
The muon g − 2: the hadronic vacuum
polarisation contributions

Thesis submitted in accordance with the requirements of
the University of Liverpool for the degree of Doctor of Philosophy

by

Alexander Iraj Keshavarzi.

June 2018



Declaration

I hereby declare that the work presented in this thesis is the result of my own research

activities unless reference is given to others. None of this material has been previously

submitted to this or any other university. All work presented here was carried out

in the Department of Mathematical Sciences at the University of Liverpool, Liverpool,

U.K. and at the Fermi National Accelerator Laboratory (Fermilab), Batavia, IL, U.S.A.

during the period from October 2014 to June 2018.

Contributions to this work have previously been published or are awaiting publication

elsewhere in:

• D. Boito, M. Golterman, A. Keshavarzi, K. Maltman, D. Nomura, S. Peris

and T. Teubner, ‘The strong coupling from e+e− → hadrons below charm’,

arXiv:1805.08176 [hep-ph], submitted to Phys. Rev. D (2018).

• A. P. Schreckenberger, A. Chapelain, A. A. Mikhailichenko, D. Rubin, D. Barak,

C. Jensen, G. Krafczyk, R. Madrak, H. Nguyen, H. Pfeffer, M. Popovic, J. Sta-

pleton, C. Stoughton, A. Keshavarzi, J. L. Holzbauer, N. Froemming, ‘New

Fast Kicker Results From The Muon g− 2 E-989 Experiment at Fermilab’, IPAC

THPML093, Proceedings of IPAC2018.

• A. Keshavarzi, D. Nomura and T. Teubner, ‘α(q2) in the space- and time-like

region and its role in g − 2 and α(M2
Z)’, in preparation (2018).

• A. Keshavarzi, D. Nomura and T. Teubner, ‘The muon g − 2 and α(M2
Z): a

new data-based analysis’, Phys. Rev. D 97 (2018) 114025.

• A. Keshavarzi, D. Nomura and T. Teubner, ‘The hadronic vacuum polarisation

contributions to the muon g−2’, arXiv:1802.06229 [hep-ph], submitted to Frascati

Physics Series (2018).

• A. Keshavarzi, ‘Measurement of the kicker pulse of the Muon g− 2 experiment

(E989) using a Faraday magnetometer’, E989 (Muon g− 2 experiment) Note 129

(2017).



• A. Anastasi et al. [KLOE-2 Collaboration], A. Keshavarzi, S. E. Müller and

T. Teubner, ‘Combination of KLOE σ
(
e+e− → π+π−γ(γ)

)
ISR measurements

and aπ
+π−
µ between 0.1 ≤ s ≤ 0.95 GeV2’, JHEP 1803 (2018) 173.

• K. Hagiwara, A. Keshavarzi, A. D. Martin, D. Nomura and T. Teubner, ‘g-2 of

the muon: status report,’ Nucl. Part. Phys. Proc. 287-288 (2017) 33.

• A. Keshavarzi, ‘(g−2)µ: recent improvements and outlook’, 18th meeting of the

Working Group on Radiative Corrections and MC Generators for Low Energies

(RadioMonteCarLOW) workshop proceedings, arXiv:1609.05651 [hep-ph].



Abstract

The anomalous magnetic moment of the muon, aµ = (g− 2)µ/2, stands as an enduring

test of the Standard Model (SM), where the ∼ 3.5σ (or higher) discrepancy between the

experimental measurement aexp
µ and the SM prediction aSM

µ could be an indication of the

existence of new physics beyond the SM. This work presents a complete re-evaluation

of the hadronic vacuum polarisation contributions to the anomalous magnetic moment

of the muon, ahad,VP
µ , from a combination of available e+e− → hadrons cross section

data as input in a predominantly data driven analysis. Focus has been placed on the

development of a new data combination method, that has been advocated to be free

of bias and allows for the full use of any available correlated statistical and systematic

uncertainties into the determination of both the resulting mean value and corresponding

error.

In a related work, the three precision measurements of the cross section σ
(
e+e− →

π+π−γ(γ)
)

using initial state radiation by the KLOE collaboration provide an im-

portant input for the prediction of the hadronic contribution to the anomalous mag-

netic moment of the muon. These measurements are correlated for both statistical

and systematic uncertainties and, therefore, the simultaneous use of these measure-

ments requires covariance matrices that fully describe the correlations. The con-

struction of these matrices has allowed for the determination of a combined KLOE

measurement for σ
(
e+e− → π+π−γ(γ)

)
and yields a two-pion contribution to the

muon magnetic anomaly in the energy range 0.3162 <
√
s < 0.9747 GeV of aπ

+π−
µ =

(489.8± 1.7stat ± 4.8sys)× 10−10.

For the full calculation of ahad,LO VP
µ and ahad,NLO VP

µ , all available e+e− → hadrons

cross section data have been analysed and included, where the new data compilation

has yielded the full hadronic R-ratio and its covariance matrix in the energy range

mπ ≤
√
s ≤ 11.2 GeV. Using these combined data and pQCD above that range results

in estimates of the hadronic vacuum polarisation contributions to g− 2 of the muon of

ahad,LO VP
µ = (693.26 ± 2.46) × 10−10 and ahad,NLO VP

µ = (−9.82 ± 0.04) × 10−10. The

new estimate for the Standard Model prediction is found to be aSM
µ = (11 659 182.04±

3.56) × 10−10, which is 3.7σ below the current experimental measurement. Detailed

comparisons with results from similar related works are given, as well as discussions of

the prospects for improving the calculation of these contributions in the future.
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Chapter 1

Introduction

The anomalous magnetic moment of the muon, aµ = (g − 2)µ/2, stands as an endur-

ing test of relativistic quantum field theories. In particular, it provides the ability to

rigorously scrutinise the theories of quantum electrodynamics (QED) and, indeed, the

Standard Model (SM). There exists an ∼ 3.5σ (or higher) discrepancy between the

experimental measurement aexp
µ and the SM prediction aSM

µ . The experimental mea-

surement of aµ, as an observable, manifestly includes the effects from all contributing

physical processes, whether they originate from the SM or new physics. Consequently,

the current deviation between experiment and theory could be an indication of the

existence of new physics beyond the SM. With extensive efforts currently being made

to improve the experimental estimate, it is imperative that the SM prediction is also

improved to determine whether the g − 2 discrepancy is well established.

The magnetic moment ~µ of an elementary charged particle depends on the spin

~S = 1
2~σ (where ~σ are the Pauli matrices) of the particle, defined by the relation1

~µ = − e

2m
g~S . (1.1)

Here, e is the electric charge, m is the mass of the particle and g is the gyromagnetic

factor which describes the strength of the coupling of the spin to the magnetic moment.

The Dirac equation, following from Dirac’s theory describing the interaction of the

electron with the photon [1,2], implies that g = 2 for fermions (|~S| = 1
2). At tree-level,

this implication holds. However, relativistic quantum field theories such as QED and the

SM require the inclusion of the effects from higher order processes, commonly known as

radiative corrections. These corrections provide contributions to g, therefore causing a

deviation from g = 2. This deviation, denoted as a, is the anomalous magnetic moment

and describes the contributions from all higher order SM processes that contribute to

the gyromagnetic factor and, therefore, to the magnetic moment ~µ.

1The use of natural units, ~ = c = 1, will be assumed throughout this work, unless specifically
stated.
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1.1 The anomalous magnetic moment

At tree-level, the general form of the vertex function Γ describing the electromagnetic

interaction of a lepton and a photon is given by

Γµtree-level(k1, k2) =

k1 k2

µ
= −ieγµ . (1.2)

Here, µ is a Lorentz index, k represent the fermion momenta, γµ are the Dirac gamma

matrices and e is the QED charge. The contribution to the gyromagnetic ratio from

this diagram is precisely the Dirac prediction, g = 2. In QED, the physical vertex

function Γµ encapsulates all higher order effects. It is given by

Γµ(k1, k2) =

k1 k2

q

µ

= + + ... (1.3)

which is the sum of all one-particle-irreducible (1PI) diagrams to all orders. The anoma-

lous magnetic moment describes the total contribution to g from all the corresponding

1PI diagrams of one-loop order and higher, as will be shown in the following.

The matrix element for the QED interaction in equation (1.3) is

iMµ = −ieū(k2)Γµ(k1, k2)u(k1) . (1.4)

In general, q2 = (k2 − k1)2 6= 0 and k2
1 = k2

2 = m2, where q is the momenta of the

external photon and m denotes the fermion mass. In order for the vertex function to

transform as a Lorentz four-vector, the vertex function Γµ can be constructed from any

linear combination of the four-vectors γµ, kµ1 and kµ2 . Making the choice to use the

combinations kµ2 + kµ1 and kµ2 − k
µ
1 , the vertex function can be written as

Γµ(k1, k2) = γµA+ (kµ2 + kµ1 )B + (kµ2 − k
µ
1 )C , (1.5)

where, in general, A, B and C can be considered as matrices involving kµ1 and kµ2 .

However, as the vertex function always appears in between the on-shell spinors ū(k2)
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and u(k1) (as in equation (1.4)), the on-shell spinor identities, /ku(k) = mu(k) and

ū/k = ū(k)m, imply that A, B and C are scalar functions of q2 (or m). Imposing the

Ward identity qµΓµ = 0, only the first two terms in equation (1.5) vanish, implying

that C = 0 for the Ward identity to hold. Finally, using the Gordon decomposition

ū(k2)γµu(k1) =
1

2m
ū(k2)

[
kµ1 + kµ2 + iqνσ

µν

]
u(k1) , (1.6)

the general form of the QED vertex function can be expressed as

Γµ(k1, k2) = −ie
[
γµF1(q2) +

iσµνqν
2m

F2(q2)

]
, (1.7)

where σµν = i
2 [γµ, γν ]. The quantities F1(q2) and F2(q2) correspond to the surviving

scalar functions A and B and are known as form factors. F1(q2) is the electric charge

form factor, which describes the radiative corrections to the electric charge of the

fermion. Therefore, in the limit that k2−k1 = q → 0, it follows that F1(0) = 1 exactly.

Assuming this and taking the non-relativistic limit of an interaction with a classical

electromagnetic field Aµ, the vertex is described by the Dirac equation in the form(
γµ(∂µ − ieAµ)−m+

eF2(0)

4m
Fµνσ

µν

)
ψ = 0 . (1.8)

In this limit, the effective Hamiltonian is

H =

[
1

2m
(~p− e ~A)2 + eA0 +

e

2m

(
1 + F2(0)

)
~σ. ~B

]
, (1.9)

where ~p is the momentum of the fermion and ~B is an external magnetic field. The last

term in equation (1.9) corresponds to the magnetic interaction potential, U = −~µ · ~B.

Comparing this with the definition of the magnetic moment in equation (1.1),

−~µ · ~B =
e

2m

(
1 + F2(0)

)
~σ. ~B =

e

2m
g~S. ~B =

e

4m
g~σ. ~B , (1.10)

implies

g = 2 + 2F2(0) . (1.11)

The form factor F2(0) is precisely the anomalous magnetic moment induced by higher

order 1PI diagrams that cause the gyromagnetic factor to deviate from the Dirac (tree-

level) prediction of g = 2. Rearranging equation (1.11) reveals the standard form of

the anomalous magnetic moment,

a = F2(0) =
g − 2

2
. (1.12)

The lowest order contribution to a comes from the one-loop diagram of a virtual
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photon exchange between the two fermion lines. The Feynman rules give

Γµ1-loop(k1, k2) =

k1 k2

q

k1 + l k2 + l

l

µ

ν ρ

= e3

∫
d4l

(2π)4

γρ
(
i( /k2 + /l) +m

)
γµ
(
i( /k1 + /l) +m

)
γν(

(k2 + l)2 −m2 − iε
)(

(k1 + l)2 −m2 − iε
) gνρ(
l2 − iε

) .
(1.13)

For all leptons (l = e, µ, τ), the evaluation of this integral results in a one-loop
(
O(α)

)
contribution to the anomalous magnetic moment of

a1−loop
l = F 1−loop

2 (0) =
e2

8π2
=

α

2π
, (1.14)

where α = α(0) ≡ e2/4π is the fine structure constant and, therefore,

g1−loop = 2 +
α

π
. (1.15)

This result was first determined as the one loop contribution to the anomalous magnetic

moment of the electron in 1948 by Schwinger [3], where he found ae = 0.001162.

This was a fundamental success of relativistic quantum field theories, being the first

prediction of the higher order effects that arise from the renormalisation of QED [4–6].

This, coupled with the first experimental measurements of ge = 2.00238 ± 0.00010 by

Kusch and Foley [7, 8] in the same year, demonstrated the validity of QED and its

prediction of the effects from radiative corrections.

1.2 The anomalous magnetic moment of the muon, aµ

Although the current predictions [9] and measurements [10,11] of the electron anomaly

ae are the most precisely known physical quantities to date, the muon, due to its larger

mass, is more sensitive to the possibility of new physics at higher energy scales [12]. For

a particle with mass M >> ml (where ml is the lepton mass), the contribution from

this particle to al is proportional to (ml/M)2, such that the ratio of the contribution

to the muon anomaly and the electron anomaly is

aMµ
aMe
∼ (mµ/M)2

(me/M)2
=

(
mµ

me

)2

, (1.16)

making the muon ∼ 4 × 104 times more sensitive to the effects from heavy particles

than the electron. This being the case, the motivation to both theoretically predict and

experimentally measure aµ to a high precision is highly compelling. The anomalous
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magnetic moment of the muon (muon g − 2) receives contributions from all sectors of

the SM

aµ = aQED
µ + aEW

µ + ahad
µ , (1.17)

where the superscripts ‘EW’ and ‘had’ indicate the contributions from the electroweak

and hadronic sectors respectively. Consequently, should the comparison of both theory

and experiment yield results in clear agreement, the success of the SM would be further

consolidated. However, should there exist a discrepancy between the SM prediction aSM
µ

and the experimental measurement aexp
µ , this could be an indication of the contribution

of the existence of physics beyond the SM (BSM). In this case,

aµ = aQED
µ + aEW

µ + ahad
µ + aBSM

µ . (1.18)

In the following, the current status of aexp
µ and aSM

µ are presented, with details given on

the efforts to reduce the uncertainty on both estimates in order to provide a meaningful

comparison.

1.2.1 The experimental measurement of aµ: current status

The experimental measurements of the anomalous magnetic moment of the muon

are dominated by the measurements made at the Brookhaven National Laboratory

(BNL) [13–15], resulting in a world average of [16]

aexp
µ = 11 659 209.1 (5.4)stat (3.3)sys × 10−10 , (1.19)

where the uncertainties given are the statistical and systematic uncertainties respec-

tively. With the uncertainties of the BNL measurements being statistically dominated,

efforts to improve the experimental estimate at Fermilab (FNAL) [17] aim to increase

the statistics of the new measurement by a factor of ∼ 20 compared to those from BNL

and reduce the overall experimental uncertainty by a factor of four compared to equa-

tion (1.19). Following the same methodology as the Brookhaven measurements, the

Muon g−2 experiment at FNAL will produce and store muons in order to measure two

frequencies: the frequency ωa at which the muon spin (polarisation) turns relative to

its momentum and the value of the magnetic field normalised to the Larmor frequency

of a free proton, ωp.

Assuming a perfect vertical magnetic field, with a muon on the ideal orbit, the

anomalous frequency ~ωa is defined in terms of the spin frequency ~ωS and the cyclotron

frequency ~ωC as

~ωa = ~ωS − ~ωC . (1.20)

In the absence of any other external fields,

~ωS = −g Qe
2m

~B − (1− γ)
Qe

γm
~B (1.21)
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Fig. 1.1: The spin precession of muons as utilised by the Muon g − 2 experiment in
order to measure aµ. This graphic has been taken from [18].

and

~ωC = −Qe
mγ

~B , (1.22)

where Q = ±1 is the electric charge, ~B is the external magnetic field and γ is the

relativistic Lorentz factor. Therefore,2

~ωa = ~ωS − ~ωC = −
(
g − 2

2

)
Qe

m
~B = −aQe

m
~B . (1.23)

Here, it is observed that should g = 2 exactly, then it would follow that ~ωS = ~ωC such

that the muon spin would precess with the same frequency as the orbital frequency.

Consequently, it can be seen that ~ωa has two important features: it depends only on

the anomaly rather than the full magnetic moment and that it depends linearly on

the applied magnetic field. This is depicted in Figure 1.1. Therefore, to determine aµ

requires the experiment to measure ~ωa and the magnetic field averaged over the muon

beam distribution, 〈 ~B〉.
The direct measurement of these properties requires the production and storage of

muons. A diagram of the experimental setup is shown in Figure 1.2, where (from [17])

the experiment itself consists of the following steps:

1. Production of an appropriate pulsed proton beam by an accelerator complex.

2. Production of pions using this proton beam.

3. Polarised muons are then produced from the decay π+ → µ+νµ.

2As these equations assume a perfect vertical magnetic field, they are only approximations of the
real behaviour of the muons inside the field. In reality, the field has longitudinal components which
have an effect on the spin precession. This is accounted for in the experiment by assigning a systematic
error due to the longitudinal field components.
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4. To ensure a cleaner delivery of muons to the experiment than at BNL, the beam

is then transported to a delivery ring. The beam circulates the delivery ring four

times. During the first three rotations, essentially all remaining pions will decay

to muons and any remaining heavier (slower) protons will naturally separate from

the muons. This allows them to be safely removed from the beam by a kicker.

5. Transport of the muon beam into a storage ring.

6. Injection of the muon beam into the storage ring.

7. Kicking of the muon beam onto stored orbits.

8. Measuring the arrival time and energy of positrons from the muon decay µ+ →
e+ν̄µνe.

9. Precise mapping and monitoring of the precision magnetic field.

In order for the muon beam to be confined to the storage ring requires the use of an

electric quadrupole field to provide vertical focusing. This introduces a new term to

equation (1.23), where relativistic particles feel a motional magnetic field proportional

to ~β × ~E. Here, ~β denotes the muon velocity and ~E is the electric field. Therefore,

assuming that the velocity is transverse to the magnetic field (~β · ~B = 0), the equation

for ~ωa including the electric field reads

~ωa = −Qe
m

[
aµ ~B−

(
aµ −

1

γ2 − 1

)
~β × ~E

c

]
. (1.24)

The dependence on ~E requires a detailed knowledge of the electric field. Therefore, the

experiment employs the fact that the electric field term vanishes when the experiment

operates at the “magic” momentum pmagic ' 3.09 GeV/c (γmagic ' 29.3), such that aµ−
1

γ2−1
= 0 to leading order and the electric field does not contribute to the measurement

of aµ.

The measurement of the averaged magnetic field allows the determination of ωp

from

ωp = 2µp| ~B| , (1.25)

where µp is the magnetic moment of the proton. From this, the anomalous magnetic

moment of the muon can be determined from

aµ =
ωa/ωp

µµ+/µp − ωa/ωp
(1.26)

where µµ+/µp is the measured ratio of the muon and proton magnetic moments [19].

Achieving the required 20 times improvement in the overall statistics than those

from BNL places harsh targets on the overall beam dynamics and magnetic field data.

All contributing systems must function with the desired effectiveness both individually

7



Fig. 1.2: The production, injection and storage of muons for the Muon g − 2 experi-
ment. This graphic has been taken from [18].

and together for the experiment to achieve this high statistics goal. The kicker system,

for example, should deliver a flat magnetic pulse of 200-280 Gauss over 120ns to the

muon beam in order to steer the muons onto the trajectory of the ideal orbit. To

determine the effectiveness of the kicker field, a Faraday magnetometer was used to

measure the kicker field and pulse shape. This has allowed detailed studies to be done

into the performance of the kickers in order to maximise the muon capture efficiency

and, therefore, obtain the desired statistics. Details of this work can be found in

Appendix A.

In addition, a new experiment at J-PARC [20] is set to provide an independent

measurement of aexp
µ using an alternative approach to that of BNL/FNAL. To avoid

the need for the electrostatic quadrupoles to focus the muon beam as with the Fermilab

experiment, the J-PARC experiment will produce and store ultra-cold, slow muons in

a homogeneous magnetic field. The slow muons will have extremely low emittance (i.e.

low average spread of particles in the beam) due to their low momenta and, therefore,

only very weak focusing by a magnetic field is required to confine the particle beam

without significant muon losses. Consequently, the beam does not require vertical

focusing from an electric field and the term proportional to ~β × ~E in equation (1.24)

is omitted. In this way, ~E = 0 for any γ, removing the requirement on the energy

of the stored muons entirely. This experiment will provide an alternative experiment

measurement of aµ by still employing equation (1.26), but with a largely different set

of experimental uncertainties compared to the FNAL experiment.

1.2.2 The SM prediction of aµ: current status

From the analysis preceding this work [21] (denoted as HLMNT11), the determination

of the hadronic vacuum polarisation contributions (see below) summed with the esti-
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Fig. 1.3: Comparison of recent and previous evaluations of aSM
µ preceding this work.

The analyses listed in chronological order are: DHMZ10 [51], JS11 [52], HLMNT11 [21],
FJ17 [36] and DHMZ17 [45], The central value of the estimate from the HLMNT11
collaboration is indicated by the dashed line centred in the yellow band, which defines
the total uncertainty on this estimate. The current uncertainty on the experimental
measurement [13–16] is given by light blue band.

mates of the other SM contributions at that time, resulted in a total SM prediction

of

aSM
µ

(
HLMNT11

)
= (11 659 182.8± 4.9)× 10−10 . (1.27)

This, compared with the experimental measurement in equation (1.19), resulted in a

deviation between theory and experiment of (26.1 ± 8.0) × 10−10, corresponding to a

(g−2)µ discrepancy of 3.3σ as depicted in Figure 1.3. Considering the efforts to achieve

a four-fold improvement in the uncertainty of the experimental estimate at FNAL [17],

it is therefore imperative that the SM prediction is also improved. Since [21], the

estimates of the contributions from all sectors of the SM have been re-evaluated. These

updated results, which will later be summed with the estimates of the hadronic vacuum

polarisation contributions determined in this work, are summarised briefly below.

The QED contributions (where aQED, 1−loop
µ = α/2π from equation (1.14) is the

one-loop QED contribution) are known up to and including five-loop accuracy. The

five-loop calculation has recently been completed numerically by Kinoshita et al. [9,22]

to evaluate all 12,762 five-loop diagrams. This calculation includes all contributions

that are due to photons and leptons alone. They are found to be

aQED
µ = 11 658 471.8971 (0.0007) (0.0017) (0.0006) (0.0072)× 10−10

= (11 658 471.8971± 0.007)× 10−10 , (1.28)
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where the uncertainties are owing to the uncertainty on the lepton masses, the four-loop

contributions, the five-loop contributions and the determination of α using measure-

ments of 87Rb, respectively. With such a precise determination of aQED
µ resulting from

a perturbative series that converges extremely well, the QED result seems stable. It

should be noted, however, that the four-loop and five-loop contributions rely heavily

on numerical integrations and independent checks of these results are crucial. This has

been recently accomplished through several different analyses [23–28], which corrobo-

rate the results from Kinoshita and collaborators. Therefore, it is safe to assume that

the estimate for the QED contribution is well under control.

The contribution from the EW sector is well known to two-loop accuracy [29–33].

With the mass of the Higgs now known, the updated estimate [34] gives

aEW
µ = (15.36± 0.10)× 10−10 . (1.29)

Although a relatively small contribution when compared to aQED
µ , the uncertainty is not

negligible considering the projected experimental accuracy but is small when compared

to the hadronic uncertainties. However, with this contribution known safely to two-loop

accuracy, the electroweak estimate is also very well under control.

The uncertainty of aSM
µ is completely dominated by the hadronic (had) contribu-

tions, ahad
µ , attributed to the contributions from the non-perturbative, low energy re-

gion of hadronic resonances. The hadronic contributions are divided into the hadronic

vacuum polarisation (VP) and hadronic light-by-light (LbL) contributions, which are

summed to give

ahad
µ = ahad,VP

µ + ahad,LbL
µ . (1.30)

The hadronic vacuum polarisation contributions can be separated into the leading-order

(LO) and higher-order contributions, where the LO and next-to-leading order (NLO)

contributions are calculated in this work (see Section 1.3 and Section 4). In [21], the

LO hadronic vacuum polarisation contributions were found to give

ahad,LO VP
µ

(
HLMNT11

)
= (694.91± 4.27)× 10−10 (1.31)

and the NLO contributions to be

ahad,NLO VP
µ

(
HLMNT11

)
= (−9.84± 0.07)× 10−10 . (1.32)

The calculation of the NNLO hadronic vacuum polarisation contribution been achieved

for the first time in [35] (see also the evaluation in [36]) and is estimated to be

ahad,NNLO VP
µ = (1.24± 0.01)× 10−10 . (1.33)

The hadronic LbL contributions (which enter at O(α3)), although small compared

to the hadronic vacuum polarisation sector, have only been fully determined through

several different model-dependent approaches.
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A commonly quoted determination of the LbL contribution is the ‘Glasgow consen-

sus’ estimate of ahad,LbL
µ (‘Glasgow consensus’) = (10.5±2.6)×10−10 [37] (alternatively,

see [18, 38–40]). However, recent works [41–43] have re-evaluated the contribution to

ahad,LbL
µ due to axial exchanges, where it has been found that this contribution has,

in the past, been overestimated due to an incorrect assumption that the form factors

for the axial meson contribution are symmetric under the exchange of two photon mo-

menta [41]. Under this assumption, the determination in [38] previously found the

axial vector contribution to be ahad,LbL; axial
µ = (2.2 ± 0.5) × 10−10. Correcting this

reduces this contribution to ahad,LbL; axial
µ = (0.8± 0.3)× 10−10 [41, 42]. Applying this

adjustment to the ‘Glasgow consensus’ result (which used a value of the axial vector

contribution in [37] of ahad,LbL; axial
µ = (1.5± 1.0)× 10−10), the estimate in [43] finds

ahad,LbL
µ = (9.8± 2.6)× 10−10 , (1.34)

which is the chosen estimate for ahad,LbL
µ in this work. This result is notably lower

than the previously accepted LbL estimates and will incur an overall downward shift

on aSM
µ . It is, however, still within the original uncertainties when comparing with the

original ‘Glasgow consensus’ estimate. In addition, the recent work [40] has provided

an estimate for the next-to-leading order hadronic LbL contribution. It has found

ahad,NLO LbL
µ = (0.3± 0.2)× 10−10.

A comparison of recent and previous evaluations of aSM
µ preceding this work with

equation (1.19) is given in Figure 1.3. It can be seen that since [21], two newer works

(FJ17 [36] and DHMZ17 [45]) have re-evaluated aSM
µ to a higher precision. This analy-

sis is a complete re-evaluation (in line with previous works [21,46,47]) of the hadronic

vacuum polarisation contributions and, summing these with the estimates of the con-

tributions from all other sectors of the SM listed above, will present a corresponding

update of aSM
µ and the resulting (g − 2)µ discrepancy. The results from this work will

be compared with the FJ17 and DHMZ17 analyses in Section 4.5.

1.3 The hadronic vacuum polarisation contributions, ahad,VP
µ

Although the contributions from QED and the electroweak sectors may be calculated

reliably using perturbation theory, the running of the strong coupling constant, αs(q
2),

results in αs(q
2) being large at low energies. Therefore, the perturbative expansion of

αs(q
2) is not valid for these energy domains, meaning that perturbative QCD (pQCD) is

only reliable for sufficiently large q2.3 However, the hadronic vacuum polarisation (VP)

contributions are dominated by the exchange of virtual photons with low q2, requiring

an alternative method to determine the loop integrals. In this case, the failure of pQCD

3Above ∼ 2 GeV, the predictions of the running of αs(q
2) from pQCD agree well with experimental

data [16] and, therefore, perturbation theory can be safely used (away from quark threshold regions).
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is overcome by utilising the tools of analyticity, unitarity and experimental hadronic

cross section data, as will be discussed in the following.

The Feynman diagram of the LO hadronic VP contribution is shown in Figure 1.4,

where the exchange of the photon between the muon lines (as in the standard one-

loop QED case in equation (1.13)) is altered by the insertion of an internal hadronic

bubble, which represents all possible hadronic states. This contribution to the photon

propagator is exactly the hadronic contribution to the photon vacuum polarisation

tensor, Πµν(q2). The LO hadronic VP contribution enters at O(α2) and is formally,

therefore, a second order contribution to aSM
µ . However, of all the possible corrections

to aSM
µ , it is the largest single hadronic contribution. This, coupled with the invalidity

of pQCD to evaluate this correction, has resulted in it being the largest contribution

to the uncertainty of aSM
µ for some time.

In this work, the calculation of the leading order hadronic vacuum polarisation

contribution to the anomalous magnetic moment of the muon, ahad,LO VP
µ , utilises the

method of dispersion relations and, as input for the low energy hadronic final states, the

experimentally measured cross section σ(e+e− → hadrons). Estimates of this quantity

from recent works that have also used this method are given in Figure 1.5, where this

work is a complete re-evaluation of the estimate by the HLMNT11 collaboration [21],

also given in equation (1.31). Comparing this estimate for ahad,LO VP
µ with the cor-

responding estimate for aSM
µ in equation (1.27), the motivation for a re-evaluation of

ahad,LO VP
µ with an aim to improve its precision is apparent when considering that al-

though the LO hadronic VP contribution only constitutes less than a percent of aSM
µ ,

it is responsible for greater than 70% of the total SM uncertainty. With the estimate

in equation (1.31) having already achieved a precision of ∼ 0.6%, a precision of better

than this is one of the major aims of this work. In order to achieve this, the following

section will introduce the method and tools used to evaluate the contribution to aSM
µ

from the Feynman diagram in Figure 1.4, first deriving the dispersion relation approach

to evaluating ahad,LO VP
µ , followed by details on the use of the optical theorem to allow

the use of the experimentally measured hadronic cross section data.

1.3.1 Calculating the leading order hadronic vacuum polarisation con-
tribution, ahad,LO VP

µ

The evaluation of the contribution to aµ from the diagram in Figure 1.4 is entirely

dependent on the ability to determine the vacuum polarisation tensor Πµν(q2). For the
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Fig. 1.4: The Feynman diagram of the leading order hadronic vacuum polarisation
contribution to aµ.
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Fig. 1.5: Comparison of recent and previous evaluations of ahad,LO VP
µ determined

from the method of dispersion relations and e+e− → hadrons cross section data. The
analyses listed in chronological order are: DEHZ03 [48], HMNT03 [46], DEHZ06 [49],
HMNT06 [47], FJ06 [50], DHMZ10 [51], HLMNT11 [21], FJ12 [52], FJ17 [36] and
DHMZ17 [45], The dashed line indicates the central value of the estimate from the
HLMNT11 collaboration.

VP insertion to the photon propagator, the Feynman rules give

µ ν
q q

Παβ(q2)

=
−igµα

(q2 − iε)
(−ie)iΠαβ(q2)(−ie) −ig

βν

(q2 − iε)

= ie2 Πµν(q2)

(q2 − iε)2
. (1.35)
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The general form of the VP tensor, which is purely transverse due to electromagnetic

gauge invariance, is defined in this work to be

Πµν(q2) =
(
qµqν − q2gµν

)
Π(q2) , (1.36)

where Π(q2) is the VP function. From analyticity, the VP function (taken here in

the on-shell renormalisation scheme which imposes that Π(q2 = 0) = 0) satisfies the

subtracted dispersion relation [53]

Π(q2) =
q2

π

∫ ∞
sth

ds
Im Π(s)

s(s− q2 − iε)
, (1.37)

where sth is the lowest invariant mass squared threshold for particle production con-

tributing to the VP. Inserting these expressions back into equation (1.35) gives

µ ν
q q

Παβ(q2)

=
ie2gµν

(q2 − iε)2

q4

π

∫ ∞
sth

ds
Im Π(s)

s(s− q2 − iε)
, (1.38)

where the term proportional to qµqν can be discarded as it does not contribute to any

gauge invariant quantity.

