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Abstract

Borisov—Joyce [23] and Oh-Thomas [141] defined virtual invariants count-
ing sheaves on Calabi-Yau fourfolds. Similarly to Donaldson invariants
[47], these depend on existence and choice of orientations on moduli spaces
of coherent sheaves. The first part of the thesis addresses this question
for quasi-projective Calabi—Yau fourfolds, generalizing the work of Cao—
Gross—Joyce [30]. The orientations on compactly supported perfect com-
plexes are expressed in terms of a pull-back of gauge-theoretic ones which
live on the classitying space C§ of compactly supported K-theory. The
proof relies on a choice of a compactification, which allows us to directly
obtain orientability of moduli spaces of stable pairs. In the second part
of the thesis, we study the conjectural wall-crossing formulae of Gross—
Joyce-Tanaka [76]. We begin, by addressing the conjecture of Cao—Kool
[32], which expresses the virtual integrals of a tautological line bundle L
on the Hilbert scheme of points Hilb" (X)) in terms of the MacMahon func-
tion. We also obtain a prediction for the K-theoretic refinement of this
invariant proposed by Nekrasov [135], which coincides with the expecta-
tions from the result for C*. Studying the invariants further, we find a
universal transformation relating them to integrals on Hilbert schemes of
points for elliptic surfaces. To understand this, we recover the previously
known results for Quot-schemes on elliptic surfaces using similar wall-
crossing arguments. We will further study this in [18] to recover and gen-
eralize the full result of Arbesfeld-Johnson—Lim—Oprea—Pandharipande

[5] for surfaces including divisor contributions.
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Chapter 1

Introduction

We choose to begin our journey of enumerative geometry with Donaldson [47], who
introduced his famous invariants counting ASD connections on 4-manifolds and used
them to restrict the possible intersection forms on the middle cohomology. This
required solving the compactness, orientability and transversality questions of the
moduli space. On complex surfaces one can instead use algebraic methods to count co-
herent sheaves as in Mochizuki [134], Tyurin [171] and Gottsche-Nakajima—Yoshioka
[71], which gives a different approach to the compactification problem and the orien-
tations are natural. In complex three dimension Thomas [163] defined holomorphic
Casson invariants which are more commonly known as DT '-invariants and were fur-
ther generalized by Joyce-Song [96] and Kontsevich—Soibelman [106]. There are two

different ways of thinking about these:

1. When counting ideal sheaves of curves or —a more refined approach— stable pairs,
these are conjecturally (Maulik-Nekrasov—Okounkov—Pandharipande [127], [128],
Pandharipande-Thomas [144]) related to Gromov-Witten invariants counting
stable maps of curves [73], [173]. Moreover, both theories are well-defined for

any smooth 3-fold.



2. Counting motivic invariants of general semi-stable sheaves and studying wall-
crossing as in Joyce-Song [96] and Kontsevich—Soibelman [106], which is re-
stricted to Calabi—Yau geometries. The wall-crossing formulae are expressed in

terms of Ringel-Hall (Lie) algebras [96, Thm. 3.14].

Note that we are restricting ourselves to these 2 points, but the subject is vast and
has many other connections, some of which the author is aware of and some not. In
pursuit of obtaining a similar framework for Calabi—Yau fourfolds Cao—Leung [37]
and Borisov—Joyce [23] defined DTy-type invariants counting coherent sheaves. The
former construction works for moduli spaces of vector bundles and smooth moduli
spaces, while the latter relied on derived differential geometry. A fully algebraic
approach has been developed by Oh-Thomas [141] which is expected to be equivalent
to [23] (minus a minor technical detail). These invariants have already been studied
by multiple authors [32, 33, 38, 39, 34, 35, 41, 42, 36, 40]. Unlike their lower-
dimensional algebraic counterparts, they again depend on existence and choice of

orientation. However, they do inherit the two ways of thinking about them:

1. Counting stable pairs is conjecturally ([38, 39, 41]) related to Gromov—Witten

invariants of Klemm-Pandharipande [103].

2. Invariants counting semi-stable sheaves conjecturally satisfy universal wall-cross-
ing formulae (Gross—Joyce-Tanaka [76]). The Ringel-Hall Lie algebras of [96]
are replaced by Lie algebras associated to natural vertex algebras on homology

constructed by Joyce [91].

We are again willingly ignoring some other points of view (see Diaconescu—Sheshmani—

Yau [45]). In this thesis, we plan to address two questions which are related to the
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above:

e Orientability of moduli spaces has been proven for projective Calabi—Yau four-
folds by Cao—Gross—Joyce [30]. We adapt their techniques of stabilization of
holomorphic and complex vector bundles to the non-compact setting. The main
difficulty in doing so comes from the moduli stack of perfect complexes (see
Toén—Vaquié [168]) on a quasi-projective X classifies only compactly supported
perfect complexes. As a result, there is no natural map from holomorphic vector
bundles to this stack. Instead we use compactification and excision arguments,
developing the “algebraic excision” and excision for complex elliptic symbols
generalizing the commonly used one of Donaldson [47], Donaldson—Kronheimer
[49, §7.1] and Atiyah-Singer [8] (see also Upmeier [172]). Comparing the two

excisions, we obtain the result.

« We follow the guidelines laid out by Gross—Joyce-Tanaka [76, §4.4], defining the
moduli stack of pairs and conjecturing a wall-crossing formula for Joyce-Song
stable pairs (see [96, §5.4]). Applying it to the setting of Hilbert schemes of
points, we reduce the proof of conjecture of Cao—Kool [32] to the wall-crossing
conjecture. A K-theoretic enrichment of this is the Nekrasov genus introduced
by Nekrasov [135] and studied by Cao—Kool-Monavari [35]. We show (relying
on the wall-crossing conjecture) that it takes the expected form in compact
geometries. A surprising consequence of the computations is a direct corre-
spondence between generating series of certain integrals on Hilbert schemes
of elliptic surfaces and those on compact Calabi-Yau fourfolds. We explain

this correspondence via wall-crossing for Quot-schemes in the final section of



Chapter 4.

The contents of the chapters are as follows. In Chapter 2, we review the dif-
ferent approaches to moduli problems of sheaves and complexes on varieties ending
in a short summary of facts we will need about derived stacks and higher stacks of
perfect complexes. We review the definition of orientations on —2-shifted moduli
stacks as given in Borisov—Joyce [23], which only require the duality on the cotangent
complex Laq = Ly, [—2] of a derived stack M to construct a natural orientation
Zo-bundle O“ — M, where M is the associated higher stack. For a quasi-projective
Calabi—Yau fourfold, we have the stack M x of compactly supported perfect com-
plexes with the corresponding bundle O¥ — M. The necessity of existence of
trivializations Zy = O¥ is explained in §2.3, where we discuss the bare minimum
about the Oh-Thomas [141] construction of wirtual fundamental classes and recall

their virtual Riemann—Roch formula relating virtual K-theoretic invariants and coho-

mological invariants.

Both Chapter 3 and Chapter 4 have already appeared as preprints [19], [20]. In
Chapter 3, we use the term Calabi-Yau j-fold to denote a pair (X,Q), where X
is a smooth quasi-projective variety and 2 is a nowhere vanishing section of the
canonical bundle of X. Our goal is to prove orientability of the moduli stack M x
of compactly supported perfect complexes on X. Our first approach is through spin
compactifications. Spin-structures on a projective complex manifold X are equivalent
to the choice of a square root © of the canonical line bundle ©2 = Ky. Assuming
existence of such ©, we construct an orientation O® — M over the moduli stack

of perfect complexes on X. We check a straightforward generalization of Cao—Gross—



Joyce [30], which allows us to prove orientability for certain examples including the
total space of Ky — Y, where Y is a 3-fold and Ky its canonical bundle. While we do
not give a counterexample to this method, we expect that it would not be applicable
for a general toric Calabi—Yau with a simple example in 2-dimensions (see Example
3.1.13). To remedy this we use algebraic excision in §3.1.3, to construct a Zy-bundle
on O™ — MY, where Y is a compactification of X, such that Y\X = D is a
strictly normal crossing divisor. The stack classifies perfect complexes on two copies
of Y identified on the divisor D and O™ depends on some additional data <. As
such, it admits an open embedding of M x — My X, My. The rest of the chapter
is dedicated to proving that O™ is trivializable and relating it to a gauge-theoretic
orientation bundle. This is obtained first by generalizing the excision principle to work
for complex elliptic pseudo-differential operators and then comparing it by hand to

the algebraic geometric construction. We obtain two consequences of this:

Theorem 1.0.1 (Thm. 3.1.20). Let (X, Q) be a quasi-projective Calabi—Yau fourfold,
then the Zy-bundle O® — M is trivializable. Let C§ = Mapgo ((XT,+), (BU X Z,0))
be the topological space of pointed maps, where X T is the one point compactification
of X and 0 € BU x Z the identity. For a choice of a compactification ix : X — Y
with a strictly normal crossing divisor D = Y \X, there exists a canonical Zo-bundle

0% = C§ and a natural map

T (M) — C%,

where (—)*P is the topological realization functor of Blanc [16], such that there is a



canonical isomorphism

/J . ch*(ch) _N_> Ow .

In particular, if & € K2(X) is a compactly supported K-theory class and M, a
moduli scheme of stable perfect complexes with class «, the above gives orientations
on M, which only differ by a global minus sign for fixed compactification Y. It is
important to note that the constructions used in the proof of this statement depend
very much on the choice of the compactifications, and it would be interesting if this
additional requirement could be removed (see Remark 3.4.5).

If X is quasi-projective and M is a moduli stack of pairs of the form Ox —
F', where F' is compactly supported, we need a modification, because the complex
is not compactly supported. Let & — M be the universal family, then for fixed

compactification X C Y there is a natural isomorphism from Definition 3.1.21:

det( (Hom (€. €)),) = det* (Hom(£.6)), ).

where (—)q denotes the trace-less part and we use the notation Hom,(FE, F') for two
perfect complexes E, F on X x Z to denote ma.(EY ® F), where mo : X X Z — Z is
the projection. To this there is an associated Z,-bundle O° — M. We can now state

the result.

Theorem 1.0.2 (Thm. 3.1.22). Leti: X — Y be a compactification with Y\X = D
strictly normal crossing. Let n : M — Mx X um, My be given by [E] —,[E, Oy],
where E is the extension by a structure sheaf to the divisor, then there is a canonical
isomorphism

n*(O™) = O0°.
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In particular, O° is trivializable.

Consequentially, if all stable pairs parameterized by M are of a fixed class [Ox] +
a, where o € K2 (X), this determines unique orientations up to a global sign for a
fixed compactification Y of X. After fixing a compactification X C Y, we can also
study compatibility of orientations under direct sum of perfect complexes. Note that
(Mx)™P and C§ are H-spaces (see §3.2.2) with the binary operation p : (Mx)™P X

(Mx)"*P — (Mx)'*P. The main results are summarized in:

Theorem 1.0.3 (Theorem 3.4.4). Let C$ denote the connected component of C$
corresponding to a € K%(X) = m(C§) and OF = O |ce . There is a canonical
isomorphism ¢~ : O K O¥ — p*(O¥) such that for fized choices of trivialization o
of O, we have

o)

¢ (I 05) BI(T0F) ) 2 0505 5)

where the e,5 € {E1} satisfy ego = (—1)X@IXEAIX @, o and ey penip, =

€8,~v€a,B+7 fOT’ all avﬁ77 € KSS<X)

In Chapter 4, we will use the conjectural wall-crossing along the lines of Gross—
Joyce—Tanaka [76, §4.4] as stated in a precise form in Conjecture 4.2.10 and apply it
to Hilbert schemes of points. Recall that the Hilbert scheme of points Hilb"(X) on X
is the moduli space of ideal sheaves of length n. Their complex virtual dimension is
equal to n and we need degree n insertions to obtain invariants. We now summarize
results which follow assuming Conjecture 4.2.10 holds.

One natural insertion on Hilb"(X) studied by Cao-Kool [32], Cao-Qu [40] for

11



Calabi-Yau fourfolds is the top Chern class ¢, (L) of the vector bundle
LM = my (F @ 75 (L)), (1.0.1)

where X < X x Hilb"(X) 2 Hilb"(X) are the projections and O — F, is the
universal complex on X x Hilb"(X).

For the generating series of invariants

I(Liq) =1+ I(L)¢" =1+ Z/ MLy (1.0.2)

n>0 n>0 ¢ [HIb™ (X)]Vir

Cao—Kool [32] conjecture the following:

Conjecture 1.0.4 (Cao—Kool [32]). Let X be a projective Calabi-Yau fourfold and

L a line bundle on X then
I(L;q) = M(—q)"Hret®) (1.0.3)

for some choice of orientations. Here M(q) = [[;=,(1 — (¢)")™" is the MacMahon

function.

Cao—Qu [40] prove that if L = O(D) for a smooth connected divisor D C X,
then this conjecture holds for some choices of orientations. We use their result in
Theorem 4.3.1 to reduce Conjecture 1.0.4 for any line bundle L to Conjecture 4.2.10.
The wall-crossing conjecture also implies that the orientations for which this holds are
independent of L and can be expressed in terms of compatibility under direct sums
of orientations as in [76, Thm. 2.27] and Theorem 3.4.6. We call these orientations

point-canonical. We then go on to study many new invariants that have not been

12



considered for compact Calabi—Yau 4-folds which we hope will give directions for new

research. We address here the three main consequences:

1. K-theoretic invariants for Calabi—Yau 3-folds using twisted virtual structure sheaves
were introduced by Nekrasov-Okounkov [136] to study the correspondence between
DTy invariants and curve-counting in CY 5-folds. The idea is to think of the usual
virtual structure sheaf O""" of Fantechi-Gottsche [51] as a Dolbeault operator on the
moduli space of sheaves. The twisted virtual structure sheaf is obtained by tensoring
with a square root of the virtual canonical line bundle and similarly to (3.1.7) is
meant to represent the Dirac operator. Oh-Thomas [141, §6] give us a twisted virtual
structure sheaf O*'" on Hilb™(X). Note that in the four-fold case the twist is necessary
for the object to be independent of the choices made in the construction. On C*,

Nekrasov [135] and Nekrasov-Piazzalunga [137] define the invariants
X(0"" @ ALY, @ det™2 (L))

where L is trivial line bundle with weight ¢!

of an extra C* action and A}V =
Zizo(—y)"A"V for a vector bundle V. Their conjectured formula for the generating

series related to counting solid partitions was recently proven by Kool-Rennemo [107]

and can be expressed as

(TC* = T*CY) (L2, — L2 )1

K(Ly-1;q) = Exp {x (C4, q (1.0.4)

N|=
N
—

—_
|
(S
~

(1—gqL

yfl

where y means the equivariant Euler characteristic and Expl-] is the plethystic exponen-

tial (see Theorem 4.5.5). As all results thus far have been restricted to the equivariant
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toric setting, we study these invariants for compact CY4. Let us set the notation
LTV = (O V). (1.0.5)
For a; € K°(X) define
Aoy = A, (aﬁ"}) ® det 2 (a[n] -y,

Y 7

K(@,:q) =1+ Y ¢"¢™" (HID"(X), A, (o) @ - @ Ay (o). (1.0.6)

n>0

Our motivation for studying these is to understand what the relation between local
and global geometries are. Most importantly, we show in Theorem 4.5.5 assuming
Conjecture 4.2.10 that when N = 1 and rk(a) = 1, we obtain for point-canonical

orientations

K(a,y;q) = Exp [X(X,q (1.0.7)

which is the conjectured formula of Nekrasov, when one replaces X with C* and «
with Ocs.  Motivated by Cao-Kool-Monavari [35, Prop. 1.15], we also show that
the coefficients of (1.0.6) are integers whenever the sum of ranks of a; is odd and

ale) ¢ [2(X, 7).

2. For a surface S and a line bundle L — S the Segre series

R(S,L;q) = / son (L") "

Hilb™(S)

appeared in Tyurin [171] in relation to Donaldson invariants on complex surfaces.

14



Its precise form was conjectured by Lehn [114]. This was proven by Marian—Oprea—
Pandharipande [124] for K3 surfaces and the general case in [126]. For any rank, these
invariants have been considered by Marian—Oprea—Pandharipande [125], because of

their relation to Verlinde numbers and strange duality (see Johnson [89]).

Let @ = (ay,...ay) for aq,...ay € GO(X) and £ = (t1,...,tn), @ = (a1,...,ay) =

(tk(c), ..., rtk(ay)). We define the DTy-Segre series for Calabi-Yau 4-folds by

R(d,Tiq) =1+ ”/ sy (al™y Y 1.0.8
(a q) z%q [Hilb"(X)} ! (al ) o <aN) ( )

n>

The corresponding series for virtual fundamental classes of Quot-schemes on surfaces

were studied by Oprea—Pandharipande [143]. When N = 1, we will use

R(a;q) =1+ Zq”/ sn(a[”]) )

s [Hilb™ (X)]vir

Firstly, we define the following universal transformation

n

U(f@) = [TTL (=5 0™

n>0 k=1

Recall then that the Fuss-Catalan numbers and their generating series defined by Fuss

[62] are given by

Oy (a” * 1) L Bu@) = Cuad" (1.0.9)

an +1 n
+ n>0

Theorem 1.0.5 (4.5.1). If Conjecture 4.2.10 holds, then for point-canonical orienta-

15



tions we have
R(O_f, t_; q) = U[(l + tlz)m(al)'cs(X) .. (1 T tNZ)cl(aN)'%(X) ’

where z is the unique solutions to z(1 +t12)™ -+ (1 + ty2)*N = q. Moreover, we have

the explicit expression

(

U[,%’aﬂ(—q)_cl(o‘)'c?’(X)} fora>0

U[B_o(q) @] for a < 0.

\

One of the most notable properties of the Segre series on surfaces is their correspon-
dence with the Verlinde series V(S,a;q) = 1+ >, _,4"x (det (a["])> motivated by
strange duality as in Johnson [89]. An explicit formulation was given by Marian—

Oprea—Pandharipande [126] as a change of variables z = f(q), w = g(q) giving
V(S ,a;2) = R(S, —a;w) . (1.0.10)

This was developed further in [125]. For virtual classes of Quot-schemes this duality

appeared in Arbesfeld et al [5].

In the case of Calabi-Yau 4-folds, we define DT}-Verlinde numbers for each o € K°(X)
by

Viasq) =1+ 3 g™ (Hilb"(X), det(al) £} )

n>0

where F/ = det ((9&?]), and the square-root is taken in rational K-theory. Assuming

16



Conjecture 4.2.10, the resulting duality on 4-folds stated in Theorem 4.5.12 is
V(s q) = Rla; —q) .

Note that this will hold for any choice of orientations.

3. We discuss here a more general result, linking all invariants discussed above to
those for elliptic surfaces and elliptic curves by a direct computation. Recall that
for a surface S or a curve C, QuotS/C((CN ,n) parameterize surjective morphisms
CN ® Og)c — F, where F is a zero-dimensional sheaf with x(F) = n. The virtual
fundamental classes constructed by Marian-Oprea—Pandharipande [124, Lem. 1.1]
and Marian-Oprea [123] also fit into the wall-crossing frame-work as stable pairs,
and we will be able to recover the results of Arbesfeld et al [5]*, Lim [118], Oprea—
Pandharipande [143] in our future work [18] via wall-crossing. In fact, our result there
will be more general, because it allows us to integrate any insertion of topological na-
ture while the above authors only consider multiplicative genera of tautological classes.
We give a small excerpt in the last section from the above related to elliptic curves
and surfaces which explains the following (see also Theorem 4.5.14 for the analogous
statement for K-theoretic invariants): Let S be an elliptic surface and f, h be multi-
plicative genera (see §4.4.2 or for a standard reference in relation to Hilbert schemes

[50]). There is a universal series A(q) depending on f, h and a = rk(3), such that

1+ q"/ w FBIMR(TT) = A(g)PralS) (1.0.11)

n>0 [Quot(S,(Cl,n)]

*Here we expect to futher include contributions from divisors captured by Seiberg—Witten in-
variants.
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where TV" denotes the virtual tangent bundle. Assuming Conjecture 4.2.10, we show
in Theorem 4.5.14 that for « € K°(X) with rk(a) = a and h(z) = g(z)g(—z) we have

in terms of the same universal series A(q):

1+ "/ o f™yg (TR ) = U(A(g) @) 1.0.12
E%Q [Hilb”(X)] fla )9( Hilb (X)) ( (q) ) ( )

n>

One can further relate these invariants to integrals over symmetric products of elliptic
curves by geometric arguments as in Oprea—Pandharipande [143] or by studying wall-

crossing for elliptic surfaces and curves.

1.0.1 Future research

The above results lead to many interesting open questions that the author would like

to focus on in the future some of which include:

(Q1): Does there exist a degeneration argument along the lines of Levine-Pandharipande
[116] using the technology of Li-Wu [117] or Maulik—Ranganathan [130] explain-

ing the relation between (1.0.4) and (1.0.7).

(Q2): Is there a geometric interpretation of the Segre—Verlinde duality for Calabi—Yau

fourfolds as in Johnson [89]7

(Q3): What is the geometric interpretation if any of the universal transformation U

comparing the invariants in (1.0.11) and (1.0.12)7

18



Chapter 2

Background

2.1 Connections

We begin by a quick review of gauge theory motivating the results that follow. For
more details see e.g. Donaldson—Kronheimer [49] or Joyce [92]. Let X be a smooth
connected manifold of dimension n. Let 7 : P — X be a principal G bundle for a
connected Lie group G with the Lie algebra g and the right action 7: P x G — P.

A connection V on P has the following two equivalent definitions:

1. As a rank n distribution V on P that is invariant under the right action of G' on
P, and 7, : TP — 7*(T'X) induces an isomorphism between the distribution

and 7*(TX).

2. As a g-valued one form wy € Q'(P, g), such that for each p € P and under the
identification of the tangent space T,(7!(7(p)) of the fiber at p with g, the
action of wy restricted to this space is the identity. One also requires that its

pullback under the right action of g € G is given by 7(—, g)*wy = ad,-1 o wy.

19



The second formulation identifies after fixing a connection V the space of connections
with I'°(T* X ®ad(P)), where ad(P) = g X P is the associated bundle to the adjoint
action ad : G — End(g). Recall that Gauge group is defined by Gp = {¢ € Diff(P) :

(2.1.1) are commutative}:

P—2sp  PxG@2pPxq
l l f lﬂl (2.1.1)
X =— X p—2 p.

The first description of connections gives us a natural action of the gauge group G
of P on Ap, where Ap is the space of connections. Then the irreducible connections
have stabilizer group Z(G) C G and we denote their set by A% and one considers the

space BE = A /(Gp/Z(@)).

Definition 2.1.1. We will use the notation Q to denote real i-forms on X, A%, AP
to denote complex i and (p, ¢)-forms. For each connection Vp € Ap let V,q(py be the
associated connection on ad(P) and for a differential operators D : IT'°(Ey) — I'™°(E;)
between vector-bundles Ey, By let DVad® : T*°(Ey @ ad(P)) — ['*(E; ® ad(P)) be
the twisted operator (see Donaldson-Kronheimer [49, §2.1], Cao—Gross—Joyce [30,

Def. 1.2], Joyce—Upmeier [98, Def. 2.4]).

We now give a short motivation for the definition of invariants counting coherent

sheaves on Calabi—Yau 4-folds.

Definition 2.1.2. A Calabi-Yau fourfold is a pair (X,), where X is a smooth

complex quasi-projective four-fold and €2 a trivialization of its canonical bundle.
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For given (X, () we have anti-linear maps:

# . AO,k — A0,47k, #2 _ 1’

aA#6 = (=)o, B)Q, ae A% g e A, (2.1.2)

where (—, —) is the induced metric on forms. This induces a splitting A%? = A%? @
A%? into real subspaces giving an elliptic complex (see Atiyah-Singer [8, §7]) for each

connection Vp :

5Vad(P) 5Vad(P)

0 — A% @g ad(P) = A™ @p ad(P) ——— A} @z ad(P) =0 (2.1.3)

When we view X as a compact complex manifold with the data (X, J, g,w), where J is
the complex structure, g Kéahler metric and w the symplectic form. If Hol(g) = SU(4),

connections satisfying

a5V

Fg,z =0, o JVmm =0, FAw=0 (2.1.4)

are called SU(4)-instantons and their moduli spaces were studied by Cao—Leung [37]

and Donaldson-Thomas [48]. While the Hermitian Yang—Mills equations

F02 — §Vaap) o §Vad(P) — 0, FAw=0

are overdetermined, SU (4)-instantons give rise to virtual fundamental classes assum-

ing some compactness: Recall that Spin(7) is the group of transformations on R®
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preserving the 4-form:

Qo =dx1234 + dx1278 + dT1278 + dX1357 — dT1368 — AT1458 — AT 1467

— dxozss — dTa3e9 — dToas7 + dToa6s + dT3456 + dT3a78 + dTs678

where dz;ji; = dx; A\ dz; A dxy, A dx;. There is a natural embedding SU(4) C Spin(7)
which makes (X, J, g,w) into a Spin(7) manifold (see [92, §10.6]). On a Spin(7)
manifold, there is a natural splitting A?T*X = AZ7*X @ A3, 7T*X. Denoting 77 :

A?T*X — AZT* X the projection, this gives rise to the elliptic equation
7T O F=0 5

which coincides with the one in (2.1.4) when X is Calabi-Yau. The set of connections
B Birr then forms a derived manifold (see e.g. Joyce [94]) and carries a virtual
cobordism class constructed using orientations from Theorem 3.2.9 if compact.

We only used this opportunity to set some notation and abandon this view-point
for that of coherent sheaves and perfect complexes for the following reason: If on

top of (2.1.4), one additionally requires that the ad(P)-valued (0,2)-form F%? =

OVad(P) o 9Vad(P) satisfies the topological condition
/ tr(FO2 A FO)Q =0 then F)?=0 < F*?=0,
X

so if G is U(n) and E is the bundle associated to P via the natural representation
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C", it will be holomorphic. In this case, we have the isomorphisms

H'Y((2.1.3)) 2 Ext'(E,E),  H?*(2.1.3)) 2 Ext*(E,E), ,

where Ext?(E, E), C Ext?(E, E) is a real subspace with respect to the real structure

(2.1.2) which descends to cohomologies.

2.2 Moduli spaces of coherent sheaves and perfect

complexes

In the previous section, we have motivated working with holomorphic vector bundles.
This subsection is dedicated to developing the language of moduli stacks on the side of
algebraic geometry that will be used later. For background on sheaves and complexes,
we recommend Hartshorne [79], Huybrechts [86] and Gelfand—Manin [67]. Recall first

that we have the following fully faithful inclusions of categories

Vect(X) C Coh(X) C D*(Coh(X)), Cohes(X) C D*(Cohes(X)),  (2:2.1)

where the latter describes compactly supported coherent sheaves and complexes of
coherent sheaves with compactly supported cohomologies. To find answers to the
corresponding moduli problems, we need the language of stacks, higher stacks and

derived stacks. From now on we work always over C.
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o The 2-category of Artin stacks ArtSt consists of 2-functors

Aff —» Grp,

where Aff is the 2-category of affine schemes and Grp is the category of
groupoids. These have to additionally satisfy a descent condition with respect

to the étale topology and have a smooth atlas. See for example Olsson [142].

» Some foundational work on derived stacks has been done by Toén and Vezzosi
[170, 167, 169], in the setting of model categories (see Hovey [85] and Hirschhorn
[82]) and Lurie [120] in the setting of co-categories (see Lurie [122], [121], Toén
[166], Gaitsgory—Rozenblyum [65], Gaitsgory [63]). The latter has become the
standard approach nowadays. Model categories then serve as a direct way of
constructing co-categories. Roughly speaking an co-category is a category with

morphisms forming simplicial sets

Hom(S,T) € Ob(sSet),

where the composition

Homgget (S, T) X Homgget (7, U) — Homgget (S, U)

is a simplicial map. An example is the category Sset itself, which one uses
to model Grp,, the co-groupoids and sComm the simplicial commutative C-
algebras, which are the simplicial objects over the category of C-algebras. Let

dAff be the oo-category of derived affine schemes (opposite of sComm), then
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the oco-category of derived stacks dSt consists of co-functors

dAff — Grp,, .

On morphisms, these act as simplicial maps. The objects of dSt need to satisfy a
hyper-descent condition with respect to étale hyper-coverings (see Toén—Vezzosi
[170, Def. 3.4.8], Lurie [122, §6.5.4]). To make things locally more computable,
Brav-Bussi-Joyce [25], Borisov—Joyce [23] use the equivalence to connective
commutative differential graded algebras (see [25, Def. 2.1], Schwede—Shipley
[155])

sComm — cdga=’.

o Analogously, replacing dAff by the category of affine schemes Aff one obtains

the oco-category of hSt of higher stacks as oco-functors

Aff — Grp,,

Moreover, there is an inclusion 7 : Aff — dAff of affine schemes which induces
a truncation oo-functor as its Quillen left adjoint ¢t : dSt — hSt (or modulo
homotopy, simply left adjoint). In particular, we have the map ig : to(S) — S,

which we will use in general to restrict bundles and complexes on S to ty(.S).

The non-derived cases in (2.2.1) have solutions to the moduli problems in Artin stacks

(see Laumon—Moret-Bailly [111, §2.4.4, 3.4.4 & 4.6.2]):

MP My, M
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One needs to do extra work for the second pair, because complexes in derived cat-
egories do not satisfy the descent condition. For this, one needs the notion of dg-
categories (for background on dg-categories see Keller [101] and Toén [165]). Mor-
phisms of objects Hom(A, B) in a dg-category 7 form complexes of vector bundles

and their composition

Hom(A, B) ® Homy(B,C) — Homy (A, C)

is a morphism of complexes. Toén [165] introduces homotopy theory of dg-categories,
which is then used in Toén and Vaquié [168] to define for T its associated moduli
stack as a derived stack M. This defines a functor from the homotopy category of

dg-categories to the homotopy category of derived stacks

My : Ho(dg - Cat)°® — Ho(dSt).

Composing with Ho(ty) : Ho(dSt) — Ho(hSt) mapping to the homotopy category of
higher stacks. We denote the composition by M _).

