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Exactly solvable (spinless) lattice fermions with wide range interactions are constructed ex-
plicitly based on exactly solvable stationary and reversible Markov chains KCR reported a few
years earlier by Odake and myself. The reversibility of X® with the stationary distribution 7
leads to a positive classical Hamiltonian HR. The exact solvability of HR warrants that of a
spinless lattice fermion cy, k., ’ij =", yex &xHR(x, ¥)c, based on the principle advocated

recently by myself. The reversible Markov chains KR are constructed by convolutions of
the orthogonality measures of the discrete orthogonal polynomials of the Askey scheme.
Several explicit examples of the fermion systems with wide range interactions are presented.

Subject Index A10, A43, A60, B81

1. Introduction

Here I report a simple construction of exactly solvable (spinless) fermions with wide range in-
teractions on a 1D integer lattice. Compared to fermion systems with the nearest neighbor in-
teractions, exactly solvable and wide range interactions are relatively hard to fathom. The goal
is achieved, following the general principle advocated in Ref. [1], by rewriting the stationary
and reversible (detail balanced) Markov chain matrix KR (x, y) into a positive classical Hamil-
tonian HR(x, y) by a similarity transformation in terms of the square root of the stationary dis-
tribution 7 (x). The construction of many exactly solvable, stationary, and reversible Markov
chain matrices CR(x, y) on 1D integer lattices has been reported a few years earlier by Odake
and myself [2]. Various convolutions of the orthogonality measures of the discrete orthogo-
nal polynomials of the Askey scheme [3-6] provide the desired forms of the reversible Markov
chain matrix X®(x, y). The corresponding eigen polynomials are the Krawtchouk (K), Hahn
(H), g-Hahn (¢H), Meixner (M), and Charlier (C).

This paper is organized as follows. In Section 2, the general setting of the stationary and re-
versible Markov chains is recapitulated with the simple derivation of the classical Hamiltonian
HR. In Section 3.1 three types of convolutions for constructing the reversible Markov chains
ICR are displayed. In Section 3.2 the exactly solvable fermion Hamiltonian ’ij with wide range
interactions is trivially constructed from the classical Hamiltonian #X. The main results, sev-
eral explicit forms of the classical Hamiltonians #* with the eigensystems, are displayed in
Section 4. They are grouped for each orthogonal polynomial. Those for the finite polynomials
are shown first, with three forms of R corresponding to the convolution types. The corre-
sponding Hamiltonians belonging to the infinite polynomials are shown after them. They are
obtained by certain limit procedures from those of the finite polynomials.
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2. General setting; stationary and reversible Markov chains /C?
Let us start with a brief recapitulation of the general setting of classical stationary Markov
chains I on a 1D integer lattice X, finite or semi-infinite,
x,3,zeX={0,1,....,N}, NelN, x,yzelX =17, (1)
and points on X" are denoted by X, y, z for analytical treatment. I use the convention that the
transition probability matrix per unit time interval K(x, y) on X means the transition from
an initial point y to a final point x with K(x, y) > 0 and it satisfies the conservation of the
probability
> Kx.y) =1 )
xeX
The positive K means that all the points on X are connected with each other by K and this
translates into wide range interactions.

Definition 1. Markov chain KR is reversible (detail balanced) if it has a reversible distribution
7 satisfying
KR(x, ) (y) = KRy, x)m(x), x,yeX; m(x)>0, Zn(x) =1. (3)
xeX
Taking y summation of the reversibility definition (3),

DR () =7(x0) Y KR x) = 7(x), 4)
yeX yeX

leads to the following.

Proposition 1. The reversible KCR(x, y) has a Perron—Frobenius eigenvector i (x) with the maximal
and simple eigenvalue 1 and the range of spectrum

—1 < The moduli of the eigenvalues of KKX(x, y) < 1.

This is a consequence of the positivity, i.e. Perron—Frobenius theorem, and the probability
conservation (2).

