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ABSTRACT
Despite spatial and temporal fluctuations in turbulent astrophysical systems, mean-field theories can be used to describe their
secular evolution. However, observations taken over time scales much shorter than dynamical time scales capture a system in a
single state of its turbulence ensemble. Comparing with mean-field theory can falsify the latter only if the theory is additionally
supplied with a quantified precision. The central limit theorem provides appropriate estimates to the precision only when
fluctuations contribute linearly to an observable and with constant coherent scales. Here, we introduce an error propagation
formula that relaxes both limitations, allowing for non-linear functional forms of observables and inhomogeneous coherent
scales and amplitudes of fluctuations. The method is exemplified in the context of accretion disc theories, where inhomogeneous
fluctuations in the surface temperature are propagated to the disc emission spectrum – the latter being a non-linear and non-local
function of the former. The derived precision depends non-monotonically on emission frequency. Using the same method, we
investigate how binned spectral fluctuations in telescope data change with the spectral resolving power. We discuss the broader
implications for falsifiability of a mean-field theory.
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1 IN T RO D U C T I O N

Mean-field approaches have been widely applied in theoretical
astrophysics including for models of stellar structure, convection
(Cox & Giuli 1968), accretion discs (Shakura & Sunyaev 1973),
magnetic dynamos (Roberts & Soward 1975; Krause & Raedler
1980), and interpreting large-scale structure in the Universe. In such
approaches, physical quantities are typically decomposed into mean
and fluctuating parts, and the former is explicitly solved for while the
latter is modelled using closure methods. To facilitate an analytically
tractable theory, an infinite scale separation between the mean and
fluctuating fields is often assumed, allowing for Reynolds averaging
rules: linearity of averaging, interchangeability between averaging
and differentiation, and invariance of mean quantities under subse-
quent averaging (see, e.g. Zhou, Blackman & Chamandy 2018).

In contrast to this idealized assumption however, realistic as-
trophysical turbulent flows often exhibit finite and moderate scale
separations. The ratio between the system and the turbulence scales is
∼O(10) to ∼O(100) for geometrically thin accretion discs, ∼O(10)
for galaxies, ∼O(5) in the solar convection zone, and even lower for
geometrically thick accretion discs. Consequently, the assumption of
infinite scale separation leads to at least two classes of discrepancies
between theoretical predictions and observations (Zhou et al. 2018):
First, mean-field equations need to be modified with correction
to account for the violation of Reynolds rules because double
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averages are not necessarily equal to single averages. It follows
that the accuracy of the theory is threatened if equations derived
assuming infinite scale separation are applied to flows with finite
scale separation. Secondly, finite scale fluctuations in observational
data do not necessarily average to zero. This poses an incompatibility
if comparing to theoretical predictions that assume fluctuations
have zero means because disagreement may be misinterpreted as
systematic inaccuracy rather than stochastic imprecision.

Previous work (Zhou et al. 2018) offered a solution to the latter
problem, by theoretically estimating the influence from stochastic
fluctuations coming from all scales below the mean-field scales, in
turn defining the precision of a mean-field theory. The deviations
between observations and the theory can then be determined to
be within or without the precision error bars of the theory, and a
better assessment of whether they are stochastic or systematic can be
deduced.

The question of computing precision of mean-field predictions
can be mathematically formulated as follows: Let A(τ ) be some
field with (i) mean A to predicted by some theory, (ii) fluctuations
δA that modelled statistically; and τ is a set of formal variables
representing spatial coordinates, time, or any other parameters that
A may depend on. If K is an observable related to A via

K =
∫
V

k(A(τ ))dτ (1)

where V is some appropriate interval and k is some function of A,
what is the fluctuation in K due to that of A?
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Zhou et al. (2018) focused on the context where A is a galactic
magnetic field, K is the Faraday rotation, and the integration is carried
out over a line of sight.In this case, k(A) is the density-weighted
magnetic field along the line of sight, and thus, a linear function
of the mean magnetic field. The coherence length and the variance
of the fluctuations were taken to be independent of τ , the position
along the line of sight. The integral of k above is then replaced by a
discrete summation and the central limit theorem readily applies. In
the ensemble of different realizations of turbulence, the variance of
K is then simply N times smaller than that of k where N is the number
of turbulent eddies along the line of sight.

In the present work, we generalize the method to include cases
where k(A) is a non-linear function of A, and both the variance and
the coherent scales of the fluctuations depend on τ . We apply the
formalism to accretion disc theories. For a wide range of accretion
models, angular momentum transport is modelled by solving for
the dynamics of the mean velocity field with angular momentum
transport mediated by an imposed mean stress. These models are
manifestly mean-field theories, and predictions from these models
should therefore be presented with precision error bars.

Our method herein enables efficiently quantifying fluctuations
about the mean-field predictions for the disc spectrum at all photon
frequencies, thereby providing a quantitative way of accessing the
precision of the models considered. This is accomplished by prop-
agating local disc perturbations with given amplitudes and coherent
scales to the emission spectrum. At a given photon frequency, this
requires including contributions from the entire disc, superseding the
local treatment of Blackman, Nauman & Edgar (2010). Quantifying
the theoretical precision becomes particularly important when com-
paring to snapshot observations of a source because then the observed
fluctuations cannot be identified by their temporal characteristics.

