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Summary

Here, I present the essential results of my doctoral thesis, which was done in the field
of lattice QCD. This work can be seen as one of the cornerstones of a long-ranging
project, started already at the beginning of the year 2000. Since then, several groups,
associated in the Bern-Graz-Regensburg (BGR) collaboration, continuously worked
on that project.

In this report I will discuss results on various sectors of lattice QCD. Seven sets
of gauge field configurations with a lattice size of 163 x 32 and a spatial extent of
about 2.2 fm have been created; the pion masses are ranging from 602 MeV down to
257 MeV. The configurations include two mass degenerate dynamical light quarks;
the Liischer-Weisz gauge action and the Chirally Improved Dirac operator have been
used. In each set 200 or 300 uncorrelated configurations are available for analyses.

The results are located in three different fields. An analysis of low energy pa-
rameters was done, to be more precise, the axial Ward-identity mass and (the pion
and kaon) decay constants have been investigated. The experimentally accessible
value for the ratio of these decay constants is in reasonable agreement with the value
obtained here. The second area of research concerns the angular momentum decom-
position of the vector meson p. In our approach it could be shown that the first
excited state of the p meson is not a pure S wave state, which is contrary to the quark
model. The main focus of this work was based on hadron spectroscopy. This task
was done using the variational method. A broad spectrum of baryons and mesons
could be covered here. Also hadrons including strange quarks have been analyzed,
however, the strange quark being a partially quenched strange quark. Generally
speaking, the studied hadron channels compare favorably to the experimental val-
ues.

Finally, I want to mention all publication directly related to this doctoral thesis:

1. “The chiral and angular momentum content of the p-mesons in lat-
tice QCD”
L. Y. Glozman, C. B. Lang and M. Limmer
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2. “Some results on excited hadrons in 2-flavor QCD”
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Chapter 1

Introduction

As a part of the standard model, the theory of strong interactions, i.e., the the-
ory of particles carrying color charge, is described by Quantum Chromodynamics
(QCD). The basic components of QCD are quarks and gluons, which mediate the
underlying force. This force acts on two different scales. On one hand the strong
force is responsible for building protons or neutrons out of quarks, and on the other
hand it binds protons and neutrons into atomic nuclei. In general, quarks can form
mesons (built from a quark and an antiquark) or baryons (built from three quarks),
both being color neutral objects. The only well-established, non-perturbative theo-
retical approach to that field is given by lattice QCD. Within this method, QCD is
formulated on a discrete (Euclidean) space-time lattice. Thus, lattice QCD is math-
ematically well-defined, since the discreteness introduces a momentum cut off, which
regularizes the theory. We are therefore able to simulate QCD numerically using
(super)computers and obtain observables by application of methods from statistical
mechanics.

Already nowadays the ground state mass spectrum of hadrons obtained from
lattice QCD impressively agrees with experimental results — a good verification for
lattice QCD! However, a large number of excitations are established in experiments,
thus a theoretical understanding of these excitations is worthwhile. Also other parti-
cle properties, which cannot be accessed with perturbative methods, like low energy
parameters, are well-known from experiments. A deeper theoretical insight into
these fields can help to increase our knowledge drastically. Hence, the purpose of
this doctoral thesis is to study hadronic properties with this non-perturbative ab
initio approach.

The first formulation of lattice QCD, brought up by K. G. Wilson in 1974 [1],
faces two severe problem: it produces 15 additional (unphysical) fermions (called
doublers) and it does not respect chiral symmetry. However, Wilson could solve the
doubling problem, but the correct implementation of chiral symmetry was a long
standing problem. In 1981 it was partly solved by a no-go theorem by Nielson and
Ninomyia [2, B, 4]. They showed that it is not possible to have a theory which is
simultaneously local, chirally symmetric and free of doublers. Thus, a lattice version
of chiral symmetry was proposed (Ginsparg-Wilson equation), which recovers the
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continuum formulation in the right way. But only over two decades after Wilson’s
formulation H. Neuberger 1997 was able to find a formulation [5] which fulfills all
requirements.

In our approach we use the so-called Chirally Improved Dirac operator (Dcr)
to describe the fermions. It is a compromise, concerning computational resources
and the quality of results, between the Wilson action and Neuberger’s Overlap op-
erator. The D¢y only approximately fulfills the Ginsparg-Wilson equation, but one
reasonably can simulate small pion masses on rather coarse lattices. Since quenched
simulations using this type of Dirac operator have produced promising results, a
project to use the D¢y in a dynamical lattice QCD simulation has started already in
2003. The first task was setting up the code, which was done by former members of
our group. First results on smaller lattices have been published in [6] [7, 8]. In this
doctoral thesis we extend the working basis, i.e., more run sequences on bigger lat-
tices are analyzed in various aspects. The main results of these tasks are presented
here.

This thesis can be divided into two parts, the first one is containing all theoretical
ideas needed. It starts with Chap. 2] where we give a short introduction into the
field of lattice QCD. We present the continuum formulation of QCD and explain the
quantization process afterward. Wilson’s first formulation and, after a digression
concerning chiral symmetry, also actions with better chirality are discussed. This
chapter is closed with the issue of setting the scale of a simulation.

All topics related to the production of gauge fields can be found in Chap.
The gauge and fermion action we use are discussed, details about the Hybrid Monte
Carlo algorithm and the attempts to speed up the code are presented. Furthermore
we give details on autocorrelation and various parameters of our simulation.

Chap. @ contains the preparatory concepts for hadron spectroscopy. We outline
several spectroscopy techniques, especially the variational method, and explain the
concepts of quark field and link smearing. The idea of a mass independent scheme
for the lattice spacing is discussed and finally properties of scattering states are
presented.

The second part of the thesis deals with the obtained results. In Chaps. Bl and
all analyzed baryon and meson channels, including also hadrons with strange quarks,
are discussed. Low energy parameters, like the AWI mass of decay constants, can
be found in Chap.[ll In Chap. 8 we analyze the partial wave content of the vector
meson, using the techniques discussed before. Finally, we summarize all results and
give a short outlook in Chap. @



Chapter 2

Quantum Chromodynamics on a
lattice

2.1 Quantum Chromodynamics in the continuum

The continuum formulation of the Quantum Chromodynamics (QCD) action in 4-
dimensional Euclidean space-time is given by

Saoplé, B, Al = Seli, ¥, A + SclA] (2.1)
Ny

selw. 0.4 = Y [de @ D+ mD] 0@, 22
f=1

SalA] = i#TﬂEWF@]. (2.3)

Here, Sp and Sg represent the fermionic and the gauge part, respectively. 1,1
are Dirac spinors representing the quark fields and they are carrying a space-time
index x, a Dirac index @ = 1,...,4, a color index ¢ = 1,2,3 and a flavor index
f=1,...,Ny. Gluons enter via the gauge field A € su(3), which has space-time,
Lorentz (p) and color indices, but no flavor content. Wherever we will not cause
confusion, we will omit these indices and use matrix/vector notation. D, is called

a covariant derivative and is given by
Dy =0y +igAy (2.4)

with the coupling constant g. The mass matrix containing the different flavors is
represented by m) = diag(my, ma, ... ,me).
The field-strength tensor F),,, which appears in Sq, plays a special role. Since

Fly = 0,4, — 0,A, +i[Ay, A (2.5)

and the A, are non-abelian fields, Eq. (Z3]) leads to cubic and even quartic terms
in the gauge fields. These so-called self interactions give rise to the most eminent
feature of QCD, namely color confinement.

5
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Flavor Mass [MeV] Flavor Mass [GeV]

up (u) 1.5-3.3 charm (c) 1.16 — 1.34

down (d)  3.5—6.0 bottom (b)  4.13 — 4.37
strange (s) 70 — 130 top (1) 169.0 — 173.6

Table 2.1: The six quark flavors appearing in nature and their masses in the MS
scheme [9]. On the Lh.s. the three flavors of the light sector can be found (in units
of MeV), the heavy quark flavors are on the r.h.s. (in units of 10 MeV!).

Let us quickly discuss the flavor index f again. In principle, QCD would work
with any number of flavors. But in Nature there are only six quark flavors; they can
be split into two groups, the light and the heavy sector (see Tab. [ZT]). Especially
in lattice QCD one is restricted to less than six dynamical flavors and often 0, 2 or
2 4 1 flavors are used in the calculations.

2.2 Quantization with the Path Integral

Up to now, we have considered the continuum formulation of the theory. To be able
to quantize it, we use the Path Integral formulation, which goes back to Feynman
[10].
The generating functional, or in other words the partition function, for QCD is
given by
Z = / D, §] D[A] e~ Sacplv:#A] (2.6)

The integration has to be done for all possible field configurations of 1,4 and A.
Since we are using a FEuclidean instead of a Minkowski metric, no imaginary unit in
front of the action is present.

The expectation value of some function F' in the Path Integral formulation is

(F) = 5 [ Db, T DA Fly, 3, 4] e Saeolo AL, (27)

The main object, we will be interested in later on, are correlation functions of two
operators. These correlators are defined as

(020)04(0)) = 5 [ DI, ¥ DU sl 8, U] O1[w, 9, U] Seenliill - (a5)

Here, D[U] is called a Haar measure. Eq. is nothing but an expectation value of
two operators at a time distance ¢ in Hilbert space. The fields U will be introduced
and discussed later.
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With this tool at hand we will now be able to regularize QCD by using a finite
space-time grid, namely the lattice, which we call A. To evaluate the extremely
high-dimensional integrals from Eq. [27) we will use a Markov chain Monte-Carlo

simulation.

2.3 The first formulation by Wilson

Now we are able to write down a first formulation for QCD on a lattice. However,
a small piece of preparatory work is still needed.

2.3.1 Introduction of gauge fields

In 1974 K. G. Wilson was the first one who formulated QCD on the lattice [I]. With
that formulation he wanted to respect two important principles: the first one is the
gauge invariance of the theory and the second one is that the naive continuum limit,
i.e., the limit @ — 0, should turn into the continuum formulation of the theory.

If one now does a “straight forward” discretization of Eqs. (Z2) and ([Z3)), terms
will arise, which couple fermion fields at adjacent lattice sites, e.g., ¥(n)y(n + ),
where n 4+ i is the neighbor site of n in the positive p-direction. Such terms are not
gauge invariant. To resolve that problem we need to introduce link variables U, (n)
which connect the two lattice sites n and n + fi. Due to their properties under a
local gauge transformation they ensure the gauge invariance of Wilson’s theory. The
link variable U,(n) has an orientation p and points from the site n to n + fi. These
link variables should play the role of gauge transporters, known from the continuum
theory. To do so, we define

Uu(n) = exp (iaA,(n)) € SU(3) . (2.9)

Performing the continuum limit, it is easy to see that the link variables approximate
the gauge transporter up to order O(a) [L1J.

2.3.2 The Wilson gauge action

Since we have introduced the gauge links as the fundamental quantities on the
lattice, we now can construct gauge invariant objects. A prominent example of such
a gauge invariant object is the trace over a closed loop of link variables. Using these
objects, we can write the Wilson gauge action in the following way,

SalU] = 922 S Y Re tefl - Uy (n)] - (2.10)

n pu<v
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In this equation we used the smallest possible closed loop, the plaquette Uy,. It is

a product of four link variables,
Upw(n) = Up(n) Uy(n+ ) U—py(n+ p+2) U_p(n+ D) , (2.11)

where we used the definition U_,(n) = U):(n —f1) for U € SU(3). Mostly the inverse

gauge coupling [ is used instead of g, it is defined as
B=—. (2.12)

This formulation is often called naive, since it is an easy and straightforward dis-

cretization.

2.3.3 The doubling problem

If one “takes the easy way out”, a naive discretization is done for the action. To
be more precise, the derivative from Eq. (Z2) is simply replaced by a symmetric

difference, and one ends up with [I]

4 N .
— — U,(m)v(n+p)—U_,(n)Y(n—f
Sel0B,0] = at ()| 32 o, PR SO
(2.13)
Let us now have a closer look at that object. Considering the case of just one
massless quark-flavor for a free theory, i.e., all U,(n) = 1, we can derive an ana-
lytic expression for the Dirac matrix and its inverse, the quark propagator. The

propagator in momentum space is given by

D) — —ia™" Y2, Y sin(pua)
p)= a2 Zu sinQ(pua)

(2.14)

As in the continuum, this propagator should have a pole at p, = (0,0,0,0), which
describes the single fermion considered. However, a different situation is encountered
here. Eq. (2I4)) has additional poles in the Brillouin zone —7n/a < p, < 7/a at

s s ™ T T T
= (= = — =(———,— . 2.1
pl <a707070>7 p2 (07(1,070)7 7p15 (a7a7a7a> ( 5)

These 15 unphysical poles py,...,p;5 are called doublers.
This problem was solved by Wilson by introducing the so-called Wilson term.
This term is simply added to the Dirac operator. In momentum space the Wilson

term is

1A
- Z [1 — cos(pua)] - (2.16)

@
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This expression fulfills all conditions that we want. For components with p, = 0 it
vanishes, for components with p, = m/a it contributes a term 2/a. This term can
be understood as an extra mass term, which diverges in the limit ¢ — 0. Thus, the
doublers decouple from the theory.

To summarize the equations above, we write down the full Wilson Dirac operator
in position space,

4 1 +4
Dyg(rm) = (m+ ) B = 50 Y- (1= UVt (2.17)
a 2a =11

Here, we dropped all color, Dirac and flavor indices and only show the space-time
indices n and m. We also defined v_,, = —~, for all . Finally, we want to stress
one important property of the Wilson Dirac operator. The first term in Eq. (ZI7),
which consists of the quark mass and one part of the Wilson term, explicitly breaks
chiral symmetry (for a definition see Sec. 24), even for m = 0. And exactly this
is the most disadvantageous feature of the operator Dw. How to overcome that
problem is explained in more detail in the next section.

2.4 Chiral symmetry on the lattice

Since chiral symmetry and its breaking has enormous consequences for QCD (such
as very small pion masses or the absence of a mass degeneracy for parity partners of
baryons), a sound definition of QCD on the lattice should take care of this aspect.
The defining equation for a chirally symmetric Dirac operator in the continuum
reads
D~ys+vD=0. (2.18)

The Wilson Dirac operator proposed in Eq. (ZI7) violates this equation due to the
extra Wilson term, which was needed to remove the doublers from the theory. Thus,
one wants to find a lattice Dirac operator which is free of doublers and also respects
chiral symmetry. However, this cannot be simply solved by adding a term other
than the Wilson term. A fundamental theorem by Nielson and Ninomyia [2, 4 [3]
points out that a Dirac operator D, which is free of doublers, cannot simultaneously
fulfill the following conditions:

1. D is local,
2. D is translational invariant,

3. D is chirally symmetric (i.e., in the sense of (ZI8)),
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4. D(p) = iayup, + (’)(a2pi), where D(p) is the Fourier transform of D.

A solution to that problem was suggested by Ginsparg and Wilson [I2]. They
“weakened” the expression from (ZI8)) by simply replacing the right-hand side and
presented the famous “Ginsparg-Wilson” equation,

Dys+vD=aD~sD . (2.19)

The right-hand side vanishes for a — 0 and thus the continuum version of chiral
symmetry is recovered. Using this equation we are now able to implement chiral
symmetry on the lattice [13].

2.5 Fermions with better chirality

In the last section we have shown that using Eq. (ZI9) enables us to realize Dirac op-
erators, which show better chiral properties than the Wilson Dirac operator. These
Dirac operators can be divided into two classes, one of them fulfilling Eq. (ZI9) only
approximately and the other class, which fulfills Eq. (219) exactly. We now discuss
some examples of each class.

2.5.1 The fized-point operator

A Dirac operator, which fulfills Eq. (ZI9) only approximately, is the fixed-point oper-
ator [I4]. This operator uses an ansatz which is inspired from renormalization-group
techniques. The simulation should be carried out very close to the renormalized tra-
jectory, from which one expects a good scaling behavior. It can be shown [I5], that
the fixed-point Dirac operator satisfies the Ginsparg-Wilson equation. This con-
struction can be used to fix the free parameters of a general Dirac operator, and of
course there are infinitely many of these terms. However, for practical reasons one
has to truncate to some finite number of terms and thus the fixed-point fermions
fulfill Eq. (ZI9) only approximately.

