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1. Introduction

In order to be able to use explicitly the
ultra-violet divergence cancellation potentiality
of supersymmetric field theories, especially for
= 4 SYM and N=

We immediately meet the N= 3 barrier

8 SGR we must construct them in
superspace.
[1] which arises because it is increasingly

difficult to re-arrange the p2N-1

fermionic
degrees of freedom (or more) into only 2N

propagating physical modes (for N-SYM) and
auxiliary fields; a similar difficulty arises for
N-SGR.

for SYM or N= 8 for SGR we need to reduce the

To penetrate the N= 3 barrier up to N= 4
dimension of spinors by a factor of 2. This can be
achieved either by losing explicit lorentz
covariance, as in the light-cone gauge approach, or
by losing explicit N-SUSY by working in terms of
N/2 superfields. One of the two currently known
ways of penetrating the N= 3 barrier preserving
the maximal symmetries in a linear realisation is
through the use of central charges, and I wish to
present results obtained up to date in that
programme here. The more recent technique of
harmonic superspace has also proved of value in
constructing N= 3 super Yang-Mills theory in N= 3
superspace, (as described by E. Sokatchev in the
previous talk), though this has not yet been
extended to N= 4 theories. The central charge
avenue on the other hand, has allowed the
construction of up to, and including, N= 8
supergravity in the appropriate full superspace,

as I will now try to explain.

2. Central Charges
These are operators zt) (14£1i,j& N) defined
by the anticommutator of two chiral SUSY
generators
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The resulting N-SUSY algebra ;BN { ™ A *,
has a Casimir which extends that of thc P01ncare
group in the form wrw# (where WP is the Pauli-
Lubanski vector) by replacing wr
by
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The irreps ofzfI can thus be divided into two

classes:

(1) non-degenerate, with pz# Z*Z. These may be
shown not to be helpful in trying to broach the
N =3 barrier.

2
(2) degenerate, with p"= 7¢*Z. These require that

the numerator in the factor (2) also vanish. This
is a Dirac-type of equatlon which allows S.. to be
3]

rewritten in terms of S

= -1, % *ji i
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We see that given (3) and the relation

PZS? - Zikz*kj (4
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We may deduce the correct commutation relation
between two oppositely chiral SUSY generators.
There are therefore only, say, the Si as

independent fermionic elements of 5&§

irveps.

on degenerate
Tt 15 precisely this feature that allows us
to pass through the N =3 barrier. This is because
the dimension of the spinors defining
representations of A E have been reduced by a
factor of one half by”eliminating Ei;{ , so that N
has been effectively reduced to Nf2 in the analysis
of the No-Go theorems (without associated loss of
internal S U (N) symmetry, however).
We may represent the 213 g 3/, i where 244
are bosonic co-ordinates. There are enough of these
to construct the 'full' super-space measure
d4xd4N3 dZ(N-l)

z, of dimension L2, by integrating

over a 2(N-1)-dimensional subspace of the Zij' This
latter can be chosen naturally for N=4

self-dual Z;

as the set of
i’ and for N=8 as defined by the Dirac

matrices in seven dimensions.

We must now interpret full superspace actions

=S'd4x S‘_‘dz(N_l)z &d4N9£(§(x,z,e),....) (5)

These are defined on superfields @ satisfying (3) and
(4), which may be used to determine how initial data,
for a given value of the Zij’ propagate into the
whole of z-space. This propagation can be made
unambiguous if we require dependence on only one

central charge, and this can be achieved by adding



the further constraint

2 g

(6)

where ekij is a metric for USp(N). We remark also
that without (6) the spectrum of the theories we can
construct would be unsatisfactory[z].

In particular there are an infinite number of
propagating particles in the spectrum if there are
two central charges 2,2, even if the spin reducing
constraint (4) in the form B:BZ/BZ%-'BZ/B?% is
satisfied. This can be seen from the fact that the
fields in four-dimensions of this boundary -
controlled theory are the sequence of derivatives

and z, of the fields in z ,z Thus if

1 2 1°°2°
A(x,zl,zz) is the complete field, its four

w.r.t. z

dimensional content is the sequence (3f= ] /azi) of

derivatives evaluated at z.= z,~ Q:

1
$8,3,4,3,4, G2 o)A Bas/a)h, iV A,

Qe REu/0ARMAL/aWA, .- }

If A is a physical propagating field then the
fields fh?n/fln)A, ()fn—lgz/ﬂn)A are also
propagating, thus giving the infinite sequence of

such fields. Actions and field equations for this

(2]

case have becen analysed in detail

The constraints (3), (4), (6) on (5) reduce
the action to one controlled by the values cf §
and its derivatives on?ﬁ1; the theory is thus a

(351

boundary control problem
3. Examples

The simplest example is for N= 2, when
M= Y7, 2230+ iy3x’.  Then (4)

6-dimensional massless wave equation.

becomes the
Since the
superspin Y and multiplicity values in the scalar
S.F  are (oz,é) then the fundamental irrep
(the N= 2 hypermultiplet or HYM) is contained in

and is singled out by the constraint [4]
(ig = (i3] o
NS G @)

