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Exactly solvable (spinless) lattice fermions with wide range interactions are constructed ex- 
plicitly based on exactly solvable stationary and r ever sib le Mark ov chains K 

R reported a few 

y ears ear lier by Odake and myself. The re v ersibility of K 

R with the stationary distribution π

leads to a positi v e classical Hamiltonian H 

R . The exact solvability of H 

R warrants that of a 

spinless lattice fermion c x , c 
† 
x , H 

R 

f = 

∑ 

x,y ∈X c 
† 
x H 

R (x, y ) c y based on the principle advocated 

recently by myself. The re v ersib le Mar kov chains K 

R are constructed by convolutions of 
the orthogonality measures of the discrete orthogonal polynomials of the Askey scheme. 
Se v eral e xplicit e xamples of the fermion systems with wide r ange inter actions ar e pr esented. 
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1. Introduction 

Here I report a simple construction of exactly solvable (spinless) fermions with wide range in-
teractions on a 1D integer lattice. Compared to fermion systems with the nearest neighbor in-
teractions, e xactly solvab le and wide r ange inter actions ar e r elati v ely har d to fathom. The goal
is achie v ed, follo wing the general principle adv ocated in Ref. [ 1 ], by rewriting the stationary
and re v ersib le (detail balanced) Mar kov chain matrix K 

R (x, y ) into a positi v e classical Hamil-
tonian H 

R (x, y ) by a similarity transformation in terms of the square root of the stationary dis-
tribution π (x ) . The construction of many exactly solvable, stationary, and reversible Markov
chain matrices K 

R (x, y ) on 1D integer lattices has been reported a few years earlier by Odake
and myself [ 2 ]. Various convolutions of the orthogonality measures of the discrete orthogo-
nal polynomials of the Askey scheme [ 3–6 ] provide the desired forms of the re v ersib le Mar kov
chain matrix K 

R (x, y ) . The corresponding eigen polynomials are the Krawtchouk (K), Hahn
(H), q -Hahn ( q H), Meixner (M), and Charlier (C). 

This paper is organized as follows. In Section 2 , the general setting of the stationary and re-
v ersib le Mar kov chains is recapitulated with the simple derivation of the classical Hamiltonian
H 

R . In Section 3.1 three types of convolutions for constructing the re v ersib le Mar kov chains
K 

R are displayed. In Section 3.2 the exactly solvable fermion Hamiltonian H 

R 

f with wide range
interactions is trivially constructed from the classical Hamiltonian H 

R . The main results, sev-
eral explicit forms of the classical Hamiltonians H 

R with the eigensystems, are displayed in
Section 4 . They are grouped for each orthogonal polynomial. Those for the finite polynomials
are shown first, with three forms of K 

R corresponding to the convolution types. The corre-
sponding Hamiltonians belonging to the infinite polynomials are shown after them. They are
obtained by certain limit procedures from those of the finite polynomials. 
© The Author(s) 2025. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
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2. General setting; stationary and reversible Markov chains K 

R 

Let us start with a brief recapitulation of the general setting of classical stationary Markov
chains K on a 1D integer lattice X , finite or semi-infinite, 

x, y, z ∈ X = { 0 , 1 , . . . , N} , N ∈ N , x, y, z ∈ X = Z ≥0 , (1) 

and points on X are denoted by x, y, z for analytical treatment. I use the convention that the
transition probability matrix per unit time interval K(x, y ) on X means the transition from
an initial point y to a final point x with K(x, y ) > 0 and it satisfies the conservation of the
probability ∑ 

x ∈ X 

K(x, y ) = 1 . (2) 

The positi v e K means that all the points on X are connected with each other by K and this
translates into wide range interactions. 

Definition 1. Markov chain K 

R is re v ersib le (detail balanced) if it has a re v ersib le distribution
π satisfying 

K 

R ( x, y ) π ( y ) = K 

R ( y, x ) π ( x ) , x, y ∈ X ; π (x ) > 0 , 
∑ 

x ∈X 

π (x ) = 1 . (3) 

Taking y summation of the re v ersibility definition ( 3 ), ∑ 

y ∈X 

K 

R ( x, y ) π ( y ) = π ( x ) 
∑ 

y ∈X 

K 

R ( y, x ) = π (x ) , (4) 

leads to the following. 

Proposition 1. The reversible K 

R (x, y ) has a Perron–Frobenius eigenvector π (x ) with the maximal
and simple eigenvalue 1 and the range of spectrum 

−1 < The moduli of the eigenvalues of K 

R (x, y ) ≤ 1 . 

