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Abstract. Newtonian and Scrödinger dynamics can be formulated in a physically meaningful
way within the same Hilbert space framework. The resulting unexpected relation between
classical and quantum motions goes beyond the results provided by the Ehrenfest theorem.
The normal probability distribution and the Born rule turn out to be related. A dynamical
mechanism responsible for the latter formula is proposed and applied to measurements of
macroscopic and microscopic systems.

1. Introduction
In recent papers [1] and [2] an important new connection between classical and quantum
dynamics was derived. The starting point was a realization of classical and quantum mechanics
on an equal footing within the same Hilbert space framework, and identification of observables
with vector fields on the sphere of normalized states. This resulted in a physically meaningful
interpretation of the components of the velocity of state. Newtonian dynamics was shown
to be the Schrödinger dynamics of a system whose state is constrained to the classical phase
space submanifold in the Hilbert space of states. This also resulted in a formula relating the
normal probability distribution and the Born rule, and interpretation of quantum collapse in
terms of diffusion of the state on the projective space of states. Simply put, the classical space
and classical phase space of a system of particles can be identified with a submanifold of the
space of states of the corresponding quantum system. When the system is constrained to the
submanifold, it behaves classically. Otherwise, it behaves quantum-mechanically. The velocity
of the state at any point of the classical space submanifold can be decomposed into the classical
(velocity, acceleration) and non-classical (phase velocity, spreading) components. The curvature
of the sphere of states is determined from the canonical commutation relations.

In this paper, we continue to explore the implications of the proposed geometric framework.
It has been known since Einstein that the thermal motion of molecules in a liquid results in
the Brownian motion of pollen grain in the liquid, with probability distribution of the position
of the grain satisfying the diffusion equation. It is shown here that the state of a microscopic
particle exposed to the same random potential as the one experienced by the pollen grain is
equally likely to get displaced in any direction tangent to the projective space of states. The
relationship between the normal probability distribution and the Born rule that was established
earlier signifies, then, that the probability density for the state to reach a particular point in
the space of states is given by the Born rule. A diffusion equation for the motion of the state in
these conditions is then obtained.
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In this model, the role of the measuring device in measurements on macroscopic and
microscopic particles is similar. In both cases, the device is designed to record values of the
measured quantity and is responsible for a noise and the resulting distribution of these values.
The effect of the noise can be modeled by a diffusion equation. In the case of a measurement
on a macroscopic particle, the diffusion equation is the familiar equation on the classical space
R3. In the case of a measurement on a microscopic particle, the equation describes the random
motion of the state of the particle and represents an extension of the diffusion equation from the
classical space onto the space of states. Under the diffusion, the state of a microscopic particle
can reach the classical space submanifold in the space of states and trigger a detector. The
probability of reaching a particular point of the submanifold is given by the Born rule.

To make the paper self-contained, we begin with a review of the results reported in [1] and
[2].

2. The classical mechanics in the language of quantum states
Experience shows that macroscopic bodies have a well-defined position in space at any time. In
quantum mechanics the state of a spinless particle with a known position a ∈ R3 is described
by the Dirac delta function δ3a(x) = δ3(x − a). The map ω : a −→ δ3a provides a one-to-one
correspondence between points a ∈ R3 and state “functions” δ3a. This allows us to describe
points in R3 in functional terms and identify the set R3 with the set M3 of all delta functions
in the space of state functions of the particle.

The common Hilbert space L2(R3) of state functions of a particle does not contain delta
functions. By writing the inner product of functions ϕ,ψ ∈ L2(R3) as

(ϕ,ψ)L2 =

∫
δ3(x− y)ϕ(x)ψ(y)d3xd3y (1)

and approximating the kernel δ3(x − y) with a Gaussian function, one obtains a new inner
product in L2(R3)

(ϕ,ψ)H =

∫
e−

(x−y)2

8σ2 ϕ(x)ψ(y)d3xd3y. (2)

The Hilbert space H obtained by completing L2(R3) with respect to this inner product contains
delta functions and their derivatives. In particular,∫

e−
(x−y)2

8σ2 δ3(x− a)δ3(y − a)d3xd3y = 1. (3)

It follows that the set M3 of all delta functions δ3a(x) with a ∈ R3 form a submanifold of the
unit sphere in the Hilbert space H, diffeomorphic to R3.

The kernel δ3(x − y) of the metric on L2(R3) is analogous to the Kronecker delta δik,

representing Euclidean metric in orthogonal coordinates. The “skewed” kernel e−
(x−y)2

8σ2 of the
metric on H is then analogous to the Euclidean metric represented in linear coordinates with
skewed axes by a constant non-diagonal matrix gik.

The map ρσ : H −→ L2(R3) that relates L2 and H-representations is given by the Gaussian
kernel

ρσ(x,y) =

(
1

2πσ2

)3/4

e−
(x−y)2

4σ2 . (4)

In fact, multiplying the operators (integrating the product of the corresponding kernels) one can
see that

k(x,y) = (ρ∗σρσ)(x,y) = e−
(x−y)2

8σ2 , (5)
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which is consistent with (2). The map ρσ transforms delta functions δ3a to Gaussian functions

δ̃3a = ρσ(δ3a), centered at a. The image Mσ
3 of M3 under ρσ is an embedded submanifold of

the unit sphere in L2(R3) made of the functions δ̃3a. The map ωσ = ρσ ◦ ω : R3 −→ Mσ
3 is a

diffeomorphism. Here ω is the same as before. In what follows, the obtained realizations will be
used interchangeably.

Let r = a(t) be a path with values in R3 and let ϕ = δ3a(t) be the corresponding path in M3.

It is easy to see that the norm
∥∥∥dϕdt ∥∥∥2H of the velocity in the space H is given by

∥∥∥∥dϕdt
∥∥∥∥2
H

=
∂2k(x,y)

∂xi∂yk

∣∣∣∣
x=y=a

dai

dt

dak

dt
. (6)

Here k(x,y) = e−
(x−y)2

8σ2 as in (5), so that

∂2k(x,y)

∂xi∂yk

∣∣∣∣
x=y=a

=
1

4σ2
δik, (7)

where δik is the Kronecker delta symbol. Assuming now that the distance in R3 is measured in
the units of 2σ, we obtain ∥∥∥∥dϕdt

∥∥∥∥
H

=

∥∥∥∥dadt
∥∥∥∥
R3

. (8)

It follows that the map ω : R3 −→ H is an isometric embedding. Furthermore, the set M3 is
complete in H so that there is no vector in H orthogonal to all of M3. By defining the operations
of addition ⊕ and multiplication by a scalar λ� via ω(a)⊕ω(b) = ω(a+b) and λ�ω(a) = ω(λa)
with ω as before, we obtain M3 as a vector space isomorphic to the Euclidean space R3.

