially impact the two regimes differently. Of these effects, the most important is tidal

disruption due to the central galaxy, which suppresses the SHMF at the ∼ 50% level (e.g., [132,

190, 203, 259, 383, 472]).2 Tidal disruption due to the central galaxy most strongly suppresses the

abundance of subhalos in the inner regions of the host halo or (more precisely) subhalos that accrete

early and have close pericentric passages [190, 337].

The projected SHMF is largely driven by the plethora of subhalos in the outer regions of the

host halo, which mitigates the impact of uncertainties in the strength and radial dependence of

these baryonic effects on our probe combination. Nonetheless, our joint analysis is sensitive to both

the amplitude of and differences in the efficiency of subhalo disruption due to baryonic physics as

a function of host halo mass and redshift. We measure Σsub(Mhost, zhost) in units of its value for

2Supernova feedback within sufficiently massive subhalos can also reduce their inner densities (e.g., [201, 369, 378])
and accelerate disruption, but hydrodynamic simulations suggest that this process has a subleading effect on the
SHMF compared to disruption by the central galaxy.



CHAPTER 11. COMBINING MILKY WAY SATELLITES AND STRONG LENSING 195

strong lens host halos, and we define the differential subhalo disruption efficiency due to baryons as

q ≡ Σsub(MMW, zMW)

Σsub(Mlens, zlens)
≡ Σsub,MW

Σsub
, (11.3)

where Σsub hereafter denotes the projected subhalo number density for strong lens host halos,

following [195], and Σsub,MW denotes the same quantity for the present-day MW system. In Equation

11.3, q represents the efficiency of subhalo disruption due to baryonic physics in the MW at z = 0 in

units of the efficiency of subhalo disruption due to baryonic physics in the group-mass halos and at

the redshifts probed by strong lensing. Note that larger (smaller) values of q represent less efficient

(more efficient) subhalo disruption in the MW relative to strong lenses and that differences in the

radial dependence of subhalo disruption at these scales (which we do not model) do not affect our

joint analysis of projected SHMFs.

Motivated by the results of hydrodynamic simulations, we assume that subhalo disruption due

to baryonic physics results in a mass-independent rescaling of the MW and strong lens projected

SHMFs. This allows us to respectively express the projected SHMFs probed by strong lensing and

MW satellite observations as

(
d2NCDM

dMdA

)

lensing

=
Σsub

M0

(
M

M0

)α
FCDM(Mlens, zlens), (11.4)

(
d2NCDM

dMdA

)

MW

=
Σsub,MW

M0

(
M

M0

)α
FCDM(MMW, zMW)

=
qΣsub

M0

(
M

M0

)α
FCDM(MMW, zMW). (11.5)

As noted above, strong lenses typically have halo masses of Mlens ≈ 1013 M� and redshifts of

zlens ≈ 0.5, and host massive elliptical galaxies [191, 36, 195]. In contrast, the MW has a halo mass of

MMW ∼ 1012 M� (e.g., [102, 106]) at zMW = 0, and is largely typical for a spiral galaxy of its stellar

mass, although it has a relatively quiescent formation history (e.g., [65, 168]). Subhalo disruption

due to the central galaxy in hydrodynamic simulations of MW-mass systems reduces the amplitude of

the SHMF by ∼ 50% relative to corresponding dark-matter-only simulations. This effect is roughly

mass independent and is not a strong function of redshift at late times. Although hydrodynamic

simulations of group-mass systems yield similar levels of SHMF suppression [172, 203, 384], this

regime is less well studied. We therefore adopt q = 1 in our fiducial analysis—i.e., equally efficient

subhalo disruption due to baryons in the MW and strong lens host halos—and we also test values

within a range of q ∈ [0.5, 2] when translating the projected SHMF amplitude inferred from MW

satellites to the strong lens host halo regime. We emphasize that, in detail, subhalo disruption

is expected to depend on the mass and formation history of the central galaxy along with host
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halo mass and redshift, and its efficiency will therefore differ among strong lenses. Although our

phenomenological model for differences in subhalo disruption due to baryonic physics is very simple,

we will demonstrate that the corresponding uncertainties do not significantly impact our joint dark

matter constraints.

11.3.4 Warm dark matter subhalo mass function

The half-mode mass, Mhm, represents a characteristic mass scale describing the suppression of the

linear matter power spectrum due to non-CDM physics; in particular, it corresponds (in linear

theory) to the wavenumber at which the ratio of the linear matter power spectrum drops to 25% of

that in CDM (e.g., [335]). In the case of thermal relic WDM, free streaming suppresses the power

spectrum on small scales, leading to a turnover in the halo and subhalo mass functions below Mhm,

which in turn depends on the WDM particle mass, mWDM (e.g., [415]). MW satellites constrain this

suppression by tracing the abundance of low-mass halos, while the subhalos surrounding the main

deflector in strong lenses affect image flux ratios.

The WDM SHMF can be expressed as

dNWDM

dM
≡ fWDM (M,Mhm)

dNCDM

dM
, (11.6)

where dNWDM/dM (dNCDM/dM) is the WDM (CDM) SHMF, and fWDM is a multiplicative sup-

pression factor that depends on subhalo mass M and the WDM particle mass mWDM via Mhm.

We follow both [195] and [332] by assuming that this SHMF suppression does not alter the (nor-

malized) radial distribution of subhalos, consistent with the findings of WDM simulations (e.g.,

[299, 77]). Thus, the same multiplicative factor fWDM (M,Mhm) dictates the suppression of the

projected SHMFs in our model, i.e.,

(
d2NWDM

dMdA

)

lensing

= fWDM(M,Mhm)

(
d2NCDM

dMdA

)

lensing

, (11.7)

(
d2NWDM

dMdA

)

MW

= fWDM(M,Mhm)

(
d2NCDM

dMdA

)

MW

. (11.8)

For concreteness and to allow for an apples-to-apples comparison between lensing and MW

satellite analyses, we focus on the case of thermal relic WDM, for which the SHMF can be expressed

as [297]

fWDM(M,Mhm) =

[
1 +

(
αMhm(mWDM)

M

)β]γ
, (11.9)

where Mhm is related to mWDM in our fiducial cosmology via [332]

Mhm(mWDM) = 5× 108
(mWDM

3 keV

)−10/3

M�. (11.10)
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In Equation 11.9, α, β, and γ are free parameters fit to simulation results. The analysis in Chapter 7

[332] uses the SHMF from [299], which corresponds to α = 2.7, β = 1.0, and γ = −0.99, while [195]

adopt an alternative fit to the SHMF from [299], corresponding to α = 1, β = 1, and γ = −1.3. As

described in Section 11.4, we rerun the MW satellite analysis with the [195] choice of WDM SHMF

suppression in order to self-consistently combine the posterior distributions from these analyses

according to the procedure in Section 11.6.3.

11.3.5 Warm dark matter mass–concentration relation

The delay in the collapse of small-scale density perturbations in WDM suppresses the central den-

sities of halos with masses near Mhm, altering the mass–concentration relation for both field and

subhalos. Because flux ratios in strong lenses are highly sensitive to the central densities of subhalos,

the altered mass–concentration relation provides crucial information relevant for forward-modeling

strong lensing signals [197]. We implement the WDM mass–concentration relation in a similar

manner to the suppression of the SHMF [195],

cWDM (M) ≡ f ′WDM (M,Mhm) cCDM (M) , (11.11)

where cWDM (M) (cCDM (M)) is the WDM (CDM) mass–concentration relation, and f ′WDM is a con-

centration suppression factor analogous to fWDM. In particular, we follow [195] by using cCDM(M)

from [138] with 0.1 dex scatter [155] and cWDM(M) from [77],

f ′WDM (M,Mhm) = (1 + z)
β(z)

(
1 + 60

Mhm

M

)−0.17

, (11.12)

where β(z) = 0.026z − 0.04.

Halo concentrations are affected over an order of magnitude in mass above the turnover in

the mass function set by Mhm. Thus, the mass–concentration relation must be accounted for to

self-consistently constrain WDM-like models using strong lensing data. Meanwhile, MW satellite

abundances are relatively insensitive to the mass–concentration relation because subhalo disruption

is mainly determined by subhalos’ orbital properties. Moving beyond abundances, the internal

dynamics of relatively bright MW satellite galaxies are often subject to baryonic effects that make it

difficult to robustly infer halo concentration (e.g., [378]). Meanwhile, it is difficult to obtain precise

dynamical measurements given the limited number of spectroscopically confirmed stars associated

with the faintest MW satellites; however, future spectroscopic measurements of these galaxies may

reach the precision necessary to provide complementary constraints [423].
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11.4 Milky Way Substructure Modeling

We now review the key components of the Chapters 4–7 [333, 332] MW satellite analyses our study

uses. These analyses, which respectively constrain the galaxy–halo connection in CDM and non-

CDM scenarios, are based on a forward model of the MW satellite population that combines high-

resolution simulations of halos selected to resemble the MW combined with an empirical model for

the galaxy–halo connection. These studies account for observational selection functions to fit the

MW satellite population in a statistical framework and infer the underlying SHMF, which in turn

constrains dark matter physics. For brevity, we mainly describe the Chapter 7 [332] WDM analysis,

and we refer the reader to specific sections of Chapter 4 [333] for further methodological details

throughout the following subsections.

11.4.1 Milky Way Satellite Data

Chapter 7 [332] analyzes the kinematically confirmed and candidate MW satellites from [149], which

were identified using Dark Energy Survey (DES) and Pan-STARRS1 (PS1) data. In particular,

[332] analyze 34 satellite galaxies with stellar masses from ∼ 102 M� to 107 M�. Together, the DES

and PS1 datasets cover more than ∼ 75% of the high-Galactic-latitude sky and provide exquisite

sensitivity near the LMC due to deep DES photometry in that region. Thus, [332] incorporate both

inhomogeneity and incompleteness in the observed MW satellite population through by using the

observational selection functions from [149]. Unlike other semiempirical models of the MW satellite

population (e.g., [241, 264, 340, 341]), [332] account for the effect of the LMC system on the observed

MW satellite population, which is essential to fit the full dataset.

11.4.2 Milky Way Satellite Model

Milky Way Zoom-in Simulations

The MW satellite model used in Chapter 7 [332] is based on high-resolution dark-matter-only zoom-

in simulations selected from the suite of 45 MW-mass hosts presented in [315]; technical details

on these simulations, which resolve subhalos with virial masses as small as ∼ 107 M� at z = 0,

are provided in Appendix F.1. In particular, [332] use the two most “MW-like” host halos in this

simulation suite to model the MW satellite population. These hosts have mass and concentration

values consistent with recent inferences based on Gaia data [102, 106]. In addition, they have early

major mergers that resemble the Gaia-Enceladus event as well as nearby, recently accreted LMC

analogs that match the satellite population and kinematics of the real LMC system (see [333] Section

7.2).
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Galaxy–Halo Connection Model

To infer the present-day abundance of subhalos in the MW, [332] combine the simulations described

above with an empirical model of the galaxy–halo connection (introduced in Chapters 3–4 [336,

333]), which populates subhalos with satellite galaxies in a parametric fashion. By combining these

predictions with observational selection functions derived from satellite searches in DES and PS1

data [149], the model is compared to observations assuming that satellites in each survey footprint

populate the parameter space of surface brightness and heliocentric distance according to a Poisson

process (see [333] Section 6). By marginalizing over the underlying Poisson rate in the calculation

of the likelihood for each surface brightness bin, the galaxy–halo connection and dark matter model

parameters are fit to data in a Markov Chain Monte Carlo (MCMC) framework.

The majority of the parameters in the Chapter 7 [332] WDM analysis govern the relationship

between satellite galaxies and the subhalos they inhabit. For example, these include the slope

and scatter of the abundance-matching relation between galaxy luminosity and peak halo maximum

circular velocity; the amplitude, scatter, and power-law slope of the relation between galaxy size and

halo size; and parameters governing the fraction of low-mass dark matter halos that host observable

galaxies. These parameters are not directly relevant for our strong lensing joint analysis because

lensing is sensitive to the integrated amount of matter in the lens galaxy and along the line of

sight, which is dominated by dark matter. However, they are crucial for robustly modeling the MW

satellite population and are marginalized over in our probe combination.

Here, we highlight the aspects of the [332] model that are most relevant for our joint analysis:

(i) Minimum halo mass (Mmin): The [332] satellite analysis is consistent with CDM predictions

down to a characteristic halo mass scale referred to as the minimum halo mass (Mmin). The

minimum halo mass is defined as the peak virial mass of the smallest surviving subhalo inferred to

host observed MW satellite galaxies and therefore represents the lowest mass down to which the

SHMF is directly constrained by current MW satellite observations. Mmin is jointly inferred along

with the fraction of halos that host observable galaxies, which is consistent with 100% down to

Mmin. The upper limit on Mmin is calculated by marginalizing over the full posterior distribution,

which yields Mmin < 3.2× 108 M� at 95% confidence in the [333] CDM fit (see [333] Sections 4.4,

7.4, and 7.5).

(ii) Baryonic disruption efficiency (B): The efficiency of subhalo disruption due to the Galactic

disk. Disruption probabilities due to baryonic physics for the subhalos in the dark-matter-only sim-

ulations described above are predicted using the Chapter 2 [337] subhalo disruption model, which

is calibrated to hydrodynamic simulations from the Feedback in Realistic Environments (FIRE)

project [190]. We note that several subsequent DM-only plus disk [259] and hydrodynamic simula-

tions [383, 404] of MW-mass halos report comparable amounts of subhalo disruption relative to the

FIRE simulations used to calibrate the [337] disruption model.
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To account for uncertainties resulting from the limited statistics of these training simulations,

[332] parameterize the efficiency of subhalo disruption by assigning the following disruption proba-

bility to each subhalo in the MW-like zoom-in simulations:

pdisrupt ≡ (pdisrupt,0)1/B, (11.13)

where pdisrupt,0 is the fiducial disruption probability predicted by the Chapter 2 [337] model, which

is a function of the orbital properties (including pericentric distance and accretion time) and internal

properties (including mass and maximum circular velocity at accretion) of subhalos. Adopting a

lognormal prior on B centered on the hydrodynamic training simulations (i.e., B = 1), the WDM

MW satellite analysis in Chapter 7 [332] yields disruption efficiencies that are consistent with hy-

drodynamic simulations and rule out very efficient (B > 1.9) and very inefficient (B < 0.2) subhalo

disruption at 95% confidence (see [333] Sections 4.3 and 7.4).

(iii) WDM half-mode mass (Mhm): The characteristic mass scale describing the suppression

of the WDM SHMF as defined in Equations 11.6 and 11.10. Due to the population statistics of

faint satellites corresponding to low-mass halos, MW satellite analyses have recently achieved upper

limits on the half-mode mass that fall below the minimum halo mass associated with observed

systems. In particular, for thermal relic WDM, [332] infer Mhm < 107.5 M� (mWDM > 7.0 keV)

at 95% confidence. [332] scale this constraint by a factor of the maximum possible ratio of the

MW halo mass relative to the average host halo mass of the two realistic MW zoom-in simulations

used in the inference, which increases Mhm constraints by ∼ 25% and yields a fiducial constraint of

Mhm < 107.6 M� (mWDM > 6.5 keV) at 95% confidence. We discuss the role of the MW halo mass

in detail in Section 11.8.1.

11.4.3 Constraints from Milky Way Satellite Observations

Here, we rerun the Chapter 7 [332] WDM MW satellite analysis using priors and a WDM SHMF

parameterization chosen to match the [195] lensing analysis, which allows us to self-consistently

perform our multidimensional satellite–lensing probe combination. In particular, we rerun the MW

satellite analysis adopting a uniform prior of B ∼ U(0, 3), which ensures that we match the shape

of the Σsub prior used in [195] based on the linear relation between B and Σsub we derive in Section

11.6.2. The use of a uniform (rather than lognormal) prior on B weakens the upper and lower limits

of the marginalized posterior from [332] (i.e., 0.2 < B < 1.9) from 95% to 68% confidence constraints.

In Appendix F.4, we show that the choice of this prior does not significantly impact our joint WDM

constraints.

We also use the WDM SHMF and the logMhm ∼ U(5, 10) prior assumed in [195]. The resulting

marginalized posterior distribution yields Mhm < 107.4 M� (mWDM > 7.4 keV) at 95% confidence

after MW host halo mass scaling, which is more constraining than the Chapter 7 [332] result despite
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Figure 11.1: Posterior distribution of WDM half-mode mass versus baryonic disruption efficiency
from our MW satellite analysis. B = 0 corresponds to zero additional subhalo disruption relative to
CDM, and larger values of B correspond to more efficient subhalo disruption due to baryons. The
color map shows the probability density normalized to its maximum value in this parameter space.
Solid (dashed) white lines indicate 1σ (2σ) contours for a two-dimensional Gaussian distribution.
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using a slightly less suppressed WDM SHMF. This is caused by the change in the lower limit

of our logMhm prior, which is two orders of magnitude lower than that adopted in [332]. As

described in Section 11.7.1 the lower limit of the Mhm prior is arbitrary unless we assume that

WDM physics manifests at a particular halo mass scale. Thus, we also quote likelihood ratios for

both our independent and combined constraints. We find that Mhm = 107.9 M� (mWDM = 5.2 keV)

is disfavored relative to the peak of the marginalized posterior at 105 M� with a 20:1 ratio, consistent

with the [332] result.

Figure 11.1 shows the posterior from our updated WDM fit to MW satellite data in the two-

dimensional parameter space of Mhm versus B, marginalized over seven other galaxy–halo connection

parameters. In Figure 11.1 and subsequent plots, we do not scale parameters to account for MW

host halo mass uncertainty unless explicitly noted. We reiterate that our MW satellite analysis

only probes systems down to a peak halo mass threshold of ∼ 3 × 108 M� at 95% confidence and

that Mhm constraints below this mass scale are driven by the population statistics of halos near the

minimum observable halo mass. This is demonstrated in Chapter 7 [332] (see Figure 7.1), which

shows that the WDM model ruled out by MW satellites at 95% confidence yields ∼ 25% suppression

in subhalo abundances relative to CDM at the minimum halo mass, which is about one order of

magnitude larger than Mhm.

There is not a strong degeneracy between B and Mhm in Figure 11.1 because B models the

disruptive effects of the MW disk, which suppresses the inner radial distribution of MW satellites

in an approximately mass-independent fashion, while Mhm models the mass-dependent suppression

of the projected SHMF caused by WDM free streaming. Figures 11.2 and F.1 illustrate the effects

of B on the projected SHMF and radial distribution of our MW-like simulations.

11.5 Strong Lens Substructure Modeling

Next, we describe the data and constraints from the [195] quadruply lensed quasar flux ratio analysis

our study is based on. Briefly, this analysis combines recent observations of the flux ratios and

image positions from eight quadruply imaged quasars with a forward model for the dark matter

substructure and line-of-sight halo populations to statistically infer the abundance and concentration

of low-mass halos, which in turn constrains the WDM particle mass. Again, we refer the reader to

specific sections of [195] for modeling details throughout the following subsections.

11.5.1 Strong Lensing Data

[195] analyze the narrow-line emission from six background quasars presented in [342] and from two

additional quasars presented in [344, 343]. These sources have a range of redshifts from 0.8 . zs .

3.7, while the deflectors span redshifts of 0.2 . zd . 1 and consist of massive elliptical galaxies.

