Color Transparency Phenomenon and Nuclear Physics

Measuring color transparency effects provides a promising new method to inves-
tigate nucleon and nuclear structure in the domain of non-perturbative QCD,
construct a theory of superdense nuclear matter, and disentangle the physics of
heavy ion collisions. The simplest versions of popular hadronic models show that
interesting pheonomena may exist for momentum transfers as low as about 1

GeV/c2
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1. INTRODUCTION

Final state interactions, FSI, are the bane of a physicist’s existence.
This Comment is concerned with the possibility that FSI do not
occur in certain high momentum transfer reactions involving nu-
clear targets. This absence is caused by the cancellation of color
fields produced by a system of closely separated quarks and gluons,
and is termed color transparency. We will explain how the obser-
vation of this phenomenon would become a new testing ground
of models of nucleons, nuclei, and QCD. The physics we consider
is accessible to lepton and hadron beams of energy from 4 to 40
GeV/c. Related physics issues at larger energies are discussed in
Ref. 1.

The absence of FSI may seem very surprising to some. We
therefore begin with an old example. Consider the decays of ul-
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trafast pions m° — e*e~y in emulsion and study the dependence
of ionization on the distance traveled by the e* e~ pair. Following
a suggestion by King, Perkins® found that for small distances there
are very few ionizing interactions (Fig. 1). Perkins explained: ini-
tially the e* and e~ are produced at the same point, so the pair
acts as a dipole with small radius. The electromagnetic interactions
are cancelled and there are very few ionizing interactions. The
initial small (» ~ r,,) pair is not a positron eigenstate, so it separates
as it moves. Thus at larger separations, interactions do occur. The
data sample used by Perkins involved only 7 events, but further
cosmic ray measurements confirmed this charge screening effect.>*

Such charge screening effects may occur in QCD as effects of
color transparency. The existence of color transparency depends
on (1) the formation of a small-sized wave packet in a high mo-
mentum transfer reaction. (2) The interaction between such an
object and nucleons is suppressed (color neutrality or screening)
in a manner similar to the example of the previous paragraph. (3)
If the wave packet escapes the nucleus while still small, no or
reduced FSI occur. The remainder of this section defines the term
“color transparency” and explains the necessary three require-
ments. Examples of color screening phenomena are discussed in
Section 2. Section 3 is concerned with how the wave packet escapes
from the nucleus. The ability to form a small wave packet is dis-
cussed in the context of constituent quark, bag, cloudy bag and
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FIGURE 1 Interaction (ionization) probability vs. distance from the origin of the

e*e” pair.



Skyrmion models and lattice theory calculations in Section 4. The
effects of small-sized wave packets on the nuclear ground state
and heavy ion collisions are also discussed in Section 4. The scant
relevant data are reviewed in Section 5. The final section contains
a summary and perspectives for the future.

1.1. Defining Color Transparency

First we discuss the notion of transparency in nuclear physics. In
traditional nuclear theory, strongly interacting particles experience
absorbtion. Imagine shooting a beam of protons at a nucleus, and
measuring the number that emerge with momentum close to the
initial value. The number coming out is smaller than the number
coming in by a factor ~ e~£#?, Here L is the distance traversed
by a particle moving straight through the nucleus, p is the nuclear
density, and the proton—nucleon total cross section is o. The ex-
ponential decrease with L and the corresponding forward peaked
Frauenhoffer diffraction pattern nature of the angular distribution
for elastic scattering are the signatures of opacity or black disk
physics.

Now consider another situation. Suppose a proton impinges on
a nucleus, and knocks out a proton initially at rest, in a high
momentum transfer reaction. The idea of color transparency is
that in this case there is no exponential loss of flux—the black
disk is not present and transparency exists!

This is just one example, the (p, 2p) reaction, of color trans-
parency. This phenomenon could occur in a number of high mo-
mentum transfer reactions. Others could be the wide angle high
energy (e, e'p) or (m, mwp) reactions.

To be specific, we consider processes for which the fundamental
reaction is elastic, or at least a two-body reaction. For example,
in electron scattering the proton absorption of a high energy virtual
photon leads to a high energy proton, or a A, or an N*. Then a
high energy baryon emerges from the nucleus, with the residual
nucleus often left in an excited state. One must know the excitation
energy to ensure that no extra pions are created in the hadronic
process. Reactions in which the kinematic resolution is good enough
to assure that the hadronic reaction is two body have been termed
“semi-exclusive”.’ Here we define color transparency CT as the



suppression of absorption in hadron—nucleus ‘“‘semi-exclusive” in-
teractions.

1.2. Origins of Color Transparency
We discuss the three requirements for color transparency.

1. Small objects are produced at high Q?* in two-body wide angle
reactions. High momentum transfer is associated (via Fourier trans-
formations) with small lengths. Here we go a step further. We
assert that if a proton absorbs a photon of four-momentum transfer
squared — Q?, the ejected wave packet (ejectile) as well as dom-
inant configurations in the initial protons behave as a small object
of transverse size 1/Q® where 1 = a > 0.

To see how the small size arises, consider first an example based
on quark counting rules. Suppose a quark in a proton absorbs a
photon. The struck quark is off energy shell by AE ~ |q| = Q, so
it has a lifetime 7 determined by the uncertainty principle r = 1/Q.
The virtual quark must decay by emitting a particle (gluon). We
want to measure a proton (or low-lying nucleon isobar) in the final
state. The final state can be a proton (isobar) only if nearby quarks
absorb the decay products; the other quarks must be a distance
r = ct ~ 1/Q away from the off-shell quark.

This argument has the flavor of perturbative quantum chro-
modynamics pQCD, but ignores the infinite number of bare quarks
and gluons that occupy each hadron. A more general argument is
that at high energies, in a wide angle high energy two-body col-
lision, the color current abruptly changes its direction. Such a
process is ordinarily accompanied by radiation of gluons and the
formation of multi-particle final states. The only possibility to avoid
this radiation (and have a two-body final state) is if the color charge
is localized in a small volume before and after the collision. (An
accelerated point-like neutral object does not radiate.) Thus the
interacting hadronic configurations need not be those of a minimal
number of partons. Furthermore the Feynman mechanism® (in
which a single quark carrying the whole hadronic momentum is
turned around by the hard photon) becomes inoperative at large
Q?, since too many gluons would be emitted. This gluon radiation
physics is strictly valid for sufficiently large momentum transfer



and the size r ~ 1/Q% with (0 < a < 1) instead of the 1/Q of quark
ccrinting rules.