The idea is now to replace D*(QCoh(X)) with its dg-enrichment Lqeon(X) sat-
isfying (i) it has the same objects as D’(QCoh(X)), (ii) for any two complexes, we
have HO(Homy,, «, (£, F)) = Hompscon(x)) (E, F).

Then forming Lye(X) C Lgeon(X) containing perfect complexes one uses the above

to construct

My =Mp x), Mx=Myg, (X).

These classify objects E in D*QCoh(X) for which Hom(F, E) is perfect for all perfect
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F' as explained in [168], [26, Ex. 3.7] . In particular, if X

e is smooth then Mx classifies compactly supported perfect complexes. This is
standard and can be shown by the local to global spectral sequence (see e.g.

Huybrechts [86, proof of Lemma 3.9]).

o it is smooth and proper, then it classifies all perfect complexes and can be

expressed as a mapping stack (see [168, p. 60])

My = Mapyg (X, Perfc), My = Mapyg (X, Perfe), (2.2.2)

where Perfc is the derived stack of perfect dg-modules/complexes over C as

defined in [167, Definition 1.3.7.5] and Perfc = to(Perfc).

o is not smooth, then it can classify objects which are not perfect. As an example,

one can take X = Spec(k[z]|/(z?)) and its complex k concentrated in degree 0.

(Co)tangent complexes on Mx give an important tool for studying deformation-
obstruction theory of moduli problems. Certain derived stacks S called locally geo-
metric locally of finite representation admit perfect cotangent complexes Lg (see [167,
Cor. 2.2.3.3], [168]). When X is smooth and proper, Mx was shown to satisfy this
property by Toén—Vaquié [168, Cor. 3.29]. The same argument does not apply when
X is not proper, however perfect cotangent complexes still exist by [26, §3.4/p.2]*.

For (X, Q) CY4, let T — M x be the tangent complex and . = TV the cotangent

*The author is aware of a different straightforward argument, where one embeds X — Y for
some smooth Y which induces an open embedding M x — My . Then the (co)tangent complex on
Mx is the pull-back of the on on My-.
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complex. The relation to obstruction theory is a result of the isomorphism

T|iz = Hom(F, E)[1],

for each C-point [E], which was shown by Brav-Dyckerhoff [26, p. 3.21] and Toén—
Vaquié [168, Cor. 3.17]. To replace the duality (2.1.2) for SU(4)-instantons by the
corresponding notion on My, we recall —2-shifted symplectic structures introduced
by Pantev-Toén—Vaquié-Vezzosi [145]. The usual single complex of differential forms

on a smooth manifold is replaced by the double complex (A*Lx/e], d, dar) :

=
U
4
-
=)
ISH
4
g
S
4

A 2-form of degree n is an element in [wy] € H"(A*Lyx). A closed 2-form of degree n
is an element in [w] € H" (D5, A***L[k]) and it has its underlying 2-form [wo] given

by projection inducing a morphism

6 . L —» T[-n]. (2.2.3)

When n = —2 and 6“ is an isomorphism then [w] is —2-shifted symplectic. For a
quasi-projective (X, 2), —2-shifted symplectic structures were constructed by Brav—

Dyckerhoff [26, Prop. 5.3] and [26, Thm, 5.5 (1)] extending the work of Pantev—
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Toén—Vaquié—Vezzosi [145] for projective Calabi—Yau fourfolds.

Definition 2.2.1 (see also Borisov—Joyce [23, Def. 3.26]). In [153], Schiirg-Toén—
Vezzosi construct a perfect determinant map det : Perfr — Pic. For a perfect
complex C € L, on a derived stack S corresponding to a map u : § — Perfg,
we denote by det(C') the line bundle corresponding to the composition det o u and
Ag = det(LL). Then (2.2.3) induces the isomorphism 7 : Ay = Aj and an orientation
is a choice of isomorphism

0: N = O 0* = ad(i),

where ad (i) : AJ = 7 denotes the adjoint isomorphism to i*.

2.3 DT, invariants

Existence and the choice of orientations in Definition 2.2.1 is vital for defining invari-
ants counting sheaves and complexes on a Calabi—Yau 4-fold and so are the —2-shifted
symplectic structures. For this section, we assume that H(Ox) = 0 for i = 1,2, 3,
and use the notation G°(S) to denote the Grothendieck group of coherent sheaves
on S for any scheme S. When (X, (2) is compact, one can obtain this restriction
by requiring that for a choice of metric g on X its holonomy group is SU(4), then
we are back in the setting of §2.1. These virtual fundamental classes were originally
defined by Borisov—Joyce [23] and Cao-Leung [37]. We choose to follow the more
recent algebraic geometric approach of Oh—-Thomas [141] as it offers multiple addi-

tional techniques including the construction of a virtual structure sheaf appearing in
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Chapter 4. A different approach was also given by Kiem—Park [102] which also allows
the definition of reduced invariants.

To talk about virtual fundamental classes, let us briefly review stability condi-
tions. There are many notions of stability conditions: see Rudakov [152], Joyce [93],
Bridgeland [27]" and Toda [164, §2]. The following is one of the most general defini-

tions:

Definition 2.3.1. Let A be an abelian category, Ko(A) — K(A) a quotient of its
Grothendieck group and C(A) the image of [-] : Ob(A)\{0} — K(A), such that
0¢ C(A). A stability condition on A is a triple (7,7, <), such that (T, <) is a totally
ordered set and 7 : C'(A) — T is a map satisfying the see-saw condition: For each

a, B,y iy=a+f

(@) <7(y) <7(B) or 7(a)>7(y)>7(B), or 7(a)=7(8)=7(7),

A non-zero object E is semi-stable when for a non-zero F' C E we have 7([F]) <

7([E]) and stable if F C E implies 7([F]) < 7([E]).

We only recall here the notion of Gieseker stability as in Huybrechts—Lehn [86,
Def. 1.2.4]. That is the only notion necessary to make sense of Conjecture 4.2.10
except for pair stability, which we recall there. Fixing an ample line bundle O(1), the
reduced Hilbert polynomial of a non-zero sheaf F' is the unique polynomial pr with
leading coefficient 1 satisfying appr(n) = X(F(n)) , for n > 0,ar € Q. Then a sheaf

F' is said to be

o Gieseker semistable if it is pure and for each non-zero £ C F, pg(n) < pp(n),

THere also see B.-Dimitrov [21].
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n>0
o Gieseker stable if it is pure and for each non-zero E C F, pp(n) < pr(n), n > 0.

In terms of Definition 2.3.1, this can be interpreted as fixing C'(Coh(X)) C K (Coh(X)),
where the latter is the numerical Grothendieck group, and defining the map pigy :

C(Coh(X)) — Q[t] with the order given by
p<q < deg(p) >deg(q) or (deg(p)=deg(q) and p(n)<g(n) forn>>0).

Recall now that for a proper scheme S and its (truncated) cotangent complex Lg — S
(see e.g. Illusie [88], Behrend-Fantechi [13] or Battistella-Carocci-Manolache [11]) a
perfect obstruction theory is a map from a two term perfect complex F — ILg, such
that H°(F) — H%(LLg) is an isomorphism and H~!(F) — H~!(ILg) is surjective. Then

Behrend-Fantechi [13] construct the virtual fundamental class
[S]™ € Haua(9), vd = 1k(F) .

Example 2.3.2. Let S be a projective surface and consider the variety Quotg(CY, 3,n)
of 1-dimensional quotients C¥ ® Og — F for x(F) = n and [F] = 3, then it has
a natural perfect obstruction theory constructed by Marian—Oprea—Pandharipande

v
[124, Lem. 1.1] given by F = <T[071}HomQuotS((CNﬂ’n) (Z, .7:)) , where

T=(C"®0x — F)—= S x Quot(S,CN n)

Vd(QuotS((CN, 6,n)> = 3?4+ Nn
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as can be seen by Hirzebruch—Riemann—Roch.

Moving on to Calabi—Yau fourfolds, one needs some adaptations. Naively, for
a given projective moduli scheme of Gieseker stable sheaves the deformation at F
corresponds to Ext'(E, E) and obstruction to Ext*(E, E). However, similarly to
SU (4)-instantons, this does not lead to well defined virtual fundamental classes be-
cause then vd|p = Ext'(E, E) — Ext*(E, E) depends on E. The approach proposed

by Borisov—Joyce [23] and Cao-Leung [37] inspired by (2.1.3) requires taking

Ext'(E, E), Ext?(E,E)4,

where ExtQ(E, E), is a real subspace with respect to the algebraic Serre-duality
Ext?(E, F) = Ext*(E, E)*. The construction of Oh-Thomas [141] is claimed to be
equivalent to those above (as promised in [141, p. 6] and to appear in [140]) but
instead it relies on taking an isotropic subspace Ext’(FE, E), with respect to the
pairing ¢ : Ext*(E, F) x Ext*(E, E) — C.

This leads to the question of orientations. In the language of Borisov—Joyce [23],
orientations are continuous choices of orientations on the real space Ext?(E, E),,
while in the algebraic setting of Oh—-Thomas [141] there are two families of isotropic
subspaces related by SO(ext?(E, E),C). The resulting classes are dependent on these
choices. We now describe more thoroughly the latter construction, which requires
X(a, o) € 2Z.

Let & be the twisted universal sheaf (see Caldararu [29]) on X x M, then Huybrechts—
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Thomas [87] construct the Atiyah class
At  E =719 (HomM(S,g)[B]) — L.

By Grothendieck—Verdier duality [78, VII, 3.4(c)| there is an isomorphism E = EY[2].
Oh-Thomas [141, Proposition 4.1] show that it admits a self dual, locally free reso-

lution

(T—-FE—->T")—E,

where F is an O(n,C) bundle. If orientations of Definition 2.2.1 exist, £ reduces to

an SO(n,C)-bundle and Oh-Thomas [141] construct
[M]™ = Hy_ ooy (M, Z[27Y]),  O"" € Go(M,Z[27")). (2.3.1)

The latter is the twisted virtual structure sheaf, and both [M]"" and O depend on
an additional choice of orientation. It is important to note that the construction relies
heavily for now on existence of —2-shifted symplectic structures, unless one is in a
setting where everything can be made explicit. The point of view of real (derived)
manifolds of Borisov—Joyce [23] is in some way more natural and the author thinks of
the Oh-Thomas construction as being less fundamental but more approachable and

computable. This is especially clear from the following:

Theorem 2.3.3 (Oh-Thomas [141, Thm. 6.1]). Let M be projective with a fized

choice of orientation, V € G° (M), then

XV = VTA(E)ch(V). (2.3.2)

[M]vir
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Proof. This is just Theorem [141, Theorem 6.1] stated in terms of x"*(—) using the

notation 1.0.5. O

Recall that for a real vector bundle F on a manifold M its A-genus satisfies
A(E) = VTd(E®C). This tells us that O may be thought of as the Dirac operator
on M, (7) via the Atiyah—Singer Index Theorem [3]. We will see in Theorem 4.5.5 that
this is slightly misleading as in general (2.3.2) will not be an integer and a correction

by a square-root of a “tautological” determinant line bundle will be necessary.
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Chapter 3

Orientations for DT invariants on

quasi-projective Calabi—Yau

fourfolds

As explained in §2.3, orientability of moduli spaces is crucial for studying invariants
on Calabi-Yau 4-folds. Our goal in this chapter was to prove orientability in its full
generality in hopes that it would be useful for degeneration arguments similar to those
by Levin-Pandharipande [116] and Maulik-Pandharipande-Thomas [129]. We hope
that eventually this will also find application when studying invariants for general
toric manifolds. As of writing the thesis, the author is not aware of a published
result proving orientability in the local cases apart from Diaconescu—Sheshmani-Yau
[45]. For compact X with H°!(X) = 0 and moduli spaces of stable coherent sheaves
this was originally addressed by Cao-Leung [31]. It was then extended by Cao—
Gross—Joyce [30] to all compact geometries and perfect complexes. One standard well

known result in the local case can be found in Oh—-Thomas [141, §7] or Diaconescu—
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Sheshmani—Yau [45], where one considers the total bundle of the canonical line bundle
Ky — Y for a Fano 3-fold Y. More recently, Kool-Rennemo [107] constructed
explicit orientations for Quot-schemes of points on C* by embedding it into a non-
commutative Quot-scheme.

We begin this chapter by discussing a straight-forward generalization of Cao—
Gross—Joyce [30] to spin geometries. This proves orientability in Definition 2.3 for
X which admit compactifications with spin structures. As we do not expect these to
always exist, we approach the problem differently in 3.1.3 and obtain a result without
additional restrictions on X. This chapter can be found in a slightly different but

equivalent form in the author’s previous work [19].

3.1 Orientation bundles on moduli stacks of per-

fect complexes

3.1.1 Twisted virtual canonical bundles

If X is proper, we can use the description of M x as a mapping stack to construct a

universal complex on X x My: If

u: X X Mx —>Perf(c (311)

is the canonical morphisms for Mx as a mapping stack, and U, is the universal
complex on Perfc used by Pantev-Toén—Vaquié—Vezzosi in [145], then one defines the
universal complex Uy = u*(Uy) on X x Mx. When X is quasi-projective and not

necessarily proper, we need a different construction of the universal structure sheaf.
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Definition 3.1.1.

§y = My, : Mx = My (3.1.2)

be the image of the pullback % : Lye(Y) = Lpe(Y'), then it acts on Spec(A)-points by
the right adjoint of (z x X idgpec( A))* as follows from its construction in Toén—Vaquié
(168, §3.1] and therefore by the pushforward (ix X idgpec(a))« of compactly supported

families of perfect complexes on X. We define Ux — X x M x by

Ux = &y (Uy) .

It is independent of the choice of a compactification®.

When Z = []..; Zi, we will use mpp : Z — [[..;n Z; for I' C I to denote the

il el
projection to I’ components of the product. We use this also for general fiber products.
Let Y now be any a quasi-projective smooth four-fold, L a coherent sheaf on Y and

Uy € Lpe(Y x My) its universal complex compactly supported in Y. We define

gXtL :7T273*(7Ti2u¥®ﬂ'i3uY®7TTL), ]PL = Aj\/[YgXtL' (313)

As pushforward along 75 3 : Y X My Xx My — My x My maps (compactly supported)
perfect complexes in Y to perfect complexes, it has a right adjoint 7r!273 by Lurie’s
adjoint functor theorem Gaitsgory—Rozenblyum [64, Thm. 2.5.4, §1.1.2], Lurie [122,
Cor. 5.5.2.9]. Moreover, ) 3 = 73 5(—) ® Ky[4], which gives us the usual Serre duality
in families

Extr = 0" (Ext{re, orvy) 4], (3.1.4)

*Simply choose a common compactification Y <= Y” — Y’ and compare the resulting universal
sheaves
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where 0 : My x My — My x My is the map interchanging the factors.

Definition 3.1.2. Let Y be smooth and and L a coherent sheaf on Y, then as (3.1.3)

are perfect, we construct the L-twisted virtual canonical bundle

EL = det(SxtL) s AL = det(IP’L) .

Moreover, ¥y, A are Zs-graded with degree given by a map deg(Ar) : Mx — Za,

such that

deg(EL)|/\/[a></\/l[3 =x(o,5-L) (mod 2), deg(Ar)|m, = x(a,a- L) (mod 2).

where a,8 € K°(X) and M, is the stack of complexes with class [E] = a. See

Definition 3.2.11 for more details.

From the duality (3.1.4), we obtain the isomorphisms

ZL’%JO'*(ZKX(@L\/)*, ‘9L - Py, —>]P>E/KX®LV)[_4]’ iy, ZAL —>A>(ka®LV)' (315)

Let us recall some definitions: Let (—)*" : Aff — Top be the functor mapping an
affine scheme over Spec(C) to its analytification. The category Top is Top-enriched,
moreover Top can serve as a model for the oco-category of co-groupoids. Thus Blanc
[16] defines

(—)*" : Ho(hSt) — Ho(Top), (3.1.6)

which practically by definition satisfies X*P = X up to homotopy equivalence for

any C-scheme X and commutes with homotopy colimits [16, Prop. 3.2.1].
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We also generalize the contents of Definition 2.2.1

Definition 3.1.3. Let L — X be a complex line bundle with an isomorphism 7 :
L — L*. Then we define the square root Zo-bundle associated with T denoted by O7.

This bundle is given by the sheaf of its sections in the respective topology:

O"(U)={o: Ly — Cp:0®0=ad(r)}.

3.1.2 Spin orientability

When X is a compact Calabi-Yau fourfold, Cao-Gross-Joyce [30, Theorem 1.15]
prove that OY — My is trivializable. One could generalize their result by replacing

the requirement of X being Calabi—Yau by a weaker one.

Definition 3.1.4. Let X be a smooth projective variety and Ky its canonical divisor
class. A divisor class ©, such that 20 = Kx is called a theta characteristic. We say
that (X, ©) for a given choice of a theta characteristic © is spin. For a given (X, ©),

we will use the notation Ky, = Ag. We then have by (3.1.5) the isomorphism

i Ky — Ky,

and by Definition 3.1.3 the associated Zy-bundle O% — My .

Remark 3.1.5. A choice of O is equivalent to a choice of spin structure on X*" (see

Atiyah [10, Proposition 3.2]).

Definition 3.1.6. Let Z be a projective variety over C. Let M?Z be the mapping

stack from (2.2.2). Let uyz : Z x M? — Perfc be the canonical map. Applying (—)*P
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and using Blanc [16, §4.2], we obtain (uz)®P : Z8 x (M?#)*P — BU x Z. This gives
us

Iy : (M%) — Mapgno(Z*, BU X 7).

For any topological space T we use the notation Cr = Mapgo(T, BU X Z) .

Proposition 3.1.7. Let (X,0) be spin with the orientation bundle O° — Mx. Let
I'x : (Mx)" — Cx be as in Definition 3.1.6 and apply (—)*P to obtain a Zy-bundle

(O%)*P — (Mx)®™P. There is a canonical isomorphism of Zs-bundles
S\top ~v T b/
(O7)P=T%(0c ),

where O?* — Cx is the Zy-bundle from Joyce—Tanaka—Upmeier [97, Definition 2.22]
applied to the positive Dirac operator P, : Sy — S_ as in Cao—Gross—Joyce [30,
Theorem 1.11]. In particular, O° — Mcx is trivializable by the aforementioned

theorem.

Proof. This is a simple generalization of the proof of [30, Theorem 1.15] relying on the
fact that Theorem 3.2.9 requires X®" to be a spin manifold to trivialize the orientation
bundle on By. We only discuss the corresponding real structure on the differential
geometric side replacing [30, Definition 3.24]. We have the pairing A® : (A%* ® 0) ®

(A% "*20) — A%* and the corresponding spin Hodge star x° : A%®0 — A"~ 120
BN K (a®s)=(Bos,at))  a,feA™ stel™(Q),

where Q0 € A** is the volume form. As a result, we have the real structures: #7 :
AVever 0 — A%ver @0 and #5 1 A0 — A% ® 0O, where again #7| 402000 =
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(—1)9%5 and #5| 402¢+190 = (—1)9"1%°. The Dolbeault operator commutes with these
De o #Y = #5 o Dg and its real part is the positive Dirac operator ) : S, — S_ by
Friedrich [59, §3.4]. As twisting by connections only corresponds to tensoring symbols

of operators by identity, this extends also to real structures on det(DVena®), O

Remark 3.1.8. Note that one can also state the equivalent of Cao—Gross—Joyce [30,
Theorem 1.15(c)], expressing the comparison of orientations under direct sums on

My in terms of the comparison on Cx.

Suppose that X is Calabi—-Yau and that there exists Y smooth with an open
embedding X — Y, where Y is spin. We say that Y is a spin compactification of X.
We now state the weaker result about orientability for a non-compact Calabi—Yau

fourfold. Recall, that we have the map &y from (3.1.2).

Corollary 3.1.9. Let X be a Calabi—Yau fourfold, and letY be a spin compactification
of X with a choice of © and an isomorphism ¢ : Ox — O|x, then there exists an

induced isomorphism of Zo bundles on Mx:

O =2 £,(09). (3.1.7)

In particular, Mx is orientable.

Proof. Let E be a perfect complex on X with a proper support, then the Z, torsors

at [E] of both of the above Zs-bundles are given by

{og : det (Hom(E, E)) — Cs.t. 0p ® op = ad(i)|(g}

where ¢ is the Serre duality, and we used the isomorphism £ ® © = E induced by ¢.
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Thus we have a natural identification of both Zs-bundles in families. By Proposition

3.1.7, the right hand side of (3.1.7) is trivializable, so the second statement follows. [

Remark 3.1.10. Let Y be a spin compactification of X and Y\ X = D be a divisor.
Let D = vazl D; be its decomposition into irreducible components. If we can write
the canonical divisor class of Y as Ky = vazl a;D;, where a; = 0 (mod 2), then

one can take
N

o8

i=1
as the square root. After choosing a meromorphic section Q2 of © with poles and
zeros on D, one obtains an isomorphism ¢ : Ox — O|y. Then the condition of

Corollary 3.1.9 is satisfied.

Example 3.1.11. The simplest example is C*. While its natural compactification
P* is not spin, one can choose to compactify it as P! x P3 or (P')** which are both
spin, both of which satisfy the property in Remark 3.1.10 by choosing 7} ((9(—1)) ®

m3(0(-2)) and R, 7 (O(—1)) as the square roots of Ky-.

Example 3.1.12. Let S be a smooth projective variety 0 < dim¢(S) = k£ < 4 and
let £ — S be a vector bundle, s.t. det(F) = Kg. Then X = Tot(E — 95) is
Calabi-Yau. Taking its smooth compactification Y = P(E @& Og) with the divisor
at infinity D = P(E) C P(E @ Og), one can show that Ky = —(rk(E) + 1)D. If
tk(E) € 2Z + 1, we see that we can choose © = Oy(—%D) which satisfies the
property of Remark 3.1.10. Then if rk(E) + k = 4, this is an example of Corollary
3.1.9, when rk(F) =1, 3.

If X =Tot(L; & Ly — S) for a smooth projective surface S and its line bundles

Ly, Ly, sit. LiLy = Kg, then the spin compactification can be obtained as P(L; @
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Os) Xg ]P)(Lg P Os) .

Example 3.1.13. Suppose we have a toric variety X (see Fulton [60], Cox [44]) given
by a fan in the lattice Z" C R"™. Suppose it is smooth and it contains the natural

cone spanned by (e;) ;. Define the hyperplanes

n

Hy={(21,...,2,) ER": > aj =i}

Jj=1

Then X is Calabi-Yau if and only if all the primitive vectors of rays of the fan lie
in H; and all the cones are spanned by a basis. A simple generalization of this well
known statement shows that X is spin if and only all the primitive vectors lie in Hyqq =
U,coz41 Hi - Starting from a toric Calabi-Yau X, one can compactify X to a projective
smooth toric variety Y by adding divisors corresponding to primitive vectors. In
general, we will not have spin compactifications: Consider the fan in R? with more
than 3 primitive vectors in Hy, then any compactification will be consecutive blow
ups of a Hirzebruch surface at points, with at least one blow up.

A common way of constructing Calabi—Yau manifolds is by removing anti-canonical
divisors from a Fano manifold. To further illustrate the scarceness of spin-compactifica-
tions in even dimension, we study the classification of toric projective Fano fourfolds
by Batyrev [12]. Using the condition described above, we can show that there exist
only 4 smooth toric Fano fourfolds with a spin structure. These are Pps (O & O(2)),
P x P3, P! x Pp2(O @ O(1)) and 4P! corresponding the the polytopes Bs, By, D1s
and Lg respectively. Note that there are 123 smooth projective toric Fano fourfolds

in total.

The last observation motivated the entire rest of the chapter.
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3.1.3 Orientation for a non-compact Calabi—Yau via alge-
braic excision principle

Let (X, Q) be a Calabi-Yau fourfold, then we fix a compactification Y with D = Y\ X
a strictly normal crossing divisor, i.e. it is a union of smooth divisors with transversal
intersections (any k-fold intersection is in particular smooth). By Hironaka [81, Main
Theorem 1], Bierstone-Milman [15] there exists a compactification with a normal
crossing divisor by embedding into a projective space and taking resolutions. The
additional strictness condition can be obtained, by subsequent blow-ups of all 1 <
k < 4 intersections. Consider the triples (E, F,¢), where E, F € Ly(Y) and ¢ :
E|p = F|p. We will take the difference of the determinants det(Hom(F, F)) and
det(Hom((F, F)) and cancel the contributions which live purely on the divisor. One
could think of this as an algebraic version of the excision principle defined for complex
operators in §3.2.3. Let us now make the described method more rigorous.

Let X, Y and D be as in the paragraph above, then we can write D as the union

D =D (3.1.8)

where each D; is a smooth divisor. We require €2 to be algebraic, then there exists

a unique meromorphic section Q of Ky, s.t. Q|x = Q. The poles and zeroes of

N
=1

express Ky uniquely in the following form Ky = > ", a;D;, where a; € Z. We may

write for the canonical line bundle:

Ky = Q) O(k:D;) = X) O(sgn(k;) D;)®i. (3.1.9)

=1 =1
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Let Np be the free lattice spanned by the divisors D; which we from now on denote
by the elements e; € Np. For a line bundle L = @ ,0(a;D;) we write L,, where
a=(ay,...,an). We will also use the notation Ly = Ky. Then for a non-zero global
section s; of O(D;) one has the usual exact sequence

5
0 > L » Love, — Lgte, ®oy Op, —— 0.

As all the operations used to define £xt, = £xty, and P, = Py, in Definition 3.1.2

are derived, we obtain distinguished triangles

1
Exty — Extate;, — EXtr,,. 00, Op, ECEN Exty[1],

(3.1.10)

[1]

]P)Q - PQJrei I PLg+ei®OY Op, - Pg[l] :

By (2.2.2) both My and M p, can be expressed as mapping stacks Map (Y, Perf(c) and
Map (Di, Perfc), respectively. Let incp, : D; — Y be the inclusion, then we denote by
pi : My — M p, the morphisms induced by the pullback (incp,)* : Lpe(Y) = Lpe(D;).

For each divisor D; we set L,|p, = L,; and
Exty; = To3.(m] o Ulv)i ® 7y 3Up, @ T Lgj) P,;, = A"Exty,,
Lemma 3.1.14. We have the isomorphism
Exbr,.,00,0p, = (pi x pi)" (Extate,i) s

]:P)Lg+ei®0y ODi = pz( (IP)E“Feiui) *
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where we use the same notation for the complexes P on My and Mp,.

Proof. For universal complex Uy, Up, on Y x My, D; x Mp, we have Uy |p,xpmy =

(idp, x p;)*Up, as follows from the commutative diagram

Y x My ———— Perfc

inCDiXidMY)I\ )I\

lde X p;

DiXMY;)DiXMDi'

For the dual we also have Uy|p,xm, = (idp, x p;)*Up, . Thus we have the following

equivalences

gXtLg+ei®OyODi
=2 3*(7T 1,2 Z/{V ® ™ 3(“) ® T‘-T (Lg+€¢ Xoy ODZ))

)

IHCD X ldMyXMy) (Z/lv QU WILQJFQ)

( D;x My X./\/ly)
=Ty 3*( lIlcD X 1dMY><MY) (ldD1 X P X pl)*(ﬂ—fz(ul\gl) ® 71—{,3(2/{171') ® WTLQ-H%Z'))
a0 ((idp, X pi % pi)" (1 oU,) © 715 (Up,)) @ 7} (Laser))

=(pi ¥ pi) (Extarei)

the first isomorphism is the projection formula [63, Lem. 3.2.4] and the last step
follows from the base change isomorphism 7 3, o (idp, X p;)* = (pi X p;)* 072 3. using

Gaitsgory [63, Prop. 2.2.2]" and that the diagram

DxMxxMx——DxMpxMp——D

| | |

MXXMX—>MDXMD—>*

TThese references are stated for derived stacks. So we should work with derived stacks until we
construct the isomorphisms in Definition 3.1.16, which we can then restrict by §2.2.
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consists of Cartesian diagrams by the pasting law in oo-categories. The second for-

mula follows using (p; X p;) 0 Ay, = Apmp, 0 pi: Mx = Mp, x Mp,. O

After taking determinants of (3.1.10), we obtain the isomorphisms
EQJrei = Zg ® p;Engei,i ) Ag+ei = Ag ® (p:Angei,i) ) (3'1'11)
where we omit writing L. We have the maps ip, : D; =Y ,ip :ip — Y inducing

pi :My — Mp,, pp : My — MP,

N N
M%):HMDi and p:Hpi:My—L/\/l%’
i—1 i=1

Note that we have the obvious map MP” — Mp. induced by the inclusion D; —

D. This gives
Sp:My X AqD MYZMKD —>./\/ly XMSLI; ./\/ly: ?D' (3.1.12)

Definition 3.1.15. For given X, Y as above let Q be a meromorphic section of Ky
restricting to ). Let ord denote the decomposition of D into irreducible components
as in (3.1.8), which also specifies their order, such that there exist 0 < N; < Ny < N,
such that a; = 0 for 0 <7 < Ny, a; > 0 for Ny <i < Ny and a; < 0 for Ny <i < N,
where a; are the coefficients from (3.1.9). For the construction, we may assume

N; = 0. We define extension data as the following ordered collection of sections

D= <(3i,k)ie{l,...N2}a (tj,l)je{N2+l,...N}> ;o Sip: Oy = Oy(Dy), tj;: Oy = Oy(Dy).

1<k<a; 1<i<—a,
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such that [Tieqr, noy Sine [ Lieqvat1,..n3 (i) "t = Q and s;, ¢ are holomorphic with
1<k<a; 1<I<—a,

zeros only on D;, resp. D;.
This leads to a definition of a new Zy-bundle:

Definition 3.1.16. On M7’ ), we have the line bundle
L:y’D = WTAQ X (W;AQ)* , (3113)

where My <+ M, = My are the natural projections.

For a fixed choice <, there is a natural isomorphism

L Lyp =mAg @y 0 p*(Ap) @m0 p"(Ap)" @ (m300)"

~ iy ® my(Ag)" 2wl (Ag)" ® 3(Ag) 2 L, (3.1.14)

Here Ap — M7 are line bundles and we used the commutativity of

sp 2
Y,D ? MY

o

P S
My —2— M

in the first step. The bundles Ap = A}, _Ap , appear as the result of using chosen

Si ) to construct isomorphism (3.1.11) for the first Ny divisors, then Ap _ is obtained
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from using t]’kl: and (3.1.11). Thus we will have the expressions:

AD’+ :AE_ZN2_1

i=1 aiei—l-(aNz—l)eNQ,Ng T

& A(E—vajflaiei),Nz X ...

