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”I therefore believe it’s true that with a suitable class of quantum ma-
chines you could imitate any quantum system, including the physical
world.”

— Richard P. Feynman, Simulating Physics with Computers
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1
Introduction

The goal of reaching quantum degeneracy with ultracold gases triggered an immense
interest in the field of atomic, molecular and optical physics, and has led to a ma-
jor experimental development in cooling, trapping and manipulation of these gases.
These efforts culminated in the first experimental demonstration of Bose–Einstein
condensation (BEC) of weakly interacting bosonic atoms, forming an essentially pure
condensate at very low temperatures [1–3]. This breakthrough, and the achievement
of Fermi degenerate quantum gases a few years later [4, 5], marked the starting of
the era of investigating quantum phenomena with ultracold gases. Honoring the
first significant step in this direction, the 1997 Nobel prize in Physics was awarded
to Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips for the devel-
opment of methods to cool and trap atoms using laser light and magnetic fields.
The temperature regime reached in these experiments was three to four orders of
magnitude lower than the ones ever obtained before. Just four years later, Eric A.
Cornell, Wolfgang Ketterle and Carl E. Wieman also received the Nobel prize for the
realization of Bose-Einstein condensates, hallmarking an era of quantum emulation
experiments of many-body physics.

These developments were an important leap towards realizing Richard P. Feyn-
man’s idea of quantum emulators [6]. Feynman tried to find a way around the
fundamental problem, that the dimension of the parameter space of many-body
quantum systems, and thus the computational load of simulating it with classical
computers, increases exponentially with the system size – an obstacle to numerical
simulations to date. This limitation can only be circumvented by invoking quan-
tum mechanics, and emulating the intricate behavior of the many-body system at
interest using simpler quantum systems that are easier to handle experimentally. He
argued that, just like the basic phenomena of field theory are well imitated by many
phenomena in solid state theory, many quantum phenomena could be effectively
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modeled by the low energy degrees of freedom of even simpler quantum systems.
The goal of simulating ever greater variety of physical systems using the low

energy degrees of freedom of dilute atomic vapors has led to a subtle experimental
machinery, with which almost all relevant parameters of an ultracold gas can be
tuned. For a number of years after the achievement of quantum degeneracy with
bosons and fermions, a main focus in ultracold atomic physics was the exploration of
phenomena associated with coherent matter waves in weakly interacting gases. No-
table examples include interference experiments with overlapping Bose-Einstein con-
densates [7], Josephson oscillations [8] and the realization of topological excitations,
such as vortices, vortex lattices and solitons [9–13]. Furthermore, fermionic conden-
sates have been the source of various novel phenomena associated with fermionic
superconductivity [10]. Common characteristics of these systems is the existence
of a coherent order parameter, allowing an effective single particle description of
the system, by treating interactions on the mean-field level. The Gross-Pitaevskii
and Bogoliubov-de Gennes equations for bosons and fermions, respectively, allow for
the efficient description of time dependent dynamics and condensate excitations by
non-interacting quasi-particles.

The possibility to control atom-atom interactions through the so-called Feshbach
resonances, however, opened up a completely new arena of physical phenomena, by
allowing experimentalists to tune the gases into the strongly interacting regime.
Here, the effective cross-section of colliding particles can be several thousand times
the effective size of the atoms, and scattering lengths become comparable to the av-
erage interparticle distance1. In this regime, even these extremely dilute gases can
no longer be described by a picture based on non-interacting quasi-particles, and
quantum correlations play a determining role. Such systems had been previously
been thought of as belonging to the field of strongly interacting quantum liquids
in solids, stars and nuclei, and have fascinated physicists in the condensed matter
and particle physics community for decades. However, in many cases, these corre-
lated states remained elusive to analytical and numerical investigations, due to their
complex nature. Rather counter-intuitively, they can be realized in dilute ultracold
gases today. Ultracold systems thus provide a flexible tool to create model systems,
that grasp the essence of several strongly correlated physical phenomena.

A different approach to realizing strongly correlated many-body phases came
from experiments with optical lattices. In these systems, standing waves of laser light
produce a strong lattice potential for the atoms, realizing effectively a tunable version
of the Hubbard model – an idealized model system of many strongly correlated
problems in solid state physics. With their kinetic energy suppressed, atoms can
form strongly interacting phases even at moderate values of their scattering lengths.
For instance, loading a Bose-Einstein condensate into an optical lattice had made
it possible to observe the quantum phase transition from a superfluid to a Mott
insulator state [14].

1In ultracold gases, atomic interactions are typically characterized by the associated s-wave
scattering lengths, see Sec. 2.6.
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Strong confinement by a strong optical lattice in two or one spatial directions
can also be used to create effectively one and two dimensional systems. In two
dimensional systems, increased fluctuations can lead to interesting many-body phe-
nomena, one of them being the Berezinskii-Kosterlitz-Thouless phase transition of
bosons [15–18], with algebraically decaying correlation functions. One dimensional
systems, on the other hand, provide a useful test ground for integrable systems,
such as the Tomonaga-Luttinger liquid and the Tonks-Girardeau gas [19–22]. Fur-
thermore, they provide new insights into the study of basic statistical mechanical
phenomena, such as prethermalization [23]. In addition, by populating the different
energy levels of the atoms, one can create novel kinds of multicomponent Bose and
Fermi mixtures, as well as spinful condensates of almost arbitrary spin. The high
flexibility of these systems have gradually promoted them to quantum emulators
of many condensed matter and particle physics systems, as well as to sources of
completely new physical phenomena, never observed before.

In this thesis, we shall investigate the correlated quantum states of various mul-
ticomponent ultracold atomic systems, with a special focus on their interactions and
phase diagrams. We will also discuss one of the author’s works on an exotic topo-
logical excitation. To study these phenomena, we shall use the machinery of field
theoretical methods, as well as numerical simulations. In the second chapter, we
will review some aspects of the experimental techniques used in current ultracold
atomic experiments. We will focus on the basic aspects of cooling and trapping,
optical lattices, magnetic Feshbach resonances, and detection techniques, including
absorption imaging and time-of-flight imaging.

In the third chapter, we shall discuss how confinement modifies interactions in
quasi-two dimensional quantum gases. In these systems, reduced dimensionality
leads to an increased role of fluctuations, and it strikingly modifies interactions
between the particles – leading to exotic interaction resonances, induced by the
confinement. Although one-component systems have been the focus of intense ex-
perimental investigations [17, 18], two-component systems are much less explored.
To investigate their properties, especially their phase diagram, independent control
of the interaction parameters between different species would be beneficial. How-
ever, with current methods using magnetic Feshbach resonances, these parameters
can only be tuned simultaneously. In this part of the thesis, we will focus on two-
component quasi-two dimensional quantum gases, and demonstrate how this inter-
action control can be reached by simple geometrical means. In particular, we will
study the interaction between two species of bosons confined parabolically into two
parallel layers. We will demonstrate the existence of interlayer confinement-induced
interaction resonances that can be tuned by changing separation between the lay-
ers. They thus provide another experimental ’knob’, besides the commonly used
magnetic Feshbach resonances, to control interspecies interactions, in a purely geo-
metrical way. These resonances are due to novel interlayer quasi-bound states that
can be made increasingly long-lived by tuning layer separations. Furthermore, their
increased lifetime makes it possible to observe these molecular states in the shak-
ing spectrum of the two-dimensional layers, as will be demonstrated using detailed
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many-body calculations for a thermal Bose gas.
In the fourth chapter, we will investigate the rich superfluid phase diagram of

a weakly interacting three-component fermionic gas, which can be viewed as a con-
siderably simplified model of large density quantum-chromodynamics, the theory of
quarks. We will analyze how the interplay between superfluid and magnetic order
parameters can lead to ferromagnetic superfluid states. We find various chemical
potential driven first- and second-order transitions, as well as bicritical lines with
special O(2, 2) symmetry. To capture these effects, a self-consistent ”equation of mo-
tion” based approach, as well as a Gaussian variational approach will be introduced
that both treat the superfluid and magnetic ordering unambiguously, in contrast to
the frequently used Hubbard–Stratonovich transformation. Using this approaches,
we will explore the full range of temperatures and chemical potentials and determine
the global phase diagram.

In the fifth chapter, we will see how a single skyrmion topological excitation
can be stabilized in the ultracold atomic setting by exploiting strong interactions.
Skyrmions are three-dimensional monopole-like configurations of a vector order pa-
rameter field. They have been proposed theoretically in several fields of physics,
however, they have thus far remained elusive to ultracold experiments due to vari-
ous instability problems. In particular, skyrmions in earlier experiments were prone
to gradually slipping away from the atomic trap. We shall discuss a novel proposal to
circumvent this difficulty, and create an individual skyrmion of extreme stability, the
so-called ”Mott skyrmion”. Specifically, by loading a spin-1 nematic superfluid (such
as 23Na) into an optical lattice, a Mott insulator core forms in the middle of the trap,
surrounded by a superfluid shell that can naturally host a skyrmion configuration.
The Mott core thus pins the skyrmion and keeps it from sliding away from the trap.
A further advantage of this compact geometry is that the superfluid excitation spec-
trum of the skyrmion becomes discrete, and one can study how its quantum numbers
change in the presence of the skyrmion, due to the skyrmion’s topological winding.
Such an interplay between topology and excitations is ubiquitous in the theory of
topological excitations. However, since individual three-dimensional topological ex-
citations have never been observed experimentally, it has only been observed in lower
dimensional topological excitations, such as solitions (domain walls) [11,12].

We shall summarize the scientific results in the thesis points in the Summary
that synthesize the conclusions of Chapters 3, 4, and 5. Some of the more technical
derivations are transferred to the appendices.
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2
Basic concepts of ultracold gases

Gases at room temperature and atmospheric pressures are basically classical media.
In most cases, even cooled down to very low temperatures, up to the point where they
liquefy or solidify, they retain their classical nature, lacking any quantum mechanical
characteristics. For instance, there is no indication of the bosonic or fermionic nature
of gas atoms or molecules. Quantum mechanics only comes into play only at such
low temperatures T , where the thermal de Broglie wavelength of particles,

λT = h√
2πmkBT

characterizing the spatial extent of quantum mechanical wave packets, becomes com-
parable to the average interparticle spacing [24]. Herem denotes the particle masses,
whereas kB and h denote the Boltzmann and Planck constants, respectively. At
such low temperatures, the gas enters the quantum degenerate regime, where the
behavior of their constituents is determined by their bosonic or fermionic nature,
and interesting many-body quantum phenomena can be observed. However, in case
of gases at atmospheric pressure, this quantum limit corresponds to extremely low
temperatures, where the gaseous state is only metastable.1 In a typical gas, such
as N2 and Ne, three-body collisions are frequent enough to cause rapid crystal-
lization, making the gas atoms freeze out and form solids as T is decreased. In
experiments with ultracold gases, crystallization is circumvented by diluting the gas
to the point where its lifetime becomes of the order of seconds and the quantum
limit can be reached by lowering its temperature to the nK range. These systems
are thus characterized by rather extreme conditions. Typical values of the density,
n ∼ 1013 atoms/cm3, are six orders of magnitude lower than those of a gas at room

1In contrast, due to their small mass and large density, electrons in a metal are quantum degen-
erate even at room temperatures.
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temperature at atmospheric pressure. In such dilute gases, quantum-degeneracy is
reached only at extreme temperatures, typically below T ∼ 100 nK, at least four
orders of magnitude lower than those achievable by the best cryostats today. These
extremely fragile systems thus need very good isolation from their environments,
they can only be realized in ultrahigh vacuum chambers, and are generally trapped
and manipulated using laser light and magnetic fields. Typical experiments involve
only 103 − 107 atoms that are held together in a sub-millimeter sized magnetic or
optical trap.

In this section, we will introduce the basic experimental techniques that made
it possible to realize these special systems, requiring an enormous technological
progress in the past 20 years of ultracold atomic experiments. We will start by
describing basic cooling and trapping techniques using lasers and magnetic fields,
with a short detour on the basics of light-atom interaction. Then, we shall introduce
magnetic Feshbach resonances as means of flexibly controlling interactions by static
magnetic fields. Finally, we will review the physics of optical lattices and that of the
superfluid to Mott insulator phase transition.

2.1 Multicomponent and spinful condensates

Experiments with ultracold atoms provide a way to model multicomponent and
multi-spin systems, by populating the different hyperfine states of atoms. Hyperfine
splitting of energy levels is produced by the interaction between total electronic an-
gular momentum and the nuclear spin2. This energy is in the 1 K− 100 mK range,
three orders of magnitude smaller even than the fine structure of atoms. Yet, the
temperature range of ultracold experiments is so low that the thermal collisions are
insufficient to create transitions between different hyperfine states of the colliding
atoms. Thus, atoms retain their hyperfine states, and they can be described as
different atomic species, opening the way to model multicomponent condensates.
Furthermore, atoms of even hyperfine spin isotopes are bosonic, whereas odd hyper-
fine spin isotopes are of fermionic nature. For instance, the two stable isotopes of
lithium, 6Li and 7Li are fermionic and bosonic, respectively. This makes it possible
to model bosonic systems, such as Bose-superfluids and Bose–Einstein condensates
(BECs), as well as degenerate Fermi liquids in the ultracold atomic setting.

The hyperfine structure of certain elements makes it possible to create spinful
condensates, with special symmetries of the atom-atom interaction. As an example,
23Na and 87Rb atoms possess states with hyperfine spin 1 and SO(3) symmetric
interactions [25–27] at zero magnetic field, see also Chapter 5.

2Due to the coupling between the core and the electrons, atomic energy levels can be character-
ized by their hyperfine spin F = J + I. Here I stands for the nuclear spin, and J denotes the total
electronic angular momentum, J = L + S, given by the electronic orbital angular momentum, L,
and spin, S.

6



2.2 Laser cooling

The interaction of atoms with photons has been traditionally used to probe proper-
ties of atoms – primarily their energy level structure in spectroscopy experiments.
However, atom-photon interactions can also be used to manipulate the atom’s inter-
nal degrees of freedom, such as its spin and orbital angular momentum, as well as its
kinetic energy. This opens up the way for laser cooling of atomic gases and trapped
ions. The idea of laser cooling is based on the resonant exchange of momentum be-
tween atoms and photons in a laser field, allowing to decrease the kinetic energy of
the atoms, and thereby cooling the gas. Although the linear momentum exchanged
may be tiny, several cycles of this process can take the thermal atoms to rest, vastly
decreasing their temperature. Laser cooling has been originally proposed with the
primary aim to reduce temperature broadening of atomic levels in ultrahigh spec-
troscopy experiments and in atomic clocks, and allowed to reach temperatures as
low as a few hundred microkelvins [28,29]. However, this technique has later found
much broader use in atomic physics through a series of unexpected developments
that allowed for reaching ever colder temperature ranges. Finally, this has led to
the development of the experimental techniques used today with ultracold atomic
vapors.

Figure 2.1: Doppler cooling scheme. An atom propagating towards laser, tuned
below one of its atomic transition lines (b), becomes resonant to the laser field due
to the Doppler effect. The momentum transfer between the atoms and photons that
it absorbs and re-emits in random directions produces a net average force, that slows
the atom down.

The simplest, and most widely used laser cooling technique is Doppler cooling,
whose idea can be demonstrated by considering a two-level atom in a weak light field.
The field is produced by a pair of counter-propagating laser beams, whose frequency
ωL is tuned slightly below that of the atomic transition frequency ωA, as depicted
schematically in Fig. 2.1. Thus, the atom constantly scatters photons by virtually
absorbing and re-emitting them in isotropic directions. If the atom moves towards
one of the lasers with velocity v, the laser frequencies exhibit opposite Doppler shifts
δωL = ±ωL (v/c). The frequency of the laser traveling opposite to the atom gets
shifted towards resonance, whereas the other laser’s frequency is pushed away from
it. This imbalance of the left and right fluorescence processes, averaged over several
cycles, leads to a velocity-dependent radiation pressure that reduces the atom’s
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velocity. This can be described by a net friction force, F , that slows down the atoms
to temperatures below the mK range [30].

Three-dimensional cooling of untrapped atoms requires the use of pairs of lasers
along all three coordinate axes. This configuration, besides the cooling effect de-
scribed above, leads to a viscous confinement of the gas, the so-called ”optical mo-
lasses” setting [31]. In an appropriately tuned laser field, the atoms have so short
mean-free paths that it may take them a few hundreds of milliseconds to drift out
from the trap, whereas propagating ballistically they would leave the trap on a mil-
lisecond timescale [30]. This mechanism is analogous to the confinement of particles
in a viscous fluid.

The Doppler cooling mechanism is also used as the first step of experiments
with ultracold atoms. In the usual setting a beam of alkali atoms, leaving an ion
source with large velocity, needs to be slowed down for the atoms to be trapped and
manipulated. In this case, only one laser, facing the atomic beam, is used, creating
a net radiation force on the atoms that stops them roughly after a meter of flight.

2.3 Magnetic trapping

After slowing down the atoms and cooling them down to the µK regime by laser
cooling techniques, they are usually confined using magnetic, optical or magneto-
optical traps. Trapped gases allow for the application of more effective cooling
mechanisms that can reduce the temperature until quantum degeneracy is reached.
These traps make use of the effective potentials created for the atoms by a non-
uniform laser field in case of optical traps, or by a spatially inhomogeneous Zeeman
shift, created by magnetic trapping potentials, as we show below in this section.

2.3.1 Magnetic traps

The hyperfine interaction between the nuclear spin I, and the total angular momen-
tum J, of electrons leads to a tiny hyperfine splitting of their energy levels. This
splitting being nevertheless significantly larger than the temperature of the ultracold
gas, the energy levels of the atoms are characterized by their hyperfine spin F = I+J.
The idea of a magnetic trap is to confine the atoms using an inhomogeneous magnetic
field B(r) that acts as a parabolic potential for the atoms. The effect of the mag-
netic field can be described by the Zeeman term U(r) = (gFµB/~) F ·B(r), with gF
and µB denoting the Landé g-factor, and the Bohr magneton, respectively. During
its motion, the atom’s spin precesses around the local magnetic field with a Larmor
frequency ω̂L(r) = gFµB|B(r)|/~. As long as the change of the magnetic field along
the atom’s path is adiabatic, as specified by the condition d

dt ω̂L(r(t)) � ω̂2
L(r(t)),

the precession of the magnetic moment follows the local direction of the field, and
the atom retains its hyperfine spin component, mF . Thus, the magnetic field creates
an effective potential for the atoms

U(r) = gFµBmF |B(r)|.
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This technique allows for trapping an atomic cloud already at a few tens of mi-
crokelvins. However, one of its important limitations is that magnetic traps cannot
confine atoms in all hyperfine states, since the Maxwell equations do not allow for
static magnetic field configurations whose absolute value has a maximum at a certain
point in space, only minima are allowed3. Thus, only such traps can be created, in
which the magnetic field strength is minimal in the middle, and gradually increases
in the radial direction. These allow to trap only the so-called low field seeking states
that acquire a lower Zeeman energy at lower magnetic fields [32,33].

2.4 Evaporative cooling

The use of the evaporative cooling mechanism has been the key technique to achieve
Bose-Einstein condensation in magnetic or so-called magneto-optical traps. The ba-
sic idea is to gradually lower the trapping potential and thus let the most energetic
atoms leave the trap. Meanwhile, the gas thermalizes through elastic collisions. Like
a cup of coffee cools through its fastest atoms leaving the coffee’s surface, evaporative
cooling can reduce the gas temperature orders of magnitude lower, down to quan-
tum degeneracy – at the cost of simultaneously loosing the majority of atoms [34].
Thus, evaporative cooling requires large initial particle numbers and also high initial
densities in order to assure fast thermalization rates. To become efficient, elastic
collisions, leading to thermalization, have to be significantly more frequent than
inelastic collisions that cause losses and heating.

2.5 Optical trapping

The first observation of Bose-Einstein condensates in a series of remarkable experi-
ments with ultracold atomic vapors [1–3] led to a well-established recipe for reaching
the condensate phase: the atomic vapor is first precooled to the sub-millikelvin tem-
peratures, typically by laser cooling techniques and then transferred to a magnetic
trap. Further cooling to the BEC phase is then achieved by evaporative cooling
in a magnetic or magneto-optical trap, often using forced evaporation [34], see also
Sec. 2.4.

However, an external magnetic field destroys the special spin symmetries of cer-
tain spinful condensates. Therefore, by definition, the above mentioned magnetic
traps are unsuitable for studying the rich physics of these systems (see Chapter 5).
Thus, the interest in multicomponent and spinful condensates led to the develop-
ment of all-optical trapping techniques. These methods make use of the energy shift
of the atoms in a strong laser field that ’dresses’ the atoms with photons, and the
resulting quasi-particles (the so-called dressed states) have an energy that depends

3Assuming that B2 acquires a local maximum at a point, all eigenvalues of the matrix ∂i∂jB2

should be negative here. This would imply that the trace of this matrix would also be negative.
However, since the static Maxwell equations imply ∆B = ∇(∇ ·B) −∇× (∇×B) = 0, the trace
Tr(∂i∂jB2) = ∆B2 = 2

(
B ·∆B +

∑
i
(∂iB)2) is positive.
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on the intensity of the local laser field. In general, ”red-detuned” lasers, with a
frequency below an atomic transition, attract atoms to high laser intensity regions,
whereas blue-detuned lasers, tuned above the transition energy, repel atoms. Thus,
a strong red-detuned laser focused sharply to a point can create a parabolic confine-
ment potential to the atomic vapor, and can hold spinful condensates as well [35].

In the remaining part of this chapter, we shall review the basic concepts of atom-
photon interactions in a strong laser field in order to understand the mechanism
beyond optical forces acting on atoms, and we will discuss basic trapping geometries.

2.5.1 Atoms in strong laser fields

The absorption and emission processes of an atom in a laser field leads to radiative
forces that fluctuate around their mean value. On time scales much larger than the
radiative lifetime, the fluctuations average out, and the resulting average forces lead
to intriguing effects, such as Doppler cooling. For a slowly moving atom, there are
two parts of the mean radiative force. The first part is related to the phase gradient
of the laser wave and leads to the radiation pressure discussed earlier in the context
of Doppler cooling [36]. The second part is related to the intensity gradient of the
laser, and it is often referred to as the dipole force [36, 37]. As we discussed in the
first part of this chapter, the dipole force can be exploited for all-optical trapping
using an inhomogeneous laser field.

The radiation-pressure force can be analyzed in detail in terms of fluorescence
cycles involving the spontaneous absorption and emission of photons. Such pertur-
bative treatment, however fails to explain some characteristics of the dipole force,
especially at high laser intensity. In that case, a new theoretical treatment is re-
quired that considers first the energy levels of the combined atom-photon system,
whose energy gets shifted by their coupling produced by the dipole moment of the
atom. This approach is especially appropriate if the energy splitting in the combined
system, the so-called generalized Rabi frequency, Ω, is large compared to the rate
of spontaneous emission or damping rate, Γ [36]. Then, as a second step, one can
take into account the effect of spontaneous emission to the other empty modes of
the electromagnetic field that leads to relaxation mechanisms between the dressed
states. However, the treatment of these processes is beyond the scope of this section.

In order to investigate the dipole force, let us consider a two-level atom with
a ground state |g〉 and an excited state |e〉, with an energy splitting ωA. Let us
furthermore neglect the empty modes of the electromagnetic field, and consider only
the laser mode of frequency ωL. The interaction of the atom to the laser field
is customarily described within the dipole approximation, taking into account the
coupling between the atomic dipole moment to the local electric field [38].

In the absence of an atom–laser coupling, the eigenmodes of the of the dressed
Hamiltonian have two almost degenerate branches |g, n+ 1〉 and |e, n〉, for all integer
number n of photons (see Fig. 2.2 a). These manifolds of states are separated by
the energy ~ωL of adding an additional laser photon to the system, whereas the
energy separation between the states within a manifold is simply the laser detuning
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Figure 2.2: Energy of atomic levels in a strong laser field. (a) In the absence of
a dipole coupling (left), the energy levels are simply split by the laser detuning.
However, in a strong laser field, the scattering of photons due to the atom’s matrix
element couples the dressed states |g, n+ 1〉 and |e, n〉 that leads to a splitting of
their energy levels, given by the generalized Rabi frequency Ω. (b) In a spatially
varying red-detuned laser field, the variation of Ω(r) leads to optical trapping of the
ground state atoms in the high-intensity regions. In the small intensity regions, the
energy splitting of the levels simply coincides with the laser detuning δ.

δ = ωL − ωA (see Fig. 2.2.a). The dipole interaction then couples these states by
making an atom in its excited state |e, n〉 emit a photon into the laser field and
jump back to its ground state |g, n+ 1〉, and vice versa. If the detuning is small,
δ � ωL, ωA [36], other absorption and emission processes can be neglected, and we
can determine the dressed energy eigenstates of the coupled system, whose splitting
is given by the generalized Rabi frequency [38]

Ω(R) =
√

Ω0(R)2 + δ2,

with Ω0(R) ∝
√
I(R). The dependence of the dressed state energies on the laser

intensity leads to trapping effects in spatially inhomogeneous laser configurations.
Far from the beam, the dressed states just coincide with the bare ones, whereas in
the beam center their splitting is determined by the local Rabi frequency that is
always greater than the detuning, see Fig. 2.2. This energy difference leads to an
effective potential, whose sign depends on the laser detuning. In the red-detuned
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case, the atomic ground state |g, n+ 1〉 is below its excited state |e, n〉. As the atom
moves adiabatically towards increasing laser intensities, these two states get mixed
by the atomic dipole matrix element, and the atom, originally in its ground state,
remains in the lower energy state, whose energy becomes lowered towards the center
of the laser beam. This mechanism creates an attractive potential for the atom that
is dragged to the large intensity region of the laser. The opposite mechanism leads to
a repulsive potential in case of blue-detuned lasers. It can be shown that the depth
of this potential is proportional to the laser intensity, and is inversely proportional
to the detuning [37]

U(R) = ~ (±Ω(R)− δ(R)) ' Ω2
0(R)
δ

∝ I(R)
δ

.

This formula suggests that one can reach strong optical trapping frequencies either
by increasing the intensity of our trapping laser or tuning the laser frequency close to
resonance. It turns out, however that the latter approach leads to undesired heating
of the gas since atoms increasingly scatter laser photons close to resonance. This
effect can be taken into account by considering the coupling of the dressed states to
the empty modes of the electromagnetic field, responsible for spontaneous emission
of fluorescence photons that is facilitated by the non-zero matrix elements of the
atomic dipole coupling. It can be shown that close to the resonance, the scattering
rate of photons is given by the inverse square of the detuning [37],

Γsc(R) ∝ I(R)
δ2 ,

that leads to vastly increased heating processes close to resonance. Thus optical
dipole traps usually apply lasers tuned far from resonance as compared to the natural
linewidth of the atomic transition, in order to reduce unwanted heating effects, and
strong traps are achieved by ramping up laser intensities.

2.6 Interactions

So far we have considered experimental tools to trap and cool ultracold vapors to the
quantum degenerate regime, and neglected interactions between the atoms. Many
properties of these quantum gases, including the thermalization rates and condensate
density profiles, are, however, determined by two-particle interactions.

Furthermore, with the advent of magnetic Feshbach resonances, experiments
could reach the strongly interacting regime, where many-body effects, rather than
simple quasi-particle dynamics dominate the behavior of the system. Before diving
into the many-body physics of ultracold gases, we discuss in this chapter the basic
interaction mechanisms in gases of neutral atoms, and investigate how the interaction
strength can be tuned in these systems almost arbitrarily.
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2.6.1 Ultracold elastic collisions

Ultracold gases are so dilute that interactions predominantly manifest in two-particle
collisions. Furthermore, the kinetic energy of the particles is usually low enough so
that their interaction cannot create transitions between different hyperfine levels thus
the collisions are typically elastic. The elastic scattering properties of two neutral
atoms are usually described by an interaction potential V0(r), whose attractive Van
der Walls tail at large distances, V0(r) ∼ −1/r6, is cut-off by an almost hard-core
repulsive potential when the atoms are close to each other. Since the interactions
depend on the relative position of the particles r = r1 − r2, their center of mass
motion trivially decouples from their relative motion. Introducing their relative
momentum p = (p1 − p2)/2 and reduced mass mr = m1m2/(m1 + m2), their
motion is determined by the Schrödinger equation(

p2

2mr
+ V0(r)

)
ψk(r) = εk ψk(r), (2.1)

at an incoming relative momentum k and energy εk = ~2k2/2mr. Since an ultracold
gas is so dilute that the typical atom-atom distance is several hundred times larger
than the characteristic size of atoms, the scattering is completely characterized by
the large distance behavior of the relative wave function,

ψk(r) ∼ eikz + fk(ϑ)e
ikr

r
,

where fk(ϑ) denotes the scattering amplitude4, and the direction of scattering is
given in polar and azimuthal coordinates, ϕ and ϑ, respectively.5 For a spherically
symmetric interaction potential the relative angular momentum is conserved and the
scattering states can be expanded in terms of their angular momentum channels, l.
Importantly, scattering channels of non-zero angular momentum are typically frozen
out in an ultracold gas. In these channels, the kinetic energy associated with the
angular motion leads to a centrifugal energy barrier, typically in the range of 1 mK
for alkali atoms. At temperatures below that, usually the lowest-angular-momentum
scattering channel dominates: s-wave (l = 0) for bosons and different fermionic
species, p-wave (l = 1) for identical fermions [39].

The scattering amplitudes can then be determined at ease by solving Eq. (2.1).
We find that, at energies much lower than the centrifugal barrier the s-wave scat-
tering amplitude takes on the simple form

fk = − a

1 + ika
, (2.2)

4The scattering cross-section of the gas is related to the scattering amplitudes fk(ϑ) as σk =
2π
∫ π

0 dϑ sinϑ |fk(ϑ)|2.
5Since the interaction potential is assumed to be spherically symmetric, the scattering amplitudes

do not depend on ϕ.
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characterized by the s-wave scattering length a, as a single parameter [39]. Although
the scattering length is determined by the interaction potential V0(r), the micro-
scopic details of this potential are unimportant from the point of view of describing
interactions in an ultracold gas. In fact any sufficiently fast decaying interaction
potential with the same value of a leads to the same many-body behavior [24].
Actually, the use of the interaction potential to describe interactions is rather im-
practical, since the scattering length depends sensitively on the microscopic details
of this potential. V0(r) is generally unknown and it is rather hard to determine
exactly. Then, a small uncertainty in the potential may result in large errors in
the scattering length. In practice, a is measured experimentally, and represents the
most relevant information about the interaction potential in terms of low energy
collisions.

The exact interaction potential is also ill-suited to describe condensates in ther-
mal equilibrium. V0(r) usually hosts a number of bound states, whose binding
energy is on the range of 1 eV ∼ 104 K, whereas the typical temperatures of these
gases are more than 10 orders of magnitude lower, below the millikelvin range. This
clearly shows that ultracold gases are in a meta-stable state, and they would solidify
in thermal equilibrium. Therefore, the methods of equilibrium quantum statistical
mechanics would be unable to describe the long-lived metastable quantum phases of
these ultracold gases. This is why even in exact quantum Monte Carlo calculations
V0(r) is replaced by a hard-sphere potential [40].

2.6.2 Pseudopotential approximation

The key idea to circumvent the above difficulties is to use a simple potential that re-
produces the appropriate scattering length, providing a useful mean-field treatment
for weakly interacting gases. A model potential satisfying these requirement is the
zero range Fermi pseudopotential, acting on a two-particle wave function ψ(r) in
the center of mass frame as

V (r)ψ(r) = 4π~2a

2mr
δ(3)(r) ∂

∂r
(r ψ(r)) ,

where r stands for the relative coordinate and the derivative term just provides
regularization for the wave function. Indeed, when the wave function is regular for
r → 0, the regulator has no effect, and the pseudopotential can be merely viewed
as a pure Dirac delta potential. However, for wave functions with a 1/r singularity,
as is usually the case for scattering states and bound states of the pseudopotential,
the derivative term simply removes the singular part of ψ.

The pseudopotential above reproduces the low energy scattering amplitudes Eq.
(2.2) for all values of k. To see this, we reformulate the two-particle scattering
problem at an incoming energy εk = ~2k2/(2mr) in Eq. (2.1) as

(∆ + k2)ψk(r) = 2mr

~2

∫
d3r′ δ(3)(r− r′)V (r′)ψk(r′),
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with the exact interaction potential substituted by the pseudopotential V (r). One
can find the solution of this equation by making use of the three-dimensional retarded
Green’s function

G3D
εk

(r, r′) = − 1
4π

eik|r−r′|

|r− r′| , (2.3)

having the form of an outgoing spherical wave of momentum k. This Green’s function
satisfies the equation (∆r + k2)G3D

εk
(r, r′) = δ(3)(r − r′), and thus through it, the

solution of the two-particle scattering problem can be given in the self-consistent
Lippmann–Schwinger form,

ψk(r) = eikr − 2mr

4π~2

∫
d3r′

eik|r−r′|

|r− r′| V (r′)ψk(r′),

see also Chapter 3. In cases when the potential is weak, it is sufficient to iterate
this equation to first order in V , and substitute the exact wave function in the
integral simply with eikr, leading to the Born approximation. This first order vertex
gives a mean-field interaction parameter proportional to the scattering length a [24].
We thus see, that in case of weak interactions, the interaction of the gas is simply
determined by the scattering amplitude, and it is thus attractive for a < 0 and
repulsive for a > 0.

The two-particle scattering problem can, however, also be solved exactly within
the pseudopotential approximation. Since the pseudopotential is concentrated to a
single point, the integral in the Lippmann–Schwinger equation can be simply carried
out yielding,

ψε(r) = eikr + fk
eikr

r
,

with the scattering amplitude given in Eq. (2.2). fk has no angular dependence,
since the pseudopotential scatters only in the s-wave channel, where it provides a
full description of the low energy scattering properties of the gas.