An interesting question concerns the value of Q? required for
the gluon radiation effects to be strong enough to suppress the
Feynman mechanism. This is important, since in the Feynman
mechanism the hadron size arises from the transverse distribution
of slow or wee partons. Since the wee partons are not influenced
by the hard collision, a small sized ejectile would not be formed
and color transparency would not occur. The current level of
understanding of QCD does not allow us to know the minimum
momentum transfer required. If radiation of gluons with transverse
momenta as small as 0.3 GeV/c is essential in the hard processes,
then values of 0 as small as several GeV? would be sufficient.
This scenario is popular in the theoretical description of hard pro-
cesses, see, e.g., Ref. 7. However, in the dispersion sum rule
approach, in which it is argued that perturbative QCD effects are
a small correction, much larger values of Q? are required. For
example, Bakulov and Radushkin® find the Feynman mechanism
to dominate the pion form factor for values of Q? up to 10 GeV?2.
Thus if the dispersion sum rule approach to the pion (nucleon)
form factor is correct, color transparency may not be observed in
experimentally feasible nuclear quasielastic processes.

The small object created in a high Q? reaction is a coherent
superposition of physical states. This is a wave packet. Some au-
thors use the expression “little proton” to describe this wave packet.
This is not correct: the only proton is the physical proton with its
well measured size and trivial eigenstate time dependence. We use
the term point-like transverse sized configurations, PLC here, though
small size configuration, SSC, may be more appropriate. Other
authors®!? term the small object an “‘ejectile”.

2. Small objects have small cross sections. The color field of a small
color neutral (singlet) object is suppressed because fields of indi-
vidual closely separated quarks and gluons cancel each other. Thus
the interactions between the small color singlet wave packet and
nucleons are smaller than those between ordinary hadrons and
nucleons. This is a consequence of color neutrality which is the
QCD analog of the QED concept of charge neutrality. Another
popular name for color neutrality is color screening. We treat these



two phrases as equivalent. Color screening also predicts that ha-
dronic cross sections depend on hadronic sizes, with hadron (h)-
nucleon (N) cross sections varying as o,y ~ r2r%. This relation is
called geometric scaling which seems to be applicable in a larger
kinematical region than pQCD. As discussed in Section 2, there
is a great variety of evidence supporting the idea that small objects
have small cross sections.

3. The PLC must escape the nucleus before expanding. The PLC is
not a stationary state, so it undergoes time evolution. Its size in-
creases, since (by definition) the PLC starts as small. Consider a
small object in its rest frame. It expands with a characteristic time
defined as 7,. A reasonable guess is that 7, = 1 fm. Now suppose
the object moves with high energy E in the lab. Time dilation in-
creases this time by a factor of E/m, so the relevant expansion time
T is given by 7 = E/mr,. For sufficiently large energies, 7 is long
enough so that the object can leave the nucleus while small enough
to avoid final state interactions. Then CT occurs. References 1, 5,
9, and 10 contain arguments that the mass m used to compute the
time dilation effect is about equal to the average of the masses of
the nucleon and its first excitation. For presently available energies,
7 < 57y = 5 fm is small enough so that the PLC expands significantly
as it moves through the nucleus. Thus the final state interaction is
suppressed but does not disappear.

CT means that only the small size configurations get through
the nucleus. These PLC have overlaps with baryon resonances.
Thus a large cross section for baryon resonance production is ex-
pected, even for those resonances which ordinarily interact strongly
with the nucleons.'!:1? This is the analogue of diffraction of light
from a black disk.

The idea that a hadron in a PLC may interact with a small cross
section was discussed a long time ago®’ as an explanation of the
smallness of the J¥-nucleon cross section and was illustrated by
an analysis of pair-production by high energy photons in the nu-
clear Coulomb field.%®

The requirements for color transparency to occur in nuclear
physics were set down by Mueller!® and Brodsky!* on the basis of
perturbative QCD. The importance of the expansion of the PLC
with time was found by Farrar etal.® and by Jennings and Miller. 1015



(See also Ref. 16.) The idea that color neutrality (screening) causes
the cross section for the interaction of color singlet configurations
with hadrons to be proportional to the square of the radius of the
region occupied by color was put forward by Low,!” Nussinov'®
and Gunion and Soper.' These authors assumed the high energy
hadron-hadron interaction to be dominated by the exchange of
two gluons. The applications of this model to soft high energy
hadron collisions and references are discussed in Ref. 20. The
limitations of this two gluon exchange model are discussed in Sec-
tion 2. It is interesting to note that color neutrality (screening) is
closely connected with the observation of Bjorken scaling at small
x; see Refs. 1, 21, 22 and Section 2 below.

A nonperturbative mechanism for suppression of the interaction
of PLC with hadrons has been suggested by Frankfurt and Strikman??
on the basis of quark models: the emission of mesons from a baryon
in a PLC is suppressed because the meson—baryon wave function
overlap is small if the baryon is very small. Indeed the one-meson
exchange contribution to the ejectile—nucleon scattering amplitude
is expected to have a dependence on size similar to that obtained
from the two-gluon exchange model.

We believe it desirable to use the separate terms color screening
and color transparency. The term color transparency describes the
vanishing of the hadron—nucleus interactions in semi-exclusive high
(? reactions. Color screening leads to geometric scaling and Bjor-
ken scaling, so it seems well verified. Unlike color screening, the
existence of color transparency at feasible energies is still an open
question.

2. COLOR SCREENING (NEUTRALITY) PHENOMENA

Quantum chromodynamics (QCD) is a non-Abelian gauge theory
of quarks and gluons. The most prominent property of such a
theory is that of asymptotic freedom. We are concerned here with
the other distinctive feature of QCD-color screening.

We start with the evidence concerning geometric scaling. The
cross section for the interaction of an energetic colorless wave



packet of small transverse size PLC characterized by a length b
with a target should be small in QCD:

oFLC ~ b2, (1)

At sufficiently small b2 the running coupling constant o, (b?) is small
enough to apply methods of perturbative QCD. Then two gluon
exchange effects are dominant, except for the processes occurring
at extremely high energies. Equation (1) is a consequence of
color screening and gauge invariance in the two-gluon exchange
model,”~1 if a,(b?) << 1 and the beam energy is large enough
so that the configuration is unchanged (frozen) during the collision.
Logarithmic correction (In(b?)) terms are ignored in Eq. (1).

The two gluon exchange model of soft hadron processes can be
used as an illustrative model only since the coupling constant is
not truly small. Furthermore, the calculated radiative corrections
to this model lead to an increase of the cross section as =~ s1/224
which is obviously at variance with the experimental data. The
current experimental data (e.g., Ref. 25) on diffractive hadron
production corresponds to behavior in between (1 — x)° and x(1
—

It is worthwhile noting that Eq. (1) is not the same as the stan-
dard one (2w(r, + r,)?) for collisions of two black objects of radii
r, and r,. In the standard formula, the cross section does not vanish
as r, tends towards 0. But color screening effects can completely
eliminate a cross section.

Color screening has been investigated many times. The most
important manifestation occurs in the existence of precocious Bjor-
ken scaling in the deep inelastic lepton—proton scattering (DIS).
At low x, the interaction proceeds by the conversion of the highly
virtual vy into a qg well before the photon hits the target. The
lifetime of the g4 fluctuation is 1/2myx, which is large for small
values of x. Thus the small x DIS process is the QCD analogue of
the Perkins experiment.? For scaling to be obtained, the large gg—
proton interaction must be restricted to configurations in which
the pair has a small transverse momentum?? and hence a significant
transverse separation. Another observation is that including color
screening effects prevents the cross section for real photons from
increasing rapidly with energy at FNAL energies.!



