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Abstract

The anomalous magnetic moment of the muon, a, = (g —2),/2, stands as an enduring
test of the Standard Model (SM), where the ~ 3.50 (or higher) discrepancy between the
experimental measurement aj, = and the SM prediction aEM could be an indication of the
existence of new physics beyond the SM. This work presents a complete re-evaluation
of the hadronic vacuum polarisation contributions to the anomalous magnetic moment
of the muon, aﬁadNP, from a combination of available eTe~ — hadrons cross section
data as input in a predominantly data driven analysis. Focus has been placed on the
development of a new data combination method, that has been advocated to be free
of bias and allows for the full use of any available correlated statistical and systematic
uncertainties into the determination of both the resulting mean value and corresponding
error.

In a related work, the three precision measurements of the cross section a(e+e_ —
7T+7T_’}/(’y)) using initial state radiation by the KLOE collaboration provide an im-
portant input for the prediction of the hadronic contribution to the anomalous mag-
netic moment of the muon. These measurements are correlated for both statistical
and systematic uncertainties and, therefore, the simultaneous use of these measure-
ments requires covariance matrices that fully describe the correlations. The con-
struction of these matrices has allowed for the determination of a combined KLOE

+

measurement for U(e e~ — 7r+7r_7(7)) and yields a two-pion contribution to the

muon magnetic anomaly in the energy range 0.3162 < /s < 0.9747 GeV of af”_ =
(489.8 & 1.7g¢at & 4.85ys) x 10710,

For the full calculation of azad’ LOVE and azad’ NLOVFP 211 available e*e~ — hadrons
cross section data have been analysed and included, where the new data compilation
has yielded the full hadronic R-ratio and its covariance matrix in the energy range
my < /s < 11.2 GeV. Using these combined data and pQCD above that range results
in estimates of the hadronic vacuum polarisation contributions to g — 2 of the muon of
ap P EOVE — (693.26 + 2.46) x 10710 and aptNOVP = (-9.82 4 0.04) x 10710, The
new estimate for the Standard Model prediction is found to be aEM = (11 659 182.04 +
3.56) x 10710 which is 3.7 below the current experimental measurement. Detailed
comparisons with results from similar related works are given, as well as discussions of

the prospects for improving the calculation of these contributions in the future.
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Chapter 1

Introduction

The anomalous magnetic moment of the muon, a, = (g — 2),/2, stands as an endur-
ing test of relativistic quantum field theories. In particular, it provides the ability to
rigorously scrutinise the theories of quantum electrodynamics (QED) and, indeed, the
Standard Model (SM). There exists an ~ 3.50 (or higher) discrepancy between the
experimental measurement ay, = and the SM prediction aEM. The experimental mea-
surement of a,, as an observable, manifestly includes the effects from all contributing
physical processes, whether they originate from the SM or new physics. Consequently,
the current deviation between experiment and theory could be an indication of the
existence of new physics beyond the SM. With extensive efforts currently being made
to improve the experimental estimate, it is imperative that the SM prediction is also
improved to determine whether the g — 2 discrepancy is well established.

The magnetic moment i of an elementary charged particle depends on the spin

S = %6’ (where & are the Pauli matrices) of the particle, defined by the relation?

[ —

P— % .G
K 2mg

(1.1)

Here, e is the electric charge, m is the mass of the particle and ¢ is the gyromagnetic
factor which describes the strength of the coupling of the spin to the magnetic moment.
The Dirac equation, following from Dirac’s theory describing the interaction of the
electron with the photon [1,2], implies that g = 2 for fermions (|S] = 3). At tree-level,
this implication holds. However, relativistic quantum field theories such as QED and the
SM require the inclusion of the effects from higher order processes, commonly known as
radiative corrections. These corrections provide contributions to g, therefore causing a
deviation from g = 2. This deviation, denoted as a, is the anomalous magnetic moment
and describes the contributions from all higher order SM processes that contribute to

the gyromagnetic factor and, therefore, to the magnetic moment fi.

!The use of natural units, i = ¢ = 1, will be assumed throughout this work, unless specifically
stated.



1.1 The anomalous magnetic moment

At tree-level, the general form of the vertex function I'" describing the electromagnetic

interaction of a lepton and a photon is given by

1-“lgree-level(kjl’ k2) = = *7;67# . (12)

k1 ko

Here, p is a Lorentz index, k represent the fermion momenta, v* are the Dirac gamma
matrices and e is the QED charge. The contribution to the gyromagnetic ratio from
this diagram is precisely the Dirac prediction, ¢ = 2. In QED, the physical vertex

function I'* encapsulates all higher order effects. It is given by

T# (k) =
Ll

k1 ko

= + + ... (1.3)

which is the sum of all one-particle-irreducible (1PI) diagrams to all orders. The anoma-
lous magnetic moment describes the total contribution to g from all the corresponding
1PI diagrams of one-loop order and higher, as will be shown in the following.

The matrix element for the QED interaction in equation (1.3) is
IMH = —z’eﬂ(kg)F“(kl, kjg)u(kl) . (14)

In general, ¢> = (ko — k1)? # 0 and k? = k3 = m?, where ¢ is the momenta of the
external photon and m denotes the fermion mass. In order for the vertex function to
transform as a Lorentz four-vector, the vertex function I'* can be constructed from any
linear combination of the four-vectors v, k)" and kf. Making the choice to use the

combinations k4 + k| and ki — kf', the vertex function can be written as
T (ky, ke) = /P A+ (K + KB + (K2 — K9)C (1.5)

where, in general, A, B and C' can be considered as matrices involving k| and k.

However, as the vertex function always appears in between the on-shell spinors @(ks)

2



and u(k1) (as in equation (1.4)), the on-shell spinor identities, fu(k) = mu(k) and
af = u(k)m, imply that A, B and C are scalar functions of ¢> (or m). Imposing the
Ward identity ¢, = 0, only the first two terms in equation (1.5) vanish, implying
that C' = 0 for the Ward identity to hold. Finally, using the Gordon decomposition

1 , Y
(ko) Y u(ky) = %ﬁ(kg) [k:f + kb + ig,o* ]u(kl) , (1.6)
the general form of the QED vertex function can be expressed as

ot qy,

T (ky, ko) = —ie [’V“Fl(qz) +—— Fz(qQ)] , (1.7)

where oM = %[’y“,*y”]. The quantities F(¢?) and Fy(q?) correspond to the surviving
scalar functions A and B and are known as form factors. Fy(q?) is the electric charge
form factor, which describes the radiative corrections to the electric charge of the
fermion. Therefore, in the limit that ko — k1 = ¢ — 0, it follows that F;(0) = 1 exactly.