The projection of velocity and acceleration of the state δ3a(t) onto the Euclidean space M3

yields correct Newtonian velocity and acceleration of the classical particle:(
d

dt
δ3a(x),− ∂

∂xi
δ3a(x)

)
H

=
dai

dt
(9)

and (
d2

dt2
δ3a(x),− ∂

∂xi
δ3a(x)

)
H

=
d2ai

dt2
. (10)

The Newtonian dynamics of the classical particle can be derived from the principle of least
action for the action functional S on paths in H, defined by∫

k(x,y)

[
m

2

dϕt(x)

dt

dϕt(y)

dt
− V (x)ϕt(x)ϕt(y)

]
d3xd3ydt, (11)

where m is the mass of the particle, V is the potential and k(x,y) = e−
1
2
(x−y)2 (same as in

(5) with 2σ = 1; see (8)). Namely, under the constraint ϕt(x) = δ3(x − a(t)) the action (11)
becomes

S =

∫ [
m

2

(
da

dt

)2

− V (a)

]
dt, (12)

which is the classical action functional for the particle.
This shows that a classical particle can be considered a constrained dynamical system with

the state ϕ of the particle and the velocity dϕ
dt of the state as dynamical variables. A similar
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realization exists for mechanical systems consisting of any number of classical particles. For
example, the map ω⊗ω : R3×R3 −→ H⊗H, ω⊗ω(a,b) = δ3a⊗ δ3b identifies the configuration
space R3 × R3 of a two particle system with the embedded submanifold M6 = ω ⊗ ω(R3 × R3)
of the Hilbert space H ⊗ H. Consider a path (a(t),b(t)) in R3 × R3 and the corresponding
path δ3a(t) ⊗ δ

3
b(t) with values in M6. For any t, the vectors d

dtδ
3
a(t) ⊗ δ

3
b(t) and δ3a(t) ⊗

d
dtδ

3
b(t)

are tangent to M6 at the point δ3a(t) ⊗ δ
3
b(t) and orthogonal in H ⊗H. The space M6 with the

induced metric is isometric to the direct product R3 × R3 with the natural Euclidean metric.
Projection of velocity and acceleration of the state ϕ(t) = δ3a(t) ⊗ δ

3
b(t) onto the basis vectors(

− ∂
∂xi
δ3a(t)

)
⊗ δ3b(t) and δ3a(t) ⊗

(
− ∂
∂xk

δ3b(t)

)
yields the velocity and acceleration of the particles

by means of the formulas similar to (9) and (10).

3. Observables as vector fields
Quantum observables can be identified with vector fields on the space of states. Given a self-
adjoint operator Â on a Hilbert space L2 of square-integrable functions (it could in particular
be the tensor product space of a many body problem) one can introduce the associated linear
vector field Aϕ on L2 by

Aϕ = −iÂϕ. (13)

If D is the domain of the operator Â, then Aϕ maps D into the vector space L2. Because

Â is self-adjoint, the field Aϕ, being restricted to the sphere SL2 of unit normalized states, is
tangent to the sphere. The commutator of observables and the commutator (Lie bracket) of the
corresponding vector fields are related in a simple way:

[Aϕ, Bϕ] = [Â, B̂]ϕ. (14)

Furthermore, a Hilbert metric on the space of states yields a Riemannian metric on the
sphere. For this consider the realization L2R of the Hilbert space L2, i.e., the real vector space
of pairs X = (Reψ, Imψ) with ψ in L2. If ξ, η are vector fields on SL2 , define a Riemannian
metric Gϕ : TRϕS

L2 × TRϕSL2 −→ R on the sphere by

Gϕ(X,Y ) = Re(ξ, η). (15)

Here X = (Reξ, Imξ), Y = (Reη, Imη) and (ξ, η) denotes the L2-inner product of ξ, η.
The Riemannian metric on SL2 yields a Riemannian (Fubini-Study) metric on the projective

space CPL2 , which is the base of the fibration π : SL2 −→ CPL2 . For this an arbitrary tangent
vector X ∈ TRϕSL2 is decomposed into two components: tangent and orthogonal to the fibre
{ϕ} through ϕ (i.e., to the plane C1 containing the circle S1 = {ϕ}). The differential dπ maps
the tangential component to zero-vector. The orthogonal component of X can be then identified
with dπ(X). If two vectors X,Y are orthogonal to the fibre {ϕ}, the inner product of dπ(X)
and dπ(Y ) in the Fubini-Study metric is equal to the inner product of X and Y in the metric
Gϕ:

(dπ(X), dπ(Y ))FS = Gϕ(X,Y ). (16)

The resulting metrics can be used to find physically meaningful components of vector fields Aϕ
associated with observables. Since Aϕ is tangent to SL2 , it can be decomposed into components
tangent and orthogonal to the fibre {ϕ} of the fibre bundle π : SL2 −→ CPL2 . These components
have a simple physical meaning, justifying the use of the projective space CPL2 . From

A ≡ (ϕ, Âϕ) = (−iϕ,−iÂϕ), (17)
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one can see that the expected value of an observable Â in state ϕ is the projection of the vector
−iÂϕ ∈ TϕSL2 onto the fibre {ϕ}. Because

(ϕ, Â2ϕ) = (Âϕ, Âϕ) = (−iÂϕ,−iÂϕ), (18)

the term (ϕ, Â2ϕ) is the norm of the vector −iÂϕ squared. The vector −iÂ⊥ϕ = −iÂϕ−(−iAϕ)

associated with the operator Â−AI is orthogonal to the fibre {ϕ}. Accordingly, the variance

∆A2 = (ϕ, (Â−AI)2ϕ) = (ϕ, Â2
⊥ϕ) = (−iÂ⊥ϕ,−iÂ⊥ϕ) (19)

is the norm squared of the component −iÂ⊥ϕ. Recall that the image of this vector under dπ
can be identified with the vector itself. It follows that the norm of −iÂ⊥ϕ in the Fubini-Study
metric coincides with its norm in the Riemannian metric on SL2 and in the original L2-metric.

