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Abstract

[ study the differential geometry of 6-manifolds endowed with various SU(3) struc-
tures from three perspectives. The first is special Lagrangian geometry; The second
is pseudo-Hermitian-Yang-Mills connections or, more generally, w-anti-self dual in-
stantons; The third is pseudo-holomorphic curves.

For the first perspective, I am interested in the interplay between SU (3)-structures
and their special Lagrangian submanifolds. More precisely, I study SU (3)-structures
which locally support as ‘nice’ special Lagrangian geometry as Calabi-Yau 3-folds
do. Roughly speaking, this means that there should be a local special Lagrangian
submanifold tangent to any special Lagrangian 3-plane. I call these SU(3)-structures
admissible. By employing Cartan-Kahler machinery, I show that locally such admis-
sible SU(3)-structures are abundant and much more general than local Calabi-Yau
structures. However, the moduli space of the compact special Lagrangian subman-
ifolds is not so well-behaved in an admissible SU(3)-manifold as in the Calabi-Yau
case. For this reason, I narrow attention to nearly Calabi- Yau manifolds, for which
the special Lagrangian moduli space is smooth. I compute the local generality of
nearly Calabi-Yau structures and find that they are still much more general than
Calabi-Yau structures. I also discuss the relationship between nearly Calabi-Yau
and half-flat SU(3)-structures. To construct complete or compact admissible exam-
ples, I study the twistor spaces of Riemannian 4-manifolds. It turns out that twistor
spaces over self-dual Einstein 4-manifolds provide admissible and nearly Calabi-Yau
manifolds. I also construct some explicit special Lagrangian examples in nearly
Kiahler CP? and the twistor space of H*.

For the second perspective, we are mainly interested in pseudo-Hermitian-Yang-
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Mills connections on nearly Kahler six manifolds. Pseudo-Hermitian-Yang-Mills con-
nections were introduced by R. Bryant in [4] to generalize Hermitian-Yang-Mills
concept in Kéhler geometry to almost complex geometry. If the SU(3)-structure is
nearly Kéhler, I show that pseudo-Hermitian-Yang-Mills connections (or, more gen-
erally, w-anti-self-dual instantons) enjoy many nice properties. For example, they
satisfy the Yang-Mills equation and thus removable singularity results hold for such
connections. Moreover, they are critical points of a Chern-Simons functional. T de-
rive a Weitzenbock formula for the deformation and discuss some of its application.
I construct some explicit examples that display interesting singularities.

For the third perspective, I study pseudo-holomorphic curves in nearly Kahler
CP3. 1 construct a one-to-one correspondence between null torsion curves in the
nearly Kihler CP? and contact curves in the Kéhler CP® (considered as a complex
contact manifold). From this, I derive a Weierstrass formula for all null torsion
curves by employing a result of R. Bryant in [9]. In this way, I classify all pseudo-

holomorphic curves of genus 0.
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Introduction

0.1 SU(3)-structure on vector spaces

Let V be a 6-dimensional vector space. Let (2, ¢) € A2V* @ A*V* be a pair of forms
with 2 nondegenerate. Clearly the full linear group GL(V') acts on such pairs by
pullback. It is interesting to ask what the orbits and stabilizer groups are like. This
problem was solved first by Banos in [3]. Later on, Bryant gave a simplified proof in
[4].

There are two ways to this problem in the literature. One is to normalize € first
and then consider the orbits of ¢ under the symplectic group Sp(2). Note that under
the action of Sp(Q), A*V* decomposes into two irreducible pieces: Q A V* and AJV*
of effective forms annihilated by wedge product by Q. Since Sp(V') acts transitively
on V*\ {0}, Q@ A V* has only two obvious orbits. The difficult part is the orbits in
A3V*. This approach was adopted in [3].

The other is just the opposite, namely to classify ¢ orbits under GL(V') and then
to normalize €2 under different stabilizer groups of ¢. The second turns out to be

simpler and was adopted in [4]. We cite the result as follows

Proposition 0.1.1 ([3],[4]). Suppose (w, V) € A?V* & A3V*. Assume w is nonde-
generate and ¥ is primitive (i.e., w ANV =0). Then under the action of GL(V'), the

pair (w, @) can be normalized to one of the following with the corresponding stabilizer

group G(Q, ¢):



Q ¢ G(£, 9)
12 4 25 4 (36 fi(e23 4 ¢156) SL(3,R)
eld 4 25 4 36 ,u(6123 _ 156 _ 246 _ 6345) SU(3)

614 + 625 + 636 M(6123 _ 6156 + 6246 + 6345) SU(]., 2)

el | o2 | 036 156 | 264 | 345 R’ x SO(3)
el | o2 L 36 156 _ 264 _ 345 R’ x SO(1,2)
el 1 25 | 36 o123 4 345

el | o2 36 o123

el 4 25 4 36 0

where > 0 and we have denoted e'? = e! A e? and e'?® = e! Ne? A €3, ete.

In the list of Proposition 0.1.1, the only compact stabilizer group is SU(3), the
case we are mainly interested in. We assume p = 1. By introducing a complex basis

wh=el +iet, wr=e*+ie’, wP=e>+iel

we rewrite
Q= é(wl Awl +w? Aw? +w® Awd)
and
¢ = Re¥
with

U =w' Aw? AW
Thus, by specifying Q2 and ¢ (or V), we fix an SU(3) structure on V' such that

w' are special unitary complex basis. It is easy to verify the normalization condition

I
S = LU AT
¥ 7%



0.2 SU(3)-structures on 6-manifolds

We briefly review G-structures and then focus on SU (3)-structures. A good reference

for general theory of G-structures is [5].
0.2.1 G-structure

Let V = R" be the n-dimensional vector space of column vectors. The linear trans-
formation group GL(V) may be considered as invertible n X n matrices acting by
multiplication on vectors. Suppose that M is an n-dimensional smooth manifold.

Let z : 7 — M be the total coframe bundle of M. Explicitly,
F={(z,u):u:T,M —V}.
It is a principal GL(V)-bundle over M with the right action

(z,u)0g = (2,9 'u)

for g € GL(V).

On F, there is a tautological 1-form w defined by
Wizu) (V) = u(z(V))

for any V' € T, ) F. Clearly, w vanishes on all vertical vectors, so the n components
of w form a basis for the semi-basic 1-forms. It also satisfies the GL(V')-equivariance
property,

Jw=g9 w
for all g € GL(V). Moreover, it has an interesting reproducing property: For any
local section s of F, s*w = s. This follows from the definition.

Let G be a Lie subgroup of GL(V).

Definition 0.2.1. A G-structure on M is a reduction of the total coframe bundle F

to a principal G-subbundle F.



We still denote by w the tautological 1-form restricted to F. Then w is G-
equivariant. Pick a connection # on F (by the general theory of principal bundles,

one always exists). From the equivariance of w, we have the first structure equation
1
dw:—Q/\w+§T(wAw) (1)

where w A w is a A?V-valued 2-form and T is A?V* @ V-valued. Due to the G-
equivariance of both w and 6, T is also G-equivariant. In other words, T" defines
a section of the vector bundle F xg (A?V* @ V). We usually call T the apparent
torsion.

Now any other connection 9 on F differs from 6 by a G-equivariant semibasic
g = Lie(G)-valued 1-form, i.e., a section a of F x¢g (V* x g). The tensor 7" in (1)

with @ replaced by 0 changes from T to

~

TwAw)=T(wAw)+2aAw. (2)
The discussion so far is illustrated by the following sequence of G-modules
0-gM gV L VAV — HO?(g) — 0. (3)

Here, g is regarded as a subspace of gl(V) = V ® V*. The map ¢ skew-symmetrizes
the two V* factors in g®@ V* C V ® V* ® V*. The kernel gt of § is called the
first prolongation of g and the cokernel is denoted by H(®?(g). By associating the
various spaces in the sequence with the principal bundle F, we get an exact sequence
of vector bundles. We see that a is a section of F X (g®@ V*) and T, T are sections
of F xg (A’V* ® V). The equation (2) says that a different choice of connection
only changes T by the 0 image of a € F ®¢ (g ® V*). Thus, its equivalence class
[T] € F x¢ H%*(g) is independent of the connection chosen. The tensor [T is called

the intrinsic torsion of the G-structure F. For this reason, H(?)(g) is sometimes



called the essential torsion space. The first prolongation g measures the freedom
we have in choosing the connections # once we fix a representative T' of the torsion
7.

If all finite-dimensional representations of G are completely reducible, we can
identify H®?(g) as a (not necessarily unique) subspace of V ® A2V*. Then we can
always modify 6 so that the apparent torsion T falls in H(®?(g). This is called
absorbing non-essential torsion. If, further, g’ = 0, e.g., when G is a subgroup of
O(g) for some nondegenerate symmetric bi-linear form g, then the connection 6 will
be unique once we require the torsion is fixed inside V' ® A2V*. The connection is

canonical in the sense that it is preserved by diffeomorphisms.

Example 0.2.2. Let g be a Riemannian metric on M and let ¥ be the orthogonal
coframe bundle of g. Then F is an O(n)-structure on M. In the sequence (3), when
G is replaced by O(n), both g and H®?(g) vanish. Thus the sequence degenerates

to 6o : 0(n) @V* — V@ AV*. It follows that there exists on F a unique connection

0 such that T'= 0. The connection is usually called the Levi-Civita connection.
0.2.2 SU(3)-structures

From now on, let us assume n = 6 and G = SU(3). An SU(3) structure on a 6-
manifold M is equivalent to specifying a pair of forms (2, ¢) € A*T*M @ A3T*M

such that, at each point € M, there exists a basis of 1-forms {e'}%_; so that
O, = M4 e 43, = 12 _ 19 _ 26 _ 3
T T ) T T .

To see this, suppose first 7 : F — M is an SU(3)-structure. For any (z,u) € F,

let
Q = U*(QO>7 Or = U*(%)



with Qg = @(dzl A dzZi + dze A dZy + dz3 A dZ3) and ¢g = Re(dzy A dzy A dz3) are
forms on R® ~ C3. Since (z,u) o g = (z,¢9 'u) for all g € SU(3), 2, and ¢, are

independent of u. Conversely, suppose such ) and ¢ exist. Let
F={(z,u) €§:u"Qy=Q,u"pg = &}

By Proposition 0.1.1, F is an SU(3) principal bundle, i.e., an SU(3)-structure on M.
Specially adapted for SU(3) structures, we will use complex tautological 1-forms.
Define

wi|(m7u) =u*(dz), 1=1,2,3

where dz; is the standard i-th complex coordinate on C3. Then it follows from the

above discussion that

W*Q:T<wl N Wy + wo N\ Wy + w3 /\w_g), W*¢:Re(w1AWQAW3).

Zeroth order invariants: complex volume form, metric, and almost complex structure

The existence of an SU(3)-structure on M usually requires topological conditions,
e.g., certain characteristic classes vanish. We do not pursue this but are more inter-
ested in the geometric consequences of an SU (3)-structure. We first discuss invariants
of zeroth order, i.e., without differentiating the defining forms 2 and ¢.

Besides 2 and ¢ themselves, another obvious one is the complex 3-form ¥ which,
when pulled back to F by m, has the form w; A ws A ws.

Since SU(3) is compact, an SU(3) structure determines a metric g on M, with
the property

g = wy 0wy + wy 0 Wy + w3 0 Ws.

Since SU(3) is a subgroup of GL(3,C), an SU(3)-structure determines an almost

complex structure J on M. At each point z, J =u"to Jyou: TyM — T,M where

Jo is the standard complex structure on C3. It is clearly independent of the coframe

6



(x,u) € F, chosen. With respect to J, U is of type (3,0). We call it the complex

volume form.
First order invariants: connection and torsion

Zeroth order invariants do not distinguish SU(3) structures. To go further, we need
study the first structure equations. First let us take a closer look at the sequence

(3). As mentioned before, su(3)") = 0. Moreover,

0 — su3)@V* -5 VoAV — HOI(5u(3)) — 0

0 - ﬂu(f—i) SV - loi%) 2V - loé(oa Jsu3) @V — 0

is a commutative diagram where 6, is introduced in Example 0.2.2 and 4, is induced
from it. Since 6, is an SU(3) isomorphism, so is d,. The second exact sequence has
an obvious splitting by identifying s0(6)/su(3) as the orthogonal complement su(3)*
in 50(6) with respect to the Killing metric. In this way, we obtain a splitting of the
first exact sequence by identifying H(®? (su(3)) as d,-image of su(3)* ® V*. This
splitting uniquely determines an su(3) connection # on F by requiring its apparent
torsion lie entirely in §,(su(3)* @ V*).

One way to think about @ is to relate it to the Levi-Civita connection 6, on the

orthogonal coframe bundle F'- O(n). Restricting 6, to F,
90 = 0 @ (—T)

according to 50(6) = su(3) ® su(3)*. The su(3)* component —7 is clearly semibasic
and hence takes values in su(3)* ® V*. Since the Levi-Civita connection 6, is torsion
free, the apparent torsion of 6 is d,(7).

For later use, we need to write the components of torsion more explicitly. First

for complexified tautological 1-form w, the first structure equation reads

(2)-an(2)

7



ﬁh

9_(9+Qu )
0 — — g V=1

where 0 + 6" = tr(6) = 0, p is real and 3 is complex and skew-symmetric. On F, u

=@

and [ are semibasic and hence are linear combinations of w and @. Based on this,

we expand the structure equations out and rearrange terms to get

1 1 —
dw; = —05 Aw; + ESij%wk N wp + 2N €iwr AW + T( + Ngwr) Awi. (4)

The quantities S, N and X change tensorially along the fiber and thus are well-defined
tensors over M. These are called the torsion of the SU(3)-structure F. For example,
N is just the famous Nijenhuis tensor and it vanishes if and only if the almost
structure J implied by the SU(3)-structure is integrable. If all torsion vanishes, the
connection # coincides with the Levi-Civita connection ¢y. Thus the holonomy of
the Riemannian metric is contained in SU(3). In other words, the SU(3)-structure
is Calabi-Yau.

These tensors also show up in the covariant differentiation of the defining forms
Q) and ¢. In fact, one can show that another characterization of Calabi-Yau is

dQ = d¥ = 0. For our later use, we compute the differential of 2 and ¢ = Im(WV):

Y PN |

7 (dQ) = T(Nﬁ\lf — N;U) + T(Silﬁ‘ljsz‘ A w; A wg — Syepwi Awj Awy); (5)
and
v—1 . _ _
T dV = —~——Epeipg(Ng — Np)wp Awg Aw;j Awy, + = (/\f AU+ Nw AW).  (6)

8



1

Special Lagrangian and SU (3)-Structures

1.1 Special Lagrangian geometry and admissible SU(3) structures

A submanifold L? C M is called special Lagrangian if it is ¢ = ReW¥ calibrated, i.e.,
if L*(¢) is the volume form. The form ¢ is a calibration if it is closed. In this case
L is minimal. Assume L is orientable. Then L is special Lagrangian with one of its
orientations if and only if Q|, = 9|, = 0 where ¢» = ImWV. In other words it is an
integral manifold of the differential ideal Z generated algebraically by €2 and .

A generic SU(3)-structure will not admit any special Lagrangian submanifolds

at all, even locally. For example, if
dQ2 =a¢ mod (Q,v)

for some non-vanishing function a, then any special Lagrangian submanifold has to
annihilate df) and hence ¢. Thus no special Lagrangian submanifold exists. We are
interested to know which SU(3)-structures support as many local special Lagrangian
submanifolds as the flat C3 does. If the SU(3)-structure is real analytic, so is the

ideal Z. Now if d) € 7, then we may invoke the Cartan-Kahler theorem to show



that Z is involutive and has the same Cartan characters as the ideal in C3. Here we
need not care about whether or not d(ImW) is in Z because d(ImW¥) is of degree 3+ 1

and hence vanishes automatically on any 3-dimensional submanifold.
1.1.1  Admissible SU(3)-structures
We make the following definition.

Definition 1.1.1. (Admissible SU(3)-structures) An SU(3)-structure (2, ¥) on M

1s called admissible if there exist a 1-form 6 and a real function a such that
dQY=0NQ+ ay. (1.1)
Suppose condition (1.1) is satisfied with
0 = w;w; + Uzw;.
Then it also holds that

V-1 v—1 -
T(u;(%k — u;égk)wl A Wy N Wi — —(u_gégj — u_jém)wz AN Wi N wg, + CL'(ﬁ.

dQ) =
4

Comparing with (5), we get

GjrSi = U0 — ugdyy

and a = N;;. We summarize the discussion so far as follows:

Lemma 1.1.2. Suppose (M,Q, V) is analytic. The ideal T is involutive and every
Q-Lagrangian analytic 2-submanifold in M® can be thickened uniquely to a special
Lagrangian submanifold if there ezists a (necessarily unique) connection « so that

1 S
dw; = —a; ANwj + B A w;+ §Ng€jkzwk A wy (1.2)

where 3 is a complex 1-form and the trace of the Nijenhuis tensor, Nz, is real.

1%
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Remark 1.1.3. It is easy to see that the condition (1.2) in Lemma 1.1.2 essentially
gives an equivalent definition of admissible SU(3)-structures. For this reason, we

will also call an SU(3)-structure satisfying (1.2)admissible.

Remark 1.1.4. The same result for C* was shown by Harvey and Lawson in [21].
Lemma 1.1.2 says an admissible SU(3)-manifold supports as mice a local special

Lagrangian geometry as C* does. This is the best situation one can hope.
Out of these we pick a class of special interest and call it nearly Calabi- Yau.

Definition 1.1.5 (Nearly Calabi-Yau). An SU(3)-structure (M®,Q, V) is called

nearly Calabi-Yau if for some real function U,
dQ = d(e’Tm¥) = 0.

From (6), nearly Calabi-Yau condition amounts to Nﬁ—N_ﬁ =0and v—1\; = U;
where we have denoted 7*(dU) = Uy + Uy

In terms of structure equations we have
Proposition 1.1.6. An SU(3)-structure is nearly Calabi-Yau for a real funciton U
if and only if there exists a (necessarily unique) connection o so that

1 1 —-—
dw; = —az Awj + §Nijejklwk Aw + g(U,;wk — Uwy) A wy, (1.3)

where dU = Ugwy, + Ugwg, N — N = 0 and tr(N) = N;; = 0.
In other words, the Nijenhuis tensor is Hermitian symmetric and trace free.

Remark 1.1.7. This definition is motivated by two reasons. First, as we will see
shortly, it generalizes the concept of almost Calabi-Yau in that the underlying al-
most complex structure may not be integrable. Second, the moduli space of special
Lagrangian submanifolds of a nearly Calabi-Yau manifold is well-behaved. We will
prove this in §1.4.