In Section 2, we introduce the needed method for computing
fluctuations of an integral from local contributions with inhomo-
geneous amplitudes and coherent scales. In Section 3, we apply the
method to a generic thermal disc spectrum, and more specifically
to protoplanetary discs in Section 4, and dwarf novae (DNe) in 5.
In Section 6, we consider how the derived imprecision should be
binned when taking into account comparison to observations with
finite telescope resolving power. We summarize in Section 7.

2 IMP R ECISION IN OBSERVABLES FROM
L O C A L F L U C T UAT I O N S

2.1 Propagating fluctuations from integrand to integral

To demonstrate how to propagate fluctuations to an integrated
quantity, suppose K represents the total luminosity from a one
dimensional object in a Cartesian geometry. If this is given by k(r)
per unit length at position r, then

K =
∫ b

a

k(r)dr, (2)

where a and b specify the boundary. Now consider a local luminosity
fluctuation δk(r) with a vanishing mean but allow for inhomogeneous
variance σ 2

k (r), i.e. 〈δk2(r)〉 = σ 2
k (r), where the angle brackets denote

an ensemble average over all possible realizations of the fluctuation.
We take the fluctuations in the neighbourhood of position r to be
coherent over a scale l(r), and assume that l is much smaller than
the local variation scales of k, σ 2

k , and l itself; that is l � |k/(dk/dr)|,
l � |σ 2

k /(dσ 2
k /dr)|, and l � |l/(dl/dr)|. In the simplest case, for

which both σ 2
k and l are independent of position, the total luminosity

becomes the sum of N = (b − a)/l number of independent and

identically distributed random variables, and thus, the variance of
K is

σ 2
K = σ 2

k

N
= l

b − a
σ 2

k (3)

according to the central limit theorem. We now generalize to cases
where both σ 2

k and l are smooth functions of r. We provide two
methods which give identical results. We use the first method here
and a second is given in Appendix A.

We discretize the system into grids with the size of the ith cell
being li ≡ l(ri), and the grid can be constructed in the following
way:

r1 = a; ri+1 = ri + li ; i = 1, 2, · · · . (4)

K is given by the sum of contributions from fluctuating cells,

K =
∫ b

a

k(r)dr �
∑

i

ki li , (5)

where ki = k(ri). Because l(r) � |k/(dk/dr)|, li can be the line element.
The mean of K2 is

〈K2〉 =
∑
i,j

〈kikj 〉li lj . (6)

Since each cell covers a local coherent length and varies indepen-
dently, we have

〈kikj 〉 =
{ 〈ki〉〈kj 〉, i 	= j〈

k2
i

〉
, i = j

}
= 〈ki〉〈kj 〉 + δij

(〈
k2

i

〉 − 〈ki〉〈kj 〉
)
. (7)

Thus,

〈K2〉 =
∑
i,j

〈ki〉〈kj 〉li lj +
∑

i

σ 2
ki
l2
i

= 〈K〉2 +
∑

i

σ 2
ki
l2
i

� 〈K〉2 +
∫ b

a

σ 2
k (r)l(r)dr, (8)

where the last step we have used the condition l(r) � |σ 2
k /(dσ 2

k /dr)|.
The variance of K is thus,

σ 2
K = 〈K2〉 − 〈K〉2 �

∫ b

a

σ 2
k (r)l(r)dr. (9)

We test the analytical formula (9) against stochastically generated
data using an example where we have σ 2

k (r) and l(r). Specifically, we
take equation (38) for an accretion disc model, which is derived and
explained in more detail in Section 5, but here, this simply motivates
use of the mathematical example

σ 2
k (r) = r37/8e0.2r3/4

(e0.1r3/4 − 1)4
; l(r) = l0r

9/8 (10)

with two choices l0 = 0.03 or l0 = 0.05. Here, length scales are in
dimensionless units, normalized by the disc inner radius. The form
of σ 2

k (r) is derived based on a black-body spectrum with a mean disc
surface temperature ∝r−3/4, with r being the non-dimensional disc
radius.

Using equation (10), we compare the prediction of σ 2
K from

equation (9) with that derived from numerically generated data sets.
For the latter, we discretize the interval [a, b] and assign each mesh
point a random number (representing k) according to a multivariate
Gaussian probability distribution function (PDF) with a zero mean
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Precision with inhomogeneous stochasticity 2737

Figure 1. A comparison between the variance of stochastically generated
data (dots) and that from equation (9) (curves).

and a covariance matrix

Cij = σ 2
k (r ′)e−

[
ri−rj

l(r′ )/2

]2

, r ′ = ri + rj

2
, (11)

where ri, j are the coordinates of a pair of cells on the grid. For each
realization of k, its values on all mesh points are summed to give
K, and different realizations of k construct an ensemble, over which
the variance of K is then calculated. With a = 1 and different values
of b, the results are plotted in Fig. 1. Importantly, at a given b the
analytical formula is on average ∼2000 times faster than averaging
over an ensemble with 512 members,1 and provides an efficient way
of estimating σ 2

K .
Comparing the l0 = 0.03 and l0 = 0.05 cases, it is evident that

the larger deviation between data points and the theoretical curve at
larger b is due to the breakdown of the condition l � |σ 2

K/(dσ 2
K/dr)|.