Priors on the masses of the deflector halos are estimated using the stellar mass–velocity dispersion



CHAPTER 11. COMBINING MILKY WAY SATELLITES AND STRONG LENSING 203

108 109

Mpeak [M�]

10−14

10−13

10−12

10−11

d
2 N
/d
M

p
ea

k
d
A

[M
−

1
�

kp
c−

2 ]

M
m

in

B = 0

B = 1

B = 2

Σsub,MW = 0.03

Σsub,MW = 0.025

Σsub,MW = 0.02

Galacticus
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the zoom-in simulations used in our MW satellite inference as a function of baryonic disruption
efficiency B (B = 0 corresponds to CDM only and larger values of B correspond to more efficient
subhalo disruption due to baryons). Red lines show our analytic SHMF (Equation 11.5) using the
host halo mass and redshift scaling predicted by Galacticus, evaluated at the average halo mass
of our MW-like simulations with a slope of α = −1.92. Σsub,MW is chosen such that the SHMF
amplitude matches our simulations at the subhalo mass corresponding to the faintest observed
MW satellites, Mmin (dashed vertical line). Dark (light) red contours show 68% (95%) confidence
intervals from Galacticus for host halos with characteristics matched to our MW-like simulations.
We impose the resolution cuts described in Appendix F.1 on the simulation and Galacticus results.
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relation derived for strong lens galaxies by [36], and typically peak at ∼ 1013.3 M�. We note that

[195] excluded quads with main lensing galaxies that contain stellar disks from their analysis.

11.5.2 Strong Lensing Model

The presence of small-scale structure in the lens and along the line of sight can perturb the magnified

fluxes of unresolved quasar emission regions. The occurrence rate of the distribution of perturbed flux

ratios between the multiple images is therefore sensitive to the underlying population of (potentially

dark) subhalos within the host halo of the lens. Importantly, the strong lensing image position and

flux ratio data described above are also sensitive to dark matter structure along the entire line of

sight from the observer to the lensed quasars.

To perform the inference on the underlying subhalo and line-of-sight mass function population

parameters, [195] forward-model the quasar flux ratio with a large set of realizations of the small-scale

lensing structure through a multiplane ray-tracing scheme, which accounts for the finite emitting

source size and satisfies the astrometric constraints on the positions of the images. The likelihood for

the individual lenses’ population parameters was constructed with Approximate Bayesian Computa-

tion (ABC), and the joint posterior inference was performed by multiplying the individual likelihoods

(see [195] Section 2).

Unlike in the case of subhalos, the line-of-sight dark matter structure is unaffected by tidal

stripping and disruption. Thus, [195] modeled the line-of-sight dark matter distribution using a

Sheth–Tormen [421] mass function with the same WDM SHMF and concentration suppression factors

described above for subhalos, along with a contribution from the two-halo term near the main

deflector’s host halo and an overall scaling factor that allows for uncertainty in the halo mass

function amplitude of 20% (see [195] Section 5.3).

11.5.3 Constraints from Strong Lensing Observations

The [195] strong lensing analysis is consistent with CDM predictions for the slope and amplitude

of the halo and subhalo mass functions. In particular, [195] derive constraints on the SHMF slope

that are consistent with N -body simulations and find that the line-of-sight contribution is consistent

with Sheth–Tormen mass function predictions. Moreover, [197] demonstrate that these data are com-

patible with standard predictions for the CDM mass–concentration relation while self-consistently

modeling the effects of tidal stripping on subhalos.

Here, we highlight the constraints from [195] that enter our multidimensional MW satellite–

lensing probe combination:

(i) Projected subhalo number density (Σsub): The amplitude of the projected SHMF defined in

Equation 11.4. [195] place a lower limit of Σsub > 8× 10−3 kpc−2 at 95% confidence, which (given

the lens sample) implies the presence of halos in the 106 M�–109 M� range. Lower values of Σsub
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do not yield sufficient perturbations to reproduce the observed flux ratios, and the [195] analysis

does not place an upper limit on Σsub within the prior range of Σsub ∼ U(0, 0.1) kpc−2 (see [195]

Sections 3.2 and 6.2).

(ii) WDM half-mode mass (Mhm): The characteristic mass scale describing the suppression

of the WDM SHMF defined in Equations 11.6 and 11.10. For thermal relic WDM, [195] infer

Mhm < 107.8 M� (mWDM > 5.6 keV) at 95% confidence. This constraint results from the fact that

warmer models suppress the abundance and concentrations of low-mass halos that contribute to the

lensing signal (see [195] Sections 3.4 and 6.2).

Here, we reanalyze the [195] marginalized Mhm posterior using a slightly higher lower limit of the

logMhm prior. We find Mhm < 108 M� (mWDM > 4.9 keV) at 95% confidence, which is slightly less

constraining than the [195] result. Again, we also calculate likelihood ratios due to the ambiguity of

the Mhm prior and find that Mhm = 108.7 M� (mWDM = 3.0 keV) is disfavored relative to the peak

of the marginalized posterior at 106.4 M� with a 20:1 ratio, consistent with [195].3

The right panel of Figure 11.3 shows the posterior distribution from the fit to strong lensing data

in [195] in the two-dimensional parameter space of Mhm versus Σsub, marginalized over the SHMF

slope and line-of-sight mass function amplitude. There is a moderate degeneracy between Σsub and

Mhm, particularly at high values of Σsub; in this regime, it is difficult to distinguish the coincident

suppression of the WDM SHMF and mass–concentration relation relative to CDM from changes to

the normalization of the CDM SHMF.

11.6 Joint Analysis Methodology

Having described the data, models, and constraints that enter our joint analysis, we now describe our

procedure for combining MW satellite and strong lensing constraints in a shared, multidimensional

parameter space. In particular, we qualitatively outline our probe combination procedure (Section

11.6.1) and present our method for translating the subhalo disruption efficiency inferred from our

MW satellite analysis to projected subhalo number density at the strong lensing scale (Section

11.6.2). We then describe the statistics of our probe combination (Section 11.6.3).

11.6.1 Probe Combination Procedure

Our probe combination qualitatively proceeds as follows; these steps are described in detail in the

following subsections:

1. We compare Galacticus predictions for MW-mass halos to the projected SHMF inferred

from the MW satellite population (Figure 11.2) to construct a relation between the amplitude of

3We have resolved minor errors in the Mhm–mWDM conversion and likelihood ratios quoted in the original version
of [195].
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Figure 11.3: Left panel: posterior distribution of WDM half-mode mass versus projected subhalo
number density at the strong lensing scale inferred from the MW satellite posterior, transformed
according to the procedure in Section 11.6.2, with q = 1 (i.e., for equally efficient subhalo disruption
due to baryons at the MW and strong lensing host halo mass and redshift scales). Right panel:
posterior distribution in the same parameter space from the [195] strong lensing analysis. The
vertical band labeled “Σsub Prior” shows the range of Σsub inferred from the MW satellite posterior
in our fiducial joint analysis (i.e., 0.015 kpc−2 ≤ Σsub ≤ 0.03 kpc−2). In both panels, color maps
show the probability density normalized to its maximum value in each parameter space, and solid
(dashed) white lines indicate 1σ (2σ) contours for a two-dimensional Gaussian distribution.

the projected SHMF (Σsub,MW) and the efficiency of subhalo disruption due to baryons in the MW

(B);

2. We use this relation to translate the B–Mhm posterior from our MW satellite analysis (Figure

11.1) into a Σsub,MW–Mhm posterior distribution;

3. For a given value of the differential subhalo disruption efficiency q, we use Equation 11.3 to

translate Σsub,MW to the strong lensing host halo mass and redshift regime, which yields a Σsub–Mhm

posterior from MW satellites that can be combined with the strong lensing posterior (Figure 11.3);

4. We construct a joint Σsub–Mhm likelihood by multiplying the MW satellite and strong lensing

distributions according to the procedure in Section 11.6.3 (Figure 11.4).

This method relies on several simplifying assumptions that could yield additional information if

they are self-consistently addressed in a joint likelihood analysis using a model that simultaneously

predicts the halo and subhalo distributions relevant for MW satellite and strong lensing analyses.

We describe these areas for future work in Section 11.8.1.
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11.6.2 Inferring Σsub from Milky Way Satellites

To connect the host halo mass and redshift regimes probed by strong lensing and MW satellites, we

first construct a relation between the subhalo disruption efficiency B inferred from our MW satellite

analysis and the projected subhalo number density Σsub,MW predicted by evaluating Galacticus at

the MW halo mass scale. We then translate Σsub,MW to Σsub at the strong lensing host halo mass

and redshift scale using the dark matter substructure model described in Section 11.3.

Figure 11.2 shows the average z = 0 projected SHMF from the two realistic zoom-in simulations

used in our MW satellite analysis for our fiducial disruption model calibrated to hydrodynamic

simulations (i.e., B = 1) and for bracketing values of the subhalo disruption efficiency (i.e., B = 0

and B = 2) that are ruled out at greater than 68% confidence by MW satellite data as discussed

in Section 11.4. To construct the projected SHMF predicted by our analytic substructure model,

we use Equation 11.5 with a slope of α = −1.92 and with FCDM(MMW, zMW) evaluated at the

mean virial mass of our simulated host halos, MMW = 1.4× 1012 M�, and zMW = 0 to account for

the CDM dependence on host halo mass and redshift. The zoom-in simulation predictions shown

in these panels include both conservative resolution thresholds based on subhalos’ peak and z = 0

maximum circular velocity values as well as orphan subhalos (i.e., disrupted subhalos that are re-

inserted into the simulation and analytically evolved until z = 0) using the Chapter 3 [336] model;

we provide additional details in Appendix F.1. These choices allow for a more direct comparison to

the semianalytically evolved subhalo populations predicted by Galacticus, which are less prone to

artificial disruption [454, 453, 166].

We construct a relation between Σsub,MW and B by matching our analytic prediction from Equa-

tion 11.5 to the average projected SHMF predicted by our MW-like simulations as a function of

B, as illustrated in Figure 11.2. In particular, we match the amplitudes of the projected SHMFs

inferred from our MW satellite analysis and predicted by Equation 11.5 at the minimum observable

halo mass of 3.2× 108 M� and within a fixed radius of 300 kpc (roughly corresponding to the virial

radius of the MW host halo), chosen to match the Chapter 7 [332] analysis. Our choice to match

these SHMFs at the minimum halo mass is conservative because our MW satellite analysis is not

sensitive to subhalos below this mass scale at 95% confidence. We then translate Σsub,MW to the

strong lensing regime using Equation 11.3, which yields

Σsub

kpc−2 =
0.03− 0.005B

q
. (11.14)

This relation allows us to transform the B–Mhm MW satellite posterior from Figure 11.1 into the

Σsub–Mhm parameter space for a given value of q. Note that Σsub scales linearly with MW halo mass

because it measures the projected SHMF amplitude within a fixed physical radius in our model.

The B–Σsub,MW relation constructed above is only based on the amplitude of the projected SHMF

from our two realistic MW-like simulations, measured at the minimum halo mass scale of Mpeak =
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Figure 11.4: Joint marginal likelihood of WDM half-mode mass versus projected subhalo number
density at the strong lensing scales from our combined MW satellite–strong lensing posterior, trans-
formed according to the procedure in Section 11.6.2, with q = 1. The colormap shows the probability
density normalized to its maximum value in this parameter space. Solid (dashed) white lines indicate
1σ (2σ) contours for a 2-dimensional Gaussian distribution.
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3× 108 M�. In general, the procedure to infer Σsub,MW from an estimate of the MW SHMF should

account for both host-to-host variation in the SHMF within the range of MW host halo properties

allowed by observations and Poisson scatter in the SHMF given the range of subhalo masses probed

by MW satellite measurements. Our SHMF matching procedure is intentionally simplistic because—

as demonstrated in Appendix F.3—host-to-host and Poisson scatter in the projected SHMF near the

minimum halo mass scale are both subleading uncertainties compared to the range of differential

subhalo disruption efficiencies due to baryons that we explore. We therefore leave a statistically

rigorous construction of the B–Σsub relation to future work that propagates such uncertainties into

the joint analysis at the likelihood level.

The result of the transformation in Equation 11.14 is shown in the left panel of Figure 11.3 for

our fiducial model of q = 1 (i.e., for equally efficient subhalo disruption in the MW and strong

lensing host halos). The typical Σsub values favored by the MW satellite posterior for this choice of

q are significantly smaller than the largest values allowed by the [195] lensing analysis; we return to

this point below.

The lack of degeneracy observed between B and Mhm in Figure 11.1, which results from the joint

constraining power of the MW satellite radial distribution and luminosity function for subhalos

near the minimum observable halo mass, persists in the Σsub–Mhm parameter space. On the other

hand, strong lensing flux ratio statistics probe an integrated combination of subhalo masses and

concentrations. The lensing analysis is currently less sensitive to subhalos in specific mass ranges

than MW satellite population statistics and therefore exhibits a stronger Σsub–Mhm degeneracy in

Figure 11.3. However, because lensing measurements do not depend on the connection between

subhalos and luminous matter, they can probe subhalos below the minimum observable halo mass.

In Figure 11.2 and Appendix F.2, we also compare our simulation results to the SHMF in terms

of both peak and present-day subhalo mass and to the radial subhalo distribution predicted by

Galacticus for 14 halos selected to match the characteristics of our MW-like simulations. In all

cases, we apply the same cuts on peak and present-day subhalo maximum circular velocity when

comparing Galacticus to our zoom-in simulations; the details of these resolution cuts and our

Galacticus runs are described in Appendix F.2. Note that these Galacticus predictions should

be compared to our B = 0 simulation results because the current Galacticus implementation does

not model subhalo disruption due to central galaxies. The Galacticus-predicted SHMFs agree well

with our simulations in terms of both peak and present-day subhalo mass, lending confidence to the

choice of FCDM(Mhost, zhost) that enters our calibration of the projected subhalo number density at

the MW scale.

Because we construct a Σsub–B relation based on our specific MW-like simulations, which have

been shown to match the MW satellite population, we imposed several host halo selection criteria

on the Galacticus runs used for the comparison above. These conditions include the existence of a

realistic LMC analog system and a Gaia-Enceladus-like merger event. We emphasize that validating
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semianalytic halo and subhalo population predictions with self-consistent simulation suites of both

MW-like and strong-lens-like halos is an important avenue for future work. As discussed in Section

11.8.1, increasingly precise near-field observations and complementary data for strong lens systems

will allow us to mitigate the impact of additional host halo properties including concentration (which

is known to influence subhalo populations at fixed halo mass, e.g., [496, 499, 236, 315, 173]) and the

characteristics of the local dark matter environment in future joint analyses.

11.6.3 Probe Combination Statistics

Having placed the lensing and MW satellite posteriors on the same footing, we now proceed to

combine them to construct a joint Σsub–Mhm likelihood as follows. Formally, we write our joint MW

satellite and strong lensing analysis as a combined Bayesian inference problem,

P (θ|D) ∝ P (D|θ)× P (θ)

= P (DMW|θMW)× P (Dlensing|θlensing)× P (θ), (11.15)

where θ is the vector of parameters in both the lensing and satellite analyses including q (where the

shared parameters Σsub and Mhm only appear once), θMW (θlensing) are the parameters entering the

MW satellite (strong lensing) inference, D = [DMW,Dlensing] is the joint datavector, and P (θ) is

the prior distribution over all model parameters.

Next, for a given value of q ∈ [0.5, 2], we marginalize over the independent parameters (i.e., the

seven galaxy–halo connection parameters in the satellite analysis described in Section 11.4 and the

SHMF slope and line-of-sight contribution in the lensing analysis described in Section 11.5) to arrive

at a combined Σsub–Mhm posterior distribution,

P (Σsub,Mhm|D) = P (Σsub,Mhm|DMW)× P (Σsub,Mhm|Dlensing)

∝ P (D|Σsub,Mhm)× P (Σsub,Mhm). (11.16)

We assume independent priors for Σsub and Mhm; in particular, use the prior distributions from

[195],

P (Σsub/kpc−2) = U(0, 0.1) (11.17)

P (log(Mhm/M�)) = U(5, 10). (11.18)

As described in Sections 11.4–11.5, we choose a lower limit of log(Mhm/M�) = 5 because models

with even lower Mhm values are indistinguishable from CDM in both our MW satellite and strong

lensing analyses. For simplicity, we repeat our analysis at several fixed values of q rather than

marginalizing over this parameter. We note that our WDM limits marginalized over q are nearly
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identical to our fiducial (q = 1) result in the absence of a well-motivated, nonuniform prior for q

based on hydrodynamic simulations (see Section 11.7.3).

Based on Equation 11.14, our MW satellite inference only samples Σsub/kpc−2 ∈ [0.015q−1, 0.03q−1] ∈
[0.0075, 0.06] given our prior of B ∼ U(0, 3) and our assumed range of q ∈ [0.5, 2] (note that B ≥ 0 by

definition). Thus, our fiducial (i.e., q = 1) analysis is restricted to the range 0.015 ≤ Σsub/kpc−2 ≤
0.03, labeled “Σsub Prior” in Figures 11.3 and 11.5. This range is set by combining the MW satellite

posterior and zoom-in simulations with our analytic SHMF prediction and is narrower than the Σsub

range considered in [195], which did not enforce priors based on cosmological simulations. This dif-

ference limits the range of Σsub values from the lensing analysis relevant for our probe combination,

but it does not formally affect our calculation of the marginal likelihood because the effective prior

on Σsub from the MW satellite analysis is nevertheless uniform.

Thus, exploiting the fact that our priors are uniform in both Σsub and logMhm, we arrive at a

joint marginal likelihood for these quantities in terms of the marginalized MW satellite and strong

lensing posteriors,

P (DMW,Dlensing|Σsub, logMhm) ∝ P (Σsub, logMhm|DMW)

× P (Σsub, logMhm|Dlensing). (11.19)

This joint marginal likelihood is illustrated in Figure 11.4 and analyzed in Section 11.7. Because the

independently derived Mhm distributions are consistent (Section 11.7.2) and the Σsub distributions

are only in mild tension (Section 11.7.4), we do not formally test for statistical consistency between

the MW satellite and strong lensing analyses before constructing the joint likelihood.

Because we fix the slope of the projected SHMF in our analytic substructure model at α = −1.92,

our joint analysis is effectively performed at a thin slice in α of the [195] posterior (we remind the

reader that α is defined in a CDM context well above the cutoff scale). We do not expect this choice

to significantly affect our results because α is not highly degenerate with the parameters of interest

(i.e., Mhm and Σsub) in the [195] analysis. However, in Section 11.8.1 we emphasize the importance

of jointly inferring the SHMF slope in future work, and we discuss the role of the remaining line-

of-sight dimension of the [195] posterior, modeled by the amplitude of the Sheth–Tormen halo mass

function, that is marginalized over in our analysis.

11.7 Results

We now present our probe combination results, which are summarized in Figures 11.4–11.5 and

Table 11.1. We first describe our conventions for calculating WDM constraints in Section 11.7.1.

We then describe our fiducial joint analysis results in Section 11.7.2, and we explore the impact

of varying the differential subhalo disruption efficiency due to baryons in Section 11.7.3 and our
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Figure 11.5: Marginal distributions from our joint MW satellite–strong lensing likelihood (Figure
11.4) for projected subhalo number density at the strong lensing scale (left panel) and WDM half-
mode mass (right panel), assuming equally efficient subhalo disruption due to baryons in the MW
and strong lens systems (q = 1). The marginalized MW satellite posterior is shown in blue, the
marginalized strong lensing posterior is shown in red, and results obtained from our probe combi-
nation and marginalized over the remaining dimension are shown in purple. In the left panel, the
vertical band labeled “Σsub Prior” shows the range of Σsub inferred from the MW satellite posterior
in our fiducial joint analysis (i.e., 0.015 kpc−2 ≤ Σsub ≤ 0.03 kpc−2, slightly offset from the posteri-
ors for visual clarity), and the dashed red line on the right panel shows the lensing half-mode mass
posterior restricted to this range of Σsub values.

constraints on the projected SHMF amplitude in Section 11.7.4.