11



Remark 1.1.8 (The case U = 0). When the defining function vanishes identically,
a nearly Calabi-Yau structure is also half-flat. A half-flat SU(3)-structure is defined
so that Q AN dQ) = dImV¥ = 0. This is in general not admissible. However, it has
been used by string physicists to study heterotic string compactifications for a long
time. In this context, half-flat manifolds are as important as Calabi- Yau structures.
Mathematically, it has been studied by S. Chiossi and S. Salamon in its relation with
Gy-structures.  They showed that this structure behaves well under Hitchin’s flow
equation [22]. Half-flat structures were also studied in [28].

In spite of much interest, few non-Calabi-Yau examples are known. In the next
subsection, we will analyze the local existence of half-flat nearly Calabi-Yau. We
will see that local half-flat nearly Calabi- Yau structures are much more general than
Calabi-Yau. In §1.2 we will construct a class of complete or even compact half-flat

nearly Calabi-Yau but non-Calabi- Yau examples.

1.1.2  First examples
Calabi- Yau

Calabi-Yau is clearly nearly Calabi-Yau. It is the case of most interest so far.
Almost Calabi-Yau

A more general SU(3)-structure is called almost Calabi-Yau in [23]. It is also con-
sidered by R. Bryant [10] and E. Goldstein [17]. An almost Calabi-Yau manifold is
a Kéhler manifold with a nowhere vanishing holomorphic 3-form ) specified. Let B

be the unique function such that

It is clear that (€2, %,B) defines a nearly Calabi-Yau structure on M. Thus, an

almost Calabi-Yau structures is nearly Calabi-Yau.

12



Many interesting almost Calabi-Yau examples are provided by degree 5 smooth
varieties in CP*. It is well-known that the canonical line bundle of such a variety is
trivial. Thus a nowhere vanishing holomorphic 3-form exists. However, the induced
Fubini-Study metric is not Calabi-Yau in general. These provide many almost Calabi-

Yau but non-Calabi-Yau examples.
Nearly Kdahler

The fundamental forms 2 and ¥ satisfy
dS) = 3ImWV

and

dU = 202,

It is well-known that the underlying metric is Einstein by [16]. It also follows that
such structures are real analytic, in, say, coordinates harmonic for the metric. The
ideal 7 is clearly differentially closed. Hence the almost special Lagrangian geometry
of nearly Kahler 6 manifolds is well-behaved locally.

The underlying almost complex structure structure is non-integrable. In fact,
the Nijenhuis tensor N is the identity matrix. Nearly Kéhler but non-Calabi-Yau
Examples include S® with the standard metric and almost complex structure, S x 53,
the flag manifold SU(3)/T? and the projective space CP? (with an unusual almost

complex structure, however).

Remark 1.1.9. It should be cautioned that a nearly Calabi- Yau manifold, unless it
1s Calabi-Yau, is NOT nearly Kahler.

13



1.1.3 (Generalities

Calabi-Yau and nearly Kéahler provide first examples of admissible SU(3)-structures.
However, we are about to show that they are only a ‘closed’ subset of the moduli of
local admissible SU (3)-structures. For this, we need to study the local generality of
admissible SU (3)-structures.

Let p : F — M® be the total coframe bundle of M% Thus F is a principal
GL(6,R)-bundle over M®. The fiber F, over z consists of the linear isomorphisms
w: T,M — R°® We consider the quotient F/SU(3) which is 34(= 6 + 6% — 8)
dimensional and projects onto M with fibers diffeomorphic to GL(6,R)/SU(3). An
SU (3)-structure over M may be regarded as a section of p : F/SU(3) — M?S. In fact,
if P is an SU(3)-structure, then P is a subbundle of F and every fiber P, determines
a unique SU(3) orbit of F, and thus a section of F/SU(3) — M. Conversely, if
o: M — F/SU(3) is such a section, let P be the preimage of o(M) under the
projection F — F/SU(3). Then P is the needed SU(3)-structure.

Remark 1.1.10. There is a more concrete realization of F/SU(3). Let A2 M @AY M
be the subbundle of A2M & A*M consiting of the pairs of positive forms (p?, p*) in
the sense that there exists a linear isomorphism u : TyM — RS such that p* = u*Qq
and p* = u*Re(Vy). We clearly have a projection F — A3 M & A3 M. Since the
isotropy group of (o, ReWy) is SU(3) C GL(6,R), this is indeed a principal SU(3)-
bundle. For similar discussions concerning Go-structures and Spin(7)-structures,
consult Bryant’s work [7]. In fact, the work directly inspired the discussion in this

section.

We will write structures equations for F. For notational conventions on linear
algebra see Introduction. Let (wy,ws,ws, Wy, ws, w3) denote complexified tautological

I-forms. Thus, for example, wy, = u*(dz;) o p.. We fix a gl(6, R)-valued connection
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form

o+ \/leu +K I}
B a— @u +K
on F where « takes value in su(3), 3 is gl(3, C)-valued, p is a real form, and s
satisfies

R = K.

We have the following structure equations on F:

w '\ _ a+Ylutr 5] w
d<w)_ ( B a—@u%)A(w)' (14)

Note that the forms Q = @(wl ANl +wy AWy + w3 Alg) and ¥ = w A wy A ws
are SU(3)-invariant on F, so they descend to F/SU(3). We use the same letters to
denote the forms on F/SU(3) and let ) = Im¥ and ¢ = Re¥. We will use Cartan-
Kéhler machinery to study local admissible SU(3)-structures and nearly Calabi-Yau
structures. For background material on exterior differential systems, see the standard

text [12].
Generalities of admissible SU (3)-structures

We introduce a new manifold M = (F x C3)/SU(3) x R, where SU(3) acts on C? in
the obvious way. We use (ug, uz, uz) as the coordinate on C* and a as the coordinate
on R. M is a vector bundle of rank 7 over F/SU(3). Let 6 = u;w; + wjw;. Then
0 is another well-defined differential form on M besides €2 and ¥. On M define a
differential ideal
I = (HgZdQ—Q/\Q—CMMdiff
= (Hg:dQ—Q/\Q—(m/J,IL:dﬁ/\Q—l—(da—aQ)/\zb—I—aahp}alg

We are interested in 6-dimensional (local) integral manifolds of this ideal which

are also local sections of M — M®. Such a section pulls back Q and ¥ to M

15



which satisfies the condition (1.1) and thus defines an admissible SU(3)-structure.
A section satisfies v/—1W A W # 0. Conversely a 6-dimensional submanifold of M
on which /=10 A W # 0 is locally a section. Hence we will consider the integral
manifolds of I with the independence condition /=1 AW # 0.

Theorem 1.1.11. The differential system (I,/—1U AW # 0) on the dense open set

M\ {a = 0} is involutive with Cartan characters
(807 S1, 82, 83, S4, S5, 86) = (07 07 17 37 67 ]-07 15)

Proof. Since the system contains no forms of degree 2 or less, we have ¢y = ¢; = 0.
On the other hand, ¢; = 1 and ¢g = 35. We need to compute the remaining three
characters cs, ¢4 and c5. For this we pass up to F x C3xR. For effective computations
we set

Da = da — a#),

and

G0 — Ujkj; — ——— Uil — U; 3.

Du; = du; — uja; — uzkj 3

Relative to the projection F x C3 x R — M, the forms w, k, 3, i, Da, Du form a
basis for semibasic 1-forms. In terms of these forms we have
My = —leg Aw AT+ %5 AT A w;
— YT (B — Byi) A5 AD; + Y (B — Ba) Awj Aws
1 _ J—
— YL (gw; + Tw;) A w; N W

—1

mh o

a(wy Awy Aws — wy A ws A ws)

16



and
H4 = @(Du;/\wz—i—Du;/\@) /\wj /\uTj
+\/T_T(Da —akg) N (W1 Aws Aws —wy Aws A ws)
_%,U//\ (wl N wo A\ ws + wq /\w2/\w3)

=1 - -
—Taeijkﬁil ANwp A Wy N Wi

LGB AT A Wy A w.

A six dimensional subspace Fg of the tangent plane on which W A ¥ # 0 is defined

by the following relations

(kg = Ak + Ajwr;
Bij = Bigwk + C;jpwr,
Du; = Usw; + Usay;, (1.5)
Da = aw; + a;w;,

[ 1 = bwi+ b,

where A.

ks Bijk, Cij5, Uz, U; and ag, by are free parameters. In order that Fg be an

i Vi
integral element of I, it must annihilate II3 and II,. This amounts to the following

equations on the parameters in (1.5),

(
szkBijk = a,

2(Arzi — Aijr) + Cirg — Crij + 0565, — Wb = 0,
V=1(Usjejin + a5 — Ciyz) — alby — vV—1Az) = 0,
< —(Us;63 + Upd i — Upi0hs — Ugd7) (1.6)
+(Uudss — Undrs — Upidjz + Uzidyq)

—aepiprkj + aepiprjk + aepjkBpli - aepjkBpil = 0.

17



By inspection, we have 35 = (2 4+ 3 x 3 x 24 3 x 2 + 3 x 3) linearly independent
affine equations in (1.6) (note that the last equations are real, while the others
are complex) . The solution space is smooth, even where a = 0. We pick E5 =

span{ey, es, €3, €4, 5} C Eg where e; is dual to Re(w;) and ey is dual to Im(wy), etc.

5(3)0(5)-

We will show that the equality holds, i.e., the polar equations of E5 has the largest

First note that

possible rank 20. It then follows that if we pick any flag E5 C Ey C E5 we have

- (2)+(3)
- (3)+(3)

Since co+c1+co+cg+cys+c5 =1+4+ 10+ 20 = 35 we apply Cartan’s Test to

and

finish the proof.

The verification that the polar equations of F5 have rank 20 is a lengthy linear
algebra exercise. First, by translating x, 3, Du, Da, u we may assume these forms
vanish on Fg since II3 and II; are affine linear in these forms. Now the rank of
polar equations are the number of linearly independent forms in {(e; A €;)2113, (e; A
e; A ep)ally}. We omit the messy details but only point out the following facts (an
unsatisfied reader may consult the computations in the proof of Theorem (1.1.14)
and make necessary modifications by himself). The forms {(e; Ae;)II3} pick out 10
linearly independent forms from linear combinations of Re(x;3), Im(x;3), Re(83i; — Bq)
and Im(8;; — B;;). The 6 forms (e; A ;43 A e;) 114 pick out real and imaginary parts
of {Duj + linear combinations of 5}5_, J {Re(Duz — a1 ), Re(Duz + af2)} . The
4 forms (e; ANej Aey) Iy with i € {1,4}, j € {2,5} and k = 3 give us non-degenerate
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linear combinations of the forms Da—a " K, au, aRe(F;;) and alm(5;;). These three

227

classes of equations are clearly independent from each other if we assume a # 0. O
Remark 1.1.12. There does not exist any reqular flag over the locus {a = 0} for

simple reasons. When a = 0, only 7 independent forms Du; and Da in 11y could

contribute to the polar equations. Thus c5 < 17.

Remark 1.1.13. The last nonzero character is s = 15. Modulo diffeomorphisms,
which depend on 6 functions of 6 variables, we still have 9 functions of 6 variables
of local generality of admissible SU(3)-structures. Both local Calabi-Yau and nearly
Kahler structures depend on 2 functions of 5 variables. Thus local admissible SU(3)-

structures are much more general than Calabi-Yau and nearly Kdhler.
Generality of nearly Calabi-Yau

Nearly Calabi-Yau is a subclass of admissible SU(3)-structures. One would expect
nearly Calabi-Yau to be less general than an admissible SU(3)-structure. We will
show this is indeed the case. Now the differential system I is defined on F/SU(3) xR
and generated algebraically by the 3-form df2 and the 4-form T = di + dU A with
the independence condition v/—1¥ A W. This system is better-behaved than I for

admissible SU(3)-structures in that it is involutive on the whole F/SU(3) x R.

Theorem 1.1.14. The differential system I on F/SU(3) x R is involutive with

Cartan characters (s, s1, S2, S3, 84, S5, 56) = (0,0,1,3,6,9,10).

Proof. Since the system contains no forms of degree 2 or less, we have ¢y = ¢; = 0.
Moreover, it is easy to see ¢ = 1. To use Cartan’s Test, we need compute the other
3 characters c3, ¢4 and c5 and the codimension of the space of 6-dimensional integral

elements. For this we pass up to F where

_ V=1, _ — VI —
dQ = —Tliijo/\wi—i‘T/iijw]‘/\wi

— Y18, AT AT + Y B Aw; Aw,
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and
T=dp+dUNY = —3lu+V—1(kz —dU) ANwi Awy Aws
—2ln— V=1(kz — dU)| Awi Aws A ws
Fel]kﬁll ANwyp ANWj AWy + Fel]kﬁd AW A wj A wy.
A 6-dimensional integral element Fg on which v/—1W¥ A U # 0 is parametrized the
equations similar to (1.5) for x, 3, u and dU,

( Ty, .
Kij = Aijkwk+Ajikwk,

Bij = Bijiwk + Cjipwi,

(1.7)
L AU = ww; + u;w;
but now the quantities A, B, u and b satisfy the following equations
( €irBijr = 0
2Aka 2Azyk + Czk} - Ckz? =0
< (1.8)

Cipi — A, + U — V=1 = 0

6;mlB kj + Epiprjk + EpjkBpli - 6]oj'l~cB;lJz'l = 0.

The last equations are real while the others are all complex. Moreover, the last
equations imply the imaginary part of the first equation. Thus the total rank of
these linear equations is 1 +3 X 3 x 24+ 3 x 2+ 3 x 3 = 34. The forms Re(w;) and
Im(w;) restrict to Eg to be a dual basis. Let {e1, es, €3, €4, €5, €6} be the basis of Eg for
which e; is dual to Re(w;) and e, is dual to Im(w; ), etc. Again by translating we may
assume A= B =0b=C =u=0. Let E5 = span{ey, €5, €3}, £, = span{ey, 5, €3, €4},
and E5 = span{ey, es, €3, €4, €5}.
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The polar space of F3 consists of vectors annihilating the following 1-forms

(e1 ANeg)adQ) =
(61 AN 63)_IdQ =
(62 VAN 63)JdQ =
(61 N €9 A 63)_|T =

—QIm(/ﬁi) - Im(ﬁlz - 521)
—QIm(f‘ﬁé) - Im(ﬁw - 531)
—21m(n2*) - Im(ﬁ% - 632)
p+ Im(5i1 + oz + Fs3)

Consequently c3 = 4 and s3 = 3.

(1.9)

The polar space of Ej consists of vectors annihilating the forms in (1.9) as well

as the following forms

( (e1 A eq)adS)
(62 VAN 64)_IdQ

(63 VAN 64)_IdQ

(61 VAN €9 N 64)JT
(61 AN €3 N 64)JT

[ (e2 Aeg Aey)aT

—2K11

—2R6</€12) - Re(ﬁlz - ﬁ21)
—2Re(f€13) - Re(ﬁla — [31)
—2Re( 31)

2R€(ﬁ21)
— > ik +dU 4+ Re(—F1 + Baz + f33)

(1.10)

These forms are independent among themselves and also independent from forms in

(1.9). Thus s4 = 6. The polar space for E5 consists of vector annihilating forms in

(1.9), (1.10) as well as the following forms

(

(61 AN 65)_IdQ
(62 VAN 65)JdQ
(63 N 65)JdQ
(e4 N e5)adS)
(e1 Nex ANes)aY
(ex ANeg Aes)dY
(61 N €4 A 65)_|T
(62 A €3 A 65)JT
(62 N €4 A 65)JT
(e3 Neg Nes)aY

\

Note that

(62 A 64)_IdQ — (61 VAN 65)JdQ — (62 A €3 VAN 65)JT - (61 A €3 A 64)JT = 0.

—2Re(k13) + Re(B1a — fo21) )
—2£93
—2Re(k33) + Re(f32 — Pa3)

3
)
—2Im(ky3) + Im(B12 — B21)
—2Re(632)

— > ki +dU 4 Re(—p11 + Baz — Bs3)
21111(631)

—2Re(B12)

2Im(fs2)

—p+Im(B11 + Baz — Bs3) )

(1.11)

No other relations exist among the forms in (1.9), (1.10) and (1.11). Thus s5 = 9

and sg = 10. Since 6sg + 5sy + 4so + 3s3 + 254 + s5 = 34, Cartan’s test is satisfied

and the proof is complete.
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Thus, modulo diffeomorphisms, local nearly Calabi-Yau structures depend on 4

functions of 6 variables.

Remark 1.1.15 (Generality of half-flat nearly Calabi-Yau structures). The EDS
for half-flat nearly Calabi-Yau structures is defined on F/SU(3) and algebraically
generated by dS) and dImWV. Similar analysis shows that this system is also involutive

with Cartan characters
(807 51,82, 53, 54, S5, 56) - (07 07 17 37 67 97 9)

Thus, modulo diffeomorphisms, these structures depend on 3 functions of 6 vari-
ables locally. They are much more general than Calabi-Yau structures. It would be

interesting to also analyze the half flat system generated by Q A dS) and dImW.

Remark 1.1.16 (Generality of almost Calabi-Yau structues). The EDS for almost
Calabi-Yau structures is defined on F/SU(3) x R and generated algebraically by dS2
and dV + dU N V. We conjecture this system is involutive with the last non-zero

Cartan character to be ss = 7. We leave this for the interested reader to investigate.
1.2  Examples from twistor spaces of Riemannian four-manifolds

There has been an extensive literature on twistor theory. Suppose (M? ds?) is a
Riemannian 4-manifold. A twistor at x € M is an orthogonal complex structure
j:ToM — T,M, j> = —1 and j*(ds?) = ds?. The space of twistors at points of M
forms a smooth manifold J called twistor space of M. It is well-known that 7 has
an almost complex structure. It is moreover complex if M has constant sectional
curvatures. However, we will not use this usual almost complex structure in this
paper. Instead, we will ‘reverse’ the almost complex structure on the fibers and
obtain an SU(3)-structure on J. By doing so, we will lose the possible integrability

of the almost complex structures in some cases.
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1.2.1 Four dimensional Riemannian geometry

We formulate Riemannian geometry of four-manifolds in moving frames. Let 7 :
F — M be the oriented orthonormal coframe bundle over M. Thus F, consists of
orientation preserving isometries u : T, M — R*. Let n be the R*-valued tautological
form on F. By the fundamental theorem of Riemannian geometry, there exists a

unique s0(4, R)-valued one-form 6 so that
dn =—0Nn.