® Ap—(a—1)er,1 @ ... @ Ay

AD’_ :AE—Z?% aje;,Na+1

The second to last step uses (3.1.5). We define the Zs-bundles by using Definition

3.1.3:

. * > Sp
19;5 : £Y,D —>(£va) , Osp — Y.D >

O™ = sp*(OZ) (3.1.15)

sp

where OF associated to J}.

The important property of the Zs-bundle O™ is that it is going to allow us to
use index theoretic excision on the side of gauge theory to prove its triviality. One
should think of the triples [E, F, ¢] which are the spec(A)-points in My, p as similar
objects to the relative pairs in [172, Definition 2.5] with identification given in some
neighborhood of the divisor D. The Zy-bundle O™ only cares about the behavior of

the complexes in X.

Definition 3.1.17. Recall that from Definition 3.1.6 we have the maps I'y

(My)*P — Cy and T'p : (MP)*P — Cp, We define T' as the composition

(My,p)*P — (My)'P X{ypyop (My)'P

— Cy XZD Cy ~ Cy X¢p Cy = CY,D- (3116)
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The first map is induced by the homotopy commutative diagram obtained from ap-

plying (—)*P to the Cartesian diagram

MY,D E— MY

L

My —— MP
The second map uses homotopy commutativity of

(My)top SN (MD)top «— (My)top

v |r» |rv

CY > CD < CY

The final homotopy equivalence is the result of the map (incp)* : (D)™ — Y
being a cofibration for the standard model structure on Top. The map Cy — Cp is
a fibration so the homotopy fiber-product is given by the strict fiber-product up to

homotopy equivalences.

We now state the theorem which follows from Proposition 3.3.15 below and is the

main tool in proving orientability of M x.

Theorem 3.1.18. For X,Y and D fix ovd and the extension data <1 as in Definition
3.1.16, then the Zy-bundle

o™ — MY,D (3.1.17)

is trivializable. Let DS, — Cy.p be the trivializable Zs-bundle from (3.3.1), then there

exrists a canonical isomorphism

3 TH(DS) = (0™)*P, (3.1.18)
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We now reinterpret this result to apply it to the orientation bundle of interest

oY — Mx.

Definition 3.1.19. Let ( : Mx — My p be the open embedding of stacks mapping

[E] — ([ix«F],0). We have the commutative diagram

top

t
M)?p L>./\/ly7D

l lr (3.1.19)

lc

Y ——Cvp,

where

£ 1 € = Cy x¢, {0} = Cy,p,

and Cy xc, {0} = Mapeo((X*,+),(BU x Z,0)). The space CF =
Mapeo ((XF,+), (BU x Z,0)) is the classifying space of compactly supported K-
theory on X (see Spanier [159], Ranicki-Roe [149, §2], May [132, Chapter 21]):

mo(C$F) == KL(X). We define
0% = (k*)*(DS). (3.1.20)

The following is the first important consequence of Theorem 3.1.18 and leads to the
construction of virtual fundamental classes using Borisov—Joyce [23] or Oh—Thomas
[141] using the —2-shifted symplectic structures of §2.2. It also gives preferred choices
of orientations at fixed points up to a global sign when defining/computing invariants
using localization as in [141], [37] for moduli spaces of compactly supported sheaves

M, with a fixed K-theory class o € K2, and for a given compactification Y.

Theorem 3.1.20. Let (X,Q) be a Calabi—Yau fourfold then Zo-bundle O — Mx
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is trivializable. Moreover, for a fized choice of embedding X — Y, with D = Y\X

strictly normal crossing, there exists a canonical isomorphism

3:(IR)7(0%) = (0°).

Proof. We prove this in 3 steps:
1. We have a natural isomorphism &-(O™) = O¥: Consider a spec(A)-point [E] €

My , E = (id x ix).(E), then at the corresponding spec(A)-point ([E],0) € My.p,

the isomorphism ., is given by

det(Hom(E, E)) ® C 2 det*(Hom(E, E ® Ky)) = det*(Hom(E, E))

where we use that Az|jg = C, the first isomorphism is Serre duality and the second

i

one is the composition of isomorphisms induced by E — E(D;) and E (-D;) — E.
As F is compactly supported in X, these isomorphisms compose into F L) ® Ky
by the assumption on <. Therefore 19|><]|([ 71,0y coincides with i* |1 and their associated
Zso-bundles are identified.

2. By Lemma 3.3.8, we know O%, O“ are independent of choice of >1. We define

a family of J(x) for fixed otd:

(3.

I(ea) - (15 )7(0%)

—_
p—

9

) .
(CP) 0 T*(DG) = ()" 0 (0P = (0%).

I12:

Any two choices of s, ;, differ by C* (and same holds for ¢;;). Therefore the set of >a
corresponds to ((C*)ZzN l%il=1 wwhich is connected and J(>1) does not depend on <.

3. For simplicity, let us assume we only have two different divisors Dy, Dy. We
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then have the isomorphism obtained from applying (3.1.11) twice

™ (A61+62) =1 (Ag)(p2 0 1) Aey2(p1 0 1) Aeyyea 1 (3.1.21)
T} (Aerres) =1 (Ao) (pr o ) Aep1(p2 0 ™) Neyen (3.1.22)
5 (A61+62) %JW;(A@ (p2 0 7T2)*Ae2,2(P1 o 7T2)*Ae1+e2,1 ) (3.1.23)
75 (Meytes) =5 (M) (p1 0 2)*Aey1(p2 0 T2) Ny yen 2 - (3.1.24)

To show that there is no difference between the chosen two orders, we use the commu-

tative diagram, where all rows and columns and rows fit into distinguished triangles:

P y P, > 05 (Pey 1)

| | |

Pey, ————— Pejye, — 1} (Peﬁ-ez,l)

! | !

p; (]P)e%z) B p;(P€1+€272) I piQ (]P)el—i-eg,l,Z)

We used in the bottom right corner term the restriction p1o @ My —
Mbp,ap, and Peiye, 12 = Pop,+Dy)p,np,- Laking determinants of all four cor-
ner terms of the diagram (see Knudsen—-Mumford [104, Prop. 1]) and pulling
back by m, we get both (3.1.21) and (3.1.22) where the latter comes with
(—1)deg((pD2°”)*Ao<D1‘Dl))deg((plom)mo(DQ‘Dz)). This holds also for (3.1.23), (3.1.24).
By commutativity of the diagram, we see that choosing the step (3.1.21), (3.1.23) or
(3.1.22), (3.1.24) we obtain the same as the signs cancel. As this permutes any two
divisors, we obtain independence in the general case. From Lemma 3.3.8, Proposition
3.3.7 and Proposition 3.3.15, D$ and J are independent of the order. Note that this

should be all considered under pull-back by sp : Myp — M7, to have natural
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isomorphism independent of choices on the smooth intersection D; N Dy:

sp” (W* © pT,2(P61+€2,1,2)) = sp” (WS o pI,Q(P€1+62:1,2>) :

]

Let us discuss another straight-forward consequence of the framework used in
Theorem 3.1.18. For (X, Q) a quasi-projective Calabi-Yau fourfold, let M be a moduli
scheme of stable pairs Ox — F where F' is compactly supported (see [39, 36, 42, 96,
164]) or ideal sheaves of proper subvarieties. To make sense out of Serre duality,
generalizing the approach in Kool-Thomas [108, §3] and Maulik-Pandharipande—

Thomas [129, §3.2], we choose a compactification Y as in Theorem 3.1.18.

Definition 3.1.21. Let &€ = (Oxxy — F) — X x M be the universal perfect
complex on M. Using the inclusion ix : X — Y we obtain the universal sheaf
&= (OM — (ix X idM)*(}")) — Y x M. We have the following isomorphism, where

(—)o denotes the trace-less part:

iy + det(Hom (€, €)o) = det(Hom,, (€, €)o) = det” (Hom,, (€, @ Ly)o)

= det” (Hom,,(&,&)o) = det*(Hom,, (&, E)o) ,
where k is constructed using the isomorphisms
Hom,,;(£,€ ® Ly)o = Hom,, (£, @ Ly e, )o (3.1.25)

in each step determined by > as in Definition 3.1.16. The orientation bundle O}, —
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M is defined as the square root Zy-bundle associated with 4.

Let M be a moduli stack of stable pairs or ideal sheaves on Y of subvarieties
with proper support in X with the projection 7g,, : M — M which is a [*/G,,]
torsor. We have an inclusion n : M — My p given on spec(A)-points by mapping
[€] = ([€,0v]).

The following result leads to the construction of virtual fundamental classes when
M is compact (assuming one believes the existence of shifted symplectic structures
on pairs as in Preygel [147] or Bussi [28]) and preferred choices of orientations up to a
global sign at fixed points when using localization for a fixed K-theory class [Ox] +«

for « € K2(X) and a choice of compactification Y.

Theorem 3.1.22. Let (X, ) be a quasi-projective Calabi—Yau fourfold and let Y be
its compactification as in Theorem 3.1.18. Let O%; — M be the orientation bundle
from Definition 3.1.21 for M a moduli scheme of stable pairs or ideal sheaves of proper

subschemes of X. There is a canonical isomorphism of Zo-bundles

76, (Ofr) = 1°(07) .

In particular, OY; — M s trivializable.

Proof. The universal perfect complex €y on M is given by (idy x 7g, )*(£). We

have:

7+ det (Hom i (Er, Exp)o) = det (Hom i (Ex4, Exq) ) det”™ (Hom (O, 0)) = 0" (Ly,p)
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such that the following diagram of isomorphism commutes:

n*(Ly,p) = » n*(Ly,p)”

NT’Y T*f
det (HOH]M (5/\;1, €M>O) Wm)det* (I‘IO_IDM (5/\7[; 5./\7[)0>*

which follows from the commutativity of

Hom v (Ext, Ext @ La—e,)y — Hom yq (Ext, Ext © Lg—e,) —— Hom (0,0 ® Ly_,)

! | |

HomM(5M7€M ®LQ)0 —>H0m/\?t(5/\?t75/\?1 ®LQ) —r HomM(O7O®LQ)

| I l

0 @M (‘-c/'/\;[? SM 2 Lg,i) L> @M ((97 (@] ® LQ,’L)

in each step (3.1.25). As a result, the Zy-bundles associated to these are canonically

isomorphic and we apply Theorem 3.1.18. 0

3.2 Some technical tools

In this section, we review and develop further the necessary language for working with
orientations. This includes developing an excision principle for complex determinant
line bundles generalizing the work of Upmeier [172], Donaldson [47], [49] and Atiyah—

Singer [8].

3.2.1 Topological stacks

The definition of a topological stack follows at first the standard definition of stacks
over the standard site of topological spaces. It can be found together with all basic

results in Noohi [138] and Metzler [133], the homotopy theory of topological stacks
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is developed by Noohi in [139]. For each groupoid of topological spaces [G = X],
one defines a prestack |X/G|, such that the objects of the groupoid |X/G|(W)
correspond to the continuous maps W — X for any W € Ob(Top). The morphisms
between o« : W — X and g : W — X correspond to A : W — G which are mapped
respectively to o and § under the two maps G =2 X. One also defines [X/G] as the
stack associated to this prestack. The following result makes working with topological

stacks much easier.

Proposition 3.2.1 (Noohi [138, p.26]). Every topological stack X has the form of an
associated stack [X/G| for some topological groupoid |G = X]. The canonical map
X — [X/G] gives a chart of X. Conversely [X/G| associated to any groupoid is a

topological stack.

Remark 3.2.2. The definition of a topological stack given in [138] is more com-
plicated and depends on the choice of a class of morphisms called local fibrations
(LF). Instead, we are using Noohi’s definition of topological stacks from [139] which

corresponds to pretopological stacks in [138].

In [139], Noohi proposes a homotopy theory for a class of topological stacks called
hoparacompact. Let tSty, denote the 2-category of hoparacompact topological stacks.
A classifying space of X in tStyp is a topological space X = X with a representable
map 7 : X — X such that for any 7' — X, where T is a topological space, its base
change T' Xy X — T is a weak homotopy equivalence.

In [139, §8.1], Noohi provides a functorial construction of the classifying space

X< for every hoparacompact topological stack X', such that the resulting space is
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paracompact. In fact, [139, Corollary 8.9] states that the functor

(=) : Ho(tSty,) — Ho(pTop)

is an equivalence of categories, where pTop denotes the category of paracompact
topological spaces. Note that as, we are interested in comparing Zs-bundles, it is
enough to restrict to finite CW complexes and weak homotopy equivalences are re-

placed by usual ones avoiding the question of ghost maps.

3.2.2 Moduli stack of connections and their Zs;-graded H-
principal Zs,-bundles

Let X be a smooth connected manifold of dimension n and 7 : P — X be a principal
G bundle for a connected Lie group G with the Lie algebra g. Recall from §2.1 that
we have the action of Gp on Ap. This action will be continuous and the spaces are
paracompact because they are infinity CW-complexes, so we get a hoparacompact
stack Bp = [Ap/Gp].

If X is a compact spin Kéhler fourfold, let S, S_ denote the positive and negative
spinor bundles and ) : S, — S_ the positive Dirac operator, then for each connection

Vp € Ap one can define the twisted Dirac operator

PV T®(ad(P) ® Sy) — I®(ad(P) ® S_). (3.2.1)

This induces an Ap family of real elliptic operators and therefore gives by §3.2.3 a

real line bundle detg — Ap. Because Gp maps the kernel of (3.2.1) to the kernel and
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same for the cokernels, this R-bundle is G, equivariant and descends to an R-bundle
on Bp. The orientation bundle of which we denote by Og — Bp. One takes the

unions over all isomorphism classes of U(n)-bundles for all n:

Bx=||Br, O”=|]OF. (3.2.2)

[P] [P]

These are the orientation bundles of Joyce-Tanaka—Upmeier [97] and Cao—Gross—
Joyce [30]. For the proof of Theorem 3.1.18, we will rely on the properties of special
principal Zs-bundles under homotopy-theoretic group completion of H-spaces. For
background on H-spaces, see Hatcher [80, §3.C], May—Ponto [132, §9.2] and Cao-
Gross—Joyce [30, §3.1]. Recall that an (admissible) H-space is a triple (X, ex, ux) of
a topological space X, its point e, € X and a continuous map puy : X x X — X is
called an H-space, if it induces a commutative monoid in Ho(Top). An admissible
H-space X is group-like if my(X) is a group. Note that there are many ways how
to include higher homotopies into the theory of H-spaces. For A"-spaces see Stasheff
[160] and [161]. For E>-spaces see May [131], for I'-spaces see Segal [157]. While E>°-
spaces and ['-spaces are roughly the same, A spaces do not require commutativity.
All our spaces fit into these frameworks which by [97, Example 2.19] give us additional
control over the Zs-bundles on them. One also defines H-maps as the obvious maps in
the category of H-spaces. We use the notion of homotopy-theoretic group completions
from May [131, §1]. One has the following universality result for homotopy theoretic

group completion, that we will use throughout.

Proposition 3.2.3 (Caruso-Cohen-May-Taylor [43, Proposition 1.2]). Let f : X —

Y be a homotopy-theoretic group-completion. If mo(X) contains a countable cofinal
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sequence, then for each weak H-map g : X — Z, where Z is group-like, there exists a
weak H-map ¢' - Y — Z unique up to weak homotopy equivalence, such that g’ o f is

weakly homotopy equivalent to g.

Note that weak H-maps correspond to relaxing the commutativity to hold only
up to weak homotopy equivalences. We will again not differentiate between the two.
Let us now merge the definition of Zs-graded commutativity with the notion of H-

principal Zy-bundles of Cao—Gross—Joyce [30].

Definition 3.2.4. Let (X, ex,ux) be an H-space. A Zs-bundle O — X together

with a continuous map deg(O) : X — Z, satisfying

deg(O) o p(z,y) = deg(O)(z) + deg(O)(y)

is a Zo-graded Zo-bundle. If O, Oy are Zs-graded then the isomorphism

01 ®z, Os = Oy ®z, O .

differs by the sign (—1)det(©1)dee(02) from the naive one. Moreover, O; ®z, O, has
grading deg(O;) + deg(Os). A pullback of a Zs-graded Zs-bundle, is naturally Zo-
graded. An isomorphism of Zs-graded Zs-bundles has to preserve the grading. A
weak H-principal Zo-graded Zso-bundle on X is a Zs-graded Zs-bundle P — X, such

that there exists an isomorphism p of Zs-graded Zs-bundles on X x X

p: PXy, P— u%(P).

A Zs-graded strong H-principal Zo-bundle on X is a pair (Q, q) of a trivializable Z
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graded Zs-bundle () — X and an isomorphism of Zs-graded Z, bundles on X x X

QQ&ZQQ—)M_§(<Q)7

such that under the homotopy h : px o (idx X px) =~ px o (ux X idx) the following

two isomorphisms of the Z,-bundles on X x X x X are identified

(idx x px)*(q) o (id X q) : Q Kz, Q Wz, Q — (MX o (idx x NX)>*Q

and

(1x x idx)*(g) o (¢ x id) : Q Bz, Q Bz, Q — (px o (ux x idx))"Q.

The isomorphism i : (P,p) = (Q,q) of Zy-graded strong H-principal Zy-bundles has

to solve pu%iop=qo (iX7).

Pullbacks of Zs-graded H-principal Zs-bundles under H-maps are naturally Zo-
graded H-principal. Including the Zs-gradedness, we obtain a minor modification of

Cao—Gross—Joyce [30, Proposition 3.5].

Proposition 3.2.5. Let f : X — Y be a homotopy-theoretic group completion of

H-spaces, then for

(i) a Zsy-graded weak H-principal Zs-bundle P — X, there exists a unique Zo-graded

weak H-principal Zo-bundle P' —'Y such that f*(P’) is isomorphic to P.

(ii) a Zsy-graded strong H-principal Zs-bundle (Q,q) on X, there exists a unique
Zs-graded strong H-principal Zs-bundle (Q',q') on'Y wunique up to a canonical

isomorphism, such that (f*Q', (f x f)*q') is isomorphic to (Q,q).
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Proof. Without the Zs-graded condition the result is stated in Cao—Gross—Joyce [30,
Proposition 3.5]. Then as deg(P) respectively deg(Q) can be viewed as additive maps
7o(X) — Zo and mo(Y') is a group-completion, there exist unique extensions of the

grading. [

We often suppress the maps px and ey for an H-space X, we also write () instead

of (@, q) for a strong H-principal Zs-bundle when ¢ is understood.

Lemma 3.2.6. Let O1,05 — X be Zs-graded strong (resp. weak) H-principal Zs-

bundles. Then Oy ®z, Oy is a ZLs-graded strong (resp. weak) H-principal Zs-bundle.

Proof. Let ¢; : O; K O; — 1% (0O;) be the isomorphisms from Definition 3.2.4. Then

we define

Def 3.2.4

q:(01 ®z, O2) Kz, (01 ®z, 03) = (01 Kz, O1) ®z, (02 Xz, Os)

P1RPp2

= px(01) ®z, px (02) = p* (01 @z, 02) .

Notice that we get an extra sign (—1)3°8(mi(O2))deg(r(01)) " To check associativity 3.2.4,

we need commutativity of

(,1)deg(7f§ (O2))deg(75(01))

(Ol X 02) X (01 (29 02) X (01 X 02) — (01 (29 02) 2 /,L}(Ol X 02)

deg (p (7 (02)

_ 1ydes(n} (Og)deg(r5 (01))
(—1)deslmi(O2)deslmz (O ®m3(02) ) deg (73 (01))

(=1

(71)deg (ufx (3 (01)R®m3% (01 )) deg (ﬂf (02>)

(kx xidx )*op’ (O1®02)=

/’l’j;( (Ol ® 02) IXZQ (01 ® O2> — o(idx ny)*ou*x(01®02) .02)

Without the extra signs, it would be commutative because O; are strong H-principal.
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To check the signs note that going down and right, resp. right and down we get

(_1)deg<7r;<oz>deg<w§)<ol>+<degw;<01>deg+<n§><01>)deg(w; o)

_ (_1)deg(deg(ﬂs(Oz)deg(ﬂé‘)(Ol)HdegﬂI(Oz)deg+(ﬂ§)(01))deg (ﬂi‘(Oz)) _

]

With the Zs-grading we need to distinguish between duals of strong H-principal

Zo-bundles.

Definition 3.2.7. Let (O, p) be a strong H-principal Zy-graded Zs-bundle. Its dual
(O*, p*) will be defined to be a strong H-principal Zs-graded Zy-bundle, such that as

Zo-bundles O* = O and the isomorphism
p* 0" Ky, OF = 1 (0%,

deg(m}(0))deg(73(0)

is given by p* = (—1) )p, where 7y, 7, are the projections X x X — X.

Example 3.2.8. An example of an H-space is the topological space (Bx ), where the
multiplication up, : Bx x Bx — Bx is given by mapping ([Vp], [Vg] — [Vp @& Vy)),
and we take (g, ) 1 (Bx)9 x (Bx)9® — (Bx)®. It is Zy-graded (see [172, 175] for
the corresponding grading of real determinant line bundles) in the following sense:
Let [Vp] € Bx, then

deg(O”+)([Vp]) = X" (E, E), (3.2.3)

where E is the C" vector bundle associated to the U(n)-bundle P and x?(E, E) =

ind(]DvE“d(E>) is the complex index from Definition 3.2.11.
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We will need the following formulation of [30, Thm. 1.11]:

Theorem 3.2.9 (Cao—Gross—Joyce [30, Thm 1.11]). Let X be a compact spin mani-
fold of dimension 8, then the Zy-bundle OP+ — By are Zy-graded strong H-principal

Zo-bundles.

3.2.3 Complex excision

Pseudo-differential operators over R™ are explained in Hérmander [84]. For back-
ground on pseudo-differential operators on manifolds, we recommend Lawson—
Michelson [113, §3.3], Atiyah-Singer [8, §5], Donaldson-Kronheimer [49, p. 7.1.1],
and Upmeier [172, Appendix A]. We will not review the definition due to its highly
analytic nature, as we do not use it explicitly. The excision principle for differential
operators was initiated by Seeley [156] and used by Atiyah—Singer [8]. Its refinement
to excision for Zy-bundles was applied by Donaldson [47], Donaldson-Kronheimer [49]
and categorified by Upmeier [172]. We use these ideas and extend them to complex
determinant line bundles. In author’s [19, §3.6, §3.7] this is done slightly differently
and in more detail.

From now on we will be assuming that all real bundles come with a choice of a
metric and all complex vector bundles with a choice of a hermitian metric. Note that
the spaces of metrics are convex and therefore contractible. When we use convex, we
automatically mean non-empty.

Let X be a manifold, E, FF — X complex vector bundles, P : I'2(E) — ['™(F)
pseudo-differential operator of degree m, then its symbol o(P) : 7*(E) — 7*(F),
where 7 : T*X — X is the projection map, is a homogeneous of degree m on each

fiber of T* X linear homomorphism. One says that P is elliptic, when its symbol o (P)
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is an isomorphism outside of the zero section X C T*X.

We will be working with continuous families of symbols and pseudo-differential
operators as defined in [8, p. 491] or as in Upmeier [172, Appendix]. For a topological
space M, we denote the corresponding set of elliptic pseudo-differential M-families

by V., (E, F; M) and the elliptic symbol M-families by S,,(F, F'; M) with the map

oV, (E,F;M)— S, (E,F;M). (3.2.4)

It is compatible with respect to addition, scalar multiplication, composition and tak-
ing duals (see [8, §5] for details). It is standard to restrict to degree 0 operators and

symbols using

P g > o(P)

Jo s

(1+ PP*)"2P —2 (6(P)o(P)*) 20(P)
If X is compact then each P € ¥, (E, F'; M) gives an M-family of Fredholm operators
between Hilbert spaces containing I'SY(E) and I'*°(E) such that ker(P) and coker(P)
lie in I'°(Ey) and '*°(E}) respectively.

Let P be a continuous Y-family of Fredholm operators P, : Hy, — H; for each v,
where H; are Hilbert spaces. Determinant line bundle det(P) — Y of P is defined
in Zinger [175] using stabilization (in this case one only needs the H; to be Banach
spaces) and in Upmeier [172, Definition 3.4], Freed [54] or Quillen [148]. We will use

the conventions from [172, Definition 3.4].

Definition 3.2.10 (Phillips [146]). Let P : H — H be a self adjoint Fredholm
operator on the Hilbert space H. The essential spectrum spec.(P) is the set A € R,

such that P — Ald is not Fredholm. We denote by spec(P) the spectrum of P. For
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each p > 0, such that +u ¢ spec(P) and (—pu, p) N spec,(P) = 0, one defines
Vicuw(P) C H as the subspace of eigenspaces of P for eigenvalues —pp < A < p. If
P is positive semi-definite, we will also write Vjo ,)(P). If P is skew adjoint, we will

also denote the set of its eigenvalues by spec(P) (note that spec(P) = ispec(—iP)).

For a Y family of self adjoint Fredholm operators, one can choose 3 C Y suf-
ficiently small and g from Definition 3.2.10, such that V(_, ,)(P) becomes a vector

bundle on . This can be used to define topology on the union of determinant lines

det(P,) = det(P,) @ det(P))",y € Y.

as in [172, Definition 3.4].

Definition 3.2.11. The bundle det(P) is Zs-graded with degree ind(P), where
ind(P) = dim(Ker(FP,)) — dim(Ker(FP;)) = ind(F,). If we have two Y-families P

and P, then the isomorphism

det(Py) ® det(Py) = det(P,) & det(P;) (3.2.5)

differs from the naive one by the sign (—1)nd(P1)ind(72),

We have the “inverse” of (3.2.4)

So(E, F,M) 3 p+—s P € Sy(E, F,M x 0~'(p))
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Which we use to abuse the notation

det(p) det(Py) det(P)
l l ip, xid
Y *x XY —— o0 Yp) xY

Here det(Py) = (ip, X id)*det(P). Note that as o~ (p) is convex ([172, Theorem 4.6]),

~

for two different choices Py, P, € o~'(P) we have natural isomorphisms det(F)

det(P;). Therefore

Lemma 3.2.12. The complex line bundle det(p) is well-defined up to natural choices

of isomorphisms.
The following lemma is meant for book-keeping purposes.
Lemma 3.2.13. Let p; € S, (E;, Fi; M) fori=1,2 and q € S, (E, F,Y X I).

(i) (Functoriality.) If pg : By — Es, up : F1 — Fy are isomorphisms such that

() () (3.2.6)

commutes, then there is a natural isomorphism det(p;) — det(ps) .

(ii) (Direct sums.) There is a natural isomorphism

det(p1 @ p2) — det(py)det(ps) . (3.2.7)

(iii) (Adjoints.) There is a natural isomorphism

det((p1)*) — det"(p1) . (3.2.8)
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(v) (Triviality.) If py = () for some isomorphism u : Ey — F, then there is a
natural isomorphism

det(p™) — C. (3.2.9)

(v) (Transport.) There is a natural isomorphism det(q)|y oy = det(q)|yxq1y- such

that for q; € Sy (E;, F;, Y X I) we have the commutative diagram

(v)
det(q1 @ @2)|y x{o} > det(q1 @ ¢2) |y 13

l(ii) l(ii)

(V)@(v
det(Q1)|Yx{o} ® det(Q2)|Yx{o} —g det(Q1)|Yx{1} & det(q2)|Y><{1}

Proof. For

(i) make a natural choice of a pair (P, P;) € 0~ (p1) x 07 *(p2) commuting with

pe, pr and apply [172, Proposition 3.5 (i)].
(i) make a natural choice of any P, x Py € 07 (p1) X 07 1(ps) in loc cit.
(iii) make a natural choice P; € o~ !(p;) in loc cit.
(iv) make the choice P, = u in loc cit.

(v) make a contractible choice of Qo € 7 (¢), then we have natural isomorphism
7 such that 7, : det(Qo)|yx{oy = det(Qo)|yxqy for all ¢ € I and 7y = id,
then consider the one for ¢ = 1. The commutativity of the diagram follows

immediately from the definition.
O

The following definition is the main reason, why we introduced the above concepts.
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Definition 3.2.14. Let FE;, F; be vector bundles on compact manifold X and p; €
So(Ei, Fi;Y). Let U,V C X be open, UUV = X and pg : Eily — Ea|v , pr :

Fi|y — F»|y isomorphism, such that

™ (E1lv) ey ™ (Filv)
lﬂ*(m lw*(m (3.2.10)
T (Balo) 2% 7 (Fyly)

commutes. Choose a function xy € CZ

(V,10,1]) with x|x\v = 1. Then we obtain
that:

L[ A=t Fdp (1= X) T
t €l vr— (p1,po, b, bF)f = (3.2.11)

tl=x)m e —(1 =1 +1x)(p2)*
is elliptic.

The following result might appear deceptively obvious, but the usual I?-family

argument does not go through.

Lemma 3.2.15. Let X be compact, E;, F;, complex vector bundles on X and p; €
So(Ey, Fi; YY) with isomorphism pg @ By — Eo, pp @ F1 — Fy, satisfying (3.2.10) on

X then we have the commutativity up to contractible choices

Prop. 3.2.13 (ii

\ )
det(py)det(p3) det((p1, p2, e, 1r)f)

Prop. 3.2.13 (iii) + (i) Prop. 3.2.13 (v)

C« Prop. 3.2.13 (iv) det((pbp?vﬂEvﬂF)(l))

69



Proof. Choose (P, Py) € 07 (p1) x 07 (ps) commuting with upg, ur and construct

(1-t)P, tpp
\Ilt — € 071((]717]927“&“17)?) .
tug —(1-t)F;

By composing ¥, with < ¢ m ) we obtain

(u53)~t 0

. tid  —(1—1)P*
\Ift: ZEl@FQHEl@FQ.

(1—-¢t)P tid
Let v € R*? and 4 C Y be chosen sufficiently small as in Upmeier [172, Definition
3.4], such that V[OW)(\i/g\I/O) is a vector bundle.