Still another method'' is to study jet production in deep ine-
lastic lepton scattering off nuclei. This is because nuclear shad-
owing depends on the intrinsic transverse momentum of produced
jets. The transverse momentum «, varies as k> ~ 1/b2, so that jets
characterized by large values of k, should undergo less nuclear
shadowing than jets of smaller k,. One more consequence of color
screening occurs in the nuclear photoproduction of charmed par-
ticles. The essential distance between the ¢ and ¢ quarks is b*> ~
1/m? which is much smaller than for the lightest quarks. Thus,
color screening should be more essential in this case'?! and there
should be less nuclear shadowing than for the production of par-
ticles made of lighter quarks.

The analysis'-?! shows that experimental data on the phenomena
mentioned in the preceding paragraph are all consistent with the
notion that Eq. (1) may be applicable for rather large values of
b%:

b? < 0.25 fm2, )

Moreover the observed pattern of total cross sections of hadron-—
nucleon scattering

Inn _ Tor _ OkN
55 TS T ®)

is entirely consistent with Eq. (1).2¢

The appearance of Eq. (1) and its gluonic origin might seem
rather strange to most nuclear physicists who take interactions to
originate from mesonic exchanges. It turns out that an equation
like Eq. (1) holds for the emission of a meson (M) from a PLC.
The radiation of a meson from a nucleonic (N) PLC is suppressed
by the factor:

r /P,
R — = ple.ple M ple = (rlch/rM)z' (4)

I—‘N,N,M

Here I' is the appropriate vertex; P, is the probability that the
point-like small size configuration exists in the nucleon, and r,, is



the average radius of the meson. Studies!2"*3-27 of the coupling
of a three-quark PLC to a composite meson show that Eq. (4) is
reasonable.

High energy diffractive processes also provide evidence for geo-
metric scaling. At Fermilab and ISR energies, wave packets have
no significant expansion during the reaction process, so one may
concentrate on the b?-dependence of the wave packet—nucleon
scattering amplitude. This is mainly imaginary, so the optical theo-
rem allows us to speak of the wave packet—nucleon cross section.
The relevant quark distribution can be characterized as ¥2(b?),
the square of the hadron wave function integrated over the lon-
gitudinal momentum, with b the transverse size operator. The cross
section depends upon b? according to, e.g., Eq. (1). Thus the
hadron—-nucleon AN scattering cross section is given by

Ty = f d2bW2(b?)o(b?). 5)

It is useful to rewrite Eq. (5) in terms of a probability, P(a), that
the system has a cross section, . Then

auN = de'P(O')O'. 6)

The quantity P(c) combines information regarding the basic wave
function (space size, number of wee partons, etc.) and the b?
dependence of the scattering operator in a manner that can be
measured in diffractive processes. The central issue is the width
of P(c). For example, it would be difficult to see how Eq. (1)
could be valid if P(g) were a delta function.

An analysis?®® of FNAL and ISR data shows that fdoP(0)g? =
1.2 — 1.30%,, so that P(o) is broad. Practically the same value
for the second moment follows from the analysis of the inelastic
correction to the total p-deuteron cross section.?® This connection
was first noticed in Ref. 30. The broad nature of P(c) supports
the notion of color screening, Eq. (1) and the existence of PLC.

3. TIME SCALE FOR ESCAPE

Suppose a PLC is produced in the interior of the nucleus. Let 7,
be the rest-frame time for a quantum fluctuation to take the PLC
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into a normal sized configuration. A moving PLC expands in a
time 7 = 7oE/m where the factor E/m accounts for time dilation
effects. At sufficiently large energies E, the length (= c1) required
for expansion can be larger than the nuclear diameter, and the
PLC leaves the nucleus without much expansion. In that high E
situation the PLC can be regarded as “frozen” during the escape
process.

At lower energies, the PLC does expand as it moves through
the nucleus. The need to incorporate the effects of this expansion
in calculations of nuclear cross sections was recognized by Farrar
et al.’> Those authors model the PLC—nucleon cross section as a
function of the distance travelled Z from the point of hard inter-
action (cf. Fig. 1):

Z
U%LC(Z) = (Uhard + W [U - Uhard]>e(2p/p“2 - Z)

-2
+ ob ( p,z)' (7

Here p? ~ 0.5-0.6 GeV? as determined from multiperipheral pro-
cesses at high energies.?!

The linear dependence on Z can be seen by considering DIS at
small x for which the process y — g4 dominates. The gGg—nucleon
cross section must vary as o « 1/Q?, if Bjorken scaling is to be
obtained. But the g4 pair has a lifetime 1/2myx = v/Q?. Equating
the distance Z propagated with the lifetime yields Z « v/Q? = po,
which is the essential feature of Eq. (7). Thus the underlying phys-
ics behind Eq. (7) is that at the interaction point the square of the
effective mass of the wave packet is large, ~ Q2, so the expansion
rate is governed by the Lorentz dilated lifetime ~ p/Q? which is
much smaller than p/m3, while the interaction cross section for this
wave packet ~ 1/Q?.2! In pQCD this reasoning can be checked by
analyzing the relevant Feynman diagrams (see the discussion in
Ref. 1).

The time development of the PLC can also be computed using

11



hadronic basis states.” 10121316 Start with the PLC as formed by a
hard interaction 7 acting on a nucleon:

[PLC) = T4|N). (8)

The projection of |[PLC) on a nucleon |N) is the form factor F(Q?).
The PLC can be treated as a coherent linear superposition of
hadronic states that propagate through the nucleus. The interaction
with the nucleus U depends on the transverse separation b? be-
tween any pair of quarks in the [PLC). In the optical approximation

U= ~io(b)p(R). ©)

Only the imaginary part of U is kept and the optical theorem is
used. The density of target nucleus is p(R). The amplitude, M, for
the reaction is given as

M = (NJ1 + UG---)|PLC). (10)

At this stage we express the [PLC) in terms of baryonic states, m.
The Green’s function G is replaced by a sum of baryonic propa-
gators G,,. Then to first order in U,

M~ FN(QZ) it 2 fefipz<N|U'm)eip"'z<mIPLC>. v (11)

where p is the momentum of the outgoing nucleon and p,, = p +
(M? — M?2)/2p. The exponential e’~% arises from the eikonal
propagator G,,. For later purposes it is convenient to define op-
erators U and p (p2m) = (p? + MZ)|m)) so that

U = e~ #2yeirZ, (12)

Consider the work of Jennings and Miller as a concrete example.
They use Eq. (1) to describe o(b?) and a two-dimensional harmonic
oscillator for the baryonic states m. Then b? connects the nucleon
to the nucleon and only one resonant state (of mass M,). The first

12



order result®! is that the o of a standard calculation is replaced by
Oeff

o.4(Z) = o(1 — e~14r%) (13)

where Ap = (M? — M?)/2p and Z is the propagation length. Using
the frozen approximation of p — « leads to o4 = 0, and color
transparency occurs.