The Schrödinger equation
dϕ

dt
= −iĥϕ (20)

is an equation for the integral curves of the vector field −iĥϕ on the sphere SL2 . Let’s decompose
−iĥϕ onto the components parallel and orthogonal to the fibre. The parallel component of dϕ

dt
is numerically

Re(−iϕ,−iĥϕ) = E, (21)

i.e., the expected value of the energy. The decomposition of the velocity vector dϕ
dt into the

parallel and orthogonal components is then given by

dϕ

dt
= −iEϕ+−i(ĥ− E)ϕ = −iEϕ− iĥ⊥ϕ. (22)

The orthogonal component of the velocity dϕ
dt is equal to −iĥ⊥ϕ. From this and equation (19) we

conclude that: The velocity of evolution of state in the projective space is equal to the uncertainty
of energy. Equation (22) also demonstrates that the physical state is driven by the operator ĥ⊥,
associated with the uncertainty in energy rather than the energy itself.

The uncertainty relation

∆A∆B ≥ 1

2

∣∣∣(ϕ, [Â, B̂]ϕ
)∣∣∣ (23)

follows geometrically from the comparison of areas of rectangle A|XY | and parallelogram AXY

formed by vectors X = −iÂ⊥ϕ and Y = −iB̂⊥ϕ:

A|XY | ≥ AXY . (24)

There is also an uncertainty identity, [3]:

∆A2∆B2 = A2
XY +G2

ϕ(X,Y ). (25)

4. Components of the velocity of state under the Schrödinger evolution
From (22) we know that for any state ϕ ∈ SL2 the velocity of state dϕ

dt in the Schrödinger
equation can be decomposed onto the components parallel and orthogonal to the fibre {ϕ} of
the bundle π : SL2 −→ CPL2 :

dϕ

dt
= −iEϕ− iĥ⊥ϕ. (26)

The norm of the parallel component −iEϕ is the expected value of energy E. It represents
the phase velocity of state. The norm of the orthogonal component −iĥ⊥ϕ is equal to the
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uncertainty of energy ∆E on the state ϕ. It represents the velocity of motion of the fibre {ϕ}.
In particular, from (26) it follows that under the Schrödinger evolution the speed of evolution
of state in the projective space is equal to the uncertainty in energy.

The orthogonal component −iĥ⊥ϕ of the velocity can be further decomposed into physically
meaningful components. Suppose that at t = 0, a microscopic particle is prepared in the state
ϕ0 ≡ ϕa,p given by

ϕa,p(x) =

(
1

2πσ2

)3/4

e−
(x−a)2
4σ2 ei

p(x−a)
~ , (27)

where σ is the same as in (4) and p = mv0 with v0 being the initial group-velocity of the packet.
The set Mσ

3,3 of all initial states ϕa,p given by (27) form a 6-dimensional embedded submanifold

in L2(R3). Consider the set of all fibres of the bundle π : SL2 −→ CPL2 through the points of
Mσ

3,3. The resulting bundle π : Mσ
3,3 × S1 −→Mσ

3,3 identifies Mσ
3,3 with a submanifold of CPL2 ,

denoted by the same symbol. The map Ω : R3 × R3 −→Mσ
3,3,

Ω(a,p) =

(
1

2πσ2

)3/4

e−
(x−a)2

4σ2 ei
p(x−a)

~ (28)

is a diffeomorphism from the classical phase space of the particle onto Mσ
3,3. For Ω = reiθ, where

r is the modulus and θ is the argument of Ω, the vectors ∂r
∂aα e

iθ and i ∂θ
∂pβ

reiθ are orthogonal

to the fibre {ϕ0} at the point ϕ0 in L2(R3). These vectors can be then identified with vectors
tangent to Mσ

3,3, considered as a submanifold of CPL2 . They form a basis in the tangent space
T{ϕ0}M

σ
3,3. Furthermore, the induced Riemannian metric is the usual Fubini-Study metric on

CPL2 , restricted to Mσ
3,3.

For any path {ϕ} = {ϕτ} with values in Mσ
3,3 ⊂ CPL2 the norm of velocity vector d{ϕ}

dτ in
the Fubini-Study metric is given by∥∥∥∥d{ϕ}dτ

∥∥∥∥2
FS

=
1

4σ2

∥∥∥∥dadτ
∥∥∥∥2
R3

+
σ2

~2

∥∥∥∥dpdτ
∥∥∥∥2
R3

. (29)

It follows that under a proper choice of units, the map Ω is an isometry that identifies the
Euclidean phase space R3×R3 of the particle with the submanifold Mσ

3,3 ⊂ CPL2 furnished with
the induced metric. The map Ω is an extension to the phase space of the isometric embedding
ωσ = ρσ ◦ ω of the space R3, introduced in the section entitled “The classical mechanics in the
language of quantum states”.

The obtained embedding of the classical phase space into the space of quantum states is
physically meaningful. To see this let us first project the orthogonal component − i

~ ĥ⊥ϕ of the

velocity dϕ
dt onto vectors tangent to the curves of constant values of p and a (classical space and

momentum space components) in the projective manifold Mσ
3,3. Calculation of the projection of

the velocity dϕ
dt onto the unit vector − ∂̂r

∂aα e
iθ (i.e., the classical space component of dϕ

dt ) for an

arbitrary Hamiltonian of the form ĥ = − ~2
2m∆ + V (x) yields

Re

(
dϕ

dt
,− ∂̂r

∂aα
eiθ

)∣∣∣∣∣
t=0

=

(
dr

dt
,− ∂̂r

∂aα

)∣∣∣∣∣
t=0

=
vα0
2σ
. (30)

Calculation of the projection of velocity dϕ
dt onto the unit vector i ∂̂θ∂pαϕ (momentum space

component) gives

Re

(
dϕ

dt
, i
∂̂θ

∂pα
ϕ

)∣∣∣∣∣
t=0

=
mwασ

~
, (31)
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where

mwα = − ∂V (x)

∂xα

∣∣∣∣
x=x0

(32)

and σ is assumed to be small enough for the linear approximation of V (x) to be valid within
intervals of length σ.

