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Summary

Here, I present the essential results of my doctoral thesis, which was done in the field

of lattice QCD. This work can be seen as one of the cornerstones of a long-ranging

project, started already at the beginning of the year 2000. Since then, several groups,

associated in the Bern-Graz-Regensburg (BGR) collaboration, continuously worked

on that project.

In this report I will discuss results on various sectors of lattice QCD. Seven sets

of gauge field configurations with a lattice size of 163 × 32 and a spatial extent of

about 2.2 fm have been created; the pion masses are ranging from 602 MeV down to

257 MeV. The configurations include two mass degenerate dynamical light quarks;

the Lüscher-Weisz gauge action and the Chirally Improved Dirac operator have been

used. In each set 200 or 300 uncorrelated configurations are available for analyses.

The results are located in three different fields. An analysis of low energy pa-

rameters was done, to be more precise, the axial Ward-identity mass and (the pion

and kaon) decay constants have been investigated. The experimentally accessible

value for the ratio of these decay constants is in reasonable agreement with the value

obtained here. The second area of research concerns the angular momentum decom-

position of the vector meson ρ. In our approach it could be shown that the first

excited state of the ρ meson is not a pure S wave state, which is contrary to the quark

model. The main focus of this work was based on hadron spectroscopy. This task

was done using the variational method. A broad spectrum of baryons and mesons

could be covered here. Also hadrons including strange quarks have been analyzed,

however, the strange quark being a partially quenched strange quark. Generally

speaking, the studied hadron channels compare favorably to the experimental val-

ues.
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Chapter 1

Introduction

As a part of the standard model, the theory of strong interactions, i.e., the the-

ory of particles carrying color charge, is described by Quantum Chromodynamics

(QCD). The basic components of QCD are quarks and gluons, which mediate the

underlying force. This force acts on two different scales. On one hand the strong

force is responsible for building protons or neutrons out of quarks, and on the other

hand it binds protons and neutrons into atomic nuclei. In general, quarks can form

mesons (built from a quark and an antiquark) or baryons (built from three quarks),

both being color neutral objects. The only well-established, non-perturbative theo-

retical approach to that field is given by lattice QCD. Within this method, QCD is

formulated on a discrete (Euclidean) space-time lattice. Thus, lattice QCD is math-

ematically well-defined, since the discreteness introduces a momentum cut off, which

regularizes the theory. We are therefore able to simulate QCD numerically using

(super)computers and obtain observables by application of methods from statistical

mechanics.

Already nowadays the ground state mass spectrum of hadrons obtained from

lattice QCD impressively agrees with experimental results – a good verification for

lattice QCD! However, a large number of excitations are established in experiments,

thus a theoretical understanding of these excitations is worthwhile. Also other parti-

cle properties, which cannot be accessed with perturbative methods, like low energy

parameters, are well-known from experiments. A deeper theoretical insight into

these fields can help to increase our knowledge drastically. Hence, the purpose of

this doctoral thesis is to study hadronic properties with this non-perturbative ab

initio approach.

The first formulation of lattice QCD, brought up by K. G. Wilson in 1974 [1],

faces two severe problem: it produces 15 additional (unphysical) fermions (called

doublers) and it does not respect chiral symmetry. However, Wilson could solve the

doubling problem, but the correct implementation of chiral symmetry was a long

standing problem. In 1981 it was partly solved by a no-go theorem by Nielson and

Ninomyia [2, 3, 4]. They showed that it is not possible to have a theory which is

simultaneously local, chirally symmetric and free of doublers. Thus, a lattice version

of chiral symmetry was proposed (Ginsparg-Wilson equation), which recovers the

3



4 Chapter 1. Introduction

continuum formulation in the right way. But only over two decades after Wilson’s

formulation H. Neuberger 1997 was able to find a formulation [5] which fulfills all

requirements.

In our approach we use the so-called Chirally Improved Dirac operator (DCI)

to describe the fermions. It is a compromise, concerning computational resources

and the quality of results, between the Wilson action and Neuberger’s Overlap op-

erator. The DCI only approximately fulfills the Ginsparg-Wilson equation, but one

reasonably can simulate small pion masses on rather coarse lattices. Since quenched

simulations using this type of Dirac operator have produced promising results, a

project to use the DCI in a dynamical lattice QCD simulation has started already in

2003. The first task was setting up the code, which was done by former members of

our group. First results on smaller lattices have been published in [6, 7, 8]. In this

doctoral thesis we extend the working basis, i.e., more run sequences on bigger lat-

tices are analyzed in various aspects. The main results of these tasks are presented

here.

This thesis can be divided into two parts, the first one is containing all theoretical

ideas needed. It starts with Chap. 2, where we give a short introduction into the

field of lattice QCD. We present the continuum formulation of QCD and explain the

quantization process afterward. Wilson’s first formulation and, after a digression

concerning chiral symmetry, also actions with better chirality are discussed. This

chapter is closed with the issue of setting the scale of a simulation.

All topics related to the production of gauge fields can be found in Chap. 3.

The gauge and fermion action we use are discussed, details about the Hybrid Monte

Carlo algorithm and the attempts to speed up the code are presented. Furthermore

we give details on autocorrelation and various parameters of our simulation.

Chap. 4 contains the preparatory concepts for hadron spectroscopy. We outline

several spectroscopy techniques, especially the variational method, and explain the

concepts of quark field and link smearing. The idea of a mass independent scheme

for the lattice spacing is discussed and finally properties of scattering states are

presented.

The second part of the thesis deals with the obtained results. In Chaps. 5 and 6

all analyzed baryon and meson channels, including also hadrons with strange quarks,

are discussed. Low energy parameters, like the AWI mass of decay constants, can

be found in Chap. 7. In Chap. 8 we analyze the partial wave content of the vector

meson, using the techniques discussed before. Finally, we summarize all results and

give a short outlook in Chap. 9.



Chapter 2

Quantum Chromodynamics on a

lattice

2.1 Quantum Chromodynamics in the continuum

The continuum formulation of the Quantum Chromodynamics (QCD) action in 4-

dimensional Euclidean space-time is given by

SQCD[ψ,ψ,A] = SF[ψ,ψ,A] + SG[A] , (2.1)

SF[ψ,ψ,A] =
Nf∑

f=1

∫
d4x ψ

(f)
(x)

[
γµDµ +m(f)

]
ψ(f)(x) , (2.2)

SG[A] =
1

2g2
Tr [Fµν Fµν ] . (2.3)

Here, SF and SG represent the fermionic and the gauge part, respectively. ψ,ψ

are Dirac spinors representing the quark fields and they are carrying a space-time

index x, a Dirac index α = 1, . . . , 4, a color index c = 1, 2, 3 and a flavor index

f = 1, . . . , Nf . Gluons enter via the gauge field A ∈ su(3), which has space-time,

Lorentz (µ) and color indices, but no flavor content. Wherever we will not cause

confusion, we will omit these indices and use matrix/vector notation. Dµ is called

a covariant derivative and is given by

Dµ = ∂µ + igAµ , (2.4)

with the coupling constant g. The mass matrix containing the different flavors is

represented by m(f) = diag(m1,m2, . . . ,mNf
).

The field-strength tensor Fµν , which appears in SG, plays a special role. Since

Fµν = ∂µAν − ∂νAµ + i [Aµ, Aν ] , (2.5)

and the Aµ are non-abelian fields, Eq. (2.3) leads to cubic and even quartic terms

in the gauge fields. These so-called self interactions give rise to the most eminent

feature of QCD, namely color confinement.

5



6 Chapter 2. Quantum Chromodynamics on a lattice

Flavor Mass [MeV]

up (u) 1.5 − 3.3

down (d) 3.5 − 6.0

strange (s) 70 − 130

Flavor Mass [GeV]

charm (c) 1.16 − 1.34

bottom (b) 4.13 − 4.37

top (t) 169.0 − 173.6

Table 2.1: The six quark flavors appearing in nature and their masses in the MS

scheme [9]. On the l.h.s. the three flavors of the light sector can be found (in units

of MeV), the heavy quark flavors are on the r.h.s. (in units of 103 MeV!).

Let us quickly discuss the flavor index f again. In principle, QCD would work

with any number of flavors. But in Nature there are only six quark flavors; they can

be split into two groups, the light and the heavy sector (see Tab. 2.1). Especially

in lattice QCD one is restricted to less than six dynamical flavors and often 0, 2 or

2 + 1 flavors are used in the calculations.

2.2 Quantization with the Path Integral

Up to now, we have considered the continuum formulation of the theory. To be able

to quantize it, we use the Path Integral formulation, which goes back to Feynman

[10].

The generating functional, or in other words the partition function, for QCD is

given by

Z =
∫

D[ψ,ψ] D[A] e−SQCD[ψ,ψ,A] . (2.6)

The integration has to be done for all possible field configurations of ψ,ψ and A.

Since we are using a Euclidean instead of a Minkowski metric, no imaginary unit in

front of the action is present.

The expectation value of some function F in the Path Integral formulation is

〈F 〉 =
1

Z

∫
D[ψ,ψ] D[A]F [ψ,ψ,A] e−SQCD[ψ,ψ,A] . (2.7)

The main object, we will be interested in later on, are correlation functions of two

operators. These correlators are defined as

〈O2(t)O1(0)〉 =
1

Z

∫
D[ψ,ψ] D[U ]O2[ψ,ψ, U ]O1[ψ,ψ, U ] e−SQCD[ψ,ψ,U ] . (2.8)

Here, D[U ] is called a Haar measure. Eq. 2.8 is nothing but an expectation value of

two operators at a time distance t in Hilbert space. The fields U will be introduced

and discussed later.
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With this tool at hand we will now be able to regularize QCD by using a finite

space-time grid, namely the lattice, which we call Λ. To evaluate the extremely

high-dimensional integrals from Eq. (2.7) we will use a Markov chain Monte-Carlo

simulation.

2.3 The first formulation by Wilson

Now we are able to write down a first formulation for QCD on a lattice. However,

a small piece of preparatory work is still needed.

2.3.1 Introduction of gauge fields

In 1974 K. G. Wilson was the first one who formulated QCD on the lattice [1]. With

that formulation he wanted to respect two important principles: the first one is the

gauge invariance of the theory and the second one is that the naive continuum limit,

i.e., the limit a → 0, should turn into the continuum formulation of the theory.

If one now does a “straight forward” discretization of Eqs. (2.2) and (2.3), terms

will arise, which couple fermion fields at adjacent lattice sites, e.g., ψ(n)ψ(n + µ̂),

where n+ µ̂ is the neighbor site of n in the positive µ-direction. Such terms are not

gauge invariant. To resolve that problem we need to introduce link variables Uµ(n)

which connect the two lattice sites n and n + µ̂. Due to their properties under a

local gauge transformation they ensure the gauge invariance of Wilson’s theory. The

link variable Uµ(n) has an orientation µ and points from the site n to n+ µ̂. These

link variables should play the role of gauge transporters, known from the continuum

theory. To do so, we define

Uµ(n) = exp
(
iaAµ(n)

)
∈ SU(3) . (2.9)

Performing the continuum limit, it is easy to see that the link variables approximate

the gauge transporter up to order O(a) [11].

2.3.2 The Wilson gauge action

Since we have introduced the gauge links as the fundamental quantities on the

lattice, we now can construct gauge invariant objects. A prominent example of such

a gauge invariant object is the trace over a closed loop of link variables. Using these

objects, we can write the Wilson gauge action in the following way,

SG[U ] =
2

g2

∑

n

∑

µ<ν

Re tr[1 − Uµν(n)] . (2.10)
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In this equation we used the smallest possible closed loop, the plaquette Uµν . It is

a product of four link variables,

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) , (2.11)

where we used the definition U−µ(n) = U †
µ(n− µ̂) for U ∈ SU(3). Mostly the inverse

gauge coupling β is used instead of g, it is defined as

β =
6

g2
. (2.12)

This formulation is often called naive, since it is an easy and straightforward dis-

cretization.

2.3.3 The doubling problem

If one “takes the easy way out”, a naive discretization is done for the action. To

be more precise, the derivative from Eq. (2.2) is simply replaced by a symmetric

difference, and one ends up with [1]

SF[ψ,ψ, U ] = a4
∑

n

ψ(n)
[ 4∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂) − U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

]
.

(2.13)

Let us now have a closer look at that object. Considering the case of just one

massless quark-flavor for a free theory, i.e., all Uµ(n) = 1, we can derive an ana-

lytic expression for the Dirac matrix and its inverse, the quark propagator. The

propagator in momentum space is given by

D̃(p) =
−ia−1∑

µ γµ sin(pµa)

a−2
∑
µ sin2(pµa)

. (2.14)

As in the continuum, this propagator should have a pole at p0 = (0, 0, 0, 0), which

describes the single fermion considered. However, a different situation is encountered

here. Eq. (2.14) has additional poles in the Brillouin zone −π/a < pµ 6 π/a at

p1 =
(
π

a
, 0, 0, 0

)
, p2 =

(
0,
π

a
, 0, 0

)
, . . . , p15 =

(
π

a
,
π

a
,
π

a
,
π

a

)
. (2.15)

These 15 unphysical poles p1, . . . ,p15 are called doublers.

This problem was solved by Wilson by introducing the so-called Wilson term.

This term is simply added to the Dirac operator. In momentum space the Wilson

term is
1

a

4∑

µ=1

[1 − cos(pµa)] . (2.16)
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This expression fulfills all conditions that we want. For components with pµ = 0 it

vanishes, for components with pµ = π/a it contributes a term 2/a. This term can

be understood as an extra mass term, which diverges in the limit a → 0. Thus, the

doublers decouple from the theory.

To summarize the equations above, we write down the full Wilson Dirac operator

in position space,

DW(n,m) =
(
m+

4

a

)
δn,m − 1

2a

±4∑

µ=±1

(1 − γµ)Uµ(n)δn+µ̂,m . (2.17)

Here, we dropped all color, Dirac and flavor indices and only show the space-time

indices n and m. We also defined γ−µ = −γµ for all µ. Finally, we want to stress

one important property of the Wilson Dirac operator. The first term in Eq. (2.17),

which consists of the quark mass and one part of the Wilson term, explicitly breaks

chiral symmetry (for a definition see Sec. 2.4), even for m = 0. And exactly this

is the most disadvantageous feature of the operator DW. How to overcome that

problem is explained in more detail in the next section.

2.4 Chiral symmetry on the lattice

Since chiral symmetry and its breaking has enormous consequences for QCD (such

as very small pion masses or the absence of a mass degeneracy for parity partners of

baryons), a sound definition of QCD on the lattice should take care of this aspect.

The defining equation for a chirally symmetric Dirac operator in the continuum

reads

Dγ5 + γ5D = 0 . (2.18)

The Wilson Dirac operator proposed in Eq. (2.17) violates this equation due to the

extra Wilson term, which was needed to remove the doublers from the theory. Thus,

one wants to find a lattice Dirac operator which is free of doublers and also respects

chiral symmetry. However, this cannot be simply solved by adding a term other

than the Wilson term. A fundamental theorem by Nielson and Ninomyia [2, 4, 3]

points out that a Dirac operator D, which is free of doublers, cannot simultaneously

fulfill the following conditions:

1. D is local,

2. D is translational invariant,

3. D is chirally symmetric (i.e., in the sense of (2.18)),
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4. D̃(p) = iaγµpµ + O(a2p2
µ), where D̃(p) is the Fourier transform of D.

A solution to that problem was suggested by Ginsparg and Wilson [12]. They

“weakened” the expression from (2.18) by simply replacing the right-hand side and

presented the famous “Ginsparg-Wilson” equation,

Dγ5 + γ5D = aD γ5D . (2.19)

The right-hand side vanishes for a → 0 and thus the continuum version of chiral

symmetry is recovered. Using this equation we are now able to implement chiral

symmetry on the lattice [13].

2.5 Fermions with better chirality

In the last section we have shown that using Eq. (2.19) enables us to realize Dirac op-

erators, which show better chiral properties than the Wilson Dirac operator. These

Dirac operators can be divided into two classes, one of them fulfilling Eq. (2.19) only

approximately and the other class, which fulfills Eq. (2.19) exactly. We now discuss

some examples of each class.

2.5.1 The fixed-point operator

A Dirac operator, which fulfills Eq. (2.19) only approximately, is the fixed-point oper-

ator [14]. This operator uses an ansatz which is inspired from renormalization-group

techniques. The simulation should be carried out very close to the renormalized tra-

jectory, from which one expects a good scaling behavior. It can be shown [15], that

the fixed-point Dirac operator satisfies the Ginsparg-Wilson equation. This con-

struction can be used to fix the free parameters of a general Dirac operator, and of

course there are infinitely many of these terms. However, for practical reasons one

has to truncate to some finite number of terms and thus the fixed-point fermions

fulfill Eq. (2.19) only approximately.

2.5.2 The Chirally Improved operator

Another candidate of this class of Dirac operators is the Chirally Improved (CI)

Dirac operator [16, 17]. To obtain this kind of Dirac operator one uses the most

general ansatz for D and plugs it into Eq. (2.19). Then the resulting set of coupled

algebraic equations can be solved numerically. Since also here one has to truncate

the number of present terms, the CI operator is only an approximate solution of the

Ginsparg-Wilson equation. This type of operator is discussed in more detail in Sec.

3.2, since for our simulation we only use this Dirac operator.
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2.5.3 Domain-wall fermions

A concept, which is related to Overlap fermions (discussed below), are the so-called

domain-wall fermions [18]. In this approach one extends the Wilson fermions into

an auxiliary fifth dimension. In the limit on an infinite length for this additional di-

mension, the Overlap operator is approached. As usual, the extend of this dimension

has to be chosen finite.