Notice that UiW, = ¥, U*. Moreover, by spectral theorem each non-zero eigen-
value \? € (0,v) of \ifz‘)‘ilo has multiplicity 2k for some positive integer k and then T,
has eigenvalues 1A, —i\ each of multiplicity & in its set of eigenvalues spec(\ifo). The
eigenvectors of \i/j T, remain the same, but corresponding eigenvalues are A2(1—t)2 412,

We therefore define v(t) = v(1 — t)? + t* and we have a natural isomorphism

Viow) (W5 W0) 2 Vig ey (W7 04) (3.2.12)

given by the identity for all ¢ € I (here one extends to ¢t = 1 by considering the same
finite set of eigenvectors which now have eigenvalue 1), which gives a continuous

isomorphism of vector bundles on 4 x I and restricts to identity for ¢ = 0. The
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isomorphisms of determinant line bundles is then given by

[172, Def. 3.4]

a,(t) :det(Wy) = det (Vo) (WgWo))det™ (Vo) (Yo lg))

(3.2.12) [172, Def. 3.4]
= det(V[o’,,(t))(\I/I\I/t))det*(‘/[o’y(t))(\Ilt\lff)) = det(\I/t) .

We see that this is a representative of the transport Prop. 3.2.13 (v) because it
restricts to identity at t = 1. To see that this isomorphism is independent of v, we
can restrict to a single point y € Y. Let v/ > v > 0, then for Wy(y) choose its
diagonalization when restricted to Vjo,/)(¥§Wy). From looking at the definition [172,

Definition 3.4] it is then easy to see that

Oé,/(t) _ H (1 — t) + ,u_lt %al,(t) .

pespec(wo) L1 = 1)2 + || =2#7]

v<lp2<y!

As each p = i\ comes with its conjugate of the same multiplicity, the factor is equal to
one. Let o : det(¥q) = det(P)det(P*) = C be isomorphism combining (3.2.6),(3.2.7)

and (3.2.8), then it can be checked in the same way that

neSpec(¥o)
0<|u|<v

where the factor again becomes one. By covering Y by such sets 4; and choosing

appropriate v;, we can glue the isomorphisms on 4; x I, because they coincide on the

overlaps (4; N &) x I. Composing a(t) : det(¥y) — det(F,) with (( *0)_1 ”‘sl), we
93

obtain Prop. 3.2.13 (v) and the commutativity of the diagram. O

Remark 3.2.16. Note that when p; € Sy(E; F;;Y) have a real structure and
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We, i preserve it, then there exists a natural Zs-bundle or(py,pa, pg, pr)X C
det((p1, p2, g, pr)X as in Donaldson—Kronheimer [49, §7.1.1] or Upmeier [172]
The transport isomorphism of Proposition 3.2.13 (v) for the Y x [ family along

or(p1, pe, lip, fr) is canonical, because it is the standard transport along fibers Zo.

Our main object of study are going to be twisted Dirac operators and Dolbeault
operators. Let X be a manifold, P a U(n)-principal bundle, V;, a representation of
U(n) and FE the associated vector bundle, then for a given connection Vp on P and

its associated connection Vg, the twisted operator DVZ has the degree 0 symbol
So (U(D)) X idﬂ* (E) =: UE(D) .

It & : V. — W is an isomorphism of vector bundles, we will also write

CP=id®: EQV - EQW.

Let us now formulate the excision isomorphism for complex operators in the form
we will need in 3.3.3. This generalizes [172, Thm. 2.10] to complex determinant
line bundles. Moreover, for real operators it is slightly more general then [172, Thm.
2.13] in that, we do not require a framing of bundles, but isomorphisms in [172, Thm.
2.13(b)]. This would already follow from [172, Thm. 2.10], but we obtain it as a
consequence of Remark 3.2.16. Note that we also do not require the isomorphisms

below to be unitary, as this is not necessary for the operators in (3.2.11) to be elliptic.

Definition 3.2.17. Let X; be compact, E;, F;, vector bundles on X; for i = 1,2
and D; : T°°(E;) — T'°°(F;) complex/real elliptic differential operators. Moreover, let
S;,T; C X; open, such that S; UT; = X; and Ig : S; — Sy an isomorphism. We then
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denote by

i (3.2.13)
N (I) N

the collection of isomorphisms ®; : V;

T;

SV : I\t(‘/Q|S2> ; ‘/1|S17 §W :
I5(Wals,) = Wils, satisfying w o @1 = [3(Py)

o &y for families of vector bundles
Vi, Wi = Xi.

Lemma 3.2.18. For the data given by (3.2.13) and a compact subsets K;, s.t

X;\K; C T; identified by Is,we have natural isomorphisms in families

E(Dl,fv/w, ) det(le(Dl))det* (UW1 (Dl)) 1> det(oVQ(Dg))det* (O—WQ(DQ))

such that for another set of data

@l
ovr (D)~ oy (D))
| |
Evli ifw’
O'V2/(D2) --&);-> O'W2/ Dg)

for the same S;,T;, K the diagram is commutative up to natural isotopies

E(Diby gy wew! PO

det(O'Vl@V/ D1 )det* (UW1@W’ D1 ) E—— det(O'V2@V/ D2 )det* (O-WQ@W, D2 )

l(327 l(327
(3.2.8 (3.2.8
(D 8y wH®)

det (O‘Vl Dy )det (O'Vll ) (DisEyr s @) det (O‘V2 Do )det (O'VI(DQ )
det* (UW{ (Dl )det (UWl Dl)) det (O-Wé (DQ))det (O'W2 (Dz))

m m

Moreover, if S; = X;, then Z(D;, &vyw, ®;) = ((3.2.6)) 7" 0 ((3.2.6)).

Proof. The following is standard, and we simply lift it to complex determinant line
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bundles. Making a contractible choice of x; € C2(S;), xi|k, = 1 identified under Iy,

the composition of the following isomorphisms gives Z(D;, {vyw, ®;):

, 3.2.13(id), (i)
det(avl) ®det(UW1) = det<(0V1 (D1)70_W1(D1)’q)1’(1)1)€)<1>

>~ det((ov,(D1), ow, (D1), 1, 1))
o det((aVQ(Dg), ow,(D2), P, @2)162)
3.2.13(v)

= det((0v, (D), 0wy (Ds), Bo, Bo)Y?)

>~ det, (O’V2 (DQ))det* (UW2(D1)) ’

where for the step %, we are making a contractible choice of P, €
o ((ov,(D;), ow,(D;), ®;, @;)Y) supported representatives in S; of the two symbols
on both sides as in Upmeier [172, Thm. A.6] identified by the isomorphism &y, &y

and using that

ker(P) € T2 (S, (B @ V) @ (F, @ W),

coker(Py) € T (S, (F,®@ Vi) @ (E; @ W;)) .

The second statement follows from the compatibility under direct sums in 3.2.13(v).

The final statement is just Lemma 3.2.15. 0

3.3 Proof of Theorem 3.1.18

We construct here a double Y for our manifold X, such that the “compactly sup-

ported” orientation on X can be identified with the one on Y. We use homotopy
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theoretic group completion to reduce the problem to trivializing the orientation Zs-
bundles on the moduli space of pairs of vector bundles generated by global sections
identified on the normal crossing divisor. Then we express the isomorphism 9., from
Definition 3.1.16 using purely vector bundles in §3.3.3. We then construct the isotopy
between the two different real structures to obtain an isomorphism of Zs-bundles by
hand. The final result of this section is contained in Proposition 3.3.11 and Proposi-

tion 3.3.15.

3.3.1 Relative framing on the double

Here we construct the double of a non-compact X, such that it can be used in §3.3.2

to define orientations back on moduli spaces over X.

Definition 3.3.1. Let X be a non-compact spin manifold dimg (X) =n. Let K C X
be a compact subset. Choose a smooth exhaustion function d : X — [0, 00) Then by
Sard’s theorem for a generic ¢ > max{d(z) : € K} the set U = {x € X |d(z) < ¢}
is a manifold with the boundary OU = {U € X |d(g) < ¢} . Normalizing the gradient
grad(d,) restricted to OU, we obtain a normal vector field v to OU. Let V be the
tubular neighborhood of OU in X, then it is diffeomorphic to (—1,1) x OU and is a
collar. We define Y := U Uyy (=U), where —U denotes a copy of U with negative
orientation. Then Y admits a natural spin-structure which restricts to the original
one on U (see for example [69, p. 193]). Since we do not need it here explicitly, we

do not give its description.

Let T = X\ K, where K is compact, then define T = (TN U) U (=U) (see Figure

3.3.1).
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Figure 3.3.1: Spin manifold Y and the subset T C Y.

Let P,Q — Y, be two U(n), bundles, such that there exists an isomorphism

Pls = Q|7 We define now the moduli stack of pairs of connections on principal

bundles identified on T'.

Definition 3.3.2. Consider the space Ap X Aqg X Gp g 7, Where Gp, 7 is the set of
smooth isomorphisms ¢ : Pl; — Q|7 Let Gp x G be the product of gauge groups.

We have a natural action

(Gp X Gq) X (Ap X Aq X Gpo1) = Ap X Ag X Gpg 7

(7P77Q7 VP7 VQ) (5) = (IYP(VP)a’YQ(vQ)77Q o (5 o (’YP)_I) .

We denote the quotient stack by By 7 = [Ap X Ag X Gp g 7/Gp X Ggl - Let us define

the union

Bri= U Brosr:
[PLIQ):
[Pl71=(Ql7]

where we chose representatives P, () for the isomorphism classes.

There exist natural maps By ¢~ By 7 22, By induced by Ap x Ag x G ror — A
and Ap X Ag X Gp o7 — Ap. Let OP+ — By be the Zy-bundles from (3.2.2), then
we define

Do(Y) = pi(O”+) Bz, p3((0P+)"), (3.3.1)
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where (O”+)* is from Definition 3.2.8. Let us now construct an explicit representative
(By 7)™

Definition 3.3.3. Let P and Q be U(n)-bundles on Y isomorphic on 7. Consider

the following two quotient stacks

Po = [Ap x Ag X Gpg 7 % P/Gp x Ggl

QP = [Ap X AQ X gp’Qj" X Q/gP X gQ] )

which are U(n)-bundles on Y x Bpg We have a natural isomorphism 7pq :

7DQ|T><[>’P’Q’T — QP|TXBP,Q,T given by [vPanv Q;)p] = [VPa VQ,CE, q;(pﬂ After tak-
ing appropriate unions, we obtain bundles Py, Py — Y x By 7 with an isomorphism
P |jﬂ><3?j = P2|jﬂ><3?j. Pulling P; back to Y x (By )", we obtain P fiber bundles,
which are U(n)-bundles on each connected components for some n > 0. Together with

the isomorphism 7, these induce two maps

pr.p2:Y x By s — | | BU(n),

n>0

with a unique (up to contractible choices) homotopy H, : T x By 7 xI = |5, BU(n)
between p; and p, restricted to T x By 7. We obtain the following homotopy com-

mutative diagram

(By X By BY/)Cla — Mapco (Y/? |_|n20 BU(n))

l l (3.3.2)

Mapeo (Y, >0 BU(n)) —— Mapco (T, Lo BU(n)).
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This induces a map By 7 — Vi X@T Vi, where we use the notation

V7 = Mapeo (Z, |_| BU(n))

n>0

for each topological space Z. If T < X is a neighborhood deformation retract pair
then so is T < Y. It is then a cofibration in Top and the left vertical and lower

horizontal arrow of (3.3.2) are fibrations in Top. This implies that the natural map
Vi 7= Vi Xy, Vg — Vg x5 Vi

is a homotopy equivalence. By homotopy inverting, we construct R : (Bf;jw)da —
Vi 7. It can be shown by following the arguments of Atiyah—Jones [7], Singer [158],
Donaldson [49, Prop 5.1.4] and Atiyah—Bott [6] that this is a weak homotopy equiv-

alence. We therefore have the natural Z,-bundle (Do (Y))® — Vy 7

We summarize some obvious statements about the above constructions. There is
a natural map w, : BU(n) — BU X Z, such that 7y o u,, = n. This induces maps
V5 — Cz which are homotopy theoretic group completions for any Z. In particular

we have a natural map € : Vy 7 = Cy 5= Cy Xc,. Cy.

Lemma 3.3.4. The spaces (Bffj)da, Vy 7 are H-spaces. The maps (p1)2, (p2)a, R
are H-maps. In particular, (Do(Y))"® — (By 7)™ ~ Vy ; is a Zy-graded strong
H-principal Zs-bundle and there exists a unique Zso-graded strong H-principal Zio-
bundle DS(Y) — Cy7 up to canonical isomorphisms, such that there is a canonical
isomorphism

q"(D5(Y)) = Do(Y),
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where q : Vy 7 — Cy 5 is the homotopy theoretic group completion.

Proof. The last statement follows using Proposition 3.2.5 (ii). O

3.3.2 Homotopy commutative diagram of H-spaces

We use the definitions of moduli spaces of vector bundles generated by global section of
Friedlander—Walker [57] used by Cao-Gross—Joyce [30, Definition 3.18]. For definition
of Ind-schemes see for example Gaitsgory-Rozenblyum [64], for general treatment of
indization of categories see Kashiwara-Shapira [100, §6]. For Z a scheme over C, this

moduli space is defined as the mapping Ind-scheme :

Tz = MaplndSch(Z7 GY(COO)) )

where IndSch is the category of Ind-schemes over C and we view Gr(C>) as an

object in this category.

Definition 3.3.5. Induced by the embedding of schemes D — Y, we obtain a map
P . Ty — Tp. We can construct the fiber-product in Ind-schemes 7y p . There is a
natural map Qy : Ty — My given by composing with the natural Gr(C*) — Perfc.
Together with the map Q7 : Tp — MP constructed in the same way, we obtain a

homotopy commutative diagram of higher stacks:

Pp
Ty » Tp ——— Ty
Pp
PD
My ——=— MP 5 My,

which induces Q% : Ty p =Ty X7, Ty = Myp.
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As (—)%*P commutes with homotopy colimits by Blanc [16, Prop. 3.7] for an
Ind-scheme S considered as a higher stack represented by the sequence of closed
embeddings of finite type schemes Sy, — S; — S — ..., its topological realization
(S)™P is the co-limit in the Top of the sequence S3» — S — S8 — ... | because
the maps are closed embeddings of CW-complexes and thus cofibrations. Using that
filtered co-limits commute with finite limits, we can express Ty p as the filtered co-
limit of 7y Xz Ty, where T = Mapg,(Z, Gr(CF)) for any scheme Z. From this, it

also follows that

(Tv.p)*® = L (TE)™ X (7z)em (TY)™ = TP Xpn TP

p—0o0

We have therefore constructed a map

QP - TR X T — (My X o My )P (3.3.3)

The following is a non-trivial modification of [30, Prop. 3.22], [74, Prop. 4.5] to the
case of My p. We use in the proof the language of spectra (see Strickland [162] and
Lewis—May [72]). We only use that the infinite loop space functor Q> : Sp — Top

preserves homotopy equivalences, where Sp is the category of topological spectra.

Proposition 3.3.6. The map QP : T@" Xqa T" — (My,p)'? is a homotopy

theoretic group completion of H-spaces.

Proof. Let us recall that in a symmetric closed monoidal category C with the internal
hom functor Map,(—, —) the contravariant functor C' — Map,(C, D) maps co-limits

to limits. Thus push-outs are mapped to pullbacks because the homotopy category
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of higher stacks is symmetric closed monoidal as shown by Toén—Vezzosi in [170,
Theorem 1.0.4].

The following diagram

liD (3.3.4)

has a push-out Y Up Y in the category of schemes over C using that ip is a closed
embedding and Schwede [154, Corollary 3.7]. Moreover, the result of Ferrand [53,
§6.3] tells us that Y Up Y is projective.

We conclude that there are natural isomorphisms

My p = Mapys, (Y Up Y, Perfe) = MYV

Ty,p = Mapuqsen(Y Up Y, Gr™(C)) = Tyu,y -

In fact, under these isomorphisms, the map €2 from Definition 3.3.5 corresponds to
the natural map Qyy,y : Tyu,y — MYUPY.

For a quasi-projective variety Z over C, Friedlander—Walker define in [57, Defini-
tion 2.9] the space K™ (Z) as the infinity loop space Q>®°T2", where they use that
T is an E.-space. Therefore there is a map 72" — K*™(Z), which is a homo-
topy theoretic group completion by [119, p. 6.4] and [112, §2]. For a dg-category D
over C, Blanc [16, Definition 4.1] defines the connective semi-topological K-theory
KSt(D) in the category Sp. Moreover, in [16, Theorem 4.21], he constructs an equiv-

alence between the KSt(D) and the spectrum of the topological realization of the

higher moduli stack of perfect modules of D*. This induces a homotopy equivalence

*This moduli stack is denoted in Blanc [16] by MP. Unlike the moduli stacks in Toén—Vaquié, it
classifies only perfect dg-modules over D and not the pseudo-perfect ones. For the case D = Lpe(Y)
it therefore coincides with the mapping stack MY . When Y is projective and smooth, we already
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QOOKSt(Perf(Z)) — (MZ)*P of H-spaces. In [4, Theorem 2.3], Antieau—Heller prove
existence of a natural homotopy equivalence between the H-spaces QOOIN{St(Perf(Z )

and K**™i(Z). The composition
TE — K*™(Z) — QK (Perf(Z)) — (M?)P

for Z =Y Up Y is homotopy equivalent to Qg?BDy. We have thus shown that QP is

a homotopy theoretic group-completion. O

We now make (O™)*P — (My p)™P into a weak H-principal Zs-bundle with re-

spect to the binary operation y on (My.p)'P which is determined by

My x My —— My

/ lpDXpD |e»

My p x Myp x MPD EME a0 (3.3.5)

\ T D XPD TPD

My x My —— My .

It can be checked to be commutative and associative in Ho(HSta). In fact, as My, p
is a homotopy fiber product of I'-objects, it is itself one in HStac (see Bousfield—
Friedlander [24, §3] for definition of ['-objects in model categories and Blanc [16, p.
45] for the construction in this case). Let us set some notation. Let us set some

notation. For any a, b, we have the isomorphisms
T 5(Xe) ® 75,4 (8a)" = 7y 5(Xp) @ 5 4(5)"

by similar construction as in (3.1.14). In particular, for fixed > we obtain the iso-

know that MY and My are equivalent.
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morphism

s 71 3(E) @ 54 (3k)" — 71 ,3(30) ® 73 4(E0)" - (3.3.6)

Proposition 3.3.7. Let O™ — My p be the Zs-bundle from Definition 3.1.16, then
there exists an isomorphism ¢™ : O™ Ky, O™ — 1} (O™) depending on > but inde-

pendent of oxd. Moreover, we have

(idwty p X )" (@7) (id X §7) = (pae X idany, )" (97) © (¢ x id) .

Proof. First note, that we have the isomorphism

Iuj\/ty (AQ) = WTAQ ® ’/TiQZQ ® W;AQ &® 7TT72 ¢} U*EQ.
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Using this together with (3.3.5) we obtain the following commutative diagram

Ay ® T3 ® miAG @ T3 Ag

|

“ng@WfﬁEQ@”f?,EL@”gAQ
QmIAGOTS 435075 4 2 @73 AG

|

iy Ag@wf’329®7r1‘7300* Yo% (Ag)
®my; A§®7r;’4oo* ZE@TI’;AZQ(@W; Aa

|

Ty AL @Y 00" Sy @y 3 NE s (AY)
®7TZAE@WSAEE@WSAOO’*EZ@F;AE

|

* * * * * * * * *
sy Ag®7r1,329®7r1,300' Eg®ﬂ'3 Ag
@miAo®m3 4No®m5 400" Lo®73 Ao

|

WfAE@TI”fﬁEE@TFiBZE@W;Aé
@y Ag®ﬂ§’4EQ®W§74EE®®W2A§

|

Ay @ m3AY @ miAg @ T3 A

pH(mihg @ mAG) ——

~

pr(miAg @ mihg) ——

Where the left vertical arrow is p* () and the composition of all arrows on the right

is 7] 5(Usa) ® 75 4(¥5q) by generalization of the arguments in Cao-Gross-Joyce [30,

p. 43]. To construct arrows on the right, we use multiple times Serre duality and

(3.3.6). This is what induces the isomorphism ¢™. Note that we need to permute

7y Ag through 73A¢ and ;A7 on both ends, giving the extra sign

(—1)des(miAo) (des(ni Ao) deg(ri o)) (3.3.7)

for the isomorphism of Zs-bundles. Checking the associativity of the isomorphism

combines the ideas of the proof of associativity in Lemma 3.2.6 and the ones used in

the diagram above. The independence of otd follows by the same arguments as used
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in 3. of the proof of Theorem 3.1.18. [

Using the notation from Definition 3.3.3, we have an obvious map

A 7;911 XTDan 7;2}11 — VY,D (338)

which corresponds to the inclusion of holomorphic maps into the continuous maps to
Gr(C>)a" . This map is continuous (see Friedlander-Walker [58]). Let 7; D D; be
closed tubular neighborhoods for i = 1,..., N. One can construct homotopy retracts
H; of T, to D; which can be extended to ]:[Z- I XY — Y, such that f{i‘lxﬂ = H, and
Hi(t, =)y (i = idy\ 1,0z, » Where (1 +¢€)T; denotes some tubular neighborhood
containing 7;. We concatenate them to get H , H = H |7« 7- Using that D has locally
analytically the form C** x {(z1,...,2x) € C*: 2;-... 2z = 0}, one can assume that

H(t,T) ¢ T and H(t,D) = DS. The pullback along H(1,—) and H(1,—) induces

homotopy equivalences

T:Wop — Vyr, Yc:Cyp — Cyr, (3.3.9)

which we use from now on to identify the spaces. As X C Y is Calabi—Yau, choosing
K = X\T, where T is the interior of T, we construct spin Y as in Definition 3.3.1.
Define

Gy - Vyj — ij«, Gf; : Cyj — C;}j, (3.3.10)

SOne can construct this by taking a splitting of 0 — TD; — TY — ND; — 0, taking geodesic
flow in the normal direction for all D;. Then around each intersection projecting the flow to be
parallel to each of the other divisors.
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by Gy (my,mg) = (Mg, me) for each (my,mg) € Vy Xy Vy such that
mily =mily, mTa|l-u =milu, Moy = malu, Mo|l-v=mily.  (3.3.11)
Which gives us Zs-bundles:

Do :=T"0G3(Do(Y)), DS — Cyp. (3.3.12)

Lemma 3.3.8. Let E, F, ¢ be smooth vector bundles and ¢ : E|p — F|p be an iso-

morphism, smooth on each D;. Then there exists a contractible choice of isomorphism

®: E|f — F|g, ® : E|g, — F|g, such that ®;|p, = ¢|p, and ®; can be deformed into

® along isomorphism. Moreover, the map (3.3.10) corresponds to

[E,F,¢| — [E, F,®].

The Zo-graded strong H-principal Zs-bundles Do and DS, are independent of the

choices made.

Proof. The isomorphism H*(E|p) = El| can be constructed by parallel transport
along a contractible choice of partial connections in the I direction (see e.g. Lang
[110, §IV.1]) which are piece-wise smooth. Doing the same for F' gives us ®; : F|; =
H*(F|p) & H*(E|p) & Ep. As, we can re-parameterize the order using an I”-
family of homotopies, it will be independent of it. Moreover, each ®; is defined
by Flp, = H;(F|p,) = H;(E|p,) = Elz,, which can be deformed to ® along the
transport. The choices of splittings 0 — TD; — TY — ND; — 0,where ND; is

the normal bundle are contractible and so is the choice of metric for geodesic flow.
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Different choices of sizes of these neighborhoods correspond to a choice of some small
€; > 0. For each choice of the data above, the Zy-bundle Do — Vyp is independent of
the choices made during the construction of Y in Definition 3.3.1. For this let (Y3, 7}),
(Ya,Ty) be two pairs constructed using Definition 3.3.1. Recall that this corresponds
to fixing two different sets U; o D K with a boundary. A family Z — Vyp gives
AR Vindy s £ 2, Vy, 7, Which can be interpreted as the following diagram of

(families) of vector bundles:

Ey F
id on U1NU2 id on U1NU2 >
Ey— F)
¢2 on To

Induced by [172, Thm.  2.10], we have the isomorphism =z} (DO(YG)) ~

vaud P Vaucl 2 * A Vad P vaucl 2 * A * ¥ D A
or([p =P )or (P =4@))" = or(Ip =) Yor (P @)" = 25(Do(Y1)), where P, Q;
are the unitary frame bundle for F;, F,. The fact that it is an isomorphism of
strong H-principal Zs-bundles follows from compatibility under sums in Theorem
[172, Thm.2.10 (iii)] and the natural orientations of or(le(PlXY@l)U(n)xU(m)C"®Cm) and
or(le(PQX?QQ)UW)WWC”@W) as in [97, Ex. 2.11] compatible under excision as they are
determined by the complex structures which are identified.

]

From now on, we will not distinguish between Ind-schemes and their analytifica-
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tions. Note that by Proposition 3.2.3, we have the commutative diagram

G~
Tv,p S Vyv.p S Vg ——— Vi i
(Qag)wpl Ql l lﬁ . (3.3.13)
top T Te G%
(Myp)*? ——— Cy.p » Cy.p > Cy 7

The map I' was expressed explicitly in Definition 3.1.17 and all the vertical arrows

are homotopy theoretic group completions.

3.3.3 Comparing excisions

The results of this section have been also obtained in the author’s work [19] by different
but equivalent means. We begin by defining a new set of differential geometric line

bundles on Ty.p X Typ. Let D = 0 + 0 : T>(A%ven) — ['°(A%dd) " then we define

given by a complex line det(DVHem(E.FeLa)) at each point (Vp, Vo), where E, F are the
associated complex vector bundles to P, Q and Vyomg,r) is the induced connection
on E* ® F'. This descends to a line bundle on f)g:g’RQ — Bp x Bg. Taking the union

over isomorphism classes [P], [Q], we obtain a line bundle

igg—>ByXBy.
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Using the natural map A x A : Ty X Ty — Vy x Vy =~ (By)% x (By ), we can pull

back these bundles to obtain
¥ — Ty x Ty and A = A*(Z). (3.3.14)
Lemma 3.3.9. After a choice of < there exist natural isomorphisms

* d * dg\x ~ * d * dg\
Opq 37T1,3(25g) & 7T2,4(Ekg) — 7T1,3(Egg) & 7T2,4<Zgg> )

x/ad xr Adgyx X! %7 A dgy\x
Tog Z’/Tl(AEg) ® 5 (AEg) — 7T1(Agg) ® 5 (Agg) )
Moreover, we have the isomorphisms

Foae : D08 5 0" (08,7, Hat ADE T (M) (3.3.15)

Proof. The following construction works in families due to the work done in §3.2.3,
so we restrict ourselves to a point (p,q) = ([E1, Fi, ¢1], [Ea, Fo, ¢2]), where ¢1/0; :

E1js|p, = Fij2|p, are isomorphism. We also set the notation
V, =End(E), Fy ® L,) and W, = End(Es, F> ® Ly). (3.3.16)

Using ®, to denote the isomorphism V|7 — W, |z constructed in Lemma 3.3.8. We

then have the data

using that €0 is invertible outside of D. We therefore obtain the isomorphism o
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from Lemma 3.2.18. Then we have the standard definition of the Hodge star % :
[O(APY) — T(A*PA9) | given by a A *8 = (o, 3)Q A Q, where (—, —) is the

hermitian metric on forms. We define then the anti-linear maps

#1 : AO,even — AO,even ® KX7 #2 . AO,odd N AO,odd ® KX

# AN @ Ky — AP P A @ Ky — AP (3.3.17)

by #iloa = (<)%, el = (—D% b, B s = (— 1), # Lawaen —
(—1)7"! % . These solve #;¥ o #; = id and #; o #;* = id. We have the commu-
tativity relations Dy, o #1 = #90 D and #5° o Di, = D o #7* and obtain the
isomorphisms det(oy,) = m > det(oy,_,)" . where the second isomorphism
on both lines uses the hermitian metrics on forms which descend to a hermitian metric

on the determinant. O]

Definition 3.3.10. Let &*®* — Y x 7y be the universal vector bundle generated by

global sections. We define

Exty? = myau (s U @ Ty U, @ T3 (La)) PP = A*ExtyP

ng = det(gxt;b) , A;b = A*(det(E;b))

We then have the isomorphisms

o = (%) (0w) : T 5(Z)°) @ T34 (TE)T 5 w1 4(557) @ 734 (T50)

T = A0l 1w (AP) @ mh (AP 5 i (ASD) @ i (ASP)”
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In particular, we have the Zs-bundle OY — 7Ty p, such that naturally O =

(Qag)*OM.

[

The following proposition is the result of trying to develop a more general frame-

work of relating compactly supported coherent sheaves to compactly supported

pseudo-differential operators using cohesive modules of Block [17] and Yu [174].

Proposition 3.3.11. There are natural isomorphisms /{Z’d : E;b = Egg such that the

the following diagram commutes up to natural isotopies:

WT,:J)(ZE ) ® 4(2Vb) —> e 3(E ) ® 7T2 4(2Vb)
wf,3<@d>®ws,4<nzd>**l lw;,s(ng’ Yoms 4 (kg )~
dg dg Ugg dg dg
77;,3(2@ ) ® 75,4@:@ ) — 7T>1k,3<29 ) ® 75,4(29 )",

™ (AVb) ® 7T2<AVb) —> ™ (AVb) ® ™y (AVb>

| d J

THAR) ®@ m(AP) —— 7 (Ag®) @ 5 (AQ®)* .

