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Abstract. With the rise of quantum computers, cryptographic protocols are being required to set secure
communications. In the current study, a 3-party Quantum Key Distribution protocol is proposed to ensure
safe communication considering ideas from BB84 and GR10 protocols against eavesdropping by using a
parameterized partially entangled resource. The protocol is built so that the sender is the only one knowing
the code key and the message encryption is made ongoing. Delayed measurements are applied just at the
end of the protocol to decode the message effectively. The parameter of the entangled resource is used as
a double control for the exchange rate of classical communications involved in the procedure. Finally, a
security analysis is made, where multiple coordinated attacks could be a threat to this protocol.

1. Introduction
Nowadays, communication has evolved according to technological needs generating different trends to
improve and increase the quality and security of communication. The creation of security methods and
their implementation in quantum applications have led this field [1]. As representative novel alternative
methods of implementation, quantum procedures have notably raised the security level of authentication
and encryption by using specific combined states to be analyzed in a communication channel, thus also
decreasing the probability of interception by multiple cyber-attacks [2]. To achieve that, it is possible
to implement in addition to the features provided by quantum teleportation when they are applied to
cryptography [1].

Together, quantum teleportation deals with the transmission of quantum information settled on
qubits, from a sender (Alice) to a receiver (Bob). By using quantum entanglement channels, a distant
communication between those two parties is allowed, to then transmit and obtain a message without
the use of a material channel and without directly influencing the generation of the secret key [3]. This
process is one of the most versatile protocols in quantum information due to its property of securely
transmitting information, playing a decisive role in information science with different applications
such as communications, quantum networks, the development of quantum technologies, and quantum
processing [4].

Quantum cryptography is based on the use of different quantum features to guarantee the security
of information against attacks. Based on established security protocols [5], one of the best known is the
BB84 protocol [6]. It was the first used for Quantum Key Distribution (QKD) [6, 7]. This protocol begins
with Alice sending qubits in 2 random different bases to Bob, who also performs their measurements on
those random bases. Through public classical communication, Alice and Bob share the bases used in
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each share and measurement. Thus, they set the key with the never shared outcomes measured only on
the coincident bases. The results obtained are still evaluated in a reconciliation process using part of the
key. If they differ by a certain notable percentage (around 50% from the cases with common bases), it is
confirmed that an eavesdropper was present, otherwise, the communication was safe [6].

In this paper, the GR10, as well as the BB84 protocols [8], are considered to build a quantum key.
Among GR10’s main features, it is established that the protocol works securely using partially entangled
states to share classical bits of a secret key encoded in two orthogonal states to be teleported [8]. The
additional use of quantum teleportation makes it possible to reduce the errors generated by the physical
channels where the key is normally transmitted [8]. It allows for an increase in the fidelity of the
cryptographic key being shared, which directly impacts the degree of security. On the other hand, the
GR10 protocol, by using a partially entangled state, brings improvements to encryption security. In the
current study, a QKD protocol is presented by combining the features of both protocols. Here, a third
party is introduced acting as a control to secretively decide between the two bases codifying the key. In
this case, neither the receiver nor the sender gets knowledge more than the information they provide.

The aim of the current work is to analyze a shared strategy in Quantum Key Distribution (QKD) to
encrypt an ongoing message coming from the receptor of the key by following some combined ideas
around BB84 and GR10 protocols, particularly using teleportation. The structure of the paper is as
follows. Section 2 presents the general aspects of the protocol by analyzing its configurable functioning
as BB84 or controlled BB84 protocol with delayed measurement. The third section generalizes the
last procedure introducing non-maximal entangled resources during the teleportation. Conclusions are
presented in the last section.

2. 3-party QKD using teleportation and delayed measurement
In the current procedure, a shared key is used, which remains unknown by two of the three parties
involved in the process. As mentioned before, this approach has been considered similar to elements of
the BB84 cryptographic protocol [6]. But it also implements some elements present in the GR10 protocol
[8]. Together, it will be analyzed how those protocols determine the presence of the eavesdroppers
threatening the QKD and reducing the success cracking probability of the encryption with respect to
BB84 protocol.