2.5.4 The Overlap operator

The Overlap operator [5, 19] fulfills the Ginsparg-Wilson equation (2.19) exactly.

For massless fermions it reads

DO = 1 + γ5 sign[γ5K] , (2.20)

where K is some kernel Dirac operator, free from doublers. The massive version of

the Overlap operator is given by

DO(m) = 1 +m+ (1 −m) γ5 sign[γ5K] , m ∈ [0, 1] . (2.21)

In most simulations the Wilson Dirac operator from Eq. (2.17) is used as the kernel

operator.

Although simulations using Overlap fermions are worthwhile, and some groups

are already running such simulations (see, e.g., [20, 21, 22, 23, 24, 25, 26, 27, 28,

29, 30, 31]), the numerical costs are tremendous due to the necessary evaluation of

the matrix sign function in Eq. (2.20). Actually this function is well defined via the

spectral theorem,

sign[K] = sign
[∑

k

λk |k〉〈k|
]

=
∑

k

sign[λk] |k〉〈k| . (2.22)

For the typical sizes of the Dirac matrix used in lattice simulations a complete

diagonalization is numerically unaffordable, and thus not done. The alternative,

applied in most cases, is to utilize the relation

sign[K] =
K

|K| =
K√
K2

. (2.23)

The term 1/
√
K2 is then approximated by either a polynomial in K2 or by a ratio of

polynomials. In such a calculation the convergence depends crucially on the eigen-

values of the kernel K. Thus, one may improve the convergence – and simultaneously

the computational costs – by choosing another kernel matrix.
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2.6 Determination of the scale

As in every lattice simulation, the output of the calculations are only dimensionless

numbers. To relate these numbers to physical quantities, like, e.g., masses, one has

to extract the value of the lattice constant a to be able to extract, for example, the

mass m from the outcoming result am.

To set this scale, several methods exist, however, we only discuss the strategy

we follow for our simulation. For other methods see, e.g., [32, 33, 34, 35, 36, 37].

For the determination of the lattice spacing we use the Sommer parameter [38],

determined by the lattice potential, which is derived from Wilson loops W (r, t). For

improving the signal, the gauge configurations are smeared with hypercubic blocking

[39] with the parameters a1 = 0.75, a2 = 0.6 and a3 = 0.3 (see Sec. 4.5).

We extract the static quark potential V (r) from linear fits to lnW (r, t). The

form of the potential V (r) is given by

V (r) = A+
B

r
+ σ r + C ∆V (r) , (2.24)

∆V (r) =
[

1

r

]
− 1

r
. (2.25)

A discussion of the perturbative lattice Coulomb potential [1/r] and further details

can be found in [40] and references therein.

From the resulting potential and the condition

r2 dV (r)

dr

∣∣∣∣
r=r0

= 1.65 , (2.26)

we obtain the Sommer parameter in lattice units as

r0 =

√
1.65 +B

σ
=
r0,exp

a
. (2.27)

The lattice spacing is then given by a = r0,exp/r0. In our simulation we use the value

r0,exp = 0.48 fm. However, this value is not determined precisely from experiment,

and the values that are used in the literature vary approximately from ≈ 0.45 . . . 0.50

fm. The reason for using r0,exp = 0.48 fm is only based on intuitive arguments.

Thus, one always should keep in mind that, depending on the method and the

value used, a possible systematic error from determining the lattice spacing can even

exceed the statistical error, coming from the limited number of configurations, of

final results. The numbers we obtain on our sets of gauge configurations can be

found in Tab. 3.1 in Sec. 3.5.
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The Sommer scale was originally comprehended as a purely bosonic observable

and thought to be independent of any sea quarks. However, any lattice QCD cal-

culation including dynamical quarks has shown that the ratio r0/a does depend on

the quark mass amq, which is determined by the bare mass parameters m(f). A

strategy to avoid that is presented later in Sec. 4.6, since some preparatory work is

still to be done.





Chapter 3

Generating the gauge field

configurations

3.1 Lüscher-Weisz gauge action

We now want to briefly discuss an alternative formulation of the gauge action,

namely the Lüscher-Weisz gauge action [41]. We use this formulation throughout,

because it was shown in [17], that the gauge configurations produced with this kind

of action are much smoother compared to the Wilson gauge action.

The simplest gauge action one can consider is the Wilson gauge action, given in

Eq. (2.10), which only includes the plaquette of gauge links. A Taylor expansion

(i.e., the naive continuum limit a → 0) of this kind of action gives FµνFµν in leading

order, and the corrections are of the order of O(a2). To reduce these corrections,

one has to include loops longer than the plaquette. If two types of loops of length 6

are included, one ends up with the Lüscher-Weisz gauge action [41], which is given

by

SLW =
β1

3

∑

pl

Re tr[1 − Upl] +
β2

3

∑

re

Re tr[1 − Ure] +
β3

3

∑

tb

Re tr[1 − Utb] , (3.1)

where the sums run over all plaquettes (pl), rectangulars (re) and paths along the

edges of a 3-cube, called twisted bent (tb) (see also Fig. 3.1). In this equation β1

is the independent gauge coupling, β2, β3 are determined from tadpole-improved

perturbation theory [42]. One additional parameter is needed to calculate these two

couplings, the assumed plaquette u0,

u0 =
(

1

3
Re tr〈Upl〉

)1/4

. (3.2)

With

α = − log u4
0

3.06839
(3.3)

we get for β2, β3 the following expressions,

β2 =
β1

u2
0

1 + 0.4805α

20
, β3 =

β1

u2
0

0.03325α . (3.4)

15
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Figure 3.1: The three loops of gauge links included in the Lüscher-Weisz gauge

action. Red: plaquette; magenta: rectangular; blue: twisted bent.

Finally we want to stress one point about the assumed plaquette. In lattice

simulations the value for u0 should agree with the thermalized plaquette value.

Thus, one normally has to calculate u0 self-consistently by adapting it from time to

time to the actual value and then thermalize again. In our simulations, however, we

fixed the value permanently to its initial value, since we want to use the same gauge

action for all sets of gauge configurations to ensure a better comparability between

the sets.

3.2 The Chirally Improved Dirac operator

As already stated in Sec. 2.5, we use the CI Dirac operator [16, 17] for the fermion

action in our simulation. Therefor, one makes the most general ansatz for the Dirac

operator,

DCI =
16∑

α=1

Γα
∑

p∈Pα

c(α)
p (U) , (3.5)

which formulates it as a sum over all 16 elements Γα of the Clifford algebra, where

each element is multiplied with coefficients c(α)
p (U), consisting of path ordered prod-

ucts of gauge links U . The number of coefficients is governed by respecting all lattice

symmetries and the γ5-hermiticity.

This ansatz is then plugged into the Ginsparg-Wilson relation (2.19), which leads

to a set of coupled algebraic equations. In principle, a solution of this set of equations

can give rise to an exact solution of (2.19), but only if one allows for infinitely many

terms. For practical reasons the lengths of the paths are truncated and thus one
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obtains an approximate solution. In our case, we allow for paths up to length 4,

which (except for one term) are all lying within the hypercube.

In our simulation the coefficients have been fixed for one set of bare parameters

and have then been used further for all our sets of gauge configurations (see [43, 40]

for details) to guarantee good comparability. Details about the coefficients are given

in App. A. As a consequence, we now have an additive mass renormalization in each

set of configurations. CI fermions were used quite extensive within the Bern-Graz-

Regensburg (BGR) collaboration in quenched and dynamical simulations. Results

of that analyses can be found in [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 43, 54, 40, 6, 7].

3.3 Hybrid Monte Carlo algorithm

In Sec. 2.2 it became clear that the only way to deal with integrals like Eq. (2.7) is to

use a Monte-Carlo simulation. In this section we want to discuss the algorithm we

use to perform the fermionic integral, it is a Hybrid Monte-Carlo (HMC) algorithm

[55]. The HMC algorithm seems to be most suitable for our goal.

Since one cannot calculate the fermion determinant directly, this problem can be

overcome by treating this determinant as an additional weight factor when produc-

ing the gauge field configurations. More precisely, the gauge fields are distributed

according to (in case of two dynamical quark flavors which we use in our case)

P (U) ∝ 1

Z
e−SG[U ] det(Du) det(Dd) . (3.6)

If the two quarks are mass degenerate (Du = Dd = D) and D is γ5-hermitian,

the product of the two determinants is real and positive and can thus be really

interpreted as a weight factor.

Let us now say a few words about fermionic and bosonic Gaussian integrals. The

crucial concept, which is needed, is to introduce pseudofermion fields φ = (φR, φI) ∈
CN [56]. These pseudofermion fields are bosons with the same number of degrees of

freedom as the fermions. One can find a relation between the determinant and the

pseudofermion fields,

det(D†D) = π−N
∫

D[φR]D[φI ] e
−φ†(D†D)−1φ . (3.7)

With this relation we are now able to replace the integral over fermionic Grassmann

variables by an integral over bosonic variables. And such an integral can then be

calculated on a computer using the mentioned HMC algorithm.

For the HMC we need a generalization of the Hamiltonian evolution for a system

of classical mechanics in a fictitious HMC time to our system of gauge fields Uµ(n).
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For that purpose we introduce traceless hermitian matrices Pµ(n) ∈ su(3), which

act as conjugate momenta for the gauge fields Uµ(n). We now can define the time

derivative of Uµ(n) as

U̇µ(n) = i Pµ(n)Uµ(n) . (3.8)

Then, a Hamiltonian H can be defined as

H =
1

2

∑

n,µ

tr
[
Pµ(n)2

]
+ SG + φ†(D†D)−1φ . (3.9)

The equation of motion for the conjugate momenta P is obtained via the relation

Ḣ = 0,

Ḣ =
∑

n,µ

tr
[
Pµ(n)Ṗµ(n)

]
+ ṠG + φ† d

dt
(D†D)−1φ = 0 . (3.10)

This equation results in

Ṗ = f(U, U̇ , P ) , (3.11)

which gives the evolution equation in HMC time. The function f is called the fermion

force. Evaluating this force function for, e.g., Wilson quarks is not complicated, since

this type of quarks involve only one link field Uµ(n) connecting neighboring sites. In

our case, however, paths up to length four, coming from DCI, have to be considered.

Independently from that, calculating the fermion force is the most costly part of the

simulation. A more detailed description of the procedure can be found in [57].

Having now all equations at hand, the whole procedure to update the gauge fields

looks as follows:

1. Pseudofermion fields: Generate the pseudofermion fields φ = Dξ, where ξ is

distributed according to e−ξ†ξ.

2. Conjugate momenta: For the initial set of gauge fields {Uini} generate a set

{Pini} according to e−tr(P 2
ini).

3. Evolution of fields: Evolve the gauge fields and conjugate momenta consistent

with their equations of motion to the final sets {Ufin} and {Pfin}.

4. Accept/Reject step: To correct for numerical errors close with an accept/re-

ject step, i.e., accept the new configuration with exp(−Sfin + Sini).

The only thing still to be clarified is step 3. We need to find an integration scheme

for the equations of motion. Such an integration scheme should be area preserving

and reversible. At the same time it should keep the change in the action small, since

a big ∆S leads to a poor acceptance rate. One possibility for such an integration
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scheme is the leapfrog integration (also known as Störmer-Verlet method), which we

use and briefly discuss now.

The fictitious time in which we evolve our system of fields, is called HMC time.

The HMC time separation (trajectory length) between two consecutive gauge config-

urations is denoted by T . This interval is divided into N small time steps of length

τ via τ = T/N . In all our simulations we used T = 1. One starts with initial gauge

fields U0 and the conjugate momenta P0. The next step is to evolve the conjugate

momenta with a half step,

P 1
2

= P0 − τ

2
f . (3.12)

Here, f is the fermion force defined in (3.11). Then the gauge fields and the conjugate

momenta are evolved alternately N − 1 times, i.e., k = 1, . . . , N − 1, with a full step

in τ ,

Uk = exp
(
i τ Pk− 1

2

)
Uk−1 , (3.13)

Pk+ 1
2

= Pk− 1
2

− τ f . (3.14)

The final steps for both fields are given by

UN = exp
(
i τ PN− 1

2

)
UN−1 , (3.15)

PN = PN− 1
2

− τ

2
f . (3.16)

Then, of course, the final set of gauge fields {Uf} is identical to the set {UN}.

At that stage, it is clear why the third point of the procedure, the evolution of

the fields, is the most costly one. The fermion force f , and thus the inverse of D†D,

has to be calculated N times. Logically, one should care for using a highly optimized

code – at least concerning that part. This task is discussed a bit more general now.

3.4 Speeding up the code

In this section we want to cover all concepts which are implemented to increase the

run-time of our code.

3.4.1 Alternative integration schemes

An alternative to the leapfrog scheme would be an Omelyan integrator [58, 59],

which was tested but not used for production runs, however. Let us denote the

evolution of the gauge field U or the conjugate momentum P by some time τ with
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U(τ) or P (τ), respectively. The leapfrog integrator from above evolves the system

of fields according to
[
P (τ/2)U(τ)P (τ/2)

]N
, (3.17)

such that Nτ is the length of the trajectory. The deviation from an exact solution

is of the order of O(τ2). This deviation, i.e., the coefficient in front of the O(τ2)

term, is reduced by the Omelyan integrator. There, the order in evolving the fields

is [
P (λτ)U(τ/2)P ((1 − 2λ)τ)U(τ/2)P (λτ)

]N
. (3.18)

The tunable parameter λ for this order has the optimal value at λ = 0.193183 [59].

Finally we want to mention that also integrators using multiple time scales [60,

61] have been tested, but not used further. The reason is, that for our lattice size

we could not find any significant speeding up of the code. Thus we decided not to

change the code during the production runs.

3.4.2 Mass preconditioning

To be able to go to smaller quark masses, we utilize mass preconditioning (often

called “Hasenbusch trick”) [62]. The basic idea is to split the pseudofermion action

into two (or more) parts, separating the small and the large eigenvalues (forces) of

the Dirac matrix. I. e., the UV part of the spectrum is approximated by a fermion

matrix with a large quark mass, since this part of the spectrum depends only very

little on the quark mass. The splitting is achieved through the identity

det(D†D) = det(M †M) det
(

1

M †
D†D

1

M

)
, (3.19)

where M is a fermion matrix with heavier quark mass. For details on the calculations

we refer to [57]. Only the key point will be presented here. The parameter mHB,

which amounts to an additional mass, is deduced from an educated guess [57]. Using

NPF pseudofermions, the mass shift is given by

m
(i)
HB =





(
2NPF−i λimin

)1/NPF

, 1 6 i < NPF

0 , i = NPF

. (3.20)

Here, λmin is the assumed smallest eigenvalue of the Dirac matrix.

In our case we always use two pseudofermions. Details on the assumed smallest

eigenvalues can be found in Tab. 3.1 on page 23.
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Figure 3.2: The average number of conjugate gradient iterations needed is plotted

against the first leapfrog steps for several sets of gauge configurations. On the l.h.s.

we plot this number for the heavier Hasenbusch fermion, the lighter (the one without

the additional mass shift) is found on the r.h.s

3.4.3 Developments on the conjugate gradient solver

As pointed out before, the most costly part in the HMC is the calculation of the

force. The main part of this task is to invert D†D, i.e., solving a linear system,

which is done with the conjugate gradient method in our case. This has to be done

N times, i.e., for each time step τ . Since the right hand side is fixed during the

leapfrog integration, the fermion matrix is evolving smoothly in time. Hence, the

previous solutions can help us making a reasonable guess for the solution at any

given time. This method is called a chronological inverter [63]. In our case we

use 12 previous solutions. In Fig. 3.2 we show the numbers of needed conjugate

gradient steps, Ncg, for the two Hasenbusch fermions for several gauge configuration

sets. One can clearly see, that these numbers are significantly higher for the first

leapfrog steps, where no or only a few previous solutions are available. It is also

obvious, that in both cases a plateau is formed, beginning with iLf = 6. Thus, we

could also take into account only 6 previous solutions, but the overhead caused by

the 6 additional matrix vector multiplications is negligible for the run-time of the

code. We want to stress that one has to take special care for the reversibility of the

integration algorithm when using this method.

In order to ensure reversibility in the molecular dynamics evolution one should

work with double precision accuracy. However, this has not as a consequence that

each inversion has to be done in double precision. In [64] a method was suggested,

which uses an elaborate combination of single and double precision arithmetics. The

system we want to solve is D†Dx = Ax = b. The final accuracy is chosen as ε = 10−7
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and then the procedure reads:

1. Compute rk = b− Axk in double precision.

2. If |rk| < ε|b|, exit.

3. Solve rk = Atk in single precision with accuracy εs, with t∗k being the solution.

4. Set xk+1 = xk + t∗k.

5. Go to 1.

To give a rough estimate, the reduction in run-time per gauge configuration was,

e.g., about 33% for set C77.1

3.5 Run parameters

We generated seven different sets of gauge configurations. The size of the lattice

in spatial direction is Ls = 16 and the temporal extend is twice the spatial one,

Lt = 32. All input parameters, i.e., the gauge coupling β1, the assumed plaquette

u0, the bare mass parameter m0 and the assumed minimal eigenvalue λmin can be

found in Tab. 3.1. We also show there the values of the lattice spacing a, the pion

mass mπ, the AWI-mass mAWI and the total number of analyzed configurations

Nconf.

3.6 Autocorrelation

Having produced the gauge configurations, one has to analyze their autocorrelation,

since they are normally still highly correlated. Thus, we have to find a way to

decide (a) where we start our measurements, and (b) how many configurations we

skip between two measurements. Let us start with the former point.