The quantity o is complex because it is derived from a cal-
culation of a scattering amplitude. The contribution to M propor-
tional to Im o is not coherent with the Born term and therefore
has little numerical effect for values of M, ranging from 1.3 to 2
GeV. The real part of o ~ Z? for small values of Z instead of
the linear dependence of Eq. (7). Such a dependence could arise
from a complex expansion coefficient present in a more general
treatment of the |PLC). The (e, ¢’p) and (p, 2p) cross sections
predicted by Ref. 5 are only somewhat different from those of
Refs. 10 and 20. The reason is shown in Fig. 2 which presents a
comparison of op; ¢ with the Re o (In each case the PLC is
taken as having no initial size.) For the displayed important values
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FIGURE 2 Comparison of o5/ of Ref. 9 with op, ¢ of Refs. 1 and 19. The distance
that the PLC travels is Z and [/, = 2p/p°.

13



of Z, the two terms are about the same. For larger values, the
PLC is no longer small and the nuclear absorption prevents much
further propagation.

The above discussion involves a first order treatment of U. It is
thus worthwhile to consider an exactly solvable model in which
the PLC is described as a superposition:

[PLC) = o|N) +BIN*). (14)
In general o and B are complex numbers representing elastic and
inelastic form factors. (In Ref. 10, o/B = 1.) Instead of using a
specific function o(b?) to construct the interaction U(Z) as in Egs.

(9) and (12) we demand that

0(z = 0)|PLC) = 0. (15)

In the two-state basis this means that

1 _g eiAp/
0(Z) = —iaop _ B ; (16)
_B_ e—lApZ a.—‘_/BZ

Here color screening Eq. (15) is incorporated via modeling a set
of matrix elements. Note that the ratios of the soft amplitudes for
N* to N production in nucleon—nucleon scattering are equal to
ratios of hard form factors. This is an example of a deep relation-
ship between soft and hard processes that should exist in QCD.
The necessary many states would complicate a more realistic treat-
ment. It may be easier to examine the c¢ system (J/ls, §')! to
discover these soft—hard relationships.

The interactions of U of Eq. (16) vanish at Z = 0, increase
with Z to a maximum at ApZ = @ and vanish again when ApZ =
2m. Thus the size of the PLC changes as it moves through the
nucleus. The transition operator T is obtained by solving the equa-
tion

,9T(2)

282

= UT(Z). (17)
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The model is rendered exactly soluble by assuming that the PLC
is produced at Z = 0 and propagates through a nuclear slab of
length L. Solving for the operator

e—iApZ 0
(75

simplifies the remaining algebra. The amplitude is
M = (N|T(L)[PLC), (18)

with the probability of a nucleon to traverse a distance L without
energy loss given by ||, Similarly, the N* production M. am-
plitude is

My = (N*|T(L)|PLC). (19)

The toy model results depend on the parameters M, and o/B.
An example is shown in Fig. 3 with M, = 2.4 GeV, o/ = 0.8
and op = 25 mb (1/6 fm ?). The displayed oscillations occur for
many values of a/f. Color transparency at high energies generally
occurs.

4. PLC IN HADRONS

Hadronic wavefunctions consist of many configurations, each with
its own coordinate space distribution. It is reasonable to expect
that high momentum transfer reactions are influenced by config-
urations of much smaller size than average. A natural candidate
is a configuration with the minimal number of bare quarks. The
masses of bare u, d, s quarks are small, so to avoid a ghost pole
due to transition of a nucleon into a system of three bare quarks,
the transverse momenta of quarks should be large. Thus the min-
imal Fock space configuration has a small size.!?! This idea is
supported by the recent lattice study®? of the pion wave function.
Figure 4 shows that the size of the g component is about half of
the pion size.

15



I.O T T T T T T T T l T — T
L =
L -~ Y
e
0.8 =]
Al i ~
(8] - ~
[
P r ~ i
Q06— =
(22 r -
c — -
g | ]
0.4 .~ .—-
L . 4
- ~. L— ;
I N = (pop)
02 i 1 1 i1 J;l 1 1 1 1 l 1 1 I i ]
(6] 5 10 15
momentum  (GeV)
FIGURE 3 Exactly solvable model results. The label “momentum” is that of the
incident y* or p.
I.o T T T T I T T T T l T T T T T 1 T T
[y |
-\ i
G.8E=N <Po Po>r .
Lo\ B8Sy2 -
.. -
0.6L \ 5
S 2
0.4 \\ ]
Z \ ]
L \
I \ -
0.2 \ =]
L % -
! = N
- \ﬁ. < —
olbuig a3 - b o PR el g 5y 4 7
(0] 2 4 6 8
r/a

FIGURE 4 Comparison (Ref. 32) of the density—density correlation (solid line)
with the square of the Bethe—Salpeter amplitude (dashed line) for the pion. W8S
measures only the g§ component of the pion.

16



That a configuration has a small size might seem strange to quark
modelists. The quantum fluctuations of the hadronic size are often
large, and one does not characterize the quark wave function by
configurations of different sizes. Nevertheless, there is some non-
vanishing probability that all of the constituents are close together.
Suppose the most important contributions to a matrix element
occur from regions in which all of the quarks are close together;
then that matrix element measures the properties of a PLC.

The important question concerns high momentum transfer semi-
exclusive processes. Do such processes necessarily involve a PLC?
We examine simple models to see.

4.1. Nonrelativistic Constituent Models of Hadrons

At high momentum transfer, the nucleon form factor is the matrix
element of the electromagnetic current. This hard scattering op-
erator Ty acts on a nucleon to form a wave packet or ejectile. Our
interest is in the transverse size distribution of this ejectile because
the ejectile—nucleon interaction depends on this size (cf. Eq. (1)).

Thus it seems reasonable to consider nucleonic matrix elements
of the operator b?Ty,. Here b represents the transverse separation
between any of the two quarks in the ejectile. The importance of
final state interactions is measured by the ratio of the scattering
term to the single scattering term so that one wants to consider a
ratio defined as b*(Q?):

- (N@IPT,INO)
) = “NQITANO) (20)

The above notation specifies that a nucleon at rest absorbs a mo-
mentum ¢, and the denominator is F(Q?). Spin effects are again
ignored. If the ejectile is a PLC, then the operator b? takes on
small values and b*(Q?) is small. The vanishing of b? is a necessary
condition for the occurrence of color transparency, but it is not
sufficient. One also needs high enough energy such that the escape
time is small compared to the expansion time (cf. Section 3). The
numerator of Eq. (20) occurs in Eq. (11) if p,, = p and Eq. (1) is
used.