A two-level state |ψ⟩C was considered in possession of Charlie as a control system which is intended
to select the basis to codify the random qubit sent by Alice:

|ψ⟩C =
√

1− p0 |0⟩C +
√

p0 |1⟩C (1)

While, Alice qubit is randomly selected between |0⟩ or |1⟩ (in fact, by selecting θ as 0 or π). It will be
analyzed as:

|ψ⟩A = cos
θ

2
|0⟩A + sin

θ

2
|1⟩A (2)

The entangled resource used in the teleportation scheme is a generalized partially entangled state. Where
if ω = π

2 we get the Bell state |β00⟩1,2 =
1√
2
(|0,0⟩1,2 + |1,1⟩1,2) corresponding to a maximally entangled

state. The fact that ω can have other values other than π

2 , gives the possibility to analyze both cases of
entanglement in the procedure.

|B⟩1,2 = cos
ω

2
|0,0⟩B1,B2

+ sin
ω

2
|1,1⟩B1,B2

(3)

As seen in Figure 1, the first step into the protocol consists of applying a control Hadamard gate, it
allows the third party, Charlie, to decide the basis on which each qubit will be sent (Z basis, {|0⟩ , |1⟩};
or X basis, {|+⟩ , |−⟩}):

CCHA = |0⟩ · ⟨0|C σ0A + |1⟩ · ⟨1|C HA (4)
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Figure 1. Quantum circuit comprising the entire procedure with the basis selection, teleportation, and a
possible delayed post-measurement on the control.

Notice that, in contrast to the ordinary BB84 protocol, Alice will never know the basis selected by
Charlie to send the message. After, quantum teleportation is used to transmit each qubit of the key
(using ω = π

2 ). It is worth mentioning that the entangled resource for this procedure corresponds to a
maximally entangled state to demonstrate the BB84 protocol. The next step follows the same path as the
teleportation algorithm by applying a CANOT1 gate and a Hadamard gate HA to Alice’s qubits (A and 1).
At this point, the state has been almost teleported to Bob but still measurements and corrections must be
made to ensure the message becomes adequately teleported.

The measurements {Mi j = |i, j⟩ · ⟨i, j|A,B1
|i, j = 0,1} performed on the Alices’ qubits with outcomes

r2,r3 let to correct Bob’s qubit by applying flip and phase operations to it, X r2
B2
,Zr3

B2
(X and Z are the

corresponding Pauli operators) in that order. The application of those phase operations is determined
through classical communication from Alice to Bob. Finally, the complete settlement is obtained
finishing with the qubit |s⟩B received by Bob. Table 1 shows the different results obtained for |s⟩B in the
different cases where Charlie changes the base codification for Alice’s qubit A (by just using p0 = 0,1).
It demonstrates this protocol works as a functional BB84 protocol using 3 parties instead of 2, Charlie
decides the codifying basis.

Table 1. Algorithm functioning as a pro-
grammed BB84 protocol

Alice’s qubit Charlie’s qubit Bob’s qubit

|0⟩A |0⟩C |0⟩B
|0⟩A |1⟩C |+⟩B
|1⟩A |0⟩C |1⟩B
|1⟩A |1⟩C |−⟩B

Table 2. Algorithm functioning as a BB84
protocol with delayed-measurement

Alice’s Bob qubit & Charlie’s qubit

|0⟩A
√

1− p0 |0⟩B |0⟩C +
√

p0 |+⟩B |1⟩C
|1⟩A

√
1− p0 |1⟩B |0⟩C +

√
p0 |−⟩B |1⟩C

Alternatively, Table 2 shows the outcomes if Charlie has instead used a superposition control state
as in (1). It clearly reduces to the previous outcomes when p0 takes the values 0,1. Otherwise, Charlie
could decide it using a delayed retrospective post-measurement on his qubit C. Also, now it will be
analyzed as a 3-party protocol for QKD using the superposition of the basis selection.

In this procedure, a series of time steps are performed departing from the sending of the codifying
qubit by Alice (t0) to the basis selection by Charlie (t1) and finishing with the teleportation and Bob’s
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reception of the code (t2). Now, Bob will use the qubit received to encode an ongoing new qubit mk = t
being part of a message chain built as |m1m2...mn⟩M, which he pretends to send back to Alice (t3). Thus,
the next step is to codify such message qubit from Bob to Alice using the state previously sent by Alice
through the teleportation process. For practical purposes, in the next steps, only one qubit of the chain
is analyzed, however, this could be easily repeated for any of the other qubits in Bob’s message. It is
important to clarify that each state of |t⟩M only takes the values of 0 or 1.