(3.3.18)

Proof. We examine up close the definitions of each object involved and show that up

to natural isotopies in families the diagram commutes. We begin therefore with the

definition of Tg’d. We restrict again to a point (p, q) = ([E1, F1, ¢1], [Ea, Fa, ¢2]) as it

can be shown by using the arguments of §3.2.3, [30, Prop. 3.25] that our methods

work in families. We also use

vgi = VQ

]

D; Wei =W,

D Pasi + Vai — Wai

Dy

Cbgi Vng L> WQ’T

Let E — Y be a holomorphic vector bundle, then RI'*(E) = I'(E ® A%*). where
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the differential is given by g = 0V=. Here V is the corresponding Chern connection.
Let Dp = 0 + 05 : T(E ® A%") — T(EF @ A%44) | then Hodge theory gives us
the natural isomorphisms det(Dg) 2 det(RI'*(E)) after making a contractible choice
of metric on E. Continuing to use the notation from Lemma 3.3.9, we obtain the

isomorphisms
k2], 2P), 2 det (RT*(V,)) = det(Dy, ) = det(DVVe) = 2,

generalizing those of Cao—Gross—Joyce [30, Prop. 3.25], Cao-Leung [31, Thm. 2.2],
Joyce-Upmeier [98, p. 38]. Recall now that at (p,q) the isomorphism 77 ;(%,) ®

m54(55) = 71 3(Ba-e;) @ w5, (X5 ,) Is given by

det(RI*(V,)) @ det(RT*(W,))" = det(RI*(Vy—e,)) ® det(RT*(Vy,))
® det (RT*(Wa,))" @ det (RT*(Wy—,))" = det(RT*(Vy—e,)) ® det (RT*(W,—.,)) ",

(3.3.19)

where we are using the short exact sequences 0 — V., — Vo — Vg, — 0 and

0— Wy, = Wo = Wy, — 0. We have the exact complex

PV,
(fV&ale) ( W) (TV&,—(?g,iorWﬁ)
Voo @ Wy oy ——— Koy ——L 5 V@ Wy ——— V. = 0, (3.3.20)

Here py, ,w, are restrictions, fy, w, the factors of inclusion and py,,w, © fv,/w, = S
for the section s; : O 2% O(D;). Moreover, K,; = ker(rvi — Qa,i © ng) is locally

free, because V,

p, has homological dimension 1. This holds also for the corresponding

family on Y x Ty, p X Ty,p by the same argument. The following is a simple consequence
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of the construction.

Lemma 3.3.12. We have the quasi-isomorphisms

(fvasfwa) (fvarfwa)
Vg S Wg - Kg,i Vg—ei ¥ Wg—ei - Kg,i
lﬂvg,ei lpvg y lﬁwﬂ,ei lpwg .
ngei # Vg ngei % Wg

Using C, to denote both upper cones and Cy,, Cw, to denote the lower cones, this
Cy — Cy,

gives a commutative diagram l l of quasi-isomorphisms.
Cw, —— Wi

Therefore (3.3.19) becomes

det(RT*(V,)) © det* (RT*(V,_.,)) ® det(RT*(W,_,,)) @ det*(RT*(W,))

= det(RT*(Cy)) @ det” (RT*(C) ) = C.

Using compatibility with respect to different filtrations discussed in [104, p. 22] and
that a dual of an evaluation is a coevaluation in the monoidal category of line bundles

together with checking the correct signs one can show that this is expressed as

det(RT*(V,)) @ det*(RI™* (Vy—e,)) @ det(RT*(W,—,) @ det* (RI*(W,))

~det (RF' (VQ) ) @det* (RF' (Va—e; )) @det* (RI"(KM)) ®det (RF' (Va—e; ®Wa—e, ))

 det* (RF‘ (Va—e; ®Wa—e, )) ®det (RF‘ (Ky)) ®det (RF'(WQ,%. )) ®det* (RI“ (Wg)) =C, (3321

where the last isomorphism is the consequence of the following short exact sequences:

0— Voo, ®Woe, — Kopi © Voo, — Vo — 0,

00— Ve, ®Wyoee, — K i & Wy, — W, — 0. (3.3.22)
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Let 01, 05,05 be the holomorphic structures on each of the three terms of the first
51 té(l,l)

sequence, then choosing its splitting we can define 94 = and deforming
0 05
to t = 0 the sequence splits. This gives us the following diagram commuting up to

isotopy:

[104, Cor. 2]

det (RT®(Vy—e, ® Woe,))det(RI*(V,)) — det(RT*(Kq; ® Va,))

| |

det (Dvg_ei SWa—e, @Vg) * s det (DKEJ@V&_% ) ,

(and a similar one for the second sequence) where * corresponds to the isomorphism

(3.2.6) for

fve Twa PV,
Vo & Wae, ® Vi — s @ Voo, - (3.3.23)

In Lemma 3.3.14 below, we show that there exists a natural isomorphism @, :

Kg,i

1,, such that all the diagrams below satisfy the conditions in Definition

3.2.17. We therefore get

OVye;@Wa—e;®Va ~~ 7777777777 ? OVye;@Wae; OWa
|

0 id s

k3

0 id sf

7

|
(fvg fwa p*@) i (fvg fwa p%)

N\ Vv
O-Kg,t@vgfel ________'____T___O __________ > O-KQ,ZGBWQ*EZ

We may restrict (3.3.23) to X\ (1 — €)7T; because we already cover T; by the other
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isomorphisms in the diagram. We choose the compact set K; = (1 — ¢/2)T;. Then

fva fwa Y,

deform ¢ — < 0 td st

) as these are now isomorphisms in X\ (1 — €)7;. Moreover,

rotating

sin(t) id icos(t) (D;em 0
icos(t) ®g,, +sin(t)id 0
t= | icos(t) Py e, i sin(t) id 0 |-
0 Py,
0 0 D,
we obtain the separate two diagrams
(1(()1 1(()1 (DE—E,L 7
O-VE*E'L@WQ*QZ' __________ ? O-ngei@wgfei O—Vg—ei __________ ? O-WE—%
| | | |
(fvgfwi)i i(fvgfwg) ) s;-*i isf
O-Kg,i _________i(I _______ ke O-Kg,i O‘Vg _____?b;,_i _____ > O-Wg

In the left diagram we can extend the identities to all of Y, so by Lemma 3.2.18, we
showed that (3.3.21) coincides with the adjoint of = from Lemma 3.2.18 for the right
diagram. Using this for each step k = ), k;e;, deforming the isomorphisms ®,; on
T; into @, on T and taking K = ﬂf\il K;, we obtain (3.3.18) for the data < because
[1(sie)* T1(tj%) " = Q*. The second diagram in (3.3.18) is obtained by pulling back

along A TY,D — TY,D X TY,D~ O

Remark 3.3.13. We could replace in (3.3.18) the labels k, 0 by arbitrary a, b.

Lemma 3.3.14. There exists a natural isomorphism Pk, . : Koilr, — Kailt,, such
that icos(t)®g, ; + sin(t)idg, , are invertible for all t and such that all diagrams used

in the proof of Proposition 3.53.11 satisfy the condition of Definition 3.2.17.

Proof. Using the octahedral axiom, one can show that there are short exact sequences
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fa Pw, f a Pvy .
0 Voo, =25 Kyt —2 W, = 0and 0 = Wy_o, —2 Kui —= V, — 0. We obtain

the following commutative diagram

0—— Vﬁ—ei|Di —_— Kg,ilDi —_— WQ|D' —0

l—¢g75i K3 lld l(ﬁg,i

0 —— W,e,|p, —— Kailp, > Valps s 0

7

as can be seen from the following diagram:

0——Viei — Kailp, — Vi ® W, > Vi » 0.

lf(ﬁg*eiﬂ' lid lid l_qﬁg,i

0 ? Wg—ei,i ? Kgyi|D¢ ? ng > W@,i ? W@,i > 0

induced by restricting

0—— Kgﬂ' D, — ‘/g,i () Wg,i > ‘/a,i > 0.

lid lid l%,i
> Wai

0—— Kgﬂ' D; s ‘/g,i ) Wg,i i > 0

to the divisor. Choosing a splitting of the first exact sequence in 7;. we obtain

_ (id =%, , h O’
(nga fWi) =\ s )0 where ©g ¢, i

D; = Ga—e;.is SO We can take @, .. ; = P!

This induces also the splitting of the second sequence in T; and we can define the
isomorphism by

Dy, 0
0 @,
—_—

¢Kg,i : Ka,i T; = Wg—ez‘|Ti D VQ|T1' ‘/Q_ei|Ti D WQ = K27i|Ti .

In this splitting, we then have the invertible isomorphisms icos(t)®g, , + sin(t)id =

Aitq)afe' 0 . — — .71
<w o ie—itq:,ﬂ) where we used idg, = (fv,, fw.) © (fv., fw) ™" = ( i’ q?) and

one can check directly, these satisfy the necessary commutativity for all steps needed

in Proposition 3.3.11. [
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Proposition 3.3.15. There are natural isomorphisms A*(Dg) = (2%8)*(O™) of

strong H-principal Zs-bundles independent of otd.

Proof. Let OF; be the Zy-bundle associated to
5% = (mi () @ w3 () ") © (788) 7 £ i (AGF) @ w3 (AE)™ — i (M%) @ m3(AGE)

then it is a strong H-principal Zs-bundle by similar arguments to 3.3.7 using Lemma
3.3.9 and part 2 of Lemma 3.2.16, where we obtain similarly as in (3.3.7) additional

signs (—1)d°&(™ Ag®) (deg(m Ag#) +deg(m; AS%)) .

We have the isomorphisms of strong H-principal Zs-bundles
AT (O™) = Offg = Do,

where the first isomorphism is constructed by applying Proposition 3.3.11 and Lemma
3.2.18 and is clearly strong H-principal. For the second one, let us again restrict
ourselves to the point (p, q) as in the proof of Proposition 3.3.18. Note that for all ¢

we have isomorphisms:

Prop. 3.2.13(v

det(O'VQ,O'WQ,CI),Ci)); ) det(avg,awg,@,(i));

i lﬂ(ﬂ)@wé‘(ﬂ‘*)
det(ov,, ow,, D, (f)); ) det(ov,, ow,, P, D)

l(3.3.17) l(3.3.17)

det*(avg, UWg; (I), @); M det*(avg, O'Wg, (T), (i)))l(

Prop. 3.2.13(v 1
X

The composition of the vertical arrows on the left is precisely 998, while the associated

Zo-torsor to the real structure corresponding to vertical arrows on the right is by
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excision as in Lemma 3.3.8 isomorphic to Do/, using that ® are unitary and (3.3.17)
restrict outside of €7" to (2.1.2). As the diagram is commutative for all ¢, we obtain
the required isomorphisms Do |(p,q) = Ogg- It is an isomorphisms of strong H-principal
Zo-bundles by the compatibility under direct sums of Lemma 3.2.16 and using the
arguments of [30, Prop. 3.25] (see also proof of Lemma 3.3.8) together with paying
attention to the signs above.

The independence of any choice of 0td can then be shown because diagram (3.3.18)
commutes and both o> and 0% are independent (see proof of Theorem 3.1.20). We
only sketch the idea, as the precise formulation is comparably more tedious than the
proof of Proposition 3.3.11: one uses excision on the diagram (3.1.3) using the com-
mon resolutions of Lemma 3.3.12, where the top right corner of (3.1.3) has resolution

Vo @ Wy — K, 2, bottom left Vo & Wy, — K., 1 and the bottom right one

(VQ@WQ — K8171 @‘/62 @Wez — K61+62,1> = (‘/Q@WQ — K€272@V:31 @Wel — Ke1+e2,2) .

The automorphism on K6171|T17 K6272‘T2, K61+62,1‘T17 Keﬁ_e%g

1, are then the ones
constructed in Lemma 3.3.14 and one follows the arguments of Proposition 3.3.11 to

remove contributions of all K’s. O]

Theorem 3.1.18 now follows from the above corollary together with applying

Proposition 3.2.5 (i) and then (ii).
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3.4 Orientation groups for non-compact Calabi-

Yau fourfolds

In this final section, we describe the behavior of orientations under direct sums. We
recall the notion of orientation group from [97] and formulate the equivalent version
of [97, Theorem 2.27] for the non-compact setting, where we replace K-theory with
compactly supported K-theory. For background on compactly supported cohomology
theories, see Spanier [159], Ranicki-Roe [149, §2]|. From the algebraic point of view,

see the discussion in Joyce-Song [96, §6.7] and Fulton [61, §18.1].

3.4.1 Orientation on compactly supported K-theory

In (3.3.12), we define the strong H-principal Zy-bundle D¢ — Cy.p. We first describe

its commutativity rules as in [97, Definition 2.22].

Definition 3.4.1. Let pc : Cy.p X Cy,p = Cy,p, fles : C® X C® — C* be the binary

maps and

7: DS R DS — pui(DS), 7% : 0% R O® — i (O%) (3.4.1)

be the isomorphisms of Zs-bundles on Cy,p x Cy,p, which make (Dg, 7) into a strong

H-principal Zs-bundle and 7% a restriction of 7.

We recall the notion of Euler-form as defined in Joyce-Tanaka—Upmeier [97, Def-

inition 2.20] for real elliptic differential operators.

Definition 3.4.2. Let X be a smooth compact manifold, Fy, E; vector bundles on

X and P : Ey — E; a real or complex elliptic differential operator. Let E, ' — X
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be complex vector bundles, the Euler form xp : K°(X) x K°(X) — Z is defined by

xp([£], [F]) = indc(0(P) @ ide (Hom(r.F)))

together with bi-additivity of yp. We used the notation from §3.2.3 for symbols of
operators. If X is spin and P = D, , we write Y% := x p- Similarly, if X is a complex

manifold and D = 0 + 0* : A%Ver — A%°dd j5 the Dolbeault operator, then we use

XX ‘= XD-

Recall that we have a comparison map ¢ : Go(X) — K°(X), where Go(X) is the
Grothendieck group associated to D°Coh(X). Let x5 : Ko(X) x Ko(X) — Z be

defined by x3(E,F) = .. _,(—=1)dim¢(Ext’(E, F)), then when X is smooth , we

i€z
have xx o (¢ x ¢) = x5¢.

Proposition 3.4.3. Let i1,i : Y — Y Up Y be the inclusions of the two copies of
Y and §(a,8) € K°(Y Up Y) denote a K-theory class, such that i{(6(c, 8)) = «
and i5(8(c, B)) = B. We have the bijection mo(Cy,p) = K°(Y Up Y). Let Cs(ap) be
the components corresponding to §(c, 3) and D |s.p) the restriction of D to it.
Suppose a choice of trivialization 05(a.8) : Za — DS|sap) is given for each §(a, B) €

K(Y UpY), then define €5, p1)s(as,) € {—1,1} by

7—(05(041751) &22 05(042752)) = €5(a1,81),6(az,B82)98(a1,B1)+6(a2,B2)
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These signs satisfy:

5tan st =(—1) (v (ar,00)—xyv (81.81)) (xv (a2,02)=xy (B2,82) ) +xv (a1,02)—xy (B1,82)

€5(cv1,81),0(c2,82) -

€5(c1,B1),0 (02 B2) €80y +auz B +Ba),3(a3,B3) = €6(cun,B2),6(cvs,B3)ES(an-+aus, Ba+Ba)d(an,Br) - (3-4:2)

Let (M,Y(aﬁ))mp = F_l(cv(a,g)), (O,Dy?aﬁ))t()p = (O[X]>t0p|(M’y<a7B))top G/I’Ld 03?%5) =
32(I*(04(a,3))) the trivializations of (O%ap)'P obtained using 3= from (3.1.18). Let
@™ be from Proposition 3.3.7, then it satisfies

D/ ag ag _ ag
¢ (05(041751) &22 05(042752)) - 65(0‘1"31)’5(0‘2’52)05(a1751)+5(a2,52) ’

Proof. Recall the definition of Y, T from Definition 3.3.1. One can express DS(Y)
as a product of Zy-graded Z,-bundles p ") ® p3(0, Y )* obtaine roposition
duct of Zy-graded Zy-bundles pi(OX7) ® p3(OF¥)* obtained by P
3.2.5 from O”% in Example 3.2.8, where Cy &~ Cs Xc,, Cy 22 Cy are the projections
and deg(Og)Y)\c& = X{(@,@) . Using Definition 3.2.8 and Lemma 3.2.6 together
with Joyce-Tanaka—Upmeier [97, p. 2.26], a simple computation shows that for each
Ji( &, BZ), which under inclusion 7; 5 : Y Y U Y restrict to ay, 5; respectively, we

have the formula
7:&2(&2752)7%((11751) = (-1) (X%(dhdl)*){%(/élwél)) (Xﬂfi,(dmdz)*x%(ﬁ%éz))+X]§(5¢1,0~42)*X$(5~1,52)

ERCRARACS (3.4.3)

Two points [EF, F*, ¢*] of Vy xy,. Vy map to [EF, F*, ¢t] e Vi 7, as described in
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(3.3.11). Using excision on index and Definition 3.4.2, it follows that
X (ETLIETD = xg (L 17D = xo (IBF L IE7D) — o (IFFLL[FD).
Using (3.3.13) and biadditivity of x, we obtain

X%(dlj d2) - X%(Bl, 32) = XY(CYla 042) - XY(51>52) )
where &;, 3; are K-theory classes glued from a;, ; as in (3.3.11), from which we obtain

T5(an ) S(on 1) =(—1) (XY(a1,a1)—xY(B1,B1)) (XY(CV%CVQ)_XY(ﬂQvﬂ?))+XY(O‘110‘2)_XY(BLIB2)

Ts(a1,B1),6(az,82) -

This leads to (3.4.2) by using that DY is strong H-principal. To conclude the final

statement of the proposition, one applies Proposition 3.3.15. O

Recall from Definition 3.1.19 that we have the map I'* : (Mx)"P — C§ . There

exists a compactly supported Chern character which is an isomorphism
ChCS : K:S(X> Qz, @ — H:S(XJ @) (344)
of Zs-graded rings. We also have the Euler form on H&*" (X, Q):

X HE(X, Q) x HE™(X,Q) — Q

x(a,b) = deg(a” - b-td(TX)),. (3.4.5)
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Combining (3.4.4) and (3.4.5), one gets Y : K2 (X) x K2 (X) — Z. Note that, we
have y(a, 8) = xy (@, B), where for a class a € K2, (X), a denotes the class of K°(Y)
extended trivially to D.

Using that O% is strong H-principal by the same arguments as in the compact case
(see Cao—Gross—Joyce [30, Lemma 3.13]), we have the isomorphisms ¢* : O“X, O —

1 (0O¥). We can now state the main result of comparison of signs under sums in non-

compact Calabi—Yau fourfolds.

Theorem 3.4.4. Let C& denote the connected component of C§ corresponding to

a € K2(X) =m(CE) and OF = O

ces . Let (My)'P = (I®)"HCS). After fizing

cs
o’

choices of trivializations of, of OF, we define €,

o (I 05) BI(T05) ) = 0505 5)
If one moreover fixes the preferred choice of of , such that
7%(05’ K og’) = of’ , (3.4.6)

then € : (a,B) — €n5 € {£1} is up to equivalences the unique group 2-cocycle
satisfying

€ap = (—1)X@XETX(@E) ¢y (3.4.7)

Proof. Recall from the proof of Theorem 3.1.18 that we have the isomorphism
& (OM) >~ O which is by constructions in Proposition 3.3.7 strong H-principal as
can be checked directly by comparing Zs-torsors at each C-point [i.(E), 0].

By Proposition 3.4.3 after setting 3, and 3, equal to 0 and a; = &, s = 3 it then
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follows that, we have (3.4.7) together with

€a,0 = €0,a = 1, €a,B8€a+B,y = €ByCa,B+y (348>

which it precisely the cocycle condition. The first condition follows from (3.4.6). [

Remark 3.4.5. If the need arises to show independence of compactification, one can
relate two compactifications Y; < Y — Y, by a common one obtained as a blow up
of the closure of X < Y] x Y5. Then one could use [150, Thm. 1.2] comparing Hodge
cohomologies for locally free sheaves under blow up in hopes of showing independence

of the isomorphism J.

We now discuss the orientation group from Joyce-Tanaka—Upmeier [97, Definition
2.26] applied to K2, (X) instead of K°(X) in our non-compact setting. The compactly

supported orientation group is defined as
Qes(X) = {(a,0%) : @ € KL(X), 0% orientation on C= } .

The multiplication is given by (a,05 ) x (8,05 ) = (a + B,755(08 Kz, 0F )) . The
resulting group is the unique group extension 0 — Zy — Qs (X) — KL(X) — 0
for the group 2-cycle € of Theorem 3.4.4. Choices of orientations induce a splitting
K2 — Q(X) as sets. This fixed € : K&(X) x K%(X) — Zy in Theorem 3.4.4. Let
us describe the method used in [97, Thm. 2.27] for extending orientation. Choosing

generators of KU.(X), one obtains

p q
K2 (X) 2 27 X [ [ Zuny, < [ Zors (3.4.9)
k=1 j=1
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where my, > 2 odd and p; > 0. Fixing a choice of isomorphism (3.4.9), choose
orientation on each Cg, a; = (0,...,0,1,,0...,0), where 1 is in position 7. Use 7
to obtain orientations for all & € K2 (X) by adding generators going from left to right
in the form (ay, ..., ap, (bj)j_;, (ck)r—;) and using in each step of, , = 7(0% Kol ),

where g is a generator. As a result, one obtains the splitting:

q p
Or(0) : Qo (X) = K (X) x {=1,1} = Z" x [[ Zm,, x [[ Zos x {~1,1}, (3.4.10)
k=1

J=1

where o is the set of orientation on Cg° for the chosen generators a. Let y;; =
X(a;, ;). The next result replaces K-theory by compactly supported K-theory in
Joyce—Tanaka—Upmeier [97, Thm. 2.27] and considers the Zs-bundle O® we con-
structed. We mention this also because in (ii) it describes the rule for obtaining the

signs €, 3 which will be useful in Chapter 4.

Theorem 3.4.6 ([97, Thm. 2.27]). Let Or(o) be the isomorphism (3.4.10) for a given
choice of orientations o on generators corresponding to the isomorphism (3.4.9). Let

Ty be the 2-torsion subgroup of K2, (X). Then:
(1) Define the map & : Ty — Zy as Z(7v) = €, Then it is a group homomorphism.

(i) Using Or(o) from (3.4.10) to identify Q= (X) with Z" X [ [}_) Zm, X [[}=, Zars X

{—1,1} the induced group structure on the latter becomes

(a1 (0 (e)iys0)  (ah -l (B (), )
= (i sar (b = ) (n + )i,

(_1)Z1§h<i§r(>_Chi+)_(hh>_(ii)a;LaiE(,y)o . O/> 7
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where Y= (07 ce 707 (O)Z:D (53');1‘:1) and

= b=
~ Cj+Cj 2;0]'*1
R s

for the unique representatives 0 < ¢;, E;-, ¢+ c;- < 2P7,
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Chapter 4

Wall-crossing for CY fourfolds

In this chapter we study DT4-type invariants for compact Calabi—Yau fourfolds using
the wall-crossing ideas sketched in Gross—Joyce-Tanaka [76, §4.4]. Unlike their [76,
Conjecture 4.11], we need the category of pairs and wall-crossing formulae for Joyce—
Song pairs, which we formulate in Conjecture 4.2.10. Using the recent result of
Cao—Qu [40], we show that the conjecture of Cao—Kool [32] follows from ours. As
we investigate other implications of the wall-crossing formulae, we find a general
expression for tautological integrals on Hilbert schemes of points. Their relation to
Hilbert schemes on surfaces is then discussed in §4.5.4. Most of the contents of this
chapter can be found in the author’s previous work [20]. Moreover, similar methods
will be used to recover the results of Arbesfeld-Johnson-Lim—Oprea—Pandharipande
[5], Lim [118], Oprea—Pandharipande [143] in author’s future work [18]. We only
consider the simplest case of elliptic surfaces and curves in the last section to recover

the correspondence of 4.5.14.
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4.1 Vertex algebras in algebraic geometry and

topology

In physics, 2-dimensional conformal field theories are distinguished from all other
dimensions by their richness. Among many other applications they can be used to
capture the dynamics of a string in a curved space-time. Vertex algebras defined
by Borcherds [22] for the purpose of tackling the monstrous moonshine conjecture
and studying representations of Kac—Moody algebras express the chiral part of a
conformal field theory and the state to field correspondence for the excited states of
a string. In this section, we recall their definition and a particular example useful to
us. We recall Joyce’s construction of these in algebraic geometry and formulate an
alternative topological construction. We continue working from this more topological

point of view as it is better suited to our setting.

4.1.1 Vertex algebras

Let us recall first the definition of vertex algebras focusing on graded super-lattice
vertex algebra. For background literature, we recommend [22, 99, 55, 56, 115, 66],

with Borcherds [22] being most concise.

Definition 4.1.1. A Z-graded vertex algebra over a field QQ is a collection of data
(Vi, T,10) ,Y), where V, is a Z-graded vector space, T : V, — V., is graded linear,
0) € Vo, Y : Vi — End(Vi)[z, 271 is graded linear after setting deg(z) = —2

’

satisfying the following: Let u,v,w € V, , then

i. We always have Y (u, 2)v € V,((2)),
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ii. Y(|0),2)v =,
iii. Y(v,2)0) = e,

iv. Let 0(2) = >,z 2" € Qz,27']

2 (F2 )Y (Y (), mw = 2576 (Z=22 )Y (w, 2)Y (v, m)u
2 0
_ (_1)deg(u)deg(v)zo—15<22 - Zl)y(% 2)Y (u, 21w

By Borcherds [22], the graded vector-space Vi o /T(V,) carries a graded Lie algebra

structure determined by

[, 0] = [z7'Y (u, 2)v. (4.1.1)

Let A* be abelian groups and x* : AT x A* — 7Z be symmetric, resp. anti-symmetric
bi-additive maps. Let us denote h* = A* ®; Q and fix a basis of BT of h*. For

(AT, xT) and a choice of a group 2-cocycle € : AT x AT — Z, satisfying
€ap = (—1)X @O @ BB, Vo, e AT(X) (4.1.2)
there is a natural graded vertex algebra on

Q[A"] ®q Symgluy,, v € BY,i > 0] = Q[A*] ®¢ Sym(h" @ *Q[t*]),  (4.1.3)

where the isomorphism takes u,; — v ® t* and ¢ is of degree 1. This vertex algebra

is called the generalized lattice vertex algebra (see [115, §6.4], [99, §5.4]). For given
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(A7, x7), Abe [1] describes a natural Z-graded vertex algebra on

Agluy;,v € B,i > 0] =2 A(h~ @ tQ[t?]), (4.1.4)

where the isomorphism is given by w,; — v ® t*~! and t degree 1. Suppose we have
vertex algebras (Vi,Tv,[0), ,Yy) and (W,,Tw,|0), ,Yw), then there is a graded

Vertex algebra on their tensor product, with state to field correspondence

Yv.ow. (v @w, 2)(u @ t) = (~1)* WYy, (0, 2)u Yy, (w, 2)t.

The super lattice vertex algebra for (AT @ A~, x*) is then given by the tensor product
of (4.1.3) and (4.1.4).
From the definition of the super-lattice vertex algebra (V;, T, |0),Y") associated to

(AL @ A_,x*) we can easily deduce the fields on the generators of:

I

V. [Ay] ®q SSymg[uy;, v € B,i > (]

Q
Q

I

[A4] ®g Symg (A4 ®2 Q) ®g Ag(A- ®2 Q).

Let a € Ay, such that a = ) a,v. We use e* to denote the corresponding

veBy
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element in Q[A,]. For K € V., we have

Y(e®® Uy1, z)eﬁ QK =¢® { Zu%k KR
E>0

+ 3 Y kg e )

k>0 weB

Y(e*®1, z)eﬁ QK = EQ’BZX+(Q"B)€Q+'B ® eXp[Z Z %uv,kzk]

k>0 veB4

eXp[ - Z Z X+(a,v)duci7kz_k}[(. (4.1.5)

k>0 ’UEB+

Note that by the reconstruction lemma [115, Thm. 5.7.1], Ben-Zvi [55, Thm. 4.4.1]

and Kac [99, Thm. 4.5] these formulae are sufficient for determining all fields.

4.1.2 Axioms of vertex algebras on homology

For a higher stack S, we denote by H.(S) = H.(S*P), H*(S) = H*(S™P) its Betti
(co)homology as in Joyce [91], Gross [74]. Note that we will always treat H,(T, Q) as
a direct sum and H*(T,Q) as a product over all degrees. Following May—Ponto [132,

§24.1] define the topological K-theory of S to be

K°(S) = [S§", BU x 7],

where [X,Y] = mo(Mapgo(X,Y)). For any & in Lpe(S) there is a unique map ¢ :

S — Perfc in Ho(HSt). Using Blanc [16, §4.1], this gives

[€] : S*° — BU x Z.
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in Ho(Top). We then have a well defined map assigning to each perfect complex &
its class [€] € K°(S).

The cohomology of BU x Z is given by

H*(BU x Z) = Q[Z] ®¢ Q[b1, P2, - - -],

where ; = ch;(4l) and Y is the universal K-theory class. Similarly to [91], we define

ch;(€) = [€]*(B;) and the Chern classes by the Newton identities for symmetric

polynomials:
3 cE)q" = exp[Z(—n”“(n - 1)!chn(€)q"] . (4.1.6)

As BU x Z is a ring space [132, §4.1], the set K°(S) carries a natural ring structure.
Moreover, by similar arguments as in [132, §4.1], one also has a map (—)¥ : BU XZ —
BU x Z inducing a map (—)" : K°(S) — K°(S). When S is replaced with a compact
CW-complex X, this becomes the standard K-theory K°(X) and (—)" corresponds

to taking duals.
Definition 4.1.2 (Joyce [91]). Let (A, K(A), M, ®, 1,0, ¢€) be data satisfying:
o A is an abelian category or derived category.

o Let Ky(A) — K(A) be a map of abelian groups. For each E € Ob(.A) denote

[E] € K(A) the image of its class.

e M a moduli stack of objects in A with an action ® : [x/G,,] x M — M
corresponding to multiplication by Aid of Aut(F) for any E € Ob(A) and a

map i M x M — M corresponding to direct sum.
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« For each a € K(A), M,, is an open and closed substack of objects [E] = a.

e O € Lye(M x M) satisfying 0*(0) = ©Y[2n] for some n € Z where o : M X

M — M x M interchanges factors and

(1 x idpm)"(O) = 7153(0) @ 733(0), (ida X p)*(©) = 71,(0) @ 713(0)

(@ x idy)*(©) VKO,  (idux®) ()= VKO, (4.17)

where V; is the universal line bundle on [%/G,,]. One also writes O,3 =
O Mo xm, and x(a, f) = 1k(Oq,5), where x : K(A) x K(A) — Z is a bi-additive

symmetric form.

o A group 2-cocycle € : K(A) x K(A) — Z, satisfying (4.1.2) with respect to
Xt =x

Let H.(M) be the homology with shifted grading given by H,(Ma) = Hy_ (a0 (Ma)
for each a € K(X), then using the above data one constructs a vertex algebra

(H,(M),|0),e*T,Y) over the Q vector space H,(M). Tt is defined by:
e |0) = 0.(x), where 0 : * — M is the inclusion of the zero object,

e T(u) = ®,(tRu) for all u € H,(M) where t € Hy([*/G,,]) = Ho(CP™) is the

generator of homology given by inclusion CP* C CP®°.

o The state to field correspondence Y is given by

Y(u,z)v = ea”g(—1)”X(B’E)ZX(a’ﬂ)ui°p(eZT ®id) ((u Xv)Ne,-1 (@aﬁ)) )

for all u € Hy(M,), v € Hy(Mp).
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The following definition is familiar to experts and can be extracted from a more
general formula for generalized complex cohomology theories in Gross [75, Prop.