To evaluate ahad,LO VP
µ , the full VP function in (1.38) is replaced by the hadronic

contribution to the VP function Πhad(s) and this resulting term exactly replaces the

virtual photon propagator term in equation (1.13). Doing so and evaluating the corre-

sponding expression for the contribution to F2(0) results in

ahad,LO VP
µ =

α

π

∫ 1

0
dx(1− x)

∫ ∞
sth

ds

s

1

π
Im Πhad(s)

x2

x2 + (s/m2
µ)(1− x)

=
α

π2

∫ ∞
sth

ds

s
Im Πhad(s)K(s) . (1.39)

The term

K(s) =

∫ 1

0
dx

(1− x)x2

x2 + (s/m2
µ)(1− x)

(1.40)

is a well-known kernel function [12,54,55] (see also [46]) that describes the contribution

to aµ from a virtual photon with invariant mass squared s and which can be solved

analytically.4 For s ≥ 4m2
µ,

K(s > 4m2
µ) = x2

(
1− x

2

2

)
+ (1 +x)2

(
1 +

1

x2

)(
ln(1 +x)−x+

x2

2

)
+

1 + x

1− x
x2 ln(x) ,

(1.41)

where x ≡ (1− βµ)/(1 + βµ) and βµ ≡
√

1− 4m2
µ/s. For s < 4m2

µ [75],

K(s < 4m2
µ) =

1

4a2

(
16(a− 2) ln

(a
4

)
− 2a(8− a)− 8(a2 − 8a+ 8)

arctan(
√
a− 1)√

a− 1

)
,

(1.42)

4The kernel function given here is identical to that given in equation (45) of [46] but differing by a
normalisation factor of m2

µ/3s.
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Fig. 1.6: The optical theorem relating the imaginary part of the hadronic vacuum
polarisation to the total hadronic cross section.

where a ≡ 4m2
µ/s. The imaginary part of the hadronic VP function is then found

via unitarity, where the optical theorem relates the imaginary part of the hadronic

VP function to the total cross section of the process e+e− → hadrons, as depicted in

Figure 1.6. This relation is given as,

Im Πhad(s) =

(
s

4πα

)
σhad(s) , (1.43)

where

σhad(s) ≡ σ(e+e− → γ∗ → hadrons) (1.44)

and γ∗ denotes the virtual photon. For the determination of the LO hadronic VP

contributions, the hadronic cross section must be undressed of all leptonic and hadronic

VP effects in order to avoid some double counting of these contributions with the higher

order hadronic VP contributions (see Section 1.3.2). In addition, the cross section must

include the effects of final state photon radiation, which should be counted as part of

the total cross section. Therefore, it follows that the leading order hadronic vacuum

polarisation contribution to aµ can be determined via

ahad,LO VP
µ =

1

4π3

∫ ∞
sth

ds σ0
had,γ(s)K(s) , (1.45)

where sth = m2
π is the hadronic production threshold (determined by the π0γ final

state), the superscript 0 denotes the bare cross section (undressed of all vacuum po-

larisation effects) and the subscript γ indicates the inclusion of effects from final state

photon radiation. Equation (1.45) can also be expressed as

ahad,LO VP
µ =

α2

3π2

∫ ∞
sth

ds

s
R(s)K(s) (1.46)

where the hadronic cross section has been normalised by the point (pt) cross section of

the process e+e− → µ+µ− to yield the hadronic R-ratio given by

R(s) =
σ0

had,γ(s)

σpt(s)
≡

σ0
had,γ(s)

4πα2/(3s)
. (1.47)

With the kernel function K(s) behaving as K(s) ∼ m2
µ/(3s) at low energies (cou-

pled with the factor of 1/s in the integrand of equation (1.46)), the integrals in equa-

tion (1.45) and equation (1.46) are dominated by the low s regime. As pQCD is an
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Fig. 1.7: The three classes of Feynman diagrams (a,b,c) that comprise the next-to-
leading order hadronic vacuum polarisation contributions to aµ. It should be noted that
for class (a), those diagrams which involve an exchange of the massless and ‘massive’
(including hadronic bubble) photon propagator are assumed to be included. For class
(b), f = e, τ only. This graphic has been taken from [46].

unreliable source for the cross section in this energy region, experimentally measured

hadronic cross section data are used as input for σ0
had,γ(s). This places a large depen-

dence on these data, as the accuracy of ahad,LO VP
µ will largely depend on their quality

and precision. Fortunately, many experiments have measured cross sections for numer-

ous individual hadronic final states to a very high precision, which are used in this work

to determine ahad,LO VP
µ . This requires a dedicated procedure to combine all available

hadronic cross section data to robustly determine the full hadronic R-ratio. This will

be discussed in detail in Section 2.

1.3.2 Calculating the next-to-leading order hadronic vacuum polari-
sation contribution, ahad,NLO VP

µ

The next-to-leading order hadronic vacuum polarisation contributions (that enter at

O(α3)) can be conveniently split into three classes as defined in [57]. The contributing

diagrams for each class are shown in Figure 1.7. The determination of the contribution

to aµ from each class of diagram results in a corresponding dispersion integral and

kernel function. These classes are:

(a) This class contains those diagrams that, in addition to the leading order hadronic

bubble, contain higher order corrections from an additional virtual photon or a
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muon loop. The dispersion integral in this case is

ahad,NLO VP, (a)
µ =

α3

3π3

∫ ∞
sth

ds

s
R(s)K(a)(s) . (1.48)

(b) This class contains those diagrams that, in addition to the leading order hadronic

bubble, contain an additional electron or tau loop. The dispersion integral in this

case is

ahad,NLO VP, (b)
µ =

α3

3π3

∫ ∞
sth

ds

s
R(s)K(b)(s) . (1.49)

(c) This class of diagram contains a second hadronic bubble in addition to the leading

order hadronic bubble. Therefore, in this case, the R-ratio data must be integrated

over twice. The dispersion integral is

ahad,NLO VP, (c)
µ =

α3

9π3

∫ ∞
sth

ds

∫ ∞
s′th

ds′
R(s)

s

R(s′)

s′
K(c)(s, s′) . (1.50)

In each case, the analytic expression for the kernel function as given in [57] is used. As

with the LO contribution, the NLO hadronic vacuum polarisation contributions rely

on the experimentally measured hadronic cross section data and their combination to

determine the hadronic R-ratio.
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Chapter 2

Calculating a
had,VP
µ : data

treatment and combination

The majority of hadronic data that are used to determine ahad,VP
µ are experimental

cross section measurements of electron-positron annihilation into individual hadronic

final states. In determining R(s), this work aims to provide a reliable and meaning-

ful combination of the available data which makes minimal theoretical assumptions

concerning the shape and normalisation of the resulting cross section. Therefore, ex-

perimental data are used wherever possible, avoiding the use of available tools such as

resonance parametrisations and pQCD where measured data are available. In this way,

the estimates of ahad,VP
µ and the corresponding uncertainties from individual final states

are as data-driven as possible. Below ∼ 2GeV, these individual hadronic final states are

referred to as exclusive channels. The hadronic R-ratio in this region is predominantly

constructed from the sum of the determined cross sections of all available exclusive

channels. Above ∼ 2GeV, data for the measured total hadronic R-ratio, or inclusive

channel (all hadronic final states), are combined. For nearly all these channels, the

available data from numerous different experiments must be analysed, combined and

then integrated over according to equation (1.45) to give a corresponding estimate of

the contribution to ahad,LO VP
µ . With many of these data sets having a different energy

binning, different values for the given cross section and individual treatment of the

corresponding uncertainties, the combination of these data is a highly non-trivial task

and is the focus of this chapter. First however, any contributing data that have VP

effects included, or that do not include effects from FSR, must be treated or corrected

in order to combine the necessary σ0
had,γ(s) data.

2.1 Correcting the data

As described in Section 1.3.1, the hadronic data to be input into the dispersion integrals

(that determine ahad,VP
µ ) must be parametrised as the bare cross section σ0

had,γ(s), with

FSR effects included. Although more recent experimental analyses have endeavoured
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to measure this exact quantity, the remaining data must have radiative corrections

applied to ensure that all combined data are as consistent as possible with regards to

radiative effects. Additional uncertainties are estimated and included whenever radia-

tive corrections are applied. This is done, first and foremost, to account for any under-

or over-correction that may occur due to a lack of information concerning the treatment

of radiative corrections in the experimental analyses. However, these radiative correc-

tion uncertainties also account for any possible incorrect treatment in the analyses, for

example missed FSR or inconsistent subtraction of VP contributions. This is especially

true for older data, where there is very little or even no information at all regarding

how the data have been treated. The numerical estimates of all additional radiative

correction uncertainties are given in the respective sections for the individual channels

in Section 4.

2.1.1 Vacuum polarisation corrections

Equation (1.45) requires the experimental cross section to be undressed of all VP (run-

ning coupling) effects, as VP corrections to the hadronic cross section are counted as

part of respective higher order contributions to ahad,VP
µ . This is clear when considering

both Figure 2.1 and the diagrammatic portrayal of the optical theorem in Figure 1.6.

Evidently, using the dressed cross section (inclusive of vacuum polarisation effects to

the photon propagator) to determine ahad,LO VP
µ would result in contributions of the

type shown in Figure 1.7. Any new and old data that have not been corrected for VP

effects require undressing. However, recent data are more commonly undressed in the

experimental analyses already, removing the need to apply a correction to these data

sets. This benefits the data combination as new, more precise data undressed of VP

effects are dominating the combination for many channels which, in turn, reduces the

impact of the extra radiative correction uncertainty which is applied to each channel.

The inclusion of these VP effects to the total cross section is understood as the

inclusion of the running QED coupling α(q2). To determine the bare (undressed) cross

section, the running α(q2) must be replaced by the fine structure constant, α ≡ α(0).

The standard definition of the running of α is [58]

α(q2) =
α

1−∆α(q2)
=

α

1 + 4παRe Π(q2)
(2.1)

where the quantity ∆α(q2) describes the contributions to the running coupling from

leptons and quarks in the convenient form

∆α(q2) = ∆αlep(q2) + ∆α
(5)
had(q2) + ∆αtop(q2) . (2.2)

Here, the subscript ‘lep’ denotes the contributions from leptons and the superscript (5)

indicates the contributions from all quark flavours except the top quark, which is added

separately. The leptonic and top quark contributions have been safely evaluated in other
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works using perturbation theory [59–62]. However, as with the hadronic contributions

to aµ, the contributions from the low energy regime cannot be determined reliably using

pQCD. Fortunately, following the same logic as in Section 1.3.1 to determine ahad,LO VP
µ ,

analyticity and unitarity can be employed to define the dispersion relation [53]

∆α
(5)
had(q2) = −αq

2

3π
P

∫ ∞
sth

ds
R(s)

s(s− q2)
, (2.3)

where P denotes the principal value integral and the data input R(s) is identical to that

used for ahad,LO VP
µ in equation (1.46). An important use of this relation, combined with

the perturbative determinations of ∆αlep(q2) and ∆αtop(q2), is the evaluation of the

effective QED coupling at the Z boson mass, α(M2
Z), which is the least precisely known

of the three fundamental EW parameters of the SM (the Fermi constant GF , MZ and

α(M2
Z)) and hinders the accuracy of EW precision fits. An updated determination of

this is given in Appendix C.

To determine the contribution of vacuum polarisation effects to the hadronic cross

section, the full photon propagator, iDµν(q2), must be determined to all orders. This

is expressed by the Dyson summation of all 1PI diagram insertions

FullFullFullFullFullFullFullFullFullFullFullFullFullFullFullFullFull =
q

+ 1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PIq q
+ 1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI 1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PI1PIq q q

+ ...

= 1 + Π(q2) + Π(q2) ·Π(q2) + ...

=
1

1−Π(q2)
, (2.4)

which holds as a geometric series if |Π(q2)| < 1. Thus, to arrive at the full photon

propagator, the free (undressed) propagator is modified by

iDfree
µν (q2) =

−igµν
q2 − iε

−→ iDµν(q2) =
−igµν

q2
(
1−Π(q2)

) . (2.5)

The dressed hadronic cross section contains the absolute square of the photon propa-

gator

σhad(s) = σ0
had(s)

(
α(s)

α

)2

=
σ0

had(s)

|1−Π(s)|2
. (2.6)

Therefore, it follows that to determine the bare cross section as depicted in Figure 2.1,

the correction

σ0
had(s) = σhad(s)|1−Π(s)|2 (2.7)

must be applied. This requires the knowledge of both the real and imaginary parts of

Π(s), as

|1−Π(s)|2 = 1 + [Re Π(s)]2 + [Im Π(s)]2 − 2Re Π(s) . (2.8)

The imaginary part of the VP function is found, as in equation (1.43), via the optical

theorem from the sum of the total hadronic and leptonic (lep) cross sections,

Im Π(s) =
α

3

(
Rlep(s) +Rhad(s)

)
. (2.9)
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Fig. 2.1: The undressing (subtraction of vacuum polarisation effects) of the cross
section e+e− → γ∗ → hadrons.

Here, Rlep(s) denotes the leptonic R-ratio and Rhad(s) is the standard hadronic R-

ratio determined in this work (see Section 2.4).1 For the purpose of equation (2.7), a

self-consistent vacuum polarisation routine has been determined via an iteration of the

data input into equation (2.3). This routine is used to correct any data that requires

undressing in this work.

The undressing of narrow resonances in the cc̄ and bb̄ regions (see Section 2.4.3

and Section 4.3.2) requires special attention. These resonance contributions are deter-

mined using their respective electronic widths, Γee [16], which contain VP (and FSR)

effects and, therefore, require undressing. The extremely narrowly peaked nature of

these structures causes sharply spiked contributions to ∆α
(5)
had(q2), which locally causes

|Π(q2)| ≥ 1. This violates the condition for the geometric series in equation (2.4) and,

hence, the Dyson summation does not converge for these regions. To overcome this, the

electronic width of an individual resonance, Γee, is undressed of vacuum polarisation

effects using a parametrisation of the VP where the correction excludes the contribution

of that resonance, such that

Γ0
ee =

(
α/αno res(M

2
res)
)2

1 + 3α/(4π)
Γee . (2.10)

Here, Mres is the mass of the resonance and αno res is the effective QED coupling

neglecting the contribution of the resonance itself given by

αno res(s) ≡
α

1−∆αno res(s)
, (2.11)

where ∆αno res(s) is determined from equation (2.3) such that the input R(s) does not

include the resonance that is being corrected. To include the resonance would lead to

an inconsistent definition of the narrow resonance.

In each channel, the difference ∆aVP
µ between the estimates of aµ with and without

additional VP corrections is determined. For the uncertainty due to VP, one third of

the shift

δaVP
µ =

1

3
∆aVP

µ (2.12)

1At all times in this work, unless stated otherwise, the non-specific term ‘R-ratio’ or ‘R(s)’ refers
to the hadronic R-ratio.
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is taken as a conservative uncertainty. This is done in the knowledge that the VP

routine, which is determined iteratively in a self-consistent way, is accurate to the level

of a permille when correcting the cross section.2 In addition, this is supported by the

fact that newer data sets are also commonly undressed of VP effects in the experimental

analyses with a modern routine.

2.1.2 Final state radiative corrections

For the determination of ahad,VP
µ (as described in Section 1.3.1), photon emission in the

final state of the measured hadronic cross section formally corresponds to higher order

corrections to the hadronic vacuum polarisation contributions to aµ. These effects,

as shown in Figure 2.2, cannot be determined individually and are not separately ac-

counted for in the higher order contributions to ahad,VP
µ shown in Figure 1.7. Therefore,

they are included as part of the LO contributions in the definition of the 1PI hadronic

blobs. However, depending on the experimental analyses, some amount of real photon

FSR may have been missed or removed during the event selection. Adding back these

missed contributions is model dependent and not feasible for general hadronic final

states. It is therefore necessary to estimate the possible effects and their impact on the

accuracy of the data compilations.

It is possible to estimate the effects of single photon FSR for the π+π− and K+K−

channels using a scalar QED (sQED) approximation. It has been shown that sQED,

which assumes point-like pions and kaons, provides a good description of photon FSR,

especially in the energy range below ∼ 2GeV [63–65]. In this range, the low energy

of the photon propagator producing these virtual mesons means that it is less likely

to resolve the quark structures of the mesons. In [21, 46, 47], to estimate possible FSR

effects in π+π− and K+K− production in this approximation, the fully inclusive O(α)

correction to the cross section,

σ
(0)
had,γ(s) = σ

(0)
had(s)

(
1 + η(s)

α

π

)
, (2.13)

has been used. Here, the term ‘fully inclusive’ means inclusive of effects from virtual

and real (both soft and hard) one-photon emission. The function η(s) is given in [63]

and the subscript γ indicates the one photon inclusive cross section.

However, experimental cross section measurements by nature include all virtual

and soft real radiation effects [66, 67].3 Therefore, ideally only the effects from (hard)

real radiation above/within resolution/cut parameters, which are specific for a given

2For the π+π−π0 channel, for example, from equation (2.12) the additional uncertainty due to VP
corrections is determined to be ∼ 0.5 × 10−10. In comparison, the theoretical uncertainty of the VP
routine for this channel is ∼ 0.05× 10−10.

3This is a consequence of the infrared (IR) finite nature of the SM, where IR divergences in QED
loop corrections are cancelled by IR divergences arising from soft photon emission. Therefore, only the
sum of both soft and virtual corrections is physically observable.
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e+

e−

γ ⇔ hadhadhadhadhadhadhadhadhadhadhadhadhadhadhadhadhad
γ γ

Fig. 2.2: Photon FSR in an e+e− → hadrons event, where although formally of higher
order in α and therefore a higher order contribution to ahad,VP

µ , it is included in the
1PI hadronic blob as part of the LO hadronic VP contributions to aµ.

experiment or analysis, should be estimated to account for possibly missing photon

FSR. Whereas in the calculation of the inclusive correction a regularisation of the

virtual and real soft contributions is required to obtain the infrared finite result η, the

hard-real radiation, ηhard,real, can be estimated numerically from [64]

ηhard,real(s) =

∫ s−2
√
sΛ

4m2

ds′ρfin(s, s′) , (2.14)

where m is the mass of the (scalar) particle, Λ is a finite infrared cut-off parameter on

the invariant mass of the emitted photon and ρfin is the radiator function (see appendix

B of [64]).

In the case of theK+K− channel, by far the largest contribution to aµ (and its error)

comes from the energy region of the φ peak (see Section 4.1.7), where the phase space

for real radiation is severely restricted. In [68], a study was conducted to determine

an estimate of the effects from only hard photon radiation in the K+K− channel.

Using kinematical arguments that relate the energy of an emitted final state photon

to the angle at which it is emitted, it was possible to derive a relation between the

cut-off parameter Λ in equation (2.14) and angular cuts in the photon acolinearity

given in individual experimental analyses. This allowed studies in this work into two

experimental measurements in the K+K− channel that had made such angular cuts [69,

169]. The results of this study are shown in Figure 2.3. Here, the fully inclusive

correction η(s) (left panel) is compared to the resulting estimates for the real hard

radiation, where ηhard,real(s) (right panel) now depends on the acolinearity cuts as

given by the two experimental analyses. Clearly, at and around the φ peak, phase

space restrictions strongly suppress any hard-real radiation and corresponding FSR

correction. It is also evident that using the inclusive correction in equation (2.13)

would lead to an overestimate of the possible FSR effects for the K+K− channel. In

addition, although the correction due to equation (2.14) increases above the φ peak, the

contribution of the K+K− channel above the φ to both mean value and error of aµ is

substantially smaller than the contribution from the φ itself. These arguments, coupled

with being unable to repeat this calculation for the remaining data sets in the K+K−

channel due to a lack of information regarding the respective experimental analysis,
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Fig. 2.3: The effect of final state radiation in the K+K− channel in the φ resonance
region. Left panel: the fully inclusive FSR correction η(s). Right panel: hard real
radiation ηhard,real(s), estimated with acolinearity cuts used in the two analyses [69,169].
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mean that no correction or additional error estimate due to FSR is now applied in the

K+K− channel. For the neutral kaon channel, hard photon radiation (which would

resolve the quark charges) is similarly suppressed and no FSR correction or additional

error are applied in this channel either.

The situation is different in the π+π− channel. A study similar to the two-kaon

channel showed that in principle larger contributions from real radiation of the or-

der of the inclusive correction can arise. However, these contributions are strongly

dependent on the cut applied in equation (2.14) and would require a more detailed,

measurement-by-measurement analysis, for which the information needed from the re-

spective experimental analyses is not available. Therefore, as in [21, 46, 47], in data

sets which are understood to not include the full FSR corrections, the fully inclusive

correction (as shown in Figure 4.19) is applied to the respective π+π− measurements.

Importantly, recent sets from radiative return, where additional photons are part of the

leading order cross section and are studied in detail as part of the analyses, have now
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become dominant in the π+π− channel. Consequently, the impact of the fully inclusive

FSR correction to older sets is suppressed for both mean value and error in comparison

to [21,46,47].

For the sub-leading, multi-hadron channels, there are at present no equivalent FSR

calculations. Depending on the experimental analysis, they are (at least to some extent)

simulated by Monte Carlo and contribute to the systematic uncertainties. However,

for many data sets it is far from clear to what extent FSR effects are included in

the systematic errors. Therefore, possible effects are accounted for by applying an

additional uncertainty determined as a fraction of the respective contribution.

For the extra uncertainties due to FSR, there are no contributions from the K+K−

and K0
SK

0
L channels (see the discussion above). For the π+π− channel, the full dif-

ference between the estimates of aπ
+π−
µ with and without additional FSR corrections

is taken as the FSR uncertainty, resulting in an additional uncertainty on aπ
+π−
µ of

∼ 0.03%. For all other channels, including the inclusive data combination, a fraction

of 1% of the respective cross section is applied as a conservative uncertainty.

2.1.3 Converting pion form factor data

For the π+π− channel, it is common for many experimental cross section measurements

to also be given in terms of the analogous pion form factor, |Fπ|2. Some older data in

this channel (see Section 4.1.2) are only available in the pion form factor representation

and must be converted to the hadronic cross section in order to be combined with the

other data. Contrary to the requirements concerning radiative corrections for the cross

section used for the input for the determination of ahad,VP
µ , it is usual for the pion

form factor to include VP effects and exclude FSR. In this case, the bare two-pion cross

section including FSR is determined from the pion form factor by

σ0
ππ,γ(s) =

πα2β3
π(s)

3s
|Fπ(s)|2 |1−Π(s)|2

(
1 +

α

π
η(s)

)
, (2.15)

where βπ(s) =
√

1− 4m2
π/s.

2.2 Clustering data

Data in a given hadronic channel must be combined before integrating. The alternatives

of integrating the data sets from each experiment in a given hadronic channel individu-

ally and averaging the resulting integrated values or evaluating the contributions from

the data with a strict point-to-point integral, could result in inadequate representations

of the contributing data. Imprecise data of poor quality could contribute with a larger

weighting to ahad,VP
µ than they should. In addition, unrealistic propagations of large

experimental uncertainties could suppress the desired contribution of more reliable pre-

cise data. With the aim of this work to be a data-driven analysis that avoids the fitting
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of data to functions or parametrisations, a re-binning of the data is applied that results

in a combined cross section which appropriately incorporates the weightings from the

respective experimental uncertainties.

Within each hadronic channel, data points from different experiments are assigned

to clusters. In this work, the clustering algorithm is universal for all different channels

and only differs in the assigned maximum cluster size δ (and δres, a maximum cluster size

applicable at individual resonances). Data points are, by order of precision, compared

to existing clusters. If data point i is being considered for assignment to the cluster m,

then if the energy Ei exists between (Em− δ) ≤
√
s ≤ (Em+ δ), then it is added to the

cluster m. If not, then a new cluster is created to accommodate it. Importantly, the

information regarding the data points belonging to each cluster is retained to ensure

that existing points do not stray outside of the boundaries, ±δ, of their assigned cluster.

If the addition of a new data point to a cluster should violate this, a new cluster is

created for the data point in question.

A scan over δ (and δres if applicable) is performed to determine a suitable clustering

configuration which must avoid both over- and under-clustering. Too wide or over-

populated clusters would effectively lead to a re-binning of data points from individual

experiments and risk loss of information, while a too narrow clustering would result,

in the extreme, in an erratic point-to-point representation of the cross section and no

gain in the accuracy. The preferred configuration is then chosen based on the resulting

global χ2
min/d.o.f. (see Section 2.3.2) and the uncertainty on ahad,VP

µ , combined with

checks by eye that the resulting spectral function does not exhibit any erratic behaviour

due to the effects of over- or under-clustering.

2.3 Minimisation

Following the re-binning of the available data in a given hadronic channel into clusters,

a solution for the cross section must be obtained that incorporates all the available in-

formation. In particular, the resulting cross section should include the full propagation

of available uncertainty information to be used for the determination of ahad,VP
µ and its

error. The previous analyses [21, 46, 47] employed a non-linear χ2-minimisation utilis-

ing fitted renormalisation factors as nuisance parameters that represented the energy

independent systematic uncertainties. Although this method, denoted here as the fk

method, was a powerful approach, recent literature [71] (see also [72]) have highlighted

the possibility that an incorrect treatment of multiplicative normalisation uncertainties

in a χ2-minimisation can incur a systematic bias (see chapter 4 of [71]).
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2.3.1 Systematic bias and the fk method

With the aim to achieve a precision for ahad,LO VP
µ that is a trusted improvement on

the accuracy achieved in [21], the necessity for a reliable and robust data combina-

tion procedure is of paramount importance. In [73, 74], it has been shown that the

propagation of multiplicative normalisation (systematic) uncertainties in a data com-

bination method using the uncertainties as defined by the data alone could result in

bias. This bias can be explicitly demonstrated in a mock data example of the simple

combination of only two data points of arbitrary units: x1 = 0.9±dx1 = 0.9± px1 and

x2 = 1.1± dx2 = 1.1± px2, where dx1 and dx2 represent the percentage uncertainty p

of x1 and x2 respectively, and are fully correlated with each other. The corresponding

covariance matrix is given as

C =

(
p2x2

1 p2x1x2

p2x2x1 p2x2
2

)
. (2.16)

As both of these data points have an uncertainty of the same percentage, each should

provide an identical weighting to their combination which should result in a combined

value x̄ that is the trivial average of the two data points, x̄ = 1. However, the com-

bination of these data points results in x̄ ≈ 0.98. This bias, known as the d’Agostini

bias [73], occurs as combining data with the fully correlated uncertainties defined by

the data alone results in a bias towards the data point with the smaller value [73, 74],

in this case x1.

The fk method in [21,46,47] employed the fitting of renormalisation factors as nui-
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sance parameters through a non-linear χ2-minimisation to avoid such a bias. However,

using the fk method to determine the combination of the same example of two points

as above yields an answer of x̄ = 1.0050125, indicating that this method also exhibits

the potential for bias. This effect is shown more generally in Figure 2.5 (which follows

the analysis methodology in [71]), where the resulting upward shift in the combined

result is clearly visible.4 In addition, although the non-linear χ2-minimisation used

in [21] was adjusted to include covariance matrices, the method’s reliance on fitting en-

ergy independent renormalisation factors prevented the use of correlated uncertainties

to their full capacity. Recent precise data (specifically radiative return measurements

in the π+π− and K+K− channels have been released with energy dependent uncer-

tainties and non-trivial bin-to-bin correlations for both the statistical and systematic

uncertainties. Consequently, it follows that the previous combination procedure should

be modified to allow the full use of all available correlations in a bias-free approach.

2.3.2 Fixing the covariance matrix: an iterated fit

In this work, as an alternative approach to the fitting of renormalisation factors (nui-

sance parameters) via the fk method, an iterative fit procedure as advocated in [71]

has been adopted, which re-initialises the full covariance matrices at each iteration

step. The concept of this method utilises the knowledge that the use of the uncertain-

ties/covariance matrix as defined by the data alone leads to the d’Agostini bias, which

should be avoided. Notably, for large data combinations which commonly require an

iteration of a fit to reach convergence, the d’Agostini bias could be further driven by

the uncertainties being repeatedly defined by the data in each iteration. Therefore, the

covariance matrix should be redefined in the data combination to avoid this undesirable

effect. Instead of the uncertainties being defined as percentages of the data itself, they

should be redefined as percentage uncertainties of some estimated theory value. In the

simple two-point example, the covariance matrix is redefined to be

C =

(
p2x̃2 p2x̃2

p2x̃2 p2x̃2

)
, (2.17)

where x̃ is the estimated theory value of the combination of x1 and x2. In this approach,

the combination of these two data points yields the unbiased result x̄ = 1. In the more

complicated case of a larger data combination, the theory estimate for each contributing

data point is recalculated at every step of the iteration until the fit converges.

In this work, a new method has been devised based on the concepts outlined above

to replace the restricted fk method and minimise the effect of the d’Agostini bias.

Previously, in [21, 46, 47], a constant cross section had been assumed across the width

of each cluster. In this work, the fitted cross section values at the cluster centres are

4In [71], it is explained that this bias arises due to the non-linear nature of the χ2 function, implying
that a linear function that avoids the d’Agostini bias should be explored.
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obtained from an iterative χ2-minimisation where the cross section is taken to be linear

between adjacent cluster centres. This is not only a more physically realistic represen-

tation of the shape of the cross section in the data combination than the constant cross

section approach, but allows for a more stable fit and is consistent with the trapezoidal

rule integration utilised for the ahad,VP
µ integrals (see Section 2.5).5

For each hadronic channel, if data points at energies
√
s = E

(m)
i are combined into

cluster m, then the weighted average of the cross section value Rm and energy Em for

the cluster centre are

Rm =

N(m)∑
i=1

R
(m)
i(

dR̃
(m)
i

)2


N(m)∑
i=1

1(
dR̃

(m)
i

)2


−1

(2.18)

and

Em =

N(m)∑
i=1

E
(m)
i(

dR̃
(m)
i

)2


N(m)∑
i=1

1(
dR̃

(m)
i

)2


−1

, (2.19)

where R
(m)
i is the cross section value of data point i contributing to cluster m, N (m) is

the total number of data points contributing to cluster m and

dR̃
(m)
i =

√
(dR

(m)
i; stat)

2 + (dR
(m)
i; sys)

2 . (2.20)

dR
(m)
i; stat and dR

(m)
i; sys denote the absolute statistical and systematic uncertainties, re-

spectively. With a linear cross section now assumed, if data point i belongs to cluster

m and E
(m)
i > Em, then its interpolant cross section value Rim is given by

Ri+m = Rm +
(E

(m)
i − Em)

(Em+1 − Em)
(Rm+1 −Rm) , (2.21)

where the superscript ‘+’ indicates that E
(m)
i > Em. If, on the other hand, E

(m)
i < Em

then

Ri−m = Rm−1 +
(E

(m)
i − Em−1)

(Em − Em−1)
(Rm −Rm−1) , (2.22)

where the superscript ‘−’ indicates that E
(m)
i < Em. For data points at the borders

where no interpolation is possible, Rim is found by linear extrapolation.

A covariance matrix is constructed for the combination which contains all the uncer-

tainty and correlation information of all data points. Importantly, this matrix should

be constructed to satisfy the necessary mathematical properties of a covariance matrix.

Any covariance matrix, C, of dimension n× n must satisfy the following requirements:

5In this work, the high population of data points and, therefore, resulting number of clusters for
the numerous hadronic channels means the linear/trapezoidal rule representation of the cross section
is much more reliable than in the previous analyses [21,46,47]. In Section 2.5, comparisons with higher
order polynomial determinations of the cross section are shown which highlight that differences between
these and the linear approach are small due to the densely populated data content.
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• As the diagonal elements of any covariance matrix are populated by the corre-

sponding variances, all the diagonal elements of the matrix are positive. There-

fore, the trace of the covariance matrix must also be positive

Trace(C) =
n∑
i=1

C(i, i) =
n∑
i=1

Vari > 0. (2.23)

• It is a symmetric matrix, C(i, j) = C(j, i), and is, therefore, equal to its transpose,

C(i, j) = CT (i, j).

• It is a positive, semi-definite matrix,

aTC a ≥ 0 ; a ∈ Rn, (2.24)

where a is an eigenvector of the covariance matrix C.

• The eigenvalues λa of the covariance matrix must be real, non-negative and the

distinct eigenvectors must be orthogonal

bTC a = λa(b · a) = aTC b = λb(a · b) (2.25)

∴ if λa 6= λb ⇒ (a · b) = 0. (2.26)

• Its determinant is greater than or equal to zero: Det
(
C(i, j)

)
≥ 0.

With many experimental analyses providing error contributions from multiple sources

of uncertainty for both statistics and systematics, the contributions of these individual

sources must be summed correctly in order to satisfy the necessary conditions for a

covariance matrix. In general, should sources of uncertainty be correlated, the element

(i, j) of a covariance matrix that describes the total covariance σij between the two

data points should be constructed as

C(i, j) ≡ σij =
∑
α

∑
β

σαi ρ
αβ
ij σ

β
j .

