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1. Introduction 

In order to be able to use explicitly the 

ultra-violet divergence cancellation potentiality 

of supersymmetric field theories, especially for 

N- 4 SYM and N= 8 SGR we must construct them in 

superspace. We immediately meet the N = 3 barrier 

[ 1 ] which arises because it is increasingly 
2N-1 

difficult to re-arrange the 2 ^ermionic 

degrees of freedom (or more) into only 2N 

propagating physical modes (for N-SYM) and 

auxiliary fields; a similar difficulty arises for 

N-SGR. To penetrate the N= 3 barrier up to N= 4 

for SYM or N= 8 for SGR we need to reduce the 

dimension of spinors by a factor of 2. This can be 

achieved either by losing explicit lorentz 

covariance, as in the light-cone gauge approach, or 

by losing explicit N-SUSY by working in terms of 

N/2 superfields. One of the two currently known 

ways of penetrating the N= 3 barrier preserving 

the maximal symmetries in a linear realisation is 

through the use of central charges, and I wish to 

present results obtained up to date in that 

programme here. The more recent technique of 

harmonic superspace has also proved of value in 

constructing N= 3 super Yang-Mills theory in N= 3 

superspace, (as described by E. Sokatchev in the 

previous talk), though this has not yet been 

extended to N= 4 theories. The central charge 

avenue on the other hand, has allowed the 

construction of up to, and including, N= 8 

supergravity in the appropriate full superspace, 

as I will now try to explain. 

2. Central Charges 

These are operators Z 1 J (l£i,j$N) defined 

by the anticommutâtor of two chiral SUSY 

generators 

The resulting N-SUSY algebra J?* -{^» p\ >s* ^ ) Z ^ } 

has a Casimir which extends that of the Poincare 

group in the form W w/*" (where is the Pauli-

Lubanski vector) by replacing in that expression 

by 

c = w r^is * y(s m ^"
lsV m n)(i - V'

2z*zy\m+ (2) 

The irreps of % jjj can thus be divided into two 

classes : 
2 

( 1 ) non-degenerate, with p ^ Z*Z. These may be 

shown not to be helpful in trying to broach the 

N = 3 barrier. 

(2) degenerate, with p2= Z* Z. These require that 

the numerator in the factor (1) also vanish. This 

is a Dirac-type of equation which allows "s. to be 

i # 

rewritten in terms of S^: 1 

We see that given (3) and the relation 

p2SJ = 2 i k Z * k j ( 4 ) 

WE may deduce the correct commutation relation 

between two oppositely chiral SUSY generators. 

There are therefore only, say, the S* as 

independent fermionic elements of % ^ on degenerate 

3rre(?S. îc is precisely this feature tnat allows us 

to pass through the N = 3 barrier. This is because 

the dimension of the spinors defining 

representations of % ^ have been reduced by a 

factor of one half by eliminating S^c' , so that. N 

has been effectively reduced to NJ2 in the analysis 

of the No-Go theorems (without associated loss of 

internal S U (N) symmetry, however). 

We mav represent the Z 1^ as ^/3z • - , where z. . 

are bosonic co-ordinates. There are enough of these 

to construct the 'full' super-space measure 
A AIL ,2(N-1) ,. . T 2 , . 
d xd B a z, of dimension L , by integrating 

over a 2(N-l)-dimensional subspace of the z... This 

ij 
latter can be chosen naturally for N=r4 as the set of 

self-dual z^^, and for N- 8 as defined by the Dirac 

matrices in seven dimensions. 

We must now interpret full superspace actions 

A - J A 5 d ^ M d ^ t f f i x . z , , » ) ) (5) 

J r J 

These are defined on superfieldsJ satisfying ( 3 ) and 

( 4 ) , which may be used to determine how initial data, 

for a given value of the propagate into the 

whole of z-space. This propagation can be made 

unambiguous if we require dependence on only one 

central charge, and this can be achieved by adding 
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the further constraint 

Z l j = iji (6) 

where oL1"* is a metric for USp(N). We remark also 

that without (6) the spectrum of the theories we can 

construct would be unsatisfactory1 J. 

In particular there are an infinite number of 

propagating particles in the spectrum if there are 

two central charges z,,z 9 even if the spin reducing 

constraint (4) in the form 0 - " ^ /"SzjVà / à z 2 is 

satisfied. This can be seen from the fact that the 

fields in four-dimensions of this boundary -* 

controlled theory are the sequence of derivatives 

w.r.t. z^ and z 0 of the fields in z^z^. Thus if 

ACXjẐ jẐ ) is the complete field, its four 

dimensional content is the sequence (3.» ̂  /^z^) of 

derivatives evaluated at z^= z 7= 0: 

{ M , A A * > O,* to) h frfl>/a) K - - A J 

If A is a physical propagating field then the 

fields 0 ^ n / Q n)A, ( ^ n _ 1 3 2 / Q n)A are also 

propagating, thus giving the infinite sequence of 

such fields. Actions and field equations for this 
[2] 

case have been analysed in detail . 

The constraints (3), (4), (6) on (5) reduce 

the action to one controlled by the values of Ç 

and its derivatives on"èV ; the theory is thus a 

boundary control problem^ . 