5.3.8].

Definition 4.1.3. Let (C, i, 0) be an H-space with a CP* action ® : CP>* x C — C
which is an H-map. Let § € K°(C) = [C, BU X Z] be a K-theory class satisfying

o*(f) = 0¥ and

(> ide)™(0) = 7m13(0) + ma3(0) ,  (ide x p)*(0) = mi5(0) + 715(0)

(@ x ide)"(0) = ViR,  (ide x ®)*(0) = V' K0,

where V| — CP*° is the universal line bundle.

Let m(C) — K be a morphism of commutative monoids. Denote C, to be
the open and closed subset of C which is the union of connected components of
C mapped to o € K. We write again 0,5 = 0Oc,xc;, and x(a, ) = rk(0sp)
must be a symmetric bi-additive form on K. Let € : K x K — {—1,1} satisfy-
ing (4.1.2), (3.4.8) be a group 2-cocycle and H,(Cy) = Hy y(a,0)(Ca). Then we denote
by (H,(C),|0),e*T,Y) the vertex algebra on the graded Q-vector space H,(C) defined

for the data (C, K(C),®, p,0,0,¢) by
e |0) =0.(%) and T'(u) = D.(t K u) as before

« the state to field correspondence Y is given by

Y (u, 2)v = €q5(—1)XEO X8 (T id) (uBv) Ne-1(0a5))

for all u € H,(C.), v € Hy(Cs).
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Remark 4.1.4. We can assign to (A, K(A), M, ®, 1, 0, ¢) the data

(wa, Co(A), (I)top’ ,utop, Otop, 6, 6)

from Definition 4.1.3, where Cy(A) C K(A) is the cone of all [E] € K(A), ®%P,
(P 0%P are maps in Ho(Top) and 6 := [O]. The two vertex algebras obtained on

H,(M) are clearly the same.

The wall-crossing formulae in Joyce [95], Gross—Joyce-Tanaka [76] are expressed
in terms of a Lie algebra defined by Borcherds [22]. Let (H,(C),|0),e*”,Y) be the

vertex algebra from Definition 4.1.3 and define

~

Moo : Heyo(C) — H.(C) = H.yn(C)/T(H.(C)),

then, by (4.1.1), this has a natural Lie algebra structure.

4.1.3 Insertions

To compute invariants using the homology classes of Conjecture 4.2.10, we need to
consider elements in the dual of Hy(M) or Hy(N,.,) (see Definition 4.2.3). We do
so in the algebraic topological language, as it is more general and is closer to the

computations that follow.

Definition 4.1.5. Let (C, K(C),®, 1, 0,0, ¢€) be the data as in Definition 4.1.3, then

a weight 0 insertion is a cohomology class I € H*(C) satisfying

() =1K1T.
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Lemma 4.1.6. Let I € H*(C) be a weight 0 insertion, then I, € H™(C) induces a

well defined map f,gﬂ(a,a)ﬂn : F[,2+X(a7a)+m(CQ) — Q for allm > 0.

Proof. Suppose that we have V|V’ € H,,(C) such that V — V' = D(W) for W €
H,,»(C). As D(W) = ®&,.(t X W), using the push-pull formula in (co)homology we

see

DW)NIL, = (tRW)N I, =3, (tRW NI (IL,))

— o, (tRW)N(1K,)) =&,(tR(WNI,)) =0.

Integrating cohomology class 1 € Hy(C) on both sides shows that I,,,(V —=V') =0. [

Let [M] € H,,(C) and I a weight zero insertion. Then we will use the notation
/ [ = I,([M)). (4.1.8)
[M]
Example 4.1.7. Suppose that J € K°(C x C) satisfies
(©xide)"(T) =WVRT,  (idex®)(T)=NKJT,

then Z = A*(J) satisfies ®*(Z) = 1 W Z. In particular if p(z1t, zot%,...) is a power
series in infinitely many variables then I = p(ch;(Z),chy(Z),...) is a weight zero

insertion.

Often times insertions behave well under direct sums. In the algebraic setting the

following definition has been stated more generally in [76, Definition 2.11].
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Definition 4.1.8. Let (H,(C),|0),¢*7,Y) be a vertex algebra for the data in Defini-

tion 4.1.3. Let F' — C x C be a vector bundle satisfying

(1 xide)"(F) = mpp(F) @ my(F), (ide x p)*(F) = mip(F) © mi3(F)

(@ xide) (F) 2 VyRF, (idex ®) (F) X ViR F, (4.1.9)

such that {(a, 8) := 1k(Flc,xc,) is constant for all o, 8 € K(C). Then define the
F-twisted vertex algebra associated to (H,(C),|0),e*T,Y) to be the vertex algebra

given by Definition 4.1.3 for the data (C, K(C), ®, u, 0, 0¥, ¢*), where

0F =04 [F*] + [o*(F)],

5= (-1)"Pe, 5 Va,feK(C).

We denote this vertex algebra by (H,(C),|0), e, YT).

One can then conclude by the same arguments as in the proof of [76, Thm.

2.12](see Joyce [91]) that:

Proposition 4.1.9. In the situation of Definition 4.1.8 let E = A*(F') and consider
the morphism of graded Q-vector spaces (=) N ce(E) : H(C) — H,(C), such that on

H,(C,) it acts by u — uN Ce(aa)(E). Then it induces a morphism of vertex algebras

(=) Nee(B) : (H.(C),[0),eT,Y) — (H.(C),|0), e, YT). (4.1.10)

Moreover, let [—,—] be the Lie bracket on H,(C) and [—,—]F the Lie bracket on

Y

117



H,(C) = ﬁ*+2<C)/T(F[* (C)). Then (4.1.10) induces a well-defined map of Lie algebras

(=) Nee(B) : (Ho(C), [, =) — (H(C). [-,—]").

4.2 Wall-crossing for pairs

After fixing a particular choice of orientations, we begin by constructing an explicit
vertex algebra on the moduli stack of pairs and relating it to the vertex algebra of
topological pairs. We then conjecture a wall-crossing formula for Joyce-Song stable
pairs in the homology of the previous vertex algebras. The final subsection serves the

purpose of giving an explicit description of vertex algebras of topological pairs.

4.2.1 Point-canonical orientations

Recall from Theorem 3.4.4 or Cao—Gross—Joyce [30, Thm. 1.15] that there are unique
cocycles € : K%(X) x K°(X) — Z, after fixing trivializations o, of O, for each
a € K°%X), where we omit (—)® as we are working purely within the compact
setting. We do so by using generators and the trivialization of Or(o) of (3.4.10). For
our purposes, we will have a preferred set of generators.

Let us now fix orientations o, for & = N[Ox] + np. For this we set p to be the
K-theory class of a sky-scraper sheaf at some point x € X. Let M, denote the moduli
scheme of sheaves of class p. There is an isomorphism M, = X and Cao-Leung [37,

Proposition 7.17]) showed that

[M,]"" = £Pd(c3(X)) € Hy(X), (4.2.1)
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where Pd(—) denotes the Poincare dual. There is a natural map m, : M, — Mx
giving T'om P : M°® — C,. Similarly, the point moduli space {Ox} = * comes with
a natural map ip, : {Ox} — Mx and carries a natural virtual fundamental class

1e Ho(*) =7.

Definition 4.2.1. In (3.4.6), choose the order of generators of K°(X) such that
[Ox] < p < g for any other generator g € G. We fix orientation o, for all g € G, such
that (I'om,?)*(0p) induces the Oh-Thomas/ Borisov—Joyce virtual fundamental class
[M,]"" = Pd(c3(X)) and oo, induces the virtual fundamental class [{Ox}]" =1 €

Hy(pt). We will denote these choices of orientations o;*" and 0[Oy respectively. By

the construction in Theorem 3.4.6, these determine orientations for all « € K°(X).

Remark 4.2.2. We will see that this is the right choice of orientations for working
with Hilbert schemes of points. On the other hand, when working with stable pairs
for 1-dimensional sheaves as in [41], the author checked that the correct orientations
to recover the wall-crossing formula in [41, Conj. 0.2] are obtained by fixing the order
of generators such that p < (8,1) < [Ox], where (3,1) denotes the K-theory class

such that ch(B,1) = (8,1) € H%(X) & H¥(X).

4.2.2 Vertex algebras over pairs

In this section, a Calabi-Yau fourfold (X, ) must additionally satisfy H'(Ox) = 0
for i = 1,2,3. We now construct the vertex algebra on the auxiliary category of pairs

and its topological analog.

Definition 4.2.3. Let X be a Calabi-Yau fourfold and A = Coh(X). Fix a choice

of an ample divisor H and let 7 denote the Gieseker stability condition with respect
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to H. Then let A, be a full abelian subcategory of A with objects the zero sheaf and
T-semistable sheaves with reduced Hilbert polynomial ¢. Define B, to be the abelian
category of triples (£, V, ¢), where E € Ob(A,), V € Vectc and ¢ : VROx(—n) = E.
The morphisms are pairs (f,g) : (E,V,¢) — (E',V',¢') where f : E — E’ and
g:V — V' satisfy ¢/ o g ® idoy(—n) = f o ¢. The moduli stack N, of B, is Artin
by [96, Lem. 13.2]. Moreover, consider the full exact subcategory B,, of objects
(E,V,$), such that H'(E(n)) = 0 for ¢ > 0 and the corresponding open substack
N,n, where the openness follows from [79, Thm. 12.8.].
Let

A Ko(A) — K°(X) (4.2.2)

be induced by the usual comparison map. We define C'(A,,,) C Ko(A) to be the cone
of [E] for non-zero E € Ob(A,,). Let Co(Byn) = (C(Agn) U{0}) x (NL{0}), then

for all (a,d) € Co(By,) define N2 as follows:

o If (a,d) € C(Agn) x N then N is the total space of a vector bundle 7,4 :

Mo (F2,) BV = M2, x [x/GL(d, C)]. Here

Foo =11 (0Ox(n)) @ &

q7n )

(4.2.3)

where £, is the universal sheaf over X x Mg, and Mg, the moduli stack of
T-semistable objects £ with pr = ¢ and [E] = a. We also use V,; to denote the

universal vector bundle of rank d,

° N;fho = Mgn, Nqoﬁl = [*/GL(d,C)] and ,/\[(1()7’7? = x,
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Then we have

N:],n _ I_l Ned

a.n
(o, d)€Co(Bqg,n)
We now describe the remaining ingredients needed in Definition 4.1.2. For a
perfect complex/K-theory/cohomology class x on Z; X Z;, we use the notation (k); ;
to denote 77 ;(k), where

Tij - HZk — Zl X Zj
kel

is a projection to the 7, j components.

Definition 4.2.4. We have a natural action @y, : [*/G.] x N%& — N4 which
is a lift of the diagonal [*/G,,| action on the base Mg, x [¥/Gl(d,C)] to the total

space. We define the map of monoids

K(Q) : Co(Byn) & KOX) x 2. (4.2.4)

Let ©,3 = Hom £, E8

M X MG (Eqns Egn)”-

Let F¢, be as in (4.2.3). We define

o ) € Lpe(No™ x N22%) for all (o, d;) € Co(Nyn) by

(a1,d1),(az2,d2

pa *

(o1,d1),(02,d2) =(Tardr X Tazds)

{Ona)ia® ((Va BV™) | @ (Vo Brmau(F2)Y), 1

2,3

@ (m*(f;j,g) v;;) [1]} . (4.2.5)

1,4

The perfect complex OP* on Ny, X Ny, is defined to have the restriction to NL® x
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Ng2% given by (4.2.5). The corresponding bi-additive symmetric form is given by

Xpa((a,dl)a (&27 dQ)) = rk(@?zl,dl),(ag,dz))

= x(a1, @) + 2dids — di (x(a2(n))) — dax (1 (n)) .

pa

The signs €lar.dr),(an.da

) are defined by:

€l ) (an.dy) = EMa1—d1[Ox (W] Aaz—d2[Ox ()]) - (4.2.6)

where € is from Theorem 3.4.4.

We show that the conditions of Definition 4.1.2 are satisfied (only) in K-theory,
Le.

((Nagn)' P, Co(Byn)s tinE s pinE 0P, [OF*], P*) (4.2.7)

satisfy assumptions of Definition 4.1.3.

Lemma 4.2.5. The data (4.2.7) satisfies the conditions in 4.1.3. Denote by

(ﬁ(/\/'qn), 0),e*T,Y) the corresponding vertex algebra.

Proof. To show that [©P?] satisfies o*([OP*]) = [OP*]" we note that

O-Zl,az (@a%al) = @ZI,O(Q [_4] )

Uikal,ch),(az,dg) (‘/212 & ‘/;:71)274 = (Vd*l & Vd2)2,4 - (‘/dl & ‘/;l*g)* )

O o) (o) (Vi BT (Firh )Y )28) = (Mo (Foh) B Vi )14 = (mau(Fyk) BV )Y 4

The rest of the properties for [©P?] follow immediately, because V; and WQ*(f;f;fl) are

weight 1 (see Joyce [91]) with respect to the [*/G,,| action and they are additive under
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sums. The signs €(a, d,),(as,dz) Satisfy (4.1.7) for xP* because the map 7 : K (Ag,)xXZ —
K(X) given by 7(a,d) = Ma) — d[Ox(—n)] is a group homomorphism satisfying

x o (7 x 7) = xP*. The latter statement uses that x(Ox) = 2. O

We use the map X : Ny, = Mx x Perfec where Mx = M, (x). For each (a,d) €
Co(Nyn) the restriction (a9 = E|N$,nd can be expressed as X, q) = (L5, X ta) © Tad,
where 17, M7, — Mx and g : [x/GL(d,C)] — Perfc are the inclusions. As
Tad : Nowt— M, x [x/GL(d, C)] is an A'-homotopy equivalence we do not lose any
information.

While there is an explicit description of H,(Mx) (see Gross [74]) in terms of the

semi-topological K-theory groups K

sst

(X) of Friedlander—Walker [57], we will not use
it because these can be complicated for general Calabi—Yau fourfolds. Instead we

transfer the problem into completely topological setting using

Q= (I xid) o X : NP — MY x BUXZ — Cx x BUXZ,  (4.2.8)

where I" is from Definition 3.1.17. This will induce a morphism of vertex algebras
when using the correct data on Px := Cx x BU x Z. Denote by 4 and € the
universal K-theory classes on BU x Z, respectively X x Cx. We will also use the

notation §, = 7 ([Ox(n)]) - €.

Definition 4.2.6. Define 6p € K°(Px x Px) by

973 = (QC)I,?) + Q(ﬂgﬂv)2,4 - (i/llE 77—2*(317,)\/)273 - (77-2*(871) gu\/)m’

where 0, = 72,3*(71'1:2(@) : 7?,3(6)“'
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Let ®p be given by the diagonal action® on Cx x (BU x Z). We use the natural
H-space structure (Px, j1,0). Choosing K(Px) = K°(X) x Z we set for all (a;,d;) €

K(X) x Z:

)2((0[1, dl), (Qfg, dg)) = X(O[l, Ozg) + 2d1d2 — dlx(al(n)) — ng(O[Q(TL)) s

€(ar,d1),(az,ds) = €ar—di[Ox (n)],ae—d2[Ox (n)] > (4.2.9)

where € is from Theorem 3.4.4. We construct the vertex algebra (H,(Px), [0),e*7,Y).

Proposition 4.2.7. The map Q. : H.(N,,) — H.(Px) induces a morphism of graded
vertez algebras (H,(Ny,),|0),e*T,Y) = (H.(Px),|0),e*",Y). It gives a morphism

of Lie algebras

Q* : (H*(qu)v [_7 _D — (I:I*(,PX>7 [_7 _])

Proof. We use this opportunity to check that conditions of Definition 4.1.3 are satis-
fied. Using arguments from the proof of Lemma 4.2.5 and Gross [75, Prop. 5.3.12],
we reduce it to showing that o*(6c) = 6. Recall that we have the natural homotopy
theoretic group completion v : Vx — Cx. Using universality of the group-completion

from Proposition 3.2.3, we restrict it to showing

o"(v"(fc)) = ~"(0c)". (4.2.10)

Two compact families K, L — Vx correspond to two families of vector bundles Vi,

Vp, which we can assume to be smooth along X so we choose partial connections

*Using the left-multiplication on U(n) by U(1) we get the action of CP* on BU(n). Taking a
union over all n we get a CP> action on | |, BU(n). As| |BU(n) — BU x Z is a homotopy theoretic
group completion, using [43, Proposition 1.2] we can extend to an action on BU x Z
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Vs Vi, in the X direction for both of them. The pullback of the class v*(6¢) to
K x L is the index of the family of operators (9+0%)"Vi®Vx : T°(A%ven @ V@ Vi) —
(A% @VERV,). Using Serre duality, we have the formula ind <(§+5*)VVL*®VK> =
ind <(5+5*)VVL®VI*<> € K%K x L), where ind(—) is the family index of Atiyah-Singer
[9]. This is precisely (4.2.10) by the family index theorem [3, §3.1].

To show that 2, induces a morphism of vertex algebras we note that in Ho(Top),
Q: (N;n)"P — Px is a morphism of monoids with CP> action. The pullback Q*(6p)
is equal to [OP*] by construction and arguments in the proofs of [74, Prop. 5.12,
Lem. 6.2]. By considering the action of {2 on connected components, we get precisely

K(Q): Cy(B,,) = K°(X) x Z from (4.2.4) which satisfies

Yo (K(Q) x K()) = x™: Co(Byn) x Co(Byn) — Z,

EK(Q)(a1,d1),K(Q)(az,d2) = 6?21,111),(042@2)

for the same choices of €, 5 in (4.2.6) and (4.2.9). Therefore Q, : H,(N,,) = H,(Px)

is a degree 0 graded morphism compatible with the vertex algebra structure. ]

Remark 4.2.8. We will only restrict to the case when n=0, as we will be working

with O-dimensional sheaves only in the following sections.

4.2.3 Wall-crossing conjecture for Calabi—Yau fourfolds

In this subsection, we conjecture the wall-crossing formula for Joyce—Song stable
pairs, following Joyce—Song [96, §5.4], Joyce [95]. For the abelian category of
coherent sheaves the conjecture has been stated by Gross—Joyce-Tanaka [76, Con].

4.11]. Before this, we recall some background from [91].
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Consider an Artin stack Mg = M\0, where M as in Definition 4.1.2. Using rigid-
ification as in Abramovich—Olsson—Vistoli [2] and Romagny [151], one defines MI\% =
Mo [J[*/Gy,]. One can define a shifted grading on FI*(MI\DE)) = H.io () (./\/ll\j(l))
such that the projection ITP' : My — ./\/lr\)é induces a map of graded Q-vector
spaces, Joyce [91] proves that it factors H,ys( M) 4 H.(Mp) L, I{I*H(MI\%),
such that II, : HO(/\/I\O) — IV{()(M}\)E)) is an isomorphism. If 7 is a stability con-
dition on A from Definition 2.3.1 and 0 # a € K(A), then let M (7) denote
the moduli scheme of 7-stable objects in class @ and M (1) C M(7) the finite
type stacks of 7-stable and 7-semistable objects. There is a natural open embedding
St MEH(T) — /\/l‘\)é. In particular, if [Ms'(7)]"™ € H,(M:s'(7)) is defined, then we
write [MEH(T)]vie = i, ([MSH(7)]'") € H. (MI\DE))

Let now X be a CY fourfold, A = Coh(X) and 7 a Gieseker stability, then
in the case that M5'(7) = M(7), Oh-Thomas [141] and Borisov—Joyce [23] con-
struct virtual fundamental classes [M(7)]"" € Hy_y(a,0)(ME(7)). Thus we have
[ME(T))vie € HO(M%). We lift it to an element (ﬂo)_l([Mzt(T)]Vir) which we also
denote by [M5(7)]vir-

For A = Coh(X) we now fix the data from Definition 4.1.2.

Definition 4.2.9. Define (A, K(A), ®, i1, 0, €) as follows:

o« \: Ky(A) 2 K(X) = K(A), © = &xty, from (3.1.3).

o For a,8 € K(A) define €43 = €(a),7(3) using the orientations from Theorem

3.4.4.

Moreover, use the fixed orientations above to construct Oh-Thomas/ Borisov—Joyce
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classes [MS*(T)]Y" € H,(M2(7)) for all , 7, such that M3 (7) = M3(7). Let P2
denote the Joyce-Song stability condition on pairs (see Joyce-Song [96, §5.4]) and
N (S;,l)(Tpa) the moduli scheme of Joyce-Song stable pairs, then [23], [141] still give us
[Nf;l)(rpa)rir € Hoyoa((a,1),(a,1)) (V1) (7P*)). The chosen orientation is again used

to determine orientations of [N (5(;

J)(Tpa)rir under the inclusion N(s(i,l) — Mx.

Conjecture 4.2.10. Let 7 be a Gieseker stability, then there are unique classes

M (T)]inw € Ho(My) for all a € K(A) satisfying:
i If M3 (1) = MZ(7) then [MZ(T)linv = [MZ' (7)) vic -

1. If T is another Gieseker stability condition then these classes satisfy the wall-
crossing formula [76, eq.  (4.1)] in H.(M). If M5(r) = M3(7) then

[MSBS(T)]inv = [M%S(%)}inv'

iii. If 7(a) = q, we have the formula in H.(N,,):

[N(sgc,l)(Tpa)]vir =

<_1)k SS Ss
> ([ TV s IV, ()l -, M (7]

k>1ar,....aeC(A)
ar+-tap=a,7(a)=7(a;)

where (Nio,1)linv € ﬁg(./\/:]?hl) > 7. is the generator determined by orientation on

Croxy, and [MZ(7)]iny = [MEG o) (TP liny-

One can compute well-defined invariants using [M®(7 )]y, and weight 0 insertions
from 4.1.5. We will use the map . : H.(N,) — H.(Px) and give explicit formulae

for [M3*(7)]iny in the cases we study.
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4.2.4 Explicit vertex algebra of topological pairs

We give here an explicit description of the vertex algebra (H,(Px), |0),e*T,Y) which
will apply some of the work of Joyce [91] and Gross [74]. We also set some notations,
conventions and write down some useful identities. In the following, X is a connected

smooth projective variety of dimension n unless specified.

Definition 4.2.11. Let us write (0,1) for the generator of Z in K°(X) ® Z. Let
ch: K9 X)2Q& K'(X)®Q — H*(X) be the Chern character. For each 0 < i < 2n
choose a subset B; C K°(X)® Q& K'(X) ® Q such that ch(B;) is a basis of H'(X).
We take By = {[Ox]} and By, = {p}. Then we write B = | |, B; and B = BU{(0,1)}.
Let K,(X) denote the topological K-homology of X. Let ch” : K,(X)®Q — H,(X)

be defined by commutativity of the following:

K.(X)® Qo9 K*(X)® Q%% 1, (X) @ H*(X)

| | L

@ id >Q

then choose BY C K.(X) ® Q such that BY is a dual basis of B, we also write
BY = BY1{(0,1)}, where (0,1) is the natural generator of Z in Ky(X)® K1(X) ® Z.
The dual of o € B will be denoted by ¢V € BY. For each 0 € B, (a,d) € K°(X) x Z
and 7 > 0 we define

e(avd) ® MU,i — Chi(e(a,d)/av) s (4211)

using the slant product K(Y x Z) x K;(Y) — K'7(Z). We have a natural inclusion
ep : Cx = Px: x — (2,1,0) € Cx x BU X Z, so we identify H,(Cx) with the
image of (t¢.p)«, which in turn corresponds to H,(Cx)X1 C H,(Cx)X H,(BU X Z) =

H.(Px). The universal K-theory class €p on (X L %) x (Px) restricts to € X 1 on
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(X XxCx)x BU xZ and 1 X8l on * x Cx X (BU x Z).

The next proposition follows by the arguments in the proof of Gross [74, Thm.

4.15] and the remark below it.

Proposition 4.2.12. The cohomology ring H*(Px) is generated by {e®? ®

Na,i}(md)eKU(X)XZ,ael&izl- Moreover, there is a natural isomorphism of rings

H*(Px) =2 Q[K°(X) & Z] ®q SSymg|[tte,i, 0 € B,i > 0] . (4.2.12)

From now on, when we compute explicitly with H*(Px), we replace it using this

isomorphism. The dual of (4.2.12) gives us an isomorphism

H,(Px) = Q[K°(X) x Z] ®q SSymg[us;, o € B,i > 0], (4.2.13)

where we use the normalization

[Tven 0 m;ﬁn' - if éa’d)B:,(g’le)’mmi:”a,i

: . : —1)1"ose oclB,1>

e(Oéyd) ® H IU/Zj‘Z?ﬂ <€(B,e) ® H u::;ﬂ) — i>1 t (4214>
?26 B ngB 0 otherwise.

We will be using the following simple result in computations later.

Lemma 4.2.13. Let f(txy,t?x,,...) be a power-series, then for any set of coefficients

a,; we have

e @ eXP( > af,j#mqj> <6(ﬁ’e) @ f(Uo1; o2, - ')>
>0
TEB

= 60,800 f (Ao1q, A02q”, o g, ).
#0d.ef (00,19, Ao 2q (k — 1)!61



Proof. Notice that acting with e®? ® []i>1 pr et corresponds to acting with
oceB ’

Mg,
do80de [ i1 (ﬁ#) and then evaluating at u,;, = 0. As a result we obtain
ocB il

d .
e(o"d) X eXP(Z Qoj du 4q]> (e(ﬂ’e) X f(ua,la Ug,2,5 - - )) ’ua,z:O
ag,]

i>1

:aée 0,14, o 2,..., e
#0d.ef (5,10, as2q (k—l)!q

by a standard computation. O

When o = (v,0) or 0 = (0, 1) we will shorten the notation to

MHoi = Hvi, Ugi = Uys; O  Ugi = Bi Ug,i = b;.

Setting 5; = 0, b; = 0 and only considering Q[K°(X)] C Q[K°(X) & Z] gives us the
(co)homology of H*(Cx ), H.(Cx) up to a canonical isomorphism. Using this notation

we can write

ch(€a) =D ch(v) B (D e @ py) . (4.2.15)

vEB i>0
Let X now be a CY fourfold. The following theorem is the topological version of [74,

Thm. 1.1], [91, Thm. **] extending it also to pairs.

Proposition 4.2.14. Let Q[K°(X) x Z] ®q SSymg[us, 0 € B,i > 0] be the gener-
alized super-lattice vertex algebra associated to ((K°(X) & Z) ® K*(X),x*), where

X' =X® X~ forx from (4.2.9) and

X CKY(X)x KNX)—7Z, x (a,fp)= /Xch(oz)vch(ﬂ)Td(X). (4.2.16)
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Then the isomorphism (4.2.13) induces a graded isomorphism of vertex algebras
H*(Px) = Q[K°(X) x Z] ®q SSymg[us, o € B,i > 0],

if the same signs €q.a),,e) from (4.2.9) are used for constructing the vertex algebras

on both sides. On the right hand side the degrees are given by

deg(ceve I] e T )

0€BevenU{(0,1)},:>0 vEBoad
§>0
= > me2it Y me2 - 1) = (e, ), (0,).
€ BevenU{(0,1)} vE€Bosda
i>0 Jj>0

Proof. The proof is nearly identical to [74, Thm. 1.1], [91, Thm. **]. We need an
explicit expression for chy(6p) replacing Proposition [74, Prop. 5.2] and a similar

result in [91, Thm. **] for quivers. This is given in Lemma 4.4.6. O

Before we move on to the applications, let us write down some identities we will
need later on. From now on, we always fix a point-canonical orientation of Definition
4.2.1, the associated signs of €, of Theorem 3.4.4 and the corresponding €q,a),s,¢)

from (4.2.9).
Lemma 4.2.15. Consider the vertex algebra (H,(Px),|0),e*T,Y), then

i. tk(€pa/0Y) = (a,d)(a")
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1. Let vy,... v € Beven and i1,...,1, > 1, then

T(e(a,d) ® Upy iy * - ka,ik) — plad) Z (a, d)(U\/)ug’luvhi1 Uy
0E€BevenU{(0,1)}

k
+ E Uy iy« Wy Uy i1 0" Yo iy s
=1

iii. For all k,1, M, N >0 we have €y n),(ip,1) = (—1)MF,

Proof. i. To see this, we use functoriality of the slant product:

l“k(@(avd)/dv) = rk (iz,b(é(md)/gv))

= 1k((id X icp)" (€a,a)/0") = 1K (o, d) /0" = (o, d)(c"),

where i, is an inclusion of a point into P(,,q). The second statement is a generaliza-
tion of [74, Lemma 5.5] using i. A similar formula has been shown in [91] for quivers.
The last statement follows from Theorem 3.4.6 together with Definition 4.2.1 and

(4.2.9). [

We will often avoid specifying the connected component where the (co)homology

class sits by simply omitting e(®%, e where it is obvious.

4.3 Cao—Kool conjecture

After reformulating Conjecture 1.0.4 in terms of the vertex algebra of pairs, we com-
pute (assuming Conjecture 4.2.10) the virtual fundamental classes of semistable 0-

dimensional sheaves viewed as elements of H,(Cx) by wall-crossing in the vertex
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algebra of Definition 4.3.4 and using the result of Cao—Qu [40, Theorem 1.2]. By

wall-crossing back we prove Conjecture 1.0.4.