This is a consequence of the positivity, i.e. Perr on–Fr obenius theorem, and the probability
conservation ( 2 ). 

Proposition 2. A positive Hamiltonian H 

R , a real symmetric |X | × |X | matrix, is obtained by
dividing the definition of the r ever sib le Mark ov chain matrix K 

R ( 3 ) by 

√ 

π (x ) 
√ 

π (y ) , 

H 

R ( x, y ) 
def = 

1 √ 

π ( x ) 
K 

R ( x, y ) 
√ 

π ( y ) = 

1 √ 

π ( y ) 
K 

R ( y, x ) 
√ 

π ( x ) = H 

R ( y, x ) , x, y ∈ X . (5) 

It has the Perr on–Fr obenius eig envector 
√ 

π (x ) , ∑ 

y ∈X 

H 

R ( x, y ) 
√ 

π ( y ) = 

1 √ 

π ( x ) 

∑ 

y ∈X 

K 

R ( x, y ) π ( y ) = 

√ 

π (x ) 
∑ 

y ∈X 

K 

R (y, x ) = 

√ 

π (x ) , (6) 

and its eigenvalues are all real, 

−1 < The eigenvalues of H 

R (x, y ) ≤ 1 . (7) 

3. Construction of fermion Hamiltonian H 

R 

f with wide range interactions 
Here I explain the construction method of re v ersib le and finite Markov chains K 

R adopted in
Ref. [ 2 ]. This gi v es a classical Hamiltonian H 

R ( 5 ) and the general principle of Ref. [ 1 ] provides
the fermion Hamiltonian H 

R 

f with wide range interactions. Those for the infinite Markov chains
are deri v ed by certain limiting procedures including N → ∞ , as will be shown shortly. The
method is based on certain convolutions of the orthogonality measur es of discr ete orthogonal
2/11 
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polynomials of the Askey scheme. The normalized orthogonality measure, being positi v e, can
always be a probability distribution. Let us denote the normalized orthogonality measure with
the explicit N dependence by 

π (x, N, λ) > 0 , 
∑ 

x ∈X 

π (x, N, λ) = 1 , (8) 

in which λ stands for the set of parameters. 

3.1. Three types of convolutions 
Her e I pr esent thr ee types of convolutions among the fiv e reported in Ref. [ 2 ] for simplicity and
clarity: 

(i) : K 

R (x, y ; λ1 , λ2 ) 
def = 

min (x,y ) ∑ 

z =0 

π (x − z, N − z, λ2 ) π (z, y, λ1 ) , (9) 

(ii) : K 

R (x, y ; λ1 , λ2 ) 
def = 

min (x,y ) ∑ 

z = max (0 ,x + y −N ) 

π (x − z, N − y , λ2 ) π (z, y , λ1 ) , (10) 

(iii) : K 

R (x, y ; λ1 , λ2 ) 
def = 

N ∑ 

z = max (x,y ) 

π (x, z, λ2 ) π (z − y, N − y, λ1 ) . (11) 

It is easy to verify the positivity and the conservation of the probability ( 2 ) for each convolu-
tion. The strategy is to find a good set of parameters λi , i = 1 , 2 , 3 , such that the re v ersibility
condition 

K 

R (x, y ; λ1 , λ2 ) π (y, N, λ3 ) = K 

R (y, x ; λ1 , λ2 ) π (x, N, λ3 ) , (12) 

is satisfied. Obviously λ3 is a function of the parameters λi , i = 1 , 2 in K 

R . 
The main result of Ref. [ 2 ] is the following. 

Theor em 1. (Odak e–Sasaki) 

The finite discrete orthogonal polynomials { P̌ n (x, λ3 ) } , whose orthogonality measure π (x, N, λ3 )
pr ovides the r ever sib le distribution of K 

R (x, y ; λ1 , λ2 ) , constitute the left eig envector s of 
K 

R (x, y ; λ1 , λ2 ) , ∑ 

x ∈X 

K 

R (x, y ; λ1 , λ2 ) P̌ n (x, λ3 ) = κ ( n ) P̌ n ( y, λ3 ) , −1 < κ (n ) ≤ 1 , x, n ∈ X , κ (0) = 1 . (13) 

The right eig envector s ar e { π (x, N, λ3 ) P̌ n (x, λ3 ) } , ∑ 

y ∈X 

K 

R (x, y ; λ1 , λ2 ) π (y, N, λ3 ) P̌ n (y, λ3 ) = π (x, N, λ3 ) 
∑ 

y ∈X 

K 

R (y, x ; λ1 , λ2 ) P̌ n (y, λ3 ) 