In fact, the two length scales becomes comparable at b � 600 with
l0 = 0.03, and b � 400 with l0 = 0.05. In general, when the cor-
relation length becomes large enough to violate the aforementioned
condition, equation (9) delivers less accurate results. In the current
case and later examples, the main contribution to σ 2

K comes from the
region where l � |σ 2

K/(dσ 2
K/dr)| still holds, and therefore, yields

the correct order of magnitude.
Having verified equation (9) numerically, we can use it to formu-

late the following rules for propagating precision to an integrated
quantity from its integrand:

(i) Replace the integrand by the variance of the integrand multi-
plied by the correlation length.

(ii) Keep the line element of the integration unchanged.

The result can be readily extended to included coordinate-
dependent metric factors in the integration measure.

2.2 Application to accretion discs

Applying the formalism to an an axisymmetric disc, we have for the
total luminosity

K = 2π

∫ b

a

k(r)rdr, (12)

1Both using Wolfram Mathematica on a personal computer with a quad-core
CPU

where k(r) is the luminosity per unit area from an annulus at radius
r. Here, the line element is dr, and the variance of the integrand is
4π2r2σ 2

k . Therefore

σ 2
K = 4π2

∫ b

a

σ 2
k (r)l(r)r2dr. (13)

For a two-dimensional non-axisymmetric disc, the luminosity is
given by

K =
∫ 2π

0
dφ

∫ b

a

k(r, φ)rdr. (14)

Assuming statistical axisymmetry, let the fluctuations of k be coher-
ent over scales of lr(r) and lφ(r) in the radial and azimuthal directions,
respectively. The luminosity per unit length of an annulus is

K1(r) =
∫ 2π

0
k(r, φ)rdφ, (15)

and its variance is

σ 2
K1

=
∫ 2π

0
σ 2

k (r)lφ(r)rdφ, (16)

Since K = ∫
K1(r)dr, we obtain

σ 2
K =

∫ 2π

0
dφ

∫ b

a

σ 2
k (r)lr (r)lφ(r)rdr. (17)

Equation (17) recovers the one-dimensional case (13) by taking lφ =
2πr. For quantities involving an integration in time, the method
can be similarly extended. Equation (17) also reflects the intuitive
expectation that the variance decreases with decreasing correlation
lengths because neighbouring fluctuations rapidly cancel out. For
vanishing correlation lengths, our method is not valid and stochastic
calculus must be invoked for a rigorous treatment.

Below, we explore two applications of equation (17), to the
spectra of geometrically thin, optically thick discs. We focus on
finding spectral fluctuations at some given snapshot, where snapshot
indicates a short time scale compared to eddy turnover times.

3 VA R I A N C E O F P R E D I C T E D EM I S S I O N
SPECTRUM FROM A THERMAL DI SC

Consider the thermal spectrum from a geometrically thin, optically
thick disc. Given some surface temperature T(r, φ) that includes
both a mean and a fluctuating part, the black-body emission per unit
frequency per unit area is

f (T) = 2hPν
3/c2

ehPν/kBT − 1
, (18)

where hP is the Planck constant, ν is the photon frequency, c is the
speed of light, and kB is Boltzmann’s constant. The total power per
unit frequency from one side of the disc is

F =
∫ 2π

0
dφ

∫ rout

r∗
f rdr, (19)

where r∗ and rout are the inner and outer radii of the disc, respectively.
We separate the total temperature T into a mean T and fluctuating

part δT. The mean part T is assumed to be modelled by some mean-
field theory which we assume to be axisymmetric and stationary so
that T = T(r). The residual δT varies on turbulent time and length
scales. All fluctuations are assumed to obey statistical axisymmetry
although this can be generalized. In what follows, we give a unified
formalism of calculating precision errors using the error propagation
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formula (17). A more formal and systematic description of three
important different types of errors is presented in Appendix B.

For any local fluctuation in T at location (r, φ), whether from T or
δT, with a variance σ 2

T(r) of its amplitude, the variance of the local
fluctuation in f is

σ 2
f =

[
∂f (T )

∂T

]2

σ 2
T. (20)

As we are computing the expected variance of fluctuations around
the mean, the term inside the angle brackets is evaluated at its mean
value T = T .

We assume that the fluctuation in f has the same coherent scales as
those of fluctuations in T, as determined by the physical processes
causing the latter. If the fluctuation of f is coherent over lengths
lr(r) in the radial direction and lφ(r) in the azimuthal direction, the
variance of the fluctuation in F will be determined by equation (17)
and given by

σ 2
F =

∫ 2π

0
dφ

∫ rout

r∗
σ 2

f (r)lr (r)lφ(r)rdr

= 2π

∫ rout

r∗

(
T

∂f

∂T

)2
σ 2

T

T 2
lr lφrdr. (21)

Here, T∂f/∂T as a function of T is determined by Planck’s law (18),
whereas the exact expressions of T itself, σ 2

T, lr, and lφ , will be model
dependent.