Proposition 2. A positive Hamiltonian HR, a real symmetric |X| x |X| matrix, is obtained by
dividing the definition of the reversible Markov chain matrix KR (3) by /7 (x)/7 (y),

MR, ﬁ K x,) V7 ) = J%(y) KRGV () = ML), xy € XK. (5)
It has the Perron—Frobenius eigenvector JV(x),

Y HR W) = N Y KR ym () = Va0 Y KRy =Vr), ()
yex yeX yeX

and its eigenvalues are all real,

—1 < The eigenvalues of HR(x,y) < 1. (7)

3. Construction of fermion Hamiltonian ’Hf with wide range interactions

Here I explain the construction method of reversible and finite Markov chains K adopted in
Ref. [2]. This gives a classical Hamiltonian #* (5) and the general principle of Ref. [1] provides
the fermion Hamiltonian ’Hf with wide range interactions. Those for the infinite Markov chains
are derived by certain limiting procedures including N — oo, as will be shown shortly. The
method is based on certain convolutions of the orthogonality measures of discrete orthogonal
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polynomials of the Askey scheme. The normalized orthogonality measure, being positive, can
always be a probability distribution. Let us denote the normalized orthogonality measure with
the explicit N dependence by
w(x, N,A) > 0, Zn(x, N, L) =1, (8)
xeX
in which A stands for the set of parameters.

3.1.  Three types of convolutions
Here I present three types of convolutions among the five reported in Ref. [2] for simplicity and
clarity:
min(x,y)
@) KRyimA) S Y w(x—z N =z A)m(z p M), ©)

z=0
min(x,y)

Z JT(X—Z,N—)’, A-Z)T[(Zny’kl)’ (10)

z=max(0,x+y—N)
N

(i) : KR(x, y; A1, A2) o Z w(x,z, M) (z—y, N —y, Ay). (11)

z=max(x,y)

(i) : KRGy, pi A, Ag) &

It is easy to verify the positivity and the conservation of the probability (2) for each convolu-
tion. The strategy is to find a good set of parameters A;, i = 1, 2, 3, such that the reversibility
condition

KR, y3 ha, ) (n, N, A3) = KR, 23 Ay, Ao (x, N, &s), (12)

is satisfied. Obviously A3 is a function of the parameters A;, i = 1, 2 in KX,
The main result of Ref. [2] is the following.

Theorem 1. (Odake—Sasaki)

The finite discrete orthogonal polynomials { B,(x, A3)}, whose orthogonality measure 7 (x, N, A3)
provides the reversible distribution of KR(x,y; A1, X2), constitute the left eigenvectors of
ICR(X’ i )"l s )‘2)1

SR v Ay AP As) = kB, k), =1 < k() < 1, xone X, x(0)=1. (13)
xeX
The right eigenvectors are {m(x, N, A3)P,(x, A3)},
D KRGy AL AT (0 N AP As) = m(x, NoA3) Y KR (5 s Ay ) Ba(p As)
yeX yeX
= k(m)(x, N, A3)P,(x,A3), x,neX. (14)
The Hamiltonian HR has the eigenvectors {/7 (x, N, x3) B,(x, A3)},
D HRG v A AT (3 N ) B As)
yeXx

1 .
= ——— ) KR,y M, a)w (0 N A3) By As)

v (x, N, X3) e
= k(n)V/7(x, N, x3) B,(3, 13). (15)

The normalization constant of the polynomial 2,(x) is determined by the universal normal-
ization condition
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P,(0,13) =1, Vn e X, (16)
> » Smn

D 7 (x, N A3) By, A3) Py(x, A3) = 5 A= 0, moneX. (17)
xeX n

Of course, the constant d, also depends on A3 but its dependence is suppressed for simplicity
of presentation. It should be noted that, because of the context, the present definition of d>
is slightly different from the previous one [1,6]. The orthonormal eigenvectors of the classical
Hamiltonian HR are ¢,(x),

HED, = (mdy & D HECx, yi A1, M2)ha(y) = (M),

yeX
$u(x) € du/7(x, N, x3) By(x, A3) € R, (18)
Zx(ﬁm(x)én(x) = am,m Z én(x)(ﬁn(y) = ‘Sx,y- (19)
%S nex

3.2.  Fermion Hamiltonian "ij

The fermion Hamiltonian ’Hj]f with wide range interactions is defined from the classical Hamil-
tonian HR as a bilinear form of the lattice fermions {cy}, {c\} on X, obeying the canonical
anticommutation relations,

{ch, e} = 8.y, {cl, C}} =0={cv.c;}, x,y€ed, (20)
def
HES D AU (x p)ey, (21)
x,yeX

in which the parameter dependence is suppressed for simplicity of presentation.