Here, α and β denote individual sources of uncertainty, σαi is the standard deviation of

the data point i due to the uncertainty source α, σβj is the standard deviation of the

data point j due to the uncertainty source β and ραβij is the correlation coefficient that

describes the correlation (−1 ≤ ρ ≤ 1) between the uncertainty source α of data point

i and the uncertainty source β of data point j. In general, unless stated otherwise,

different sources of uncertainty are assumed to be independent and, therefore, uncor-

related (ραβij |α6=β = 0). Correspondingly, the element (i, j) of the covariance matrix is

determined from

C(i, j) =
∑
α

ραijσ
α
i σ

α
j =

∑
α

Cα(i, j) , (2.27)
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where Cα(i, j) is the covariance matrix specifically due to the uncertainty source α. It

follows that to define the total covariance of two data points, the correlation coefficient

and absolute error of each data point for each source of uncertainty must be known,

which are then summed in accordance with equation (2.27). In this work, if the ex-

perimental analysis does not provide covariance matrices or corresponding correlation

information, then statistical uncertainties are assumed to be uncorrelated (ραij = 0) and

systematic uncertainties are assumed to be fully correlated (ραij = 1) between all bins

in a given experimental measurement.

For each channel, the total covariance matrix C
(
i(m), j(n)

)
is given as the sum of

the statistical covariance matrix Cstat
(
i(m), j(n)

)
and the systematic covariance matrix

Csys
(
i(m), j(n)

)
. As described above, using the covariance matrix as defined by the data

alone could result in bias. The covariance matrix is therefore redefined at each step of

the iteration using the fitted Rm values. At each stage of the iteration, it is defined as

CI

(
i(m), j(n)

)
= Cstat

(
i(m), j(n)

)
+

Csys
(
i(m), j(n)

)
R

(m)
i R

(n)
j

Ri,(I−1)
m Rj,(I−1)

n , (2.28)

where the quantities Ri,Im and Rj,In are the interpolant cross sections given by either

equation (2.21) or (2.22) and I denotes the iteration number of the fit. This is then

used as input into the now linear χ2-function,

χ2
I =

Ntot∑
i=1

Ntot∑
j=1

(
R

(m)
i −Ri,Im

)
C−1
I

(
i(m), j(n)

)(
R

(n)
j −R

j,I
n

)
, (2.29)

where Ntot is the total number of contributing data points in the given channel and

C−1
I

(
i(m), j(n)

)
is simply the inverse of the covariance matrix defined in equation (2.28).

Performing the minimisation yields a system of linear equations

Ntot∑
j=1

[(
R

(n)
j −R

j,I
n

)∂Rim
∂Ra

]
V −1
I

(
m(i), n(j)

)
= 0 , i = 1, ..., Ntot , (2.30)

where,

V −1
I

(
m(i), n(j)

)
=

N(m)∑
i=1

N(n)∑
j=1

C−1
I

(
i(m), j(n)

)
. (2.31)

As in equations (2.21) and (2.22), the termRjn is to be taken as eitherRj+n , if E
(n)
j > En,

or Rj−n , if E
(n)
j < En. Subsequently, if E

(m)
i > Em, then

∂Rim
∂Ra

∣∣∣∣∣
E

(m)
i >Em

=
∂Ri+m
∂Ra

=

(
1−

(E
(m)
i − Em)

(Em+1 − Em)

)
δma +

(E
(m)
i − Em)

(Em+1 − Em)
δm+1,a (2.32)

and, if E
(m)
i < Em, then

∂Rim
∂Ra

∣∣∣∣∣
E

(m)
i <Em

=
∂Ri−m
∂Ra

=

(
1−

(E
(m)
i − Em−1)

(Em − Em−1)

)
δm−1,a +

(E
(m)
i − Em−1)

(Em − Em−1)
δma ,

(2.33)
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Fig. 2.6: The behaviour of the combined value x̄ as the ratio of the multiplicative
normalisation uncertainties, dx1 and dx2, of the two contributing data points, x1 = 0.9
and x2 = 1.1, are varied. The unbiased result, indicated by the solid light-blue line,
corresponds to x̄ = 1 and should pass through this point when dx1 = dx2. The result
from the new data combination method used in this work is shown by the dashed red
line.

where δ denotes the Kronecker delta. The solution to equation (2.30) yields the cluster

centres Rm. The overall quality of the data combination is described by the global

χ2
min/d.o.f.. In addition, the output of the method includes the local χ2

min/d.o.f. for

each cluster and the total output covariance matrix VI
(
m,n

)
, which describes the

correlation between the errors dRm and dRn. For each channel, this matrix is checked

to ensure it satisfies the required properties of a covariance matrix as described above.

As in [21], in order to account for any tensions between the data, the output matrix is

inflated according to the local χ2
min/d.o.f. by

Ṽ
(
m,n

)
= VI

(
m,n

)√
χ2

min/d.o.f.(m)
√
χ2

min/d.o.f.(n) (2.34)

if the local χ2
min/d.o.f. > 1 for each cluster.

In [71], it was stated that for the fit of parton distribution functions, convergence

is expected to occur after very few iterations, which is also observed here. The use

of the full covariance matrix allows for the inclusion of any-and-all uncertainties and

correlations that may exist between the measurements. The flexibility to now make

use of fully energy dependent uncertainties ensures that the appropriate influence of

the correlations is incorporated into the determination of the cluster centres Rm, with

the correct propagation of all experimental errors to the g − 2 uncertainty.
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Channel This work Potential d’Agostini biased Difference

π+π− 502.99± 1.97 500.36± 1.95 2.63
π+π−π0 47.82± 0.89 45.94± 0.73 1.88
π+π−π+π− 15.17± 0.21 14.61± 0.15 0.56
π+π−π0π0 19.80± 0.79 16.58± 0.71 3.22
K+K− 23.05± 0.22 22.40± 0.22 0.65
K0
SK

0
L 13.05± 0.19 12.89± 0.17 0.16

Table 2.1: Comparison of the contributions to ahad,LO VP
µ from leading and major sub-

leading hadronic channels determined with the data combination method devised in this
work and with the normalisation uncertainties defined by the data alone. All results are
found in the energy range

√
s ≤ 2 GeV and are given in units of ahad,LO VP

µ ×1010. The
first column indicates the final state or individual contribution, the second column gives
the estimate of ahad,LO VP

µ from this work, the third column states the corresponding
potentially d’Agostini bias affected results and the last column gives the difference
between the two evaluations.

2.3.3 Data combination analysis

The results of the simple two-point example now determined with the new data com-

bination method are shown in Figure 2.6, where both the d’Agostini bias and the bias

arising from the non-linear nature of the fk method are now eliminated. Concerning

the d’Agostini bias, although it not possible to predict the unbiased result for the full

data combination of an individual channel as in the simple two-point example, marked

differences should be visible in the results of data combined with the covariance ma-

trices as defined by the data alone and the fixed iterative method used in this work.

A comparison of results using both approaches in shown in Table 2.1, where the dif-

ferences in the results for all channels are significant and outside of the quoted errors.

Interestingly however, in all cases the new method produces results that are larger than

those determined with the normalisation uncertainties defined by the data alone, sug-

gesting that there is a strong effect of the d’Agostini bias driving the results towards

smaller values in the latter case.

Comparative results from the fk method and the new data combination method

with identical input for the hadronic cross section data are shown in Table 2.2.6 Note

that, for all channels, the differences between the old and the new data combination

procedures lead to changes of ahad,VP
µ within the quoted errors. Importantly, as shown

in Table 2.3, examples of combining data which have only global normalisation un-

certainties result in negligible differences between [21] and this work, indicating that

previous results were largely unaffected by the potential bias issue.

A final interesting study is to understand the impact of defining the cross section

6In Section 4.5.1, a full comparison between this work and the previous analysis in [21] is given.
However, as there is much new data included in this work that was not available in [21], it would not
be possible in the full analysis comparison to distinguish whether any differences observed are due to
the new data combination method or the new data input.
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Channel This work fk method [21] Difference

π+π− 505.06± 2.23 505.77± 3.09 −0.71
π+π−π0 47.38± 0.99 47.51± 0.99 −0.13
π+π−π+π− 14.59± 0.47 14.65± 0.47 −0.06
π+π−π0π0 20.57± 1.24 20.37± 1.26 0.20
K+K− 22.09± 0.42 22.15± 0.46 −0.06
K0
SK

0
L 13.46± 0.17 13.33± 0.16 0.13

Table 2.2: Comparison of the contributions to ahad,LO VP
µ from leading and major

sub-leading hadronic channels determined with the data combination method devised
in this work and using the fk method. Here, for the purpose of this comparison,
all data that have been released more recently than the HLMNT11 analysis [21] are
omitted. All results are found in the energy range

√
s ≤ 2 GeV and are given in units of

ahad,LO VP
µ × 1010. The first column indicates the final state or individual contribution,

the second column gives the estimate of ahad,LO VP
µ from this work, the third column

states the estimate using the fk method and the last column gives the difference between
the two evaluations.

Channel This work fk method [21] Difference

π+π− [123–125] 481.42± 4.05 481.42± 4.26 0.00
K+K− [86] 16.92± 0.71 16.93± 0.81 −0.01

Table 2.3: Comparison of results from this work and using the fk method when
combining data which have only global normalisation uncertainties. All results are
found in the full energy range of the combined data and are given in units of ahad,LO VP

µ ×
1010. The first column indicates the final state or individual contribution, the second
column gives the estimate of ahad,LO VP

µ from this work, the third column states the
estimate using the fk method and the last column gives the difference between the two
evaluations.

Channel This work (linear) Constant cross section Difference

π+π− 502.99± 1.97 502.49± 1.98 0.50
π+π−π0 47.82± 0.89 48.11± 0.93 −0.29
π+π−π+π− 15.17± 0.21 15.07± 0.16 0.10
π+π−π0π0 19.80± 0.79 19.89± 0.53 −0.09
K+K− 23.05± 0.22 23.34± 0.32 −0.29
K0
SK

0
L 13.05± 0.19 13.13± 0.17 −0.08

Table 2.4: Comparison of the contributions to ahad,LO VP
µ from leading and major

sub-leading hadronic channels determined in this work (where the clusters are defined
to be linear between each bin) and the constant cross section representation of the
clusters. All results are found in the energy range

√
s ≤ 2 GeV and are given in units

of ahad,LO VP
µ ×1010. The first column indicates the final state or individual contribution,

the second column gives the estimate of ahad,LO VP
µ from this work, the third column

states the estimate using the constant cross section representation and the last column
gives the difference between the two evaluations.

of each cluster as linear instead of constant across the width of each cluster. Although

the integration method is unchanged from a linear trapezoidal rule integral since the
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previous analysis [21] (see Section 2.5), the representation of the cross section as linear

between each bin in the χ2-function in equation (2.29) can cause variations in the final

fit solution for all clusters in a given channel. Results comparing the two methods are

given in Table 2.4. Again, the differences between the two approaches are not outside

the quoted errors, indicating there was not a large misrepresentation of the cross section

in the constant representation.

2.4 Determining the full hadronic R-ratio

Once the combination procedure has been applied to each individual hadronic chan-

nel, the resulting determined cross section data and corresponding covariance matrices

must be summed to determine the full hadronic R-ratio, R(s). With the data from

each channel having a different binning as a result of its individual combination, the

sum of these states requires an interpolation of both the cross section and its covariance

matrix. This process is described in detail in Section 2.4.5. Importantly, the covariance

matrix for the full hadronic R-ratio has not been previously fully determined by any

other work and is achieved here. Before this, any missing contributions that are not

available from experimental measurements must be estimated through various means

in order to determine the most comprehensive representation of the full hadronic spec-

trum that is possible. These missing contributions include threshold contributions,

narrow resonances and those hadronic channels that have not been measured at all by

experiment.

2.4.1 Estimating contributions: chiral perturbation theory (ChPT)

For some hadronic final states, the available experimental data do not extend to the

physical lower energy limit of the respective hadronic production thresholds. The π0γ

channel, for example, defines the lower energy border of the dispersion integral in

equation (1.45) to be s = m2
π. However, the available π0γ data only reach a lower

energy limit of 0.6 GeV. With the dispersion integrals being weighted towards lower

energies, the energy range mπ ≤
√
s < 0.6 GeV is an important contribution and should

not be excluded. This is also true for the π+π−, π+π−π0 and ηγ channels, all of which

do not have data available that extend down to their respective thresholds.

Without experimental data, the contributions from low energy regions for these final

states must be estimated.7 As in [21,46,47], this is achieved via previously determined

chiral perturbation theory (ChPT) determinations of these threshold contributions.

ChPT is a low-energy effective theory describing the hadronic interactions of low-mass

mesons such as pions. In this setup, as opposed to an expansion in the strong coupling

constant αs like in pQCD (which is a divergent expansion at low energies as αs >> 1),

7As the low energy cross sections are not linear in s, an extrapolation of the available data down to
production threshold would result in overestimates of these low energy contributions.
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Fig. 2.7: The threshold contributions of the π0γ, π+π−, π+π−π0 and ηγ channels as
estimated using chiral perturbation theory. In each case, the ChPT estimate is given
by the red line (with the theoretical uncertainties determined by the ChPT relation
and input parameters, e.g. masses, of each respective final state), whilst the yellow
band represents the uncertainty of the corresponding experimental data.

an expansion is performed in small momenta p or the light quark masses mq, which are

chiral symmetry breaking parameters. Massless particles have chiral symmetry and,

consequently, the introduction of quark masses spontaneously breaks the chiral nature

of the theory. Therefore, in ChPT, the quarks and gluons from pQCD are replaced

by mesons, which are the Nambu-Goldstone bosons of spontaneous chiral symmetry

breaking. The expansion is performed in the ratio of these parameters with some

safe energy scale Λ
(
p
Λ or

mq
Λ

)
, where p,mq << Λ and, therefore, the expansion is

well-defined. At leading order, this expansion assumes that the mesons are point-like

particles that couple to the photon.

Fortunately, in other dedicated works, the theoretical low-energy cross sections have

been determined using ChPT and can be implemented here for the purpose of extending

the lower boundary of the relevant experimental data to their production thresholds.

For the π0γ channel, the contribution in the range mπ ≤
√
s < 0.6 GeV is determined
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from the theoretical description of the low energy cross section given in [75] as

σ(e+e− → π0γ) =
8παΓ(π0 → 2γ)

3m2
π0

(
1−

m2
π0

s

)3( m2
ω

m2
ω − s

)2

. (2.35)

Here, Γ(π0 → 2γ) is the decay width of the process π0 → 2γ (which dominates the

decay of the π0 meson [16]) and mω is the mass of the ω resonance. The last term in

equation (2.35) is an improvement of the pure ChPT cross section using a vector meson

dominance approach [75]. This accounts for the presence of the ω resonance in the π0γ

channel by replacing the virtual photon propagator with the resonant form

1

s
→ 1

s

m2
ω

m2
ω − s

. (2.36)

For the π+π− threshold contribution in the range 2mπ ≤
√
s < 0.305 GeV, a

compact prediction for the pion form factor given in [76] as

Fπ(s) = 1 +
1

6
〈r2〉π s+ cπs

2 +O(s3) , (2.37)

where the coefficients 〈r2〉π = 0.431 ± 0.026 (fm2) and cπ = 3.2 ± 1.0 (GeV−4), are

found in [76] by fitting to space-like pion scattering data [77]. The π+π−π0 contribution

between 3mπ ≤
√
s < 0.66 GeV is estimated using the ChPT prescription in [78, 79].

The threshold ηγ contribution in the range mη ≤
√
s < 0.66 GeV is estimated according

to Appendix A.2 of [46], although it provides a negligible contribution to aµ. For all

four of these channels, the estimated cross sections are displayed in Figure 2.7, where

each plot shows the point where the ChPT prediction is overtaken by the measured

experimental data. In all cases, there is good agreement between the ChPT estimate

and the data.

2.4.2 Estimating contributions: isospin

For many of the sub-leading hadronic final states, there are no experimental measure-

ments of their cross sections. Many of these contributions, although small compared

to the leading contributions, have production thresholds that are below the boundary

where the sum of exclusive final states is replaced by the inclusive data. It is clear

that, for a high precision analysis, these should be included in the exclusive sum to

ensure that they contribute to the hadronic R-ratio and, therefore, the determination

of ahad,VP
µ .

Following [21, 46, 47], the cross sections for these final states are estimated using

relations based on the Pais isospin class [80]. As a simple example of this setup, consider

the process of electron-positron annihilation into a two-pion final state. The three pions

(π+, π0, π−) form a triplet under isospin symmetry, where the quark contents of each

are described by the wave-functions

|π+〉 : − |ud̄〉 , |π0〉 : | 1√
2

(uū− dd̄)〉 , |π−〉 : − |dū〉 . (2.38)
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Pions are eigenstates of G-parity (G = ±1),

G ≡ CR2 = Ce−iπT2 = e−iπ
σ2
2 , (2.39)

which is a symmetry described by combination of a π rotation about the 2-axis in isospin

space R2 with charge conjugation C. Under G-parity, the pion triplet transforms as

G

|π+〉
|π0〉
|π−〉

 =

− |π+〉
− |π0〉
− |π−〉

 . (2.40)

It follows that pions have a G-parity quantum number G = −1 [16]. The photon can

be either be isospin I = 0 or I = 1, implying that isospin is not conserved in photon

interactions and resulting in

G |γI=0〉 = − |γI=0〉 , G |γI=1〉 = |γI=1〉 . (2.41)

However, from this it can be seen for the process e+e− → γ∗ → nπ, the G-parity

assignment for n pions in the final state is given by Gn pions = (−1)n, conserving

G = −1 for odd n and conserving G = 1 for even n [81].8 Using this setup and the

knowledge that the photon is either I = 0 or I = 1, the two-pion final states consistent

with the isospin of the photon can be constructed from the table of Clebsch-Gordan

coefficients [16] as

|0, 0〉 =
1√
3
|π+π−〉 − 1√

3
|π0π0〉+

1√
3
|π−π+〉

|1, 0〉 =
1√
2
|π+π−〉 − 1√

2
|π−π+〉 . (2.42)

The process γ → π0π0 is forbidden due to charge conjugation symmetry (with Cγ = −1

and Cπ
0

= +1) and, therefore, only the second final state is allowed. Hence, the

use of isospin has shown that the only allowed two-pion final is the process e+e− →
γ∗ → π+π− and, in the isospin limit, can be constructed from the valid relation in

equation (2.42).

This theoretical setup can be extended to derive relations for hadronic final states

for which there is no experimental data available. Specifically, the missing states are

approximated using theoretical forms of the cross section determined from isospin rela-

tions to measured cross section data as derived in [51]. In this work, the channels that

are estimated via these relations are π+π−3π0, π+π−4π0, KK3π, ω2π, ω3π, ωKK and

8This is an important result and is responsible for the dominant decay of ρ → π+π− instead of
ρ→ π+π−π0. The ρ resonance has Gρ = +1 [16] and the decay of the ρ to an odd number of pions is
almost entirely suppressed by G-parity [81]. This is also true for the decay of the ω resonance, where
Gω = −1 and consequently the ω dominantly decays to π+π−π0 instead of to π+π−. The presence of
the ω resonance in the π+π− cross section (clearly visible in its interference with the ρ resonance) is
evidence of isospin being an inexact symmetry of nature and is, therefore, an isospin breaking effect.
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ηπ+π−2π0.9 In each case, the isospin relation used from [51], along with the corre-

sponding estimated contribution to ahad,LO VP
µ , is given in the respective discussion of

each channel in Section 4.2. The use of these relations is far from preferable, as it has

been shown that for some final states the isospin relations can result in poor estimates

of the resulting cross section (see, for example, the discussion of the KK2π channel in

Section 4.1.8). However, with no better alternative approach available, it is important

that these channels are included in some form. In addition, all of the estimated states

provide small contributions to ahad,LO VP
µ below ∼ 2 GeV and will not drastically alter

the final result. It should also be noted that, in many cases, the estimates for the

channels have conservative errors applied to account for any incorrect approximation.

2.4.3 Estimating contributions: narrow resonances

The narrow resonances in the cc̄ and bb̄ regions are not resolved by the measured data

and, therefore, must be estimated and added separately to the inclusive R-ratio data.

These resonances are the J/ψ, ψ′ and Υ(1S − 4S) states.10 This is achieved using the

Breit-Wigner (BW) resonance approximation given by

σBW(s) =
12π

M2
res

Γ0
ee

Γ

sΓ2

(s−M2
res)

2 +M2
resΓ

2
, (2.43)

where Mres is the mass of the resonance, Γ is the full width of the resonance and Γ0
ee is

the undressed electronic width of the resonance as given in equation (2.10). The input

values and uncertainties of these quantities are taken from [16], all of which are propa-

gated to determine the total uncertainty of the estimated cross section σBW. Ensuring

a fine enough binning, the cross sections of resonance contributions are individually

estimated and added to the compilation for the total hadronic R-ratio.

2.4.4 pQCD and R(→∞)

For the determination of ahad,VP
µ at higher energies (11.2 ≤

√
s ≤ 1000.2 GeV), R(s)

is determined via pQCD using the dedicated and publicly available code rhad [238].

As stated previously, at these energies and away from quark flavour thresholds, pQCD

provides a good prediction of the hadronic cross section and is safe to use. The physical

rapid variations that are part of the hadronic spectrum in the regions of flavour thresh-

olds are not present in the determination of R(s) as calculated by rhad. Fortunately,

the energy region > 11.1985 GeV is above the bottom quark production threshold and,

9New measured data contributing to the channels KKπ and KK2π have allowed for these states to
be determined without the need for dedicated isospin relations as was previously done in [21, 46, 47].
This is explained in detail with a comparison of the estimates for these states from the experimental
data and isospin relations in Section 4.1.8.

10From [82], the inclusion of Rb data [234] has resolved the resonances of the Υ(5S) and Υ(6S) states,
removing the need to estimate these structures as was done in [21, 46, 47]. This is discussed in further
detail in Section 4.3.2.
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therefore, the contributions from the first five quark flavours are included as part of the

data compilation described above. For the top quark, the low energy weighting of the

integrand and kernel function in equation (1.46) means the variations due to top quark

production provide a very small contribution to ahad,VP
µ and can be safely neglected.11

In this work, all relevant input parameters used by rhad have been updated to the most

recent values [16] and an uncertainty on R(s) is determined from the uncertainties of

αs(M
2
Z), the mass of the bottom quark, the mass of the top quark and a variation of

the renormalisation scale.

The contribution to the dispersion integral above the pQCD cut-off and up to s =∞
is negligibly small. It can be approximated using the knowledge that in this relevant,

six quark flavour region, R(
√
s & 1 TeV) ' 5. In addition, if the kernel function K(s)

in equation (1.46) is modified to be

K̂(s) =
3s

m2
µ

K(s) , (2.44)

then K̂(s) is a monotonically increasing kernel function with K̂(s → ∞) → 1. Ap-

plying these assumptions to the corresponding dispersion integral modified from equa-

tion (1.46) results in

ahad,LO VP
µ (

√
s & 1 TeV) =

(
αmµ

3π

)2 ∫ ∞
1 TeV

ds

s2
R(s)K̂(s)

' 5

(
αmµ

3π

)2 ∫ ∞
1 TeV

ds

s2

' 0.0003× 10−10 , (2.45)

which is insignificant compared to HLMNT11 estimate of ahad,LO VP
µ given in equa-

tion (1.31).

2.4.5 Combining all contributions

In this work, the full hadronic R-ratio is determined by summing all determined cross

section data and corresponding covariance matrices, either taken from the data com-

bination or from the estimated contributions listed above. In the works preceding

this analysis [21, 46, 47], the contributions to ahad,VP
µ were found by integrating over

the data for various channels/contributions individually and then summing the sepa-

rate contributions to ahad,VP
µ and its error. Although this approach is equivalent to

summing the data before integrating, the previous works had not achieved the sum

of correlated uncertainties to produce a covariance matrix for the total R-ratio. This

11This is not true for the dispersion integral used to determine ∆αhad in equation (2.3), where due
to a different weighting of the integrand, the top quark threshold provides larger contributions. Hence,
in this case, rhad is used to determine R(5)(s) above 11.1985 GeV using only five active quark flavours
and, as described in Section 2.1.1, equation (2.3) is only used to calculate the contributions from the
first five quark flavours. The top quark contributions are evaluated separately [62].
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is accomplished in this work for the first time and is described here. The resulting

data vector and corresponding covariance matrix of the hadronic R-ratio in the range

mπ ≤
√
s ≤ 1000.1985 GeV is determined in this work.12 However, the contributions to

ahad,VP
µ from individual channels are still determined as a major part of the individual

channel analysis. All results from individual channels are given in Section 4.

Before summing the data from different channels, the uncertainties from all error

sources must be combined to define a total covariance matrix for each channel. The

output covariance Ṽ
(
m,n

)
of the χ2-minimisation contains all experimental uncertain-

ties and is inflated by local χ2
min/d.o.f. according to equation (2.34). For any additional

uncertainty due to VP corrections, a covariance matrix VVP(m,n) is constructed ac-

cording to equation (2.12) as

VVP(m,n) =
1

3
(Rm −Rno VP

m )
1

3
(Rn −Rno VP

n ) , (2.46)

where the superscript ‘no VP’ indicates the cross section value of the cluster without

a VP correction applied. For the additional uncertainty due to FSR radiative correc-

tions, following the discussion in Section 2.1.2, the FSR uncertainty covariance matrix

VFSR(m,n) for the π+π− channel is found from

V π+π−
FSR (m,n) = (Rπ

+π−
m −Rπ+π−, no FSR

m )(Rπ
+π−
n −Rπ+π−, no FSR

n ) , (2.47)

where the superscript ‘no FSR’ indicates the cross section value of the cluster without a

FSR correction applied. For all other channels requiring an additional FSR correction

uncertainty, the corresponding covariance matrix is given by

VFSR(m,n) = (0.01)Rm(0.01)Rn . (2.48)

Therefore, for each channel, the total covariance matrix is found from the sum

V
(
m,n

)
= Ṽ

(
m,n

)
+ VVP(m,n) + VFSR(m,n) . (2.49)

Following this, the total value R(
√
s = Ea) is found from the sum of the linear

interpolants of all available cross section data. The energy array Ea is defined by the

energies of all clusters, from all channels, contributing to the total R-ratio. For all

channels X, if EXm < Ea < EXm+1, then

R(Ea) =
∑
X

[
RXm +

(Ea − EXm)

(EXm+1 − EXm)
(RXm+1 −RXm)

]
. (2.50)

Therefore, if EXm < Ea < EXm+1 and EXn < Eb < EXn+1, then the calculation of the total

covariance matrix V
(
Ea, Eb

)
follows accordingly using the standard error propagation

formula

V
(
Ea, Eb

)
=
∑
X

m+1∑
p=m

n+1∑
q=n

∂R(Ea)

∂RXp
V
(
EXp , E

X
q

)∂R(Eb)

∂RXq
, (2.51)

12The data for the R-ratio in the range mπ ≤
√
s ≤ 11.1985 GeV is available upon request from the

authors of [87].
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where V
(
EXp , E

X
q

)
is the covariance matrix of the channel X at the cluster energies

EXp = EXm , E
X
m+1 and EXq = EXn , E

X
n+1.13

2.5 Integration

Once the determination of the total R-ratio and its covariance matrix is complete, or

for the contribution from each channel individually, the integral over the available data

given in equation (1.46) is found using a trapezoidal rule integral that is consistent

with the linear cross section representation of the clusters that has been adopted in the

χ2-minimisation. In the respective available energy range Emin ≤
√
s ≤ Emax GeV, the

integral to be determined, I, is given as

I[ahad,LO VP
µ ] =

α2

3π2

∫ E2
max

E2
min

ds

s
R(s)K(s) =

2α2

3π2

∫ Emax

Emin

dE

E
R(E2)K(E2) . (2.53)

If the lower integral boundary exists between the clusters Em < Emin < Em+1 or

the upper boundary exists between En−1 < Emax < En, then the cross section values

R(E2
min) or R(E2

max) are found by linear interpolation. Alternatively, if either integral

boundary required are beyond the borders of the available energy of the data, then the

integral boundaries are found by linear extrapolation. The trapezoidal rule integral is

therefore given by14

I =
2α2

3π2

[(
Em+1 − Emin

2Emin
R
(
E2

min

)
K
(
E2

min

)
+
Em+2 − Emin

2Em+1
Rm+1K

(
E2
m+1

))

+

(
n−2∑

k=m+2

Ek+1 − Ek−1

2Ek
RkK

(
E2
k

))

+

(
Emax − En−2

2En−1
Rn−1K

(
E2
n−1

)
+
Emax − En−1

2Emax
R
(
E2

max

)
K
(
E2

max

))]
.

(2.54)

The error of the integral, ∆I, is then found from the covariance matrix using

∆I =

(
max∑
k=min

max∑
l=min

∂I

∂Rk
V
(
k, l
) ∂I
∂Rl

) 1
2

, (2.55)

where the sums run between the lower and upper integral boundaries,

13Note that, in this work, no correlation is assumed between separate hadronic channels due to the
lack of experimental information. However, should this information become available, this can be easily
incorporated to the error contribution of R(s) by extending equation (2.51) to include a second sum

over all channels X ′. Therefore, if EXm < Ea < EXm+1 of the channel X and EX
′

n < Eb < EX
′

n+1 of the
channel X ′, then

V
(
Ea, Eb

)
=
∑
X

∑
X′

m+1∑
p=m

n+1∑
q=n

∂R(Ea)

∂RXp
V
(
EXp , E

X′
q

)∂R(Eb)

∂RX′q
. (2.52)

Here, V
(
EXp , E

X′
q

)
is the covariance matrix describing the correlation between the channel X and the

channel X ′ at the cluster energies EXp = EXm , E
X
m+1 and EX

′
q = EX

′
n , EX

′
n+1.

14Note that exceptions to this trapezoidal rule definition of the integral exist in special cases such as
Emax < Em+1, Emax < Em+2, etc.
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Fig. 2.8: The differences observed using linear, quadratic and cubic integration rou-
tines in prominent resonance regions in the π+π− and K+K− channels.

k, l = min,m+ 1,m+ 2, ..., n− 2, n− 1,max , (2.56)

as given by equation (2.54). Importantly, in this work, the calculation of the uncertainty

of ahad,VP
µ has been modified to improve the determination of the error contribution at

the integral boundaries. Should the integral boundaries R
(
E2

min

)
or R

(
E2

max

)
be found

by linear interpolation (or extrapolation if it is necessary to extend the integral bound-

aries), then the covariance matrix V
(
k, l
)

is interpolated (extrapolated) accordingly

using the standard error propagation formula

V
(
k, l
)

=
∑
p

∑
q

∂Rk
∂Rp

V
(
p, q
) ∂Rl
∂Rq

, (2.57)

where p, q run over all clusters and V
(
l, k
)

= V
(
k, l
)
.

In principle, the use of the trapezoidal rule integral could lead to unreliable results

due to the form of the kernel function or at narrow resonances if data are sparse.

However, with the current density of cross section measurements, especially in the

dominant hadronic channels, the differences between trapezoidal rule integration and

any higher order polynomial approximation are consequently small (less than 10% of

the error in the largest instance of the K+K− channel) and of no concern. This can

be seen in the plots in Figure 2.8.
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Chapter 3

Combination of KLOE
σ
(
e+e−→ π+π−γ(γ)

)
measurements

The three precision measurements of the cross section σ
(
e+e− → π+π−γ(γ)

)
using ini-

tial state radiation by the KLOE collaboration [88–90] provide an important input for

the prediction of the hadronic contribution to the anomalous magnetic moment of the

muon. These measurements are correlated for both statistical and systematic uncer-

tainties and, therefore, the simultaneous use of these measurements requires covariance

matrices that fully describe the correlations. The study and construction of these co-

variance matrices, coupled with their use to determine a combined KLOE measurement

for σ
(
e+e− → π+π−γ(γ)

)
, demonstrate the importance of the correct construction of

experimental covariance matrices and provide a prominent example of the power of the

data combination method described in the previous section.