Assuming this and taking the non-relativistic limit of an interaction with a classical

electromagnetic field A, the vertex is described by the Dirac equation in the form

F5(0
(’y”(@u—ieAu)—m%—e 2( )FMVO"W/>w:O. (1.8)
In this limit, the effective Hamiltonian is
Lo e o, ¢ =73

where p'is the momentum of the fermion and B is an external magnetic field. The last
term in equation (1.9) corresponds to the magnetic interaction potential, U = —[i - B.

Comparing this with the definition of the magnetic moment in equation (1.1),

- e - e = = e -
—i-B=—(1+F 0.B=—¢gS.B=—¢go.B 1.1
il 5 (14 F2(0))7 5,95 2978 (1.10)
implies
g=2+2F0). (1.11)

The form factor F5(0) is precisely the anomalous magnetic moment induced by higher
order 1PI diagrams that cause the gyromagnetic factor to deviate from the Dirac (tree-
level) prediction of g = 2. Rearranging equation (1.11) reveals the standard form of

the anomalous magnetic moment,

a = Fy(0) = %. (1.12)

The lowest order contribution to a comes from the one-loop diagram of a virtual



photon exchange between the two fermion lines. The Feynman rules give

(ki ko) =
HHoop ki+1 ko +1

v p
k1 )

3/ ' iR+ D+ m (iR + D +m)y g,
2m)* (k2 +1)2 = m? —ie) (k1 + )2 — m? — ie) (12 —ie)
(1.13)

For all leptons (I = e, i, 7), the evaluation of this integral results in a one-loop ((’)(a))

contribution to the anomalous magnetic moment of

62 «

1-1 1-1
al oop _ F2 OOp(O) — 8? — §7 (114)

where o = a(0) = e?/4r is the fine structure constant and, therefore,
el
91—loop = 24 ; . (115)

This result was first determined as the one loop contribution to the anomalous magnetic
moment of the electron in 1948 by Schwinger [3], where he found a. = 0.001162.
This was a fundamental success of relativistic quantum field theories, being the first
prediction of the higher order effects that arise from the renormalisation of QED [4-6].
This, coupled with the first experimental measurements of g, = 2.00238 £+ 0.00010 by
Kusch and Foley [7,8] in the same year, demonstrated the validity of QED and its

prediction of the effects from radiative corrections.

1.2 The anomalous magnetic moment of the muon, q,

Although the current predictions [9] and measurements [10,11] of the electron anomaly
a. are the most precisely known physical quantities to date, the muon, due to its larger
mass, is more sensitive to the possibility of new physics at higher energy scales [12]. For
a particle with mass M >> m; (where m; is the lepton mass), the contribution from
this particle to a; is proportional to (m;/M)?, such that the ratio of the contribution

to the muon anomaly and the electron anomaly is

ay’ (/M) <mu>2, (1.16)

Mme

all " (me/M)?

making the muon ~ 4 x 10* times more sensitive to the effects from heavy particles
than the electron. This being the case, the motivation to both theoretically predict and

experimentally measure a, to a high precision is highly compelling. The anomalous

4



magnetic moment of the muon (muon g — 2) receives contributions from all sectors of
the SM

a, = aSED + aEW + azad, (1.17)

where the superscripts ‘EW’ and ‘had’ indicate the contributions from the electroweak
and hadronic sectors respectively. Consequently, should the comparison of both theory
and experiment yield results in clear agreement, the success of the SM would be further
consolidated. However, should there exist a discrepancy between the SM prediction aiM
and the experimental measurement aj, , this could be an indication of the contribution
of the existence of physics beyond the SM (BSM). In this case,

a, = a/(%ED + aEW + aﬁad + CLE’SM . (1.18)

In the following, the current status of a;; © and aiM are presented, with details given on

the efforts to reduce the uncertainty on both estimates in order to provide a meaningful

comparison.

1.2.1 The experimental measurement of a,: current status

The experimental measurements of the anomalous magnetic moment of the muon
are dominated by the measurements made at the Brookhaven National Laboratory
(BNL) [13-15], resulting in a world average of [16]

S = 11 659 209.1 (5.4)stat (3.3)sys x 10717, (1.19)

where the uncertainties given are the statistical and systematic uncertainties respec-
tively. With the uncertainties of the BNL measurements being statistically dominated,
efforts to improve the experimental estimate at Fermilab (FNAL) [17] aim to increase
the statistics of the new measurement by a factor of ~ 20 compared to those from BNL
and reduce the overall experimental uncertainty by a factor of four compared to equa-
tion (1.19). Following the same methodology as the Brookhaven measurements, the
Muon g — 2 experiment at FNAL will produce and store muons in order to measure two
frequencies: the frequency w, at which the muon spin (polarisation) turns relative to
its momentum and the value of the magnetic field normalised to the Larmor frequency
of a free proton, wy,.

Assuming a perfect vertical magnetic field, with a muon on the ideal orbit, the
anomalous frequency &, is defined in terms of the spin frequency &g and the cyclotron
frequency Wo as

Wy = Wg — Gc (1.20)
In the absence of any other external fields,

. = Qe 5
=—g—B—-(1—-~v)—B 1.21
Os = 95~ ( ’Y)Wm (1.21)
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Fig. 1.1: The spin precession of muons as utilised by the Muon g — 2 experiment in
order to measure a,. This graphic has been taken from [18].

and

G = —@E, (1.22)
my

where () = 41 is the electric charge, B is the external magnetic field and ~ is the

relativistic Lorentz factor. Therefore,?

wa—ws—wc——< (1.23)
Here, it is observed that should g = 2 exactly, then it would follow that &g = o such
that the muon spin would precess with the same frequency as the orbital frequency.
Consequently, it can be seen that &, has two important features: it depends only on
the anomaly rather than the full magnetic moment and that it depends linearly on
the applied magnetic field. This is depicted in Figure 1.1. Therefore, to determine a,
requires the experiment to measure &, and the magnetic field averaged over the muon
beam distribution, (B).

The direct measurement of these properties requires the production and storage of
muons. A diagram of the experimental setup is shown in Figure 1.2, where (from [17])

the experiment itself consists of the following steps:
1. Production of an appropriate pulsed proton beam by an accelerator complex.
2. Production of pions using this proton beam.

3. Polarised muons are then produced from the decay 7+ — ptu,.

2As these equations assume a perfect vertical magnetic field, they are only approximations of the
real behaviour of the muons inside the field. In reality, the field has longitudinal components which
have an effect on the spin precession. This is accounted for in the experiment by assigning a systematic
error due to the longitudinal field components.



4. To ensure a cleaner delivery of muons to the experiment than at BNL, the beam
is then transported to a delivery ring. The beam circulates the delivery ring four
times. During the first three rotations, essentially all remaining pions will decay
to muons and any remaining heavier (slower) protons will naturally separate from

the muons. This allows them to be safely removed from the beam by a kicker.
5. Transport of the muon beam into a storage ring.
6. Injection of the muon beam into the storage ring.
7. Kicking of the muon beam onto stored orbits.