Theorem 2. The Hamiltonian 7—[55 is diagonalized by the introduction of the momentum space

fermion operators {¢,}, {é;}, ne X,

@Dy e 8= el & = g b= du0)d, (22

xeX xeX neX meX
= {&h, &) = Smy (G0 8} =0 = {20, ¢4), (23)
(3
HE = Y uOHRE )()ehin = k() Gm(X)a(x)Ehn
m,n,x,yeX m,n,xeX
= 3 k(n)éhén, (24)
neX

= [HR. &l =k(méh,  [ME &) = k()i (25)

4. Explicit forms of the classical Hamiltonians F*

Here I present the explicit forms of the reversible Markov chain matrices KR (x, y) belonging
to a certain subset of the discrete orthogonal polynomials of the Askey scheme [3-6]. They
are all reported in Ref. [2] and reproduced here for self-containedness. The polynomials are
the Krawtchouk (K), Charlier (C), Hahn (H), Meixner (M), and ¢g-Hahn (¢H). For each poly-
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nomial, after listing the basic data, at most three types of reversible Markov chain matrices
KR(x, ) are displayed. The classical Hamiltonian #* (5) and the fermion Hamiltonian
(21) are obtained straightforwardly. They could be used to calculate many interesting quanti-
ties of the fermions with wide range interactions, e.g. entanglement entropy etc. [7-12].

4.1. Krawtchouk
The polynomial depends on one positive parameter A = p (0 < p < 1),

N N N! N n
JT(X, N, p) = (x)px(l _p)N—x’ <x> = m , df = (I’Z><%) s (26)

Pyx.p) =P, p) =oFi (T v ¥ ( p'). P =Pln ), Gelfdual). (27)

4.1.1.  Type (i) convolution. This convolution has been applied to (K) and (H) in many papers

[13-15] in connection with “cumulative Bernoulli trials.” By taking A; = a, A, = b, and A3 =
def

p = 72—, the matrix KR(x, y) is
min(x,y)
KR, p)= ) ma(x—zN—zbm(zpa), 0<abp<l, (28)
satisfying

Y KRG, p)m (0, N, p)Bu(y, p) = k(mm (x, N, p)By(x, p),

yeX
k(n) = a"(1 — by = 1E)( ) bp—l) nex. (29)
min(x,y)
= HR(x,y) = Z n(x—z, N —z b)n(z,y,a)}y/T(», N, p), (30)

VT (x N, p)
Bul) = di/7 e N p)afi ’fN‘x\p—l), &= p= ke 6D

n

4.1.2.  Type (ii) convolution. By taking Ay =a, A, = b, and A3 = def +b, the matrix
KR(x, y)is
min(x,y)
KR(x, y) = > r(x—z,N—y,br(z,y,a), 0<abp<]I, (32)
z=max(0,x+y—N)
satisfying
> KRG ) (v N p)Ba(y. p) = k() (x, N, p)Ba(x, p).
yeX
k) =(a—by =K " |bp). neax, (33)
1 min(x,y)
=S H () =——x ) a-zN-pbrErayT(.Np). (4

\4 JT(X, N’ p) z=max(0,x+y—N)
. —n, — - N ,
dux) = d/aCe NpR (T T ) A= () p= e 69)
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It is interesting to note that odd eigenvalues are all negative if 0 <a < b < 1.