We can also determine the fluctuation in the total luminosity for
a frequency bandwidth over which fluctuations in the disc spectrum
are coherent, in analogy to lr and lφ which are coherent scales in
configuration space. Since the total luminosity is L = 2

∫ ∞
0 Fdν,

the variance of its fluctuation is

σ 2
L = 4

∫ ∞

0
σ 2

F 
νdν, (22)

where 
ν is a frequency-dependent coherent bandwidth. One such
example is given in Section 5.

For convenience, we define several dimensionless variables here
for later use. The dimensionless disc radius is r̃ = r/r∗. The mean
temperature can be written as T = T∗T̃ (r̃), where T∗ is the mean
temperature at r∗ and includes all dependence on other disc param-
eters, such as the central object mass, mass accretion rate, etc. The
dimensionless frequency is then

β = hPν

kBT∗
. (23)

We denote the disc scale height by h(r), and the height-to-radius ratio
at the inner boundary by θ = h(r∗)/r∗.

4 A PP LIC ATION TO PROTO PLANETA RY DI SCS

Gas in protoplanetary discs is subject to turbulence, as indicated
by molecular line observations (Hughes et al. 2011; Guilloteau et al.
2012) and dust distributions (Pinte et al. 2016). The underlying turbu-
lence drivers include magneto-rotational instability (MRI) (Velikhov
1959; Chandrasekhar 1960; Balbus & Hawley 1991), self-gravitation
(Toomre 1964; Shlosman & Begelman 1987), and hydrodynamic
instabilities. The driving mechanism may also vary between young
and old objects, and between inner and outer regions, or midplane
and surface layers in a single object. Regardless of the origin, if
we assume that the eddy turnover time-scale of dominant eddies is
comparable to the local Keplerian time-scale, the eddy turnover time
can reach ∼30 yr just at 10 au with a central solar-mass object. Thus,
for most parts of a protoplanetary disc, the turbulence time-scale

exceeds exposure time-scales of telescopes, or even time-scales of
multi-epoch observations.

For such a ‘snapshot’ image, some turbulent eddies are brighter
and some are dimmer than the average profile predicted by a mean-
field theory, and they contribute to the observed thermal spectrum at
all wavelengths. It is, therefore, necessary to ask, whether a deviation
between observations and theory at a specific wavelength has a
truly systematic or a merely stochastic origin. In this section, we
quantitatively incorporate the effect of turbulent fluctuations on the
mean-field prediction of the disc thermal spectrum. We isolate this
turbulent effect by assuming all other parameters in the problem, e.g.
mass accretion rate and the α parameter, remain time-independent.

Let a fluctuation in the surface temperature due to turbulence
be δT, which also generates a fluctuation in the luminosity Led

of a turbulent eddy. Although a realistic probability distribution
description for turbulence is still lacking, we capture the properties
of δT by assuming that the luminosity Led for each turbulent eddy,
is drawn from an ensemble with a uniform PDF,

PLed (x) = 1

2L
, 0, ≤ x ≤ 2L, (24)

so that PLed (x)dx is the probability to find Led between x and x + dx.
Here, L is the mean of Led, and equals the luminosity of the mean-
field disc model from an area equal to that of the eddy. In general, L
depends on the disc radius in a mean-field model, and so does PLed .
This simple uniform PDF allows us to proceed simply, but more
comprehensive statistical prescriptions may also be used (e.g. Lee &
Gammie 2021).

For optically thick discs, the PDF of T can be deduced from the
relation Led = σSBT4, so that

PT(x) = 2x3

T 4
max

, 0 ≤ x ≤ 21/4Tmax, (25)

where σSBT 4
max = L, and Tmax = 5T/29/4, with T being the mean

temperature field solved from a mean-field theory. Equation (25),
then defines a PDF for the disc surface temperature whose mean is
T. For a given mean-field disc model, PT(x) is known at all radii and
the mean and the variance of f in the ensemble can be calculated by

〈f 〉 =
∫

PT(x)
2hPν

3/c2

ehPν/kBx − 1
dx (26)

and

σ 2
f =

∫
PT(x)

(
2hPν

3/c2

ehPν/kBx − 1

)2

dx − 〈f 〉2, (27)

respectively.
Note that the ensemble mean of f is different from the flux obtained

by using the mean of T, namely

〈f 〉 	= 2hPν
3/c2

ehPν/kBT − 1
. (28)

Consequently, there is a difference between the ensemble mean of F,
and the value that would be obtained using first the mean of T. The
latter is what is done for most mean-field disc models. The difference
between these two approaches leads to what we call the ‘mismatch
error’ (ME):


F =
∫

〈f 〉rdrdφ − F |T=T , (29)

where F is given by equation (19).
The ME reflects the disagreement between the fluxes that arise

from the following two theoretical approaches: (i) solve for mean
fields such as the mean disc temperature T, and then calculate the
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Precision with inhomogeneous stochasticity 2739

disc spectrum using F |T=T ; (ii) solve for both the mean and the
fluctuation in temperature, the latter statistically in a mean-field
model, then combine to obtain total temperature T and the associated
total spectrum, and take the average to get 〈F〉. Approach (i) is
commonly adopted, but approach (ii) is what should be used by
theorists to more accurately compare to what observations measure.