The velocity dϕ
dt also contains component due to the change in σ (spreading), which is

orthogonal to the fibre {ϕ} and the phase space Mσ
3,3, and is equal to

Re

(
dϕ

dt
, i
d̂ϕ

dσ

)∣∣∣∣∣
t=0

=

√
2~

8σ2m
. (33)

Calculation of the norm of dϕ
dt = i

~ ĥϕ at t = 0 gives∥∥∥∥dϕdt
∥∥∥∥2 =

E
2

~2
+

v2
0

4σ2
+
m2w2σ2

~2
+

~2

32σ4m2
, (34)

which is the sum of squares of the found components. This completes a decomposition of the
velocity of state at any point ϕa,p ∈Mσ

3,3.

For a closed system the norm of dϕ
dt = i

~ ĥϕ is preserved in time. For a system in a stationary

state, this amounts to conservation of energy. In fact, in this case ϕt(x) = ψ(x)e−
iEt
~ , which is

a motion along the phase circle, and ∥∥∥∥dϕdt
∥∥∥∥2 =

E2

~2
. (35)

For a closed system in any initial state the norm of the phase component (expected energy) and

orthogonal component (energy uncertainty) of the velocity dϕ
dt are both preserved.

From (30) and (31) and a simple consistency check, showing that the rate of change of the
projection in (30) is given by acceleration w, one can see that the phase space components of

the velocity of state dϕ
dt assume correct classical values at any point ϕa,p ∈ Mσ

3,3. This remains
true for the time dependent potentials as well. The immediate consequence of this and the linear
nature of the Schrödinger equation is that under the Schrödinger evolution with the Hamiltonian

ĥ = − ~2
2m∆ + V (x, t), the state constrained to Mσ

3,3 ⊂ CPL2 moves like a point in the phase
space representing a particle in Newtonian dynamics. More generally, Newtonian dynamics of n
particles is the Schrödinger dynamics of n-particle quantum system whose state is constrained
to the phase-space submanifold Mσ

3n,3n of the projective space for L2(R3)⊗ ... ⊗L2(R3), formed
by tensor product states ϕ1 ⊗ ... ⊗ ϕn with ϕk of the form (27). On the contrary, there exists
a unique extension of the Newtonian dynamics on the classical phase space submanifold to a
unitary dynamics in the full Hilbert space [2].

Note again that the velocity and acceleration terms in (34) are orthogonal to the fibre {ϕa,p}
of the fibration π : SL2 −→ CPL2 , showing that these Newtonian variables have to do with the
motion in the projective space CPL2 . The velocity of spreading is orthogonal to the fibre and
to the phase space submanifold Mσ

3,3.

5. The Born rule and the normal probability distribution
The isometric embedding of the classical space Mσ

3 into the space of states L2(R3) results in a
relationship between distances in R3 and in the projective space CPL2 . The distance between
two points a and b in R3 is ‖a− b‖R3 . Under the embedding of the classical space into the space
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of states, the variable a is represented by the state δ̃3a. The set of states δ̃3a form a submanifold
Mσ

3 in the Hilbert spaces of states L2(R3), which is ”twisted” in L2(R3). It belongs to the sphere

SL2 and spans all dimensions of L2(R3). The distance between the states δ̃3a, δ̃3b on the sphere
SL2 or in the projective space CPL2 is not equal to ‖a− b‖R3 . In fact, the former distance
measures length of a geodesic between the states while the latter is obtained using the same
metric on the space of states, but applied along a geodesic in the twisted manifold Mσ

3 . The
precise relation between the two distances is given by

e−
(a−b)2

4σ2 = cos2 θ(δ̃3a, δ̃
3
b), (36)

where θ is the Fubini-Study distance between states in CPL2 . The distance θ in the projective
space of states CPL2 appears here for a good reason: the fibres of the fibration π : SL2 −→ CPL2

through the points of the classical space Mσ
3 are orthogonal to this space. This is why the

distance in Mσ
3 can be expressed in terms of the distance in CPL2 . Despite the non-trivial

geometry contained in (36), the formula itself is easy to derive. The left hand side is the result

of integration in |(δ̃3a, δ̃3b)|2. On the other hand, the same expression is equal to the right side of
(36) by definition of the Fubini-Study metric.

The relation (36) has an immediate implication onto the form of probability distributions of
random variables over Mσ

3 and CPL2 . In particular, consider a random variable over CPL2 .
Suppose that the restricted random variable defined over Mσ

3 = R3 is distributed normally on
R3. Then the direction-independent probability of transition between arbitrary quantum states
must satisfy the Born rule. So, The normal distribution law on Mσ

3 implies the Born rule on
CPL2. Conversely, the Born rule implies the normal distribution law for states in Mσ

3 .
The fact that the Born rule implies the normal distribution on Mσ

3 is straightforward.

According to the Born rule, the probability density fa,σ(b) to find the particle in a state δ̃3a
at a point b is equal to

fa,σ(b) = |δ̃3a(b)|2 = |(δ̃3a, δ3b)|2 =

(
1

2πσ2

)3/2

e−
(a−b)2

2σ2 , (37)

which is the normal distribution function. It follows that on the elements of Mσ
3 , the Born rule

is the rule of normal distribution.
The Born rule on Mσ

3 can be also written in term of the probability P (δ̃3a, δ̃
3
b) of transition

between the states δ̃3a, δ̃
3
b in Mσ

3 :

P (δ̃3a, δ̃
3
b) = |(δ̃3a, δ̃3b)|2. (38)

Assuming δ̃3b is sufficiently sharp, the formulas (37) and (38) mean the same thing. In fact,

|(δ̃3a, δ̃3b)|2 = fa,
√
2σ(b)(∆x)3, (39)

where fa,
√
2σ is the normal distribution function with variance

√
2σ and ∆x =

√
4πσ2. This

relates the probability in (38) to the normal probability density in (37) and identifies P (δ̃3a, δ̃
3
b)

with the probability of finding the macroscopic particle near the point b.
Conversely, suppose we have a rule for probability of transition between states in CPL2 which

gives the normal distribution law for the states in Mσ
3 and depends only on the distance between

states. Let’s show that this must be the Born rule. In fact, the Fubini-Study distance between

the states δ̃3a, δ̃3b takes on all values from 0 to π/2, which is the largest possible distance between
points in CPL2 . By assumption, the probability P (ϕ,ψ) of transition between any states ϕ and
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ψ depends only on the Fubini-Study distance θ(π(ϕ), π(ψ)) between the states. Given arbitrary

states ϕ,ψ ∈ SL2 , let then δ̃3a, δ̃3b be two states in M3
σ , such that

θ(π(ϕ), π(ψ)) = θ(δ̃3a, δ̃
3
b). (40)

It then follows that

P (ϕ,ψ) = P (δ̃3a, δ̃
3
b) = cos2 θ(δ̃3a, δ̃

3
b) = cos2 θ(π(ϕ), π(ψ)), (41)

which yields the Born rule for arbitrary states. This proves the claim and completes a review
of [1] and [2].