8. Measuring the arrival time and energy of positrons from the muon decay p*™ —

et D, Ve.
9. Precise mapping and monitoring of the precision magnetic field.

In order for the muon beam to be confined to the storage ring requires the use of an
electric quadrupole field to provide vertical focusing. This introduces a new term to
equation (1.23), where relativistic particles feel a motional magnetic field proportional
to 5 x E. Here, 5 denotes the muon velocity and E is the electric field. Therefore,

assuming that the velocity is transverse to the magnetic field (5 - B = 0), the equation

for &, including the electric field reads

— 1 gxﬁ
auB—<au— 72_1> :

The dependence on E requires a detailed knowledge of the electric field. Therefore, the

(1.24)

experiment employs the fact that the electric field term vanishes when the experiment
operates at the “magic” momentum pmagic >~ 3.09 GeV/c (Ymagic >~ 29.3), such that a, —
—+— = 0 to leading order and the electric field does not contribute to the measurement
of a.

The measurement of the averaged magnetic field allows the determination of w,
from

wp = 2415\ B (1.25)

where p1,, is the magnetic moment of the proton. From this, the anomalous magnetic

moment of the muon can be determined from

Wa/Wp
a, = 1.26
: ,U;ﬁ/lup — Wa/wp ( )

where i+ /1y is the measured ratio of the muon and proton magnetic moments [19].
Achieving the required 20 times improvement in the overall statistics than those
from BNL places harsh targets on the overall beam dynamics and magnetic field data.

All contributing systems must function with the desired effectiveness both individually

7
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Fig. 1.2: The production, injection and storage of muons for the Muon g — 2 experi-
ment. This graphic has been taken from [18].

and together for the experiment to achieve this high statistics goal. The kicker system,
for example, should deliver a flat magnetic pulse of 200-280 Gauss over 120ns to the
muon beam in order to steer the muons onto the trajectory of the ideal orbit. To
determine the effectiveness of the kicker field, a Faraday magnetometer was used to
measure the kicker field and pulse shape. This has allowed detailed studies to be done
into the performance of the kickers in order to maximise the muon capture efficiency
and, therefore, obtain the desired statistics. Details of this work can be found in
Appendix A.

In addition, a new experiment at J-PARC [20] is set to provide an independent
measurement of a, " using an alternative approach to that of BNL/FNAL. To avoid
the need for the electrostatic quadrupoles to focus the muon beam as with the Fermilab
experiment, the J-PARC experiment will produce and store ultra-cold, slow muons in
a homogeneous magnetic field. The slow muons will have extremely low emittance (i.e.
low average spread of particles in the beam) due to their low momenta and, therefore,
only very weak focusing by a magnetic field is required to confine the particle beam
without significant muon losses. Consequently, the beam does not require vertical
focusing from an electric field and the term proportional to BxEin equation (1.24)
is omitted. In this way, E =0 for any v, removing the requirement on the energy
of the stored muons entirely. This experiment will provide an alternative experiment
measurement of a,, by still employing equation (1.26), but with a largely different set

of experimental uncertainties compared to the FNAL experiment.

1.2.2 The SM prediction of a,: current status

From the analysis preceding this work [21] (denoted as HLMNT11), the determination

of the hadronic vacuum polarisation contributions (see below) summed with the esti-
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Fig. 1.3: Comparison of recent and previous evaluations of aEM preceding this work.
The analyses listed in chronological order are: DHMZ10 [51], JS11 [52], HLMNT11 [21],
FJ17 [36] and DHMZ17 [45], The central value of the estimate from the HLMNT11
collaboration is indicated by the dashed line centred in the yellow band, which defines
the total uncertainty on this estimate. The current uncertainty on the experimental
measurement [13-16] is given by light blue band.

mates of the other SM contributions at that time, resulted in a total SM prediction
of
a;M (HLMNT11) = (11 659 182.8 +4.9) x 107 (1.27)

This, compared with the experimental measurement in equation (1.19), resulted in a
deviation between theory and experiment of (26.1 + 8.0) x 107!, corresponding to a
(9—2), discrepancy of 3.30 as depicted in Figure 1.3. Considering the efforts to achieve
a four-fold improvement in the uncertainty of the experimental estimate at FNAL [17],
it is therefore imperative that the SM prediction is also improved. Since [21], the
estimates of the contributions from all sectors of the SM have been re-evaluated. These
updated results, which will later be summed with the estimates of the hadronic vacuum
polarisation contributions determined in this work, are summarised briefly below.

The QED contributions (where aSED’lflOOP

one-loop QED contribution) are known up to and including five-loop accuracy. The

= «a/27 from equation (1.14) is the

five-loop calculation has recently been completed numerically by Kinoshita et al. [9,22]
to evaluate all 12,762 five-loop diagrams. This calculation includes all contributions

that are due to photons and leptons alone. They are found to be

a™P =11 658 471.8971 (0.0007) (0.0017) (0.0006) (0.0072) x 10~
= (11 658 471.8971 4 0.007) x 10719, (1.28)



where the uncertainties are owing to the uncertainty on the lepton masses, the four-loop
contributions, the five-loop contributions and the determination of a using measure-
ments of 8’Rb, respectively. With such a precise determination of aSED resulting from
a perturbative series that converges extremely well, the QED result seems stable. It
should be noted, however, that the four-loop and five-loop contributions rely heavily
on numerical integrations and independent checks of these results are crucial. This has
been recently accomplished through several different analyses [23-28], which corrobo-
rate the results from Kinoshita and collaborators. Therefore, it is safe to assume that
the estimate for the QED contribution is well under control.

The contribution from the EW sector is well known to two-loop accuracy [29-33].

With the mass of the Higgs now known, the updated estimate [34] gives

a; "V = (15.36 +0.10) x 10717, (1.29)

Although a relatively small contribution when compared to CLSED, the uncertainty is not

negligible considering the projected experimental accuracy but is small when compared
to the hadronic uncertainties. However, with this contribution known safely to two-loop
accuracy, the electroweak estimate is also very well under control.