We have two quantities at hand to decide how many gauge configurations we

skip until the first measurement, these are the plaquette value and the number

1Let me add here a personal comment. Some time ago I found an interesting paper [65]. The

key point of this work is the following. Due to Moore’s law the computer power doubles every 18

months. Thus, in some cases it can be more profitable to “slack” for some time before beginning

the calculations. And the “magic number” is 26 months. Each project lasting longer than these 26

months can be started with a delay, which increases with the project duration. So, what are my

conclusions out of that? Since this work took far more that 26 months (i.e., about 44 moths), it

would have been better to be the “lazy bum at the beach” for about 14 months and only then start

to work on all that ... But who would have paid me?
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Set β1 u0 m0 λmin a [fm] mπ [MeV] mAWI [MeV] Nconf

A50 4.70 0.45 -0.050 0.015 0.150(1) 525(5) 40(1) 200

A66 4.70 0.45 -0.066 0.015 0.135(1) 250(8) 9(1) 200

B60 4.65 0.45 -0.060 0.010 0.150(1) 470(4) 31(1) 300

B70 4.65 0.45 -0.070 0.010 0.141(1) 296(6) 12(1) 200

C64 4.58 0.45 -0.064 0.010 0.158(1) 519(5) 37(1) 200

C72 4.58 0.45 -0.072 0.010 0.151(1) 419(4) 23(1) 200

C77 4.58 0.45 -0.077 0.010 0.145(1) 319(5) 14(1) 300

Table 3.1: Run parameters for the different sets of gauge configurations. λmin

is the assumed smallest eigenvalue of the Dirac matrix, which is needed in the

calculation of mHB in Eq. (3.20). a is the lattice spacing in Fermi, obtained with

the method described in Sec. 2.6. For details on the pion mass mπ (given here

in the mass dependent scheme, discussed in Sec. 4.6) see Sec. 6.2. The AWI-mass

mAWI is outlined in Sec. 7.2. In the last column the total number of independent

configurations can be found.

of needed conjugate gradient iterations in the accept/reject step of the molecular

dynamics evolution, Ncg. On the left hand side of Fig. 3.3 we show the first 300

plaquette values for the sets A50, B60 and C64. Sets A50 and B60 are the only ones

which were generated with a “cool” starting configuration, i.e., all Uµ(n) = 1. All

other sets were generated by taking an existing gauge configuration and changing

the values of β1 and m0 smoothly to the new values, which then served as starting

configuration. One can clearly see, that sets A50 and B60 are equilibrated after

roughly O(100) configurations. Set C64 does not show such a behavior due to the

“partly equilibrated” starting configuration. On the right-hand side of Fig. 3.3 we

plot Ncg, which is the number of needed conjugate gradient steps for the lighter

Hasenbusch fermion in the accept/reject step, for the first 300 configurations and

the same behavior as for the plaquette can be seen. Therefrom we mostly decided

to skip the first 99 gauge configurations and start the measurement with the 100-th

configuration. The detailed numbers are given in Table 3.2.

Now we know where to start the measurements. The next task will be to clarify

the second point: How many configurations will be skipped within two measure-

ments? A useful tool to answer this question is the integrated autocorrelation time

τ
[O]
int , which is defined through

τ
[O]
int =

1

2
+

∞∑

t=1

Γ[O](t)

Γ[O](0)
, (3.21)
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Figure 3.3: For the sets A50, B60 and C64 we show on the l.h.s. the value for the

plaquette and on the r.h.s. the number of needed conjugate gradient steps in the

accept/reject step, Ncg.
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Set Nskip τ
[plaq]
int τ

[Ncg]
int

A50 99 2.93 3.91

A66 99 3.59 2.32

B60 114 2.85 3.94

B70 99 3.64 1.91

C64 99 2.81 2.08

C72 99 3.45 2.24

C77 49 3.77 3.37

Table 3.2: For each set of gauge configurations we show the numbers of skipped

configurations and the integrated autocorrelation times for the plaquette values and

the number of needed conjugate gradient inversions, Ncg.

serves as a quantity of the statistical efficiency of the observable O. Γ[O](t) is called

the autocorrelation function,

Γ[O](t) =
〈(
O(t0) − 〈O〉

)(
O(t0 + t) − 〈O〉

)〉
. (3.22)

For practical reasons, the sum in (3.21) is truncated at some upper value tmax,

which is in our case the point, where the autocorrelation data becomes to noisy.

This number gives a lower bound for the autocorrelation length. Therefrom, one

has a rough estimate how many configurations should at least be skipped between

two measurements. Of course, these numbers could be orders of magnitude higher if

other observables are analyzed. In Tab. 3.2 we show the numbers, obtained with Eq.

(3.21), for our sets of gauge configurations. According to these numbers we decided

to analyze every fifth configuration in each set.

In Fig. 3.4 we plot, for all sets of gauge configurations, the pseudoscalar masses,

calculated for each configuration separately (see Chap. 6 for details). If our choice of

analyzing every fifth configuration is good enough, we should not see any significant

correlation effect in this plot – and this is indeed the case. The measured values

are nicely fluctuating around some central value (red lines), the peaks are a pure

statistical effect (and are not included to get the average value). These peaks are

due to the fact, that we still calculate the pion mass for one single configuration,

which is, of course, a strongly fluctuating quantity, especially for lower masses like

in the sets A66, B70 and C77.
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Figure 3.4: For each set of gauge configurations the pseudoscalar mass (in dimen-

sionless units) is plotted for each single configuration. The red lines denote the

averaged values (calculated without the peaks).
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Set CPUh Ncg · max
(
τ

[plaq]
int , τ

[Ncg]
int

)

A50 66.5 2129

A66 293.2 6818

B60 76.1 2743

B70 166.1 6000

C64 67.3 1566

C72 101.2 3082

C77 152.1 5518

Table 3.3: For each set of gauge configurations we give details about the number

of CPU hours we need to generate one gauge configuration (second column) and the

product of the averaged number of conjugate gradient steps with the maximum of

the integrated autocorrelation times (third column).

3.7 Numerical costs

From the previous section we learned that not each generated configuration should

be used in the final analysis. This fact, of course, also increases the computational

costs for producing independent configurations. Thus, we now outline some details

concerning this topic.

In [66] an empirical formula for the costs of dynamical HMC simulations can be

found, it reads

e ∝ L5 a−7

(
mπ

mρ

)−6

. (3.23)

Since we only use lattices of size 163 × 32, the factor coming from the volume, L5,

can be ignored in our case. In this formula also the autocorrelation time τint enters

via the quark mass and the costs are given in units of Tflop years, a quantity which

we do not have at hand in our case. Hence, we take as the “costs” of our simulation

the product of the averaged numbers of conjugate gradient steps needed in the

accept/reject step, Ncg, with the maximum of the two available autocorrelation

times from Sec. 3.6. In Table 3.3 we give the details on the CPU hours (CPUh) we

need to generate one individual gauge field configuration and the mentioned product

for the costs.

We now want to check if (at least the qualitative behavior of) Eq. (3.23) is fulfilled

here. Therefore, we plot in Fig. 3.5 the costs against the lattice spacing (left plot)

and against the ratio mπ/mρ (right plot). One can recognize, that the dependence

on the lattice spacing can be reproduced qualitatively, although we are not able to
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Figure 3.5: L.h.s.: For each set of gauge configurations we plot the numerical costs

as a function of the lattice spacing a. R.h.s.: For each set of gauge configurations

we plot the numerical costs as a function of the mass ratio mπ/mρ.

get the right exponent for a. For the dependence on the mass ratio, however, the

situation is rather different from the expected behavior. This may be due to the

(too) simple quantity which we take as the numerical costs and the fact that we

ignore the effect coming from the lattice spacing.

3.8 The change in the Hamiltonian

Since we introduced the conjugate momenta P , we describe a microcanonical ensem-

ble of a classical system with a Hamiltonian H. For exact solutions of the equations

of motion (MD equations), the Hamiltonian would be a constant of motion and the

configurations all would lie on a surface of constant energy. Thus, each created con-

figuration would be accepted. However, due to the discretization with a MD time

step τ , numerical errors are introduced and the Hamiltonian energy is not invariant.

We denote this change by ∆H. Each calculated gauge configuration is then accepted

with a probability e−∆H . The area preserving property of MD leads to an inequality

[67],

e−〈∆H〉 6
〈
e−∆H

〉
= 1 . (3.24)

Due to this inequality 〈∆H〉 has to be a positive, small number. This is indeed the

case in our simulations. The evolution of ∆H in units HMC time can be seen in

Fig. 3.6 and the detailed numbers are given in Tab. 3.4.

However, for some of the runs (i.e., runs A66, B60, B70, C77) the value for

〈∆H〉 is getting large. This increase is coming from spikes in the individual values

for ∆H during the creation of the gauge field configurations, see Fig. 3.6. Since the
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Figure 3.6: We plot ∆H against the HMC time starting from the point of equili-

bration.
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Set 〈∆H〉 e−〈∆H〉 〈e−∆H〉
A50 0.036(9) 0.964(+0.009

−0.009) 1.001(9)

A66 1.734(917) 0.177(+0.265
−0.106) 1.002(13)

B60 1.097(1050) 0.334(+0.618
−0.217) 0.998(8)

B70 0.823(645) 0.439(+0.397
−0.209) 1.019(11)

C64 0.038(11) 0.963(+0.010
−0.010) 1.017(11)

C72 0.014(8) 0.986(+0.008
−0.008) 1.020(9)

C77 0.377(53) 0.686(+0.038
−0.036) 0.983(10)

Table 3.4: Averages of ∆H and their exponentials for each run. We only included

the equilibrated configurations in our calculations.

acceptance of a configuration is given by e−∆H , none of the proposed configurations

was accepted.

Such spikes have already been observed in other simulations with dynamical

fermions [20, 68]. Two possible reasons can cause such a spike. One is the instability

of the HMC for large step sizes in the MD evolution, cf. Ref. [69]. The other one,

and this is most likely the case here, is that the Dirac operator can develop very

small eigenvalues which lead to these spikes in the derivative of the action.

3.9 Stability of the algorithm

In this section we shortly discuss the stability of the algorithm used. In general, the

eigenvalues of D†D are positive semi-definite (not positive definite), if D is some

lattice Dirac operator. Assuming that one could integrate the HMC trajectories

exactly, no problems would be encountered, since small eigenvalues lead to large

revertive forces in the HMC. Thus, exact zero modes are avoided in the algorithm.

However, due to a finite step size τ in the integration, this back driving force may

be smaller than it would be in an exact integration scheme, and so, a very small

eigenvalue can cause an instability.

If a notably small eigenvalue appears during the MD evolution, the conjugate

gradient solver for calculating the fermion force will need many more iterations to

arrive at the given precision. Or, in other words, the inverse of the number of needed

CG steps is strongly related to the smallest eigenvalue of D†D. The distribution of

1/Ncg for a given ensemble is approximately a Gaussian [64]. As long as the mean is

considerably larger than the standard deviation (e.g., the authors of Ref. [70] quote

µ > 3σ), the algorithm setup is safe. This condition is most crucial for small pion
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Figure 3.7: A plot of the normalized histogram of 1/Ncg for runs A66, B70 and

C77. The red line is a fit to the function exp(−(x − µ)2/2σ2) and the ratio of µ/σ

is given in each plot.

masses.

In Fig. 3.7 we plot the histograms of 1/Ncg for the smallest pion mass at each

value of the gauge coupling. Also a fit of the histogram to a Gaussian is included.

One can see, that there is a clear separation of the Gaussian shaped curve to the

origin. Even for the worst case scenario, i.e., run A66, we find µ/σ ≈ 5.3. We thus

conclude that our implementation is safe in the sense, that no negative eigenvalues

of the Dirac operator are developed.





Chapter 4

Hadron spectroscopy

4.1 Euclidean correlation functions

In the beginning of Chap. 2 we already introduced the so-called correlation function

or correlator in Eq. (2.8). This object is the main tool in hadron spectroscopy. From

Eq. (2.8) we see that the correlator C(t) can be expressed as a path integral. One can

then start integrating out the fermionic part and generate gauge field configurations

with the methods explained in Chap. 3.

To extract masses of hadrons using correlators, one has to insert suitable hadron

interpolators for the operators O1 and O2 in Eq. (2.8). How these interpolators will

look in detail is explained in Sec. 4.3 and App. B. Evaluating the expression for the

correlator then gives [11]

C(t) =
∑

k

ak e
−tEk , (4.1)

which is a sum over all k states with energy levels Ek. The coefficients ak give us

the overlap of the lattice operator O with the physical state k,

ak =
∣∣〈0|O|k〉

∣∣2 . (4.2)

Since in lattice QCD one uses natural units, energy and mass are equal to each

other. However, the energy levels we speak of have to be compared to the energy

levels in the continuum. For the following discussions we want to stress, that the

expressions ‘energy (level)’ and ‘mass’ should have the same meaning. If we speak

of a ‘state’, this cannot only be meant as a one-particle state, but also can be a

scattering state, made out of two or more particles.

From Eq. (4.1) we see that the correlator is built of several states, all having

different energies (in a finite volume). Since the ground state has the smallest mass

of all states, it asymptotically contributes most to C(t) due to the exponential decay.

As a consequence, one is able to extract the ground state mass if t is large enough

and thus the higher excited states are exponentially suppressed. This can be done

by, e.g., a single exponential fit. The time range in which this fit is performed can

33
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be fixed using the so-called effective mass, defined by

meff(t) = ln
C(t)

C(t+ 1)
. (4.3)

A plot of this quantity against t will show a plateau behavior in some time range

[t1; t2]. The reason for such a behavior is the following. At the time t1 the exponential

suppression of the higher excited states is so strong, that one can assume C(t) ∝
e−tE0 , where E0 is the energy level of the ground state. Applying then Eq. (4.3)

leads to a constant for meff. Actually, the plateau in meff should not break down,

since the exponential suppression is getting stronger with greater t. One reason for

an upper boundary t2 of the fit range is simply that the signal is getting worse if

t is approaching the symmetry point t = Lt/2. This is due to the fact, that the

correlators in Eq. (4.1) actually have the form

C(t) =
∑

k

ak
[
e−tEk + e−(Lt−t)Ek

]
. (4.4)

The second term in the square brackets comes from an antiparticle, which runs

backwards in time. Since the expression in square brackets is ∝ cosh[(t− Lt/2)Ek],

we speak of a cosh-behavior of the correlator and leave out the second term in the

square brackets for simplicity again. Another reason is, of course, that the signal

gets exponentially weak with grater t and thus simply turns into pure noise.

The method just described works fine for the ground state for a lot of hadron

channels. However, one usually does not only want to extract the ground state

energy level but also one or more excitations. For this task the method will fail

because the excitations appear only as sub-leading terms in the correlation function.

Carrying out a multi-exponential fit is unstable, particularly in view of the noisy

data on a finite number of gauge configurations. Furthermore, quantities related

to the ground state are spoiled with admixtures of the excited states, which often

reduce the fit range severely.

To overcome this problem, we now will present and discuss some methods which

can deal with this unpleasantness.

4.2 Spectroscopy techniques for excited states

As seen before, the reliable separation of the ground and excited states, or even

of different excited states, is a rather challenging enterprise. The brute-force least-

squares fit to a finite sum of exponentials will only have promise if rather high

statistics are available. Since this is not the normal case, other approaches towards

that goal are used in hadron spectroscopy.
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4.2.1 Bayesian methods

Here, one does not minimize the “ordinary” χ2 functional, but uses instead

χ̃2 = χ2 + λφ , (4.5)

where φ is a stabilizing function of the fit parameters and λ a positive and real

multiplier. This method has been used, e.g., in [71, 72]

4.2.2 Maximum entropy method

In the maximum entropy method the correlation function is written as the Laplace

transform of a spectral density,

C(t) =

∞∫

0

dE ρ(E) e−tE . (4.6)

In the continuum the density function ρ(E) should have peaks near the energy values

which dominate the correlation function. On the lattice, it is a hard task to recover

ρ(E) with only a few values for C(t).

This method is frequently used in statistical physics, but also applied by the

lattice community [73, 74].

4.2.3 The variational method

The most promising method at the moment is the variational method [75, 76]. It

is used by various collaborations, see for example [77, 78, 53], and provides reliable

results for ground and excited states of several hadrons.

Since we exclusively use the variational method in our studies, we discuss this

approach in more detail in the next section.

4.3 The variational method

As already stated above, the method of choice for our studies is the variational

method [75, 76]. This method has a fundamental difference to the other methods

discussed – it uses not only one correlator but a matrix of cross-correlators. Therefore

one employs N different interpolators Oi, i = 1, . . . , N , which all have the quantum

numbers of the state of interest. Then this cross-correlation matrix is given by

Cij(t) = 〈Oi(t)O†
j(0)〉 . (4.7)
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In the Hilbert space this matrix can be expressed as

Cij(t) =
∑

k

〈0|Oi|k〉 〈k|O†
j |0〉 e−tEk =

∑

k

a
(i)
k a

(j)∗
k e−tEk . (4.8)

One immediately sees that the only time-dependent term is the exponential. This

fact will be discussed in more detail below.

Considering a generalized eigenvalue problem (GEVP) normalized at some time

slice t0 < t,

C(t)vk = λk(t, t0)C(t0)vk , (4.9)

we obtain the following behavior for the eigenvalues [75, 76]

λk(t, t0) ∝ e−(t−t0)Ek
[
1 + O(e−(t−t0)∆Ek)

]
. (4.10)

In general, ∆Ek is the mass difference to the closest lying state. For the special case

t < 2t0 and a basis of N interpolators, ∆Ek is the difference to the first neglected

state [79, 80],

∆Ek = EN+1 − Ek . (4.11)

Thus, each eigenvalue represents one single state for large time distances, and this

gives us the possibility to perform a (stable) two-parameter fit to the eigenvalue.