2.6.3 Bound states of the pseudopotential

As we have discussed above, the true interaction potential V0 has many bound
states, irrespective of the sign of a. However, almost all of these bound states
lie several orders of magnitude lower in energy than the energy scale of ultracold
collisions. Thus, for the low energy scattering properties of the atoms, these bound
states are irrelevant as long as no molecule formation occurs through three-body
collisions. The scattering amplitude in this limit is only sensitive to bound states
near zero energy, which show up as poles of the scattering amplitudes fk in the
upper complex half-plane k = iκ, with binding energy εB = ~2κ2/(2mr) [41]. The
pseudopotential, in particular, captures a single bound state for κ = 1/a > 0 in
case of positive scattering lengths, with a binding energy εB = ~2/(2mr a

2). By
solving the Schrödinger equation (2.1), we indeed find a bound state wave function
corresponding to this pole

ψB(r) = 1√
2πa

e−r/a

r
, (2.4)
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with a characteristic length related to the binding energy. When εB is close to
the continuum threshold, i.e. in case of large positive scattering lengths, εB rather
accurately corresponds to the energy of the highest lying bound state of the real
two-particle interaction potential V0 [39].

The existence of a bound state in a repulsive gas, and its absence for a < 0 is a
rather counter-intuitive effect, related to the three-dimensional nature of the scat-
tering problem. Here, a bound state near zero energy leads to negative phase shift of
the scattered wave and thus to a positive scattering length [41]. The dimensionality
of the system also plays an important role in the appearance of bound states. As
we will show in Chapter 3 of this thesis, gases confined into two dimensions by a
harmonic trapping potential host bound states both for positive and for negative
values of the three-dimensional scattering length a.

2.6.4 Feshbach resonances

As we have demonstrated in the pseudopotential approximation, the scattering am-
plitude diverges as a bound state approaches the continuum threshold. This leads
to increased interactions and scattering in the gas. In fact, the most direct way
of reaching the strongly interacting limit in an ultracold gas is by increasing the
scattering length beyond the average interparticle spacing via so-called Feshbach
resonances [39, 42]. Such resonances generally appear when a bound state in a
closed scattering channel is resonantly coupled to the scattering continuum in an
open channel, as depicted in Fig. 2.3. This mechanism is similar to those found in
accelerator experiments of high-energy physics, whereby the scattered particles are
temporarily captured in the closed channel state and then decay into the continuum,
so that the associated phase shift leads to a resonant increase of their interactions.
The two channels may correspond for instance to two different hyperfine spin states
of the colliding atoms, whose energy difference may be tunable through static mag-
netic fields, in case they have different magnetic moments. This magnetic tunability
makes magnetic Feshbach resonances a particularly powerful tool in ultracold exper-
iments [43, 44]. The many-body properties of the gas near the Feshbach resonance
can still be described using the pseudopotential, with a diverging scattering length
on resonance [39],

a(B) = abg

(
1− ∆B

B −B0

)
.

Here abg denotes the background scattering length in the absence of coupling to
the closed channel, whereas ∆B and B0 describe the width and position of the
resonance6.

6Feshbach resonances can alternatively be induced by all-optical means, whereby the energy shift
of the atomic levels is induced by laser shifts (see Sec. 2.5.1). However, these methods generally
suffer from heating problems due to the spontaneous decay of atoms to the vacuum [45].
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Figure 2.3: (a) Two-channel model for a Feshbach resonance. Incoming low en-
ergy atoms in the open channel resonantly couple to a bound state in the closed
channel. The energy of this bound state can be varied using static magnetic fields
B, and when it approaches the incident energy of the scattered atoms (close to
the continuum threshold), we find an increased resonance in their interaction. (b)
External magnetic field dependence of the scattering length a between the two low-
est hyperfine levels of the fermionic species 6Li, exhibiting a Feshbach resonance at
B0 = 834 G. Notably, this resonance has a zero-crossing at 534 G, where the gas is
essentially non-interacting, and can be used to model single-particle physics. [Figure
(b) is based on the results in Ref. [39].]

2.7 Optical lattices

Optical lattices, periodic potentials created by standing waves of far-detuned laser
beams, are a versatile tool for confining atoms into strong periodic potentials,
and thereby tuning their interaction. Through their use, quasi-one and quasi-two-
dimensional condensates can be created. Furthermore, two- and three-dimensional
optical lattices have been extensively used to mimic various crystal lattice configura-
tions. As the kinetic energy of the atoms is suppressed by the lattice, their interac-
tion becomes dominant – the system can thus be tuned into the strongly correlated
regime simply by increasing the lattice potential. In this section, we briefly review
the single-particle dynamics in an optical lattice, and then discuss the many-particle
problem in terms of the Hubbard model, a paradigmatic model for several strongly
correlated many-body phenomena in solid state physics. Importantly, optical lat-
tices provide an experimental test grounds for emulating the intriguing many-body
physics of the Hubbard model. As an important example relevant to this thesis,
we will investigate the basic mechanisms behind the superfluid to Mott insulator
transition in the bosonic Hubbard model, as well as its experimental characteristics.
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2.7.1 Lattice Hamiltonian

A one dimensional optical lattice potential can be generated by a standing wave of a
far off-resonant laser beam. The lattice has an intensity pattern of λ/2 periodicity,
where λ denotes the laser wavelength7. As we discussed in Sec. 2.5, red-detuned
lasers attract, whereas blue-detuned lasers repel atoms from intensity maxima, both
configurations creating a periodic potential for atoms. Close to the center of a
beam along the z axis, for distances much smaller than the beam waist, the optical
potential can be written as

V 1D
lat (r) = V0 sin2 kz,

with k = 2π/λ denoting the laser’s wavenumber. This potential creates quasi-two-
dimensional pancake-like configurations of the gas, squeezed by the laser in the
z direction, and confined much more weakly in the perpendicular direction either
through additional magnetic fields, or optically, by the waist of the lattice laser
beam8. For typical experimental parameters, the harmonic trapping frequencies in
this direction are rather small (usually of the order of 100 Hz), whereas along the
laser beam it is often as strong as 100 kHz. Thus, for sufficiently deep optical lattices,
the atoms can move only axially along the pancakes, and one can thus study the
physics of two-dimensional quantum systems. By crossing two standing waves along
two perpendicular axes, one can confine the atoms along both of these directions.
One can thus create tube-like configurations that allow for the study of strongly
correlated gases in one dimensions.

A three-dimensional cubic lattice potential

V 3D
lat (r) = V0

(
sin2 kx+ sin2 ky + sin2 kz

)
,

can be similarly created by overlapping three orthogonal standing waves9. The shape
of the optical potential can be further varied in multiple laser configurations or in
different geometries. For instance, triangular, honeycomb and kagome lattices can
be created [46], as well as superlattice configurations, produced by superimposing
lattices of commensurate spacings [47]. Furthermore, the use of holographic imaging
allows one to create complicated optical lattice configurations as well as to induce
disorder in a simple way [48].

In order to address single-particle dynamics, we recall that, single-particle eigen-
states in an infinite periodic potential form Bloch bands, similar to the ones in
solid state systems. According to Bloch’s theorem [49], the energy eigenstates can
be characterized by their band index n and their quasi-momentum q. Their wave

7More generally, by using a pair of phase-locked, non-collinear laser beams, their standing wave
pattern produces an optical lattice potential of even larger periodicity.

8Red-detuned lasers attract the atoms towards the beam center, where the intensity of the optical
lattice is maximal.

9To avoid cross-interference between the laser beams, slightly different laser wavelengths can be
used in each directions.
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functions can be written in terms of the lattice periodic Wannier functions u(n),

ψ
(n)
q (r) = 1√

N
∑
j

eiqRj u(n)(r−Rj),

with a the normalization constant N and with Rj denoting the position of the lattice
site j. The Wannier functions can be chosen to be centered at individual lattice sites
Rj , and they form an orthonormal basis for all bands n and lattice sites Rj . In cases
when the typical energy scale of the system’s dynamics is much lower than the first
band gap, it is sufficient to consider the lowest Bloch band, n = 0. For deep cubic
lattices, V0 � Er, the confinement on a single site is approximately harmonic with a
trapping frequency ~ω0 = 2Er

√
V0/Er, that is of the order of several recoil energies,

Er = ~2k2/2m. Thus, the atoms can only move to neighboring sites by quantum
tunneling [39,50], with a nearest-neighbor hopping coefficient

J = −
∫
d3r u(0)∗(r− rj)

(
~2

2m∇
2 + V 3D

lat (r)
)
u(0)(r− ri)

' 4√
π
Er

(
V0
Er

)
e−2(V0/Er)1/2

.

The exponential dependence of the hopping on the lattice depth shows that this
parameter can be easily increased or suppressed at will through changing the laser
intensity.

In order to describe many-body dynamics, it is instructive to express the lattice
system’s Hamiltonian in terms of field operators

Ψ(r) =
∑
j

u(0)(r−Rj) aj ,

where aj denotes the annihilation operator removing an atom at site j, and the
bosonic or fermionic nature of these operators has to be in accordance with the
quantum statistics of the atomic species used. In a real experiments, the atoms are
also subject to an additional slowly varying parabolic trapping potential Vtrap(r).
Their many-body eigenstates can then be described to a very good approximation
by the Hubbard–Hamiltonian

H = −J
∑
〈i,j〉

a†iaj −
∑
i

(
µini + U0

2 ni(ni − 1)
)

(2.5)

with the spatially dependent chemical potential µi = µ0 − Vtrap(Ri), setting the
particle density in the trap. Here, ni = a†iai stands for the particle number operator
for the lattice site i, and the first summation goes over nearest neighbor sites 〈i, j〉.
The last term in Eq. (2.5) describes the on-site interaction of atoms,

U0 = 4π~2

m
a

∫
d3r |u(0)(r)|4.
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When the trapping is strong enough, the overlap between Wannier functions on
neighboring sites is negligible, and the interactions in the optical lattice are captured
to a very good approximation by this single term. In the deep-lattice limit V0 � ER,
we may substitute the exact Wannier function with the Gaussian ground state of
the local oscillator potential, and obtain

U0 '
√

8
π
ER

(
V0
ER

)3/4
ka.

The polynomial dependence of U0 on the lattice depth, in contrast to the exponen-
tial dependence of the hopping J , means that their ratio can be flexibly tuned by
modifying the laser intensity in an experiment. Thus, by suppressing the kinetic
energy, the system can be brought into a strongly interacting state U0/J � 1 at
ease.

2.7.2 The superfluid to Mott insulator transition

In this subsection, we study bosonic atoms in a deep optical lattice, and review the
basic mechanism of the quantum phase transition between the superfluid and Mott
insulator phases in the bosonic version of the Hubbard model, the so-called Bose–
Hubbard model. In Chapter 5, we will rely on the concepts discussed here. In order
to simplify our discussion, we consider a spatially homogeneous system. The Bose–
Hubbard model describes the competition between tunneling, whereby atoms can
decrease their kinetic energy through spreading over the lattice, and the repulsive
on-site interaction that disfavors configurations with more than one particles on a
particular site. By measuring the energy in terms of the on-site interaction, one can
clearly see that the competition of the different ground-states of the system depends
only on the dimensionless parameters J/U0 and µ/U0. In the limit J/U0 � 1, the
tunneling term dominates the Hamiltonian, and the system is in the superfluid state.
In the non-interacting limit U0 → 0, in particular, the independent particles occupy
the lowest (q = 0) Bloch state, spreading all over the lattice with equal weights.
Thus, the ground-state of an N -particle system on a lattice of M sites is a simple
Bose–Einstein condensate

|ΨSF〉U→0 = 1√
N !

(
1√
M

M∑
i=1

a†i

)N
|0〉 ,

with |0〉 denoting the vacuum. In the thermodynamic limit N,M → ∞ with fixed
density n = N/M ,10 this wave function approaches a product of local coherent states
with their phases locked [14],

|ΨSF〉U→0 ∼
∏
i

ena
†
i |0〉 .

10N and M are of the order of 105 − 106 in standard experiments
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The BEC ground state, favoring atoms spreading all over the lattice thus leads to
a significant probability of finding more than one atom at a given site. As the
interaction is turned on, this is, however, disfavored by the interaction energy.

Figure 2.4: Phase diagram of the Bose–Hubbard model in terms of the hopping
(J) and chemical potential (µ). (a) The incompressible Mott insulator phase oc-
cupies lobe-like structures, with increasing integer densities per site. This phase is
surrounded by a superfluid phase with long-range phase coherence, and can take
fractional values of the particle density. The red arrow denotes the variation of
the chemical potential in a trapped ultracold atomic system, with the center of the
trap being in the superfluid phase, with an average density n > 1 particles per site.
Towards the edges, the density is depleted, and the central superfluid core is sur-
rounded by a series of Mott insulator and superfluid shells, in a wedding cake-like
structure, (b).

In the opposite limit J/U0 � 1, the interaction energy dominates the Hamil-
tonian, and, in the limit of zero hopping, the sites become independent. Since the
on-site Hamiltonian is expressed in terms of the particle number operator, the on-
site energy ε(ni) = −µni +U0 ni(ni− 1)/2 will be minimized if all sites are occupied
by a fixed integer number n of bosons at all sites. For the chemical potential in the
range (n− 1)U0 < µ < nU0, there will be exactly n particles at each site [51], and,
the ground state takes on the form [14]

|ΨMI〉|J→0 =
(
M∏
i=0

a†ni√
n!

)
|0〉 ,

with a well defined particle number at each site and a phase of maximal uncertainty.
For small values of the hopping (J � U0), the kinetic energy gain of a mobile particle
excitation is exceeded by its cost in on-site energy in a large fraction of the phase
diagram. Thus, density fluctuations in this region will be suppressed, representing
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an insulating, incompressible state, a Mott insulator [51]. At larger values of the
hopping, the energy gap for creating particles or holes decreases, leading to the
appearance of these excitations, and creating non-zero conductance. In this regime,
the system is in the superfliud phase, whose phase boundaries represent lobe-like
structures, depicted in Fig. 2.4.

The superfluid phase is characterized by long-range phase coherence and an
average particle density n that can take non-integer values as well. The superfluid
to Mott insulator quantum phase transition was demonstrated first experimentally
in an ultracold atomic system in Ref. [14], where the phase transition was identified
through the onset of phase coherence. In an experimental system, the parabolic
trapping potential leads to an ever decreasing value of the effective chemical potential
towards the edges of the trap, indicated by the red arrow in the phase diagram in
Fig. 2.4. If, for instance, the center of the trap is in the Mott phase with n = 1
particle per site, the density starts depleting at the point where the effective chemical
potential reaches its critical value, leading to the onset of superfluidity. The central
Mott core will thus be surrounded by a superfluid shell, see also Chapter 5.

2.8 Imaging techniques

Besides the wide use of optical systems to control and manipulate ultracold quan-
tum gases, they constitute the basic tool physical measurements (see also Chapter 5).
Since these gases are too fragile to be brought into contact with any macroscopic
object, optical imaging is basically the only method through which useful informa-
tion can be obtained from them. Probably the most basic measurement technique
used in these experiments is absorption imaging, whereby a photographic image is
taken of the cloud using a resonant laser. This enables one to detect the integrated
in-trap density of the gas along one axis, through which the gas temperature can
also be determined. Since the edges of the gas are usually dilute enough so that
they can be considered weakly interacting, the density of these outer regions can
be reliably calculated at the mean-field level. The gas temperature can thus be
determined by fitting the theoretical curves to the measured density profiles of this
region [39]. Absorption imaging has also been widely used in matter-wave interfer-
ometry experiments with Bose–Einstein condensates. Since the phase coherence of
the condensates is conserved on the time scale of these experiments, one can detect
interference patterns as density fringes when two parts of the condensate are brought
into interference with each other [17].

Another widely used experimental method is the time-of-flight imaging tech-
nique, whereby the gas is first released from the trapping potentials and then imaged
after some free expansion. This method has been used in a number of experiments to
detect the superfluid to Mott insulator phase transition through the onset of phase
correlations [14]. In case of an optical lattice system, if the lattice and the trapping
potential is turned off abruptly, and interaction effects are negligible, a Bloch state
with quasi-momentum q will become a superposition of plane waves with momenta
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~(q + G), where G denotes reciprocal lattice vectors. These plane waves propagate
ballistically, and thus after long enough time of flight, the momentum distribution
of the gas can be imaged using standard absorption imaging methods. In case of a
non-interacting Bose–Einstein condensate that macroscopically populates the q = 0
Bloch wave, we find several interference maxima in the time-of-flight image. In gen-
eral, in a deep optical lattice, the density distribution of the atomic cloud after an
expansion of time t can be written as [39,52]

ñ(r) =
(
m

~ t

)3 ∣∣∣∣ u(0)
(

q = m r
~ t

)∣∣∣∣2 C

(
q = m r

~ t

)
, (2.6)

where u(0)(q) denotes the Fourier transform of the Wannier function of the lowest
band, providing an approximately Gaussian cut-off for large momenta, and

C(q) =
∑
i,j

〈a†iaj〉 e
iq(ri−rj)

is the correlation function of the atoms in Fourier space, the central quantity of
interest. The time of flight image is of course the integral of this density distribution
along one axis, e.g. Ñ(x, y) =

∫
dz ñ(x, y, z). In case of a pure Bose–Einstein

condensate the density ñ exhibits a huge peak at the center of the first Brillouin
zone q = 0, whereas we find several smaller peaks at the centers of the higher order
Brillouin zones [14, 39]. In contrast, in the perfect Mott state, J → 0, there are no
long range correlations in the system, and the above sharp peaks in the time-of-flight
image are absent. We thus only find a smeared out Gaussian profile, corresponding
to the density of the lowest band Wannier function in momentum space, |u(0)(q)|2,
whose size is on the order of that of the first Brillouin zone.
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3
Confinement-induced molecules

in bilayer gases

Two-dimensional quantum systems attract a significant attention in many areas of
statistical physics, condensed matter and particle physics. Restriction of the par-
ticles into lower spatial dimensions leads to increased quantum and thermal fluc-
tuations, as well as a stronger role of interactions [53]. Two-dimensionality gives
rise to several exotic quantum phases, such as the Berezinskii–Kosterlitz–Thouless
phase [15–18], quantum Hall phases [54–56] various spin liquid phases [57], it seems
that two-dimensionality plays a determining role in high-temperature superconduc-
tivity as well [58]. Experiments with ultracold quantum gases provide in ideal setup
to study these correlated low dimensional many-body phases, and many experiments
have been carried in this direction in recent years. The possibility to confine the
atoms into low dimensions by optical lattices and the tunability of many system pa-
rameters provide great opportunities to study these states in a flexible way. These
optical systems also go beyond their condensed matter counterparts in that they
allow for the creation of multicomponent fermionic and bosonic systems in restricted
geometries, and thereby open the possibility of realizing new quantum states of
matter [59–62], never observed before.

To realize these phases, however, one obviously needs to understand and control
the interactions in the system. In this chapter, we shall thus study the interactions of
a two-component ultracold gas confined into quasi-two dimensions by an optical po-
tential. At sufficiently strong confinement, the perpendicular motion of the atoms is
frozen, and the single-particle dynamics of the gas mimics that of a two-dimensional
system. However, interactions get modified by the confinement in a very non-trivial
way, leading to several counter-intuitive phenomena. While our theoretical under-
standing of interactions in one-component quasi-one- and quasi-two-dimensional sys-
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tems is quite complete [63–66], two-component systems in two dimensions are much
less explored, although they provide a particularly fruitful perspective to create ana-
logues of interaction-driven condensed matter phases, such as excitonic Bose conden-
sates [67, 68]. Furthermore, certain two-dimensional multicomponent systems, are
predicted to exhibit exotic forms of the Berezinskii-Kosterlitz-Thouless transition
due to the special structure of their topological excitations [69,70].

In two-component systems, the independent control of interspecies interactions
is of primary importance for the experimental study of their intriguing many-body
phases and exotic quantum phase transitions. We will see in this chapter that, by
separating the gases into a bilayer structure by the application of a perpendicu-
lar magnetic field gradient, their interactions can be tuned simply by changing the
separation of the layers, and the two components can be made strongly interacting
by actually separating them spatially. Although naive intuition suggests that the
interaction shall vanish as the overlap between the atomic clouds diminishes, we
discovered that the potential separating the layers actually leads to the emergence
of (geometrically induced) interaction resonances at appropriate separations. These
resonances originate from excition-like interlayer molecules, similar to the ones found
in semiconductor quantum wells and one-dimensional ultracold gases [66–68,71–73].
These giant molecules, both stable and unstable ones, are induced by the confining
potential, and their spatial extent in the confined direction can be several times
larger than the characteristic width of the individual clouds. Their existence leads
to significant resonances of the interlayer atom-atom interaction through a similar
mechanism that we find in accelerator experiments of high-energy physics. If the
energy of two colliding atom approaches that of an unstable molecule, their inter-
action increases significantly due to a series of virtual processes, whereby they bind
into the molecular state, and then decay into the continuum. Since the mecha-
nism behind these geometrically induced resonances is similar to that of magnetic
Feshbach resonances, we will occasionally refer to the resonances discussed here as
”geometric Feshbach resonances”. The resonant enhancement of interactions can be
conveniently reached by tuning the layer separation, since the molecular binding
energies depend sensitively on this parameter. This allows future experiments to
control interspecies interactions independently from the other interaction param-
eters, and thereby discover a largely extended parameter range of two component
condensates. Furthermore, the lifetime of the quasi-bound molecules vastly increases
with growing layer separations that shall make them detectable in commonly used
shaking experiments for the first time, as we demonstrate through detailed many-
body calculations.

The results presented in this chapter are based on the following publication:
M. Kanász-Nagy, E. A. Demler and G. Zaránd, ”Theory of confinement-induced
interlayer molecular resonances”, arXiv:1401.5798 (2014).
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3.1 Interactions in exactly two dimensions

Let us first review the elastic scattering of a pair of atoms in the strictly two-
dimensional case. Since the short-ranged interaction potential, V 2D

int (ρ1 − ρ2), de-
pends only on the relative coordinates ρ = ρ1−ρ2 of particles, the scattering process
can be entirely described in the center of mass frame. At large interparticle distances,
the two-particle relative wave function asymptotically becomes the superposition of
the incoming plane wave and a scattered wave,1

ψ2D(ρ) ' eiq·ρ − f2D(ε, ϕ)
√

i

8πqρe
iqρ,

determined by the scattering amplitude f2D(ε, ϕ). Here ε = ~2q2/m is the incoming
energy at the relative momentum q = q1 − q2 of particles, and ϕ is the angle of
scattering. Similarly to the case of three-dimensional scattering discussed in Sec. 2.6,
the low-energy scattering properties are determined by the s-wave contribution, and
thus the scattering amplitudes become spatially isotropic at small energies, where
the wavelength of the incident wave is much larger than the characteristic radius,
Rint, of the interaction potential [65].

Following Ref. [65], the scattering amplitudes can be obtained from the large dis-
tance behavior of the scattering states of the two-dimensional (relative) Schrödinger
equation (

−~2

m
∆ρ + V 2D

int (ρ)
)
ψ2D(ρ) = ε ψ2D(ρ).

At short distances, but outside of the effective range of the interaction potential,
Rint � ρ� 1/q, the energy of the incoming wave can be neglected, and the scattered
wave is given by the q → 0 solution of the Scrödinger equation,

ψ2D(ρ) ∝ log(ρ/d),

exhibiting a logarithmic singularity that is characteristic to two-dimensional scat-
tering, with the length scale d > 0 determined by the exact form of the interaction
potential. Comparing this with the large distance limit of the wave function ψ2D,
we can determine the scattering amplitudes as

f2D(ε) = − 4π
log(ε+/E2D

B )
= − 4π

log(|ε/E2D
B |) + iπΘ(ε)

, (3.1)

characterized by the binding energy, E2D
B = −~2/(md2) < 0, that determines the

characteristic energy scale of the scattering process, whereas Θ(ε) denotes the Heav-
iside function, that originates from the analytic cut of the logarithm at positive en-
ergies. The correct analytic form of the scattering amplitude along the branch cut is
determined by the infinitesimal imaginary part of the incoming energy, ε+ = ε+ i0+.

1The 1/
√

8πq normalizing factor has been introduced for later convenience.
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At the binding energy ε = E2D
B < 0, the denominator of Eq. (3.1) vanishes,

and the scattering amplitude exhibits a pole, corresponding to a bound molecular
state [39,65]. Indeed, the wave function of this bound state can be obtained simply
by solving the free Schrödinger equation at the binding energy, leading to

ψ2D
B ∝ K0

(√
m

~2 E
2D
B + i0+ · ρ

)
,

with K0 denoting the modified Bessel function 2. Furthermore, the logarithmic
structure of the scattering amplitude Eq. (3.1) also implies the emergence of a log-
arithmically broad resonance at positive energies, ε = |E2D

B |, which is characteristic
to two-dimensional scattering.

In the limit of low energy collisions, ε � |E2D
B |, the imaginary part of the de-

nominator in Eq. (3.1) is negligible, and the scattering amplitude becomes real and
positive at all energies. Since the scattering amplitude f2D(ε) can be viewed as the
effective interaction between the colliding atoms, a dilute Bose of Fermi gas can
characterized by an effective mean-field coupling constant g2D

eff , that is proportional
to the thermal average of the scattering amplitudes at its temperature T [65],

g2D
eff ∝ f2D(ε ≈ kBT ).

We thus see that at small temperatures kBT � E2D
B , the interaction in a dilute,

purely two-dimensional gas is always repulsive, an artefact of the two dimensional
geometry.3

3.2 Two-particle scattering in bilayer gases

Let us now turn to the real experimental situation, where the ultracold gas is confined
into quasi-two dimensions using harmonic confinement. As has been shown in the
seminal works of Refs. [63–65] studying single layer systems, confinement radically
modifies interactions as compared to the three-dimensional case, and the scattering
properties of the confined system resemble in many respect to those of an exactly
two-dimensional gas; in particular, confinement leads to the emergence of a bound
molecular state of energy ε = −EB for all values of the three-dimensional scattering
length, a, in sharp contrast to three-dimensional gases, where bound states are
only present in case of repulsive gases, a > 0 (see Section 2.6). Due to the two-
dimensional nature of low energy scattering, we also find a logarithmically broad
scattering resonance at positive collision energies approximately at ε ∼ |EB|, leading
to a repulsive interaction of low energy particles, as shown in the previous section.

2The modified Bessel function K0 is related to the more customarily used Hankel functions,
H

(1)
0 , as K0(x) = iπ

2 H
(1)
0 (x), for −π < Arg(x) ≤ π/2.

3Similarly, in case of a weakly interacting quantum degenerate Bose gas, the mean-field inter-
action energy is dominated by two-particle interactions at the energy of relative motion ε = 2µ,
where µ is the chemical potential [65]. In this case, the mean-field coupling constant for the purely
two-dimensional condensate can be approximated given by g2D

eff ∝ f2D(2µ).
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The case of two component gases, confined into a bilayer geometry, is even more
complex, and exhibits a number of counter-intuitive quantum effects. We will dis-
cuss this setting in the rest of this chapter.4 To be specific, we shall consider atoms
of two hyperfine species, α =↑, ↓, confined into quasi-two dimensions that provides
parabolic confinement in the z spatial direction. Due to their different magnetic
moments, the components can be separated by the application of a perpendicular
magnetic field gradient, thus forming a bilayer geometry. In this setup, the distance
d↑↓ of the layers, and thus the overlap of the clouds, can be varied at ease by tuning
the strength of the magnetic field gradient, as depicted in Fig. 3.1 (a). This addi-
tional freedom provides flexible means of tuning interspecies interactions, through
the use of interaction resonances, as we show below. To outline the basic mechanisms
behind these geometric Feshbach resonances, we shall study the scattering of two
particles on each other, and determine the two-particle scattering states analytically.

Figure 3.1: (a) Experimental setup. A two-component gas is confined into a plane
using a deep optical lattice potential in the z direction. Due to their different mag-
netic moments, the components can be separated into a bilayer structure by the
application of a perpendicular magnetic field gradient. (b) Schematic picture of
the two ultracold clouds with opposite spin. The confining potential fosters the
emergence of bound and quasi-bound molecular states, extending over both clouds
simultaneously, that can lead to resonances in the interspecies interactions. (c) En-
ergy of the bound molecule (solid line) between atoms of opposite spin, in terms
of the scattering length a↑↓, in the vicinity of a three-dimensional Feshbach reso-
nance. The corresponding quasi-bound molecules (dashed line) at positive energies,
are unstable to decaying into the two-particle continuum, and create finite-width
resonances in the interparticle interaction. The binding energies, measured in terms
of the oscillator energy ~ωz, depend only on the dimensionless ratio of the scattering
length to the oscillator length, lz =

√
~/mωz.

Assuming parabolic confinement, the motion of individual particles in layer α

4Single layer gases can be considered a special case of this setting.
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can be described by the single particle Hamiltonian5

Hα = p2

2m + mω2
z

2 z2
α , (3.2)

where the z coordinates zα ≡ z − z0
α are measured from the centers of the layers,

z0
α, and the layer separation is given by6 d↑↓ ≡ z0

↓ − z0
↑ . Individual particle states in

the two layers can then be classified by their momentum qα within the (x, y) plane
and a harmonic oscillator quantum number nα, referring to their motion along the
z direction. The particles interact through the short-ranged interaction potential
Vαβ characterized by the three-dimensional s-wave scattering lengths a↑↑, a↑↓ and
a↓↓.7 Due to the Pauli principle, identical fermionic atoms are non-interacting in
the s-wave channel, and thus a↑↑ = a↓↓ = 0, whereas bosons generally have non-zero
scattering lengths between all species [39]. With this restriction, our discussion of
two-particle scattering applies both for Bose and Fermi particles.

The scattering process of particles in layers α and β, governed by the Hamiltonian
Hαβ = Hα +Hβ + Vαβ, can be vastly simplified by transforming into relative and
center of mass coordinates,

z ≡ zα − zβ, ρ ≡ ρα − ρβ,

Z ≡ zα+zβ
2 , R ≡

ρα + ρβ
2 ,

where ρα denotes the in-plane coordinates in layer α, in the laboratory frame. Due
to parabolic confinement, and since the interaction depends only on the relative
coordinates, the center of mass and relative motions decouple completely. Indeed,
the two-particle Hamiltonian takes on the simple form, Hαβ = Hrel +HCOM, with
the Hamiltonians of the relative and center of mass motion defined as8

Hrel =
p2
ρ + p2

z
m

+ mω2
z

4 z2 + Vαβ(ρ, z− dαβ),

HCOM = p2
R + p2

Z
4m + mω2

z Z2.

5We neglect the trapping potential in the (x, y) plane that is usually of several orders of magni-
tude smaller energy than the transverse trapping.

6For identical species, the separation is, of course, zero, d↑↑ = d↓↓ = 0.
7Treating the interaction as point-like – i.e. neglecting its spatial structure and characterizing it

only through its s-wave scattering length – is justified, whenever the trapping potential is approxi-
mately constant within the effective range of interactions, Rint [39,65]. Then, Rint is required to be
small compared to the oscillator length, lz ≡

√
~/(mωz). Furthermore, the layer separation is also

restricted to the range d↑↓ � l2z/Rint in order that the change of the potential be small to quadratic
order. Since Rint ∼ 1 − 10 nm for most atoms [24, 65], these requirements are very well satisfied
in standard experiments. For standard trapping frequencies 1 − 100 kHz, our approximations are
valid up to rather large layer separations, d↑↓/lz ∼ 3 − 10 (depending also on the atomic species
used). For the treatment of extremely strong trapping frequencies where the oscillator length is on
the order of Rint, see Refs. [74] and [75].

8Shifting the z coordinate also shifts the argument of the interaction in the z direction δ(z−z′) =
δ(zα − zα′ − dαα′ ).
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Figure 3.2: (a) Harmonic trapping potential and interaction potential between par-
ticles of opposite spin, governing the scattering problem in relative coordinates. (b)
Interaction between the colliding particles creates real and virtual transitions to
other relative harmonic oscillator channels ν, creating logarithmically broad scat-
tering resonances around the edges of the channels, ε ∼ ν~ωz. (c) In case of negative
scattering lengths, these resonances lead, at positive energies, to the emergence of
pairs of quasi-bound molecular states (dashed levels), below each harmonic oscillator
edge, as well as to the emergence of a bound state (solid level) at negative energy
ε < 0. Furthermore, due to the logarithmic nature of the scattering amplitudes, we
also find the corresponding scattering resonances (dashed levels) above the edge of
each harmonic oscillator channel.

Whereas HCOM describes trivial harmonic motion, Hrel contains the full interaction
term Vαβ, and describes a particle of reduced mass m/2, confined into quasi-two
dimensions by a parabolic potential, and scattered by the interaction potential shown
in Fig. 3.2 (a). In the absence of interactions the two particles’ wave function in
the z direction can be expressed in terms of Ψ̃ ∼ ϕN (

√
2Z/lz)ϕν

(
Z/(
√

2lz)
)
, where

ϕn denotes the usual harmonic oscillator wave functions,9 with the natural length
scale given by the oscillator length lz ≡

√
~/(mωz), and N and ν are the center

of mass and relative harmonic oscillator quantum numbers, respectively. Even if
interactions are turned on, the scattering process mixes only the relative transverse
channels, whereas the center of mass motion, being trivial, merely shifts the energy
of the particles by an energy ECOM = Q2/4m + N~ωz, with the center of mass
momentum Q = qα + qβ. Thus, the two-particle eigenstates can still be decoupled
in the form

Ψ̃ ∼ ϕN (
√

2Z/lz) eiQR ·Ψrel(ρ, z),

where Ψrel stands for the eigenstates of the Hamiltonian Hrel.
Since the center of mass motion of the atoms decouples, we can focus on their

non-trivial relative motion by going into the center of mass frame. Let us thus
consider a particle pair of opposite incoming momenta ±q in the relative harmonic
oscillator channel ν. Their interactions can then create transitions to other relative

9ϕn(x) = e−x
2/2Hn(x)/

√
2n n!

√
π, where Hn denotes the n-th Hermite polynomial.
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harmonic oscillator channels ν → ν ′, at the cost of their kinetic energy. Note there-
fore that only those channels are ’open’ to these scattering events, whose harmonic
oscillator energy ν ′ ~ωz is less than that of the incoming energy ε = ~2q2/m+ν ~ωz.
These scattering processes are characterized by the two-dimensional scattering am-
plitudes, fνν′αβ , describing the large distance (ρ� lz) behavior of the scattering states
Ψνε
αβ of the relative Hamiltonian [65],

Ψν,ε
αβ(r) ' φν(z)eiqρ −

∑
ν′

fνν
′

αβ (ε)
√

i

8πqν′ρ
eiqν′ρφν′(z), (3.3)

where qν′ =
√
m (ε+ − ν ′~ωz)/~ denotes the momenta in the outgoing channels, and

φν(z) stands for the relative harmonic oscillator wave function φν(z) = ϕν(z/
√

2)/(
√

2 lz)1/2.
Besides the incoming energy, ε, the scattering amplitudes are determined by the
three-dimensional scattering lengths, aαβ, as well as by the layer separation. How-
ever, due to the natural energy and length scales imposed by the trapping frequency
and the oscillator length, they depend only on the dimensionless, geometrically tun-
able ratios ε/~ωz, dαβ/lz and aαβ/lz, as shown later in this section.