The variance of F can be computed by propagating that of f.
The correlation length of the latter is assumed to be isotropic and
identified with the turbulence scale l in the model. In an α disc model,
we have

l � αcSh

v
� α�h2

l�
, (30)

and thus l � α1/2h (Blackman 1998). The variance of F is then

σ 2
F = 2πα

∫
σ 2

f h2rdr, (31)

using equation (17).
We now adopt a specific profile of T to qualitatively compute ME

and ‘filtering error’ (FE). In mean-field models, the mean temperature
is typically related to the disc radius via a power-law relation, T =
T∗r̃p. In the context of protoplanetary discs, p varies from −1 to
∼−1/2 depending on whether disc heating is dominated by star
irradiation or viscous heating. The exponent also likely varies with
the disc radius if a transition of heating source occurs. For simplicity,
we consider a constant p here. A particular model is taken from Edgar,
Quillen & Park (2007) for which the heat of the central plane is solely
due to viscous dissipation, and the mean surface temperature T and
scale height h are solved to be

T = T∗r̃−21/40, h = h∗r̃21/20. (32)

Combining equations (29), (31), and (32), we compute the ME and
the FE as shown in Fig. 2.

While FE originates from turbulence and measures the corre-
sponding stochastic fluctuation around the mean spectrum, ME is
systematic as is clear from equation (29). Consequently, fitting aver-
aged observational data (approximately 〈F〉) with typical theoretical
predictions that amount to F |T=T , introduces a bias of inferred
parameters. In the present protoplanetary disc example, the bias
in the maximum temperature at the disc inner radius T = T(r∗)
is 6.5 per cent, that in the exponent −∂ln T/∂ln r is 1.0 per cent, and
that for the disc outer radius is −5.4 per cent. The numerical values
are relatively small. They do depend on the choice of the PDF for
T, but the result shows that the thin disc mean-field model in this
context are quite precise, inasmuch as observational uncertainties are
larger.

5 A P P LIC ATION TO DWARF NOVA E

DNe are characterized by their regular outbursts, and thought to result
from accretion disc instability (Osaki 1974; Hōshi 1979; Lasota
2001; Hameury 2020). The standard disc instability model relies
on thermal instability and the fact that the disc opacity changes
rapidly and non-linearly with temperature at ∼104 K where hydrogen
ionization takes place. The temperature is directly connected to the
accretion rate and so where the temperature versus surface density
equilibrium curve is unstable, so is the accretion rate. Once the
accretion rate increases in the disc to a value larger than the outer
supply rate can accommodate the surface density and temperature
drop until matter again builds up and the cycle repeats. How exactly
the disc viscosity depends on heating is model dependent. Recently,
Held & Latter (2021) demonstrated that if convection results from the

Figure 2. Relative errors in the disc spectrum: that from comparing mean
of the total spectrum versus the spectrum of the mean temperature (upper),
and that from turbulent fluctuations of the surface temperature (lower). β is
the dimensionless photon frequency defined in equation (23). The disc model
uses α = 0.01, rout/r∗ = 150, and θ = 0.01.

strong opacity increase, its combined effect with the MRI may lead to
a significant increase in angular momentum transport, characterized
by cyclic bursts of α, the stress-to-pressure parameter. The strength-
ened angular momentum transport in the simulations is speculated
to result from convection generated magnetic fields reseeding the
MRI, an effect most prevalent in cases with long cooling times
and short resistive times. In these so-called strong MRI/convection
cycles, α is enhanced in the MRI phase by approximately one order
of magnitude. Several studies have also reported similar α bursts in
stratified shearing boxes (Simon, Hawley & Beckwith 2011; Bodo
et al. 2012; Hirose et al. 2014; Coleman et al. 2018), albeit some
with different origins argued. In this section, we build our model
based on the results of Held & Latter (2021), and explore how such
fluctuations in α can affect the disc spectrum in the quiescent phase,
during which the strong MRI/convection cycle is most likely because
of the high resistivity.

We assume that the representative temporal and spatial fluctuations
in α are local, focusing on circumstances that apply before they lead
to any global coherent structure over the entire disc. The typical
cycle periods of DN bursts are observed to be O(10) orbital times
in simulations, and therefore, may occur multiple times during one
hot or cold phase of the disc. The ratio between the Keplerian time-
scale at the outer radius and the quiescence time of the disc can be
estimated from Lasota (2001) as

tKep,out

tquiesc,oi
� 0.0126

( α

0.01

) (
Ṁ

1017 g s−1

)2

×
(

Tc

3000 K

) (
M

M�

)0.76 ( rout

1010 cm

)−4.3
(33)
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for an outside-in outburst, or

tKep,out

tquiesc,io
� 0.00005δ

( α

0.01

) (
Tc

3000 K

)

×
(

M

M�

)−1 ( rout

1010 cm

)
. (34)

for an inside-out burst with large disc radii. Here, Tc is the disc mid-
plane temperature, and δ is the difference between the logarithm
of the maximum surface density in the lower equilibrium branch
of temperature versus surface density during the quiescent phase;
typically δ � 2 [cf. fig. 11 in Lasota (2001)]. As such, at all radii the
cycle period of the bursty α is much shorter than the disc quiescent
time.