This means the largest eigenvalue decays with the ground state mass, the second

largest decays with the mass of the first excited state, etc. The technical procedure

is the following:

1. Compute the cross-correlation matrix, including the interpolators of interest.

2. Solve the GEVP for each time-slice.

3a. Sort the eigenvalues according to their magnitude.

3b. Sort the eigenvectors according to order of the eigenvalues.

4. Perform a two-parameter fit to the eigenvalues in some time range t0 < tmin 6

t 6 tmax.

To be able to identify the region where the eigenvalues should be fitted, we again

use the concept of effective masses from Sec. 4.1.

We now want to shortly discuss the eigenvectors again. Since they should not

depend on the time-slice t, see Eq. (4.8), we have an additional tool at hand, which

can help us to identify a state in general and the time range for the fit, i.e., the

region where also the vectors show a plateau behavior. To get some impression of a

typical result of this analysis, we show in Figure 4.1 the eigenvectors of the ground
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Figure 4.1: In the first row we plot the eigenvector of the ground state, v
(k)
0 , and

the eigenvector of the first excited state, v
(k)
1 . Below the eigenvalues for these states

and the corresponding effective masses can be found. All results are for set A50.

and first excited state and the eigenvalues with the corresponding effective masses

for the positive parity nucleon of set A50. If only the effective mass is the basis for

the decision where to fit the eigenvalue then one would naively fit the first excitation

from t = 2−6. But when we also include the eigenvectors into this process, the time

range shrinks by one time-slice to t = 2 − 5! However, this effect may be tiny here,

but in other hadron channels the eigenvectors are often crucial to decide on the fit

range.

Another point to be discussed here is the basis used in this analysis. Since one

does not use a single correlator but a cross-correlation matrix, several interpolators

Oi, which couple to the same hadron state, are necessary. In our simulation this

request is achieved with two approaches. On the one hand we can describe a particle

with interpolators which all have a different Dirac structure. For, e.g., the case of

the nucleon we can use three different types of interpolators (with respect to the
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Dirac structure),

O
(1)
N = ǫabc

[
uTa C γ5 db

]
uc , (4.12)

O
(2)
N = ǫabc

[
uTa C db

]
γ5 uc , (4.13)

O
(3)
N = i ǫabc

[
uTa C γµ γ5 db

]
uc . (4.14)

This leads as a first step to a 3 × 3 correlation matrix.

The other onset we make use of, is to include different quark sources on which

we compute the quark propagators. These sources differ only by their widths. The

detailed procedure is explained in the next Section 4.4, here we only mention, that

for the nucleon, we can use two different widths of quark sources. Thus, the 3 × 3

correlation matrix grows by a factor of 8 and finally we can work with a 24 × 24

correlation matrix. Due to some numerical equalities it reduces to a 18 × 18 matrix

for the case of the nucleon.

The most crucial ingredient in the variational analysis is the basis of interpolators.

One can only a posteriori decide if one has chosen a reasonable basis or not. Thus,

the “design” of the interpolators is some kind of an art with a big portion of physics.

The usage of the full N × N correlation matrix in a straight forward way, i.e.,

perform the diagonalization of the full N × N matrix, is normally not possible –

although, according to the theory, the results should get better. The reason is, that

increasing the number of interpolators in the matrix also increases the statistical

noise. Therefore, one takes only a subset of n 6 N interpolators and works with

this smaller n×n matrix. Then, of course, the question arises: Which interpolators

should be included? This question is highly non-trivial to answer! For the nucleon we

have, as seen above, an 18×18 matrix. To try out every combination of interpolators

means analyzing 218 − 1 = 262, 144 different combinations – which is obviously

impossible! Thus, one has to learn from previous combinations and has to rely on

experience to try out only some promising subsets. In other words, it is some kind

of a “trial and error” process. So we here arrive at the point from above: It is some

kind of art. A typical number, independent of the hadron type, is 3 . n . 8. In our

case, we started analyzing each set of configurations separately and then tried to find

a promising intersection of the several subsets, i.e., we tried to find one interpolator

combination for all seven sets. This strategy worked out in the case of baryons, the

situation for mesons is, however, more involved and we cannot always follow such a

scheme.
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Set κ Nκ Width [fm]

A50 0.212 17 0.357

A66 0.210 20 0.356

B60 0.222 15 0.347

B70 0.305 8 0.256

C64 0.280 7 0.254

C72 0.280 7 0.241

C77 0.223 15 0.333

Set κ Nκ Width [fm]

A50 0.1840 63 0.661

A66 0.1830 74 0.647

B60 0.1840 68 0.679

B70 0.1840 55 0.573

C64 0.1918 37 0.547

C72 0.1925 37 0.525

C77 0.1840 70 0.677

Table 4.1: For each set of gauge field configurations we show the numbers for κ

and Nκ, which are used in Eq. (4.16) and the resulting source width . On the l.h.s.

the parameters for the narrow sources and on the r.h.s. the parameters for the wide

sources are given.

4.4 Smearing of quark fields

In the previous section we already discussed ways how to increase the number of

possible interpolators which all describe the same hadronic channel. One method,

which we use in our simulation, is smearing of the quark sources or sinks, respectively.

More precisely, we here apply two different smearing techniques: Jacobi smearing

[81, 82] and the creation of derivative sources (see, e.g., [83]). With this procedures

we can on the one hand extend the basis of interpolators and on the other hand also

improve the quality of the signal.

Let us discuss the Jacobi smearing. One acts on a point like quark field source

S0, which can in the following either be a source or a sink, with a smearing operator

M ,

Ss = M S0 , (4.15)

where this smearing operator M is defined as

M =
Nκ∑

n=0

(κH)n . (4.16)

Actually, this is the application of a polynomial of a hopping term H, which is given

by

H(n,m) =
3∑

k=1

[
Uk(n, t)δn+k̂,m + U †

k(n− k̂, t)δn−k̂,m

]
. (4.17)

It is obvious from Eq. (4.17) that each time-slice t is smeared individually. The

resulting quark fields have approximately a Gaussian shape. The width of the cre-
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Figure 4.2: A 3d plot of a Jacobi smeared quark field in some arbitrary units.

ated sources can be controlled by the parameters κ and Nκ. In Tab. 4.1 we give the

detailed numbers for each set of gauge configurations. In our simulation we use two

different widths of sources and call them “narrow” (index n) and “wide” (index w).

Originally this smearing procedure was used to suppress contributions from excited

states. In our approach, however, we can improve the overlap of interpolators with

both the ground state and low excitations to extract these signals at the same time.

For applications of these method see, for example, [46, 47].

Another method, we also work with, is to smear the quark fields such that the

resulting field may exhibit nodes, i.e., it is a P -wave like field [83]. This is achieved

by applying a covariant lattice derivative operator (which is nothing but a difference

operator) on a smeared source, and in our case we take the wide source. We denote

these derivative sources by S∂k
= PkSw and the derivative operator Pk is

Pk(n,m) =
1

2

[
Uk(n, t)δn+k̂,m − U †

k(n− k̂, t)δn−k̂,m

]
. (4.18)

To get an impression of this two constructs we show in Figs. 4.2 and 4.3 both a

Jacobi smeared quark field and a P -wave like field. In these plots the sources are

calculated only for one single gauge configuration, since this is not a gauge-invariant

object and would vanish in the ensemble average.
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Figure 4.3: Same as Fig. 4.2, now for a derivative smeared field.

4.5 Gauge link smearing

In the previous section we discussed the smearing of quarks fields, from which the

quark propagators are computed subsequently. However, another type of smearing

is widely used in lattice simulations, it is the gauge link smearing. There, a local

gauge link is replaced by an “average” over paths of gauge links in its vicinity. Mostly

this vicinity is a 4d hypercube around the unsmeared gauge link. The underlying

reason is to reduce short range fluctuations, since one mostly is interested in the

long distance behavior of, e.g., correlation functions. By the replacement of links

with their averages these short range fluctuations are smoothed out. As long as the

smearing is local, i.e., the average contains only a fixed number of links, the long

range behavior does not change in the continuum limit. To obtain a gauge covariant

process, and thus no gauge fixing is needed, the link is replaced by averages of

paths of links which have the same endpoints as the original link. Since in SU(3)

this average is not in general again an element of the gauge group, some kind of a

projection back into the group of SU(3) has to be performed.

Meanwhile a lot of link smearing procedures are available. We shortly want to

discuss only three out of these.

APE smearing. Here, a weighted average of the original link and the six per-

pendicular staples, having the same endpoints as the link, is built [84]. The
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Figure 4.4: A 3d plot of four staples (red) around some central link (blue).

situation is depicted in three dimensions in Fig. 4.4: four out of the six staples

(red), which have the same endpoints as the original link (blue), are plotted.

The average is then computed as

Vµ(n) = (1 − α)Uµ(n) +
α

6

∑

ν 6=µ

Cµν(n) , (4.19)

where Cµν(n) are the staples, i.e., an oriented product of three links, connecting

the two endpoints of the link Uµ(n). The parameter α ∈ R has to be adjusted

depending on the gauge coupling β. The final projection back to SU(3) is

normally done by maximization of Re tr[X V †
µ (n)] for X ∈ SU(3) and using X

as the new link variable.

HYP smearing. This smearing procedure is some kind of an iterative APE smear-

ing. Originally [39] three steps of projected APE smearing were used, contain-

ing only links which lie in the hypercube containing the original link. In

general, one can take any smearing procedure as core of the HYP smearing;

e.g., n-HYP [85] uses n-APE as core.

In our analyses the HYP smearing is used in the creation of quark field sources.

Therefore, we use a 3d variant of this procedure, which only smears the links

in spatial directions. It is applied three times on stout link smeared (see next

item) gauge fields.

Stout link smearing. Since in HMC simulations one has to calculate derivatives

of objects w.r.t. the gauge links, smearing procedures which use a projection



4.6. A mass-independent scheme for the scale 43

Sets β m⋆
0 a⋆ [fm]

A 4.70 -0.06987(32) 0.1311(15)

B 4.65 -0.07576(39) 0.1352(21)

C 4.58 -0.08377(19) 0.1380(17)

Table 4.2: The values of m⋆
0 and a⋆ in fm (for r0 = 0.48 fm) for each gauge coupling

β.

operator are not suitable for this purpose, since after the projection one cannot

recover the original link. Thus, in 2003 the first differentiable (w.r.t. gauge

links) smearing procedure was presented, the stout link smearing [86]. Also in

our simulation stout link smearing is used and can be seen as one part of the

definition of the Chirally Improved Dirac operator DCI. This smearing does

not use the projection described above, but uses instead

Vµ(n) = eiQµ(n)Uµ(n) , (4.20)

where Qµ(n) is a hermitian, traceless matrix which is built from staples. This

procedure contains tunable, real weight factor ρµν , which often are kept con-

stant, ρµν = ρ. In our case we set ρµν = ρ = 0.165.

4.6 A mass-independent scheme for the scale

The way we define the scale a in our lattice QCD simulation was already presented

in Sec. 2.6. However, any dynamical simulation shows a dependence of r0/a on the

quark mass m. In [87] it is explained to what extent this is a physical effect. To

milden this quark mass dependence, we use a so-called mass-independent scheme.

In that approach one assigns the same lattice spacing to a fixed value of the gauge

coupling β. This procedure is discussed now.

To work with this method, at least two simulations with different bare mass

parameters m0 at the same β are needed. One starts to determine the AWI-masses

(see Sect. 7.2), which can be seen as the quark mass for this purpose, and plot them

against the bare parameter m0 (see Fig. 4.5 for our data). Then, a linear fit to the

data of one particular β is made. From the fitted function one can read of the value

for m⋆
0 = m0(mAWI = 0). This value is often called the critical mass value. The

next step is to plot the lattice spacing a against m0 and also (linearly) fit the data

groups of one β (cf. Fig. 4.6). At that point one is able to extract the value of a at

m0 = m⋆
0, which we denote as a⋆. The detailed numbers for m⋆

0 and a⋆ are given in
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Figure 4.5: We plot the AWI-mass mAWI (in dimensionless units) against the bare

mass parameter m0 for each set of gauge configurations. The dashed lines are linear

fits to the data points corresponding to one definite β, the dotted line indicates

amAWI = 0. The full symbols denote the critical values, m⋆
0, for each value of β.

Tab. 4.2. The value of a⋆ is then attached to all sets of gauge configurations for the

particular β. From now on we suppress the superscript “⋆” and use the values given

in Tab. 4.2 for our calculations.

4.7 Momentum projection and scattering states

Euclidean correlation functions were already discussed in Sec. 4.1 and from Eq. (4.1)

we learned that a correlator is a (infinite) sum over states with energy levels Ek.

The statement from above, that these energies equal the masses, has to be clarified:

it is only valid for vanishing momentum, p = 0. We now want to discuss this fact

in more detail.

The energy E of a particle X and its mass mX are related through the dispersion

relation

E(X(p)) =
√
m2
X + p2

(
1 + O(ap)

)
, (4.21)

leading to mX = E(X(p = 0)). Thus, all states in our simulation are projected to

momentum zero to obtain their rest mass.

In dynamical simulations a single hadron state can also couple to a state involving
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Figure 4.6: We plot the lattice spacing a (in physical units) against the bare mass

parameter m0 for each set of gauge configurations. The dashed lines are linear fits

to the data points corresponding to one definite β and the full symbols denote the

values of a at m0 = m⋆
0.

two (or more) hadrons, a so-called scattering state. Even if the hadron is projected

to p = 0, the individual particles can have non vanishing momenta although the

scattering state obeys p = 0. The simplest example is a two particle state, in

which one particle has a certain momentum p and the other exhibits a momentum

−p, which is in sum again zero. Since we use a finite box, the allowed values

for p are discrete, in contrast to the continuum (which is nothing but a box with

infinite volume). Each component pi can have the values api = 2πki/Ls, with

ki = −Ls/2, . . . , Ls/2 − 1. The energy of such a two particle scattering state,

neglecting interactions, is then given by

E(X(p), Y (−p)) =
(√

m2
X + p2 +

√
m2
Y + p2

) (
1 + O(ap)

)
. (4.22)

In some hadron channels the lowest scattering state energy lies above the signal

we measure and this signal depends on the quark mass, which is a clear indication

that the observed state is indeed the ground state. However, a clear and unique

assignment of states with energies in the vicinity of scattering state energies is often

not possible. Mostly, the two particle state energy is located between the measured

ground state and the measured first excitation. Thus, we cannot identify the first

excitation as a single hadron state, since it is also possible, that we see the two
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particle state a bit above its experimental value. To distinguish bound states from

scattering states one would have to run simulations with other (preferably bigger)

volumes, since scattering states are suppressed by a factor of O(1/L3
s) [88, 89].

Gauge field configurations for lattice size of Ls = 24, Lt = 48 are at the moment

being produced for the parameters of the runs A66 and C77. We do not discuss

results for these runs here, because the analysis is not finished yet.

Another possibility to give a statement about the nature of a measured state

is to additionally analyze the eigenvector behavior. A hint for a one particle state

is given by observing the same eigenvector composition for different points in the

parameter space, i.e., for different dynamical sets of gauge configurations (cf. the

discussion in [53]).



Chapter 5

Baryon spectroscopy and its results

5.1 Technical details

Let us start with some technicality to set the ground. For baryon spectroscopy we

only use Gaussian sources, coming from Jacobi smearing of point-like quark fields

– no derivative sources are included in the correlation matrices in the variational

method, in contrast to meson spectroscopy from Chap. 6. The exact definitions of

the baryon interpolators can be found in App. B.

For all channels we have data for positive and negative parity states. To be able

to analyze both parities, we project the interpolators to a definite parity using the

projection operator

P± =
1 ± γt

2
. (5.1)

The interpolators for the ∆ and Ω baryons have overlap with both spin 1/2 and

spin 3/2 states [47], thus we have to project to spin 3/2, using the projection operator

for a Rarita-Schwinger field,

P (3/2)
µν (p) = δµν − 1

3
γµγν − 1

3p2
(γ · p γµ pν + pµ γν γ · p) . (5.2)

Since the correlation matrices Cij are real and symmetric within numerical error

bars, we symmetrize the matrices according to

C + C†

2
−→ C (5.3)

before diagonalization. This is also valid for the correlation matrices for mesons.

In the subsequent plots in this chapter and in Chap. 6 we always use the fol-

lowing legend for plots of masses to distinguish between the seven sets of gauge

configurations:

Set Symbol

A50 #

A66 #

Set Symbol

B60 2

B70 2

Set Symbol

C64 3

C72 3

C77 3

47
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Hence, a legend is only shown where otherwise the plot would be ambiguous. In

general, we only include the dynamical (i.e., mvalence = msea) data points in our

plots. In the case of the Ω, however, we also show data points where mvalence > msea

(partially quenched data points). Such data points are available for all sets, and

they are used only to set the strange quark mass, see Sec. 5.4. Possible existing two

particle scattering states are indicated by green crosses (✕) at the corresponding

values of m2
π. Experimental values are, if available in [9], displayed as magenta stars

(✳), corresponding error bars are only displayed if they are bigger than 40 MeV. In

each plot we print the name of the baryon and its quantum numbers JP in the lower

left corner. Fits of the dynamical points are shown as black lines, the corresponding

errors are the surrounding dashed black lines. The range for the fitted value at

mπ = m
(phys)
π is also displayed as vertical black line. The detailed form of these fits

is discussed in more detail now.