The uncertainty of aiM is completely dominated by the hadronic (had) contribu-

had
I

gion of hadronic resonances. The hadronic contributions are divided into the hadronic

tions, a®¢, attributed to the contributions from the non-perturbative, low energy re-

vacuum polarisation (VP) and hadronic light-by-light (LbL) contributions, which are

summed to give
had _ _had, VP | _had, LbL
a," = a; +a, . (1.30)

The hadronic vacuum polarisation contributions can be separated into the leading-order
(LO) and higher-order contributions, where the LO and next-to-leading order (NLO)
contributions are calculated in this work (see Section 1.3 and Section 4). In [21], the

LO hadronic vacuum polarisation contributions were found to give
apHFOVP (HLMNT11) = (694.91 +4.27) x 1071 (1.31)
and the NLO contributions to be
ap & NVOVE (HLMNT11) = (—9.84 +0.07) x 10717 (1.32)

The calculation of the NNLO hadronic vacuum polarisation contribution been achieved

for the first time in [35] (see also the evaluation in [36]) and is estimated to be
apr S NNVOVE — (1,24 40.01) x 10710, (1.33)

The hadronic LbL contributions (which enter at O(a?)), although small compared
to the hadronic vacuum polarisation sector, have only been fully determined through

several different model-dependent approaches.
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A commonly quoted determination of the LbL contribution is the ‘Glasgow consen-
sus’ estimate of azad’LbL(‘Glasgow consensus’) = (10.54+2.6) x 10710 [37] (alternatively,
see [18,38-40]). However, recent works [41-43] have re-evaluated the contribution to
azad’LbL due to axial exchanges, where it has been found that this contribution has,
in the past, been overestimated due to an incorrect assumption that the form factors
for the axial meson contribution are symmetric under the exchange of two photon mo-
menta [41]. Under this assumption, the determination in [38] previously found the
axial vector contribution to be a®PH ¥l — (9.9 4 0.5) x 10719, Correcting this
reduces this contribution to a1 P ™4 — (0.8 +0.3) x 10710 [41,42]. Applying this
adjustment to the ‘Glasgow consensus’ result (which used a value of the axial vector

contribution in [37] of aj*® P %8l — (1.5 4 1.0) x 10710), the estimate in [43] finds

aP Pl = (9.8 £2.6) x 10710 (1.34)

had, LbL
w

which is the chosen estimate for a in this work. This result is notably lower

than the previously accepted LbL estimates and will incur an overall downward shift

SM
I

original ‘Glasgow consensus’ estimate. In addition, the recent work [40] has provided

on a)™. It is, however, still within the original uncertainties when comparing with the
an estimate for the next-to-leading order hadronic LbL contribution. It has found
apttNVOLPE — (9.3 1+ 0.2) x 10710,

A comparison of recent and previous evaluations of afLM preceding this work with
equation (1.19) is given in Figure 1.3. It can be seen that since [21], two newer works
(FJ17 [36] and DHMZ17 [45]) have re-evaluated aﬁM to a higher precision. This analy-
sis is a complete re-evaluation (in line with previous works [21,46,47]) of the hadronic
vacuum polarisation contributions and, summing these with the estimates of the con-
tributions from all other sectors of the SM listed above, will present a corresponding
update of aﬁM and the resulting (g — 2),, discrepancy. The results from this work will
be compared with the FJ17 and DHMZ17 analyses in Section 4.5.

1.3 The hadronic vacuum polarisation contributions, aﬁad’VP

Although the contributions from QED and the electroweak sectors may be calculated
reliably using perturbation theory, the running of the strong coupling constant, as(g?),
results in as(¢g?) being large at low energies. Therefore, the perturbative expansion of
as(g?) is not valid for these energy domains, meaning that perturbative QCD (pQCD) is
only reliable for sufficiently large ¢2.> However, the hadronic vacuum polarisation (VP)
contributions are dominated by the exchange of virtual photons with low ¢2, requiring

an alternative method to determine the loop integrals. In this case, the failure of pQCD

3 Above ~ 2 GeV, the predictions of the running of a(¢?) from pQCD agree well with experimental
data [16] and, therefore, perturbation theory can be safely used (away from quark threshold regions).
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is overcome by utilising the tools of analyticity, unitarity and experimental hadronic
cross section data, as will be discussed in the following.

The Feynman diagram of the LO hadronic VP contribution is shown in Figure 1.4,
where the exchange of the photon between the muon lines (as in the standard one-
loop QED case in equation (1.13)) is altered by the insertion of an internal hadronic
bubble, which represents all possible hadronic states. This contribution to the photon
propagator is exactly the hadronic contribution to the photon vacuum polarisation

tensor, I, (¢?). The LO hadronic VP contribution enters at O(a?) and is formally,

SM
"

to aEM, it is the largest single hadronic contribution. This, coupled with the invalidity

therefore, a second order contribution to a>™. However, of all the possible corrections

of pQCD to evaluate this correction, has resulted in it being the largest contribution
to the uncertainty of aEM for some time.

In this work, the calculation of the leading order hadronic vacuum polarisation

had, LO VP
“w

contribution to the anomalous magnetic moment of the muon, a , utilises the

method of dispersion relations and, as input for the low energy hadronic final states, the
experimentally measured cross section o(ete™ — hadrons). Estimates of this quantity
from recent works that have also used this method are given in Figure 1.5, where this

work is a complete re-evaluation of the estimate by the HLMNT11 collaboration [21],

had,LO VP
m

also given in equation (1.31). Comparing this estimate for a with the cor-

responding estimate for aEM
had, LO VP
ap

in equation (1.27), the motivation for a re-evaluation of
with an aim to improve its precision is apparent when considering that al-
though the LO hadronic VP contribution only constitutes less than a percent of GEM,
it is responsible for greater than 70% of the total SM uncertainty. With the estimate
in equation (1.31) having already achieved a precision of ~ 0.6%, a precision of better

than this is one of the major aims of this work. In order to achieve this, the following

SM
“w
from the Feynman diagram in Figure 1.4, first deriving the dispersion relation approach

to evaluating alﬁad’LO VP, followed by details on the use of the optical theorem to allow

section will introduce the method and tools used to evaluate the contribution to a

the use of the experimentally measured hadronic cross section data.

1.3.1 Calculating the leading order hadronic vacuum polarisation con-

tribution, af*4MOVF

The evaluation of the contribution to a, from the diagram in Figure 1.4 is entirely

dependent on the ability to determine the vacuum polarisation tensor II,,,(¢%). For the
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Fig. 1.4: The Feynman diagram of the leading order hadronic vacuum polarisation
contribution to a,.

DEHZ03:696.3 +7.2 ——=—HA

HMNTO03: 692.4 £ 6.4 —o—

DEHZ06:690.9 + 4.4 +———=—A

HMNTO06: 689.4 £ 4.6 —o—

FJ06:692.1 +5.6 ——=—|

DHMZ10:692.3 £ 4.2 —-—

HLMNT11:694.9 +4.3 —e—

FJ12:691.0+4.7 +—=—

FJ17:688.1 + 4.1 —=—|

| DHMZ17:693.1 + 3.4 —=—A
R R T R S S
685 690 695 700 705 710 715
a, LOVP 410
Fig. 1.5: Comparison of recent and previous evaluations of a,}iad’ LOVE qetermined

from the method of dispersion relations and eTe~ — hadrons cross section data. The
analyses listed in chronological order are: DEHZ03 [48], HMNTO03 [46], DEHZ06 [49],
HMNTO06 [47], FJO06 [50], DHMZ10 [51], HLMNT11 [21], FJ12 [52], FJ17 [36] and
DHMZ17 [45], The dashed line indicates the central value of the estimate from the
HLMNT11 collaboration.