11.7.1 Conventions for WDM Constraints

To quantify the WDM constraints corresponding to the joint likelihood derived in Section 11.6.3,

we marginalize over the Σsub dimension and construct the following summary statistics from the

marginal Mhm likelihood:

(i) Confidence intervals: defined as the range of parameter values enclosing a particular fraction

of the integrated marginal likelihood. Following common practice in the WDM literature, we quote

upper limits on Mhm and lower limits on mWDM at 95% confidence.

(ii) Marginal likelihood ratios: defined as the parameter value at which the marginal likelihood

probability density falls to a particular fraction of its peak value. Following [195], we quote the Mhm

and mWDM values disfavored with 20:1 marginal likelihood ratios.

Although confidence intervals capture more information about the shape of the probability den-

sity and are commonly quoted in the WDM literature (e.g., [459, 232]), they depend on the arbitrary

choice of a lower limit on the Mhm prior (or equivalently, an upper limit on the mWDM prior) as noted
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One-dimensional q = 0.5 q = 1 q = 2

95% confidence level Mhm [M�] 107.2 107.1 107.0 106.9

95% confidence level mWDM [keV] 8.4 9.1 9.7 10.4
20:1 likelihood ratio Mhm [M�] 107.7 107.6 107.4 107.3

20:1 likelihood ratio mWDM [keV] 6.0 6.4 7.4 7.9

Table 11.1: 95% confidence and 20:1 likelihood ratio upper limits on Mhm and corresponding lower
limits on mWDM for our multidimensional probe combination for various differential subhalo disrup-
tion efficiency values q, and for an analysis that combines the fully marginalized one-dimensional
Mhm distributions. q = 0.5 corresponds to twice as efficient subhalo disruption due to baryons in
the MW relative to strong lenses, q = 1 (our fiducial model) corresponds to equally efficient subhalo
disruption due to baryons, and q = 2 corresponds to twice as efficient subhalo disruption due to
baryons in strong lenses.

above. In particular, small-scale structure data are currently consistent with CDM and therefore

yield one-sided limits on Mhm or mWDM; without assuming a preferred scale for a small-scale struc-

ture cutoff due to WDM (or other non-CDM) physics, this makes the lower limit of the Mhm prior

arbitrary. This situation motivated several authors (e.g., [161, 195]) to quote alternative summary

statistics including marginal likelihood ratios that are less dependent on the choice of Mhm prior,

and we follow this practice here. Similarly, we follow both [195] and [332] by adopting a logarithmic

prior on Mhm because any other choice would not be invariant to rescaling mWDM (e.g., see the

discussion in [241]).

11.7.2 Fiducial WDM Constraints

We now present the results of our joint analysis for our fiducial subhalo disruption efficiency model

of q = 1, which assumes equally efficient subhalo disruption due to baryons in the MW and in

strong lens host halos, which is broadly compatible with the results of hydrodynamic simulations

(see Section 11.3.3). The combined Σsub–Mhm marginal likelihood is shown in Figure 11.4 and

the corresponding one-dimensional marginalized likelihoods for Σsub and Mhm are shown in Figure

11.5. The joint marginal likelihood retains the shape of the Σsub–Mhm distribution from the trans-

formed MW satellite posterior and from the lensing analysis limited to the range of Σsub inferred

from our MW satellite analysis according to the procedure in Section 11.6.2. Moreover, the joint

marginal likelihood visibly prefers lower values of Mhm than either posterior alone, demonstrating

the unique constraining power accessible when combining independent small-scale structure probes

in a multidimensional parameter space.

Consistent with these qualitative aspects of the joint Σsub–Mhm likelihood, the upper limit of

the marginal Mhm likelihood shown in the right panel of Figure 11.5 is noticeably lower than either

of the individual constraints from MW satellites or strong lensing. Quantitatively, the upper limit

on Mhm from our joint analysis improves upon those set by the MW satellite and strong lensing
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analyses individually by ∼ 60%, leading to a ∼ 30% increase in the strength of the lower limit on

mWDM. Specifically, the 95% confidence limit of Mhm < 107.4 M� (mWDM > 7.4 keV) from our

MW satellite analysis improves to Mhm < 107.0 M� (mWDM > 9.7 keV). We find a similar level

improvement in terms of likelihood ratios, with Mhm = 107.4 M� (mWDM = 7.4 keV) ruled out at

20:1 relative to the peak of the marginal likelihood at the lower limit of the prior at 105 M�.

To derive these limits, we conservatively increased the Mhm values returned by our joint analysis

by a factor of ∼ 25% to account for the maximum mass of the MW halo relative to the average host

halo masses of our zoom-in simulations, following [332]. As demonstrated in the following subsection,

propagating the MW halo mass uncertainty into the Σsub dimension would have a negligible impact

on the results compared to uncertainties in the efficiency of subhalo disruption due to baryons, so

we do not perform this scaling for simplicity.

Our fiducial constraint of mWDM > 9.7 keV at 95% confidence is one of the most stringent limits

on the WDM particle mass set by small-scale structure observations to date. Moreover, it is set

using only existing strong lensing and MW satellite measurements, underscoring the importance of

unified, multidimensional small-scale structure analyses as the corresponding measurements continue

to improve. Joint model-building efforts that further incorporate Lyα forest [459, 232] and stellar

stream [41] constraints while retaining the unique information provided by each probe will therefore

be particularly fruitful.

11.7.3 Impact of the Differential Subhalo Disruption Efficiency due to

Baryons

We now explore the impact of the differential efficiency of subhalo disruption due to baryons on our

WDM constraints. Table 11.1 lists the Mhm and mWDM 95% confidence level and 20:1 likelihood

ratio limits for q = 0.5, 1, and 2, and the right panel of Figure 11.6 shows the corresponding joint

marginal likelihoods. In Table 11.1 and Figure 11.6, we also show the result of combining the fully

marginalized one-dimensional Mhm posteriors from our MW satellite and strong lensing analyses.

As demonstrated in the right panel of Figure 11.6, the joint marginal likelihoods for Mhm become

increasingly constraining as q increases. This is due to the fact that the transformed Σsub–Mhm

posterior distribution from MW satellites (Figure 11.3 left panel) breaks the degeneracy between

these parameters present in the strong lensing posterior. In particular, larger values of q correspond

to more efficient subhalo disruption in strong lens host halos relative to the MW and yield lower

inferred values of Σsub at the strong lensing scale according to Equation 11.14. This shifts the

region of two-dimensional parameter space in which we multiply the MW satellite and strong lensing

posteriors toward lower values of Σsub. Thus, because the low-Σsub region of the lensing posterior

does not allow for large values of Mhm, larger values of q yield more stringent joint Mhm constraints

(and vice versa for smaller values of q). Indeed, as shown in the right panel of Figure 11.5, restricting

the strong lensing posterior to the range of Σsub inferred from our MW satellite analysis for q = 1
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Figure 11.6: Left panel: the impact of systematics on the marginalized one-dimensional posterior
distributions of projected subhalo number density at the strong lensing scale. The marginalized
posterior distribution from our MW satellite analysis is shown in blue, the marginalized strong
lensing posterior is shown in red, the dashed blue distributions indicate additional uncertainty in
our MW satellite inference due to the mass of the MW halo, and the dotted–dashed green distribution
illustrates the effects of systematic uncertainty in the differential efficiency of subhalo disruption due
to baryons at the MW and strong lensing host halo scales. Right panel: joint marginal likelihood of
WDM half-mode mass for our MW satellites plus strong lensing probe combination. Joint likelihoods
are shown for equally efficient subhalo disruption in the MW and strong lens host halo mass and
redshift regimes (q = 1, purple), twice as efficient disruption due to baryons in the MW relative to
strong lens halos (q = 0.5, dotted–dashed green), and twice as efficient disruption in strong lens halos
relative to the MW (q = 2, dashed green). The gray distribution shows the result of combining the
fully marginalized one-dimensional Mhm posteriors derived from strong lensing and MW satellites.

significantly strengthens the Mhm constraint set by lensing alone.

Despite the qualitative effects of varying the differential subhalo disruption efficiency described

above, varying q within a reasonably broad range only impacts the results of our probe combination

at the ∼ 10% level in terms of mWDM. As discussed in Section 11.8.1, the differential efficiency of

subhalo disruption due to baryons is one of several systematics that impact our probe combination

at this level, all of which must be controlled in a joint modeling framework to claim a detection of

non-CDM physics at the corresponding level of precision. Figure 11.6 and Table 11.1 demonstrate

that combining the MW satellite and strong lensing posteriors with any value of q—i.e., performing

the combination in multiple dimensions—is more constraining than combining the fully marginalized

Mhm posteriors, as expected.
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11.7.4 Projected Subhalo Number Density Constraints

As demonstrated in the left panel of Figure 11.5, the marginalized posterior for Σsub from strong

lensing accommodates significantly larger values than we infer from our MW satellite analysis. In

particular, our fiducial joint analysis yields a marginalized posterior distribution from MW satellites

that peaks at Σsub ≈ 0.025 kpc−2; moreover, Σsub > 0.03 kpc−2 is not sampled because these

projected SHMF amplitudes are larger than the average of our MW-like simulations.4 Meanwhile,

Σsub values in this range are disfavored in the lensing posterior relative to its mild peak at Σsub ≈
0.067 kpc−2 by a ratio of ∼ 2:1. Although this is not a significant tension, it is worth exploring

in future work that places Σsub constraints at various host mass and redshift scales in the context

of expectations from cosmological simulations. For example, [287] identify potentially significant

contributions from backsplash halo populations near strong lenses beyond those captured by the

two-halo term used in [195], which (if modeled) may lower the inferred range of Σsub and strengthen

the corresponding WDM constraints. Furthermore, there are potential differences between the

surviving subhalo populations inferred from our MW satellite and strong lensing analyses caused

by tidal stripping, although heavily stripped halos do not dominate the signal in either case. Thus,

although it is unlikely because the subhalos that contribute to strong lensing flux ratio statistics

are usually tidally truncated well outside of their NFW scale radius [195, 323], a careful analysis of

whether these systems can be stripped severely enough such that their luminous content is affected

warrants detailed investigation in future work.

In the left panel of Figure 11.6, we show how the Σsub posterior from our MW satellite analysis

shifts as a function of both the differential subhalo disruption efficiency due to baryons, q, and

the MW halo mass, where we use the MW host halo mass uncertainties discussed in Section 11.4

and assume that Σsub ∝ MMW. The Σsub distribution from MW satellites is clearly sensitive to

both of these systematic uncertainties, which we discuss further in Section 11.8. Because varying q

changes the inferred Σsub distribution in the strong lens halo mass and redshift regime, this quantity

can potentially be constrained as the precision of Σsub constraints from strong lensing increases.

Although we do not attempt to constrain q here, we note that our results disfavor simultaneously

high MW halo mass and low subhalo disruption efficiency due to baryons in the MW relative to

strong lens host halos, which is physically reasonable.

11.8 Discussion

We now place the WDM and SHMF constraints from our MW satellite–strong lensing probe combi-

nation in context by discussing key systematics (Section 11.8.1) and comparing our study to other

recent analyses (Section 11.8.2).

4The upper limit of this prior increases to Σsub ∼ 0.04 kpc−2 when accounting for uncertainties in the mass of the
MW host halo, which is still much lower than the largest Σsub inferred in [195].
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11.8.1 Systematics

The analysis presented above casts MW satellite and strong lensing constraints in a shared, multi-

dimensional parameter space for the first time. We emphasize that our WDM constraints (Section

11.7.2) are conservative due to our broad priors on key systematics and are robust to the modeling

uncertainties directly addressed in the joint analysis at the ∼ 10% level (Section 11.7.3). Our work

therefore provides important foundations for more detailed modeling frameworks that simultaneously

constrain MW satellite and lensing observables at the likelihood level.

Nevertheless, our analysis makes several simplifying assumptions that circumvent a joint likeli-

hood analysis. We regard these as crucial areas for future model-building work in preparation for

next-generation facilities and surveys, both for the MW satellite–strong lensing probe combination

presented here and to further combine these probes with analyses of stellar stream perturbations,

the Lyα forest, and any other novel probes of small-scale structure. In general, joint small-scale

structure constraints may be sensitive to additional “nuisance parameters” distinct from those gov-

erning non-CDM physics, which must be simultaneously measured to robustly claim evidence for a

deviation from CDM. This underscores the importance of our multidimensional approach and of the

following systematics, which we plan to build a joint model to simultaneously infer in future work.

SHMF slope. We assume a particular value of the SHMF slope α when constructing the B–Σsub

relation in Section 11.6, thereby taking a thin slice through this dimension of the posterior from

[195]. Although current MW satellite analyses do not strongly constrain the SHMF slope, future

constraints from the MW satellite population probed by LSST may be sensitive to this quantity due

to excellent observational sensitivity at the faint end of the satellite luminosity function throughout

the MW virial radius (e.g., [237, 214, 151]). Meanwhile, the [195] strong lensing analysis already

mildly constrains the SHMF slope, and this sensitivity will drastically increase with larger lens

samples. Exploiting all of these data will require self-consistent suites of high-resolution simulations

of both MW-like systems (including realistic LMC analogs) and strong-lens-like systems, which we

are currently developing. Few such high-resolution zoom-in simulations at the group-mass scale have

been performed, and these are particularly valuable to validate the predictions of semianalytic models

like Galacticus used to inform strong lens substructure models. These studies must be coupled

with detailed models for the impact of baryonic physics on small-scale dark matter structure because

it is expected to significantly affect both the amplitude and slope of SHMF at low halo masses [57].

Line-of-sight halo mass function. We marginalized over the amplitude of the line-of-sight halo

mass function in our probe combination, noting that the [195] lensing analysis our work is based on

does not constrain this quantity within a broad prior range of ±20% relative to the mean Sheth–

Tormen prediction. However, detailed zoom-in simulations of strong lens analogs coupled with

realizations from cosmological simulations of the line-of-sight halo populations may provide more

informative theoretical priors that—combined with upcoming strong lens discoveries and follow-up

imaging and spectroscopy—will yield more decisive differential measurements of the line-of-sight
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and substructure contributions to the lensing signal (see [287] for a recent discussion). This will

ultimately allow Σsub to be measured more precisely, breaking degeneracies with WDM physics and

facilitating a more direct combination with MW satellite data.

Subhalo disruption efficiency due to baryons. We combined MW satellite and strong lensing

constraints at fixed values of the differential subhalo disruption efficiency due to baryons, q. Although

q does not significantly affect the joint WDM limits presented here (Section 11.7), this quantity

represents a key systematic that must be addressed in dedicated modeling work. In particular, it

will be fruitful to analyze samples of hydrodynamic simulations at the MW and group-mass scales

to refine subhalo disruption models that can be applied to larger simulation suites efficiently (e.g.,

[337]). Constructing a physically motivated model for the differential efficiency of subhalo disruption

due to baryons in strong lens systems and the MW will again allow for more informative theoretical

priors in joint analyses, enabling robust constraints on deviations from CDM predictions.

Milky Way and strong lens host halo properties. The mass of the MW halo remains a key system-

atic for the interpretation of MW satellite measurements in terms of the underlying SHMF which

then propagates into joint small-scale structure constraints. The MW halo mass is a particularly

important nuisance parameter for setting non-CDM constraints because the (lack of a) turnover in

low-mass subhalo abundances is inferred from the SHMF corresponding to MW satellite observa-

tions, while the SHMF amplitude scales linearly with host halo mass. In our analysis, uncertainty

in the MW halo mass significantly affects our Mhm and mWDM constraints, and we currently take

a conservative approach to marginalize over this dependence. Forthcoming Gaia data releases will

increase the precision of MW halo mass measurements, and combining detailed simulation suites

of MW-like halos spanning the inferred mass range with next-generation observations of the MW

satellite population will allow us to derive joint constraints on the MW halo mass and SHMF (e.g.,

see [341]).

Meanwhile, strong lensing measurements are less sensitive to host halo mass uncertainty because

they probe both the SHMF, small-scale structure along the line of sight, and the concentrations of

low-mass halos and subhalos. Nonetheless, the details of strong lens host halo selection functions are

relatively unexplored (e.g., see [430]), and will be better quantified using a variety of data including

weak lensing and satellite velocity dispersion measurements. These efforts will lead to more precise

constraints on the masses, secondary properties, and environments of strong lens host halos, further

mitigating key theoretical uncertainties in forward models of strong lensing data.

11.8.2 Comparison to Recent Studies

[161] recently presented a joint analysis of small-scale structure probes including MW satellite galax-

ies and gravitational imaging, with several distinct assumptions underlying the individual and joint

modeling of these probes relative to our work. Here, we discuss the most important aspects of our

individual models for MW satellites and strong lensing flux ratio statistics as well as our probe
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combination procedure relative to the [161] study.

For MW satellites, the Chapter 7 [332] study upon which we base our analysis explicitly includes

realistic LMC analog systems in the simulations used to perform the inference. This allows us to use

the entire population of observed MW satellite galaxies—and particularly those within and near the

DES footprint—without down-weighting systems based on the probability they are associated with

the LMC, strengthening our dark matter constraints relative to the [340, 341] MW satellite analyses

that the [161] joint constraints are based on. In addition, unlike [340, 341], we follow [332] by using

the newest and most precise versions of DES and PS1 observational selection functions from [149].

Importantly, these selection functions depend on satellite galaxy size, which is a crucial driver of

satellite detectability that directly informs the translation from MW satellite observations to the

underlying SHMF. This highlights the importance of including a model for the relationship between

subhalo and satellite galaxy size like the one used in our analysis. As discussed in Section 11.4,

we also marginalize over MW halo mass and the efficiency of subhalo disruption due to baryonic

physics, which are both key systematics in the MW satellite inference. Our MW host halo mass

marginalization procedure is analytic, unlike the simulation-based method employed in [341], due

to the limited statistics of MW-like simulations that include realistic LMC analogs. The significant

improvements in sensitivity to non-CDM physics afforded by modeling the LMC satellite system

further reinforce the importance of simulation suites of MW-like systems including realistic LMC

analog systems.

On the strong lensing side, the [195] study upon which we base our analysis uses flux ratio statis-

tics that are significantly more constraining than the gravitational imaging data underlying the [161]

joint analysis. This additional constraining power results from the fact that current gravitational

imaging data probes ∼ 109 M� subhalos while flux ratio anomalies are sensitive to the presence of

lower-mass subhalos. In terms of modeling, [195] explicitly account for the host mass and redshift

dependence of the SHMF using Galacticus—these are leading-order effects in predicting the SHMF

for a given lens and its lens-to-lens variation—while the [455] and [387] analyses that the joint con-

straints in [161] are based on do not. In addition, [195] self-consistently account for the reduction

in halo concentration in WDM, which significantly increases the sensitivity of lensing observations

to WDM effects and also models the effects of tidal stripping on subhalos after infall, which is again

crucial to accurately forward-model flux ratio observations.

Finally, we emphasize the following key aspects of our probe combination relative to the procedure

in [161], which combines fully marginalized one-dimensional Mhm distributions from various small-

scale structure probes including MW satellites and gravitational imaging to derive joint WDM

constraints:

1. We cast the subhalo populations inferred from MW satellites and from the group-mass, z ∼ 0.5

host halos probed by strong lensing into a common, multidimensional parameter space of

projected subhalo number density Σsub versus WDM half-mode mass Mhm;
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2. We combine these Σsub–Mhm distributions to construct a joint marginal likelihood that is

strictly more constraining and informative than the joint Mhm distribution resulting from fully

marginalizing over all additional parameters (see the right panel of Figure 11.6), improving

the precision of our joint analysis; and

3. We model the differential efficiency of subhalo disruption due to the central galaxies in the

different host halo mass and redshift regimes probed by MW satellites and strong lensing,

finding that our results are robust to uncertainties in these effects at the ∼ 10% level, which

lends confidence to the robustness of our results.