3.1 The KLOE measurements of σ
(
e+e− → π+π−γ(γ)

)
The KLOE collaboration have made three precise measurements of the cross section

σ
(
e+e− → π+π−γ(γ)

)
in 2008 [88,91], 2010 [89,92] and 2012 [90,93]. The contribution

of the π+π− final state to the anomalous magnetic moment of the muon, aπ
+π−
µ , is over

70% of the total estimate of ahad ,LO VP
µ and is also the largest contributor to its uncer-

tainty. As such, the three measurements of the cross section σ
(
e+e− → π+π−γ(γ)

)
by

the KLOE collaboration provide an important input to precisely determine aπ
+π−
µ .

The simultaneous input of the three KLOE measurements requires a detailed analy-

sis to attain the correct combination of the three, which will have a non-trivial influence

on aπ
+π−
µ . Although each of the KLOE measurements of σ

(
e+e− → π+π−γ(γ)

)
has

individual covariance matrices provided for both statistical and systematic uncertain-

ties, the measurements themselves are, in part, highly correlated, necessitating the

construction of full statistical and systematic covariance matrices describing the cor-
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relation between the bins of all three measurements to be used in any combination of

these data. To combine the data without the correlations would result in an underes-

timate of the uncertainty of ahad ,LO VP
µ and, potentially, a bias of its mean value. The

construction of these covariance matrices must be statistically robust in order to ensure

that they correctly describe the correlated relationship of the three measurements.

From the experimental analysis, all three published cross sections are bare (un-

dressed of all VP effects) and include FSR effects (σ0
ππ,γ). For the first two, denoted

here as KLOE08 [88] and KLOE10 [89], the bare cross section is obtained according

to the procedure described in Section 2.1.1, but using a different publicly available VP

routine [94, 95]. For the third measurement of σ0
ππ,γ , namely KLOE12 [90], the data

were normalised bin-by-bin by a reciprocal measurement of the µ+µ− cross section.

The ratio of the π+π−γ and µ+µ−γ cross sections benefits from the cancellation of the

luminosity correction, the radiator function for initial state radiation (ISR) and the VP

correction, manifestly resulting in a bare cross section.1 For all three measurements,

the FSR contribution to the π+π− production is included according to Section 2.1.2.

The KLOE08 measurement consists of 60 data points in the range 0.5916 <
√
s <

0.9746 GeV, covering the dominant ρ resonance structure and the ρ − ω interference

region in the π+π− final state. The uncertainties of the cross section are dominated by

the systematics uncertainties, especially in the region where the cross section is large.

From [88], integrating the originally published KLOE08 data (following the integral

procedure in Section 2.5), results in2

aπ
+π−
µ (KLOE08, 0.5916 <

√
s < 0.9746 GeV) = (387.2±0.5stat±3.3sys)×10−10 . (3.2)

The KLOE10 measurement totals 75 data points in the range 0.3162 <
√
s < 0.9220

GeV. The fifty energy bins of the data in the range 0.5916 <
√
s < 0.9220 GeV are

identical to the fifty KLOE08 bins in the same interval. From [89], the original KLOE10

cross section results in

aπ
+π−
µ (KLOE10, 0.3162 <

√
s < 0.9220 GeV) = (478.5±2.0stat±6.7sys)×10−10 . (3.3)

As previously described, the KLOE12 measurement was determined as a µ+µ−γ nor-

malised cross section. The µ+µ− cross section was measured for the KLOE12 analysis,

1For the same invariant mass squared, the ratio of the measured π+π−γ and µ+µ−γ differential
cross sections allows the relation

σ0
ππ,γ(s) =

dσ
(
π+π−γ

)
/ds

dσ
(
µ+µ−γ)

/
ds
× σ0

γ(e+e− → µ+µ−, s) , (3.1)

where s = M2
ππ = M2

µµ. As both these processes exist only through s-channel exchange, the contribu-
tions to the photon vacuum polarisation are both purely time-like and exactly cancel in the ratio.

2The emphasis on the originally published data is relevant here as studies into the construc-
tion of the covariance matrices resulted in the experimental analysis of each KLOE measurement
of σ

(
e+e− → π+π−γ(γ)

)
being reviewed and, in some cases, updated in order to ensure a more pre-

cise and consistent combination of the three measurements. The changes to the results given here are
presented in Section 3.2.
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Fig. 3.1: The flow of the experimental analyses of all three σ
(
e+e− → π+π−γ(γ)

)
cross section measurements. The point where the KLOE08 π+π−γ(γ) data enter the
KLOE12 analysis is indicated by the bold black arrows.

whereas the KLOE08 π+π− data were used as the input for the two-pion cross sec-

tion, with the KLOE12 measurement having an identical binning and energy range to

KLOE08. From [90], the original KLOE12 data give a contribution to aπ
+π−
µ of

aπ
+π−
µ (KLOE12, 0.5916 <

√
s < 0.9746 GeV) = (385.1±1.1stat±2.7sys)×10−10 . (3.4)

As KLOE08 and KLOE12 share the same two-pion data, these measurements are highly

correlated, and it is important that they be treated as such in any combination of the

two measurements.

The flow of the experimental analyses for the KLOE08, KLOE10 and KLOE12

measurements is shown in Figure 3.1. Each stage in the flow diagram corresponds to

a specific part of the experimental analysis or a specific correction to the cross section

measurement. In the case of the KLOE12 measurement, the beginning of the flow refers

to the measurement of µ+µ−γ(γ). The point where the KLOE08 π+π−γ(γ) data enters
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is clearly marked. This diagram exhibits the extent of the correlation between KLOE08

and KLOE12, with correlations existing for all elements of the KLOE08 σ0
ππ,γ analysis

from the observed spectrum of π+π−γ(γ) events up to the acceptance correction. In

addition, the degree of correlation between KLOE08 and KLOE10 or KLOE10 and

KLOE12 is clearly shown, with many parts of the experimental analyses being common

to a pair of measurements or having been obtained through a similar method.

3.1.1 The initial combination of the KLOE data

In [96,97], a construction of the necessary statistical and systematic covariance matri-

ces for the three measurements was attempted. These were released to use in a com-

bination of the three measurements to incorporate the various correlations depicted in

Figure 3.1. The preliminary combination of these data in [97,98] utilised a method that

neglected the correlations of the systematic uncertainties in the combination to avoid

the d’Agostini bias. The data combination method used in this work safely allows for

all correlated uncertainties (statistical and systematic) to fully influence the results of

the data combination.

The results of this combination, where the covariance matrices constructed in [96,97]

were used as input into the routine described in Section 2.3, are shown in Figure 3.2.

In plot (a), the comparison of the KLOE10 data with the combination in the non-

overlapping, low energy data region shows that the influence of the correlated uncer-

tainties at higher energies has produced erratic variations in the combined cross section.

In the high energy region, where only KLOE08 and KLOE12 data are present, the com-

bined cross section has seemingly jumped in a step-like fashion to be distinctly higher

than the contributing data. In plot (b), it is clear that overall the fit is higher than

all the contributing data. In addition to this, results for aπ
+π−
µ in the overlapping data

range of 0.6 <
√
s < 0.9 GeV from the three KLOE measurements and the combination

are compared in Table 3.1. Here, it can be seen that the combination yields a noticeably

higher value than the individual measurements contributing to it. Together, all these

results indicate that the covariance matrices as constructed in [97,98] do not appropri-

ately describe the correlations of these data, with the behaviour of both the combined

cross section and the value of aπ
+π−
µ being different from what would be expected from

the combination of these data. A study into the structure of these covariance matrices

revealed that the matrices had not been constructed to satisfy the necessary proper-

ties of a covariance matrix as described in Section 2.3.2. In particular, the eigenvalues

of the systematic covariance matrix were not all ≥ 0 and, consequently, it was not a

positive semi-definite matrix.3 It followed that it was necessary for new matrices to be

constructed, ensuring that they were robust with regards to the mathematical structure

3The eigenvalues ranged from −18.9 to 4148.9. The causes of the negative eigenvalues are discussed
in Section 3.2.2.
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Fig. 3.2: The normalised difference of the KLOE combination and the individual
KLOE measurements, where the KLOE combination has been determined using the
previously constructed KLOE covariance matrices [96, 97]. The yellow band repre-
sents the statistical and systematic uncertainties of the KLOE combination summed in
quadrature and the KLOE08, KLOE10 and KLOE12 cross section measurements are
given by the blue, black and pink markers, respectively.

and fulfilled the required properties of a covariance matrix.

3.2 Constructing the KLOE combination covariance ma-
trices

In the process of constructing the KLOE combination covariance matrices, the ex-

perimental analysis of each KLOE measurement of σ
(
e+e− → π+π−γ(γ)

)
has been

reviewed and, in some cases, updated in order to ensure a more precise and consis-

tent combination of the three measurements. The KLOE08, KLOE10 and KLOE12

data have been updated with respect to [88–90] to incorporate the following necessary
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KLOE π+π−γ(γ) data set aπ
+π−
µ (0.6 <

√
s < 0.9 GeV)

KLOE08 368.3± 3.3tot

KLOE10 366.0± 3.2tot

KLOE12 366.6± 3.5tot

KLOE combination 369.6± 2.9tot

Table 3.1: Comparative results of the values obtained for aπ
+π−
µ (0.6 <

√
s < 0.9 GeV)

from the KLOE combination and the individual KLOE measurements, where the KLOE
combination has been calculated using the previously constructed KLOE covariance
matrices [96,97]. All results are given in units of aπ

+π−
µ × 1010.

changes:

• The data have been undressed of VP effects using an updated routine [95] com-

pared to the one used previously [94], which now corrects the data using a more

appropriate energy grid parametrisation for the determination of the VP.

• The VP correction contains both real and imaginary parts, whereas previously

the data were only corrected for the real part of the VP.

• The data are not rounded as they were in [88] to ensure that the statistical and

systematic uncertainties correspond to the variances that enter into the diagonal

elements of the corresponding covariance matrices.

• The calculation of the cross section has been updated with respect to the precision

of input parameters and fundamental constants [16].

Using the updated KLOE data yields two-pion contributions to the anomalous magnetic

moment of the muon from each measurement of

aπ
+π−
µ (KLOE08, 0.5916 <

√
s < 0.9746 GeV) = (386.6± 0.4stat ± 3.3sys)× 10−10 ,

aπ
+π−
µ (KLOE10, 0.3162 <

√
s < 0.9220 GeV) = (477.9± 2.0stat ± 6.7sys)× 10−10 ,

aπ
+π−
µ (KLOE12, 0.5916 <

√
s < 0.9746 GeV) = (385.1± 1.2stat ± 2.3sys)× 10−10 .

(3.5)

Here, the estimates from the KLOE08 and KLOE10 data exhibit a decrease in the

mean value of aπ
+π−
µ when compared to the estimates quoted in equation (3.2) and

equation (3.3) respectively, which is largely due to the updated determination of the VP.

This does not apply to the KLOE12 data which, as stated previously, benefits from the

cancellation of the VP correction due to the normalisation by the µ+µ−γ cross section.

However, for KLOE12 the error has reduced when comparing to equation (3.4), where

a flaw in the previous error calculation resulted in an overestimation of the published

systematic uncertainty and, as a result, there have also been necessary changes to the

KLOE12 systematic covariance matrix construction.
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Fig. 3.3: The KLOE π+π−γ(γ) combination matrix structure for both the statistical
and systematic covariance matrices.

In this work, the KLOE statistical and systematic combination covariance matrices

have been carefully constructed to satisfy all the necessary mathematical properties of

a covariance matrix as described in Section 2.3.2, where the eigenvalues of the matrix

now range from 0.0 to 5131.3. They are 195 × 195 matrices and are depicted in Fig-

ure 3.3. The KLOE08, KLOE10 and KLOE12 diagonal blocks are simply the covariance

matrices of the individual measurements. The KLOE0810 block describes the correla-

tion between KLOE08 and KLOE10, with corresponding definitions for KLOE0812 and

KLOE1012. Statistical uncertainties are, in general, uncorrelated and only contribute

to the diagonal elements of the corresponding correlation block of the combination co-

variance matrix. The exceptions to this are the unfolding [99–101] and unshifting [99]

corrections, which both contribute to the non-diagonal elements of the statistical ma-

trix (see Section 3.2.1). The unfolding correction accounts for the smearing due to

the detector resolution and the unshifting is a redistribution correction of the observed

value of s from M2
ππ → (M0

ππ)2 where, here, M2
ππ denotes the squared invariant mass of

the pion pair. This accounts for photons emitted through final state radiation that shift

s away from the squared invariant mass of the virtual photon, s∗γ [102]. For systematic

(sys) uncertainties, all data points are taken to be 100% correlated or anti-correlated.

The resulting correlation structures for both the statistical and systematic matrix are

shown in Figure 3.4.
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Fig. 3.4: The correlation structure of the 195x195 statistical and systematic combi-
nation matrices. In each case, the axis on the right represents the overall correlation
coefficient (ρij = −1 ≤ ρ ≤ 1), where the corresponding colour indicates the degree of
correlation at each point in the respective matrix. For the statistical matrix, correla-
tions are only present between the KLOE08 and KLOE12 measurements, which share
the same two-pion data.
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3.2.1 Statistical correlations

Other than those that exist as part of the individual analyses for the KLOE08, KLOE10

and KLOE12 diagonal sub-matrices in the statistical 195×195 combination covariance

matrix depicted in Figure 3.3, the only statistical correlations that are present are

those due to the two-pion data that are shared between KLOE08 and KLOE12. These

occupy the KLOE0812 and KLOE1208 blocks of the statistical combination covari-

ance matrix. As no statistical correlations exist between KLOE08 and KLOE10 or

KLOE10 and KLOE12, all elements of the KLOE0810 (KLOE1008) and KLOE1012

(KLOE1210) correlation blocks of the statistical covariance matrix are zero. This can

be seen diagrammatically in Figure 3.4.

The individual KLOE08, KLOE10 and KLOE12 statistical covariance matrices (cor-

responding to the diagonal blocks of the statistical combination matrix given by Fig-

ure 3.3) describe all statistical uncertainties inherent in the respective experimental

analysis. The contributions to the statistical covariance matrices from the unfolding

and unshifting procedures are partially correlated, where the correlation coefficients are

defined by the unfolding [99–101] and unshifting [99] procedures themselves.

The KLOE0812 statistical correlation block receives contributions from all cor-

rections to the KLOE08 π+π−γ(γ) data up to the point where these data enter the

KLOE12 analysis. Following the experimental analysis flow for KLOE08 in Figure 3.1,

these include the detector resolution correction (unfolding), the correction for bor-

der efficiency in the acceptance, the pion identification efficiency (π/e likelihood), the

tracking efficiency, the trigger corrections, the unshifting of M2
ππ → (M0

ππ)2 and the

acceptance for the cuts in θπ and θππ [91]. All corrections prior to the unfolding in the

analysis flow are included in the unfolded KLOE08 π+π−γ(γ) spectrum and, therefore,

manifestly enter the KLOE0812 correlations through the correlations of the unfolding.

As the unfolding (unf) and unshifting (uns) corrections are identically correlated for

the KLOE08 and KLOE12 statistical covariance matrices, these correlations must be

reflected in the KLOE0812 correlation block exactly in the form

ρ
0812,unf/uns
ij = ρ

1208,unf/uns
ji = ρ

08,unf/uns
ij = ρ

12,unf/uns
ij . (3.6)

Not doing so would result in the statistical covariance matrix having negative eigen-

values, therefore violating the condition that the covariance matrix is a positive semi-

definite matrix.4 All remaining correlated statistical uncertainties only enter into the

diagonal elements of the KLOE0812 correlation block, as they are fully correlated only

for the same energy bins between the two measurements.

4This is also true for the systematic covariance matrix and, in fact, was a contribution to negative
eigenvalues of the systematic covariance matrix constricted in [96,97].
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3.2.2 Systematic correlations

All correlation blocks in Figure 3.3 receive contributions from systematic uncertainties,

as can be seen clearly in Figure 3.4. Unless stated otherwise, for any two bins i and

j, systematic uncertainties where correlations exist are fully correlated (ρij = +1) or

anti-correlated (ρij = −1).

For the individual measurements, apart from two exceptions, all sources of system-

atic uncertainty are fully correlated between all energy bins. The first exception is

the systematic uncertainty due to the unfolding, which only contributes at the sharp

descent of the cross section in the ρ − ω interference region. Here, an identical un-

folding uncertainty enters for five bins of the KLOE08 and KLOE12 analyses and is

anti-correlated only for pairs of bins that are on different sides of this sharp descent

of the cross section. For KLOE10, the only two affected bins are those directly be-

fore and directly after the sharp descent in the cross section, where the uncertainties

are fully anti-correlated between these two bins. The second exception is the weighted

background subtraction for KLOE12, where in the experimental analysis the weights of

the fitted e+e−γ, ππγ and πππ backgrounds to the µ+µ−γ(γ) spectrum are distributed

over neighbouring two-bin intervals from 0.32 to 0.96 GeV2 (with each bin covering

an energy interval of 0.01 GeV2). For the KLOE12 systematic covariance matrix, this

results in only neighbouring bins from 0.36 to 0.94 GeV2 being correlated with each

other for this background subtraction uncertainty, where the first and last bin remain

entirely uncorrelated in this case.

Importantly, for the KLOE12 systematic covariance matrix, the trigger, L3 (soft-

ware trigger), trackmass, tracking efficiency, acceptance and background subtraction

corrections are applied to both the π+π−γ and µ+µ−γ data that enter into the nor-

malisation ratio and, therefore, the corresponding uncertainties from a given source

between the π+π−γ and µ+µ−γ data are correlated.5 Formally, the ratio of these cor-

rection uncertainties results in a reduction of the total uncertainty of aπ
+π−
µ , where the

contributions of the positive correlations between the KLOE08 and KLOE12 uncer-

tainties contribute negatively to the overall uncertainty due to the partial derivative

of the µ+µ−γ data in the denominator of the ratio. However, the uncertainties due to

a given source are defined in terms of the ratio of π+π−γ over µ+µ−γ, such that the

contributions from both data sources are already fully incorporated.

In addition, the KLOE12 systematic uncertainty vector for the non-weighted back-

ground subtraction was constructed in [90, 93] such that it contained the ratio of the

contributions from the corrections of the ee → eeππ and ee → eeµµ background pro-

cesses, along with a trackmass (Mtrk) tail correction, summed in quadrature. For this

5This only refers to the correlation of uncertainties from a specific source between the π+π−γ
analysis and the µ+µ−γ analysis that enter into the KLOE12 ratio. The correlation between the
KLOE08 π+π−γ data and the KLOE12 cross section ratio are described in detail in the discussion of
the KLOE0812 block of the systematic covariance matrix.
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analysis, in order to correctly correlate these independent sources of systematic uncer-

tainty according to equation (2.27), these contributions are separated and correlated

individually. This has contributed to the reduction of the KLOE12 error estimate in

equation (3.5), where previously the correlation of the combined vector resulted in an

incorrect overestimate of the systematic uncertainty.

For KLOE08 and KLOE10, the contributions to the systematic uncertainty from the

trackmass, tracking efficiency, L3 (software trigger) efficiency, acceptance, luminosity,

radiator function, vacuum polarisation correction and final state radiation correction

are considered to be fully correlated in the KLOE0810 (KLOE1008) covariance matrix

blocks. For the correlation of the systematic uncertainty due to the acceptance, only

half of the KLOE10 uncertainty is correlated with the KLOE08 uncertainty in order to

ensure that the photon detection acceptance that enters into the KLOE10 uncertainty

(that is not present in the KLOE08 analyses) is not correlated and only the correlation

of the pion tracks is duly accounted for. Importantly, although the KLOE08 and

KLOE10 measurements only overlap for the 50 data points in the energy range 0.35 to

0.85 GeV2, all energy bins in the 60× 75 KLOE0810 (75× 60 KLOE1008) correlation

block must be fully correlated. Note that this is a change with respect to the previous

construction in [96, 97], where 100% correlation was applied to only the overlapping

50×50 region which contributed to the systematic matrix having negative eigenvalues.

Again, for KLOE0812 (KLOE1208), the systematic uncertainties inherent in the

π+π−γ(γ) data shared between the two analyses are correlated between the KLOE08

and KLOE12 measurements. These include the uncertainties from the L3 efficiency, the

background subtraction, the trackmass (Mtrk), the unfolding, the tracking efficiency,

the trigger efficiency and the acceptance from the KLOE08 analysis. The determined

uncertainties for the L3, Mtrk, tracking, trigger and acceptance corrections for KLOE12

are fully correlated for KLOE0812 such that the anti-correlation that occurs due to the

ratio in KLOE12 is propagated accordingly. This is also true for the non-weighted back-

ground subtraction contribution, ensuring that only the corrections for the ee→ eeππ

background from the KLOE08 analysis are correlated with the ratio of the corrections

of the ee → eeππ and ee → eeµµ background processes as they enter in the KLOE12

analysis. The unfolding uncertainties for the KLOE0812 correlation block are, in part,

anti-correlated as they are for KLOE08 and KLOE12 individually. All other systematic

uncertainties are 100% correlated between KLOE08 and KLOE12.

With the same π+π−γ(γ) data being shared between the KLOE08 and KLOE12

measurements, the KLOE1012 (KLOE1210) correlation blocks follow a similar struc-

ture to the KLOE0810 (KLOE1008) correlation blocks. The caveats to this statement

are that there are no correlated uncertainties here due to the luminosity, radiator

function or vacuum polarisation correction, as these effects cancel in the ratio of the

π+π−γ(γ) data over the µ+µ−γ(γ) data for the KLOE12 measurement. Therefore,
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the correlated systematic uncertainties for KLOE1012 are the trackmass, tracking effi-

ciency, L3 efficiency, acceptance and final state radiation correction uncertainties, where

it is again necessary to correlate only half of the KLOE10 acceptance uncertainty with

KLOE12 in order to ensure that only the effect due to the acceptance of the pion tracks

is incorporated.

3.3 Combination and results

The updated data vectors for the three cross section measurements and the newly

constructed covariance matrices have been combined according to Section 2.3.2. The

combination of the KLOE data represents a simpler case than the combination of all

available data with different energy bins for an entire hadronic channel, as the identical

binning of the KLOE data means that the clustering of data points is trivial, and no

linear interpolation is required for the data between bins in the minimisation. The

resulting combined cross section and corresponding pion form factor data are listed in

Table B.1 in Appendix B.6 Figure 3.5 shows the combined cross section and the indi-

vidual measurements. Figure 3.6, in comparison with Figure 3.2, shows the normalised

differences of the individual KLOE measurements and the new combination. Here, the

erratic behaviour observed in Figure 3.2 is no longer present and good agreement is

observed between the data and the combination. KLOE12 exhibits the largest fluctu-

ations when comparing to the fitted combination but is well within the errors of the

data. In plot (a) of Figure 3.6, it can be seen that the KLOE0810 and KLOE1012

systematic uncertainties have a non-trivial effect in the lower energy region where only

the KLOE10 data exist, exhibiting the power and flexibility of the new data combi-

nation method to incorporate the influence of the correlated uncertainties to their full

capacity. In this case, the correlations provide an expected upward pull (which is well

within the errors of the combination) to the KLOE combination cross section away

from the KLOE10 data points.

For the two-pion contribution to the anomalous magnetic moment of the muon in

the full energy range, the KLOE combination results in

aπ
+π−
µ (0.3162 <

√
s < 0.9747 GeV) = (489.8± 1.7stat ± 4.8sys)× 10−10 . (3.7)

For the overlapping energy region of all three measurements, the estimates for aπ
+π−
µ

from the KLOE combination and the individual measurements are given in Table 3.2

and Figure 3.7. For both these comparisons, unlike previously in Table 3.1, it can be

seen that the influence of the correlations from the now correctly constructed covariance

matrices result in the KLOE combination agreeing well with the estimate from the three

individual measurements. In all cases, the errors include all correlation contributions.

6The input cross section vectors and combination covariance matrices, along with the combined
output cross section vector and total covariance matrix are available from [103].
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Fig. 3.5: The KLOE combination (yellow band) plotted with the individual cross
section measurements, where the KLOE08, KLOE10 and KLOE12 cross section mea-
surements are given by the blue, black and pink markers, respectively. In all cases, the
error bars shown are the statistical and systematic uncertainties summed in quadrature.

−0.15

−0.1

−0.05

 0

 0.05

 0.1

 0.15

 0.4  0.5  0.6  0.7  0.8  0.9

 0

 200

 400

 600

 800

 1000

 1200

 1400

(σ
0  /

σ
0 K

L
O

E
 c

o
m

b
in

a
ti
o
n
) 

−
 1

σ
0
(e

+
e

−
 →

 π
+
π

−
) 

[n
b
]

√s [GeV]

σ
0
(e

+
e

−
 → π

+
π

−
)

KLOE combination

KLOE12

KLOE10

KLOE08

(a) Normalised difference in the full data range

−0.06

−0.04

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.6  0.65  0.7  0.75  0.8  0.85  0.9

 0

 200

 400

 600

 800

 1000

 1200

 1400

(σ
0  /

σ
0 K

L
O

E
 c

o
m

b
in

a
ti
o
n
) 

−
 1

σ
0
(e

+
e

−
 →

 π
+
π

−
) 

[n
b
]

√s [GeV]

σ
0
(e

+
e

−
 → π

+
π

−
)

KLOE combination

KLOE12

KLOE10

KLOE08

(b) Normalised difference in the overlapping data range

Fig. 3.6: The normalised difference of the KLOE combination and the individual
KLOE measurements, where the yellow band represents the statistical and system-
atic uncertainties of the KLOE combination summed in quadrature and the KLOE08,
KLOE10 and KLOE12 cross section measurements are given by the blue, black and
pink markers, respectively. Here, the errors bars of the individual measurements are
not shown in order to be able to distinguish the data points but are in good agreement
with the KLOE combination.

56



KLOE π+π−γ(γ) data set aπ
+π−
µ (0.6 <

√
s < 0.9 GeV)

KLOE08 368.2± 3.1tot

KLOE10 365.5± 3.3tot

KLOE12 366.7± 2.5tot

KLOE combination 366.9± 2.1tot

Table 3.2: Comparison of the values obtained for aπ
+π−
µ (0.6 <

√
s < 0.9 GeV) from

the individual KLOE measurements and the full combination. All results are given in
units of aπ

+π−
µ × 1010.

For the combination, they have been inflated according to the local χ2
min/d.o.f. in

each energy bin according to Section 2.3.2. This local effect is shown in Figure 3.8

and has resulted in an increase to the overall uncertainty of the estimate of aπ
+π−
µ of

∼ 13%. While the statistical uncertainty of aπ
+π−
µ from the combination is dominated

by KLOE08 (which has the smallest statistical uncertainty of the three individual

measurements), the combination mean value of aπ
+π−
µ is closest to that obtained with

the KLOE12 data alone, which has the smallest systematic and, therefore, the smallest

total error of the three. This in turn leads to the improved systematic error of the

combined result and, consequently, its improved total error.
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Chapter 4

Results

The following section summarises the data combination and estimates of ahad,LO VP
µ

from all data-based and estimated hadronic final states. In total, the compilation of

these various sources results in 43 hadronic channels which are combined. All contri-

butions from the exclusive hadronic channels are evaluated up to 1.937 GeV, which is

the chosen transition point between the sum of exclusive channels and the inclusive

R-ratio data in this work. This is discussed in detail in Section 4.3.1. Each contribu-

tion to ahad,LO VP
µ is quoted with its respective statistical uncertainty δstat, systematic

uncertainty δsys, VP correction uncertainty δvp and FSR correction uncertainty δfsr

individually. This is followed by the contribution with the total uncertainty δtot, deter-

mined from the individual sources added in quadrature,

ahad,LO VP
µ = ahad,LO VP

µ ± δstat ± δsys ± δvp ± δfsr

= ahad,LO VP
µ ± δtot . (4.1)

In all cases, the uncertainties include all available correlations and local χ2 inflation.

In the following, for each channel, all contributing data sets are referenced and the

corresponding combinations are discussed individually. For the exclusive channels,

the purely data-based channels (including the threshold contributions estimated using

ChPT) are discussed first in Section 4.1 and the channels estimated using dedicated

isospin relations are discussed in Section 4.2. Results from the combination of the

inclusive data, the narrow resonances and pQCD are discussed in Section 4.3. Summing

all contributions, the total predictions of ahad,LO VP
µ and ahad,NLO VP

µ from this work are

given in Section 4.4. Following this, comparisons with other similar works (including

the HLMNT11 analysis) are given in Section 4.5. A discussion of future prospects to

improve the determination of the contributions to ahad,VP
µ is given in Section 5.2.
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4.1 Data-based exclusive channels

4.1.1 π0γ channel

The π0γ final state defines the lower integral border of equation (1.45) to be s = m2
π.

As the available data starts at only 0.60 GeV, the threshold contribution is estimated

using ChPT (see Section 2.4.1). The channel now combines four data sets [104–107],

with the most recent being the precise, new measurement by the SND collaboration

between 0.60 ≤
√
s ≤ 1.35 GeV [107]. The data set defines the maximum available

energy range for the data combined in this channel, extending the higher energy border

slightly since [21]. The contribution from this channel is found to be

aπ
0γ
µ [0.60 ≤

√
s ≤ 1.35 GeV] = (4.46± 0.04± 0.07± 0.06± 0.04)× 10−10

= (4.46± 0.10)× 10−10 . (4.2)

The resulting cross section σ0(e+e− → π0γ) and all contributing data are shown in Fig-

ure 4.1, where the ω and φ resonance structures are visible. The threshold contribution

is found from ChPT to give

aπ
0γ
µ (ChPT)[mπ ≤

√
s < 0.60 GeV] = (0.12± 0.01)× 10−10 . (4.3)

4.1.2 π+π− channel

The π+π− channel dominates the contributions to ahad,VP
µ , accounting for over 70% of

the total value of ahad,LO VP
µ . This is due to the large ρ resonance structure in the low

energy region below 1 GeV that almost exclusively decays as ρ→ π+π− and is highly

weighted by K(s) in equation (1.45).1 Consequently, it also dominates the uncertainty

of the hadronic vacuum polarisation contributions resulting in many experiments hav-

ing measured this final state in an attempt to more precisely determine aπ
+π−
µ . It is

therefore the largest individual data combination for a single hadronic channel, combin-

ing twenty-six data sets [88–90, 108–128] that total almost one thousand data points.

In addition to the inclusion of the KLOE combination described in Section 3, the

BESIII collaboration [127] have also released a new measurement in the important ρ

region, which has contributed to the improvement of the estimate of this final state

since [21]. These measurements, coupled with the precise, finely binned measurement

by the BaBar experiment [126] (which defines both the lower and upper boundaries of

the available π+π− data combination to be 0.305 ≤
√
s ≤ 3.00 GeV), constitute all the

data in the two-pion channel measured via radiative return which now entirely domi-

nate this data combination. For these radiative return measurements, all the respective

1The ω resonance is also present in this channel. However, the decay of ω → π+π− in the same
energy region as the ρ resonance causes a mixing of these two structures. This mixing is apparent when
observing the π+π− cross section in Figure 4.3, which exhibits the familiar ρ−ω interference structure
in the peak of the resonance and distorts the otherwise Breit-Wigner resonance configuration of the ρ.
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Fig. 4.1: The cross section σ0(e+e− → π0γ) in the range 0.60 ≤
√
s ≤ 1.35 GeV, with

an enlargement in the prominent ω resonance region.

experimental analyses have provided full statistical and systematic covariance matrices

(with the covariance matrices for the combination of the three KLOE measurements

being described in Section 3), which are fully incorporated into the determination of

both aπ
+π−
µ and its uncertainty using the data combination procedure detailed in this

work. In addition, all these data are provided by their respective experimental analy-

ses as the bare cross section with FSR effects included, σ0
ππ,γ , minimising the effect of

radiative corrections and corresponding additional uncertainties.