4.3.1 L-twisted vertex algebras

For a Calabi-Yau fourfold X let Hilb"(X) be the Hilbert scheme of n points and

vir

[Hilb"(X)]™ € Ha, (Hilb"(X)) the virtual fundamental class defined by Oh-Thomas

[141, Thm. 4.6] using the orientations in Definition 4.2.1. We consider the vector
bundle L") — Hilb™(X) given by (1.0.1). The real rank of LI" is 2n, so Cao-Kool

[32] define

I(L) = / (LY (4.3.1)
[Hilb™ (X)]vir

The proof of Conjecture 1.0.4 will be given at the end of subsection 4.3.2 in the

following form.

Theorem 4.3.1. Let X be a smooth projective Calabi-Yau fourfold for which Con-

jecture 4.2.10 holds, and L a line bundle on X. Then
I(Liq) =1+ Y L(L)g" = M(—g)2 )
n=1

for the point-canonical orientations of Definition 4.2.1.

For the invariants I,,(L) this is equivalent to

k>1
k
1 n: T
de(n) = > HHE:H) e (L) =all) - o(X). (4.3.2)
n,..,nk i=1 Iln;
2o mi=n
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Let us interpret this in the language of §4.2.3. Take A, = Aj to be the abelian
category of sheaves with O-dimensional support. Let B, = B, be the corresponding
category of pairs from Definition 4.2.3 and Nj its moduli stack with n = 0. We

have the identification Hilb"(X) = Ng*

(np 1)(Tpa), noting that p(F) = 1 for any zero-

dimensional sheaf F'. This gives us

Hilb"(X)],, = [N (7))

vir (np,1)

by part i. of Conjecture 4.2.10.
As Hilb" (X)) carries a universal family ., — X x Hilb"(X), there exists a natural

lift of the open embedding (*' : Hilb"(X) — NI
/ lﬂpl . (433)
pl
Hilb™ (X)) —— AP
We use ¢, to express (4.3.1) in terms of insertions on Nj.

Definition 4.3.2. Using the notation from Definition 4.2.4, for all (np,d) € Cy(By)

we will write N, 4 = Nppa. Then define EEZ%&T] — Noyay X Nog.ay, by

ﬁgﬁggﬂ = (7Tn1,d1 X 7T'nQ,d2>>|< (Vsl X T2 (W}(L) ® go)) 2,3

where & is the universal sheaf on M, the moduli stack of Ay. It is a vector bundle

of rank di;ny,. We define

[n1,n2]

‘C[_’_] |Nn1,d1 XNnQ,dQ = £d1,d2
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Set £ = A*(£I>71). From Example 4.1.7, we know that ¢’(£) is a weight 0
insertion and from definition it follows that ¢*(£) = L. Using this together with

[Hilb"(X)] . = <le o Ln> ) < [Hilb"(X)}Vir>, we see that

(L) = / L) (4.3.4)
[Hilb™ (X)]vir

The following is clear from the construction.

Lemma 4.3.3. The vector bundle L7771 — Ny x Ny satisfies the conditions of
Definition 4.1.8. Let (H,(Njy),|0),e*T,YL) be the L= )-twisted vertex algebra,
(H*(./\fo), [—, —]¥) the associated Lie algebra. By Proposition 4.1.9 we have the mor-

phism (=) NP (L) : (H.(N), [—, —]) = (H.(N), [—, —]F) -
We construct its topological counterpart.

Definition 4.3.4. Define the data (Px, K(Px), ®p, uip, 0,05, €-) as follows:
« K(Px)=K"X) xZ.

e Set £ =1, (7%(L) ® €) € K°Cx). Then on Py x Py we define

05 = (0)15 + 2(U KUY )pq — (ux (mau(€) — 2)V> - ((m*(e) —g) @uv>

2.3 1,4

¢ The symmetric form y”: (K%(X) x Z) x (K°(X) x Z) — Z is given by

X (. d), (B, €)) = k(0,0 (5.0))

=x(a,8) + 2de — d(x(B) — x(8- L)) — e(x(a) = x(a- L)) . (4.3.5)
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o The signs are defined by

Emar,.e) = (FDNEDE G0 5. (4.3.6)

in terms of &, 3 from (4.2.9).

We denote by (H,(Px),|0),e*T,Y") the vertex algebra associated to this data and

(H,(Px),[—, —]*) the corresponding Lie algebra.

We are unable to use Proposition 4.1.9 directly because UV X £ is not a vector
bundle. However, one can easily show the following result similar to Proposition

4.2.14 and Proposition 4.2.7.

Proposition 4.3.5. Let Q[K°(X) x Z]®qSSymg[ue, o € B,i > 0] be the generalized
super-lattice vertez algebra associated to ((K°(X)®Z)® K (X), (x")*), where (Y*)* =
Xt @ x for Xt from (4.3.5) and x~ from (4.2.16). The isomorphism (4.2.13) induces

an isomorphism of graded vertex algebras
H*(Px) = Q[K"(X) x Z] ®¢ SSymg[[us;,0 € B,i > 0],

if the same signs €(La D.(5re) from (4.3.6) are used for constructing the vertex algebras

on both sides. On the right hand side the degrees are given by

w(doro T are IT )

0€BevenU{(0,1)} ,i>0 vEBoad
§>0

= Y w2t Ym0 - 2 ((d), (0,0)).

UEBevenu{(Oyl)} '{)eBodd
>0 7>0
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The map Q. : H.(N,) — H.(Px) induces a morphism of graded vertex algebras

(H.(N,),10),e*T, YL) = (H.(Px),|0),e*T,YL) and of graded Lie algebras
Q* : ([o{*(j\/:]>7 [_7 _]L) . ([D{*(PX)> [_7 _]L> :
Proof. Using Lemma 4.4.6 for a = [L], we see that

chp((V L) = D (—1)'x(L*0)B8 B prp

V€ Beyen
j=I+k

Using x(L*,v) = x(v - L), one can prove the first part of the theorem by following
the proof of [74, Thm. 1.1] or [91, Thm. **]. To show the second part, note that

(Qx QUK L) = LT and
fL((nlp; dy), (nap, d2)) =1k <££Z1,£2]> = ding = dix(nep- L).

The statement then follows from Definition 4.1.8 and Definition 4.3.4 by the same

arguments as in the proof of Proposition 4.2.7. [

This completes the following diagram of morphisms of Lie algebras:

(H.(NQ), [, 1) & Py, [ )
mtop(,c)l
(H(N), [ —1F) =2 Ho(Px, [, —]")
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4.3.2 Computing virtual fundamental cycles of 0-dimensional
sheaves

Applying part iii. of Conjecture 4.2.10 to [Hilb™(X )Lir we obtain in H,(Np)

], = Y S Ml Magdind. - Mol

(4.3.7)
where we used part ii. of Conjecture 4.2.10 to conclude that [M, ]y = [M35(T)]iny

are independent of stability conditions. To make the notation simpler, we write
Ay = 0 ([HID"(X)] ), and Ay = (M)

Using Lemma 4.3.3, we can apply Proposition 4.1.9 together with (4.3.7) to get

Oy = Y E L M Mol 5 Mo 0

inv
k>1n1,...,ng>0
ni+--+n=n

(4.3.8)
where 1(, 1) € ]:[O(J\f(njl)) denotes the natural generator.

Applying Proposition 4.2.7 to (4.3.7), we get a wall-crossing formula in H,(Px)

A= Y CN e, ) ). (4.3.9)

L

(np,1) (_1)k (0,1) L L
L(Lee1= Y [[... [V, A, ] )] (4.3.10)

k>1,n1,..., n,>0
ni+--Fng=n
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Let Qnp = Qw0000+ (Npo))'® = Cx C Px, then we will describe the image of
Hy(Nnp,o)) under (£2,,,).. For this note that it follows from (4.2.13) that there is a

natural isomorphism for all o € K°(X)
Hy(Co) =2 HY™(X) @ A2HY(X) . (4.3.11)

Lemma 4.3.6. The image of (Qnp)« : Ho(Nipoy) — Ha(Crp) is contained in H(X )&

H8(X) under the isomorphism (4.3.11).

Proof. We show that Qz‘npp)(e”p ® pyi) = 0 whenever v ¢ BgU Bg. Then for any class

U € H.(Nupo)) we get

€7 ® o (D)o (U) = 0 (€77 @ i) (U) =

for v € Beyen\(Bs U Bs) and

" @ fo,1 0,1 ((Qp)+(U)) = (€™ @ prn10001)(U) = 0

for v,w € Bogq. The conclusion then follows from (4.2.14).
The K-theory class [£,,] of the universal sheaf of points on N, is given by

(idx x Q,,)*(€,,). Then from (4.2.15) we see

ch(Enp) =Y VR (" @ pras) (4.3.12)

veEB
12>0

We also know that ch;(&,,) = 0 for i < 4 by dimension arguments. Using that X is a

CY, we have H'(X) =0. We thus only need to consider v € B; for j < 6. Then from
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looking at (4.3.12) we see v Ky (€™ ® p,1) = 0 because it is in degree 2+ j < 8 or

1+ j <8 and B is a basis. Therefore Q2 (e™ ® p,1) = 0. O

Notice that we can write
My = "D @1 A, + QT (e 1), (4.3.13)

Proposition 4.3.7. We can choose A, from (4.3.13), such that for some a,(n) € Q,

v € Bg we have

Npp = Z Ay (N)Uy 1 -

v€EBg

Proof. As A, = (an)*([./\/lnp]inv), by Lemma 4.3.6, we have

Npp = Z Ay (N )y g -

vEBgUBsg

From Lemma 4.2.15, we see that T(e"®1) = e"? ®nu, ;. Therefore, we get H3(X) =

T(Ho(Cpp)) which concludes the proof. O

Let Amp(X) C H?*(X) be the image of the ample cone under the natural map
AYX,Q) — H?*(X,Q). Let us choose B, such that its elements are ¢;(L) for very
ample line bundles L. This is possible: We assumed H?*(Ox) = 0 for X a CY
fourfold, so H*(X) = H"“'(X). Thus every element in H*(X) is obtained as Z[D]
for an algebraic divisor D C X and m,n € Z. On the other hand [D] + n[H] is very
ample if n > 0 and H very ample so [D] = ([D] + n[H]) — n[H], where both terms
are very ample.

Using the Poincaré pairing on H?(X) x H®(X) — Q we choose a basis Bg of
HY(X) which is dual to Bs.
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Lemma 4.3.8. For each line bundle L such that ¢;(L) € By and ¢1(L) - c3(X) # 0,
there exist unique orientations o,(L) on Hilb"(X) such that Theorem 1.0.4 holds for

L.

Proof. 1f L is very ample, since dim(X) > 1, Bertini’s theorem [79, Thm. 8.18] tells
us that there exists a smooth connected divisor D such that L = Ox (D). The lemma

then follows from

Theorem 4.3.9 (Cao—Qu [40, Thm. 1.2]). Conjecture 1.0.4 holds for any X and

L = Ox(D) for a smooth connected divisor D.

The uniqueness of 0,(L) in the case ¢1(L) - c3(X) # 0 follows because changing
orientations changes the sign as Hilb"(X) is connected for all n and X by Hartshorne

[77]. O

Let us denote o(n) the orientations on Hilb"(X') induced by the point-canonical

orientations. We will see that the orientations o,(L) = o(n) for all L with ¢;(L) -

c3(X) # 0.
Theorem 4.3.10. If Conjecture 4.2.10 holds for X, then the following is true:

i. Forall L from Lemma 4.3.8 with c1(L)-c3(X) # 0 the orientation o,(L) coincide

with the ones obtained from the point-canonical orientations in Definition 4.2.1.

. Let N (q) = D ,20€"" @ Npq™ be the generating series, then we can express

its exponential as

exp (A (q)) = M(e"g) (Srergatrms) (4.3.14)
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where ¢3(X), = c3(X)(ch(v")). Equivalently, we can write this as

n
Ny = B > es(X) it - (4.3.15)

l\n vEBg

Proof. We prove the theorem by induction on n. We begin by giving an explicit
formula for the brackets in (4.3.10). Using (4.1.5) together with Lemma 4.2.15 iii.,

we have:

Vi) @ 1, 2)(™0 @ A;,)

. n (m+n)p,1 bi+my; _ -
= (-1) e( P )exp|:2j>() J - JzJ:| [1—z 1Zv€Beven XL((mpvl)’(v’O))duil Nop -

Using (4.3.5) together with Proposition 4.3.7 we get the following after taking [z7'](—)

of the last formula:

™D @ 1,0 & A7 1F = —(—1)"6((m+”)p’1) ® ) / c1(L)ch(v)ay(n). (4.3.16)
X

vE Bg

Let Ly be such that ¢;(L1) € By and vy € Bg its dual. For now let us not fix the

orientation o, = o;*"

o but fix ojo,] = ofp; and use the rest of Definition 4.2.1.

For n =1, we can choose o, so that o(1) = 01(L1) , then I1(L;) = —I(L;). Using
(4.3.16) together with Lemma 4.3.8 and (4.3.2), we get [}, ¢1(L1)ch(vy)ay, (1) = I(Ly) .

Therefore a,, (1) = ¢3(X),,. Suppose that Ly is a line bundle with ¢i(Lg) € By

1

different from ¢ (L) and I(L;) # 0 for i = 1,2. If 01(La) = —o01(L1), then a,,(1) =

—c3(X),, for vo € Bg the dual of ¢;(Ls) and this contradicts Lemma 4.3.8: For any
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A, B € Zo we know that L = LY ® LY® is very ample, then from (4.3.16) we get
- [AI(Ll) 4 BI(Ly)| = Ii(L) = —AI(Ly) + BI(Ls)

which can not be true for all A, B. For any v € Bg, we then have a,, (1) = c3(X),,.

This shows i. and ii. for n = 1 except o, = 0f*. Let us now assume that i.

p

and ii. hold for all 1 < k < n except 0, = of™. If 0,41(L1) = —o(n + 1) then

L1 (Ly) = —[q" P { M (—q)1F)s(0)Y Using the assumption together with (4.3.16)

we get using the notation of (4.3.2)

—1)*
Z ( k'> H [6(071)®17%n1p}L1,---]L1,'//nkp]Ll :de(n+1)[<L1)k
T 0

Subtracting this from 7,,1(L1) and using (4.3.2) expresses a,(n + 1) as
ay(n +1) = —dy(n + 1)I(Ly) — 2da(n + 1)1 (L1)* = -+ = 2dp 1 (n + 1)1 (L))",

Let L = LYY for N > 0, then wall-crossing and using (4.3.16) with (4.3.10) gives

Ii(L) = i de(n +1)(NI(Ly))" = dy(n+ 1)NI(Ly) — 2N i dp(n +1)I(L,)".

By comparing the coefficients of different powers of N with +1,,.1(L), we obtain a

contradiction. This also shows 0,41(L1) = o(n + 1) = 0,41(Ls) for any Lo with
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I(Ls) # 0. Assuming ii. holds for coefficients k& < n and using (4.3.8),(4.3.2) gives us

(=) a, (n+1) = de (n+1)I(Ly)* de (n+1)I(Ly)*

k>1 k>1

= (-1m Y ”; 1cg(X)vl.

lln+1

This holds for all L; € By with their duals v; € Bg, so part ii. follows as we obtain

(4.3.15).

To finish the proof of part i., we only need to show that o, = o;™. For this, choose
L such that I(L) # 0. Using Lemma 4.4.6, we see c1(£) = > .5 X(LY, V)1
Using X = M, and (4.2.1), we see that f[Mp]Vir c1(L) = £I(L). By (4.3.13) this is

equal to

/ U)Mv,l ; My = Z c3(X)ply1 + Cpp1
M,

P 'UGBeven 'UGBG

which gives I(L) + ¢,. As ¢, does not depend on L it has to be 0. Therefore for the

invariants to coincide, we need o, = 0Can OJ

Remark 4.3.11. Changing orientation o, — —o, changes 0,, — (—1)"0y,, so if the
classes [M,,)inv Were constructed using Borisov—Joyce [23] or Oh-Thomas [141], then

we would get

_1>n Z l% Z C3(X>vuv,1

ln vEA

However, as these are obtained indirectly through wall-crossing, we should check this

is satisfied. Choosing o, such that o(1) = —o;1(L;) in the proof of Theorem 4.3.10
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does indeed give this formula. Similarly, switching to —0[Oy] does not change the

result as it should not.

The following is shown just for completeness, as we will prove a much more

general statement for tautological insertions using any K-theory class in §4.5.1

Proof of Theorem 4.3.1 Using (4.3.16), (4.3.15) and (4.3.10) we obtain for any line

bundle L that (4.3.2) holds. O

4.4 Virtual classes of Hilbert schemes of points and

invariants

In this section, we use the result of Theorem 4.3.10. One could think of e™ ® .A4;,, €
H,(Cx) and S, € H,,(Px) as explicit invariants already. We use wall-crossing from
(4.3.9) to compute 47, and then consider insertions, which can be expressed in the
form exp [F (u%k)], where F'(f1, ) is linear in p, . After obtaining a general formula
for the corresponding invariants, we apply it to multiplicative genera of tautological
classes and virtual tangent bundles showing that they fit into this class. Thus we
obtain an explicit expression for these, which will be used in the following section to

compute new invariants.

4.4.1 Virtual fundamental cycle of Hilbert schemes

The following could be viewed as the main result of this chapter.
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Theorem 4.4.1. If Conjecture 4.2.10 holds, then the generating series F(q) =

1+ Zn>0 egffﬁq" for point-canonical orientations is given by

= exp [Z Z —63 )v[z”]{Uv(z)eXp[Z %zj] }q"] , o (4.4.1)

n>0 {|n,v€Bg j>0
where we fix the notation y; = w,; and Uy(2) = Do U k2"

Remark 4.4.2. Notice that the only u,, that appear in (4.4.1) are for o = (v,0),
v € Bg U By =: Bgg. We may therefore assume K'(X) = 0 from now on. As
there is no contribution of b;, this is the unique representation of J#, without terms
with b; as can be seen from Lemma 4.2.15. Using (4.3.3), we have a class H, =
O, 0 Ln*<[Hilb”(X )}Vir> which satisfies IIy(%,) = #,. There will also be no terms

containing b; in .7,, Thus [2"] (H(g)) describe this canonical lift.

Proof. We begin by using the reconstruction lemma for vertex algebras to write the
field Y (™9 @ u, 1) =: Y (uy1,2)Y (e™0 ® 1, 2) :, where : — : denotes the normal
ordered product for fields of vertex algebras (see [115, §3.8], [55, Def. 2.2.2], [99,

§3.1]) which acts on ™1 @ U as

Y (1, 2)Y (PO @1, 2) ¢ (P @ U) =

(—1)zmel(ntmpD) { Z Uy o2 exp[z %z’] exp[ -n Z d zl]

k>0 i>0 =0 dutox].i
d
exp[nz% ]—i—exp[’Z—z]exp[—nzalu[[oxﬂZ }
1>0 >0 >0
d . d
exp [n ‘ d_szl] [)Z((U,O), (mp, 1))z + Z kx((v,0), d o 27k 1} }U (4.4.2)
i>0 k>0,0€B ,

Where we used (4.2.9) to get x((np,0),0) =n if o = ([Ox],0), x((np,0),0) = —n if
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o = (0,1) and 0 otherwise together with part iii. of Lemma 4.2.15.
We claim that for any » > 0, ny,...,n, > 0 and Y ; ,n; = n, we have the

following :

[e(nlp,o) X N(nlp)v [6(n2p70) X N<n2p)a [ M) [e(nrp,()) & N(nrp), 6(0’1) ® 1} o H

= ) & - Ho,
el

in H(Px), where

Ho= D (—1)" Ges(X) [ Uu(exp [ Y- 2]}

ln,vEBg 7>0 J

We show this by induction on r, where for = 0 it is obvious. Assuming that it holds

for r — 1, we need to compute

[P0 @ N(nyp), el=0p) @ TT H]

=2

= [z’l]{ Y (s, 2)Y (e™MPO @ 1, 2) : elnmpd) HH"}

=2

From Remark 4.4.2, we see that we can replace all exp [n Y is0 %} and exp[ —

ny —2 } by 1 in (4.4.2). The second term under the curly bracket in (4.4.2)

dufox1,i
vanishes, because it contains x((v,0), (mp,1))z=t = x(n,mp)z~! — x(v)z~! where
the result is zero for degree reasons and because td;(X) = 0. In the term with
d

> ks00es KX (v, 0), U)mz_k_l the sum can be taken over all o = (w,0), w € Bgg

by Remark 4.4.2 so it vanishes because x(v,w) = 0 whenever v,w € Bgg. We are
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therefore left with

T

[271] { (—1)memelmrl @ ( Z Uy k2" ) exp [ Z %z’} } H H™

k>0 1>0 1=2
= (=1)meMmPD[m] {Uv(z)exp [ 3 MY, 23} } [T+
- J .
7>0 i=1

Multiplying with the coefficients Z”n 7 ZUGBG c3(X), of p1,1 in (4.3.15) and summing

over all v € Bg, we obtain the result as we are able to rewrite (4.3.9) by reordering

the terms keeping track of the signs as

A= Y %[e(mp,O) ® N(mp), [, [ @ N(np),e®) @ 1]...]].

]

We now describe a general formula for integrating topological insertions over .77,

which will be applied in the following to examples.

Proposition 4.4.3. Let o C K°(X)\{0} be a finite subset. For each o € < let us

have some exponential generating series

P
Aa(zap) = Zaa(nap)a )

n>0

where p = (p1,p2, - ..) are additional variables and a(n,p) € Q[p], s.t. a.(0,0) = 0.

If 7, € H*(Hilb™(X)) is such that T,, = (0 1,)*(T) for a weight 0 insertion T €

148



H*(Px), where

/ji”n 7= /n eXp[ Z Z aa(kap)X(av»'U)Mv,k] ;

acd k>0
’UEBa,g

then the generating series Inv(q) =1+ _, f[Hilb”(X)]Vir Z,q" is given by

[T esp{ 30-1" 32 212 (Aalzp) — 4u0.1)

acd n>0 lln
X)

exp( Z rk(a)Aa(z, p))n} q”}q(a)'cg( . (4.4.3)

acd

Proof. Using Lemma 4.2.13 to act on the homology classes .7, from Theorem 4.4.1,

we obtain
Inv(q)
n aa (4, p)
TP EIGITENE] S ph pLILL R 35 RG]
n>0 [ln k>0 acd J>0 acd
which can be seen to be equal to (4.4.3). O

We get the following simple consequence of the above results.

Corollary 4.4.4. With the notation and assumptions from Proposition 4.4.3 it follows
that Inv(q) depends only on ci(a) - c3(X) and rk(«) for all o € o7. For more general

insertions, the invariants only depend on [, c3(X) - (=) : H*(X) — Z.

Remark 4.4.5. For the classes [M,,]iny € H,y(Ny), we did not find any interesting
non-zero invariants of the form f[ Mopline ¥ for some weight 0 insertion v on Ny. We

already know that L|x; , = 0. On the other hand, if one takes Ty(a) = mo. (7% () ®
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&) on M, for any class o € G°(X) (see §4.5.1), we can consider its topological
counterpart Tyi—1(a) = Mo, (1% () ® €) on Cx which has weight 1. Then denoting
v = p(chy (Tyi=1(@)), cha(Tyi=1()), . ..), the integral f[an]im v is not well defined as
it does not satisfy Lemma 4.1.6.

Moreover, consider the complex Eq = . (Hom Mo (€0, 50)) on Mg, then this will

be weight zero. However, taking v = p(chy(Eo), cha(Eo),...) we get

[ R GO NSRS
[Mnpliny e(o,np)®%p

which can be shown to be always zero.

4.4.2 Multiplicative genera as insertions

The main examples we want to address are multiplicative genera of tautological

classes below.

For a scheme S, let G°(S) and Gy(S) denote its Grothendieck groups of vector
bundles and coherent sheaves respectively. We have the map A : G°(S) — K°(S)
which we often neglect to write, i.e. A(a) = a. We have the Chern-character ch :
G°(S) — A*(S, Q) which under the natural maps to K°(S) and H*(S, Q) corresponds
to the topological Chern-character ch : K°(S) — H*(X, Q).

Let f(p,z) = >,50 fu(p)2z" € Q[p][2] be a formal power-series in formal power-

series of additional variables p = (p1,...,px) with f(0,0) = 1, then a multiplicative

150



genus Yy(,,.) of Hirzebruch [83, §4] associated to f is a group homomorphism
G GU(X) — (A"(X,Q)[p]), . (4.4.4)

where (A*(X ,Q) [[p]])1 denotes the multiplicative group of the ring A*(X,Q)[p] con-
taining power-series with constant term in p and A°(X, Q) being 1. For each vector
bundle £ — X of rk(F) = a there is by using the splitting principles a unique

factorization ¢(E) = []i_,(1 + ), where 2’ € AY(X,Q). Then ¥; is given by

Define A : G°(S) — (GO(S ) [[t]]) o be a group homomorphism acting on each vector

bundle E by

REDYIRICHE

where (GO(S) [[t]]> denotes the power-series in ¢ with constant term [Ox] € G°(S),
1
GO(S) is a group under the addition and <G0(S )[[t]])1 under the multiplication in-

duced by the tensor product. We also have Sym; : G°(S) — (GO(S)ﬂt]D , where
1

Sym? (@) = (As(a))

1
for all @ € G°(S). On Hilb"(X), we will consider the classes
all = my, (T (@)®F,), a€GYX), Ty = Homyyyn x) (Fn> Fn) o [1], (4.4.5)

where .7, = (Ox — F,,) is the universal complex on Hilb"(X) and (—)o denotes the
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trace-less part. The corresponding topological analogs are
Ta) = U K, (1% (a) @ €) and — 05 € K°(Px x Px) .
Lemma 4.4.6. In H*(Px x Px) the following holds for all a € K°(X):

chy(T()) = Y (~)'x(@", ) B pug,

V€ Beven
J=l+k
chi(Bp) = > (VX0 os B ey + D (—1YX (0, 0) 05 R pr -
i+j=k i+j=k+1
U,TEB\BOdd v, WEBoqd

We also have the identity
ch(T'™) = —(Qo Ln)*(ch(A*G%)) +2

in H* (Hilb"(X)).

Proof. Using Atiyah—Hirzebruch-Riemann-Roch [46], we get

chi(mau(mi (@) @ €) = Y [ ch(e)ch(v)TA(X) Bpps = > x(@”,0)pm,.

V€ Beven X VE Beven

Taking a product with ch(Y) and using 5; = ch;({), we get

chy (T() = D (=D)'x(a”,v)8 Bty - (4.4.6)

V€ Beyen
J=l1k

A similar explicit computation leads to the second formula. Let us therefore address

the final statement.
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Let &2 : Hib"(X) — Mx map [Ox — F] to [Ox][l] & F] and &xt, =

Homypn (x) (fn, fn). We have the following A!-homotopy commutative diagram:

Hllbn( —> ./\/lX

thn l&t , (4.4.7)

Perfc

where Ext, Ext,, are the maps associated to the perfect complexes of the same name.
From Definition 4.2.5, we easily deduce ¢ o A* (@pa) = P*ExtY. Taking topological

realization of (4.4.7), we obtain that
[Ext,] = (2'P)" [Ext] = 3[A" ()] = (o0 1) (A%(0p))”

Finally, we use rk((Ext,)o) = rk(Ext,) — 2. O

To simplify notation, we will not write p unless necessary and use f(al”) and

F(TY") instead of the full ¢¢(—).

Lemma 4.4.7. Let f be an invertible power-series, then

/ flal) = [ e[ 3 aalbin(a”ohuus] . where
[Hilb™ (X)]vir Ao,

k>0
UEB&g
Sk
Aa(2) = ) _aalk) 77 =log(f(2))
k>0
f(TYr) = / exp ajox](k)x(v)ptox |,  where
U€B68
k
z
Apoxi(2) = Y ajox) (k) 77 =loa(f(2)f(=2)) -
k>0 ’

Proof. We show that in the action of chy(6}) from Lemma 4.4.6 on .7, only terms
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linear in %, kK > 0 will have non-trivial contributions. In Remark 4.4.2, we set
K'(X) = 0, thus we only need to look at > itjmrx  (=1)"X(0, T)ite; X p1r; and we
0,7€B\ Boaq

claim it reduces to the action by

= > (1 D)Xk = = (14 (=1)*) (4.4.8)

Fori,j > 0if o = (0,1) or 7 = (0, 1), then due to Remark 4.4.2 this term vanishes. If
o= (v,0), 7 = (w,0) then v,w € Bgg and x(o,7) = x(v,w) = 0. So consider the case
i=0,then j =k >0. If o = (v,0), 7= (w,0) or 7 = (0,1) then the term is again 0,
because ji, 0 = np(v¥) = 0 unless v = p in which case x (v, w) = 0 for each w € Bgg.
However, if o = (0,1), 7 = (v,0), then p,o = 1 and x((0,1),(v,0)) = —x(v). If
j =0, then the same applies, thus the statement follows.

Let E be a vector bundle with ¢(E) = [];_,(1 + ;), then we write

a a

B =TT H @) =exp [ D gu D =]

=1 n>0 =1

where Y, %2 = log (f(z)) and Y7 | % = ch;(E). This extends to any class

n>0 n!

o € G°(Hilb"(X),Q), so we get after using Remark 4.4.2, (4.4.8) and Lemma (4.4.6)

that

/[Hﬂbn(X)]vir fla) = /dﬁ eXP[ Z gkX(OéV,U),LLU’ktk} ,

k>0
U€B6,8

/[Hilb"(X)]Vir ) = /% exp[ Z g’“(l + (_1)k)X(U)/~Lv,ktk] ,

k>0
’UEBe,yg

where, we use p,o = n and rk(7") = 2n. From this we immediately see A,(z) =
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log(f(2)) and Ajo)(2) = log(f(2)f(~2))- =
As an immediate Corollary of (4.4.8), we obtain the following:

Corollary 4.4.8. For eachn let p,(x1t, zot?, .. .) be a formal power-series in infinitely

many variables, then

/ p(chy (T), cha(TV), ..} = 0.
[Hilb™ (X)]vir

Proof. We use

Joo i) = [ i),
[Hilb (0] 2,

where we use some new formal power-series p(zt, zot? ,...) given by (4.4.8). Because
each term in (4.4.1) contains at least one factor of the form p, for v € Bg, k > 0,

the above integral is zero by (4.2.14). O

Definition 4.4.9. Let us define the universal transformation U of formal power-series

U: (R[t]), = (RI[t]), by

e T =50, (4.4.9)

n>0 k=1

for any ring R. Moreover, we will use the notation

{F3(t) = f(&)f(2).