= κ ( n ) π ( x, N, λ3 ) P̌ n (x, λ3 ) , x, n ∈ X . (14) 

The Hamiltonian H 

R has the eig envector s { √ 

π (x, N, λ3 ) P̌ n (x, λ3 ) } , ∑ 

y ∈X 

H 

R (x, y ; λ1 , λ2 ) 
√ 

π (y, N, λ3 ) P̌ n (y, λ3 ) 

= 

1 √ 

π (x, N, λ3 ) 

∑ 

y ∈§ 

K 

R (x, y ; λ1 , λ2 ) π (y, N, λ3 ) P̌ n (y, λ3 ) 

= κ ( n ) 
√ 

π ( x, N, λ3 ) P̌ n ( y, λ3 ) . (15) 

The normalization constant of the polynomial P̌ n (x ) is determined by the uni v ersal normal-
ization condition 
3/11 
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P̌ n (0 , λ3 ) = 1 , ∀ n ∈ X , (16) 

∑ 

x ∈X 

π (x, N, λ3 ) P̌ m 

(x, λ3 ) P̌ n (x, λ3 ) = 

δm,n 

d 

2 
n 

, d n > 0 , m, n ∈ X . (17) 

Of course, the constant d n also depends on λ3 but its dependence is suppressed for simplicity
of presentation. It should be noted that, because of the context, the present definition of d 

2 
n 

is slightly different from the previous one [ 1 , 6 ]. The orthonormal eigenvectors of the classical
Hamiltonian H 

R are ˆ φn (x ) , 

H 

R ˆ φn = κ (n ) ̂  φn ⇔ 

∑ 

y ∈X 

H 

R (x, y ; λ1 , λ2 ) ̂  φn (y ) = κ (n ) ̂  φn (x ) , 

ˆ φn ( x ) def = d n 

√ 

π ( x, N, λ3 ) P̌ n ( x, λ3 ) ∈ R , (18) 

∑ 

x ∈X 

ˆ φm 

( x ) ̂  φn ( x ) = δm,n , 
∑ 

n ∈X 

ˆ φn ( x ) ̂  φn ( y ) = δx,y . (19) 

3.2. Fermion Hamiltonian H 

R 

f 

The fermion Hamiltonian H 

R 

f with wide r ange inter actions is defined from the classical Hamil-

tonian H 

R as a bilinear form of the lattice fermions { c x } , { c † x } on X , obeying the canonical
anticommuta tion rela tions, 

{ c † x , c y } = δx,y , { c † x , c 
† 
y } = 0 = { c x , c y } , x, y ∈ X , (20) 

H 

R 

f 
def = 

∑ 

x,y ∈X 

c † x H 

R (x, y ) c y , (21) 

in which the parameter dependence is suppressed for simplicity of presentation. 

Theorem 2. The Hamiltonian H 

R 

f is diagonalized by the introduction of the momentum space

fermion oper ator s { ̂  c n } , { ̂  c † n } , n ∈ X , 

ˆ c n 
def = 

∑ 

x ∈X 

ˆ φn ( x ) c x , ˆ c † n = 

∑ 

x ∈X 

ˆ φn ( x ) c † x ⇔ c x = 

∑ 

n ∈X 

ˆ φn ( x ) ̂  c n , c † x = 

∑ 

m ∈X 

ˆ φm 

( x ) ̂  c † m 

, (22) 

=⇒ { ̂  c † m 

, ˆ c n } = δm n , { ̂  c † m 

, ˆ c † n } = 0 = { ̂  c m 

, ˆ c n } , (23) 

⇓ 

H 

R 

f = 

∑ 

m,n,x,y ∈X 

ˆ φm 

( x ) H 

R ( x, y ) ̂  φn ( y ) ̂  c † m ̂

 c n = 

∑ 

m,n,x ∈X 

κ ( n ) ̂  φm 

( x ) ̂  φn ( x ) ̂  c † m ̂

 c n 

= 

∑ 

n ∈X 

κ (n ) ̂  c † n ̂  c n , (24) 

=⇒ [ H 

R 

f , ˆ c † n ] = κ ( n ) ̂  c † n , [ H 

R 

f , ˆ c n ] = −κ (n ) ̂  c n . (25) 

4. Explicit forms of the classical Hamiltonians H 

R 

Her e I pr esent the explicit forms of the r e v ersib le Mar kov chain matrices K 

R (x, y ) belonging
to a certain subset of the discrete orthogonal polynomials of the Askey scheme [ 3–6 ]. They
ar e all r eported in Ref. [ 2 ] and r eproduced her e for self-containedness. The polynomials ar e
the Krawtchouk (K), Charlier (C), Hahn (H), Meixner (M), and q -Hahn ( q H). For each poly-
4/11 
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nomial, after listing the basic da ta, a t most three types of re v ersib le Mar kov chain matrices
K 

R (x, y ) are displayed. The classical Hamiltonian H 

R ( 5 ) and the fermion Hamiltonian H 

R 

f 

( 21 ) are obtained straightforwardly. They could be used to calculate many interesting quanti-
ties of the fermions with wide range interactions, e.g. entanglement entropy etc. [ 7–12 ]. 