The differences in the underlying data used in our inference—and particularly the inclusion

of LMC-associated satellites in the MW satellite analysis and the use of strong lensing flux ratio

statistics that probe lower-mass subhalos than current gravitational imaging data—therefore result

in more precise joint constraints than those obtained in [161] and allow us to significantly improve

upon their WDM limit. Moreover, the joint analysis choices described above lend to the robustness

and accuracy of our results.

11.9 Conclusions

In this paper, we performed a multidimensional joint analysis of the distribution of small-scale

dark matter structure inferred from MW satellite galaxies and strong gravitational lensing. In

particular, we combined state-of-the-art dark matter substructure measurements derived from (i)

the MW satellite galaxy population over ∼ 75% of the sky and (ii) the flux ratio statistics and image

positions from eight quadruply imaged quasars. By combining constraints on the projected subhalo

number density and the half-mode mass describing the suppression of the subhalo mass function in

thermal relic WDM, we improved lower limits on the WDM particle mass derived independently

by breaking degeneracies among the inferred subhalo distributions at each scale for the first time.

Our mWDM constraint is more stringent than any limit set by independent analyses of small-scale

structure probes to date.

Our key results are summarized below:

1. Our multidimensional joint analysis extracts information that was not accessed by MW satellite

or strong lensing analyses independently, improving WDM constraints by ∼ 30%, with Mhm <

107.0 M� (mWDM > 9.7 keV) at 95% confidence, or Mhm = 107.4 M� (mWDM = 7.4 keV)

disfavored with a 20:1 marginal likelihood ratio. (Figures 11.4–11.5);

2. Our joint WDM constraint is robust to uncertainties in the differential efficiency of subhalo

disruption between the MW and strong lens host halo mass and redshift regimes at the ∼ 10%

level;
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3. Projected subhalo number density constraints from MW satellites and strong lensing flux

ratio statistics are in mild tension but are sensitive to uncertainties in the efficiency of subhalo

disruption in the corresponding host halo mass and redshift regimes;

4. We discuss key systematics that are conservatively marginalized over in the current analysis

but which must be mitigated in future work to claim a detection of non-CDM physics from

small-scale structure measurements. These systematics include the line-of-sight contribution

to the strong lensing signal, the differential efficiency of subhalo disruption due to baryons at

the MW and lensing host halo mass and redshift scales, and the properties of the MW and

strong lens host halos (Figure 11.6);

5. Inferences of the small-scale dark matter structure from MW satellites and strong lensing

are consistent despite the completely different nature of these probes and differences in their

corresponding host halo mass and redshift regimes.

Recent studies have identified a variety of microphysical dark matter properties that suppress

small-scale structure in a manner quantitatively similar to WDM, including the strength of velocity-

independent interactions between dark matter and protons (see Chapter 6 [335]), the production

mechanism of nonthermal dark matter in early matter-dominated cosmologies [322], and the dark

matter formation redshift in models of “late-forming” dark matter [123]. Our jointly derived WDM

constraints directly inform all of these properties. Dark matter models that feature qualitatively

different suppression of small-scale structure compared to WDM can also be constrained by con-

structing a conservative mapping; for example, such mappings have been applied to constrain fuzzy

dark matter [418], models with velocity-dependent self- and Standard Model dark matter interac-

tions [448, 308], and models within the ETHOS framework [75]. Such dark matter physics may

manifest differently in small-scale structure probes like MW satellites and strong lensing that are

sensitive to halo abundances and concentrations in unique ways, and we regard this as a particularly

compelling avenue for future work.

We expect the relative improvement offered by our probe combination to continue to increase as

both techniques progress due to both additional data from existing instruments and next-generation

observational facilities. Excitingly, the sample sizes of both nearby ultrafaint dwarf galaxies and

quadruply lensed quasars are expected to drastically increase with LSST [237], Euclid Space Tele-

scope [285], and Nancy Grace Roman Space Telescope [431] observations. Forthcoming facilities

including the Maunakea Spectroscopic Explorer [438] will also help to confirm the nature of candi-

date MW satellites and faint dwarf galaxies throughout the Local Volume, while wide-aperture and

extremely large telescopes (ELTs) will provide detailed information about the dynamical masses of

these systems, which is key to refine galaxy–halo connection and WDM constraints [423]. Meanwhile,

the unprecedented sample of strong lenses expected to be discovered within 5–10 yr will yield precise

measurements of the differential line-of-sight and substructure contributions to lensing signal and
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will allow the selection functions of strong lenses to be better quantified. Observations of extended

source emission will also help constrain lens macromodels.

With sufficiently stringent limits on the minimum luminous halo mass from nearby dwarf galax-

ies and on the mass scale of a cutoff in the subhalo mass function, our procedure for combining

satellite galaxy and strong lensing posteriors can potentially provide evidence for the existence of

dark subhalos—i.e., subhalos devoid of observable baryonic components—which are a key, unverified

prediction of many viable dark matter models. [333] estimate that the lowest-mass halo expected

to host a dwarf galaxy is more massive than ∼ 107 M�. Thus, the future observations discussed

above, which are expected to constrain the subhalo mass function at and below these mass scales,

will either yield evidence for a cutoff in galaxy (or halo) formation or evidence for halos devoid of

observable baryonic matter. We plan to pursue these measurements by developing a multipronged

theoretical framework to jointly infer the distribution of small-scale structure using heterogeneous

data.



Chapter 12

Forecasts for Future Surveys

Abstract

Forthcoming cosmic surveys promise to sharpen the galaxy–halo connection and dark matter

constraints from nearby dwarf galaxies presented in the preceding chapters. The Vera C. Rubin

Observatory Legacy Survey of Space and Time (LSST) will be particularly sensitive to ultra-faint

dwarf galaxies within the virial radius of the Milky Way halo and potentially throughout the Local

Volume. This chapter forecasts the galaxy formation and dark matter constraints that will be enabled

by LSST, summarized respectively by the minimum halo mass corresponding to an observable dwarf

galaxy and the warm dark matter half-mode mass that describes the suppression of the halo and

subhalo mass functions. We predict that the LSST-discovered satellite population can probe galaxy

occupation in halos with peak virial masses down to ∼ 5× 107 M� and half-mode mass scales down

to ∼ 107 M�, where the extra sensitivity to the half-mode scale is driven by the population statistics

of the faintest Milky Way satellites.

12.1 Paper Status and External Contributions

Section 12.2 appears in slightly modified form in the Vera C. Rubin Observatory Legacy Survey of

Space and Time (LSST) dark matter white paper [151] with the title, “Probing the Fundamental

Nature of Dark Matter with the Large Synoptic Survey Telescope,” on which I am a co-author. It is

the result of an effort that I led within the LSST Dark Matter Working Group with contributions from

Keith Bechtol, Alex Drlica-Wagner, Mitch McNanna, Andrew Pace, Yao-Yuan Mao, Erik Tollerud,

Risa Wechsler, Francis-Yan Cyr-Racine, Mei-Yu Wang, Kimberly Boddy, and Arka Banerjee. Keith

and Alex provided helpful input on the LSST dwarf galaxy detection sensitivity forecasts, and all

of the coauthors made editorial contributions to the text. Section 12.3 is unpublished and authored

by me.

223
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12.2 Forecasts for the Minimum Halo Mass Inferred from

LSST Milky Way Satellite Observations

The least luminous galaxies currently known contain only a few hundred stars and have been found

exclusively in the inner regions of the Milky Way due to observational selection effects. Although the

census of Milky Way dwarf galaxies has grown from ∼ 25 to more than 50 in recent years (e.g., with

the Dark Energy Survey; [42, 272, 150], our current census is certainly incomplete. For example, the

HSC-SSP Collaboration has detected two ultra-faint galaxy candidates in the first 300 deg2 of the

survey [222, 220]; these galaxies are faint and distant enough to have been undetectable in previous

optical imaging surveys. HSC is representative of the depth that will be achieved by the Vera C.

Rubin Observatory Legacy Survey of Space and Time (LSST) over half the sky—an area 60 times

larger than the current HSC-SSP footprint. Thus, based on the results of SDSS, HSC, DES, etc.,

several groups have predicted that LSST could detect tens to hundreds of new low-luminosity Milky

Way satellites, mainly at larger distances and fainter luminosities than those accessible with current-

generation surveys [271, 440, 214, 340, 241, 336, 264]. In addition, novel techniques, such as the use of

the correlated phase space motions of stars [29, 112] or clustering of variable stars [37] could further

expand the sample of ultra-faint galaxies. LSST observations of Milky Way satellites therefore offer

an exciting testing ground for dark matter models; for example, the measured abundance, luminosity

function, and radial distribution of Milky Way satellites already place competitive constraints on

warm dark matter particle mass at the level of ∼ 2–5 keV (e.g., [241, 264].

To relate these questions to LSST observations, we have analyzed simulated ultra-faint galaxies

as they would appear in LSST WFD coadd object catalogs to quantify LSST’s ability to detect

nearby satellite galaxies. We detect ultra-faint galaxies as arcminute-scale statistical overdensities

of individually resolved stars; in ground-based optical imaging surveys, it is often challenging to

classify low signal-to-noise catalog objects near the detection threshold as either foreground stars or

unresolved background galaxies. LSST will reach depths at which the galaxy counts far outnumber

stellar counts, so the search sensitivity for ultra-faint galaxies will largely be determined by our

ability to accurately perform star-galaxy separation at magnitudes 24 < r < 27.5; importantly,

our sensitivity analyses include these effects. We find that Milky Way satellites within 300 kpc are

well-detected with a surface brightness detection threshold of µ = 32 mag arcsec−2 [237] and an

absolute magnitude cutoff of MV = 0 mag.

Figure 12.1 shows the minimum subhalo mass that LSST can probe via observations of Milky

Way satellites, obtained by folding our search sensitivity estimates through a cosmological model of

the Milky Way satellite population that predicts satellite luminosity functions, radial distributions,

and size distributions that agree well with current observations. In particular, we generate many

mock Milky Way satellite populations using the model presented in Chapter 3 [336] given a “true”
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Figure 12.1: Forecast for the minimum dark matter subhalo mass probed by LSST via observa-
tions of Milky Way satellites. The red band shows the 95% confidence interval from our MCMC
fits to mock satellite populations as a function of the true peak subhalo mass necessary for galaxy
formation. Note that we marginalize over the relevant nuisance parameters associated with the
galaxy–halo connection—including the effects of baryons using the Chapter 2 model calibrated on
subhalo disruption in hydrodynamic simulations [336]—in our sampling. We indicate the corre-
sponding constraints on the warm dark matter mass assuming Mhm =Mmin.
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value of the minimum peak subhalo virial mass necessary for galaxy formation,Mmin,true, marginal-

izing over the remaining galaxy–halo connection parameters. We then perform mock observations

of these generated satellite populations using the LSST selection function, and we compare these

to the true satellite populations by MCMC sampling Mmin and the remaining galaxy–halo connec-

tion parameters assuming that satellite number counts are Poisson distributed in bins of absolute

magnitude (see Chapter 3 [336] for details on the fitting procedure). For each value of Mmin,true,

this procedure yields a posterior distribution over the minimum halo mass inferred by LSST obser-

vations. The red band in Figure 12.1 illustrates the recovered 95% confidence interval as a function

of Mmin,true, and the blue dot-dashed line indicates the minimum halo mass inferred from known

classical and SDSS-detected Milky Way satellites. For small Mmin,true, the 95% confidence level

upper bound on the lowest detectable subhalo mass improves by a factor of ∼ 5 with LSST, from

∼ 5× 108 M� to ∼ 108 M�; this translates to a conservative lower bound of ∼ 5 keV on the WDM

particle mass.

Although we have presented a “population-based” forecast for dark matter constraints from

LSST-detected ultra-faint satellites, we note that kinematic data obtained by follow-up spectroscopy

of newly discovered satellites also offers a powerful probe of dark matter microphysics. We estimate

the number of LSST-detected Milky Way satellites that can be spectroscopically confirmed in Section

4.1 of [151], and we forecast the constraints offered by these stellar velocity dispersion measurements

for WDM and SIDM in Section 3.1.4 of [151].

Further extending the sensitivity of LSST to a power spectrum cut-off on scales smaller than the

mass threshold for galaxy formation requires techniques that are independent of satellite luminosity

and that can detect subhalos purely through their gravitational signatures.

12.3 Half-mode Mass Forecasts Including the Large Magel-

lanic Cloud Satellite Population

The warm dark matter sensitivity forecasts in Section 12.2 are extremely conservative because they

assume that the half-mode mass scale describing the suppression of the halo and subhalo mass

functions is equal to the minimum observable halo mass inferred from dwarf galaxy observations.

However, as demonstrated in Chapter 7 [332], the half-mode mass constraints derived from Dark

Energy Survey and Pan-STARRS1 Milky Way satellite population data exceeds this expectation,

with Mhm . 4 × 107 M� despite the upper limit of Mmin . 3 × 108 M� derived from the same

data. This improvement is driven by the increased number of observed dwarf galaxies inferred to

inhabit subhalos with peak virial masses near Mmin relative to the classical and Sloan Digital Sky

Survey-discovered satellite population. In turn, these population statistics raise the confidence that

models resulting in even moderate subhalo mass function suppression near the minimum observable

halo mass are ruled out.
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To include the impact of these population statistics and the Large Magellanic Cloud satellite

population in our forecasts, we re-run the analysis described in Section 12.2 using the satellite model

from Chapters 4–7 [333, 332]. Thus, these updated forecasts include a smoothly varying galaxy

occupation fraction (parameterized by the peak virial mass at which 50% of subhalos host satellites,

M50) and thermal relic warm dark matter subhalo mass function suppression (parameterized by

Mhm), along with the comprehensive models for satellite luminosity, size, and disruption described

in Chapter 4.

Figure 12.2 summarizes the results of these sensitivity analyses, which again assume a limiting

surface brightness detection threshold of µ = 32 mag arcsec−2 and absolute magnitude cutoff of

MV = 0 mag. In particular, Figure 12.2 shows how the 95% confidence upper limits inferred on

M50 and Mhm scale as our mock satellite observations approach LSST sensitivity. Given the upper

limits onM50 and Mhm derived from current Milky Way satellite data, there is only a small amount

of parameter space in which LSST Milky Way satellite observations alone can distinguish a cutoff in

galaxy formation from a cutoff in halo abundances due to dark matter physics (Region I. of Figure

12.2). In the remaining parameter space (Region II. of Figure 12.2), LSST satellite observations

alone cannot uniquely determine the astrophysical or dark matter origin of a cutoff in dwarf galaxy

abundances. Nonetheless, these observations are expected to probe the abundance of halos with

peak virial masses down to ∼ 5× 107 M�, improving the sensitivity of current minimum halo mass

measurements by nearly an order of magnitude. These promising forecasts motivate further advances

in galaxy–halo connection modeling and simulations of Milky Way-like systems in preparation for

LSST data.

The lower limit of the horizontal axis on Figure 12.2 corresponds to the minimum halo mass

that can in principle host an observable dwarf galaxy as derived in Chapter 4. Thus, the detection

of halo abundances consistent with CDM predictions below this mass scale would provide decisive

evidence for the existence of completely dark halos and must be enabled by probes that do not rely

on the luminous content of these systems (e.g., see Chapter 11).
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Figure 12.2: Forecasts for the galaxy formation and dark matter sensitivity of LSST Milky Way
satellite observations using the satellite model from Chapters 4 and 7, which includes realistic Large
Magellanic Cloud analog systems. The x-axis shows the 95% confidence upper limit on M50 and
the y-axis shows the 95% confidence upper limit on Mhm for warm dark matter from classical and
SDSS-discovered satellites (blue star; Chapter 3 [336]), DES and Pan-STARRS1 satellites (red star;
4 [333]), and mock Milky Way satellite observations as they approach LSST sensitivity (blue-green
triangles). The black dashed line shows the one-to-one relation and the gray dashed line shows the
current lower limit on the warm dark matter mass from our joint Milky Way satellite and strong
lensing analysis in Chapter 11. A cutoff in satellite abundances in Region I. must be astrophysical
in origin, a cutoff in Region II. can be caused by either galaxy formation or dark matter physics,
and the detection of halos below the lower limit of the M50 axis at ∼ 5 × 107 M� would provide
evidence for the existence of completely dark halos.



Chapter 13

Conclusions

In this thesis, I addressed small-scale dark matter and galaxy formation physics by modeling the

connection between faint dwarf galaxies and the low-mass dark matter halos they inhabit. Under-

standing these nonlinear systems entails cosmology, galaxy formation, high-energy particle physics,

and statistical methods to be tied together by complex numerical simulations. Despite the computa-

tional nature of this work, it is motivated by the principles of effective field theory, which guarantee

that the microphysical nature of dark matter is reflected in its behavior at progressively higher

energy scales and shorter length scales. The small-scale modes that seed the formation of dwarf

galaxy halos enter the cosmological horizon within months of the Big Bang—well before the epoch

of the cosmic microwave background—meaning that dwarf galaxies trace both early Universe physics

(through their connection to small halos) and galaxy formation over cosmic time.

In Chapters 2–5, I presented an empirical model for the connection between faint galaxies and

small dark matter halos applicable to both Milky Way-mass systems and to the Milky Way specif-

ically. In particular, Chapter 2 developed a machine-learning algorithm trained on hydrodynamic

simulations to capture the disruptive effects of Milky Way-like central galaxies on subhalo popu-

lations. Chapter 3 integrated this subhalo disruption algorithm with a new, flexible galaxy–halo

connection model based on abundance matching to predict the relationship between satellite galaxy

luminosities and sizes and their subhalo properties. Crucially, this model includes a rigorous statis-

tical framework to facilitate comparisons between its predictions and observed satellite populations.

As demonstrated in Chapter 3 classical and Sloan Digital Sky Survey-discovered Milky Way satel-

lite galaxies, which have been known for more than ten years, place interesting constraints on the

faint-end galaxy–halo connection and provide strong evidence for the existence of halos with peak

virial masses below ∼ 5× 108 M� in abundances consistent with cold dark matter predictions.

Chapter 4 combines the model described above with (i) tailored cosmological simulations of Milky

Way-like systems including realistic Large Magellanic Cloud analogs, (ii) recent satellite galaxy ob-

servations from the Dark Energy Survey and Pan-STARRS1, and (iii) state-of-the-art observational
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selection functions for these galaxies constrained directly by photometric data from each survey.

These observations of the Milky Way satellite population over nearly the full sky tighten constraints

on the galaxy–halo connection and minimum halo mass while providing compelling statistical ev-

idence for the existence of Large Magellanic Cloud satellites. In the dark matter context, these

satellites-of-satellites occupy second-order subhalos in a beautiful signature of hierarchical structure

formation. This work also places the first robust limits on the fraction of low-mass dark matter

halos that host dwarf galaxies, which is consistent with 100% down to the minimum observable halo

mass of ∼ 3× 108 M�.

To close the first part of this thesis, Chapter 5 takes the first steps towards placing the galaxy–

halo connection measurements derived from Milky Way satellites in a cosmological context. The

Milky Way satellite luminosity function and the galaxy–halo connection model constrained only by

Milky Way satellite data are consistent with measurements of satellite populations around 36 Milky

Way analogs in the low-redshift Universe from the Satellites Around Galactic Analogs survey. Forth-

coming work that derives joint constraints using Milky Way satellites, Local Volume satellite data,

and the full sample of 100 complete SAGA satellite systems promises to sharpen this comparison.