In order to calculate the scattering amplitudes, we determine analytically the
two-particle scattering states, classified according to their incoming energy and
transverse harmonic channel, ε and ν. We first rewrite the scattering problem de-
termined by Hrel in the self-consistent Lippmann–Schwinger form,

Ψν,ε
αβ(r) = φν(z)eiqρ − m

~2

∫
d3r′G(0)

ε (r, r′)Vαβ(r′)Ψν,ε
αβ(r′), (3.4)

with the second term on the right hand side describing the scattered part of the wave
function. Here r = (ρ, z), and G(0)

ε is the retarded Green’s function of the confined
system, satisfying (Hrel(r)− Vαβ(r)− ε)G(0)

ε (r, r′) = −δ(3)(r − r′), and expressed
through the modified Bessel functions K0, as

G(0)
ε (r, r′) =

∞∑
ν=0

φν(z)φν(z′)K0(−iqν |ρ− ρ′|)
2π . (3.5)

Since the interaction potential is concentrated to a single point, the integral in
Eq. (3.4) can be determined exactly, and the scattered wave becomes

δΨν,ε
αβ(r) = Aν,εαβ G

(0)
ε (r, dαβ ẑ),

with an unknown proportionality constant, to be determined later from the short
distance asymptotics of the scattering state. Thus, the retarded propagator describes
the overall behavior of the two-particle scattering states outside the range of the
interaction potential. At short distances around the point of interaction, δr =
|r−dαβ ẑ| � lz, the relative propagation of the particles is not influenced by the axial
confinement, and G(0)

ε exhibits the well-known 1/δr singularity of three-dimensional
free propagator in Eq. (2.3),

G(0)
ε (r, dαβ ẑ) ' 1

4π

( 1
δr

+ wαβ(ε/~ωz)√
2πlz

+ . . .

)
, (3.6)
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together with an energy and separation dependent constant, wαβ(ε/~ωz) [65]. Whereas
the singular term in the propagator originates from the locally three-dimensional
geometry, wαβ accounts for the confinement effects, and, as we show below, it deter-
mines the position and the strength of the interaction resonances in the scattering
amplitudes. The rather technical derivation of this important constant is given in
Appendix A.1, and leads to

wαβ(ε/~ωz) = lim
ν→∞

[
cν̄ −

2ν̄−1∑
ν′=0

√
2πlz φ2

ν′(dαβ) log
(
ν ′~ωz − ε+

2~ωz

)]
, (3.7)

with cν ≡ 2
√

ν
π log ν

e2 . Notice that wαβ only depends on the dimensionless ratios
ε/(~ωz) and dαβ/lz. The logarithmic terms here incorporate the effects of virtual
transitions to other harmonic oscillator channels throughout the scattering process
(see Fig. 3.2 (b)), whereas the prefactors φ2

ν(dαβ) appear since the two particles must
stay at the same position to interact through the potential in Fig. 3.2 (a). Thus the
scattering amplitude in the ↑↓-channel depends sensitively on the layer separation
d↑↓ through these prefactors.

The amplitude of the scattered wave can now be easily determined by observing
that at short distances δr � lz, the trapping potential does not modify the form of
the scattered wave. Therefore, beyond the effective range of the interaction poten-
tial10 the scattering state must have the same asymptotics as in three dimensions11

Ψ3D
αβ ∼ 1− aαβ

δr
+O(δr). (3.8)

By comparing the asymptotic forms in Eqs. (3.6) and (3.8), we can determine the
amplitude Aν,εαβ at ease, and obtain the exact form of the two-particle scattering
states

Ψν,ε
αβ(r) = eiqρφν(z)− 4π aαβ φν(dαβ)

1 + aαβ√
2π lz

wαβ(ε/~ωz)
G(0)
ε (r, dαβ). (3.9)

3.2.1 Scattering amplitudes and molecular bound states

The analytic form of the scattering states entirely describes the two-particle scat-
tering process. Most importantly, by investigating their large distance behavior,12

ρ � lz, and comparing it with the usual asymptotic expansion of the scattering
states in Eq. (3.3), we can determine the scattering amplitudes in the open chan-
nels, ε > ν ′~ωz,

fνν
′

αβ (ε) = 4πaαβ φν(dαβ)φν′(dαβ)
1 +

aαβ√
2π lz

wαβ(ε/~ωz)
(3.10)

10A few tens of the Bohr radius for most atoms [65].
11At short distances δr � 1/q, the form of the three-dimensional scattered wave is not influenced

by the incoming energy, and thus all such states take on the same asymptotic form as of the bound
state in Eq. (2.4).

12The long distance behavior of the propagator G(0)
ε can be inferred from Eq. (3.5), by making

use of the x � 1 limit of the modified Bessel functions, K0(−ix)/(2π) ∼ Θ(x2) exp(ix)/
√
−8πi x.

Here, Θ denotes the Heaviside function.
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characterizing the interactions of a dilute ultracold gas. The nominator of this
expression reflects the naive expectation that, to leading order, the scattering am-
plitudes shall be proportional to the first order matrix element of the interaction
with harmonic oscillator eigenstates of the incoming and outgoing channels.

Throughout their propagation, however, the particles go through several virtual
transitions to higher harmonic oscillator levels that can have significant effect on
the scattering amplitudes, especially in the vicinity of the energy threshold of these
energy levels, ε ∼ ν̂~ωz, where the particles can resonantly couple to the given
channel ν̂. These virtual processes are incorporated in the denominator by the
wαβ function, and appear as logarithmic peaks, shown in Eq. (3.7). Importantly,
these processes can give rise to interaction resonances, whenever the real part of the
denominator in Eq. (3.10) becomes zero. The energy and width (i.e. the lifetime)
of these resonances are determined by the function wαβ. Since in the ↑↓-channel,
f↑↓ depends sensitively on the layer separation through the relative harmonic wave
functions φ2

ν(d↑↓) in Eq. (3.7), the position and width of these resonances can be
tuned at wish, and, at appropriate separations, the gas can even be made strongly
interacting.

At negative energies, the scattering amplitudes exhibit a pole, corresponding to
molecular bound states at a binding energy ε = EBαβ < 0 [39,41], for all values of the
three-dimensional scattering lengths aαβ. Indeed, at small energies ε/~ωz ' 0, the
virtual processes in the ν = 0 channel give rise to a logarithmic singularity in wαβ
that takes on the form wαβ ∼

√
2πlz φ2

0(dαβ)
(
− log

∣∣∣ ε
~ωz

∣∣∣+ iπΘ(x)
)

+γαβ. Here, the
separation dependent prefactor, γαβ, of order 1, originates from the contributions of
ν 6= 0 channels. Thus, at low energies the scattering amplitude takes on the simple
logarithmic form

f00
αβ(ε) ' 4π

log(ε+/EBαβ)
, (3.11)

characteristic to the scattering amplitudes of an exactly two-dimensional system. As
we discussed in the previous section, this logarithmic form necessarily leads to the
emergence of a bound state, whose energy is determined by the scattering lengths
and layer separations. In particular, for small negative scattering lengths, aαβ < 0
, the bound state energy shows a non-analytic, exponential dependence on these
parameters

EBαβ ∝ −~ωz e−1/(|aαβ |φ2
0(dαβ)). (3.12)

The appearance of these bound states on the attractive side of the three-dimensional
Feshbach resonance is specific to two-dimensional scattering [65]. The (relative) wave
function of the bound molecule can be easily obtained by solving the Schrd̈inger
equation Hrel ΨB

αβ = EBαβ ΨB
αβ, leading to the simple form

ΨB
αβ(r) = G

(0)
EB
αβ

(r, dαβ ẑ)

The bound states are visualized in Fig. 3.3, showing the bound state wave function
in relative coordinates, as well as their density in the laboratory frame, clearly
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Figure 3.3: Visualization of the intralayer (upper row) and interlayer bound states
(lower row) at a separation d↑↓/lz = 3.5. (a),(d) Bound state wave function ΨB

αβ, in
relative coordinates of the atoms, displaying the well-known 1/(4π δr) singularity of
unconfined three-dimensional bound states at the point of interaction (see Eq. (2.4)).
The harmonic confining potential is also shown. (b),(e) Real space density nαβ(r) =∫
d3r′ ‖Ψ̃αβ(r, r′)‖2 of the two-particle bound state Ψ̃αβ(r, r′) in the (x, z) plane of

the laboratory frame. In the intralayer channel, the density clearly splits, with
only a tiny part of the wave function tunneling through the intermediate region.
The center of mass part of the wave function is described by an in-plane thermal
Gaussian wave packet at a temperature kBT = 0.1 ~ωz. (c),(f) One dimensional
cut of the densities in (b) and (e), respectively, along the x = 0 axis. [Interactions
are equal and repulsive, a↑↑ = a↑↓ = 0.6 lz, leading to the bound state energies
EB↑↑ = −3.26 ~ωz, EB↑↓ = −0.22 ~ωz.]

displaying a double-peak feature at non-zero separation, in consistence with our
naive expectations.

3.2.2 Interaction resonances and quasi-bound molecules

At positive energies, ε > 0, no molecular bound state can exist, as the constituent
atoms are free to decay into the two-particle continuum. Mathematically, this is
reflected in the fact that wαβ has a finite imaginary part, thus the scattering am-
plitudes exhibit finite-width interaction resonances, each time the real part of the
denominator in Eq. (3.10) crosses zero. These resonances are attributed to unstable
quasi-bound molecular states, with decay rates proportional to the imaginary part
of wαβ. In physical terms, the interaction resonances between the colliding particles
is caused by virtual processes, whereby they form an unstable molecular pair, and
then decay into the continuum. At small energies, ε/~ωz ' 0, the simple logarithmic
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Figure 3.4: Binding energies of molecular states between identical (dashed line)
and opposite (full line) spins at a layer separation d↑↓/lz = 1.5, shown in terms
of the scattering length aαβ in the vicinity of a three dimensional Feshbach reso-
nance. The molecules are bound at negative energies, ε < 0, whereas the ones at
positive energies, ε > 0, acquire a finite lifetime through decay processes into the
two-particle continuum, and are therefore only quasi-bound. Close to the edge of
the ν = 1 channel, novel interspecies quasi-bound states appear that are forbidden
due to symmetry for identical species. At even greater layer separations, the energy
spectrum is pushed even further towards the positive side of the Feshbach reso-
nance, where novel quasi-bound states appear even at moderate values of a↑↓ > 0
(see Fig. 3.6 (b)-(e)). The spectrum is plotted at zero center of mass motion (N = 0
and Q = 0), whereas for N 6= 0 it is shifted by N~ωz to higher energies. [Inset:
dependence of the harmonic oscillator coefficients φ2

0(d↑↓) and φ2
1(d↑↓) on the layer

separation, determining the lifetimes of quasi-bound molecules, as well as the expo-
nential dependence of their energies on the scattering lengths close to ε ∼ ν~ωz.]

form of the scattering amplitudes in Eq. (3.11) gives rise to a logarithmically broad
quasi-bound resonance at energies ε ∼ |EBαβ| > 0. At this point, |f00

αβ|2 reaches its
maximal possible value, leading to intense scattering in the gas. At higher energies,
the scattering amplitude exhibits further resonances, whose energies are displayed in
Fig. 3.4 for some typical confinement parameters as a function of lz/aαβ in the vicin-
ity of a three-dimensional magnetic Feshbach resonance.13 Notably, the interlayer
scattering (solid line) displays features completely absent in intralayer scattering
(dashed line), exhibiting novel quasi-bound molecules close to the ~ωz edge of the
ν = 1 channel, similarly to the one near the ε ∼ 0 threshold. The emergence of these
quasi-bound states can be understood on symmetry grounds as follows: in intralayer
scattering, ν = 0 → 1 transitions are forbidden by reflection symmetry, (and also

13Close to the Feshbach resonance, the scattering length approaches infinity (shown in Fig. 2.3),
thus the parameter lz/aαβ goes to zero.
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by Bose statistics in case of bosons), due to the even and odd parity of the φ0 and
φ1 states, respectively. Since the colliding particles cannot make virtual transitions
to the odd ν channels, the φ2

ν coefficients of the associated logarithmic singularities
in wαβ are zero for odd values of ν. However, such interlayer processes are allowed
once d↑↓ 6= 0, and they result in the emergence of new quasi-bound molecular states.
In the vicinity of the ~ωz threshold we find two novel quasi-bound molecular states
(resonances) for negative scattering lengths, whose energies can be written as

E1
↑↓ − ~ωz ∝ ±~ωz e−1/(|a↑↓|φ2

1(d↑↓)), (3.13)

when a↑↓ > 0 is small. Importantly, while the weight and energy of these resonances
are determined by φ2

1(d↑↓), their decay rates are given by Imw↑↓ ∝ φ2
0(d↑↓) + Θ(ε−

~ωz)φ2
1(d↑↓). Notice that the decay rate of the quasi-bound state below the ~ωz

edge is always smaller, since it cannot decay into the ν = 1 channel due to energy
conservation. Since the decay rate of this state decreases exponentially with increas-
ing layer separations, Γ̂ ∝ φ2

0(d↑↓) ∝ e−d
2
↑↓/l

2
z , one can make the quasi-bound state

sharper and sharper by increasing the layer separation – at the cost of somewhat
decreasing its weight and binding energy. Similar interlayer quasi-bound states of
energy Eν↑↓ appear close to every threshold, ε ' ν~ωz, and can turn into narrow
resonances as one increases the layer separation d↑↓. This increased stability of the
quasi-bound molecules opens up a route to detect them in a modulation experiment,
as we propose in Sec. 3.5.

The molecular states shown in Fig. 3.4 have zero center of mass momentum. The
total energy of two particles is, however, increased by their center of mass motion,
ECOM = N~ωz+Q2/4m, and accordingly, the bound state spectrum in Fig. 3.4 gets
shifted by an energy ε → ε + N ~ωz, in the N 6= 0 channels, corresponding to ex-
cited molecular bound states with an oscillating center of mass in the perpendicular
direction. Thus, we can find molecular bound states in the N 6= 0 channels even at
positive total energies.

3.3 Many-body T -matrix

To characterize interactions in a thermal ultracold gas, one needs to go beyond the
simple two-particle picture, and consider the effects of the cloud on the interactions
as well. In order to account for many-body corrections, let us return to the lab-
oratory frame of the thermal cloud, and describe the gas in terms of the second
quantized Hamiltonian, H = Hkin + Hint described by the kinetic and interaction
terms

Hkin =
∑
α

∫
d3r ψ†α(r)(Hα(r)− µα)ψα(r), (3.14)

Hint =
∑
α,β

∫
d3r

g3D
αβ

2 ψ†α(r)ψ†β(r)ψβ(r)ψα(r). (3.15)
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Here, the chemical potentials µα < 0 set the densities of the gas, and the interaction
parameters g3D

αβ are related to the three-dimensional scattering lengths through ap-
propriate renormalization [76], to be discussed in Appendix A.2. The field operators
ψα annihilate particles of species α, and obey the commutation (anti-commutation)
relations [

ψα(r), ψ†β(r′)
]
∓

= δαβ δ
(3)(r− r′)

in case of bosonic (fermionic) atoms. In the confined system, free particles are
characterized by their momentum q, their transverse harmonic oscillator channel
n and their hyperfine species α. In order to describe particle scattering, we thus
separate the motional degrees of freedom in the parallel and perpendicular directions,
and expand the fields as

ψα(r) =
∞∑
n=0

∫
d2q

(2π)2 e
iqρ ϕn(z − z0

α) aαn(q). (3.16)

In this basis, the kinetic and interaction terms of the Hamiltonian read

Hkin =
∑
α=↑,↓

∞∑
n=0

∫
d2q

(2π)2 ξαnq a
†
αn(q) aαn(q)

Hint =
∑

α,β=↑,↓

∑
n,n′

∫
d2k

(2π)2
d2k′

(2π)2
d2q

(2π)2

tnn′
αβ

2 a†αn1(k + q)a†βn2
(k′ − q)aβn′1(k′)aαn′2(k)

(3.17)

where ξq,n,α = q2

2m + n~ωz − µα, denotes the single particle energies measured from
the chemical potentials. In Eq. (3.17) we have introduced the bare T -matrix (vertex)
of interactions

tnn′
αβ = g3D

αβ 〈n| δ(1)(z1 − z2 − dαβ)
∣∣n′〉

defined using the incoming and outgoing harmonic oscillator states of the scattered
particles |n〉 = |n1, n2〉 = ϕn1(z1)ϕn2(z2). This quantity characterizes the bare (first
order) interaction between the atoms.

Figure 3.5: Bethe-Salpeter equation determining the many-body T -matrix (inter-
action vertex) in the ladder diagram approximation in a thermal gas. Full lines
indicate bare propagators, whereas dashed lines refer to the bare coupling g3D

αβ . In
the vacuum (i.e. in the absence of other gas atoms), the ladder series accounts for
all non-zero diagrams, and the T -matrix becomes exact.
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In the confined system, however, the particles go through several virtual transi-
tions between the different harmonic oscillator channels, as well as they interact with
the thermal cloud throughout their propagation. Thus, in order to sum up these
contributions to the two-particle interaction, we determine the dressed many-body
T -matrix within the ”ladder diagram approximation” of Fig. 3.5. The corresponding
self-consistent Bethe-Salpeter equation [76,77], continued to real frequencies, reads

Tnn′
αβ (Ω,Q) = tnn′

αβ +
∑
n′′

tnn′′
αβ Πn′′

αβ(Ω,Q) Tn′′n′
αβ (Ω,Q) (3.18)

with the retarded two-particle propagator (polarization operator) Πn
αβ. Although

in principle the T -matrix depends on the frequencies (energies) and momenta of
all the incoming and outgoing particles,14 in the ladder diagram approximation it
simply becomes the function of the total energy ~Ω = ~ω1 + ~ω2 and center of
mass momentum of incoming particles Q = q1 + q2. The polarization operator
Πn
αβ = Π(0),n

αβ + δΠth,n
αβ is given by vacuum contributions, characterizing two-particle

scattering in the absence of other gas atoms,

Π(0),n
αβ =

∫
d2q

(2π)2
eiqρ(

~Ω+ − ~2Q2

4m + (nα + nβ)~ωz
)
− ε(q)

, (3.19)

and many-body thermal corrections

δΠth,n
αβ = ζB/F

∫
d2q

(2π)2

nB/F
(
ξq+Q/2,n1,α

)
+ nB/F

(
ξq−Q/2,n2,α

)
(
~Ω+ − ~2Q2

4m + (nα + nβ)~ωz
)
− ε(q)

, (3.20)

where Ω+ = Ω+i0+, and ε(q) = ~2q2/m denotes the energy of the particles’ relative
motion. In the thermal part, nB/F denotes the Bose/Fermi distribution function,
whereas ζB/F = ±1 for bosons/fermions, respectively. The small auxiliary parameter
ρ in the vacuum term provides regularization for the polarization operator at large
momenta, and will be taken to zero after the T -matrix is expressed in terms of
experimentally measurable scattering lengths aαβ, instead of the bare interaction
term g3D

αβ ,15 as we show in Appendix A.2.

3.3.1 Vacuum scattering

In case when many-body corrections are negligible, the Bethe-Salpeter equations
characterize the vacuum scattering of particles exactly, since the ladder series con-
tains all non-zero diagrams in this case. To find the vacuum T -matrix, T(0), let us

14Up to energy and momentum conservation.
15Notice that since we assumed a zero-range interaction potential Eq. (3.15), the Bethe-Salpeter

equation is actually singular, and requires a large-momentum cut-off. However, the nature of the
energy cut-off is unimportant in terms of low energy scattering, and it shall be safely removable
after the T -matrix is expressed in terms of physically measurable quantities.
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first rewrite Eq. (3.18) in the matrix form16

T̂αβ = t̂αβ + t̂αβ · Π̂αβ · T̂αβ. (3.21)

Facilitating the insights from the previous section, we transform the equation into the
basis of center of mass and relative motion of the particles in the transverse direction
|n〉 =

∑
N,ν C

n
N,ν |N, ν〉, with the ”Clebsch-Gordan” coefficients arising from the

change of basis given by Cn
N,ν = 〈N, ν|n〉. In this basis, matrices in Eq. (3.21) take

on the particularly simple form

〈N, ν| t̂αβ
∣∣N ′, ν ′〉 = δNN ′ g

3D
αβ φ

∗
ν(dαβ)φν′(dαβ). (3.22)

〈N, ν| Π̂(0)
αβ

∣∣N ′, ν ′〉 = δNN ′ δνν′ Π(0);Nν
αβ (3.23)

〈N, ν| T̂αβ

∣∣N ′, ν ′〉 = TNN ′;νν′
αβ (3.24)

Furthermore, energy conservation requires that the Clebsch-Gordan coefficients be
zero unless n1 + n2 = N + ν. Since the vacuum polarization operator in Eq. (3.19)
depends on the total harmonic oscillator energy (n1 + n2)~ωz, the center of mass
energy ECOM = ~2Q2/(4m) + N~ωz can be completely separated from that of the
relative motion, and the polarization can be written as17

Π(0);Nν
αβ (Ω,Q) = Π(0)(Ω− νωz − ECOM/~). (3.25)

The structure of the matrix elements in Eqs. (3.22, 3.23) suggest that the T -matrix
can be also found by decoupling the center of mass and relative quantum num-
bers [76]. Indeed, we find that it can be cast into the simple form

T(0);NN ′,νν′
αβ (Ω,Q) =

√
2πlz δNN ′ φ∗ν(dαβ)φν′(dαβ) T (0)(Ω− ECOM/~), (3.26)

with the auxiliary function

T (0)(Ω) = 1√
2πlz

1
1
g3D
αβ

−
∑∞
ν=0 φ

2
ν(dαβ) Π(0) (Ω− νωz)

. (3.27)

Thus, in accordance with our expectations, since the interaction potential only de-
pends on the relative position of the particles, the center of mass motion plays no
role in two-particle scattering, and ECOM merely shifts the total energy of colliding
particles. Furthermore, after appropriate renormalization of the bare interaction
term g3D

αβ , presented in Appendix A.2, we can see that the vacuum T -matrix is
proportional to the scattering amplitudes Eq. (3.10)

T(0);NN ′, νν′
αβ (Ω,Q) = δNN ′

~2

m
fνν

′
αβ (~Ω− ECOM). (3.28)

16The matrices are defined such that they give the appropriate matrix elements with the incoming
and outgoing fields, i.e. 〈n| Π̂αβ |n′〉 = δnn′ Πn

αβ , 〈n| T̂αβ |n′〉 = Tnn′
αβ , and 〈n| t̂αβ |n′〉 = tnn′

αβ .
17If we consider ρ formally as the relative coordinate between the scattered atoms, we find that

Π(0) is given by the two-dimensional retarded Green’s function of their relative motion, Π(0)(Ω) =∫
d2q

(2π)2
eiqρ

~Ω+−ε(q)
= − m

2π~2 K0

(
−i ρ

lz

√
Ω
ωz

)
.
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3.3.2 Thermal corrections

The interaction effects between the thermal gas and the colliding particles are taken
into account by the many-body corrections to the polarization operator δΠth

αβ. Due
to these interactions with other atoms, the center of mass motion of the parti-
cles will not decouple completely from the scattering process, and the solution of
the Bethe-Salpeter equation requires a more general treatment [76]. However, in a
strongly confined thermal gas (|µ|, kBT � ~ωz), where the n 6= 0 levels are essen-
tially unpopulated, the thermal correction δΠth,Nν

αβ takes on non-zero values only in
the N = ν = 0 channel. Therefore, similarly to the case of vacuum scattering, the
Bethe-Salpeter equations conserve the center of mass oscillator quantum number N ,
and the T -matrix becomes diagonal in this index TNN ′;ν,ν′

αβ ' δNN ′TN ;ν,ν′
αβ . Through

a straightforward calculation, similar to the one in the vacuum case, it can be shown
to take on the simple form

TN ;ν,ν′
αβ (Ω,Q) ≈ ~2

m

4πaαβ φ∗ν(dαβ)φν′(dαβ)
1 + aαβ√

2πlz
WN
αβ(Ω,Q)

, (3.29)

with the many-body counterpart WN
αβ of the function wαβ, also accounting for ther-

mal corrections in the N = 0 channel,

WN
αβ(Ω,Q) = wαβ

(~Ω− ECOM
~ωz

)
+ δN0 δw

th
αβ(Ω,Q).

The second term in W accounts for many-body interactions with the thermal con-
densate,

δwth
αβ(Ω,Q) = −4π~2

m

√
2πlz|φ0(dαβ)|2 δΠth,00

αβ (Ω,Q),

and it is proportional to the density (see Eq. (3.20)). One can show, however, that
in case of a strongly confined dilute Bose or Fermi gas, the many-body corrections
captured in δwth

αβ are numerically small as compared to the quantum effects in wαβ,
and they mostly lead to screening.18

3.4 Geometric tuning of interactions
We have seen in Eq. (3.28), how the scattering amplitudes in a confined gas charac-
terize the two-particle interaction vertex, determining the energy of interactions. In
this section, we show how resonances in the scattering amplitude can be exploited
to tune a strongly confined gas into the strongly interacting regime. Indeed, mean-
field interactions of a strongly confined thermal or quantum degenerate gas19 are

18For many-body effects in a single layer degenerate Fermi gas see Refs. [76, 78].
19Strong confinement means that the typical energy scale of the gas is much lower than the

confinement energy ~ωz. In case of thermal gases, this requires temperatures kBT � ~ωz, whereas
in case in quantum degenerate Bose or Fermi gases, the typical energy is set by the chemical
potential µ and the Fermi energy εF , respectively, therefore |µ|, εF � kBT is needed. Typically in
deep optical lattices the confinement energy is in the range of 10− 100 kHz, i.e. in the micro-kelvin
range, which is well above the temperature range of experiments today.
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governed by the scattering amplitudes in the ν = ν ′ = 0 channel, similarly to the
case of exactly two-dimensional gases discussed in Subsection 3.1.

The emergent interlayer quasi-bound resonances provide a simple, geometrical
way to control these parameters. The low energy 0 < ε � ωz scattering amplitude
in the ↑↓-channel is shown in Fig. 3.6 (a) as a function of the layer separation.
Conforming our naive expectation, the interaction initially decreases with increasing
separation for the parameters chosen, due to the diminishing overlap between the
atomic clouds of the layers. However, as the energy of the negative energy bound
state eventually approaches zero (shown in Figs. 3.6 (b)-(e)), a sharp Feshbach-
like resonance emerges in the interaction between the two species. As we cross
the resonance, the effective interaction turns from repulsive to attractive, and on
resonance it reaches a purely imaginary, universal value, f00

↑↓ = −4i. At this point
of strong interactions, |f00

↑↓ |2 takes on its maximal possible value.

Figure 3.6: Geometrical tuning of interspecies interactions for lz/a↑↓ = 1.5. (a)
Resonant behavior of the interspecies scattering amplitude f00

↑↓ , in terms of the layer
separation. At a separation d↑↓/lz ≈ 3.3, a sharp Feshbach resonance-like structure
emerges, as the energy of a quasi-bound molecular approaches that of the scattered
particles, ε/~ωz = 0.01 (dashed) and 0.05 (full line). (b)-(e) Energy of the bound
(full circle) and quasi-bound molecules (open circle) at increasing layer separations
d↑↓/lz = 2.7, 3.0, 3.3 and 3.6. The interaction resonance shown in (a) corresponds
to the separation, where the quasi-bound molecule appears at zero energy, shown in
(d). [Dashed lines in (b)-(e) indicate the value of the interspecies scattering length.]

Importantly, in contrast to single layer systems exhibiting interaction resonances
only on the negative side of the three-dimensional magnetic Feshbach resonance [65],
interlayer resonances appear for all values of the scattering amplitude, being actu-
ally much sharper in the repulsive case, a↑↓ > 0. Furthermore, as the layer separa-
tion is increased, the position of the resonances shifts to smaller and smaller values
of the scattering length a↑↓ > 0, as indicated in Figs. 3.4 (b)-(e), and therefore,
confinement-induced resonances appear also at relatively small values of the scatter-
ing lengths, a↑↓ . lz. This opens up a way to reach strong interactions in systems

42



where only moderate values of the scattering length are available, e.g. due to the
lack of appropriate interspecies magnetic Feshbach resonances.

An intuitive way to think about the emergence of these resonances is as follows:
In the case of an unconfined gas, weak repulsive scattering lengths correspond to
a bound state at relatively large binding energies EB↑↓ ∼ ~2/(ma2

↑↓). This binding
energy is weakened in the bilayer system, if the constituent atoms are separated
well enough from each other. At sufficiently large separations, the binding en-
ergy becomes exponentially close to zero, and, due to the peculiar properties of
two-dimensional scattering, a corresponding quasi-bound molecule appears at small
positive energies ε ∼ |EB↑↓| ∼ 0, leading to the resonance in interspecies interactions
(see Fig. 3.6).

At large enough separations d↑↓/lz & 1, the interaction resonances become espe-
cially sharp in energy, due to the increased lifetime of the corresponding molecular
state. Then, the tiny spatial overlap of the ground state harmonic oscillator wave
functions leads to an almost negligible effect of the ν = 0 scattering channel on
the scattering amplitudes, whereas the more extended ν = 1 level can still have
non-negligible overlap, and thus a significant contribution to f00

αβ. In this regime,
φ2

0(d↑↓) ≈ 0, and thus the function w↑↓ in Eq. (3.7) can be approximated at small en-
ergies as, w↑↓ ' −φ2

1(d↑↓) log |ε/(~ωz)− 1|+ φ2
0(d↑↓) iπΘ(ε) + γ̃αβ with the auxiliary

constant γ̃αβ of order 1. w↑↓ thus exhibits only a tiny imaginary part proportional
to φ2

0(d↑↓), and, at large separations, the scattering amplitude takes on the simple
form

f00
↑↓ (ε ≈ 0)

∣∣∣
d↑↓/lz&1

≈ 4π
φ2

1(d↑↓)
φ2

0(d↑↓)
·
ε−E1

↑↓
~ωz + iπΘ(ε)

,

which reflects a resonant behavior of the scattered particles with a long-lived molec-
ular state of energy E1

↑↓, indicated by the open circle in Fig. 3.6 (e). Indeed, at large
separations, the quasi-bound states below the edge of the ν = 1 channel gain an ex-
ponentially increased lifetime, and they correspondingly lead to narrow resonances,
when E1

↑↓ ∼ 0.
As shown in Fig. 3.7 one can also create similar strong resonances in the interac-

tion, by only a slight tuning of the scattering length, with the layer separation kept
fixed.20 Notice that this kind of interaction tuning can be also applied in intraspecies
channels, (↑↑ and ↓↓). A further possibility — applied previously in one-component
gases to control intraspecies interactions and to realize thereby the strongly inter-
acting Tonks–Girardeau gas [79–81] — is to modify the trapping potential ωz by
varying the depth of the optical lattice potential. These methods together offer an
independent control of interaction parameters of a two-component gas.

20This corresponds to moving ’horizontally’ in Fig. 3.4, and can be facilitated by the use of an
interlayer magnetic Feshbach resonance.
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Figure 3.7: Resonant behavior of the interspecies scattering amplitude f00
↑↓ , as the

scattering length, a↑↓, is varied through the resonance shown in Fig. 3.6 (a), now
with the layer separation kept fixed at d↑↓ = 3.3 lz. (a) We find a strong peak
in the scattering amplitude, as a↑↓ is tuned across the Feshbach-like resonance at
lz/a↑↓ ≈ 1.5. (b) Crossing the resonance, the interaction turn from repulsive to
attractive, and, due to the finite lifetime of the resonant molecule, it exhibits a large
imaginary part on resonance.

3.5 Detection of quasi-bound molecules in a shaking ex-
periment

In the past decade, the existence of confinement-induced bound molecules has been
demonstrated in a number of spectroscopy experiments with single layer gases [82–
84]. Nevertheless, quasi-bound molecules at positive energy remained elusive, due to
their very short lifetimes. As we demonstrated in the previous section, their decay
rates can be vastly suppressed in bilayer gases by simply increasing the separation of
the layers, offering a new opportunity to detect and investigate these states for the
first time. In this section, we show how these states can be identified in the shaking
spectrum of a strongly confined dilute Bose gas (kBT � ~ωz). In an experiment,
shaking can be induced by periodically modulating the magnetic field that separates
the layers, thereby shaking them in opposite direction. The effect of the modulation
field δBz of frequency ω can be described by the time-dependent single-particle
Hamiltonian Hα,

δHα(t) = −hα cos (ωt) zα/lz (3.30)
on the single-particle level. For simplicity, let us assume in the following an equal
coupling of the magnetic field gradient to the spin components. Thus the fields hα
characterizing the amplitudes of shaking are equal, h↑ = −h↓ = h0 ∼ µB(∇δBz).
In the many-body, basis introduced in Eq. (3.16), the shaking Hamiltonian takes on
the form δHα = ∓h0 cos(ωt) Ξα, with Ξα, corresponding to the zα/lz term, given by

Ξα =
∞∑
n=0

∫
d2q

(2π)2

√
n+ 1

2
(
a†αn+1(q) aαn(q) + h.c.

)
. (3.31)

We thus see that, due to the selection rules imposed by harmonic confinement, to
leading order, the magnetic field gradient couples only neighboring harmonic levels
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n ↔ (n + 1) in both layers. Hence, in a strongly confined gas with essentially no
population of the n 6= 0 levels, dominantly n = 0 → 1 transitions will be excited
in each layer. Considering two atoms in the cloud, we can decompose their single-
particle excitations, |n〉exc = |0, 1〉 and |1, 0〉, in terms of their center of mass and
relative coordinates,

|n〉exc =
(
|N = 1, ν = 0〉 ± |N = 0, ν = 1〉

)
/
√

2,

corresponding to pair excitations (N, ν) = (0, 0)→ (1, 0) and (0, 0)→ (0, 1). There-
fore shaking not only allows to excite single particles to higher bands, but also,
through the excitation of pairs of atoms to higher N and ν quantum numbers, to
excite bound and quasi-bound molecular states as well. If the shaking frequency
approaches the energy of these molecules, the excited particles experience increased
scattering with other atoms in the gas that leads to an increased heating rate. In
particular, (N, ν) = (0, 0) → (0, 1) transitions excite the ↑↓ interlayer quasi-bound
molecule of energy E1

↑↓, close to the ~ωz threshold (open circle in Fig. 3.9 (b)). In
contrast, the center of mass transitions (N, ν) = (0, 0) → (1, 0) excite the particle
pair to the bound molecular state in the ↑↑ and ↓↓-channels, shifted to positive en-
ergy due to their non-zero center of mass motion, EB↑↑ → EB↑↑+~ωz (and EB↓↓+~ωz).21

We therefore expect peaks in the absorption spectrum at all these energies.