4.1. Krawtchouk 

The polynomial depends on one positi v e parameter λ = p ( 0 < p < 1 ), 

π (x, N, p) = 

(
N 

x 

)
p 

x (1 − p) N−x , 

(
N 

x 

)
= 

N! 
x ! (N − x )! 

, d 

2 
n = 

(
N 

n 

)( p 

1 − p 

)n 
, (26) 

P̌ n (x, p) = P n (x, p) = 2 F 1 

(−n, −x 

−N 

∣∣∣ p 

−1 
)
, P n (x, p) = P x (n, p) , (self-dual) . (27) 

4.1.1. Type (i) convolution. This convolution has been applied to (K) and (H) in many papers
[ 13–15 ] in connection with “cumulati v e Bernoulli trials.” By taking λ1 = a , λ2 = b, and λ3 =
p 

def = 

b 
1 −a + ab , the matrix K 

R (x, y ) is 

K 

R ( x, y ) = 

min (x,y ) ∑ 

z =0 

π ( x − z, N − z, b) π (z, y, a ) , 0 < a, b, p < 1 , (28) 

satisfying ∑ 

y ∈X 

K 

R ( x, y ) π ( y, N, p) P̌ n ( y, p) = κ ( n ) π ( x, N, p) P̌ n ( x, p) , 

κ (n ) = a 

n (1 − b) n = 1 F 0 

(
−n 
−

∣∣∣ bp 

−1 
)
, n ∈ X . (29) 

⇒ H 

R (x, y ) = 

1 √ 

π (x, N, p) 

min (x,y ) ∑ 

z =0 

π (x − z, N − z, b) π (z, y, a ) 
√ 

π (y, N, p) , (30) 

ˆ φn (x ) = d n 

√ 

π (x, N, p) 2 F 1 

(−n, −x 

−N 

∣∣∣ p 

−1 
)
, d 

2 
n = 

(N 

n 

)
( p 

1 −p ) 
n , p = 

b 
1 −a + ab . (31) 

4.1.2. Type (ii) convolution. By taking λ1 = a , λ2 = b, and λ3 = p 

def = 

b 
1 −a + b , the matrix

K 

R (x, y ) is 

K 

R (x, y ) = 

min (x,y ) ∑ 

z = max (0 ,x + y −N ) 

π (x − z, N − y , b) π (z, y , a ) , 0 < a, b, p < 1 , (32) 

satisfying ∑ 

y ∈X 

K 

R ( x, y ) π ( y, N, p) P̌ n ( y, p) = κ ( n ) π ( x, N, p) P̌ n ( x, p) , 

κ (n ) = (a − b) n = 1 F 0 

(
−n 
−

∣∣∣ bp 

−1 
)
. n ∈ X , (33) 

⇒ H 

R (x, y ) = 

1 √ 

π (x, N, p) 

min (x,y ) ∑ 

z = max (0 ,x + y −N ) 

π (x − z, N − y , b) π (z, y , a ) 
√ 

π (y , N, p) , (34) 

ˆ φn (x ) = d n 

√ 

π (x, N, p) 2 F 1 

(−n, −x 

−N 

∣∣∣ p 

−1 
)
, d 

2 
n = 

(N 

n 

)
( p 

1 −p ) 
n , p = 

b 
1 −a + b . (35) 
5/11 
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It is interesting to note that odd eigenvalues are all negati v e if 0 < a < b < 1 . 