6. Measurements on macroscopic and microscopic particles
We are now in a position to compare the process of measurement in the classical and quantum
physics. First of all, the classical space and phase space are now submanifolds in the Hilbert space
of states. This allows us to use the same language when analyzing both types of measurement.
Second, the Newtonian dynamics is now a restriction of the Schrödinger dynamics to the classical
phase space submanifold. Conversely, the Schrödinger dynamics is a unique unitary extension of
the Newtonian dynamics from the classical phase space to the Hilbert space. This allows us to
begin with a model of measurement satisfying Newton laws and extend it to a model consistent
with the rules of quantum mechanics. Finally, the normal probability law is the restriction
of the Born rule to the classical space submanifold. Conversely, the Born rule is the unique
isotropic extension of the normal probability law from the classical space to the space of states.
In particular, a classical model of measurement with a normal distribution of the measured
quantity should lead us to a model consistent with the Schrödinger dynamics and the Born rule.

Measurements performed on a macroscopic particle satisfy generically the normal distribution
law for the measured observable. This is consistent with the central limit theorem and indicates
that a specific way in which the observable was measured is not important. To be specific,
consider measurements of position of a particle. A common way of finding the position of a
macroscopic particle is to expose it to light of sufficiently short wavelength and to observe the
scattered photons. Due to the unknown path of the incident photons, multiple scattering events
on the particle, random change in position of the particle, etc., the process of observation can
be described by the diffusion equation with the observed position of the particle experiencing
Brownian motion from an initial point during the time of observation. This results in the normal
distribution of observed position of the particle.

The ability to describe measurement of position of a macroscopic particle as a diffusion
seems to be a general feature of measurements in the macro-world, independent of a particular
measurement set up. The averaging process making the central limit theorem applicable and
leading to the normal distribution of the position random variable can be seen as the result
of random hits experienced by the particle from the surrounding particles participating in the
measurement. These random hits are equally likely to come from any direction, independent of
the initial position of the particle, leading to Brownian motion and the validity of the diffusion
equation for the probability density of the position random variable for the particle.

It is claimed now that at any time t the initial state ψ of a microscopic particle undergoing a
position measurement is equally likely to shift in any direction in the tangent space T{ψ}CP

L2 .
Suppose, for example, that the particle is exposed to a stream of photons of sufficiently high
frequency and number density. The scattered photons are then observed to determine the
position of the particle. The field of photons in the experiment will be treated classically, as a
fluctuating potential in a region surrounding the source. The assumptions about the potential
that will be made will determine to what extent the derived results can be applied to different
experiments of measuring position of a microscopic particle.
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Recall that the space Mσ
3,3 is complete in L2(R3). Consider the subset of Mσ

3,3 formed by the
states

ϕmn(x) =

(
1

2πσ2

)3/4

e−
(x−αn)2

4σ2 ei
βmx
~ , (42)

where α =
√

2πσ, β = h√
2πσ

and m,n take values on the lattice Z3 × Z3 of points with integer

coordinates in R3 ×R3. The set of functions (42) is known to be also complete in L2(R3). Any
state in L2(R3) can be then represented by a linear combination of states ϕmn. (For αβ < h
the system of functions ϕmn is called the Gabor or Weil-Heisenberg frame.) In particular, the
initial state ψ of the particle can be represented by a sum

ψ =
∑
m,n

Cmnϕmn. (43)

The set Mσ
3 is also complete in L2(R3). Here too there exist countable subsets of Mσ

3 that
are complete in L2(R3). Moreover, an arbitrary initial state ψ in L2(R3) can be approximated
as well as necessary by a finite discrete sum

ψ ≈
∑
n

Cnδ̃
3
a−γn, (44)

where a is arbitrary, n ∈ Z3, and the value of γ > 0 together with the number of terms in the
sum depend on ψ and the needed approximation. Taking γ sufficiently small, let’s partition the
space R3 into the cubes of edge γ centered at the lattice points γn and consider the indicator
function 1n for each cube. The potential V̂ can be written as a sum

∑
n 1nV̂n. The components

V̂n for different n can be assumed to be independent, identically distributed random variables.
In the case of position measurement by scattering photons off the particle, the components V̂n
can be associated with a single photon at time t.

For simplicity, let’s neglect the kinetic energy term in the Hamiltonian ĥ. Let us denote
the solution of the Shrödinger equation with the initial state ψ by χ(t) and let us write

χ(t) = e−
iV t
~ ψ(t), where V = (V̂ ψ, ψ) and ψ(0) = ψ. We then have at t = 0:

dψ

dt
= − i

~
V̂⊥ψ, (45)

where V̂⊥ = V̂ −V , as before. This equation gives the velocity of the state χ(t) in the projective

space CPL2 at t = 0. To prove that under the action of V̂⊥ all directions of velocity of state in
TψCP

L2 are equally likely, consider the components of the velocity in the basis −iδ̃3m ≡ −iδ̃3a−γm(
dψ

dt
,−iδ̃3m

)
=

1

~
(V̂⊥ψ, δ̃

3
m). (46)

For any given potential and a given ψ, the form in (46) is a function of the distance between

the points ψ and δ̃3m in the Fubini-Study metric and, possibly, of the vector η ∈ TψCPL2 of a

fixed norm, tangent to the geodesic from {ψ} to δ̃3m in CPL2 . We have V̂ =
∑

n 1nV̂n, where

each V̂n is a random variable. Accordingly, (46) defines a random variable for each m. Dividing

these variables by |(ψ, δ̃3m)| we obtain a new set of random variables

1
~(V̂⊥ψ, δ̃

3
m)

|(ψ, δ̃3m)|
. (47)
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Because |(ψ, δ̃3m)| depends only on the distance between {ψ} and δ̃3m, the probability distributions
of the random variables given by (46) and (47) are either both dependent or both independent
of η. Provided the potential does not change much within each cube, up to a constant phase
factor, the expression (47) is equal to

1
~(Vm − V ). (48)

From the decomposition (44), the near-orthogonality of the functions δ̃3m and the definition of
V , we have

V =
∑
n

Vn|Cn|2. (49)

Because
∑
|Cn|2 = 1, the mean value of the random variable in (48) is zero:

E(Vm − V ) = E(Vm)− E(Vm)
∑
n

|Cn|2 = 0. (50)

As discussed, the random variables Vm at different cubes, i.e., for different values of m can be
considered independent and identically distributed. It follows that the probability distributions
of the random variables Vm−V have a zero mean and are identical for all values of m. With the
help of the central limit theorem one can also claim that these distributions are normal. So the
random vector with components (47) has an isotropic multivariate Gaussian distribution (the
covariance matrix is proportional to the identity).