Figure 3.8: Feynman diagrams used to determine the absorption spectrum of the
modulation experiment. (a) Bubble diagrams describing the shaking susceptibility
in linear response theory, and neglecting vertex corrections. The triangular vertices
denote the matrix elements of the operators in Eq. (3.31), at a frequency ω, whereas
double lines denote propagators dressed by self-energy corrections, with the cor-
responding Dyson equation shown in (b). (c) Self-energy Σ, within the T -matrix
approximation, corresponding to the interaction of the propagating particle with
thermally excited atoms.

21Although there is a bound state in the ↑↓-channel as well, its energy and weight is exponentially
suppressed at the parameters chosen in Fig. 3.9, and they are thus not visible in the spectrum.
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The energy absorption rate of the gas in layer α

ε̇α(ω) = h2
α

ω χ′′α(ω)
2

is determined by imaginary part of the shaking susceptibility, χα, which is given in
linear response theory by the Kubo formula

χα(t) = iΘ(t)
〈

[Ξα(t), Ξα(0)]
〉
.

In the diagrammatic approach, and with the vertex corrections neglected, this for-
mula is equivalent to the bubble diagrams shown in Fig. 3.8 (a). In these diagrams,
the triangular vertices correspond to the modulation operator Ξα, whereas the dou-
ble lines indicate dressed retarded single particle propagators

(G−1
R )nn′α (ω,q) = ω + i0+ + ~q2

2m + nωz δnn′ +
1
~

Σnn′
α (ω,q),

with the self-energy, Σα, incorporated through the Dyson series in Fig. 3.8 (b) [85].
The self-energy corrections originate from the interactions of the propagating particle
with other atoms in the thermal gas, see Fig. 3.8 (c), mixing the harmonic oscillator
channels n→ n′.

We assume a dilute thermal gas, and correspondingly, we keep terms in the
self-energy, Σnn′

α , only up to linear order in the density, and throw away thermal
corrections to the many-body T -matrix as well. After the summation of the Mat-
subara series and analytic continuation to real frequencies we get

Σnn′
α (ω,q) '

∑
β=↑,↓

∞∑
ñ=0

∫
d2k

(2π)2 nB

(
~2k2

2m + ñ~ωz − µβ

)

Tnñ,n′ñ
αβ

(
ω + ~ k2

2m + ñωz,k + q
)
.

Within the ”bubble diagram” approximation, we can express the shaking suscep-
tibility of the gas in terms of the single particle spectral functions, ρnn′α (ω,q) =
−Im(GR)nn′α (ω,q)/π (see Fig. 3.8 a). In the strongly confined gas the n > 0 levels
are essentially unpopulated, and only the lowest level n = 0 → 1 transitions give
dominant contributions. The susceptibility over unit area is then given in the bubble
diagram approximation by

χα(ω) '
∫
dω̃

∫
d2q̃

(2π)2 nB(ω̃ − µα)
[
ρ00
α (ω̃, q̃) ρ11

α (ω̃ − ω, q̃)/2

+ ρ01
α (ω̃, q̃) ρ01

α (ω̃ − ω, q̃) + {ω ↔ −ω}
]
.

The numerically computed absorption spectrum is shown in Fig. 3.9 (a) for equal,
repulsive scattering lengths in all three channels aαβ ≡ a. The separation and the
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Figure 3.9: Detection of quasi-bound molecular states with shaking spectroscopy.
(a) Absorption spectrum of a dilute Bose gas at a layer separation d↑↓/lz = 2.5,
and at equal interactions in all channels, a↑↑ = a↑↓ = a↓↓ = 3lz. Beside the large
single-particle peak at ω ∼ ωz, we find two smaller peaks corresponding to interlayer
(↑↓-channel) and intralayer molecules (↑↑ and ↓↓), whose center of mass and relative
oscillator quantum numbers are also shown. The energy of the corresponding bound
intralayer (full circle) and quasi-bound interlayer molecule (open circle) are shown
in (b). [Physical parameters: kBT/(~ωz) = 0.03, |µ↑| = |µ↓| = kBT/3.] (c) In the
absence of intraspecies interactions, a↑↑ = a↓↓ = 0, the bound states in these chan-
nels disappear, and the corresponding peak vanishes from the modulation spectrum.
[Parameters: a↑↓/lz = 2.6, kBT/(~ωz) = 0.06, |µ↑| = |µ↓| = kBT/3.]

scattering lengths are chosen large enough (d↑↓/lz ∼ a/lz ∼ 3) so that the life-
time and the weight of the interlayer quasi-bound state (open circle in Fig. 3.9 (b))
be observable. We find three separate peaks in the spectrum. The largest one at
an energy ω ∼ ωz corresponds to single-particle intrawell excitations – the peak
weight is therefore proportional to the boson density. We also observe, however,
two clearly distinguishable smaller peaks, originating from resonances with bound
and quasi-bound molecular states. Due to their two-particle nature, their inten-
sities are proportional to the square of the density of the gas. These peaks are
therefore expected to become more pronounced at higher densities, as the system
is driven towards quantum degeneracy. The peak close to the single-particle exci-
tation peak at ω ∼ ωz originates from the interlayer quasi-bound molecule (open
circle in Fig. 3.9 (b)). The other two-particle peak at smaller frequencies has a
different origin: it corresponds to resonances with molecular bound states in the ↑↑
and ↓↓-channels, pushed to positive frequencies by their oscillating center of mass
motion. Excitation into this state is made possible by the center of mass excita-
tions of particle pairs, due to shaking. Note that in case of non-equal scattering
amplitudes, a↑↑ 6= a↓↓, this peak is expected to split up, whereas if the interaction
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between identical particles is negligible, a↑↑, a↓↓ → 0, they vanish from the shaking
spectrum (see Fig. 3.9 (c)).

3.6 Experimental realization

In order to observe confinement-induced molecules and interaction resonances in
an experiment, one needs to go into the parameter range where the effects of con-
finement and interaction are roughly of the same order, aαβ ∼ lz. To reach this
regime, a rather simple approach is to decrease the oscillator length lz =

√
~/(mωz)

by choosing heavy atoms (such as 87Rb and 137Rb) and using extremely strong
trapping frequencies.22 On the other hand, in systems where sufficiently broad in-
terspecies Feshbach resonances are available, it is sufficient to apply only standard
trapping frequencies, ωz ∼ 10−100 kHz.23 Such resonances are common and widely
used in case of fermionic species (such as 6Li and 40K) [83,86–88]. Fermionic atoms
are thus ideal candidates for detecting interlayer quasi-bound molecules in a mod-
ulation experiment,24 and the results presented in this chapter also provide a way
for the geometric tuning of their interactions. Furthermore, many-body effects in
quantum-degenerate Fermi gases can be taken into account using methods similar
to those presented in Section 3.3 and in Ref. [76], and they can lead to several exotic
phenomena, such as exciton condensation [67,68], and interaction resonances [76,86].

In case of bosonic atoms, wide Feshbach resonances between hyperfine compo-
nents of the same isotope are relatively rare [88,89]. However, those between differ-
ent atomic elements are much more common, and they have been used in a number
of bosonic mixtures, e.g. 7Li–87Rb, 39K–87Rb and 41K–87Rb systems [88, 90–93].
Importantly, the calculations presented in this chapter apply with only slight mod-
ifications to the case of bosonic mixtures, if the trapping frequencies for the two
atomic components are equal. This can be easily achieved by using a separate,
appropriately tuned laser for trapping each component.25 Thus, the experimental

22In case of extreme trapping, ωz � 100 kHz, the interaction potential may not be considered
point-like, since the variation of the trapping potential can be non-negligible within its effective
range, Rint. In this case, the interaction potential used in this chapter may require energy dependent
corrections [74, 75]. However, this is expected to lead to only slight modifications of the overall
scattering behavior in the confined system.

23We note, in case of very narrow Feshbach resonances the spatial inhomogeneity of the external
magnetic field could lead to inhomogeneous interactions across the layers. The variation of the
magnetic field is, however, usually very small. In particular, the magnetic field gradients required
to reach separations d↑↓ ∼ lz are rather weak, ∇Bz ∼ 0.01 − 1 G/mm, and they lead to a weak
magnetic field difference between the centers of the layers, in the range of ∆B ∼ 10 − 100 mG,
invalidating our results only in case of some very narrow Feshbach resonances, whose widths are
comparable to ∆B.

24The shaking spectrum in the previous section has been presented to the case of a dilute Bose
gas, however, the calculations can be straightforwardly carried through to the fermionic case as
well, and are expected to give similar results.

25For instance, in case of scattering of particles of mass mα and mβ in the vacuum, one simply
needs to introduce the center of masses Mαβ = mα+mβ , the reduced masses mαβ = mαmβ/(mα+
mβ) and the corresponding channel-dependent oscillator lengths, and rewrite the results for the
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proposals presented in this chapter shall be appropriate for bosonic mixtures as well.

3.7 Summary
In this chapter, we studied the effects of the confining potential on the interactions
of a two-component gas in a bilayer geometry. We found, that confinement leads to
exciton-like interlayer bound and quasi-bound molecules, appearing for both positive
and negative scattering lengths. Interestingly, the spatial extent of these molecules
can several times exceed the interspecies scattering lengths, and become several
hundred times larger than the actual size of the constituent atoms. Increasing the
layer separation, the lifetime of these molecules increases exponentially, that makes
them observable in commonly used shaking experiment, as we demonstrated through
detailed many-body calculations.

Furthermore, the emergence of these quasi-bound molecules also leads to ’geomet-
rical Feshbach resonances’ in the interspecies interactions (scattering amplitudes).
The rather sensitive dependence of their binding energies on the layer separation
allows one to control interspecies interactions in a purely geometrical way. As the
layers are separated from each other, the energy of the molecule eventually ap-
proaches zero, and the low energy interactions in the gas get resonantly enhanced.
Thus, rather counterintuitively, one can induce strong interaction in the ↑↓-channel
by spatially separating the two layers. In contrast to the shallow interaction res-
onances found in single layer systems, these resonances appear to be significantly
sharper, and they are also present on the repulsive side of the three-dimensional
Feshbach resonance, and even at moderate values of the scattering length. Thus,
together with traditionally used magnetic Feshbach resonances, used previously to
control intra-species interactions (i.e. in channels ↑↑ and ↓↓), the hereby proposed
”separation-tuning” enables a significantly wider, purely geometrical control of in-
teracting, low-dimensional multicomponent systems.

scattering amplitudes appropriately.
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4
Exotic superconducting phases of a
three-component fermion mixture

Superconductivity pervades physics in many different appearances and at very dif-
ferent energy scales. Most importantly, it characterizes the low temperature phase
diagram of many metallic elements, but protons and neutrons in nuclei are also
proposed to condense very similarly into a superconducting (SC) state [94], not to
mention quarks, forming a large variety of color-superconducting phases that are
proposed to fill the interior of certain neutron stars [95]. It is rather striking how
far-reaching the idea of the Bardeen–Cooper–Schrieffer (BCS) theory is: a weak
effective attraction between fermionic particles leads to a collective pairing mecha-
nism that opens up a gap around the Fermi level, whose half-width, ∆ becomes the
single dominant energy scale characterizing the low-energy behavior of the material,
irrespective of the details of the underlying microscopic physics [96]. This collective
quantum behavior is widely exploited today in scientific, industrial and medical ap-
plications [96, 97]. Interestingly, despite the enormous successes of BCS theory, one
of the greatest unsolved problems of condensed matter physics today is related to
high-temperature (high-Tc) superconductors. Although these superconducting ma-
terials are the ones most frequently used in practical applications, the microscopic
origin of their superconductivity is still unknown [58].

Systems of ultracold atoms offer a number of unique viewpoints on superconduc-
tivity. The tunability of both the number of fermionic species involved in pairing and
the interaction strength allows one to study a significantly larger parameter range
than in traditional materials. This has led to the experimental discovery of a number
of novel superconducting phenomena, and has sprung several experimental propos-
als for exotic superconducting phases. One of the most interesting achievements of
the field has been the experimental study of the so-called BEC-BCS transition of
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a strongly attractive two-component Fermi gas, tuned across a Feshbach resonance,
whereby the system goes through a crossover from superconducting state consisting
of loosely bound Cooper pairs to a Bose–Einstein condensate of bound molecular
pairs [39,98–100]. Ultracold atoms also offer the prospect of a deeper understanding
of the mysterious superconducting phases of high-Tc cuprate materials. In particu-
lar, the low temperature phase diagram of the two-dimensional fermionic Hubbard
model, realizable using optical lattices in the cold atomic setting, is expected to
show similar characteristics to those of high-Tc cuprates. Another exciting aspect
of ultracold gas experiments, is the possibility to use multicomponent species and
fermionic mixtures of atoms with very different masses. This has opened up the
opportunity to investigate such exciting SC phases as the Sarma phase, in which
superconducting pairs form in the interior of the Fermi sphere [101, 102], and to
study analogues of color superconductivity [103] and ”baryon” formation [104,105],
two fundamental concepts of quantum chromodynamics, the theory of quarks.

In this chapter, we shall uncover the phase diagram of a weakly attractive
three-component fermionic mixture, and study its low temperature superconducting
phases in the presence of an SU(3) symmetric interaction. This system exhibits
a number of exotic phenomena, such as the coupling of magnetization and super-
conducting order, leading to a ferromagnetic polarization of the gas at the onset of
superconductivity [104–107], forbidden by symmetry in traditional two-component
(electron) systems. Furthermore, we will see that the nature of superconducting to
normal phase transition is significantly different from those in traditional electron
materials. We shall discuss the complete phase diagram of the three-component
mixture in terms of chemical potential differences and temperature. Despite the
increased earlier theoretical interest in three component mixtures in the past ten
years [103, 106], such a phase diagram had not been studied in detail before the
work that forms the basis of this chapter: M. Kanász-Nagy and G. Zaránd, ”Global
superfluid phase diagram of a three-component fermion mixture with magnetic or-
dering”, Phys. Rev. B 86, 064519 (2012).

4.1 SC to normal transition due to the Zeeman effect

As a first step towards understanding the rich physics of a three-component mixture,
let us first discuss the simpler phase diagram of a two-component mixture. A key dif-
ference between ultracold atoms and electrons in a metal is that the former have no
electric charge. Thus, even in an external magnetic field, the Meissner effect does not
come into play, and the traditional decay mechanism of superconductivity, through
the coupling of the magnetic field to the superconducting flow of Cooper pairs, is
also absent1. Instead, chemical potential imbalances between the components play
the primary role in ultracold gases by suppressing superconductivity due to the Zee-

1Although artificial magnetic fields have indeed been produced for neutral atoms, their creation
requires additional efforts (e.g. rotating the condensates [39], or shaken optical lattices [108–110]),
and we thus do not touch upon them in this thesis.
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Figure 4.1: Mechanism of the SC-normal transition in a two-component Fermi mix-
ture. (a) In the normal phase (top), a chemical potential imbalance leads to a shift
in the Fermi energies of the components, whereas in the superconducting phase
they are held together by the Cooper pairing mechanism. If the chemical potential
imbalance becomes too large, the system goes into the normal phase. (b) Figure
based on the experimentally measured phase diagram of Ref. [111], in terms of the
temperature and spin polarization (ñ11 − ñ22)/(ñ11 + ñ22) of the gas, as given by
the densities, ñ11 and ñ22, of the two components. At low enough temperatures,
an unstable region forms, indicating that the SC-normal transition becomes of first
order in terms of the chemical potentials.

man effect. The underlying mechanism is perhaps most easily demonstrated in case
of a two-component Fermi gas. In the superconducting phase at zero temperature,
Cooper pairs are formed by atoms in different hyperfine states and in opposite mo-
mentum states k and −k, near the Fermi surface. Thus, superconductivity requires
the Fermi surfaces of the two components to remain at the same energy2, as shown
in Fig. 4.1 (a). If the chemical potentials of the two components µ̃1 and µ̃2, are
not equal, then the energy cost of keeping the Fermi surfaces at an equal energy
is proportional to the chemical potential imbalance, δEkin ∝ µ̃x = (µ̃1 − µ̃2)/

√
2.

2This requirement may not hold in more exotic superconducting phases, such as the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) phase with spatially varying order parameter [112–114]. However, since
previous works on two-component mixtures indicate that this phase appears only in a tiny region
of the phase diagram [115,116], here we restrict our investigation to spatially homogeneous phases.
We shall neither consider Breached Pair (BP) or Sarma phases [101, 102, 117], since these would
require fermions of very different masses.
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At small imbalances, this energy cost is still smaller than the condensation energy
gain of the superconductor, δEcond ∝ ∆̃, being proportional to the superconducting
order parameter ∆̃, and the system retains its superconducting state. However, at
large enough imbalances, the kinetic energy favors the normal state, and the su-
perconductivity vanishes through a Zeeman field induced phase transition. As has
been pointed out early by Sarma [117], the transition is continuous at high tem-
peratures, whereas it becomes of first order below the so-called Sarma temperature
T Sarma, and above the chemical potential difference µ̃Sarma

x . Sarma also determined
the mean-field values of this critical point (Sarma point), and obtained

T̃ Sarma = 0.58 T̃c , µ̃Sarma
x = 1.5 kBT̃c , (4.1)

with T̃c being the critical temperature at µ̃x = 0. He also determined the critical
chemical potential difference at zero temperature, known as the Clogston limit [118],

µ̃Clog
x = ∆̃(T = 0) = 1.764 kBT̃c. (4.2)

Fig. 4.1 (b) shows the experimentally measured phase diagram of a two-component
Fermi gas in terms of temperature and the spin polarization of the condensate. The
unstable region at temperatures below T Sarma, where neither a spatially uniform
superconducting, nor a normal phase can be stable, indicates that the SC-normal
transition becomes of first order in terms of the chemical potentials [111].

4.2 Superconductivity in three-component mixtures
In the remaining parts of this chapter, we shall focus on a homogeneous system of
three interacting fermion species, with weak SU(3) symmetric attraction, described
by the Hamiltonian

H =
∑
α

∫
d3rΨ†α(r) (H0 − µα) Ψα(r) (4.3)

−
∑
α 6=β

gαβ
2

∫
d3rΨ†α(r)Ψ†β(r)Ψβ(r)Ψα(r) ,

and study how the phase diagram of Sec. 4.1 gets modified by the presence of the
third component. Here, the field operator Ψα(r) annihilates a fermion in a hyperfine
state α = 1, 2, 3, and for simplicity, the chemical potentials µα are considered uniform
in space. We assume a simplified form of the single particle Hamiltonian H0. This
enters the mean-field calculations only through the corresponding single particle
density of states (DOS) near the Fermi surface, and its particular form is not very
important. We assume the simple form for the DOS, ρ(ε) = ρ0 (1 + η ε) with a
cut-off at ε = ±Λ. Keeping the linear term ρ0η ε is of primary importance since
this term, characterizing in some sense the particle-hole symmetry breaking, is the
primary source of the coupling between ferromagnetic and superconducting order
parameters (see Section 4.3.3). In the weak coupling regime, however, higher order
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derivatives of the density of states are expected to have only negligible effect on the
phase diagram.3

The interaction parameter gαβ in Eq. (4.3) is related to the scattering lengths
aαβ through appropriate renormalization,4 and it is assumed to be SU(3) symmetric,
gαβ = g > 0 for α 6= β. This assumption is certainly justified for atoms with closed
external s-shells, like Yb, Er and Dy, having thus perfectly SU(N) symmetric s-
wave interactions [119, 120]. Furthermore, it is also a well justified approximation
for the widely used 6Li atoms in the high magnetic field limit [121], whose scattering
lengths can be made equal up to ∼ 0.1% accuracy through the use of external radio
frequency and microwave fields [122].

4.3 Mean-field calculations
We shall construct the global phase diagram of the three-component mixture in a
mean-field analysis. Even this, however, is not entirely trivial. In earlier works [106,
123], the simultaneous treatment of SC and ferromagnetic ordering made use of a
Hubbard–Stratonovich transformation, whereby one decouples the interaction partly
in the ferromagnetic and partly in the superconducting channel. This approach,
however, suffers from a certain degree of arbitrariness, since one needs to separate
the interaction energy between the two competing orders ’by hand’.5 Treating the
SC and magnetic channels at an equal footing therefore requires care. Furthermore,
similar to two-component systems discussed in Sec. 4.1, the SC-normal transition
becomes of first order at low temperatures, and the free energy thus develops multiple
local minima [117], leading to further complications in the mean-field treatment.

To analyze the full phase diagram, we employ two complementary approaches.
At temperatures near the critical temperature T 0

c at the SU(3) symmetric point of
the phase diagram (µα ≡ µ),6 we apply a self-consistent method based on ’equa-
tions of motion’ (EOM) of mean-field propagators, in which vertex corrections are
systematically neglected. These equations, however, exhibit multiple solutions at
low temperatures, as the SC-normal transition becomes of first order. We thus
employ another, Gaussian variational approach to describe this regime. The latter
technique is based on finding the best mean-field approximation to the free energy
of the interacting system. Both approaches are exempt from the arbitrariness of
the Hubbard-Stratonovich transformation, and account reliably for the interplay
between ferromagnetic and superconducting order. Remarkably, they are entirely

3Importantly, the interactions renormalize the chemical potentials, and therefore the position of
the renormalized Fermi energy, εF , and the corresponding single particle density of states, ρF need
to be determined self consistently.

4Similar to the case in Chapter 3, the interaction parameter can be approximated by requiring
that the vacuum T -matrix of the system at zero energy gives T3D

αβ(Ω→ 0−,Q = 0) = 4π~2 aαβ/m,
(see Eq. (A4)).

5Two-component mixtures are, of course, exempt from this kind of arbitrariness, since there
simultaneous SC and magnetic ordering is forbidden on symmetry grounds.

6Throughout this chapter, we shall refer to the critical temperature at the SU(3) symmetric
point, where all chemical potentials are equal, as T 0

c (see also Sec. 4.4).
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consistent with each other: the EOM self-consistency equations actually correspond
to the saddle point equations of the mean-field free energy (see Section 4.3.2). How-
ever, the Gaussian variational approach goes beyond the EOM method in that it
provides a mean-field estimate for the free energy, and thus allows us to distin-
guish between the non-equivalent local minima, and choose the physically relevant
solutions.

4.3.1 Equation of motion technique

In this subsection, we introduce the imaginary time equations of motion of the
system’s propagators, and derive the self-consistent EOM equations for the SC and
magnetic order parameters. In order to simplify our notations, let us first introduce
the six component Nambu spinor field

Φ(x) =
(
Ψ(x),Ψ†(x)

)T
, (4.4)

with the combined notation for the space and imaginary time coordinates, x = (r, τ).
Assuming spatial homogeneity, the corresponding 6 × 6 (imaginary time ordered)
propagator matrix G(x1, x2) ≡ −〈Tτ Φ(x1) ◦Φ†(x2)〉 only depends on relative space
and time coordinates, G(x1, x2) = G(x1−x2). This propagator provides a compact
notation for the equations of motion of all relevant propagators, since it simultane-
ously contains the normal and the anomalous Green’s functions of the fields Ψα(x).
By inserting the equations of motion of the fields

∂τΨα(x) = [H,Ψα(x)] .

into these Green’s functions (such as −〈TτΨα(x1)Ψ†β(x2)〉), we can derive EOM
equations for the propagators, such as

(∂τ1 +H0(r1)− µα) 〈TτΨα(x1)Ψ†β(x2)〉 = δαβ δ
(4)(x1 − x2) (4.5)

+
∑
γ

gαγ 〈Tτ Ψ†γ(x1) Ψγ(x1)Ψα(x1) Ψ†β(x2)〉,

with δ(4)(x) denoting the four dimensional Dirac-delta function. We find similar
equations in case of the anomalous propagators, −〈TτΨα(x1)Ψβ(x2)〉 as well. In
order to obtain the required mean-field self-consistency equations, we simply decou-
ple the four-point functions on the right hand side of Eq. (4.5) and neglect vertex
corrections, as shown in Fig. 4.2. This leads to a generalization of the standard
Bogoliubov–de Gennes (BdG) equations, which allows for the simultaneous treat-
ment of magnetic and superconducting ordering in an unbiased way, through the
normal and anomalous propagators, respectively. Furthermore, even in the simpler
two-component case, it also incorporates, e.g., the renormalization of the Pauli sus-
ceptibility at the mean- field level (see Sec. 4.4.3), that is neglected in the traditional
BdG treatment.
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Figure 4.2: Decoupling of the four-point functions (left) in the equations of motion
of the propagators, Eq. (4.5), through the omission of vertex corrections (square).
Heavy lines denote dressed propagators.

The resulting mean-field equations take on the following simple form in the form
of Nambu propagators in frequency and momentum space,

G(iωn,k)−1 = i~ωn −Ξ(εk), (4.6)

with ~ωn = (2n+ 1)π kBT denoting the (fermionic) Matsubara frequencies and the
matrix Ξ(ε) being defined as

Ξ(ε) ≡
(
ε−M ∆
∆+ − (ε−M)∗

)
. (4.7)

Here, the SC order parameter, ∆, and the matrix of renormalized chemical poten-
tials, M, are given as

∆αβ ≡ gαβ dαβ, (4.8)

Mαβ ≡µαδαβ +
(
δαβ

∑
γ

gαγnγγ − gαβn∗αβ

)
, (4.9)

and are defined in terms of the matrix of densities and anomalous densities,

nαβ ≡〈Ψ†α(x1)Ψβ(x1)〉, (4.10)
dαβ ≡〈Ψα(x1)Ψβ(x1)〉, (4.11)

respectively. Although the matrices n and d give a perfect characterization of the SC
and ferromagnetic ordering, it is more natural to use M and ∆ as order parameters
in our mean-field equations. While ∆ is the straightforward generalization of the
SC order parameter of two-component BCS theory [96], the renormalized chemical
potentials simply account for ferromagnetic ordering, since a shift in the densities
of the components leads to a simultaneous shift in Mαβ through Eq. (4.9).

Through Eqs. (4.10) and (4.11), the densities and anomalous densities are given
by the appropriate elements of the Nambu propagators at equal times and equal
positions,

G(x = 0) = kBT
∑
ωn

∫
d3k G(iωn,k). (4.12)

Performing the Matsubara summation of the inverse of Eq. (4.6) we find that this
propagator is given by

G(x = 0) =
(

n∗ −d
−d+ −n +

∫
dε ρ(ε)

)
=
∫ Λ

−Λ
dε ρ(ε)nF (Ξ(ε)) , (4.13)
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with nF denoting the Fermi function.7 This equation, together with the definition
of the order parameters in Eqs. (4.7-4.9) thus provides a system of self-consistent
equations, that constitute the EOM method. By solving these equations through
numerical iterations, we were able to uncover the phase diagram at temperatures
near T 0

c , and at arbitrary chemical potential differences (see Sec. 4.4). We note that
the matrix Ξ(ε) in Eq. (4.7) has a symplectic symmetry,(

0 1
1 0

)
·Ξ (ε) ·

(
0 1
1 0

)
= −ΞT (ε) , (4.14)

due to the skew- and Hermitian symmetry of the order parameters ∆ and M, respec-
tively. This makes the eigenvalues of Ξ(ε) come in (λ,−λ) pairs, which is responsible
for the special structure of the equal time, equal position propagator in Eq. (4.13).

4.3.2 Mean-field free energy

In order to investigate the low temperature region of the phase diagram, where the
EOM method breaks down, we employ a Gaussian variational method, that consists
of finding the best quadratic approximation to the free energy F = −kBT logZ of
the interacting system. Here the grand canonical partition function Z is given by
the functional integral

Z =
∫

DψDψ e−S[ψ,ψ], (4.15)

with the action S = S0 + Sint, written in terms of a non-interacting part and the
interaction term,

S0 = −1
2

∫
d1 d2 φ(1)G−1

0 (1, 2)φ(2), (4.16)

Sint = −
∑
αβ

gαβ
2

∫
dx ψα(x)ψβ(x)ψβ(x)ψα(x), (4.17)

the former defined in terms of the Nambu spinor fields, φ =
(
ψ,ψ

)T
. To simplify

our notations, we introduced the multiple index variables ′′1′′ = (r1, τ1, ν1). Thus,∫
d1 . . . , denotes integration over imaginary time and space variables, as well as

summation over Nambu indices (ν1 = 1, . . . , 6) in a compact way. The inverse
propagator

−G−1
0 = δ(4)(x1 − x2)

(
∂τ2 +

(
H0 − µ̂ 0

0 −(H0 − µ̂)

))
, (4.18)

contains the single particle Hamiltonian, H0, of the free fields in Eq. (4.3), whereas
µ̂αβ = µα δαβ denotes the 3× 3 diagonal matrix of the (bare) chemical potentials.

7Since nF (Ξ(ε)) is a matrix function, its evaluation requires numerical diagonalization of Ξ(ε)
for each value of ε. The evaluation of Eq. 4.13 is numerically rather costly, and we thus needed to
introduce a number of elaborate numerical methods to speed up our algorithm.
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We proceed by invoking a standard inequality due to Feynman [124],

F ≤ FG[G] ≡ −kBT logZG + kBT 〈S − SG〉G , (4.19)

that holds for any Gaussian action

SG ≡ −
1
2

∫
d1 d2 φ(1)G−1(1, 2)φ(2) , (4.20)

with the partition function ZG and the thermal average 〈. . . 〉G given by

ZG ≡
∫

DψDψ e−SG [ψ,ψ] , (4.21)

〈. . . 〉G ≡
1
ZG

∫
DψDψ . . . e−SG [ψ,ψ] . (4.22)

Notice that, at this point, we consider the most general quadratic action, Eq. (4.20),
and we do not even require the locality of SG . Since SG is quadratic, the Nambu
propagator matrix can be simply written as

〈φ(1)φ(2)〉G = −G(1, 2) , (4.23)

and expectation values can be evaluated using Wick’s theorem.8
We can thus find the best Gaussian approximation to the full free energy of the

system by minimizing the functional FG[G], and the resulting propagator provides
the best mean-field description of the full interacting system. In its local minima,
FG[G] satisfies the saddle point equation

δFG
δG(1, 2) = 0. (4.24)

As we discuss in Appendix B.3, this equation is equivalent to the self-consistent
EOM equations, Eqs. (4.7, 4.8, 4.9), and (4.13). In particular, the saddle point
equation requires G−1 to be local

G−1(1, 2) = δ(4)(x1 − x2) G−1(x2), (4.25)

with the matrix G−1 being just the inverse propagator Eq. (4.6) in real space,

−G−1 = ∂τ2 +
(
H0(r2)−M ∆

∆+ −(H0(r2)−M)∗

)
. (4.26)

Furthermore, the order parameters M and ∆ are determined by the former equations
of the EOM method, Eqs. (4.8,4.9). We thus find, that the Gaussian variational
approach is entirely consistent with the EOM method.

8The choice (4.23) automatically fixes a certain ambiguity in the definition of G−1, as we discuss
in Appendix B.3.
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Since in the minima of the Gaussian free energy functional, it is sufficient to
consider only local actions SG , we can express the Gaussian free energy in terms of
a quadratic Hamiltonian

HG(M,∆) ≡ 1
2

∫
d3r : Φ†

(
H0 −M ∆

∆+ − (H0 −M)∗

)
Φ : , (4.27)

expressed in terms of the Nambu fields in Eq. (4.4) and with the semi-colons denoting
normal ordering.9 In terms of the Hamiltonian, Eq. (4.27), the free energy functional
takes on the simple form

FG(M,∆) = −kBT logZG + 〈H −HG〉G , (4.28)

where H denotes the full Hamiltonian of the system, Eq. (4.3), and the partition
function and thermal averages are given by

ZG = Tr e−βHG ,
〈. . . 〉G = Tr

(
. . . e−βHG

)
/ZG ,

with the inverse temperature β = 1/(kBT ). This Hamiltonian approach allows us
to simply evaluate Eq. (4.28) using Wick’s theorem (see Appendix B.4), and we find
that the free energy density is given by

fG(M,∆) = 1
2

∫
dε ρ(ε)

[
Tr(ε−M)− kBT Tr log

(
2 cosh (βΞ(ε)/2)

)]
+
∑
αβ

[
(Mαβ − µαδαβ)nαβ + gαβ

2
(
|nαβ|2 − nααnββ

)]
(4.29)

+
∑
αβ

1
2
[
∆αβd

∗
αβ + ∆∗αβdαβ − gαβ|dαβ|2

]
,

where the densities n and d are determined by Eq. (4.13), and the matrix Ξ(ε) is
defined in Eq. (4.7). Despite its complicated looking structure, the mean-field free
energy provides a useful way to analyze the low energy phase diagram numerically.
Although in the local minima of the free energy functional fG, the order parame-
ters M and ∆ fulfill the EOM self-consistency equations, we did not enforce this
constraint in our numerical calculations.10 Instead, we performed a Monte Carlo
method (simulated annealing) to find the absolute minimum of fG(M, ∆) in the 15
dimensional parameter space of the order parameters M and ∆.11

9Since the functional integral is, by definition, normal ordered, the Hamiltonian HG also needs
to be normal ordered. We verified that this normal ordering indeed provides the correct densities
at the free energy minima.

10We have nevertheless checked numerically, that the order parameters at these minima indeed
satisfy the EOM self-consistency equations.

11Both the numerical evaluation routines of Eq. (4.29) and the Monte Carlo program were written
by the author, and both required extensive numerical optimization to achieve the required speed
and accuracy.
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Figure 4.3: Comparison of the EOM (a) and the Gaussian variational methods (b)
at low temperatures, where the SC-normal transition is of first order. Here, the
EOM equations exhibit multiple solutions and thus becomes unreliable close to the
phase boundaries, whereas Monte Carlo minimization of the free energy accurately
finds the physically relevant phases. [Parameters at the SU(3) symmetric point
(µ1 = µ2 = µ3): g ρF = 0.224, ηΛ = 0.5, kBT 0

c /Λ = 0.011, εF /Λ = 0.24 (half-
filling).]