Denote wy = n1 + v —1n3 and wy = 19 ++/—11n4. We write the structrure equation as

w1 _ w1

al «2 :—<% @)A v2 (1.12)
w1 ﬁa O'/ﬁ w1
) Wwa

where o +@ = 0 and ' + 3 = 0. The Riemannian curvature is of course

w=d(5a)+(5a) (5 7))

This is a so(4, R)-valued 2-form. Corresponding to the decomposition so(4,R) =

su(2)y ®su(2)_ we decompose R = R, + R_, where

_ (&%) 0 (%) 0 Qp 0
R*‘d(o %)*(0 a—o)A(O a—o)

1tr(ﬁa)l %tr?&)[ ) A ( 1tréa)[ t,,,?a)[ ) ‘

for which ap = a — 3tr(a)! takes value in su(2). We are mainly interested in R_ so

|

F
I
SH
VR
ol
~
=
£
~
sy
N———
+
VR
ol

we examine this part more carefully. Write

0 w
s=( 0 %),
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1
(R-), = §dtr(a) + w3 A Ws,

and
(R_)2 = dws — tr(a) A ws.

The forms

V-1

@1:(4)1/\002, @szl/\u)z, @3:T(W1A071+WQ/\W_2)

give a basis for anti-self dual complex forms at x, while

e

Yi=wi ANWp, Xo=WjAwy, 3= T(wl AT — wy A wz)
form a basis for self dual forms at x. Since R_ is semibasic,
(R_), = AO, — A, + v/ —1aO3 + BY; — BY; + vV —1b%3,

and

<R7>2 = 01@1 + 02@2 + 03@3 -+ DlEl + DQZQ + D323

where A, B, C;, D; are complex and a, b are real. For our purposes, we view R_ as a

(2,2) tensor. Using ds?, we write R as

R = 2R ) ®(FEIAE+EsANEy) +2(R):®E1 A Ey+2(R_), ® Er A E3

= 2v-1(R.)1 ® 05+ 2(R_), ®0; +2(R_), ® O}

where, by abuse of notation, we use F; to denote the tangent vector dual to w;. In
this way we may regard R_ as a linear map R_ : A> — A* = A2 @ A%, Relative to

the basis © and X we write the matrix representation

C, C; /1A

a Cy —+v/—1A
C; C —
R_(01,04,03) = 2(01,0,,03, %, %5, %3) FZ Dj __C{B
D, D, —/—1B
D3 Dy —b
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It is well-known that R_ decomposes as Z + W~ + 51d (see [6], p. 51) where Z
is the traceless Ricci curvature, W~ is the anti-self-dual part of the Weyl curvature
and s is the scalar curvature. In our notation, Z is represented by the matrix

Dy D, +—1B

2| D, D, —v/=1B |,
Dy Ds —b

s =8(Cy + Cy — a),

and W~ is represented by

Gy, O /-14 9 o
2 a 02 —v—1A —g(CQ—I—CQ—a)]
?3 Cg —a
The metric with W~ = 0 is called self-dual. If in addition, ds? is Einstein, then

s is necessarily constant. In our notations,

Proposition 1.2.1. The metric ds? is self-dual and Einstein if and only if b= A =
B=0C,=C3=Dy=Dy=D3=0and Cy = Cy = —a = =. In this case, a part of

24"

the structure equation simplifies greatly

w1 a 0 w1 03] A w3
d W2 = — A\ W9 + w3 N w1 . (113)
0 —tr(a) 27
w3 ws 21wW1 A\ w2
Self-dual Einstein metrics will play important roles in our following constructions.
There are not many compact examples with s > 0 due to the classification by Hitchin

(see [6], p 376):

Theorem 1.2.2. Let M be be self-dual Einstein manifold. Then
(1) If s > 0, M is isometric to S* or CP? with their canonical metrics.
(2) If s =0, M is either flat or its universal covering is a K3 surface with the

Calabi- Yau metric.
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The proof uses Bochner Technique, which, however does not work well when
s < 0. No similar results are available for self-dual Einstein metrics with negative

scalar curvature.
1.2.2  Tuwistor spaces of self-dual Einstein 4-manifolds

We fix a complex structure Jy on R* by requiring dz; = dz; + v/—1dzs and dzy =
dzy + +/—1dx4 be complex linear. We define a map j : F — J as follows

jlu)=u"to Jyou.

Since SO(4) acts transitively on the orthogonal complex structures on R* and the
isotropy group of Jy is U(2), j makes F a principal U(2)-bundle over [J. This
defines a U(2)-structure on J. It in turn determines an SU(3)-structure on J by
the standard embedding of U(2) into SU(3). Relative to j, 3 becomes semi-basic.
The almost structure on J determined by this SU(3)-strucure is such that wy,ws
and w3 are complex linear.

Let us now concentrate on self-dual Einstein manifolds. The equations in (1.13)
are the first structure equations on J. It clearly satisfies the condition of Lemma

1.1.2.

Lemma 1.2.3. The twistor space of a self-dual Einstein J-manifold carries an ad-

missible SU(3)-structure.
s >0

In this case, we scale the metric so that s = 24. Now the structure equation (1.13)
indicates that the twistor space is actually nearly Kahler. By the aforementioned
Hitchin’s result, the only two possibilities are M = S* and M = CP?. The corre-
sponding twistor spaces are two familiar nearly Kahler examples, CP? and the flag

manifold SU(3)/T?.
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s=0

Again, by Hitchin’s result we have two examples: one is the flat case, the other is

K5 surfaces.
s<0

This is the most interesting case in many respects. We scale the metric to make

s = —48. Now the structure equation (1.13) reads
w1 a 0 w1 wg N w3
d Wo = — ( 0 —tT(O() > A ] + Ws /\w1 . (114)
W ws —2w A wy
The only torsion is the Nijenhuis tensor, in local unitary basis,
0
0
-2

=

Il
o O =
o = O

Comparing with (1.3) (with U = 0 being understood), we have

Theorem 1.2.4. The twistor space of a self-dual Einstein manifold of negative scalar

curvature is half-flat nearly Calabi- Yau but non-Calabi- Yau.

The simplest example of this category is, of course, the twistor space of the
hyperbolic space H*. Compact examples can be obtained from the quotients of
H* by certain discrete isometry groups. It remains open to construct complete or

compact nearly Calabi-Yau manifolds that are not half-flat.
1.3 Complete special Lagrangian examples

In this section we will construct some complete special Lagrangian submanifolds in

the twistor spaces J (5?) = CP? and J(H*) considered in the previous section. Our
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method is based on the following observation due to Robert Bryant [8]. Suppose on

an SU(3) manifold (M, Q, ), there is a real structure, i.e., an involution ¢ such that
N=-Q, V=10,

and the set N, of points fixed under c is a smooth submanifold. Then it is easy to see
that N., with one of its two possible orientations, is a special Lagrangian submanifold
of M . Thus our major task is to construct such involutions for 7(S*) = CP? and

T(HY).
1.8.1  An example in J(S*) = CP?

We need a more explicit description of the twistor fibration 7 : CP? — S*. We
follow the discussion in [9]. However, as aforementioned, we will use a different
almost complex structure on CP?.

Let H denote the real division algebra of quaternions. An element of H can be

written uniquely as ¢ = z + jw where z,w € C and j € H satisfies

for all z € C. The quaternion multiplication is thus given by
(214 j22)(23 + jza) = 2123 — 2271 + (2223 + Z12). (1.15)

We define an involution C' : H — H by C(z1 + jz2) = Z1 + jZ3. It can be easily
checked via the product rule (1.15) that this is in fact an algebra automorphism, i.e.,
C(pq) = C(p)C(q) for p,q € H.

We regard C as subalgebra of H and give H the structure of a complex vector
space by letting C act on the right. We let H? denote the space of pairs (qi,¢2)
where ¢; € H. We will make H? into a quaternion vector space by letting H act on
the right

(q1542)q = (014, ¢29)-
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This automatically makes H? into a complex vector space of dimension 4. In fact,

regarding C* as the space of 4-tuples (21, 22, 23, 24), we make the explicit identification
(21, 22, 23, 24) ~ (21 + jza, 23 + jza). (1.16)

This specific isomorphism is the one we will always mean when we write C* = H2.

If v € H2\ (0, 0) is given, let vC and vH denote, respectively, the complex line and
the quaternion line spanned by v. As is well-known, HP', the space of quaternion
lines in H2, is isometric to S*. For this reason, we will speak interchangeably of S* and
HP'. The assignment vC — vH is exactly the twistor mapping 7' : CP? — HP'.
The fibres of T' are CP'’s. Thus, we have a fibration

cP' — CpP?

) (1.17)
HP'

This is the famous twistor fibration. In order to study its geometry more thoroughly,
we will now introduce the structure equations of H?. First we endow H? with a

quaternion inner product (,) : H? x H> — H defined by

((q1,92), (P1,p2)) = @p1 + G@po.

We have identities

(v,wq) = (v,w)q, (v,w) = {(w,v), (vg,w)=qv,w).

Via the identification (1.16),

((q1,q2), (p1,p2)) = Z1wi + Zaws + Zzws + Zgwy (1.18)

+j(z1wy — 29wy + z3wy — 24W3) '
for g = 21+ jz0, @2 =235+ jz1, p1=wi+jwy, Py =ws+ jws. In other words,
(,) essentially consists of two parts: one is the standard Hermitian product dz; odz; +

-+ -+dzs0dzy; the other is the standard complex symplectic form dzy Adzo+dz3 Adzy.
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Let § denote the space of pairs f = (e1, e3) with e; € H? satisfying
(e1,€1) = (ea,e2) =1, (e1,e2) = 0.

We regard e;(f) as functions on § with values in H2. Clearly e,(g) = S” C E® =
H?2. It is well-known that § may be canonically identified with Sp(2) up to a left

translation in Sp(2). There are unique quaternion-valued 1-forms {¢¢} so that

de, = ey’ (1.19)
doy, + ¢ N ¢y, =0, (1.20)

and
¢ + ) = 0. (1.21)

We define a map § — CP? by sending (e, €3) to the complex line spanned by
er. We will denote this map by j by a slight abuse of notation. The composition
7 =T o j is actually a spin structure on S*. In fact the oriented coframe bundle F
of S* may be identified with SO(5) up to a left translation in SO(5). Thus § double
covers F as Sp(2) double covers SO(5).

We now write structure equations for the map j. First we immediately see that
j gives § an S* x S3-structure over CP? where we have identified S* with the unit

complex numbers and S® with the unit quaternions. The action is given by

f(z:9) = (e1,€2)(2,9) = (€12, €2q)

where z € St and ¢ € S3. If we set

(8 4] [ B
1 P RN AR
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where p; and py are real 1-forms while wy, we, w3y and 7 are complex valued, we may

rewrite one part of the structure equation (3.3) relative to the S* x S3-structure on

CP? as
w1 Z(pg - pl) —T 0 w1 wa A w3
dl wy | ==\ 7 —i(p1+p2) O Al we | + | w3 Aw;
w3 0 0 Q’Lpl w3 w1 A w2
(1.22)

The nearly Kihler structure on CP? is defined by setting w1, ws and ws to be complex
linear.

Via the algebra automorphism C we define an involution on H? by (p,q) —
(C(p),C(q)). We denote this map still by C'. This map in turn induces an involution
on §, still denoted C, by C(ey,e2) = (C(ey),C(ez)). From (1.18) we see that the
defining equations for § are preserved and the involution is well-defined. The map
C further descends to an involution ¢ on CP? as well as an involution ¢ on S* by

e1C — C(e1)C and e;H — C(e;)H respectively. We have the following commutative

diagram
5 < 03
! |
cpP? % CP?.
! !

HP' % HP!
Apply the automorphism to the structure equations (3.2) and we get
dC(eq) = C(es)C(4)-

Thus in particular we have on §

* PR
Cwi:wi

for i = 1,2,3. Consequently

C*i*Q = —j*Q, C*j*V = j*U.
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Since jC' = ¢j and j* is injective, we have on CP?
cN=-Q, V=10

Thus by the general principle the fixed set of ¢ is a special Lagrangian submanifold

of CP?. Moreover it is easy to see that this locus is just the usual RP?.

Theorem 1.3.1. The real projective space RP? = {[x, : xy : x5 : 24] : 2; € R} C

CP? is a special Lagrangian submanifold of the nearly Kdhler CP?.

The twistor map T : CP? — HP! restricted to the real projective space RP?
now looks like

[T1: @9 w31 @y] > [T + jTo 3+ Jryl.
Thus the image is a CP' ¢ HP' and T is the Hopf fibration
st — RP?
1.
Ccp'
A dual construction for J(H*) will follow.

1.3.2  An example in J(H?)

Let H? and the involution C' be as before. But now we endow H? with a (1,1)

quaternion inner product (,) : H?> x H> — H defined by

((q1,42), (p1,p2)) = @p1 — Gpo-

We still have the identities

(v, wg) = (v, w)q, (V,w) = (w,v), (vgw)=qv,w).
Via the identification (1.16),

((q1,92), (p1,p2)) = Z1wy + Zaws — Z3ws — ZzWy (1.23)
+j(z1we + 20wy — 23wy — Z4wW3) ’
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forqy = 2147520, @ = z3+jz4, p1=wi+jws, py = ws+jwy. Inother words, ()
essentially consists of two parts: one is the (2, 2)-Hermitian product dz; o dz7 + dzy 0
dzZy — dz3odzz — dzy 0 dzy; the other is a complex symplectic form dz; Adzo — dz3 Adzy.

Denote the pseudo-sphere in H? by
US"={(p,q) € H* : pp — gq = 1}.
This is a connected non-compact smooth hypersurface in H2. The group S® acts on
UST by
(p,q) -1 = (pr,qr)

where r € S? is a unit quaternion number. This action is clearly free. Thus the
quotient space WHP' = WS7/S3 is smooth. Indeed WVHP' = H*. Similarly if we
regard S! as a subgroup of S* consisting of unit complex numbers, the quotient

space WCP? = WS7/S" is smooth. The clearly well-defined map 7 : WCP? — H* is

exactly the twistor fibration of H*. We have the following commutative diagram of

fibrations
Sl  pgsT
!
CP' — UCP?.
!
VHP!

Let § denote the space of pairs f = (e, e3) with e; € H? satisfying

<elael> = 17 <€2762> = _1a <€l7€2> =0.

We regard e;(f) as functions on § with values in H2. Clearly e, (g) = ¥S” CE4 =
H?. Tt is well-known that § maybe canonically identified with Sp(1,1) up to a left

translation in Sp(1,1), where

Sp(l,l):{Aeg[(ZH):Z((l) 01 )At:(é 01).}

33



There are unique quaternion-valued 1-forms {¢¢} so that

de, = ey’ (1.24)

dy + ¢ N oy =0, (1.25)

and
5((1) _01)+((1) _01>¢t:0. (1.26)

We have a canonical map § — vCP? by sending (eq, es) to the coset e; - St We
will denote this map by j by a slight abuse of notation. The composition 7 =7 o j
is actually a spin structure on H*. In fact, the oriented coframe bundle F of H*
may be identified with SO°(4,1), the identity component of SO(4,1), up to a left
translation in SO%(4,1). Thus § double covers F as Sp(1,1) double covers SO°(4, 1)
(see Harvey [20], p. 272 for the isomorphism Sp(1,1) = Spin®(4,1) where he used
the notation HU(1,1) for Sp(1,1)).

We now write structure equations for the map j. First we immediately see that
j gives § an S' x S%-structure over WCP? where we have identified S* with the unit

complex numbers and S® with the unit quaternions. The action is given by

f(Z,Q) = (61762) ' (Z7Q) = (612762(])

where z € St and ¢ € S3. If we set

¢1 &y | _ | ip+jws W1 — jws
O wi + jwy  ipe +JT

where p; and py are real 1-forms while wy, ws, w3 and 7 are complex valued, we may

rewrite one part of the structure equation (3.3) relative to the nearly Calabi-Yau
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structure on YCP? as

w1 Z(pg — p1> —T 0 w1 5) A w3

d W9 = — T —Z(pl + p2) 0 A o)) + w3 A\ w1

Ws 0 0 27,,01 Ws —QW
(1.27)

The nearly Calabi-Yau structure on WCP? is defined by taking wy, wo and ws to be
complex linear.

This involution C' on H? induces an involution on §, still denoted by C, by
C(e1,e2) = (Cler),C(ez)). From (1.23), we see that the defining equations for §
are preserved and the involution is well-defined. The map C' further descends to an
involution ¢ on WCP? as well as an involution ¢ on H* by e; - S* + C(e;) - S* and

e1 - S% — Cley) - S? repectively. We have the following commutative diagram

3 < 3

l l
UCpP? - vCPl.

l l

Apply the automorphism to the structure equations (1.24) and we get

dC(eq) = Cley)C(8y).

a

Thus in particular we have on §

* _
Cwi:wi

for i = 1,2,3. Consequently

C*i*Q = —3*Q, C*j*V = V.
Since jC' = ¢j and j* is injective, we have on WCP?

cQ=-Q, V=V
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Thus by the general principle the fixed set of ¢ is a special Lagrangian submanifold
of WCP3. It is easy to see that this manifold is the pseudo-projective 3-space WRP?,
defined as the quotient of the pseudo 3-sphere US? = {(z1,zo, 73, 74) € R : 23 +

x5 — 23 — 17 =1} by Zs.

Theorem 1.3.2. The real pseudo-projective space VRP? C WCP? is a special La-

grangian submanifold of the nearly Calabi-Yau WCP?.

The image under T of this pseudo-sphere is easily seen to be the hyperbolic

2-space H?> C H*. Thus we have the following fibration

sl — URP?

|
H?

1.4 Compact special Lagrangian submanifolds in nearly Calabi-Yau
manifolds

We discuss compact special Lagrangian submanifolds in nearly Calabi-Yau manifolds.

We answer two questions:

1. Let N be a compact special Lagrangian 3-fold in a fixed nearly Calabi-Yau
manifold (M,Q, ¥, U). Let My be the moduli space of special Lagrangian
deformations of N, that is, the connected component of the set of special
Lagrangian 3-folds containing N. What can we say about My? Is it a smooth

manifold? What is its dimension?