Similarly the N= 4 is in the 5-plet W' of USp(4)

[}

with constraint [5]

(i,ik = pUiky
oiw 331 = (637w 33' 0 » (8)
whilst the N=8 HYM is in the 42-plet W K= of
USp(8) with constraint[s]
(i, jke&m _ =(i,ikem) _
(D W 3 = (D W ?— (9)

F F

The linearised actions (5) have been evaluated

for the N=2, 4 and 8 fundamental representations
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by integrating over the Grassmann variables

[6117]

resultant quadratic actions are explicitly boundary

In all those cases it has been shown that the

controlled, being of the form
4 ¢,2(N-1) =~ 2N+2
TR PR S ¥ 3

where }
wiij

(10)

is the appropriate superfield il, WlJ,
satisfying the contraints (7), (8) or (9)

repectively. The same is true of the centrally

charged N= 2 SYM multiplet at linearised 1eve1[6].

4. Constrained Superspaces

In order to use the above irreps to construct
fully covariant interacting field theories for

N= 4 SYM or N= 8 SGR we may impose constraints on
the curvatures and/or torsions available. For N= 4

SYM the geometry is based on the gauge potential B

A
(with A= a,o%,ij) and covariant derivative
éi/f= DAFiBA; the field strengths are defined by
_ _(®Cq
[&A’&B]_ ?AB FAB an
where(g)iB is the torsion of flat superspace. .We
impose the constraints (2]
N I - ¢
}d? = E=o, > ™ ij%z (12)
and solve the Bianchi identities. All the FAB are

]

. i . .
found to be functions of W -~ satisfying the gauge-

covariant extension of (8). Further consistency
checks [9] show this equation to have a non-trivial

solution as the field-strength superfield.

We may then write down a full super-space

action
] - P
A=t Sd4x dez alfo TN ) ()
g” ¢
and the resulting equations of motion, derived by
G
boundary control theory, are the simple ones[g][J]
Bzwij= o (14)
For the case of N= 2 matter theory we may simply
take the N=2 hypermultiplet constraint (7) and
construct the action
(15)

Saqx &v d%s XU‘&% E{* £L

This may be put in interaction with an external

N=2 super-Yang-Mills gauge field by replacing the
derivative Di in (7) by the covariant derivative

o&t as for the N=4 case. An action for the N=2
super-Yang-Mills theory may be obtained in a similar
fashion to the N=4 case by imposing the constraints
(12) (now with 4j3=1,2 ) and the additional

constraint



QY FE, =0 (16)
This latter removes the non-centrally-charged
multiplet allowed by the other constraints. The
action for this theory is now
(17)

SA“X S{ézz &d“a (F“ E‘.)
The equations of motion for the appropriate field

strength superfields are all of the simple form (14)

In fact three versions of N=8 supergravity

appear possible. The first two versions[lo}[ll]
have non-trivial torsions of dimension zero. Their
full superspace actions
A=l &dilx X att; \d”e det B (18)
AS v
have only been shown to give the equations of
motion
c . :
DEM=IQC =0 (19)

for the multi-bein EAM and connection(lAB ¢ at the
linearised level. The third model has no non-
trivial dimension zero torsions and has the field
equation (16) at the non-linear level. We are
presently trying to show that (15) is the correct

action for this theory[lzl.

5. Quantisation

We may quantise the above theories by
introducing lagrange multipliers to relax the
constraints. It is necessary to show that this
approach is satisfactory even at the component
level, where there it has proved difficult to
quantise the non-Abelian component version of N =4
super-Yang-Mills[IS] due to the presence of a
conservation constraint equation for an auxiliary

vector Vi@
r

@r\lf'f' non-linear terms = O (20)

This constraint can only be solved non-locally, so
that the resulting quantum field theory would scem
to be unsatisfactory. However the use of lagrange
multipliers allows a satisfactory perturbation

theory to be developed[14],

in which the lagrange
multiplier for (20) becomes the propagating sixth
scalar of the theory. We thus expect the superfield
approach, using lagrange multiplier superfields, to
relax the constraints (12), (16) etc., to give a
satisfactory quantum field theory. The resulting
supergraph rules have been developed[ls] and lead
to superpropagators with inverse powers of‘az. This

leads to the exciting possibility of proving a non-
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for SYM and SGR theories.
We basethis on the fact that the equations of

motion for  N= 2 HYM, N= 2 and 4 SYM and N= 8 SGR
are all of the form (14).

renormalisation theorem

It has been shown that
after performing the integration over the
Grassmann variables the N= 2 SYM action is a total
derivative 75"[]2]; we expect all the actions we
are concerneduwith to become total derivatives
}ZZN. From the nature of the superpropagators we
also expect radiative corrections to be total
derivatives}ﬁr with r < 2N. The results of
altra-violet %initeness on- or off-shell for the

various theories are as given in the table.

Table
1
T on- or

Theor O<fr<2N r =0 off-shell

N SYM AS =0 pay q =0 off-shell

N SGR Finite,AR=0|Unknown, & K=0 on-shell
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