Fig. 4.3 compares the results of the EOM method with those of the Monte Carlo
minimization. At low temperatures, the EOM solutions get stuck in metastable local
minima of the free energy near the first order SC-normal phase boundaries, whereas
the Monte Carlo routine accurately identifies the physically relevant solutions by
converging into the absolute minima of the free energy.

4.3.3 Order parameter symmetries

The SU(3) invariance of the interaction (gαβ = g for α 6= β) leads to important
consequences for the structure of the phase diagram, and it also determines the
nature of the coupling of the superconducting and magnetic order (see Secs. 4.5
and 4.6). In the special case when all chemical potentials are equal (the SU(3)
symmetric point of the phase diagram), the Hamiltonian is invariant under global
SU(3) rotations, Ψα(x) 7→

∑
β UαβΨβ(x), and a global U(1) gauge transformation,

Ψα(x) 7→ eiϕ Ψα(x). The transformation properties of the fields also determine those
of the order parameters. The densities n and matrix of renormalized chemical poten-
tials (ferromagnetic order parameter) M are Hermitian, and they are both invariant
to U(1) phase shifts, whereas they transform under SU(3) rotations according to
the adjoint representation

nT → U nTU†, M→ U MU†, (4.30)

after removing the trivial trace. The anomalous densities d and the SC order pa-
rameter ∆ are, on the other hand, skew-symmetric, and they transform under U(1)
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phase shifts as d 7→ e2iϕ d and ∆ 7→ e2iϕ ∆. As can be seen from their definitions
in Eqs. (4.8,4.11), global SU(3) rotations transform them as

d→ U dUT, ∆→ U ∆UT, (4.31)

corresponding to the conjugate representation of SU(3). Indeed, by introducing the
three-component vectors dα = 1

2
∑
βγ εαβγdβγ and ∆ = 1

2
∑
βγ εαβγ∆βγ using the

completely antisymmetric Levi-Civita symbol εαβγ , we can rewrite Eq. (4.31) as

d 7→ U∗d, ∆ 7→ U∗∆ .

At the SU(3) symmetric point, the system’s Ginzburg-Landau functional must
be invariant under the above transformations, Eqs. (4.30, (4.31)), and the U(1)
phase rotations. As we discuss in Sec. 4.6, this puts significant restrictions on the
possible coupling terms between superconductivity and magnetism, and on their
coupling to chemical potential differences. At the onset of superconductivity, the
above SU(3)⊗U(1) symmetry spontaneously breaks down to SU(2)⊗U(1), leading
to the emergence of five Goldstone modes [123].

Figure 4.4: Schematic phase diagram at particle-hole symmetry: constant density
of states (η = 0) and half-filling (µ1 + µ2 + µ3 = 0). (a) SC order always forms in
one of the three channels (12), (23) or (31) (gray regions), separated by first order
phase boundaries (dashed lines). Large enough chemical potential differences drive
system into the normal phase (white), through the SC-normal phase transition (full
line), that is of second order at temperatures T . T 0

c , whereas it becomes of first
order at low temperatures. At the SU(3) symmetric point, µx = µy = 0, (full circle)
the transition is described by an O(6) critical theory, whereas the phase boundaries
between different SC phases terminate in second order critical points with special
O(2, 2) symmetry (empty circles), as discussed in Sec. 4.4.1. (b) Mechanism of the
phase transitions. SC order is formed between species with the closest chemical
potentials, whereas higher imbalances drive the system into the normal state (N).
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4.4 Mean-field phase diagram
Before analyzing our mean-field results of the global phase diagram, let us first sketch
the phase diagram of the three-component mixture based on some simple physical
considerations. Similar to the BCS theory of two-component superconductivity, one
finds that the critical temperature at the SU(3) symmetric point (µ1 = µ2 = µ3) is
given by

kBT
0
c ≈

2eγE
π

Λ e−1/(gρF ) � Λ, (4.32)

with γE ≈ 0.577 denoting Euler’s constant [96]. In the weakly coupled regime,
the phase diagram is expected to become universal in case of SU(3) symmetrical
interactions, and depend only on the dimensionless temperature, T/T 0

c , the dimen-
sionless chemical potential shifts, δµα/(kBT 0

c ), and the dimensionless particle-hole
symmetry breaking parameter12, η kBT 0

c .
The corresponding schematic phase diagram in case of a particle-hole symmetric

situation, η = 0, is shown in Fig. 4.4 (a), as a function of the chemical potential
differences,

µx ≡ (µ1 − µ2)/
√

2 ,
µy ≡ (µ1 + µ2 − 2µ3)/

√
6 ,

for a fixed temperature T < T 0
c . Pairing in the three-component mixture is similar

to that of two-component SC (see Ref. [117]): to enable Cooper pair formation,
the Fermi surfaces of the two paired species must be aligned. Pairing results in a
condensation energy gain, whereas the shift of the Fermi surfaces results in a kinetic
energy loss, which is minimal if components with the smallest chemical potential
difference pair up, as indicated in Fig. 4.4 (b). This leads to the characteristic
ray-like structure of the phase diagram. In the various gray regions two species
of the smallest chemical potential difference pair up to form a SC state, while the
third species remains gapless. Furthermore, as we discuss in Section 4.5, the high
(”hexagonal”) symmetry of the figure is a direct fingerprint of the SU(3) symmetrical
interaction, and a discrete particle hole symmetry. Similar to the case of a two-
component mixture, discussed in the previous section, the superconducting state
is destroyed once all chemical potential differences become large compared to the
condensation energy, and the system goes into the normal phase (white region).
Close to T 0

c these SC-normal transitions are of second order (black lines). However,
at lower temperatures, they become of first order, just like in case of a two component
mixture [117]. However, the transition between different SC phases, along the lines

12Although, strictly speaking, the mean-field equations in the η = 0 case are particle-hole sym-
metric only at half-filling, it holds as an approximate symmetry in a wide range of equal chemical
potentials, µα ≡ µ̄, as long as the critical temperature T 0

c , determining the energy range of BCS
pairing, is much smaller than the bandwidth, Λ (see Sec. 4.5). Thus, the average of the chemical
potentials µ̄ ≡ (µ1 + µ2 + µ3)/3 does not have a considerable effect on the phase diagram, which
is solely determined by the chemical potential differences. On the other hand, by introducing a
non-zero slope of the density of states, η 6= 0, this approximate particle-hole symmetry is broken.
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where the chemical potential differences between two different pairs of fermions
become equal, is of first order at all temperatures.

Figure 4.5: Phase diagrams at particle-hole symmetry. At T = 0.25T 0
c the SC-

normal transition is of first order, whereas it is of second order above the Sarma
temperature, Eq. (4.33). The SC-SC boundaries are of first order at all temperatures.
The color code (right) indicates the absolute values of the SC order parameters.
[Parameters: identical to those in Fig. 4.6.]

The numerically obtained phase diagrams at particle-hole symmetry (η = 0) are
shown in Fig. 4.5 at a series of temperatures, exhibiting sixfold rotational symmetry
and a similar structure to the schematic phase diagram Fig. 4.4. The chemical
potential driven SC-normal transition is indeed found to be of second order above
the Sarma temperature,

T Sarma ≈ 0.48T 0
c , (4.33)

whereas it becomes of first order at lower temperatures (see Sec. 4.4.3).
The numerically computed SC-normal phase boundaries are shown in Fig. 4.6.

The volume below the dome-like structures are occupied by SC phases, with the dif-
ferent colors indicating the different SC channels (12), (23) and (31). The horizontal
dashed lines indicate the Sarma temperatures.
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Figure 4.6: Critical temperatures of the SC-normal transition. The Sarma temper-
atures, below which the transition is of first order, are denoted by the horizontal
dashed lines. Full lines indicate points with specialO(2, 2) universality class, whereas
the SU(3) symmetrical point is described by an O(6) critical theory (see Sec. 4.4.1).
[Parameters: g ρF = 0.2, and η = εF = 0, corresponding to kBT 0

c /Λ = 0.0076.]

4.4.1 Special points in the phase diagram

Although we focus on the mean-field aspects of the three-component system in the
body of this chapter, we note in passing that the phase diagram in Figs. 4.4 (a)
and 4.6 exhibit interesting critical points with special symmetry. In the vicinity
of these points, thermal fluctuations not only suppress the transition temperatures
somewhat, but they also modify the SC-normal phase boundaries, and determine
the critical exponents associated with the phase transitions. In superfluids and su-
perconductors traditionally studied in condensed matter systems, such fluctuation
effects are typically hard to investigate experimentally, whereas this non-trivial be-
havior may be observable in ultracold experiments [17].

In particular, at the µx = µy = 0 point, the Hamiltonian is SU(3) symmetri-
cal, and correspondingly, the phase transition at T = T 0

c is described by an O(6)
critical theory, where the six components of the order parameter correspond to the
real and imaginary parts of the SC order parameters. In three dimensions, this
symmetry is spontaneously broken for T < T 0

c , leading to a number of Goldstone
modes [123, 125]. In two spatial dimensions, thermal fluctuations in this special
point completely destroy the SC order, whereas the rest of the SC phases exhibits
Berezinskii–Kosterlitz–Thouless-type behavior [126].

The special point at the ends of the first order SC-SC phase boundaries, indi-
cated by white circles in Fig. 4.4, is even more interesting. Here, the fluctuations
of the two competing superconducting order parameters most likely leads to an
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O(2, 2) = (O(2) × O(2)) o Z2 critical theory. Although this model has been stud-
ied extensively [127], even up to six-loop ε-expansion and various other techniques,
the stability of its various fixed points is still debated [128–132]. However, since
the nature of the fixed point determines the shape of the SC-normal phase bound-
aries in the vicinity of the critical point, future ultracold atomic experiments may
provide a way to determine the stability problems of these fixed points through an
experiment [133].

Figure 4.7: Central region of the SC phase diagram in case of particle-hole asym-
metry (η 6= 0), at temperatures (a) T = T 0

c and (b) T = 0.5T 0
c . The slope of the

DOS leads to a new pairing mechanism near the SU(3) symmetric point, and breaks
the hexagonal symmetry of the phase diagram in Fig. 4.4, to a threefold symmetry.
Values of |∆αβ| are indicated by the color code on the right, with ∆max = 0.14 kBT 0

c

and ∆max = 2 kBT 0
c , in case of (a) and (b), respectively. [Parameters: identical to

those in Fig. 4.3.]

4.4.2 Effects of particle-hole symmetry breaking

Particle-hole symmetry breaking,13 η 6= 0, leads to further complications of the rich
SC phase diagram. Although on a large scale, the phase diagram appears to be
rather similar to the one of the particle-hole symmetric case, shown in Fig. 4.4, a
closer look at the vicinity of the SU(3) symmetric point reveals significant differ-
ences, presented in Fig. 4.7, showing the central region of the phase diagram at
temperatures T = T 0

c and T = 0.5T 0
c . Apparently, particle-hole symmetry breaking

reduces the hexagonal symmetry of the phase diagram to a ’trigonal’ symmetry, as-
sociated with the permutation symmetry of the particle species (1↔ 2↔ 3), due to
the SU(3) symmetry of the interaction [106]. In simple physical terms, the change
in the phase diagram can be understood as follows: since the superconducting gap,

13Particle-hole symmetry can be broken in many other ways, too (e.g. by introducing an asym-
metrical cut-off, ~ωD±). However, in the weak coupling regime, the non-vanishing slope of the DOS
seems to have the largest impact.
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and thus the gain in condensation energy depends sensitively14 on the value of the
DOS at the Fermi energy [96], Cooper pairs may not necessarily form in channels
of the smallest chemical potential difference, but between those species, that have
higher density of states. In particular, the diagram at T = T 0

c clearly represents
that the ciritcal temperature can indeed be increased by shifting the Fermi energy
to higher DOS. One can thus induce superconductivity even at temperatures above
T 0
c by creating an appropriate chemical potential imbalance, see Fig. 4.9.

Figure 4.8: Comparison of the particle-hole symmetric (a, c) and asymmetric case
(b, d) at temperatures T = 0.5T 0

c . Whereas the large scale phase diagrams (c,
d) are identical at first sight, a closer look reveals qualitative differences near
the SU(3) symmetric point (a, b). The color code (right) indicates the absolute
values of the SC order parameters. [Parameters at the SU(3) symmetric point:
(g ρF , kBT 0

c /Λ, ηΛ, εF /Λ) = (0.2, 0.0076, 0, 0) in (a, c) and (0.224, 0.011, 0.5, 0.24)
in (b, d).

It is important to note, however, that this central region of the phase diagram,
affected by even a large particle-hole asymmetry is typically small compared to the
rest of the phase diagram in the weak coupling regime kBT 0

c � Λ (see Fig. 4.8).
Based on our numerical simulations at higher interaction strengths [133] the relative
size of this threefold symmetric region seems to scale roughly as ∼

√
η (kBT 0

c ), and
14The standard BCS approximation for T 0

c in the weak coupling regime can be simply generalized
to the case linear DOS kB T 0

c ≈ 1.13
√

Λ2 − ε2F e−1/(gρF ) e−(ρF−ρ0)/ρF .
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it is thus expected to become more extended in the strongly interacting regime.
Fig. 4.9 shows the numerically computed phase diagram at the critical temper-

ature at the SU(3) symmetric point, T = T 0
c . Since the species forming the SC can

increase their condensation energy in certain directions in the phase diagram, where
they can gain a higher DOS at their Fermi energies, superconductivity appears in
small regions near these lines, even at T = T 0

c .

Figure 4.9: T = T 0
c phase diagram at particle-hole symmetry breaking, ηΛ = 0.5.

In certain directions, the elevated density of states of two components with nearly
equal chemical potentials favors SC pairing, and the critical temperature exceeds
T 0
c . The color code indicates the absolute values of the SC order parameters, with

∆max = 0.14 kBT 0
c in (a), and 2kBT 0

c in (b). [Parameters: identical to those in
Fig. 4.3.]

4.4.3 Two-component superconductivity

If the chemical potentials of two components is roughly equal, |µ1−µ2| . T 0
c , whereas

that of the third component is far away from them, (|µ3 − µ1|, |µ3 − µ2| � kBT
0
c ),

we effectively get a situation with two-component BCS pairing, in the presence of a
non-gapped third species. It is thus instructive to compare our results in this regime
to two-species BCS results. In order to investigate this limit, we fix the chemical
potential difference µy at a value µy = 5 kBT 0

c , and vary µx on a much smaller scale,
as depicted by the solid line in Fig. 4.10 (a). The resulting phase diagram displays
features similar to those predicted by Sarma in case of two-component pairing (see
Sec. 4.1). Fig. 4.10 (b) shows the numerically obtained values of the SC order
parameter ∆. At zero temperature, it is in full agreement with the BCS result,

∆(T = 0) = 1.764 kBT ∗c , (4.34)

with T ∗c = 1.027T 0
c denoting the critical temperature at the µx = 0 point, and it

is independent of µx.15 The SC-normal phase transition is of second order in the
15Note that, if the slope of the DOS η is non-zero, then T ∗c is shifted upwards from T 0

c for a
positive µy, while it is slightly below T 0

c for a negative µy.
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T . T 0
c region, indicated by a continuous line, where ∆ depletes in a continuous

manner. Below the Sarma temperature, T Sarma, however, the transition becomes
of first order (dashed line), and ∆ exhibits a jump at the transition [117]. This
line terminates at the critical temperature µClog

x of the SC-normal transition at
zero temperature, the so-called Clogston limit, discussed in Sec. 4.1. Although the
numerical value of µClog

x seems to be shifted from that found by Sarma, Eq. (4.2), we
find the same deviation both for two-component and three-component systems. This
indicates that this difference is due to the inclusion of magnetic degrees of freedom in
our mean-field free energy, Eq. (4.29), that account for interaction-related corrections
to the Pauli susceptibility, χ ∼ ρF , neglected in Sarma’s work [117,133].

Figure 4.10: Two-particle SC phase diagram with µy kept fixed at µy = 5 kBT 0
c , as

indicated by the red line in (a). (b) The SC-normal transition is of second order
at higher temperatures (solid line), with a continuously vanishing SC order param-
eter, whereas ∆12 jumps discontinuously below the Sarma temperature, T Sarma. (c)
The particle densities exhibit a similar jump at the first order phase boundary.
[Parameters at the SU(3) symmetric point: g ρF = 0.2, εF = 0, ηΛ = 0.5, and
kBT

0
c /Λ = 0.0076.]

Fig. 4.10 (c) displays the change in the particle densities across the SC phase
diagram. At zero temperature, the SC state is non-polarizable: the Fermi surfaces
of the two components are bound together, and the values of the densities do not
depend on the chemical potential difference µx. Thus, at the SC-normal phase
boundary, the densities shift abruptly, leading to an experimentally important man-
ifestation of the phase transition16 [111]. This shift remains discontinuous, and thus
the phase transitions is of first order up to temperatures below T Sarma.

4.5 Symmetries of the phase diagram

Let us now discuss the effect of the SU(3) symmetry of interactions on the structure
of the phase diagram. Away from the SU(3) symmetric point, where the chemical

16Although this jump is only of ∼ 1% in the densities in Fig. 4.10, it is expected to take on much
higher values in the strongly interacting regime (see Ref. [111]).
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potential differences are non-zero, we still find significant symmetry-dictated restric-
tions on the possible phases of the system, as well as on the symmetries of the phase
diagram. Even at the break-down of the SU(3) symmetry of the interactions, the
SU(3) invariance of the functional integral measure in Eq. (4.15) leads to Ward
identities [106] that connect the particle densities to four-point expectation values

(µα − µβ)nαβ =
∑
γ

(gβγ − gαγ) 〈Ψ†γΨ†αΨβΨγ〉 ., (4.35)

as we show in Appendix B.1. Since the right hand side of this equation for SU(3)
symmetric interactions is zero, we find that n (and thus M as well) is diagonal.
We note, that a similar Ward identity can be derived within the framework of the
Gaussian variational method, leading to the same conclusions (see Appendix B.2).

Similar to the order parameter M, the matrix of (bare) chemical potentials, µ̂,
also transforms according the adjoint representation of SU(3) matrices. However, in
experimental situations, µ̂ is diagonal, and we can restrict our investigations to this
case, where SU(3) transformations simply generate permutations of the hyperfine
components α, and the corresponding chemical potentials, µα. In the (µx, µy) plane,
these permutations translate to threefold rotations and reflections, and give a two-
dimensional representation of the S3 ∼ C3v group. This implies a trigonal symmetry
of the phase diagram, see Fig. 4.8 (b) and Fig. 4.9.

In addition, in case of SU(3) symmetric interactions, the EOM equations and
the free energy, Eq. (4.29), obey an additional particle-hole symmetry, if the single
particle DOS in the band is symmetric ρ(ε) = ρ(−ε), and the band is exactly half-
filled (see Appendix B.5). In this case the phase diagram Fig. 4.4 has an additional
mirror symmetry, since the particle-hole transformation (µx, µy)→ −(µx, µy) leaves
the order parameters invariant, apart from signs, global phase rotations, and conju-
gation. This inversion symmetry, together with the formerly discussed S3 symmetry
leads to a sixfold C6v symmetry in the (δµx, δµy) plane. Although exact particle-hole
symmetry holds only in case of half-filling, we found in our numerical investigations
that in the weak coupling regime, kBT 0

c � Λ, the mean-field free energy is sensi-
tive only to the immediate vicinity of the Fermi surface. Therefore, particle-hole
symmetry becomes an approximate symmetry to a good accuracy in a wide range of
average chemical potentials µ = (µ1 +µ2 +µ3)/3, whenever the single particle DOS
is constant, η ≡ 0. We thus find a phase diagram of hexagonal symmetry within our
numerical accuracy, as we showed in Fig. 4.5.

4.6 Ginzburg–Landau free-energy

Many of the interesting features of the phase diagram can be captured through a
Ginzburg–Landau approach incorporating both ∆ and M as order parameters. In
this section, we thus analyze the central region of the phase diagram at tempera-
tures T ∼ T 0

c , and identify the terms in the free energy that are responsible for the
symmetries of this region. As we mentioned in Sec. 4.3.3, the SU(3) transformation
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properties of the order parameters put significant constraints on the number of pos-
sible terms in the expansion. Their coefficients depend on microscopic parameters,
we shall determine numerically from the mean-field free-energy Eq. (4.29).

In the weak coupling limit, kBT 0
c � Λ, the dimensionless free energy,

f̃G ≡
fG

ρF (kBT 0
c )2 , (4.36)

can be expanded near the SU(3) symmetric point in terms of the dimensionless
order parameters

∆̃ ≡ ∆
kBT 0

c

, δM̃ ≡ M−M0

kBT 0
c

,

and the dimensionless matrix of chemical potential differences

δµ̃αβ = δαβ
µα − µ0

kBT 0
c

(4.37)

with M0 and µ0 denoting the renormalized and bare chemical potentials at the
SU(3) symmetric point, respectively.17 Furthermore, the expansion coefficients shall
depend only on a few dimensionless parameters: the reduced temperature t ≡ (T −
T 0
c )/T 0

c , the dimensionless interaction strength, g̃ ≡ g ρF , and the dimensionless
slope of the DOS at the Fermi energy η̃ ≡ η kBT

0
c , identified as the particle-hole

symmetry breaking parameter. Since all terms in the expansion need to be SU(3)
invariant, the number of terms is vastly reduced [106], and thus f̃G is given by the
series

f̃G(∆̃, δM̃) = A1
4 Tr(∆̃∆̃+) + A2

16 Tr((∆̃∆̃+)2) (4.38)

+ B1 Tr(δM̃2) +B2 Tr(δM̃)2 +B3 Tr(δµ̃ δM̃)

+ C1
4 Tr(δM̃∆̃∆̃+) + C2

4 Tr(δM̃)Tr(∆̃∆̃+)

+ C3
4 Tr(δµ̃∆̃∆̃+) + . . . .

Since near the SU(3) symmetric phase transition the order parameters are of the
order of δM̃ ∝ δµ̃ and ∆̃ ∝

√
t, thus the above expansion contains all terms up to

O(t2, δµ̃ t, δµ̃2) order.18 All of the 8 coefficients are all functions of g̃, t, and η̃, and
their numerically determined values, obtained by fitting the free energy Eq. (4.29),
are given in Table 4.1.

It is instructive to look at the expansion coefficients and uncover the nature of the
different terms. The onset of superconductivity is driven by the term A1(t), which

17Since a simultaneous shift of all the chemical potential components shall have no considerable
impact on the phase diagram, we restrict ourselves to chemical potentials with Tr δµ̃ = 0.

18Since the term (Tr(∆̃∆̃+))2 is proportional to Tr((∆̃∆̃+)2), it does not appear in the expansion.
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parameter approximate expression
A1 2.00 t+ . . .

A2 0.40− 1.20 t+ . . .

B1 0.5000 + 0.500 g̃ + . . .

B2 −0.500 g̃ + . . .

B3 −1.000 + . . .

C1 1.25 η̃ + . . .

C2 −1.22 η̃ + . . .

C3 −1.24 η̃/g̃ + . . .

Table 4.1: Approximate expressions of the Ginzburg-Landau coefficients in
Eq. (4.38). The dimensionless parameters are g̃ ≡ ρF g, η̃ ≡ η kBT

0
c , and t ≡

(T − T 0
c )/T 0

c .

parameter approximate expression
a1 2.0 t+ . . .

a2 0.40− 1.2 t+ . . .

b
(
3.2 t− 0.33/g̃2) η̃ + . . .

c1 0.125− 0.15 g̃ − 0.13 t+ . . .

c2 −0.115 + 0.14 g̃ + 0.12 t+ . . .

Table 4.2: Approximate expressions of the Ginzburg-Landau coefficients in
Eq. (4.40). The dimensionless parameters are g̃ ≡ ρF g, η̃ ≡ η kBT

0
c , and t ≡

(T − T 0
c )/T 0

c .

changes sign at the critical temperature. This, together with the coefficient A2(t),
determines the value of the SC order parameter ∆ at the SU(3) symmetric point. All
other coefficients are approximately constant close to the phase transition. Whereas
the terms Bi simply set the ferromagnetic susceptibility in the normal phase, the
terms Ci are much more interesting: they drive the coupling between the SC order
parameter and the magnetization (or chemical potential differences), and produce
the density shift of the normal component at the onset of superconductivity [106].19

This coupling is responsible for the threefold symmetry of the central region of
the phase diagram (see Fig. 4.8). Importantly, all of these terms are found to be
proportional to the particle-hole symmetry breaking parameter, η̃, in accordance
with our previous observations, that the threefold symmetric region is characteristic
only to the phase diagram of a particle-hole symmetry broken system.

Although the third order expansion above accounts for the threefold symmetric
19Note, that in a two-component system, these terms are actually zero, due to the symmetry of

the order parameters, and the coupling of superconductivity and magnetism can only appear at
higher order in these systems.
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region of the phase diagram, it does not recover its sixfold symmetric structure, dom-
inating at larger chemical potential differences. Note that, the hexagonal structure
is even, while the terms C1, C2 and C3 are odd under particle-hole transformation,
δµ̃ ↔ −δµ̃, δM̃ ↔ −δM̃∗, and are proportional to η̃, whereas the hexagonal region
dominates the phase diagram already in the particle-hole symmetric system. To
cover this region, one obviously needs to go to higher orders in the expansion, and
add terms with even powers of δM̃ and δµ̃, coupled to the superconducting order
parameter ∆̃. Unfortunately, the number of terms already in the next order of the
expansion is enormous, and it is thus practically impossible to determine all of their
coefficients numerically. However, integrating out the small ferromagnetic response
δM̃, we can simply focus on an expansion in terms of the SC order parameter. By
minimizing f̃G in δM̃ for all fixed values of δµ̃ and ∆̃, we can define a new free
energy functional,

f̂G(δµ̃, ∆̃) ≡ f̃G(δµ̃, ∆̃, δM̃min(δµ̃, ∆̃)) , (4.39)

that is the functional only of the SC order parameter, but nevertheless incorpo-
rates the effects of magnetization. Keeping all SU(3) symmetric terms in f̂G up to
O(t2, δµ̃2 t) order, we find

f̂G = a1
4 Tr(∆̃∆̃+) + a2

16 Tr((∆̃∆̃+)2) + b

4 Tr(δµ̃∆̃∆̃+) (4.40)

+ c1
4 Tr(δµ̃2∆̃∆̃+) + c2

4 Tr(δµ̃∆̃δµ̃∆̃+) + . . . .

The numerically obtained values of these coefficients are shown in Table 4.2. The
particle-hole asymmetric term, b, is proportional to η̃, and it is responsible for the
threefold symmetric structure of the phase diagram. It plays a role similar to the
Ci coefficients of the previous expansion, Eq. (4.38). The terms c1 and c2, on
the other hand, are independent of η̃, and they are the lowest order coefficients
reproducing the sixfold symmetric structure of the phase diagram. Indeed, numerical
minimization of the Eq. (4.40) leads to the correct structure of the phase diagram
close to the SU(3) symmetric point, as characterized by the competition between
the couplings odd (b, . . . ) and even (c1, c2, . . . ) under particle-hole symmetry. The
expansion also determines the absolute value of the SC order parameter correctly
at temperatures 0.9T 0

c < T < T 0
c , and in the weak coupling regime kBT 0

c /Λ < 0.1.
Unfortunately, however, it reproduces the position of the triple points at the interface
of the threefold and approximately sixfold symmetric structures in Fig. 4.8 only up
to an error of about 50%. Although this is a rather large error, it is not very
surprising, since the scale of the threefold symmetric structure is δµ̃ ≈ 0.2, for the
parameters considered here. Thus, δµ̃ cannot be considered as a small parameter,
and higher order terms in the expansion seem to become relevant.
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4.7 Summary

In this chapter, we studied the rich phase diagram of a three-component fermionic
gas, with weakly attractive SU(3) symmetric interactions.20 By using a combina-
tion of an equation of motion based technique and a Gaussian variational method,
we were able to capture the interplay of ferromagnetic and superconducting (SC)
ordering in an unbiased way, and map out the global phase diagram in the entire
temperature range. The interplay of the two orders leads to qualitative differences in
the vicinity of the SU(3) symmetric point, where all chemical potentials are equal,
and they also significantly modify the SC-normal phase boundaries. Similar to two-
component gases, chemical potential differences destroy superconductivity though
a Zeeman-like mechanism, and the associated phase boundary is of second order
above the so-called Sarma temperature, whereas they become of first order at lower
temperatures.

We identified the basic physical mechanisms that determine the shape of the
phase diagram based on general energy and symmetry arguments, and mapped out
the phase diagram numerically, in terms of dimensionless physical parameters. We
found that, except for the SU(3) symmetric point, SC order always forms in one
of the three channels (12), (23) and (31), and as a rule of thumb, Cooper pairing
tends to occur between components of the smallest chemical potential difference. If
the density of states near the Fermi energy is approximately constant, the SU(3)
symmetry of interactions and the (approximate) particle-hole symmetry leads to a
sixfold rotational symmetry of the phase diagram, in the plane of chemical poten-
tial differences, (µx, µy). It is only the central region of the phase diagram, where
the coupling between SC and magnetism, triggered by a particle-hole symmetry
breaking near the Fermi energy, η ∼ ρ′(εF )/ρ(εF ), breaks down the rotational sym-
metry of this central region to a threefold symmetry. Although this region appears
only in the small vicinity of the SU(3) symmetric point, its relative size apparently
scales as ∼

√
ηT 0

c , and it is thus expected to become more pronounced in case of
strong attractive interactions, kBT 0

c ≈ EF ∼ Λ, and may thus become observable in
experiments.

Finally, we constructed the Ginzburg–Landau functional associated with the
central region of the phase diagram, near the critical temperature, T 0

c . We identified
the terms relevant for the trigonal as well as the sixfold symmetric structures of the
phase diagram, and identified their coefficients. Importantly, the terms determining
the structure of trigonal symmetry, associated with the coupling between the SC
and magnetic order (and chemical potentials) are driven by particle-hole symmetry
breaking through the parameter η.

Experimentally, gases of SU(3) symmetric interactions could be realizable in
the widely used system of 6Li in high magnetic fields, whereas Yb-like closed s-
shell atoms, with perfect SU(N) interactions, could provide an alternative realiza-

20In an experimental situation of a trapped gas (in the absence of an optical lattice), an appro-
priate definition of the weak coupling limit is kBT 0

c � EF , with the Fermi energy, EF , measured
from zero energy.
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tion. Although experiments with attractive three-component mixtures are generally
plagued by three-particle losses [134–137], the recent experimental realization of
Fermi degenerate 6Li mixtures [138] indicates that experiments on intriguing color
superconducting phases may be within reach.
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5
Stabilizing skyrmions through

strong interactions

Certain excitations in ordered media, like vortices in 4He, can be surprisingly long-
lived. The mechanism that stabilizes the vortex is that the winding of the condensate
phase around the vortex core cannot be removed by the continuous dynamics of the
superfluid, and forces the vortex to stay. Similar long-lived excitations, protected
by some non-trivial topological winding of the order parameter, are ubiquitous in
physics, and are often referred to as topological excitations. By considering the or-
der parameter, rather abstractly, as a mapping from spatial points to the order
parameter space, one can classify order parameter configurations based on whether
they can be deformed into each other by continuous deformations, as described by
homotopy theory in mathematics [139,140]. Most excitations are topologically triv-
ial, i.e. they can be smoothly removed from the system, like the above mentioned
plane-wave-like quasi-particle excitation. However, certain systems with special or-
der parameter space structure allow for excitations with topologically non-trivial
winding, characterized by especially long lifetimes and exotic properties. Probably
the most interesting property of these field configurations is that, in many cases,
the topological winding significantly changes the nature and the spectrum of quasi-
particle excitations.1

Topological excitations in low spatial dimensions have been discovered in several
physical settings. The simplest one dimensional topological objects, domain walls,

1In quantum field theory, this is commonly referred to as the system being in ’a topologically
different vacuum’. Since in the thermodynamic limit, the tunneling amplitude between different
topological configurations goes to zero, they can be considered as different ground states or vacua
of the system, with quasi-particle excitations of different nature. Probably the simplest exam-
ple is the Sine–Gordon model, where the presence of solitons modifies the nature of low energy
excitations [141].
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besides appearing in such diverse fields as solid-state physics, cosmology, string the-
ory [142] and one dimensional quantum field theories, have also found important ap-
plications in magnetic hard drives. Vortices and other topological line defects belong
to our basic understanding of superfluidity, superconductivity [39, 96, 143] and con-
stitute the basic mechanism behind the Berezinsky-Kosterlitz-Thouless phase tran-
sition [15, 16]. Higher dimensional topological excitations are even more interesting
and complex. ’t Hooft-Polyakov monopoles [144,145], the non-Abelian counterparts
of the well-known Dirac monopole of electromagnetism [146,147], appear in several
grand unified theories of particle physics. Skyrmions, another large class of topo-
logical excitations are smooth, localized structures of some order parameter vector
field. Similarly to vortices, where winding of the phase gives a non-zero topological
number, in the skyrmion’s case, the order parameter vector field winds over the
sphere of unit vectors in order parameter space. Although skyrmions were originally
proposed to describe hadronic particles by Skyrme [148,149], their signatures have
been later observed in quantum Hall systems [150–155]. Moreover, a spontaneous
formation of skyrmion lattices, displaying the topological Hall effect [156–158], has
been reported in certain magnetic materials [159–161].

Individual skyrmions, monopoles and three-dimensional topological excitations
in general have, however, been notoriously hard to observe. Indeed, it has been only
recently that experiments convincingly demonstrated the existence of monopole-like
structures in spin-ice Dy2Ti2O7 [162, 163]. The main reason for this difficulty lies
in dynamical instability problems of these excitations. In particular, smooth three-
dimensional excitations are generally doomed to shrink to a point or expand into
infinity, in the absence of non-trivial external gauge fields stabilizing them [164], and
the underlying cause of their instability is captured by Derrick’s simple argument
(see Appendix C.1) [165]. Although this argument, assuming a spatially homo-
geneous system, does not apply to topological excitations in trapped cold atomic
systems, these excitations have another important dynamical instability problem:
since they can always decrease the kinetic energy associated with their non-trivial
spatial structure by moving them into lower density regions of the trap, they gener-
ally slip away from the trap [166]. This so far excluded the possibility of detecting
stable individual skyrmions in ultracold gases [166,167], and only unstable skyrmion
configurations have been imprinted and observed [168–171].