All the simulations we perform are at values of the pion mass, which are bigger

than the physical value. Thus, we have to perform some kind of extrapolation of our

data to the physical (experimental) point. In our case we find chiral perturbation

theory [90, 91, 92] to be the appropriate tool. There, the only varying parameter

is the quark mass. However, this method is based on constant values for other

parameters, like the lattice spacing or the volume. Of course, the explicit analytic

form of the extrapolation depends also on the path one takes in parameter space.

Strictly speaking, we then would only be allowed to fit the data of sets A, B and

C separately. Since all our values for the lattice spacing and the gauge coupling

are very similar, we assume our extrapolation path to be very close to the one with

constant parameters. Thus, for the mass mX of a particle X we use a form, which

is linear in the quark mass in leading order, i.e., linear in the pion mass squared (cf.

Sec. 7.2). In dimensionless units (amX) we find

amX = c0 + c1 (amπ)2 + O
(
(amπ)2 ln amπ

)
. (5.4)

Therefrom, we can read of the value for mX either for the physical pion mass or

in the chiral limit (i.e., mπ = 0). In Chap. 9 we will summarize our spectroscopy

results and use these extracted values there.

5.2 The Nucleon

Positive parity

We want to start our discussion of the baryon spectroscopy results with that chan-

nel, where one normally gets the best signal: the positive parity nucleon N . To
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Figure 5.1: The mass of the positive parity nucleon is plotted againstm2
π in physical

units. The energy levels of the (theoretical) P wave scattering state Nπ are shown

as crosses.

extract the ground state (GS) and two excitations (1E, 2E), we used the interpola-

tor combination 1, 2, 4, 6, 14, 17, 18 (see App. B for details). In Fig. 5.1 we show the

extracted masses in physical units. Our result for the ground state lies about 10%

above the experimental value. In [93, 94] it was found that also a fit linear in the

pion mass agrees well with the experimental data. We here, however, want to stick

to the form given in Eq. (5.4), since this form is suggested by chiral perturbation

theory.

Since its discovery in 1964 [95] the first excitation of the positive parity nucleon,

the so-called Roper resonance, is a quite special candidate in baryon spectroscopy.

Its mass lies below the mass of the first excitation of the negative parity nucleon

channel. This is often called reverse level ordering. In most of the dynamical sim-

ulations (see, e.g., [96, 77, 53, 97, 98]) such a reverse level ordering is not seen and

the energy level for that resonance comes out to high; we obtain a value of about

600 MeV above the experimental value. There may be a few reasons for that ob-

servation. First of all, this excitation is not an orbital (as in the negative parity)

but a radial excitation in the language of the quark model. Thus, its size could be

considerably larger than that of the ground state and may be squeezed due to the

limited spatial lattice volume. To eliminate this effect, bigger and finer lattice would
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Figure 5.2: The mass of the negative parity nucleon is plotted against m2
π in

physical units. The energy levels of the (theoretical) S wave scattering state Nπ are

shown as crosses.

be helpful. We further have rather noisy data in that channel and it could just be

a statistical effect and more configurations would be needed to clarify this aspect.

A third reason could emerge from a possible existing P wave Nπ channel, which is

not represented by our set of interpolators. Thus, the inclusion of nucleon-meson

interpolators could improve our insight here and, of course, also for all other baryon

channels. Although there is no clear separation of the energy levels of the scatter-

ing states and our signals, we favor the one particle picture since the eigenvector

composition is the same for all seven sets (see the discussion in Sec. 4.7).

However, some groups [99, 100, 101] were able to extract a state, which ap-

proaches the right physical value. In that analyses several fermion actions and

fitting techniques are used, but all groups work with quenched gauge field configura-

tions. To confirm these results with our approach (dynamical configurations!) would

be worthwhile, but for sure, all points mentioned above are needed for a systematic

analysis.

Negative parity

We now want to discuss the negative parity nucleon channel. Although the time

range for a fit of the eigenvalues is limited due to the backward (in Euclidean time)
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running positive parity nucleon and due to possible present scattering states [102],

we can extract the two lowest lying states, but from a quite noisy signal. We use the

interpolator combination 1, 2, 3, 7, 8, 9. The masses can be found in Fig. 5.2. One

can see, that we underestimate the experimental values slightly, as for all negative

parity baryon channels.

In this case we cannot clearly distinguish if a one or a two particle state is seen.

It is possible that an S wave Nπ state, which is not represented by our set of

interpolators, is present here. Taking into account the extracted masses only, we

even would conclude that the state obtained is a scattering state. In Nature the S

wave state lies below the ground state of the negative parity nucleon. This still may

be true for the small pion masses as we obtain in set A66, and thus we may see a

two particle state there (this data point increases the slope of the fit drastically!).

However, for the sets with larger pion masses, this should not be the case.

Additionally we then can analyze the composition of the states via the eigenvec-

tors from the variational method and see if we always obtain the same eigenvector

composition over the whole range of pion (i.e., quark) masses; this is done in Fig.

5.3. There we plot the eigenvector components of the ground state and the first

excitation for all sets. We always observe the same composition of states from the

heaviest (A50) down to the lowest (A66) pion mass, but this can now be interpreted

in two contrary ways. Since the composition does not change, this behavior can

favor either the bound state or the scattering state: In both cases the corresponding

state would simply be observed in all sets.

Thus, we cannot give a definite statement about the particle content in this

channel. As in the positive parity channel, further investigation by, e.g., larger

lattices or a momentum analysis can help to clarify this issue.

5.3 The Delta

Positive parity

In the case of the ∆ we have to project to spin 3/2 and end up with a total of 8

interpolators. Since 2 of these 8 are numerically very similar to others, we omit them

in our correlation matrices and are finally able to analyze 6 different interpolators.

They differ only in their smearing type for the individual quarks.

It turns out, that the differences in the results of all possible subsets of the full

6 × 6 correlation matrix are only small. We use the combination 1, 3, 4 and can

extract the first two energy levels (see Fig. 5.4). In both cases we favor the picture

of a one particle state, since our values are clearly off from the P wave Nπ state; this
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Figure 5.3: Time dependency of the eigenvector components of the ground state

(left panel) and the first excited state (right panel) of the negative parity nucleon.

From top to bottom the pion mass is getting continuously smaller.
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Figure 5.4: The mass of the positive parity ∆ is plotted against m2
π in physical

units. The energy levels of the (theoretical) P wave scattering state Nπ are shown

as crosses.

state seems to be missing here. Our final result for the ground state (at the physical

point) overestimates the experimental value by roughly the same amount as for the

nucleon, namely 10%. For the Roper-like state ∆(1600) our signal is, again as for the

nucleon, rather beyond the experimental value. Due to the small statistical errors

in both cases, we presume either finite volume effects or other systematic errors to

be the reason(s) for this discrepancy.

This hadron channel is also used to set the mass of the strange quark, ms.

Therefore, we have to use partially quenched mass values, i.e., mvalence > msea.

Details of that procedure follow in the next section.

Negative parity

For the negative parity ∆ we can extract a signal using interpolators 2, 3, 5 (see Fig.

5.5). The statistical error bars are fairly small, however, the experimental value is

slightly underestimated.
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Figure 5.5: The mass of the negative parity ∆ is plotted against m2
π in physical

units.
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Figure 5.6: We plot the masses (in the mass dependent scheme) of the positive

parity ∆ resp. Ω, extracted from partially quenched data (i.e., mvalence > msea)

against m0. The dotted magenta line indicates the value of the physical Ω(1672).
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5.4 Setting the strange quark mass with the Omega

The sets of gauge configurations were created including two dynamical light quark

flavors. To be able to study also hadrons with strange quark content, we have to

introduce somehow a strange quark into our simulation. How this can be done is

explained in more detail now.

Since the positive parity ∆ and the Ω(1672) share the same JP quantum numbers

and consist of only one quark type, we can identify a ∆ state where mvalence > msea

with the Ω(1672). Thus, we get the bare mass parameter at which the quark mass

equals approximately ms. We then can use the quark propagators for this valence

quark mass to compute hadron correlators including strange quarks. However, we

do not include the effects coming from a dynamical strange quark. All our hadrons

built from light and strange quarks always include dynamical (mvalence = msea) light

quarks and quenched strange quarks, motivated by partially quenched (mvalence >

msea) data.

To fix the value where mvalence = ms, we followed a strategy, where we can

determine the value for mΩ exactly only a posteriori. We started analyzing the ∆ of

the first 50 independent configurations and determined from that the value of mbare,

at which we get a signal closest to m(phys)
Ω . Initially, the available values for mbare

had a discrete difference of 0.05, thus for some sets we had to recompute quark

propagators at different mbare, if the signal was too far off from m
(phys)
Ω . In Fig.

5.6 we plot the masses of the partially quenched ∆, at which we fixed ms, against

m0. This plot, of course, is for full statistics; we used interpolators 1, 3, 4. One

can see that we get values for mΩ which mostly are not more than two standard

deviations away from the physical value. Only the results from set C64 deviate more.

A reason may be the choice of interpolators here. When fixing the value of mbare

we did not use the same combination of interpolators for each set – but we do here!

Hence, the combination 1, 3, 4 may not be the best, but to have comparable results,

we stick to this choice. Let us stress one important point here. This analysis was

done in the mass dependent scheme (cf. Sec. 4.6), since we did not create the sets

of gauge configurations in parallel. Thus, we were not able to fix the value of the

lattice spacing for the corresponding coupling β in advance, and therefore we also

can extract the Ω mass in the mass independent scheme – and do not only get the

values from Fig. 5.6 again.

To some extent we can cross check our designated results for ms by analyzing

other hadrons, which include strange quarks. In the baryon sector we get results

(see next sections) for Σ (built from two light and one strange quark) and Ξ (built

from one light and two strange quarks), which extrapolate very nicely to the physical
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Figure 5.7: The mass of the positive parity Σ is plotted against m2
π in physical

units. The energy levels of the (theoretical) P wave scattering state NK are shown

as crosses.

value. This confirms our choice of values. In the meson sector we can analyze the K

mesons (see Sects. 6.4 and 6.5) or the φ meson (see Sec. 6.6) to get another validation

to that topic.

5.5 The Sigma

Positive parity

The Σ baryon consists of two light and one strange quark. Its Dirac structure

is the same as for the nucleon, only the flavor content differs. Thus we can use

the same interpolator basis for the variational method as before, extended by some

interpolators due to the different quark masses. Using interpolators 1, 2, 6, 17, 20 we

can extract the ground state and two excitations (see Fig. 5.7). The ground state is

in good agreement with the experimental data and confirms again our choice for ms.

The first excitation comes out about one third to high compared to the experimental

level, which can be due to finite volume effects. For the second excited state we do

not have an experimental value, confirmed by the Particle Data Group (PDG),

to which we can compare to. The next state with the same quantum numbers,
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Figure 5.8: The mass of the negative parity Σ is plotted against m2
π in physical

units. The energy levels of the (theoretical) S wave scattering state NK are shown

as crosses.

Σ(1770), is classified with only one star by the PDG, which is expressed as ‘evidence

of existence is poor’. For the reasons already mentioned above and due to the same

eigenvector composition for each set of gauge configurations, we are not able to

decide whether we see a one particle state or a scattering state here.

Negative parity

In the negative parity Σ channel we can extract the ground state and two excitations,

see Fig. 5.8. We used interpolators 1, 9, 10, 12. As for the nucleon, the ground state

and the first excitation lie very close to each other. In our case, the extrapolation

to the physical point for both states agrees surprisingly well with the experimen-

tally measured states Σ(1620) and Σ(1750) (rated with 2 and 3 stars by the PDG,

respectively). The second excitation here reaches a value of about 2270 MeV, which

may be compatible with the Σ(2000), however, this state is not yet confirmed by

the PDG and has a rating of one star.

The lowest scattering state, the S wave NK, lies below the one particle state at

the physical point. To find out if we see a one particle state, instead of a scattering

state, we traced the eigenvalues from high to low pion masses and did not find any

change in their relative weights to that state (cf. the discussion for the negative
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Figure 5.9: The mass of the positive parity Ξ is plotted against m2
π in physical

units. The energy levels of the (theoretical) P wave scattering state ΣK are shown

as crosses.

parity nucleon). Here, the masses would favor the two particle picture. As for the

positive parity Σ, we cannot reliably determine the particle content.

5.6 The Xi

Positive parity

For this channel we only have one state, confirmed by the PDG, we can compare

to. From our data we can, however, extract three states with rather small statistical

errors. We used interpolators 1, 2, 3, 4, 9, 10, 13, 17, the masses are shown in Fig. 5.9.

The ground state fits perfectly with the experimental data point, which again backs

up the choice for the strange quark mass parameter. The excitations we get are in

the range of about 2300 and 2500 MeV. States in such energy regions, listed by the

PDG, are assigned neither spin J nor parity P .

Negative parity

As for the positive parity we here can measure the ground state and two excitations,

using interpolators 1, 2, 9, 10, 14, 17, 21. The extracted masses are plotted in Fig.
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Figure 5.10: The mass of the negative parity Ξ is plotted against m2
π in physical

units.

5.10. The experimental situation here is even worse than for the positive parity

channel, there is no state listed by the PDG. The ground state and the first excitation

are very close to each other and are located in a region of 1730 to 1830 MeV, both

having small statistical errors. The second excitation lies around 2300 MeV and the

signal is fluctuating a bit more. As before, unconfirmed states with undefined spin

and parity are seen in such energy regions.

5.7 The Omega

Positive parity

In Sec. 5.4 we used the positive parity Ω to fix the mass parameter of the strange

quark. If we turn over to the mass independent scheme, as for all other channels,

and start the analysis, we get “biased” results here, since we measure a quantity

which was used already before as input, although in a different way. However, the

extrapolation of the ground state mass to the physical point gives perfect agreement

with the experimental data, see Fig. 5.11. We used interpolators 1, 3, 4 as in the ∆

channel. The situation is definitely different for the first excitation. We get a signal

at about 2500 MeV, which is compatible to the Ω(2470), a state, which is listed by
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Figure 5.11: The mass of the positive parity Ω is plotted against m2
π in physical

units.
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Figure 5.12: The mass of the negative parity Ω is plotted against m2
π in physical

units.
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the PDG without spin and parity and not yet confirmed.

Negative parity

In the negative parity Ω channel we get a signal around 2050 MeV. In Fig. 5.12 we

show the extracted masses, utilizing interpolators 2, 3, 5 from the ∆ channel. Here,

we cannot compare to any state listed by the PDG.





Chapter 6

The mass spectrum for mesons

6.1 Preparatory background

In the analysis of the meson sector we use three types of quark sources, a narrow, a

wide and a derivative source, to include in the basis for the variational method. For

both types of mesons, those built from only light quarks and those including also

strange quarks, the interpolators are given in App. B. Since the C parity is only an

exact symmetry for mesons built from mass degenerate quarks, the right columns

of the tables with interpolators in App. B apply only to light mesons. However,

this quantum number may be still an approximate quantum number for mesons

with light and strange quarks (i.e., non mass degenerate quarks) and is possibly still

valid to some significant amount. Hence, we can try to include in the variational

basis only interpolators sharing the same C (in the limit of mass degenerate quarks),

and find out if some state is dominated by a definite C parity. This point will be

discussed again later in Sec. 6.5.

To improve statistics on the one hand, and to respect the correct symmetries

on the other, we folded the data in time around the symmetry point t = LT /2 and

performed the same symmetrization as for the baryons,

C + C†

2
−→ C . (6.1)

All the details about the legends in the subsequent plots and the chiral fit proce-

dure are the same as for baryons and were already fixed in Sec. 5.1. In each plot we

print the name of the meson and its quantum numbers as JPC (or JP for strange

mesons) in the upper left corner. The data points for plots of strange mesons are

extracted from the points where the light quark has its dynamical value and the

strange quark its given value (details can be found in Sec. 5.4).

Unfortunately we are not able to follow the same strategy for the choice of

interpolators as we do for the baryons – there it was possible to use the same

interpolators combination and the same time range to extract the mass from. Here,

however, we sometimes have to use different combinations for different states, or even

different combinations for each of the sets. The time ranges mostly were adapted

63
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Figure 6.1: The mass of the pseudoscalar meson π (JPC = 0−+) is plotted against

m2
π in physical units.

individually for each set. This proceeding is necessary to obtain reasonable results,

or, in some cases, to obtain a result at all. A summary of the results from the chiral

fit can be found in Chap. 9.

6.2 Light quark mesons with spin 0

6.2.1 The pseudoscalar meson π, JPC=0−+

We start our discussion of light meson spectroscopy results with the pion; its quan-

tum numbers are JPC = 0−+. Since the ground state mass of this particle is used to

set the scale in all our plots of hadron masses, we here decide to fix it by inclusion

of only one interpolator, as such a choice gives the longest plateau in the effective

mass. The first excitation could also be extracted. The interpolators used are

State A50 A66 B60 B70 C64 C72 C77

GS 0−+ 1 1 1 2 1 2 1

1E 0−+ 1,2,17 throughout

The detailed values are shown in Fig. 6.1. Although it is nothing but a square root

function, we also show the ground state masses there to give the magnitude of the

statistical errors.
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Figure 6.2: The mass of the scalar isovector meson a0 (JPC = 0++) is plotted

against m2
π in physical units. The energy levels of the (theoretical) S wave scattering

state η2π are shown as crosses [104].

We already discussed the quality of the signal of the first excitation in [40]. This

signal is contaminated by a backward running pion and thus the plateau in the

effective mass is shortened, especially for small pion masses. Nevertheless, we could

get a signal with fair statistical error bars. The chiral extrapolation of this signal is

compatible with the experimental value.