4.1.3. Type (iii) convolution. By taking λ1 = a , λ2 = b, and λ3 = p 

def = 

ab 
1 −b+ ab , the matrix

K 

R (x, y ) is 

K 

R (x, y ) = 

N ∑ 

z = max (x,y ) 

π (x, z, b) π (z − y, N − y, a ) 0 < a, b, p < 1 , (36) 

satisfying ∑ 

y ∈X 

K 

R ( x, y ) π ( y, N, p) P̌ n ( y, p) = κ ( n ) π ( x, N, p) P̌ n ( x, p) , 

κ (n ) = (1 − a ) n b 

n = 1 F 0 

(
−n 
−

∣∣∣ ab p 

−1 
)
, n ∈ X , (37) 

⇒ H 

R (x, y ) = 

1 √ 

π (x, N, p) 

N ∑ 

z = max (x,y ) 

π (x, z, b) π (z − y, N − y, a ) 
√ 

π (y, N, p) , (38) 

ˆ φn (x ) = d n 

√ 

π (x, N, p) 2 F 1 

(−n, −x 

−N 

∣∣∣ p 

−1 
)
, d 

2 
n = 

(N 

n 

)
( p 

1 −p ) 
n , p = 

ab 
1 −a + ab . (39) 

4.2. Charlier 
This polynomial is defined on a semi-infinite integer lattice X = Z ≥0 depending on one positi v e
parameter λ = a ( a > 0 ), 

π (x, a ) = 

a 

x e −a 

x ! 
, d 

2 
n = 

a 

n 

n ! 
, (40) 

P̌ n (x, a ) = P n (x, a ) = 2 F 0 

(−n, −x 

−
∣∣∣ −a 

−1 
)
, P n (x, a ) = P x (n, a ) , (self-dual) . (41) 

By the replacement p → pN 

−1 and in the limit N → ∞ , the Krawtchouk (K) goes to Charlier
(C) [ 4 ], 

P̌ K n (x, p) → P̌ C n (x, p) , πK 

(x, N, p) → πC 

(x, p) , d 

2 
K n → d 

2 
C n . 

4.2.1. Type (i) convolution. This is achie v ed by b → bN 

−1 , N → ∞ in K 

R of Krawtchouk
type (i) convolution ( 28 ), 

P̌ n (x, p) → P̌ C n (x, p 

′ ) , p 

′ def = 

b 
1 −a , 0 < a < 1 , 

π (x, N, p) → πC 

(x, p 

′ ) , κ (n ) → κC 

(n ) = a 

n , 

K 

R (x, y ) → K 

R 

C 

(x, y ) = 

min (x,y ) ∑ 

z =0 
πC 

(x − z, b) πK 

(z, y, a ) , (42) 

=⇒ H 

R (x, y ) = 

1 √ 

πC 

(x, p 

′ ) 

min (x,y ) ∑ 

z =0 

πC 

(x − z, b) πK 

(z, y, a ) 
√ 

πC 

(y, p 

′ ) , (43) 

ˆ φn (x ) = d n πC 

(x, p 

′ ) 2 F 0 

(−n, −x 

−
∣∣∣ −p 

′ −1 
)
, d 

2 
n = p 

′ n /n ! . (44) 

The infinite limit of Krawtchouk K 

R (x, y ) of type (ii) convolution gi v es the same result as this
one. 
6/11 
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4.2.2. Type (iii) convolution. This is achie v ed by a → aN 

−1 , N → ∞ in K 

R of Krawtchouk
type (iii) convolution ( 36 ), 

P̌ n (x, p) → P C n (x, p 

′ ) , p 

′ def = 

ab 
1 −b , 0 < b < 1 , 

π (x, N, p) → πC 

(x, p 

′ ) , κ (n ) → κC 

(n ) = b 

n = 1 F 0 

(
−n 
−

∣∣∣ ab p 

′ −1 
)
, 

K 

R (x, y ) → K 

R 

C 

(x, y ) = 

∞ ∑ 

z = max (x,y ) 
πK 

(x, z, b) πC 

(z − y, a ) , (45) 

=⇒ H 

R (x, y ) = 

1 √ 

πC 

(x, p 

′ ) 

∞ ∑ 

z = max (x,y ) 

πK 

(x, z, b) πC 

(z − y , a ) 
√ 

πC 

(y , p 

′ ) , (46) 

ˆ φn (x ) = d n πC 

(x, p 

′ ) 2 F 0 

(
−n, −x 

−
∣∣∣ −p 

′ −1 
)
, d 

2 
n = p 

′ n /n ! . (47) 

4.3. Hahn 

The polynomial depends on two positi v e parameters λ = (a, b) ( a, b > 0 ), 

π (x, N, a, b) = 

(
N 

x 

)
(a ) x (b) N−x 

(a + b) N 

, d 

2 
n = 

(
N 

n 

)
(a ) n (2 n + a + b − 1)(a + b) N 

(b) n (n + a + b − 1) N+1 
, (48) 

P̌ n (x, a, b) = P n (x, a, b) = 3 F 2 

(−n, n + a + b − 1 , −x 

a, −N 

∣∣∣ 1 

)
. (49) 