In this chapter, we shall discuss how to stabilize skyrmions, both topologically
and dynamically in an ultracold atomic setting, through the application of strong in-
teractions. By putting a so-called ’nematic superfluid’ of spin-1 bosons, such as 23Na
onto a deep optical lattice, a Mott insulator core forms in the middle of the trap,
surrounded by a nematic superfluid shell (similarly to the case of single component
bosonic superfluids discussed in Sec. 2.7.2). Due to the order parameter structure
of the nematic condensate, the closed shell can naturally host a topologically pro-
tected skyrmion, anchored by the Mott core in the middle, leading to a skyrmion of
extreme stability,2 see Fig. 5.1. Most importantly, however, the compact geometry

2At the temperature scales of current experiments, the Mott core is non-magnetic, and and there
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Figure 5.1: Schematic structure of the Mott skyrmion configuration. (a) In a deep
optical lattice, a Mott insulator core forms in the central region of the trap, with
essentially no magnetic ordering at the temperatures considered. The core is sur-
rounded by a nematic superfluid shell of typical radius R, naturally hosting the
skyrmion spin structure. Arrows denote the orientation of the nematic order param-
eter with unit winding over the sphere, û(r) as shown in Eq. (5.1). The skyrmion
is stabilized by the Mott core that keeps it from drifting out from the trap. (b)
Schematic finite temperature phase diagram of strongly interacting bosons in a deep
optical lattice, with the blue regions indicating the incompressible Mott insulator
phase, with approximately integer number of atoms per site. The red arrow indicates
the change of the chemical potential as one moves from the center of the trapped
skyrmion towards the edge of the trap.

of this configuration allows for the experimental study of the interplay between the
ground state topology and the superfluid excitation spectrum. We will see later in
this chapter that the presence of the skyrmion changes drastically the superfluid’s
excitation spectrum as well as the quantum numbers [172]. The effect of the ground
state topology on the excitation spectrum is a general phenomenon, and has been
studied theoretically in a large variety of topological excitations. The Mott skyrmion
proposal thus provides a unique way to observe this in an experimentally realizable
system.

The results presented in this chapter are based on the following publication: M.
Kanász-Nagy, B. Dóra, E. A. Demler and G. Zaránd, ”Stabilizing the false vacuum:
Mott skyrmions”, Sci. Rep. 5, 7692 (2015).

5.1 Nematic superfluids
It has been noticed early in the works of Ho [25], and Ohmi and Machida [173] that
certain spin F = 1 superfluids, such as such as 23Na or 87Rb at zero external mag-
netic field support magnetic phases [167, 174–180] that can host three-dimensional
topologically protected excitations, most importantly, monopole and skyrmion-like
defects [166,167,181]. In particular, interactions in a nematic (or antiferromagnetic)

is thus no coupling between the spin configurations of the core and the superfluid.
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superfluid such as 23Na, force the superfluid order parameter Ψ(r) = (Ψx,Ψy,Ψz)
to take on the remarkably simple form,3

Ψ(r) = û(r)
√
%(r) eiϕ(r) , (5.1)

that minimize the interaction energy. Here, û denotes a real unit vector, whereas %
and ϕ are the superfluid density and phase, respectively. The topological structure
of the order parameter space can thus be easily determined by looking at Eq. (5.1),
as
(
S2 ×U(1)

)
/Z2, where the unit sphere S2 corresponds to the orientation of the

unit vector û whereas the U(1) symmetry is that of the phase variable, ϕ.4 The Z2
factorization is associated with the fact that by simultaneously flipping the orien-
tation of the unit vector and shifting the phase by π is equivalent to the original
configuration, (û, ϕ) = (−û, ϕ + π) — hence the name ’nematic’ condensates. The
structure of the order parameter space allows for the existence of two-dimensional
skyrmions [171] and three-dimensional monopoles with their order parameter wind-
ing around the unit sphere completely, û(r) ∝ r̂ (see Fig. 5.1). This winding cannot
be removed by continuous deformations to the order parameter configuration, mak-
ing the skyrmion topologically protected.

To understand the peculiar order parameter space of nematic condensates, let
us first consider the interactions of the spin F = 1 bosons5 in the absence of an
optical lattice [25, 173]. The ultracold collisions of these atoms are described by an
interaction that is rotationally invariant in spin space. The total spin state of the
two atoms is a linear combination of F = 2 and F = 0 states. Since the s-wave
scattering lengths in these two channels, a2 and a0, are in general different, the
interactions are described by a spin-dependent pseudopotential,

V (r)ψ(r) = δ(3)(r) ∂

∂r
(rψ(r)) 4π~2

m
(a2P2 + a0P0) ,

where PF denotes projector to the total spin F channel. These projectors can,
however be cast into a simple form by making use of the identity ~F1 · ~F2 = P2− 2P0
for the spin matrices, ~F = (Fx,Fy,Fz) [25]. The mean-field interaction energy of
a spin-1 superfluid can thus be expressed in terms of the interaction coefficients,
c0 = 4π~2

m (a0 + 2a2)/3 and c2 = 4π~2

m (a2 − a0)/3, as

Eint[φ] =
∫
d3r

[
c0
2 ρ2

MF(r) + c2
2 ρ2

MF
~f 2
MF(r)

]
, (5.2)

3Here, the spinor Ψ is represented in the rotation matrix basis of F = 1 spin matrices, (Fj)αβ =
−i εjαβ , where ε is the totally antisymmetric Levi-Civita symbol.

4Skyrmions can also be susceptible to unwinding, if the interaction energy does not confine
the order parameter strongly enough to the space of ground state configurations [169, 170]. This
may be the case if the skyrmion’s size is too small, and the kinetic energy costs of its non-trivial
spatial structure overcomes the interaction energy barrier that keeps the order parameter on the(
S2 ×U(1)

)
/Z2 subspace.

5Besides the spin-1 condensates considered here, higher spin bosons, like 85Rb, 133Cs and the
lately created spin-2 condensates of 23Na and 87Rb, have even richer interaction structures and
many-body phase diagrams [178,182].
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where the superfluid density and magnetization, ρMF(r) =
∑
α |φα(r)|2 and ~fMF(r) =∑

αβ φ
∗
α(r) ~Fαβ φβ(r)/ρMF(r), are determined by the condensate’s order parameter,

φα(r), with the index α running over the spinor components.
The sign of the spin interaction coefficient c2 is of crucial importance. In the

nematic case, such as for 23Na, when the spin coefficient is positive (a2 > a0), the
interaction energy favors zero magnetization, ~fMF ≡ 0. This leads to the ground
state configuration space

(
S2 ×U(1)

)
/Z2. Indeed, by choosing the rotation matrix

representation for spin matrices (Fj)αβ = −i εjαβ, with the totally antisymmetric
Levi-Civita symbol, εjαβ, the zero magnetization condition implies Im (φ∗αφβ) = 0
for all α, β = x, y, z. Thus, up to a phase factor, the order parameter, φ(r), is given
by a real unit vector. This makes nematic condensates natural candidates for the
observation of skyrmions. Ferromagnetic condensates, like 87Rb, on the other hand,
have a negative spin coefficients and are therefore fully magnetized, ~f 2

MF ≡ 1. Their
configuration space is topologically equivalent to the SO(3) rotation group [25], and
cannot host monopole-like Mott skyrmion configurations. However, there have been
a number of theoretical proposals for other topologically protected excitations in
this case [167].

5.2 Lattice model

We shall now study the effects of the optical lattice on the nematic condensate, and
how it leads to the formation of a Mott core in the center of the trap. We describe
the dynamics of spin F = 1 bosons in a deep optical lattice by the Bose–Hubbard
Hamiltonian with nearest neighbor hopping, H = Hkin +

∑
rHloc,r whose kinetic

and local parts are defined as

Hkin = −J
∑
〈r,r′〉

b†rαbr′α, (5.3a)

Hloc,r = −µr nr + U0
2 : n2

r : +U2
2 : ~F 2

r : . (5.3b)

Here, the operators brα annihilate a boson of spin component α (α = x, y, z) at
the lattice site r, whereas : . . . : denotes normal ordering. nr =

∑
α b
†
rαbrα and

~Fr =
∑
α,β b

†
rα ~Fαβbrβ refer to the boson density and the local magnetic moment, re-

spectively. The hopping term sets the energy gain for bosons to tunnel to neighboring
sites, whereas the spatially varying chemical potential, µr ≡ µ− V (r), incorporates
the effects of the spherically symmetric trapping potential V (r) = mω2

0r2/2.
The structure of interactions is similar to that in free space, Eq. (5.2), which is

the consequence of the SO(3) symmetry of two-particle interactions in parameter
space. The on-site charge interaction term U0 describes the strong repulsion between
bosons, confined onto the same lattice site, whereas much weaker spin interaction
term U2 accounts for the magnetic interaction between them. The ratio of these
parameters is determined by the scattering lengths, a2 and a0, and is dictated by

81



the same symmetry argument as in Eq. (5.2),

U2
U0

= a2 − a0
a0 + 2 a2

. (5.4)

We will see later in this section that the sign of the spin term determines the ground
state order parameter space of the superfluid condensate on the lattice, similarly
to the free case, Eq. (5.2). If the spin term is positive, U2 > 0, the interactions
force the superfluid order parameter Ψα ∝ 〈bα〉 to stay within the nematic phase,
Eq. (5.1), where the mean-field magnetization is zero, ~fr ≡ Ψ†r·~F·Ψr/|Ψr|2 ≡ 0, once
the superfluid density %r ≡ |Ψr|2 is finite. Since, in case of 23Na, these scattering
lengths are rather close to each other, the interaction term U2 is suppressed, and
is approximately U2 ≈ 0.03U0 (see Refs. [27, 183]). Therefore, the superfluid-Mott
phase boundaries are only negligibly modified by the spin interaction, and resembles
that of a single-component bosonic lattice, shown in Figs. 2.4 and 5.1 (b).

In what follows, we shall focus on the parameter regime zJ/U0 ≈ 0.2 with z = 6
the number of nearest neighbors that can be reached easily by increasing the depth
of the optical lattice.6 By squeezing the trap or choosing high enough density, the
chemical potential can be increased such that the central region of the trap becomes
Mott insulating, surrounded by a nematic superfluid shell, in the outer regions of the
trap, where the chemical potential diminishes (shown by red arrow in Fig 5.1 (b)).
Following the parameters of the experiment in Ref. [27], in the zJ/U0 ≈ 0.2 regime
of the phase diagram, the on-site interaction becomes U0 ≈ 250 nK, setting the
values for the spin interaction and the hopping as U2 ≈ 9 nK, and zJ ≈ 50 nK.
In accordance with the temperature range used in current experiments, we assume
that the temperature is already low enough (T < zJ) that a superfluid around the
Mott core can form, with typical radius R, but it is significantly higher than the
mean-field magnetic ordering temperature of the Mott insulating core, TC ∼ 0.1T ,
with TC ∼ zJ2/U0. This leads to essentially zero magnetization in the Mott core,
therefore the interplay between the magnetism in the Mott core and superfluidity
can be ignored.

5.3 Mott skyrmion structure
We shall now develop a mean-field description of the superfluid on the lattice. To
identify the skyrmion state in the lattice system at a finite temperature T , we rewrite
its thermodynamic partition function, Z = Tre−βT (Hkin+

∑
r Hloc,r), in the functional

integral form Z =
∫
D[b†, b]e−S[b†,b], where the many-body action is given by [85]

S[b†, b] =
∫ βT

0
dτ

∑
rα
b†rα ∂τ brα +Hkin +

∑
r
Hloc,r, (5.5)

6The J/U0 ratio depends exponentially on the lattice depth V0, J/U0 ∝ exp
(
−2
√
V0/ER

)
, and

can thus be easily controlled by modifying the lattice depth to reach the superfluid-Mott insulator
transition [27,177].
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Figure 5.2: The local part Floc(%, ~f 2) of the free energy in Eq. (5.8), in case of (a)
nematic and (b) ferromagnetic interactions, with U2 > 0 and U2 < 0, respectively.
The minimum of the free energy (open circle) favors a non-magnetized (fully mag-
netized) superfluid in the nematic (ferromagnetic) case. [Physical parameters of the
plot: zJ/U0 = 0.40, U2/U0 = 0.025, T/U0 = 0.05, and µ/U0 = 0.08.]

and βT = 1/(kBT ). In the regime of strong interactions, the kinetic Hamiltonian can
be decoupled through a Hubbard–Stratonovich transformation [184] by introducing
the superfluid field Ψ, and making use of the identity

e
∑

rr′ b
†
rJrr′br′ =

∫
D[Ψ,Ψ] e−

∑
rr′ ΨrJz I

−1
rr′Ψr′ e

∑
r Jz(b

†
rΨr+h.c.), (5.6)

where a vectorial notation has been used for the spin indices, α, and Ψ denotes
the conjugate field of Ψ. We also introduced the dimensionless hopping matrix,
Irr′ = 1

Jz Jrr′ . In the limit of small kinetic energies, as compared to the width of the
first Bloch band, its inverse can be written as I−1

rr′ ≈ δrr′ −
a2

z ∆rr′ , with the discrete
Laplacian ∆rr′ of the lattice model of lattice constant a. Since, the action now
contains only local terms in the annihilation operators brα, these can be integrated
out at each site, yielding

Z =
∫
D[Ψ,Ψ] e−

∫
dτ JzΨrI

−1
rr′Ψr′

∏
r

Trbre
−βT

(
Hloc,r−Jz(b†rΨr+h.c.)

)
, (5.7)

where the trace goes over the local Hilbert space at site r. In the saddle point
approximation, where we neglect the fluctuations of the action around its maximum
value, the free energy F [Ψ†,Ψ] = −kBT logZ[Ψ†,Ψ] can be written in terms of its
kinetic and local parts, F = Fkin +

∑
r Floc,r, as

Fkin ({Ψr}) = −Ja2 ∑
rr′

Ψr ∆rr′Ψr′ , (5.8a)

Floc
(
%r, ~f

2
r , µr, T

)
= Jz %r − kBT log Trbe−βT

(
Hloc,r−Jz(b†rΨr+h.c.)

)
, (5.8b)

taken at a field configuration locally minimizing the free energy, F ({Ψr}). The ki-
netic term describes the energy cost of spatial modulation of the condensate, leading
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to the superfluid stiffness, whereas the local part of the free energy incorporates the
effects of interaction as well as trapping. As a consequence of the SO(3) rotational
and the U(1) gauge symmetry of the Hamiltonian, Eq. (5.3), Floc depends only on
two rotation invariant quantities, the superfluid density and the square of the mag-
netization, %r and ~f 2

r . Furthermore, Floc can be easily determined numerically by
truncating the local Hilbert space at a particle number nmax ∼ 5, since the filling
of the states n > nmax is negligible due to the strong repulsion between atoms.
We indeed find that nematic interactions U2 < 0 force the superfluid to occupy the
~f 2
r ≡ 0 configurations, whereas ferromagnetic interactions favor ~f 2

r ≡ 1 states, as
shown in Fig. 5.2.

Figure 5.3: In-trap superfluid and particle densities of the skyrmion in the (x, z)
plane. (a) The superfluid in the |+1〉 (|−1〉) bosons form a vortex (antivortex)
around the equator, whereas the |0〉 condensate in (b) creates a dipole-like dark
soliton structure at the poles. The surface of the Mott core is indicated by the
dashed line. (c,d) show in-trap particle densities. Local increase in the superfluid
order of one component leads to an increase of that component’s particle density,
whereas it repels the other two components, leading to a specific density structure
characterizing the skyrmion. This structure gets significantly more pronounced at
lower temperatures. [Physical parameters of the plot: zJ/U0 = 0.18, U2/U0 =
0.025, T/U0 = 0.05, chemical potential in the center of the trap µmid/U0 = 0.36,
and at the edge µedge/U0 = −0.09.]

The best mean-field estimate to the superfluid order in the trap is found by
minimizing the free energy functional, Eq. (5.8). Instead of the global minimum,
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corresponding to the not very interesting topologically trivial configuration, Ψr ∝ ẑ,
we need to find the skyrmion ground state in the space of superfluid configurations
with unit winding. Let us, therefore, introduce the (artificial) imaginary time dy-
namics for the fields,

−∂τΨrα = δF

δΨrα
, −∂τΨrα = δF

δΨrα
, (5.9)

that smoothly drives the free energy to a local minimum, without changing the
topological winding of the superfluid. Indeed, under this dynamics, the free energy
is constantly decreasing,

∂F

∂τ
=
∑
r

(
δF

δΨr

∂Ψr
∂τ

+ δF

δΨr

∂Ψr
∂τ

)
= −2

∑
r

∣∣∣∣ δFδΨr

∣∣∣∣2 < 0.

Starting from a configuration with unit winding, the superfluid relaxes to a skyrmion
configuration

Ψr ≈ eiϕ
√
%(r) r̂, (5.10)

even in the presence of additional random noise in the initial configuration.7
In order to speed up numerics, Fkin was calculated using fast Fourier transform,

whereas we used numerical interpolation in parameter space to calculate the lo-
cal part of the free energy at each site.8 Numerical stability of the dynamics has
been reached by using a fourth order Runge-Kutta method for the imaginary time-
steps. We also relied on Ref. [185] to reduce numerical and memory overhead (see
Appendix C.2).

The numerically computed superfluid density 〈brα〉 and total particle densities
nrα ≡ 〈b†rα brα〉, are displayed in Fig. 5.3, where the expectation values of local
operators, Or are given in the saddle point approximation by

〈Or 〉 =
Trbr

(
Or e

−βT
(
Hloc,r+Jz (b†rΨr+h.c.)

))
Trbre

−βT
(
Hloc,r+Jz (b†rΨr+h.c.)

) . (5.11)

The superfluid densities are shown in the experimentally relevant basis of hyperfine
spin components Fz = ±1 and Fz = 0, where the amplitudes of the various superfluid
components read

Ψ(r) =

Ψ+(r)
Ψ 0 (r)
Ψ−(r)

 ' eiϕ
√
%(r)


x̂+iŷ√

2
ẑ

x̂−iŷ√
2

 . (5.12)

7We note that in order for the skyrmion to be stable, its radius R needs to be sufficiently large
so that the interaction energy gain (∼ U2) exceeds the kinetic energy loss (∼ 1/mR2) of skyrmion
formation. In the parameter range considered in this chapter, this has always been the case.

8At this point, the SO(3) symmetry of the interactions proved to be very helpful, since the
interpolation needed to be carried out only in the two-dimensional space of %r and f2

r , instead of
that of the Ψ fields, leading to a significant decrease in memory requirements.
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The components Ψ± create a vortex and an antivortex around the equator, while
the Ψ0 component forms a ’dark soliton’, a dipolar structure with opposite signs of
the order parameter at the north and south poles, respectively.

The Mott core clearly suppresses the superfluid density in the central region
of the trap, which forms a non-trivial structure in the superfluid shell that is also
reflected in the particle densities of the components. In regions where a superfluid
density of one component is stronger, its particle density also increases, on the
expense of the other components. Accordingly, the density of Fz = 0 component
is elongated along the z-axis, while those of the other two spin components are
increased around the equator.

5.3.1 Skyrmion creation

The structure of the superfluid in Eq. (5.12) suggests a natural way to create a
skyrmion in an experiment. By inducing an external magnetic field during the
creation process, the Zeeman energy splits the hyperfine components Fz = (1, 0,−1),
which can therefore be addressed independently by optical means [186].

Starting with all atoms in the optical lattice in the |Fz = −1〉 component, a
fraction of the atoms can be transferred into a vortex state in |+1〉 by applying
a pair of counterpropagating lasers with opposite circulations, one of them with a
Gaussian and the other one with Laguerre-Gaussian profile9. If the laser frequencies
are tuned close to a transition to the transitions to a higher lying state with Fz = 0
spin, the atoms are transferred to the vortex state through a two-photon Λ process10,
gaining angular momentum from the Laguerre–Gaussian beam, as was demonstrated
in [171]. The atoms in the |1〉 state can then be transferred into the |0〉 state using
a radio-frequency π-shift11 [187]. As a next step, the circulation of the Laguerre
Gaussian beam can be switched, and a fraction of the atoms can then be transferred
from the |−1〉 component to an anti-vortex state in the |1〉 state. A dark soliton
in the |−1〉 state can then be created simply by illuminating the south hemisphere
of the condensate with a far-detuned laser, perpendicular to the quantization axis
that imprints a π phase in this component. Finally by switching the populations of
the |0〉 and |−1〉 states using a radio-frequency π shift, we arrive at the skyrmion
configuration in Eq. (5.12).

Alternatively, the skyrmion can also be created in a maybe even simpler way,
by producing equal populations in all three components and then imprinting three

9Laguerre–Gaussian laser beams carry non-zero quanta of orbital angular momentum per photon.
This angular momentum is due to the spatial distribution of the laser intensity, in particular its
helical wave fronts, and it is not determined by the laser polarization.

10This is a second order virtual process, in which an atom absorbs a photon from the Laguerre–
Gaussian beam, and re-emits it into the Gaussian mode, thereby being transferred into the |0〉
state.

11Radio-frequency signals of appropriate duration and intensity can be used to flip the populations
of the states |1〉 ↔ |0〉. Such manipulations correspond to a π-rotation around the x axis in spin
space spanned by the two states. To address the |1〉 ↔ |0〉 and |0〉 ↔ |−1〉 transitions independently,
one needs to increase the magnetic field to the regime where the so-called quadratic Zeeman effect
sets in, and the two transition energies become different [188].
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dark solitons in the x, y and z directions separately to create a stateΨ+(r)
Ψ 0 (r)
Ψ−(r)

 =
√
%(r)

 x̂
ẑ
−iŷ

 . (5.13)

Then, the skyrmion in Eq. (5.12) can be produced simply by mixing the |+1〉 and
|−1〉 states using a π/2 radio frequency shift.

Figure 5.4: Difference of in-trap absorption images of the components |±1〉 and |0〉,
taken along the y axis. Since the |±1〉 condensates form a vortex-like structure,
they have a higher density around the equator, whereas |0〉 bosons, forming a dark
soliton, are concentrated around the poles, see also Fig. 5.3. The surface of the Mott
core is indicated by the dashed line. [Color code: integrated particle densities are
shown as percentages of the largest value of component |0〉. Physical parameters:
identical to the ones in Fig. 5.3.]

5.3.2 Detection through imaging

The characteristic density distribution and the superfluid correlations of the Fz
spin components provides several ways to observe the skyrmion by optical imaging.
The skyrmion’s structure is perhaps most obviously reflected in in-trap absorption
imaging, whereby a resonant, state selective12 laser creates photographic a image
of all spin components separately, showing their integrated densities along the laser
axis (see Section 2.8). Although the images of different components may be similar,
since most of the atoms is in the non-magnetic Mott core, the difference of the
images clearly reveals the density structure of the shell, as shown in Fig. 5.4.

12By introducing a small external magnetic field, the Zeeman splitting can be increased above
the laser linewidth, and the laser thus becomes resonant with only one of the components.
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The skyrmion can also be detected through the commonly used time-of-flight
imaging technique. After long enough free flight, the atoms’ density at position r̃
reflects the bosonic correlation function in momentum space [14],

Cα

(
k = mr̃

~t

)
=
∑
rr′

eik(r′−r)〈b†rαbr′α〉 (5.14)

at a time t (see Eq. (2.6)). In the mean-field approximation of Sec. 5.3, it is sim-
ply determined by the superfluid correlations, Cα(k) ≈

∣∣∣∑r〈brα〉eikr
∣∣∣2, up to an

additional momentum-independent constant, and thus clearly reflects the spatial
structure of the superfluid. Correspondingly, the time-of-flight image Fig. 5.5 dis-
plays sharp Bragg peaks at the centers of the Brillouin zone, originating from the
lattice structure. The peaks, however, show an important fine structure, at the scale
of k ∼ 1/R, characteristic of the skyrmion superfluid structure. Indeed, the |±1〉
components form doughnut-shaped structures once released from the trap, reflecting
their in-trap circulation, whereas the |0〉 atoms display a dark soliton-like structure
along the z axis.

5.4 Excitation spectrum

We now investigate the effect of the skyrmion’s non-trivial topology on the superfluid
excitation spectrum, and study the Bogoliubov excitations in a two-dimensional
effective field theory. We consider a thin superfluid shell of radius R, and we neglect
the radial fluctuations of the superfluid, and construct an effective Lagrangian for
the in-plane fluctuations of the nematic order parameter ψ(r) = (ψx(r), ψy(r), ψz(r))
on this shell. By doing so, we also neglect the effects of the Mott core on the
superfluid due to the penetration of the nematic order to the insulating region,
which is expected to decay abruptly, within a few atomic layers [189]. The effect
of the Mott core presumably leads only to a negligible dissipation and a slight
renormalization of the parameters of the two-dimensional model.

The real-time dynamics of in-plane fluctuations is determined by the two-dimensional
effective Lagrangian13 L = i~ψ ∂tψ −H2D[ψ,ψ], with the Hamiltonian density

H2D = ψ

(
−~2 ∆2

2m − µ̃
)
ψ + u0

2 |ψ|
4 + u2

2
(
ψ~Fψ

)2
, (5.15)

where ∆2 denotes the Laplacian of the sphere of radius R, ∆2 = ~L2/R2, with the
~L = (Lx, Ly, Lz) angular momentum operator. The parameters of the Hamiltonian,
the µ̃ effective chemical potential of the superfluid, and the effective couplings u0
and u2, are determined by the parameters of the lattice model, as discussed in
Appendix C.3.

13ψα denotes the conjugate fields.
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Figure 5.5: Time of flight (ToF) images of the skyrmion. (a) Schematic picture
of the ToF peaks, concentrated around reciprocal lattice momenta (∼ 2π/a). The
spatial structure of the skyrmion of spatial extent R is reflected in the fine structure
( 1/R) of the peaks. (b) Doughnut (dipole) shaped ToF peaks of bosons |±1〉 (|0〉),
on the left (right), taken along the z (y) axes, top (bottom). [Axes and color code:
arbitrary but identical units. Physical parameters: identical to those in Fig. 5.3.]

The Euler–Lagrange equations generate the following equations of motion,

i~ ∂tψ =
(
−~2 ∆2

2m − µ̃+ u0|ψ|2
)
ψ + u2(ψ~Fψ) · ~Fψ. (5.16)

The excitation spectrum of the condensate is obtained by linearizing Eq. (5.16)
around the ground state field configuration. Notice that the linearized equations lead
to the same excitation spectrum as the standard quantum mechanical treatment of
Bogoliubov excitations of the superfluid, whereby one treats the fields ψ(r) quantum
mechanically, and keeps fluctuations only up to second order in the Hamiltonian.
For simplicity, let us assume a spherically symmetric ground state in the trivial
(’skyrmionless’), ψt = √ρt ẑ, as well as in the skyrmion configuration, ψs = √ρs r̂.
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The two-dimensional superfluid densities are determined from the stationary solu-
tions of Eq. (5.16), as

ρt = µ/u0, (5.17)

ρs =
(
µ− ~2

mR2

)
/u0. (5.18)

Here, the curvature term ~2/(mR2) is due to the topological winding of the skyrmion
ground state, leading to the depletion of the superfluid density, and also modifies
the excitation spectrum.

5.4.1 Trivial ground state

In the trivial ground state, ψt, the fluctuations parallel (δψt‖) and perpendicular to
the ground state (δψt⊥), decouple,

i~∂tδψt‖ = −~2 ∆2
2m δψt‖ + u0ρt

(
δψt‖ + δψt‖

)
,

i~∂tδψt⊥ = −~2 ∆2
2m δψt⊥ + u2ρt

(
δψt⊥ − δψt⊥

)
.

and the spectrum can be obtained analytically by finding the eigenmodes of these
linearized equations of motion, similarly to the case of a spatially homogeneous
systems [190]. The interaction term u0 sets the velocity of the phase and superfluid
density fluctuations, δψt‖, whereas the spin interaction u2 determines the velocity of
the perpendicular spin fluctuations, δψt⊥. Due to the spatial rotation symmetry of
the ground state, the eigenmodes are given in terms of spherical harmonic functions,
and have energies

εph,l =

√√√√( ~2

2mR2 l(l + 1) + u0ρt

)2

− (u0ρt)2,

εsp,l =

√√√√( ~2

2mR2 l(l + 1) + u2ρt

)2

− (u2ρt)2,

with l = 0, 1, . . . , the angular momentum quantum numbers. If, as in our case, the
radius of the superfluid shell is large, as compared to the superfluid and magnetic
healing lengths, ξ0 = ~/√mρu0 and ξ2 = ~/√mρu2, the excitation energies become

εph,l ≈
~2

mRξ0

√
l(l + 1),

εsp,l ≈
~2

mRξ2

√
l(l + 1).

Since the spin coupling is much smaller than the density coupling, u2 � u0, and thus
ξ2 � ξ0, the spin excitations lie at a much lower energy than the density excitations
and the low energy spectrum is dominated by spin excitations (see Fig. 5.6).
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In a spherical trap, the rotational symmetry of the ground state implies that
all excitations in the phase sector have a (2l + 1)-fold orbital degeneracy, whereas
spin excitations are (2l+1)×2-fold degenerate. The latter two-fold spin degeneracy
originates from the residual O(2) symmetry of the ground state in order parameter
space. Although in a distorted trap the orbital degeneracy may be lifted, this two-
fold degeneracy of spin modes is preserved by spin symmetry. In the l = 0 sector,
we find three zero-energy excitations (Goldstone modes), corresponding to global
phase and spin rotations of the ground state around the x and y axes.14 While the
zero-mode corresponding to the phase is the artefact of the Bogoliubov treatment
of superfluid excitations, the spin Goldstone modes have real physical origin, and
are often referred to as Anderson tower excitations [191]. Although in our mean-
field treatment, the ground state is defined by a single point in order parameter
space, the real quantum mechanical ground state is actually an SO(3) singlet. The
associated uncertainty of the spontaneous symmetry broken phase is reflected in the
appearance of spin Goldstone modes in the Bogoliubov treatment.

5.4.2 Skyrmion state

Excitations in the presence of the skyrmion are more complicated. The curvature of
the ground state shifts the kinetic energy of fluctuations ∆2 → ∆2+2/R2, and it also
couples density and spin fluctuations, δψs‖ and δψs⊥, parallel and perpendicular to
the order parameter at that point. Thus, the dynamics of these fluctuations can
only be described by the combined equations

i~ ∂tδψs = − ~2

2m

(
∆2 + 2

R2

)
δψs+u0ρs (δψs‖+δψs‖)+u2ρs (δψs⊥−δψs⊥), (5.19)

with the fields decomposed as δψs = δψs‖ + δψs⊥. Since the local orientation of
the ground state changes constantly, the Laplacian non-trivially mixes the parallel
and perpendicular fluctuations. This effect could be described by introducing non-
Abelian gauge fields that account for the spatial change of the (δψs‖, δψs⊥) basis,
however, the excitation modes can be more easily found by expanding the fields in
Eq. (5.19) in a suitable basis. Since the spherically symmetric skyrmion is symmetric
with respect to simultaneous SO(3) rotations in real and in order parameter space,
it is convenient to use the basis of vector spherical harmonic functions [192],

Ymj
j (r) = r̂Y mj

j (r), (5.20a)

Υmj
j (r) = r ∇Y mj

j (r)/
√
j(j + 1), (5.20b)

Φmj
j (r) = r̂×Υmj

j (r), (5.20c)

14Rotations around the z axis leave the ground state invariant, therefore, they do not give addi-
tional zero modes.
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defined15 using the spherical harmonic functions, Y m
l , of angular momentum quan-

tum numbers l and m. As shown in Appendix C.4, the vector spherical harmonics
form a representation of the total angular momentum operators ~J = ~L+~F, of simul-
taneous spatial (~L) and spin (~F) rotations. Besides being orthogonal at all points
in space, they form an orthonormal basis of vector fields on the sphere,∫

d2r̂ Ymj ∗
j (r̂) ·Y

m′j
j′ (r̂) = δjj′ δmjm′j , (5.21a)∫

d2r̂ Υmj ∗
j (r̂) ·Υ

m′j
j′ (r̂) = δjj′ δmjm′j , (5.21b)∫

d2r̂ Φmj ∗
j (r̂) ·Φ

m′j
j′ (r̂) = δjj′ δmjm′j , (5.21c)

and∑
j,mj

[
Ymj
j (r̂) Ymj ∗

j (r̂′) + Υmj
j (r̂) Υmj ∗

j (r̂′) + Φmj
j (r̂) Φmj ∗

j (r̂′)
]

= δ(2)(r̂− r̂′).

(5.22)
Vector spherical harmonics are especially well suited for the description of superfluid
excitations in the skyrmion sector, since they naturally represent phase and spin
fluctuations separately. The functions Ymj

j always point in the radial direction, and
therefore, they span the space of phase (and density) fluctuations. In particular,
the skyrmion itself corresponds to the function Y0

0 ∝ ψs, which thus describes the
variations of the global phase. Spin fluctuations, on the other hand, are spanned by
the fields Υmj

j and Φmj
j .

In the Φ-sector, the kinetic term has a particularly simple effect

−
(

∆2 + 2
R2

)
Φmj
j = j(j + 1)− 2

R2 Φmj
j , (5.23)

whereas it mixes the Y and Υ fields,

−
(

∆2 + 2
R2

)Ymj
j

Υmj
j

 = 1
R2

 j(j + 1) −2
√
j(j + 1)

−2
√
j(j + 1) j(j + 1)− 2


Ymj

j

Υmj
j

 . (5.24)

Therefore, fluctuations in the Φ sector decouple from the (Y,Υ)-fluctuations com-
pletely, and the corresponding (2j + 1)-fold degenerate excitation energies can be
derived analytically,

εΦ,j =

√( ~2

2mR2 (j(j + 1)− 2) + u2ρs

)2
− (u2ρs)2. (5.25)

15The functions Ymj

j are defined for all j = 0, 1, 2, . . . angular momenta, with mj = −j, . . . , j,
whereas Υmj

j and Υmj

j are only defined for j ≥ 1, as can be clearly seen from their definitions in
Eq. (5.20).