6.2.2 The scalar isovector meson a0, JPC=0++

In lattice simulations the scalar meson a0 (JPC = 0++) is a rather delicate business

(see, e.g., [103] for a nice overview). There are still ongoing discussions about the

quark content of this meson, i.e., whether it is a quark-antiquark or a tetra-quark

state. The other great difficulty is, that in the bunch of states (obeying JPC = 0++)

to which the interpolators couple, scattering states with a mass lower than the

ground state mass of the a0 are present (at the physical point!). Thus, the part of

the correlator one is interested in appears only as sub-leading term.

In our case we can extract the ground state and the first excitation (see Fig. 6.2)

using the interpolators
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State A50 A66 B60 B70 C64 C72 C77

GS 0++ 13 throughout

1E 0++ 10,12,13 4,10,12,13 — 1,4,10,12 1,4,10,12 10,12,13 10,12,13

The signals for the ground state of the different sets seem to be consistent, except

for set A66. Maybe there we are already in a region of the pion mass, where we do

not see a bound state as the lowest lying state, but we cannot surely identify the

state; further investigation is crucial here. However, our signals all lie below the S

wave η2π scattering state. We used the value given in [104] for the mass of the η2

meson and assumed that this particle has the same dependence on m2
π as the vector

meson ρ. For the first excitation we get quite noisy signals, in set B60 we could

not even get any signal. However, the chiral extrapolations for the two states are

either in astonishing agreement with the PDG data (ground state) or match with

the experimental point within two standard deviations. However, in this channel it

is impossible to identify the state as a bound state.

6.3 Light quark mesons with spin 1

6.3.1 The vector meson ρ, JPC=1−−

For the vector meson channel ρ, JPC = 1−−, we get a ground state signal, which

in the chiral limit perfectly agrees with experimental data. The signal of the first

excitation is also in good agreement with data from the PDG (see Fig. 6.3). We used

interpolators 1, 5, 8 for the ground state and 1, 8, 12, 17, 22 for the first excitation.

Since the vector meson is not a stable particle, i.e., it decays into a P wave ππ

state, we also show the scattering state in Fig. 6.3. Since this state lies above our

ground state signal, we conclude, that here the ground state is indeed dominated by

the ρ meson and is not a scattering state (such a state is usually called “stabilized”).

The signal for the first excitation in our case always lies above the scattering state.

The reason that we do not observe a scattering state may be the same as for the

baryons: our set of interpolators lacks two meson states.

6.3.2 The axial vector meson b1, JPC=1+−

In the axial vector meson channel b1 (JPC = 1+−) we only could fit the ground state

and did not get any signal for an excitation. Using interpolator 6 throughout all

sets, we get the masses plotted in Fig. 6.4. In this figure also the dominant decay

channel for the b1, the S wave state ωπ, is shown. The mass of the ω is estimated

by mω ≈ mρ. Since except for set C72 (which may be an incidentally statistical
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Figure 6.3: The mass of the vector meson ρ (JPC = 1−−) is plotted against m2
π

in physical units. The energy levels of the (theoretical) P wave scattering state ππ

are shown as crosses.
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Figure 6.4: The mass of the axial vector meson b1 (JPC = 1+−) is plotted against

m2
π in physical units. The energy levels of the (theoretical) S wave scattering state

ωπ are shown as crosses.
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Figure 6.5: The mass of the axial vector meson a1 (JPC = 1++) is plotted against

m2
π in physical units. The energy levels of the (theoretical) S wave scattering state

ρπ are shown as crosses.

effect) the mass of the scattering state lies below our measured results, we conclude

that the observed state is the b1 ground state. Another reason is, of course, that

we do not use two particle interpolators and thus the coupling to such a state is

quite weak. The final result for the chiral extrapolation slightly overestimates the

experimental data point.

6.3.3 The axial vector meson a1, JPC=1++

In the axial vector meson a1 channel with the quantum numbers JPC = 1++ we

could extract the ground state and the first excitation using the interpolators

State A50 A66 B60 B70 C64 C72 C77

GS 1++ 1 throughout

1E 1++ 1,4,13 4,13,15 1,2,13 1,2,13 1,2,13 1,2,4, 1,2,4

The ground state comes out with small statistical error bars (see Fig. 6.5). Com-

paring these results with the S wave scattering state ρπ, we cannot draw a reliable

conclusion of the particle content in this channel. Some of our measured results

lie straight on top of the corresponding ρπ energy level, while others are clearly

separated. Here, increasing statistics would be a great benefit to determine the
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Figure 6.6: The mass of the K meson (JP = 0−) is plotted against m2
π in physical

units.

state more precisely. Nevertheless, our chiral extrapolation of this state is in perfect

agreement with the PDG data.

The first excited state here only gives results with rather big statistical error

bars, but we finally get a result which still overlaps with experiment. However, in

both states the results are strongly depending on the chosen time range for the fit

of the eigenvalues. Hence, we are not able to draw definite conclusions about the

qualitative and quantitative results here.

6.4 Strange quark mesons with spin 0

6.4.1 The K, JP=0−

In the strange meson channel with JP = 0−, the K meson, we find for both,

the ground state (using interpolator 1) and the first excitation (using interpolators

1, 2, 8, 17), a very sharp signal with small statistical error bars, which extrapolates

very nicely to the experimental point (see Fig. 6.6). This result confirms once more

our choice for the strange quark mass parameter ms.
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Figure 6.7: The mass of the K∗
0 meson (JP = 0+) is plotted against m2

π in physical

units. The energy levels of the (theoretical) S wave scattering state Kπ are shown

as crosses. The resonance widths are depicted as magenta lines with end-arrows,

which are slightly shifted to clearly show their overlap.

6.4.2 The K∗

0
, JP=0+

Here, the situation is similar to the light JPC = 0++ a0 channel. The lowest state

listed by the PDG, obeying the quantum numbers of the K∗
0 meson, JP = 0+, is

a very broad resonance with a width of about 550 MeV at a mass of about 672

MeV: the K∗
0 (800) or κ. This state is not yet confirmed by the PDG. The least

controversial (and confirmed) state is the K∗
0 (1430), having a width of about 270

MeV. These two resonances overlap in their widths as one can see in Fig. 6.7. In

this figure we also show our results for the ground state energy level and the first

excitation, for which the following interpolators are used

State A50 A66 B60 B70 C64 C72 C77

GS 0+ 13 throughout

1E 0+ 10,12,13 4,10,12,13 — 4,10,12,13 — 10,12,13 4,10,12,13

For the sets B60 and C64 we are not able to extract a reliable signal for the first

excited state.

Although our ground state result in the chiral extrapolation has small errors and

hits the experimental point, we cannot exclude that we see the scattering S wave

state Kπ (crosses in Fig. 6.7).
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Figure 6.8: The mass of the K∗ meson (JP = 1−) is plotted against m2
π in physical

units. The energy levels of the (theoretical) P wave scattering state Kπ are shown

as crosses. The two resonance widths are depicted as magenta lines with end-arrows,

which are slightly shifted to clearly show their overlap.

The final chiral extrapolated result for the first excited state coincides with the

PDG data nicely. However, since we only include statistical errors we may underes-

timate the final error of our result and it could also be compatible with the K∗
0 (800)

resonance. Thus, without further investigation by, e.g., larger lattice volumes or cor-

relators with non-zero momentum, we cannot draw a unique conclusion concerning

the quality of the state, i.e., do we see a one or a two particle state, here.

6.5 Strange quark mesons with spin 1

6.5.1 The K∗, JP=1−

In the K∗ channel with JP = 1− we can observe a very clear ground state signal

and a quite reliable signal for the first excitation (see Fig. 6.8). The interpolators

used are

State A50 A66 B60 B70 C64 C72 C77

GS 1− 1,5,8 throughout

1E 1− 1,8,9 1,11,12 8,9,22 8,21,22 1,8,9 9,12,22 1,8,16
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Figure 6.9: The mass of the K1 meson (JP = 1+) is plotted against m2
π in physical

units.

The ground state extrapolates – in the chiral limit – straight to the experimental

data point (which again supports the chosen value for ms). However, the situation

is different for the first excitation. There, we still observe the same behavior as we

did in [53]: the final result matches the K∗(1680) resonance much better than the

K∗(1410) resonance (both shown in Fig. 6.8). Due to the same reasons as in the K∗
0

meson we cannot strictly assign our result to one of the two states: the resonances

are broad and overlap, and we may underestimate the error of our final result.

Finally, we want to mention one interesting point here. For extracting the ground

state we only take interpolators which have C ≈ −, since with this combination

we get the best result. In the first excited state we always use a combination of

interpolators with both C parities. The interesting observation now is, that in the

first excited state interpolators with C ≈ + only contribute very little. Thus, we

think that this channel is dominated from interpolators, which have C = − (in

the light meson sector). A reason may be, that interpolators with JPC = 1−+

correspond to exotic states, which do not exist within the quark model [105].

6.5.2 The K1, JP=1+

Here, in the strange JP = 1+ channel, i.e., the K1 meson, we can extract the two

lowest lying states with very small statistical error bars (see Fig. 6.9). For both
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Figure 6.10: L.h.s.: The mass of the K1 meson is plotted against m2
π in physical

units for using only interpolator 1 (C ≈ +, black) or interpolator 6 (C ≈ −, red).

R.h.s.: The mass of the K1 meson is plotted against m2
π in physical units using

interpolators 1, 6, 17.

states we use the same interpolator combination, namely 1, 6, 17. The results in the

chiral limit seem to be compatible with the K1(1270) and the K1(1400) states, both

confirmed by the PDG.

Compared to the results from the K∗ channel, the situation concerning the con-

tribution from different interpolators is much clearer here. The two possible “sub-

groups” of interpolators (C ≈ − and C ≈ +) do exist within the quark model (in

the case of mass degenerate quarks). Thus, we can try to include only interpolators

of one of these two branches. The result for this approach can be seen in Fig. 6.10.

On the left-hand side we show the results for the case, where only interpolator 1

(lower state) or only interpolator 6 (upper state) is used in the variational basis. The

results in the chiral limit coincide (within error bars) with the results from using

interpolators 1, 6, 17 simultaneously, which is for direct comparison again plotted on

the right-hand side of Fig. 6.10. Since interpolators 1 and 6 obey C = + and C = −
(for mass degenerate quarks), respectively, we conclude that the ground state of the

K1 meson is dominated by the JPC = 1++ interpolators, whereas the first excitation

is dominated by JPC = 1+− interpolators (within our range of mπ). The behavior

of the eigenvectors also confirms this picture.
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Figure 6.11: The mass of the φ meson (JPC = 1−−) is plotted against m2
π in

physical units. The energy levels of the (theoretical) P wave scattering state KK

are shown as crosses.

6.6 The φ meson

In this section we want to confirm the chosen values for the strange quark mass

parameter ms, which is discussed in Sec. 5.4. Therefore we analyze the φ meson.

The decay modes on this channel indicate, that it is built from a strange and an anti-

strange quark, ss. It shares the same JPC quantum numbers as the vector meson ρ,

thus we can use the interpolator basis from the ρ channel in the variational method.

However, we here neglect disconnected diagrams and the justification to use this

meson channel only originates from the decay channels of the φ meson. Of course,

we have to analyze the ρ meson for partially quenched quark mass values, i.e., for

the corresponding value to obtain the partially quenched strange parameters. The

result of this procedure can be found in Fig. 6.11.

The ground state can be extracted with very small statistical errors and matches

the experimental data point. This consistency validates again the process and out-

come of setting the strange quark mass parameter ms. Here, we seem to see a bound

state, since the P wave scattering state KK does not match our data points.

For the first excitation the result for the chiral fit deviates slightly from the

PDG data point. A reasons may be too small statistics and thus weak signals in the

effective mass plateaus and noisy data in general.



Chapter 7

Low energy parameters

7.1 Preparing the ground

7.1.1 Renormalization

In Chap. 2 we introduced the lattice as a regulator to be able to quantize the theory.

However, to complete the process of relating measured quantities to experimental

values, we (mostly) have to renormalize these quantities. Masses, for example, do

not have to be renormalized. This renormalization process depends, of course, on

the type of regulator and the action used. One can distinguish between multiplica-

tive and additive renormalization. The most prominent continuum renormalization

scheme is the modified minimal subtraction (MS) scheme. From now we denote

renormalized quantities with a superscript (r).

A multiplicative renormalization applies to, e.g., the pseudoscalar interpolator,

the axial vector current or the vector current,

ZPP = P (r) , ZAA = A(r) , ZV V = V (r) . (7.1)

Also the quark condensate or the quark mass renormalizes multiplicatively,

ZS〈uu+ dd〉 = 〈uu+ dd〉(r) , Zmm = m(r) . (7.2)

An additive renormalization constant is needed for the quark mass if the Dirac

operator used is not chirally symmetric. The extra term is called residual mass,

m = mbare +mres.

7.1.2 Normalization of smeared interpolators

All relations and identities we apply here in our lattice simulation originate from

a continuum formulation of the theory. There, all objects, like interpolating fields,

are point-like quantities. Thus, we have to establish a relation between the different

renormalization/regularization schemes. After normalization of the fields in our

theory we also have to guarantee to compare to the required point-like continuum
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Figure 7.1: The evolution of some field after canceling smearing effects (cX,s) and

renormalization (ZX).

objects. Since we often use smeared quark fields, we introduce a factor cX,s, which

accommodates for the relation of an interpolator with smearing type s, Xs, to its

point-like counterpart Xp. We define this factor by

cX,s =

〈
0 |Xp(t)Ys(0)| 0

〉
〈
0 |Xs(t)Ys(0)| 0

〉 , (7.3)

Of course, the source interpolator Y can be any interpolator coupling to the same

channel as X. The effect of the smearing of Y cancels in that fraction. To finally

get rid of the influence of the smearing each smeared interpolator Xs must come

with a factor cX,s.

In Fig. 7.1 we give a more qualitative picture of these two processes. One starts

with some interpolating field describing, say, some quark, defined on our lattice (left

picture). After normalization (middle picture) we can compare to physical (point-

like) fields like in, e.g., the MS scheme. The last step is to get rid of “lattice effects”

by renormalization (right picture).

7.1.3 Ward identities

From the fact that the partition function Z is in general invariant under a transfor-

mation of variables,

Z =
∫

D[ψ,ψ] D[U ] e−S[ψ,ψ,U ] =
∫

D[ψ′, ψ
′
] D[U ′] e−S[ψ′,ψ

′
,U ′] , (7.4)

one can derive several Ward identities. For more details and examples see, e.g., [11].

One important identity is the axial Ward identity (AWI) which is given by

∂µA
a
µ =

1

2
ψ [m, τa]+ ψ , (7.5)

where m is the mass matrix in flavor space and τa is a Pauli matrix. In case of

Nf = 2 and degenerate quark masses (m = diag(m,m)) Eq. (7.5) turns into

∂µA
a(r)
µ = 2m(r) P a(r) . (7.6)
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This relation will be used in the following sections.

7.2 The axial Ward identity mass

Evaluating Eq. (7.6) between the vacuum and a pion field, we obtain a relation for

determining the renormalized quark mass,

〈0|∂µAa(r)
µ |π〉 ∼ 2m(r) 〈0|P a(r)|π〉 . (7.7)

In our case (Euclidean formulation) this relation only holds asymptotically, i.e., for

large times t, where a plateau can be identified (symbol ∼). For the pion field π

one takes some operator X which creates a pion from the vacuum, X|0〉 = |π〉.
We finally end up with the following equation to determine the renormalized quark

mass,

2m(r) ∼ cA
cP

〈0|∂tA(r)
4 (p = 0, t) X(r)(0)|0〉

〈0|P (r)(p = 0, t) X(r)(0)|0〉 , (7.8)

where all interpolators are projected to zero spatial momentum p = 0. For X

an interpolator coupling to the quantum numbers of the pion must be used; we

take P , because with this choice the plateaus are most stable. If one neglects the

renormalization constants ZA, ZP the ratio (7.8) is called the AWI-mass mAWI. It

holds

m(r) =
ZA
ZP

mAWI . (7.9)

The detailed pion interpolators are

P = d γ5 u , (7.10)

A4 = d γt γ5 u , (7.11)

where γt is the Dirac matrix in time-direction. Comparing to Tab. B.3, we can choose

interpolator 1, 2, 4 for P and 5, 6, 8 for A4 (of course, both interpolators should obey

the same smearing for the two quark fields). The time-derivative in Eq. (7.8) is done

with a local 3-point fit, involving values at (t − 1, t, t + 1). Therefrom half-integer

values are avoided. For the functional behavior we assume a cosh-form instead of

one single exponential for the correlators.

From Eq. (7.6) another important relation can be derived,

F 2
π m

2
π = −Nf m

(r) Σ(r) , (7.12)

where Fπ is the pion decay constant (see Sec. 7.3) and Σ is the quark conden-

sate. This relation was established in a pioneering paper [106] and is known as the
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Figure 7.2: We plot m2
π against the unrenormalized quark mass mAWI for each set

of gauge configurations. The black line is a linear fit to the data and the error of

the fit is shown as gray band around this line.

Gell-Mann–Oakes–Renner (GMOR) relation. This paper paved the way to a new

approach in quantum field theory, namely chiral perturbation theory [90, 91, 92].

For a nice overview see also [107] and references therein.

In Fig. 7.2 we show the dependence of m2
π on the AWI-mass. We perform a

linear fit of the data, therefrom it can be seen that the expected behavior (cf. Eq.

(7.12)) is nicely fulfilled and the data points are lying within the estimated (gray)

error band.

7.3 The pion decay constant

The pion decay constant describes the weak decay of the pseudoscalar meson π. One

uses again Ward identities to obtain a defining equation for Fπ, for details we want

to refer the reader to standard text books. In our simulation we use two different

relations from which we can extract the value of Fπ. We then can compare the

different results and thus have a cross-check for the setup.