The standard deviation ∆V for the distribution of Vn in time satisfies the uncertainty relation
∆V τ > h, where τ is the time interval of observation. Therefore, the phase −1

~V τ in the phase
factor of χ(t) should be considered uniformly distributed on [0, 2π) so that any value of the phase

factor is equally likely. It follows that the components of dχ
dt may have arbitrary constant phase

factors at any given time and so the complex random vector made of these components has an
isotropic normal circularly symmetric distribution. Accordingly, the vector dχ

dt τ is equally likely

to point in any direction in TψCP
L2 at t = 0. To make this result valid at an arbitrary moment

of time, it remains to assume that the distribution of potentials is stationary and that changes
in potentials over time are independent random variables.

Under a measurement of position of a macroscopic particle the observed particle is exposed
to a random potential that is responsible for the normal distribution of the position random
variable. We now see that the state of a microscopic particle undergoing a similar measurement
and exposed to the same potential will experience a random motion on the sphere of states
under which any direction η of displacement of the state is equally likely. From the section
entitled “The Born Rule and the Normal Probability Distribution” we know that the normal
distribution on Mσ

3 and equal probability of any direction of displacement of the state result in
the Born rule. That is, under the random potential produced by the measuring device the state
ψ of the measured microscopic particle performs a random walk on the sphere of states and the
probability for the state of reaching a neighborhood of any point ϕ on the sphere is given by
the Born rule: P (ϕ,ψ) = |(ϕ,ψ)|2.

Given the lack of Lebesgue measure on an infinite-dimensional Hilbert space, one may wonder
how the state would have any chance of reaching a neighborhood of a given point in SL2 .
However, a realistic measuring device occupies a finite volume in the classical space. So the
potential created by it can only affect a region Q ⊂ R3 of a finite volume V . The initial state ψ
of the particle can be split onto the state ψQ = ψ|Q with support in Q (restriction of ψ to Q) and
the leftover state χ = ψ − ψQ. The state χ is not going to change under the potential and does
not participate in the measurement (the probability for it of reaching a detector in Q is zero).
Furthermore, possible group-velocity vg of the measured particle in the given potential is also
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bounded. The corresponding momentum mvg of the particle belongs then to a bounded region
P ⊂ R3. Therefore the state ψQ of the particle is limited to a superposition of states in the
region P×Q in the phase space R3×R3 = Mσ

3,3. But there are only finitely many elements of the
Weil-Heisenberg frame in such a region. Therefore, under the measurement the state ψQ evolves
in a finite-dimensional subspace VP×Q of the Hilbert space L2(R3). In particular, the Lebesgue

volume of a neighborhood Qa of any point δ̃3a (the state of a particle with a known position) in
VP×Q is well defined. Accordingly, the state has a non-vanishing probability of reaching Qa and
the relative probabilities of reaching neighborhoods of different points are given by the Born
rule.

7. The motion of a state under a measurement
Let’s now look into details of the motion of a state under a measurement. Note that in the
non-relativistic quantum mechanics the particle, and, therefore, its state in a single particle
Hilbert space, cannot disappear or get created. The unitary property of evolution means that
the state can only evolve along the unit sphere in the space of states L2(R3). To express
this conservation of states in the case of observation of position of the particle, consider the
density of states functional ρt[ϕ;ψQ]. This functional measures the number of states that
belong to a neighborhood of a point ϕ on the sphere of states SVP×Q ⊂ VP×Q at time t for
an ensemble of particles, prepared in the initial state ψQ each. Under the isometric embedding
ω : R3 −→ Mσ

3 ⊂ L2(R3) the states in Mσ
3 are identified with (positions of) particles. So the

density of states functional ρt[ϕ;ψQ] must be an extension of the density of macroscopic particles

ρt(a; b) on R3. Here b is the initial position of the particle. In other words, ρt(a; b) = ρt[δ̃
3
a; δ̃3b].

In the case of macroscopic particles the conservation of the number of particles is expressed
in differential form by the continuity equation. For instance, if ρt(a; b) is the density at a point
a ∈ R3 of an ensemble of Brownian particles with initial position b and jt(a; b) is the current
density at a of the particles, then

∂ρt(a; b)

∂t
+∇jt(a; b) = 0. (51)

The conservation of states of an ensemble of microscopic particles is expressed by the continuity
equation that follows from the Schrödinger dynamics. This is the same equation (51) with

ρt = |ψ|2, and jt =
i~
2m

(ψ∇ψ − ψ∇ψ). (52)

For the states ψ ∈Mσ
3,3 we obtain

jt =
p

m
|ψ|2 = vρt. (53)

Because the restriction of Schrödinger evolution to Mσ
3,3 is the corresponding Newtonian

evolution, the function ρt in (53) must be the density of particles. This density was denoted
earlier by ρt(a; b). It gives the number of Brownian particles that start at b and by the time t
reach a neighborhood of a point a. The relation ρt(a; b) = ρt[δ̃

3
a; δ̃3b] tells us that ρt in (52) must

be then the density of states ρt[δ̃
3
a;ψ]. It gives the number of particles in initial state ψ found

under the measurement at time t in a state δ̃3a (i.e., on a neighborhood of the point a in R3).
In the integral form the conservation of states in L2(R3) can be written in the following form:

ρt+τ [ϕ;ψ] =

∫
ρt[ϕ+ η;ψ]γ[η]Dη, (54)
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where γ[η] is the probability functional of the variation η in the state ϕ and integration goes over
all variations η such that ϕ+η ∈ SL2 . When the state of the particle is constrained to Mσ