2. Let {(M,,V,U;) : t € (—€,€)} be a smooth 1-parameter family of nearly
Calabi-Yau manifolds. Suppose Ny is an SL-3—fold. Under what conditions

can we extend Ny to a smooth family of special Lagrangian 3-folds N, in

(MJ Qt7 ‘Ijtv Ut>7
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These questions concern the deformations of special Lagrangian 3-folds and obstruc-
tions to their existence respectively. In the Calabi-Yau case, the first question is
answered by R. McLean in [24], and the second is answered by D. Joyce in [23].
Moreover, [23] also answers these questions for almost Calabi-Yau manifolds. We
show that their proofs generalize to nearly Calabi-Yau manifolds. The argument
uses a rescaling trick, communicated to me by R. Bryant. I would like to thank him

for this.
1.4.1 Deformations of compact special Lagrangian 3-folds

We have the following result similar to one in [24]

Theorem 1.4.1. Let (M,Q,V,U) be a nearly Calabi- Yau 3-fold, and N a compact
special Lagrangian 3-fold in M. Then the moduli space My of special Lagrangian

deformations of N is a smooth manifold of dimension b*(N), the first Betti number

of N.

Proof. We emphasize the difference from the arguments in [24]. Let vy be the normal
bundle of N. Nearby submanifolds of M can be viewed as small sections of vy. Thus

we consider the following map between Banach spaces
F: CY(uy) — dCH(AY(N)) x dC(A*(N))

defined by
V i+ (exp}, (), expi (e’ ImW)).

As in [24], it is easy to see from standard Hodge theory and elliptic regularity that
this map is well-defined. The kernel of F' consists of sections V' on whose exp-image

Q and eVImW¥ vanishes. Thus exp(V) is a special Lagrangian submanifold.
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Now the differential F, of F' at 0 may computed in a way similar to [24],

F*(V) = (£VQ|N7 £V(€U1m\:[f> |N)

= (d(V9Q),d(VV ImW)).

Note that the map V — v = V. gives a bundle isomorphism between vy and T*N.
Via this correspondence V_ImW¥ = — x v, where it should be cautioned that x is

defined by the induced metric on N. Thus F, may be equivalently viewed as a map
CH(AY(N) — dCP* (A (N)) x dCH*(A*(N))

by
v = (dv, —d * (eY)).

Here we see the major difference. The second term is no longer —d % v as in the
Calabi-Yau situation. To overcome this difficulty, we rescale the induced metric by
a proper factor (in terms of U) so that the new Hodge star operator % = eVx. This

is clearly possible. Then the map is
v — (dv, —d%v).

By Hodge Theory, the map F, is surjective and the kernel consists of harmonic
I-forms (with the rescaled metric being understood). The proof is finished as in
[24] by employing the Implicit Function Theorem for smooth maps between Banach

spaces . ]

Remark 1.4.2 (S. Salur’s result). A similar deformation theorem was proved in
[25] for slightly differently defined special Lagrangian submanifolds in a more general

class of sympletic manifolds.
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1.4.2  Obstructions to the existence of compact SL 3-folds

We address Question 2 above. Let {(M,Q;, ¥;,U;)} be a smooth 1-parameter fam-
ily of nearly Calabi-Yau manifolds. Suppose Ny is a special Lagrangian 3-fold of
(M, Q, Vo, Uy) and N, is an extension. Then we can view NV, as a family of em-
beddings of i; : Ny — M such that if(Q;) = if(eY"Im¥;) = 0. Since the coho-
mology classes [i*(Q)] and [if(eY*ImW;)] do not vary with s, we have [i}(%)] =
[i5(eV" ImW,;)] = 0. Thus, a necessary condition for such an extension of Ny to exist
1s
[Q|n,] = [V ImT, |, ] = 0.

Actually this is also sufficient:

Theorem 1.4.3. Let {(M,Qy, ¥, Uy) : t € (—€,€)} be a smooth 1-parameter family of
nearly Calabi-Yau 3-folds. Let Ny be a compact SL 3-fold in (M, Qq, Vo), and suppose
[Q%|n,] = 0 in H*(No, R) and [eY*ImWy|y,] = 0 in H3(Ny, R) for allt € (—e,€). Then
Ny extends to a smooth 1-parameter family {N; : t € (—6,0)} for some 0 < § < ¢
and Ny is a compact SL 3-fold in (M, Qy, Vy).

Again, the proof combines the rescaling trick and the argument for the Calabi-
Yau case as in [23]. However, since the details are not readily available, we write

them down.

Proof. Let vy, be the normal bundle of Ny in (M, Qy, ¥y). Denote by exp the
exponential map of (M, €y, Uy). For a vector bundle E over Ny, we use C1*(E) and
C%*(E) to denote the sections of F of class C1* and C%* respectively. We define a

map
F:CY(uy,) x (—€,€) — dCH(AY(Np)) x dC*(A*(Ny))
by
F(V,t) = (exp} (), exp}, (e ImW,)).
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We need show this is well-defined. The maps F(sV,t)(0 < s < 1) provide a homotopy
between F(0,t) = (Q|n,, e Im¥ |y, ) and F(V,t). Since [Q|n,] = 0, [exp} (Q4)] = 0.
Thus, exp; (€2;) = dr for some 7. Moreover, by the standard Hodge theory the
form 7 can be chosen to be in C%“ because V' is C1 and so is exp} (€;). A similar
argument shows that exp}, (e’ ImW,) lies in dCH*(A%(Ny)).

Now we compute the tangent map of F' at the point (0, 0),

F, : R x C"*(vy,) — dCH*(AY(Ng)) x dCH*(A%(Ny)).

First
F*(%,O) = 4o v_o(exp} s, expy ImUy)
= (Y|ng, Im(e"T)|n,).
where
= %’t:OQt, (VW) = %\tzo(eUt\Ilt).
Second

F(0,V) = &|o(explyQo, exply (¢XIm))
= (LvQo|ng, Ly (TP, ))
= ((VJdQ() + d(V_JQ()))‘NO, (VJd(eUOIm\Ifo) + d(eUOV_IIIIl‘I/()))|NO)

= (d(VJQ()) |N07 d(GUOV_lIHl\Po) |NO)

where Ly is the Lie derivative in the V' direction and the Cartan formula is used.
Actually, in order to take the Lie derivative, one must extend the normal vector field
V' to an open neighborhood first. It is easy to see the result is independent of this
extension.

Note that the mapping V +— v = V), gives a bundle isomorphism between
T*Ny and vy,. Translated via this correspondence VImWy = — * v as is shown in

[24], where the Hodge star * is defined by the induced metric. As before, we rescale
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the metric by a conformal factor so that % = e’ x. By Hodge theory, F,(0,V) runs
over every element in dC'H*(A*(Np)) x dCH*(A?)(Ny). Thus F, is surjective. We can
also compute the kernel

F710,0) = {(r%, V) rQ|n, = —dv, rIm(¥)|y, = dév,7 € R},

where v relates to V' as above. Since [|y,] = 0 and [eVIm(¥,)|n,] = 0 we have
[n,] = 0 and [Im(¥)|y,] = 0. Thus, Q|y, and Im(¥)|y, are exact. Again, by
Hodge theory, (0, 0) is nonempty and finite-dimensional, with dimension b*(Ny)+
1. By the Implicit Function Theorem for smooth maps between Banach spaces,
F~1(0,0) is a smooth manifold with its tangent space at (0,0) equal to F,*(0,0).
The C'*(vy,) components of elements of F~1(0,0) are in fact smooth sections by the
elliptic regularity theorem. Note that the projection map ¢ restricted to F~1(0,0)
is nondegenerate at (0,0). Thus the manifold £71(0,0) is a local smooth fibration
over (—e, €). Pick a local section (¢, V}) of such a local fibration where —§ < ¢ < § for
some 0 < § < e. Then N; = expy, (Vo) are the desired 1-parameter family of smooth

special Lagrangian manifolds. O

Remark 1.4.4 (on the proof). Strictly speaking, the domain of F' is not a Banach
space because of the (—e¢, €) part. This minor difficulty can be overcome by either using
a cut-off function of t or reparametrizing t by a diffeomorphism between (—e, €) and

R preserving 0.
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2

Instantons on Nearly Kahler 6-Manifolds

The notion of anti-self-dual instantons plays an important role in Donaldson’s theory
of 4-manifolds ([14]). This concept has been generalized to higher dimensions (e.g.,
[15] and [27]). To motivate the generalization, we first recall the 4-dimensional theory.

Suppose M is an oriented 4-dimensional Riemannian 4-manifold. It is well known
that the space of 2-forms splits into self-dual and anti-self-dual parts, corresponding
respectively to *+1-eigenspaces of Hodge * operator. A connection A on a certain
principal bundle over M is said to be an anti-self-dual instanton if its curvature F,
when viewed as a vector-bundle valued two-form, satisfies *F' = —F. Of course,
this definition does not generalize directly to higher dimensions. If, moreover, M is
almost Hermitian, i.e., endowed with an almost complex structure compatible with
the Riemannian structure, we can formulate the notion in another way. This is based
on the observation that anti-self-dual 2-forms are exactly w-trace free (1,1)-forms.
Thus, in the almost Hermitian case, we can equally define anti-self-dual instantons

to be those connections A satisfying
F?0 = tr,F = 0. (2.1)
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The latter description obviously allows generalizations to higher dimensional al-
most Hermitian manifolds. We will also call connections satisfying (2.1) pseudo-
Hermitian- Yang-Mills by slight abuse of terminology (compare [4], for example).

When the dimension is 6, we can formulate (2.1) in yet another way. Notice that
the operator *(w A -) maps the space of two forms into itself. It can also be shown
that the space of w-trace free (1,1)-forms is exactly the —1 eigenspace of x(w A -).

Thus, we can rewrite the equation (2.1) as
wAF=—xF. (2.2)

For this reason, we also call pseudo-Hermitian-Yang-Mills connections w-anti-self-
dual instantons.

Now, (2.2) makes sense in even more general contexts. Suppose that M is en-
dowed with an n — 4 form €. Then the operator *(2 A ) maps 2-forms into 2-forms.
We can define Q-anti-self-dual instantons to be those connections A whose curvatures
I satisfies

ONF =—xF. (2.3)

This definition behaves the best when M has a special structure such as SU(3), G2
or Spin(7). In this situation, Q is naturally defined, i.e., {2 is the Kéhler form for an
SU (3)-structure, the defining 3-form for a Gy-structure, or the defining 4-form for a
Spin(7)-structure.

However, even when (2 is parallel, (2.3) is in general overdetermined. It is nat-
ural to ask when (2.3) has solutions, even locally, and how general they are. In
dimension 6, R. Bryant showed in [4] that there is a large class of almost Hermi-
tian structures, called quasi-integrable, for which the differential system for pseudo-
Hermitian-Yang-Mills SU (n)-connections is involutive. Thus the theory behaves well
in quasi-integrable case. It is interesting to ask under what conditions other instanton

differential systems will be involutive.
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In this chapter, we are mainly interested in w-anti-self-dual instantons on a nearly
Kaéahler 6-manifold and Q-anti-self-dual instantons on its Gy-cone. We first show that
w-anti-self-dual instantons are automatically Yang-Mills, i.e., are critical points of
the Yang-Mills functional. We prove the involutivity of the w-anti-self-dual instanton
system. We construct a Chern-Simons type functional on nearly Kéhler 6-manifold.
This is an R-valued functional, rather than R/Z-valued as in 3-manifold case. We
show that its critical connections are exactly the w-anti-self-dual instantons. We
compute its gradient flow and discuss its relation with (2-instantons on the G5-cone.
Second, we derive a Weitzenbock formula for an elliptic operator on nearly Kahler
manifolds and apply it to study deformations of w-anti-self-dual instantons. Finally,

we construct a class of instantons on S® and R that display interesting singularities.
2.1 Some linear algebra in 6 and 7 dimensions

In this section, we clarify notational convention of inner product spaces in 6 and 7
dimensions with emphasis on representation theory of SU(3) and G. The interplay
between Hodge star operations will be important in later discussions.

Suppose V' is an n-dimensional oriented inner product space and let {e;}! ; be
a oriented orthonormal basis. The inner product on V' induces an inner product (, )
on its dual V* with the dual basis denoted by {dxz;}. By taking the convention that
{dz;, N---Ndz;, } be orthonormal, we make A*V* an inner product space. We define
Hodge star * on A*V* by the following rule. Let ¢ € A*V* and its Hodge star *¢ is
determined by

kP A= (¢, )voly. (2.4)

for any ¢ € A*V* where voly = dxy A - -+ A dz, is the volume form on V.
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Remark 2.1.1. Through the inner product, we identify vectors and I1-forms. We
will not distinguish between them. Thus for example, an linear operator defined on

vectors may be thought of as an operator on 1-forms. No confusion should be caused.
2.1.1 Dimension 6

In dimension 6, we suppose further that V' is endowed with a complex structure and
a complex volume form W. The complex structure coupled with the inner product
determines a symplectic form w on V. We normalize these quantities so that %w3 =
é\I/ AW = voly. It is now natural to complexify V* and its various exterior powers.
Denote V¢ the space of complex linear forms on V. Then V* ® C = Vg @ V. We
extend the inner product and Hodge star operation complex linearly to V ® C.

We pick an orthonormal basis {dz;, dy;}3_, for V* such that dz; = dx; + v/—1dy;

is complex linear and that

V-1

w= "o (du Aoy +dzsy Nz +dzs Adzs), U =dz Adz Adzs.

SU (3)-representations

The subgroup of SO(6) preserving both w and v is the special unitary group SU(3).

Under the action of SU(3), A*V* ® C may be decomposed into irreducible pieces
Ve C=Via Vg
NV @C=NVEeANTVEeC we VI
NV*eC=C-TaC-TaVelagveaVirwd ViAw
AV QC=VEATBVEAT B Cw® @ VI Aw
NV RC=ViA? B VEAW,
where V(') denotes the representation of the highest weight (1,1), which consists of

(1, 1)-forms whose inner product with w is zero, V() ~ sym?V is the representation
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of the highest weight (0,2) and V(2 ~ V(20). The decomposition of 2-forms and 4-
forms will be the most important for us. Note that the wedge product with w gives an
isomorphism between the irreducible pieces in A? and A* as outlined above. Another
isomorphism is given by Hodge star. These two isomorphisms will be fundamental in
the definition of anti-self-dual instantons later, so we examine their relation carefully

below.
Hodge star
It is easy to compute that

v—1
*(dzy N\ dzg) =

le A dZQ A ng A dz_g

)
2

*(dzg Ndz3) = dzy N dzg N dzs N\ dzy

and

VT

*(dzg N dzp) = dzy Ndze N dzg N dZ;.

Also

wAdzy Ndzg = %dzl ANdzg ANdzs A\ dz3
and similarly for dzo A dz3, dz3 A dz;. Thus we have
ko=wA o (2.5)

for any o € A2V @ A2V,

Moreover,
kW= —w". (2.6)
On the other hand,

V=T

*(dzy Ndz3) = — dzy NdZz Ndzg Ndzs = —w A (dzy N dZ3).
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More generally, we have

ko= —wA o (2.7)

for any a € V(1.

To conclude, the irreducible (real) SU(3)-modules in A?V* are indexed by the
eigenvalues of the operator *(wA) (note **> = 1 on 2-forms).

The other chain of isomorphic SU(3)-representations consists of V¢, A2V and
various Hodge star images. Again, there are many isomorphisms among these spaces
given by compositions of Hodge star, wedge product with the ¥ and with w. We
exploit some of them.

First, we compute that

le N d22 A ng N dz_l/\ dZ_Q,

and thus,

—1
1 % (dzy Ndzg Ndzg N dzy N\ dZ3) = —dzs.

On the other hand
ImWU A dzi A dzg = g(dzl Ndzy Ndzz N\ dzr N\ dz3).
Thus we have
ImU A +(Im¥ A dZ7 A dZ) = —V/—1dZ1 A dZ A dZs A dzs.

It is easy to see

e

wAdzi Ndzg = — dz1 N\ dzg N dzs N dzs

and thus
ImW A +(ImV A dz7 A dZ3) = 2w A d77 A d73.
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Because A2V is an irreducible SU(3)-representation, it must hold that
ImV A x(ImU A a) = 2w A a. (2.8)
Some linear operators

We use the SU(3)-representation theory to describe several useful linear operators.
Some of them are standard, but we hope to fix notation.

First, we describe J. For any 1-form v € V*, v1: A¥V* — A¥=1V* is defined as

valog A+ ag) = Z(_l)i*(%a»al Aoy A A g

i
where () is the inner product. Note that this is adjoint to the wedge product in the

sense that
(vaa, B) = (a,v A B).
We extend 1 complex linearly to V* ® C and Ag. Something must be cautioned.

For instance

le_ldzl = 0.
Next, we use _ to identify A*V* inside so(V*) by
b:a— alf.

The inverse map is given by for any A € so(V*)

1

where w; is an orthonormal basis.
Now, if a linear map commutes with the complex structure on V*, i.e., maps V{
to itself, then it is easy to see that viewed as a 2-form, A lies in the space Al In

fact, the corresponding 2-form is given by

1
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Since ¥ is SU(3)-invariant, any linear combination r of maps v — v_Re(V) and
v — valmW¥ gives an SU(3)-equivariant map V* — A*V*. The image r(v) may be

viewed as a map V* — V*. Skewsymmetrizing r(v) gives a map A2V* — AZV*
r(v) :aA G r)(a) AG+anr(v)(F).

We still denote the map by r(v). From SU(3)-equivariance of r, we see that

r(g(v))(a) = g(r(v)(g™"a)). (2.9)
for any g € SU(3), v € V and a € A?V*. We define
W(Q,D)(ﬁ) = %<67 le A d22>d21 A dZQ + %<B, le A d22>d21 N dZQ

+1(B,dz1 Ndzs)ydzy A dzs + 5(6, dz1 A dzs)dz A dzs (2.10)

+1(3,dzo Ndzg)dzy A dzs + 5(B, dzs A dzg)dzo A dzs,

dually

—V —]_71'(0,2) (ﬁ) == le<ﬁ’ le N d22>d2’1 A dZQ - le<ﬁ’ le VAN d22>d2!1 VAN ng
+1B,dz1 Ndzsydzy A dzy — 2B, dz1 Adzs)dzy Adz (2.11)

+1(B,dzy Ndzz)dzs A dzg — 3(B,dzs A dzs)dzs A dzs.
and
7(8) = 508w (219)
where the bracket is the complex extension of the inner product. Note that both ;)

and 7 2) are real operators. Also define the projection onto w-trace free 2-forms

1,1

Ty =1 — 0 — T (2.13)
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Note that 7,0y are identity on forms of type (2,0) and type (0,2). While 7o) is
multiplication by v/—1 on (2,0) forms and —/—1 on (0, 2) forms. Both of them are
clearly SU(3) equivariant. In fact, if we think of the diagonal elements in A2V *@®A2V*
as a real representation of SU(3), the space of SU(3) equivariant homomorphisms is
real 2-dimensional, spanned by 7y and (g 2). They satisfy the relation
In particular, 7 ) is a projection but 79 is not.