The first identity is given by

c2
A Z

2
A 〈A4(p = 0, t)A4(0)〉 ∼ mπ F

2
π e

−mπt . (7.13)
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Figure 7.3: The pion decay constant Fπ is plotted against m2
π (all in dimensionless

units) for each set of gauge configurations. The black line is a fit of the data and

the estimated errors are shown as gray envelope around that line.

The other possibility is to employ

c2
P Z

2
P 〈P (p = 0, t)P (0)〉 ∼ m3

π F
2
π

4m(r)2
e−mπt . (7.14)

In both cases one performs a fit to the given exponential behavior and can then

calculate Fπ from the fitted coefficient in front of the exponential. From Eq. (7.13)

we get

Fπ = cA ZA

√
coeff.

mπ
, (7.15)

and (7.14) gives

Fπ = 2m(r) cP ZP

√
coeff.

m3
π

= 2mAWI cP ZA

√
coeff.

m3
π

. (7.16)

The values of both methods agree, which validates our setup to be correct.

The dependence of the pion decay constant on the quark mass can be described

by chiral perturbation theory. Up to 1-loop order we find [90]

Fπ = Fπ,0 −m
2 Σ0

16π2F 3
π,0

ln

(
m

2 Σ0

Λ2
4F

2
π,0

)
. (7.17)
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Figure 7.4: Same as Fig. 7.3, now for the kaon decay constant FK .

Here, Fπ,0 and Σ0 refer to the pion decay constant and the quark condensate in

the chiral limit m → 0 and Λ4 is some low energy constant. The corresponding

expressions including the 2-loop order can be found in [108].

Since the quark mass is proportional to the pion mass squared (see Eq. (7.12)),

we also know the relation between Fπ and m2
π. Thus, we can transform Eq. (7.17)

into an equation in which Fπ only depends on m2
π. Such an expression can be fitted

with a two-parameter fit, figuring out the values for Fπ,0 and Λ4.

In Fig. 7.3 we plot the value of Fπ against m2
π (all in dimensionless units) for

each set of gauge configurations. The black line is a function of the form (7.17) and

the fit errors are shown as gray envelope around. One can see, that our results are

described very well by the assumed behavior and are all lying within the estimated

error.

7.4 The kaon decay constant

As there also exist pseudoscalar mesons which do not consist of light quarks only,

but are built from a light and a strange quark, we can use the apparatus developed

in Sec. 7.3 to determine the decay constant of the lightest of these mesons, the kaon,

too. We can apply the equations from above and thus extract the values for each set

of gauge configurations. In Fig. 7.4 FK plotted against m2
π. Also like for the pion,

the data can be nicely fitted to the form expected from chiral perturbation theory
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Figure 7.5: The ratio of FK/Fπ is plotted against m2
π (in dimensionless units)

for each set of gauge configurations. The black line is a fit of the data using the

relevant expressions for numerator and denominator. The magenta cross indicates

the experimental value [9].

and all data points are located within the error band.

To draw a connection to the experiment we compute the ratio of the two decay

constants, since such a quantity does no longer depend on the scale a. The values

are seen in Fig. 7.5. For the ratio FK/Fπ the experimental value is determined as

[9]

FK/Fπ = 1.197 ± 0.009 (7.18)

In Fig. 7.5 we show that at a value for the abscissa, where we assumed a lattice

spacing of 0.135 fm (average of our values for the mass independent scheme) and a

physical pion mass of 139.57 MeV [9]. The extrapolation of our data to that point

gives

FK/Fπ = 1.199 ± 0.043 , (7.19)

which fully covers the experimental range.





Chapter 8

The angular momentum content of

the vector meson

8.1 Hadron decomposition

In a quantum field theory the description of the composition of a hadronic state is

a quite artful issue. Since the concept of a wave function and a complete basis of

states has a sound definition in non-relativistic approaches only, one suffers from the

absence of a proper definition for a hadron beyond the ground state in a quantum

field theory. There the situation is such that a given hadron interpolator (with

definite quantum numbers) in principle couples to all states and thus the state

always has contributions from scattering states, i.e., a superposition of many particle

components. As a consequence, lattice QCD studies concerning hadrons mainly deal

with quantities like, e.g., spectroscopy, axial couplings, forms factors, etc. However,

to get some insight into the hadron composition, i.e., understanding the hadronic

structure from an ab initio calculation, is a tough project.

Of course, a huge amount of different Fock components are present in a hadron.

Thus, it is very demanding, if not impossible, to reconstruct a hadron on the lattice.

Fortunately, as we can learn from phenomenological data and modeling of hadrons,

only a few of the Fock components are the dominant ones. To get a more intelligible

picture of these leading components would be a great benefit for improving our

knowledge about the hadron structure.

Using the variational method (see Sec. 4.3) we can study the hadron wave func-

tion in lattice QCD. What we are interested in is the reconstruction of the leading

quark-antiquark component of low lying mesons. Therefore we need interpolators

that allow us to determine such a component in an unique way. Additionally, such

a set of interpolators must be complete with respect to the chiral basis.

In [109, 110] a classification according to the transformation properties with re-

spect to the SU(2)L×SU(2)R and U(1)A was done for all non-exotic interpolators in

the light meson sector. If no explicit excitation of the gluonic field with non-vacuum

quantum numbers is present, this basis is a complete one for a quark-antiquark sys-
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tem and we can investigate chiral symmetry breaking. We then can reconstruct the

decomposition for a given meson in terms of different representations of the chiral

group by diagonalizing the cross-correlation matrix Cij . The eigenvectors describe

the quark-antiquark content in terms of different chiral representations. This means

that chiral symmetry is broken if we observe components with different transforma-

tion properties in terms of SU(2)L × SU(2)R and U(1)A.

To establish a connection to the quark model [105], we can reconstruct the meson

composition in terms of the 2S+1LJ basis, where J = L+S are the standard angular

momenta. Although there is some kind of understanding that results of the quark

model are related to chiral symmetry breaking, an independent and gauge invariant

approach to answer this question is still missing. Thus, the composition of the

leading quark-antiquark component in terms of the 2S+1LJ basis in the infrared,

i. e., where the hadron mass is generated, would tell us to which degree the quark

model language is adequate for a given state.

We can roll out the decomposition of the leading quark-antiquark component in

the angular momentum basis. The 2S+1LJ angular momentum basis and the chiral

basis are both complete for a two particle system. They are connected by a uni-

tary transformation. It was shown in [111, 112] that each state of the chiral basis

can be uniquely represented in terms of the 2S+1LJ states. Then, diagonalizing the

cross-correlation matrix, built from interpolators with definite chiral transforma-

tion properties, one can obtain the partial wave decomposition of the leading Fock

component, using the unitary transformation from [111, 112].

This method can in principle be applied to any meson, here we use as an example

the vector meson ρ. First results of the application of this method, which involve

only the ground state ρ, can be found in [113, 114]. In [115, 116] results which

mainly focus on the first excitation of the vector meson, ρ′, were published.

8.2 Chiral classification and angular momentum basis

The classification of the quark-antiquark states and interpolators with respect to

the representations of SU(2)L × SU(2)R was done in [109, 110]. We are interested

in the quark-antiquark component of the ground state ρ meson and its first exci-

tation. There are two possible chiral representations (which we denote as R) that

are compatible with the quantum numbers of the ρ meson: R = (0, 1) ⊕ (1, 0) and

R = (1/2, 1/2)b. These representations have drastically different chiral transfor-

mation properties (see [109, 110] for details). Assuming that chiral symmetry is

not broken, then one has two independent states. The first state is |R; I JPC〉 =

|(0, 1) ⊕ (1, 0); 1 1−−〉 and can be created from the vacuum by the standard vector
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current

OV = q γi ~τ q . (8.1)

The other state is |R; I JPC〉 = |(1/2, 1/2)b; 1 1−−〉, which can be created by the

pseudotensor operator,

OT = q σ0i ~τ q . (8.2)

Here, I denotes the isospin and ~τ the vector of isospin Pauli matrices.

Chiral symmetry breaking in the state implies that the state should be a mix-

ture of both representations. If it is a superposition of both representations with

approximately equal weights, then chiral symmetry is maximally violated in this

state. If, otherwise, one of the representations strongly dominates over the other

representation, one could speak about effective chiral restoration in this state.

These chiral representations can be transferred into the 2S+1LJ basis, using the

unitary transformation [111, 112]

(
|(0, 1) ⊕ (1, 0); 1 1−−〉
|(1/2, 1/2)b; 1 1−−〉

)
= U ·

(
|1; 3S1〉
|1; 3D1〉

)
, (8.3)

where U is given by

U =



√

2
3

√
1
3√

1
3 −

√
2
3


 . (8.4)

Thus, using the interpolators OV and OT from Eqs. (8.1) and (8.2) for the diago-

nalization of the cross-correlation matrix, we are able to reconstruct the partial wave

content of the leading Fock component of the ρ meson, if this unitary transformation

is applied.

8.3 Reconstruction of the wave function

We briefly want to discuss how to analyze the decomposition of the ρ meson using

the variational method. The time propagation properties of the normalized physical

states |n〉 are given by

〈n(t)|m(0)〉 = δn,me
−Ent . (8.5)

However, the lattice interpolators Oi are typically not normalized and are projected

to zero spatial momentum.

The cross-correlation matrix Cij can be written as

Cij(t) =
〈
Oi(t) O

†
j(0)

〉
=
∑

n

a
(n)
i a

(n)∗
j e−Ent , (8.6)
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Figure 8.1: The fractions of |1; 3S1〉 and |1; 3D1〉 are plotted against aV /aT . Spe-

cial values, as discussed in Eq. (8.9), are indicated by dotted lines.

where the coefficients a(n)
i give us the overlap of the physical state |n〉 with the

lattice interpolator Oi,

a
(n)
i = 〈0|Oi|n〉 . (8.7)

The wave function of the state |n〉 would essentially be built from these coefficients if

the basis of interpolators {Oi} would be orthogonal. The two chiral representations

(0, 1) ⊕ (1, 0) and (1/2, 1/2)b form a complete and orthogonal basis (with respect to

the chiral group) for ρ mesons. Consequently, using the variational method we are

able to study the mixing of the two representations in both ρ and ρ′ states.

Following the lines of [113, 114], one can show that the ratio of couplings can be

written as (j is summed!)

a
(n)
i (t)

a
(n)
k (t)

=
Cij(t)u

(n)
j (t)

Ckj(t)u
(n)
j (t)

. (8.8)

The ratio of the vector to the pseudotensor coupling, a(n)
V /a

(n)
T , tells us something

about chiral symmetry-breaking in the states n = ρ, ρ′.

Finally we want to give a qualitative view on the ratio (8.8). Inverting Eqs. (8.3)

and (8.4) we can compute the |1; 3S1〉 and |1; 3D1〉 components of the analyzed state

from the ratio aV /aT . In Fig. 8.1 these components are plotted against the ratio.
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Three special cases are indicated by a dotted line, namely

aV
aT

= −3 − 2
√

2 =⇒ − 1√
2

|1; 3S1〉 − 1√
2

|1; 3D1〉 ,

aV
aT

= − 1√
2

=⇒ −|1; 3D1〉 , (8.9)

aV
aT

=
√

2 =⇒ |1; 3S1〉 .

In the first case the fractions of |1; 3S1〉 and |1; 3D1〉 are equal, for the other two

cases the state is a pure |1; 3D1〉 or |1; 3S1〉 state, respectively.

8.4 Defining the resolution scale

If we probe the hadron structure with local interpolators, then we study the hadron

decomposition at a scale, fixed by the lattice spacing a. For a reasonably small

a, this scale is close to the ultraviolet. However, we are interested in the hadron

content at infrared scales, where mass is generated. For this purpose we cannot

simply use a large a, because then the matching with the continuum QCD will be

lost due to lattice artifacts. Given a fixed, reasonably small, lattice spacing a, a

large infrared scale R can be achieved by gauge-invariant smearing of the point-like

interpolators. We smear the quark fields (sources) in spatial directions over the size

R in physical units, such that R/a ≫ 1. Then, even in the continuum limit a → 0

we probe the hadron content at the infrared scale fixed by R. Such a definition of

the resolution is similar to the experimental one, where an external probe is sensitive

only to quark fields (it is blind to gluonic fields) at a resolution that is determined

by the momentum transfer in spatial directions.

The smearing itself is done with the Jacobi smearing procedure discussed in Sec.

4.4. It creates an approximately Gaussian profile of the width 2R for each quark

field of the smeared interpolators.

8.5 Technical details and results

As already discussed above, we apply this apparatus only for the ρ meson. Since

this study was done in an earlier stage of this work, data is only available for three

sets of gauge configurations, namely sets A50, B60 and C77.

The cross-correlation matrix is built from four different interpolators. According
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Figure 8.2: The mass of the vector meson ρ, extracted using interpolators 1, 4, 5, 8

from Tab. B.5, is plotted against m2
π in physical units.

to the notation from Chap. 6 and Table B.5 from Appendix B, these are

O1 = un γk dn , (8.10)

O4 = uw γk dw , (8.11)

O5 = un γk γt dn , (8.12)

O8 = uw γk γt dw . (8.13)

Of course, the spatial directions k = 1, 2, 3 are averaged and γt is the Dirac matrix

in (Euclidean) time direction. The sources have an approximate width of 0.35 fm

(index n) and 0.67 fm (index w), as given in Tab. 4.1 in Sec. 4.4. Although we used

another interpolator combination to extract the masses of the ρ meson in Chap. 6,

we are also able to extract both the ground state mass and the mass of the first

excited state of the ρ meson, using this combination. A plot of these masses can be

found in Fig. 8.2.

In Fig. 8.3 we show the R-dependence of the ratio from Eq. (8.8), both for the

ground state ρ meson and its first excited state ρ′. This ratio of the vector to the

pseudotensor coupling to the states shows us their decomposition in terms of the

(0, 1) ⊕ (1, 0) and (1/2, 1/2)b representations. For the ground state at a resolution

scale of R ≈ 0.67 fm this ratio is approximately 1.2, i. e., we see a strong mixture of

the two representations in the wave function of the ground state ρ meson. Inverting
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Figure 8.3: The ratio aV /aT is plotted against the smearing width R for the data

sets A50, B60 and C77. Black circles represent the ground state and red squares the

first excitation. Dashed lines are drawn only to guide the eye.

the unitary transformation from Eq. (8.3) results in the fact that the vector meson

is predominantly a |1; 3S1〉 state with a tiny admixture of a |1; 3D1〉 wave (cf. Fig.

8.1). To be more precise, the state is 0.997 |1; 3S1〉 − 0.079 |1; 3D1〉. This result

is not changed qualitatively if we do an extrapolation to values of R much bigger

than our smearing widths [113, 114], which indicates that the ground state ρ(770)

is approximately a |1; 3S1〉 state – in agreement with the quark model.

However, the situation changes dramatically for the first excited state, ρ′ =

ρ(1450). There, a significant contribution comes from the (1/2, 1/2)b representation.

Of course we cannot perform a reliable continuation to the deep infrared scale, since

we only have two R values at hand. At such a scale the value of aV /aT will be

small, unclear if it obeys a positive or negative absolute value. Simulations using

sources with an approximate width of ≈ 0.85 fm are under way but the analysis is

not finished yet. Around that width we expect that the ratio vanishes.

The interpretation is as follows. From the conformal symmetry of QCD and

from renormalization group analysis one expects that the pseudotensor interpolator

decouples from the ρ meson. Thus, the ratio aV /aT must increase for small R. At

large R the ratio determines a degree of chiral symmetry breaking in the infrared

region, where mass is generated. In contrast to the ρ(770), such a breaking is

insignificant for the ρ(1450). The chiral decomposition of the ρ′ is dominated by
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only one of the chiral representations. This leads to an indication of a smooth

onset of effective chiral restoration. Since the dominating representation for the ρ′

is (1/2, 1/2)b, one predicts that in the same energy region there must exist a h1 (and

not an a1) meson. And in fact there is a state h1(1380) and no a1 state in the same

energy region [9].

The main conclusion is the following. In the ρ(770) meson chiral symmetry is

strongly broken, since this state is a strong mixture of (0, 1) ⊕ (1, 0) and (1/2, 1/2)b.

Consequently, its “would-be chiral partners” have a much larger mass: a1(1260) and

h1(1170). To each of these low lying states we cannot assign any chiral represen-

tation. For the ρ(1450) the contribution from (1/2, 1/2)b is much bigger than the

contribution of the other representation, and consequently its approximate chiral

partner is the h1(1380). The second excited ρ meson, the ρ(1700), should then

be dominated by the representation (0, 1) ⊕ (1, 0). This assumption is favored by

the existence of the a1(1640) state [9]. However, this a1(1640) meson can not be

motivated by the quark model [117].

Although we do not have the value of the ratio aV /aT for ρ(1450) at large R,

there is an indication that this value is small. Then we are able to give a qualitative

estimate for the angular momentum content of the ρ(1450) in the infrared. If the

ratio vanishes, the state would have the following partial wave content,

√
1

3
|1; 3S1〉 −

√
2

3
|1; 3D1〉 . (8.14)

This shows a significant contribution of the |1; 3D1〉 wave. Even if the ratio varies

slightly for large R, the qualitative result does not change. This result is inconsistent

with ρ′ to be a radial excitation of the ground state ρ meson, i. e., a |1; 3S1〉 state,

as predicted by the quark model [105].