2.5.2 The Chirally Improved operator

Another candidate of this class of Dirac operators is the Chirally Improved (CI)
Dirac operator [16, [I7]. To obtain this kind of Dirac operator one uses the most
general ansatz for D and plugs it into Eq. (ZI9). Then the resulting set of coupled
algebraic equations can be solved numerically. Since also here one has to truncate
the number of present terms, the CI operator is only an approximate solution of the
Ginsparg-Wilson equation. This type of operator is discussed in more detail in Sec.
B2 since for our simulation we only use this Dirac operator.
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2.5.3 Domain-wall fermions

A concept, which is related to Overlap fermions (discussed below), are the so-called
domain-wall fermions [I§]. In this approach one extends the Wilson fermions into
an auxiliary fifth dimension. In the limit on an infinite length for this additional di-
mension, the Overlap operator is approached. As usual, the extend of this dimension
has to be chosen finite.

2.5.4 The Overlap operator

The Overlap operator [3, [19] fulfills the Ginsparg-Wilson equation (ZI9) exactly.
For massless fermions it reads

Do =1+ v5sign[ysK] , (2.20)

where K is some kernel Dirac operator, free from doublers. The massive version of
the Overlap operator is given by

Do(m) =14+ m+ (1 —m)~yssign[ysK], me[0,1]. (2.21)

In most simulations the Wilson Dirac operator from Eq. (Z17) is used as the kernel
operator.

Although simulations using Overlap fermions are worthwhile, and some groups
are already running such simulations (see, e.g., [20, 21} 22, 23], 24] 25, 26] 27, 28]
29, 130}, 31]), the numerical costs are tremendous due to the necessary evaluation of
the matrix sign function in Eq. (Z20). Actually this function is well defined via the
spectral theorem,

sign[K| = sign[z Ak \k)(k]} = Z sign[Ag] |k) (k| . (2.22)
k k

For the typical sizes of the Dirac matrix used in lattice simulations a complete
diagonalization is numerically unaffordable, and thus not done. The alternative,
applied in most cases, is to utilize the relation

K K
K| VK2

The term 1/v/ K? is then approximated by either a polynomial in K2 or by a ratio of

sign[ K] (2.23)

polynomials. In such a calculation the convergence depends crucially on the eigen-
values of the kernel K. Thus, one may improve the convergence — and simultaneously
the computational costs — by choosing another kernel matrix.
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2.6 Determination of the scale

As in every lattice simulation, the output of the calculations are only dimensionless
numbers. To relate these numbers to physical quantities, like, e.g., masses, one has
to extract the value of the lattice constant a to be able to extract, for example, the
mass m from the outcoming result am.

To set this scale, several methods exist, however, we only discuss the strategy
we follow for our simulation. For other methods see, e.g., [32] 33] B34] 35, [36], 37].

For the determination of the lattice spacing we use the Sommer parameter [3§],
determined by the lattice potential, which is derived from Wilson loops W (r,t). For
improving the signal, the gauge configurations are smeared with hypercubic blocking
[39] with the parameters a; = 0.75, ag = 0.6 and ag = 0.3 (see Sec. EL.Hl).

We extract the static quark potential V(r) from linear fits to In W (r,t). The
form of the potential V'(r) is given by

Vir) = A+ g +or+CAV(r), (2.24)
AV(r) = m _ % . (2.25)

A discussion of the perturbative lattice Coulomb potential [1/7] and further details
can be found in [40] and references therein.
From the resulting potential and the condition

v (r)
dr

=165, (2.26)

r=rg

?"2

we obtain the Sommer parameter in lattice units as

ro = 1.65 + B _ T0,exp . (227)
V g a

The lattice spacing is then given by a = 7 exp/70. In our simulation we use the value

T0,exp = 0.48 fm. However, this value is not determined precisely from experiment,
and the values that are used in the literature vary approximately from ~ 0.45...0.50
fm. The reason for using rgexp = 0.48 fm is only based on intuitive arguments.

Thus, one always should keep in mind that, depending on the method and the
value used, a possible systematic error from determining the lattice spacing can even
exceed the statistical error, coming from the limited number of configurations, of
final results. The numbers we obtain on our sets of gauge configurations can be
found in Tab. Bdlin Sec.
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The Sommer scale was originally comprehended as a purely bosonic observable
and thought to be independent of any sea quarks. However, any lattice QCD cal-
culation including dynamical quarks has shown that the ratio ro/a does depend on
the quark mass amg, which is determined by the bare mass parameters m. A
strategy to avoid that is presented later in Sec. [0l since some preparatory work is
still to be done.






Chapter 3

Generating the gauge field
configurations

3.1 Liischer- Weisz gauge action

We now want to briefly discuss an alternative formulation of the gauge action,
namely the Liischer-Weisz gauge action [4I]. We use this formulation throughout,
because it was shown in [I7], that the gauge configurations produced with this kind
of action are much smoother compared to the Wilson gauge action.

The simplest gauge action one can consider is the Wilson gauge action, given in
Eq. ([ZI0), which only includes the plaquette of gauge links. A Taylor expansion
(i.e., the naive continuum limit a — 0) of this kind of action gives F},, F},, in leading
order, and the corrections are of the order of O(a?). To reduce these corrections,
one has to include loops longer than the plaquette. If two types of loops of length 6
are included, one ends up with the Liischer-Weisz gauge action [41], which is given
by

b1 B2 B3
Siw = = %:Retru — Uyl + 3 rZeRetr[l — U] + 3 %}Retr[l —Uwl, (3.1)

where the sums run over all plaquettes (pl), rectangulars (re) and paths along the
edges of a 3-cube, called twisted bent (tb) (see also Fig. Bl). In this equation 5y
is the independent gauge coupling, (s, 3 are determined from tadpole-improved
perturbation theory [42]. One additional parameter is needed to calculate these two

couplings, the assumed plaquette ug,

1 1/4
uy = <3Re tr(Upl)> . (3.2)
With g ard
og Uy
=— 3.3
3.06839 (3:3)
we get for §o, B3 the following expressions,
51 1+ 0.4805« B1
== —— = — 0.03325c . 3.4
ﬁQ U(Q) 20 ) /83 U% « ( )

15
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Figure 3.1: The three loops of gauge links included in the Liischer-Weisz gauge
action. Red: plaquette; magenta: rectangular; blue: twisted bent.

Finally we want to stress one point about the assumed plaquette. In lattice
simulations the value for wug should agree with the thermalized plaquette value.
Thus, one normally has to calculate ug self-consistently by adapting it from time to
time to the actual value and then thermalize again. In our simulations, however, we
fixed the value permanently to its initial value, since we want to use the same gauge
action for all sets of gauge configurations to ensure a better comparability between
the sets.

3.2 The Chirally Improved Dirac operator

As already stated in Sec. 25, we use the CI Dirac operator [I6} [I7] for the fermion
action in our simulation. Therefor, one makes the most general ansatz for the Dirac
operator,
16
Der=Y"To Y (U), (3.5)
a=1  pePq

which formulates it as a sum over all 16 elements I',, of the Clifford algebra, where
each element is multiplied with coefficients cé,a) (U), consisting of path ordered prod-
ucts of gauge links U. The number of coefficients is governed by respecting all lattice
symmetries and the ys-hermiticity.

This ansatz is then plugged into the Ginsparg-Wilson relation (Z19), which leads
to a set of coupled algebraic equations. In principle, a solution of this set of equations
can give rise to an exact solution of (ZI9), but only if one allows for infinitely many
terms. For practical reasons the lengths of the paths are truncated and thus one
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obtains an approximate solution. In our case, we allow for paths up to length 4,
which (except for one term) are all lying within the hypercube.

In our simulation the coefficients have been fixed for one set of bare parameters
and have then been used further for all our sets of gauge configurations (see [43], [40]
for details) to guarantee good comparability. Details about the coefficients are given
in App.[Al As a consequence, we now have an additive mass renormalization in each
set of configurations. CI fermions were used quite extensive within the Bern-Graz-
Regensburg (BGR) collaboration in quenched and dynamical simulations. Results

of that analyses can be found in [44], [45], 146, [47) (48, 49, 50, 511, 52 (3, [43], 54, (40, 6, [7].

3.3 Hybrid Monte Carlo algorithm

In Sec. it became clear that the only way to deal with integrals like Eq. ([Z7]) is to
use a Monte-Carlo simulation. In this section we want to discuss the algorithm we
use to perform the fermionic integral, it is a Hybrid Monte-Carlo (HMC) algorithm
[55]. The HMC algorithm seems to be most suitable for our goal.

Since one cannot calculate the fermion determinant directly, this problem can be
overcome by treating this determinant as an additional weight factor when produc-
ing the gauge field configurations. More precisely, the gauge fields are distributed

according to (in case of two dynamical quark flavors which we use in our case)
1
P(U) x e~ 56lUl det(D,,) det(Dy) . (3.6)

If the two quarks are mass degenerate (D, = Dy = D) and D is ~ys-hermitian,
the product of the two determinants is real and positive and can thus be really
interpreted as a weight factor.

Let us now say a few words about fermionic and bosonic Gaussian integrals. The
crucial concept, which is needed, is to introduce pseudofermion fields ¢ = (¢r, ¢5) €
C [56]. These pseudofermion fields are bosons with the same number of degrees of
freedom as the fermions. One can find a relation between the determinant and the
pseudofermion fields,

det(DID) = =N / D[¢r|D[pr] e ' P D)o (3.7)

With this relation we are now able to replace the integral over fermionic Grassmann
variables by an integral over bosonic variables. And such an integral can then be
calculated on a computer using the mentioned HMC algorithm.

For the HMC we need a generalization of the Hamiltonian evolution for a system
of classical mechanics in a fictitious HMC time to our system of gauge fields U,(n).
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For that purpose we introduce traceless hermitian matrices P,(n) € su(3), which
act as conjugate momenta for the gauge fields U, (n). We now can define the time
derivative of U,(n) as

Up(n) =i Py(n) Uu(n) . (3.8)

Then, a Hamiltonian H can be defined as
1 _
H=3Yt [Pu(n)?] + Sa + 6" (DTD) 1o . (3.9)
n,

The equation of motion for the conjugate momenta P is obtained via the relation

H =0,
H=> tr [Pu(n)PM(n)} + Sa + qu%(DTD)_lqb =0. (3.10)
N,

This equation results in
P=f(U,U,P), (3.11)

which gives the evolution equation in HMC time. The function f is called the fermion
force. Evaluating this force function for, e.g., Wilson quarks is not complicated, since
this type of quarks involve only one link field U,(n) connecting neighboring sites. In
our case, however, paths up to length four, coming from D¢y, have to be considered.
Independently from that, calculating the fermion force is the most costly part of the
simulation. A more detailed description of the procedure can be found in [57].
Having now all equations at hand, the whole procedure to update the gauge fields

looks as follows:

1. Pseudofermion fields: Generate the pseudofermion fields ¢ = D&, where € is
distributed according to e—¢'e,

2. Conjugate momenta: For the initial set of gauge fields {Uin;} generate a set
{Pui} according to e~ tr(Phy),

3. Evolution of fields: Evolve the gauge fields and conjugate momenta consistent
with their equations of motion to the final sets {Ug,} and {Ppy }-

4. Accept/Reject step: To correct for numerical errors close with an accept/re-
ject step, i.e., accept the new configuration with exp(—Sgn + Sini)-

The only thing still to be clarified is step 3. We need to find an integration scheme
for the equations of motion. Such an integration scheme should be area preserving
and reversible. At the same time it should keep the change in the action small, since
a big AS leads to a poor acceptance rate. One possibility for such an integration
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scheme is the leapfrog integration (also known as Stérmer-Verlet method), which we
use and briefly discuss now.

The fictitious time in which we evolve our system of fields, is called HMC time.
The HMC time separation (trajectory length) between two consecutive gauge config-
urations is denoted by T'. This interval is divided into N small time steps of length
7 via 7 =T/N. In all our simulations we used 7" = 1. One starts with initial gauge
fields Up and the conjugate momenta FPy. The next step is to evolve the conjugate
momenta with a half step,

-

Pi=Py—2f. (3.12)

Here, f is the fermion force defined in (B:IT]). Then the gauge fields and the conjugate

momenta are evolved alternately N — 1 times, i.e., k=1,..., N — 1, with a full step
in T,

U, = exp (ZTPk_%) Ui_1, (3.13)

Pk+% = Pkfé_Tf‘ (3,14)

The final steps for both fields are given by

Uy = exp (’L'TPN_%) Un_1, (3.15)
Py = PN%—%f. (3.16)

Then, of course, the final set of gauge fields {Uy} is identical to the set {Un}.

At that stage, it is clear why the third point of the procedure, the evolution of
the fields, is the most costly one. The fermion force f, and thus the inverse of DD,
has to be calculated N times. Logically, one should care for using a highly optimized
code — at least concerning that part. This task is discussed a bit more general now.

3.4 Speeding up the code

In this section we want to cover all concepts which are implemented to increase the
run-time of our code.

3.4.1 Alternative integration schemes

An alternative to the leapfrog scheme would be an Omelyan integrator [58] [59],
which was tested but not used for production runs, however. Let us denote the
evolution of the gauge field U or the conjugate momentum P by some time 7 with
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U(7) or P(7), respectively. The leapfrog integrator from above evolves the system
of fields according to

| P(r/2)U(7) P(7/2) ] v (3.17)

such that N7 is the length of the trajectory. The deviation from an exact solution
is of the order of O(72). This deviation, i.e., the coefficient in front of the O(7?)
term, is reduced by the Omelyan integrator. There, the order in evolving the fields
is

| POT)U(r/2) P((1 = 20)7) U(7/2) P(AT)}N . (3.18)

The tunable parameter A for this order has the optimal value at A = 0.193183 [59].

Finally we want to mention that also integrators using multiple time scales [60],
61] have been tested, but not used further. The reason is, that for our lattice size
we could not find any significant speeding up of the code. Thus we decided not to

change the code during the production runs.

3.4.2 Mass preconditioning

To be able to go to smaller quark masses, we utilize mass preconditioning (often
called “Hasenbusch trick”) [62]. The basic idea is to split the pseudofermion action
into two (or more) parts, separating the small and the large eigenvalues (forces) of
the Dirac matrix. I. e., the UV part of the spectrum is approximated by a fermion
matrix with a large quark mass, since this part of the spectrum depends only very
little on the quark mass. The splitting is achieved through the identity

1 1
D)y = T T
det(D'D) = det(M'M) det (MT D'D M) , (3.19)

where M is a fermion matrix with heavier quark mass. For details on the calculations
we refer to [57]. Only the key point will be presented here. The parameter myg,
which amounts to an additional mass, is deduced from an educated guess [57]. Using

Npr pseudofermions, the mass shift is given by

. 1/N;
| (CALPUN P 1< < Neg
mi) = : (3.20)
0 , @ = Npp

Here, Apin is the assumed smallest eigenvalue of the Dirac matrix.
In our case we always use two pseudofermions. Details on the assumed smallest
eigenvalues can be found in Tab. Bl on page
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Figure 3.2: The average number of conjugate gradient iterations needed is plotted
against the first leapfrog steps for several sets of gauge configurations. On the I h.s.
we plot this number for the heavier Hasenbusch fermion, the lighter (the one without
the additional mass shift) is found on the r.h.s

3.4.3 Developments on the conjugate gradient solver

As pointed out before, the most costly part in the HMC is the calculation of the
force. The main part of this task is to invert DD, i.e., solving a linear system,
which is done with the conjugate gradient method in our case. This has to be done
N times, i.e., for each time step 7. Since the right hand side is fixed during the
leapfrog integration, the fermion matrix is evolving smoothly in time. Hence, the
previous solutions can help us making a reasonable guess for the solution at any
given time. This method is called a chronological inverter [63]. In our case we
use 12 previous solutions. In Fig. B2 we show the numbers of needed conjugate
gradient steps, Ncg, for the two Hasenbusch fermions for several gauge configuration
sets. Omne can clearly see, that these numbers are significantly higher for the first
leapfrog steps, where no or only a few previous solutions are available. It is also
obvious, that in both cases a plateau is formed, beginning with iy = 6. Thus, we
could also take into account only 6 previous solutions, but the overhead caused by
the 6 additional matrix vector multiplications is negligible for the run-time of the
code. We want to stress that one has to take special care for the reversibility of the
integration algorithm when using this method.

In order to ensure reversibility in the molecular dynamics evolution one should
work with double precision accuracy. However, this has not as a consequence that
each inversion has to be done in double precision. In [64] a method was suggested,
which uses an elaborate combination of single and double precision arithmetics. The
system we want to solve is DY Dz = Az = b. The final accuracy is chosen as ¢ = 107
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and then the procedure reads:

1. Compute ry = b — Az in double precision.

2. If |rg] < e]b|, exit.

3. Solve ry = At} in single precision with accuracy e, with ¢; being the solution.
4. Set xp41 = ) + 1.

5. Goto 1.

To give a rough estimate, the reduction in run-time per gauge configuration was,
e.g., about 33% for set C77E|

3.5 Run parameters

We generated seven different sets of gauge configurations. The size of the lattice
in spatial direction is Ly = 16 and the temporal extend is twice the spatial one,
L; = 32. All input parameters, i.e., the gauge coupling (1, the assumed plaquette
ug, the bare mass parameter mgy and the assumed minimal eigenvalue Anj, can be
found in Tab. Bl We also show there the values of the lattice spacing a, the pion
mass m,, the AWI-mass mawr and the total number of analyzed configurations
Neon-

3.6 Autocorrelation

Having produced the gauge configurations, one has to analyze their autocorrelation,
since they are normally still highly correlated. Thus, we have to find a way to
decide (a) where we start our measurements, and (b) how many configurations we
skip between two measurements. Let us start with the former point.