Denote

P = Am,0) + py, (2.15)

where A\ and p are real constants. Clearly, P is a real operator and commutes with
the action of SU(3). Moreover, P? = Ny 0) + p*m,.

Let {v;}¢_; be a orthonormal basis of V' and w; dual basis. We define a map by
B(a) =Y wilr(v;), P’](a) (2.16)

where o € A2V*. Note that the definition of B does not depend on the choice of the

orthonormal basis. We have the following result concerning the B.

Proposition 2.1.2. The operator B factors through a (possibly complex) linear com-

bination of w20y and ().

Proof. For any a € A*2V* and g € SU(3), we have

Bla) = 3;wialr(vi), P*](ga)
= >wiag(lr(g™ (v:), P*)(a))
= 9297 (wi)a([r(g™" (va)), P?J(e))

= 9(B(a)).
50



where the second equality is due to (2.9) as well as the commutativity of P and SU(3),
the third is because g(via) = g(v)ug(a) and the last is because of the independence
of orthonormal coframes in the definition of B. So B gives a SU(3)-equivariant
map from A2V* — V*. Since as a SU(3)-space, A?V* contains only a copy of the
irreducible representation isomorphic to V*, namely, (A2V{ @AQ—‘/(”;)R, we know from

Schur’s Lemma, B must factor through a linear combination of m ) and mg2). [

Next, for each 4, j, we consider the operator on V*,
L(wi, wi)(a) = w; A (wjaa) + w 1P (w; A ). (2.17)
We have the following result concerning L.
Proposition 2.1.3. Let A = V2 and = V3 and thus
P =\2r50) + V37, (2.18)
Then the operator L satisfies the Clifford relations, i.e.,
L(wi,w;) + L(wj, w;) = 24;;.
Moreover, we define an operator M : A°R® — End(R®) by linearly extending L(w;, w;)
fori #j. Then M is an SU(3) equivariant map from A*V* to V. @ V*. In fact, we
have
M()(v) = va(=2my" B+ m,3).
Proof. Since L is real, it suffices to prove the proposition for (1,0) forms. Without
loss of generality, we check for L(dxq,dz), L(dzy,dy;) and L(dz,dxs). Let a; =
dz; + /—1dy;. These form a basis for V&. Then

L(dzy,dzy)(cv) = dxy A (dzyacy) + dzyaP?(dry A ay)

= dzy + dz12( N (e0) + ,UQTQU)(%CZZl A dz)

=dx; + da:y@,u%)

=dx, + v —1dy,
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because p? = 3.
For:=2,3
L(dxy,dxy) () = dxy A (dryacg) + dogaP?(dxy A o)
=0+ dz1 o(Nma0) + 1°m) (3 (dz1 + dz1) A dz;)
= draN*3dz A dz
= ’\2—2dz,-
=
because A\? = 2. This proves the first equality.
Now consider L(dxy,dy;). We compute
L(dxy,dyr) (1) = dzy A (dyyaaq) + dzpaP?(dyy A ay)
= v/—1dzy + dy; (N7 2,0) + 11270)( Fdzl A dz)
= /—1dz; + dxlﬂg—?\/—_lw
=+/—1ldzx; — %,LLdele
= \/—_161901 —dy;
=V —1(d=)
and
L(dyy,dz1) (o) = dyp A (dwyadzy) + dyyaP?(dzy A dzy)
= dy1 + dy1s(Nm20) + pm,) (371 A dz)

= dy + dysop*m,(3dz1 A dz)

=dy1 +dy JM2 v

= dy, — /—1d,
= —v/—1(dz; + /—1dy,).
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Thus
L(dzy, dy,) (o) + L(dyy, dzy)(aq) = 0.

Also,

L(dl‘l, dy1)<a2) = d.ﬁEl VAN (dled22> + diL‘l_IP2(Cly1 A 042)

=0+ dxp()\%@o) + ,uzmd)(%%(dzl Ndzy — dzy N dz))

= —/—1dz
and
L(dyy,dz1) (o) = dyy A (dwyadzy) + dyy aP?(dzy A dzs)
= dy13(A?T20)(3dz1 A d2n)
= v/—1dz,.
Thus
L(dzy, dyy)(ae) + L(dyy, dzy)(ag) = 0.
Similarly

L(dzy, dyy)(as) + L(dyy, dzy) () = 0.

Next we consider L(dzy,dzs).

L(dxy,dzs)(dz) = dxy A (dwgadzy) + doyaP?(dxg A dzy)
=0+ dz12(N720) + #270) (3d22 A dzy + 5d7 A d2)
= dle)\Qﬂ-(Qyo)(%dZQ N le)
= dl’lJ(dZQ N le)

= —dZQ
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and

L(dwy, dzy)(dz) = dxy A (driadzy) + deesP?(doy A dzy)
= duy + dzes(N2ma0) + pPm)(3d71 A dz1)
= dxy + MQWM(%d,Z_l A dz)
= dxy + /—1dzyw

= dl’g + —1dy2 = ng

Thus

L(dzy,dzs)(dzy) + L(dza, dxy)(dz) = 0.
Similarly

L(dxy,dxs)(dzs) + L(dxs, dxy)(dzy) = 0.
Moreover,

L(dl’l, diL‘Q)(ng) = dfl?l AN (d.TQJng) + dl’lJPz(d.TQ A dZd)
=0+ dz12(N*720) + p1270) (3dzo A dzz + 3d75 A dzs)

= dl‘lJAZW(Q’O)%dZQ A dzs

=0.
and
L(dzy,dry)(dz3) = dwg A (dzyodzz) + drgaP?(dzy adzs)
=0+ dng)\Q%dzl A dzs
=0.
Thus

L(dxy, dxs)(dzs) + L(dxs, dzy)(dzs) = 0.

So far we have proved that

L(dxl, dl’l) =1
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and

L(dl‘l, dyl) + L(dyl, dl’l) = L(dl’l, dl’g) + L(dl’g, dIl) =0

. By symmetry and the linearity of L we see that

L(dx;,dx;) + L(dxj,dx;) = 0,i # j

and

. For instance, in order to show
L(dl’l, dyQ) + L(dyg, diCl) =0

we replace dxy by dys and dys by —dxs. Then it follows from the calculation on
L(dflfl, diL'Q)

Now for arbitray orthonormal basis w;, the Clifford relations follow from the fact
that the orthogonal transformations act transitively on coframes. If they hold for a
particular coframe, they hold for all.

Suppose g € SU(3). We have for any 1-form a,

L(wi,w;j)(ga) = w; Awjag(a) +wiaP?(w; A g(a))
= gllg™'wi) A (g7 wj) o+ (97 wi) 2P (g7 (wy) A )]

= gL(g7'wi, g7 'w;)(a).

Now by the definition of M we have for any a = a;w; and 3 = b;w;,

M(Oé, ﬁ) = %(aibj — ajbi)L(wi, wj).
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Thus,
M(ga, gB)(v) = 5(aib; — a;bi) L(gwi, gw;)(v)

= %(az’bj — a;jb;)gL(w;,wj)gt(v)

i.e., M is SU(3) equivariant.

Note from the above computations, M () maps (1,0) forms to (1, 0) forms for any
two-form 3. Moreover, since P? is self-adjoint, M (/3) also preserves the inner product.
Thus M(3), when identified as a two-form, takes value in A''. Combined with the
SU (3)-equivariance, M gives a SU(3)-equivariant map from A*V* to A!. Since
both of the two irreducible components Ay' and Ruw are real, Homgp ) (A%, Ab?) is

real 2-dimensional. In other words, there exist two constants a, b so that

M(B) = amy (B) + bmu(B).

It is a matter of computing examples to determine the constants.

If we take 0 = dx; A dy;, then by the convention described above,

M(B) = S(d55 A M(B)(d=2) + 25 A M(5)(dz2) + 45 A M(5)(dz)

e

= T(dz_l/\ dzy — dz3 Ndzy — dz3 N dz3)
= —(dxy Ndy; — dzy N\ dys — dxs A dys).

On the other hand

1
7o(dxy Adyy) = gw.

and

1
Wé’l(dxl Ndy,) = §(2dx1 A dy, — dxg A dys — dxg A dys).

Consequently



Thus M is of the desired form. O
2.1.2 Dimension 7

Now we assume that dimV = 7 and we pick an oriented orthonormal basis for V*

denoted by {dz1, dyi, dxy, dys, dxs, dys, du}. For later use, let
dZi = dxl —+ v —1dyz
and define w and V¥ as in §2.1. We introduce a special three form

Q = durNw+ ImV
= du (dzy A dyy + dxg A dys + dxs A dys)
+d$1 VAN dLUQ A dyg — dyl VAN dyg N dyg
+dyy N\ dxo N drs + dry A dys A drs.

(2.19)

Due to [7], it is now well-known that the exceptional Lie group G may be defined
as the stabilizers of €. For this reason, we call € the fundamental 3-form. We embed
RS considered in the last section into V to be the hyperplane du = 0. We also let
SU(3) act on V by identity on the line dz; = dy; = 0 and the standard action on

du = 0. Clearly, SU(3) preserves €, so it embeds into G5 as a Lie subgroup.
Gy-representations

A good resource on this part is [11]. We recall some basic facts. The standard V* is
irreducible with the highest weight (1,0). The most important part for us is A2V*.
It decomposes as the sum of two irreducible pieces V19 @ VD where V(@) is the
irreducible representation of G with the highest weight (a,b). The subspace V10
is 7-dimensional, consisting of 2-forms v.(Q for any v € V*. The other one V(1) ig
isomorphic to the Lie algebra g,.

The space A’V* is isomorphic to A? as Ge-modules either by wedge product
with € or by the Hodge star operation. Again the interplay between these two
isomorphisms will be important in defining anti-self-dual instantons in dimesion 7.

57



Hodge star

We only consider the Hodge star on A2. Now we may compute that
1
* () = §Q A (@) (2.20)

for all @« € VO < A% and that
xa=—-QANa (2.21)

for o € gy. These may be checked for special forms (e. g., a = dusQ) € V1% and
a = dz; NdZ; € su(3) C g2). Then, since these spaces are irreducible and both * and
QA commutes with G5 action, we know these relations must be true for the whole

spaces. Thus, these irreducible subspaces are indexed by the eigenvalues of *(QA).

2.2 Anti-self-dual instantons on nearly Kéahler 6-manifolds and Go-
cones

Let G be a compact Lie group. Suppose X" is a smooth manifold endowed with an
(n-4)-form YT (for our purposes, X = M is nearly Kéhler and T is the (1, 1)-form w,
or X = N has G5 holonomy and T is the fundamental 3-form €2). Suppose also T is
a (n-4)-form on M and P is a principal G-bundle over X. A connection A on P is

called Y-instanton if its curvature F'y satisfies
T/\FA:—*XFA. (222)

Remark 2.2.1. When G is a unitary group, our definition is different from the one
used in [27] (see Remark 1 in its §1.2, however). When G is a special unitary group,

these two definitions coincide. This is the group we will use mostly.
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Note that if T is closed, an Y-instanton A is Yang-Mills, i.e., it satisfies the

Euler-Lagrange equation of the Yang-Mills functional, since
daxx F=—dYANF+TANdsF =0

because of the Bianchi identity. Thus, an Q2-instanton on a manifold with holonomy
in G5 is Yang-Mills since €2 is closed. Remarkably, as we will show later, when
X = M is nearly Kéhler, although w is not closed, an w-anti-self-dual instanton is

still Yang-Mills.
2.2.1 Nearly Kdhler 6-manifolds

In this subsection, we collect basic facts about nearly Kéhler 6-manifolds. The
concept was first introduced and studied by A. Gray in [18]. Later on, N. Hitchin
[22] found that it is a critical point of a diffeomorphism invariant functional and thus
put it in a more natural context.

An SU(3) structure on a 6-manifold M is a reduction of the total coframe bundle
to an SU(3) subbundle. It may be specified by a real two-form w of type (1,1) and
a (3,0)-form ¥ normalized so that %w?’ = é\lf A V. A nearly Kihler structure is an

SU (3)-structure for which
dw = 3cImV¥, d¥ = 2cw? (2.23)

for some real constant c.

When ¢ = 0, the underlying almost complex structure is integrable. In fact, M
is Calabi-Yau. When ¢ # 0, by scaling the metric, we can always assume ¢ = 1. In
this situation, M is usually called strictly nearly Kdhler. In this chapter, we assume
from now on that ¢ = 1 and we speak of this as nearly Kdhler without danger of

confusion.
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Structure equations

Let a;,2=1,---,3 be a local special unitary coframe, i.e., a; is complex linear and
v—1
WZT(OClAOC_1+042AOC_2+CY3AOé_3), \If:al/\Oég/\Otg.
There exists a unique su(3)-valued 1-form (x;;) so that
dai = —/ﬁlﬁ A % + €ijk O A (673 (224)

where summation is understood when repeated barred and unbarred indices appear.

Differentiate this and we get the curvature of «:

1 —_ —_— R
Ak + ki N Ky = 1(30@ Ny — O500 Naq) + K504 N 0, (2.25)

- = K-_and K-_=0.

igpJ Jjiqp wup

where K -

ijpq

= Kpjig = K
It follows from the structure equations that x is a pseudo-Hermitian-Yang-Mills
connection on the complex tangent bundle of M.
Compact nearly Kihler examples include the standard S°, the flag manifold
SU(3)/T?, S® x S3, and CP? (with an unusual almost complex structure). All

these examples are homogeneous. On the other hand, it remains open to find non-

homogeneous compact examples.

Example 2.2.2 (Go-invariant S%). The standard Gy invariant almost complex struc-
ture on S is perhaps the best known non-integrable almost complex structure. As
a subgroup of SO(7), Gy acts transitively on S® and the stabilizer of any point is
isomorphic to SU(3) C Go. Thus, Gy preserves an SU(3)-structure on S®. This
SU(3) structure is in fact nearly Kdhler. Using Maurer-Cartan forms on Gs, we

write the nearly Kdahler structure equations
dOéi = —/iﬁ VAN Q; + €ijk QY N Qg (226)
1 _ _
dig + kg N\ Ky = Z(Bai N — 6500 N Og). (2.27)
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2.2.2  Gy-cones over a nearly Kahler 6-manifold

A Gy-structure on a 7-manifold N7 is a reduction of the total coframe bundle to
a Gy-subbundle. Suppose N7 has such a Gy structure. Then, on N, there exists
a fundamental 3-form €2 characterized by the property that at each point x, there
exists a linear isomorphism u : T,N — R so that Q, = u*({). Conversely, given
such a fundamental 3-form 2 on N, the set of such linear isomorphisms forms a G,
subbundle of the total coframe bundle and thus defines a Ga-structure on V.
Associated with any Ga-structure, N has a metric g. The Levi-Civita connection
of g has its holonomy group contained in G if and only if dQ2 = d(xQ2) = 0. R.
Bryant constructed the first metric with holonomy G, [7]. It was the cone metric
over Ry x SU(3)/T?. Tt is now well-known that if M?® is nearly Kéhler with the

metric gy, the cone metric on N = R, x M¢® defined as
gy = dt* + t2gy
has holonomy in GGo. The fundamental 3-form is
Q= t*dt Aw + t°ImV.

Such conical Gs-singularities were used by string physicists recently to construct
string models with chiral matter fields (see [2], [1]). For us, the case M = S% is
especially important. Then the cone has a removable singularity and in fact N = R”.
When studying anti-self-dual instantons on manifolds with G5 holonomy, R” plays

the natural role of an infinitesimal model.
Hodge star on 2-forms

Suppose w;(i = 1,--- ,6) is an oriented local orthonormal coframe for M. Then,

dt,tw;(i = 1,---,6) form an oriented local orthonormal coframe for the cone N.
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Denote xj; and *y Hodge star operations on M and N respectively. It is easy to
show that

£2dt A xpr(wi A w;) = #n(wi A wy)

and

Consequently, if a 2-form o on N satisfies %404 = 0, its Hodge star may be computed
by

sy a = t2dt A sy (@), (2.28)

and if o = dt A B with 2.8 =0,

s (dt A B) =th s (B), (2.29)

where we extend x); linearly across functions on N. The formula (2.28), (2.29) will

be important below.
2.2.83 w anti-self-dual instantons

If the underlying manifold is almost Hermitian with the Kahler form w, we may

decompose the curvature as
F=F>4 F20 4 (F°)M + Ho,

where F20 is of type (2,0) and (F°)"! is of type (1,1) but with zero w-trace. Now

the w-anti-self-dual instanton condition (2.22) implies F*° = H = 0.

Remark 2.2.3. In the case G is a special unitary group, the above argument implies
that an w-instanton is the same as a pseudo-Hermitian- Yang-Mills connection on the

canonically associated complex vector bundle.

If, moreover, we are working on a nearly Kahler manifold, this condition may be
simplified.
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Lemma 2.2.4. Suppose A is a connection on nearly Kdahler M® and F is its curva-

ture. The following are equivalent:

a. FAImU = 0.
b. FAU =0.
c. FAReVU =0.

d. A is an w-anti-self-dual instanton.
Consequently, if F' is of type (1,1), A is an w-anti-self-dual instanton.

Proof. 1. a==b. We write F' = F20 + F20 4 (F°)"! + Hu. Then F A Im¥ = 0

gives
FAW—T)=0,
i.e.,
F2OAT = 0.
It follows then that
FAU=0

and hence FF AU = 0.
2. b=-c is obvious.

3. c==>d. As mentioned before, A is w-anti-self-dual if and only if F*° = 0 and

H =0 in the above decomposition. Now

1 — 1 o
FA&@:EFA@LHmzﬁFMAW+FMAW
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Thus ¢ gives 2% = 0. Differentiating c gives

0 = da(F AReD)
=dsF NReV + F A dReW
=04 2F Aw?

=2Huw?
where the last equality uses (2.23) and the Bianchi identity. Hence

H=0.

4. d==a is obvious.

[]

This lemma says that we could have defined an w-anti-self-dual as F*° = 0.
This reduces the indeterminacy and will be useful later when we construct concrete

examples.

Remark 2.2.5. The same result holds for a more general class of almost complex
manifolds, called strictly quasi-integrable in [4]. We leave it for the reader to carry

out the details. In fact, this has already been observed in [4] for unitary instantons.
Generality

We now address the problem of the involutivity problem of the instanton equations.