VP insertion to the photon propagator, the Feynman rules give

_ —ighe . g™
vy I L v

_ o ()

*ZeZM' (1.35)
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The general form of the VP tensor, which is purely transverse due to electromagnetic

gauge invariance, is defined in this work to be

1, (¢*) = (quaw — ¢*9) 1(q) (1.36)

where TI(¢?) is the VP function. From analyticity, the VP function (taken here in
the on-shell renormalisation scheme which imposes that II(¢?> = 0) = 0) satisfies the
subtracted dispersion relation [53]

M) = L /OO s i) (1.37)
sy S(8—q* —ie)

where sy, is the lowest invariant mass squared threshold for particle production con-

tributing to the VP. Inserting these expressions back into equation (1.35) gives

4

— ingw,q/OodSImH(s) (1.38)
q (?—ie)®m Js, s(s—q¢*—ie)’ '

Map(q?)

where the term proportional to g,q, can be discarded as it does not contribute to any

gauge invariant quantity.

had, LO VP
To evaluate a,"" oV

, the full VP function in (1.38) is replaced by the hadronic
contribution to the VP function ITy,q(s) and this resulting term exactly replaces the
virtual photon propagator term in equation (1.13). Doing so and evaluating the corre-
sponding expression for the contribution to F»(0) results in

1 00 2
ghad. LOVE _ a ds 1 x
— dz(1 — — —ImII
/ SU( CC) /sth g m had(s)$2+(8/ml%)(l—$)

/ —ImHhad $)K(s). (1.39)

The term

(1—x)a?
d 1.40
/ T2 (s/m2)(1 - =) (1.40)
is a well-known kernel function [12,54,55] (see also [46]) that describes the contribution

to a, from a virtual photon with invariant mass squared s and which can be solved

analytically.* For s > 4mi,

2 2
K(s> 4mi) = $2<1_a:2> —1—(1—1-35)2(1—1—3;12) (ln(l—l—x)—x%—é) + 1tiw21n(m),
(1.41)

where z = (1 - f,)/(1+ 8,) and 8, = /1 —4m2/s. For s < 4mZ [75],

arctan(v/a — 1)

va—1 ’
(1.42)

K(s < 4m3) = é (16(@ —2)In (%) —2a(8 — a) — 8(a* — 8a + 8)

“The kernel function given here is identical to that given in equation (45) of [46] but differing by a
normalisation factor of mi /3s.
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Im Iaa(q?) Thad (¢2)

Fig. 1.6: The optical theorem relating the imaginary part of the hadronic vacuum
polarisation to the total hadronic cross section.

where a = 4mi /s. The imaginary part of the hadronic VP function is then found
via unitarity, where the optical theorem relates the imaginary part of the hadronic
VP function to the total cross section of the process ete™ — hadrons, as depicted in

Figure 1.6. This relation is given as,

s
T (s) =( 15 ) ona(s). (1.43)
where
Ohad(8) = o(ee” — 4* — hadrons) (1.44)

and ~* denotes the virtual photon. For the determination of the LO hadronic VP
contributions, the hadronic cross section must be undressed of all leptonic and hadronic
VP effects in order to avoid some double counting of these contributions with the higher
order hadronic VP contributions (see Section 1.3.2). In addition, the cross section must
include the effects of final state photon radiation, which should be counted as part of
the total cross section. Therefore, it follows that the leading order hadronic vacuum
polarisation contribution to a, can be determined via

1 o0
aprove _ L / ds o0, (5)K(s) (1.45)
th

where s;, = m?2 is the hadronic production threshold (determined by the 7%y final
state), the superscript 0 denotes the bare cross section (undressed of all vacuum po-
larisation effects) and the subscript v indicates the inclusion of effects from final state
photon radiation. Equation (1.45) can also be expressed as
2 poo

ahad LOVE % / : % R(s)K(s) (1.46)
where the hadronic cross section has been normalised by the point (pt) cross section of
the process ete™ — pTp~ to yield the hadronic R-ratio given by

o Ugad,w(s) _ Ugad,w(s)

B == 6 = Tra?/(3s) (1.47)

With the kernel function K(s) behaving as K(s) ~ mi/ (3s) at low energies (cou-
pled with the factor of 1/s in the integrand of equation (1.46)), the integrals in equa-
tion (1.45) and equation (1.46) are dominated by the low s regime. As pQCD is an
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Fig. 1.7: The three classes of Feynman diagrams (a,b,c) that comprise the next-to-
leading order hadronic vacuum polarisation contributions to a,. It should be noted that
for class (a), those diagrams which involve an exchange of the massless and ‘massive’
(including hadronic bubble) photon propagator are assumed to be included. For class
(b), f = e, 7 only. This graphic has been taken from [46].

unreliable source for the cross section in this energy region, experimentally measured
hadronic cross section data are used as input for Uﬁadﬁ(s). This places a large depen-
dence on these data, as the accuracy of abad’ LOVP will largely depend on their quality
and precision. Fortunately, many experiments have measured cross sections for numer-
ous individual hadronic final states to a very high precision, which are used in this work

l,fd’LO VP This requires a dedicated procedure to combine all available

to determine a
hadronic cross section data to robustly determine the full hadronic R-ratio. This will

be discussed in detail in Section 2.

1.3.2 Calculating the next-to-leading order hadronic vacuum polari-
sation contribution, a;*""NOVF

The next-to-leading order hadronic vacuum polarisation contributions (that enter at
O(a?)) can be conveniently split into three classes as defined in [57]. The contributing
diagrams for each class are shown in Figure 1.7. The determination of the contribution
to a, from each class of diagram results in a corresponding dispersion integral and

kernel function. These classes are:

(a) This class contains those diagrams that, in addition to the leading order hadronic

bubble, contain higher order corrections from an additional virtual photon or a



muon loop. The dispersion integral in this case is

ds
had NLO VP, (a) _ K@ (g). 1.4
3ﬂ3/) — R(s)K')(s) (1.48)

This class contains those diagrams that, in addition to the leading order hadronic
bubble, contain an additional electron or tau loop. The dispersion integral in this

case is
s

ds
had NLO VP, (b) _ (b)
37T3 /h R(s)KY(s). (1.49)

This class of diagram contains a second hadronic bubble in addition to the leading
order hadronic bubble. Therefore, in this case, the R-ratio data must be integrated

over twice. The dispersion integral is

;11ad NLO VP, ( 97T3 / / ds / )K(c)( ) (1'50)

In each case, the analytic expression for the kernel function as given in [57] is used. As

with the LO contribution, the NLO hadronic vacuum polarisation contributions rely

on the experimentally measured hadronic cross section data and their combination to

determine the hadronic R-ratio.
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Chapter 2