We have two quantities at hand to decide how many gauge configurations we
skip until the first measurement, these are the plaquette value and the number

'Let me add here a personal comment. Some time ago I found an interesting paper [65]. The
key point of this work is the following. Due to Moore’s law the computer power doubles every 18
months. Thus, in some cases it can be more profitable to “slack” for some time before beginning
the calculations. And the “magic number” is 26 months. Each project lasting longer than these 26
months can be started with a delay, which increases with the project duration. So, what are my
conclusions out of that? Since this work took far more that 26 months (i.e., about 44 moths), it
would have been better to be the “lazy bum at the beach” for about 14 months and only then start
to work on all that ... But who would have paid me?
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Set (1 N mo Amin a [fm]  mg; [MeV] mawr [MeV]  Neont
A50 470 045 -0.050 0.015 0.150(1)  525(5) 40(1) 200
A66 4.70 0.45 -0.066 0.015 0.135(1) 250(8) 9(1) 200
B60 4.65 0.45 -0.060 0.010 0.150(1) 470(4) 31(1) 300
B70 4.65 0.45 -0.070 0.010 0.141(1) 296(6) 12(1) 200
C64 4.58 0.45 -0.064 0.010 0.158(1) 519(5) 37(1) 200
C72 458 045 -0.072 0.010 0.151(1)  419(4) 23(1) 200
C77 458 045 -0.077 0.010 0.145(1)  319(5) 14(1) 300

Table 3.1: Run parameters for the different sets of gauge configurations. Amin
is the assumed smallest eigenvalue of the Dirac matrix, which is needed in the
calculation of mpp in Eq. 820). a is the lattice spacing in Fermi, obtained with
the method described in Sec. [2Z6l For details on the pion mass m, (given here
in the mass dependent scheme, discussed in Sec. Hf]) see Sec. The AWI-mass
mawr Is outlined in Sec. [ZZ2 In the last column the total number of independent
configurations can be found.

of needed conjugate gradient iterations in the accept/reject step of the molecular
dynamics evolution, Ne.. On the left hand side of Fig. we show the first 300
plaquette values for the sets A50, B60 and C64. Sets A50 and B60 are the only ones
which were generated with a “cool” starting configuration, i.e., all U,(n) = 1. All
other sets were generated by taking an existing gauge configuration and changing
the values of 51 and mg smoothly to the new values, which then served as starting
configuration. One can clearly see, that sets A50 and B60 are equilibrated after
roughly O(100) configurations. Set C64 does not show such a behavior due to the
“partly equilibrated” starting configuration. On the right-hand side of Fig. [3.3] we
plot Ncg, which is the number of needed conjugate gradient steps for the lighter
Hasenbusch fermion in the accept/reject step, for the first 300 configurations and
the same behavior as for the plaquette can be seen. Therefrom we mostly decided
to skip the first 99 gauge configurations and start the measurement with the 100-th
configuration. The detailed numbers are given in Table

Now we know where to start the measurements. The next task will be to clarify
the second point: How many configurations will be skipped within two measure-
ments? A useful tool to answer this question is the integrated autocorrelation time
719 which is defined through

mt ’

mt -

i t (3.21)

l\D\»i
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Figure 3.3: For the sets A50, B60 and C64 we show on the I.h.s. the value for the
plaquette and on the r.h.s. the number of needed conjugate gradient steps in the
accept/reject step, Neg.
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Set  Ngip Ti[ftl ad] Ti[é\tfcg]
A50 99 293 391
A66 99  3.59 232
B60 114 2.85  3.94
B70 99  3.64 191
C64 99 2.81  2.08
C72 99 345 224

cr7 49  3.77  3.37

Table 3.2: For each set of gauge configurations we show the numbers of skipped
configurations and the integrated autocorrelation times for the plaquette values and

the number of needed conjugate gradient inversions, Ng.

serves as a quantity of the statistical efficiency of the observable O. T'l©] (t) is called

the autocorrelation function,
rl9(t) = ((O(to) — (0)) (O(to + ) = (O)) ) - (3.22)

For practical reasons, the sum in ([B21]) is truncated at some upper value tax,
which is in our case the point, where the autocorrelation data becomes to noisy.
This number gives a lower bound for the autocorrelation length. Therefrom, one
has a rough estimate how many configurations should at least be skipped between
two measurements. Of course, these numbers could be orders of magnitude higher if
other observables are analyzed. In Tab. B2l we show the numbers, obtained with Eq.
B21)), for our sets of gauge configurations. According to these numbers we decided
to analyze every fifth configuration in each set.

In Fig. B4 we plot, for all sets of gauge configurations, the pseudoscalar masses,
calculated for each configuration separately (see Chap. [0l for details). If our choice of
analyzing every fifth configuration is good enough, we should not see any significant
correlation effect in this plot — and this is indeed the case. The measured values
are nicely fluctuating around some central value (red lines), the peaks are a pure
statistical effect (and are not included to get the average value). These peaks are
due to the fact, that we still calculate the pion mass for one single configuration,
which is, of course, a strongly fluctuating quantity, especially for lower masses like
in the sets A66, B70 and C77.
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Figure 3.4: For each set of gauge configurations the pseudoscalar mass (in dimen-
sionless units) is plotted for each single configuration. The red lines denote the
averaged values (calculated without the peaks).
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Set CPUh N -max (T‘[plaq] T[Ncg])

int int
A50 66.5 2129
A66  293.2 6818
B60 76.1 2743
B70  166.1 6000
C64 67.3 1566
c72  101.2 3082
Ccrr 1521 5518

Table 3.3: For each set of gauge configurations we give details about the number
of CPU hours we need to generate one gauge configuration (second column) and the
product of the averaged number of conjugate gradient steps with the maximum of

the integrated autocorrelation times (third column).

3.7 Numerical costs

From the previous section we learned that not each generated configuration should
be used in the final analysis. This fact, of course, also increases the computational
costs for producing independent configurations. Thus, we now outline some details
concerning this topic.

In [66] an empirical formula for the costs of dynamical HMC simulations can be
found, it reads ;

exLia” <m”> . (3.23)
mp

Since we only use lattices of size 163 x 32, the factor coming from the volume, L°,
can be ignored in our case. In this formula also the autocorrelation time 7y, enters
via the quark mass and the costs are given in units of Tflop years, a quantity which
we do not have at hand in our case. Hence, we take as the “costs” of our simulation
the product of the averaged numbers of conjugate gradient steps needed in the
accept/reject step, Neg, with the maximum of the two available autocorrelation
times from Sec. In Table we give the details on the CPU hours (CPUh) we
need to generate one individual gauge field configuration and the mentioned product
for the costs.

We now want to check if (at least the qualitative behavior of) Eq. (8.:23)) is fulfilled
here. Therefore, we plot in Fig. the costs against the lattice spacing (left plot)
and against the ratio m,/m, (right plot). One can recognize, that the dependence

on the lattice spacing can be reproduced qualitatively, although we are not able to
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Figure 3.5: L.h.s.: For each set of gauge configurations we plot the numerical costs
as a function of the lattice spacing a. R.h.s.: For each set of gauge configurations
we plot the numerical costs as a function of the mass ratio m-/m,.

get the right exponent for a. For the dependence on the mass ratio, however, the
situation is rather different from the expected behavior. This may be due to the
(too) simple quantity which we take as the numerical costs and the fact that we
ignore the effect coming from the lattice spacing.

3.8 The change in the Hamiltonian

Since we introduced the conjugate momenta P, we describe a microcanonical ensem-
ble of a classical system with a Hamiltonian H. For exact solutions of the equations
of motion (MD equations), the Hamiltonian would be a constant of motion and the
configurations all would lie on a surface of constant energy. Thus, each created con-
figuration would be accepted. However, due to the discretization with a MD time
step 7, numerical errors are introduced and the Hamiltonian energy is not invariant.
We denote this change by AH. Each calculated gauge configuration is then accepted
with a probability e . The area preserving property of MD leads to an inequality

[67],

e < (emAM) =1 (3.24)

Due to this inequality (AH) has to be a positive, small number. This is indeed the
case in our simulations. The evolution of AH in units HMC time can be seen in
Fig. and the detailed numbers are given in Tab. B4l

However, for some of the runs (i.e., runs A66, B60, B70, C77) the value for
(AH) is getting large. This increase is coming from spikes in the individual values
for AH during the creation of the gauge field configurations, see Fig. Since the
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Figure 3.6: We plot AH against the HMC time starting from the point of equili-

bration.
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Set (AH) e (AH) (e=AH)
A50  0.036(9) 0.964(T00%)  1.001(9)
A66  1.734(917)  0.177(F928%)  1.002(13)
B60  1.097(1050) 0.334(*0518)  0.998(8)
B70 0.823(645)  0.439(*0397)  1.019(11)
C64  0.038(11)  0.963(T091%)  1.017(11)
C72  0.014(8) 0.986(9-9%8)  1.020(9)
C77 0.377(53)  0.686(70058)  0.983(10)

Table 3.4: Averages of AH and their exponentials for each run. We only included
the equilibrated configurations in our calculations.

AH none of the proposed configurations

acceptance of a configuration is given by e~
was accepted.

Such spikes have already been observed in other simulations with dynamical
fermions [20, [68]. Two possible reasons can cause such a spike. One is the instability
of the HMC for large step sizes in the MD evolution, cf. Ref. [69]. The other one,
and this is most likely the case here, is that the Dirac operator can develop very

small eigenvalues which lead to these spikes in the derivative of the action.

3.9 Stability of the algorithm

In this section we shortly discuss the stability of the algorithm used. In general, the
eigenvalues of DD are positive semi-definite (not positive definite), if D is some
lattice Dirac operator. Assuming that one could integrate the HMC trajectories
exactly, no problems would be encountered, since small eigenvalues lead to large
revertive forces in the HMC. Thus, exact zero modes are avoided in the algorithm.
However, due to a finite step size 7 in the integration, this back driving force may
be smaller than it would be in an exact integration scheme, and so, a very small
eigenvalue can cause an instability.

If a notably small eigenvalue appears during the MD evolution, the conjugate
gradient solver for calculating the fermion force will need many more iterations to
arrive at the given precision. Or, in other words, the inverse of the number of needed
CG steps is strongly related to the smallest eigenvalue of DTD. The distribution of
1/N¢g for a given ensemble is approximately a Gaussian [64]. As long as the mean is
considerably larger than the standard deviation (e.g., the authors of Ref. [T0] quote
p > 30), the algorithm setup is safe. This condition is most crucial for small pion
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Figure 3.7: A plot of the normalized histogram of 1/N, for runs A66, B70 and
C77. The red line is a fit to the function exp(—(x — u)?/20?) and the ratio of pu/o

is given in each plot.

masses.

In Fig. B we plot the histograms of 1/N¢, for the smallest pion mass at each
value of the gauge coupling. Also a fit of the histogram to a Gaussian is included.
One can see, that there is a clear separation of the Gaussian shaped curve to the
origin. Even for the worst case scenario, i.e., run A66, we find u/o =~ 5.3. We thus
conclude that our implementation is safe in the sense, that no negative eigenvalues

of the Dirac operator are developed.






Chapter 4

Hadron spectroscopy

4.1 FEuclidean correlation functions

In the beginning of Chap. 2l we already introduced the so-called correlation function
or correlator in Eq. (Z8)). This object is the main tool in hadron spectroscopy. From
Eq. (Z8) we see that the correlator C'(¢) can be expressed as a path integral. One can
then start integrating out the fermionic part and generate gauge field configurations
with the methods explained in Chap.

To extract masses of hadrons using correlators, one has to insert suitable hadron
interpolators for the operators O; and Oz in Eq. (Z8). How these interpolators will
look in detail is explained in Sec. and App. Evaluating the expression for the
correlator then gives [11]

C(t) = Z ape B (4.1)
k

which is a sum over all k£ states with energy levels Fi. The coefficients a give us
the overlap of the lattice operator O with the physical state k,

a, = [(0[O[k)|” . (4.2)

Since in lattice QCD one uses natural units, energy and mass are equal to each
other. However, the energy levels we speak of have to be compared to the energy
levels in the continuum. For the following discussions we want to stress, that the
expressions ‘energy (level)” and ‘mass’ should have the same meaning. If we speak
of a ‘state’, this cannot only be meant as a one-particle state, but also can be a
scattering state, made out of two or more particles.

From Eq. [@J) we see that the correlator is built of several states, all having
different energies (in a finite volume). Since the ground state has the smallest mass
of all states, it asymptotically contributes most to C'(¢) due to the exponential decay.
As a consequence, one is able to extract the ground state mass if ¢ is large enough
and thus the higher excited states are exponentially suppressed. This can be done
by, e.g., a single exponential fit. The time range in which this fit is performed can

33
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be fixed using the so-called effective mass, defined by

C(t)

TR (4.3)

Meg(t) = In

A plot of this quantity against ¢ will show a plateau behavior in some time range
[t1;t2]. The reason for such a behavior is the following. At the time ¢; the exponential
suppression of the higher excited states is so strong, that one can assume C(t)
e tFo where Ej is the energy level of the ground state. Applying then Eq. (@3)
leads to a constant for meg. Actually, the plateau in meg should not break down,
since the exponential suppression is getting stronger with greater ¢. One reason for
an upper boundary to of the fit range is simply that the signal is getting worse if
t is approaching the symmetry point ¢t = L;/2. This is due to the fact, that the

correlators in Eq. (A1) actually have the form

Ct) =Y ay [e7Pr 4 em(lemtB] (4.4)
k
The second term in the square brackets comes from an antiparticle, which runs
backwards in time. Since the expression in square brackets is o< cosh[(t — L;/2) Ej],
we speak of a cosh-behavior of the correlator and leave out the second term in the
square brackets for simplicity again. Another reason is, of course, that the signal
gets exponentially weak with grater ¢ and thus simply turns into pure noise.

The method just described works fine for the ground state for a lot of hadron
channels. However, one usually does not only want to extract the ground state
energy level but also one or more excitations. For this task the method will fail
because the excitations appear only as sub-leading terms in the correlation function.
Carrying out a multi-exponential fit is unstable, particularly in view of the noisy
data on a finite number of gauge configurations. Furthermore, quantities related
to the ground state are spoiled with admixtures of the excited states, which often
reduce the fit range severely.

To overcome this problem, we now will present and discuss some methods which

can deal with this unpleasantness.

4.2 Spectroscopy techniques for excited states

As seen before, the reliable separation of the ground and excited states, or even
of different excited states, is a rather challenging enterprise. The brute-force least-
squares fit to a finite sum of exponentials will only have promise if rather high
statistics are available. Since this is not the normal case, other approaches towards

that goal are used in hadron spectroscopy.
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4.2.1 Bayesian methods

Here, one does not minimize the “ordinary” y? functional, but uses instead
X =xX+A0, (4.5)

where ¢ is a stabilizing function of the fit parameters and A a positive and real
multiplier. This method has been used, e.g., in [71] [72]

4.2.2 Maximum entropy method

In the maximum entropy method the correlation function is written as the Laplace
transform of a spectral density,

C(t) = / dE p(E)e™tF . (4.6)
0

In the continuum the density function p(E) should have peaks near the energy values
which dominate the correlation function. On the lattice, it is a hard task to recover
p(E) with only a few values for C(t).

This method is frequently used in statistical physics, but also applied by the
lattice community [73), [74].

4.2.3 The variational method

The most promising method at the moment is the variational method [75, [76]. It
is used by various collaborations, see for example [77, [78, 53], and provides reliable
results for ground and excited states of several hadrons.

Since we exclusively use the variational method in our studies, we discuss this

approach in more detail in the next section.