First, the instanton equations may be rephrased as
FAU =0 (2.30)

and

F AW =0. (2.31)
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Since the problem is local, we assume that the bundle is trivial, and the connection

is simply a g-valued 1-form A. The differential system we need to analyze is
I=(FAVU,FAW?,
defined on M x g where F' = dA + $[A, A]. We have

Lemma 2.2.6. The system I is involutive with Cartan characters
(S(b 51, 82, 83, S4, S5, 86) = (07 07 07 07 2d7 3d7 d)
where d = dim G.

Proof. Note that
Ad(FAV)=[A FIN\V+FAdV =0, modlL

because of Bianchi identity and the nearly Kéhler condition d¥ = 2w?. It is now

routine to check the system is involutive with displayed characters. O]
Some remarks are in order.

Remark 2.2.7. More generally, Lemma 2.2.6 holds for similarly defined w-instantons
on a quasi-integrable U(3)-structure (see [4] for the definition). We leave the details

for the interested readers. When G = U(r) is a unitary group, it is treated in [4] .

Remark 2.2.8. For nearly Kahler M, we could have used the differential system
(F AN 1ImVW) by Lemma 2.2.4. The reader can check that this is involutive with the
last Cartan character also equal to d. The advantage of the original system is that it

applies to more general almost complex manifolds.

Remark 2.2.9. The last character is d, due to the fact that gauge transformations
depend on d functions of 6 variables and that instanton equations are gauge-invariant.

We leave for the interested reader to impose a symmetry breaking condition.
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Instantons are Yang-Mills
Now we compute
dp*y F=—dwNF —wANdsF = -3ImUAF=0
because F' is of type (1,1).
Proposition 2.2.10. An w-instanton on a nearly Kahler 6-manifold is Yang-Mills.

A consequence is some removable singularity results for instantons on nearly

Kahler 6-manifolds.

Corollary 2.2.11. Suppose that all representations of m (M) — G are trivial and
that E is a trivial smooth bundle over M. Assume that A is a w-instanton on E with
a closed singular set S whose n — 4 Hausdorff measure is locally finite. Then there
exists € = (G, M) such that if

| Fa[[o< €,

then the singularity of A is remouvable.

Corollary 2.2.12. Suppose that all representations of m (M) — G are trivial and
that E is a trivial smooth G bundle over M. Assume that A is a w-instanton on E
whose singular set is a closed smooth submanifold of codimension at least 4. Then

there ezists € = e(G, M) such that if
then the singularity of A is remouvable.

Both are proved by employing the results in [29].
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Instantons as critical points of a Chern-Simons functional
Consider the functional

CS(A):/ tr(F%) Aw. (2.32)

On a Kéhler manifold, since w is closed, C'S is a topological constant. However, on
a nearly Kéahler manifold, this gives more interesting information.

It is easy to compute that the first variation of C'S' is
0CS = 2/ tr(Fa A da0A) A w.
M
Integration by parts gives
0CS = 2/ tr[da(Fa Aw) A JA].
M

Thus the Euler-Lagrange equation for C'S is
da(Fa ANw) = 0.
Using Bianchi Identity, we see this is equivalent to
FAIm¥ =0. (2.33)

It follows from Lemma 2.2.4 that

Proposition 2.2.13. An w-anti-self-dual instanton is equivalent to a critical con-

nection of the Chern-Simons functional C'S.

This makes it possible to use variational methods to study w-anti-self-dual in-
stantons on nearly Kéhler 6-manifolds.

It also follows that the gradient flow of C'S takes the form

%A = s (F A ImW). (2.34)
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Remark 2.2.14. To illustrate, we assume that the principal bundle under consider-
ation is topologically trivial. Using dw = 3ImWV and transgression formula, it can be

shown that up to a constant
1
CS(A) :/ tr(FAA— gAAA/\A) AImW. (2.35)
M

Here we regard G as a matriz Lie group. This formulation is more similar to the

Chern-Simons functional on 3-manifolds.

Next we compute the second variation @ of C'S. Suppose that A(s,t) (for small

s,t) are a two parameter family of connections such that A = A(0,0) is an instanton.

Let a = %—‘2|S:0,t:0, b= %—ﬂs:o,t:o.Then by definition
o2
Qab) = |0 oCS(A)

We have essentially computed that

9 9
2 CS(4) =~ /M tr(F AT A 5 AGs, ).

Thus the second derivative is (remember F)y A ImV¥ = 0)

0A 0A
Q(CL, b) = —6/]\4tr(d14($‘5:0,t:0) A ImW¥ A E|S:0’t:0) (236)
= —6/ tr(daa A ImW¥ A D) (2.37)
M

Clearly, this is a symmetric bilinear form.

The null space of () consists of a so that
dAa AImW¥ = 0.
This implies da is of type (1,1) and hence

dAa/\\If:O.
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Differentiating once and using Bianchi Identity gives one more equation
daa A\ w? = 0.

This is exactly the infinitesimal deformation of the instanton equation.
2.2.4  Q-anti-self-dual instantons on the Ga-cone

We investigate the relation between w-anti-self-dual instantons on M and €2-instantons
on N.

First, note that any principal G-bundle over N is isomorphic to a bundle P x
Rt — M x R* for a G-bundle P over M. Thus, without loss of generality, we
assume that the G-bundle we are working on is a pull-back from M and we use the
same letter P to denote these two bundles.

Suppose A is an (2-instanton. A priori, A involves a dt-term a - dt. However, we
may perform a gauge transformation A — ¢~ 'Ag + g 'dg to eliminate the dt-term.

It is easy to see that we can simply take g as a solution to the differential equation
-1 17 _
g Tagdt+ g “dg = 0.

Thus, we assume that A has no dt-term. We regard A as a family of connections

on P parametrized by ¢ and denote A = %A. Now the curvature may be computed
1 .
FW:dA+ﬂAAkqﬁAA+F%

where FM = dy A + 3[A, A]. The Q-instanton condition with the formulae (2.28)
and (2.29) gives

txy a=—ImU A FM

and

wAFM —4ImU A a = — %y FM.
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We denote the (1,1)-part (with coefficients depending on t) of FM by FM and FM =

FM — FM. By type decomposition in the above two equations we have
tsy A= —ImU A FM,

WAFM = — 5y Y, (2.38)

and

wAFM —tImU A A= — 5y FM.

By taking Hodge star of both sides, we see that the first equation is equivalent to
tA = x(Im¥ A FM). (2.39)

Combining (2.8) and (2.5) we see that the last equation is implied by (2.39).

The equation (2.38) looks very much like the w-anti-self-dual instanton equation
on M. The only problem is that FM is not necessarily the curvature of a well-defined
connection.

The equation (2.39) is exactly the gradient flow of the Chern-Simons functional
CS. Tt would be interesting to analyze this equation coupled with (2.38). The first
natural question is whether we could evolve through (2.39) in the class of w-anti-
self-dual instantons on M to get a (2-anti-self-dual instanton on N. Unfortunately,
this is impossible. An w-instanton has its curvature of type (1,1). If A(t) stays
w-anti-self-dual for all ¢, the evolution equation (2.39) will imply that %A =0, i.e.,
A is constant in t. On the other hand, if A is constant in ¢t and w-anti-self-dual,
it is Q-anti-self-dual when pulled back to the cone N. These give a class of special

solutions.

Lemma 2.2.15. Suppose A is an w-anti-self-dual connection on the nearly Kahler
6-manifold M and extend it to the Go-cone N by constant int. Then A is a Q-anti-

self-dual connection on N.
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Remark 2.2.16. When M = S°, in order that the principal bundle extend through
the origin in R, P has to be trivial over M. Even when this is true, the extended
Q-anti-self-dual connection on R”\ {0} described in the above Lemma does not nec-
essarily extend through origin. It is interesting to ask under what condition this

singularity is removable after a gauge transformation.
2.3 A Weitzenbock formula

In this section, we derive a Weitzenbock formula for nearly Kéhler 6-manifolds and

describe its application to the deformation of w-anti-self-dual instantons.
2.3.1 The general formula

Let E be a vector bundle over M. Suppose E is equipped with a metric and a metric-
compatible connection A. Suppose also that the curvature F4 is an w-instanton.

Consider the following complex

0—T(E) S T(ERT M) 24 T(E o (A®)T*M)g ® Rw),

where the operator d, is induced from d and the connection A and P is defined in
§2.1.1 the projection onto the orthogonal complement of w-trace free (1, 1)-forms.
This complex is elliptic at the middle term. It could be extended to an elliptic
complex, but we will not need the full sequence.

The 0th cohomology group consists of parallel sections of E. We are mainly
interested in the 1st cohomology group. A well-known result in Hodge Theory states
that this group can be represented by harmonic sections, i.e., the kernel of the elliptic
operator

Ap = (d + Pdp)*(d + Pdy) = dad’y, + ', P2d4
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As usual, we will compare A, with a certain rough Laplacian of a connection.
Note that, on E®QT*M, there are several connections, e.g., A, coupled with the su(3)-
connection on T*M, denoted by D as well as A with the Levi-Civita connection,
denoted by D. After many trials, we choose D. However, D will be useful.

Suppose z € M is a fixed point. Let {e;}¢_; be a local orthonormal frames
centered at & whose covariant derivatives with respect to the Levi-Civita connection
vanish at z. Let {w;} be the coframe. The Hodge Laplacian may be computed

Ay = dadiy + dyPdy
= (X wiAD)o (=Y 0 wjuDe))
—(0 winDe,) 0 P? o (30 w; A De,)
6 6
= (Zi:l wi A De,;) o (— Zj:l ijDej)
(X8 wiso Pro D)o (T8, w; A D,)
6 6
_(Zizl wia 0 [De,, P2]) o (Zj:l wj A Dej)
= — Z?,j:l(wi A ow; 1+ wia o P? o wiA)De, D,
—(X wiso [De, P o da
= 3% (wi Aowia+ w0 P2ow,A)D,, D,
— D iz (Wi Aowjo+wino P?ow;N)D,,D,,
—(Xi w0 [De, P?) 0 da
= -39 D.D
=1 ""6€i""€;
- Zi<j M(wi A wj) © (DeiDej - DejDei)
— (35 wis o [De,, PY) 0 da,

where the operator M is defined in §2.1.1.
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Recall De;|, = 0. Thus at z,

6
~> DD, =D*D
i=1
the rough Laplacian. For the same reason, D, D., — D.,D,, is the curvature on
T*M ® E. The curvature has two parts R ® Idg + Idpy ® F¥ where R is the
Riemannian curvature of M. We write R = }LRklijwl A wi @ w; Awj. Given a 1-form
a and two vectors X and Y

1

Dnya — DyDXoé — D[X,y]oz 1

Rpijwi N w; (X, Y)ao(w, A wy).

Now consider the term in the formula 3%  w;Jo [D,,, P?]. Note that the su(3)-
connection D commutes with P2, ie., [D,,, P? = 0 for any e;. Moreover, the dif-
ference r(e;) = D., — D,, is exactly the su(3)-torsion up to a constant. Here, the
nearly Kahler structure plays the central role. By definition, this torsion r is covari-

antly constant with respect to the su(3)-connection. Hence, r satisfies (2.9) and the

operator
6 6
Z%’J o [D.,, P?] = ZWH o [r(e;), Pl =B
i=1 =1

factors through a linear combination of 7y and 72y according to (2.1.2).

In summary, we have the following Weitzenbock formula.

Ay = ViV (2.40)
—Body (2.41)
1 1

i, ij
A routine consequence of this formula is the following:
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Lemma 2.3.1. Suppose M 1is a compact nearly Kdhler 6-manifold. Suppose the
curvature (2.42) is non-negative as an operator on T*M @ E. Then the first coho-
mology group is at most 6-rank E-dimensional. If, moreover, the curvature is positive

somewhere, the first cohomology group vanishes.

Proof. The key observation is that for any harmonic section s of the elliptic sequence

representing an element in the first cohomology group, we have
Bd A(S) =0.
The rest of the proof parallels the argument in usual Bochner Technique. O

Remark 2.3.2. It is not difficult to work out the explicit formula for the curvature
term (2.42) using SU(3)-representation theory. We will discuss this for M = S® and

leave the general case as an exercise for the interested reader.
2.3.2  Deformation of w-anti-self-dual instantons

Suppose P is a principal G-bundle with G' a compact Lie group. As said before,
a connection A on P is an w-anti-self-dual instanton if and only if its curvature F

satisfies
P(F)=0. (2.43)
Unless G is Abelian, this equation is nonlinear in A. Moreover, it is invariant under

the action of the gauge transformations of P.

The linearization of (2.43) at an w-anti-self-dual instanton A is given by
Pd A = 0

fora €e T"M ®@P xgg. Of course, one would like to divide by the infinitesimal gauge
transformation since (2.43) is gauge-invariant. These infinitesimal gauge transfor-

mations are given by the image of d4 : P xgg — T"M ® P X5 g. Thus, in fact, the
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essential infinitesimal deformations of the w-anti-self-dual instanton A correspond to

the elements of the first cohomology group of the following sequence

0-T(E) - USTEQTM) MAT(E® (AT Mg & Rw) — 0,

where £ =P xgg.

It follows that, all discussion in the previous section applies to instanton deforma-
tions. In particular, if the curvature of A is small enough (with a bound depending
only on the base manifold M), then A is rigid, i.e., allows no deformation. We will

illustrate this by analyzing S°.
Applications to S°

For S%, the Riemannian curvature simplifies greatly

1
R:§Wj/\wi®wi/\Wj.

It may be computed that
12 M(wi Awj)(wis(wj Aw)) = 130 M(w; Awi)(01jw; — driw;)
= 10 M(wi A wi)(wi)

— 30 M (w1 A wj)(wy)

w1.

N |t

By symmetry, it holds that

iz M(w; Awj)(as(wj Aw;)) = —ga

for any one-form a. Thus the first curvature term in the Weitzenbock formula
1 5
—§ZM(C()Z /\wj) ORij ®IdE - 5
1,J
An easy consequence is
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Theorem 2.3.3. A flat w-instanton on S° is rigid.

As another application, we consider the su(3)-connection on the standard struc-
ture bundle Gy — S®. We need to describe the su(3) connection a bit. Recall the

connection 1-form ;5 in (2.26). Through this, the connection on (1, 0)-forms is
Dxa; = —a;k5(X)
for any vector field X. Correspondingly the curvature is give by
Dx Dy — DyDx — Dixyj(ei) = —aj(dkg + kg A ki) (X, Y).
Thus the action of F' on (1,0) forms is given by
a; = —0 ® (d/{g + Kz A ,%k;).

Denote Q5 = drij + kg A kg5 = §(3a; Aag — d500 Aag). For each k,1, Fyy in the
curvature term is

Fkl O e — 5(&_1/\ ozj)Qﬁ(ek,el).

Then the second curvature term in this context when E = T40 is
1
—§M(wk A\ wl)(v) ® Fkl(a)
1 1.,
= —§M(wk Aw)(v) @ oz_n(—é)(ozi A aj)Qij(ek, e)

_ ;1 M(9,)(v) ® au(@ A ay)

1
= _51}—196 ® Oé_l(Oé_i A Oéj)
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because €27 is in A", This is not exactly what we want when we study the deforma-
tion of su(3) connection on Go. However, all we need is to replace v by a section of
adg, ~ A(l)’1 where the identification has been defined before. The action of o; A «;
will be the Lie bracket whose meaning should be clear via the aforementioned iden-
tification.

Denote

Bls 1) = (—3 M(ws,05) ® Fy(5). 1

where s,t are sections of T* ® adg,. Note that if s =¢p® X and t = ¢ ® Y we have
1
Bls, 1) = —5(M(w; A w;)(9) @ [Fy, X], 0 © )
1
= (M (wi Awj)(9), ¥){[Fyy, X, V)

= (M (w Awy), 6 AUy, [X, V)

_ (-%M(wi Aw;) ® Fy, [s,1]).

where we view M (w; A w;) as a 2-form.

Then since F'is SU(3)-invariant, B is a SU(3)-invariant symmetric bilinear form
on R ® su(3). We study the space of SU(3) invariant symmetric bilinear forms on
R’ ® u(3). One candidate is obvious, the SU(3) invariant inner product, denoted
by By. For others we apply representation theory of SU(3). Then complexified
representation (R® ® su(3)) ® C = (C? @ C3) ®c¢ sl3(C) decomposes as

(V(LO) @ V(1,o)) fan 1/(2.0) D Ve g (21 @ V(Q’l),

where V(®?) denotes the irreducible complex representation of SU(3) with the highest

weight (a, b). The representation V(@) is real (i.e., V(@ 22 V(b)) if and only if a = b.

Thus the original R® ® u(3) decomposes as

(V(l,O))R @ (V(Q,O))R @ (V(Q’l))R,
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where Vg means the real representation by forgetting the complex structure of V.
The irreducible pieces are 6, 12,30 dimensional respectively. One of them is known
as V(19 = C3. Coupled with the standard inner product, every SU(3)-invariant
bilinear form on R® ® u(3) will give rise to a SU(3)-invariant endomorphism. The
space of such endomorphisms is 6 dimensional, 2 for each irreducible component.
Of the two independent bilinear forms on every irreducible component, one can be
taken as the SU(3)-invariant inner product and the other is symplectic. Thus the
space of SU(3)-invariant symmetric bilinear forms is 3-dimensional, represented by
linear combinations of inner products of various components.

We will construct a basis for this 3-dimensional space. We already have one—
the inner product of the whole space By. To construct two more, we need more
information about the irreducible components.

First consider the map

T, : R°®su(3) — RS

defined by v ® o« — wia. This map is clearly SU(3)-equivariant so Bj(u,v) =
(Thu, Tyv) is clearly SU(3)-invariant. Moreover, since R® ® su(3) contains only one

copy of RS and T} is nonzero, by Schur’s Lemma, T} and thus B is zero on (V29)g @
(V(2’1)>R.

For later estimate, we need the right inverse of T}. Define the operatore

S;:R® — R ®su(3)

v—>—Zaz®7rO @ Av) + ZQZQ{)WO (o A ).

It is clearly SU (3) equivariant. Since R® is irreducible, S; maps onto the irreducible

components V ) eRS @ su(3).
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Then the composition T} 0.5; must be a linear combination of /d and J(the almost

complex structure). However, it may be computed that

3
Si(aq) = E(al ® 71'(1)’1(04_1 ANaq) + s ® Wé’l(a_g/\ o) +az® Wé’l(a_g/\ aq)

3 1
= E(a1®§(2a_1/\a1+ag ANz + a3 ANaz) +aa®@az Aoy +az3@az Aay)

Thus Tlsl(Oél) = and hence T151 = Id.