The original Alice’s qubit |s⟩A received by Bob after the teleportation process could be written using
the following general notation |s0⟩ ∈ {|0⟩ , |1⟩} or |s1⟩ ∈ {|+⟩ , |−⟩} as a superposition of choices made
by Alice and the qubit of Charlie for the state and the basis respectively. This qubit will allow Bob to
codify the new qubit message that now Bob attempts to send back to Alice by applying a CBNOTM gate
(t3). The teleported qubit |s⟩B = α |s0⟩B +β |s1⟩B (α =

√
1− p0,β =

√
p0) gives the following state for

the messaging process (t2):

α |s0⟩B |t⟩M |0⟩C +β |s1⟩B |t⟩M |1⟩C (5)

Then, the application of a CBNOTM gate is made to the message qubit |t⟩M controlled by the teleported
state |s⟩B. A generalized superposition of codifications in each basis is shown in the equation below.
When the basis corresponds to the Z basis, the message qubit is modified only if |s0⟩B = 1. On the other
hand, when the X basis is selected, the message qubit is modified to obtain an entangled state.

α |s⟩B |t ⊕ s⟩M |0⟩C +
β√

2
(|0⟩B |t⟩M +(−1)s |1⟩B |t ⊕1⟩M) |1⟩C (6)

In fact, the generalized equation shows that the term with |0⟩C, then the initial state |t⟩M in the message
is directly recovered. Instead, terms with |1⟩C become still codified with s as:

α |s⟩B |t⟩M |0⟩C +
β√

2
(|0⟩B |t ⊕ s⟩M +(−1)s |1⟩B |t ⊕1⊕ s⟩M) |1⟩C (7)

The last process has been illustrated in Figure 2a and b. While Figure 2a shows a flow chart of the
process, Figure 2b shows an equivalent timeline of it. The common symbology used is shown at the
bottom of Figure 2b. Steps comprising times from t0 to t4 have been already explained until the reception
of the codified message from Bob to Alice.

The message qubit will be sent to Alice through a physical channel or again using teleportation.
When the qubit arrives with Alice, she will try to decodify the message qubit (t4). The most reasonable
decodification process to be performed by Alice (without measurement) will consist of applying the
operation X s turning the information accessible to her just in case of Charlie was absent in the process.
After the tentative decodification, she informs Charlie that the message was received through a classical
communication channel. Charlie then measures his qubit (t5) to set the basis finally encoding the
message delayed. If he measures |0⟩C (r1 = 0) then he contacts Alice (scenario A), otherwise (r1 = 1) he
communicates with Bob classically (scenario B):

A. In each case where Alice receives the message from Charlie, the basis was not changed and Alice
can start measuring the message (t9).

B. Nevertheless, if instead, Charlie sends the message to Bob, he now must measure his qubits (t7). He
can obtain |0⟩B or |1⟩B. After those measurements, Alice receives a message from Bob (scenario
B.1), during a specific period if he measured a |0⟩B (t8a). Instead, if during this time gap Alice has
no information from Bob (t8a), she assumes Bob’s result was the state |1⟩B (scenario B.2). Then,
Alice can start measuring the message (t9).

As it can be seen from (7), with all this information in each case, Alice can decode and get the
message sent by Bob using the operation X s by regarding their original codifying qubit |s⟩A (t9). Such
shared strategy lets Alice read each qubit coming from Bob, codified with a code defined delayed.
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(a)

(b)

Figure 2. Ongoing codifying procedure using delayed measurement on the system selecting the code
basis: (a) Flow chart of the entire procedure, and (b) Timeline version of the procedure with the common
symbology in the bottom.

3. Protocol using a parameterized partial entangled state
If state |B⟩1,2 in (3) is generalized in terms of ω , then we define the states:

∣∣ψ±〉
B = cos

ω

2
|0⟩B ± sin

ω

2
|1⟩B (8)∣∣φ±〉

B = sin
ω

2
|0⟩B ± cos

ω

2
|1⟩B (9)

Note that states B⟨ψ+|φ−⟩B = 0 and B⟨ψ−|φ+⟩B = 0 are orthonormal. Then, Table 3 shows the outcomes
for the protocol as a function of the Alice qubit being sent and the measurement r3 performed on the first
qubit of the entangled resource.