4.8 The variational method

As already stated above, the method of choice for our studies is the variational
method [75] [76]. This method has a fundamental difference to the other methods
discussed — it uses not only one correlator but a matrix of cross-correlators. Therefore
one employs N different interpolators O;, ¢ = 1,..., N, which all have the quantum
numbers of the state of interest. Then this cross-correlation matrix is given by

Cij(t) = (0;(t) O1(0)) . (4.7)
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In the Hilbert space this matrix can be expressed as

Cij(t) = 3 (010i[k) (KIO1[0) 7P = 37 a aff* e=F (48)
k k
One immediately sees that the only time-dependent term is the exponential. This
fact will be discussed in more detail below.
Considering a generalized eigenvalue problem (GEVP) normalized at some time
slice ty < t,
C(t)vp = M (t,t0)C(to)vg (4.9)

we obtain the following behavior for the eigenvalues [75), [76]
Ak(t, o) oc e ET10IBR[1 4 (e (t-t0)AEK)] (4.10)

In general, AE}, is the mass difference to the closest lying state. For the special case
t < 2ty and a basis of N interpolators, AE} is the difference to the first neglected

state [79, [80],
AEy = Exy1 — By . (4.11)

Thus, each eigenvalue represents one single state for large time distances, and this
gives us the possibility to perform a (stable) two-parameter fit to the eigenvalue.
This means the largest eigenvalue decays with the ground state mass, the second
largest decays with the mass of the first excited state, etc. The technical procedure
is the following:

1. Compute the cross-correlation matrix, including the interpolators of interest.
2. Solve the GEVP for each time-slice.

3a. Sort the eigenvalues according to their magnitude.

3b. Sort the eigenvectors according to order of the eigenvalues.

4. Perform a two-parameter fit to the eigenvalues in some time range ty < tmin <
t < tmax-

To be able to identify the region where the eigenvalues should be fitted, we again
use the concept of effective masses from Sec. A1l

We now want to shortly discuss the eigenvectors again. Since they should not
depend on the time-slice ¢, see Eq. (£8), we have an additional tool at hand, which
can help us to identify a state in general and the time range for the fit, i.e., the
region where also the vectors show a plateau behavior. To get some impression of a
typical result of this analysis, we show in Figure 1] the eigenvectors of the ground
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Figure 4.1: In the first row we plot the eigenvector of the ground state, vy, and
the eigenvector of the first excited state, vyc). Below the eigenvalues for these states

and the corresponding effective masses can be found. All results are for set A50.

and first excited state and the eigenvalues with the corresponding effective masses
for the positive parity nucleon of set A50. If only the effective mass is the basis for
the decision where to fit the eigenvalue then one would naively fit the first excitation
from ¢ = 2—6. But when we also include the eigenvectors into this process, the time
range shrinks by one time-slice to t = 2 — 5! However, this effect may be tiny here,
but in other hadron channels the eigenvectors are often crucial to decide on the fit
range.

Another point to be discussed here is the basis used in this analysis. Since one
does not use a single correlator but a cross-correlation matrix, several interpolators
O;, which couple to the same hadron state, are necessary. In our simulation this
request is achieved with two approaches. On the one hand we can describe a particle
with interpolators which all have a different Dirac structure. For, e.g., the case of
the nucleon we can use three different types of interpolators (with respect to the
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Dirac structure),

05\}) = €ube [ug Cs db} Ue (4.12)
O](\?) = €ube [u;‘f C dp|7s ue (4.13)
O](\i;’) = i€ube [u;‘f C s dpuc - (4.14)

This leads as a first step to a 3 x 3 correlation matrix.

The other onset we make use of, is to include different quark sources on which
we compute the quark propagators. These sources differ only by their widths. The
detailed procedure is explained in the next Section [£4] here we only mention, that
for the nucleon, we can use two different widths of quark sources. Thus, the 3 x 3
correlation matrix grows by a factor of 8 and finally we can work with a 24 x 24
correlation matrix. Due to some numerical equalities it reduces to a 18 x 18 matrix
for the case of the nucleon.

The most crucial ingredient in the variational analysis is the basis of interpolators.
One can only a posteriori decide if one has chosen a reasonable basis or not. Thus,
the “design” of the interpolators is some kind of an art with a big portion of physics.

The usage of the full N x N correlation matrix in a straight forward way, i.e.,
perform the diagonalization of the full N x N matrix, is normally not possible —
although, according to the theory, the results should get better. The reason is, that
increasing the number of interpolators in the matrix also increases the statistical
noise. Therefore, one takes only a subset of n < NN interpolators and works with
this smaller n x n matrix. Then, of course, the question arises: Which interpolators
should be included? This question is highly non-trivial to answer! For the nucleon we
have, as seen above, an 18 x 18 matrix. To try out every combination of interpolators
means analyzing 2'® — 1 = 262,144 different combinations — which is obviously
impossible! Thus, one has to learn from previous combinations and has to rely on
experience to try out only some promising subsets. In other words, it is some kind
of a “trial and error” process. So we here arrive at the point from above: It is some
kind of art. A typical number, independent of the hadron type, is 3 < n < 8. In our
case, we started analyzing each set of configurations separately and then tried to find
a promising intersection of the several subsets, i.e., we tried to find one interpolator
combination for all seven sets. This strategy worked out in the case of baryons, the
situation for mesons is, however, more involved and we cannot always follow such a

scheme.
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Set K N, Width [fm] Set K N, Width [fm]
A50 0.212 17 0.357 A50 0.1840 63 0.661
A66 0.210 20 0.356 A66 0.1830 74 0.647
B60 0.222 15 0.347 B60 0.1840 68 0.679
B70 0.305 8 0.256 B70 0.1840 55 0.573
C64 0280 7 0.254 C64 0.1918 37 0.547
C72  0.280 7 0.241 C72 0.1925 37 0.525
Cr7 0.223 15 0.333 C77 0.1840 70 0.677

Table 4.1: For each set of gauge field configurations we show the numbers for k
and N, which are used in Eq. [A16]) and the resulting source width . On the L.h.s.
the parameters for the narrow sources and on the r.h.s. the parameters for the wide
sources are given.

4.4 Smearing of quark fields

In the previous section we already discussed ways how to increase the number of
possible interpolators which all describe the same hadronic channel. One method,
which we use in our simulation, is smearing of the quark sources or sinks, respectively.
More precisely, we here apply two different smearing techniques: Jacobi smearing
[81] B2] and the creation of derivative sources (see, e.g., [83]). With this procedures
we can on the one hand extend the basis of interpolators and on the other hand also
improve the quality of the signal.

Let us discuss the Jacobi smearing. One acts on a point like quark field source
S, which can in the following either be a source or a sink, with a smearing operator
M,

Ss=MJSy , (4.15)

where this smearing operator M is defined as
N
M=) (kH)". (4.16)
n=0

Actually, this is the application of a polynomial of a hopping term H, which is given

by
3

H(n,m) = > [Uk(n,0)8,, 1, + Ul (n = k,0)5, ;. - (4.17)
k=1

It is obvious from Eq. (I7) that each time-slice ¢ is smeared individually. The
resulting quark fields have approximately a Gaussian shape. The width of the cre-
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Figure 4.2: A 3d plot of a Jacobi smeared quark field in some arbitrary units.

ated sources can be controlled by the parameters k and Ny. In Tab. L] we give the
detailed numbers for each set of gauge configurations. In our simulation we use two
different widths of sources and call them “narrow” (index n) and “wide” (index w).
Originally this smearing procedure was used to suppress contributions from excited
states. In our approach, however, we can improve the overlap of interpolators with
both the ground state and low excitations to extract these signals at the same time.
For applications of these method see, for example, [46] [47].

Another method, we also work with, is to smear the quark fields such that the
resulting field may exhibit nodes, i.e., it is a P-wave like field [83]. This is achieved
by applying a covariant lattice derivative operator (which is nothing but a difference
operator) on a smeared source, and in our case we take the wide source. We denote
these derivative sources by Sp, = PS5, and the derivative operator P is

1 .
Py(n,m) = Uk, 00, — Uk = 5,808, - (4.18)

To get an impression of this two constructs we show in Figs. and both a
Jacobi smeared quark field and a P-wave like field. In these plots the sources are
calculated only for one single gauge configuration, since this is not a gauge-invariant
object and would vanish in the ensemble average.
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Figure 4.3: Same as Fig. @2, now for a derivative smeared field.

4.5 Gauge link smearing

In the previous section we discussed the smearing of quarks fields, from which the
quark propagators are computed subsequently. However, another type of smearing
is widely used in lattice simulations, it is the gauge link smearing. There, a local
gauge link is replaced by an “average” over paths of gauge links in its vicinity. Mostly
this vicinity is a 4d hypercube around the unsmeared gauge link. The underlying
reason is to reduce short range fluctuations, since one mostly is interested in the
long distance behavior of, e.g., correlation functions. By the replacement of links
with their averages these short range fluctuations are smoothed out. As long as the
smearing is local, i.e., the average contains only a fixed number of links, the long
range behavior does not change in the continuum limit. To obtain a gauge covariant
process, and thus no gauge fixing is needed, the link is replaced by averages of
paths of links which have the same endpoints as the original link. Since in SU(3)
this average is not in general again an element of the gauge group, some kind of a
projection back into the group of SU(3) has to be performed.

Meanwhile a lot of link smearing procedures are available. We shortly want to

discuss only three out of these.

APE smearing. Here, a weighted average of the original link and the six per-
pendicular staples, having the same endpoints as the link, is built [84]. The
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N\

Figure 4.4: A 3d plot of four staples (red) around some central link (blue).

situation is depicted in three dimensions in Fig. [t four out of the six staples
(red), which have the same endpoints as the original link (blue), are plotted.
The average is then computed as

Van) = (1= @) Up(n) + & 3 Cu(n) . (4.19)
vEN

where C),, (n) are the staples, i.e., an oriented product of three links, connecting
the two endpoints of the link U,(n). The parameter o € R has to be adjusted
depending on the gauge coupling §. The final projection back to SU(3) is
normally done by maximization of Re tr[X V//(n)] for X € SU(3) and using X
as the new link variable.

HYP smearing. This smearing procedure is some kind of an iterative APE smear-

ing. Originally [39] three steps of projected APE smearing were used, contain-
ing only links which lie in the hypercube containing the original link. In
general, one can take any smearing procedure as core of the HYP smearing;
e.g., n-HYP [85] uses n-APE as core.

In our analyses the HYP smearing is used in the creation of quark field sources.
Therefore, we use a 3d variant of this procedure, which only smears the links
in spatial directions. It is applied three times on stout link smeared (see next
item) gauge fields.

Stout link smearing. Since in HMC simulations one has to calculate derivatives

of objects w.r.t. the gauge links, smearing procedures which use a projection
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Sets [ mg a* [fm]
A 470 -0.06987(32) 0.1311(15)
B 4.65 -0.07576(39) 0.1352(21)
C 458 -0.08377(19) 0.1380(17)

Table 4.2: The values of m§ and a* in fm (for ro = 0.48 fm) for each gauge coupling
5.

operator are not suitable for this purpose, since after the projection one cannot
recover the original link. Thus, in 2003 the first differentiable (w.r.t. gauge
links) smearing procedure was presented, the stout link smearing [86]. Also in
our simulation stout link smearing is used and can be seen as one part of the
definition of the Chirally Improved Dirac operator D¢r. This smearing does
not use the projection described above, but uses instead

V(n) =My, (n) (4.20)

where @, (n) is a hermitian, traceless matrix which is built from staples. This
procedure contains tunable, real weight factor p,,, which often are kept con-

stant, p,, = p. In our case we set p,,, = p = 0.165.

4.6 A mass-independent scheme for the scale

The way we define the scale a in our lattice QCD simulation was already presented
in Sec. However, any dynamical simulation shows a dependence of 79/a on the
quark mass m. In [87] it is explained to what extent this is a physical effect. To
milden this quark mass dependence, we use a so-called mass-independent scheme.
In that approach one assigns the same lattice spacing to a fixed value of the gauge
coupling 3. This procedure is discussed now.

To work with this method, at least two simulations with different bare mass
parameters mg at the same [ are needed. One starts to determine the AWI-masses
(see Sect. [[2)), which can be seen as the quark mass for this purpose, and plot them
against the bare parameter mg (see Fig. for our data). Then, a linear fit to the
data of one particular 8 is made. From the fitted function one can read of the value
for m§ = mo(mawr = 0). This value is often called the critical mass value. The
next step is to plot the lattice spacing a against mg and also (linearly) fit the data
groups of one f (cf. Fig. ). At that point one is able to extract the value of a at
mo = mg, which we denote as a*. The detailed numbers for m{ and a* are given in
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Figure 4.5: We plot the AWI-mass mawr (in dimensionless units) against the bare
mass parameter my for each set of gauge configurations. The dashed lines are linear
fits to the data points corresponding to one definite 3, the dotted line indicates
amawr = 0. The full symbols denote the critical values, m{, for each value of 5.

Tab. The value of a* is then attached to all sets of gauge configurations for the
particular 5. From now on we suppress the superscript “x” and use the values given
in Tab. for our calculations.

4.7 Momentum projection and scattering states

Euclidean correlation functions were already discussed in Sec. EIland from Eq. (1))
we learned that a correlator is a (infinite) sum over states with energy levels Fj.
The statement from above, that these energies equal the masses, has to be clarified:
it is only valid for vanishing momentum, p = 0. We now want to discuss this fact
in more detail.

The energy F of a particle X and its mass mx are related through the dispersion

E(X(p)) = \/m% +p* (1+ O(ap)) , (4.21)

leading to mx = E(X(p = 0)). Thus, all states in our simulation are projected to

relation

momentum zero to obtain their rest mass.

In dynamical simulations a single hadron state can also couple to a state involving
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Figure 4.6: We plot the lattice spacing a (in physical units) against the bare mass
parameter mq for each set of gauge configurations. The dashed lines are linear fits
to the data points corresponding to one definite 3 and the full symbols denote the
values of a at mg = my.

two (or more) hadrons, a so-called scattering state. Even if the hadron is projected
to p = 0, the individual particles can have non vanishing momenta although the
scattering state obeys p = 0. The simplest example is a two particle state, in
which one particle has a certain momentum p and the other exhibits a momentum
—p, which is in sum again zero. Since we use a finite box, the allowed values
for p are discrete, in contrast to the continuum (which is nothing but a box with
infinite volume). Each component p; can have the values ap; = 2wk;/Ls, with
ki = —Ls/2,...,Ls/2 — 1. The energy of such a two particle scattering state,
neglecting interactions, is then given by

E(X(p).Y(-p) = ((mk + 52+ +p?) (140W@p) . @422

In some hadron channels the lowest scattering state energy lies above the signal
we measure and this signal depends on the quark mass, which is a clear indication
that the observed state is indeed the ground state. However, a clear and unique
assignment of states with energies in the vicinity of scattering state energies is often
not possible. Mostly, the two particle state energy is located between the measured
ground state and the measured first excitation. Thus, we cannot identify the first
excitation as a single hadron state, since it is also possible, that we see the two
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particle state a bit above its experimental value. To distinguish bound states from
scattering states one would have to run simulations with other (preferably bigger)
volumes, since scattering states are suppressed by a factor of O(1/L3) [88, B9)].
Gauge field configurations for lattice size of Ly = 24, L; = 48 are at the moment
being produced for the parameters of the runs A66 and C77. We do not discuss
results for these runs here, because the analysis is not finished yet.

Another possibility to give a statement about the nature of a measured state
is to additionally analyze the eigenvector behavior. A hint for a one particle state
is given by observing the same eigenvector composition for different points in the
parameter space, i.e., for different dynamical sets of gauge configurations (cf. the

discussion in [53]).



Chapter 5

Baryon spectroscopy and its results

5.1 Technical details

Let us start with some technicality to set the ground. For baryon spectroscopy we
only use Gaussian sources, coming from Jacobi smearing of point-like quark fields
— no derivative sources are included in the correlation matrices in the variational
method, in contrast to meson spectroscopy from Chap. [6l The exact definitions of
the baryon interpolators can be found in App. [Bl

For all channels we have data for positive and negative parity states. To be able
to analyze both parities, we project the interpolators to a definite parity using the

projection operator
Ity

2
The interpolators for the A and € baryons have overlap with both spin 1/2 and

Py

(5.1)

spin 3/2 states [47], thus we have to project to spin 3/2, using the projection operator
for a Rarita-Schwinger field,

1 1

3/2 _
P;Su/ )(p) = (S/M/ — STV — 37]72

3 (Y PYuDy +Pu YD) - (5.2)

Since the correlation matrices C;; are real and symmetric within numerical error

bars, we symmetrize the matrices according to

C+cCt
2

— C (5.3)

before diagonalization. This is also valid for the correlation matrices for mesons.
In the subsequent plots in this chapter and in Chap. [6] we always use the fol-
lowing legend for plots of masses to distinguish between the seven sets of gauge

configurations:
Set | Symbol Set | Symbol Set | Symbol
A50 O B60 O C64 &
A66 | O B70 | O cr2| <

cr7 &

47
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Hence, a legend is only shown where otherwise the plot would be ambiguous. In
general, we only include the dynamical (i.e., Myalence = Msea) data points in our
plots. In the case of the €, however, we also show data points where myalence > Msea
(partially quenched data points). Such data points are available for all sets, and
they are used only to set the strange quark mass, see Sec. 5.4l Possible existing two
particle scattering states are indicated by green crosses ([J) at the corresponding
values of m2. Experimental values are, if available in [9], displayed as magenta stars
(0), corresponding error bars are only displayed if they are bigger than 40 MeV. In
each plot we print the name of the baryon and its quantum numbers J* in the lower
left corner. Fits of the dynamical points are shown as black lines, the corresponding
errors are the surrounding dashed black lines. The range for the fitted value at

h
e = m7(rp ¥s)

is also displayed as vertical black line. The detailed form of these fits
is discussed in more detail now.