3. Examples 

The simplest example is for N= 2, when 

lLi=z £ l j 2 , Z^l'èx5*- i^àx 6. Then (4) becomes the 

6-dimensional mass les s wave equation. Since the 

superspin Y and multiplicity values in the scalar 
2 

S.F are (o",^) then the fundamental irrep 

(the N= 2 hypermultiplet or HYM) is contained in 

and is singled out. by the constraint [4] 

Similarly the N~ 4 is in the 5-plet W 1 3 of USp(4) 

with constraint [5] 

( D ^ V ^ = ( D P W ^ = o (8) 
BP ^ f f » A ' 

\ ik£ 

whilst the N = 8 HYM is in the 42-plet W J of 

USp(8) with constraint^ 

( D ( > j k < m L ={DiV k t m J= o (9) 

The linearised actions ( 5 ) have been evaluated 

for the N = 2 , 4 and 8 fundamental representations 

by integrating over the Grassmann variables 

In all those cases it has been shown ̂  ^ that the 

resultant quadratic actions are explicitly boundary 

controlled, being of the form 

hfl) (10) 

where "Î is the appropriate superfield J3 , W1**, 

W J * satisfying the contraints (7), (8) or (9) 

repectively. The same is true of the centrally 

charged N = 2 SYM multiplet at linearised level 

4. Constrained Superspaces 

In order to use the above irreps to construct 

fully covariant interacting field theories for 

N= 4 SYM or N = 8 SGR we may impose constraints on 

the curvatures and/or torsions available. For N= 4 

SYM the geometry is based on the gauge potential 

(with A-a ,o6,ij) and covariant derivative 

<â DA4-iBk ; the field strengths are defined by 

A A A 

where ̂ ? ^ R is the torsion of flat superspace. -We 
[81 

impose the constraints 

and solve the Bianchi identities. All the F.„ are 
i ' 

found to be functions of W1*1 satisfying the gauge-

covariant extension of (8). Further consistency 

checks [9] show this equation to have a non-trivial 

solution as the field-strength superfield. 

We may then write down a full super-space 

action 

A = ~ 0 [ d 4x ^ d bz d 1 6 $ TrCW^W..) (13) 

and the resulting equations of motion, derived by 

boundary control theory, are the simple o n e s ^ ^ 

"à W. . = o (14) 
z ij ^ 3 

For the case of N= 2 matter theory we may simply 

take the N = 2 hypermultiplet constraint (7) and 

construct the action 

( 1 5 ) 

This may be put in interaction with an external 

N = 2 super-Yang-Mills gauge field by replacing the 

derivative in (7) by the covariant derivative 

0 ^ as for the N = 4 case. An action for the N = 2 

super-Yang-Mills theory may be obtained in a similar 

fashion to the N = 4 case by imposing the constraints 

(12) (now with ) and the additional 

constraint 

41 



This latter removes the non-centrally-charged 

multiplet allowed by the other constraints. The 

action for this theory is now 

The equations of motion for the appropriate field 

strength superfields are all of the simple form (14) 

In fact three versions of N = 8 supergravity 

appear possible. The first two versions ̂  ̂  ^ ^ 

have non-trivial torsions of dimension zero. Their 

full superspace actions 

have only been shown to give the equations of 

motion 

M C 
for the multi-bein and connection CL̂ g at the 

linearised level. The third model has no non-

trivial dimension zero torsions and has the field 

equation (16) at the non-linear level. We are 

presently trying to show that (15) is the correct 
[12] 

action for this theory J. 

5. Quantisation 

We may quantise the above theories by 

introducing lagrange multipliers to relax the 

constraints. It is necessary to show that this 

approach is satisfactory even at the component 

level, where there it. has proved difficult to 

quantise the non-Abelian component version of N =4 

super-Yang-Mil I s ^ d u e to the presence of a 

conservation constraint equation for an auxiliary 

vector \fj^: 

non-linear terms ~ 0 (20) 

t 

This constraint can only be solved non-locally, so 

that the resulting quantum field theory would seem 

to be unsatisfactory. However the use of lagrange 

multipliers allows a satisfactory perturbation 
[14] 

theory to be developed , in which the lagrange 

multiplier for (20) becomes the propagating sixth 

scalar of the theory. We thus expect the superfield 

approach, using lagrange multiplier super-fields, to 

relax the constraints (12), (16) etc., to give a 

satisfactory quantum field theory. The resulting 

supergraph rules have been developed and lead 

to superpropagators with inverse powers of ̂ . This 

leads to the exciting possibility of proving a non-

renormalisation theorem for SYM and SGR theories. 

We base this on the fact that the equations of 

motion for N = 2 HYM, N= 2 and 4 SYM and N= 8 SGR 

are all of the form (14). It has been shown that 

after performing the integration over the 

Grassmann variables the N= 2 SYM action is a total 

"\ r 12] 
derivative Û N ; we expect all the actions we 

are concerned with to become total derivatives 
"\ 2N 

à ^ . From the nature of the superpropagators we 

also expect radiative corrections to be total 

derivatives with r < 2N. The results of 

ultra-violet finiteness on- or off-shell for the 

various theories are as given in the table. 

Table 

\ ^ r 
on- or Theor>^^ 0 < T < 2 N r -0 off-shell 

N SYM off-shell 

N SGR Finite ,ÂK=0 Unknown, 41^=0 on-shell 
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