Tension exists between the BaBar measurement and all other data, where the BaBar

data are considerably higher over much of the available energy range. This is evident

from Figure 4.2, which compares the estimates of aπ
+π−
µ from the full data combina-
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Fig. 4.2: The comparison of the integration of the individual radiative return measure-
ments and the combination of direct scan π+π− measurements between 0.6 ≤

√
s ≤ 0.9

GeV.

tion, the radiative return measurements and all other measurements in this channel

(measured via direct energy scan) in the dominant ρ region. Noticeable disagreement

is evident in all comparisons with the BaBar data, where the deviation between the es-

timates from KLOE combination and the BaBar data in this range is ∼ 2.8σ. With the

highly correlated nature of the KLOE combination now having a dominating influence

overall, a large disagreement is also noted between the full π+π− data combination and

the integral of the BaBar data alone. It is clear that the full π+π− data combination

agrees well with the new BESIII data, the KLOE data and the combination of the

remaining direct scan data. Consequently, although BaBar still influences aπ
+π−
µ with

an increase due to its fine binning and high statistics, the agreement between the other

radiative return measurements and the direct scan data largely compensates for this

effect. This is made more apparent when considering this along with the plots of the

resulting cross section in Figure 4.3 and Figure 4.4. Interestingly however, it can be

seen from these that the BESIII data is in better agreement with the BaBar data at

the peak of the resonance where the cross section is largest, slightly alleviating the dis-

agreement between the full π+π− data combination and the BaBar data. The resulting

global
√
χ2

min/d.o.f. is ∼ 1.3, reflecting the good agreement between most of the data

in this channel. The tension between data sets is, however, reflected and accounted for

in the local χ2 error inflation, which results in an ∼ 15% increase in the uncertainty

of aπ
+π−
µ . The effect of this energy dependent error inflation is shown in Figure 4.5,

where the difference in using a local scaling of the error instead of a global one is clearly
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visible. Penalties arise in particular in the ρ resonance region, where the cross section

is large and there is significant tension between the KLOE and BaBar data.
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In the desired energy range, the full combination of all π+π− data is found to give

aπ
+π−
µ [0.305 ≤

√
s ≤ 1.937 GeV] = (502.97± 1.14± 1.59± 0.06± 0.14)× 10−10

= (502.97± 1.97)× 10−10 . (4.4)

Although this value of aπ
+π−
µ stays well within the error estimate of [21], it exhibits

a substantial decrease of the mean value and the uncertainty has reduced by approx-

imately one third. These effects are due to the new, precise radiative return data

which dominate the π+π− fit and suppress the influence of BaBar in the ρ resonance

region, the improvement of the overall data combination procedure to fully incorporate

the energy dependent correlations into the determination of the mean value as well as

the uncertainty and the suppression of additional radiative corrections uncertainties

from these cross section data being experimentally provided as σ0
ππ,γ data. A more

detailed comparison of the estimates of aπ
+π−
µ between [21] and this work is given in

Section 4.5.1, where a full comparison with the HLMNT11 analysis is discussed.

In comparison with equation (4.4), the BaBar data alone in the same energy range

give an estimate of aπ
+π−
µ (BaBar data only) = (513.2±3.8)×10−10. Should all available

π+π− data be combined using a simple weighted average as in equation (2.18) (which

only provides the error weighting to each cluster by its local uncertainty), the estimate

for aπ
+π−
µ would be aπ

+π−
µ (Naive weighted average) = (509.1±2.9)×10−10. In this case,

the estimate is strongly pulled up by the fine binning and high statistics of the BaBar

data that dominate when no correlations are taken into account for the mean value.

64



This difference of nearly 2σ when comparing to equation (4.4) indicates the importance

of fully incorporating all available correlated uncertainties in any combination of the

data. This influence of the correlations and the stability of the data combination with

respect to the contrasting BaBar data is reinforced when considering the two-pion data

combination in the range 0.32 ≤
√
s ≤ 1.937 GeV, which defines the contributing energy

range with the BaBar data excluded. In this range, the full π+π− data combination

results in aπ
+π−
µ (All data) = (501.4± 1.9)× 10−10, whilst the combination without the

BaBar data gives aπ
+π−
µ (No BaBar) = (500.3± 2.7)× 10−10. Although the agreement

between these results is an encouraging indication that the full data combination results

in a good representation of the contributing data, the large change in the uncertainty

indicates the importance of the precise BaBar data as a high statistics measurement in

this channel.

As described in Section 2.4.1, the threshold contribution from 2mπ ≤
√
s < 0.305

GeV is determined using ChPT. The estimation of the cross section in this region is

found to give

aπ
+π−
µ (ChPT)[2mπ ≤

√
s < 0.305 GeV] = (0.87± 0.02)× 10−10 . (4.5)

4.1.3 π+π−π0 channel

The π+π−π0 final state is the second largest contribution to ahad,LO VP
µ after the two-

pion channel, with the cross section receiving prominent contributions from the ω and φ

resonances. This channel combines 14 data sets [69,120,121,129–132,134–137] covering

an energy range of 0.66 ≤
√
s ≤ 2.98 GeV. Since [21], there has only been one new ad-

dition to the π+π−π0 channel [137]. This new data set improves this channel away from

resonance, where previously only the BaBar data [135] had provided a contribution of

notable precision. In this work, an additional change is applied to three separate data

scans over the φ resonance in a measurement by CMD-2 [136]. Following discussions

with members of the CMD-2 collaboration concerning the potential for correlation be-

tween several data scans taken for the same measurement, the systematic uncertainties

between the three scans are now taken to be fully correlated [138].2 These changes,

along with the new data combination routine, have resulted in an improved estimate

of

aπ
+π−π0

µ [0.66 ≤
√
s ≤ 1.937 GeV] = (47.79± 0.22± 0.71± 0.13± 0.48)× 10−10

= (47.79± 0.89)× 10−10 . (4.6)

With a global
√
χ2

min/d.o.f. ∼ 2.1, the quality of this data combination for this channel

is far from ideal. This is largely due to older data that is still included in this channel

2Similar changes regarding the correlation of systematic uncertainties have also been applied to
measurements in the 3π+3π−, K+K−, K0

SK
0
L, ηγ, nn̄ and inclusive channels, with details given in the

separate discussions of each channel.
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Fig. 4.6: The cross section σ0(e+e− → π+π−π0) in the range 0.66 ≤
√
s ≤ 1.937 GeV,

where the prominent ω and φ resonances are clearly visible.

being at tension with newer, precise data. This is true, for example, of the CMD data

measured between the two resonances [130], which contributes almost 20% of the this

global χ2
min/d.o.f.. Again, these tensions are accounted for in the local error inflation,

which in this channel increases the uncertainty on aπ
+π−π0

µ by ∼ 32%. Figure 4.6 shows

the full integral range of the data for the π+π−π0 cross section. Figure 4.7 shows an

enlargement of the ω and φ resonance regions in this channel.

As with the π0γ and π+π− channels, the threshold cross section (for which there is

no data for this final state) is determined using ChPT. This results in a contribution

to aπ
+π−π0

µ of

a
aπ

+π−π0
µ
µ (ChPT)[3mπ ≤

√
s < 0.66 GeV] = (0.01± 0.00)× 10−10 . (4.7)

4.1.4 4π channels

The four-pion channels are the π+π−π0π0 and π+π−π+π− final states, with the process

e+e− → γ∗ → π0π0π0π0 being forbidden from charge conjugation symmetry. These

channels dominate R(s) above the φ resonance and up to 1.937 GeV. In [21], the data for

both these channels was limited and of fairly poor quality, especially in the π+π−π0π0

channel where there had been no data measured of this final state since 2003.

The π+π−π+π− channel now combines 14 data sets [120, 139–151], with two new

additions since [21]. First, an improved statistics measurement by the BaBar collab-

oration in the range 0.6125 ≤
√
s ≤ 4.4875 GeV [150] supersedes their previous mea-

surement in this channel [152]. More recently, a data set by the CMD-3 collaboration

in the range 0.92 ≤
√
s ≤ 1.06 GeV [151] has been completed, which better resolves

the interference pattern of the φ→ π+π−π+π− transition that is clearly evident in the
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Fig. 4.7: Enlargements of the resonance regions in the π+π−π0 final state.

non-resonant cross section. In addition, the M3N thesis data [153] that were included

in the analyses preceding this work [21,46,47] are now discarded on the basis that they

are not published, are of poor quality and are not consistent with the more recent cross

section data in this channel.3 With these changes,

aπ
+π−π+π−
µ [0.6125 ≤

√
s ≤ 1.937 GeV] = (14.87± 0.02± 0.13± 0.03± 0.15)× 10−10

= (14.87± 0.20)× 10−10 . (4.8)

Here, the mean value has increased since [21] largely due to the new BaBar data. The

uncertainty has decreased by more than 50% due to the inclusion of the new BaBar

3This is true for all channels which previously included data from the M3N thesis [153] and is stated
accordingly in the discussions of the relevant channels.
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and CMD-3 data coupled with the new data combination method. The combined cross

section and data are displayed in Figure 4.8.

The picture for the π+π−π0π0 final state has also improved, with a new measure-

ment of this channel by BaBar [154] being the only new data in this channel since

2003, which extends the lower border of the data from 0.915 GeV in [21] to 0.85 GeV

in this work . In total, this channel now combines eight data sets [139,145,148,154–158]

where, as with the π+π−π+π− channel, the M3N data [153] in this channel have been

omitted. The estimate for this channel is

aπ
+π−π0π0

µ [0.850 ≤
√
s ≤ 1.937 GeV] = (19.39± 0.09± 0.74± 0.04± 0.19)× 10−10

= (19.39± 0.78)× 10−10 . (4.9)

The improvement since [21] is substantial, where the combination of this channel with

the BaBar data omitted results in aπ
+π−π0π0

µ (no BaBar) = (20.07± 1.19)× 10−10. The
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mean value has reduced by a notable amount, although this change is well with the

error estimate of [21]. The reason for this can be seen in Figure 4.9, which shows the

new combination of the data for the bare cross section e+e− → π+π−π0π0 and includes

the data combination without the new BaBar data for comparison. The reduction in

the mean value can be seen above ∼ 1.6 GeV, where the now smooth cross section

has replaced the higher, more erratic cross section without the BaBar data.4 Across

the entire available energy range, the large improvement provided by the new BaBar

is clear. The uncertainty contribution from π+π−π0π0 is, however, still relatively large

and requires better, new data. With a fractional contribution to ahad,LO VP
µ of ∼ 3%,

it contributes ∼ 10% to the total uncertainty. A large proportion of this uncertainty

comes from the local χ2
min/d.o.f. error inflation, which can be seen clearly, for example,

at the peak of the cross section in Figure 4.9, where the new BaBar data disagree with

the old MEA [155] and GG2 [156] data.

4.1.5 5π channels

The five-pion channels include the 2π+2π−π0 and π+π−3π0 final states, with the pro-

cess e+e− → γ∗ → 5π0 being forbidden from charge conjugation symmetry. As the only

data currently available for the π+π−3π0 channel are those presented in the M3N the-

sis [153] discussed earlier, this channel is estimated via an isospin relation and discussed

in detail in Section 4.2.1.

The π+π−π+π−π0 data combination includes data from six measurements [120,

144, 155, 156, 159, 160], where there has been no new data since [21]. To ensure no

double counting of contributions from different channels with similar resonant decay

modes, it is necessary in many cases for the branching fractions of the decay of these

resonances to specific final states to be removed from the experimental data. For the

π+π−π+π−π0 channel, potential double counting can arise with the ηπ+π− channel

(from the decay η → π+π−π0) and the ωπ+π− channel (from the decay ω → π+π−π0).

In this work, the channel ω(→ npp)2π (detailed in Section 4.2.4) is determined such

that ‘npp’ denotes the ω resonance decaying to only non-purely-pionic modes, hence

avoiding the double counting with the π+π−π+π−π0 channel. For the decay of the η

resonance, the branching fraction B(η → π+π−π0) is removed from the π+π−π+π−π0

data [16], indicated by the subscript ‘no η’. This is achieved by correcting the cross

section data using the relation

σ0[(2π+2π−π0)no η](s) = σ0[2π+2π−π0](s)− σ0[ηπ+π−](s)×B(η → π+π−π0) . (4.10)

To accomplish this, the contributing cross sections and covariance matrices are linearly

4This is an important factor contributing to the decision to shift the transition region between the
exclusive and inclusive data from 2.0 GeV in [21] to 1.937 GeV is this work, as discussed in Section 4.3.1.
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Fig. 4.10: The cross section σ0(e+e− → π+π−π+π−π0) in the range 1.0127 ≤
√
s ≤

1.937 GeV.

interpolated following the prescription in Section 2.4.5.5 For the 2π+2π−π0 channel,

combining the data results and applying this correction results in

a
(2π+2π−π0)no η
µ [1.0127 ≤

√
s ≤ 1.937 GeV] = (0.99± 0.04± 0.08± 0.01± 0.01)× 10−10

= (0.99± 0.09)× 10−10 . (4.11)

This combined cross section is shown in Figure 4.10, where it can be seen that other

than the BaBar measurement, the data quality is poor and results in sizeable local

error inflation across the majority of the available energy range of the data.

4.1.6 6π channels

The six-pion channels are composed of the 3π+3π−, 2π+2π−2π0 and π+π−4π0 final

states, with the process e+e− → γ∗ → 6π0 being forbidden from charge conjuga-

tion symmetry. Experimental cross section data are available for the 3π+3π− and

2π+2π−2π0 channels, but not for the π+π−4π0 channel which is estimated via an

isospin relation (see Section 4.2.2).

For the 3π+3π− channel, seven data sets are combined [144,161–164]. In comparison

with [21], three scans of the cross section measured by the CMD-3 collaboration [164]

are included (with the systematic uncertainties of all three taken to be fully correlated

between the scans [138]) and the M3N thesis data [153] previously included in this

channel are omitted. The combination of these data results in

a3π+3π−
µ [1.3125 ≤

√
s ≤ 1.937 GeV] = (0.23± 0.01± 0.01± 0.00± 0.00)× 10−10

= (0.23± 0.01)× 10−10 . (4.12)

The resulting cross section is shown in Figure 4.11.

5In all cases in this work where a resonance contribution is removed, a corresponding relation is
applied to the relevant cross section data. Should the relations involve data from different channels, the
cross section data and covariance matrices are also linearly interpolated as described in Section 2.4.5.
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In the 2π+2π−2π0 channel, four data sets are combined [144, 155, 156, 163], where

no new data for this final state has been made available since [21]. To avoid a double

counting of the η and ω resonance contributions with the ηω and ηπ+π−π0 channels,

the relevant branching fraction corrections are applied to the combined data resulting

in

a
(2π+2π−2π0)no ηω
µ [1.3223 ≤

√
s ≤ 1.937 GeV] = (1.35± 0.08± 0.15± 0.02± 0.01)× 10−10

= (1.35± 0.17)× 10−10 . (4.13)

The combined cross section is shown in Figure 4.12.

4.1.7 KK̄ channels

The KK̄ channels are the K+K− and K0
SK

0
L channels, both of which are dominated

by the φ resonance. In this work, the K+K− channel combines 15 data sets [69, 108,
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110, 120, 165–173]. Since [21], one major change to this channel is the inclusion of

the precise and finely binned measurement by the BaBar collaboration, supplemented

with full statistical and systematic covariance matrices [171]. This is the first and only

example to date of the release of energy dependent, correlated uncertainties outside

of the π+π− channel and they, like the correlated uncertainties in the two-pion final

state, have an overwhelming influence on the data combination. There is also a new

measurement in this channel of the φ resonance by the CMD-3 collaboration [173]. The

existing CMD-2 scans in the same region [86] are omitted from this work as they suffer

from an overestimation of the trigger efficiency for slow kaons [173] and are awaiting

reanalysis [174]. In addition, two new scans by the SND collaboration measured at the

tail of the φ and into the continuum are included [172]. The systematic uncertainties

of these two scans, along with the existing two scans by SND [169], are considered to

be fully correlated [138]. The resulting cross section is shown in Figure 4.13, where the

combination of the available K+K− data results in

aK
+K−

µ [0.9875 ≤
√
s ≤ 1.937 GeV] = (23.03± 0.08± 0.20± 0.03± 0.00)× 10−10

= (23.03± 0.22)× 10−10 . (4.14)

The resulting cross section of the process e+e− → K+K− is displayed in Figure 4.13.

This estimate of aK
+K−

µ exhibits an increase of the mean value of more than 1σ from

the estimate in [21] attributed to the inclusion of the new BaBar and CMD-3 data.

This can be seen in Figure 4.14. In [21], the data combination in the φ resonance

region for this channel was dominated by the SND scans [169] visible in Figure 4.14

and the now omitted CMD-2 scans [86], which were in good agreement. The BaBar

data [171], which due to their precision and correlated uncertainties now dominate the

K+K− data combination, are higher in this region than both the SND and CMD-2

data. The most recent CMD-3 data are higher still [173]. The reanalysis of the CMD-2

data will prove crucial in resolving the current differences in this channel and, should

they agree further with the BaBar and CMD-3 data, would result in a further increase

of the estimate from this channel.

The uncertainty has drastically improved since [21] with much of the change being

due to a finer clustering over the φ resonance after the inclusion of the new high statistics

BaBar data. However, the disagreement between the data seen in Figure 4.14 results

in a poor global
√
χ2

min/d.o.f. ∼ 2.1 and is accounted for in the local error inflation

which provides an increase to the uncertainty of aK
+K−

µ of ∼ 20%. Following from the

discussion in Section 2.1.2, there is now no FSR correction applied to this channel and,

therefore, there is no extra radiative correction uncertainty due to FSR. It should also

be noted that any FSR correction would result in an increase of aK
+K−

µ , showing again

the strong influence the new data have had in this channel to increase the mean value

since [21], where previously an FSR correction was applied.
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Fig. 4.13: The cross section σ0(e+e− → K+K−) in the range 0.9875 ≤
√
s ≤ 1.937

GeV and an enlargement of the φ resonance. The large influence of the BaBar data
(black squares) overwhelms the older data.

In the K0
SK

0
L channel, 13 data sets are combined [169, 175–180]. Since [21], new

data for the K0
SK

0
L final state is included from the BaBar collaboration above the φ

resonance [179] and from the CMD-3 collaboration on the φ [180]. In addition, two

existing measurements in this channel [169, 176] each consist of four data scans, of

which the systematic uncertainties are now taken to be fully correlated [138]. This

combination results in a contribution of

a
K0
SK

0
L

µ [1.00371 ≤
√
s ≤ 1.937 GeV] = (13.04± 0.05± 0.16± 0.10± 0.00)× 10−10

= (13.04± 0.19)× 10−10 . (4.15)

Again, there is no additional FSR correction uncertainty applied to this channel, with

the reasoning in Section 2.1.2 enforced by the probability of photon emission being

highly suppressed for a neutral final state and given the limited phase space. The cross
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section of the process e+e− → K0
SK

0
L is displayed in Figure 4.15.

4.1.8 KK̄nπ channels

The KK̄nπ channels included are the KK̄π, KK̄2π and KK̄3π final states. In the

previous analyses [21, 46, 47], the lack of experimentally measured neutral modes that

contributed to these channels resulted in all three being estimated using isospin rela-

tions. In this work, the data required to complete the KK̄π and KK̄2π channels have

now been experimentally measured and have removed the reliance on dedicated isospin

relations to estimate these final states. For the KK3π channel, the data content is still

incomplete and, consequently, this channel is still estimated using an isospin relation

as described in Section 4.2.3.

For the KK̄π channel, the contributing modes are K0
SK
±π∓ [181–184], K0

LK
±π∓,

K+K−π0 [182–184], and K0
SK

0
Lπ

0 [185, 186]. The combinations of the available data
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Fig. 4.15: The cross section σ0(e+e− → K0
SK

0
L) with an enlargement of the φ reso-

nance.

for the respective modes result in individual contributions to aµ of 6

a
K0
SK
±π∓

µ [1.260 ≤
√
s ≤ 1.937 GeV] = (0.88± 0.05)× 10−10 ,

aK
+K−π0

µ [1.370 ≤
√
s ≤ 1.937 GeV] = (0.17± 0.01)× 10−10 ,

a
K0
SK

0
Lπ

0

µ [1.325 ≤
√
s ≤ 1.937 GeV] = (0.79± 0.07)× 10−10 . (4.16)

In this work, the neutral final state K0
SK

0
Lπ

0 has been measured by BaBar [185] and

SND [186] for the first time, removing the reliance on isospin for this channel (other

6Here, the errors of these estimates only display the experimental uncertainties. The additional ra-
diative correction uncertainties are determined individually for each mode and their sum in quadrature
is given in the estimate for KK̄π in equation (4.18). This is also the case for the discussions of the
KK̄2π and ηKK̄ channels.
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Fig. 4.16: The measured cross section σ0(KKπ) compared to the estimate from the
previously used isospin relation.

than K0
S ' K0

L). Therefore, the KK̄π cross section is now calculated using

σ(KK̄π) = σ(K0
SK
±π∓) + σ(K0

LK
±π∓) + σ(K+K−π0) + σ(K0

SK
0
Lπ

0)

' 2σ(K0
SK
±π∓) + σ(K+K−π0) + σ(K0

SK
0
Lπ

0) , (4.17)

resulting in a contribution of

aKK̄πµ [1.260 ≤
√
s ≤ 1.937 GeV] = (2.71± 0.05± 0.11± 0.01± 0.01)× 10−10

= (2.71± 0.12)× 10−10 . (4.18)

In [21], the isospin estimate in the same energy range yielded

aKK̄πµ (HLMNT11 isospin estimate) = (2.65± 0.14)× 10−10. (4.19)

This good agreement between the HLMNT11 isospin estimate and the data-based ap-

proach in this analysis is also demonstrated in Figure 4.16.

For KK̄2π, BaBar have measured the previously missing modes K0
SK

0
Lπ

+π− [179],

K0
SK

0
Sπ

+π− [179], K0
SK

0
L2π0 [185] and K0

SK
±π∓π0 [187]. These, summed with the

other contributing modes K0
LK

0
Lπ

+π−, K0
LK
±π∓π0, K+K−π0π0 [188, 189] and

K+K−π+π− [152, 182, 188–191] (again assuming K0
S ' K0

L), have removed the re-

liance on isospin for this channel also. The combinations of the available data from

each mode are found to give

a
K0
SK

0
Lπ

+π−

µ [1.425 ≤
√
s ≤ 1.937 GeV] = (0.17± 0.03)× 10−10 ,

a
K0
SK

0
Sπ

+π−

µ [1.630 ≤
√
s ≤ 1.937 GeV] = (0.03± 0.00)× 10−10 ,

a
K0
SK

0
Lπ

0π0

µ [1.350 ≤
√
s ≤ 1.937 GeV] = (0.14± 0.05)× 10−10 ,

a
K0
SK
±π∓π0

µ [1.510 ≤
√
s ≤ 1.937 GeV] = (0.33± 0.02)× 10−10 ,

aK
+K−π0π0

µ [1.460 ≤
√
s ≤ 1.937 GeV] = (0.12± 0.01)× 10−10 ,

aK
+K−π+π−

µ [1.434 ≤
√
s ≤ 1.937 GeV] = (0.78± 0.03)× 10−10 . (4.20)
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Fig. 4.17: The cross section σ0(KKππ) compared to the previous estimate using
isospin relations.

In this work, the KK̄2π contribution is now determined using

σ(KK̄2π) = σ(K+K−π0π0) + σ(K+K−π+π−) + σ(K0K̄0π+π−) + σ(K0
SK

0
L2π0)

+ σ(K0
SK
±π∓π0) + σ(K0

LK
±π∓π0)

' σ(K+K−π0π0) + σ(K+K−π+π−) + σ(K0K̄0π+π−) + σ(K0
SK

0
L2π0)

+ 2σ(K0
SK
±π∓π0) , (4.21)

where,

σ(K0K̄0π+π−) = σ(K0
SK

0
Lπ

+π−) + σ(K0
SK

0
Sπ

+π−) + σ(K0
LK

0
Lπ

+π−)

' σ(K0
SK

0
Lπ

+π−) + 2σ(K0
SK

0
Sπ

+π−) . (4.22)

Therefore, the estimate in this channel is now found to be

aKK̄2π
µ [1.350 ≤

√
s ≤ 1.937 GeV] = (1.93± 0.03± 0.07± 0.01± 0.01)× 10−10

= (1.93± 0.08)× 10−10 . (4.23)

Comparing equation (4.23) with the HLMNT11 isospin estimate in the same energy

range of

aKK̄2π
µ (HLMNT11 isospin estimate) = (2.51± 0.35)× 10−10 (4.24)

and examining Figure 4.17, it is evident that the isospin relations provided a poor

estimate of this final state. Using the data, KK̄2π contributes a much smaller mean

value with a greatly reduced uncertainty.

4.1.9 η, ω and φ channels

In the ηγ channel, there are many measurements of the cross section for a relatively

small contribution to aµ, with 9 data sets [69, 104, 106, 192–196] now being combined.

77



 0.1

 1

 10

 100

 0.7  0.8  0.9  1  1.1  1.2  1.3  1.4
σ

0
(e

+
e

-  →
 η

γ)
 [
n
b
]

√s [GeV]

Fit of all ηγ data

SND (14)

SND (07) [η --> π+π-π0
]

SND (07) [η --> 3π0
]

CMD-2 (05)

SND (00)

CMD-2 (00)

CMD-2 (99)

CMD-2 (95)

SND (97)

Fig. 4.18: The cross section σ0(e+e− → ηγ) in the range 0.66 ≤
√
s ≤ 1.4 GeV.

In this work, the systematic uncertainties of two scans in the same measurement by

SND [195] are now taken to be correlated by 30% between the bins of the respective

scans [138].7 This results in a contribution of

aηγµ [0.66 ≤
√
s ≤ 1.76 GeV] = (0.70± 0.02± 0.01± 0.00± 0.01)× 10−10

= (0.70± 0.02)× 10−10 . (4.25)

The combined cross section of the ηγ final state is shown in Figure 4.18. The ηγ

channel is the last of the four channels with a threshold contribution that has not been

measured by experiment. From Section 2.4.1, the threshold contribution is found from

ChPT to give a negligible value (within rounding) of

aηγµ (ChPT)[mη ≤
√
s < 0.66 GeV] = (0.00± 0.00)× 10−10 . (4.26)

Four measurements of the process e+e− → ηπ+π− have been included [197–200].

The combination of these data yields a contribution to aµ of

aηπ
+π−

µ [1.091 ≤
√
s ≤ 1.937 GeV] = (1.29± 0.02± 0.05± 0.01± 0.01)× 10−10

= (1.29± 0.06)× 10−10 , (4.27)

with the resulting cross section displayed in Figure 4.19.

The ηπ+π−π0 final state is included in this work for the first time, where it was

previously not measured by experiment and its contribution was not estimated in the

7The two data sets of the cross section in [195] are determined from the different decay channels of
η → 3π0 and η → π+π−π0, respectively. In this case, for the η → 3π0 mode, a normalisation to the
process e+e− → γγ was used and, for η → π+π−π0, the normalisation to Bhabha scattering was used.
For the correlation of these data, 30% correlation between the total systematic uncertainties of both
has been estimated. This is due to the acceptance efficiency [138] (which dominates the systematic
uncertainties), where different angles were used to determine the acceptance of either the 2γ or Bhabha
final state and, clearly, 100% correlation would result in an overestimate of the correlated nature of
these sources of uncertainty.
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previous analyses [21, 46, 47]. It has since been measured by the CMD-3 collabora-

tion [201] and is included with the decay of ω → π+π−π0 removed to avoid double

counting of this resonance contribution with the ηω channel. This results in

a(ηπ+π−π0)no ω
µ [1.3325 ≤

√
s ≤ 1.937 GeV] = (0.60± 0.03± 0.14± 0.01± 0.01)× 10−10

= (0.60± 0.15)× 10−10 . (4.28)

The η2π+2π− channel currently consists of only a single experiment measurement

of the cross section [160] which, when integrated over, gives

aη2π+2π−
µ [1.3375 ≤

√
s ≤ 1.937 GeV] = (0.08± 0.01± 0.01± 0.00± 0.00)× 10−10

= (0.08± 0.01)× 10−10 . (4.29)

Another new addition to this work with respect to [21] is the ηKK̄ channel, which

consists of the ηK+K− [184] and ηK0
SK

0
L [185] final states. The data for each channel

results in

a
η(K+K−)no φ
µ [1.690 ≤

√
s ≤ 1.937 GeV] = (0.01± 0.00)× 10−10 ,

a
ηK0

SK
0
L

µ [1.575 ≤
√
s ≤ 1.937 GeV] = (0.17± 0.03)× 10−10 . (4.30)

For both of these contributions, to avoid double counting with the ηφ channel, the

contributions of the decays of η → purely-pionic states and φ→ KK̄ are omitted from

the respective data. Therefore, the contribution from the determined cross section of

η(→ npp)(KK̄)no φ gives a contribution to aµ of

a
η(→npp)(KK̄)no φ
µ [1.5693 ≤

√
s ≤ 1.937 GeV] = (0.01± 0.01± 0.01± 0.00± 0.00)× 10−10

= (0.01± 0.02)× 10−10 . (4.31)
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The ηω channel combines three data sets [163,201,202], resulting in an estimate of

aηωµ [1.3325 ≤
√
s ≤ 1.937 GeV] = (0.31± 0.01± 0.02± 0.00± 0.00)× 10−10

= (0.31± 0.03)× 10−10 . (4.32)

The ηωπ0 channel is now included in this data compilation for the hadronic R-ratio,

having been measured for the first time by SND [203]. It provides a small contribution

to aµ of

aηωπ
0

µ [1.550 ≤
√
s ≤ 1.937 GeV] = (0.35± 0.09± 0.01± 0.00± 0.00)× 10−10

= (0.35± 0.09)× 10−10 . (4.33)

The combination of two measurements of the ηφ final state [160, 184] results in a

contribution of

aηφµ [1.5693 ≤
√
s ≤ 1.937 GeV] = (0.42± 0.03± 0.02± 0.01± 0.00)× 10−10

= (0.42± 0.03)× 10−10 . (4.34)

Data for the ωπ0 final state are multiplied by the branching fraction B(ω → π0γ) =

(0.0828 ± 0.0028) [16], so that this data is only included as the ω(→ π0γ)π0 chan-

nel. This is done to ensure that there is no double counting with multi-pion chan-

nels. The data content for this channel is abundant, with a combination of 12 data

sets [120, 145, 154, 158, 204–210] (multiplied by the given branching fraction) resulting

in a contribution of

aω(ω→π0γ)π0

µ [0.9245 ≤
√
s ≤ 1.937 GeV] = (0.88± 0.01± 0.02± 0.00± 0.01)× 10−10

= (0.88± 0.02)× 10−10 . (4.35)

The last of these resonant contributions to be included in this work is the φ →
unaccounted channel, which represents the contributions from the decay of the φ res-

onance to modes that are not already included as part of the π0γ, π+π−, π+π−π0,

π+π−π+π−, K+K−, K0
SK

0
L, ηγ and ωπ0 channels. The argument for doing this is

based on the knowledge that the sum of the branching fractions of the φ resonance

to all the modes listed above only accounts for 99.87% of the total contribution from

the φ, meaning that the branching fraction B(φ → unaccounted) = 0.0013 should be

included. To estimate this contribution, the total cross section contribution from the

φ is determined using the cross section of φ → K+K− in the energy range between

2mK ≤
√
s ≤ 1.03 GeV and the branching fraction B(φ→ K+K−) = 0.498± 0.005,

σ0[φ](s) =
σ0[K+K−; 2mK ≤

√
s ≤ 1.03 GeV](s)

B(φ→ K+K−)
. (4.36)

The cross section for φ→ unaccounted is then determined from

σ0[φ→ unaccounted](s) = σ0[φ](s)× B(φ→ unaccounted) . (4.37)
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Integrating over these calculated data, and applying a 100% uncertainty, results in a

contribution of

aφ→unaccounted
µ [2mK ≤

√
s ≤ 1.03 GeV] = (0.04± 0.04)× 10−10 . (4.38)

4.1.10 pp̄ and nn̄ channels

The thresholds of the pp̄ and nn̄ channels begin very close to the transition point be-

tween the exclusive and inclusive data at 1.937 GeV and, therefore, their exclusive data

contributions provide only very small contributions to aµ. The pp̄ channel combines

seven measurements [211–217] which, when combined, result in a contribution of

app̄µ [1.8895 ≤
√
s ≤ 1.937 GeV] = (0.03± 0.00± 0.00± 0.00± 0.00)× 10−10

= (0.03± 0.00)× 10−10 . (4.39)

The nn̄ channel combines four data sets [217–219], where two recent scans in the

same measurement by the SND collaboration [219] are taken to be fully correlated [138].