Calculating azad’VP: data

treatment and combination

d, VP .
are experimental

The majority of hadronic data that are used to determine a,}ia
cross section measurements of electron-positron annihilation into individual hadronic
final states. In determining R(s), this work aims to provide a reliable and meaning-
ful combination of the available data which makes minimal theoretical assumptions
concerning the shape and normalisation of the resulting cross section. Therefore, ex-
perimental data are used wherever possible, avoiding the use of available tools such as
resonance parametrisations and pQCD where measured data are available. In this way,
the estimates of a},}ad’ VP and the corresponding uncertainties from individual final states
are as data-driven as possible. Below ~ 2GeV, these individual hadronic final states are
referred to as exclusive channels. The hadronic R-ratio in this region is predominantly
constructed from the sum of the determined cross sections of all available exclusive
channels. Above ~ 2GeV, data for the measured total hadronic R-ratio, or inclusive
channel (all hadronic final states), are combined. For nearly all these channels, the
available data from numerous different experiments must be analysed, combined and
then integrated over according to equation (1.45) to give a corresponding estimate of
the contribution to aﬁad’LO VP With many of these data sets having a different energy
binning, different values for the given cross section and individual treatment of the
corresponding uncertainties, the combination of these data is a highly non-trivial task
and is the focus of this chapter. First however, any contributing data that have VP
effects included, or that do not include effects from FSR, must be treated or corrected

. . 0
in order to combine the necessary O'had7,y(8) data.

2.1 Correcting the data

As described in Section 1.3.1, the hadronic data to be input into the dispersion integrals
(that determine aj®¥") must be parametrised as the bare cross section 0P . (s), with

FSR effects included. Although more recent experimental analyses have endeavoured
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to measure this exact quantity, the remaining data must have radiative corrections
applied to ensure that all combined data are as consistent as possible with regards to
radiative effects. Additional uncertainties are estimated and included whenever radia-
tive corrections are applied. This is done, first and foremost, to account for any under-
or over-correction that may occur due to a lack of information concerning the treatment
of radiative corrections in the experimental analyses. However, these radiative correc-
tion uncertainties also account for any possible incorrect treatment in the analyses, for
example missed FSR or inconsistent subtraction of VP contributions. This is especially
true for older data, where there is very little or even no information at all regarding
how the data have been treated. The numerical estimates of all additional radiative
correction uncertainties are given in the respective sections for the individual channels

in Section 4.

2.1.1 Vacuum polarisation corrections

Equation (1.45) requires the experimental cross section to be undressed of all VP (run-
ning coupling) effects, as VP corrections to the hadronic cross section are counted as
part of respective higher order contributions to azad’vp. This is clear when considering
both Figure 2.1 and the diagrammatic portrayal of the optical theorem in Figure 1.6.
Evidently, using the dressed cross section (inclusive of vacuum polarisation effects to
the photon propagator) to determine a]ﬁad’ LOVP Gould result in contributions of the
type shown in Figure 1.7. Any new and old data that have not been corrected for VP
effects require undressing. However, recent data are more commonly undressed in the
experimental analyses already, removing the need to apply a correction to these data
sets. This benefits the data combination as new, more precise data undressed of VP
effects are dominating the combination for many channels which, in turn, reduces the
impact of the extra radiative correction uncertainty which is applied to each channel.
The inclusion of these VP effects to the total cross section is understood as the
inclusion of the running QED coupling a(g?). To determine the bare (undressed) cross
section, the running «(g?) must be replaced by the fine structure constant, a = a(0).
The standard definition of the running of « is [58]
o o

2 = =
ald) = 1—Aa(¢?) 1+ 4raRell(¢?)

(2.1)

where the quantity Aa(q?) describes the contributions to the running coupling from

leptons and quarks in the convenient form
Aa(q’) = Aaiep(q) + Dy (4*) + Aaop (). (22)

Here, the subscript ‘lep’ denotes the contributions from leptons and the superscript (5)
indicates the contributions from all quark flavours except the top quark, which is added

separately. The leptonic and top quark contributions have been safely evaluated in other
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works using perturbation theory [59-62]. However, as with the hadronic contributions
to ay, the contributions from the low energy regime cannot be determined reliably using

had, LO VP
I

pQCD. Fortunately, following the same logic as in Section 1.3.1 to determine a ,

analyticity and unitarity can be employed to define the dispersion relation [53]
2 00 R ( S)
Aa®) 2:—0“113/ ds——2 2.3
ahad(q ) 37T o SS(S _ q2) ) ( )
where P denotes the principal value integral and the data input R(s) is identical to that

},fd’ LOVP 4y equation (1.46). An important use of this relation, combined with

used for a
the perturbative determinations of Aauep(¢?) and Aciep(g?), is the evaluation of the
effective QED coupling at the Z boson mass, a(M%), which is the least precisely known
of the three fundamental EW parameters of the SM (the Fermi constant Gp, Mz and
a(M%)) and hinders the accuracy of EW precision fits. An updated determination of
this is given in Appendix C.

To determine the contribution of vacuum polarisation effects to the hadronic cross
section, the full photon propagator, z'DW(qQ), must be determined to all orders. This

is expressed by the Dyson summation of all 1PI diagram insertions

T 1-T(g?) 24

which holds as a geometric series if [II(¢?)] < 1. Thus, to arrive at the full photon

propagator, the free (undressed) propagator is modified by

'Dfree 2 — _igﬂl’ —5 4D 2 — _igl“’ ) 25
Wy (¢7) 2 —ic ¢ /.Ll/(q ) q2<1 *H((]Q)) (2.5)

The dressed hadronic cross section contains the absolute square of the photon propa-

gator

oS 2 UO S
() = ofua(s) (20 ) = Tt (26)

Therefore, it follows that to determine the bare cross section as depicted in Figure 2.1,

the correction
Thad(8) = Ohad(s)[1 — II(s)[? (2.7)
must be applied. This requires the knowledge of both the real and imaginary parts of
II(s), as
|1 —TI(s)|* = 14 [ReTI(s)]? + [ImII(s)]* — 2ReTl(s) . (2.8)

The imaginary part of the VP function is found, as in equation (1.43), via the optical

theorem from the sum of the total hadronic and leptonic (lep) cross sections,
Q
ImII(s) = 3 <Rlep(8) + Rhad(s)> . (2.9)
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o(ete”™ — v* — hadrons) o%(ete” — 4* — hadrons)

Fig. 2.1: The undressing (subtraction of vacuum polarisation effects) of the cross
section ete™ — 4* — hadrons.