4.1.3.  Type (iii) convolution. By taking A; =a, A, = b, and A3 = p o %, the matrix

ICR(x, y) is

N
KR(x,y) = Z a(x,z,b)yn(z—y,N —y,a) O0<ab p<]l, (36)
z=max(x,y)
satisfying
> KRG (0 N p)Ba(y, p) = k() (x, N, p)By(x. p),
yeX
k() = (1 — ay'b" = 1F0<—_" abp’l), nex, (37)
1 N
= HA(x, ) = ——— m(x,z. bz =y N—yaa(»Np). (38
Jvr(x, N, p) Z:H%Ex’y)

N i, — N n a
dx) = di/aC N A (T ) = ()G p= g (39)

4.2. Charlier

This polynomial is defined on a semi-infinite integer lattice X = Z-( depending on one positive
parameter A = a (a > 0),

w(x,a)= d? = Z—, (40)

B(x,a) = Py(x, a) = 2FO(_”’ - | —a_1>, Py(x,a) = Pu(n,a), (self-dual). (41)

By the replacement p — pN~! and in the limit N — oo, the Krawtchouk (K) goes to Charlier
(©) [4],
pKn(X, p) - PCI’!(X’ p)7 JTK(X, N! p) - JTC(X, P)’ dlz(n - dén

42.1.  Type (i) convolution. This is achieved by b — bN~!, N — oo in IR of Krawtchouk
type (i) convolution (28),

Pn(x»p)%PCn(x»p/), p/ déf %, 0<a< 1,
w(x,N, p) = mc(x, p'), k(n)— kc(n)=d",
min(x,y)
ICR(X, y) g Kg(x’J/) = Z YTC(X—Z, b)T[K(Z»% Cl), (42)
z=0
1 min(x,y)
— HA () = === ) mclx -z bz a)Vach p) 43)
7Tc(x, P) z=0

~ ’ _na —X /— mn

bu(x) = dyre(x. poB (T [ =0T = (44)

The infinite limit of Krawtchouk K®(x, y) of type (ii) convolution gives the same result as this
one.
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42.2.  Type (iii) convolution. This is achieved by a — aN~!, N — oo in ICR of Krawtchouk
type (iii) convolution (36),

P.(x, p) = Peu(x,p), P o %, 0<b<l,

7N, p) = 7l ), we(n) = keln) = b = Ry 7" | abp ),

]

ICR(X’ y) - Kg(x’y) = Z 7TK(X, Z, b)j-[C(Z -0 a)? (45)

z=max(x,y)

1 o0
e —— ( 9 Ly b) ( - ) ’ /)’ (46)
\/szm;x‘y) wx (x, z, b)ywc(z — y, a)\/7wc(y, p

Bul) = dymctx. p) oo

— HR(x,y) =

—p'_1>, d? = p"/nl. 47)

4.3. Hahn
The polynomial depends on two positive parameters A = (a, b) (a, b > 0),
N\ (a)x (b)N—x ) (N) (@, Cn+a+b—-1)a+b)n
,N,a,b)= —, d; = , 48
rox o= (§) T n) @t at by )
_ b—1. —
n,n+a+ , —X ‘ 1)'
a, —N

Bo(x, a, b) = Py(x, a, b) = 3F2( (49)

4.3.1.  Type (i) convolution. For Ay = (a, b), A, = (b, ¢), and A3 = (¢ + b, ¢), the matrix
KR (x, y) is

min(x,y)

KR(x,y) = Z n(x—z,N—z,bc)n(z,y,a,b), 0<ab,c, (50)
z=0

satisfying

Z KR(x, ) (3, N, a + b, ¢)Py(y,a + b, ¢) = k() (x, N, a + b, ¢)B,(x, a + b, ¢),

yeX
(a)u(C)n —n,n+a+b+c—1,0b
= = 1 X 51
0= rmaro 5 arnpee  )omex 6D
1 min(x,y)
= HR(x,y) = Z a(x—z,N—2zb c)(z,y,a, b)\/n(y, N,a+b,c),

Vr(x,N,a+b,¢) =

(52)

R —n,n—{—a—{-b-i-c—l» —X
On(x) = dt(x, N, a+ b, C)3F2< a+b, —N ‘ 1)’ ©3)
d2—(N>(a+b)n(2”+a+b+c_1)(a+b+c)N (54)

n =\, (wm+a+b+c—1)yn .