The second part of this thesis (Chapters 6–11) uses the framework described above to explore and

constrain dark matter physics that suppresses the present-day abundance of small halos. Chapter 6

derives an analytic relation between the cross section of dark matter–Standard Model interactions

and the minimum halo mass. Further, it numerically demonstrates that the suppression of the linear

matter power spectrum for velocity-independent dark matter–proton scattering is similar to that for

thermal relic warm dark matter, and it exploits this correspondence in the galaxy–halo connection

model from Chapter 3 to place the first constraints on these interactions using dwarf galaxies. These

constraints complement terrestrial direct detection experiments and improve upon limits from other

cosmological probes by several orders of magnitude.

Chapters 7 and 8 constrain the warmth, Standard Model interactions, minimum particle mass,

and formation epoch of dark matter using the Milky Way satellite model from Chapter 4, which

includes realistic Large Magellanic Cloud analogs. The warm, interacting, and late-forming dark

matter constraints all follow from a 6.5 keV lower limit on the mass of thermal relic warm dark mat-

ter derived from Dark Energy Survey and Pan-STARRS1 satellite abundances. This limit implies

that modes entering the cosmological horizon more than one week after the Big Bang cannot be

significantly suppressed relative to cold dark matter predictions by any kind of dark matter micro-

physics. Chapter 7 also translates these constraints into parameter spaces relevant for specific dark

matter particle models such as sterile neutrinos and ultra-light axions.

Next, Chapter 9 studies the signatures of dark matter self-interactions on subhalos in Milky

Way-mass systems, and Chapter 10 highlights the signatures that are unique to Milky Way-like

systems with Large Magellanic Cloud analogs. Although the self-interacting dark matter literature

largely focuses on its impact on dwarf galaxy halo density profiles, Chapter 9 reveals that subhalo
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disruption is sensitive to self-interactions. In particular, the momentum transfer cross section at

the orbital velocity scale set by the dark matter host halo dictates the strength of ram-pressure

stripping and the resulting efficiency of subhalo disruption; in turn, the impact of this process on

subhalo abundances is tied to the velocity-dependence of the self-interaction cross section. Chapter

10 shows that the recent, high-velocity infall of the Large Magellanic Cloud system enhances late-

time subhalo disruption due to dark matter self-interactions, opening up new avenues to disentangle

different kinds of dark matter and baryonic physics that impact subhalo populations.

Finally, Chapter 11 describes and implements a unified framework that combines dark matter

constraints from Milky Way satellite galaxy abundances and strong gravitational lensing flux ratio

statistics. This probe combination significantly improves dark matter constraints set independently,

resulting in a lower limit on the thermal relic warm dark matter mass of ∼ 10 keV, and breaks

degeneracies among the subhalo populations inferred by each technique. Based on the plethora of

dwarf galaxy and strong lens discoveries expected from next-generation surveys including the Vera

C. Rubin Observatory Legacy Survey of Space and Time (LSST), this work paves the way for next-

generation surveys of small-scale cosmic structure to deliver unprecedented insights into dark matter

physics. Specifically, Chapter 12 shows that upcoming LSST observations will likely either provide

evidence for the existence of halos without any luminous content or detect a deviation from the cold

dark matter paradigm at the corresponding mass scales.

Observational evidence for the existence and properties of dark matter has always run through

its connection to the visible Universe. This is clearly illustrated in its historical underpinnings,

including in early studies by Zwicky [504] and Rubin [397], which respectively demonstrate that the

dynamics of cluster and spiral galaxies require the existence of invisible mass. Dwarf galaxies, as the

most dark matter-dominated systems currently known, therefore provide compelling laboratories for

precision tests of dark matter physics. The promise and the peril of using these faint galaxies to test

dark matter and galaxy formation has played out in response to claims of “missing satellites” over

the last two decades. Fortunately, we are now reaching the necessary observational, theoretical, and

computational precision to deliver on the promise of these remarkable systems and to robustly push

the boundaries of dark matter and galaxy formation theory.



Appendix A

Random Forest Scatter, Feature

Selection, & Resolution

We perform several tests to check the robustness of our results in Chapter 2. First, we examine

the scatter in the random forest predictions for the m12i and m12f Vmax functions and whether

the details of the training data affect our results. Figure A.1 shows the Vmax functions from 200

realizations of our fiducial classifier, along with the most probable realization of classifiers trained

only on subhalos from m12i or m12f with Vpeak > 10 km s−1. The scatter about the most probable

prediction for our fiducial classifier is small; in particular, the intrinsic scatter of the random forest

prediction is comparable to or smaller than the Poisson noise over the entire velocity function for

each host. Thus, even though the prediction for the total number of surviving subhalos is different

for classifiers trained on m12i or m12f separately, this uncertainty does not propagate to our fiducial

classifier.

Next, we explore the choice of training features. In particular, we test how adding subhalo

features affects our results for the Vmax functions and radial distributions of the surviving subhalo

populations predicted from DMO simulations of m12i and m12f. In Figure A.2, we plot the most

probable Vmax functions and radial distributions predicted by five classifiers that each use an addi-

tional training feature, corresponding to the rows of Table 2.1 and the columns of Figure 2.4. As we

add subhalo features, the predicted distributions approach the FIRE results. Interestingly, dperi (or

aperi or aacc) alone provides most of the information needed to match the total number of surviving

subhalos with Vpeak > 10 km s−1 and r < 300 kpc, but adding additional features improves the

predictions at large Vmax and small radii.

Finally, we study how our results depend on the resolution limits used for the training data.

In Figure A.3, we show the m12i and m12f velocity functions and radial distributions predicted by

a classifier trained on subhalos from both hosts with Vpeak > 5 km s−1, which is less restrictive
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Figure A.1: Velocity functions for m12i (left) and m12f (right) predicted by the most probable
realization of our random forest classifier when trained only on subhalos from m12i (orange) or m12f
(green) with Vpeak > 10 km s−1. Blue lines show 200 realizations of the prediction for our fiducial
classifier, which is trained on subhalos from both hosts, and red lines show the FIRE results. While
there is a difference between the total number of surviving subhalos predicted by classifiers trained
only on m12i or m12f, the scatter about the most probable prediction for our fiducial classifier is
small.

than the Vpeak > 10 km s−1 cut used in our primary analysis. We plot the results for subhalos

with Vmax > 5 km s−1, where Vmax is the maximum circular velocity evaluated at z = 0, which

allows for a direct comparison with the results in GK17. Our conclusions are unaffected by changing

the minimum circular velocity. In fact, our predictions match the hydrodynamic results even more

closely than before in the low-Vmax regime, since this less restrictive cut significantly increases the

number of subhalos at the low-Vmax end of the training set. Thus, our classifier can be applied to

simulations with a range of resolution thresholds if appropriate cuts are applied to the training data.
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Figure A.2: Velocity functions and radial distributions of subhalos in m12i (left) and m12f (right)
predicted by the most probable realization of random forest classifiers trained on subhalos from both
hydrodynamic simulations with Vpeak > 10 km s−1. The classifiers use the features dperi (blue); dperi

and aperi (red); dperi, aperi, and aacc (green); dperi, aperi, aacc, and Macc (orange); and dperi, aperi,
aacc, Macc, and Vacc (cyan), corresponding to the rows of Table 2.1 and the columns of Figure 2.4.
The solid red lines show the FIRE results.
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Figure A.3: Velocity functions (top) and radial distributions (bottom) for subhalos hosted by m12i

(left) and m12f (right), predicted by the most probable realization of our random forest classifier
trained on subhalos from m12i and m12f with Vpeak > 5 km s−1 (blue). The FIRE (red), DISK (dot-
dashed), and DMO (dashed) results are shown for comparison. We restrict these plots to subhalos
within 300 kpc of their respective hosts at z = 0 and with Vmax > 5 km s−1, where Vmax is the
maximum circular velocity evaluated at z = 0, to allow for a direct comparison with the results in
[190].



Appendix B

Satellite Model Statistical Methods

This Appendix supplements the statistical methods underlying the galaxy–halo connection model

presented in Chapter 3.

B.1 Convergence of Improved Likelihood to the Poisson Dis-

tribution

The main assumption underlying the derivation of our likelihood (Equation 3.13) is that the number

of observed satellites and mock satellites in a given magnitude bin are drawn from the same Poisson

distribution. Thus, in the limit of many mock observations, any likelihood that marginalizes over

an unknown rate parameter should converge to the underlying Poisson distribution. This holds for

the likelihood used in our analysis: in particular, if n̂i,1, . . . , n̂i,N̂ ∼ Poisson(λi), then

lim
N̂→∞

P (ni|n̂i,1, . . . , n̂i,N̂ ) =
e−λiλnii
ni!

= Poisson(λi), (B.1)

where the scaling with ni follows from Equation 3.13 using n̂i,1 + · · ·+ n̂i,N̂ = N̂λi for large N̂ , and

the prefactor follows from the fact that P (ni|n̂i,1, . . . n̂i,N̂ ) is a normalized distribution or by taking

the N̂ →∞ limit of Equation 3.13.

We illustrate the fact that our likelihood satisfies this property in Figure B.1. We compare our

likelihood to the Poisson distribution that the n̂i,j are sampled from for various values of λi, ni,

and N̂ . We also plot the likelihood used in [241], which is equivalent to the mean of P (ni|n̂i,j)
over the realizations j = 1, . . . , N̂ , and we note that it does not converge to the underlying Poisson

distribution in the limit of large N̂ . We verify that this is the expected behavior by computing

central moments of P (ni|n̂i,j) for n̂i,j ∼ Poisson(λi) and using these quantities to derive central

moments of P (ni|n̂i,j) averaged over many mock observations j = 1, . . . , N̂ . For example, our
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Figure B.1: Likelihood of observing ni counts given N̂ mock observations n̂i,1, . . . , n̂i,N̂ assuming
that ni and all n̂i are drawn from a Poisson distribution with rate parameter λi. We show results
for N̂ = 10 (top row) and N̂ = 1000 (bottom row) mock observations given true rate parameters
λi = 1 (left column), λi = 5 (middle column), and λi = 10 (right column), computed using (i)
the Poisson likelihood given the true rate parameter (gray points); (ii) the likelihood used in our
analysis (Equation 3.13), which marginalizes over λi given all n̂i simultaneously (blue triangles);
and (iii) the likelihood used in [241], which averages the likelihoods obtained from multiple mock
observations (red circles). Our likelihood converges to the underlying Poisson distribution in the
limit of many mock observations, while the averaged version does not. Note that we rescale each
version of P (ni|{n̂i}) by its maximum value in every panel.

analytic calculations yield λi + 1 and 3λi + 2 for the mean and variance of the averaged likelihood

(versus λi for both quantities in the Poisson distribution), which agree with our numerical tests to

high precision. Heuristically, this occurs because P (ni|n̂i,j) is broader than (and biased with respect

to) Poisson(λi), so an averaged version of this likelihood cannot converge to the underlying Poisson

distribution.

B.2 Bayesian Evidence for Radial Scaling, Size Reduction,

and Orphan Satellites

Here we explore whether our radial scaling, satellite size reduction, and orphan models — which were

held fixed in the preceding analysis — are favored by the classical-plus-SDSS luminosity distribution

by computing Bayes factors for fits with and without these effects. In particular, we compare the

Bayesian evidence for fits with χ = 0.8 (satellite radii scaled inward by a factor of 0.8 relative to

subhalo radii) versus χ = 1 (satellite radii set equal to subhalo radii), β = 0 (satellite sizes set at

accretion) versus β = 1 (satellite sizes reduced based on tidal stripping), and O = 0 (no orphan
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satellites) versus O = 1 (fiducial orphan model). In all three cases, we vary α, σM , Mmin, and B,

and we fix all remaining parameters, except for either χ, β, or O, according to Table 3.1.

We calculate the evidence for each model using the bounded harmonic mean estimate, which

effectively averages the inverse product of the likelihood and the prior over Markov Chain samples

drawn from an ellipsoid in a high-density region of the posterior distribution. In particular, we select

samples of the free parameters θ within a fixed Mahalanobis distance [313] of a point θ0 in a high

posterior density (HPD) region according to

(θ − θ0)Σ−1(θ − θ0)T 6 δ, (B.2)

where Σ is the covariance matrix from our MCMC fit and δ is chosen to isolate a HPD region. To

estimate the (inverse of) the evidence, we average the inverse of the posterior probability for points

sampled from the ellipsoid defined by Equation B.2, with δ chosen to yield a particular HPD region.

We then divide this quantity by the volume of the HPD region, which we compute by finding the

convex hull of the sampled points. We repeat this procedure several times for values of δ chosen to

yield HPD regions containing 10%–25% of our Markov Chain samples, which correspond to δ ≈ 1 for

our chains; we then average the resulting values of the evidence. We have verified that our evidence

estimates are converged by varying the range of HPD regions over which this mean is computed.

We refer the reader to [388] and references therein for further details on this procedure.

Finally, we calculate Bayes factors K by taking the ratio of the evidence for each set of fits.

We find K(χ = 0.8/χ = 1) = 2.5, K(β = 0/β = 1) = 0.97, and K(O = 0/O = 1) = 0.98; these

results represent weak evidence (or, in terms of the Jeffreys scale [239], evidence that is “barely

worth mentioning”) against our χ = 1, β = 0, and O = 0 models.1 Thus, neither radial scaling,

size reduction due to tidal stripping, nor orphan satellites significantly impact the fit presented

herein, and our evidence calculations justify fixing χ, β, and O for our fit to the classical-plus-SDSS

luminosity distribution. The fact that we only find weak evidence in favor of β = 1 suggests that the

classical-plus-SDSS luminosity distribution is fairly consistent with a subhalo–satellite size relation

set at accretion. Similarly, the fact that orphans do not appreciably impact our fit hints that it

is not necessary to invoke a significant amount of spurious subhalo disruption to fit the luminosity

distribution of classical-plus-SDSS satellites, which correspond to subhalos with Vpeak & 20 km s−1

in our best-fit model. As discussed previously, smaller values of χ and larger values of O might be

favored by a joint fit to the observed luminosity distribution and radial distribution of MW satellites,

in which case the Bayesian evidence for models with χ < 1 and O > 0 would increase accordingly.

1We have checked that these Bayes factors are monotonic functions of χ, β, and O in order to rule out the possibility
that intermediate values of these parameters (e.g., 0 < O < 1) are preferred.



Appendix C

Satellite Model Data Comparison

Details

C.1 Galaxy–Halo Connection Model Details

In this appendix, we examine several components of the galaxy–halo connection model from Chapter

4 to determine whether any of our assumptions significantly impact the results presented above.

C.1.1 MW Host Halo Mass

The analysis in this paper is restricted to two fiducial MW-like hosts with virial masses of 1.57

and 1.26 × 1012 M�. However, we expect the uncertainty in the MW host halo mass, MMW, to

impact our constraints. Consider a toy model in which Nsat satellites brighter than a limiting

magnitude MV,min must be predicted in order to match the observed luminosity function. In this

toy model, the predicted number of satellites is given by

Nsat(< MV,lim) =

∫ −∞

MV,lim

dNsat

dMV
dMV

=

∫ ∞

Mmin(MV,lim)

f
( dNsub

dMpeak
,θ
)

dMpeak, (C.1)

where dNsub/dMpeak is the subhalo mass function, Mmin is the lowest halo mass populated by an

observed satellite, and f encapsulates the observational selection, subhalo disruption, and galaxy

occupation effects that determine whether each halo hosts an observable satellite, all of which depend

on galaxy–halo connection model parameters θ. Neglecting the dependence of the latter effects

on host mass (which we expect to be subdominant compared to the overall rescaling of subhalo

abundances), using the standard linear relationship between subhalo abundance and host mass, and
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assuming a standard subhalo mass function slope of dNsub/dMpeak ∝M−2
peak (e.g., [315]), we have

Nsat ∝MMW

∫ ∞

Mmin

M−2
peak dMpeak ∝

MMW

Mmin
. (C.2)

Thus, for a fixed observed satellite count Nsat, we expect our 95% confidence level upper limit on

Mmin to scale linearly with host mass. In addition, because the error on MW mass is independent

of the error on Mmin, we expect these uncertainties to add in quadrature.

Given our fiducial minimum halo mass of 2.5×108 M� derived for an average host mass of 1.4×
1012 M�, we therefore expectMmin < 3.2×108 M� (Mmin < 2×108 M�) for a maximally high-mass

(maximally low-mass) host halo given the current 2σ observational uncertainty on the MW virial

mass of 1.0× 1012 < MMW/M� < 1.8× 1012 [102, 106, 292, 291]. We expect the remaining galaxy–

halo connection model parameters and associated errors to remain largely unchanged, although

rerunning our analysis using additional simulations is required to confirm this hypothesis. We

expect the inferred total satellite count to scale linearly with MW mass; thus, given our fiducial

prediction of 220 total MW satellites with MV < 0 mag and r1/2 > 10 pc, we expect 280 (170) such

satellites for a maximally high-mass (maximally low-mass) host halo.

Above, we implicitly assumed that our galaxy–halo connection model is capable of adjusting

the number of faint satellites, which make the largest contribution to Nsat, while simultaneously

matching the bright end of the observed satellite luminosity functions. This assumption holds

because we have fixed the abundance-matching prescription to the relation derived from GAMA

data for MV < −13 mag while allowing the faint-end slope to vary. We note that the results of

[340] suggest that the inferred number of satellites within a fixed physical radius is independent of

MMW. We find that the total number of satellites inferred within the virial radius scales almost

exactly linearly with MMW, as expected from the linear scaling of subhalo abundance with host halo

mass, and further confirming the consistency of the results among our two fiducial simulations. In

addition, we find that Mmin is roughly independent of MMW for our fiducial simulations.

C.1.2 Mass-dependent Scatter

Here we test a model where the abundance-matching scatter in luminosity at fixed Vpeak, σM ,

depends on peak halo mass. Motivated by the model in [187], we set

σM ≡ σM,0 − γM (logMpeak − logM1), (C.3)

where σM,0 is a free parameter that captures the amplitude of the luminosity scatter, γM is a free

parameter that captures its mass dependence, and M1 = 1011 M� is fixed. By rerunning our fit

with γM as an additional ninth free parameter, we find that large values of γM are ruled out by the

DES and PS1 satellite populations at high statistical significance, with γM < 0.07 at 95% confidence.
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Large values of γM are disfavored because abundant, low-mass halos host satellites that upscatter to

observable luminosities too often to match the observed DES and PS1 luminosity functions; however,

the same caveats noted in §4.8.4 for our constraint on σM apply to γM , so this upper limit should

be interpreted with caution. Introducing mass-dependent scatter does not significantly affect our

inferred upper bound on M50, implying that our fiducial minimum halo mass constraint does not

depend on the details of our luminosity scatter model.

C.1.3 Radial Scaling

To account for potential biases in our radial subhalo distributions due to artificial disruption and

halo finder incompleteness, we define the parameter χ by

rsat ≡ χrsub, (C.4)

where rsat is a satellite’s distance from the center of its host halo, which we equate to its galactocentric

distance, and rsub is the galactocentric distance of the corresponding subhalo.

In our main analysis, we take subhalo positions directly from the simulation data and therefore

assume χ = 1. However, as noted above, our fiducial model slightly underpredicts the observed

radial distribution of satellites close to the center of the MW in the PS1 footprint. We plot the

predicted DES and PS1 radial distributions for our fiducial model in Figure C.1; to illustrate the

effect of varying χ, we also show the 68% confidence interval for our fiducial posterior evaluated

with χ = 0.5.

To test the impact of radial scaling, we refit the DES and PS1 satellite populations with χ as an

additional ninth free parameter. As expected, decreasing χ reduces the tension between the predicted

and observed inner radial distribution of PS1 satellites; however, doing so does not significantly affect

the goodness of fit for the observed luminosity functions and size distributions. Moreover, our key

constraints, including the upper limit onM50, and our conclusions regarding the impact of the LMC

system are not affected. In particular, the Bayes factors in favor of our fiducial LMC model relative

to the alternative LMC scenarios defined in §4.8.2 are unchanged. We note that, since we have only

fit to observed absolute magnitudes and surface brightnesses, the discrepancy with the observed

radial distribution for χ = 1 might not persist for a fit that includes galactocentric distance; we

comment on the technical difficulties associated with such a fit in Appendix C.2.4.