The relatively short cycle period leads to axisymmetric fluctua-
tions, and accordingly the azimuthal coherence length is lφ = 2πr.
The radial viscous diffusion time is much larger than the orbital time
because

tviscous

tKep
� r2

νT�−1
� α−1

(
h

r

)−2

� 1, (35)

which suggests that the α fluctuation can also be considered local
in radius. In the simulations exhibiting the strong MRI/convection
cycles Held & Latter (2021), α is defined by a volume average over
a box of radial length 4h, based on which we assume a coherent
scale lr = nh with a fiducial n = 5 in the radial direction. For the
standard Shakura–Sunyaev model h/r = θ r̃1/8 (e.g. Frank, King &
Raine 2002), and thus lr = nθrr̃1/8.

We now derive the temperature and flux fluctuations. For DNe in
the quiescent state, the disc is not necessarily in the global viscous
equilibrium (Lasota 2001), but we assume that local equilibrium
between the mean surface black-body flux and the turbulent viscous
dissipation holds, i.e.

σT 4(r) = 1

2
νT �(r∂r�)2 = 1

2
αcSh�(r∂r�)2. (36)

Since h, �, and r∂ r� change on the viscous time scale, which is
much longer than 10 Keplerian orbit times, an α burst event that
spans a time-scale ofO(10) orbits causes a mean surface temperature
fluctuation T∝α1/4. If the variance of fluctuations in α is σ 2

α , we have

σ 2
T

T 2
= 1

16

σ 2
α

α2
. (37)

We take σα/α = 0.5 as estimated from Held & Latter (2021). Since
σ 2

T = σ 2
T in this case, combining equation (37), lr = nθrr̃1/8, and

lφ = 2πr, we obtain from equation (21) that

σ 2
F = π2nθ

16

∫ rout

r∗

(
T

∂f

∂T

)2

r̃1/8r3dr. (38)

For a standard Shakura–Sunyaev model, we have T � T∗r̃−3/4. The
integral can be numerically carried out, and we show in Fig. 3 the
relative fluctuation σ F/F and also the 1σ uncertainty around F by
plotting F and F ± σ F together.

To quantify the corresponding variation in the total luminosity, we
need to determine the photon frequency range over which fluctuations
in the disc spectrum are coherent. A reasonable estimate is obtained
by assuming that photons at a frequency ν are emitted by a single
annulus whose position is determined by Wien’s displacement law:

hPν

kBT (r)
� 2.8 ⇒ β = 2.8r̃−3/4, (39)

where β = hPν/kBT∗ is the dimensionless frequency defined. The
coherence length lr of the temperature fluctuations is propagated to

Figure 3. In dimensionless units, the relative error (upper) and the corre-
sponding error bars overplotted on the spectrum (lower) induced by α bursts
in strong MRI/convection cycles. β is the dimensionless photon frequency
defined in equation (23). Variation in the luminosity is δL/L = 0.01. The disc
model uses rout/r∗ = 600 and θ = 0.01.

a coherent frequency width 
βcoh by


βcoh =
∣∣∣∣∂β∂r̃

∣∣∣∣ lr

r∗
= 2.1nθr̃−5/8 = 0.89nθβ5/6. (40)

One can verify that 
βcoh < F/|∂F/∂β| for all β ∈ [10−3, 10]. Using
equation (22), the relative fluctuation in the luminosity is found
to be δL/L = 1 per cent. If we identify the variation time tL of L
as that of α for the most luminous annulus, we find tL/tKep,out =
0.0016 × O(10) where tKep, out is the Keplerian time-scale at the disc
outer radius.

6 ROLE O F TELESCOPE RESOLV I NG POW ER
I N DETERMI NI NG FA LSI FI ABI LI TY

The imprecision we have computed above is independent of the
finite resolving power and binning of data by given telescope that
observational data is subjected to before it can be compared against
theoretical predictions. We now show how to incorporate this.

Let the spectral resolving power of a telescope be

RP = ν


ν
, (41)

where 
ν is the telescope resolving bandwidth at photon frequency ν.
For snapshot measurements, defined by exposure time being smaller
than flux fluctuation time-scales, the observed flux FT is binned using
the resolved bandwidth 
ν = ν/RP, i.e.

F T(ν) = RP

ν

∫ ν(1+RP−1)

ν

F (ν ′)dν ′. (42)
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Figure 4. The same model as in Fig. 3, but showing the relative error in the
spectrum after it is binned by the telescope resolving power.

The flux spectral fluctuations are fully resolved when the resolved
bandwidth is smaller than the coherent bandwidth of the fluctua-
tions, i.e. when RP > ν/
νcoh where 
νcoh = 
βcohkBT∗/hP. The
fluctuation in FT is then σ T = σ F from equation (38). In the opposite
limit of RP < ν/
νcoh, every neighbouring number 
ν/
νcoh of
fluctuating bandwidths are binned. Identifying K with FT and k with
F in equation (17) we have

σ T � RP

ν

[∫ ν(1+RP−1)

ν

σ 2(ν ′)
ν ′
cohdν ′

]1/2

. (43)

In Fig. 4, we plot the relative precision σ T/FT for different constant
RP values by evaluating equation (43). The critical dimensionless
photon frequencies above which RP > β/
βcoh are 10−3.9, 10−0.3,
and 105.7 for the RP = 5, 20, 200 cases, respectively. Smaller RP
reduces the effect of fluctuations because more fluctuation cells are
averaged within a single resolving bandwidth.