4.3.2.  Type (ii) convolution. For A; = (a, b), A, = (b, ¢), and A3 = (a + b, b + ¢) the matrix
KR (x, p) is

min(x,y)

KR(x,y) = Z a(x—z,N—=y,bc)n(z,y a,b), (55)
z=max(0,x+y—N)
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satisfying
Y KRy Noa+ b b+ )Py, at b b+ c)
yeX
=k(m)m(x, N,a+b b+ c)By(x,a+b b+ c),
L BO(n+a+2b+c— 1)
0= & WY G T o 0
—n,n+a+2b+c—1,5b
=35 1 X
. 2< a+b b+c ‘ ) e (57)
1 min(x,y)
= HR(x,y) = 7(x—z,N—yb c)n(z,y, a,b)
\/n(x, N,a+ b, b+ C)z=max(0§+y—N)
x/w(y, N, a+b, b+ c), (58)
. —-n,n+a+2b+c—1, —x
Bu(x) = dy(x, N.a+ b, b+ )35 PP ). (59)
dz_(N)(a+b)n(2n+a+2b+c—1)(a+2b+c)N (60)
" \n b+c(m+a+2b+c— 1)y .

4.3.3.  Type (iii) convolution. For Ay = (a, b), A, = (¢, a), and A3 = (¢, a + b), the matrix
KR (x, y) is

N
KR(x, y) = Z m(x,z,c,a)yt(z—y,N—y,a,b) 0<a,b,c, (61)
z=max(x,y)
satisfying
Z KR(x, )T (3. N, ¢, a + b)P,(y, ¢, a + b)
yeX
= k() (x, N, ¢, a + b)P,(x, c,a + b),
(b)n(c)n —n,n+a+b+c—1,a
_ — 1), X, 62
“) = o bmat o 32( a+b ate ‘ ) "e 62)
1 N
= HR(x,y) = w(x, z, ¢, )t (z =y, N — y,a, b)/m(», N, ¢, a + b),
Jr(x, N, ¢,a+ b)z=n§x,y)
(63)
. — b -1, —
Bu) = dy (v, N, c;at bys (T TN T ), (64)
¢, —N
dz_(N)(c)n<2n+a+b+c—1>(a+b+c)N )
" \n) @+bu(tat+b+c—1yg
4.4. Meixner

This self-dual polynomial is defined on a semi-infinite integer lattice X' = Z-( with two positive

parameters A = (a4, ) (0 < a,0 < b < 1),

(a)b*(1 = b)*
x! '

o @t
oo

n

w(x,a,b)= , (66)
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By(x,a,b) = Py(x, a, b) = zﬂ(_”’ - ‘ |- b—‘), Py(x,a,b) = Pi(n,a,b).  (67)
a

By the replacement » — N(1 — b)b~! and in the limit N — oo, the Hahn (H) goes to Meixner
M),

PHn(x, a,b) — PMn(x, a,b), mu(x,N,a,b)— mm(x,a,b), dIZ{n — df,ln.

By the replacement b — b/(a + b) and in the limit « — oo, the Meixner (M) goes to Charlier
©,

PMn(xa av b) — PCn(xa b)a T[M(x’ a’ b) - T[C(x’ b)’ dl%/[n g déi’l

4.4.1.  Type (i) convolution. This is achieved by fixing a and bwith ¢ — N(1 —¢)c ! (= 0 <
¢ < 1), N — oo in KR of Hahn type (i) convolution (50),

P.(x,a+b, c) —> I3Mn(x, a+b,c),

n -, b
a(x,N,a+b,c)— am(x,a+b,¢c), kn)— kcmn) = (a(—cll—)b)n = zFl(an+ b ‘ 1>, (68)

min(x,y)

KR, y) = Kfi(xpa by = )" mulx =z, b, O)mu(z, 3, a, b), (69)

z=0
1 min(x,y)

> mmlx =z, b Oz, s a, by mu(y. a + b, o), (70)
Vaum(x,a+b,¢)

$u() = dya(x, @+ b, )2

= HR(x,y) =

—n, —Xx

B a—+b), "
o ). 2= 4t (71)

‘ = n!
4.4.2. Type (ii) convolution. By fixing a, b with c — N(1 —¢)c™! (= 0 < ¢ < 1) and taking
the limit N — oo in K& of Hahn type (ii) convolution (55), one obtains the same Meixner limit
K& (x, y) as in Eq. (69),

min(x,y)