All the simulations we perform are at values of the pion mass, which are bigger
than the physical value. Thus, we have to perform some kind of extrapolation of our
data to the physical (experimental) point. In our case we find chiral perturbation
theory [90} 01l O2] to be the appropriate tool. There, the only varying parameter
is the quark mass. However, this method is based on constant values for other
parameters, like the lattice spacing or the volume. Of course, the explicit analytic
form of the extrapolation depends also on the path one takes in parameter space.
Strictly speaking, we then would only be allowed to fit the data of sets A, B and
C separately. Since all our values for the lattice spacing and the gauge coupling
are very similar, we assume our extrapolation path to be very close to the one with
constant parameters. Thus, for the mass mx of a particle X we use a form, which
is linear in the quark mass in leading order, i.e., linear in the pion mass squared (cf.

Sec. [[2)). In dimensionless units (amx) we find
amx = co + c1 (amy)? + (’)((amﬂ)2 In amw> . (5.4)

Therefrom, we can read of the value for myx either for the physical pion mass or
in the chiral limit (i.e., m; = 0). In Chap. 0 we will summarize our spectroscopy
results and use these extracted values there.

5.2 The Nucleon

Positive parity

We want to start our discussion of the baryon spectroscopy results with that chan-
nel, where one normally gets the best signal: the positive parity nucleon N. To
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Figure 5.1: The mass of the positive parity nucleon is plotted against m? in physical
units. The energy levels of the (theoretical) P wave scattering state Nm are shown

as crosses.

extract the ground state (GS) and two excitations (1E, 2E), we used the interpola-
tor combination 1,2,4,6,14,17,18 (see App. [Bl for details). In Fig. 51l we show the
extracted masses in physical units. Our result for the ground state lies about 10%
above the experimental value. In [93, 94] it was found that also a fit linear in the
pion mass agrees well with the experimental data. We here, however, want to stick
to the form given in Eq. (5.4, since this form is suggested by chiral perturbation
theory.

Since its discovery in 1964 [95] the first excitation of the positive parity nucleon,
the so-called Roper resonance, is a quite special candidate in baryon spectroscopy.
Its mass lies below the mass of the first excitation of the negative parity nucleon
channel. This is often called reverse level ordering. In most of the dynamical sim-
ulations (see, e.g., [96] [77, 53] 07, ©98]) such a reverse level ordering is not seen and
the energy level for that resonance comes out to high; we obtain a value of about
600 MeV above the experimental value. There may be a few reasons for that ob-
servation. First of all, this excitation is not an orbital (as in the negative parity)
but a radial excitation in the language of the quark model. Thus, its size could be
considerably larger than that of the ground state and may be squeezed due to the
limited spatial lattice volume. To eliminate this effect, bigger and finer lattice would
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Figure 5.2: The mass of the negative parity nucleon is plotted against m2 in
physical units. The energy levels of the (theoretical) S wave scattering state N are

shown as crosses.

be helpful. We further have rather noisy data in that channel and it could just be
a statistical effect and more configurations would be needed to clarify this aspect.
A third reason could emerge from a possible existing P wave N7 channel, which is
not represented by our set of interpolators. Thus, the inclusion of nucleon-meson
interpolators could improve our insight here and, of course, also for all other baryon
channels. Although there is no clear separation of the energy levels of the scatter-
ing states and our signals, we favor the one particle picture since the eigenvector
composition is the same for all seven sets (see the discussion in Sec. [A.7]).

However, some groups [99, [I00, 101] were able to extract a state, which ap-
proaches the right physical value. In that analyses several fermion actions and
fitting techniques are used, but all groups work with quenched gauge field configura-
tions. To confirm these results with our approach (dynamical configurations!) would
be worthwhile, but for sure, all points mentioned above are needed for a systematic
analysis.

Negative parity

We now want to discuss the negative parity nucleon channel. Although the time
range for a fit of the eigenvalues is limited due to the backward (in Euclidean time)
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running positive parity nucleon and due to possible present scattering states [102],
we can extract the two lowest lying states, but from a quite noisy signal. We use the
interpolator combination 1,2,3,7,8,9. The masses can be found in Fig. One
can see, that we underestimate the experimental values slightly, as for all negative
parity baryon channels.

In this case we cannot clearly distinguish if a one or a two particle state is seen.
It is possible that an S wave N7 state, which is not represented by our set of
interpolators, is present here. Taking into account the extracted masses only, we
even would conclude that the state obtained is a scattering state. In Nature the S
wave state lies below the ground state of the negative parity nucleon. This still may
be true for the small pion masses as we obtain in set A66, and thus we may see a
two particle state there (this data point increases the slope of the fit drastically!).
However, for the sets with larger pion masses, this should not be the case.

Additionally we then can analyze the composition of the states via the eigenvec-
tors from the variational method and see if we always obtain the same eigenvector
composition over the whole range of pion (i.e., quark) masses; this is done in Fig.
There we plot the eigenvector components of the ground state and the first
excitation for all sets. We always observe the same composition of states from the
heaviest (A50) down to the lowest (A66) pion mass, but this can now be interpreted
in two contrary ways. Since the composition does not change, this behavior can
favor either the bound state or the scattering state: In both cases the corresponding
state would simply be observed in all sets.

Thus, we cannot give a definite statement about the particle content in this
channel. As in the positive parity channel, further investigation by, e.g., larger
lattices or a momentum analysis can help to clarify this issue.

5.3 The Delta

Positive parity

In the case of the A we have to project to spin 3/2 and end up with a total of 8
interpolators. Since 2 of these 8 are numerically very similar to others, we omit them
in our correlation matrices and are finally able to analyze 6 different interpolators.
They differ only in their smearing type for the individual quarks.

It turns out, that the differences in the results of all possible subsets of the full
6 X 6 correlation matrix are only small. We use the combination 1,3,4 and can
extract the first two energy levels (see Fig. B4]). In both cases we favor the picture
of a one particle state, since our values are clearly off from the P wave N state; this
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Figure 5.3: Time dependency of the eigenvector components of the ground state

(left panel) and the first excited state (right panel) of the negative parity nucleon.

From top to bottom the pion mass is getting continuously smaller.
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units. The energy levels of the (theoretical) P wave scattering state N7 are shown

as crosses.

state seems to be missing here. Our final result for the ground state (at the physical
point) overestimates the experimental value by roughly the same amount as for the
nucleon, namely 10%. For the Roper-like state A(1600) our signal is, again as for the
nucleon, rather beyond the experimental value. Due to the small statistical errors
in both cases, we presume either finite volume effects or other systematic errors to
be the reason(s) for this discrepancy.

This hadron channel is also used to set the mass of the strange quark, m.
Therefore, we have to use partially quenched mass values, i.e., Myalence > Msea-
Details of that procedure follow in the next section.

Negative parity

For the negative parity A we can extract a signal using interpolators 2, 3,5 (see Fig.
B0). The statistical error bars are fairly small, however, the experimental value is
slightly underestimated.
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5.4 Setting the strange quark mass with the Omega

The sets of gauge configurations were created including two dynamical light quark
flavors. To be able to study also hadrons with strange quark content, we have to
introduce somehow a strange quark into our simulation. How this can be done is
explained in more detail now.

Since the positive parity A and the Q(1672) share the same J quantum numbers
and consist of only one quark type, we can identify a A state where myalence > Msea
with the (1672). Thus, we get the bare mass parameter at which the quark mass
equals approximately mgs. We then can use the quark propagators for this valence
quark mass to compute hadron correlators including strange quarks. However, we
do not include the effects coming from a dynamical strange quark. All our hadrons
built from light and strange quarks always include dynamical (Myalence = Msea) light
quarks and quenched strange quarks, motivated by partially quenched (myalence >
Msea) data.

To fix the value where myalence = ms, we followed a strategy, where we can
determine the value for mg exactly only a posteriori. We started analyzing the A of
the first 50 independent configurations and determined from that the value of mpare,

(phys)
Q

at which we get a signal closest to m . Initially, the available values for mpare

had a discrete difference of 0.05, thus for some sets we had to recompute quark

propagators at different mpare, if the signal was too far off from mg) hys) .

In Fig.
we plot the masses of the partially quenched A, at which we fixed mg, against
mg. This plot, of course, is for full statistics; we used interpolators 1,3,4. One
can see that we get values for mq which mostly are not more than two standard
deviations away from the physical value. Only the results from set C64 deviate more.
A reason may be the choice of interpolators here. When fixing the value of mpaye
we did not use the same combination of interpolators for each set — but we do here!
Hence, the combination 1, 3,4 may not be the best, but to have comparable results,
we stick to this choice. Let us stress one important point here. This analysis was
done in the mass dependent scheme (cf. Sec. A0]), since we did not create the sets
of gauge configurations in parallel. Thus, we were not able to fix the value of the
lattice spacing for the corresponding coupling (5 in advance, and therefore we also
can extract the €2 mass in the mass independent scheme — and do not only get the
values from Fig. again.

To some extent we can cross check our designated results for mg by analyzing
other hadrons, which include strange quarks. In the baryon sector we get results
(see next sections) for ¥ (built from two light and one strange quark) and = (built

from one light and two strange quarks), which extrapolate very nicely to the physical
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Figure 5.7: The mass of the positive parity Y is plotted against m2 in physical
units. The energy levels of the (theoretical) P wave scattering state NK are shown

as Crosses.

value. This confirms our choice of values. In the meson sector we can analyze the K
mesons (see Sects. B 4land [65]) or the ¢ meson (see Sec. [6.0]) to get another validation
to that topic.

5.5 The Sigma

Positive parity

The ¥ baryon consists of two light and one strange quark. Its Dirac structure
is the same as for the nucleon, only the flavor content differs. Thus we can use
the same interpolator basis for the variational method as before, extended by some
interpolators due to the different quark masses. Using interpolators 1, 2,6, 17,20 we
can extract the ground state and two excitations (see Fig. [5.7)). The ground state is
in good agreement with the experimental data and confirms again our choice for m.
The first excitation comes out about one third to high compared to the experimental
level, which can be due to finite volume effects. For the second excited state we do
not have an experimental value, confirmed by the Particle Data Group (PDG),
to which we can compare to. The next state with the same quantum numbers,
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Figure 5.8: The mass of the negative parity Y is plotted against m2 in physical
units. The energy levels of the (theoretical) S wave scattering state NK are shown
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Y(1770), is classified with only one star by the PDG, which is expressed as ‘evidence
of existence is poor’. For the reasons already mentioned above and due to the same
eigenvector composition for each set of gauge configurations, we are not able to

decide whether we see a one particle state or a scattering state here.

Negative parity

In the negative parity > channel we can extract the ground state and two excitations,
see Fig. We used interpolators 1,9, 10,12. As for the nucleon, the ground state
and the first excitation lie very close to each other. In our case, the extrapolation
to the physical point for both states agrees surprisingly well with the experimen-
tally measured states ¥(1620) and ¥(1750) (rated with 2 and 3 stars by the PDG,
respectively). The second excitation here reaches a value of about 2270 MeV, which
may be compatible with the 3(2000), however, this state is not yet confirmed by
the PDG and has a rating of one star.

The lowest scattering state, the S wave N K, lies below the one particle state at
the physical point. To find out if we see a one particle state, instead of a scattering
state, we traced the eigenvalues from high to low pion masses and did not find any
change in their relative weights to that state (cf. the discussion for the negative
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units. The energy levels of the (theoretical) P wave scattering state XK are shown

as Crosses.

parity nucleon). Here, the masses would favor the two particle picture. As for the

positive parity ¥, we cannot reliably determine the particle content.

5.6 The Xi

Positive parity

For this channel we only have one state, confirmed by the PDG, we can compare
to. From our data we can, however, extract three states with rather small statistical
errors. We used interpolators 1,2,3,4,9,10, 13,17, the masses are shown in Fig.
The ground state fits perfectly with the experimental data point, which again backs
up the choice for the strange quark mass parameter. The excitations we get are in
the range of about 2300 and 2500 MeV. States in such energy regions, listed by the
PDG, are assigned neither spin J nor parity P.

Negative parity

As for the positive parity we here can measure the ground state and two excitations,
using interpolators 1,2,9,10,14,17,21. The extracted masses are plotted in Fig.
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Figure 5.10: The mass of the negative parity Z is plotted against m2 in physical
units.

0. 10l The experimental situation here is even worse than for the positive parity
channel, there is no state listed by the PDG. The ground state and the first excitation
are very close to each other and are located in a region of 1730 to 1830 MeV, both
having small statistical errors. The second excitation lies around 2300 MeV and the
signal is fluctuating a bit more. As before, unconfirmed states with undefined spin
and parity are seen in such energy regions.

5.7 The Omega

Positive parity

In Sec. B4 we used the positive parity 2 to fix the mass parameter of the strange
quark. If we turn over to the mass independent scheme, as for all other channels,
and start the analysis, we get “biased” results here, since we measure a quantity
which was used already before as input, although in a different way. However, the
extrapolation of the ground state mass to the physical point gives perfect agreement
with the experimental data, see Fig. .11l We used interpolators 1, 3,4 as in the A
channel. The situation is definitely different for the first excitation. We get a signal
at about 2500 MeV, which is compatible to the 2(2470), a state, which is listed by
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the PDG without spin and parity and not yet confirmed.

Negative parity

In the negative parity (2 channel we get a signal around 2050 MeV. In Fig. .12 we
show the extracted masses, utilizing interpolators 2, 3,5 from the A channel. Here,

we cannot compare to any state listed by the PDG.






Chapter 6

The mass spectrum for mesons

6.1 Preparatory background

In the analysis of the meson sector we use three types of quark sources, a narrow, a
wide and a derivative source, to include in the basis for the variational method. For
both types of mesons, those built from only light quarks and those including also
strange quarks, the interpolators are given in App. Since the C parity is only an
exact symmetry for mesons built from mass degenerate quarks, the right columns
of the tables with interpolators in App. [Bl apply only to light mesons. However,
this quantum number may be still an approximate quantum number for mesons
with light and strange quarks (i.e., non mass degenerate quarks) and is possibly still
valid to some significant amount. Hence, we can try to include in the variational
basis only interpolators sharing the same C' (in the limit of mass degenerate quarks),
and find out if some state is dominated by a definite C' parity. This point will be
discussed again later in Sec.

To improve statistics on the one hand, and to respect the correct symmetries
on the other, we folded the data in time around the symmetry point ¢ = Lp/2 and
performed the same symmetrization as for the baryons,

C+cCt
2

— C. (6.1)

All the details about the legends in the subsequent plots and the chiral fit proce-
dure are the same as for baryons and were already fixed in Sec. 5.1l In each plot we
print the name of the meson and its quantum numbers as JZ¢ (or J¥ for strange
mesons) in the upper left corner. The data points for plots of strange mesons are
extracted from the points where the light quark has its dynamical value and the
strange quark its given value (details can be found in Sec. [5.4)).

Unfortunately we are not able to follow the same strategy for the choice of
interpolators as we do for the baryons — there it was possible to use the same
interpolators combination and the same time range to extract the mass from. Here,
however, we sometimes have to use different combinations for different states, or even

different combinations for each of the sets. The time ranges mostly were adapted

63
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Figure 6.1: The mass of the pseudoscalar meson m ( = 0~1) is plotted against

2

mZ In physical units.

individually for each set. This proceeding is necessary to obtain reasonable results,
or, in some cases, to obtain a result at all. A summary of the results from the chiral
fit can be found in Chap. @

6.2 Light quark mesons with spin 0

6.2.1 The pseudoscalar meson w, JF¢=0""*

We start our discussion of light meson spectroscopy results with the pion; its quan-
tum numbers are JP¢ = 0~F. Since the ground state mass of this particle is used to
set the scale in all our plots of hadron masses, we here decide to fix it by inclusion
of only one interpolator, as such a choice gives the longest plateau in the effective
mass. The first excitation could also be extracted. The interpolators used are

State | A50 A66 B60 B70 C64 C72 C77
GSo— "t | 1 1 1 2 1 2 1
1IE0~T 1,2,17 throughout

The detailed values are shown in Fig. Although it is nothing but a square root
function, we also show the ground state masses there to give the magnitude of the
statistical errors.
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Figure 6.2: The mass of the scalar isovector meson ag (J¢ = 07) is plotted
against m2 in physical units. The energy levels of the (theoretical) S wave scattering

state nom are shown as crosses [104].