Here, Rjep(s) denotes the leptonic R-ratio and Ryaq(s) is the standard hadronic R-
ratio determined in this work (see Section 2.4).! For the purpose of equation (2.7), a
self-consistent vacuum polarisation routine has been determined via an iteration of the
data input into equation (2.3). This routine is used to correct any data that requires
undressing in this work.

The undressing of narrow resonances in the c¢ and bb regions (see Section 2.4.3
and Section 4.3.2) requires special attention. These resonance contributions are deter-
mined using their respective electronic widths, I'¢e [16], which contain VP (and FSR)
effects and, therefore, require undressing. The extremely narrowly peaked nature of
these structures causes sharply spiked contributions to Aagd (¢?), which locally causes
ITI(¢?)| > 1. This violates the condition for the geometric series in equation (2.4) and,
hence, the Dyson summation does not converge for these regions. To overcome this, the
electronic width of an individual resonance, I'¢e, is undressed of vacuum polarisation
effects using a parametrisation of the VP where the correction ezcludes the contribution
of that resonance, such that

2
(o/tno res(M2,))

| | 2.10
ee 1+ 3a/(4m) ee (2.10)

Here, M.es is the mass of the resonance and ameres is the effective QED coupling
neglecting the contribution of the resonance itself given by

a

_ 2.11
1-— AOZno res(s) ' ( )

Gno res(s) =

where Aay res(s) is determined from equation (2.3) such that the input R(s) does not
include the resonance that is being corrected. To include the resonance would lead to
an inconsistent definition of the narrow resonance.

In each channel, the difference Aal\jp between the estimates of a,, with and without
additional VP corrections is determined. For the uncertainty due to VP, one third of
the shift

1
day” = S Day” (2.12)

LAt all times in this work, unless stated otherwise, the non-specific term ‘R-ratio’ or ‘R(s)’ refers
to the hadronic R-ratio.
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is taken as a conservative uncertainty. This is done in the knowledge that the VP
routine, which is determined iteratively in a self-consistent way, is accurate to the level
of a permille when correcting the cross section.? In addition, this is supported by the
fact that newer data sets are also commonly undressed of VP effects in the experimental

analyses with a modern routine.

2.1.2 Final state radiative corrections

For the determination of agad’vp (as described in Section 1.3.1), photon emission in the

final state of the measured hadronic cross section formally corresponds to higher order
corrections to the hadronic vacuum polarisation contributions to a,. These effects,
as shown in Figure 2.2, cannot be determined individually and are not separately ac-
counted for in the higher order contributions to agad,VP shown in Figure 1.7. Therefore,
they are included as part of the LO contributions in the definition of the 1PI hadronic
blobs. However, depending on the experimental analyses, some amount of real photon
FSR may have been missed or removed during the event selection. Adding back these
missed contributions is model dependent and not feasible for general hadronic final
states. It is therefore necessary to estimate the possible effects and their impact on the
accuracy of the data compilations.

It is possible to estimate the effects of single photon FSR for the 7t7~ and KT K~
channels using a scalar QED (sQED) approximation. It has been shown that sQED,
which assumes point-like pions and kaons, provides a good description of photon FSR,
especially in the energy range below ~ 2GeV [63—-65]. In this range, the low energy
of the photon propagator producing these virtual mesons means that it is less likely
to resolve the quark structures of the mesons. In [21,46,47], to estimate possible FSR
effects in 7t~ and K™K~ production in this approximation, the fully inclusive O(«)

correction to the cross section,

o () = oi2u(o) (1406602 ) 213

has been used. Here, the term ‘fully inclusive’ means inclusive of effects from virtual
and real (both soft and hard) one-photon emission. The function 7(s) is given in [63]
and the subscript v indicates the one photon inclusive cross section.

However, experimental cross section measurements by nature include all virtual
and soft real radiation effects [66,67].> Therefore, ideally only the effects from (hard)

real radiation above/within resolution/cut parameters, which are specific for a given

2For the n 7w~ n" channel, for example, from equation (2.12) the additional uncertainty due to VP
corrections is determined to be ~ 0.5 x 1071%. In comparison, the theoretical uncertainty of the VP
routine for this channel is ~ 0.05 x 1071°.

3This is a consequence of the infrared (IR) finite nature of the SM, where IR divergences in QED
loop corrections are cancelled by IR divergences arising from soft photon emission. Therefore, only the
sum of both soft and virtual corrections is physically observable.
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Fig. 2.2: Photon FSR in an eTe™ — hadrons event, where although formally of higher
order in « and therefore a higher order contribution to a}ﬁad’vp, it is included in the
1PI hadronic blob as part of the LO hadronic VP contributions to a,.

experiment or analysis, should be estimated to account for possibly missing photon
FSR. Whereas in the calculation of the inclusive correction a regularisation of the
virtual and real soft contributions is required to obtain the infrared finite result 7, the

hard,real

hard-real radiation, 5 , can be estimated numerically from [64]

s—2¢/sA
nhard,real(s) — / dS,pﬁn(S, S,) , (2‘14)
4

m2
where m is the mass of the (scalar) particle, A is a finite infrared cut-off parameter on
the invariant mass of the emitted photon and pgy, is the radiator function (see appendix
B of [64]).

In the case of the K™ K~ channel, by far the largest contribution to a, (and its error)
comes from the energy region of the ¢ peak (see Section 4.1.7), where the phase space
for real radiation is severely restricted. In [68], a study was conducted to determine
an estimate of the effects from only hard photon radiation in the K™K~ channel.
Using kinematical arguments that relate the energy of an emitted final state photon
to the angle at which it is emitted, it was possible to derive a relation between the
cut-off parameter A in equation (2.14) and angular cuts in the photon acolinearity
given in individual experimental analyses. This allowed studies in this work into two
experimental measurements in the K™ K~ channel that had made such angular cuts [69,
169]. The results of this study are shown in Figure 2.3. Here, the fully inclusive
correction 7(s) (left panel) is compared to the resulting estimates for the real hard

hard,real(¢) (1ight panel) now depends on the acolinearity cuts as

radiation, where 7
given by the two experimental analyses. Clearly, at and around the ¢ peak, phase
space restrictions strongly suppress any hard-real radiation and corresponding FSR
correction. It is also evident that using the inclusive correction in equation (2.13)
would lead to an overestimate of the possible FSR effects for the K™K~ channel. In
addition, although the correction due to equation (2.14) increases above the ¢ peak, the
contribution of the K™K~ channel above the ¢ to both mean value and error of a,, is
substantially smaller than the contribution from the ¢ itself. These arguments, coupled
with being unable to repeat this calculation for the remaining data sets in the KK~

channel due to a lack of information regarding the respective experimental analysis,
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Fig. 2.3: The effect of final state radiation in the K™K~ channel in the ¢ resonance
region. Left panel: the fully inclusive FSR correction 7(s). Right panel: hard real
radiation nhardreal(s) estimated with acolinearity cuts used in the two analyses [69,169].
The eTe™ — KTK~ cross section is also plotted for reference.
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Fig. 2.4: The behaviour of the inclusive FSR correction, 7(s), for the process ee™ —
7T7n~. The ete™ — 777~ cross section is also plotted for reference.

mean that no correction or additional error estimate due to FSR is now applied in the
K™K~ channel. For the neutral kaon channel, hard photon radiation (which would
resolve the quark charges) is similarly suppressed and no FSR correction or additional
error are applied in this channel either.