Notice that protocol presented at the end of the previous section could work similarly. In fact, if the
message qubit |t⟩B is considered, and |s⟩A is the qubit originally sent by Alice, the overall states reported
in Table 3 could be written, before Bob codifies the message qubit, as:
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Table 3. Algorithm functioning as a BB84 protocol with delayed-measurement using a partially
entangled state

Alice’s qubit Bob & Charlie’s qubits
r3 = 0 r3 = 1

|0⟩A

√
2(1−p0)cos ω

2 |0⟩B|0⟩C+
√

p0|ψ+⟩B|1⟩C√
1+(1−p0)cosω

√
2(1−p0)sin ω

2 |0⟩B|0⟩C+
√

p0|φ+⟩B|1⟩C√
1−(1−p0)cosω

|1⟩A

√
2(1−p0)sin ω

2 |1⟩B|0⟩C+
√

p0|ψ−⟩B|1⟩C√
1−(1−p0)cosω

√
2(1−p0)cos ω

2 |1⟩B|0⟩C+
√

p0|φ−⟩B|1⟩C√
1+(1−p0)cosω

√
(1− p0)(1+(−1)s⊕r3 cosω) |s⟩B |t⟩M |0⟩C +

√
p0(cos ω

2 |r3⟩B +(−1)s sin ω

2 |r3 ⊕1⟩B) |t⟩M |1⟩C√
1+(−1)s⊕r3(1− p0)cosω

(10)

then, when Bob codifies the message with the received qubit from Alice, and also Alice decodifies the
message qubit using her s value, the states becomes:

√
P0 |s⟩B |t⟩M |0⟩C +

√
P1(cos

ω

2
|r3⟩B |t ⊕ r3 ⊕ s⟩M +(−1)s sin

ω

2
|r3 ⊕1⟩B |t ⊕ r3 ⊕ s⊕1⟩M) |1⟩C (11)

with : P0 =
(1− p0)(1+(−1)s⊕r3 cosω)

1+(−1)s⊕r3(1− p0)cosω

P1 =
p0

1+(−1)s⊕r3(1− p0)cosω

Then, if Charlie measures his qubit obtaining |0⟩C, he can communicate with Alice as before, who
measures the qubit M getting the bit message. This event occurs with probability P0. Otherwise, if in the
previous procedure Charlie gets |1⟩C (with probability P1), thus boosting Bob’s measurement on his qubit
(using the basis |0⟩B , |1⟩B), the procedure remains almost without changes, just varying the probabilities
of each event as a function of ω, p0. Despite this, note that in this case, Bob will call Alice if he obtains
|r3⟩B (r1 = r3), while no call is performed to Alice if he obtains |r3 ⊕1⟩B (r1 = r3 ⊕1). Thus, Bob will
call to Alice with probability P1a = P1 cos2 ω

2 and he will not call her with probability P1b = P1 sin2 ω

2 .
Note that under this procedure, Alice (and possibly Charlie) has control over the frequency of each one
of the three scenarios that will happen. Thus, an eavesdropper cannot make predictions about it to gain an
advantage in the procedure because Alice could change such frequencies in each bit message. Note that
it is still possible due to the shared information among the three parties using orthogonal states. All three
probabilities P0,P1a,P1b are plotted on Figure 3a-c for the two cases s⊕ r3 = 0 and in 3d-f s⊕ r3 = 0.

Then, Figure 3 comprises all different probabilities to decode the message when Charlie makes a
measurement on his qubit, thus post-selecting the base to encode the qubit: Charlie calls to Alice (P0);
Charlie calls to Bob, then Bob to Alice (P1a); and Charlie call to Bob but Alice is not called (P1b). Plots
show the possible ways to choose different values for ω and p0 to control such probabilities. The sum of
the three probabilities will be one, and that feature is observed in every three corresponding plots (a-c)
and (d-f). Probabilities also depend on the joint value of s and r3. Alice and Bob have the knowledge of
r3, but note it was stochastic. While s is just exclusively known by Alice. Those facts help the security
of the protocol, making it very difficult for a group of eavesdroppers to obtain that information.