We already discussed the quality of the signal of the first excitation in [40]. This
signal is contaminated by a backward running pion and thus the plateau in the
effective mass is shortened, especially for small pion masses. Nevertheless, we could
get a signal with fair statistical error bars. The chiral extrapolation of this signal is

compatible with the experimental value.

6.2.2 The scalar isovector meson ag, J'¢=0"*

In lattice simulations the scalar meson ag (JF¢ = 077) is a rather delicate business
(see, e.g., [T03] for a nice overview). There are still ongoing discussions about the
quark content of this meson, i.e., whether it is a quark-antiquark or a tetra-quark
state. The other great difficulty is, that in the bunch of states (obeying JF¢ = 07+)
to which the interpolators couple, scattering states with a mass lower than the
ground state mass of the ag are present (at the physical point!). Thus, the part of
the correlator one is interested in appears only as sub-leading term.

In our case we can extract the ground state and the first excitation (see Fig.[6.2)
using the interpolators
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State | A50 A66 B60 B70 C64 C72 cr7
GS 0" 13 throughout
1E 0+ | 10,12,13 4,10,12,13 —  14,10,12 1,4,10,12 10,12,13 10,12,13

The signals for the ground state of the different sets seem to be consistent, except
for set A66. Maybe there we are already in a region of the pion mass, where we do
not see a bound state as the lowest lying state, but we cannot surely identify the
state; further investigation is crucial here. However, our signals all lie below the S
wave nom scattering state. We used the value given in [104] for the mass of the 7
meson and assumed that this particle has the same dependence on m?2 as the vector
meson p. For the first excitation we get quite noisy signals, in set B60 we could
not even get any signal. However, the chiral extrapolations for the two states are
either in astonishing agreement with the PDG data (ground state) or match with
the experimental point within two standard deviations. However, in this channel it

is impossible to identify the state as a bound state.

6.3 Light quark mesons with spin 1

6.3.1 The vector meson p, JF'¢=1"~

For the vector meson channel p, JP¢ = 17—, we get a ground state signal, which
in the chiral limit perfectly agrees with experimental data. The signal of the first
excitation is also in good agreement with data from the PDG (see Fig.[6:3)). We used
interpolators 1,5, 8 for the ground state and 1,8,12,17,22 for the first excitation.
Since the vector meson is not a stable particle, i.e., it decays into a P wave 7w
state, we also show the scattering state in Fig. Since this state lies above our
ground state signal, we conclude, that here the ground state is indeed dominated by
the p meson and is not a scattering state (such a state is usually called “stabilized”).
The signal for the first excitation in our case always lies above the scattering state.
The reason that we do not observe a scattering state may be the same as for the

baryons: our set of interpolators lacks two meson states.

6.3.2 The axial vector meson by, JP¢=11"

In the axial vector meson channel by (J7¢ = 1*7) we only could fit the ground state
and did not get any signal for an excitation. Using interpolator 6 throughout all
sets, we get the masses plotted in Fig. In this figure also the dominant decay
channel for the b1, the S wave state wm, is shown. The mass of the w is estimated
by my, ~ m,. Since except for set C72 (which may be an incidentally statistical
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Figure 6.5: The mass of the axial vector meson a; (J©'¢ = 1%7) is plotted against
m2 in physical units. The energy levels of the (theoretical) S wave scattering state

pT are shown as crosses.

effect) the mass of the scattering state lies below our measured results, we conclude
that the observed state is the b; ground state. Another reason is, of course, that
we do not use two particle interpolators and thus the coupling to such a state is
quite weak. The final result for the chiral extrapolation slightly overestimates the

experimental data point.

6.3.3 The axial vector meson a,, J'C=1*"

In the axial vector meson a; channel with the quantum numbers JP¢ = 11+ we

could extract the ground state and the first excitation using the interpolators

State | A50  A66  B60 B70 C64 CT2  CT7
GS 1T+ 1 throughout
IE 14+ | 14,13 413,15 1213 1213 1213 124, 124

The ground state comes out with small statistical error bars (see Fig. [6.5]). Com-
paring these results with the S wave scattering state pm, we cannot draw a reliable
conclusion of the particle content in this channel. Some of our measured results
lie straight on top of the corresponding pm energy level, while others are clearly
separated. Here, increasing statistics would be a great benefit to determine the
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Figure 6.6: The mass of the K meson (J¥ = 07) is plotted against m2 in physical
units.

state more precisely. Nevertheless, our chiral extrapolation of this state is in perfect
agreement with the PDG data.

The first excited state here only gives results with rather big statistical error
bars, but we finally get a result which still overlaps with experiment. However, in
both states the results are strongly depending on the chosen time range for the fit
of the eigenvalues. Hence, we are not able to draw definite conclusions about the

qualitative and quantitative results here.

6.4 Strange quark mesons with spin 0

6.4.1 The K, JP=0"

In the strange meson channel with J” = 07, the K meson, we find for both,
the ground state (using interpolator 1) and the first excitation (using interpolators
1,2,8,17), a very sharp signal with small statistical error bars, which extrapolates
very nicely to the experimental point (see Fig. [6.6]). This result confirms once more
our choice for the strange quark mass parameter ms.
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Figure 6.7: The mass of the K meson (J¥ = 0%) is plotted against m2 in physical
units. The energy levels of the (theoretical) S wave scattering state K are shown
as crosses. The resonance widths are depicted as magenta lines with end-arrows,
which are slightly shifted to clearly show their overlap.

6.4.2 The K;, J'=0"

Here, the situation is similar to the light J©¢ = 0%+ ay channel. The lowest state
listed by the PDG, obeying the quantum numbers of the K meson, J© = 0%, is
a very broad resonance with a width of about 550 MeV at a mass of about 672
MeV: the K§(800) or x. This state is not yet confirmed by the PDG. The least
controversial (and confirmed) state is the K;(1430), having a width of about 270
MeV. These two resonances overlap in their widths as one can see in Fig. In
this figure we also show our results for the ground state energy level and the first
excitation, for which the following interpolators are used

State | A50 A66  B60  B70  C64  CT2 77
GS 0" 13 throughout
1B 0% | 10,1213 4101213 — 410,12,13 — 10,12,13 4,10,12,13

For the sets B60 and C64 we are not able to extract a reliable signal for the first
excited state.

Although our ground state result in the chiral extrapolation has small errors and
hits the experimental point, we cannot exclude that we see the scattering S wave
state K7 (crosses in Fig. [6.1).
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Figure 6.8: The mass of the K* meson (J© = 17) is plotted against m2 in physical
units. The energy levels of the (theoretical) P wave scattering state K are shown
as crosses. The two resonance widths are depicted as magenta lines with end-arrows,
which are slightly shifted to clearly show their overlap.

The final chiral extrapolated result for the first excited state coincides with the
PDG data nicely. However, since we only include statistical errors we may underes-
timate the final error of our result and it could also be compatible with the K (800)
resonance. Thus, without further investigation by, e.g., larger lattice volumes or cor-
relators with non-zero momentum, we cannot draw a unique conclusion concerning

the quality of the state, i.e., do we see a one or a two particle state, here.

6.5 Strange quark mesons with spin 1

6.5.1 The K*, JP=1-

In the K* channel with J© = 1~ we can observe a very clear ground state signal
and a quite reliable signal for the first excitation (see Fig. [6:8]). The interpolators
used are

State | A50 A66 B60 B70 C64 C72 cT7
GS 1~ 1,5,8 throughout
1IE17 | 18,9 1,11,12 8,9,22 821,22 1,89 9,12,22 1,8,16
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Figure 6.9: The mass of the K1 meson (J© = 17) is plotted against m2 in physical

units.

The ground state extrapolates — in the chiral limit — straight to the experimental
data point (which again supports the chosen value for my). However, the situation
is different for the first excitation. There, we still observe the same behavior as we
did in [53]: the final result matches the K*(1680) resonance much better than the
K*(1410) resonance (both shown in Fig.[6.8]). Due to the same reasons as in the K
meson we cannot strictly assign our result to one of the two states: the resonances
are broad and overlap, and we may underestimate the error of our final result.
Finally, we want to mention one interesting point here. For extracting the ground
state we only take interpolators which have C ~ —, since with this combination
we get the best result. In the first excited state we always use a combination of
interpolators with both C parities. The interesting observation now is, that in the
first excited state interpolators with C' &~ + only contribute very little. Thus, we
think that this channel is dominated from interpolators, which have C' = — (in
the light meson sector). A reason may be, that interpolators with J©¢ = 1=+
correspond to exotic states, which do not exist within the quark model [105].

6.5.2 The K,, JP=17

Here, in the strange J = 17 channel, i.e., the K; meson, we can extract the two
lowest lying states with very small statistical error bars (see Fig. [69]). For both



6.5. Strange quark mesons with spin 1 73

C# and C[# separated C* and C[# joint
1.9 T I T I T I T 1.9 T I T I T I T
1.8 18
17 1.7
>
ﬁ 1.6 5 1.6
xﬁ 15 i / |‘ - 15
1414 Exp LAMK 7
E — 6, Cl# * Exp
1307 —1ce 1 13, — 1,6,17
1 I 1 I 1 I 1 1 I 1 I 1 I 1
125 0.1 0.2 0.3 04120 0.1 0.2 0.3 0.4
ng [Gevz] mn2 [GeVZ]

Figure 6.10: L.h.s.: The mass of the K| meson is plotted against m?2 in physical
units for using only interpolator 1 (C' = +, black) or interpolator 6 (C' ~ —, red).
R.h.s.: The mass of the K; meson is plotted against m2 in physical units using
interpolators 1,6, 17.

states we use the same interpolator combination, namely 1,6,17. The results in the
chiral limit seem to be compatible with the K;(1270) and the K;(1400) states, both
confirmed by the PDG.

Compared to the results from the K* channel, the situation concerning the con-
tribution from different interpolators is much clearer here. The two possible “sub-
groups” of interpolators (C' ~ — and C' =~ +) do exist within the quark model (in
the case of mass degenerate quarks). Thus, we can try to include only interpolators
of one of these two branches. The result for this approach can be seen in Fig.
On the left-hand side we show the results for the case, where only interpolator 1
(lower state) or only interpolator 6 (upper state) is used in the variational basis. The
results in the chiral limit coincide (within error bars) with the results from using
interpolators 1,6, 17 simultaneously, which is for direct comparison again plotted on
the right-hand side of Fig. Since interpolators 1 and 6 obey C' =+ and C = —
(for mass degenerate quarks), respectively, we conclude that the ground state of the
K meson is dominated by the J¥¢ = 177 interpolators, whereas the first excitation
is dominated by J¢ = 17~ interpolators (within our range of m,). The behavior
of the eigenvectors also confirms this picture.
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are shown as crosses.

6.6 The ¢ meson

In this section we want to confirm the chosen values for the strange quark mass
parameter mg, which is discussed in Sec. 5.4l Therefore we analyze the ¢ meson.
The decay modes on this channel indicate, that it is built from a strange and an anti-
strange quark, s3. It shares the same J©¢ quantum numbers as the vector meson p,
thus we can use the interpolator basis from the p channel in the variational method.
However, we here neglect disconnected diagrams and the justification to use this
meson channel only originates from the decay channels of the ¢ meson. Of course,
we have to analyze the p meson for partially quenched quark mass values, i.e., for
the corresponding value to obtain the partially quenched strange parameters. The
result of this procedure can be found in Fig.

The ground state can be extracted with very small statistical errors and matches
the experimental data point. This consistency validates again the process and out-
come of setting the strange quark mass parameter m,. Here, we seem to see a bound
state, since the P wave scattering state K K does not match our data points.

For the first excitation the result for the chiral fit deviates slightly from the
PDG data point. A reasons may be too small statistics and thus weak signals in the
effective mass plateaus and noisy data in general.
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Low energy parameters

7.1 Preparing the ground

7.1.1 Renormalization

In Chap. 2l we introduced the lattice as a regulator to be able to quantize the theory.
However, to complete the process of relating measured quantities to experimental
values, we (mostly) have to renormalize these quantities. Masses, for example, do
not have to be renormalized. This renormalization process depends, of course, on
the type of regulator and the action used. One can distinguish between multiplica-
tive and additive renormalization. The most prominent continuum renormalization
scheme is the modified minimal subtraction (MS) scheme. From now we denote
renormalized quantities with a superscript (7).

A multiplicative renormalization applies to, e.g., the pseudoscalar interpolator,
the axial vector current or the vector current,

ZpP=P" | Z,A=A" | z,Vv =V (7.1)
Also the quark condensate or the quark mass renormalizes multiplicatively,
Zs(uu + ddy = (@u +dd)\") | Zypm =m() . (7.2)

An additive renormalization constant is needed for the quark mass if the Dirac
operator used is not chirally symmetric. The extra term is called residual mass,

M = Mbare + Mres-

7.1.2 Normalization of smeared interpolators

All relations and identities we apply here in our lattice simulation originate from
a continuum formulation of the theory. There, all objects, like interpolating fields,
are point-like quantities. Thus, we have to establish a relation between the different
renormalization/regularization schemes. After normalization of the fields in our

theory we also have to guarantee to compare to the required point-like continuum

75
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Lattice, raw Lattice, normalized Continuum

Figure 7.1: The evolution of some field after canceling smearing effects (cx s) and

renormalization (Zx ).

objects. Since we often use smeared quark fields, we introduce a factor cx 5, which
accommodates for the relation of an interpolator with smearing type s, X, to its
point-like counterpart X,,. We define this factor by

_01%,0 %010
T X OYO) -

Of course, the source interpolator Y can be any interpolator coupling to the same
channel as X. The effect of the smearing of Y cancels in that fraction. To finally
get rid of the influence of the smearing each smeared interpolator Xy must come
with a factor cx .

In Fig. [1l we give a more qualitative picture of these two processes. One starts
with some interpolating field describing, say, some quark, defined on our lattice (left
picture). After normalization (middle picture) we can compare to physical (point-
like) fields like in, e.g., the MS scheme. The last step is to get rid of “lattice effects”
by renormalization (right picture).

7.1.3 Ward identities

From the fact that the partition function Z is in general invariant under a transfor-

mation of variables,
2= [ D, DWw)e S50 = [ Dy D) SEFT (1

one can derive several Ward identities. For more details and examples see, e.g., [I1].
One important identity is the axial Ward identity (AWI) which is given by

1
aﬂ AZ = 5 lb [ma Ta]+¢ ) (75>

where m is the mass matrix in flavor space and 7 is a Pauli matrix. In case of

Ny =2 and degenerate quark masses (m = diag(m,m)) Eq. (Z3) turns into
O AG) = 2m(") polr) (7.6)
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This relation will be used in the following sections.

7.2 The axial Ward identity mass

Evaluating Eq. (Z.6]) between the vacuum and a pion field, we obtain a relation for

determining the renormalized quark mass,
(010, A2y ~ 2m!) (0] P |7) (7.7)

In our case (Euclidean formulation) this relation only holds asymptotically, i.e., for

large times ¢, where a plateau can be identified (symbol ~). For the pion field =

one takes some operator X which creates a pion from the vacuum, X|[0) = |m).

We finally end up with the following equation to determine the renormalized quark

mass,

_ea (0004 (p = 0,t) X (0)[0)
cp (0[P")(p=0,t) X((0)[0)

where all interpolators are projected to zero spatial momentum p = 0. For X

2m(r)

(7.8)

an interpolator coupling to the quantum numbers of the pion must be used; we
take P, because with this choice the plateaus are most stable. If one neglects the
renormalization constants Z4, Zp the ratio (CH) is called the AWI-mass mawi. It

holds
ZA

The detailed pion interpolators are
P = dvysu, (7.10)
Ay = dyuysu, (7.11)

where ~y; is the Dirac matrix in time-direction. Comparing to Tab.[B.3] we can choose
interpolator 1,2, 4 for P and 5,6, 8 for A4 (of course, both interpolators should obey
the same smearing for the two quark fields). The time-derivative in Eq. (Z8)) is done
with a local 3-point fit, involving values at (¢t — 1,¢,¢ + 1). Therefrom half-integer
values are avoided. For the functional behavior we assume a cosh-form instead of
one single exponential for the correlators.