In fact, U is a well-defined bijection. To see this, note: 10g< | f(—e%:fk t)*"> =

2nik

R gy

— > o fam@™™ by Knuth [105, eq. (13), p. 89]. Therefore [[;_, f(—e
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1 + O(t"). This is precisely the condition necessary for the infinite product to
be well-defined. Moreover, it maps integer valued power-series back to integer-

valued ones. To construct an inverse, we can take the logarithm of (4.4.9) to get

220 om0 T fam@™™ = 30,050 > il %jfnqn where log(f(q)) = >=,- faq". This cor-

responds to acting with a diagonal invertible matrix on the coefficients f,,, so we have

an inverse.

Example 4.4.10. Acting with U~! on the MacMahon function M(q), we obtain

(1+q).
We will need later the following generalization of the Lagrange inversion theorem:

Lemma 4.4.11. Let Q(t) € R[t] (with a non-vanishing constant term) and g;(x) for

1=1,...,N be the different solutions to

(gi(a:))N = x@(gl(x)) (4.4.10)

then for any formal power-series ¢(t), ¢(0) = 0 we have
. 1
> o(g(@) = Y~V (¢ R )"
k=

1 n>0

Proof. The usual Lagrange formula (see e.g. Gessel [68, Thm. 2.1.1]) tells us that
for h(z) = zQ(h(z)), we have [z"]¢(h(z)) = L[t" ¢/ ()Q(¢)" for n > 0. Taking
the unique Newton—Puiseux series satisfying g(z%) = z¥Qw™ (g(x%)) for a fixed
N’th root of ), we can write by Weierstrass preparation theorem together with the

Newton—Puiseux theorem (see e.g. [90, Chap. 3.2, Chap. 5.1, | every solution of
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i‘b(‘q’“(”) - iz %[t“](aﬁ’(t)@?@(t)) (e ar)"
= Z =1 <¢/(t)Qn(t)>xn

We prove now the main result that we will use throughout the next section.

Proposition 4.4.12. Let fo(p,-), f1(p,-),. .., far(p,-) be power-series with f(0,0) =

1, then define

v(f.d,q) =1+ / o BT folalha

=0/ [

-

where (—) is meant to represent a vector, and we omit the additional variables. Then

setting rk(oy) = a;, we have

Inv(f,a, { {H f{lé(z; }61(%).%(){)} , (4.4.11)

where H(q) is the unique solution for

H
[T, f7 () {fo} (H)

q:
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Proof. Combining Lemma 4.4.7 with Proposition 4.4.3, we obtain

(g Hexp{zz (1] 5 (1o8(i2)) — 1o (41(0)))

n>0 In
ﬁfj(Z)“j”{fo}”(Z)]q”}

c1(a)-e3(X)

setting ¢ = log(f;) — log(f,-(O)), Q = Hf\il fii™{ fo}™ and using Lemma 4.4.11, this

gives

c1(a)-e3(X)

Hexp{zz (1) [t (1) — log £0)] (—0)"}

= n>0 l‘n

AP Z ) [log £, (H(®) ~ g FO)] (~e gy}
n>0 k=1

1:[ ﬁ [ ‘Z))” Q))}ncl a;)-e3(X) H [fl( (()21 )rl(ai).%(x)’

where H(q) is the solutions of (4.4.11). O

4.5 New invariants

We define and compute many new invariants using the formula derived in the previous
section. These include tautological series, virtual Verlinde numbers and Nekrasov
genera. We study their symmetries and their relation to lower-dimensional geometries.
We obtain an explicit correspondence between virtual Donaldson invariants on elliptic
surfaces and DT4 invariants on projective Calabi—Yau fourfolds via the universal U
transformation. Note that the Segre—Verlinde correspondence among the results that

follow could be traced back to already existing results of Oprea—Pandharipande [143]
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and Arbesfeld—-Johnson-Lim-Oprea-Pandharipande [5] using Theorem 4.5.14, but as
we worked these out independently we prefer to present them so. The final section is

dedicated to wall-crossing for quot-schemes of elliptic surfaces and curves.

4.5.1 Segre series

Setting fo = 1 and f; = (1 + t;2)~! in Proposition 4.4.12, we obtain the generalized

DT,-Segre series

R(&vt_:cﬁ_l—i_zqn/ Stl(a[ln])"'StM(ag\r/l[]>‘
= i (x)er

Theorem 4.5.1. Let ay,...,ay € G(X), a = rk(«), then assuming Conjecture

4.2.10 for point-canonical orientations we have
R(&,E q) =U (1 + 25lz)c1(oz1).03()() L. (1 + tMZ)Cl(aM)’C3(X)] ’

where z is the solution to z(1 + t12)™ -+ (1 + ty2)"™ = q. Moreover, we have the

explicit expression:

(

U[%Hl(—q)’cl(a)“(x)] fora >0

R(w;q) = . (4.5.1)

U[B_o(q) @] for a <0

\

Proof. The first statement follows immediately from Proposition 4.4.12. Specializing
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to the DTy Segre series

Rl = [ (o)
[Hilb™ (X)]vir

we obtain for a = rk(«)
R(a; q) - U[(l + Z)} c1(a)-c3(X) : where q= Z(l + Z)a.

The theorem then follows from the following lemma.

Lemma 4.5.2. Let y be the solutions of y(y + 1)* = q for a > 0, then

;

RBui1(—q) fora>0

L . (4.5.2)

B_.(q)"" fora<0

\

Proof. We use Lemma 4.4.11. For a > 0 we change variables z = 1/(1 + y) this

implies g(z) := (1 — 2)/2°™ = ¢q. Then the statement follows from

-1 () = - e - )
(=D e+ Dn\ (D" [(a+1)n+1
-SRI e ()

n n—1 a+1)n+1 n

= (_1)nCn,a )

where we used the notation from (1.0.9). When a < 0, then change variables by
(u+1) = (z+1)7' to get 2 = —u(u + 1)~! and thus —u(u + 1)"*' = ¢. Then

(1+2)'=1+u)=2B_.(q) " by the above. O
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Using this, we obtain (4.5.1). O

4.5.2 K-theoretic insertions

In this section, we use the Oh—Thomas Riemann—Roch formula from Theorem 2.3.2

for their twisted virtual structure sheaf. Recall that Td = ¥ for f(z) = —*= which

l—e %

satisfies

Wh@ = ——

= -
e 2

(4.5.3)

[SIE]

An immediate consequence of Corollary 4.4.8 is
Corollary 4.5.3. For alln >0, X" (Hilb"(X)) =0.

Nekrasov genus gives us refinements of invariants considered in §4.5.1 as

It is given by its series A, (x) = (yze~2 —y~2e3). Note that 45(0) # 1, but we can
write it as Ay (z) = (1 — yilez)e_%y% and simply keep track of y% separately. DT}y
Segre series of §4.5.1 can be obtained as a classical limit of these invariants. Explicitly

this means the following:
Proposition 4.5.4. For any oy, ..., ay € G(X) with a; = rk(a;) and i;, such that

>t =n, we have

lim - lim (1 —g;)nam .. (1 — gy )M K (&, ) =

y1—>1+ yM—>1+

. /[H'lb”(X)} wir (a[lﬂ) © Gy (O‘E(/LI]) :
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Proof. We conclude it from a more general result for any scheme S.

Define A>™ = @,_  AY(S,Q) and AS™ = A*(S,Q)/A>™. Let v € G°(S), a =

>m

k() and k > 0, then we claim that in AS* the following holds:

Zi(y) 1= Tim (1 =y~ eh A3y det 3 (v -y ) | = (<1 e()

y—1t

Let v = [E] — [F] and ¢(E) = [, (1 — 2), e(F) = [T_,(1 — ), then in A<, we

have

e

Z(E) = lim [(1 —e NIt

A—0t .
=1

>

= lim [(A—002) H — )+ 0((A =) = WITT =2

A—0t

= (=D'a([E]).

Similarly, we obtain in AS™

z; f T
Zn(~[F]) = lim [1—6 mﬂ‘H 3- %—e—%%)—l} = IIa -5

A—07F

(=D)"em(=[FTD) -

We combine these two to obtain Z(v) = >, LA(E)ZLn(—[F]) = (1) (),
where both equalities are true only in AS.

To conclude the proof, we apply this statement to each .4, (ozl[n]) separately.

Then using sz = n we see from Theorem 2.3.2 that we are integrating
Ci, (04[1”]) Ciys (045\7/}]) VTdo (T3). O
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Only the case where . rk(a;) = 2b + 1 is interesting, because one then obtains
integer invariants assuming that c¢;(«;) are divisible by two. Moreover, we mostly
focus on M = 1 and rk(ay) = 1 which is motivated by the work of Nekrasov [135],

Nekrasov—Piazzalunga [137] and Cao—Kool-Monavari [35].

Theorem 4.5.5. If Conjecture 4.2.10 holds, then for all oy, . . ., apr with a; = rk(qy),

>: @i =2b+ 1 and point-canonical orientations, we have

M e1(ai)-ca(X) b
P — 1)%u] 2 1
K(a,y;q) = HU[M} ,  Where ¢=—; (ul )ufl )
1 L (i —u) [[=i(y2 —y2u)e

When M =1, ay = «, y1 =y, a; = 1, then

K(a,y5q :EXP[ (X,q T
(s ! (1 - gady2)(1 - ga 2y ~2)

where Exp[f(y, q)] = exp[zmo M]. In particular, the coefficients of K (&, q)

n

1

.. +3 e Q;
lie in Z[y, 2, ...,y zf% € Hy(X,Z).
Proof. Using Proposition 4.4.12 together with (4.5.3) and Theorem 2.3.2, we obtain

Zq
e 2

M y%_y_% c1(a)-c3(X) —e 2
=1 Lyle 2 —yle? [[Zi(yze 2 —y2e?)
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we obtain

M le () e3(X)
i —1)%u] 2
{—(y ) u} , where g¢q=

(yi — u)?
When M =1 and a; = 1 then this gives

B 1+qy%
14+ qy™

N =

which after plugging into the above formula gives rise to

Ler(a)-e3(X)
K (o, y59) ZU[(1+qy%)(1+qy_%)r 3

= \/M(qy%)M(qy‘%)

qy° gy:  qEal)re)
o |
1
2

(1-qy2)?  (1—qy )
(TX — T*X)(azy 1)}
(1 - gazy?)(1 —ga~2y~2) 7

:EXP[X(XA

where the second equality uses M(q) = Exp[ﬁ] and the last equality uses

Grothendieck-Riemann—-Roch. [

The following remark is the result of the search for the correct replacement for
the x,-genus and elliptic genus of Fantechi-Gottsche, it was motivated by Cao-Kool-
Monavari [35, Remark 1.19] to answer what the correct generalization of the above
invariants should be. The authors of loc cit. tried the x,-genus, we explain why this

is not the right choice.

Remark 4.5.6. On a real manifold M, a natural generalization of the A genus is the
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universal elliptic genus which can be computed as

W(M,V,q) = / ACX) T eh(Symen(TM © €)) (1 — gm0

[M] E>1

The ,-genus is however defined only for complex manifold, as it needs the additional

complex structure. This motivates:

Definition 4.5.7. We define the DT, Witten-genus of M (7) by

W(M(7),V,q) = x(O"" @ Q) Symgu (E — rk(E)) @ V) .
k>1
Example 4.5.8. Let M be a moduli scheme with a perfect obstruction theory F*® Aty
Lys as in Behrend—Fantechi [13], then [141, 37, 45] consider the —2-shifted cotangent
bundle 3-term obstruction theory E® = F* @ (F*)Y[2] RGN Lys. In this situation,

Oh-Thomas [141, §8] show
@vir — Ovir\/ﬁ,

where O'"" is the virtual structure sheaf of Fantechi-Gottsche [51], K¥* = det(F*) and
the square root is taken in G°(M, Z[27']), where it always exists (see Oh-Thomas [141,
Lemma 2.1]). The term on the right hand side is in fact the twisted virtual structure
sheaf @}’\}1”0 of Nekrasov—Okounkov [136]. If rk(F*) = 0, i.e. virtual dimension of M
is 0, then

W(M,V,q) = x (O © Q) Symy (F* @ (F)") @ V).

k>1
which is the virtual chiral elliptic genus of Fasola-Monavari-Ricolfi [52] motivated

by the work of physicists Benini-Bonelli-Poggi-Tanzini [14]. As the assumption on
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rank is a bit silly, one should really work equivariantly, and we plan to return to this
question as we expect to relate the recent work of Kool-Rennemo [107] with the work
of Fasola-Monavari-Ricolfi [52] by dimensional reduction as in [36], [107], where it is
considered only the A—genus.

For Hilbert schemes, the correct object to study which generalizes Nekrasov’s

genus is the Nekrasov—Witten genus
W (Hilb"(X), N, (L"), q)
. Using Proposition 4.4.12 the corresponding generating series can be expressed as

L+ 37 2" W (HID (X), Ny (L), q) = U [%} )

where

z =

u—1 1 —q¢"u)(1 — ¢Fut
H( ¢u)(l—g'u)

y% — y’%u S0 (1 - qk>2

4.5.3 Untwisted K-theoretic invariants

We propose a version of DTy Verlinde numbers for Calabi—Yau fourfolds as higher
dimensional analogues of Verlinde numbers for surfaces studied in [50, 125, 70]. After
computing generating series for these invariants, we obtain a simple Segre—Verlinde
correspondence. In the spirit of Calabi—Yau fourfolds, they require an additional twist

by a square-root of a tautological determinant line bundle.

Definition 4.5.9. Let E = det((’)g?]), then the untwisted virtual structure sheaf is
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defined by

C)vh':: ijﬁ @QZ;%.

We define the untwisted virtual characteristic

NG (Hﬂb"(X),A) = gvir (Hﬂb"(X),E% ®A> - / VId(T")ch(E*)ch(A).

[Hilb™ (X)]vir

Clearly, this changes Ajo,](z) = z/(e? — e 2) from Lemma 4.4.7 to Ajo,(z) =

z/(1—e?).

Definition 4.5.10. Let X be a Calabi—Yau fourfold, then its square root DT, Ver-

linde series are defined for all a € G°(X) by

Vi(arg) = 1+ Vit (@)g" = 1+ 3 £ (Hilb" (X), det? (L) @ B) "

n>0 n>0

where L, = det(«), a = rk(a). The DT, Verlinde series is defined by

Viayq) = 1+ZV a)g" =1 —l—ZXV” Hllb”(X),det(a[”}))q”.

n>0 n>0

Remark 4.5.11. Just for the purpose of this remark, let us define negative square

root Verlinde series by

V- % (o;q) = 1+ZVn a)g" =1 —|—Z b Hllb” det_%(Lg‘]) ®E_a)q”

n>0 n>0

for each a € G°(X), where a = rk(a).
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1. When a = [V] is a vector bundle of rank a, one can show that

3] (Ko(La © B2, y)) = Va# (V).

: —c1(a)-e3(X)
2. From the expression K(L,y;q) = \/M(qyi)M(qy_i) , we obtain that

Nekrasov generating series decouples into the positive and negative square-root

Verlinde series:

1

K(Lyy;q) = VE(u(L)y 5 9)V 2 (u(L)y 5 q),

where u(L) = L — Oy, as it can be written as a product of series only with

positive or negative powers of y%. Thus

3. By applying Proposition 4.4.12, one can show that V(«a;q) = (V%(oz; q))2.

Theorem 4.5.12. Assuming Conjecture 4.2.10 holds, we have the following Segre—

Verlinde correspondence for any choice of orientations on Hilb"(X):
V(s q) = R(a; —q) -

Proof. From Proposition 4.4.12 together with (4.5.3) and Definition 4.5.9, we see after

setting a = rk(a) that



Changing variables to t = e* — 1 we obtain

Viq) = U1 +t) @) - where ¢ =t(t+1)"@H),

We therefore see from Lemma 4.5.2 that

(

U[Busa (@)@ D] fora >0

V(asq) =

UlB_o(—q) @] fora<0

\

Comparing with (4.5.1) concludes the proof.

We can also study the series:

Z(@kq) =1+ """ (AM ol @ . @ APal)) .

n>0

(4.5.4)

We show that they give rise to interesting formulae. This was motivated by investi-

gating the rationality question as studied in [5] and their example [5, Ex. 7]

Example 4.5.13. For o € G°(X), take the series Z(a;q) = >, o X" (al™), then it

can be expressed as

0 i . n
Zeiq) = 5 Z(0yiq)ly=0, where  Z(ay;q) =1+ > XA al)

n>0
Using Proposition 4.4.12, we have
1+ ye wyiq) ] c1(a)-c3(X) 1—e7*
Z(« ,  where =
934) [Tg)kl_[l 1+y 1 (1 +ye?)e
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After changing variables 1 + u = e*, this gives

n 1 — ok c1(a)-c
Z(a,y;q) = [HHl—i_y( tul wnq))] e B(X), where q:( ¢

eyt 1+y 14+ u)(14+y+yu)e

Acting with 0/0y on the last formula, using that the terms under the product are
equal to 1 for y = 0 and that the derivative (0/0y)u exist we obtain from a product

rule for infinite products

n

Z(a;q) = 1) - e3(X) u(—wFq) where u = %

n>0 k=1 —4q

V

We can write this as

where S(q) is the Lambert series as considered by Lambert [109].

4.5.4 4D-2D-1D correspondence

We obtain a one-to-one correspondence between invariants on compact CY fourfolds

and elliptic surfaces.

Recall from Example 2.3.2 the virtual obstruction theory on Quotg(CY,n), then
when N = 1, we have Quotg(C!,n) = Hilb™(S) and the virtual fundamental classes

get identified with

[Hilb™(5)]"" = [Hilb™(S)] N e (Kt (S) )
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using that Hilb"(S) is smooth. Here we also use x**(—) to denote the virtual Euler

characteristic of Fantechi-Gottsche [51].

Theorem 4.5.14. Let X be a Calabi—Yau fourfold, S an elliptic surface. Let
f1y- -+ far, g be power-series, oy, ...,y in GOY) forY = X, S and tk(ay;) = a;,

then there exist universal series Ay, ..., Ay depending on f;,{g} and a; such that

1+Yd" / fi(ah) - far (@) g (1)) HU Joriexaet,

=0 [Hilb™ (X)]vir

1 +Zq / f (agl]l) f (aSM){g} TI‘{,illrb"(S HACl ag,i)-c1(S)

"0 [Hilb™ (S)]vir

Moreover, there are universal generating series B; depending on f;, a;, such that

1+an v1r< ) o ® fur O‘[)?]M) HU c1(ax1)03 )7

n>0

L+ q"x” ( )@ ® far (ol ) HB‘”(Q“ s

n>0
where we abuse the notation by thinking of 9, as mapping to G°(—) ® Q.

Proof. Arbesfeld—Johnson—Lim—Oprea—Pandharipande [5] prove general formulae for

generating series

> Fo@l) - s ) (Tt

nez QU-OtS((CNvﬁvn)}Vir
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When 8 =0, N =1 and K% = 0 the results of [5, §2.2 & Eq. (14)] imply

S [ ) o) = T [

H
q = a; ‘
[1/7(H)h(H)

where

Replacing h with {g}, and comparing to the result of Proposition 4.4.12, we obtain
the first two formulae.

Using (4.5.3), we see that [vTd] (Tﬁﬁbn(s))E 2 contributes

T
l1+e =

to the variable change above. This corresponds precisely to the Todd-genus

Td (Tﬁ’ﬁbn( S)> = Tfe—= (Tﬁ’gbn ( S)> . The second result for elliptic surface S then follows
from the virtual Riemann—Roch of Fantechi-Gottsche [51] together with definition of

X' (—) in §4.5.2. O

Remark 4.5.15. By the work of and Oprea—Pandharipande [143, Lem. 34] there
is a relation between integrals over [Quotg(CY,n)] and [Quots(CY, n)]V*, where the
former is a smooth moduli space of dimension n/N and C' is a smooth anti-canonical
curve in S (if it exists). It is interesting that this gives a precise relation between the
generating series of three sets of virtual invariants in 3 different dimensions. We will
unify these results by applying the equivalent computations to the ones in §4.3 and
§4.4 to recover the results of Arbesfeld et al [5], [118] and [143] in the author’s future

work [18].

Using that [Hilb'(X)]"'"" = Pd(cs(z)) together with Theorem 2.3.2 and that we
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have natural isomorphisms AY(T'X|,) & Fxt'(O,, O,) which hold in a family one can

show:

Corollary 4.5.16. All of the results of this section hold mod ¢>.

4.5.5 4D-2D correspondence explained by wall-crossing

Virtual fundamental classes of Quot-schemes from example 2.3.2 have been used by
Marian—Oprea—Pandharipande [124] to prove Lehn’s conjecture [114] for the generat-
ing series of tautological invariants on Hilbert schemes of points. More recently their
virtual fundamental classes [Quotg(CY, 3, n)]'* were studied by Arbesfeld et al [5],
Lim [118] and Oprea-Pandharipande [143]. Our goal here is to recover the formulae
when 8 = 0 for an elliptic surface S to explain the relationship in Theorem 4.5.14.
We only need one ingredient for this. Similarly, as in the case of Calabi-Yau 4-folds

let us denote

I(Lyg)=1+) ¢" / e Cn (L)

=/ [auotsctm)]
Knowing these invariants, we will be able to determine [Quotg(CY, n)]"'" as an element,
in H,n(Ps) similarly to what we obtained for four-folds. For this we will need a
different definition of the the moduli stack of pairs. For simplicity we assume that
b1(S) = 0, but we then drop this requirement in Remark 4.5.22. In the sequel
[18], we are going to obtain the entire information about virtual fundamental classes
[Quotg(CY, 8,n)]"™r for any surface. Let us for now set up the general framework for

[Quotg(CY,n)]¥™r for any smooth projective surface S.

Definition 4.5.17. o We consider this time the abelian category By of triples

(E,V,¢), where ¢ : V @ CY @ Og % F and F is a zero-dimensional sheaf.
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« The moduli stack N is constructed as in Definition 4.2.3, except in the first
bullet point we take the total space of Tnpg @ 2. (7 (Ox)*N @ &) K V5 —

M., % [x/GL(d, C)].

« We define ©Vr2 by

N,pa _ *
@ (n1p,d1),(n2p,ds2) _(Wnlp,dl X W”2P7d2)

{@upnhis® (ViN) Bmu(Eny)”) [} (455)

)

with  Onpinap - Hom . nt,,, (Enips Ensp)’ and  the  form
XN,pa<(n1p, dl), (nzp, dg)) = rk(@]\fllpj,dﬂ,(ngp,dg)) = —Ndins

The rest of the data has obvious modification, which we do not mention here.

Note that working with surfaces the correct vertex algebra structure requires the

symmetrization of ©P*, thus the correct data is
(NP)P, Z x Z, P P, 0P [ON P 4 o™ (©N2) '] €Y) (4.5.6)

where €/ (—=1)Ndin2 - We have again a universal family CV ®

(n1p7d1)7(n2p7d2)

OSXQuotS(CN7n) — F giving us

/ lﬂ‘ﬂ '

Quotg(CN, n) —— (NP

and [Quotg(CY,n)]wi, € H.(NJ'). Notice, that there is an obvious modification of

the Joyce-Song stability 7&, such that CV @ Ox % F is Tx-stable if and only if ¢ is
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surjective. Therefore, we again obtain

Quotg(CY, n) = N, 1) (T8) . [Quots(CY,n)]™ = [N, 1) (TR

Once the work of Joyce [95] is complete, the following conjecture will be a consequence

of a more general theorem after proving that some axioms are satisfied.

Conjecture 4.5.18. For any smooth projective surface S, in H, (/\/'ON) we have for

all n, N

Quots( €l = 3 S oo M Tl - 1y M i

for some [M5; Jiny € Hy(N).

We again construct the vertex algebra on topological pairs and the L-twisted

vertex algebra.

Definition  4.5.19. Define the data (735,K(Ps),@ps,ups,(),ﬁﬁs,€L’N),

(Ps, K(Ps), Pps, tips, 0, Opg, €V) as follows:
. K(Ps) = K°(S) x Z.

o Set £ = m.(r5(L) ® €) € K°%Cs). Then on Pg x Ps we define Oy, =
(0)1,3 — N<ﬂ® 7T2*((’3)V>23, where 0 = 7y 3, (7] 5(€) - 75 5(€)Y) and
Ops N = Onob + U*(HN,ob)V

Opow = Opon + N(UR L) +N(eEU)

2, 1,4
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¢ The symmetric forms y : (K°(S) x Z) x (K°(S) x Z) = Z, x* : (K°(S) x Z) x

(K°(S) x Z) — Z are given by

X((e,d), (B,e)) = x(a, B) + x(B, ) — dNx(8) — eNx(a),

—eN(x(a) = x(a- L)). (4.5.7)

« The signs are defined by €8¢ = (—1)X(@A)+NAx(B)  and €(La?d)7(67e)

(—1)X(@ N (x(8)-x(L-8))

We denote by (H,(Ps), |0),e”,Yy), resp. (H.(Ps),|0),e*T, V) the vertex algebras
associated to this data and (H.(Ps),[—, —|n), resp. (H.(Px),[—, —]%) the corre-

sponding Lie algebras. We now consider the map
QN = (T xid) o ()™ : (NP = M'P x BU xZ — Cx x BU X Z, (4.5.8)

where X maps [E,V, ¢] to [E,V ® Og].

Let B = BU{(0,1)}, where B = | |_, By, ch(B;) basis of H(S) with By = {[O5]},

B, = {p}. Combining all the ideas of Chapter 4, we can state the following:

Proposition 4.5.20. Let Q[K°(S) x Z] ®q SSymg[us:, 0 € B,i > 0] be the gener-
alized super-lattice vertex algebra associated to ((K°(S) ® Z) ® K'(S), (x*)*), resp.

((K°(S) ® Z) & K'(S), (X)*), where (X)* =X & x~, (X")"=x"®x~ and

X KNS)x KYS)—=Z, x (a,B)= /Sch(oz)vch(ﬁ)Td(S).
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The isomorphism (4.2.13) induces an isomorphism of graded vertex algebras for all

N:

H*(Ps) = Q[K°(S) x Z] ®q SSymg[uy,, 0 € B,i > 0],

H*(Ps) = Q[K(S) x Z) ®g SSymg s, 0 € B,i > 0].

The map (QV), : H.(NY) — H.(Ps) induces morphisms of graded verter al-
gebras (H.(NGY),10), e, Yn) — (Ho(Ps),[0) e, Yy), (H.(NGY),[0), e, V) —

(H.(Ps), |0),e*T, VL) and of graded Lie algebras

Q. (H(NY), =, —Iv) — (H(Ps), [—, —In) ,

Q. (H(ND), [, —1%) — (H(Ps), [, —1%) -

The following result replaces Theorem 4.3.10 and it is noticeably simpler due to

canonical orientations. We use the notation
DN = Qf([QuotS(CN, n”m) , and A, = in([/\/lnp]inv) .

Lemma 4.5.21. Let S be a smooth projective surface with by(S) = 0. If Conjecture

4.5.18 holds, then

%np = e(an) ® 1 . '/Vnp + QT(e(nPJ) ® 1) )
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where for the series N (q) = >, o Nnpqd" we have
>0 Cl(S)vuv,1>
exp(ﬂ/(q)) = (1 — epq> ( =2 )

If S is moreover elliptic, we have

1 +Z npl q = exp{Z[ ”N_l]{ Z —C;vUv(z)exp[Z %zk} }q"] . (4.5.9)

n>0 VE Bay k>0

Proof. We have [Quot¢(C', n)]"'""Nc,, (L) = [Hilb™(S)]Ne, (K (5))Y) Nen (L) =

(—1)"[Hilb"(S)] N can (K2 6 LIM). Then by [125, eq. (18)], we see

c1(L)-c1(X)

We have again

[e(mnl) ®1, o(np.0) ® an]L _ _( n (m+n)p,1 ® Z / (n) .

vE By

By the same but simpler arguments as in the proof of Theorem 4.3.10, we obtain
N (np) = =137 5 c1(S)yuy1. Then an analogous argument as in the proof of

Theorem 4.4.1 leads to (4.5.9), where we are using ¢2(S) = 0. O

Remark 4.5.22. Going through the above computation without the assumption
b1(S) = 0 one can check that under the projection Ieye, : ﬁ*(PS) — Heven(PS) we
still obtain the same results for an elliptic surface. This is sufficient for us, because
we never integrate odd cohomology classes, except when integrating polynomials in

chg(T¥"), but as the only terms p, ) for v € Bogq are given for v € Bs, each such
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integral will contain a factor of x~ (v, w) = 0 for v,w € Bs.

As a consequence, we then obtain the following result which could also be ex-

tracted from Arbesfeld et al [5] for an elliptic surface.

Proposition 4.5.23. Let S be a smooth projective elliptic surface and

fo(p, ), fi(p, ), ..., fm(p,-) be power-series with f(0,0) =1, then define

InvN<ﬁ&:q>=1+Z/[Q enm) IO ACHT

n>0

Then setting rk(a;) = a;, we have

Invy(f, @, q) = {H H % : (4.5.10)

where Hj(q), j =1,..., N are the different solutions for

N
HJ’

I ) f ()

Proof. We can show again

/[Q o e T V) )
uot g ,n)vVir

- /Q exp[ 30 an, (k)xlaY. vt + Nox ()]

k>0 =1
UGBQA

where >, %k = log(f;(q)) and 3", %¢* = log(fo(q)). The rest then follows

from Lemma 4.2.13 and 4.4.11 by a similar computation as in §4.4. ]

Remark 4.5.24. For an elliptic curve C' the quot-scheme Quot,(CY,n) carries the
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obstruction theory F = (T[O:l]I—IO—mQuotc((CN,n) (Z, ]__))v constructed by Marian-Oprea
[123] which is just a vector bundle of rank n/N, therefore the construction of the vertex
algebra is identical and the same computation applies. We leave it to the reader to
check using [143, Thm. 3| that under the projection eyey : H, (Pc) — Heven(PC) the
e’i—p”l) is given by

generating series 1 + Zn>0

o[- X e 5

n>0 k>0
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