Meanwhile, it is easy to compute that
Bo(S1(0), S1(@) = 2 Ba(S1(0), S1(a)). (2.44)
Second consider the map
T : RS ®@su(3) — A°RS — (RS Aw)t.

defined by v ® o — v A« followed by the projection onto the orghogonal complement
of R Aw. Define By(u,v) = (Tou, Tov). Then Ty is SU(3) equivariant and By is
SU(3) invariant. The image of 75 lies in the space of type (2,1) + (1,2) forms.

We also need the partial inverse of T5,. Define
. 1 11— — 1,1
SQ : w — Z(al & To (Oéi_lw> + o (024 To (Oéz_lw))

It is clearly SU(3) equivariant. The image under Sy of (2, 1)+ (1, 2) forms orthogonal

to RS Aw is V20 Tt is easy to compute
1 _ _
So(ag Nas Nag) = 1(2041 ® ag Aag — 200 ® oy A\ Q).

Consequently, T555(a; A e A@z) = oy A ag Aaz. Thus 155, = 1.

It is also easy to verify that

_ 1 _

By(Sa(1), S2(1)) = §B2(SQ(¢)> Sa(1)). (2.45)
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On the other hand, it may be computed that
TQSl = O, T182 =0. (246)

The 3 symmetric bilinear forms By, B, By are clearly linearly independent. Thus
there exist constants \; such that B = A\gBg + A\ By + \2Bs. We will compute

examples to determine these constants.

Set
w =01 @V—-12a; Nog —as Nz — a3 A az),
U9 :Oél®<052/\05_3+04_2/\053).
and
Uz = a1 ® a3 N\ as.

It is easy to see that [u1,T1] = [ug, uz] = 0. Thus

_ _ _ 4 _

0 = B(u1, 1) = MoBo(u1, 1) + M Bi(u, ur) = (Ao + g/\1)Bo(U1>U1);

0 = B(ug, Uz) = M Bo(ug,Wz) + Ao Ba(ua, Wz) = (Ao + 2X2) Bo(uz, Uz),

and
B(us, uz) = XoBo(us, us).
Hence
3
A= _71)‘0’ Ay = —=Ng
and
A\ — B(Ug,Ug)
0
BO(U37U3)

The curvature F' = —%(304,; Naj — ;00 N @y) @c a; A a. Thus

B(U3,u_3> - <F7 [U3,U_3]>
= <F,Oél /\Oé_1® (—204_1/\041 —|—20é_2/\0z2)>
=1

2.
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Thus \g = % Consequently,

3 3 1
B=—-(By— -B;y — =B,).
2( 047t 9 2)
Lemma 2.3.4.
B > 0.

Proof. Let 1) € RS ® su(3) be real. Write 1) = ST} (1) + SyT5()) + . Note that
1& € kerT7 NkerT,. Thus, in fact ¢ € VF(S’U. These three different components are
thus pairwise perpendicular, since they lie in different irreducible pieces. It follows

that
SB(,4) = Bo(d, ).
[l

The contribution from the second curvature term is nonnegative. All together
the curvature part is strictly positive.

To summarize, we have the following result.

Theorem 2.3.5. The su(3)-connection on Gy — SS in (2.26) is a rigid SU(3)

instanton.
2.4 SO(4)-invariant examples

We construct cohomogeneity one SU(2)(S?) anti-self-dual instantons (equivalent to
pseudo-Hermitian-Yang-Mills here) on S¢.  The idea is to impose symmetries to
reduce the instanton equations to ODEs. We regard SU(2) = S? as the set of
unit quaternions whose Lie algebra is the tangent space at 1 consisting of imaginary
quaternions for which we use I,.J, K to denote the standard basis for imaginary
quaternions. A remark on the notation is necessary. Throughout this section, we
use v/—1 to represent complex numbers to avoid confusion with quaternions. It
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should be cautioned that when complex numbers are regarded as coefficients in the
complexified Lie algebra, they commute with I, J, K rather than following the usual

rule of multiplication with quaternions. Hopefully, this will be clear from context.
2.4.1 A dense open subset U of S®

More precisely, U = S®\ (5% U S?) is parametrized by S? x S% x (0,%) as

(x,y,t) — v = (zcost,ysint))

where we think of z € S* C R* as a unit 4-vector and y € S? C R? as a unit 3-vector.

Actually, if we extend the map to the closed interval [0, 7], we cover the whole S6.

Reverse the picture and we get a map t : S5 — [0, 7] which is roughly the distance
function from the totally geodesic pseudo-holomorphic S% = {t = 0}. A generic level
set is a scaled S? x S? and {t = Z} is a totally geodesic, special Lagrangian S,
For later use,
S?x §% = 9% x 53/81
as a homogeneous space via (p,q) ~ (pz,qz) for (p,q) € S x S and 2 € S

L3 RN

Composing this quotient with the map (z,y,t) — v, we have a map S x .53 x (0, 5

U c S% by
(p.q) = (pIpcost,qp™" sint).
Denote by w = wil + woJ + w3 K and ¥ = Y11 + o J + 3K the left-invariant

Maurer-Cartan forms on the two copies of S3, respectively. Then, dt,ws,ws, 1,13

and 7 = w; — form a basis of semibasic 1-forms for the projection S3x 53 x (0, 3) —

U. We use this to describe the nearly Kihler structures on U induced from S°.
Recall that the Ga-invariant almost complex structure J on 7, S® is given by the

left Cayley multiplication by v when we we regard both v and tangent vectors as

Cayley numbers in R® = Q. In other words,

J i dvi—v-dv. (2.47)
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The standard metric and J determines the Kéhler 2-form w = (Jdv, dv).
Using (2.47) and Cayley-Dickson rule of Cayley multiplication, we can establish

the following

J(dt) = sintr,
J(2costws) = (2cos®t — sin®t)wy + sin® tyhy,
J(—2costws) = (2cos?t — sin®t)ws + sin” 1.

The Kéhler form w is determined by
—w=(v,Jv) = 2sintyy Adt — 2sintw; Adt
+2cost(9cos?t — 5)ws A wy + 6sin® £ cos tws A 1y
—6 cos tsin® twy A 15 + 2sin’ ¢ cos tahs A 1)s.

2.4.2  Bundle constructions and SO(4)-invariant connections

S3_bundles

We now describe the principal S3-bundles on which to construct instantons. First,

note that S* x S% x (0,5) — 5% x S% x (0,%) in §2.4.1 is a principal S'-bundle.

The principal S3-bundles are obtained by extending the structure group through the

group homomorphisms

for = € S*. More explicitly, denote
Br=5%x S3 x §3 x (o,g)/w

where

p,q,7,t) ~ (pz,qz,rz "t
( )~ (
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for any (p,q,r,t) € S? x S* x S x (0,%),t € (0,5) and z € S*. The structure group
S3 acts on B; by
[p.q,7,t] = [p,q,79,1]

for any g € S3. Clearly this is well-defined. Then the projection

[p,q,7r,t] — (pIp~'cost,qp ' sint)
makes B; a principal S3-bundle over U.

Remark 2.4.1 (on the symmetry of B;). Note that if we let [g1,92] € SO(4) =
S3 x S3/Zs act on By by

[P, q.7,t] = [91p, g2q, 7, 1]
and on S® by

(z,y) = (pap™, qbp™"),
this action commutes with the bundle projection. In other words, the principal bundle
By over U has an SO(4)-symmetry. It is well-known that the action on S°® is induced

from the embedding of SO(4) into Go and has cohomogeneity 1. We will construct

SO(4)-invariant instantons, i.e., instantons of cohomogeneity one.

Remark 2.4.2 (on the topology of B;). A priori, B, is only defined on U. However,
note that By is actually the pullback of a S*-bundle from S? obtained by extending
the structure group of a Hopf circle bundle. Since m,(S?) is trivial, every S3-bundle
over S? must be trivial. As a consequence, By is also trivial. In other words, it is
possible to make gauge transformations so that B; ~ U x 8. Thus this bundle has
natural extension to the whole S®, and, for later use, to the whole R". The former

description has the advantage that it makes the SO(4)-symmetry clear.

Remark 2.4.3 (on the numbers ). A priori, this construction only makes sense for
integer 1. However, we will see that it is more interesting if we think of | as real

valued.
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We will carry out computations on 5% x .53 x 5 x (0, 7). We will continue with the
notation in §2.4.1 on the left-invariant forms on the first two copies of S3. However,
for the last S3, we need use the right- invariant Maurer-Cartan form drr—! = 3 =
Bil + BoJ + B33K. The left invariant Maurer-Cartan form is r~'dr = r=gr. Of

course, the following Maurer-Cartan equations hold

dw = —w A w,
dp = = N,
and
df =[N p.
More explicitly
dw1 == —2(,()2 A ws, dWQ == —2(,03 VAN w1, du)?, == —2(,()1 VAN W,

similarly for v; and

dpy =202 AN B3, dBy =203\ 31, dPs =206, A [o.

s

, 5) is spanned

The space of semibasic 1-forms for the projection S® x S3 x S3 x (0

by dt,WQ,W:J,,'QZ)Q,wg,ﬁQ,ﬁg,UJl - 1/]1 and lqujl + 61-

Invariant connections

Now suppose A is an SO(4)-invariant connection on B;. We pull back A to S x

53 % §% x (0,%) and denote it by the same letter. Then, since A is semibasic with

respect to the projection S? x S* x S? x (0,%) — By, we can write

A= Aot + A1 (It)y + B1) + Aosws + Asws + Bathe + Bsths + Co 52 + Cs 85 + Bydt

with A;, By, C; valued in Lie(S?). Since A is SO(4)-invariant and the 1-forms listed
are also SO(4)-invariant, the coefficients do not depend on (p, q), i.e., they are func-
tions only in ¢ and r. Moreover, A has to satisfy the following properties:
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1. A must be right S®-equivariant where we let S* act on S* x 5% x S% x (0, %)

and B; by right multiplication on the last S3 factor.

2. A restricts to the last S® factor to be the Maurer-Cartan left invariant form

r18r.
3. The differential dA must be semibasic.
We investigate the consequences of these conditions.

1. Since all the forms listed in A are S® right-invariant, this condition is equivalent

to

Ai(t,r) = r YA, D, Bi(t,r) = r ' By(t, )r, C; = v 1Cy(t, 1)r.
To save notation, we will, from now on, write
A = r HAom+ Ay (11 +B1) + Asws + Asws + Baths + Byths +Ca Bo+ Cs 03+ Bodt)r
where A;, B;, C; are functions of t.

2. This condition says that

Thus we may further reduce A to

A =17 (AoT + Iy + Asws + Asws + Boty + Bsips + Bodt)r + ' fr

3. It can be computed from Maurer-Cartan equations that

rdAr=! = —Z[BD, []Zbl Adt — l[AQ, []¢1 AT
(U Ag, ] + 245) 0 A ws — (I[Ag, T] + 242)th A
—({[Ba, I 4+ 2B3)11 Apg — ([[Bs, I] +2By)1y A s
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mod semibasic 2-forms. Thus this condition is equivalent to the following

algebraic equations
I[[Ag, I] =0, l[Bo, I] =0,
[[Bo,I] + 2By =0,  [[By,I] + 2By =0, (2.48)
[[Ag, I] +2A3 =0,  I[As,I]+24;, =0.
Hence, we solve the algebraic equations (2.48). We divide the solutions into

several cases according to different values of [.

1. Case [ = 0. We have By = By = Ay = A3 = 0 but (2.48) puts no restrictions

on Ay and By. Therefore A is reduced to
A =r"Y Ayt + Bodt)r + 171 Br.
2. Case [ = 1. We have
Ao =agl, By=byl,
Ay =urJ +us K, Az = —usJ +u 1 K,
By =viJ +wvK, Bs3=-—vJ+uvK,
for ag, by, u;, v; functions of ¢.
3. Case [ = —1. We have
Ao =aogl, By=byl,
Ay = J +us K, Az =usJ —u K,
By =uv1J 4+ v K, Bs=uwvJ—1K,

for ag, by, u;, v; functions of ¢.

4. Case l # 0,£+1. We have

AOZ(I[)[, B[):bol,



2.4.8 SO(4)-invariant instantons

Now we take instanton conditions into consideration. As mentioned before, A is an

w-anti-self-dual instanton if and only if its curvature F' satisfies
F*Y = tr,F = 0.
It is easily seen that, restricted to U, this equivalent to
FANogNoy Aoy =0, (2.49)

and

F AW =0. (2.50)

According to Lemma 2.2.4, (2.50) is implied by (2.49), so we only care about (2.49).
This simplifies the problem greatly. We consider four different cases according to the

four different values of [ in the last section.
(=0

It may be computed that
F = r7{(Ao+ [Bo, Ao))dt AT — 2A0(wa A ws — 1y A 3)}r,
where Ay = £ Ag. The equation (2.49) gives
32v/2A cos® tsintws A wy Ay A A (dt — /—1sintr) = 0.
The only solution is Ag = 0, which is the trivial connection
A=rtdr.

This is a case of little interest.
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[#£0,+1

It may be computed that
F = {dodt N7 — 2a9(wa A ws — g Aths) — 2l1py A ip3}r—1r.
The equation (2.49) gives
8agcos’t + 1 —9lcos’t = 0.

It is solved by

[ 9cos®t — 1
ay = ———m—
078  cos?t

For safety, one can check that, in fact, ay also satisfies the equation (2.50) which, in
this case, is

—4dag + 51 4+ 8 cos® tag — 9 cos® tl + 2sint cos tdj.

We arrive at the corresponding instanton, pulled back to S? x S x 5% x (0, %),

19cos?t —1
8 cos?t

A=r~tIr ( T+ + bdt) + 7 dr. (2.51)

Theorem 2.4.4. (2.51) defines for each | € Z a singular Hermitian-Yang-Mill con-

nection on S°.

Remark 2.4.5 (on singularity). The coordinate system is not extendable through
the submanifolds S* = {t = 0} and S* = {t = 5}. However, the connection A has
different behavior when t approaches 0 and 5. When t — %, the curvature I blows
up. However, for t = 0, the connection is bounded. It might be possible to remove
the singularity by (2.2.11), we can extend the connection to the locus t = 0. In other
words, this might be a singularity due to unwise choice of coordinates, rather than a

singularity of the instanton A itself.
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Remark 2.4.6 (on reducibility). A cautious reader may have noticed that, A has its
holonomy in S*, so it is reducible. If we restrict the connection to the generic level

sets of t, we obtain the standard Hopf connection up to a constant.

Remark 2.4.7 (on b). Note that b is not essential. We could have applied a gauge
transformation in the t direction to A at the beginning to remove the dt component.

The same remark applies to the next subsection.
l=+1

We only deal with the case [ = 1. The other case is similar.

According to Case 2 in §5.2.2, the curvature is computed to be

TF’I”_l = a,oldt/\T - 2[1/12 /\1/)3
+<U1J + u2K>dt N wy + (—UQJ + ulK)dt A Ws
+(U1J 4+ U K)dt N apy + (—tad + 01 K)dt A 1s
—2&0[((4)2 VAN w3 — ’(,Dg N wg)
—2(U1J + UgK)Cdg NT — 2(—U2J + 'LblK)T N Wo
+2CLO(U1K — UQJ)T N wo + 2&0(-U2K — U1J>T N\ w3
+2a0(v1 K — v )T A g + 2a¢(—vo K — v1J)T A 13
+2(u? + u3)Twy A ws + 2(vi + v3) by A 1bs
+2(U1’Ug — UQU]_)I(WQ VAN @ZJQ + w3 A wg)
+2(U1U1 + UQUQ)I((.UQ A wg — w3 A Qﬂg)
d
e

where, again, “means 7

A tedious computation shows that the equation (2.49) amounts to the following
sint(1 — 3 cos® )1, — sin® tui; + 4a costv, = 0,
sint(1 — 3 cos® )ty — sin® tiiy + 4a costvy = 0,
sint cos vy + ui(1 — a)sin®t + a(3 cos’t — 1)v; = 0,
sint cos tvp + ug(1 — a)sin®t + a(3 cos*t — 1)vy = 0,

U1V = U2V1
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—9cos’t + 1+ 8acos® t — sin? t(u? + u3)
+(9cos?t — 1) (v} + v3) + (6 cos® t — 2)(uyvy + ugny) = 0.
We may assume that
U = )\Ul, Vo = )\’Ul
with A necessarily constant. It can be shown that by a substitution like (uy,v;) —
V1 + A2(ug,v1), we may simply assume that vy = us = 0.
The system reduces to
sint(1 — 3 cos® )1, — sin® tui; + 4a costv, = 0,
sint costvy + uy(1 — a)sin®t + a(3cos*t — 1)v; = 0,
—9cos’t + 1+ 8acos®t — sin® tu? + (9cos®t — 1)vf + (6cos’ t — 2)uyv; =0

which is now determined and thus solvable.

It is easy to see that any solution must be of the form
uy = U(sint),v; = V(sint),a = W(sint),
where the functions U(z), V(x) and W (z) defined on |0, 1] satisfy

d d
r(—2+ 3m2)%V - 333%U +4WV =0

d
z(1— :1:2)%‘/ +22U(1 = W)+ (2= 32> )WV =0

—8+ 922 + 8(1 — )W — 2*U? + (8 — 92*)V? + (4 — 622)UV = 0.

We rewrite the ODEs as

z(1— x2)%v =—2’U(1-W)—(2-32 )WV  (252)

d
23(1 — :UQ)%U =2%(2—-32>)U(1 — W) + (8 — 162° +9z%)  (2.53)

—8+ 922 +8(1 — 2 )W — 2°U? + (8 — 92*)V? + (4 — 62°)UV = 0.  (2.54)
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It is clear that the system (2.52), (2.53), (2.54) has many solutions which have

possible singularities along x = 0 and x = 1.

Theorem 2.4.8. Each solution of the ode system (2.52), (2.53), (2.54) and a real
number A determine a unique Hermitian-Yang-Mills connection on the trivial SU(2)

bundle over S8, with possible singularities along submanifolds S* and S3.

Remark 2.4.9. [t is interesting to ask whether we could apply Corollary (2.2.11)
or (2.2.12) to remove the possible singularities along S?. This is doable by analyzing

the singular behavior of the above ODE system along x = 0.
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3

Pseudo-Holomorphic Curves in Nearly Kihler CP?