Chapter 9

Conclusions and outlook

9.1 Summary of the technical details

We want to start this chapter by summarizing all technical details of the present

work. Seven sets of gauge configurations, all for a lattice size of 163 × 32 have

been created. They include two dynamical, mass degenerate light quarks and pion

masses ranging from 260 to 600 MeV. The lattice spacings vary from 0.135 to 0.158

fm (in the mass dependent scheme) or rather from 0.131 to 0.138 fm in the mass

independent scheme. We used the Lüscher-Weisz gauge action and the Chirally

Improved Dirac operator, including one level of stout link smearing, which is one

part of the definition of our Dirac operator. These configurations have been gen-

erated with the Hybrid Monte Carlo algorithm, using several improvements, such

as Hasenbusch mass preconditioning and a mixed precision inverter. In each set

we used 200 or 300 independent gauge configurations for the analyses. We think

that our implementation is safe concerning the development of exceptional configu-

rations. The mass parameter for the (partially quenched) strange quark was fixed

using the mass of the positive parity Ω baryon. The quark propagators are created

on Jacobi smeared or derivative smeared quarks sources, using three times HYP

smeared gauge configurations.

9.2 Results from hadron spectroscopy

9.2.1 Baryons

For the spectroscopy of baryons (and also mesons) we used the variational method.

Here, we worked with two different types of Jacobi smeared quark sources. Since for

most of the baryons we had multiple Dirac structures which we could employ, the

basis of interpolators for the variational method had a reasonable size. To guarantee

for the best comparability we have chosen the same combination of interpolators and

the same time range for the fit of the eigenvalues in each channel. An extrapolation

of our data to the physical pion mass was done using a linear fit in m2
π, motivated
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Figure 9.1: For each channel we plot the range of the baryon mass (as vertical red

line), obtained from the chiral fit of the different sets of gauge configurations. The

mean values of the experimental energy levels are shown as horizontal straight black

lines, states unconfirmed by the PDG are shown as horizontal dashed black lines.

In the case of the positive parity Ω a black circle indicates the experimental value,

since we use this data point as input. On the left panel the positive parity results

are shown and on the right panel the negative parity results can be found.

by chiral perturbation theory. A collection of the results of these fits can be found

in Fig. 9.1 for all baryon channels. For all particles considered we could extract the

ground state energy level with fairly small statistical errors; except for the negative

parity ∆ and Ω baryon, we also could get a signal for the first (or even second)

excitation.

Positive parity

In the positive parity sector we slightly overestimate (except for the Ξ) the value

for the ground states, but the obtained signals all have rather small statistical er-

rors. The extracted energy levels for the excitations exceed the experimental data

sometimes drastically. However, in the Ξ or the Ω channel we could get signals for

states, which are not listed by the PDG. We did not see an indication for the first

excited nucleon, the Roper resonance: our signal is much higher.
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There may be various reasons for the high values we observe. First of all, this

can be a finite volume effect, i.e., the particles could be squeezed due to the limited

spatial lattice volumes we use. Another point, which of course cannot be neglected, is

the limited statistics we deal with. The plateaus in the effective mass are sometimes

short and rather noisy. Thus, improved statistics could shed a bit more light on

some situations. The third important point concerns the interpolator basis we have

at hand, it lacks two particle interpolators. Hence, we often are not able to draw a

distinct conclusion about the particle content of the analyzed channel, i.e., it may

be possible that we see a scattering instead of a bound state.

Negative parity

Except for the Σ, we have underestimated the ground state signals for the negative

parity baryons compared to the PDG data. In most of the channels we encountered

the same circumstances as for the positive parity, a reliable identification whether

a bound or scattering state is observed was not possible. The first excitation of the

nucleon is also below the experimental value. In the case of the Σ our signal of the

first excitation matched the experimental value and the existence of the Σ(2000).

For the Ξ and Ω baryons up to now no state confirmed by the PDG exists. We

could, however, get signals with reasonable errors in these cases.

9.2.2 Mesons

To obtain the results for the meson mass spectrum we used, in addition to the Jacobi

smeared sources, also derivative smeared quark sources. We analyzed spin 0 and spin

1 mesons, both in the light and the light/strange sector. As for the baryons, we tried

to find an overall combination of interpolators and time range, which gives rise to

a fair signal for each set. Unfortunately this was not possible everywhere. A linear

fit in m2
π of the final data was performed to get the values presented in Fig. 9.2.

In general, the expected spectrum was nicely reproduced and except for the tensor

meson b1 the ground state and the first excitation could be measured.

Mesons built from light quarks

Five different mesons, built from only up and down quarks, were analyzed in this

work. We do not discuss the ground state of the pseudoscalar meson π, since these

masses served as scale for our plots of hadron masses. The other ground state signals

matched the PDG data very well, only the mass of the b1 was overestimated by about

10%. The energy levels of the first excited states were also compatible within two
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Figure 9.2: For each channel we plot the range of the meson mass (as vertical red

line), obtained from the chiral fit of the different sets of gauge configurations. The

mean values of the experimental energy levels are shown as horizontal black lines.

Grey bars indicate the full width of the corresponding resonance. On the left panel

the mesons consisting of only light quarks are shown, while on the right panel we

show mesons built from one light and one strange quark.

standard deviations.

Mesons including strange quarks

Here, we mostly found excellent agreement of our data for the ground states with the

experimental values. This fact strengthened our choice of the strange quark mass

parameter. In the K∗
0 and the K∗ channels the assignment of states to a definite

channel was not really possible, since these particles are broad resonances. The

values of the first excited states were also fully compatible with the experimental

values. For the case of the K1 meson we could show that different energy levels are

dominated by interpolators with different C parity, although this quantum number,

strictly speaking, does hold only for mass degenerate quarks.
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9.3 Results for low energy parameters

With our sets of gauge configurations we also analyzed low energy parameters. From

the axial Ward identity we could obtain a relation for the (unrenormalized) quark

mass, the AWI-mass mAWI. Additionally we could check the relation between the

quark mass and the pion mass, the famous Gell-Mann–Oakes–Renner relation. We

found the expected linear behavior to be fulfilled very nicely.

The pion and kaon decay constants also have been investigated. There, we found

very reasonable results for the fits of our data with a formula motivated by chiral

perturbation theory. However, we did not include renormalization constants in our

calculations. The (scale independent) ratio of these two decay constants perfectly

matched the experimental value.

9.4 Results from angular momentum analysis of the

vector meson

For the gauge configuration sets A50, B60 and C77 we did an analysis of the de-

composition, concerning the dominant quark-antiquark components, of the vector

meson ρ. More precisely, we analyzed the coupling of the ρ meson to interpolators

with different chiral transformation properties. After application of a unitary trans-

formation, we could get the decomposition in terms of the angular momentum basis,

i.e., the 2S+1LJ basis. From the quark model it is known that both, the ground state

ρ(770) meson and its first excitation ρ(1450), are pure |1; 3S1〉 states. The results

we have obtained could confirm the situation for the ground state but gave a con-

tradictory picture for the first excitation, where we expect the major contribution

from the |1; 3D1〉 state.

9.5 Outlook

Of course, as for nearly every scientific task, after finishing the work, a lot of possible

improvements come into ones mind. Let us shortly mention some points, which may

help to get a clearer picture in some cases.

Due to limited computational power we are forced to work with small and rather

coarse lattices. Especially for the hadron mass spectrum we would need bigger

lattice volumes with a finer lattice spacing to be able to get a higher resolution, which

means particularly longer effective mass plateaus with less fluctuation. Additionally,

increasing the statistics (preferably for the sets A66 and B70) can help to identify
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effects which may be hidden on the limited number of available configurations. We

then could draw more definite conclusions concerning the quality of the state, i.e.,

do we observe a scattering or a bound state. Also the availability of correlation

functions with non-zero momentum helps to reliably identify a scattering state.

Some of these tasks are already under way. We will produce 150 independent

gauge field configurations with the same parameters as sets A66 and C77, but for

a lattice size of 243 × 48. For set C77 we will create 600 independent gauge field

configurations for a small lattice size of 123 × 24. These new sets can then be used

to analyze finite volume effects for our approach.



Appendix A

Parameters of DCI

Coeff. number Name Value Path shape γ Multiplicity

1 s1 1.481599252 [ ] 1 1

2 s2 −0.05218251439 [i] 1 8

3 s3 −0.01473643847 [i, j] 1 48

5 s5 −0.002186103421 [i, j, k] 1 192

6 s6 0.002133989696 [i, i, j] 1 96

8 s8 −0.003997001821 [i, j,−i] 1 48

10 s10 −0.0004951673735 [i, j, k, l] 1 384

11 s11 −0.0009836500799 [i, j,−i, k] 1 384

13 s13 0.007529838581 [i, j,−i,−j] 1 48

14 v1 0.1972229309 [i] γi 8

15 v2 0.008252157565 [i, j] γi 96

17 v4 0.005113056314 [i, j, k] γi 384

18 v5 0.001736609425 [j, i, k] γi 192

32 t1 −0.08792744664 [i, j] γiγν 48

33 t2 −0.002553055577 [i, j, k] γiγj 384

34 t3 0.002093792069 [i, k, j] γiγj 192

36 t5 −0.005567377075 [i, j,−i] γiγj 48

46 t15 −0.003427310798 [j, i,−j,−i] γiγj 48

51 p1 −0.008184103136 [i, j, k, l] γ5 384

Table A.1: Coefficients for the CI fermion action used in this simulation. The path

shapes are given symbolically, e.g., [i, j] stands for a path in i-direction and then

in j-direction (i 6= j). The γ-matrices (fifth column) are permuted as described in

more detail in [17].
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Appendix B

Interpolators

The baryon interpolators we use are the following:

• N

O
(i)
N = ǫabc Γ1 ua

(
uTb Γ2 dc − dTb Γ2 uc

)
(B.1)

• ∆k, k = 1, 2, 3

O∆ = ǫabc ua
(
uTb C γk uc

)
(B.2)

• Σ

O
(i)
Σ = ǫabc Γ1 ua

(
uTb Γ2 sc − sTb Γ2 uc

)
(B.3)

• Ξ

O
(i)
Ξ = ǫabc Γ1 sa

(
sTb Γ2 uc − uTb Γ2 sc

)
(B.4)

• Ωk, k = 1, 2, 3

OΩ = ǫabc sa
(
sTb C γk sc

)
(B.5)

For N , Σ and Ξ we have three possible Dirac structures, for ∆ and Ω only one.

Details about the matrices Γi and the quark smearings in the interpolators can be

found in Tab. B.1 and Tab. B.2, respectively.

In the N and ∆ channels we omit interpolators, which are numerically very

similar to others and obtain a total of only 18 (for N) respectively 6 (for ∆) different

interpolators.

The charge conjugation matrix C is defined through

C γµC
−1 = −γT

µ (B.6)

and γt is the Dirac matrix in (Euclidean) time direction.

In all tables for meson interpolators (Tab. B.3 to Tab. B.6) the two quark fields

are labeled by a and b. The indices n, w and ∂i correspond to the smearings narrow,

wide and derivative, respectively. The γi is one of the spatial Dirac matrices. In case

of the light mesons, the quark fields can be both up or down quarks, in the strange

meson sector we use an up or down quark for field a and a strange quark for field b.

The last columns, where the C parity is given, are strictly speaking only valid for

light mesons, for strange mesons this quantum number only holds approximately.
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χ(i) Γ(i)
1 Γ(i)

2 Smearing #N #Σ or #Ξ

χ(1) 1 C γ5

(nn)n 1 1

(nn)w 2 2

(nw)n 3 3

(nw)w 4 4

(wn)n 5

(wn)w 6

(ww)n 5 7

(ww)w 6 8

χ(2) γ5 C

(nn)n 7 9

(nn)w 8 10

(nw)n 9 11

(nw)w 10 12

(wn)n 13

(wn)w 14

(ww)n 11 15

(ww)w 12 16

χ(3) ı1 C γt γ5

(nn)n 13 17

(nn)w 14 18

(nw)n 15 19

(nw)w 16 20

(wn)n 21

(wn)w 22

(ww)n 17 23

(ww)w 18 24

Table B.1: Interpolators for the N , Σ and Ξ channels. The Dirac structures χ(i),

the quark smearings and the corresponding interpolator numbers #X are given.
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smearing #∆, #Ω

(nn)n 1

(nn)w 2

(nw)n 3

(nw)w 4

(ww)n 5

(ww)w 6

Table B.2: Interpolators for the ∆ and Ω channels. The quark smearings and the

corresponding interpolator numbers #X are given.

#0− interpolator(s) C

1 anγ5bn +

2 anγ5bw + awγ5bn +

3 anγ5bw − awγ5bn −
4 awγ5bw +

5 anγtγ5bn +

6 anγtγ5bw + awγtγ5bn +

7 anγtγ5bw − awγtγ5bn −
8 awγtγ5bw +

9 a∂i
γiγ5bn + anγiγ5b∂i

+

10 a∂i
γiγ5bn − anγiγ5b∂i

−
11 a∂i

γiγ5bw + awγiγ5b∂i
+

12 a∂i
γiγ5bw − awγiγ5b∂i

−
13 a∂i

γiγtγ5bn + anγiγtγ5b∂i
−

14 a∂i
γiγtγ5bn − anγiγtγ5b∂i

+

15 a∂i
γiγtγ5bw + awγiγtγ5b∂i

−
16 a∂i

γiγtγ5bw − awγiγtγ5b∂i
+

17 a∂i
γ5b∂i

+

18 a∂i
γtγ5b∂i

+

Table B.3: Meson interpolators for JP = 0−. The first row shows the number,

the second shows the explicit form of the interpolator. If this is a sum of two

terms we omit the factor 1/2 for simplicity. In the last column the C parity is

given. Interpolators obeying the same Dirac structure, but with different quark field

smearings, are separated by dotted lines.
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#0+ interpolator(s) C

1 anbn +

2 anbw + awbn +

3 anbw − awbn −
4 awbw +

5 a∂i
γibn + anγib∂i

−
6 a∂i

γibn − anγib∂i
+

7 a∂i
γibw + awγib∂i

−
8 a∂i

γibw − awγib∂i
+

9 a∂i
γiγtbn + anγiγtb∂i

−
10 a∂i

γiγtbn − anγiγtb∂i
+

11 a∂i
γiγtbw + awγiγtb∂i

−
12 a∂i

γiγtbw − awγiγtb∂i
+

13 a∂i
b∂i

+

Table B.4: Same as Tab. B.3, now for JP = 0+.
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#1− interpolator(s) C

1 anγkbn −
2 anγkbw + awγkbn −
3 anγkbw − awγkbn +

4 awγkbw −
5 anγkγtbn −
6 anγkγtbw + awγkγtbn −
7 anγkγtbw − awγkγtbn +

8 awγkγtbw −
9 a∂k

bn + anb∂k
+

10 a∂k
bn − anb∂k

−
11 a∂k

bw + awb∂k
+

12 a∂k
bw − awb∂k

−
13 a∂k

γtbn + anγtb∂k
−

14 a∂k
γtbn − anγtb∂k

+

15 a∂k
γtbw + awγtb∂k

−
16 a∂k

γtbw − awγtb∂k
+

17 a∂i
γkb∂i

−
18 a∂i

γkγtb∂i
−

19 a∂k
ǫijkγjγ5bn + anǫijkγjγ5b∂k

+

20 a∂k
ǫijkγjγ5bn − anǫijkγjγ5b∂k

−
21 a∂k

ǫijkγjγ5bw + awǫijkγjγ5b∂k
+

22 a∂k
ǫijkγjγ5bw − awǫijkγjγ5b∂k

−
23 a∂k

ǫijkγjγtγ5bn + anǫijkγjγtγ5b∂k
−

24 a∂k
ǫijkγjγtγ5bn − anǫijkγjγtγ5b∂k

+

25 a∂k
ǫijkγjγtγ5bw + awǫijkγjγtγ5b∂k

−
26 a∂k

ǫijkγjγtγ5bw − awǫijkγjγtγ5b∂k
+

Table B.5: Same as Tab. B.3, now for JP = 1−.
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#1+ interpolator(s) C

1 anγkγ5bn +

2 anγkγ5bw + awγkγ5bn +

3 anγkγ5bw − awγkγ5bn −
4 awγkγ5bw +

5 a∂k
γ5bn + anγ5b∂k

+

6 a∂k
γ5bn − anγ5b∂k

−
7 a∂k

γ5bw + awγ5b∂k
+

8 a∂k
γ5bw − awγ5b∂k

−
9 a∂k

γtγ5bn + anγtγ5b∂k
+

10 a∂k
γtγ5bn − anγtγ5b∂k

−
11 a∂k

γtγ5bw + awγtγ5b∂k
+

12 a∂k
γtγ5bw − awγtγ5b∂k

−
13 a∂i

γkγ5b∂i
+

14 ǫijka∂k
γjbn + ǫijkanγjb∂k

−
15 ǫijka∂k

γjbn − ǫijkanγjb∂k
+

16 ǫijka∂k
γjbw + ǫijkawγjb∂k

−
17 ǫijka∂k

γjbw − ǫijkawγjb∂k
+

18 ǫijka∂k
γjγtbn + ǫijkanγjγtb∂k

−
19 ǫijka∂k

γjγtbn − ǫijkanγjγtb∂k
+

20 ǫijka∂k
γjγtbw + ǫijkawγjγtb∂k

−
21 ǫijka∂k

γjγtbw − ǫijkawγjγtb∂k
+

22 anγkγtγ5bn −
23 anγkγtγ5bw + awγkγtγ5bn −
24 anγkγtγ5bw − awγkγtγ5bn +

25 awγkγtγ5bw −
26 a∂i

γkγtγ5b∂i
−

Table B.6: Same as Tab. B.3, now for JP = 1+.
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