These data give

ann̄µ [1.9115 ≤
√
s ≤ 1.937 GeV] = (0.03± 0.00± 0.00± 0.00± 0.00)× 10−10

= (0.03± 0.01)× 10−10 . (4.40)

4.2 Isospin estimated exclusive channels

Following the discussion in Section 2.4.2 regarding those exclusive channels that must

be estimated using isospin relations, this section lists those exclusive channels, their re-

spective isospin relations and estimated contributions to aµ. In all cases, the relations

used are those derived in [51] and subsequently have been used in the previous analy-

ses [21, 46, 47]. For the determination of the resulting data of each estimated channel,

the cross section and covariance matrix data of the contributing channels are linearly

interpolated according to the prescription in Section 2.4.5 and are then used as input

into the relevant isospin relation.

4.2.1 5π channels

The relevant five-pion channel which is estimated here is the π+π−3π0 channel, for

which no experimental measurements currently exist. The isospin relation for this

channel is [51]

σ0[(π+π−3π0)no η](s) =
1

2
σ0[(2π+2π−π0)no η](s) , (4.41)

where the contribution from the η resonance is necessarily omitted for this relation as

the final state η2π0 is forbidden due to charge conjugation symmetry. It follows that

the contribution to aµ from this channel is

a
(π+π−3π0)no η
µ [1.0127 ≤

√
s ≤ 1.937 GeV] = (0.50± 0.04)× 10−10 . (4.42)
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4.2.2 6π channels

For the unmeasured π+π−4π0 final state, the relation

σ0[(π+π−4π0)no η](s) = 0.0625σ0[3π+3π−](s) + 0.145σ0[(2π+2π−2π0)no η](s) (4.43)

is used [51]. This, including an error of 100% to account for the uncertainty of this

relation [51], results in

a
(π+π−4π0)no η
µ [1.3125 ≤

√
s ≤ 1.937 GeV] = (0.21± 0.21)× 10−10 . (4.44)

4.2.3 KK̄nπ channels

The KK̄3π channel is the last of the KK̄nπ channels to be included in this data compi-

lation . To estimate this channel, it is assumed that below 1.937 GeV the KK̄3π cross

section is dominated by KK̄ω and, therefore, the contributions from modes involving

three neutral pions are small and can be neglected. This leaves the K+K−π+π−π0

and K0K̄0π+π−π0 modes, where data currently exists for only K+K−π+π−π0. The

K+K−π+π−π0 data consists of only one measurement [160] which, when integrated,

results in a contribution to aµ of

aK
+K−π+π−π0

µ [1.6125 ≤
√
s ≤ 1.937 GeV] = (0.06± 0.01)× 10−10 . (4.45)

To ensure no double counting with the ηφ channel, the branching fractions of the decays

of η → π+π−π0 and φ → K+K− are removed from this channel. The isospin relation

for this channel is then based on the assumption that σ0[(K0K̄0π+π−π0)no η](s) '
σ0[(K+K̄−π+π−π0)no η](s) [51] and, therefore,

σ0[KK̄3π](s) = 2σ0[(K+K̄−π+π−π0)no η](s) . (4.46)

Integrating these calculated data gives a small contribution of

aKK̄3π
µ [1.5693 ≤

√
s ≤ 1.937 GeV] = (0.03± 0.02)× 10−10 . (4.47)

4.2.4 ω(→ npp) and η channels

The ω(→ npp)2π channel accounts for those modes where the ω decays only to non-

purely-pionic modes. This is done so that, should the ω decay to π+π−π0, there is no

double counting with the 2π+2π−π0 or π+π−3π0 channels and, should the ω decay to

π+π−, there is no double counting with the 2π+2π− or π+π−2π0 channels. In order to

remove these decays, the branching fraction B(ω → npp) is defined as [16]

B(ω → npp) = 1− B(ω → π+π−π0)− B(ω → π+π−) = 0.0927 . (4.48)

The experimental data contribution to the isospin relation for this channel comes from

the measurements of the ωπ+π− final state [131, 159, 198]. The combination of these

data in the available energy range gives

aωπ
+π−

µ [1.285 ≤
√
s ≤ 1.937 GeV] = (0.72± 0.10)× 10−10 . (4.49)
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For the ω(→ npp)2π channel, the isospin estimate for this cross section is [51]

σ0[ω(→ npp)2π](s) = 1.5σ0[ωπ+π−](s)× B(ω → npp) , (4.50)

resulting in

aω(→npp)2π
µ [1.285 ≤

√
s ≤ 1.937 GeV] = (0.10± 0.02)× 10−10 . (4.51)

For the ω(→ npp)3π channel, no measurements of the modes contributing to ω3π

currently exist. The ω3π cross section is estimated from the measured 2π+2π−2π0 data

using [51]

σ0[ω3π](s) = 1.145
σ0[2π+2π−2π0](s)

B(ω → π+π−π0)
. (4.52)

The decay of ω to non-purely-pionic states is then removed in a similar fashion to the

ω(→ npp)2π channel,

σ0[ω(→ npp)3π](s) = σ0[ω3π](s)× B(ω → npp) (4.53)

and yields a contribution to aµ of

aω(→npp)3π
µ [1.3223 ≤

√
s ≤ 1.937 GeV] = (0.17± 0.03)× 10−10 . (4.54)

The ω(→ npp)KK̄ channel is estimated in a similar way to the ω(→ npp)3π chan-

nel, with the cross section for ωKK̄ being determined from the relation [51]

σ0[ωKK̄](s) = 2
σ0[KK̄3π](s)

B(ω → π+π−π0)
. (4.55)

Then, applying

σ0[ω(→ npp)KK̄](s) = σ0[ωKK̄](s)× B(ω → npp) (4.56)

to ensure that only the decay of the ω resonance to non-purely-pionic states is ac-

counted for (to avoid double counting with the KK̄nπ channels), results in a negligible

contribution to aµ of

aω(→npp)KK̄
µ [1.5693 ≤

√
s ≤ 1.937 GeV] = (0.00± 0.00)× 10−10 . (4.57)

The ηπ+π−2π0 final state is estimated from

σ0[ηπ+π−2π0](s) = σ0[η2π+2π−](s) , (4.58)

where 50% of the contribution is taken as a conservative error to account for the

uncertainty of this relation [51]. This results in

aηπ
+π−2π0

µ [1.3375 ≤
√
s ≤ 1.937 GeV] = (0.08± 0.04)× 10−10 . (4.59)
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4.3 Inclusive R-ratio data

The data for the inclusive hadronic R-ratio data are used in the energy range 1.937 ≤
√
s ≤ 11.1985 GeV, covering both the cc̄ and bb̄ threshold regions that cannot be

predicted by pQCD. This channel combines 20 data sets [220–237], of which three

are new data additions since [21]. These new data are recent precise measurements

by the KEDR collaboration: one set between 1.84 ≤
√
s ≤ 3.05 GeV [237] and two

scans in the energy range 3.12 ≤
√
s ≤ 3.72 GeV [236]. For the latter, the systematic

uncertainties are taken to be fully correlated [138]. The fit of the inclusive data in the

range 1.937 ≤
√
s ≤ 3.80 GeV is shown in Figure 4.20, which demonstrates the good

agreement between KEDR and pQCD. In [21], the decision was made to use pQCD in

the range 2.6 ≤
√
s ≤ 3.73 GeV, where the quality of inclusive data was poor, with

an error inflated according to the percentage errors of the inclusive BES data in this

region [235]. With the new KEDR data [236, 237], the inclusive data combination is

much improved, as shown in Figure 4.20. In this range, the data combination results

in

ahad,LO VP
µ [inc., 2.60 ≤

√
s ≤ 3.73 GeV] = (11.19± 0.17)× 10−10 , (4.60)

whereas using pQCD (with an inflated uncertainty [21]), the estimate is

ahad,LO VP
µ [pQCD, 2.60 ≤

√
s ≤ 3.73 GeV] = (10.82± 0.35)× 10−10 . (4.61)

For the larger energy range 1.937 ≤
√
s ≤ 11.1985 GeV, the resulting data combination

is displayed in Figure 4.21. As well as the differences observed between the data and

pQCD below the charm threshold, the data above it (unchanged since [21]) also show

a slight variation from the prediction of pQCD. Considering that with the new, precise

KEDR data the differences between the inclusive data and pQCD are not as large as

previously and that this work is aiming at a predominantly data-driven analysis, the

contributions in the entire inclusive data region are now estimated using the inclusive

data alone (other than the contributions from the narrow resonances, which are added

separately). Hence, for this analysis, the contribution from the inclusive data is found

to be

ahad,LO VP
µ [inc., 1.937 ≤

√
s ≤ 11.2 GeV] = (43.67± 0.17± 0.48± 0.01± 0.44)× 10−10

= (43.67± 0.67)× 10−10 . (4.62)

4.3.1 Transition region between exclusive and inclusive data

With the inclusion of the new KEDR data since [21], the transition region between the

sum of exclusive states and the inclusive R-ratio data is of interest and deserves re-

examination. For the sum of exclusive channels, whilst many measurements extend to 2
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Fig. 4.20: The combination of inclusive R data in the region 1.937 ≤
√
s ≤ 4.50 GeV.

For comparison, the fit and the contributing data are plotted against the estimate of
pQCD, represented by the dashed line and grey band.
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Fig. 4.21: Compilation of inclusive data in range 1.937 ≤
√
s ≤ 11.2 GeV. The dashed

line and surrounding grey band shows the estimate from pQCD for comparison. The
yellow band represents the total uncertainty of the inclusive data combination.

GeV or beyond, with increasing energy the inclusion of more and more multi-hadronic

final states is required to achieve a reliable estimate of the total hadronic cross section.

Previously, in [21], the sum of exclusive data was used up to 2 GeV, which defined

the transition point between the exclusive sum and the inclusive data combination.

In this analysis, the new KEDR data [237] contribute two data points below 2 GeV,

extending the lower boundary of the inclusive data down to 1.841 GeV (compared to 2

GeV in [21]) and providing an opportunity to reconsider the previous choice concerning

the data input in this region.
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Input ahad,LO VP
µ [1.841 ≤

√
s ≤ 2.00 GeV]× 1010

Exclusive sum 6.06± 0.17

Inclusive data 6.67± 0.26

pQCD 6.38± 0.11

Exclusive (< 1.937 GeV) + inclusive (> 1.937 GeV) 6.23± 0.13

Table 4.1: Comparison of results for ahad,LO VP
µ [1.841 ≤

√
s ≤ 2.00 GeV] from the

different available inputs in this region.

From the lower boundary of the KEDR measurement up to 2 GeV, the resulting

contributions to ahad,LO VP
µ from the sum of exclusive states, the inclusive data combi-

nation and pQCD are given in Table 4.1. The integrated values of the inclusive data

and pQCD agree within errors. However, the contribution from the sum of exclusive

states disagrees with the estimates from both the inclusive data and pQCD, where the

sum of exclusive states provides a smaller contribution. This is particularly visible in

Figure 4.22, where although the sum of exclusive states agrees with the two inclusive

data points below 2 GeV at their respective energies, the combined sum of exclusive

states is lower in general. This is largely attributed to the new data for the π+π−π0π0

final state, where Figure 4.9 shows that these new data result in a clear reduction of

the fitted cross section below 2 GeV.8 Due to this effect, the previous transition point

in [21] between the sum of exclusive states and the inclusive data combination at 2 GeV

is no longer the preferred choice in this work, where it is clear from Figure 4.22 that

these two different choices for the data input are largely incompatible at this point. A

more natural choice for this transition point is 1.937 GeV, where it can be seen from

Figure 4.22 that all available data choices at this energy are in agreement within er-

rors. This is further substantiated by Table 4.1, where the value for ahad,LO VP
µ from

the contribution from exclusive states below 1.937 GeV summed with the contribution

from the inclusive data combination above 1.937 GeV is, within errors, in agreement

with the integrated values of all other choices for the data input. Consequently, in this

work, this is chosen to be the transition point between the sum of exclusive states and

the inclusive R-ratio data.

4.3.2 Narrow resonances

Following the discussion in Section 2.4.3, the contributions from the experimentally

unresolved narrow J/ψ, ψ′ and Υ(1S − 4S) resonances in the cc̄ and bb̄ regions are

estimated using the Breit-Wigner resonance parametrisation and added separately to

the data compilation. In a separate work [82], the inclusion of Rb data measured by the

8Interestingly, as can be seen from Figure 4.22, the sum of exclusive states is in good agreement
with the imprecise and, therefore, unused inclusive hadronic cross section data that exist between
1.43 ≤

√
s ≤ 2.00 GeV. This is in contrast with the findings in the previous analyses [21,46,47], which

observed that the inclusive data in this range were lower than the sum of exclusive states.
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red band show the continuation of the inclusive data combination below 1.937 GeV
and the continuation of the exclusive sum above 1.937 GeV respectively. The recent
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green band shows the data combination of old inclusive hadronic cross section data
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are not used due to their lack of precision. The estimate from pQCD is included for
comparison as a dashed line with an error band which is dominated by the variation of
the renormalisation scale µ in the range 1

2

√
s < µ < 2

√
s.

BaBar collaboration between 10.54 ≤
√
s ≤ 11.20 GeV [234] has resolved the resonances

of the Υ(5S) and Υ(6S) states, removing the need to estimate these structures as

was done in [21, 46, 47].9 These data are shown in Figure 4.23, together with the

previously used resonance parametrisations which are clearly very different from the

bb̄ cross section as measured by BaBar. Note that apart from the CLEO(98) data

point [228] at 10.52 GeV, the CLEO(07) data point [233] at 10.538 GeV and the CUSB

data point at 11.09 GeV [222], there are no other data in this bb̄ resonance region.

For each of the narrow resonances, the cross section is determined according to

equation (2.43) (with the electronic width of each resonance undressed according to

9In [82], these data were deconvoluted of the effects from initial state radiation (ISR), had the
radiative tails of the resonances from the Υ(1S − 4S) states removed and then added to the pQCD
estimate of Rudsc [238] to be included as an accurate data set in the inclusive channel in this region.
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equation (2.10)) and are found to give contributions to aµ of

aJ/ψµ = (6.26± 0.19)× 10−10 ,

aψ
′

µ = (1.58± 0.04)× 10−10 ,

aΥ(1S)
µ = (0.05± 0.00)× 10−10 ,

aΥ(2S)
µ = (0.02± 0.00)× 10−10 ,

aΥ(3S)
µ = (0.01± 0.00)× 10−10 ,

aΥ(4S)
µ = (0.01± 0.00)× 10−10 . (4.63)

Here, the uncertainty of each resonance includes an additional VP correction uncer-

tainty due to the undressing of the electronic width.

4.3.3 pQCD

From the discussion in Section 2.4.4, the hadronic R-ratio in the range 11.1985 ≤
√
s ≤

1000.1985 GeV is estimated from pQCD using the dedicated program rhad [238]. The

contribution to aµ from this is found to be

apQCD
µ [11.1985 ≤

√
s ≤ 1000.1985 GeV] = (2.07± 0.00)× 10−10 , (4.64)

where the error on R(s) is determined from the uncertainties of αs(M
2
Z), the mass of

the bottom quark, the mass of the top quark and a variation of the renormalisation

scale µ in the range 1
2

√
s < µ < 2

√
s.
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Channel Energy range (GeV) ahad,LO VP
µ × 1010 New data

Chiral perturbation theory (ChPT) threshold contributions
π0γ mπ ≤

√
s ≤ 0.600 0.12± 0.01 -

π+π− 2mπ ≤
√
s ≤ 0.305 0.87± 0.02 -

π+π−π0 3mπ ≤
√
s ≤ 0.660 0.01± 0.00 -

ηγ mη ≤
√
s ≤ 0.660 0.00± 0.00 -

Data based channels (
√
s ≤ 1.937 GeV)

π0γ 0.600 ≤
√
s ≤ 1.350 4.46± 0.10 [107]

π+π− 0.305 ≤
√
s ≤ 1.937 502.97± 1.97 [90,127]

π+π−π0 0.660 ≤
√
s ≤ 1.937 47.79± 0.89 [137]

π+π−π+π− 0.613 ≤
√
s ≤ 1.937 14.87± 0.20 [150,151]

π+π−π0π0 0.850 ≤
√
s ≤ 1.937 19.39± 0.78 [154]

(2π+2π−π0)no η 1.013 ≤
√
s ≤ 1.937 0.99± 0.09 -

3π+3π− 1.313 ≤
√
s ≤ 1.937 0.23± 0.01 [164]

(2π+2π−2π0)no ηω 1.322 ≤
√
s ≤ 1.937 1.35± 0.17 -

K+K− 0.988 ≤
√
s ≤ 1.937 23.03± 0.22 [171–173]

K0
SK

0
L 1.004 ≤

√
s ≤ 1.937 13.04± 0.19 [179,180]

KKπ 1.260 ≤
√
s ≤ 1.937 2.71± 0.12 [185,186]

KK2π 1.350 ≤
√
s ≤ 1.937 1.93± 0.08 [179,185,187]

ηγ 0.660 ≤
√
s ≤ 1.760 0.70± 0.02 [196]

ηπ+π− 1.091 ≤
√
s ≤ 1.937 1.29± 0.06 [199,200]

(ηπ+π−π0)no ω 1.333 ≤
√
s ≤ 1.937 0.60± 0.15 [201]

η2π+2π− 1.338 ≤
√
s ≤ 1.937 0.08± 0.01 -

ηω 1.333 ≤
√
s ≤ 1.937 0.31± 0.03 [201,202]

ω(→ π0γ)π0 0.920 ≤
√
s ≤ 1.937 0.88± 0.02 [209,210]

ηφ 1.569 ≤
√
s ≤ 1.937 0.42± 0.03 -

φ→ unaccounted 0.988 ≤
√
s ≤ 1.029 0.04± 0.04 -

ηωπ0 1.550 ≤
√
s ≤ 1.937 0.35± 0.09 [203]

η(→ npp)KK̄no φ→KK̄ 1.569 ≤
√
s ≤ 1.937 0.01± 0.02 [184,185]

pp̄ 1.890 ≤
√
s ≤ 1.937 0.03± 0.00 [216]

nn̄ 1.912 ≤
√
s ≤ 1.937 0.03± 0.01 [219]

Estimated contributions (
√
s ≤ 1.937 GeV)

(π+π−3π0)no η 1.013 ≤
√
s ≤ 1.937 0.50± 0.04 -

(π+π−4π0)no η 1.313 ≤
√
s ≤ 1.937 0.21± 0.21 -

KK3π 1.569 ≤
√
s ≤ 1.937 0.03± 0.02 -

ω(→ npp)2π 1.285 ≤
√
s ≤ 1.937 0.10± 0.02 -

ω(→ npp)3π 1.322 ≤
√
s ≤ 1.937 0.17± 0.03 -

ω(→ npp)KK 1.569 ≤
√
s ≤ 1.937 0.00± 0.00 -

ηπ+π−2π0 1.338 ≤
√
s ≤ 1.937 0.08± 0.04 -

Other contributions (
√
s > 1.937 GeV)

Inclusive channel 1.937 ≤
√
s ≤ 11.199 43.67± 0.67 [234,236,237]

J/ψ - 6.26± 0.19 -
ψ′ - 1.58± 0.04 -
Υ(1S − 4S) - 0.09± 0.00 -
pQCD 11.199 ≤

√
s ≤ ∞ 2.07± 0.00 -

Total mπ ≤
√
s ≤ ∞ 693.26± 2.46 -

Table 4.2: Summary of the contributions to ahad,LO VP
µ calculated in this analysis. The

first column indicates the hadronic final state or individual contribution, the second
column gives the respective energy range of the contribution, the third column states
the determined value of ahad,LO VP

µ and the last column indicates any new data that
have been included since [21]. The last row describes the total contribution obtained
from the sum of the individual final states, with the uncertainties added in quadrature.
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Fig. 4.24: Pie charts showing the fractional contributions to the total mean value (left

pie chart) and (error)2 (right pie chart) of ahad,LO VP
µ from various energy intervals. The

energy intervals for ahad,LO VP
µ are defined by the boundaries mπ, 0.6, 0.9, 1.43, 2.0 and

∞ GeV. The (error)2 includes all experimental uncertainties (including all available
correlations) and local χ2

min/d.o.f. inflation. The fractional contribution to the (error)2

from the radiative correction uncertainties are shown in black and indicated by ‘rad.’.

4.4 Total contribution of ahad,LOVP
µ and ahad,NLOVP

µ

Table 4.2 lists all contributions from individual channels contributing to ahad,LO VP
µ ,

with the corresponding total. From the sum of these contributions, the estimate for

ahad,LO VP
µ from this work is

ahad,LO VP
µ = (693.26± 1.19stat ± 2.01sys ± 0.22vp ± 0.71fsr)× 10−10

= (693.26± 2.46tot)× 10−10 , (4.65)

where the uncertainties include all available correlations and local χ2 inflation. The

total error is clearly dominated by the systematic uncertainties, mostly due to the large

amount of correlated data that is now present as part of the full data compilation. For

the radiative corrections, there is a notable error contribution from the additional FSR

correction uncertainty (although relatively small when added in quadrature with the

experimental uncertainties). This is due to the conservative choice to take an uncer-

tainty of 1% of the mean value for the possibility of missed FSR for all channels that

require an FSR correction (other than π+π−) and for which there currently no calcu-

lations of these possible effects. The fractional contributions to the total mean value

and uncertainty of ahad,LO VP
µ from various energy intervals is shown in Figure 4.24.

Here, the dominance of the energy region below 0.9 GeV for ahad,LO VP
µ and its un-

certainty is clearly evident, with this being predominantly due to the contributions

from the π+π− channel. Figure 4.25 shows the contributions from all hadronic final

states to the hadronic R-ratio and its uncertainty below 1.937 GeV. Here, the indi-

vidual final states are displayed separately as well as with the resulting total hadronic
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ahad,LO VP
µ .
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R-ratio. Following the discussion concerning the determination of the hadronic R ratio

and its covariance matrix in Section 2.4.5, the full compilation for the hadronic R-ratio

is shown in Figure 4.26. The integral over these calculated data are found to yield ex-

actly the same result for ahad,LO VP
µ as from the sum of all channels given in Table 4.2

and equation (4.65). In addition, checks of the covariance matrix confirm that it is a

positive semi-definite matrix, correctly containing the available correlation information

for all hadronic channels and, therefore, all the data points in the resulting vector for

R(s). The data vector and corresponding covariance matrix of the hadronic R-ratio

in the range mπ ≤
√
s ≤ 11.1985 GeV determined in this work are publicly available

upon request from the authors of [87].

Using the same data compilation as described for the calculation of ahad,LO VP
µ , the

dispersion integrals for the different classes of diagram for the NLO contributions to

ahad,VP
µ are found according to Section 1.3.2 to give,

ahad,NLO VP, (a)
µ = (−20.77± 0.03stat ± 0.06sys ± 0.01vp ± 0.03fsr)× 10−10

= (−20.77± 0.08tot)× 10−10 ,

ahad,NLO VP, (b, e−loop)
µ = (10.61± 0.02stat ± 0.03sys ± 0.00vp ± 0.01fsr)× 10−10

= (10.61± 0.04tot)× 10−10 ,

ahad,NLO VP, (b, τ−loop)
µ = (0.01± 0.00stat ± 0.00sys ± 0.00vp ± 0.00fsr)× 10−10

= (0.01± 0.00tot)× 10−10 ,

ahad,NLO VP, (c)
µ = (0.34± 0.00stat ± 0.01sys ± 0.00vp ± 0.00fsr)× 10−10

= (0.34± 0.01tot)× 10−10 . (4.66)

For all the results quoted above, the errors from the individual channels and sources

of uncertainty are added in quadrature to determine the total error. Combining the
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Fig. 4.27: The normalised difference of the clusters of the π+π− data fit from this
analysis with respect to those from the HLMNT11 analysis in the range 0.6 ≤

√
s ≤ 0.9

GeV. The width of the yellow band represents the total uncertainties of the clusters of
the HLMNT11 analysis. The π+π− cross section is displayed for reference.

contributions from these different classes, the correlation due to the use of the identical

data input for R(s) must be accounted for. With the contribution from class (a) being

negative, the correlation between the uncertainty from this class and the other classes

results in a reduction in the total uncertainty. Therefore, summing these separate

contributions results in total NLO contribution of

ahad,NLO VP
µ = (−9.82± 0.02stat ± 0.03sys ± 0.01vp ± 0.02fsr)× 10−10

= (−9.82± 0.04tot)× 10−10 . (4.67)

An evaluation of ∆α
(5)
had(M2

Z) using the same data compilation as for ahad,LO VP
µ

and ahad,NLO VP
µ as input into the relevant dispersion integral in equation (2.3) has also

been determined as part of this work. A discussion of this and results for ∆α
(5)
had(M2

Z)

and α(M2
Z) are given in Appendix C.

4.5 Comparison with other works

4.5.1 Comparison with the HLMNT11 evaluation

To understand further how the changes in the data combination/input have altered the

estimate of ahad,LO VP
µ and its uncertainty, a comparison of the results from this analysis

and the previous HLMNT11 evaluation [21] is particularly interesting. Table 4.3 gives

a channel-by-channel comparison of the two works, highlighting the differences in the

individual contributions for each channel and the total sum over their respective energy
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Channel This work HLMNT11 [21] Difference
Chiral perturbation theory (ChPT) threshold contributions

π0γ 0.12± 0.01 0.12± 0.01 0.00
π+π− 0.87± 0.02 0.87± 0.02 0.00
π+π−π0 0.01± 0.00 0.01± 0.00 0.00
ηγ 0.00± 0.00 0.00± 0.00 0.00

Data based channels (
√
s ≤ 2 GeV)

π0γ 4.46± 0.10 4.54± 0.14 −0.08
π+π− 502.99± 1.97 505.77± 3.09 −2.78
π+π−π0 47.82± 0.89 47.51± 0.99 0.31
π+π−π+π− 15.17± 0.21 14.65± 0.47 0.52
π+π−π0π0 19.80± 0.79 20.37± 1.26 −0.57
(2π+2π−π0)no η 1.08± 0.10 1.20± 0.10 −0.12
3π+3π− 0.28± 0.02 0.28± 0.02 0.00
(2π+2π−2π0)no ηω 1.60± 0.20 1.80± 0.24 −0.20
K+K− 23.05± 0.22 22.15± 0.46 0.90
K0
SK

0
L 13.05± 0.19 13.33± 0.16 −0.28

KKπ 2.80± 0.12 2.77± 0.15 0.03
KK2π 2.42± 0.09 3.31± 0.58 −0.89
ηγ 0.70± 0.02 0.69± 0.02 0.01
ηπ+π− 1.32± 0.06 0.98± 0.24 0.34
(ηπ+π−π0)no ω 0.63± 0.15 - 0.63
η2π+2π− 0.11± 0.02 0.11± 0.02 0.00
ηω 0.31± 0.03 0.42± 0.07 −0.11
ω(→ π0γ)π0 0.88± 0.02 0.77± 0.03 0.11
ηφ 0.45± 0.04 0.46± 0.03 −0.01
φ→ unaccounted 0.04± 0.04 0.04± 0.04 0.00
ηωπ0 0.42± 0.10 - 0.42
η(→ npp)KK̄no φ→KK̄ 0.01± 0.01 - 0.01
pp̄ 0.07± 0.00 0.06± 0.00 0.01
nn̄ 0.06± 0.01 0.07± 0.02 −0.01

Estimated contributions (
√
s ≤ 2 GeV)

(π+π−3π0)no η 0.53± 0.05 0.60± 0.05 −0.07
(π+π−4π0)no η 0.25± 0.25 0.28± 0.28 −0.03
KK3π 0.08± 0.03 0.08± 0.04 0.00
ω(→ npp)2π 0.10± 0.02 0.11± 0.02 −0.01
ω(→ npp)3π 0.20± 0.04 0.22± 0.04 −0.02
ω(→ npp)KK 0.01± 0.00 0.01± 0.00 0.00
ηπ+π−2π0 0.11± 0.05 0.11± 0.06 0.00

Other contributions (
√
s > 2 GeV)

Inclusive channel 41.27± 0.62 41.40± 0.87 −0.13
J/ψ 6.26± 0.19 6.24± 0.16 0.02
ψ′ 1.58± 0.04 1.56± 0.05 0.02
Υ(1S − 4S) 0.09± 0.00 0.10± 0.00 −0.01
pQCD 2.07± 0.00 2.06± 0.00 0.01

Total 693.26± 2.46 694.91± 4.27 −1.64

Table 4.3: Comparison of the contributions to ahad,LO VP
µ calculated in the HLMNT11

analysis [21] and in this work, where all results are given in units of ahad,LO VP
µ × 1010.

The first column indicates the final state or individual contribution, the second column
gives the estimate from this work, the third column states the HLMNT11 estimate and
the last column gives the difference between the two evaluations.
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Channel This work HLMNT11 [21]
π+π− 1.3 1.4
π+π−π0 2.1 3.0
π+π−π+π− 1.8 1.7
π+π−π0π0 2.0 1.3
(2π+2π−π0)no η 1.0 1.2
(2π+2π−2π0)no ηω 3.5 4.0
K+K− 2.1 1.9
K0
SK

0
L 0.8 0.8

Table 4.4: Comparison of the global
√
χ2

min/d.o.f.for the leading and major sub-

leading channels determined in the HLMNT11 analysis [21] and in this work. The first
column indicates the final state or individual contribution, the second column gives the
value from this work, the third column states the HLMNT11 value.

ranges.10 The largest difference occurs in the π+π− channel, where the mean value in

this work is lower by almost 1σ of the HLMNT11 analysis and the uncertainty has

reduced by approximately one third. Being the dominant hadronic contribution to aµ,

a similar trend is seen in the final results for ahad,LO VP
µ and its uncertainty. As described

in the in-depth discussion of the 2π contribution in Section 4.1.2, this is largely due to

the new, precise and highly correlated radiative return data from KLOE and BESIII and

the capability of the new data combination method to utilise the correlations to their

full capacity. The global
√
χ2

min/d.o.f.of the leading and major sub-leading channels in

this work are compared to those from the HLMNT11 analysis [21] in Table 4.4. The

reduction of the global
√
χ2

min/d.o.f.for the π+π− channel further highlights that the

data combination for this channel has improved. The energy dependent changes in the

resonance region are shown in Figure 4.27, where it can be seen that, as expected from

the comparison of the π+π− results in Table 4.3, the data combination from this work

is in good agreement with the HLMNT11 analysis but sits lower overall.

The K+K− channel shows tension with the HLMNT11 analysis, where the new data

in this channel from BaBar [171] and CMD-3 [173] have incurred a large increase in the

mean value, whilst also improving the uncertainty despite the small increase in global√
χ2

min/d.o.f. This is also the case for the π+π−π+π− channel. Other tensions include

the K0
SK

0
L, ηπ+π−, ηω and ω(→ π0γ)π0 channels, where again, the new, more precise

data have resulted in changes outside the quoted HLMNT11 uncertainties. As discussed

in Section 4.1.8, the KK2π channel exhibits a similar change due to the previously

inadequate isospin estimate used in [21]. All other channels are in good agreement

10Note that the results for individual contributions to ahad,LOVP
µ from this work that are listed in

Table 4.3 differ from those given earlier in this section and in Table 4.2, as for a comparison with
HLMNT11 [21], contributions to ahad,LOVP

µ from exclusive channels are evaluated up to 2 GeV. How-
ever, to consistently compare the final results for ahad,LOVP

µ between the two works, the total result
from this analysis given in Table 4.3 is not determined as the sum of the individual contributions listed
above it, but is the final result for ahad,LOVP

µ calculated in this work using the exclusive channels eval-
uated up to 1.937 GeV. Summing the values from this work listed in Table 4.3 (i.e. choosing to evaluate
the sum of exclusive states from this work up to 2 GeV), results in ahad,LOVP

µ = (693.06±2.45)×10−10.

95



between the different analyses. Following the discussion in Section 4.1.4, a marked

improvement is seen in the π+π−π0π0 channel, where the new BaBar data [154] has

reduced both the mean value and uncertainty of this final state. It is important to note

that this work includes three channels that were not included as part of the HLMNT11

analysis: (ηπ+π−π0)no ω, ηωπ0 and η
(
→ non-purely pionic (npp)

)
KK̄no φ→KK̄ , where

these final states were previously unmeasured by experiment and not estimated through

isospin relations.

Overall, due to the large reduction in the π+π− channel, it is found that the estimate

of ahad,LO VP
µ has decreased between the HLMNT11 analysis and this work, although

this decrease is well within the uncertainty of the HLMNT11 estimate. In total, the

uncertainty has been reduced by ∼ 42% with respect to the HLMNT11 analysis. This

simultaneous reduction in mean value and uncertainty has the effect of increasing the

current deviation between aSM
µ and aexp

µ . Similar changes are also observed in the

NLO contribution, where the HLMNT11 analysis found ahad,NLO VP
µ (HLMNT11) =

(−9.84± 0.07)× 10−10.