4.3.1. Type (i) convolution. For λ1 = (a, b) , λ2 = (b, c ) , and λ3 = (a + b, c ) , the matrix
K 

R (x, y ) is 

K 

R ( x, y ) = 

min (x,y ) ∑ 

z =0 

π ( x − z, N − z, b, c ) π (z, y, a, b) , 0 < a, b, c, (50) 

satisfying ∑ 

y ∈X 

K 

R ( x, y ) π ( y, N, a + b, c ) P̌ n (y, a + b, c ) = κ ( n ) π ( x, N, a + b, c ) P̌ n (x, a + b, c ) , 

κ ( n ) = 

( a ) n ( c ) n 
( a + b) n (b + c ) n 

= 3 F 2 

(−n, n + a + b + c − 1 , b 

a + b, b + c 

∣∣∣ 1 

)
, n ∈ X , (51) 

=⇒ H 

R (x, y ) = 

1 √ 

π (x, N, a + b, c ) 

min (x,y ) ∑ 

z =0 

π (x − z, N − z, b, c ) π (z, y, a, b) 
√ 

π (y, N, a + b, c ) , 

(52) 

ˆ φn (x ) = d n π (x, N, a + b, c ) 3 F 2 

(−n, n + a + b + c − 1 , −x 

a + b , −N 

∣∣∣ 1 

)
, (53) 

d 

2 
n = 

(
N 

n 

)
(a + b) n (2 n + a + b + c − 1)(a + b + c ) N 

( c ) n ( n + a + b + c − 1) N+1 
. (54) 

4.3.2. T ype (ii) convolution. F or λ1 = (a, b) , λ2 = (b, c ) , and λ3 = (a + b, b + c ) the matrix
K 

R (x, y ) is 

K 

R ( x, y ) = 

min (x,y ) ∑ 

z = max (0 ,x + y −N ) 

π ( x − z, N − y , b, c ) π (z, y , a, b) , (55) 
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satisfying ∑ 

y ∈X 

K 

R ( x, y ) π ( y, N, a + b, b + c ) P̌ n (y, a + b, b + c ) 

= κ ( n ) π ( x, N, a + b, b + c ) P̌ n (x, a + b, b + c ) , 

κ (n ) = 

n ∑ 

k=0 

(n 
k 

)
(−1) k 

(b) k (n + a + 2 b + c − 1) k 
(a + b) k (b + c ) k 

(56) 

= 3 F 2 

(−n, n + a + 2 b + c − 1 , b 

a + b, b + c 

∣∣∣ 1 

)
, n ∈ X , (57) 

=⇒ H 

R (x, y ) = 

1 √ 

π (x, N, a + b, b + c ) 

min (x,y ) ∑ 

z = max (0 ,x + y −N ) 

π (x − z, N − y , b, c ) π (z, y , a, b) 

×
√ 

π (y, N, a + b, b + c ) , (58) 

ˆ φn (x ) = d n π (x, N, a + b, b + c ) 3 F 2 

(−n, n + a + 2 b + c − 1 , −x 

a + b, −N 

∣∣∣ 1 

)
, (59) 

d 

2 
n = 

(
N 

n 

)
(a + b) n (2 n + a + 2 b + c − 1)(a + 2 b + c ) N 

( b + c ) n ( n + a + 2 b + c − 1) N+1 
. (60) 

4.3.3. T ype (iii) convolution. F or λ1 = (a, b) , λ2 = (c, a ) , and λ3 = (c, a + b) , the matrix
K 

R (x, y ) is 

K 

R ( x, y ) = 

N ∑ 

z = max (x,y ) 

π ( x, z, c, a ) π ( z − y, N − y, a, b) 0 < a, b, c, (61) 

satisfying ∑ 

y ∈X 

K 

R ( x, y ) π ( y, N, c, a + b) P̌ n (y, c, a + b) 

= κ ( n ) π ( x, N, c, a + b) P̌ n (x, c, a + b) , 

κ ( n ) = 

( b) n ( c ) n 
( a + b) n (a + c ) n 

= 3 F 2 

(−n, n + a + b + c − 1 , a 

a + b, a + c 

∣∣∣ 1 

)
, n ∈ X , (62) 

=⇒ H 

R (x, y ) = 

1 √ 

π (x, N, c, a + b) 

N ∑ 

z = max (x,y ) 