From Eq. (T8 another important relation can be derived,

F2m2 = -Nym™ x| (7.12)

where F is the pion decay constant (see Sec. [[3]) and ¥ is the quark conden-
sate. This relation was established in a pioneering paper [106] and is known as the
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Figure 7.2: We plot m2 against the unrenormalized quark mass mawy for each set
of gauge configurations. The black line is a linear fit to the data and the error of

the fit is shown as gray band around this line.

Gell-Mann—Oakes—Renner (GMOR) relation. This paper paved the way to a new
approach in quantum field theory, namely chiral perturbation theory [90], 9T], ©92].
For a nice overview see also [I07] and references therein.

In Fig. we show the dependence of m2 on the AWI-mass. We perform a
linear fit of the data, therefrom it can be seen that the expected behavior (cf. Eq.
(CI2)) is nicely fulfilled and the data points are lying within the estimated (gray)

error band.

7.8 The pion decay constant

The pion decay constant describes the weak decay of the pseudoscalar meson 7. One
uses again Ward identities to obtain a defining equation for F, for details we want
to refer the reader to standard text books. In our simulation we use two different
relations from which we can extract the value of F,. We then can compare the
different results and thus have a cross-check for the setup.

The first identity is given by

A 7% (Ay(p = 0,t) Ag(0)) ~ my F2e ™t | (7.13)
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Figure 7.3: The pion decay constant Fy is plotted against m2 (all in dimensionless
units) for each set of gauge configurations. The black line is a fit of the data and

the estimated errors are shown as gray envelope around that line.

The other possibility is to employ

m3 F?
T am2

cH Z% (P(p = 0,t) P(0)) e Mt (7.14)
In both cases one performs a fit to the given exponential behavior and can then
calculate F; from the fitted coefficient in front of the exponential. From Eq. (CI3)
we get
ff.
Fr=caZay| 255 (7.15)
m

T

and (ZI4) gives

[coeff. [coeff.
F, = 2m() cpZp coe3 =2mawiCp 24 coe3 . (7.16)
mﬂ' mﬂ'

The values of both methods agree, which validates our setup to be correct.

The dependence of the pion decay constant on the quark mass can be described

by chiral perturbation theory. Up to 1-loop order we find [90]

2% 2%
Fo—Fo— 1 . 7.17
0T 6R2EE, (mAiF%O) (7.17)
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Figure 7.4: Same as Fig. [Z.3, now for the kaon decay constant F.

Here, Fro and X refer to the pion decay constant and the quark condensate in
the chiral limit m — 0 and A4 is some low energy constant. The corresponding
expressions including the 2-loop order can be found in [I08§].

Since the quark mass is proportional to the pion mass squared (see Eq. (T12)),
we also know the relation between F, and m2. Thus, we can transform Eq. (ZI7)
into an equation in which F, only depends on m?2. Such an expression can be fitted
with a two-parameter fit, figuring out the values for Fy g and A4.

In Fig. we plot the value of Fi against m2 (all in dimensionless units) for
each set of gauge configurations. The black line is a function of the form (ZIT7) and
the fit errors are shown as gray envelope around. One can see, that our results are
described very well by the assumed behavior and are all lying within the estimated

error.

7.4 The kaon decay constant

As there also exist pseudoscalar mesons which do not consist of light quarks only,
but are built from a light and a strange quark, we can use the apparatus developed
in Sec. to determine the decay constant of the lightest of these mesons, the kaon,
too. We can apply the equations from above and thus extract the values for each set
of gauge configurations. In Fig. [[4 Fx plotted against m2. Also like for the pion,
the data can be nicely fitted to the form expected from chiral perturbation theory
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Figure 7.5: The ratio of Fi/F, is plotted against m2 (in dimensionless units)
for each set of gauge configurations. The black line is a fit of the data using the
relevant expressions for numerator and denominator. The magenta cross indicates

the experimental value [9].

and all data points are located within the error band.

To draw a connection to the experiment we compute the ratio of the two decay
constants, since such a quantity does no longer depend on the scale a. The values
are seen in Fig. For the ratio F /F; the experimental value is determined as

9]
Fr/F, = 1.197 + 0.009 (7.18)

In Fig. we show that at a value for the abscissa, where we assumed a lattice
spacing of 0.135 fm (average of our values for the mass independent scheme) and a
physical pion mass of 139.57 MeV [9]. The extrapolation of our data to that point
gives

Fr/Fy =1.199 + 0.043 (7.19)

which fully covers the experimental range.






Chapter 8

The angular momentum content of
the vector meson

8.1 Hadron decomposition

In a quantum field theory the description of the composition of a hadronic state is
a quite artful issue. Since the concept of a wave function and a complete basis of
states has a sound definition in non-relativistic approaches only, one suffers from the
absence of a proper definition for a hadron beyond the ground state in a quantum
field theory. There the situation is such that a given hadron interpolator (with
definite quantum numbers) in principle couples to all states and thus the state
always has contributions from scattering states, i.e., a superposition of many particle
components. As a consequence, lattice QCD studies concerning hadrons mainly deal
with quantities like, e.g., spectroscopy, axial couplings, forms factors, etc. However,
to get some insight into the hadron composition, i.e., understanding the hadronic
structure from an ab initio calculation, is a tough project.

Of course, a huge amount of different Fock components are present in a hadron.
Thus, it is very demanding, if not impossible, to reconstruct a hadron on the lattice.
Fortunately, as we can learn from phenomenological data and modeling of hadrons,
only a few of the Fock components are the dominant ones. To get a more intelligible
picture of these leading components would be a great benefit for improving our
knowledge about the hadron structure.

Using the variational method (see Sec. L3)) we can study the hadron wave func-
tion in lattice QCD. What we are interested in is the reconstruction of the leading
quark-antiquark component of low lying mesons. Therefore we need interpolators
that allow us to determine such a component in an unique way. Additionally, such
a set of interpolators must be complete with respect to the chiral basis.

In [I09 T10] a classification according to the transformation properties with re-
spect to the SU(2)r, x SU(2)r and U(1) 4 was done for all non-exotic interpolators in
the light meson sector. If no explicit excitation of the gluonic field with non-vacuum

quantum numbers is present, this basis is a complete one for a quark-antiquark sys-
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tem and we can investigate chiral symmetry breaking. We then can reconstruct the
decomposition for a given meson in terms of different representations of the chiral
group by diagonalizing the cross-correlation matrix Cj;. The eigenvectors describe
the quark-antiquark content in terms of different chiral representations. This means
that chiral symmetry is broken if we observe components with different transforma-
tion properties in terms of SU(2)r x SU(2)r and U(1) 4.

To establish a connection to the quark model [I05], we can reconstruct the meson
composition in terms of the 2°t1L; basis, where J = L+ S are the standard angular
momenta. Although there is some kind of understanding that results of the quark
model are related to chiral symmetry breaking, an independent and gauge invariant
approach to answer this question is still missing. Thus, the composition of the
leading quark-antiquark component in terms of the 2t1L; basis in the infrared,
i. e., where the hadron mass is generated, would tell us to which degree the quark
model language is adequate for a given state.

We can roll out the decomposition of the leading quark-antiquark component in
the angular momentum basis. The 25*1L; angular momentum basis and the chiral
basis are both complete for a two particle system. They are connected by a uni-
tary transformation. It was shown in [IT1], IT2] that each state of the chiral basis
can be uniquely represented in terms of the 25t L ; states. Then, diagonalizing the
cross-correlation matrix, built from interpolators with definite chiral transforma-
tion properties, one can obtain the partial wave decomposition of the leading Fock
component, using the unitary transformation from [IT11 [TT2].

This method can in principle be applied to any meson, here we use as an example
the vector meson p. First results of the application of this method, which involve
only the ground state p, can be found in [I13, 114]. In [II5 I16] results which
mainly focus on the first excitation of the vector meson, p’, were published.

8.2 Chiral classification and angular momentum basis

The classification of the quark-antiquark states and interpolators with respect to
the representations of SU(2)r x SU(2)r was done in [I09) 110]. We are interested
in the quark-antiquark component of the ground state p meson and its first exci-
tation. There are two possible chiral representations (which we denote as R) that
are compatible with the quantum numbers of the p meson: R = (0,1) & (1,0) and
R = (1/2,1/2)p. These representations have drastically different chiral transfor-
mation properties (see [109, I10] for details). Assuming that chiral symmetry is
not broken, then one has two independent states. The first state is |R; I JFC) =
|(0,1) & (1,0); 1177) and can be created from the vacuum by the standard vector



8.3.  Reconstruction of the wave function 85

current
Oy =qvi7Tq. (8.1)

The other state is |R; I JPC) = [(1/2,1/2)y; 1177), which can be created by the
pseudotensor operator,
Or = qui?q . (82)

Here, I denotes the isospin and 7 the vector of isospin Pauli matrices.

Chiral symmetry breaking in the state implies that the state should be a mix-
ture of both representations. If it is a superposition of both representations with
approximately equal weights, then chiral symmetry is maximally violated in this
state. If, otherwise, one of the representations strongly dominates over the other
representation, one could speak about effective chiral restoration in this state.

These chiral representations can be transferred into the 2t L ; basis, using the

unitary transformation [I11] 112]

|(03 1) 2 (1,0); 1 1__> o |1; 351>
( [(1/2,1/2)p; 1177) )—U ( 112 Dy) ) ; (8.3)

2 1
U= ( 2 \/g ) . (8.4)

L
Thus, using the interpolators Oy and Or from Eqgs. (81]) and (82) for the diago-

nalization of the cross-correlation matrix, we are able to reconstruct the partial wave

where U is given by

content of the leading Fock component of the p meson, if this unitary transformation

is applied.

8.3 Reconstruction of the wave function

We briefly want to discuss how to analyze the decomposition of the p meson using
the variational method. The time propagation properties of the normalized physical
states |n) are given by

(n(t)[m(0)) = 6 me Ent . (8.5)

However, the lattice interpolators O; are typically not normalized and are projected
to zero spatial momentum.

The cross-correlation matrix Cj; can be written as

Ci;(t) = (04(1) 01(0)) =3 alalme=Ent | (8.6)
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partial wave components

0 3 6 9
a,/ay
Figure 8.1: The fractions of |1; 3S;) and |1; 3D;) are plotted against ay /ar. Spe-
cial values, as discussed in Eq. ([89), are indicated by dotted lines.

(n)

where the coefficients a, ' give us the overlap of the physical state |n) with the

lattice interpolator O;,
af" = (0O;fn) . (87)

The wave function of the state |n) would essentially be built from these coefficients if
the basis of interpolators {O;} would be orthogonal. The two chiral representations
(0,1)®(1,0) and (1/2,1/2); form a complete and orthogonal basis (with respect to
the chiral group) for p mesons. Consequently, using the variational method we are
able to study the mixing of the two representations in both p and p’ states.

Following the lines of [I13], [I14], one can show that the ratio of couplings can be
written as (j is summed!)

IS

a™ Cij (m)
zn)(t) _ i(t) ](n)(t) ' (8.5)
ap ' (t)  Cii(t) u; (t)

N2
S

The ratio of the vector to the pseudotensor coupling, a%}l ) /ag,fl ), tells us something
about chiral symmetry-breaking in the states n = p, p/.

Finally we want to give a qualitative view on the ratio (8S). Inverting Eqgs. (83])
and (84) we can compute the |1; 3S;) and |1; 3D;) components of the analyzed state
from the ratio ay /ar. In Fig. these components are plotted against the ratio.
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Three special cases are indicated by a dotted line, namely

ay 1 1
W3 9 — Ly L
ar 2 NG

1
W —1;3Dy) | (8.9)

351>_ ’17 3D1> 9

aT_ \/§

al = \/5 — ‘1; 351> .
ar

I

In the first case the fractions of |1;3S;) and |1; 3D;) are equal, for the other two
cases the state is a pure |1; 3D1) or |1; 35;) state, respectively.

8.4 Defining the resolution scale

If we probe the hadron structure with local interpolators, then we study the hadron
decomposition at a scale, fixed by the lattice spacing a. For a reasonably small
a, this scale is close to the ultraviolet. However, we are interested in the hadron
content at infrared scales, where mass is generated. For this purpose we cannot
simply use a large a, because then the matching with the continuum QCD will be
lost due to lattice artifacts. Given a fixed, reasonably small, lattice spacing a, a
large infrared scale R can be achieved by gauge-invariant smearing of the point-like
interpolators. We smear the quark fields (sources) in spatial directions over the size
R in physical units, such that R/a > 1. Then, even in the continuum limit a — 0
we probe the hadron content at the infrared scale fixed by R. Such a definition of
the resolution is similar to the experimental one, where an external probe is sensitive
only to quark fields (it is blind to gluonic fields) at a resolution that is determined
by the momentum transfer in spatial directions.

The smearing itself is done with the Jacobi smearing procedure discussed in Sec.
A4l It creates an approximately Gaussian profile of the width 2R for each quark

field of the smeared interpolators.

8.5 Technical details and results

As already discussed above, we apply this apparatus only for the p meson. Since
this study was done in an earlier stage of this work, data is only available for three
sets of gauge configurations, namely sets A50, B60 and C77.

The cross-correlation matrix is built from four different interpolators. According
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Figure 8.2: The mass of the vector meson p, extracted using interpolators 1,4,5,8

from Tab.[BA is plotted against m2 in physical units.

to the notation from Chap. [6l and Table [B.5] from Appendix [B] these are

O1 = Upydy, (8.10)
O1 = Twvide (8.11)
Os = UnvYeYedn, (8.12)
Og = Uy Ytdy - (8.13)

Of course, the spatial directions k = 1,2, 3 are averaged and - is the Dirac matrix
in (Euclidean) time direction. The sources have an approximate width of 0.35 fm
(index n) and 0.67 fm (index w), as given in Tab. @I in Sec. @4l Although we used
another interpolator combination to extract the masses of the p meson in Chap. [
we are also able to extract both the ground state mass and the mass of the first
excited state of the p meson, using this combination. A plot of these masses can be
found in Fig.

In Fig. we show the R-dependence of the ratio from Eq. (88), both for the
ground state p meson and its first excited state p’. This ratio of the vector to the
pseudotensor coupling to the states shows us their decomposition in terms of the
(0,1) ® (1,0) and (1/2,1/2), representations. For the ground state at a resolution
scale of R =~ 0.67 fm this ratio is approximately 1.2, i. e., we see a strong mixture of
the two representations in the wave function of the ground state p meson. Inverting
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Figure 8.3: The ratio ay /ar is plotted against the smearing width R for the data
sets A50, B60 and C77. Black circles represent the ground state and red squares the
first excitation. Dashed lines are drawn only to guide the eye.

the unitary transformation from Eq. (83]) results in the fact that the vector meson
is predominantly a |1; 3S;) state with a tiny admixture of a |1; 3D;) wave (cf. Fig.
BI). To be more precise, the state is 0.997[1; 3S1) — 0.079|1; 3Dq). This result
is not changed qualitatively if we do an extrapolation to values of R much bigger
than our smearing widths [I13] [I14], which indicates that the ground state p(770)
is approximately a |1; 3S7) state — in agreement with the quark model.

However, the situation changes dramatically for the first excited state, p/ =
p(1450). There, a significant contribution comes from the (1/2,1/2); representation.
Of course we cannot perform a reliable continuation to the deep infrared scale, since
we only have two R values at hand. At such a scale the value of ay /ap will be
small, unclear if it obeys a positive or negative absolute value. Simulations using
sources with an approximate width of ~ 0.85 fm are under way but the analysis is
not finished yet. Around that width we expect that the ratio vanishes.

The interpretation is as follows. From the conformal symmetry of QCD and
from renormalization group analysis one expects that the pseudotensor interpolator
decouples from the p meson. Thus, the ratio ay/ar must increase for small R. At
large R the ratio determines a degree of chiral symmetry breaking in the infrared
region, where mass is generated. In contrast to the p(770), such a breaking is
insignificant for the p(1450). The chiral decomposition of the p’ is dominated by
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only one of the chiral representations. This leads to an indication of a smooth
onset of effective chiral restoration. Since the dominating representation for the p’
is (1/2,1/2)p, one predicts that in the same energy region there must exist a h; (and
not an a;) meson. And in fact there is a state h1(1380) and no a; state in the same
energy region [9].

The main conclusion is the following. In the p(770) meson chiral symmetry is
strongly broken, since this state is a strong mixture of (0,1) @ (1,0) and (1/2,1/2).
Consequently, its “would-be chiral partners” have a much larger mass: a1(1260) and
h1(1170). To each of these low lying states we cannot assign any chiral represen-
tation. For the p(1450) the contribution from (1/2,1/2), is much bigger than the
contribution of the other representation, and consequently its approximate chiral
partner is the h1(1380). The second excited p meson, the p(1700), should then
be dominated by the representation (0,1) @ (1,0). This assumption is favored by
the existence of the a1(1640) state [9]. However, this a;(1640) meson can not be
motivated by the quark model [I17].