Consider first a non-relativistic treatment. To gain intuition,
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start with a two quark object. Thus the elastic form factor is F(Q?)
with

R = | aryr e e

where Q> = q'q,q = g2, Q = q,r = zZ + b and (r) is the
coordinate space representation of the wave function |N). Here
Ty = €942 so b?((Q?) is given by

POV = [ drirmrenri). @)

One may use b? = r2 — 22— —4(V2 — 9*/6¢°) acting on F(Q?)
of Eq. (21) to show that

_ 8 dF(QY)

0 d0 (23)

P(QHH(Q?) =

So we are now ready to compute b*(Q?) for simple models. Start
with the oscillator model wave function y?(r) = ce . Then F(Q?)
= e~ 2”16« and b*(Q?) = 1/a. There is no color transparency in
this model, because the wave function is a product of functions of
z% and b?. This feature is peculiar to the ground state of the har-
monic oscillator.

The Coulomb potential provides a different example. Then U?(r)
= ce~«, and Eq. (23) yields b*(Q?) = 8/[(Q/2)* + «?]. Thus color
transparency occurs if Q%4a? >> 1.

Both a confining force and a one gluon exchange Coulomb force
are important features of quark models. Thus we consider the

potential:

V=

0| ®

1r2+&.
7

It is realistic to assume values (3,/2 and 3, such that the term B,7?
dominates in the calculation of energies of eigenstates, 8, < 0.1(B,/
m3)V4. A calculation of the form factor shows that b2 is independent
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of Q? at low Q?, but that at large Q? the second term in V dom-
inates. Indeed, for OR = 1,

FQ) ~ T= ory

according to numerical calculations. Here R = (mpB,)~"* is the
harmonic oscillator length parameter and m is the constituent quark
mass. This form factor also gives b(Q?) ~ 1/Q2.

The above examples indicate that the presence of a 1/r potential
leads to a small value of b*(Q?), for not too high values of Q2.
Thus small values of b*(Q?) are natural in constituent quark models.

The general condition needed to obtain a Fourier transform with
a power law falloff can be obtained from asymptotic expansions.
One finds that F(Q?) ~ 1/Q%, if dy?/dr does not vanish at the
origin. This derivative vanishes only if the potential is a continuous
analytic function of r2.

Next we consider systems of three quarks. The relevant version
of the operator b?T}, is

b’T(Q?) = ; (b: — by)? ; €1y, (24)

Here e, is the electric charge of the k’th quark. Knowledge of the
form factor is not generally sufficient to determine b*(Q?) for bar-
yons.

One can relate b%(Q?) to F(Q?) in mean field (MF) models with,
e.g., {r, ra ri¥) = f(ry, r)g(rs). Then Eq. (24) leads to

F(O*)(¥|(by — b,)°[¥).
(25)

—_2) oF(Q*) | 1

s 0R0) = 2 (2 -

FY9) 3

The term proportional to the form factor arises from the three
quark terms of b2T,.

As an example of a MF model, suppose each quark has a con-
stant density within a radius R and the nucleon space wave function
is a product of the three quark wave functions. (This is the quark
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part of the SUNY chiral bag model,* for chiral angle 6 = m/2.)
Then F(Q?) = 3/,(QR)/QR, and

2 1 5 dF(Q?)
3

T3R0) 0 dO 126)

b(Q?)/b*(0) =

Note the presence of a constant term, and that the zeros of F(Q)
cause rapid increases in b%(Q0?).

In modern constituent quark models (e.g., Refs. 34-36), quark-
quark interactions are very important in determining the energy
and wave function. Thus, we do not expect these models to behave
as mean field approximations. To verify this, we compute b%(Q?)
using the wave function of Capstick and Isgur.>* The results are
shown in Fig. 5. As expected, full color transparency is obtained.

4.2. Models with Pion Clouds

So far the nucleon has been considered as a three-quark system.
This is, at best, an oversimplification. In QCD the nucleon is
expected to have many Fock space components. One way to par-
tially account for these effects is to include a pion cloud or to treat

.AO LI | 1 l T ¥ B % ' T T 77T ' T T | @ ' 1 ¥ T l T T
CA\ =
RS Capstick ~ Isqur proton model -
0.8:— \ =
= \ e
- \ ]
0.6 \\ —
- N b2 (Q%)/ b2 (0) R
2 N |

N

0.4»— ~ 7
B N o ]
¥ FION = ]
G i —
o_l - l L a ) 4 [ I TV l Y I Y | | f 24 1-q
[o] | 2 > 4 5 6

Q2 (Gev/c)?
FIGURE 5 Capstick—Isgur proton wave function.
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the entire nucleon as a soliton of pion fields. In this Skyrmion
case, the baryonic matter density p(r) is expressed as

sin’6(r) do

¥z dr (27)

p(r) =

where r is the distance from the bag center, and 6(r) is a chiral
angle representing the radial dependence of the pion field. The
Skyrmion model has many desirable features,*” so it is worthwhile
to see whether it possesses a PLC.

To study the role of the PLC in the Skyrme model we define a
form factor F(Q?) and b*(Q?) in analogy with Egs. (21)-(23):

Q) = [ drewpr), (28a)
bZ(QZ)F(Qz) = fd3re"qzb2p(r). (28b)

One may again do the angular integral to obtain an expression
similar to Eq. (23).

The motivation for the b factor appearing in the integral of Eq.
(28b) is the wish to probe the interactions which stabilize the Skyr-
mion. This interaction may also be influenced by color screening
effects. This is possible since at high density the Skyrme model
dynamics is expected to be very similar to the behavior of a gas
of free quarks.™ The baryon density is used in Eq. (28) because
strong final state interactions are studied. The present study is a
simple first investigation. Improvements by readers are encour-
aged!

We proceed with some numerical evaluations of Eq. (28). The
function 6(r) is taken from the work of Adkins and Nappi*® which
includes the effects of a non-vanishing pion mass. Figure 6 shows
that b? decreases noticeably with Q2.

The Stony Brook group®+“° modified the Skyrmion model to
include quarks confined inside an MIT bag of radius R, and a pion
soliton outside. The Skyrmion model has 6(r = R) = 6 = m with
B, = 0. Conversely if 8 = 0, B, = 1 and the MIT bag model
limit is obtained. The computed matrix elements are independent
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FIGURE 6 Skyrme model (solid) vs. chiral bag (B, = 1/2). (a) Form factor. (b)
b*(Q?).

of R to a good approximation. This is the cheshire cat principle 4142
However, the b*(Q?) are very different even though the form fac-
tors are very similar. Results for 8 = w and 6 = ©/2 (B, = B,
= 1/2) are shown in Fig. 6. This is because b?(Q?) is sensitive to
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higher moments of r than F(Q?). The mean field and sharp surface
nature of the quark density cause the rise shown in Fig. 6b.

Another popular model is the cloudy bag model.**** Here the
pion is a quantum fluctuation treated in perturbation theory. The
results using the Regensburg version of the cloudy bag* are rep-
resented in Fig. 7. The Gaussian falloff of the pionic contribution
is due to the combination of the Yukawa behavior with the surface
peaked nature of the w-quark coupling.