[78] suggested that the Gaia-Enceladus accretion event, in which an LMC-mass galaxy merged

with the MW 8–11 Gyr ago, might lead to a relative overabundance of ultrafaint satellites in the MW.

Because of dynamical friction, this overabundance would be particularly evident in the innermost

regions of the MW and might affect the observed radial satellite distribution. Interestingly, both host

halos used in this work experience a Gaia-Enceladus-like accretion event, following the definition in

[78] of a massive (∼ 1011 M�) halo merging with the MW halo between z = 1 and 2. Given that we
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still predict an underabundance of observed satellites in the inner regions of both fiducial host halos,

the Gaia-Enceladus-like events they experience do not seem to be sufficient to ease the tension with

the observed radial distribution. Nonetheless, exploring the relationship between the mass accretion

history of the MW and the present-day radial distribution of observed ultrafaint satellites in detail

is an interesting avenue for future work.

C.1.4 Tidal Stripping

Following [336], we test a model for the evolution of satellite sizes by changing the mean sizes

predicted by Equation 4.1 to

r′1/2 ≡ r1/2

(
Vmax

Vacc

)β
, (C.5)

where r′1/2 denotes the satellite half-light radius at z = 0, r1/2 is the half-light radius at accretion

predicted by Equation 4.1, Vmax (Vacc) is the maximum circular velocity of a subhalo today (at

accretion), and β > 0 is a parameter that controls the strength of size reduction due to tidal

stripping. We set β = 0 in our fiducial analysis, meaning that satellite sizes are fixed based on halo

sizes at accretion. However, tidal stripping after infall can shrink satellite sizes; for example, [359]

found that 1 < β < 2 describes the results of high-resolution simulations well.

In Figure C.2, we illustrate predicted size distributions for our fiducial posterior evaluated with

β = 3; a large value of β was chosen to test an extreme dependence of satellite sizes on tidal stripping.

We find that even this extreme model does not impact the observed satellite size distributions,

indicating that our results are robust to assumptions about tidal stripping. Our simulations lack the

spatial resolution to test whether the [359] prescription holds in detail and alters observed satellite

size distributions, but this—along with an exploration of size enlargement due to tidal heating—is

an interesting avenue for future work.

C.1.5 Concentration-dependent Satellite Sizes

[244] found that galaxy sizes in two hydrodynamic simulations follow a size relation similar to that

in [275], with an additional dependence on halo concentration. In particular, the size relation

r1/2 ≡ A
( c

10

)γ (Rvir

R0

)n
, (C.6)

with A = 0.02, n = 1, γ = −0.7, R0 = 1 kpc, and halo concentration c measured as a function

of redshift, fits the hydrodynamic simulation results in [244] with a residual scatter of ∼ 0.15 dex.

This relation implies that more concentrated halos host less extended stellar systems at a fixed virial

radius in these simulations.

To test whether a concentration-dependent size model is favored by the DES and PS1 data, we
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Figure C.1: Radial distributions derived from our fit to the DES and PS1 satellite populations. Our
fiducial eight-parameter galaxy occupation fraction model is shown in blue. Dark (light) blue bands
correspond to 68% (95%) confidence intervals, dashed red lines show the 68% confidence interval
for a model using host halos without LMC analogs (“No LMC”), and black lines show the observed
radial distributions. Dotted-dashed blue lines show the 68% confidence interval for a model with a
radial scaling parameter of χ = 0.5.
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Figure C.2: Size distributions derived by fitting to the DES and PS1 satellite populations. Our
fiducial eight-parameter galaxy occupation fraction model is shown in blue. Dark (light) blue bands
correspond to 68% (95%) confidence intervals, dashed red lines show the 68% confidence interval
for a model with a concentration-dependent galaxy–halo size relation, and dotted-dashed blue lines
show the 68% confidence interval for a model with an extreme dependence of satellite size on tidal
stripping.
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Parameter Prior Motivation

α arctanα ∼ unif(−1.1,−0.9) Jeffreys prior for −2 < α < −1.2
σM σM ∼ unif(0, 2) dex Conservative upper limit [187, 288]
M50 log(M50/M�) ∼ unif(7.5, 11) Simulation resolution limit [315]
B ln(B) ∼ N (µ = 1, σ = 0.5) Hydrodynamic simulations [337, 336]
σgal Scatter in galaxy occupation fraction Hydrodynamic simulations [175, 202]
A A ∼ unif(0, 0.5) kpc Empirical galaxy–halo size relation [275]
σlogR σlogR ∼ unif(0, 2) dex Empirical galaxy–halo size relation [275]
n n ∼ N (µ = 1, σ = 0.5) Empirical galaxy–halo size relation [275]

Table C.1: Prior distributions for the parameters varied in our fiducial eight-parameter fit to the
DES and PS1 satellite populations. Here N (µ, σ) denotes a normal distribution with mean µ and
standard deviation σ.

refit these satellite populations with γ as an additional ninth free parameter. Because the concen-

tration of subhalos after infall into the MW is difficult to measure accurately in our simulations,

we measure the concentration at the time of accretion when implementing Equation C.6. We find

that our galaxy–halo connection model constraints are largely unchanged in this case, although the

upper limits on σlogR (0.88 dex) and n (1.7) are more stringent than in our fiducial model. We

find that the amplitude of the size relation is degenerate with γ, and our analysis does not place

an upper limit on A in this case. Here γ itself is constrained to lie between −1.5 and −0.2 at 95%

confidence. The predicted luminosity functions and size distributions are nearly identical to those

from our fiducial analysis (we illustrate the size distribution for our fiducial posterior evaluated with

γ = −0.7 in Figure C.2).

C.1.6 Orphan Satellite Contribution

To test the importance of orphan satellites, we refit the DES and PS1 satellite populations with

O = 0, which adds zero orphans to our fiducial subhalo populations and effectively assumes that

there is no artificial subhalo disruption in our simulations. Our constraints are virtually unaffected

by this extreme variation in O. In particular, the 95% confidence upper limit on M50 increases

by less than 1σ to 108 M�, and the rest of our galaxy–halo connection model constraints are also

not significantly affected. The total number of MW satellites with MV < 0 mag and r1/2 > 10 pc

decreases to 190± 50, as expected from the absence of an orphan satellite population. Thus, ∼ 15%

of the systems in our best-fit model are orphan satellites; these satellites might be associated with

heavily stripped or disrupting subhalos.

C.2 Statistical Framework Details

Next, we provide additional details on our statistical framework, and we discuss several caveats.
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C.2.1 Poisson Process Likelihood

The Poisson point process likelihood in our statistical comparison to observed satellites is imple-

mented as follows. Suppose we observe ni real satellites and n̂i,ν mock satellites in an absolute

magnitude bin i, where ν = 1, . . . , N̂ runs over all model realizations, including different host halos,

and draws from our stochastic galaxy–halo connection model. The likelihood of observing these

satellites given our model realizations, which enters Equation 4.6, is then

P (ni|n̂i,1, . . . , n̂i,N̂ ) =
(N̂ + 1

N̂

)−(n̂i,1+···+n̂i,N̂+1)

× (N̂ + 1)−ni
Γ(n̂i,1 + · · ·+ n̂i,N̂ + ni + 1)

Γ(ni + 1)Γ(n̂i,1 + · · ·+ n̂i,N̂ + 1)
, (C.7)

where the dependence on galaxy–halo connection model parameters θ is implicit, and we assumed

(i) a flat prior on λi for λi > 0, and (ii) that ni and all n̂i,ν are drawn from the same Poisson

distribution with rate parameter λi. Note that our method yields noninteger numbers of mock

satellites by counting each system as pdetect × (1 − pdisrupt) × fgal objects according to Equation

4.5, so we have replaced factorials in the Poisson likelihood with appropriate gamma functions. Our

results are unaffected if we enforce integer satellite counts by performing a binary mock observation

of each predicted satellite according to its detection probability.

C.2.2 Priors

We list the prior distributions used in our fiducial analysis in Table C.1, several of which are informed

by previous work. The prior on the faint-end slope is a noninformative Jeffreys prior [241]. The

upper limit on the luminosity scatter is chosen to be very conservative; for example, [288] found that

abundance-matching scatter at the luminosity scale of the brightest systems used in our analysis is

less than ∼ 0.25 dex. For M50, we set the lower limit of the prior based on the resolution limit of

our simulations, which is a maximally conservative choice from the perspective of the inferred upper

limit on this quantity. In particular, while we can decrease the lower limit of this prior because the

M50 posterior is flat below ∼ 5×107 M� due to the limited sensitivity of the DES and PS1 satellite

searches, doing so would artificially decrease the inferred 95% confidence upper limit.1 Priors for B
and n are set based on studies that identify the preferred values of these parameters, and priors for

σgal, A, and σlogR are chosen to be uniform with conservative upper bounds.

C.2.3 Bayes Factor Calculation

To calculate Bayes factors, we estimate the Bayesian evidence using the bounded harmonic mean

method described in [336]. In particular, for a given posterior, we select samples of galaxy–halo

1However, as noted in §4.8.4, our reported Bayes factors are independent of this choice.
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connection model parameters θ within a fixed Mahalanobis distance of a point θ0 in a high-density

region of the posterior. We then average the inverse of the posterior probabilities for these samples,

and we normalize by the volume of the sampled region. We repeat this procedure for high-density

regions that contain 10%–25% of the total number of MCMC samples, and we average over these

percentiles to obtain the mean Bayesian evidence.

C.2.4 Caveats and Future Work

In this work, we fit to observed MW satellites in an observable parameter space x that consists of

absolute magnitude and two large surface brightness bins. However, it would be more constraining

to perform our inference in a higher-dimensional space that includes galactocentric distance. There

are two main difficulties inherent in our statistical modeling.

1. We have binned observed and modeled satellites assuming that the unknown Poisson process

rate in each bin is independent from the rate in other bins. This assumption is unphysical, as

the rate should vary smoothly in observable parameter space.

2. As the number of bins increases, the number of satellites per bin decreases, which causes

the uncertainty in the rate parameter to increase and our model to become increasingly un-

constrained. This is a particularly challenging problem as we move to higher-dimensional

parameter spaces, since the number of bins increases rapidly with dimensionality.

To address these issues, it is possible to connect rates in nearby regions of parameter space in an

unbinned fashion using a correlated prior. This is equivalent to imposing that our galaxy–halo model

should produce satellite abundances that vary smoothly as a function of observable quantities. We

now lay out the mathematical formalism necessary for introducing this prior.

Our model of the distribution of satellites in observable space is an inhomogeneous Poisson

process, where the number of “events” in any region T of observable space x is given by a Poisson

distribution with rate λT =
∫
T λ (x) dx, where λ (x) is referred to as the “rate function.” Given a

rate function λ (x), the likelihood of observing N events at a set of points {xi}Ni=1 is

p
(
{xi}Ni=1 | λ

)
= exp

[
−
∫
λ (x) dx

] N∏

i=1

λ (xi) , (C.8)

where we suppressed the dependence of the rate on our galaxy–halo connection model parameters θ.

In our case, the “events” {xi}Ni=1 are the locations of detected satellites in an observable parameter

space. Note that in this formulation, there is no binning in x.

Calculating this likelihood exactly is challenging because, in order to compare observed and
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modeled satellite populations, we must integrate over the unknown rate function λ,

p ({xi} | {x̂j}) =

∫
Dλ p ({xi} | λ) p ({x̂j} | λ) p (λ)∫

Dλ p ({x̂j} | λ) p (λ)
. (C.9)

Here, both the numerator and denominator contain functional integrals over the rate; these integrals

are performed over an infinite-dimensional space consisting of the rate at each point in observable

parameter space. Further, this rate is a stochastic function in our galaxy–halo connection model due

to satellite luminosity and size scatter. This makes our model an inhomogeneous Poisson process

with a stochastic rate function, which is known as a “Cox process.” The prior on the rate function,

p (λ), must admit only positive rates; one possible choice is to treat the logarithm of the rate as a

Gaussian process. Models involving Cox processes are often termed “doubly intractable” due to the

presence of intractable integrals over the rate function [331].

There are, however, several approaches to make Cox processes tractable. As noted above, we bin

satellites in absolute magnitude and split the sample into two large surface brightness bins, so that

our likelihood is over the number of counts in each bin, rather than the locations of the points. This

is equivalent to assuming that the rate function is constant in each bin and leads to the likelihood

p
(
{nj}Nbins

j=1 | {λj}
)

= exp


−

∑

bins j

λjVj


 ∏

bins k

λnkk
nk!

, (C.10)

where λj is the rate in bin j, Vj is the volume of bin j, and nj is the number of events in bin j.

Binning turns the functional integral over λ (x) in Equation C.9 into a finite-dimensional integral

over the value of λ in each bin. Choosing Cartesian bins in observable parameter space then renders

the problem tractable [178]. There also exist approaches that avoid binning the observable space

[7, 245], which we intend to explore in future work.

C.3 Robustness to Observational Systematics

We now present a set of tests in order to verify the robustness of our key results to various observa-

tional systematics.

C.3.1 Kinematically Unconfirmed Satellites

To assess possible systematic uncertainties associated with the observed set of DES and PS1 satellites

presented in Paper I, we rerun the entire analysis using only satellites that have are confirmed to

exhibit dark matter–dominated internal kinematics. The candidate satellites excluded from this

reanalysis are indicated in Table C.2. As shown in Figure C.3, our galaxy–halo connection model

constraints are largely unaffected by refitting the DES and PS1 satellite populations under the
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conservative assumption that all unconfirmed systems are star clusters. Most importantly, the

upper limit on M50 only increases by ∼ 1σ, to 5 × 108 M� at 95% confidence, and the minimum

halo mass increases to 6.5× 108 M�, similar to the minimum halo mass inferred from classical and

SDSS satellites in [336]. In addition, the total predicted number of MW satellites decreases by ∼ 1σ

to 150±60. These shifts are expected, since unconfirmed satellite candidates constitute many of the

faintest systems in our fiducial sample. Thus, we conclude that our key constraints and predictions

are not highly sensitive to the nature of kinematically unconfirmed satellite candidates.

C.3.2 Satellite Size Criterion

Next, we test whether a more conservative satellite size criterion impacts our results. For this test, we

self-consistently exclude all observed and predicted satellites with r1/2 > 20 pc from our statistical

inference, rather than the r1/2 > 10 pc cut used in our fiducial analysis. Our key constraints are not

significantly affected; for example, the 95% confidence level upper limit onM50 increases slightly, to

1.5× 108 M�. The upper limit on the amplitude of the galaxy–halo size relation, which was 110 pc

in our fiducial analysis, increases to 220 pc, as we might expect from excluding small satellites in

the fit.

C.3.3 Biases in Measured Satellite Properties

Finally, we test whether systematic offsets in measured satellite properties could affect our conclu-

sions. In particular, we assume that every measured DES and PS1 satellite absolute magnitude is

offset from the fiducial value listed in Table C.2 by ∆MV = +1 mag, which is similar to the width

of the absolute magnitude bins used in our fiducial analysis. We rerun the entire analysis with

these shifted magnitudes, and we repeat this procedure for ∆MV = −1 mag. In both cases, we still

obtain a good joint fit to the DES and PS1 luminosity functions. As expected, the inferred faint-

end slope is steeper (shallower) than that obtained from our fiducial analysis for ∆MV = −1 mag

(∆MV = +1 mag); however, the total predicted number of MW satellites with MV < 0 mag and

r1/2 > 10 pc and our 95% confidence upper limit onM50 are not significantly affected in either case.

C.4 Resolution and Sample Variance

To assess the impact of resolution effects on our fiducial simulations and results, we compare the

subhalo maximum circular velocity function, radial distribution, and size distribution from one of

our fiducial host halos (excluding LMC satellites) to those from a higher-resolution resimulation

of the same host. In particular, we resimulate this halo with a 4 × 104 M� h−1 high-resolution

particle mass and an 85 pc h−1 minimum softening length. We find that the distributions of all

relevant subhalo properties are not significantly affected above the resolution limit of our fiducial
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simulations. Moreover, by rerunning our analysis, we find that none of our galaxy–halo connection

model constraints are significantly affected when using a higher-resolution simulation.

We also assess the impact of sample variance on our fiducial subhalo and satellite populations,

since the final positions of LMC satellites might be sensitive to the realizations of small-scale density

fluctuations in our fiducial simulations. In particular, we resimulate both of our fiducial host halos at

standard resolution with different random seeds for small-scale phases in the matter power spectrum

below 60 kpc h−1. We find that the properties of the MW host halo and LMC halo are not

significantly affected in these resimulations, and that the resulting subhalo populations are nearly

identical in terms of their distributions of Mpeak, Vpeak, halo size at accretion, and present-day

heliocentric distance, implying that our results are robust to sample variance in the phases of the

matter power spectrum on small scales.

C.5 Observed Satellite Data Vectors

The confirmed and candidate DES and PS1 satellites that pass the detection criteria defined in

Paper I are listed in Table C.2. Note that, although Kim 2 (DES) and Laevens 1 (PS1) formally

pass these detection criteria, we do not include these systems in our analysis or Table C.2 because

they are suspected to be star clusters (Paper I).
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Figure C.3: Posterior distribution from our fit to the kinematically confirmed DES and PS1 satellite
populations. Dark (light) shaded contours represent 68% (95%) confidence intervals. Shaded areas
in the marginal distributions and parameter summaries correspond to 68% confidence intervals. Note
that σM , σgal, and σlogR are reported in dex, M50 is reported as log(M50/M�), and A is reported
in pc. Note that σgal is not constrained at 68% confidence in this fit.



APPENDIX C. SATELLITE MODEL DATA COMPARISON DETAILS 251

Name MV D r1/2

(mag) (kpc) (pc)
DES

Fornax -13.46 147 707
Sculptor -10.82 84 223
Reticulum II -3.88 30 31
Eridanus IIa -7.21 380 158
Tucana II -3.8 58 165
Grus II∗ -3.9 53 92
Horologium I -3.55 79 31
Tucana III∗ -2.4 25 44
Tucana IV -3.5 48 128
Phoenix II -3.30 83 21
Horologium II∗ -2.6 78 33
Tucana V∗ -1.6 55 16
Pictor I∗ -3.45 114 18
Columba I∗ -4.2 183 98
Cetus II∗ 0.02 30 17
Grus I∗ -3.47 120 21
Reticulum III∗ -3.31 92 64

PS1

Leo I -11.78 254 226
Leo II -9.74 233 165
Draco -8.71 76 180
Ursa Minor -9.03 76 272
Sextans -8.72 86 345
Canes Venatici I -8.8 218 338
Boötes I -6.02 66 160
Ursa Major II -4.25 32 85
Coma Berenices -4.38 44 57
Sagittarius II -5.2 69 32
Willman 1 -2.53 38 20
Canes Venatici II -5.17 160 55
Segue 1 -1.30 23 20
Segue 2∗ -1.86 35 34
Crater II -8.2 117 1066
Draco II∗ -0.8 22 17
Triangulum II∗ -1.60 30 13
Hercules -5.83 132 120
Cetus IIb 0.02 30 17

Table C.2: MW satellites used in our analysis. Properties of confirmed and candidate DES and
PS1 satellites used in our analysis, listed in order of detection significance (Paper I). Asterisks mark
kinematically unconfirmed systems. aEridanus II is not included because it lies outside our fiducial
300 kpc heliocentric distance cut. bCetus II is detected in both PS1 and DES; in our analysis, we
only count this system in the observed DES population.