4.5.2 Comparison with other similar works

The DHMZ group have recently released a new estimate of ahad,LO VP
µ [45] which, due

to a similar data input, is directly comparable with this work and provides insight

into how choices with regards to the data combination can affect results. In particular,

with the uncertainties of ahad,LO VP
µ from both this work and the DHMZ17 analysis now

being less than 0.5% of the respective mean values, it is important that these differences

are understood in order to quantify the reliability of different approaches and results.

In [45], the authors provide a channel-by-channel breakdown of their estimates for the

different final states, which are compared to the respective estimates from this work

in Table 4.5. For the exclusive data channels, the DHMZ group choose to take the

contributions from these data up to 1.8 GeV, relying on estimates from pQCD above

this (with inflated errors for the pQCD data below the cc̄ threshold). As such, the

estimates from this work in Table 4.5 have been recalculated to mimic the chosen

energy regions of the DHMZ analysis and allow for a consistent comparison.

When comparing the total estimate of ahad,LO VP
µ from the two analyses, the results

seem to be in very good agreement. However, as can be seen from Table 4.5, this

masks much larger differences in the estimates from individual channels. The most

striking of these is the estimate for the π+π− channel, where there is a tension of

slightly more than 1σ between this work and DHMZ17 result. This is unexpected

when considering the data input for both analyses are likely to be similar and, therefore,

points to marked differences in the way the data are combined. The higher value of the

DHMZ17 estimate seems to suggest that their data combination favours the data from

the BaBar measurement, with this data set being the only single set that could influence
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Channel This work DHMZ17 [45] Difference
Data based channels (

√
s ≤ 1.8 GeV)

π0γ (data + ChPT) 4.58± 0.10 4.29± 0.10 0.29
π+π− (data + ChPT) 503.74± 1.96 507.14± 2.58 −3.40
π+π−π0 (data + ChPT) 47.70± 0.89 46.20± 1.45 1.50
π+π−π+π− 13.99± 0.19 13.68± 0.31 0.31
π+π−π0π0 18.15± 0.74 18.03± 0.54 0.12
(2π+2π−π0)no η 0.79± 0.08 0.69± 0.08 0.10
3π+3π− 0.10± 0.01 0.11± 0.01 −0.01
(2π+2π−2π0)no ηω 0.77± 0.11 0.72± 0.17 0.05
K+K− 23.00± 0.22 22.81± 0.41 0.19
K0
SK

0
L 13.04± 0.19 12.82± 0.24 0.22

KKπ 2.44± 0.11 2.45± 0.15 −0.01
KK2π 0.86± 0.05 0.85± 0.05 0.01
ηγ (data + ChPT) 0.70± 0.02 0.65± 0.02 0.05
ηπ+π− 1.18± 0.05 1.18± 0.07 0.00
(ηπ+π−π0)no ω 0.48± 0.12 0.39± 0.12 0.09
η2π+2π− 0.03± 0.01 0.03± 0.01 0.00
ηω 0.29± 0.02 0.32± 0.03 −0.03
ω(→ π0γ)π0 0.87± 0.02 0.94± 0.03 −0.07
ηφ 0.33± 0.03 0.36± 0.03 −0.03
φ→ unaccounted 0.04± 0.04 0.05± 0.00 −0.01
ηωπ0 0.10± 0.05 0.06± 0.04 0.04
η(→ npp)KK̄no φ→KK̄ 0.00± 0.01 0.01± 0.01 − 0.01*

Estimated contributions (
√
s ≤ 1.8 GeV)

(π+π−3π0)no η 0.40± 0.04 0.35± 0.04 0.05
(π+π−4π0)no η 0.12± 0.12 0.11± 0.11 0.01
KK3π − 0.02± 0.01 − 0.03± 0.02 0.01
ω(→ npp)2π 0.08± 0.01 0.08± 0.01 0.00
ω(→ npp)3π 0.10± 0.02 0.36± 0.01 −0.26
ω(→ npp)KK 0.00± 0.00 0.01± 0.00 −0.01
ηπ+π−2π0 0.03± 0.01 0.03± 0.01 0.00

Other contributions
J/ψ 6.26± 0.19 6.28± 0.07 −0.02
ψ′ 1.58± 0.04 1.57± 0.03 0.01
Υ(1S − 4S) 0.09± 0.00 - 0.09**

Contributions by energy region
1.8 ≤

√
s ≤ 3.7 GeV 34.54± 0.56 (data) 33.45± 0.65 (pQCD)*** 1.09

3.7 ≤
√
s ≤ 5.0 GeV 7.33± 0.11 (data) 7.29± 0.03 (data) 0.04

5.0 ≤
√
s ≤ 9.3 GeV 6.62± 0.10 (data) 6.86± 0.04 (pQCD) −0.24

9.3 ≤
√
s ≤ 12.0 GeV 1.12± 0.01 (data+pQCD) 1.21± 0.01 (pQCD) −0.09

12.0 ≤
√
s ≤ 40.0 GeV 1.64± 0.00 (pQCD) 1.64± 0.00 (pQCD) 0.00

> 40.0 GeV 0.16± 0.00 (pQCD) 0.16± 0.00 (pQCD) 0.00

Total 693.3± 2.5 693.1± 3.4 0.2

*DHMZ have not removed the decay of η to pionic states which incurs a double counting of this
contribution with the KKnπ channels.

**DHMZ include the contributions from the Υ resonances in the energy region 9.3 ≤
√
s ≤ 12.0 GeV.

***DHMZ have inflated errors to account for differences between data and pQCD.

Table 4.5: Comparison of the contributions to ahad,LO VP
µ calculated by DHMZ17

and in this work, where all results are given in units ahad,LO VP
µ × 1010. The first

column indicates the final state or individual contribution, the second column gives
the estimate from this work, the third column states the DHMZ17 estimate and the
last column gives the difference between the two evaluations. For the final states in
this work that have low energy contributions estimated from chiral perturbation theory
(see [46]), the contributions from these regions have been added to the contributions
from the respective data.
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the mean value of the π+π− channel to be as high. This behaviour is similar to the

result obtained from combining the π+π− data using only a simple weighted average as

discussed in Section 4.1.2. In turn, this effect is compensated by other major sub-leading

final states having larger estimates in this work compared to the DHMZ17 analysis.

Specifically, the π+π−π0, π+π−π+π− and K0
SK

0
L estimates are noticeably lower in the

DHMZ17 analysis. In addition, there is tension in the region between 1.8 ≤
√
s ≤ 3.7

GeV, where the choice to use data in this region has a higher integrated contribution

to ahad,LO VP
µ than the DHMZ17 estimate from pQCD. This is particularly significant

when reconsidering Figure 4.22, where it was observed that the sum of exclusive states

from in the range 1.8 ≤
√
s ≤ 2.0 GeV has a cross section that is lower than the

estimate from pQCD. The differences seen in Table 4.5 above 1.8 GeV are then caused

by cross section data below the charm production threshold being higher than pQCD

(see Figure 4.20) and lower than pQCD above it (see Figure 4.21). It should be noted

that the estimate for the ω(→ npp)3π final state from isospin relations, although only

a small contribution to ahad,LO VP
µ , exhibits a significant difference between the two

analyses, suggesting a different relation has been used in the DHMZ17 analysis than in

this work.

As well as the DHMZ analysis, an updated work by F. Jegerlehner (FJ17) [36]

resulted in an estimate of ahad,LO VP
µ (FJ17) = (688.07 ± 4.14) × 10−10 based on the

available e+e− data. Within errors, this result is in agreement with both this work

and the DHMZ17 analysis. Interestingly, unlike the comparison with DHMZ17, the

two-pion contribution in the energy range 0.316 ≤
√
s ≤ 2.0 GeV is found in the FJ17

analysis to be aπ
+π−
µ (FJ17) = (502.16±2.44)×10−10 [239], which is in good agreement

with the estimate from this work in the same energy range of aπ
+π−
µ (This work) =

(501.68 ± 1.71) × 10−10. However, a more detailed comparison with the estimates of

other channels determined in [36,239] is not possible as the FJ17 analysis chooses to es-

timate certain resonance contributions using available parametrisations [16] instead of

using the available data. A comparison of recent and previous evaluations of ahad,LO VP
µ

determined from e+e− → hadrons cross section data is shown in Figure 4.28, which

highlights the agreement between the different works and the improvement in the pre-

cision of the respective analyses.

4.6 The SM prediction of the anomalous magnetic mo-
ment of the muon, aSM

µ

Following the review of the contributions to aµ from the different sectors of the SM

in Section 1.2.2, the new results for ahad,LO VP
µ and ahad,NLO VP

µ determined in this

work allow for an updated determination of aSM
µ . Summarising the different SM results
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had, LO VP
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DEHZ03: 696.3 ± 7.2

HMNT03: 692.4 ± 6.4

DEHZ06: 690.9 ± 4.4

HMNT06: 689.4 ± 4.6

FJ06: 692.1 ± 5.6

DHMZ10: 692.3 ± 4.2

JS11: 690.8 ± 4.7

HLMNT11: 694.9 ± 4.3

FJ17: 688.1 ± 4.1

DHMZ17: 693.1 ± 3.4

This work: 693.3 ± 2.5

Fig. 4.28: Comparison of recent and previous evaluations of ahad,LO VP
µ determined

from e+e− → hadrons cross section data. The analyses listed in chronological order are:
DEHZ03 [48], HMNT03 [46], DEHZ06 [49], HMNT06 [47], FJ06 [50], DHMZ10 [51],
JS11 [52], HLMNT11 [21], FJ17 [36] and DHMZ17 [45]. The prediction from this work
defines the uncertainty band that the other analyses are compared to.

discussed previously, the QED contribution gives [9, 22]

aQED
µ = (11 658 471.8971± 0.007)× 10−10 . (4.68)

From [34], the EW contribution is

aEW
µ = (15.36± 0.10)× 10−10 . (4.69)

For the hadronic vacuum polarisation contributions, the leading order and next-to-

leading order contributions have been calculated in this work. The LO contribution,

from equation (4.65), was found to be ahad,LO VP
µ = (693.26 ± 2.46) × 10−10 and the

NLO was given in equation (4.67) as ahad,NLO VP
µ = (−9.82± 0.04)× 10−10. From [35]

the NNLO hadronic vacuum polarisation contribution was found to be ahad,NNLO VP
µ =

(1.24±0.01)×10−10. Summing these, the total contribution to the anomalous magnetic

moment from the hadronic vacuum polarisation is

ahad,VP
µ = (684.68± 2.42)× 10−10 . (4.70)

It should be noted that the negative NLO contribution results in an anti-correlation

between its uncertainty and the uncertainty from the LO contribution, consequently

resulting in a slight reduction in the overall uncertainty that has been incorporated

into equation (4.70). The chosen estimate for the LO hadronic LbL contributions in
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Fig. 4.29: A comparison of recent and previous evaluations of aSM
µ . The analyses

listed in chronological order are: DHMZ10 [51], JS11 [52], HLMNT11 [21], FJ17 [36]
and DHMZ17 [45]. The prediction from this work defines the uncertainty band that
other analyses are compared to. The current uncertainty on the experimental mea-
surement [13–16] is given by the light blue band. The light grey band represents the
hypothetical situation of the new experimental measurement at Fermilab yielding the
same mean value for aexp

µ as the BNL measurement but achieving the projected four-fold
improvement in its uncertainty [17].

this work is ahad,LO LbL
µ = (9.8 ± 2.6) × 10−10 [43]. Summing this with the estimate

for the NLO contributions of ahad,NLO LbL
µ = (0.3± 0.2)× 10−10 [40], results in a total

hadronic LBL estimate of

ahad,LbL
µ = (10.1± 2.6)× 10−10 . (4.71)

Following equation (1.17) and equation (1.30), the sum of all the sectors of the SM

results in a total value of the anomalous magnetic moment of the muon of

aSM
µ = (11 659 182.04± 3.56)× 10−10 , (4.72)

where the error is determined from the uncertainties of the individual SM contributions,

added in quadrature. Comparing this with the current experimental measurement given

in equation (1.19) results in a deviation of

∆aµ = (27.06± 7.26)× 10−10 , (4.73)

corresponding to a 3.7σ discrepancy. This result is compared with other determinations

of aSM
µ in Figure 4.29. Importantly, it can be seen here that should the new Muon g−2

experiment at Fermilab measure aexp
µ to have the same mean value as equation (1.30)
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SM contribution HLMNT11 [21] This work

QED 11658471.8± 0.0 11658471.9± 0.0
EW 15.4± 0.2 15.4± 0.1
had LO VP 694.9± 4.3 693.4± 2.5
had NLO VP − 9.8± 0.1 − 9.8± 0.0
had NNLO VP 1.2± 0.0
had LO LbL 10.5± 2.6 9.8± 2.6
had NLO LbL 0.3± 0.2

Theory total 11659182.8± 4.9 11659182.0± 3.6
Experiment 11659209.1± 6.3 11659209.1± 6.3

∆aµ 26.1± 8.0 (3.3σ) 27.1± 7.3 (3.7σ)

Table 4.6: Comparison of the contributions to aSM
µ given in the HLMNT11 analy-

sis [21] and in this work, where all results are given in units of aµ× 1010. The first col-
umn indicates the individual SM contribution, the second column states the HLMNT11
value and the last column gives the value from this work. The references for the eval-
uations for the individual SM contributions used to determine aSM

µ in the HLMNT11
analysis are QED [240, 241], EW [32] and had LO LbL [37], with the hadronic VP
contributions being calculated in [21].

but achieve the projected four-fold improvement in the experimental uncertainty [17],

the (g − 2)µ discrepancy would increase to 7.0σ. It should be noted that although, as

stated in Section 4.5.2, the DHMZ17 estimate for ahad,LO VP
µ [45] is lower than the value

obtained in this work, the estimate of aSM
µ from DHMZ17 is higher than the estimate

from this analysis as DHMZ17 choose to use the estimate for the hadronic light-by-light

contribution of ahad,LbL
µ = (10.5± 2.6)× 10−10 [37].

A comparison with the HLMNT11 estimate given in equation (1.27) shows an im-

provement in the total uncertainty of aSM
µ of ∼ 27%. Table 4.6 compares the contri-

butions from the individual sectors of the SM as given in the HLMNT11 analysis and

in this work. Whereas in [21], the five-loop QED contributions were only estimated

from [240], the full calculation of these contributions in [9, 22] has led to the small

change in the QED estimate. For the EW sector, the now relatively well-known Higgs

mass [16] has halved the uncertainty on this contribution since [21]. The comparison

of the differences in ahad,LO VP
µ and ahad,NLO VP

µ between this work and the HLMNT11

analysis have been discussed in detail in Section 4.5.1. Importantly, although there has

been a reduction of ∼ 1.5 × 1010 in ahad,LO VP
µ between the HLMNT11 analysis and

this work, this difference is largely cancelled by the newly estimated NNLO VP con-

tributions that were not included in [21]. The value for the LO LbL contributions has

reduced due to the re-evaluation of the contribution to ahad,LbL
µ from axial exchanges

as discussed in Section 1.2.2, but this difference is also alleviated by the inclusion of

the previously missing NLO LbL contributions. Notably, the uncertainty of ahad,LO VP
µ

is now smaller than the uncertainty of ahad,LO LbL
µ , making the hadronic light-by-light

sector the largest error contribution to aSM
µ for the first time. In total, the changes in
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all the sectors of the SM have resulted in an increase in ∆aµ and, therefore, the (g−2)µ

discrepancy, largely due to the reduction in the uncertainty of ahad,VP
µ as calculated in

this work.
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Chapter 5

Conclusions

5.1 Summary

The anomalous magnetic moment of the muon, aµ = (g − 2)µ/2, provides a stringent

test of the Standard Model (SM), where the ∼ 3.5σ (or higher) discrepancy between the

experimental measurement aexp
µ and the SM prediction aSM

µ could be an indication of

the existence of new physics beyond the SM. The uncertainty of aSM
µ is completely dom-

inated by the hadronic contributions. This analysis has completed a full re-evaluation

of the hadronic vacuum polarisation contributions to the anomalous magnetic mo-

ment of the muon, ahad,VP
µ . These quantities have been determined using the available

e+e− → hadrons cross section data as input into corresponding dispersion relations,

with an aim to achieve both accurate and reliable results from a predominantly data

driven analysis.

Since the analysis preceding this work [21], all aspects concerning the radiative cor-

rections of the data and the data combination have been reassessed in this work. The

vacuum polarisation corrections have been updated and are found to have less effect on

the data combination than in previous analyses due to the large quantity of data that

have already been released as the bare cross section with FSR included, σ0
had,γ(s). This

is also true of the FSR corrections, where for the π+π− channel the overall impact of

the FSR corrections and the corresponding additional radiative correction uncertainty

on aπ
+π−
µ is greatly reduced. In addition, studies into the previously applied FSR cor-

rections for the K+K− channel have shown these to be an overestimate in this final

state, as the possibility of FSR is limited by highly restricted phase space and, there-

fore, no FSR correction or additional uncertainty is now applied in this channel. For

the data combination, a re-analysis of the previously used non-linear χ2-minimisation

highlighted the potential for systematic bias and that the method’s reliance on fitting

energy independent renormalisation factors prevented the use of correlated uncertain-

ties to their full capacity. Instead, the data are now combined using an iterative, linear

χ2-minimisation developed in this work from a method that has been advocated to be

free of bias and that has been studied in detail. Importantly, this data combination
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method now allows for the full use of any available correlated statistical and systematic

uncertainties, robustly incorporating them into the determination of both the resulting

mean value and corresponding error.

The three precision measurements of the cross section σ
(
e+e− → π+π−γ(γ)

)
us-

ing initial state radiation by the KLOE collaboration provide an important input for

the prediction of the hadronic contributions to the anomalous magnetic moment of

the muon. These measurements are correlated for both statistical and systematic un-

certainties and, therefore, the simultaneous use of these measurements requires co-

variance matrices that fully describe the correlations. The matrices constructed for

this purpose prior to this work were found to be mathematically unstable and their

construction had to be reassessed. To fully understand the correlations, it was nec-

essary to re-open the experimental analyses of all three measurements. At each ex-

perimental correction stage, any corresponding statistical or systematic uncertainty

was scrutinised and, in some cases, re-evaluated. This allowed for the improvement

of the calculated cross sections and for correct covariance matrices to be constructed,

which have been found to satisfy the necessary properties of positive semi-definite ma-

trices. The use of these matrices has allowed for the determination of a combined

KLOE measurement for σ
(
e+e− → π+π−γ(γ)

)
and yields a two-pion contribution

to the muon magnetic anomaly in the energy range 0.3162 <
√
s < 0.9747 GeV of

aπ
+π−
µ = (489.8± 1.7stat ± 4.8sys)× 10−10.

For the full calculation of ahad,LO VP
µ and ahad,NLO VP

µ , the large quantity of new

hadronic cross section data (coupled with the changes in the data combination method)

have resulted in improved estimates for nearly all hadronic channels. This is particularly

true for the π+π− channel, where the precision of this final state has improved by

approximately one third compared to [21], with aπ
+π−
µ from both analyses in very

good agreement. Significant progress is also observed in the major sub-leading 3π, 4π

and KK̄ channels. Importantly, the inclusion of recent cross section measurements of

neutral final states in the KKπ and KK2π channels has removed the need to rely on

isospin relations to estimate these final states. In addition, new inclusive hadronic R-

ratio data from the KEDR collaboration have improved the inclusive data combination.

In particular, they have provided the opportunity to reconsider the transition region

between the sum of exclusive states and the inclusive data, which has resulted in the

transition point being chosen to be at 1.937 GeV in this work, where the different

choices for the data input in this point are in agreement within errors.

Importantly, the advancements of the data compilation in this work have yielded,

for the first time, the full hadronic R-ratio and its covariance matrix in the energy range

mπ ≤
√
s ≤ 11.2 GeV. Using these combined data, this analysis found ahad,LO VP

µ =

(693.26±2.46)×10−10 and ahad,NLO VP
µ = (−9.82±0.04)×10−10. This has resulted in a

new estimate for the Standard Model prediction of aSM
µ = (11 659 182.04±3.56)×10−10,
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which deviates from the current experimental measurement by 3.7σ.

5.2 Future prospects

For the hadronic vacuum polarisation contributions, there is scope to further im-

prove the estimates. With regards to the prospect of new data, measurements of the

π+π− cross section are planned to be released in the near future from BaBar [242],

CMD-3 [243], SND [244] and, possibly, BELLE-2 [245]. With the π+π− channel still

providing the largest error contribution to ahad,LO VP
µ , new data here will be invalu-

able to the overall determination of the hadronic VP contributions. In addition, these

new data may shed light on the issues regarding the tensions between the BaBar data

and the other measurements, especially those between the BaBar data and the KLOE

combination. Should the forthcoming high statistics cross section measurement by the

BaBar collaboration agree more with the other measurements in this channel, discard-

ing the current BaBar data may be a consideration. New data for both the π+π−π0

and π+π−π0π0 channels would benefit both of these contributions, where new data for

π+π−π0 could reduce the effects of the local χ2
min/d.o.f. error inflation and additional

new data is needed for π+π−π0π0 to accompany the lone modern measurement from

BaBar in this channel. For the K+K− channel, the reanalysis of the omitted CMD-2

data will be crucial in further understanding the increase of the cross section at the

φ peak due to the new BaBar and CMD-3 data in this region. Data to reduce the

reliance on isospin, as with the KKnπ channels in this work, are vital to drive this

analysis towards the preferential data-based determination. Although the relative size

of the remaining isospin estimated contributions are small, the differences in the KK2π

channel between the data and the isospin estimate have highlighted how these relations

can produce inadequate representations of the cross section. Efforts are also currently

being made to measure new inclusive R-ratio data by BESIII [246] and the experiments

at Novosibirsk (SND, CMD-3, KEDR). In particular, a detailed analysis at Novosibirsk

intends to determine the inclusive R-ratio at energies lower than 2 GeV [247], which

would allow further study into the choices of the transition region between the sum of

exclusive states and the inclusive data.

Further understanding and inclusion of correlations are paramount for future deter-

minations of ahad,VP
µ . This stems not only from the experimental data itself (although

this is important for future data), but also to obtain a better understanding of how

the correlated uncertainties should be included in these calculations. In this work, all

available experimental correlations have been included and allowed to influence the

data combination to their full capacity. This is seemingly not the case for the DHMZ17

approach [45], suggested by the higher value for aπ
+π−
µ obtained in their work. With

both these works quoting uncertainties for ahad,LO VP
µ that are smaller than ∼ 0.5%, it

is important to understand the origins of these differences. These efforts are currently
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under-way as part of the Muon g−2 Theory Initiative [248], where the dedicated groups

involved within it show great progress in studying these differences between these and

other similar analyses. The correlations between data in different channels, which are

not included in this work as the available information is not available, are also a fu-

ture step towards improving the hadronic vacuum polarisation contributions. However,

to allow these correlations to influence the mean value in a full determination of the

hadronic R-ratio would require a new (or extended) data combination method that

allowed for a global fit of all channels simultaneously.

The concept of employing a new data combination method is further motivated

by the limitations of the χ2 minimisation approach used in this work. Specifically,

the χ2 minimisation method assumes the experimental uncertainties to be Gaussian

which, in general, is not true for all experimental data. Although up until this point,

most experimental uncertainties have been made available under the same assumption

(i.e. symmetric with respect to the covariance matrix), the advancement of both the

experimental analyses and the determinations of ahad,VP
µ to include non-Gaussian un-

certainties would require a more developed data combination method than the more

simplistic χ2 minimisation.

Alternative approaches to determine ahad,LO VP
µ are developing at a promising rate.

Lattice QCD determinations, in particular, are rapidly improving [249–251]. Recent

work that combines data from lattice QCD with those from experimental R-ratio data

have already provided extremely accurate results that are in good agreement with

the current estimates from the dispersive method [251]. Furthermore, efforts to ex-

perimentally measure ahad,LO VP
µ are progressing [252, 253]. By measuring the run-

ning of the QED coupling in a high precision, space-like µ-e scattering experiment

and subtracting the theoretical determinations of all contributions to ∆α(q2) other

than the hadronic contributions would result in the experimentally measured quantity

∆αhad(q2), which can be used as input into an alternative dispersion relation to deter-

mine ahad,LO VP
µ [239]. This would provide the first direct experimental measurement of

purely hadronic vacuum polarisation contributions to aµ and would be an alternative

check of the results from the dispersive approach.

In general, the predictions for aSM
µ have been further scrutinised and are well estab-

lished. In particular, the improvements in the uncertainty are on track in preparation

for the new experimental results from Fermilab and J-PARC, with the Muon g−2 The-

ory Initiative showing great promise in improving the estimate of aSM
µ further. This

is further driven by the fact that the result for ahad,VP
µ determined in this analysis is

the first estimate of the hadronic vacuum polarisation contribution that is more precise

than the currently quoted uncertainties for ahad,LbL
µ . Should any or all these advances

reduce the uncertainty of ahad,VP
µ even further, the improvement of the hadronic light-

by-light estimates will become particularly crucial. Importantly, however, it should be
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noted that there is no indication thus far that the SM prediction does not deviate with

the current experimental measurement by more than 3σ. Given these developments

in improving the Standard Model prediction of aµ and the formidable progress made

by the new Muon g − 2 experiments at Fermilab and J-PARC, the prospects of either

establishing the existence of new physics contributing to aµ, or to rule out many new

physics scenarios, are highly compelling.
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Appendix A

Measurement of the kicker pulse
of the Muon g − 2 experiment
(E989)

A.1 The kicker system

At the Muon g − 2 experiment at Fermilab [17], the muon beam is injected into the

storage ring through the inflector onto an orbit that is displaced by 77mm radially

outward from the ideal orbit of the storage ring. In order to direct the beam back onto

the correct trajectory requires a ‘kick’ at the point where the muons on the displaced

trajectory cross the path of the ideal orbit. This occurs at approximately 90◦ around

the storage ring from the point where the muon beam exits the inflector, as can be seen

in Figure A.2. The crossing angle at this point is 10.8 mrad, requiring an angular kick

of 10.8± 0.4 mrad to maximise the muon capture efficiency [17]. To achieve this with

an additional error of margin, the kicker for the Muon g-2 experiment was designed to

reach a 14.0 mrad kick. Achieving a 10.8 - 14.0 mrad kick requires the kicker to reach

a magnetic field strength of 200-280 Gauss (0.020-0.028 Tesla) over the 120ns that the

muon beam pulse traverses the domain of the kicker and then return to zero before the

muon beam again reaches the kicker 149ns later, as shown in Figure A.1.

The kicker itself is comprised of three 1.27m long magnets (which shall be denoted

as K1, K2 and K3, with K1 being the magnet closest to the inflector that the muons

reach first) that reside inside the storage ring at the location indicated in Figure 1.2.

The requirements of field strength, pulse shape and time must be achieved by all three

magnets in order to deliver the nominal kick. A voltage of ∼ 55 kV delivers the 4.5kA

current to the magnet plates of K1, K2 and K3 to produce the 200-280 Gauss field. To

generate this, each kicker magnet system consists of:

• A high voltage (HV) power supply and charging circuit to produce the required

∼ 55 kV.

• A thyratron switch to form the current as a pulse.
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Fig. A.1: The ideal kicker pulse for the E989 experiment (blue) given in Gauss and
the overlapped length of the corresponding muon beam cycle with 149 ns period (red)
given in ns. This figure has been taken directly from [254].

Fig. A.2: The displaced orbit of the muon beam that enters the storage ring from the
inflector (red) and the required orbit (blue). This figure has been altered from [17].

• A transmission line (triaxial blumlein) to deliver the pulse to the kicker magnet.

• A load resistor (‘bazooka’ canister) to terminate the transmission and provide the

required 4.5kA current to the kicker magnet.

• The kicker magnet plate which generates the 200-280 Gauss field.

The magnetic field map associated with the kicker magnet plates is shown in Figure A.3.

A.2 Measuring the kicker field using a Faraday magne-
tometer

A.2.1 The Faraday magnetometer: concept

It is essential that the effectiveness of the kicker field is tested in order to maximise the

muon capture efficiency of the muon g-2 experiment. In order to do this, a Faraday
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Fig. A.3: The relative magnitude of the magnetic field lines associated with the kicker
magnet plates of the E989 experiment [256]. This diagram is taken as a slice of the
radial direction of the beam, which is the direction of the magnetic field generated by
the kicker magnet plates.

magnetometer can be used to measure the time-dependent field. This device makes

use of the consequences of the Faraday effect, which states that when linearly polarized

light passes through a Faraday rotator medium, the polarization angle rotates propor-

tionally to the strength of the magnetic field B. The relationship between the plane of

polarisation and the field B is given by

∆θ = V Bd , (A.1)

where ∆θ is the rotation angle of the plane of polarisation, V is the Verdet constant

which describes the strength of the Faraday effect for that medium and d is the distance

that the light travels through the medium. The chosen medium for the Faraday rotator

is a terbium gallium garnet (TGG) crystal [255], which has a particularly high Verdet

constant (≈ 134 rad T−1m−1 for 632 nm light) and is therefore more sensitive to the

magnetic field.

The basic concept of the Faraday magnetometer is as follows. The TGG crystal

is placed inside the B field to be measured and a laser light is passed through it. As

the laser passes through the crystal, the B field acting on the crystal causes a rotation

of the plane of polarisation of the laser light. The light is then directed through a

polariser. By measuring the intensity after it has passed through the polariser, the

change in the angle of polarisation can be determined from Malus’ Law,

I = I0 cos2 θ , (A.2)

which states that the intensity of the light after passing through the polariser I is

simply given by the cosine squared of the angle of polarisation θ multiplied by the
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Fig. A.4: The design concept of the Faraday magnetometer used to measure the kicker
field strength of the Muon g − 2 experiment [255].

initial intensity I0. By choosing the polariser to have an initial polarisation angle of

θ = π
4 , the intensity of the light is given by I = I0 cos2(π4 ). Should the influence of the

B field then introduce a rotation angle ∆θ on the plane of polarisation, it follows that

I = I0 cos2(
π

4
+ ∆θ)

= I0
1 + cos(π2 + 2∆θ)

2

= I0
1− sin(2∆θ)

2
, (A.3)

which, when rearranged to find ∆θ and combined with equation (A.1), results in

B =
1

2V d
sin−1

(
1− 2I

I0

)
. (A.4)

Now, at the set angle of θ = π
4 , the measured intensity is given by I = 1

2I0. It follows

that when measuring a signal that introduces a deviation ∆θ from θ = π
4 , the deviation

in the measured intensity is given by I = 1
2I0 + ∆I. Therefore,

B =
1

2V d
sin−1

(
1−

2(1
2I0 + ∆I)

I0

)
(A.5)

=
−1

2V d
sin−1

(
2∆I

I0

)
, (A.6)

meaning that to determine the field strength B requires knowing only know the Verdet

constant of the Faraday rotator V for a given wavelength, the length of the Faraday

rotator d, the measured signal ∆I and the initial intensity I0.1

A.2.2 The Faraday magnetometer for the Muon g − 2 experiment

To be able to measure the kicker field strength of the Muon g − 2 experiment requires

the TGG crystal to reside in the kicker field, specifically centred radially and vertically

1In addition, it is possible to calibrate the Faraday magnetometer by measuring the change in
intensity induced by a magnetic field source with a field strength that is known to a high precision.
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Fig. A.5: A photograph of the parts of the magnetometer that exist outside the
vacuum chamber and the trajectory of the laser light. The laser light passes through
the first polariser, along the magnetometer arm inside the SRV chamber, through the
TGG crystal, back along the magnetometer arm out of the SRV chamber, reflected off
the mirror into the second polariser and into the amplifier.

between the kicker magnet plates of either K1, K2 or K3 situated inside the vacuum

chamber of the storage ring. The design concept of the magnetometer is shown in

Figure A.4 [255]. The TGG crystal is attached at 90◦ to a tubing arm that passes

through a flange and into the storage ring. The arm is rotatable and adjustable to

ensure that the crystal is centred between the kicker plates without damaging the

kicker plates or the crystal.2 The laser is situated outside of the vacuum chamber

and the light is directed first through a polariser (to counteract the polarisation of the

laser light itself) and then projected through an A1 tube towards the crystal. This

can be seen in the annotated picture in Figure A.5. Once the laser light has passed

into the vacuum chamber through the A1 tube, a 45◦ mirror at the end of the tubing

arm directs the laser light down through the crystal. It is then reflected by a second

mirror back through the path it came from through the crystal, the 45◦ mirror and the

A1 tube.3 Should the crystal be subject to a magnetic field (such as the kicker field),

then the polarisation angle of the laser light passing through it is shifted by ∆θ which

is proportional to the magnitude of the field, as given by equation (A.1). Following

the trajectory of the laser light in Figure A.5, the light then passes out of the vacuum

chamber, through a second polariser (which is set at the polarisation angle θ = π
4 ) and

is reflected by a mirror into an amplifier which records the signal as a change in voltage.