With the selection or definition of those values (p0,ω,s ⊕ r3), the three parties can privilege the
classical protocol communication and they can avoid the weakest communication channels by choosing
proper values favoring some other the three cases. It limits the spies’ interventions since there are random
values with no predetermined rules. Note that ω = 0,π or 2π should be avoided because it does not
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(a) (b) (c)

(d) (e) (f)

Figure 3. Contourplots for (a) P0,r3 ⊕ s = 0 (b) P1a,r3 ⊕ s = 0, (c) P1b,r3 ⊕ s = 0, (d) P0,r3 ⊕ s = 1, (e)
P1a,r3 ⊕ s = 1, and (f) P1a,r3 ⊕ s = 1 as function of p0 ∈ [0,1] and ω ∈ [0,2π].

generate the entanglement resource necessary for teleportation. Despite we will devote the following
section to discussing eavesdropping, we close the current one with some examples about the elections.

For instance, if Alice chooses ω = π

4 with the qubit |s⟩A = 0, Charlie selects p0=0.2, together with
the stochastic measurement r3 = 0, then the case when Charlie calls Alice would have more probability
of occurring as shown in Figure 3a. This can be also seen from Figure 3b and c, where those cases are
unlikely to occur. In a second example, one of the most valuable cases corresponds to the equiprobable
scenario where none of the three communications involved is favored: P0 = P1a = P1b =

1
3 . Note that in

the protocol of the second section it is advisable in 7 that if p0 =
√

2/3 and ω = π

2 , all the cases will
have the same probability of occurring. By superimposing the set of Figure 3a-c or 3d-f, it is found that
there is a second solution with ω = 3π

2 , p0 =
√

2/3.

4. Multiple eavesdropping analysis and QISKIT implementation
Sharing information through classic channels rises the possibility to be stolen by an eavesdropper. While
quantum key encryption ensures higher security against eavesdropping. Thus, in our last procedure,
only Alice knows each key bit |s⟩A to encode a tentative comeback message to be sent ongoing upon its
reception. When teleportation is combined with the procedure, no material channels to be intercepted
are present increasing security. The use of a partially entangled state for teleportation characterized by
the ω parameter sets an additional control on the shared process. Such control changes the rules for the
exchange rate of classical information in the process of hardening the task for eavesdroppers.

Despite this, for this protocol, a simultaneous attack can be implemented for each party involved
through it: Alice, Charlie, and Bob. All of them can have possible eavesdroppers waiting to obtain the
shared information. In the best case for an eavesdropper, all classical information could be considered
public due to the weakness of the channels exchanging it. There, the control settled by ω plays
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an important task in regulating the preferred classical communication channels as a function of their
security. Then, the clever information in the quantum process is centered on |s⟩A and ω values (only
known by Alice through the entire procedure), as well in the basis selection settled as a quantum
superposition and the notable possibility to be settled through a delayed measurement. In fact, such
a delayed measurement lets to decode the message only at the final stage when Alice has received and
secured the encoded message with information only known by her.

The more critical knowledge of protocol is the information of |s⟩A and of course |t⟩M. Then, it
is assumed that neither the access to Alice’s qubit (|s⟩A) since its creation until the teleportation (and
their parties), nor the access to the message qubit (|t⟩M) before Bob’s encoding, are achievable for none
eavesdropper. Those parts should be extremely secure. Then, the weaker parts of the protocol are
located on the theft of Charlie’s qubit or the encoded message qubit before it arrives to Alice. We should
remember that in an extreme analysis, all outputs of classical communications are available for a group
of eavesdroppers under multiple attacks.

4.1. Charlie’s qubit theft before or after the basis change
If an eavesdropper manages to steal Charlie’s measurement results, the eavesdropper will know the
codifying base used for each qubit in the codifying key. However, by choosing adequate values for
ω and p0, the X basis could be favored by probability reducing any possibility to effectively guessing the
message for the eavesdropper. In fact, the X basis could cause more problems for the eavesdroppers to
crack the code without collaboration of Bob, when they try to steal information from other sources.

If the eavesdropper steals the qubit sent by Charlie before the change of basis, (t1), he can interfere
with this process by establishing a unique basis by cheating on Charlie by exchanging his qubit with
another in the state |0⟩. In the end, even though they have interfered with the channel, the probability
of decoding the message will correspond to the same as the BB84 protocol. If the eavesdropper
steals information after the basis election (t6), he should cheat Charlie by stealing and measuring his
qubit and replacing it with another in the same outcome state obtained, |0⟩ (the easier outcome where
Charlie communicates with Alice, despite stochastic) or |1⟩ (getting the Bob collaboration still becoming
unnoticed, then boosting the planned Bob actions). It helps the eavesdropper to follow the natural
sequence of events and, due to other accomplices collaborating with him in the classical public channels
to follow the evolution of the message encoded.