KR (x, y) —> ICf,[(x, y.a, b c)= Z am(x — z, b, ¢)mu(z, y, a, b).
z=0

4.4.3. Type (iii) convolution. This is achieved by fixing ¢ and ¢ with b — N(1 — b)b~! (=
0 <b < 1), N— ooin KR of Hahn type (iii) convolution (61),

Pn(x, ¢, a+b)— I3Mn(x, ¢, b),

7 N, ¢ a+b) — mu(x, ¢, b),  Kk(n) = ky(n) = (a(j-)};)n - 25(;12’ | 1), (72)

o
KR(x,y) > K&(x,poa,b,c)= Y mu(x, z, ¢, a)mm(z — y, a, b), (73)

z=max(x,y)

1 oo
S (X, z, ¢, a)om(z — ¥, a, by mu(y, ¢, b),  (74)
\/Mz:mazx(%}’)

bu(x) = dyr(x, ¢, b)zFl(_n’c_x ‘ | —b—l), &2

n

= HR(x,y) =

_ (o) D"
oon

(75)
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4.5. g-Hahn

The g-Hahn is defined on a finite integer lattice with two positive parameters A = (a, b) (0 <
a<1,b<1)ontopof ¢ 0 < g < 1,and the ¢ dependence of 7 and P, is suppressed. It should

be stressed that the polynomial B,(x) is a degree n polynomial in 7(x) o g~ —1,notin x,

N(a: @)« (b g)n—ya™ > N7 et (q: 9N
w(x, N,a,b)= |: ] = ; (76)
R (ab; q)n X (g Dx (g5 @n—x
—1. 1 — 2n—1
2o [V @aba g 1 Zabg™ a7
(abgV,b; q)pa* 1 — abg™!
. —n’ Clb n—l’ —X
Py(x.a.b) = Py(n(x).a.b) = s T "0 qq_N T | asa). (78)

4.5.1.  Type (i) convolution. By taking A = (a, b), A, = (b, ¢), and A3 = (ab, ¢) the matrix
ICR(x, y) is

min(x,y)
ICR(x, y) = Z 7(x—z,N—2zb c)n(z,y a,b), (79)
satisfying
Z ICR(x, y)m(y, N, ab, C)Pn(y, ab, ¢) = k(n)mw(x, N, ab, c)lv’n(x, ab, c),
yeX
B'(a; q)u(c; @ q™", abeq"', b
<= Gompean =0 anpe 199) (50)
min(x,y)
= HR(x, a(x—z,N—zb c)n(z,y,a,b)/7r(y,N,ab,c), (81
(x, ) = JWZ( ) (z. y. a. b7 (3, (81)
q—n, Clbcqn_l, q—x ‘
B = diw v Noab, )T T 43a), (82)
&= N7 (ab,abeq™'; q), 1 — abcg™™! (83)
(abegM, ¢ q)u (ab)" 1 — abeq™

The type (ii) convolution does not exist for g-Hahn.

4.5.2.  Type (iii) convolution. By taking A; = (a, b), A, = (¢, a), and A3 = (¢, ab) the matrix
KR (x, y) is

N
KR )= Y m(x.z.cam(z—yp N =y ab), (84)

z=max(x,y)
satisfying

3 KR(x, y)w (3, N, ¢, ab)P,(y, ¢, ab) = k(n)m(x, N, ¢, ab)P,(x, ¢, ab),
yeX

_d'Os Qe g abeg" ! a
k(m) = (ab; q)n(ac; @)y 3¢2< ac, ab ‘ 7 q>’ (8)
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1 N
— HR(x, )= —— w(x,z,¢c,a)yt(z—y,N—y,a, b7y, N, c, ab),
() = s ab)zzmasz ) (z =y, N =y a,b)/m(y )
(86)
R q7", abeq" ', g
b = dm v Nocab)so(T T 4za), (87)
72— NT (e abcq_l i@ 1 — abcq2”_1 (88)
" n |(abegN,ab; q),c" 1 —abeg™' -
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