Appendix D

Warm, Interacting, & Fuzzy Dark

Matter Constraints Supplement

D.1 Milky Way Satellite Model

Here, we provide a high-level overview of our MW satellite galaxy model and its associated uncer-

tainties to supplement Chapter 7; we refer the reader to [336, 333] for a complete description. Our

model of the MW satellite population is based on dark matter-only zoom-in simulations chosen to

resemble the MW halo in terms of its mass, concentration, and formation history (namely, a major

merger with mass ratio and infall time similar to observational estimates for the Gaia-Enceladus

merger, and a quiescent mass accretion history thereafter). The MW host halos in these simulations

respectively have virial masses of 1.57×1012 M� and 1.26×1012 M� and concentration values of 11.8

and 10.5. These concentration values are consistent within ∼ 1σ with the range derived in [102],

and they are also consistent with the range inferred by [106] for the concentration of the MW halo

before adiabatic contraction in the presence of baryons. This implies that our MW-like host halos

are less concentrated than the real MW halo, which potentially impacts the efficiency of subhalo

disruption beyond the leading-order effects captured by our model of subhalo disruption due to the

MW disk, which is discussed below.

Crucially, each of these two simulations includes a realistic Large Magellanic Cloud analog system

(i.e., a system with a total mass, infall time, and orbit consistent with observations of the LMC).

As demonstrated in [333], the presence of a realistic LMC analog system is necessary to reproduce

the observed anisotropy in the full-sky MW satellite population. We emphasize that our analysis

conservatively marginalizes over the mass of the MW halo, which is the most important nuisance

parameter governing the SHMF for halos that contain realistic LMC systems.

We combine these simulations with an empirical model for the galaxy–halo connection that is

252
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specifically developed to model dwarf satellite galaxies. This model parameterizes the slope and

scatter of the relation between satellite luminosity and peak halo maximum circular velocity, the

amplitude, scatter, and power-law slope of the relation between satellite size and halo size, the

fraction of dark matter halos occupied by observable dwarf galaxies, and the efficiency of subhalo

disruption due to the MW disk. The corresponding eight galaxy–halo connection model parameters

are shown in Table D.1. In this work, we also incorporate the thermal-relic WDM half-mode mass,

Mhm (or the characteristic FDM SHMF mass suppression scale, M0) into the model. Importantly,

this empirical modeling framework allows us to parameterize and marginalize over uncertainties at

the faint end of the galaxy–halo connection and the properties of the MW system in order to derive

robust DM constraints.

To constrain the model using MW satellite observations, we follow the likelihood framework

developed in [336, 333]. This framework compares the predicted surface brightness distribution of

satellites weighted by their detection probability in the relevant photometric data to the observed

count, assuming a Poisson likelihood and marginalizing over the underlying Poisson rate in each

surface brightness bin. We calculate detection probabilities using the state-of-the-art observational

selection functions derived in [149], which account for satellite detectability as a function of lumi-

nosity, size, distance, and sky position.

Although several recent studies reach similar conclusions about the galaxy–halo connection for

MW satellites, our satellite model is the first to self-consistently include the population of LMC

satellites. Moreover, our model comprehensively marginalizes over theoretical uncertainties in the

faint-end galaxy–halo connection, including subhalo disruption efficiency and the satellite–halo size

relation. In addition, the results of our MW satellite inference are consistent with predictions from

hydrodynamic simulations [188, 30]. Nonetheless, there are several modeling uncertainties in our

analysis that may impact the accuracy and precision of the resulting dark matter constraints. Most

importantly, the limited number of existing high-resolution cosmological simulations with realistic

LMC analogs is an important problem for any analysis that attempts to fit the full-sky MW satellite

population. Fitting the observed MW satellite population using zoom-in halos without realistic LMC

analogs results in a severe underabundance of predicted satellites in the DES footprint due to the

lack of LMC-associated satellites [333]. Thus, redoing our analysis without specifically-selected MW

host halos would yield biased (and more stringent) dark matter constraints than those presented

here.

D.2 Fitting Procedure Details and Posterior Distributions

Our DM limits are derived by running 105 iterations of the MCMC sampler emcee [180] to sample

the eight galaxy–halo connection model parameters described in [333], plus the DM model pa-

rameter of interest (i.e., Mhm for our thermal relic WDM fit and M0 for our FDM fit), using 36
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Parameter Physical Interpretation 95% confidence interval

α Power-law slope of satellite luminosity function −1.46 < α < −1.38
σM Scatter in satellite luminosity at fixed halo Vpeak 0 dex∗ < σM < 0.2 dex
M50 Peak mass at which 50% of halos host galaxies 7.5∗ < log(M50/M�) < 8.0
B Subhalo disruption efficiency relative to FIRE sims 0.2 < B < 1.9
σgal Width of the galaxy occupation fraction 0 dex∗ < σM < 0.66 dex
A Amplitude of galaxy–halo size relation 0 pc∗ < A < 90 pc
σlogR Scatter in galaxy size at fixed halo properties 0.1 dex∗ < σM < 1.1 dex
n Power-law slope of galaxy–halo size relation 0∗ < n < 1.9
Mhm WDM SHMF suppression mass scale (Equation 7.5) 7.0∗ < log(Mhm/M�) < 7.5
M0 FDM SHMF suppression mass scale (Equation 7.7) 7.0∗ < log(M0/M�) < 8.1

Table D.1: Galaxy–halo connection and DM model parameters varied in our thermal relic WDM
and FDM fits to the MW satellite population. Note that M0 is constrained in a separate fit that
yields similar confidence intervals for the eight galaxy–halo connection parameters. Asterisks mark
prior-driven constraints. See [333] for details on our galaxy–halo connection model.

walkers. The eight galaxy–halo connection model parameters are shown in Table D.1 and described

in detail by [333]. For both our thermal relic WDM and FDM fits, we discard a generous burn-in

period of 2× 104 steps, corresponding to ∼ 20 autocorrelation lengths. We use the Python package

ChainConsumer [219] to visualize the posterior distributions and calculate confidence intervals.

The posterior distributions over galaxy–halo connection and DM model parameters for our ther-

mal relic WDM and FDM analyses are shown in Figures D.1 and D.2, respectively. Our IDM

constraints are derived using the Mhm limit from our thermal relic WDM fit; thus, we do not show

a separate posterior for the IDM analysis.

D.3 Resonantly-Produced Sterile Neutrino Constraints

To translate our upper bound on the mass of thermal relic WDM into constraints on resonantly-

produced Shi–Fuller sterile neutrinos, we follow the procedure in [414, 308]. In particular, we use the

sterile neutrino transfer functions generated by [111] using CLASS for a grid of sterile neutrino masses

and mixing angles. We then compare these transfer functions to the mWDM = 6.5 keV thermal relic

transfer function that is ruled out at 95% confidence by our analysis. We derive the limits in

Figure 7.2 by finding the combinations of sterile neutrino mass and mixing angle between the “DM

Underproduction” and “DM Overproduction” lines in Figure 7.2 that yield transfer functions which

are strictly more suppressed than the ruled-out thermal relic transfer function. The overproduction

(underproduction) boundaries correspond to sterile neutrino models with zero (maximal) lepton

asymmetry in the Neutrino Minimal Standard Model [414].

We benchmark our sterile neutrino limits using the recent estimate of SHMF suppression from

[297], which is appropriate for a 7 keV resonantly-produced sterile neutrino with various lepton
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asymmetry (or mixing angle) values. This SHMF suppression corresponds to Equation 7.4 with

α = 4.2, β = 2.5, γ = −0.2, and the relation between Mhm and lepton asymmetry L6 is given for

several models in [297]. Using this SHMF in our fitting procedure, we find Mhm < 5.9× 107 M� at

95% confidence. Applying linear scaling with MW halo mass to the result of the joint fit yieldsMhm <

7.6 × 107 M�, which rules out the coldest sterile neutrino model presented in [297]—corresponding

to ms = 7 keV and L6 = 8—at � 95% confidence, consistent with our limit in Figure 7.2.

D.4 FDM Subhalo Mass Functions

Due to the difficulties of simulating non-linear structure formation in FDM, no consensus exists for

a quantitative description of the suppression of the SHMF in this model. We therefore implemented

two popular forms of the FDM SHMF to assess this uncertainty. The nominal model described in

the text is the semi-analytic model derived in [153]. Our fit to this function is given by Equation

7.6, which is valid for M & 3× 108 M� and mφ & 10−21 eV with

β̃(mφ) = exp

[
−
(

mφ

13.7× 10−22 eV

)0.6
]

+ 0.77 (D.1)

γ̃(mφ) = 0.22 log

[( mφ

10−22 eV

)0.45
]
− 0.78. (D.2)

An alternative model for the suppression of the halo mass function is derived from the “wave dark

matter” simulations in [413], which corresponds to Equation 7.6 with β̃ = 1.1 and γ̃ = −2.2. This

mass function was estimated using high-redshift (z > 4) simulation outputs and is systematically

more suppressed than that derived semi-analytically in [153]. Adopting this alternative SHMF in our

fitting procedure and accounting for the uncertainty in MW halo mass yields M0 < 3.4×107 M� at

95% confidence, corresponding to mφ > 9.1× 10−21 eV. Thus, the current FDM SHMF uncertainty

results in roughly a factor of three difference relative to our fiducial mφ > 2.9×10−21 eV constraint.

We caution that these uncertainties underlie FDM predictions from both semi-analytic models

and simulations. For example, [413] simulate CDM-like particles with initial conditions appropriate

for FDM, and thus do not solve the Schrödinger–Poisson system that governs FDM. This is an

important caveat, because interference patterns on scales comparable to the de Broglie wavelength

can potentially affect structure formation. Meanwhile, the semi-analytic treatment in [153] does

not explicitly account for the “quantum pressure” term in the Madelung transformation of the

Schrödinger–Poisson system, and makes several assumptions about the tidal evolution of subhalos

with solitonic density profiles. The derivation of robust, quantitative predictions for the FDM SHMF

represents an active area of theoretical and computational study.



Appendix E

SIDM Resolution Tests

This Appendix supplements the SIDM simulations presented in Chapter 9.

E.1 Simulation Resolution Tests

To test for convergence, we rerun our CDM and w500 simulations at higher resolution. In particular,

these resimulations are run with a 4.0×104 M� h
−1 high-resolution particle mass and an 85 pc h−1

minimum softening length, corresponding to a factor of eight increase in mass resolution and a factor

of two decrease in softening length relative to our fiducial simulations.

In Figure E.1, we compare the subhalo Vpeak functions and radial distributions from these high-

resolution resimulations to our fiducial results. We find fairly good agreement, at the ∼ 15% level,

between the standard and high-resolution results for subhalos above our fiducial Vpeak thresholds.

Interestingly, we find that there are more resolved subhalos above the relevant Vpeak threshold in the

lower-resolution simulations, which might be due to the fact that early interactions within subhalos

are better resolved in the higher-resolution simulations, leading to more efficient coring. However, we

note that there are also more resolved subhalos in the lower-resolution CDM simulation, so this also

might indicate that the Vpeak distributions are slightly different in the fiducial and high-resolution

simulations; we have not attempted to match subhalo populations precisely for this comparison,

since the level of agreement is reasonable. These findings suggest that artificial subhalo disruption

is not a large effect relative to the physical disruption (or stripping below the resolution limit) of

subhalos in our SIDM simulations. Thus, we conclude that our main results, including the amount

of subhalo disruption in our SIDM simulations, are not highly sensitive to the resolution threshold

of our fiducial simulations.
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Figure E.1: Simulation resolution study. Left panel: peak velocity functions of subhalos for our
high-resolution CDM and w500 resimulations (labeled “16K”), compared to those from our fiducial
simulations (labeled “8K”). Right panel: corresponding radial subhalo distributions in units of the
host halo virial radius in each simulation.

E.2 Subhalo Resolution Threshold

In our fiducial analysis, we employed a conservative Vpeak resolution cut of 20 km s−1 for our CDM

simulation, and we matched the number of surviving-plus-disrupted subhalos in CDM and each

SIDM model variant using variable Vpeak thresholds, denoted by Vthresh. In this appendix, we show

that this statistical subhalo matching method is necessary given the scatter in the Vpeak distributions

measured by our halo finder. We then demonstrate that our matched subhalo populations are well

converged given our fiducial choice of Vthresh = 20 km s−1 in CDM. Finally, we summarize our main

results for a lower Vpeak threshold.

E.2.1 Subhalo Abundance for a Fixed Vpeak Threshold

Figure E.2 shows the number of surviving, disrupted, and surviving-plus-disrupted subhalos in SIDM

relative to that in CDM if the same value of Vthresh is used for all of the simulations. The scatter

among the SIDM model variants in all three panels of Figure E.2 strongly suggests that a variable

Vpeak threshold must be adopted in order to match subhalo populations in our CDM and SIDM

simulations. Physically, this is reasonable because of the differences in subhalo assembly on an

object-by-object basis caused by early self-interactions described in Section 9.6.1; however, the

differences could also be driven by halo finder issues. Note that the scatter among our SIDM model

variants increases for lower values of Vthresh, making precise subhalo population matching more

difficult near the CDM resolution limit of Vpeak ≈ 10 km s−1.
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Figure E.2: Subhalo resolution threshold study. Left panel: total number of surviving subhalos
in each SIDM model variant above a fixed Vpeak threshold divided by the corresponding number
of surviving subhalos in our CDM simulation. Middle panel: same as the left panel, but for the
number of disrupted subhalos. Right panel: same as the previous panels, but for the number of
surviving-plus-disrupted subhalos.

E.2.2 Choice of Fiducial Vpeak Threshold

We observe that the total number of subhalos is stable at the ∼ 10% level for Vthresh & 20 km s−1,

lending confidence to our fiducial subhalo resolution threshold. The residual differences relative to

CDM for large values of Vthresh are likely due to a combination of physical effects (i.e., true differences

in subhalo assembly in the presence of self-interactions) and numerical artifacts (e.g., uncertainties

inherent to using halo finders optimized for CDM on our SIDM simulations, or artificial subhalo

disruption). Disentangling these effects is beyond the scope of this paper; however, as noted in

Section 9.8, this ∼ 10% effect must be accounted for as a theoretical systematic until the cause of

these differences is well understood.

E.2.3 Severity of Subhalo Disruption for a Less Conservative Vpeak Thresh-

old

Finally, we estimate the severity of subhalo disruption in our SIDM simulations for a lower Vpeak

threshold. In general, we expect enhanced disruption for subhalos with Vpeak . 20 km s−1 because

these systems are even more susceptible to tidal disruption than those studied in our fiducial analysis.

Indeed, we observe that the fraction of surviving subhalos in SIDM falls off sharply at low Vpeak

thresholds, particularly for Vthresh . 15 km s−1, and we have confirmed that this behavior persists

in our higher-resolution w500 resimulation. We also note that, in SIDM models with large self-

interaction cross sections at low relative velocities (e.g., w10), self-interactions within subhalos can

significantly affect their density profiles, again making them more susceptible to tidal disruption.

There is a hint of this effect in the left panel of Figure E.2, where we observe the steepest downturn



APPENDIX E. SIDM RESOLUTION TESTS 261

in the number of surviving subhalos relative to CDM for w10 near the CDM resolution limit of

Vpeak ≈ 10 km s−1.

It is unclear whether the downturn in the fraction of surviving subhalos in our SIDM simula-

tions is a consequence of physical disruption, artificial disruption, and/or halo finder issues in this

regime. However, for completeness, we calculate the fraction of surviving subhalos in SIDM relative

to that in CDM using our statistical subhalo matching procedure for Vthresh = 15 km s−1 in CDM.

This choice yields Vthresh = [14.36, 13.93, 13.84, 14.07] km s−1 and a surviving subhalo fraction of

NSIDM/NCDM = [0.72, 0.63, 0.65, 0.31] for [w10, w100, w200, w500], respectively. These surviving frac-

tions are nearly identical to our fiducial results for w100 and w200, and they are consistent at the

∼ 10% (30%) level for w10 (w500). In addition, the Vpeak distributions of surviving-plus-disrupted

subhalos remain consistent among the simulations using these Vthresh values.

E.3 Subhalos near the Host Center

As noted in Section 9.6.3, there is a curious “spike” in the inner radial distribution of surviving sub-

halos for w10 and w200, shown in the right panel of Figure 9.6. The spike is particularly significant

for w10, where the number of subhalos in one of the inner radial bins is enhanced by a factor of two

with respect to CDM. We emphasize that these spikes are not statistically significant: they only

correspond to one or two additional subhalos near the center of the host in the SIDM simulations.

Given the increased efficiency of tidal disruption in SIDM, it might seem surprising that these sub-

halos survive. While the survival (relative to our other SIDM model variants) and sinking (relative

to CDM) of these objects are plausible consequences of self-interactions, we cannot distinguish the

presence of these subhalos at small radii from statistical fluctuations. In particular, it is possible

that pericentric passages at z ≈ 0 determined by the orbital phases of the subhalos in w10 and w200

happen to align more closely with the z = 0 snapshot than for subhalos in CDM or our other SIDM

model variants. On the other hand, if this behavior persists in a larger suite of SIDM simulations,

it may be a physical consequence of increased drag due to self-interactions.



Appendix F

Probe Combination Details

This Appendix supplements the Milky Way satellite plus strong lensing probe combination presented

in Chapter 11.

F.1 Milky Way Zoom-in Simulations

Our realistic MW-like simulations are drawn from the suite of 45 zoom-in simulations presented in

[315], which have host halo virial masses between 1.2 and 1.6 × 1012 M�.1 The highest-resolution

particles in these simulations have a mass of 3 × 105 M� h−1, and the softening length in the

highest-resolution regions is 170 pc h−1. Subhalos in these simulations are well resolved down to a

present-day maximum circular velocity of Vmax ≈ 9 km s−1 [315], and halo catalogs and merger trees

were generated using the Rockstar halo finder and the consistent-trees merger code [47, 48].

To account for the limited resolution of these simulations, we only analyze subhalos with max-

imum circular velocity Vmax > 9 km s−1 and peak maximum circular velocity Vpeak > 10 km s−1,

which are typically resolved with & 100 particles at the time Vpeak is achieved. In addition, because

we construct the B–Σsub relation by conservatively matching the MW zoom-in and Galacticus-

predicted SHMFs down to the minimum halo mass scale, which corresponds to Mpeak > 2.5×108 M�

or Vpeak > 19 km s−1 before accounting for MW host halo mass uncertainty [333], only subhalos

resolved with greater than ∼ 600 particles at the time Vpeak is achieved directly influence our results.