7 C O N C L U S I O N

The scale separations between mean and fluctuating fields in astro-
physical flows are finite, in contrast to the idealized assumption of
infinity, which affects both the accuracy and the precision of a given
mean-field theory. In particular, spatially or temporally averaged
observational data unavoidably includes contributions from small-
scale fluctuations, and thus, when fitting data, the inferred model may
fail to match those from an accurate theory, or misleadingly appear
to agree with an inaccurate theory, if fluctuations around mean-field
results are not properly estimated. Falsifiability of mean-field theories
by comparing to observations requires careful distinction between
disagreements that result from accuracy with those that result from
imprecision.

While improving accuracy means increasing the fidelity of the
input physics that account for the finite scale separation, in this
work we focus on calculations of precision of mean-field theories,
defined as the variance of the fluctuations of mean-fields propagated
from small-scale fields. We have considered the general case of
statistically inhomogeneous small-scale fluctuations, and the derived
equation (9) is shown to be consistent with data from a numerically
realized ensemble, yet significantly preceding the latter in terms of
efficiency.

We then exemplified the method by computing imprecision in the
prediction of accretion disc thermal spectra, induced by (i) turbulent
fluctuations, and (ii) meso-scale fluctuations in α, respectively. For
both, we imposed fluctuations in temperature and its coherence

length allowing both to be local functions of space. The consequent
error propagation of these fluctuations to global observables, namely
spectra and luminosity, were then derived. Although with small
magnitudes, the derived spectra fluctuations indeed depend on photon
frequency, and suggests that accurate falsification of a mean-field
theory may require a likelihood function or data weighting that
reflects the fidelity of the theoretical mean-field values in different
regions of the parameter space, as the photon frequency in the current
examples.

In contrast to previous dynamical models (Lyubarskii 1997;
Dexter & Agol 2011; Cowperthwaite & Reynolds 2014; Turner &
Reynolds 2021), each of which considers different models for the
time evolution of imposed surface density or temperature fluctuations
and pursues their observational signature, our work focuses on an
efficient semi-analytical method of computing the propagation of
inhomogeneous fluctuations to synthetic observables to compare
with snapshot observations. We have assessed how precise the
predictions of standard mean-field disc theories are when subjected
to such fluctuations of a given amplitude.

In addition to the stochastic contributions, we have also shown
that the non-linear relation between basic physical quantities solved
in theories (i.e. surface temperature) and observables (i.e. disc
spectrum) can lead to a finite systematic mismatch between the
meaning of the quantity that is predicted and that is observed and
then averaged. This leads to a systematic bias when backing out disc
parameters of a few per cent, and a more comprehensive treatment
of turbulence would offer a more accurate determination of this bias.
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A P P E N D I X A : SE C O N D ME T H O D TO D E R I V E
E QUAT I O N (9 )

We construct intervals on [a, b] with scale c(r) such that l(r) � c(r)
and in each interval, σ 2

k and l are approximately constant. Consider
a coarse-grained field

k′(r) =
∫ b

a

k(r − s)Gc(r)(s)ds (A1)

and the corresponding integral

K ′ =
∫ b

a

k′(r)dr. (A2)

Here, Gc(s) is a normalized kernel with compact support from |s| ≤
c where c is a function of r, satisfying l(r) � c(r) � |k/(dk/dr)| and
l(r) � c(r) � |σ 2

k /(dσ 2
k /dr)|. We then have

K ′ =
∫ b

a

Gc(r)(s)ds

∫ b

a

k(r − s)dr

=
∫ b

a

Gc(r)(s)ds

∫ b−s

a−s

k(r)dr

�
∫ b

a

Gc(r)(s)ds

∫ b

a

k(r)dr = K. (A3)

The last equality follows the normalization property of G. Thus, we
only need to quantify the variance of K

′
.

The coarse-grained field k
′

locally has a Gaussian distribution
because of the central limit theorem. For each averaging cell of
size c(r), the number of fluctuating cells of size l(r) is c(r)/l(r), and
therefore,

σ 2
k′ = σ 2

k

c(r)/l(r)
. (A4)

Now, we divide the entire region region a ≤ r ≤ b into grids,
constructed by

r1 = a, ri+1 = ri + ci, i = 1, 2, · · · , (A5)

where ci = c(ri). Since c(r) � |k/(dk/dr)|, K
′

can be approximated
by

K ′ =
∑

i

k′
ici , (A6)

and since each k′
i is a Gaussian, the variance of K

′
, which is equal to

that of K, is given by

σ 2
K = σ 2

K ′

=
∑

i

σ 2
k′
i
c2
i =

∑
i

σ 2
ki

ci/li
c2
i =

∑
i

σ 2
ki
lici

�
∫ b

a

σ 2
k (r)l(r)dr, (A7)

which agrees with the derivation in Section 2.1.