A comparison of the pion and quark contributions to the form
factor shows that the pion tail which is relevant for a considerable
part of b*(Q = 0) becomes inessential at Q = 1 GeV?2. This
interesting effect can be studied in the domain of traditional nuclear
physics. The final state interaction of a nucleon should be sup-
pressed at Q% ~ 1 GeV? since the effective size is reduced by the
loss of the pion cloud. This effect is reduced to some extent by

1.0 T .
o9-\ b2 (Q2)/b2(0)
osl- N g
0.7 \ -
N .Y
06 < AN -
S F(Q%)
0.5 " =
core v S
~
0.4} T A .
\\\
0.3 Ty
02 \_ " -
0.1 N S =
g
o) L e
0 005 0.10 0.15
-q2/4m?

FIGURE 7 Cloudy bag model calculation of Ref. 45. The quark core (dotted line)
and pion cloud (dashed line) contributions to the form factor (long dashed line)
are shown. b*(Q?)/b*(0) is the solid line.
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the quantum diffusion of the PLC (recall Section 3). We estimate
the time for the low momentum pion cloud to reappear to be of
the order of 1/E, = 1/2m.. The vanishing of the pion cloud can
be essential at distances less than (Ey/my) 12m, = (1 + Q¥
2m3)/2m,, = 2 fm if quasielastic kinematics are used and Q2 ~ 2
GeV2.

The suppression of the pion cloud around the interacting nucleon
can be investigated in the reactions (e, e'N), (e, e’A) of the lightest
nuclei. For example the quasielastic reactions (e + A—e + A+ +,
e + A7) dominated by the final state interaction (A*p — A* *p)
should be strongly suppressed as compared to expectations of the
Glauber approach. Indeed, charge exchange two body processes
p+p—>A**Y + n,n+ n— A~ + p are well described in terms
of the one pion exchange diagram in a wide kinematical region.*6
Thus, suppressing the pion leads to suppressing the A** or A~
Light targets are necessary for such experiments. This reduces the
chance that the A decays in the nucleus as well as the probability
for the reappearance of the pion cloud. The Q? needed is about
2 GeV?, so the experiment could be done at CEBAF energies.

4.3. Relativistic Effects

The non-relativistic models of the previous sub-section are some-
what suspect, since high momentum transfer is important. A re-
lativistic treatment is therefore mandatory, even though existing
methods are not completely satisfactory.

First, we consider the dependence of b*(Q?) in terms of the light-
cone quantum mechanics of a two-quark system. The form factor
is given by

dad?k,

0 =5 V*(a, k)¥(o, k, — aq,). (29)

F(Q* =

Here g = (94,9_-,9q). Wechooseg_ =q° — ¢* =0,q> = — Q2
= —g? and the direction of q, as the x axis. This light-cone physics
formula*’*® describes the absorption of a photon by one of the
constituents. The quantity o is the fraction of hadron plus mo-
mentum carried by the spectator.

The expression (29) can be used to gain qualitative insight about
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the transverse sizes involved at high momentum transfer process.
Suppose the integral is dominated by contributions from regions
where « is small. Then k, takes on values controlled by the size
of the wave function and small transverse sizes are not important.
In this case, the struck quark has the high momentum fraction 1
— a. So one sees the Feynman mechanism (recall Section 1.2).
On the other hand, if o is not a very small fraction, the relevant
values of k, must be of the order of g,. Then small transverse sizes
must be involved for sufficiently large values of g,.

A relativistic version of b*((Q?) is needed. To obtain such, we
express Eq. (29) in terms of the two-dimensional Fourier transform
®(a, b) of P(a, k). Then a relativistic version of b%(Q?) is defined
in analogy with Eq. (8):

1 dod? )
bH(O)F(Q) = 5 &(1—"‘_%)@*(1;, Qbeibed(b, o). (30a)

The matrix element of b2 is used because we are concerned with
the distribution of constituents in the direction transverse to q.
The normalization is chosen so that in the non-relativistic limit
(here o = 1/2) Eq. (30a) leads to the usual result that b*(Q? = 0)
is 2/3 of the mean square radius.

Equation (30a) can be rewritten in the momentum space rep-
resentation. The result is

bAQ?)F(Q?) =

1 9 f de  d%
2q' aq' LlJ((l, k,)LIJ((X, kl - (Xq,). (30b)

a(l — a) o

Equation (30) and its non-relativistic version Eq. (24) are the prin-
ciple new results of this paper.
Our first relativistic example is “‘the harmonic oscillator,”

llJZ(OL, k,) - Ae—B[(mz-FkF)/a(l—a)—4ml], (31)
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where m is the quark mass. For large values of g, the integrals (29)
and (30) can be performed analytically for £, and with the method
of steepest descent for . The saddle point occurs for small values
of a: @ = 2m/g,. Thus, the harmonic oscillator provides an example
of the Feynman mechanism. At high g, = Q, F ~ (1/Q%?)e~8mQ,
see Ref. 49. The use of Eq. (30) gives b*(Q?)F(Q?) ~ — (3/QaQ ) Q/
2m)?F(Q?) so that b*(Q?)/b%(Q? = 0) ~ Q/m. The relativistic har-
monic oscillator wave function with its Feynman mechanism (end
point singularity) leads to color opacity. Numerical results are
shown in Fig. 8. The quark mass is 330 MeV and the rms radius
is 0.8 fm.

Note that using a wave function to reproduce an observed form
factor is not sufficient to prove or disprove the existence of a PLLC.
Consider a “hydrogen” wave function:

A
ll’h(a’ kl) = 2 5 2 ® (32)
Bk .
[Ot(l _ OL) “‘h:l

The evaluation of b*(0Q?) now leads to color transparency at Q? =
1 GeV? (Fig. 8). We take the same quark mass and rms radius as
for the harmonic oscillator.

The “harmonic oscillator’” and ““hydrogen atom” wave functions
and the Capstick—Isgur model are three examples of “‘soft wave
functions” in the sense of Isgur and Llewellyn-Smith®’: no explicit
gluons are present. The first wave function provides color opacity
while the other two yield transparency. Thus a soft wave function
can yield color transparency. The validity of pQCD is not a re-
quirement for the existence of color transparency.

The analyses of Sections 4.1-4.3 show that existing hadronic
models provide very diverse predictions for the emergence of color
transparency. It occurs naturally in realistic quark models where
correlations caused by gluons are important, in the Skyrmion model
and in lattice calculations. At the same time, the QCD sum rule
theory of hadronic form factors® predicts no color transparency at
all accessible momentum transfers Q2 < 10 GeV?; while the rel-
ativistic harmonic oscillator model leads to color opacity. There-
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fore consituent quark models and QCD sum rules can be distin-
guished by whether or not color transparency is observed at these
Q2. We also find that the observation of color transparency would
not necessarily imply the validity of pQCD calculations of hadron
form factors.
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4.4. PLC and the Nuclear Ground State

So far, we have discussed whether a PLC can be formed in a high
momentum transfer process. However, the presence of such a
component in a bound nucleon could have important implications
for ground state nuclear properties.'?' The form factor of a bound
nucleon should be different from a free one. This could occur via
the suppression of the small momentum Fourier component of the
pion field of a bound nucleon due to the Pauli principle® along
with the suppression of interaction with other nucleons of bound
nucleon in the PLC configuration. As a result the probability of
PLC is suppressed in a bound nucleon by the factor 8(k).2!?> Here
k is the momentum of the bound nucleon in the nucleus and

=172
Foouwnd(g®) _ cumpoy 2(k*2m) + €4
Ffrcc(q2) - 8 (K) - 1 i AE ' (33)

The suppression of Eq. (33) takes place at small k where the N N
interaction is soft. At large k, PLC are likely to dominate in the
N N interaction and 8(k) > 1.