3 = R3

this equation must imply the usual diffusion on R3. The restriction of (54) to Mσ
3 means that

ϕ = δ̃3a and η = δ̃3a+ε − δ̃3a, where ε is a displacement vector in R3. As we already know, the

function ρt[δ̃
3
a; δ̃3b] = ρt(a; b) is the usual density of particles in space. Let us substitute this

into (54), replace γ[η] with the corresponding probability density function γ(ε) ≡ γ[δ̃3a+ε − δ̃3a]
and integrate over the space R3 of all possible vectors ε. As in the Einstein derivation of the
Brownian motion, assume that γ(ε) is the same for all a and independent of the direction of ε
(space symmetry). Therefore, the terms

∫
εkγ(ε)dε and

∫
εkεlγ(ε)dε with k 6= l vanish. It follows

by the Einstein derivation that
∂ρt(a; b)

∂t
= k∆ρt(a; b), (55)

where k = 1
2τ

∫
ε2γ(ε)dε is a constant.

The diffusion equation (55) describes the dynamics of an ensemble of particles in the classical
space Mσ

3 . If initially all particles in the ensemble are at the origin, then the density of the
particles at a point x ∈ R (one dimensional case) at time t is given by

ρt(x; 0) =
1√

4πkt
e−

x2

4kt . (56)

The path of a Brownian particle under random hits from the surrounding particles is a particular
path of the state ψ in the space of states under the corresponding random potential. Since the
distribution of displacement of ψ is isotropic, the distribution (56) can be expressed in terms of
the Fubini-Study distance between states. From (36) we have

e−
x2

4σ2 = cos2 θ, (57)

where θ is the Fubini-Study distance between the state δ̃x(u) =
(

1
2πσ2

)1/4
e−

(u−x)2

4σ2 and the like
state centered at x = 0. Therefore,

x2 = −4σ2 ln(cos2 θ). (58)

Equating the probability density for the Brownian particle initially at the origin to be found
at time t at the point x with the probability density for transition between the corresponding
states (see (39)), we have

1√
4πkt

e−
x2

4kt =
1√

4πσ2
ρt(θ), (59)

where by (36) the function ρt(θ) is equal to cos2 θ for t = σ2

k . Denoting this value by τ and
substituting (58) into (59), we have

ρt(θ) =

√
τ

t

(
cos2 θ

)τ
t . (60)

As t increases,
(
cos2 θ

)τ/t
approaches 1 for all θ ∈ [0, π/2), while ρt(π/2) = 0. Note that the

integral of ρt with respect to dx = dx
dθ dθ is, of course, 1.

From (58) we have (
dθ

dx

)2

= − 1

2σ2
ln(cos θ) · cot2 θ (61)
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and
d2θ

dx2
=

cot θ

4σ2
[
1 + 2 ln(cos θ) · csc2 θ

]
. (62)

This yields the second derivative d2

dx2
in the the form of the following operator ∆θ:

∆θ =
cot θ

4σ2

[
1− 2 ln(cos θ) · d

dθ

(
cot θ

d

dθ

)]
. (63)

The diffusion equation takes the form

∂ρt(θ)

∂t
= k∆θρt(θ), (64)

where ρt(θ) = ρt[ϕ;ψ] with θ being the Fubini-Study distance between the initial state ψ and
the variable point ϕ. The corresponding fundamental solution is the function in (60).

The parameter τ = σ2

k should be interpreted as the time interval of observation. It is the
time from the beginning of the diffusion process of the initial state ψ to the moment when the
state has reached the end point ϕ (the moment of observation). Of course, this time may vary
in different trials. However, the same is true of the time interval of observation of a Brownian
particle in a particular experiment. By the central limit theorem the normal distribution on the
left side of (59) is correct for the averaged time interval of observation τ . Because the left hand
side of (59) is valid, the density (60) is accurate as well, giving the Born rule at t = τ . One can
say that a specific measuring device has an associated time parameter τ and diffusion coefficient
k, and, therefore, the variance of the normal distribution of the position σ2 = kτ . The value of
σ is then used in the isometric embedding ω : a −→ δ̃3a, giving the relationship (57) and leading
to the validity of the Born rule at the time of observation.

Note that if the diffusion of a state takes place but an observation is not made, the state
continues its random walk on the sphere of states. Because of this additional (Schrödinger)
evolution, the Born rule for any future observation has to be applied to the evolved state, rather
than the original state ψ.

8. Collapse of a quantum state
It was shown that under the action of a random potential typically experienced by a Brownian
particle, the state of a microscopic particle is equally likely to fluctuate in any direction tangent
to the projective space of states. This, together with the normal distribution of position of the
Brownian particle, signifies the validity of the Born rule for the motion of state. The motion
satisfies the diffusion equation (64), whose fundamental solution is (60). It was shown that
the state under the random potential evolves in the finite-dimensional subspace of the space
of states. As a result, there is a non-vanishing probability for the initial state ψ of reaching a
neighborhood of any non-orthogonal state ϕ.

The presented process of transition between states is very different from what is usually
understood by the collapse. The fact that a noise may lead to random fluctuation of state is
rather simple and goes against of what one normally tries to achieve when explaining collapse
under a measurement. The collapse models utilize various ad hoc additions to Schrödinger
equation with the goal of explaining why the state under the resulting stochastic process
“concentrates” to an eigenstate of the measured observable (usually, position or energy) [6]-
[17]. Instead, it is argued here that under a generic measurement an ensemble of states in the
same initial position ψ “diffuses” isotropically into the space of states. Whenever a particular
state in the ensemble reaches a neighborhood of an eigenstate of the measured observable, we
say that the “collapse” has occurred. In this case the measuring device can record the value of
the measured physical quantity.
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The role of the measuring device in this scenario is reduced to initiating the diffusion(creating
a “noise”) and to registering a particular location of the diffused state. For instance, the “noise”
in the position measuring device under consideration is due to the stream of photons. The device
then registers the state reaching a point in Mσ

3 . In a similar way, a momentum measuring device
registers the states that reach under the diffusion the eigen-manifold of the momentum operator
(which is the image of Mσ

3 under the Fourier transformation). Note also the similarity in the
role of measuring devices in quantum and classical mechanics: in both cases the devices are
designed to measure a particular physical quantity and inadvertently create a “noise”, which
results in a distribution of values of the measured quantity.