π (x, z, c, a ) π (z − y, N − y, a, b) 
√ 

π (y, N, c, a + b) , 

(63

ˆ φn (x ) = d n π (x, N, c, a + b) 3 F 2 

(−n, n + a + b + c − 1 , −x 

c , −N 

∣∣∣ 1 

)
, (64) 

d 

2 
n = 

(
N 

n 

)
( c ) n ( 2 n + a + b + c − 1)(a + b + c ) N 

(a + b) n (n + a + b + c − 1) N+1 
. (65) 

4.4. Meixner 
This self-dual polynomial is defined on a semi-infinite integer lattice X = Z ≥0 with two positi v e
parameters λ = (a, b) ( 0 < a , 0 < b < 1 ), 

π (x, a, b ) = 

(a ) x b 

x (1 − b) a 
, d 

2 
n = 

(a ) n b 

n 

, (66) 

x ! n ! 
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P̌ n (x, a, b) = P n (x, a, b) = 2 F 1 

(−n, −x 

a 

∣∣∣ 1 − b 

−1 
)
, P n (x, a, b) = P x (n, a, b) . (67) 

By the replacement b → N(1 − b ) b 

−1 and in the limit N → ∞ , the Hahn (H) goes to Meixner
(M), 

P̌ H n (x, a, b) → P̌ M n (x, a, b) , πH 

(x, N, a, b) → πM 

(x, a, b) , d 

2 
H n → d 

2 
M n . 

By the replacement b → b/ (a + b) and in the limit a → ∞ , the Meixner (M) goes to Charlier
(C), 

P̌ M n (x, a, b) → P̌ C n (x, b) , πM 

(x, a, b) → πC 

(x, b) , d 

2 
M n → d 

2 
C n . 

4.4.1. Type (i) convolution. This is achie v ed by fixing a and b with c → N(1 − c ) c −1 ( ⇒ 0 <

c < 1 ), N → ∞ in K 

R of Hahn type (i) convolution ( 50 ), 

P̌ n (x, a + b, c ) → P̌ M n (x, a + b, c ) , 

π (x, N, a + b, c ) → πM 

(x, a + b, c ) , κ (n ) → κM 

(n ) = 

(a ) n 
(a + b) n 

= 2 F 1 

(−n, b 

a + b 

∣∣∣ 1 

)
, (68) 

K 

R (x, y ) → K 

R 

M 

(x, y, a, b, c ) = 

min (x,y ) ∑ 

z =0 

πM 

(x − z, b, c ) πH 

(z, y, a, b) , (69) 

=⇒ H 

R (x, y ) = 

1 √ 

πM 

(x, a + b, c ) 

min (x,y ) ∑ 

z =0 

πM 

( x − z, b, c ) πH 

( z, y, a, b) 
√ 

πM 

( y, a + b, c ) , (70) 

ˆ φn (x ) = d n πM 

(x, a + b, c ) 2 F 1 

(−n, −x 

a + b 

∣∣∣ 1 − c −1 
)
, d 

2 
n = 

(a + b) n c n 

n ! 
. (71) 

4.4.2. Type (ii) convolution. By fixing a , b with c → N(1 − c ) c −1 ( ⇒ 0 < c < 1 ) and taking
the limit N → ∞ in K 

R of Hahn type (ii) convolution ( 55 ), one obtains the same Meixner limit
K 

R 

M 

(x, y ) as in Eq. ( 69 ), 

K 

R (x, y ) → K 

R 

M 

(x, y, a, b, c ) = 

min (x,y ) ∑ 

z =0 

πM 

(x − z, b, c ) πH 

(z, y, a, b) . 

4.4.3. Type (iii) convolution. This is achie v ed by fixing a and c with b → N(1 − b ) b 

−1 ( ⇒
0 < b < 1 ), N → ∞ in K 

R of Hahn type (iii) convolution ( 61 ), 

P̌ n (x, c, a + b) → P̌ M n (x, c, b) , 

π (x, N, c, a + b) → πM 

(x, c, b) , κ (n ) → κM 

(n ) = 

(c ) n 
(a + c ) n 

= 2 F 1 

(−n, a 

a + c 

∣∣∣ 1 

)
, (72) 

K 

R (x, y ) → K 

R 

M 

(x, y, a, b, c ) = 

∞ ∑ 

z = max (x,y ) 
πH 

(x, z, c, a ) πM 

(z − y, a, b) , (73) 

=⇒ H 

R (x, y ) = 

1 √ 

πM 

(x, c, b) 

∞ ∑ 

z = max (x,y ) 

πH 

(x, z, c, a ) πM 

(z − y, a, b) 
√ 

πM 

(y, c, b) , (74) 