92



In the limit of large trap radii as compared to the superfluid and magnetic healing
lengths, R� ξ0, ξ2, the excitation energies become

εΦ,j ≈
~2

mRξ2

√
j(j + 1)− 2. (5.26)

Specifically, the excitation energies are zero in the j = 1 angular momentum sec-
tor. The associated Goldstone modes correspond to small rotations of the skyrmion
around the x, y and z axes in parameter space.16 Together with the global phase
fluctuations in the Y00 subspace, we thus find four zero modes in the skyrmion sec-
tor. The increased number of Goldstone modes, as compared to the trivial sector, is
due to the different order parameter symmetry of the ground state. While rotation
around the z axis leaves the trivial ground state ψt ∝ ẑ invariant, they correspond to
non-trivial rotations of the skyrmion, and correspondingly, find an additional zero
energy mode associated with this rotation.

The eigenmodes of the (Y,Υ)-sector are more complicated, since the Laplacian
mixes parallel and perpendicular fluctuations, see Eq. (5.24). The different total
angular momentum sectors (j,mj) are nevertheless separated due to the SO(3)
symmetry of the ground state, and their modes are (2j + 1)-fold degenerate. The
excitation energies can be easily determined from the equations of motion Eq. (5.19),
and are given by the eigenvalues of the Bogoliubov-Hamiltonian

HYΥ
j = ~2

2mR2

(
h0,j h1
−h1 −h0,j

)
, (5.27)

with the real, dimensionless matrices

h0,j =
(

j(j + 1) −2
√
j(j + 1)

−2
√
j(j + 1) j(j + 1)− 2

)
+
√

2
(
R/ξ0

R/ξ2

)
,

and
h1 =

√
2
(
R/ξ0

−R/ξ2

)
.

We find that in the u2 � u0 limit, the two eigenmodes are very well separated
in energy. The branch describing mainly phase excitations stays at high energies
∼ ~2/(mRξ0), whereas the lower energy branch of spin excitations approaches the
energies εΦ,j ∼ ~2/(mRξ2) of the spin excitations in the Φ sector (see Fig. 5.6). The
splitting of these low energy spin modes (absent in the trivial case) is the result of
the weak coupling of spin and charge excitation in the (Y, Υ) sector, due to the
skyrmion’s winding.

Investigating the j = 1 sector of (Y,Υ) excitations reveals a weak instability of
the spherically symmetric skyrmion state, ψs, towards a slight uniaxial deformation.

16For instance, the (j, mj) = (1, 0) mode rotates the skyrmion configuration around the z axis.
Indeed, this mode is given in spherical coordinates by Φ0

1 ∝ sinϑ ϕ̂, ϑ and ϕ̂ denoting the polar
angle and the azimuthal unit vector, respectively.
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This is also reflected in the Bogoliubov excitations, since one of the branches in
this sector is imaginary, indicating that the spherically symmetric skyrmion state is
unstable. Indeed, the skyrmion’s energy can be decreased by allowing for a slight
uniaxial deformation that amounts to only a few percent change in its shape.17

To identify the effects of this spontaneous distortion, we numerically minimized
the Hamiltonian in Eq. (5.15), and expanded it around the real, distorted ground
state. We found that at this point, all eigenmodes became real, and the instability
vanishes.18 This spontaneous symmetry breaking does not influence the number
of Goldstone modes, protected by symmetry, however, as indicated in Fig. 5.6, it
slightly splits finite energy excitations due the SO(3)→ SO(2) rotational symmetry
breaking of the ground state. In particular, the lower branch of the j = 1 excitations
in the (Y,Υ)-sector splits in a 3 → (2 + 1)-manner and their energies become
extremely close to zero. The (2j + 1)-fold degenerate higher energy modes also
exhibit a negligible splitting into j states of degeneracy 2 and a non-degenerate
state, as induced by the spontaneous cylindrical distortion of the superfluid. The
skyrmion’s low energy spin excitation spectrum is sketched in Fig. 5.6. Notice that
the structure of the excitation spectrum and the number of Goldstone modes is
completely different from that of the skyrmion-free sector, and the spin degeneracy
of the spin excitations completely disappears.

5.4.3 Modulation experiment

Let us now discuss the characteristic response of the skyrmion in a lattice mod-
ulation experiment. Modulation of the atom tunneling, J , excites oscillations in
the superfluid density and phase, which are coupled to the low energy spin excita-
tions through the skyrmion’s texture, leading in effect to ’spin-orbit coupling’. In
contrast, spin and phase fluctuations are completely decoupled in the trivial configu-
ration, and lattice modulations can only excite the higher energy phase modes. This
leads to a clear fingerprint of the skyrmion in the low energy spectrum of modulation
experiments.

In particular, let us consider the modulation of the tunneling along the z axis,
induced by varying the laser intensity of the optical lattice in this direction. Such
a modulation corresponds to a ∂2

z perturbation (see Appendix C.3). This term is a
linear combination of the tensor operators

T 0
0 = (∂2

x + ∂2
y + ∂2

z )/
√

3,
T 0

2 = (∂2
x + ∂2

y − 2 ∂2
z )/
√

6,
17A simple physical explanation of the distortion can be given as follows. As we showed earlier,

the spatial winding of the skyrmion results in the local depletion of the superfluid density that leads,
however, to interaction energy costs. This cost can be reduced by increasing the superfluid density
around the poles, and also decreasing the winding of the order parameter here. Then, the regions
around the equator will have stronger winding, and thus higher kinetic energy, but the superfluid
density will be also lower here, leading to a net decrease of the skyrmion’s energy.

18No such distortion was observed in our three-dimensional lattice simulations, though their
spatial resolution were most likely insufficient to detect this small instability.
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with angular momentum quantum numbers (l,m) = (0, 0) and (2, 0), respectively.
Since T 0

0 and T 2
0 have spin F = 0, their total angular momentum quantum numbers

are also given by (j,mj) = (l,m). Since T 0
0 and T 0

2 commute with L2 = −R2 ∆2 and
Lz, they leave the angular momentum eigenspaces invariant. In particular, since the
functions (Y,Υ) and Φ form separate eigenspaces of L2 (see Eqs. (5.23,5.24)). Thus,
in the spherically symmetric skyrmion configuration19 ψs ∝ Y0

0, lattice modulations
can only excite

Y0
0 → (Y0

j ,Υ0
j ) (5.28)

transitions, but no excitations into the Φ subspace is allowed, and the angular
momentum mj = 0 is also conserved.

Further selection rules follow from the rotational symmetries of the perturbation
operators. Due to the Wigner-Eckart theorem [193], the modulation operators T 0

0
and T 0

2 can only create j = 0→ 0 and j = 0→ 2 transitions in the total angular mo-
mentum. Therefore, the only non-vanishing matrix elements describing excitations
of the spherically symmetric skyrmion are

〈Y0
2|T 0

2 |Y0
0〉 = −

√
2
15 ,

〈Υ0
2|T 0

2 |Y0
0〉 = 1√

5
,

〈Y0
0|T 0

0 |Y0
0〉 = − 2√

3
.

We thus find that the lattice modulations along one axis can only excite (j,mj) =
(0, 0)→ (2, 0) transitions, and only in the (Y,Υ) sector. This subspace consists of
a high energy phase mode and a low energy spin mode (see the discussion below
Eq. (5.27)), the being shown in the lower branch of the l = 2 levels in Fig. 5.6. This
corresponds to the single level that can be excited through lattice modulations in
the skyrmion sector.

Finally, let us also note that beside the lattice modulation experiment discussed
here, one could also detect the skyrmion by modulating the trapping potential along
one direction, leading to modulations of the superfluid density. These modulations
would couple to the low energy spin excitations in the skyrmion sector, but not in
the trivial configuration.

For typical parameters of a 23Na experiment, we find that the energies of the
superfluid excitation are in the range of 10 Hz, that is in the range of the trapping
frequency (see Appendix C.3). It is the extreme stability of the Mott skyrmion
configuration that allows for the detection of such low energy excitations, which
would be essentially impossible in previous unstable skyrmion configurations [166,
172].

19From the point of view of modulation experiments, the spontaneous distortion of the skyrmion,
on the order of one percent for the parameters considered here, is negligible. We will thus assume
a spherically symmetric skyrmion in the following discussion.
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5.5 Summary
In this chapter we discussed, how a stable skyrmion topological excitation can be
stabilized in the ultracold atomic setting by invoking strong interactions. In the
proposed setting, by loading a spin-1 nematic superfluid on a deep optical lattice, a
Mott insulator core forms in the middle of the trap, surrounded by a nematic super-
fluid shell, that is naturally suited to host a skyrmion configuration. The Mott core
pins the skyrmion, and thereby prevents it from the dynamical instability problems
of previous proposals. We indeed verified this stability through extensive numerical
simulations, whereby we treated the skyrmion on a mean-field level, by introducing
the superfluid order parameter through a Hubbard–Stratonovich transformation.

We found that the non-trivial geometrical structure of the skyrmion leads to a
characteristic spatial profile of both the densities and the superfluid order parame-
ters of its spin components, that make the skyrmion detectable through commonly
used imaging techniques – both in in-trap and in time-of-flight imaging. In partic-
ular, in the basis of hyperfine components F z = 1, 0 and −1, the corresponding
superfluid components form a vortex, a dark soliton and an anti-vortex-like struc-
ture, respectively. Since all of these structures can be imprinted separately using
state-of-the-art experimental methods, it is not hard to find an experimental scheme
to imprint the Mott skyrmion structure, and we indeed proposed two such methods.

The extreme stability of the skyrmion, and its compact geometry allows one to
investigate the effect of its non-trivial winding on the superfluid excitation spectrum.
Indeed, the skyrmion’s topology significantly modifies the dynamics of superfluid
excitations through two topological terms: a curvature term, leading to the depletion
of the superfluid and to a shift of excitation energies, as well as a non-Abelian gauge
field, that mixes charge (parallel) and spin (perpendicular) excitations, resulting in
a ’spin-orbit coupling’. The low-energy (spin) excitation spectrum of the skyrmion
is indeed markedly different from the topologically trivial configuration: both the
energies of the levels and their quantum numbers change dramatically, and even
the number of its Goldstone modes increases by one. The coupling between spin
and charge excitations also leads to an important experimental signature of the
skyrmion in lattice modulation experiments. Although these modulations excite only
charge (density or phase) fluctuations directly, the spin-orbit coupling mechanism
introduces an indirect coupling to the low energy spin excitations, absent in the
topologically trivial configuration. Thus, we found that a low energy spin excitation
peak in the lattice modulation spectrum is a direct fingerprint of the presence of the
skyrmion.
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Figure 5.6: Low energy excitation spectrum of the skyrmion (right) versus that
of the trivial configuration (left). The SO(3) spatial rotation symmetry of the
trivial configuration ψt ∝ ẑ leads to a (2l + 1) orbital degeneracy in the angular
momentum sectors, l, whereas its rotation symmetry around the ẑ axis in spin space
creates an extra two-fold degeneracy. In contrast, in the skyrmion sector (right),
topological winding of the ground state splits the spin degeneracy, and only orbital
(rotational) degeneracies survive. The topological terms also shift the energy levels
of the skyrmion, leading to a markedly different excitation spectrum. The trivial and
skyrmion states exhibit different number of zero modes (Goldstone modes) as well.
Apart from the unphysical global phase degree of freedom, only two zero modes exist
in the trivial case, corresponding to rotations around the x̂ and ŷ axes in parameter
space. Rotations around ẑ leave ψt invariant, and we thus find no associated zero
modes. However, we find an additional Goldstone mode in the skyrmion state,
where all rotations provide a zero mode, in addition to the phase mode. The red
ellipse denotes the single low energy spin-mode of the skyrmion that can be excited
in the lattice modulation experiment discussed in Sec. 5.4.3. This mode is coupled
by an effective ’spin-orbit’ coupling to higher energy density/phase modes, directly
excited by the modulation field. In contrast, lattice modulations do not couple (at
first order) to low energy spin modes in the trivial configuration. [Excitation energies
are shown in units of εspin = ~2/(mRξ2), with the magnetic healing length given by
ξ2 = ~/√mu2ρ.]
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6
Conclusions

The versatile experimental techniques of ultracold gases have led to the experimental
realization of a large variety of correlated systems that had been hard to investigate
in the traditional condensed matter setting. Due to their special detection and
manipulation techniques, these gases provide a new viewpoint on known physical
effects, but equally importantly, they have also led to the discovery of several novel
phenomena, never observed before.

In this thesis, we investigated different aspects of correlated multicomponent
cold atom systems, using a combination of field theoretical methods and numerical
simulations. In the first part, we discussed the interactions of a two-component
mixture confined into a quasi-two-dimensional bilayer structure. By solving the
two-particle scattering problem exactly, we saw that the trapping potential signifi-
cantly modifies interactions in these gases, and leads to the emergence of a number
of novel bound and quasi-bound molecular states. Interestingly, the giant interlayer
molecules persist even when the layer separation is significantly larger than the in-
terspecies scattering length, and actually several hundred times larger than the size
of the constituent atoms. Due to Feshbach-like resonances of the gas atoms with
the quasi-bound molecular states, we found sharp resonances in the interspecies in-
teractions, that are tunable by changing the separation of the layers. Thus, rather
counter-intuitively, the gas can be made strongly interacting by actually separat-
ing its components. This effect provides another experimental tool, besides the
commonly used magnetic Feshbach resonances, to control the interspecies and in-
traspecies interaction parameters of these gases independently. Furthermore, since
the lifetime of the quasi-bound molecules increases significantly with increasing layer
separation, they can be detected for the first time through commonly used shaking
spectroscopy, as we demonstrated using detailed many-body calculations in the case
of a dilute Bose gas [194].
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In the second part, we discussed how weak attractive SU(3) symmetric interac-
tions lead to interesting color superconducting phases in a three-component fermion
mixture. Using a combination of self-consistent equation of motion technique and a
Gaussian variational approach, we were able to capture the interplay of supercon-
ductivity and magnetism in an unbiased way, and map out the system’s rich global
phase diagram, with a number of first and second order phase transitions and tricrit-
ical lines of special O(2, 2) symmetry. Furthermore, we were able to understand the
basic physical mechanisms underlying this complex phase diagram based on simple
energy arguments. We discussed how superconductivity is destroyed due to chemical
potential differences through an unconventional (Zeeman) mechanism, and saw that
the superconducting-normal boundaries become of first order at low temperatures,
whereas they are of second order at higher temperatures. We also showed, through
symmetry arguments, that the combination of the SU(3) symmetry of the inter-
actions and (approximate) particle-hole symmetry leads to the sixfold rotational
symmetry of the phase diagram. When the particle-hole symmetry is broken, this is
reduced to a threefold symmetry of the phase diagram in the region of small chem-
ical potential differences. Finally, we performed a Ginzburg–Landau expansion of
the free energy in this central region, and identified the terms that, through the
coupling of superconducting and magnetic order, are responsible for the threefold
symmetry of this region [133].

In the last part of this thesis, we discussed how interactions in a cold atomic
system can lead to an unconventional, extremely long-lived topological excitation.
In particular, we studied, how a skyrmion can be stabilized in a spin-1 nematic
superfluid through exploiting strong interactions. By loading the superfluid into a
deep optical lattice, a Mott insulator core forms in the central region of the trap,
which is surrounded by a nematic superfluid shell, that is naturally suited to sup-
port a skyrmion due to the superfluid’s non-trivial order parameter structure. We
constructed the superfluid order parameter and the corresponding free energy of the
shell through a Hubbard–Stratonovich transformation, and showed numerically that
the ’Mott skyrmion’ is indeed stable. This proposal thus opens up the way to create
a stable single skyrmion excitation for the first time. We saw how the non-trivial
spatial structure of the superfluid order parameter leads to characteristic fingerprints
of the skyrmion using in-trap and in time-of-flight imaging techniques, and it allowed
us to suggest two experimental methods to create the skyrmion. But perhaps most
interestingly, the skyrmion can be detected through the effects of its topology on the
superfluid excitation spectrum. Assuming a thin superfluid shell, we studied this ef-
fect in a two-dimensional effective model on the sphere, and found that the winding
of the nematic order parameter introduces new topological terms for the superfluid
fluctuations (a curvature term and a non-Abelian vector potential), that drastically
modify the skrymion’s excitation spectrum. We found significant changes in both
the position and the degeneracy of the levels, and even a change in the number
of Goldstone modes, as compared to the topologically trivial configuration. Using
symmetry arguments, we were able to determine the skyrmion’s response to lattice
shaking, and found that these modulations couple to the low energy spin excitations
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through an indirect ’spin-orbit coupling’, induced by the skyrmion’s topology. Since
the characteristic energy scale of these excitations is as low as the frequency of the
harmonic trap, it is the compact nature and extreme stability of the Mott skyrmion
that allows for the investigation of the interplay between topology and the excitation
spectrum [195].
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A
Appendix

A.1 Retarded Green’s function of the confined system
at short distances

The short distance behavior of the retarded Green’s function G(0)
ε in Eq. (3.5) plays

a primary role in the characterization of the scattering properties of the confined
quasi-two dimensional system. Whereas its 1/(4πδr) singularity in Eq. (3.6) sim-
ply comes from the locally three-dimensional nature of the scattering at short dis-
tances, its constant part wαβ(ε/~ωz) contains all information that determines the
two-particle scattering states, and thus the scattering amplitudes in Eqs. (3.9, 3.10).
To determine wαβ, we compare Eqs. (3.5) and (3.6), and gain

wαβ(ε/~ωz) = lim
ρ→0

(
2
∞∑
ν=0

√
2πlz φ2

ν(dαβ)K0 (−iqνρ)−
√

2πlz
ρ

)
, (A1)

with qν =
√

m
~2 (ε+ i0+ − ν~ωz) introduced in the main text. Since the Bessel

functions K0 are logarithmic in their arguments, the sum in ν needs to be carried
out to infinity, in order to gain the appropriate 1/ρ dependence of the second term.
In order to simplify this expression, let us split the sum into two parts by choosing
a large channel index, ν � 1, and treat the terms ν < 2ν, and ν ≥ 2ν separately.
Since we eventually want to take the ρ → 0 limit, we can assume that ρ is already
small, and introduce the auxiliary constant, κ ≡

√
2νρ/lz, as a small parameter. In

the first part of the sum, ν < 2ν, the arguments of K0 are small qνρ � κ � 1, we
can thus use the asymptotic form of the modified Bessel functions

K0(x→ 0) ∼ − log(x/2)− γE . (A2)

in these terms.
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In contrast, in the remaining part of the sum, ν ≥ 2ν � 1, we can make use
of the fact that the energy of incoming particles are small compared to ν~ωz, and
the argument in K0 is well approximated by

√
νρ/lz. Furthermore, we can use the

asymptotic form of the Hermite functions in the ν →∞ limit,

√
2πlz φ2

ν(dαβ) ∼
√

2
π

cos2
(
dαβ
lz

√
ν + 1

2 − ν
π
2

)
√
ν

.

As ν increases in this part of the sum, K0’s argument changes only slowly, whereas
the cos2 term oscillates heavily, and averages to 1/2,

∞∑
ν=2ν

√
2πlz φ2

ν(dαβ)K0 (−iqνρ) '
∞∑

ν=2ν

1√
2πν

K0(
√
νρ/lz).

Since ρ/lz is a small parameter, this sum can be well approximated by an integral,
∞∑

ν=2ν

1√
2πν

K0(
√
νρ/lz) '

lz
ρ

√
2
π

∫ ∞
κ

dxK0(x),

with x =
√
ν ρ/lz, which can be easily evaluated by making use of the identity∫∞

0 K0(x) dx = π/2, and the asymptotic form of K0 in Eq. (A2). We thus find
∞∑

ν=2ν

√
2πlz φ2

ν(dαβ)K0 (−iqνρ) ' lz
ρ

√
2
π

(
π

2 + κ

(
log κ2 + γE − 1

))
,

As a final step, we put the two parts of the sum together in Eq. (A1), and by
keeping κ→ 0, we take the limits ρ→ 0 and ν →∞ to get

wαβ = lim
ν→∞

[
cν −

2ν−1∑
ν=0

√
2πlz φ2

ν(dαβ) log
(
ν

2 −
ε+ i0+

~ωz

)

+
(
γE + log ρ√

2lz

)(
4
√
ν

π
− 2

2ν−1∑
ν=0

√
2πlz φ2

ν(dαβ)
)]

,

with cν = 2
√

ν
π log ν

e2 . In the ν → ∞ limit, the term in the second row above
vanishes, leading to the desired form of wαβ, as given below Eq. (3.10).

Although the series form in Eq. (3.10) determines the function wαβ analytically,
it is rather impractical for its numerical evaluation, since the series has a partic-
ularly poor ∼ log ν/

√
ν convergence. Furthermore, in case of non-zero separation

d↑↓ 6= 0, it exhibits heavily oscillating behavior. Let us derive, therefore, an integral
representation of this expression as well that is much more suitable for numerical in-
vestigations. Following the initial steps of Ref. [76], we rewrite the terms in Eq. (A1)
in an integral representation,

√
2πlz
ρ

= 1√
2

∫ ∞
0

dτ

τ3/2 e
−ρ2/(4l2z τ),
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and
K0 (−iqνρ)

2π = −~2

m

∫
d2k

(2π)2
eik·ρ

ε+ i0+ −
(
~2q2

m + ~νωz
)

=
∫ ∞

0

dτ

4πτ e
τ(ε/~ωz−ν)e−ρ

2/(4 l2z τ).

The latter equality holds only for the closed channels ν > ε/~ωz, since otherwise
the exponential integral explodes. As a second step, we choose an arbitrary closed
channel ν̂ > ε/~ωz, and rewrite the terms ν > ν̂ in Eq. (A1) in the integral form,

wαβ = lim
ρ→0

{
2

ν̂∑
ν=0

√
2πlz φ2

ν(dαβ)K0 (−iqνρ)

+
∫ ∞

0

dτ

τ
e−ρ

2/(4l2z τ)

− 1√
2τ

+
∞∑

ν=ν̂+1

√
2πlz φ2

ν(dαβ)eτ(ε/~ωz−ν)

 .
(A3)

It is instructive to look at the exponential terms e−τν as thermal weights of the
channel ν, multiplying the real space density φ2

ν of their wave functions. It is thus
easy to see how the infinite sum above is related to the real space density matrix of
a harmonic oscillator [124],

∞∑
ν=0

√
2πlz φ2

ν(z) e−τν =
√

eτ

2 sinh τ e
− tanh (τ/2) z2/2l2z .

Finally, let us rewrite the log(ρ/lz) singularity of the modified Bessel functions
K0 in an integral representation, and take their ρ→ 0 asymptotic form up to linear
order in ρ

K0 (−iqνρ) ∼ 1
2

[
iπ − γE − log

(
ν~ωz − ε− i0+

4~ωz

)

+
∫ ∞

0

dτ

τ
Θ
(1

4 − τ
)
e−ρ

2/(4l2z τ)
]
,

with the Heaviside function Θ(τ). Substituting the above two expressions into
Eq. (A3), the integral in τ becomes regular also in the ρ → 0 limit, and we can
thus write wαβ in the form

wαβ = −
ν̂∑
ν=0

√
2πlz φ2

ν(dαβ)
[
log

(
ν~ωz − ε− i0+

4~ωz

)
+ γE

]

+
∫ ∞

0

dτ

τ

[
e−τε/(~ωz)

√
eτ

2 sinh τ e
− tanh (τ/2) d2

αβ/(2l
2
z) − 1√

2τ

+
ν̂∑
ν=0

√
2πlz φ2

ν(dαβ)
(

Θ
(1

4 − τ
)
− eτ(ε/~ωz−ν)

)]
.

The terms in the first row provide the logarithmically singular terms in energy up
to the closed channel ν̂, whereas the integral contains the quantum contributions of
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all other channels. Despite its complex nature at first sight, this formula is a rather
handy representation of wαβ for numerical purposes, and we have used it extensively
to evaluate the scattering amplitudes, fνν′αβ , to high numerical accuracy.

A.2 Renormalization of the T -matrix
The singular interaction term in the second-quantized Hamiltonian, Eq. (3.17), leads
to divergences in the Bethe-Salpeter equations for the many-body T -matrix, and it
thus needs appropriate regularization at large momenta. However, as we know
from the theory of renormalization, the nature of the cut-off shall not matter from
the point of view of low energy degrees of freedom of the system, as long as we
express them using physically measurable quantities, such as the scattering lengths,
instead of the bare interaction parameter g3D

αβ . We have thus introduced the regulator
parameter ρ in the singular polarization operator, Eq. (3.19), that suppresses large-
momentum contributions to the T -matrix.

The bare interaction parameter g3D
αβ is related to the scattering lengths aαβ by

the natural requirement that they reproduce the appropriate three-dimensional low-
energy scattering properties in the vacuum. Eq. (2.2) shows that the three dimen-
sional scattering amplitudes in this limit are given by f3D

αβ (ε → 0) = −a. Similar
to the two-dimensional case, the three-dimensional vacuum T -matrix equals the
scattering amplitudes up to a normalizing constant, and it is thus related to the
three-dimensional scattering lengths as

T3D
αβ(Ω,Q = 0)

∣∣∣
Ω→0−

= 4π~2

m
aαβ, (A4)

see Ref. [76]. It is given by the corresponding three-dimensional Bethe-Salpeter
equation

T 3D
αβ (Ω,Q) = g3D

αβ + g3D
αβ Π3D(Ω,Q)T 3D

αβ (Ω,Q),

Π3D(Ω,Q) =
∫

d3q

(2π)3
eiq·ρ

~Ω+ −
~2Q2

4m −
~2q2

m

Ω→0−−−−−→
Q→0

− m

4π~2
1
ρ
.

Comparing the above two equations, we can see that with the regulator ρ, the bare
coupling constants are related to the scattering amplitudes as

1
g3D
αβ

= m

4π~2

(
1
aαβ
− 1
ρ

)
. (A5)

Now, that we have the dependence of the bare coupling on the regulator, we can
express the T -matrix in terms of the scattering lengths. Putting together Eq. (3.26)
and (3.27), we find that

T(0);NN ′,νν′
αβ (Ω,Q) = δNN ′

φ∗ν(dαβ)φν′(dαβ)(
g3D
αβ

)−1
−
∑∞
ν=0 φ

2
ν(dαβ) Π(0)(Ω− νωz − ECOM/~)

,

(A6)
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with the vacuum polarization operator

Π(0)(Ω) =
∫

d2q

(2π)2
eiq·ρ

~Ω+ − ε(q)
= − m

2π~2 K0

(
−i ρ

√
mΩ/~

)
. (A7)

Finally, expressing the T -matrix in terms of the scattering length through Eq. (A5),
we find that it is indeed proportional to the scattering amplitudes, as given in
Eqs. (3.10,3.28), with the function wαβ, determining the energy dependence of the
scattering amplitude, given by Eq. (A1).

Many-body corrections, in case of a strongly confined thermal gas, can be taken
into account with a similar procedure. Keeping many-body corrections only in
the lowest harmonic oscillator channel, we get a very similar equation for the T -
matrix to Eq. (A6), with the only difference that the vacuum polarization in the
N = ν = 0 channel acquires a thermal correction, Π(0) → Π(0) + δΠth,00

αβ . With
a similar renormalization process to the one in the vacuum case, we get back the
many-body T -matrix, Eq. (3.29).
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B
Appendix

B.1 Exact Ward identities

In this Appendix, by making use of the global SU(3) invariance of the functional
measure, we derive exact Ward identities that give constraints on the possible values
of the order parameters and densities, Eqs. (4.8-4.11).

Consider the partition function Z, defined in Eq. (4.15). For the current calcu-
lation we rewrite the action Eqs. (4.16,4.17) in the form

S0(µ̂) =
∑
αβ

∫
dxψα ((∂τ +H0)δαβ − µ̂αβ)ψβ, (B1)

Sint(Γ) = −
∑
αβγδ

Γαβγδ
∫

dxψαψβψγψδ . (B2)

by introducing µ̂αβ = µα δαβ and Γαβγδ = 1
4gαβ (δαδδβγ − δαγδβδ). An SU(3) trans-

formation of the fields ψα(x) →
∑
β Uαβψβ(x) translates to the transformation of

µ̂ and Γ in the functional integral. Expressing U = exp(i
∑8
a=1 ζ

aTa) with the
Gell-Mann matrices Ta, we find

∂

∂ζa
µ̂αβ(ζ)

∣∣∣∣
ζa=0

= i
∑
γ

(
µ̂αγT

a
γβ − T aαγµ̂γβ

)
, (B3)

∂

∂ζa
Γαβγδ(ζ)

∣∣∣∣
ζa=0

= i (gαβ − gγδ) δαδ T aβγ . (B4)

The invariance of the functional integral with respect to global SU(3) transfor-

111



mations, ∂Z
∂ζa

∣∣∣
ζa=0

= 0, leads to the Ward identity

(µα − µβ) ∂lnZ
∂µ̂αβ

=
∑
γ

(gβγ − gαγ) ∂lnZ
∂Γγαβγ

,

for any α and β, from which Eq. (4.35) follows.

B.2 Ward identities in the Gaussian approximation

Here, we derive approximate Ward identities, similar to those in Appendix B.1 that
hold in the Gaussian approximation. As explained in Appendix B.3, we can assume
that the inverse propagator in the definition of the partition function ZG , Eq. (4.21),
is local,

ZG =
∫

DψDψ exp
(1

2

∫
d1φ(1) G−1(1)φ(1)

)
,

where G−1 is defined in Eq. (4.26).
An SU(3) transformation of the fields ψα(x) →

∑
β Uαβψβ(x) translates to the

transformation of order parameters,

M 7→ UMU+, (B5)
∆ 7→ U∆UT, (B6)

see Eqs. (4.30,4.31). Using the invariance of the partition function with respect to
these global SU(3) transformations, we get the following constraints on the densities,

Tr
((

ΓaM Γa∆
−Γa+

∆ Γa∗M

)(
−n∗ d
d+ n

))
= 0 , (B7)

with ΓaM = [M,Ta] and Γa∆ = (Ta∆ + ∆Ta∗).1 Here the matrices Ta, a = 1, . . . , 8,
are the Gell-Mann matrices.

In case of SU(3) symmetric interactions, at the solutions of the EOM equations,
Eqs. (4.8,4.9,4.13), this equation simplifies to the same form as the exact Ward
identity, Eq. (4.35),

(µα − µβ)nαβ = 0 .

Therefore, when neither two of the chemical potentials are equal, the matrix of
densities n and that of renormalized chemical potentials M are both diagonal (see
Eq. (4.9)).

1We note that Eq. (B7) holds only at the solutions of the EOM self-consistency equations.
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B.3 Saddle point equation in the Gaussian approxima-
tion

In this Appendix, starting from the saddle point equation, Eq. (4.24), we de-
rive the saddle point form of the propagator G in the Gaussian approximation,
Eqs. (4.25,4.26). We will use the notations of Section 4.3.2.

First, we fix the arbitrariness in the form of G−1 in the definition of SG , Eq. (4.20).
We split G−1 into 3× 3 matrices

G−1(1, 2) =
(

ΓA(x1, x2) ΓB(x1, x2)
ΓC(x1, x2) ΓD(x1, x2)

)
.

It is easy to see that, because of the anticommutation of the fields ψα and ψα,
modifications of G−1 that leave ΓA(x1, x2)−ΓT

D(x2, x1), ΓB(x1, x2)−ΓT
B(x2, x1) and

ΓC(x1, x2) − ΓT
C(x2, x1) invariant, will not change SG . Therefore we may assume

that G−1 has the symplectic symmetry(
0 1
1 0

)
G−1(x1, x2)

(
0 1
1 0

)
= −

(
G−1

)T
(x2, x1). (B8)

The saddle point equation, Eq. (4.24), gives very strong constraints on the form
of G. In particular, it is equivalent to the EOM self-consistency equation of Sec-
tion 4.3.1. To see this, we use the definition Eq. (4.19) to rewrite Eq. (4.24) in the
form

1
ZG

δZG
δG(1, 2) = δ〈S − SG〉G

δG(1, 2) . (B9)

The calculation of the left hand side of this equation is straightforward. Using only
the definition of ZG (see Eq. (4.21)), and Eq. (4.23), we get

1
ZG

δZG
δG(1, 2) = −1

2G
−1(2, 1).

To evaluate the right hand side of Eq. (B9), omitting a constant term, we can write

〈S − SG〉G = −1
2

∫
d1 d2G−1

0 (1, 2)G(2, 1) + 〈Sint〉G .

Then, it is easy to see that, the saddle point equation is equivalent to

G−1(1, 2) = G−1
0 (1, 2)− 2 δ〈Sint〉G

δG(2, 1) .

Expanding 〈Sint〉G using Wick’s theorem gives a product of equal time propagators,
whose variation according to the propagator matrix G can be straightforwardly cal-
culated. We get the desired formulas, Eqs. (4.25,4.26), with the order parameters
M and ∆ satisfying the EOM self-consistency equations, Eqs. (4.8,4.9), and (4.13).
This means that the EOM method is consistent with the Gaussian variational ap-
proach.
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B.4 Calculation of the Gaussian approximation to the
free energy

In the following we calculate the Gaussian approximation of the free energy, Eq.(4.28).
We first introduce the Fourier components ψα(r) = 1√

Ω
∑

k e
ikraαk, obeying the anti-

commutation relations {a†kα, ak′β} = δαβ δkk′ , where Ω denotes the volume. With
these, the Hamiltonian, Eq. (4.27), takes on the form

HG = 1
2
∑
k

{(
a†k,a−k

)
Ξ(εk)

(
ak
a†−k

)
+ Tr (εk −M)

}
,

with Ξ(ε) defined in Eq. (4.7), and the last term originating from normal ordering.
From the above form, the calculation of ZG = Tre−βHG is straightforward, though

some care is needed to avoid double counting in momentum space. Note that,
because of the symplectic symmetry, Eq. (4.14), and Hermiticity of the matrix Ξ(ε),
its eigenvalues are real and come in pairs. To each eigenvalue ξ(ε) there is another
eigenvalue −ξ (ε). Using this property, logZG simplifies to

logZG =1
2
∑
k

Tr log
(

2 cosh
(
β

2 Ξ (εk)
))

(B10)

−β2
∑
k

Tr (εk −M) .

It is also straightforward to determine 〈H −HG〉G using Wick’s theorem. One finds

1
Ω〈H −HG〉G =

∑
αβ

gαβ
2 (|nαβ|2 − nαα nββ − |dαβ|2)

+
∑
αβ

(Mαβ − µα δαβ)nαβ (B11)

+1
2
∑
αβ

(
∆αβ d

∗
αβ + ∆∗αβ dαβ

)
.