Although we do not have the value of the ratio ay /ar for p(1450) at large R,
there is an indication that this value is small. Then we are able to give a qualitative
estimate for the angular momentum content of the p(1450) in the infrared. If the

ratio vanishes, the state would have the following partial wave content,

\/gll; 361) — \/zu; 3Dy) . (8.14)

This shows a significant contribution of the |1; 3D1) wave. Even if the ratio varies
slightly for large R, the qualitative result does not change. This result is inconsistent
with p’ to be a radial excitation of the ground state p meson, i. e., a |1; 35;) state,
as predicted by the quark model [105].



Chapter 9

Conclusions and outlook

9.1 Summary of the technical details

We want to start this chapter by summarizing all technical details of the present
work. Seven sets of gauge configurations, all for a lattice size of 163 x 32 have
been created. They include two dynamical, mass degenerate light quarks and pion
masses ranging from 260 to 600 MeV. The lattice spacings vary from 0.135 to 0.158
fm (in the mass dependent scheme) or rather from 0.131 to 0.138 fm in the mass
independent scheme. We used the Liischer-Weisz gauge action and the Chirally
Improved Dirac operator, including one level of stout link smearing, which is one
part of the definition of our Dirac operator. These configurations have been gen-
erated with the Hybrid Monte Carlo algorithm, using several improvements, such
as Hasenbusch mass preconditioning and a mixed precision inverter. In each set
we used 200 or 300 independent gauge configurations for the analyses. We think
that our implementation is safe concerning the development of exceptional configu-
rations. The mass parameter for the (partially quenched) strange quark was fixed
using the mass of the positive parity €2 baryon. The quark propagators are created
on Jacobi smeared or derivative smeared quarks sources, using three times HYP

smeared gauge configurations.

9.2 Results from hadron spectroscopy

9.2.1 Baryons

For the spectroscopy of baryons (and also mesons) we used the variational method.
Here, we worked with two different types of Jacobi smeared quark sources. Since for
most of the baryons we had multiple Dirac structures which we could employ, the
basis of interpolators for the variational method had a reasonable size. To guarantee
for the best comparability we have chosen the same combination of interpolators and
the same time range for the fit of the eigenvalues in each channel. An extrapolation

of our data to the physical pion mass was done using a linear fit in m?2, motivated
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Figure 9.1: For each channel we plot the range of the baryon mass (as vertical red
line), obtained from the chiral fit of the different sets of gauge configurations. The
mean values of the experimental energy levels are shown as horizontal straight black
lines, states unconfirmed by the PDG are shown as horizontal dashed black lines.
In the case of the positive parity () a black circle indicates the experimental value,
since we use this data point as input. On the left panel the positive parity results
are shown and on the right panel the negative parity results can be found.

by chiral perturbation theory. A collection of the results of these fits can be found
in Fig. for all baryon channels. For all particles considered we could extract the
ground state energy level with fairly small statistical errors; except for the negative
parity A and € baryon, we also could get a signal for the first (or even second)

excitation.

Positive parity

In the positive parity sector we slightly overestimate (except for the =) the value
for the ground states, but the obtained signals all have rather small statistical er-
rors. The extracted energy levels for the excitations exceed the experimental data
sometimes drastically. However, in the = or the €2 channel we could get signals for
states, which are not listed by the PDG. We did not see an indication for the first
excited nucleon, the Roper resonance: our signal is much higher.
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There may be various reasons for the high values we observe. First of all, this
can be a finite volume effect, i.e., the particles could be squeezed due to the limited
spatial lattice volumes we use. Another point, which of course cannot be neglected, is
the limited statistics we deal with. The plateaus in the effective mass are sometimes
short and rather noisy. Thus, improved statistics could shed a bit more light on
some situations. The third important point concerns the interpolator basis we have
at hand, it lacks two particle interpolators. Hence, we often are not able to draw a
distinct conclusion about the particle content of the analyzed channel, i.e., it may
be possible that we see a scattering instead of a bound state.

Negative parity

Except for the ¥, we have underestimated the ground state signals for the negative
parity baryons compared to the PDG data. In most of the channels we encountered
the same circumstances as for the positive parity, a reliable identification whether
a bound or scattering state is observed was not possible. The first excitation of the
nucleon is also below the experimental value. In the case of the ¥ our signal of the
first excitation matched the experimental value and the existence of the ¥(2000).
For the = and 2 baryons up to now no state confirmed by the PDG exists. We
could, however, get signals with reasonable errors in these cases.

9.2.2 Mesons

To obtain the results for the meson mass spectrum we used, in addition to the Jacobi
smeared sources, also derivative smeared quark sources. We analyzed spin 0 and spin
1 mesons, both in the light and the light /strange sector. As for the baryons, we tried
to find an overall combination of interpolators and time range, which gives rise to
a fair signal for each set. Unfortunately this was not possible everywhere. A linear
fit in m2 of the final data was performed to get the values presented in Fig.
In general, the expected spectrum was nicely reproduced and except for the tensor
meson by the ground state and the first excitation could be measured.

Mesons built from light quarks

Five different mesons, built from only up and down quarks, were analyzed in this
work. We do not discuss the ground state of the pseudoscalar meson 7, since these
masses served as scale for our plots of hadron masses. The other ground state signals
matched the PDG data very well, only the mass of the b; was overestimated by about
10%. The energy levels of the first excited states were also compatible within two
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Figure 9.2: For each channel we plot the range of the meson mass (as vertical red
line), obtained from the chiral fit of the different sets of gauge configurations. The
mean values of the experimental energy levels are shown as horizontal black lines.
Grey bars indicate the full width of the corresponding resonance. On the left panel
the mesons consisting of only light quarks are shown, while on the right panel we

show mesons built from one light and one strange quark.

standard deviations.

Mesons including strange quarks

Here, we mostly found excellent agreement of our data for the ground states with the
experimental values. This fact strengthened our choice of the strange quark mass
parameter. In the K and the K™ channels the assignment of states to a definite
channel was not really possible, since these particles are broad resonances. The
values of the first excited states were also fully compatible with the experimental
values. For the case of the K; meson we could show that different energy levels are
dominated by interpolators with different C parity, although this quantum number,
strictly speaking, does hold only for mass degenerate quarks.
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9.3 Results for low energy parameters

With our sets of gauge configurations we also analyzed low energy parameters. From
the axial Ward identity we could obtain a relation for the (unrenormalized) quark
mass, the AWI-mass mawy. Additionally we could check the relation between the
quark mass and the pion mass, the famous Gell-Mann—Oakes—Renner relation. We
found the expected linear behavior to be fulfilled very nicely.

The pion and kaon decay constants also have been investigated. There, we found
very reasonable results for the fits of our data with a formula motivated by chiral
perturbation theory. However, we did not include renormalization constants in our
calculations. The (scale independent) ratio of these two decay constants perfectly

matched the experimental value.

9.4 Results from angular momentum analysis of the

vector meson

For the gauge configuration sets A50, B60 and C77 we did an analysis of the de-
composition, concerning the dominant quark-antiquark components, of the vector
meson p. More precisely, we analyzed the coupling of the p meson to interpolators
with different chiral transformation properties. After application of a unitary trans-
formation, we could get the decomposition in terms of the angular momentum basis,
i.e., the 25*t1L; basis. From the quark model it is known that both, the ground state
p(770) meson and its first excitation p(1450), are pure |1; 35;) states. The results
we have obtained could confirm the situation for the ground state but gave a con-
tradictory picture for the first excitation, where we expect the major contribution
from the |1; 3D1) state.

9.5 Owutlook

Of course, as for nearly every scientific task, after finishing the work, a lot of possible
improvements come into ones mind. Let us shortly mention some points, which may
help to get a clearer picture in some cases.

Due to limited computational power we are forced to work with small and rather
coarse lattices. Especially for the hadron mass spectrum we would need bigger
lattice volumes with a finer lattice spacing to be able to get a higher resolution, which
means particularly longer effective mass plateaus with less fluctuation. Additionally,
increasing the statistics (preferably for the sets A66 and B70) can help to identify
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effects which may be hidden on the limited number of available configurations. We
then could draw more definite conclusions concerning the quality of the state, i.e.,
do we observe a scattering or a bound state. Also the availability of correlation
functions with non-zero momentum helps to reliably identify a scattering state.
Some of these tasks are already under way. We will produce 150 independent
gauge field configurations with the same parameters as sets A66 and C77, but for
a lattice size of 243 x 48. For set C77 we will create 600 independent gauge field
configurations for a small lattice size of 123 x 24. These new sets can then be used

to analyze finite volume effects for our approach.



Appendix A

Parameters of D¢y

Coeff. number  Name Value Path shape v Multiplicity
1 S1 1.481599252 [] 1 1
2 52 —0.05218251439 [i] 1 8
3 53 —0.01473643847 [i, 7] 1 48
5 S5 —0.002186103421 [i, 7, k] 1 192
6 S6 0.002133989696 [i,1, 7] 1 96
8 S8 —0.003997001821 i, 7, —1] 1 48
10 510 —0.0004951673735 [i,7,k,1] 1 384
11 511 —0.0009836500799 |7, , —1, k] 1 384
13 513 0.007529838581  [i,j,—i,—j] 1 48
14 v1 0.1972229309 [4] i 8
15 V2 0.008252157565 [4, J] Yi 96
17 V4 0.005113056314 (4,7, k] Yi 384
18 Us 0.001736609425 17,1, k] Yi 192
32 ty —0.08792744664 [i, 7] ViV 48
33 to —0.002553055577 [i, 7, k] YiVj 384
34 t3 0.002093792069 [, k, j] YiVj 192
36 ts —0.005567377075 i, 7, —1] ViV 48
46 15 —0.003427310798  [j,4,—7,—i] Vi 48
51 D1 —0.008184103136 [i,7,k,1] V5 384

Table A.1: Coefficients for the CI fermion action used in this simulation. The path
shapes are given symbolically, e.g., [i,j] stands for a path in i-direction and then
in j-direction (i # j). The y-matrices (fifth column) are permuted as described in
more detail in [I7].
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Appendix B

Interpolators

The baryon interpolators we use are the following:

o N
OY = €ape T1 ttq (uf Tade — df T uc) (B.1)
e Ay, k=1,2,3
OA = €ape Ua (U Cypue) (B.2)
° X
O(EZ) = €abe 't ug (U;{ Ias. — 81? Iy uc) (B3)
o =
O(El) = €ape I'1 Su (3,{ 'y ue — u{ I’y Sc) (B4)
e (), k=1,2,3
Oq = €abe Sa (Sg C'Vk Sc) (B'5)

For N, ¥ and = we have three possible Dirac structures, for A and €2 only one.
Details about the matrices I'; and the quark smearings in the interpolators can be
found in Tab. Bl and Tab. [B.2, respectively.

In the N and A channels we omit interpolators, which are numerically very
similar to others and obtain a total of only 18 (for N) respectively 6 (for A) different
interpolators.

The charge conjugation matrix C' is defined through

C ol = _'YE (B.6)

and 7 is the Dirac matrix in (Euclidean) time direction.

In all tables for meson interpolators (Tab. [B.3] to Tab. [B.6]) the two quark fields
are labeled by a and b. The indices n, w and 9; correspond to the smearings narrow,
wide and derivative, respectively. The ~; is one of the spatial Dirac matrices. In case
of the light mesons, the quark fields can be both up or down quarks, in the strange
meson sector we use an up or down quark for field a and a strange quark for field b.
The last columns, where the C' parity is given, are strictly speaking only valid for
light mesons, for strange mesons this quantum number only holds approximately.
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X(i) ng) Fg) Smearing #xn #x or #=

(nn)n 1 1
(nn)w 2 2
(nw)n 3 3
N T
(wn)w 6
(ww)n 5 7
(ww)w 6 8
........................................................... (nn)n79
(nn)w 8 10
(nw)n 9 11
(nw)w 10 12
K ¢ (wn)n 13
(wn)w 14
(ww)n 11 15
(ww)w 12 16
........................................................... (nn)n1317
(nn)w 14 18
(nw)n 15 19
R
(wn)w 22
(ww)n 17 23
(ww)w 18 24

Table B.1: Interpolators for the N, ¥ and Z channels. The Dirac structures ¥,
the quark smearings and the corresponding interpolator numbers #x are given.
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smearing  #a, #q

(nn)n

1

S U = W N

Table B.2: Interpolators for the A and §2 channels. The quark smearings and the

corresponding interpolator numbers #x are given.

#o- interpolator(s) C

1 T Y5bn +

2 T Y5by + G Ysbn +

3 Y500 — G Ys5bp —
A Geysbe 4

5 Tn Yt Y5bn +

6 Yt Y50w + @Yt Y50n +

7 anYtY5bw — Tyt Ysbn -
- GuwyYsbw o+

9 @y,YiV5bn + anyivsbe, +

10 @y,7ivsbn — anyivsbe, -

11 @y,vivsbw + @wyivsbo, +
L2 daisbe — @uwyiysbe T

13 @g,vivtvsbn + anvivivsbo,  —

14 @o,viveysbn — anvivevsba,  +

15 @g,Yivtvsbw + @uwYivevsbo,  —
16 Ao yinesbe — @wyineysbe, |t
LA aoysbo, T

18 ap, VY500, +

Table B.3: Meson interpolators for J© = 0~. The first row shows the number,

the second shows the explicit form of the interpolator.

If this is a sum of two

terms we omit the factor 1/2 for simplicity. In the last column the C parity is

given. Interpolators obeying the same Dirac structure, but with different quark field

smearings, are separated by dotted lines.
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Ho+ interpolator(s) C
1 anbp, +
2 Tnby + by, +
3 Tnby — Tyby, -
4 Awbuw +

5

6 ﬁai’}/ibn — an’yibai +

7 ag,"i by + ﬁw’yibai —

L8 daibe —awyibe,

9 ap,vivibn + anvivibe, —
10 @y, vivtbn — anvivtbs, +
11 ap,vivtbw + awyivebs, —
12 ap,vivibw — awyivebs, +

Table B.4: Same as Tab.[B.3, now for J© = 0%.
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#1- interpolator(s) C

1 En’}/kbn —

2 U Viebw + T YEbn -

3 T Yibw — G Yibn +
S Twkbw T

5 U VEYtbn -

6 @Y Yebw + QY Vebn -

7 UV Vebw — T Yk Vb +
S T . 4 L. S .

9 ap,, b, + anbp, +

10 ag, by, — Enbak —

11 G, bw + b, +

12 ap;, by — awbo, —

13 Ay, Vtbn + anvibs, —

14 g, Yibn — Tnyiba, +

15 ay, Yeby + aw%bak —

16 A5, Vtbw — @wibo, +
e aa%ba ...................................... e
= . 0 1. S T

19 Qg €KV Y50n + Un€ijiYiV5ba, +

20 Qg €ijkViY50n — An€ijkYiV5ba, -

21 @y, €k V50w + GuweijrYiYsba,
22 Aok sbe T @ueikyisbo, <
23 @y, €4k VY500 + An€ijryiveysbe,  —
24 @y, €1Vt V500 — Tn€ijkYi Ve Ysbe, T
25 @y, €1k Y5bw + Qw€ijrYi 1 Ysbe,  —

26 @p, €KYVt Y5bw — Qu€ijk ViV Ysbe, T

Table B.5: Same as Tab. B3, now for J© =1-.
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#1+ interpolator(s) C

1 Yk Y50n +

2 Yk V50w + Quw Yk Y50n +

3 nVkY50w — Quw Yk V50 -
oA Gewysbe

5 ﬁak’y5bn + ﬁn’yg,bak +

6 a9, V5bn — anY5ba, -

7 ap, Y5 + ﬁw’y5b3k +
........... 8 . Ga0sbw T Gusbo,

9 @, VtV5bn + anYev500, +

10 @, VtV5bn — anYey5bo, -

11 @, VtV5bw + @t Y50, +
L2 Basbe T Guisbe, T
B Gokysbo, T

14 €kao,Vjbn + €jkanviba,  —

15 Eijkaak’yjbn — eijkan’yjbak +

16 Eijkaak’}/jbw + Gijkaw’yjbak —
AT k@0, — €gkubo,
18 €;kaa, Vi Vtbn + €ijknyjviba, ——
19 €ka, Vi Vtbn — €ijkanyjviba, —+
20 €109, Vtbw + €KW Y VDo, —
2L €kAa b = €k, |
22 An YKV Y50 -
23 @ Ysbw + Gk ysbn —
24 @Y sbw — Gy sbn +
25 Wy Ykt Y50w -

26 Ty, VeVt Y500; -

Table B.6: Same as Tab.[B.3, now for J© = 1%.
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