ˆ φn (x ) = d n πM 

(x, c, b) 2 F 1 

(−n, −x 

c 

∣∣∣ 1 − b 

−1 
)
, d 

2 
n = 

(c ) n b 

n 

n ! 
. (75) 
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4.5. q -Hahn 

The q -Hahn is defined on a finite integer lattice with two positi v e parameters λ = (a, b) ( 0 <

a < 1 , b < 1 ) on top of q , 0 < q < 1 , and the q dependence of π and P̌ n is suppressed. It should

be stressed that the polynomial P̌ n (x ) is a degree n polynomial in η(x ) def = q 

−x − 1 , not in x , 

π (x, N, a, b) = 

[
N 

x 

]
(a ; q ) x (b ; q ) N−x a 

N−x 

(ab ; q ) N 

, 

[
N 

x 

]
def = 

(q ; q ) N 

(q ; q ) x (q ; q ) N−x 
, (76) 

d 

2 
n = 

[
N 

n 

]
(a, abq 

−1 ; q ) n 
(abq 

N , b ; q ) n a 

n 

1 − abq 

2 n −1 

1 − abq 

−1 
, (77) 

P̌ n (x, a, b) = P n 
(
η(x ) , a, b 

) = 3 φ2 

(q 

−n , abq 

n −1 , q 

−x 

a, q 

−N 

∣∣∣ q ; q 

)
. (78) 

4.5.1. Type (i) convolution. By taking λ1 = (a, b) , λ2 = (b, c ) , and λ3 = (ab, c ) the matrix
K 

R (x, y ) is 

K 

R (x, y ) = 

min (x,y ) ∑ 

z =0 

π (x − z, N − z, b, c ) π (z, y, a, b) , (79) 

satisfying 

∑ 

y ∈X 

K 

R ( x, y ) π ( y, N, ab, c ) P̌ n ( y, ab, c ) = κ ( n ) π ( x, N, ab, c ) P̌ n ( x, ab, c ) , 

κ ( n ) = 

b 

n ( a ; q ) n (c ; q ) n 
( ab ; q ) n ( bc ; q ) n 

= 3 φ2 

(q 

−n , abcq 

n −1 , b 

ab, bc 

∣∣∣ q ; q 

)
, (80) 

=⇒ H 

R (x, y ) = 

1 √ 

π (x, N, ab, c ) 

min (x,y ) ∑ 

z =0 

π (x − z, N − z, b, c ) π (z, y, a, b) 
√ 

π (y, N, ab, c ) , (81) 

ˆ φn (x ) = d n π (x, N, ab, c ) 3 φ2 

(q 

−n , abcq 

n −1 , q 

−x 

ab, q 

−N 

∣∣∣ q ; q 

)
, (82) 

d 

2 
n = 

[
N 

n 

]
(ab, abcq 

−1 ; q ) n 
(abcq 

N , c ; q ) n (ab) n 
1 − abcq 

2 n −1 

1 − abcq 

−1 
. (83) 

The type (ii) convolution does not exist for q -Hahn. 

4.5.2. Type (iii) convolution. By taking λ1 = (a, b) , λ2 = (c, a ) , and λ3 = (c, ab) the matrix
K 

R (x, y ) is 

K 

R ( x, y ) = 

N ∑ 

z = max (x,y ) 

π ( x, z, c, a ) π ( z − y, N − y, a, b) , (84) 

satisfying 

∑ 

y ∈X 

K 

R ( x, y ) π ( y, N, c, ab) P̌ n ( y, c, ab) = κ ( n ) π ( x, N, c, ab) P̌ n ( x, c, ab) , 

κ ( n ) = 

a 

n ( b ; q ) n ( c ; q ) n 
( ab ; q ) n ( ac ; q ) n 

= 3 φ2 

(q 

−n , abcq 

n −1 , a 

ac, ab 

∣∣∣ q ; q 

)
, (85) 
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=⇒ H 

R (x, y ) = 

1 √ 

π (x, N, c, ab) 

N ∑ 

z = max (x,y ) 

π (x, z, c, a ) π (z − y, N − y, a, b) 
√ 

π (y, N, c, ab) , 

(86) 

ˆ φn (x ) = d n π (x, N, c, ab) 3 φ2 

(q 

−n , abcq 

n −1 , q 

−x 

c, q 

−N 

∣∣∣ q ; q 

)
, (87) 

d 

2 
n = 

[
N 

n 

]
(c, abcq 

−1 ; q ) n 
(abcq 

N , ab ; q ) n c n 
1 − abcq 

2 n −1 

1 − abcq 

−1 
. (88) 
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