4.2. Message qubit theft before its arriving with Alice
In any case for the previous discussion, the eavesdropper will need the collaboration of another partner
on Alice’s side. By stealing the message qubit before it arrives to Alice, just the knowledge of the basis
used to encode and the actions followed by the three parties (Alice, Bob, and Charlie), the group of
eavesdroppers under such complex and improbable attack are in the same situation of Alice before the
decoding. Nevertheless, only the knowledge of s will let them crack the encryption.

5. Conclusions
The protocol presented sets a scheme of ongoing quantum encryption shared among three parties and
uses delayed measurement for decryption. It allows for maintaining the confidentiality of the encrypted
message between the parties involved and it prevents the possible presence of several eavesdroppers
working together in multiple attacks on the classical and quantum information being exchanged. In the
protocol, in turn, both Alice and Bob act as receiver and sender, first sending the cryptography key, then
exchanging an encoded message with that key. It is worth mentioning that Alice is the only one who
knows the value of s in each qubit |s⟩A conforming the cryptographic key, and additionally, she does not
know the basis used to share the code. In our analysis, only if s is known, the eavesdroppers will have
effective access to the message sent.

It has been demonstrated that the protocol can work properly as the BB84 protocol by selecting ω

as π/2. On the other hand, different values for ω allow the introduction of a partially entangled state
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to perform the teleportation step. Also, p0 helps increase or reduce the probability of encoding the
key through two bases. While ω lets together to mix the encoding on several states and bases. This
in turn means that Alice can take advantage of specific classical channels to become more secure, thus
preventing information theft. The process depicted in the second section can be simulated using QISKIT
as it is illustrated in Figure 4 in the dashboard composer.

(a)

(b)

Figure 4. (a) Protocol implementation on the QISKIT composer, and (b) Statistical outcomes for
classical registers (cA3 -three-bit registers-, cMB1, cr21, cr21, and cMA1) using 1024 shots for each
message value t = 0 (blue) and t = 1 (red), showing a perfect agreement between t and cMA1 (bottom
value in the horizontal ticks).

In the implementation, q[0]− q[4] quantum registers correspond to Charlie, Alice, first and second
partially entangled qubits (Alice/Bob), and the Message. Classical registers with one bit are as follows:
cMB1 is the bit of the message; cr21 and cr31 are the registers to store r2 and r3 respectively. While
cA3 is a 3-bit register to store r4 (the Bob measurement), r1 (the Charlie measurement), and s (the bit of
the state initially selected by Alice). There, r4 is the most significant bit, and s is the least significant.
From (7), we advise that if the message measurement m obtained at the end by Alice is related with t as
t = m⊕ r1 · (s+ r4). Then, if cA3 has stored 3(r4 = 0,r1 = 1,s = 1) or 6(r4 = 1,r1 = 1,s = 0), it means
r1 · (s+ r4) = 1, then a NOT gate should be applied to the qubit message q[4] to get correctly t when it is
finally measured (see Figure 4a) and stored on CMA1.

The process has been divided by dashed lines in the following sections from left to right: states
initialization, basis codification, teleportation, message encoding by Bob and decoding by Alice, and
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measurement process finishing with the message reading. Circuit is configurable for p0 and ω through
rotations RY(−α) (p0 = cos α

2 ) and RY(−ω). In Figure 4b, the statistical outcomes of the classical
registers are depicted. By using ω = π

6 and p0 = 1/
√

2, 1024 random shots on a quantum processor were
performed by each possible value for t = 0,1. Ticks in the horizontal axis correspond to the values in the
classical registers (from the top to the bottom: cA3 -three-bit registers-, cMB1, cr21, cr21, and cMA1).
Note that in each case, the value used for t meets with the value in cMA1, thus showing that protocol
works.

Future work should be directed to the analysis of protocol under a coherent attack [9]. In this case,
by tracking the Holevo information through the entire QKD and encoding process, it could be possible
to have the maximum of available information to detect the weaker points of the entire protocol. It will
help to secure such parts from a coherent attack.
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