This physics may reveal itself in the difference between form
factors of free and bound nucleons at large nucleon momenta in
(e, ¢'p) and (A, h'p) reactions. It may be also responsible for the
x > 0.3 EMC effect.?! If so, AE ~ 0.6 GeV.

4.5. Physics of Heavy Ion Collisions

The fluctuations of color in a nucleon lead to a number of inter-
esting consequences for the physics of central heavy ion collisions
at CERN nuclear beam energies (200 GeV/nucleon).

1. The production of the leading (highest energy) nucleons and
nucleon isobars should rapidly increase with initial beam energy
becoming noticeable at CERN nuclear beam energies (200 GeV/
nucleon). This is because more PLC can be considered as frozen
during the scattering process.>?

2. Large fluctuations of projectile size lead to large variations
in multiplicity and transverse energy from event to event.>® These
fluctuations are the consequences of diffractive processes that are
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important. Thus a dedicated investigation of diffractive processes
at RHIC energies is essential.

The investigation of color transparency found a rough equiva-
lence between the description of the process in terms of hadronic
intermediate states and in terms of fluctuations of the space size
of a configuration (and cross section) depending on the distance
from the point where particle (jet) is produced. It is interesting
that even at not large energies Skyrmion model calculations found
a similar equivalence. The radius of a Skyrmion vibrates as a func-
tion of distance from the point of collision.>* Thus it is possible to
improve calculations of cascades by including quantum mechanical
effects due to inelastic intermediate states. This physics can be
modelled by using the o(Z) of color transparency phenomena.

5. DISCUSSION OF AVAILABLE DATA

The single published experiment aimed at observing the effects of
color transparency is that of Carroll et al.>® This was the BNL (p,
pp) work at beam momenta p, ranging from 6 to 12 GeV/c. In
(p, pp) experiments the projectile and struck proton must form a
two baryon PLC if color transparency is to be obtained. The ki-
nematics of the BNL experiment were set so that the basic pp
elastic scattering event occurs at a center of mass angle of 90° if
the target proton is at rest. The data for the transparency ratio are
shown in Fig. 9. The data presented include many theoretical cor-
rections. One example is the effect of Fermi motion which is used
to obtain the points at momenta different from p,. Obviously this
involves a model for the nuclear wave function. Another example
is lack of a direct measurement of the excitation energy of the
recoil system—for this one needs to measure the momenta of the
two outgoing nucleons (in Ref. 55 only the emission angle (p) was
measured for one of the emitted nucleons, and information from
veto counters was used to suppress inelastic events). There is also
a problem of calculating off-shell corrections of the order m?s
which would be negligible at large energies but not in most of
kinematics studies in Ref. 55. These arise because the value of s
for the projectile—target proton system need not be the same as
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FIGURE 9 “Al(p, 2p). The data are from Ref. 55. The curves are JM (Ref. 10),
RP (Ref. 47) and B deT (Ref. 62).

for the two outgoing protons. In any case, we discuss the data as
they exist.

Figure 9 shows a transmission T (ratio of nuclear to hydrogen
cross section per nucleon after removing the effects of nucleon
motion) with an oscillatory pattern. 7 increases as the beam mo-
mentum increases from 5 GeV/c but then decreases. The decrease
was unexpected and there is still no unanimously accepted expla-
nation for this. Also shown is the expectation®1%3% based on stan-
dard Glauber theory that does not reproduce the data. The stan-
dard survived a rigorous examination in Ref. 56. The Glauber
curve is always independent of energy, but the magnitude depends
on whether the proton total or reaction cross section is used.

One possibility, suggested by Ralston and Pire,”” is that the
transparency oscillates as a function of energy due to the inter-
ference between a hard amplitude which produces a small object
and a soft one (the Landshoff process®®) which does not. Quark
interchange diagrams must also be included to avoid a contradic-
tion with the experimental observation that the large angle pp and
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pp cross sections differ by a factor of 100 (pp > pp). At high
energies this mechanism leads to approximately the same Q7 de-
pendence as hard scattering.™ At present energies, the energy
dependence and phase of the Landshoff term are not known. More-
over, it is not even clear if the Landshoff process produces a large
object,” and the leading log asymptotic perturbative QCD cal-
culations find a negligible phase difference between the two am-
plitudes.®

Zakharov and Kopeliovich® and Jennings and Miller® have pur-
sued the Ralston—Pire idea with the aim of including the effects
of PLC expansion. More careful treatments of the nuclear inter-
actions of ordinary components of the proton were made and the
effects of quantum diffusion were included. Some results are shown
in Fig. 9, and the data are not well reproduced.

Another idea® is that the two-baryon system couples to charmed
quarks and the transparency decreases as a result of opening up
¢c channels at energies near the threshold. This is motivated by
the fact that the mass scale of the rapid energy variation®® in A,
and in the measured transparency matches that of the charm
threshold. Thus, in this threshold model the drop in color trans-
parency is tied to the increase in Ayy. The color transparency
predicted by the Brodsky de Teramond idea had never been eval-
uated until the work of Ref. 60. Their results are also shown in
Fig. 9. Once again the data are not well reproduced.

Our investigation of models finds a variety of effects. There is
transparency at moderate Q2 due to the disappearance of the pion
field, and oscillations between N and N* as a function of atomic
number and energy. But opacity occurs in the mean field approx-
imation, and transparency occurs for still larger Q? as a result of
short range (gluon exchange) interactions between quarks (Section
4). So there is much more to be learned. The new EVA experiment®
designed for higher energies and greater accuracy will certainly
help.

We explained above that expansion of the wave packet tends to
mask effects of CT at intermediate energies in large angle reac-
tions. To suppress this effect it is necessary to consider reactions
where the rescattering cross section in the hard process is measured
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directly and the nucleons of the projectile involved in the process
are sufficiently close. The simplest examples are reactions’

e+ D(*He) » e + p + n(p + p + (nn)), (34a)
h + D(*He) = h' + p + n(p + p + (nn)) (34b)

in the kinematics where Q% t = —(E, — E)*, t, = —(pp —
pn,)? are large, and (pu, + pn,)? >> dmi.

In these kinematics (Fig. 10) the struck nucleon in reaction (34b)
has to pass only 1-1.5 fm before the second rescattering—there-
fore the expansion effects are of much less importance. If we fix
t corresponding to 6., ~ 90° and select ¢, large enough, we can
study the rescattering probability P(t,) as a function of ¢,. For small
6,P(,) < PgGiawser due to CT. But at large ¢, probability of rescat-
tering is enhanced.