APPENDI X B: A FORMAL DI SCUSSI ON OF
DI FFERENT TYPES O F ERRORS

In this Appendix, we present a formal discussion of possible
deviations of mean-field theory predictions from observed values,
assuming that observations could be made with infinite resolution.

To clarify the idea, we define a snapshot measurement Fobs of some
observable from an object that possesses turbulent fluctuations. We
also consider a multi-epoch average (with inter-epoch time longer
than the turbulent time-scale) of snapshots, assuming each to be
drawn from an ensemble Dobs of identical discs with different turbu-
lence realizations and turbulence being ergodic. Then, we consider
this multi-epoch average to be an ensemble average 〈Fobs〉obs; the
superscript of the angle brackets means the average is drawn from
the ensemble Dobs.

Now suppose that we have a theoretical model that predicts mean-
field quantities from the same, yet theoretical, turbulent object. We
call the ensemble associated with this theoretical turbulent object
Dth. How well Dobs coincides with Dth defines the accuracy of the
theory. Improving accuracy means increasing the fidelity of the input
physics. Here, we assume that the theoretical mean-field model is
fully accurate and instead focus on its precision.

For a member of Dth, the theory predicts a mean value of the
observable, Fth. For a mean-field theory, Fth is the same for all
members of Dth, equal to its ensemble average in Dth: 〈Fth〉th =
Fth; here, the superscript of the angle brackets means the average
is drawn from Dth. From each element of Dth, we may construct
synthetic observations which represent specific predictions processed
from the mean-field theory to match what a given telescope would
measure. We denote this by Fobs, th. Note that Fobs, th represents a
predicted snapshot measurement of a turbulent object and so we can
also construct the ensemble average 〈Fobs, th〉th. The two quantities Fth

and 〈Fobs, th〉th differ in general, and indeed differed for the example
model in Section 4.

Having clarified the notation, the difference between an actual
observed value and theoretical mean-field value for the observable is

δF = F obs − F th

≡ F obs − 〈F obs〉obs (B1)

+ 〈F obs〉obs − 〈F obs,th〉th (B2)

+ 〈F obs,th〉th − F th, (B3)

where we have decomposed the right side into three differences:
Difference (B1) is how much a real observation deviates from its
multi-epoch average; difference (B2) vanishes if the two ensembles
Dth andDobs are identical, quantifying the accuracy of the theory; dif-
ference (B3) measures whether the quantity predicted (Fth) means the
same thing as the quantity observations actually measure (〈Fobs, th〉th).
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We have assumed an accurate theory, so we set

F obs = F obs,th. (B4)

Furthermore, we need not distinguish in which ensemble fields are
averaged, and use 〈 · 〉 obs = 〈 · 〉 th = 〈 · 〉 in what follows.
Consequently, Term ( B2) vanishes.

Since δF fluctuates in the ensemble, it will be meaningful to
quantify its mean 〈δF〉 and variance σ 2

δF . Using Terms (B1) to (B3),
we define the ‘filtering error’ (FE) as

σ 2
FE = σ 2

F obs−〈F obs〉 = σ 2
F obs = σ 2

F obs,th (B5)

where σ 2
X denotes the variance of the quantity X in the ensemble, and

the last step comes from our accuracy assumption Fobs = Fobs, th. The
‘mismatch error’ (ME) is


F = 〈〈F obs,th〉 − F th〉 = 〈F obs,th〉 − F th. (B6)

In addition, the error associated with the perturbations in Fth induced
by varying model parameters (e.g. boundary conditions, transport
coefficients) contributes an ‘intrinsic error’ (IE), σ 2

IE. We then have

〈δF 〉 = 
F, (B7)

σ 2
δF = σ 2

IE + σ 2
FE. (B8)

The IE, FE, and ME can all be determined theoretically because
they only involve Fth and Fobs, th, but not Fobs. Correspondingly, Fth

+ 〈δF〉 ± σ δF will be a mean-field prediction with error bars, giving
a finite range of where we expect the observed value Fobs to locate.
Thus to facilitate a more appropriate comparison between theory

and observations than what is commonly done, we must quantify the
precision of the former so that the error can be added to the mean and
the result compared against an observation when that observation is
a member of an ensemble rather than an ensemble average.

The non-vanishing ME in thermal disc spectra can be elucidated
in the following way. Consider a member from Dth. Let its surface
temperature, as if we could measure it, be Tobs, th, which is turbulent
and varies with the disc radius r and azimuthal position φ. The
observed total power emitted per unit frequency from one side of the
disc is

F obs,th =
∫ 2π

0
dφ

∫ rout

r∗

2hPν
3/c2

ehPν/kBT obs,th − 1
rdr

≡ I [T obs,th], (B9)

where I is the spectrum functional. The ensemble mean of the
observation is 〈Fobs, th〉. On the other hand, in a mean-field disc
theory, the constructed equations are solved to obtain a mean surface
temperature Tth. The predicted total emission is

F th = I [T th] (B10)

Even assuming an accurate theory Tth = 〈 Tobs, th〉, we still have

〈F obs,th〉 = 〈I [T obs,th]〉 	= I [〈T obs,th〉] = F th (B11)

because of the non-linear dependence on the surface temperature.
The difference between the left and right sides is defined as the ME.
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