This change in voltage ∆V is exactly the change in intensity ∆I that is used as input

into equation (A.5).

2This freedom to rotate and retract the magnetometer arm also allows for the crystal to be moved
out of the trajectory of the muon beam and the field trolley, which takes data regarding the magnetic
field of the main storage ring magnet.

3As the laser passes through the crystal twice, this must be accounted for in the determination of
the B field in equation (A.5). Hence, if the crystal has length l, then d = 2l.
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Current (A) Magnetometer measurement (T) Metrolab measurement (T)

0.0 0.000 -

250.0 0.034 -

500.0 0.099 -

750.0 0.170 -

1000.0 0.247 -

1250.0 0.325 -

1500.0 0.403 -

1750.0 0.483 -

2000.0 0.555 -

2250.0 0.628 -

2500.0 0.708 -

2750.0 0.792 -

3000.0 0.871 0.88000

3250.0 0.950 -

3500.0 1.028 -

3750.0 1.103 -

4000.0 1.149 -

4250.0 1.214 -

4500.0 1.283 1.30000

4750.0 1.344 -

5000.0 1.401 -

5179.2 1.451 1.45103

5300.0 1.48000

Table A.1: The magnitude of the magnetic field of the g − 2 storage ring magnet as
measured by the Faraday magnetometer and a Metrolab device [258] at given values of
the magnet current.

A.2.3 Testing the magnetometer: mapping the B field of the Muon
g − 2 storage ring magnet

The Muon g− 2 storage ring magnet operates at a B field magnitude of 1.45 T, which

corresponds to a generated current of 5179.2 A. When ramping up the magnet to the

required current, the relationship between the current and the corresponding B field

is non-linear and must be measured at specific points to determine the field corre-

sponding to a given current. This has been done once previously using a Metrolab

device [258], which measured the B field of the storage ring magnet at the values given

in Table A.1 [259]. Below 3kA, the Metrolab is ineffective and could not measure the

field magnitude.

In order to test the magnetometer, it was used to measure the relative B field of

the storage ring magnet at different intervals of the current, which were then cross

checked against the values taken by the Metrolab. The results of the raw data taken

with the magnetometer over this exercise are shown in Figure A.6, where measurements

of the change in signal intensity were taken at intervals of 250 A ramping down from
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Fig. A.6: The data taken when using the magnetometer to measure the magnetic field
of the storage ring magnet at intervals of 250 A.

Fig. A.7: A map of the B field magnitude of the Muon g − 2 storage ring magnet
against the magnet current as measured by the Faraday magnetometer.

the nominal value of 5179.2 A to 0.0 amps.4 It is clear from this that the change

in the field magnitude is very well represented by change in the polarisation angle as

given by Malus’ Law in equation (A.2). Calculating the relative change of the B field

magnitude with respect to the polarisation angle resulted in a map of the B field from

0.0 A to 5179.2 A as shown in Figure A.7. The values of the B field at each interval

4Note that although these measurements do not provide a resolution of the magnetic field at the level
generated by the kicker plates, the magnetometer has been shown to have the sensitivity to measure
the characteristics of the kicker pulse.
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are given in Table A.1, which are compared with the available Metrolab measurements.

The magnetometer is in fairly good agreement (without errors) with the Metrolab

measurements and, therefore, provides a reliable map of the B field magnitude of

the magnet at different current intervals. Following this, it can be assumed that the

magnetometer can be used to make measurements of the kicker field strength, with the

understanding that it will provide a reliable estimate of the field magnitude and pulse

shape.

A.3 Results

A.3.1 Kicker 1

The measurements taken of the K1 pulse shape are shown in Figure A.8 and Figure A.9.

Analysing these, it is important to note that the measurements taken by both the

kicker pickup coil and the magnetometer are almost identical, confirming that the

magnetometer measurements of the kicker pulse shape are reliable. For the principle

pulse, this results in the following characteristics:

• Magnitude = 169.4± 14.1 Gauss.5

• Duration ≈ 327.0 ns.

• Pulse average ≈ 82.5 Gauss.

• Full width, half maximum ≈ 149.5 ns.

Although the principle pulse magnitude is much smaller than the required 200-280

Gauss, it was discovered some time after the measurements of K1 were made that the

TGG crystal was not radially centred between the kicker plates. This was seen in a

photo taken by the field trolley during a pass around the storage ring, as can be seen

in Figure A.10. Comparing this photo to the map of the B field magnitude associated

5Although the uncertainty on the magnitude here is much larger than required for a precision
measurement of the kicker field, understanding the magnetometer in these initial stages of use required
a conservative estimate of the corresponding error by correctly propagating the uncertainties on:

– The standard deviation of the DRSosc pulse averager.

– The uncertainty of the visual (by eye) determination DRS4 impedance correction: C = (1.82 ±
0.07).

– 2× crystal length, d = (0.022± 0.00) m.

– Wavelength of the magnetometer laser = (650± 10) nm.

– Verdet constant of TGG crystal at 650 nm: V = (−120.0± 1.1) rad T−1 m−1.

– Uncertainty of the visual (by eye) determination of the maximum signal voltage (intensity):
I0 = (2.497± 0.010) V.

The measurements of K2 and K3 have similar large errors. This was necessary it order for the mea-
surements to be reliable but could very easily reduced by improving the magnetometer system and
calculation procedure.
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(a) Time (ns) vs. magnetometer signal (mV).

(b) Time (ns) vs. kicker field magnitude (Gauss).

Fig. A.8: Measurements of the field and pulse shape of kicker 1 taken from the
magnetometer and kicker 1 pickup coil.

Fig. A.9: Measurements of the field and pulse shape of kicker 1 taken by the magne-
tometer in Gauss, where the width of the band represents the uncertainty on the field
magnitude.

with the kicker plates shown in Figure A.3, it is evident that the positioning of the

TGG crystal closer to the kicker plates could result in the magnetometer recording a

larger field magnitude than the muon beam would be subject to when centred directly

between the kicker plates. Therefore, it should be expected that the realistic B field

magnitude that the muon beam would be subject to is even smaller than 169.4 Gauss.

Having not met the required kick, it is clear this would result the muon beam not being
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Fig. A.10: A picture of the position of the TGG crystal for the measurements made
of K1 as seen by the field trolley in the radial direction of the beam.

fully displaced to the trajectory of the magic radius and would drastically impact the

muon capture efficiency.

Another point of concern here is the behaviour of the tail of the pulse after ∼ 350ns,

where the shape is erratic and oscillates between a negative and positive value for the

kicker field magnitude. Assuming a nominal B field magnitude for the kick, inputting

this unwanted secondary feature of the pulse shape into muon injection simulations

has been shown to have a large detrimental effect on the muon capture efficiency of

the experiment, reducing the number of stored muons by ∼ 35% [260]. It is therefore

imperative that the source of this behaviour be understood and, if possible, eradicated

in order to maximise the muon capture efficiency.

In order to determine whether certain environmental factors could have an influence

on the pulse shape of the kicker and contribute to either the low pulse magnitude or

the erratic tail behaviour, measurements of the pulse were taken under the following

conditions to ascertain if they caused a variation of the pulse shape:

• Different levels of supplied kicker voltage.

• Interference from other kickers pulsing simultaneously.

• Interference from the electrostatic quadrupoles pulsing simultaneously.

• Interference from the B field of the Muon g − 2 main storage ring magnet.

The results of all these tests are depicted in Figure A.11. In all cases it is evident that

the pulse shape measured in Figure A.8 and, in particular, its secondary tail behaviour

is not significantly influenced by any of these environmental factors. As such, it can be

assumed that there is no reason to believe that the behaviour observed is not a feature

of the kicker system itself. It should be noted, however, that plot (b) of Figure A.11

shows that the secondary pulse varies with the set voltage of the kicker, where the

lower voltage causes the secondary pulse to occur later in the tail. This implies that

the behaviour observed in the tail is dependent on the supplied voltage of the kick.
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(a) Varying supplied kicker voltage. (b) Varying supplied kicker voltage (scaled to
50kV kicker magnitude).

(c) Interference from other kickers. (d) Interference from quads.

(e) Effect of the B field of the storage ring
magnet.

Fig. A.11: Tests of environmental influence on the K1 pulse shape.

A.3.2 Kicker 2

For the K2 (and K3) measurements, the radial positioning of the TGG crystal that

hindered the K1 measurements was corrected and the Faraday rotator was centred

between the kicker plates as shown in Figure A.12. The measurements taken of the

K2 pulse shape are shown in Figure A.13 and Figure A.14, where it is clear that the

small magnitude and secondary tail behaviour of the pulse shape observed with K1

are features of the K2 measurements. Although the K2 pickup coil and magnetometer

signals do not match as they do for the K1 signal, it should be noted that the pickup

coil for K2 was damaged at the time of measurement and may consequently have

influenced the signal. In addition to this, the K2 measurements suffered from the
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Fig. A.12: The radially centred position of the TGG crystal for the measurements
made of K2 (and K3) as seen by the field trolley in the radial direction of the beam.

following setbacks:

1. When installing the magnetometer at the K2 position, it was discovered that a

support stand for the kicker plate blocked the central entry of the magnetometer

arm over the kicker plate. It was therefore necessary to rotate the magnetometer

clockwise by one flange bolt-hole in order to bypass the support stand. This

consequently altered the height of the TGG crystal relative to the kicker plate.

2. As the set-point voltages of the kicker GUI had not been calibrated at the time

of measurement, the measurements made of K2 were taken when the kicker was

pulsing at a voltage of ∼ 62 kV.

Bearing these hindrances in mind, for the principle pulse, the results for K2 were:

• Magnitude = 134.9± 12.5 Gauss.

• Duration ≈ 353.8 ns.

• Pulse average ≈ 60.4 Gauss.

• Full width, half maximum ≈ 145.2 ns.

A.3.3 Kicker 3

The measurements taken of the K3 pulse shape are shown in Figure A.15, where again

the undesirable magnitude tail behaviour of the pulse seen in the measurements of K1

and K2 is also a feature of the K3 pulse shape. The measurements for K3 were taken

at the correct position and at the nominal kicker voltage of 55 kV, making these the

most reliable measurements of the true nature of the kicker field from the data of all

three kickers in this work. The characteristic properties of the K3 principle pulse are:

• Magnitude = 124.4± 10.9 Gauss.

• Duration ≈ 463.9 ns.
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(a) Time (ns) vs. magnetometer signal (mV.) (b) Time (ns) vs. kicker field magnitude
(Gauss).

Fig. A.13: Measurements of the field and pulse shape of K2 taken from the magne-
tometer and K2 pickup coil.

Fig. A.14: Measurements of the field and pulse shape of K2 taken by the magne-
tometer in Gauss, where the width of the band represents the uncertainty on the field
magnitude.

(a) Time (ns) vs. magnetometer signal (mV.) (b) Time (ns) vs. kicker field magnitude
(Gauss). The width of the band represents the
uncertainty on the field magnitude.

Fig. A.15: Measurements of the field and pulse shape of K3 made using the magne-
tometer.
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(a) Not scaled.

(b) Scaled to kicker 3 principle pulse magnitude.

Fig. A.16: A comparison of the pulse shapes of all three kickers.

• Pulse average ≈ 57.9 Gauss.

• Full width, half maximum ≈ 147.8 ns.

A.3.4 Comparing all three kickers

The comparison of the measured kicker pulse shapes of all three kickers is shown in

Figure A.16, where plot (a) shows the unaltered comparison of the measurements and

plot (b) compares the pulse shapes with all three measurements have been scaled to

the principle pulse magnitude of K3. It should first be noted that, once scaled, the

principle pulse shapes of all kickers are remarkably similar. However, this similarity

continues into the tail, where the erratic negative behaviour is a prominent feature of

all three kicks. Referring to the muon injection simulation using this pulse shape [260]

implies that at the nominal voltage for all three kickers, the muon capture efficiency of

the system as a whole is incurring a reduction of 35% due solely to this feature. As this

secondary behaviour seems to oscillate between a positive and negative field value, the

implication of the source of this behaviour point towards an impedance mismatch in the

transmission of the pulse. It has been suggested that an impedance mismatch at the end

of the blumlein could cause a reflection of the pulse back towards the thyratron [261].

Should a reflected voltage pass back to the thyratron, this could trigger a secondary
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pulse and result in the pulse shape observed. This is (in part) supported by plot (b)

of Figure A.11, where it is observed that the secondary pulse occurs sooner at a higher

voltage, implying a dependence of the tail on the voltage.

A.4 Future improvements and conclusions

The Faraday magnetometer has been shown to be a useful tool in measuring the kicker

field and pulse shape. It has been used to measure the properties of all three kicker

plates. Moving forward, the measurements for all three kickers must be redone to

improve their accuracy. Particularly, a digitiser other than the DRS4 should be used

to record the signal, such that the dominant uncertainty due to this would therefore

be removed. Indeed, an effort should be made to better understand the contributing

uncertainties of all aspects of the magnetometer measurements in order to reliably

minimise them. In addition, kicker 1 must be re-measured to account for the previous

undesirable radial positioning of the TGG crystal between the kicker plates and kicker

2 must be re-measured at the nominal voltage.

Of particular importance are the magnitudes and secondary tail behaviour of the

pulse shape of all three kickers, where the measurements taken here have been shown

through simulation to have a detrimental effect of the muon capture efficiency. Being

features of all three kickers and seemingly not due to an environmental factor influencing

the shape, it is apparent that these effects are due to one or more elements of the kicker

system itself. Above all, the magnitude of the kickers must be addressed in order to

meet the requirements of the TDR and maximise the muon capture efficiency. These

effects are currently being studied in great detail to ensure that resolutions to the

issues are found and implemented in time for the high statistics data-taking period at

Fermilab that is due to start in the very near future.

122



Appendix B

KLOE combination data
KLOE combination

s(GeV2) σ0
ππ(γ)(nb) |F (π)|2 s(GeV2) σ0

ππ(γ)(nb) |F (π)|2

0.105 47.27 ± 8.41 1.74 ± 0.31 0.535 1154.56 ± 6.81 35.96 ± 0.21
0.115 70.65 ± 10.44 2.04 ± 0.30 0.545 1207.69 ± 6.83 38.20 ± 0.22
0.125 80.13 ± 10.97 2.00 ± 0.27 0.555 1243.32 ± 10.13 39.94 ± 0.33
0.135 80.42 ± 11.27 1.82 ± 0.26 0.565 1285.35 ± 7.14 41.92 ± 0.23
0.145 87.58 ± 11.70 1.86 ± 0.25 0.575 1277.36 ± 7.32 42.29 ± 0.24
0.155 102.88 ± 12.35 2.10 ± 0.25 0.585 1279.89 ± 7.31 42.98 ± 0.25
0.165 115.16 ± 13.85 2.29 ± 0.28 0.595 1274.03 ± 10.32 43.27 ± 0.35
0.175 122.58 ± 13.42 2.40 ± 0.26 0.605 1228.97 ± 12.29 42.18 ± 0.42
0.185 126.19 ± 12.61 2.45 ± 0.24 0.615 950.47 ± 20.95 34.85 ± 0.77
0.195 146.34 ± 14.10 2.84 ± 0.27 0.625 803.87 ± 4.65 29.94 ± 0.17
0.205 144.18 ± 13.35 2.80 ± 0.26 0.635 781.82 ± 4.39 29.24 ± 0.16
0.215 147.47 ± 12.68 2.88 ± 0.25 0.645 731.86 ± 5.74 27.61 ± 0.22
0.225 154.64 ± 11.98 3.04 ± 0.24 0.655 679.26 ± 3.93 25.90 ± 0.15
0.235 170.47 ± 12.40 3.39 ± 0.25 0.665 620.73 ± 3.46 23.93 ± 0.13
0.245 168.96 ± 11.53 3.40 ± 0.23 0.675 569.26 ± 4.63 22.20 ± 0.18
0.255 176.55 ± 10.84 3.60 ± 0.22 0.685 518.39 ± 5.62 20.45 ± 0.22
0.265 202.38 ± 11.63 4.18 ± 0.24 0.695 471.79 ± 2.69 18.82 ± 0.11
0.275 203.28 ± 10.70 4.26 ± 0.22 0.705 431.19 ± 2.44 17.39 ± 0.10
0.285 215.28 ± 10.60 4.58 ± 0.23 0.715 386.51 ± 3.21 15.76 ± 0.13
0.295 225.63 ± 10.46 4.87 ± 0.23 0.725 356.81 ± 2.03 14.70 ± 0.08
0.305 236.90 ± 10.49 5.19 ± 0.23 0.735 327.36 ± 1.91 13.63 ± 0.08
0.315 244.65 ± 10.11 5.45 ± 0.23 0.745 299.08 ± 1.96 12.59 ± 0.08
0.325 248.45 ± 9.83 5.62 ± 0.22 0.755 273.28 ± 1.80 11.62 ± 0.08
0.335 255.64 ± 9.62 5.88 ± 0.22 0.765 249.34 ± 1.45 10.71 ± 0.06
0.345 280.05 ± 9.46 6.54 ± 0.22 0.775 228.91 ± 1.94 9.93 ± 0.08
0.355 305.24 ± 4.55 7.24 ± 0.11 0.785 211.31 ± 1.27 9.26 ± 0.06
0.365 330.21 ± 7.67 7.96 ± 0.18 0.795 196.17 ± 1.36 8.68 ± 0.06
0.375 349.58 ± 4.60 8.56 ± 0.11 0.805 183.29 ± 1.08 8.19 ± 0.05
0.385 376.70 ± 4.63 9.37 ± 0.12 0.815 170.45 ± 1.00 7.69 ± 0.05
0.395 400.82 ± 4.57 10.12 ± 0.12 0.825 157.72 ± 1.09 7.19 ± 0.05
0.405 433.99 ± 6.28 11.13 ± 0.16 0.835 146.52 ± 0.95 6.74 ± 0.04
0.415 465.70 ± 4.79 12.13 ± 0.12 0.845 136.86 ± 0.79 6.36 ± 0.04
0.425 506.53 ± 4.87 13.39 ± 0.13 0.855 126.97 ± 0.78 5.95 ± 0.04
0.435 544.42 ± 4.84 14.61 ± 0.13 0.865 119.05 ± 0.89 5.63 ± 0.04
0.445 585.65 ± 5.04 15.95 ± 0.14 0.875 111.33 ± 0.83 5.31 ± 0.04
0.455 640.09 ± 7.95 17.69 ± 0.22 0.885 104.92 ± 1.81 5.05 ± 0.09
0.465 691.86 ± 7.66 19.41 ± 0.21 0.895 98.60 ± 0.59 4.79 ± 0.03
0.475 740.82 ± 8.20 21.09 ± 0.23 0.905 93.05 ± 0.56 4.56 ± 0.03
0.485 822.23 ± 5.82 23.75 ± 0.17 0.915 87.66 ± 0.74 4.33 ± 0.04
0.495 895.61 ± 17.85 26.26 ± 0.52 0.925 82.76 ± 0.49 4.13 ± 0.02
0.505 953.15 ± 13.08 28.36 ± 0.39 0.935 78.84 ± 0.65 3.96 ± 0.03
0.515 1032.72 ± 6.28 31.20 ± 0.19 0.945 74.74 ± 0.64 3.79 ± 0.03
0.525 1078.01 ± 8.23 33.06 ± 0.25 - - -

Table B.1: The combined KLOE measurement of the π+π−γ(γ) bare cross section
and pion form factor in 0.01 GeV2 intervals from 0.10 < s < 0.95 GeV2. Here, s denotes
the bin centre. For both σ0

ππ(γ) and |F (π)|2, the error shown is the total (statistical

and systematic) uncertainty.
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Appendix C

Determination of α(M2
Z)

The value of the effective QED coupling at the Z boson mass, α(M2
Z), is the least

precisely known of the three fundamental EW parameters of the SM (the Fermi constant

GF , MZ and α(M2
Z)) and hinders the accuracy of EW precision fits. The uncertainty of

α(M2
Z) is dominated by the five-flavour hadronic contribution, ∆α

(5)
had(M2

Z), which (as

with the hadronic contributions to aµ) cannot be determined reliably using pQCD in the

low energy regime and depends on experimentally measured hadronic cross section data.

Following from the discussion of the VP corrections in Section 2.1.1, the five-flavour

hadronic contribution to the QED coupling at the Z boson mass can be evaluated using

the dispersion relation

∆α
(5)
had(M2

Z) = −
αM2

Z

3π
P

∫ ∞
sth

ds
R(s)

s(s−M2
Z)
. (C.1)

The integral must be evaluated for the given energy range including the principal value

s = M2
Z , where the integrand in equation (C.1) is not well defined. The data input for

R(s) is identical to that used to determine ahad,LO VP
µ and ahad,NLO VP

µ , except for the

contribution from pQCD. The physical rapid variations that are part of the hadronic

spectrum in the regions of flavour thresholds are not present in the pQCD determination

of R(s) as calculated by rhad [238]. For ∆α
(5)
had(M2

Z), to ensure that the contributions

from the top quark threshold are not neglected, rhad is used to estimate R(5)(s) above

11.1985 GeV using only five active quark flavours. The top quark contributions are

evaluated separately [62].

Due to the form of the integrand in equation (C.1), the integration procedure re-

quires greater care than the trapezoidal rule integral utilised for ahad,LO VP
µ . The be-

haviour of the kernel function −1/
(
s(s − M2

Z)
)

is shown in Figure C.1, where the

nature of the principal value itself clearly indicates that the linear trapezoidal rule

integral would provide a poor representation of the integrand and, consequently, an

unreliable estimate of ∆α
(5)
had(M2

Z). Therefore, defining an interval ε to be some safe

distance away from the principal value s = M2
Z , the integral over R(s) is determined

individually over four energy regions:
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Fig. C.1: The behaviour of the function −1/
(
s(s −M2

Z)
)

at the principal value s =

M2
Z , which is present in the integrand of the dispersion relation for ∆α

(5)
had(M2

Z). The
behaviour of R(s) in the same region is also plotted for reference. The value s = M2

Z

is indicated by the dashed line.

• m2
π ≤ s ≤ (M2

Z−ε): this region is evaluated using the trapezoidal rule integration

described in Section 2.5.

• (M2
Z − ε) ≤ s ≤ (M2

Z + ε): to determine the principal value region, an itera-

tive Gauss-Legendre integral is used. In this approach, the Lagrange polynomial

interpolation provides a better and more accurate representation of the rapidly

changing function than the linear approximation. The integration is performed it-

eratively where, at each stage, corresponding intervals either side of the principal

value that are successively smaller and closer to the principal value are evalu-

ated and summed. This is repeated until the integral converges to a well-defined

solution.

• (M2
Z + ε) ≤ s ≤ (1000.1985 GeV)2: this region is evaluated using the trapezoidal

rule integration described in Section 2.5.

• (1000.1985 GeV)2 ≤ s ≤ ∞: the contribution to the dispersion integral above

the pQCD cut-off and up to s = ∞ is not negligible as it is for ahad,LO VP
µ .

However, it can be estimated using the knowledge that, in this region, R(s) is

approximately constant. If from pQCD, smax = (1000.1985 GeV)2, then in the

range smax ≤ s ≤ ∞, the dispersion relation in equation (C.1) is then given by

∆α
(5)
had(M2

Z)[smax ≤ s ≤ ∞] ' −
αM2

Z

3π
R(smax)

∫ ∞
smax

ds
1

s(s−M2
Z)
. (C.2)
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Evaluating the integral by making the substitution u = 1/s results in

∆α
(5)
had(M2

Z)[smax ≤ s ≤ ∞] ' α

3π
R(smax) ln

(
|(M2

Z/smax)− 1|
)
, (C.3)

which can be safely evaluated.

As all contributions to ∆α
(5)
had(M2

Z) above the principal value are negative due to the

form of the kernel function displayed in Figure C.1, the correlation between data above

and below s = M2
Z results in a reduction in the total uncertainty. In the case of R(s)

determined in this work, this is true for the correlated uncertainties from pQCD above

11.1985 GeV. This is fully accounted for in the determination of ∆α
(5)
had(M2

Z).

Table C.1 lists all contributions from individual channels contributing to ∆α
(5)
had(M2

Z),

with the corresponding total. From the sum of these contributions, the estimate for

∆α
(5)
had(M2

Z) is

∆α
(5)
had(M2

Z) = (276.11± 0.26stat ± 0.68sys ± 0.14vp ± 0.83fsr)× 10−4

= (276.11± 1.11tot)× 10−4 . (C.4)

The errors from the individual channels and sources of uncertainty are added in quadra-

ture to determine the total error. The fractional contributions to the total mean value

and uncertainty of ∆α
(5)
had(M2

Z) from various energy intervals is shown in Figure C.2.

Notably, in comparison with Figure 4.24, the pie chart depicting the fractional con-

tributions to the (error)2 of ∆α
(5)
had(M2

Z) reveals how the uncertainty on this quantity

is dominated by the contributions from the radiative correction uncertainties. Mostly,

this large error contribution comes from the uncertainty due to possible FSR applied to

the inclusive data above 1.937 GeV. This, in particular, highlights the differences in the

kernel functions of the respective dispersion integrals for ahad,LO VP
µ and ∆α

(5)
had(M2

Z),

where contributions from higher energies have a larger influence on ∆α
(5)
had(M2

Z) than

on ahad,LO VP
µ . If, instead of a data driven analysis, the region above 1.937 GeV was

estimated using pQCD, it would effectively eliminate the impacting radiative correction

uncertainties in this region.

Combining equation (C.4) with the leptonic contribution ∆αlep(M2
Z) = (314.979±

0.002)×10−4 [59,60] and the contribution due to the top quark ∆αtop(M2
Z) = (−0.7180±

0.0054) × 10−4 [61, 62], the total value of the QED coupling at the Z boson mass is

found in this work to be

α−1(M2
Z) =

(
1−∆αlep(M2

Z)−∆α
(5)
had(M2

Z)−∆αtop(M2
Z)
)
α−1

= 128.946± 0.015 . (C.5)

A comparison of these results with other determinations of ∆α
(5)
had(M2

Z) and α−1(M2
Z)

is given in Table C.2. The smaller error of the DHMZ17 analysis [45] is a further

indication that the choice to use either the available inclusive data or pQCD above ∼ 2

GeV can have a large impact. In [45], the choice to use pQCD in this region reduces

the total uncertainty compared to the estimate found in this analysis.
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Channel Energy range (GeV) ∆α
(5)
had(M2

Z)× 104

Chiral perturbation theory (ChPT) threshold contributions
π0γ mπ ≤

√
s ≤ 0.600 0.00± 0.00

π+π− 2mπ ≤
√
s ≤ 0.305 0.01± 0.00

π+π−π0 3mπ ≤
√
s ≤ 0.660 0.00± 0.00

ηγ mη ≤
√
s ≤ 0.660 0.00± 0.00

Data based channels (
√
s ≤ 1.937 GeV)

π0γ 0.600 ≤
√
s ≤ 1.350 0.36± 0.01

π+π− 0.305 ≤
√
s ≤ 1.937 34.26± 0.12

π+π−π0 0.660 ≤
√
s ≤ 1.937 4.77± 0.08

π+π−π+π− 0.613 ≤
√
s ≤ 1.937 4.02± 0.05

π+π−π0π0 0.850 ≤
√
s ≤ 1.937 5.00± 0.20

(2π+2π−π0)no η 1.013 ≤
√
s ≤ 1.937 0.33± 0.03

3π+3π− 1.313 ≤
√
s ≤ 1.937 0.09± 0.01

(2π+2π−2π0)no ηω 1.322 ≤
√
s ≤ 1.937 0.51± 0.06

K+K− 0.988 ≤
√
s ≤ 1.937 3.37± 0.03

K0
SK

0
L 1.004 ≤

√
s ≤ 1.937 1.77± 0.03

KKπ 1.260 ≤
√
s ≤ 1.937 0.89± 0.04

KK2π 1.350 ≤
√
s ≤ 1.937 0.75± 0.03

ηγ 0.660 ≤
√
s ≤ 1.760 0.09± 0.00

ηπ+π− 1.091 ≤
√
s ≤ 1.937 0.39± 0.02

(ηπ+π−π0)no ω 1.333 ≤
√
s ≤ 1.937 0.21± 0.05

η2π+2π− 1.338 ≤
√
s ≤ 1.937 0.03± 0.00

ηω 1.333 ≤
√
s ≤ 1.937 0.10± 0.01

ω(→ π0γ)π0 0.920 ≤
√
s ≤ 1.937 0.19± 0.00

ηφ 1.569 ≤
√
s ≤ 1.937 0.15± 0.01

φ→ unaccounted 0.988 ≤
√
s ≤ 1.029 0.01± 0.01

ηωπ0 1.550 ≤
√
s ≤ 1.937 0.14± 0.04

η(→ npp)KK̄no φ→KK̄ 1.569 ≤
√
s ≤ 1.937 0.00± 0.01

pp̄ 1.890 ≤
√
s ≤ 1.937 0.01± 0.00

nn̄ 1.912 ≤
√
s ≤ 1.937 0.01± 0.00

Estimated contributions (
√
s ≤ 1.937 GeV)

(π+π−3π0)no η 1.013 ≤
√
s ≤ 1.937 0.16± 0.01

(π+π−4π0)no η 1.313 ≤
√
s ≤ 1.937 0.08± 0.08

KK3π 1.569 ≤
√
s ≤ 1.937 0.02± 0.01

ω(→ npp)2π 1.285 ≤
√
s ≤ 1.937 0.03± 0.01

ω(→ npp)3π 1.322 ≤
√
s ≤ 1.937 0.06± 0.01

ω(→ npp)KK 1.569 ≤
√
s ≤ 1.937 0.00± 0.00

ηπ+π−2π0 1.338 ≤
√
s ≤ 1.937 0.03± 0.02

Other contributions (
√
s > 1.937 GeV)

Inclusive channel 1.937 ≤
√
s ≤ 11.199 82.82± 1.05

J/ψ - 7.07± 0.22
ψ′ - 2.51± 0.06
Υ(1S − 4S) - 1.06± 0.02
pQCD 11.199 ≤

√
s ≤ ∞ 124.79± 0.10

Total mπ ≤
√
s ≤ ∞ 276.11± 1.11

Table C.1: Summary of the contributions to ∆α
(5)
had(M2

Z) calculated in this analysis.
The first column indicates the hadronic final state or individual contribution, the second
column gives the respective energy range of the contribution and the third column states

the determined value of ∆α
(5)
had(M2

Z). The last row describes the total contribution
obtained from the sum of the individual final states, with the uncertainties added in
quadrature.
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Fig. C.2: Pie charts showing the fractional contributions to the total mean value

(left pie chart) and (error)2 (right pie chart) of ∆α
(5)
had(M2

Z) from various energy inter-

vals. The energy intervals for ∆α
(5)
had(M2

Z) are defined by the boundaries mπ, 0.6, 0.9,
1.43, 2.0, 4.0, 11.2 and ∞ GeV. The (error)2 includes all experimental uncertainties
(including all available correlations) and local χ2

min/d.o.f. inflation. The fractional con-
tribution to the (error)2 from the radiative correction uncertainties are shown in black
and indicated by ‘rad.’.

Analysis ∆α
(5)
had(M2

Z)× 104 α−1(M2
Z)

DHMZ10 [51] 275.59± 1.04 128.952± 0.014
HLMNT11 [21] 276.26± 1.38 128.944± 0.019
FJ17 [262] 277.38± 1.19 128.919± 0.022
DHMZ17 [45] 276.00± 0.94 128.947± 0.012
KNT18 [This work] 276.11± 1.11 128.946± 0.015

Table C.2: Comparison of recent and previous evaluations of ∆α
(5)
had(M2

Z) determined
from e+e− → hadrons cross section data and the corresponding results for α−1(M2

Z).
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