As noted in Section 11.6, we include disrupted orphan subhalos in our predictions using the

model presented in Chapter 3 [336]. This model semianalytically tracks the orbital evolution of

subhalos after disruption while accounting for tidal stripping and the evolving potential of the host

halo, and it is calibrated by comparing to higher-resolution versions of halos from the [315] zoom-in

simulation suite. We used a higher-resolution resimulation of one of our realistic MW-like halos

1We define virial quantities according to the [93] virial definition, with overdensity ∆vir ' 99.2 in units of the
critical density as appropriate for our fiducial cosmological parameters.
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Figure F.1: Left panel: projected subhalo mass function for MW-like host halos as a function of
present-day subhalo virial mass. Blue lines show results from the zoom-in simulations used in our
MW satellite inference for several values of the baryonic disruption efficiency parameter B (models
with more efficient subhalo disruption are shown in darker colors). Right panel: average radial
subhalo distribution in units of the host halo virial radius for our MW-like simulations (blue).
Dashed vertical lines approximately mark the radial range of observed MW satellite galaxies used
in our analysis. In both panels, dark (light) red contours show 68% (95%) confidence intervals from
Galacticus for a sample of halos with characteristics matched to our MW-like simulations (see
Appendix F.2 for details). To calculate the Galacticus radial distributions, we only consider halos
with Mpeak > 108 M� in addition to the Vpeak and Vmax cuts described in Appendix F.1 to facilitate
a direct comparison to our simulation results.
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Figure F.2: Left panel: projected subhalo mass functions versus peak subhalo virial mass. Lines
correspond to individual zoom-in simulations from the [315] suite of MW-mass host halos and are
colored according to their projected subhalo number density Σsub,MW; the two thickest lines cor-
respond to the MW-like simulations used in our analysis. The gray band indicates the range of
SHMFs from these simulations, and dark (light) red contours show 68% (95%) confidence intervals
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Right panel: relation between host halo mass, concentration, and Σsub,MW for the same suite of
zoom-in simulations. Stars show the two MW-like simulations used in our analysis, which include
realistic LMC analog systems, triangles show simulations from this suite that have an LMC ana-
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(described in [333]), which is run with high-resolution particles of 4 × 104 M� and an 85 pc h−1

minimum softening length, to check that our SHMF predictions and the resulting B–Σsub relation

are numerically converged when including orphans.

As demonstrated in Chapter 3 [336], orphans contribute to the subhalo population at our fiducial

zoom-in resolution at the ∼ 10% level. The orphan contribution is roughly mass independent,

increases at small Galactocentric radii, and is not highly degenerate with WDM physics, which

suppresses low-mass subhalos in a radially independent manner. Furthermore, [333] show that the

addition of orphans does not significantly affect galaxy–halo connection constraints derived from

DES and PS1 data. The development of a self-consistent orphan model that can be applied to both

N -body simulations and Galacticus predictions is left to future work.

F.2 Comparing Milky Way Zoom-in Simulations to Galacticus

We construct Galacticus predictions corresponding to our realistic MW-like simulations by gen-

erating host halos from a mass range corresponding to the simulations described in Appendix F.1.

Host halo concentrations are generated using the [138] mass–concentration relation with 0.16 dex

scatter and span the concentration values of the hosts in our MW-like zoom-in simulations. Out of

these runs, we select halos that satisfy:

1. Host halo NFW concentration of 7 < chost < 16;

2. A realistic LMC analog system that accretes within the last 2 Gyr, has a present-day maximum

circular velocity of Vmax > 55km s−1, Galactocentric distance of 40 kpc < D < 60 kpc, and

Galactocentric velocity of 267 km s−1 < V < 375 km s−1;

3. A Gaia-Enceladus-like accretion event, i.e., a merger with a satellite-to-host mass ratio in the

range [0.15, 0.25] in the redshift range 1 < z < 2.

These criteria are chosen to match those imposed on our realistic MW-like simulations [333]. Note

that we used Galactocentric distance to define LMC properties rather than heliocentric distance as

in [333], but we do not expect this choice to impact our results. With the above criteria, roughly

0.1% of Galacticus runs in the relevant host halo mass range are accepted and we are left with

14 independent realizations. For computational efficiency, we ignore all subhalos accreted earlier

than z = 5 when generating Galacticus predictions. A negligible fraction of halos that accrete

earlier than z = 5 survive in our N -body simulations, implying that this choice does not impact our

comparisons. Furthermore, we self-consistently employ the subhalo Vpeak and Vmax cuts described

in Appendix F.1 when comparing to our simulation results.

The left panel of Figure F.1 shows that, in addition to the agreement among the SHMFs as

a function of Mpeak demonstrated in Figure 11.2, Galacticus predictions are consistent with our

zoom-in simulations for SHMFs evaluated using present-day subhalo virial mass. This indicates
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Figure F.3: Left panel: posterior distribution of WDM half-mode mass versus baryonic disruption
efficiency from our analysis of the MW satellite population using a lognormal prior on B, rather than
a uniform prior as in Figure 11.1. Right panel: corresponding posterior distribution of WDM half-
mode mass versus projected subhalo number density at the strong lensing scale, inferred according
to the procedure in Section 11.6 with q = 1 (see the left panel of Figure 11.3 for comparison).
In both panels, color maps show the probability density normalized to its maximum value in each
parameter space, and solid (dashed) white lines indicate 1σ (2σ) contours for a two-dimensional
Gaussian distribution.

that the amount of stripping experienced by subhalos in our N -body simulations is well captured

by the Galacticus model, on average. However, as shown in the right panel of Figure F.1, our

zoom-in simulations yield radial subhalo distributions that are slightly less concentrated than those

predicted by Galacticus. This discrepancy is unchanged when comparing to the higher-resolution

version of one of our simulations described above. We note that increasing the radial concentration

of the subhalo distribution predicted by our simulations at fixed subhalo abundance would further

strengthen our minimum halo mass and WDM constraints [333]. Because the radial distribution in

our simulations and Galacticus are respectively subject to subtle numerical uncertainties including

artificial subhalo disruption and semianalytic modeling of dynamical friction, we plan to explore this

discrepancy systematically in future work.

F.3 Host-to-host, Poisson, and projection scatter in Σsub,MW

As we have emphasized, it is challenging to accurately estimate the host-to-host scatter in Σsub,MW

given the requirements we place on our realistic MW-like simulations. In this appendix, we take a

very conservative approach by quantifying the scatter in Σsub,MW for the entire suite of simulations

from [315] described in Appendix F.1. In particular, the left panel of Figure F.2 shows the projected

SHMF for all 45 of the [315] simulations, shaded by their Σsub,MW calculated according to the
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procedure in Section 11.6.2, and the right panel of Figure F.2 shows the dependence of Σsub,MW on

host halo mass and concentration. These panels illustrate that the scatter in Σsub,MW is at most

∼ 40% toward smaller values of Σsub,MW than inferred from our realistic MW-like simulations, and

at most ∼ 20% toward larger values of Σsub,MW. The dependence of subhalo abundance on host

halo properties among these zoom-in simulations is studied in detail by [315] and [173].

Although the host-to-host uncertainty quoted above is not small in an absolute sense, the scatter

in either direction is overshadowed by the factor of 2 uncertainty introduced by q in the translation

from Σsub,MW to Σsub. Moreover, scatter toward lower values of Σsub,MW (which is more common)

would further strengthen our joint WDM constraints as described in Section 11.7.3. Furthermore,

this estimate of the host-to-host scatter using the entire zoom-in simulation suite is an overestimate

because it does not leverage additional information about the properties of the MW halo and because

the [315] hosts were chosen to span a cosmologically representative range of formation histories rather

than being selected uniformly in host halo mass. We therefore regard our current analysis to be

conservative because it accounts for the dominant uncertainties (i.e., MMW and q), and we plan to

simultaneously infer q, MMW, and Σsub,MW along with their associated uncertainties in future work.

The Poisson scatter in the projected SHMFs predicted by our simulations near the minimum halo

mass is also moderate compared to the other systematic uncertainties discussed above. In particular,

given our fiducial binning scheme, there are ∼ 50 subhalos per Mpeak bin nearMmin = 3× 108 M�,

corresponding to ∼ 15% Poisson scatter, which is again relatively minor compared to uncertainties

in q and MMW. We refer the reader to [315] for a detailed study of these subhalo populations that

justifies the use of a Poisson distribution to describe their scatter.

Finally, we note that the scatter in the projected subhalo mass function induced by different

orientations for the projection of the MW subhalo population is also small compared to the other

sources of uncertainty we have discussed. For example, the subhalo population projected with half

of the virial radius in our MW-like simulations varies at the percent level for different orientations.

F.4 Subhalo Disruption Efficiency Prior

To formulate our probe combination in a statistically consistent way, we reran the Chapter 7 [332]

MW satellite analysis with a uniform prior on the baryonic subhalo disruption B as described in

Section 11.4. However, the fiducial [332] model assumes a lognormal prior on this quantity centered

around B = 1 (i.e., the expectation for the efficiency of subhalo disruption from hydrodynamic

simulations of MW-mass halos; also see Chapters 3-4 [336, 333]). In this appendix, we explore the

effects of performing the probe combination using this lognormal prior.

In particular, Figure F.3 shows the posterior from the MW satellite analysis in the B–Mhm and

Σsub–Mhm parameter spaces, translated according to Equation 11.3 with q = 1, assuming the fiducial

[332] prior of lnB ∼ N (µ = 1, σ = 0.5). It is visually evident that this prior favors a narrower range
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of Σsub, as expected. Using this alternative prior and setting q = 1 does not change the results of our

joint analysis, with Mhm < 107.0 M� (mWDM > 9.7 keV) at 95% confidence and Mhm = 107.5 M�

(mWDM = 6.9 keV) disfavored with a 20:1 marginal likelihood ratio. This is due to a cancellation

of effects: using a lognormal prior on B slightly strengthens our MW satellite constraint on Mhm

(compare the left panel of Figure F.3 to Figure 11.1), but also removes the low-Σsub tail of the MW

satellite posterior (compare the right panel of Figure F.3 to the left panel of Figure 11.4). Because

larger values of Σsub lead to weaker joint constraints as described in Section 11.7.3, these effects push

our joint WDM constraints in opposite directions and happen to be roughly equal in magnitude.
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O. Valenzuela, A. Aparicio, S. Hidalgo, and H. Velázquez. Detection of satellite remnants in

the Galactic halo with Gaia- III. Detection limits for ultrafaint dwarf galaxies. MNRAS,

453:541–560, October 2015.

[30] Elaad Applebaum, Alyson M. Brooks, Charlotte R. Christensen, Ferah Munshi, Thomas R.

Quinn, Sijing Shen, and Michael Tremmel. Ultrafaint Dwarfs in a Milky Way Context: Intro-

ducing the Mint Condition DC Justice League Simulations. ApJ, 906(2):96, January 2021.

[31] E. Aprile, J. Aalbers, F. Agostini, M. Alfonsi, F. D. Amaro, M. Anthony, F. Arneodo, P. Bar-

row, L. Baudis, B. Bauermeister, M. L. Benabderrahmane, T. Berger, P. A. Breur, A. Brown,

A. Brown, E. Brown, S. Bruenner, G. Bruno, R. Budnik, L. Bütikofer, J. Calvén, J. M. R.
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[75] Sebastian Bohr, Jesús Zavala, Francis-Yan Cyr-Racine, Mark Vogelsberger, Torsten Bring-

mann, and Christoph Pfrommer. ETHOS - an effective parametrization and classification for

structure formation: the non-linear regime at z & 5. MNRAS, 498(3):3403–3419, August 2020.



BIBLIOGRAPHY 278

[76] Ana Bonaca, David W. Hogg, Adrian M. Price-Whelan, and Charlie Conroy. The Spur and

the Gap in GD-1: Dynamical Evidence for a Dark Substructure in the Milky Way Halo. ApJ,

880(1):38, July 2019.

[77] S. Bose, W. A. Hellwing, C. S. Frenk, A. Jenkins, M. R. Lovell, J. C. Helly, and B. Li. The

Copernicus Complexio: statistical properties of warm dark matter haloes. MNRAS, 455:318–

333, January 2016.

[78] Sownak Bose, Alis J. Deason, Vasily Belokurov, and Carlos S. Frenk. The little things mat-

ter: relating the abundance of ultrafaint satellites to the hosts’ assembly history. MNRAS,

495(1):743–757, June 2020.

[79] Sownak Bose, Alis J. Deason, and Carlos S. Frenk. The Imprint of Cosmic Reionization on

the Luminosity Function of Galaxies. ApJ, 863(2):123, Aug 2018.

[80] Sownak Bose, Wojciech A. Hellwing, Carlos S. Frenk, Adrian Jenkins, Mark R. Lovell, John C.

Helly, Baojiu Li, Violeta Gonzalez-Perez, and Liang Gao. Substructure and galaxy formation

in the Copernicus Complexio warm dark matter simulations. Mon. Not. R. Astron. Soc.,

464(4):4520–4533, Feb 2017.

[81] Jo Bovy. Detecting the Disruption of Dark-Matter Halos with Stellar Streams. Phys. Rev. Lett.,

116(12):121301, Mar 2016.

[82] A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J. Franse. Unidentified Line in X-Ray Spec-

tra of the Andromeda Galaxy and Perseus Galaxy Cluster. Phys. Rev. Lett., 113(25):251301,

December 2014.

[83] Alexey Boyarsky, Oleg Ruchayskiy, and Dmytro Iakubovskyi. A lower bound on the mass of

dark matter particles. JCAP, 03(3):005, March 2009.

[84] M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat. Too big to fail? the puzzling darkness

of massive milky way subhaloes. MNRAS, 415:L40–L44, jul 2011.

[85] M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat. The milky way’s bright satellites as an

apparent failure of Λcdm. MNRAS, 422:1203–1218, may 2012.

[86] M. Boylan-Kolchin, V. Springel, S. D. M. White, and A. Jenkins. There’s no place like home?

Statistics of Milky Way-mass dark matter haloes. MNRAS, 406:896–912, August 2010.

[87] Michael Boylan-Kolchin, Daniel R. Weisz, Benjamin D. Johnson, James S. Bullock, Charlie

Conroy, and Alex Fitts. The Local Group as a time machine: studying the high-redshift

Universe with nearby galaxies. MNRAS, 453(2):1503–1512, Oct 2015.



BIBLIOGRAPHY 279

[88] Torsten Bringmann and Maxim Pospelov. Novel direct detection constraints on light dark

matter. Phys. Rev. Lett., 122:171801, May 2019.

[89] Tom Broadhurst, Ivan De Martino, Hoang Nhan Luu, George F. Smoot, and S.-H. Henry Tye.

Ghostly galaxies as solitons of bose-einstein dark matter. Phys. Rev. D, 101:083012, Apr 2020.

[90] C. B. Brook and A. Di Cintio. Expanded haloes, abundance matching and too-big-to-fail in

the local group. MNRAS, 450:3920–3934, jul 2015.

[91] A. M. Brooks, M. Kuhlen, A. Zolotov, and D. Hooper. A baryonic solution to the missing

satellites problem. ApJ, 765:22, mar 2013.

[92] A. M. Brooks, E. Papastergis, C. R. Christensen, F. Governato, A. Stilp, T. R. Quinn, and

J. Wadsley. How to Reconcile the Observed Velocity Function of Galaxies with Theory. ApJ,

850:97, November 2017.

[93] Greg L. Bryan and Michael L. Norman. Statistical Properties of X-Ray Clusters: Analytic

and Numerical Comparisons. ApJ, 495(1):80–99, Mar 1998.

[94] D. Buch, E. O. Nadler, R. H. Wechsler, and Y.-Y Mao. Milky way-est simulation suite. in

prep., 2021.

[95] Matthew R. Buckley and Annika H. G. Peter. Gravitational probes of dark matter physics.

Phys. Rep., 761:1–60, October 2018.

[96] J. S. Bullock. Notes on the Missing Satellites Problem. ArXiv e-prints, September 2010.

[97] J. S. Bullock and M. Boylan-Kolchin. Small-scale challenges to the Λcdm paradigm. ARA&A,

55:343–387, aug 2017.

[98] J. S. Bullock, A. V. Kravtsov, and D. H. Weinberg. Reionization and the abundance of galactic

satellites. ApJ, 539:517–521, aug 2000.

[99] J. S. Bullock, K. R. Stewart, M. Kaplinghat, E. J. Tollerud, and J. Wolf. Stealth Galaxies in

the Halo of the Milky Way. ApJ, 717:1043–1053, July 2010.

[100] M. T. Busha, P. J. Marshall, R. H. Wechsler, A. Klypin, and J. Primack. The Mass Distribution

and Assembly of the Milky Way from the Properties of the Magellanic Clouds. ApJ, 743:40,

December 2011.

[101] Michael T. Busha, Marcelo A. Alvarez, Risa H. Wechsler, Tom Abel, and Louis E. Strigari.

The Impact of Inhomogeneous Reionization on the Satellite Galaxy Population of the Milky

Way. ApJ, 710(1):408–420, Feb 2010.



BIBLIOGRAPHY 280

[102] Thomas M. Callingham, Marius Cautun, Alis J. Deason, Carlos S. Frenk, Wenting Wang,
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[223] P. F. Hopkins, D. Kereš, J. Oñorbe, C.-A. Faucher-Giguère, E. Quataert, N. Murray, and

J. S. Bullock. Galaxies on fire (feedback in realistic environments): stellar feedback explains

cosmologically inefficient star formation. MNRAS, 445:581–603, nov 2014.
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[312] Andrea V. Macciò, Sinziana Paduroiu, Donnino Anderhalden, Aurel Schneider, and Ben

Moore. Cores in warm dark matter haloes: a Catch 22 problem. MNRAS, 424(2):1105–1112,

August 2012.

[313] Prasanta Chandra Mahalanobis. On the generalized distance in statistics. Proceedings of the

National Institute of Sciences (Calcutta), 2:49–55, 1936.

[314] M. Shafi Mahdawi and Glennys R. Farrar. Constraints on Dark Matter with a moderately

large and velocity-dependent DM-nucleon cross-section. JCAP, 10(10):007, October 2018.

[315] Y.-Y. Mao, M. Williamson, and R. H. Wechsler. The dependence of subhalo abundance on

halo concentration. ApJ, 810:21, sep 2015.

[316] Yao-Yuan Mao, Marla Geha, Risa H. Wechsler, Benjamin Weiner, Erik J. Tollerud, Ethan O.

Nadler, and Nitya Kallivayalil. The SAGA Survey. II. Building a Statistical Sample of Satellite

Systems around Milky Way-like Galaxies. ApJ, 907(2):85, February 2021.

[317] David J. E. Marsh. Axion cosmology. Phys. Rep., 643:1–79, July 2016.

[318] N. F. Martin, D. L. Nidever, G. Besla, K. Olsen, A. R. Walker, A. K. Vivas, R. A. Gruendl,
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Conn, Denija Crnojević, Mark A. Fardal, Annette M. N. Ferguson, Michael Irwin, A. Dougal

Mackey, Brendan McMonigal, Julio F. Navarro, and R. Michael Rich. The PAndAS View of

the Andromeda Satellite System. II. Detailed Properties of 23 M31 Dwarf Spheroidal Galaxies.

ApJ, 833(2):167, December 2016.

[320] S. Mau, W. Cerny, A. B. Pace, Y. Choi, A. Drlica-Wagner, L. Santana-Silva, A. H. Riley,

D. Erkal, G. S. Stringfellow, M. Adamów, J. L. Carlin, R. A. Gruendl, D. Hernandez-Lang,

N. Kuropatkin, T. S. Li, C. E. Mart́ınez-Vázquez, E. Morganson, B. Mutlu-Pakdil, E. H.

Neilsen, D. L. Nidever, K. A. G. Olsen, D. J. Sand, E. J. Tollerud, D. L. Tucker, B. Yanny,

A. Zenteno, S. Allam, W. A. Barkhouse, K. Bechtol, E. F. Bell, P. Balaji, D. Crnojević,
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[360] Jorge Peñarrubia, Facundo A. Gómez, Gurtina Besla, Denis Erkal, and Yin-Zhe Ma. A timing

constraint on the (total) mass of the Large Magellanic Cloud. MNRAS, 456(1):L54–L58, Feb

2016.

[361] R. D. Peccei and Helen R. Quinn. CP Conservation in the Presence of Instantons. Phys. Rev.

Lett., 38:1440–1443, 1977.
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Márcio Catelan, Chihway Chang, Luca Cortese, Ivana Damjanov, Luke J. M. Davies, Richard

de Grijs, Gisella de Rosa, Alis Deason, Paola di Matteo, Alex Drlica-Wagner, Denis Erkal, Ana

Escorza, Laura Ferrarese, Scott W. Fleming, Andreu Font-Ribera, Ken Freeman, Boris T.
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