P(tz)/PGlauber il I/F%V(tZ) -~ ([2)2

since only the PLC contributes in the process. One does not have
to pay twice the price of finding the projectile in the PLC.

We also show predictions for the (e, e'p) reactions. The kine-
matics are of the quasielastic type, with the energy dependence of
computed ratios of cross sections of '>C (Fig. 11). The curves are
from Farrar et al.> and Jennings and Miller'” who both made the
perhaps optimistic assumption that a PLC is formed in the ele-
mentary high momentum transfer process. This is in line with our
analysis of realistic models of a nucleon.?* 3¢ The quantities o are
(e, e'p) differential cross sections integrated over the scattering

li’N2

L

D Py

FIGURE 10 Kinematics for double scattering.
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angles of the outgoing proton. Full color transparency corresponds
to unity. We are concerned with the energies for which the ratio
approaches unity and the energies for which the ratio is substan-
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tially greater than that obtained with the standard Glauber treat-
ment. We see from Fig. 11 that observable increases are obtained
for values of g as low as 5 GeV/c, or Q? = 9 GeV/c2. Furthermore
the strength of such enhancements depends critically on the time
scale parameter (recall Section 3).

These predictions help experimentalists to realize that color
transparency is not an academic exercise. An experiment at the
SLAC NPAS facility®® has run and is in the process of being an-
alyzed. The present experiment covered the accessible range from
0? = 1to Q* = 7 GeV? and has found that the extension to
values = 15 GeV? is possible despite the low duty factor of the
SLAC linac. A noticeable enhancement can be seen. The reader
will note, however, that we show a ratio. The numerator is to be
measured, but the denominator can’t be measured. One must rely
on calculations that depend on nuclear wave functions. Only the
well-known momentum transfer aspects of these wave functions
are needed here. But high accuracy is important. The best way to
reduce these kinds of uncertainties is to study the energy and A
dependence of the ratios. It is clear that measurements at higher
values of 7 are also very important.

Another interesting question concerns the transverse sizes im-
portant in large ¢ (e.g., —t > 2 GeV?), small angle scattering at
large energies. Different QCD diagrams are likely to be respon-
sible for large and small angle scattering, so an experimental study
is of interest. One option is the familiar (p, 2p) reaction. Since
the incoming particle is fast, its scattering state can be considered
as frozen. Therefore if the transverse size decreases as ¢ increases,
one should observe that the cross section depends on A as A%
instead of A'3. This is due to the contribution of scattering from
the back surface of the nucleus. In other elastic scatterings, the
recoiling proton is likely to be absorbed, since it expands rapidly
after the collision. At —¢ > 10 GeV?, the cross section may start
to approach A since the recoiling nucleon can propagate distances
> 2 fm in the PLC.

6. SUMMARY AND PERSPECTIVES FOR THE FUTURE

The physics of color transparency CT involves a full intersection
of particle and nuclear physics ideas and techniques. It may become
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an effective method to investigate the physics of confinement and
spontaneously broken chiral symmetry in QCD. Such issues are
important aspects of heavy ion collisions, so that CT physics may
help there, too.

We find (Section 4) that realistic models of a nucleon do allow
the formation of a point-like configuration PLC (one of the re-
quirements for color transparency to occur) in high momentum
transfer quasielastic reactions. PLC occur in hadrons as described
by realistic quark models, in the Skyrmion model, and in lattice
calculations. In models with pion clouds, the physical nucleon can
become smaller because of the disappearance of that cloud.

However, the QCD sum rule result of Ref. 8 is that no PLC are
made at all accessible momentum transfers Q% < 10 GeV?. Thus,
observing, or failing to observe, CT effects can rule out theories
of hadronic form factors. In addition, the validity of pQCD for
explaining measured hadronic form factors is not a requirement
for color transparency (Section 4.3).

We have discussed (Section 3) that projectile-size fluctuations
can be described in terms of a wave packet of hadronic interme-
diate states. An exactly soluble model of these fluctuations was
presented. In simplified situations this model yields predictions of
oscillations similar to those observed in Ref. 55. (This model may
be more suited to the study of the nuclear production of c¢ states.)

Studying color transparency is a theorist’s delight. Many novel
effects can be predicted. But we stress that computing color trans-
parency effects is not simply a theoretical exercise. Interesting
effects may occur in the kinematical region accessible (Q? as low
as 1 GeV?) for current and planned accelerators. So dedicated
experimental and theoretical investigations in this rapidly devel-
oping field are necessary.

We outline some possible future directions and unresolved prob-
lems, starting with experimental issues.

1. Electron, proton, pion and kaon beams available or to be avail-
able at SLAC, BNL, KAON and at the upgraded FNAL fixed
target beam lines can be used to search for color transparency
effects. Such measurements would help to resolve the long-
standing question of whether wide angle two-body reactions at
feasible energies are dominated by small or large interquark
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distances. The PLC can be described as a coherent sum of
baryon excitations. Thus, dedicated measurements of baryon
resonance production are urgently needed.

Transparency and the disappearance of the pion field in mod-
erately hard (Q* ~ 2 GeV?) collisions are phenomena unex-
pected in traditional low energy physics. Thus, observing such
effects would have a strong impact for constructing bridges
between nuclear physics and QCD. An experiment necessary
to see the disappearance of the pion field would involve the
suppression of the quasielastic formation of resonances which
cannot be produced in two-body processes. The production of
A** and A~ by electrons and in A(p, pA) reactions are only
two examples. The reader is encouraged to find other cases in
which CT is manifest by the suppression of a nuclear reaction.
Thus CT predicts the enhancement of some reactions and the
suppression of others.

Now we turn to future theoretical investigations.

The PLC can be described in terms of a bare quark—gluon Fock
space. Those configurations with the minimal number of bare
particles in hadronic wave functions are candidates to be a PLC.,
This Fock space description is simple and applicable to many
different processes: elastic form factors at high Q?, deep ine-
lastic scattering at x ~ 1, and large angle Compton scatiering.
Such configurations may be studied with lattice techniques, so
there is a possibility to test QCD in a new way. Thus, the
pressing problem is to develop methods to calculate wave func-
tions of the 3g(gqg) configuration in a nucleon (meson).
Evidence that the nucleon radius vibrates has been obtained in
calculations of Skyrmion—Skyrmion scattering. For collision ki-
netic energies ~ 0.5 GeV, the Skyrmions are small at small
separations (see Fig. 7 of Ref. 38). It seems fruitful to inves-
tigate transparency by studying a third Skyrmion in the presence
of a PLC formed by two others.

The hadronic size fluctuations of CT phenomena are also rel-
evant for constructing theories of phase transitions in super-
dense nuclear matter and heavy ion collisions. For example,
cascade codes can be modified to include the dependence of



the cross section on the hadron size and on the distance from
the production point. This would allow quantum mechanical
effects to be included in classical mechanics calculations. An-
other example is to account for non-nucleonic degrees of free-
dom in constructing theories of superdense nuclear matter (e.g.,
the neutron star core). One can use equations like (14) to cal-
culate the admixture of baryon resonances.
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