It follows, in particular, that the measuring device in quantum mechanics is not responsible
for creating a basis into which the state is to be expanded. If several measuring devices are
present, they are not “fighting” for the basis. When the eigen-manifolds of the corresponding
observables don’t overlap, only one of them can “click” for the measured particle as the state
can reach only one of the eigen-manifolds at a time.

What does it all say about measurement of position of macroscopic and microscopic particles?
During the period of observation of position of a macroscopic particle, the position is a random
variable with normal distribution. Normally, observation happens during a short enough interval
of time and the spread of the probability density is sufficiently small. A particular value of
position variable during the observation is simply a realization of one of the possible outcomes.
The change in observed position of the particle can be equivalently thought of as either a
stochastic process bt with values in R3 or a process δ̃3b,t with values in Mσ

3 . The advantage of

the latter representation is that the position random variable δ̃3b gives both, the position of the
particle in Mσ

3 = R3 and the probability density to find it in a different location a (in the state

δ̃3a), due to uncontrollable interactions with the surroundings under the observation.
Measuring position of a microscopic particle has, in essence, a very similar nature. Under

observation the state ψ is a random variable with values in the space of states CPL2 . To measure
position is to observe the state on the submanifold Mσ

3 or Mσ
3,3 in CPL2 . In this case, the random

variable ψ assumes one of the values δ̃3a, with the uniquely defined probability density compatible
with the normal density in the space R3. This probability density is given by the Born rule.
Here too the random variable ψ gives both, the position of the state of the particle in CPL2 and
the probability density to find the particle in a different state δ̃3a.

So the difference between the measurements is two-fold. First, under a measurement the state
ψ of a microscopic particle is a random variable over the entire space of states CPL2 and not
just over the submanifold Mσ

3 . Second, unless ψ is already constrained to Mσ
3 (the case which

would mimic the measurement of position of a macroscopic particle), to measure position is to
observe the state that “diffused” enough to reach the submanifold Mσ

3 . To put it differently, the
measuring device is not where the initial state was. Assuming the state has reached Mσ

3 , the
probability density of reaching a particular point in Mσ

3 is given, as we saw, by the Born rule.
We don’t use the term collapse of position random variable when measuring position of a

macroscopic particle. Likewise, there seems to be no physics in the term collapse of the state
of a microscopic particle. Instead, due to the diffusion of state, there is a probability density
to find the particle in various locations on CPL2 . In particular, the state may reach the space
manifold Mσ

3 = R3. If that happens and we have detectors spread over the space, then one
of them clicks. If the detector at a point a ∈ R3 clicks, that means the state is at the point
δ̃3a ∈ CPL2 (that is, the state is δ̃3a). The number of clicks at different points a when experiment
is repeated is given by the Born rule. The state is not a “cloud” in R3 that shrinks to a point
under observation. Rather, the state is a point in CPL2 which may or may not be on R3 = Mσ

3 .
When the detector clicks we know that the state is on Mσ

3 .
Note once again that there is no need in any new mechanism of “collapse” in the model.

An observation is not about a “concentration” of state and the stochastic process initiated by
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the observation is in agreement with the conventional Schrödinger equation with a randomly
fluctuating potential (“noise”). The origin of the potential depends on the type of measuring
device or properties of the environment, capable of “measuring” the system. Fluctuation of
the potential can be traced back to thermal motion of molecules, atomic vibrations in solids,
vibrational and rotational molecular motion, and the surrounding fields.

9. Summary
The dynamics of a classical n-particle mechanical system can be identified with the Schrödinger
dynamics constrained to the classical phase space submanifold Mσ

3n,3n in the space of states.
Conversely, there is a unique unitary time evolution on the space of states of a quantum system
that yields Newtonian dynamics when constrained to the classical phase space. This results in
a tight, previously unnoticed relationship between classical and quantum physics. In particular,
under a measurement of the position of a macroscopic particle, the position random variable
generically obeys the normal distribution law. The normal distribution law for the position
variable implies the Born rule for transitions between arbitrary quantum states. Therefore, any
classical (i.e., based on Newtonian dynamics) model of measurement of a macroscopic particle
that predicts the normal distribution of the position random variable extends in a unique way
to the corresponding quantum (i.e., satisfying Schrödinger dynamics) model that enforces the
Born rule for probability of transition between states. The central limit theorem makes it easy
for the outcomes of a measurement of a classical system to satisfy the normal distribution law.
It follows that the Born rule in measurements of a quantum system is as generic as the normal
distribution law in classical measurements.

In this paper, the proved relationship between classical and quantum concepts is taken to
mean that physical laws, which govern the behavior of macroscopic and microscopic bodies, are
fundamentally the same. For instance, there exists a unique extension of the classical Brownian
motion from the classical space submanifold Mσ

3 to the space of states CPL2 of the particle.
Because the Brownian motion can model the process of measurement in classical physics, its
unique extension is taken to be adequate for the description of measurements on microscopic
systems.

With this understood, the process of measurement on a quantum system can be described
in terms of a diffusion of state of the measured system in which the state has equal probability
of being displaced in any direction in the space of states CPL2 . The role of the measuring
device is reduced to creating a “noise” that triggers the diffusion in CPL2 and in recording the
diffused state when it reaches a particular region in CPL2 . The conclusion is that the so-called
collapse of the wave function in the framework is not about an instantaneous “concentration” of
state near an eigenstate of the measured observable. Instead, it is about diffusion on the space
of states under interaction with the measuring device and the environment. The “collapse” to
an eigenstate of an observable happens when the state under the diffusion reaches the eigen-
manifold of that observable. In the case of position measurements, the state must reach the
classical space or phase space submanifolds in CPL2 . Due to the enormous amount of collisions
between a macroscopic body and the particles in the surroundings, position of the body is
constantly measured. As a result, the diffusion process for macroscopic bodies can trivialize,
which may explain why they remain in the classical space and, therefore, have a definite position.

We see that macroscopic and microscopic particles may not be so different after all. The
only important distinction is that microscopic systems within the proposed framework live in
the space of states while their macroscopic counterparts live in the classical space submanifold.
Since our own life happens primarily in the macro-world, it is difficult for us to understand the
infinite-dimensional quantum world around us. As soon as the classical-space-centered point of
view is extended to its Hilbert-space-centered counterpart, the new, clearer view of the classical-
quantum relationship emerges.
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