3.1 Structure equations, projective spaces, and the flag manifold

In this section we collect some facts needed in the next section and formulate them
in terms of the moving frame. Let H denote the real division algebra of quaternions.
An element of H can be written uniquely as ¢ = z 4+ jw where z,w € C and j € H
satisfies

=17 = jz

for all z € C. In this way we regard C as subalgebra of H and give H the structure
of a complex vector space by letting C act on the right. We let H? denote the space
of pairs (¢1,¢2) where ¢; € H. We will make H? into a quarternion vector space by

letting H act on the right

(q1,92)q = (014, ¢29)-

This automatically makes H? into a complex vector space of dimension 4. In fact,

regarding C* as the space of 4-tuples (z1, 29, 23, z4) We make the explicit identification
(21, 22, 23, 21) ~ (21 + Jz2, 23 + jza).
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This specific isomorphism is the one we will always mean when we write C* = H2.
If v € H2\ (0, 0) is given, let vC and vH denote respectively the complex line and the
quaternion line spanned by v. The assignment vC — vH is a well-defined mapping

T : CP3 — HP'. The fibers of T are CPYs. So we have a fibration
crP! - cCp?
! (3.1)
HP!

This is the famous twistor fibration. In order to study its geometry more thoroughly,
we will now introduce the structure equations of H?. First, we endow H? with a

quaternion inner product (,) : H*> x H> — H defined by

((q1,92), (1, 2)) = @ip1 + G-

We have identities

(v,wq) = (v,w) q, (v,w) = (w,v), (vg,w) = G {v,w).

Moreover, Re (,) is a positive definite inner product that gives H? the structure of
a BEuclidean space E®. Let § denote the space of pairs f = (e, ep) with ¢; € H?
satisfying

(e1,e1) = (eg,e9) =1, (ey,e9) = 0.
We regard e;(f) as functions on § with values in H?. Clearly, e;(F) = ST C E® = H2.
It is well known that § maybe canonically identified with Sp(2) up to a left translation

in Sp(2). There are unique quaternion-valued 1-forms {¢g} so that

dea = €b¢27 (32)

Ao + ¢ A 65 = 0, (3.3)
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and

¢ + ¢ = 0. (3.4)
We define two canonical maps C; : § — CP? and C, : § — CP? by sending f € §
to the complex lines spanned by e;(f) and ex(f) respectively. Recall that we have
denoted the Kihler projective space by CP? and the nearly Kéhler one by CP?
whose structure will be explicitly described below. We are mainly interested in CP?.
However, CP? will play an important role. We now write structure equations for C;
and Cs. First, we immediately see that C) gives § the structure of an S* x S? bundle
over CP?, where we have identified S* with the unit complex numbers and S* with

the unit quaternions. The action is given by

f<27Q) - (61762)<27q) - (6127€2Q)7

where z € St and ¢ € S3. If we set

[ﬂ ¢%}_ ip1+ Jws —%—l-j%
o 95 S iyt gt

where p; and py are real 1-forms while wy, ws, w3 and 7 are complex-valued, we may

rewrite one part of the structure equation (3.3) relative to the S' x S? structure on

CP? as
Wy i(pa — p1) —7 0 Wy Wy A W3
d Woy = — T —Z(pl + pg) 0 ANl wo +1| w3 Aw; . (35)
w3 0 0 22[)1 W3 w1 N\ wo

This in particular defines a nearly Kéhler structure on CP? by requiring wy, ws and
ws to be of type (1,0) (note that this almost complex structure is nonintegrable, thus

different from the usual integrable one). We denote

( KT 12 ) _ < ilp2—p1) -7 >
Kol K92 T —i(p1 + p2)
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and k33 = 2¢p; in the usual notation of a connection. Then the other part of the

structure equation (3.3) may be written as the curvature of this nearly Kéhler struc-

ture
d(ffll H12>+<f€11 /€12>/\(ff11 ff12)
Ro1 Kod Ro1 ka2 Ro1 Kod
o wl/\uTl—wg,/\w_g w1 N\ Wy
T\ wa Ay Wy N\ Wy — w3 A\ w3
as well as
dkgz = — (w1 AWT 4wy Alog — 2ws A W3). (3.6)

In an exactly analogous fashion, C5 gives § a structure of an S x S3 bundle over

CP? with the action now given by

(e1,e2)(q, 2) = (e1q; €22),

where z € S' and ¢ € S3. However, w;, ws, K13 and their complex conjugates become
semibasic and ws is not. The usual Kihler structure on CP? is defined by requiring
w2

%, % and ko7 to be of type (1,0) and unitary. Relative to this Kéahler structure,

we may rewrite part of the structure equations as

wa

wL — ke _ w1
K w
\/5 11 3 w\l/i V2
w2 _ e = w2
2 |l =—| —w3 =K “L g .
dl % 3ok A (37)
_ wy T ko5 — KT -
Kot V2 V2 ez — ki Kot

We will also need some properties of the flag manifold F1 = /(U (1) x U(1)). Equiv-
alently, F1 consists of pairs of complex lines ([e1], [e2]) with (e1,e2) = 0. Of course
§ defines a natural S' x S! structure on F1 for which the forms wy,ws, ws, Koy and

their complex conjugates are semibasic. Moreover, we have a double fibration of F1
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over the two projective spaces:

Fl (3.8)

We denote the first fibration by II; and the second fibration by Il;. Explicitly I,
(a = 1,2) sends ([eq], [e2]) € F1 to the complex line [e,]. By requiring @y, wa, ws, Kot
to be complex linear we define an almost complex structure on F1. It is easy to check
from the structure equations that this almost complex structure is integrable and Il
is thus a holomorphic projection.

Finally, there are various complex vector bundles associated with § that will be
important. First, on CP?, there are two obvious complex bundles, the tautological
bundle € and the trivial rank 4 bundle C*. We view ¢ as the subbundle of C* spanned
by e; and denote the quotient bundle by ). Using the obvious Hermitian product,
we identify Q as a subbundle of C* locally spanned by e, es and eyj. Note that e;j
itself spans a well-defined line bundle, which is isomorphic to €*. Denote the quotient
Q/€* by @ which, again, may be regarded as a subbunle of C* locally spanned by
€9, €2j. We write TCP? the complex tangent bundle of CP?. The S* x S? determines
a splitting

TCP’=HaV,
where ‘H has rank 2 and V has rank 1. We call ‘H the horizontal part and V the
vertical part relative to the fibration 3.1. One can show V is isomorphic to €2 as

a Hermitian line bundle by locally identifying \%61 ® ey with the complex tangent

vector dual to the (1,0) form wy, denoted by fi. Similarly H is isomorphic to €* ® Q

with \%e’{@eg identified with the tangent vector f; dual to wy and \%ef@@ j identified
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with f3 dual to ws. Pulled back to F1 by II;, the bundles Q splits as

I:Q =éd &,

where € is locally spanned by e; and €* denotes its dual, locally spanned by epj. Of

course II7H splits correspondingly as
MMH=€Qepe @€,

Similar constructions apply to CP?. We will only point out differences and some
relations. The tautological bundle on CP? becomes é when pulled back to F1. The
complex tangent bundle also splits as a sum of a vertical part V and a horizontal
part H. The vertical part is isomorphic to (¢*)? compared with the CP? case because
of the reversed almost complex structure. The horizontal part, when pulled back by
I1; to F1, is isomorphic to €* ® " @ €* ® e. Note this splitting shares a common factor
with II7H, which will become important later. In the various isomorphisms, we no
longer need the \/Li to make them Hermitian. Moreover, since the almost complex
structure on CP? is integrable, many of these bundles have holomorphic structures.
Among them, the dual of the vertical tangent bundle of CP?, which we denote by
V*, is particularly important. Locally, V* is spanned by k,7 as a subbundle of the

complex cotangent bundle of CP?. We have the following result due to Bryant [9]

Lemma 3.1.1. The bundle V* is isomorphic to € as a Hermitian holomorphic line

bundle. Moreover, it induces a holomorphic contact structure on CP?.
The integrals of this holomorphic contact system were thoroughly investigated in
9] (see Section 3).

3.2 Pseudo-holomorphic curves in CP?

Let M? be a connected Riemann surface. A map X : M? — CP? is called a pseudo-

holomorphic curve if X is nonconstant and the differential of X commutes with the
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almost complex structures. We let = : §x — M?, Vx — M? and Hx — M? be the
pullback bundles of § — CP?, V — CP? and H — CP? respectively. Thus, for
instance, we have
Sx = {(z,f) € M* x §|X(z) = C1(f)}.

Of course, §x is an S! x S% bundle over M? and Vx and Hx are Hermitian complex
bundles of rank 1 and 2 respectively. Moreover, the natural map §x — § pulls back
various quantities on §, which we still denote by the same letters. For example, fi, f3
now denote functions on Fx valued in Hx. The structure equations (3.5), (3.6) and
(3.6) still hold, on Fx now. Also for functions and sections with domains in M?, we
will pull these back up via 2* to Fx. For example, any section s : M? — Hx can be
written in the form s = fis; + f3s2 where s; are complex functions on §y. Using this
convention, the pullback of s induces connections on Hyx and Vx compatible with

the Hermitian structures. Namely V : T'(Hyx) — I'(Hx ® T*M?) is given by
V(fisi) = fi ® (ds; + Kijs;).

Since we are working over a Riemann surface, it is well-known that there are unique
holomorphic structures on Hy and Vx compatible with these connections. From
now on we will regard these two bundles as holomorphic Hermitian vector bundles
over M?2.

Another thing to notice is that {w;} are semi-basic with respect to = : Fx — M?=.

Moreover, they are of type (1,0) since dX is complex linear. Set
L=fi®w+ faQuw,Ir = f3Qws.

It is clear that I; and I, are well defined sections of Hy @ T*M? and V @ T*M?

respectively where T*M? is the holomorphic line bundle of (1,0) forms on M?2.

Lemma 3.2.1. The sections 1; and I, are holomorphic. Moreover, I, and Iy only

vanish at isolated points unless X (M?) is horizontal ( when Iy vanishes identically)
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or vertical (when I, vanishes identically and thus X(M?) is an open set of a fiber

CP! in (3.1)).

Proof. We only show I is holomorphic and leave Iy for the reader. Choose a uni-
formizing parameter z on a neighborhood of g € M. In a neighborhood of z7!(xy),
there exist functions a; so that w; = a;dz. It follows that w; A w; = 0, so we have

dw; = —k;5 A wj. This translates to (da; + /@i;aj) A dz = 0 so there exist b; so that
dai + Hijaj = ble

Thus, when we compute 0I; we have

oL = (V(fia;) ®dz)*!
= f; Rdz ® (da, + Iiﬁaj)o’l
= fi®dz® (bydz)"!
= ()’
so I is holomorphic. Moreover, by complex analysis, if I or I, vanishes at a sequence

of points with an accumulation, the section has to be identically 0 since M? is

connected.

]

Remark 3.2.2. [t is clear that 1; and Iy are just horizontal and vertical parts of the

evaluation map X.(TM) — Tx.

We will call a curve with I = 0 (I = 0) vertical (horizontal). Of course vertical
curves are just the fibers CP' of 7. To study horizontal curves it does no harm to
reverse the almost complex structure on the fiber of T'. This new complex structure is
integrable and actually equivalent to the usual complex structure on the 3 projective
space. The horizontal bundle H turns out to be a holomorphic contact structure

under the usual complex structure. The integral curves of this contact system are
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thoroughly described in [9]. We therefore have a good understanding of horizontal
pseudo-holomorphic curves in CP?.

We now assume I is not identically 0. There exists a holomorphic line bundle
L C Hx so that I; is a nonzero section of L @ T*M. We let R; be the ramification

divisor of I;. That is,

R, = Z ord,(I)p.

pIi(p)=0

Ry is obviously effective, and we have
L=TM ® [Ry].

Similarly if I does not vanish identically let Ry be the ramification divisor of I.
Then R is effective and

Now we adapt frames in accordance with the general theory. We let Sg) be the

subbundle of pairs (x, f) with f; € L,. Then sﬁ? is a U(1) x U(1) bundle over M.
The canonical connection on L is described as follows: If s : M — L is a section,

then s = f555 for some function s, on 3&?. Then
Vs = fﬁ ® (dSQ + /412@82).

Similarly the quotient bundle Nx = Hx/L has a natural holomorphic Hermitian
structure. Let (fi) : g? — Nx be the function f; followed by the projection

Hx — Nx. If s: M — N is any section, then s = (f1)s; for s; on gﬁ? and we have
Vs = (f1) ® (dsy + K1151).

Note since I has values in L ®T* M, we must have w; = 0 on Sgp. If we differentiate

this using structure equations (3.5) we have

dwy = —Kyg Awe = 0.
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It follows that k5 is of type (1,0).

Lemma 3.2.3. Let IT = (f7) ® fo ® k13 where fy is the dual of f5. Then 11 is a
holomorphic section of Nx ® L* @ T*M.

Proof. Since k3 is of type (1,0), there exists b locally such that x5 = bdz. The
structure equations (3.6) pulled back to FWU gives drkis = —K11 A K13 — K13 A Koz +

w1 Awy = — (K11 — Ko3) A Kq3. This translates into
(db+ (K11 — Ka3)b) Adz = 0.
The rest follows exactly as in Lemma 3.2.1. [
We say a curve has null-torsion if II = 0. Since A>’H ® V = C we have
Nx®LoV=C.

If IT is not identically 0, we define the planar divisor by

P= > ord,ID)p.

p:II(p)=0

In this case, we have

Nx = [Pl®@ L& TM.

Theorem 3.2.4. Let M = CP'. Then any complex curve X : M — CP? either is

one of the vertical fibers or horizontal or has null-torsion.

Proof. Assume both I; and I, are not identically 0. We must show that IT vanishes

identically. If not, we have, for Ry, Ry, P > 0,
Vx =[Re]®TM,L=[R)|®@TM,Nx =[P]|® L®&TM,
which implies, since Ny ® L ® V = C, that
(TM)? ® 2Ry + P+ Ry] = C,

thus degT'M < 0, but degT’M = 2 when M = CP'. O
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Remark 3.2.5. The computation in this theorem actually shows that if M? has
genus g, then any pseudo-holomorphic curve X : M — CP? with none of Iy, I, and

1T vanishing identically must satisfy
6(g — 1) = 2deg(Ry) + deg(R2) + deg(P).

This puts severe restrictions on the bundles L, Vx and Nx. For example, if g = 1,
so that M is elliptic, then a pseudo-holomorphic curve X : M — CP? must satisfy
Ri=Ry=P=0, sothat Vx =TM, L =TM and Nx = (TM)>2.

If the pseudo-holomorphic curve X : M? — CP? has I # 0, we have a lift of X
to a map X : M? — FI defined by z — (X (z), Nx(z) ® X(z)). Some clarification
may be necessary. The bundle Nx can be viewed canonically as a subbundle of
X*(Q ® ¢) € C*® X*(¢*). By tensoring with X*e and canonically identifying
e ® e* = C we see that Nx(z) ® X*(¢)(r) = Nx(r) ® X(x) is a complex line in C*.
It is easy to see that this line is Hermitian orthogonal to X (z) C € and X(z)j C €*
and thus X is well-defined. Moreover, X has null torsion iff X *(ko1) = 0. Composed
with II, : F1 — CP?, X induces a map Y = I, 0 X : M2 — CP?,

Theorem 3.2.6. The assignment X +— Y establishes a 1 — 1 correspondence be-
tween null-torsion pseudo-holomorphic curves in CP? and nonconstant holomorphic

integrals of the holomorphic contact system V* on CP?.

Proof. 1t is clear from the structure equations (3.7) that Y is an integral of V* if
X has null torsion. Conversely, if Y : M? — CP? is a nonconstant holomorphic
integral of V*, there exists a unique line bundle £ ¢ H C TCP? which contains
Y.TM. Welift Y to a map Y : M2 — Flby 2 — ((H/L)(z) ® Y(z),Y(x)).
We define the corresponding map X = II; o Y : M — CP? It is clear from the
structure equations(3.5) that such an X has null-torsion. We next show that if
we start with null-torsion curve X : M? — CP? and run through the procedure
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X — Y — X of the above constructions, we arrive at the original curve. In fact the
frame adaptations we made before show that we can arrange {e,} so that II{Lx(z)
is spanned by \/Liegj ® e} and I1{ Nx (z) is spanned by %62 ® e;. Thus by definition
Y(z) = [es]. Since wy = 0, II5L is spanned by e;j by the structure equations.
Therefore II5(H/L) = [e] from which we see II; (Y (z)) = X (). We omit the proof

that if we start with Y and run the procedure of constructions ¥ — X — Y we get

Y back. O

As mentioned before, a powerful construction the integrals of the holomorphic
contact system V* was provided in [9] (see Section 3). Of course, there are corre-
sponding results about null-torsion pseudo-holomorphic curves in CP?. We omit the

details for most of translation work and only mention some consequences.

Theorem 3.2.7. Let M be a compact Riemann surface. There always exists a

pseudo-holomorphic embedding M — CP? with null torsion.

This is the translation of Theorem G in [9)].

A horizontal pseudo-holomorphic curve X : M? — CP? with null torsion cor-
responds to Y : M? — CP? which is simply a projective line CP* (see the remark
in [9] following Theorem F). In particular, if M # S? and let X : M — CP? be
null-torsion, X is neither vertical or horizontal. On the other hand, it is easy to
construct a horizontal rational curve Y : S?> — CP? which is not a complex line
using the “Weierstrass formula” in Theorem F in [9]. The corresponding X will be

neither vertical nor horizontal. We state these as the following

Corollary 3.2.8. For any Riemann surface M, there exists a pseudo-holomorphic

curve X : M — CP? which is neither vertical nor horizontal.
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A rational pseudo-holomorphic curve is either vertical or horizontal or has null
torsion. Both horizontal and null-torsion curves are reduced to integrals of the holo-
morphic contact system V* by Theorem 2.2. By the result in [9], Section 2, such an
integral represents a lift of a minimal 2-sphere in S*. Thus the space of nonvertical
rational curves in CP? can be regarded as the union of 2 copies of the space of mini-
mal 2-spheres in S*. These two copies have a nonempty intersection, corresponding

to geodesic 2-spheres.
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4

Summary

In this summary, we discuss further research directions.

It is an open problem to construct nonhomogeneous nearly Kahler 6-manifolds.
One way might be to consider the submanifolds in a G5 manifold. Since Joyce has
constructed many compact manifolds with G5 holonomy, it is natural to ask what
kind of SU(3) structures their submanifolds could have. Note that the normal bundle
essentially gives the almost complex structure. So conditions on Nijenhaus tensor
translates into conditions on normal bundle. Thus the question is largely on sub-
manifolds with special normal bundle, a subject studied extensively from integrable
system point of view.

Anti-self-dual connections on nearly Kahler manifolds have much left to explore.
It is natural to ask whether the Chern-Simons functional is Morse-Smale. If this is
true, it is natural to ask what kind of invariants can be built out of the study of

Morse theory on the moduli. The discussion in this thesis may provide some hint.
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