Thus, using Eqs. (B10, B11), we get the result Eq. (4.29) for the Gaussian approxi-
mation of the free energy density .

In order to evaluate Eq. (B11), the densities and anomalous densities, n and d,
also have to be determined. These can be easily calculated from the variations of
(B10) with respect to M and ∆, leading to the same equation, Eq. (4.13), as the
EOM self-consistency equations.

B.5 Particle-hole transformation
Particle-hole symmetry introduces a Z2 symmetry of the mean-field phase diagram,
when the band is half-filled, the DOS is particle-hole symmetric (ρ(ε) = ρ(−ε)), and
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the interaction has SU(3) symmetry (gαβ = g for α 6= β). This symmetry together
with the permutation symmetry of the fermion species makes the phase diagram
six-fold symmetric, see Fig. 4.4.

In this Appendix we calculate the effect of the particle-hole transformation

Ψα(x)←→ Ψ†α(x)

on the order parameters M and ∆. This transformation leaves the interaction
invariant, whereas it modifies the bare chemical potentials and the single particle
energies as

H0 → −H0,

µα → −µα − 2g nmax,

where nmax =
∫ ~ωD
−~ωD dε ρ(ε) is the density of the completely filled band. The bare

chemical potentials remain unchanged on the mean-field level at

µhalf = −g nmax,

which is precisely the condition for the band being half-filled (see Eq. (4.9)).
In order to investigate the inversion symmetry of the phase diagram, consider two

Hamiltonians with opposite differences in bare chemical potentials from half-filling,

H(1) ≡ H(H0, µhalf + δµα, g,Ψ†α,Ψα), (B12)
H(2) ≡ H(H0, µhalf − δµα, g,Ψ†α,Ψα), (B13)

as defined in Eq. (4.3). A particle-hole transformation of H(2) leads to the equation

H(2) = H(−H0, µhalf + δµα, g, Ψ̃†α, Ψ̃α) ≡ H(3), (B14)

where Ψ̃α = Ψ†α. Accordingly, the densities in the original and the particle-hole
transformed system can be connected as

n
(3)
αβ ≡ 〈Ψ̃†α(x)Ψ̃β(x)〉(3) = −n(2)∗

αβ + nmax,

d
(3)
αβ ≡ 〈Ψ̃α(x)Ψ̃β(x)〉(3) = −d(2)∗

αβ .

Then, it is also straightforward to show from the definitions Eqs. (4.8,4.9) that the
relation between the order parameters are

M(2) = −M(3)∗, ∆(2) = −∆(3)∗. (B15)

Looking at their definitions, we see that the only difference between H(2) and
H(3) is in the sign of H0. However, if the DOS is electron-hole symmetric,

ρ(ε) = ρ(−ε),

then all of the EOM self-consistency equations Eqs. (4.8,4.9,4.13), and the mean-field
free energy Eqs. (4.13,4.29) are identical in the two systems. Therefore, the set of the
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possible mean-field configurations have to be the same (M(1) = M(3), ∆(1) = ∆(3)).
Putting this, and Eq. (B15) together, we obtain the desired equations

M(µhalf + δµα) = −M∗(µhalf − δµα),
∆(µhalf + δµα) = −∆∗(µhalf − δµα),

connecting order parameters at opposite δµα values, with the other parameters of
the system unchanged.

We remark that in the special case when δµ1 + δµ2 + δµ3 = 0, the particle-
hole symmetry connects the points of the same (µx, µy) plane, and the mean-field
phase diagram has an inversion symmetry. Away from this plane the inversion
symmetry is only approximate, due to logarithmic corrections to the values of the
order parameters, coming from the asymmetric cut-off.
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C
Appendix

C.1 Derrick’s argument

The Derrick–Coleman theorem [141,165] (or virial theorem) simply states that in a
three-dimensional spatially homogeneous field theory, static localized excitations of
finite energy cannot be stable in the absence of gauge fields, and they can always
lower their energy by expanding or shrinking. Therefore, even though a topological
excitation may be topologically protected, it can still be dynamically unstable. In
more concrete terms, the argument refers to a scalar field theory in d dimensions,
described by the classical (multicomponent) fields φ(r). In the spatially homo-
geneous case, the kinetic and interaction energies of the model can be written as
E[φ] = Ekin[φ] + Eint[φ],

Ekin[φ] =
∫
ddr

~2

2m (∇φ(r))† (∇φ(r))

Eint[φ] =
∫
ddr Uint(φ(r)),

with an unspecified interaction term Uint. Let us take a localized, energetically
stable, static field configuration, φ1, which is thus a local minimum of the free
energy functional E[φ]. Now consider the scaled fields φλ(r) ≡ φ1(λr), whose
energy functional E[φλ] = λ2−d Ekin[φ1] + λ−d Eint[φ1] can be easily determined
by scaling out the factor λ. Since φ1 is in a local minimum, the energy functional
needs to be flat at λ = 1,

∂λE[φλ]|λ=1 = (2− d)Ekin[φ1]− dEint[φ1] = 0.
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Substituting this equation to expression for the second derivative of the energy, we
find that ∂2

λE
∣∣
λ=1 is always negative in d = 3 dimensions,

∂2
λE[φλ]

∣∣∣
λ=1

= −2(d− 2)Ekin[φ1]

and the field configuration φ1 cannot be stable. Therefore, it is always favorable for
localized defects, to expand, or to shrink to a point, and thereby to vanish from the
system.

C.2 Numerical methods

The imaginary time equations Eq. (5.9) for the minimization of the free energy lead
to the following non-linear dynamics for the superfluid order parameters

∂τΨrα = −Ja2 ∑
r′

∆rr′Ψr′α + δFloc(%r, ~f
2
r )

δΨrα
, (C1)

where the variation of the local part of the free energy, Floc(%, ~f2), can be rewritten
as

δFloc

δΨrα
= δFloc

δ%r

δ%r

δΨrα
+ δFloc

δ ~f 2
r

δ ~f 2
r

δΨrα
.

While δ%r/δΨrα and δ ~f 2
r /δΨrα depend only algebraically on Ψα, the variations of

Floc can only be evaluated from Eq. (5.8b) at high numerical cost. Therefore, in
order to reduce the computational load of solving Eq. (C1), we precalculate δFloc/δ%
and δFloc/δ ~f

2 for a range of %, ~f 2 and µ values at the start of the simulation, and
used numerical interpolation to evaluate their values at run time.1

In order to propagate the fields Ψrα in imaginary time, we used a modified
version of the Fourth-Order Runge–Kutta in Interaction Picture (RK4IP) method
that is highly optimized for reducing memory and computational overhead. Since
the algorithm is described in detail in Ref. [185], we just mention its basic idea here.
As a first step, we separate the kinetic and local terms of Eq. (C1) as

−∂τΨ = D̂ ·Ψ + Û [Ψ] ·Ψ, (C2)

where we have dropped here the indices of the fields for convenience. Here, D̂ =
−Ja2∆ is a simple diffusion operator, whereas Û is related to the variation of Floc
in Eq. (C1), and depends non-linearly on Ψα. By transforming the fields into inter-
action picture,

ΨI(τ) = e−(τ−τ0)D̂Ψ, (C3)
1We evaluate the (infinite dimensional) trace in Eq. (5.8b) by truncating the Hilbert space at

five particles per site. Note that, due to the large on-site repulsion U0 of particles, higher on-site
occupations are highly unlikely at the temperatures considered here.
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one can express their time evolution as

−∂τΨI = ÛI [ΨI ] ·ΨI (C4)

with ÛI = e(τ−τ0)D̂ Û e−(τ−τ0)D̂. The advantage of this form over Eq. (C2) is that
one can efficiently calculate the diffusion exponential using fast Fourier transform
(FFT), and simultaneously make use of the fact that Û is spatially local by calcu-
lating it in real space. This provides significant numerical advantage as compared
to the naive solution, whereby one simply uses a real-space matrix form of D̂ and
Û . Eq. (C4) can then be solved using a variety of numerical methods. The fourth
order Runge–Kutta method, in particular, offers a high numerical performance with
a small overhead. Furthermore, at midpoints of the time-steps, the diffusion expo-
nential transformations can be made to vanish by an appropriate choice of τ0 for
that step, leading to further simplifications in the numerics. For further details of
the algorithm the reader is referred to Ref. [185].

The numerical simulation for the minimization of the free energy in Eq. (5.8),
based on an optimized version of the RK4IP algorithm, has been written by the
author using the combination of C++ and MATLAB. For a lattice size of 256 ×
256 × 256 sites, the run time of the algorithm was on the order of one day on a
standard laptop.

C.3 Effective two-dimensional model
In this Appendix, we give a rough estimate of the parameters of the two-dimensional
effective Hamiltonian density in Eq.(5.15), by relating them to those of the lattice
Hamiltonian, Eq. (5.3) and construct the fields ψα. Notice that the structure of the
Hamiltonian density is dictated by the SO(3) symmetry of the underlying lattice
model, and although its parameters here are useful to determine the energy scale of
the low energy excitations of the superfluid, their precise values are not important,
since they do not influence the ratio of the excitation energies in the skyrmion versus
the trivial sector, shown in Fig. 5.6.

Let us approximate the superfluid shell of the Mott skyrmion locally by an
infinite two-dimensional slab of thickness η ∼ 10 lattice sites in the z direction,
whose real-time dynamics is described by the many-body lattice action [85]

Slatt =
∫
dt
∑
rα
i~brα ∂tbrα −

(
Hkin[b, b] +

∑
r
Hloc,r[b, b]

)
,

with the lattice Hamiltonian, Eq. (5.3). Since the superfluid shell is thin, we assume
that the low energy dynamics of the superfluid is dominated by excitations in which
the fields brα are constant in the z direction. To describe the in plane variations of
the superfluid, let us introduce the continuum fields brα/a → ψα(r), governed by
the effectively two-dimensional action

Slatt ≈ η
∫
dt

∫
d2r

∑
α

i~ψα ∂tψα −H2D[ψ,ψ], (C5)
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where the effective Hamiltonian density H2D is defined in Eq. (5.15), with the pa-
rameters defined as m = 1/(2Ja2), µ̃ = µ + 6Jz, u0 = U0 a

2 and u2 = U2 a
2. In

the weak coupling limit, zJ � U0, U2, the low energy dynamics of the system can
be described by the bare action above, in the saddle point approximation. In the
limit of strong interactions, the parameters of the Hamiltonian are renormalized by
quantum corrections, however, we assume that these effects do not change the order
of magnitude of superfluid excitation energies significantly.

In this approximation, we also neglected the effect of the penetration of the
nematic order to the Mott core, which may lead only to a small renormalization of
the Hamiltonian parameters, and possibly to a negligible dissipation. Indeed, since
the temperature range of the Mott skyrmion used here is an order of magnitude
above the spin ordering temperature of the Mott core, the nematic order can only
appear here due to the penetration of the superfluid (proximity effect), which is
expected to decay within a few atomic layers [189]. Thus, the magnetization of the
Mott core is expected to lead to negligible effects.

As we have seen in Sec. 5.4, the low energy excitations of the superfluid shell are
of the order εspin = ~2/(mRξ2) =

√
u2ρ~2/mR2, which is of the order of

εspin '
√
U2 J

R/a
≈ 10 Hz,

assuming a two-dimensional superfluid density ρ = 0.5/a2, and using the lattice
model parameters in Sec. 5.2.

C.4 Vector spherical harmonics

Whereas the trivial configuration ψt = √ρt ẑ of the two-dimensional model is sym-
metric with respect to spatial SO(3) rotations, the spherically symmetric skyrmion,
ψs = √ρs r̂, is left invariant by simultaneous SO(3) rotations both in spin and in
real space. Since the Hamiltonian density in Eq. (5.15) is also invariant with respect
to these rotations, the superfluid excitations will be characterized their total angular
momentum quantum numbers

~J = ~L+ ~F.

Here the operators Lα are the angular momentum operators around axes α = x, y, z,
whereas the operators Fα are the corresponding spin rotation operators. Using the
spherical harmonic functions Y m

l of angular momentum quantum numbers (l,m), it
is rather easy to create a reducible representation of the total angular momentum
operator

Ymν
l (r̂) = Y m

l (r̂) |ν〉 ,

where |ν〉 denotes the Fz = ν eigenstates in order parameter space. Indeed, the vec-
tor functions Ym,ν

l , defined on the unit sphere, have the following quantum numbers
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in real and spin space,

L2 Ymν
l = l(l + 1) Ymν

l ,

Lz Ymν
l = m Ymν

l ,

F 2 Ymν
l = 2 Ymν

l ,

F z Ymν
l = ν Ymν

l .

By making use of the Clebsch–Gordan coefficients 〈j,mj |l,m; 1, ν〉, one can construct
an irreducible representations for the total angular momentum operator ~J,

Ymj
j;l ≡

∑
m,ν

〈j,mj | l,m; 1, ν〉 Ymν
l

=
∑
ν

〈j,mj | l,mj − ν; 1, ν〉 Ymj−ν,ν
l

on the subspace of angular momentum l vector functions.2 These irreducible func-
tions have the following quantum numbers

J2 Ymj
j;l = j(j + 1) Ymj

j;l ,

Jz Ymj
j;l = mj Ymj

j;l ,

L2 Ymj
j;l = l(l + 1) Ymj

j;l ,

F 2 Ymj
j;l = 2 Ymj

j;l ,

and they form a complete orthonormal basis among vector functions on the unit
sphere ∫

d2r̂ Ymj ∗
j;l (r̂) ·Y

m′j
j′;l′(r̂) = δjj′ δmjm′j δl l

′∑
l,j,mj

Ymj
j;l (r̂) Ymj ∗

j;l (r̂′) = δ(2)(r̂− r̂′)

Despite the simple transformation properties of the vector functions Ymj
j;l , it is

worth to perform a unitary transformation into the geometrically more transparent
basis of vector spherical harmonics [192],


Ymj
j

Φmj
j

Υmj
j

 =



√
j+1
2j+1 0

√
j

2j+1

0 1 0

−
√

j
2j+1 0

√
j+1
2j+1




Ymj
j;j+1

Ymj
j;j

Ymj
j;j−1

 ,

also given by Eq. (5.20). Since the transformation is unitary, the spherical vector
harmonics also provide an orthonormal basis among the vector functions on the

2Since the spin quantum number is a triplet, the vector functions Ymj

j;l are non-zero only for
j = l − 1, l and l + 1.
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sphere, similar to the functions Ymj
j;l in Eq. (C6). Furthermore, by looking at their

defining equations, Eq. (5.20), it is easy to see that they are orthogonal for given
(j, l, mj) at all spatial points, and the fields Y span the space of radial vector fields,
whereas the Υ and Φ fields span the space of tangential vector fields on the sphere.
This property makes the spherical vector harmonics functions especially well-suited
for the description of superfluid excitations in the skyrmion sector, since the phase
and spin fluctuations can be treated separately in this basis.

122



Bibliography

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wie-
man, and E. A. Cornell, Science 269, 198 (1995).

[2] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet,
Phys. Rev. Lett. 75, 1687 (1995).

[3] K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995).

[4] B. DeMarco, and D. D. Jin, Science 285, 1703 (1999).

[5] F. Schreck et al., Phys. Rev. Lett. 87, 080403 (2001).

[6] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

[7] I. Bloch, T. W. Hänsch, and T. Esslinger, Phys. Rev. Lett.
82, 3008 (1999).

[8] T. Anker et al., Phys. Rev. Lett. 94, 020403 (2005).

[9] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle,
Science 292, 476 (2001).

[10] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H.
Schunck and W. Ketterle, Nature 435, 1047 (2005).

[11] K. E. Strecker, G. B. Partridge, A. G. Truscott and R. G.
Hulet, Nature 417, 150 (2002).

[12] L. Khaykovich et al., Science 296, 1290 (2002).

[13] J. Denschlag et al., Science 287, 97 (2000).

[14] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
Bloch. Nature 415, 39 (2002).

[15] J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State
Phys. 6, 1181 (1972).

[16] J. M. Kosterlitz, J. Phys. C: Solid State Phys. 7, 1046 (1973).

[17] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier and J.
Dalibard, Nature 441, 1118 (2006).

123



[18] V. Schweikhard, S. Tung, and E. A. Cornell, Phys. Rev. Lett.
99, 030401 (2007).

[19] B. Paredes et al., Nature 429, 277 (2004).

[20] T. Kinoshita, T. Wenger, D.S. Weiss, Science 305, 1125
(2004).

[21] E. Haller et al., Science 325, 1224 (2009).

[22] E. Haller et al., Nature 466, 597 (2010).

[23] M. Gring et al., Science 337, 1318 (2012).

[24] Y. Castin, in Les Houches - Ecole d’Ete de Physique The-
orique, Vol. 72, edited by R. Kaiser, C. Westbrook and F.
David (Springer Berlin Heidelberg, 2001).

[25] T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998).

[26] F. Zhou, Phys. Rev. Lett. 87, 080401 (2001).

[27] K. Xu et al., Phys. Rev. A 72, 043604 (2005).

[28] T. Hänsch and A. Schawlow, Opt. Commun. 13, 68 (1975).

[29] D. Wineland, D. Hehmelt, Bull. Am. Phys. Soc. 20, 637
(1975).

[30] C. N. Cohen-Tannoudji and W. D. Phillips, Phys. Today 43,
33 (1990).

[31] S. Chu, L. W. Hollenberg, J. E. Bjorkholm, A. Cable, A.
Ashkin, Phys. Rev. Lett. 55, 48 (1985).

[32] W. H. Wing, Prog. Quant. Elec. 8, 181 (1984).

[33] P. Meystre, Atom Optics, (Springer, New York, 2001).

[34] W. Ketterle and N. J. van Druten in Advances in Atomic,
Molecular, and Optical Physics, Vol. 37, edited by B. Bed-
erson and H. Walther (Academic Press, San Diego, 1996).

[35] M. D. Barrett, J. A. Sauer, and M. S. Chapman, Phys. Rev.
Lett. 87, 010404 (2001).

[36] J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2,
1707 (1985).

124



[37] R. Grimm and M. Weidemüller in Advances in Atomic,
Molecular, and Optical Physics, Vol. 42, edited by B. Bed-
erson and H. Walther (Academic Press, 2000).

[38] P. Meystre and M. Sargent, ”Elements of Quantum Optics”
(Springer, 1999).

[39] I. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. 80,
885 (2008).

[40] W. Krauth, Phys. Rev. Lett. 77, 3695 (1996).

[41] L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-
Relativistic Theory (Pergamon Press, New York, 1987).

[42] H. Feshbach, Ann. Phys. (N.Y.) 5, 337 (1958).

[43] E. Tiesinga, A. Moerdijk, B. J. Verhaar, and H. T. C. Stoof,
Phys. Rev. A 46, R1167 (1992).

[44] E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev.
A 47, 4114 (1993).

[45] M. Theis et al., Phys. Rev. Lett. 93, 123001 (2004).

[46] C. Becker et al., New J. Phys. 12, 065025 (2010).

[47] M. Atala et al., Nat. Phys. 9, 795 (2013).

[48] G. Roati et al., Nature 453, 895 (2008).

[49] N. W. Ashcroft and N. D. Mermin, ”Solid State Physics”
(Holt, Rinehart and Winston, 1976).

[50] E. Demler and F. Zhou, Phys. Rev. Lett. 88, 163001 (2002).

[51] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.
Fisher, Phys. Rev. B 40, 546 (1989).

[52] Y. Kato, Q. Zhou, N. Kawashima and N. Trivedi, Nat. Phys.
4, 617 (2008).

[53] A. Altland and B. Simons, ”Condensed matter field theory”
(Cambridge University Press, 2010).

[54] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

[55] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,
1757 (2006).

125



[56] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and
S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).

[57] P. Fazekas, ”Lecture Notes on Electron Correlation and Mag-
netism” (World Scientific, 1999).

[58] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78,
17 (2006).

[59] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ket-
terle, Science 311, 492 (2006).

[60] J. W. Park et al., Phys. Rev. A 85, 051602(R) (2012).

[61] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek,
C. H. Schunck, and W. Ketterle, Nature 435, 1047 (2005).

[62] P. Makotyn, C. E. Klauss, D. L. Goldberger, E. A. Cornell,
and D. S. Jin, Nat. Phys. 10, 116 (2014).

[63] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).

[64] D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Phys.
Rev. Lett. 84, 2551 (2000).

[65] D. S. Petrov and G. V. Shlyapnikov, Phys. Rev. A 64, 012706
(2001).

[66] W. Fu, Z. Yu and X. Cui, Phys. Rev. A 85, 012703 (2012).

[67] L. V. Butov, A. C. Gossard, and D. S. Chemla, Nature 418,
751 (2002).

[68] J. A. Seamons, C. P. Morath, J. L. Reno, and M. P. Lilly,
Phys. Rev. Lett. 102, 026804 (2009).

[69] S. Mukerjee, C. Xu, and J. E. Moore, Phys. Rev. Lett. 97,
120406 (2006).

[70] D. Podolsky, S. Chandrasekharan, and A. Vishwanath, Phys.
Rev. B 80, 214513 (2009).

[71] E. Tutuc, M. Shayegan, and D. A. Huse, Phys. Rev. Lett.
93, 036802 (2004).

[72] M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 93, 036801 (2004).

[73] J. P. Eisenstein and A. H. MacDonald, Nature 432, 691
(2004).

126



[74] D. Blume and C. H. Greene, Phys. Rev. A 65, 043613 (2002).

[75] P. Naidon, E. Tiesinga, W. F. Mitchell and P. S. Julienne,
New. J. Phys. 9, 19 (2007).

[76] For the inclusion of many-body effects see V. Pietilä,
D. Pekker, Y. Nishida, and E. Demler, Phys. Rev. A 85,
023621 (2012).

[77] L. P. Kadanoff and G. Baym, ”Quantum Statistical Mechan-
ics: Green’s Function Methods in Equilibrium and Nonequi-
librium Problems” (W.A. Benjamin Inc, New York, 1962).

[78] M. Babadi and E. Demler, Phys. Rev. A 84, 033636 (2011).

[79] P. Wicke, S. Whitlock, and N. J. van Druten,
arXiv:1010.4545.

[80] T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125
(2004).

[81] B. Paredes et al., Nature 429, 277 (2004).

[82] D. Pekker et al., Phys. Rev. Lett. 106, 050402 (2011).

[83] B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, W. Zwerger,
and M. Köhl, Phys. Rev. Lett. 106, 105301 (2011).

[84] A. T. Sommer, L. W. Cheuk, M. J. H. Ku, W. S. Bakr, and
M. W. Zwierlein, Phys. Rev. Lett. 108, 045302 (2012).

[85] J. W. Negele and H. Orland, ”Quantum many-particle sys-
tems” (Westview Press, 1988).

[86] S. Sala et al., Phys. Rev. Lett. 110, 203202 (2013).

[87] H. Moritz, T. Stöferle, K. Günter, M. Köhl, and T. Esslinger,
Phys. Rev. Lett. 94, 210401 (2005).

[88] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.
Phys. 82, 1225 (2010).

[89] A. Widera et al., Phys. Rev. Lett. 100, 140401 (2008).

[90] G. Modugno, M. Modugno, F. Riboli, G. Roati, and M.
Inguscio, Phys. Rev. Lett. 89, 190404 (2002).

[91] G. Thalhammer et al., Phys. Rev. Lett. 100, 210402 (2008).

[92] J. Catani, L. De Sarlo, G. Barontini, F. Minardi, and M.
Inguscio, Phys. Rev. A 77, 011603(R) (2008).

127



[93] S. B. Papp, J. M. Pino, and C. E. Wieman, Phys. Rev. Lett.
101, 040402 (2008).

[94] A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110,
936 (1958).

[95] M. Alford, A. Schmitt, K. Rajagopal, T. Schäfer, Rev. Mod.
Phys. 80, 1455 (2008).

[96] M. Tinkham, ”Introduction to Superconductivity” (McGraw-
Hill Book Co., New York, 1975).

[97] V. Mourik et al., Science 336, 1003 (2012).

[98] N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 99, 250201
(2007).

[99] S. Jochim et al., Phys. Rev. Lett. 91, 240402 (2003).

[100] S. Jochim et al., Science 302, 2101 (2003).

[101] W. V. Liu and F. Wilczek, Phys. Rev. Lett. 90, 047002
(2003).

[102] M. M. Forbes, E. Gubankova, W. V. Liu, and F. Wilczek,
Phys. Rev. Lett. 94, 017001 (2005).

[103] C. Honerkamp, and W. Hofstetter, Phys. Rev. Lett. 92,
170403 (2004).

[104] Á. Rapp, G. Zaránd, C. Honerkamp, and W. Hofstetter,
Phys. Rev. Lett. 98, 160405 (2007).

[105] Á. Rapp, W. Hofstetter, and G. Zaránd, Phys. Rev. B 77,
144520 (2008).

[106] R. W. Cherng, G. Refael, and E. Demler, Phys. Rev. Lett.
99, 130406 (2007).

[107] I. Titvinidze et al., New. J. Phys. 13, 035013 (2011).

[108] C. Chin and E. C. Mueller, Physics 6, 118 (2013).

[109] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton,
and W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013).

[110] G. Jotzu et al., Nature 515, 237 (2014).

[111] Y. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle,
Nature 451, 689 (2008).

128



[112] P. Fulde, R. A. Ferrell, Phys. Rev. 135, A550 (1964).

[113] A. I. Larkin, Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47,
1136 (1964).

[114] A. I. Larkin, Y. N. Ovchinnikov, Sov. Phys. JETP 20, 762
(1965).

[115] G. B. Partridge, W. Li, R. I. Kamar, Y. Liao, and
R. G. Hulet, Science 311, 503 (2006).

[116] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ket-
terle, Science 311, 492 (2006).

[117] D. S. Sarma, J. Phys. Chem. Solids 24, 1029 (1963).

[118] A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

[119] A. V. Gorshkov et al., Nature Phys. 6, 289 (2010).

[120] C. Wu, J. P. Hu, and S. C. Zhang, Phys. Rev. Lett. 91,
186402 (2003).

[121] M. Bartenstein et al., Phys. Rev. Lett. 94, 103201 (2005).

[122] K. M. O’Hara, New. J. Phys. 13, 065011 (2011).

[123] C. Honerkamp, W. Hofstetter, Phys. Rev. B 70, 094521
(2004).

[124] R. P. Feynman, Statistical Mechanics: A Set Of Lectures
(Westview Press, 1998).

[125] T. Ozawa and G. Baym, Phys. Rev. A 82, 063615 (2010).

[126] J. Cardy, Scaling and Renormalization in Statistical Physics,
(Cambridge Lecture Notes in Physics, 1996).

[127] A. Aharony in Phase Transitions and Critical Phenomna,
Vol. 6, edited by C. Domb and M. S. Green (Academic Press,
1977).

[128] P. Calabrese, A. Pelissetto, and E. Vicari, Phys. Rev. B 67,
054505 (2003).

[129] E. Vicari and J. Zinn-Justin, New J. Phys. 8, 321 (2006).

[130] A. Aharony and S. Fishman, Phys. Rev. Lett. 37, 1587
(1976).

129



[131] R. A. Cowley, A. D. Bruce, J. Phys. C: Solid State Phys.
11, 3577 (1978).

[132] A. Aharony, Phys. Rev. Lett. 88, 059703 (2002).

[133] M. Kanász-Nagy and G. Zaránd, Phys. Rev. B 86, 064519
(2012).

[134] J. H. Huckans, J. R. Williams, E. L. Hazlett, R. W. Stites,
and K. M. O’Hara, Phys. Rev. Lett. 102, 165302 (2009).

[135] J. R. Williams et al., Phys. Rev. Lett. 103, 130404 (2009).

[136] A. Kantian et al., Phys. Rev. Lett. 103, 240401 (2009).

[137] T. Kraemer et al., Nature 440, 315 (2006).

[138] T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and
S. Jochim, Phys. Rev. Lett. 101, 203202 (2008).

[139] N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).

[140] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, ”Modern
Geometry - Methods and Applications, Part II: The Geome-
try and Topology of Manifolds” (Graduate Texts in Mathe-
matics, Springer, 1985).

[141] R. Rajaraman, ”Solitons and Instantons: An Introduction to
Solitons and Instantons in Quantum Field Theory” (Elsevier
Science B. V., 1982).

[142] M. Pospelov et al., Phys. Rev. Lett. 110, 021803 (2013).

[143] G. E. Volovik, ”The Universe in a Helium Droplet” (Claren-
don Press, 2003).

[144] G. ’t Hooft, Nucl. Phys. B 79, 276 (1974).

[145] A. M. Polyakov, JETP Lett 20, 194 (1974).

[146] P. A. M. Dirac, Proc. Roy. Soc. Lond. A133, 60 (1931).

[147] M. W. Ray, E. Ruokokoski, S. Kandel, M. Möttönen, and D.
S. Hall, Nature 505, 657 (2014).

[148] T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962).

[149] T. H. R. Skyrme, Proc. Roy. Soc. Lond. A260, 127 (1961).

[150] S. E. Barrett, G. Dabbagh, L. N. Pfeiffer, K. W. West, and
R. Tycko, Phys. Rev. Lett. 74, 5112 (1995).

130



[151] A. Schmeller, J. P. Eisenstein, L. N. Pfeiffer, and
K. W. West, Phys. Rev. Lett. 75, 4290 (1995).

[152] E. H. Aifer, B. B. Goldberg, and D. A. Broido, Phys. Rev.
Lett. 76, 680 (1996).

[153] D. R. Leadley et al., Phys. Rev. Lett. 79, 4246 (1997).

[154] S. P. Shukla, M. Shayegan, S. R. Parihar, S. A. Lyon,
N. R. Cooper, and A. A. Kiselev, Phys. Rev. B 61, 4469
(2000).

[155] Y. P. Shkolnikov, S. Misra, N. C. Bishop, E. P. De Poortere,
and M. Shayegan, Phys. Rev. Lett. 95, 066809 (2005).

[156] M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong,
Phys. Rev. Lett. 102, 186601 (2009).

[157] A. Neubauer et al., Phys. Rev. Lett. 102, 186602 (2009).

[158] T. Schulz et al., Nat. Phys. 8, 301 (2012).

[159] S. Mühlbauer et al., Science 323, 915 (2009).

[160] X. Z. Yu et al., Nature 465, 901 (2010).

[161] S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Science 336,
198 (2012).

[162] D. J. P. Morris et al., Science 326, 411 (2009).

[163] C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature 451,
42 (2008).

[164] Y. Brihaye, C. T. Hill, and C. K. Zachos, Phys. Rev. D 70,
111502(R) (2004).

[165] G. H. Derrick, J. Math. Phys. 5, 1252 (1964).

[166] H. T. C. Stoof, E. Vliegen, and U. Al Khawaja, Phys. Rev.
Lett. 87, 120407 (2001).

[167] U. Al Khawaja, and H. T. C. Stoof, Nature 411, 918 (2001).

[168] J. Choi, S. Kang, S. W. Seo, W. J. Kwon, and Y. Shin,
Phys. Rev. Lett. 111, 245301 (2013).

[169] J. Choi, W. J. Kwon, and Y. Shin, Phys. Rev. Lett. 108,
035301 (2012).

[170] J. Choi et al., New J. Phys. 14, 053013 (2012).

131



[171] L. S. Leslie, A. Hansen, K. C. Wright, B. M. Deutsch, and
N. P. Bigelow, Phys. Rev. Lett. 103, 250401 (2009).

[172] J. Armaitis, H. T. C. Stoof, and R. A. Duine, Phys. Rev.
Lett. 110, 260404 (2013).

[173] T. Ohmi, and K. Machida, J. Phys. Soc. Jpn. 67, 1822
(1998).

[174] C. K. Law, H. Pu, and N. P. Bigelow, Phys. Rev. Lett. 81,
5257 (1998).

[175] J. Lovegrove, M. O. Borgh, and J. Ruostekoski, Phys. Rev.
Lett. 112, 075301 (2014).

[176] R. A. Battye, N. R. Cooper, and P. M. Sutcliffe, Phys. Rev.
Lett. 88, 080401 (2002).

[177] E. Demler, and F. Zhou, Phys. Rev. Lett. 88, 163001 (2002).

[178] A. M. Turner, R. Barnett, E. Demler, and A. Vishwanath,
Phys. Rev. Lett. 98, 190404 (2007).

[179] A. E. Leanhardt, Y. Shin, D. Kielpinski, D. E. Pritchard,
and W. Ketterle, Phys. Rev. Lett. 90, 140403 (2003).

[180] D. M. Stamper-Kurn et al., Phys. Rev. Lett. 80, 2027 (1998).

[181] I. F. Herbut, and M. Oshikawa, Phys. Rev. Lett. 97, 080403
(2006).

[182] R. Barnett, A. Turner, and E. Demler, Phys. Rev. Lett. 97,
180412 (2006).

[183] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner,
A. P. Chikkatur, and W. Ketterle, Nature 396, 345 (1998).

[184] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.
Fisher, Phys. Rev. B 40, 546 (1989).

[185] B. M. Caradoc-Davies, ”Vortex Dynamics in Bose-Einstein
Condensates” (Ph.D. Thesis, 2000).

[186] J.-P. Martikainen, A. Collin, and K.-A. Suominen,
Phys. Rev. Lett. 88, 090404 (2002).

[187] M. A. Nielsen and I. L. Chuang, ”Quantum Computation and
Quantum Information” (Cambridge University Press, 2010).

[188] L. I. Schiff and H. Snyder, Phys. Rev. 55, 59 (1939).

132



[189] R. W. Helmes, T. A. Costi, and A. Rosch, Phys. Rev. Lett.
101, 066802 (2008).

[190] Y. Kawaguchi, and M. Ueda, Phys. Rep. 520, 253 (2012).

[191] P. W. Anderson, Phys. Rev. 86, 694 (1952).

[192] E. L. Hill, Am. J. Phys. 22, 211 (1954).

[193] J. J. Sakurai, ”Modern Quantum Mechanics” (Addison-
Wesley, 1994).

[194] M. Kanász-Nagy, E. A. Demler and G. Zaránd,
arXiv:1401.5798 (2014).

[195] M. Kanász-Nagy, B. Dóra, E. A. Demler and G. Zaránd,
Sci. Rep. 5, 7692 (2015).

133