The situation is different in the 777~ channel. A study similar to the two-kaon
channel showed that in principle larger contributions from real radiation of the or-
der of the inclusive correction can arise. However, these contributions are strongly
dependent on the cut applied in equation (2.14) and would require a more detailed,
measurement-by-measurement analysis, for which the information needed from the re-
spective experimental analyses is not available. Therefore, as in [21,46,47], in data
sets which are understood to not include the full FSR corrections, the fully inclusive
correction (as shown in Figure 4.19) is applied to the respective 77~ measurements.
Importantly, recent sets from radiative return, where additional photons are part of the

leading order cross section and are studied in detail as part of the analyses, have now
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become dominant in the 77~ channel. Consequently, the impact of the fully inclusive
FSR correction to older sets is suppressed for both mean value and error in comparison
to [21,46,47].

For the sub-leading, multi-hadron channels, there are at present no equivalent FSR
calculations. Depending on the experimental analysis, they are (at least to some extent)
simulated by Monte Carlo and contribute to the systematic uncertainties. However,
for many data sets it is far from clear to what extent FSR effects are included in
the systematic errors. Therefore, possible effects are accounted for by applying an
additional uncertainty determined as a fraction of the respective contribution.

For the extra uncertainties due to FSR, there are no contributions from the KK~
and K9KY channels (see the discussion above). For the 777~ channel, the full dif-
7T+7I‘_
n

ference between the estimates of a with and without additional FSR corrections

+ —
T
H of

~ 0.03%. For all other channels, including the inclusive data combination, a fraction

is taken as the FSR uncertainty, resulting in an additional uncertainty on a

of 1% of the respective cross section is applied as a conservative uncertainty.

2.1.3 Converting pion form factor data

For the 777~ channel, it is common for many experimental cross section measurements
to also be given in terms of the analogous pion form factor, ]Fw|2. Some older data in
this channel (see Section 4.1.2) are only available in the pion form factor representation
and must be converted to the hadronic cross section in order to be combined with the
other data. Contrary to the requirements concerning radiative corrections for the cross
section used for the input for the determination of a}ﬁad’vp, it is usual for the pion
form factor to include VP effects and exclude FSR. In this case, the bare two-pion cross
section including FSR is determined from the pion form factor by

o’ B (s)

where f:(s) = /1 — 4m2/s.

() [1 = 1) P (14 Zn(s)) (2.15)

2.2 Clustering data

Data in a given hadronic channel must be combined before integrating. The alternatives
of integrating the data sets from each experiment in a given hadronic channel individu-
ally and averaging the resulting integrated values or evaluating the contributions from
the data with a strict point-to-point integral, could result in inadequate representations
of the contributing data. Imprecise data of poor quality could contribute with a larger
weighting to a},jad’vp than they should. In addition, unrealistic propagations of large
experimental uncertainties could suppress the desired contribution of more reliable pre-

cise data. With the aim of this work to be a data-driven analysis that avoids the fitting
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of data to functions or parametrisations, a re-binning of the data is applied that results
in a combined cross section which appropriately incorporates the weightings from the
respective experimental uncertainties.

Within each hadronic channel, data points from different experiments are assigned
to clusters. In this work, the clustering algorithm is universal for all different channels
and only differs in the assigned maximum cluster size § (and d;es, @ maximum cluster size
applicable at individual resonances). Data points are, by order of precision, compared
to existing clusters. If data point 7 is being considered for assignment to the cluster m,
then if the energy E; exists between (E,, — ) < /s < (E,, +9), then it is added to the
cluster m. If not, then a new cluster is created to accommodate it. Importantly, the
information regarding the data points belonging to each cluster is retained to ensure
that existing points do not stray outside of the boundaries, 44, of their assigned cluster.
If the addition of a new data point to a cluster should violate this, a new cluster is
created for the data point in question.

A scan over ¢ (and d,s if applicable) is performed to determine a suitable clustering
configuration which must avoid both over- and under-clustering. Too wide or over-
populated clusters would effectively lead to a re-binning of data points from individual
experiments and risk loss of information, while a too narrow clustering would result,
in the extreme, in an erratic point-to-point representation of the cross section and no
gain in the accuracy. The preferred configuration is then chosen based on the resulting

had,VP . :
had, VP combined with

global x2. /d.o.f. (see Section 2.3.2) and the uncertainty on a
checks by eye that the resulting spectral function does not exhibit any erratic behaviour

due to the effects of over- or under-clustering.

2.3 Minimisation

Following the re-binning of the available data in a given hadronic channel into clusters,
a solution for the cross section must be obtained that incorporates all the available in-
formation. In particular, the resulting cross section should include the full propagation

ad VP ond its

of available uncertainty information to be used for the determination of a,}j
error. The previous analyses [21,46,47] employed a non-linear y2-minimisation utilis-
ing fitted renormalisation factors as nuisance parameters that represented the energy
independent systematic uncertainties. Although this method, denoted here as the fj
method, was a powerful approach, recent literature [71] (see also [72]) have highlighted
the possibility that an incorrect treatment of multiplicative normalisation uncertainties

in a y?-minimisation can incur a systematic bias (see chapter 4 of [71]).
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Fig. 2.5: The behaviour of the combined value T as the ratio of the multiplicative
normalisation uncertainties, dz; and dzs, of the two contributing data points, z; = 0.9
and z9 = 1.1, are varied. The unbiased result, indicated by the solid light-blue line,
corresponds to T = 1 and should pass through this point when dz; = dzs. The results
from the fi method used in [21,46,47] is shown by the dashed red line.

2.3.1 Systematic bias and the f; method

. . . . had, LO VP
With the aim to achieve a precision for a,™" ©

that is a trusted improvement on
the accuracy achieved in [21], the necessity for a reliable and robust data combina-
tion procedure is of paramount importance. In [73,74], it has been shown that the
propagation of multiplicative normalisation (systematic) uncertainties in a data com-
bination method using the uncertainties as defined by the data alone could result in
bias. This bias can be explicitly demonstrated in a mock data example of the simple
combination of only two data points of arbitrary units: z; = 0.9+ dxy = 0.9 £ px; and
r9 = 1.1 =dxo = 1.1 £ pxo, where dz1 and dzo represent the percentage uncertainty p
of x1 and x5 respectively, and are fully correlated with each other. The corresponding
covariance matrix is given as

C= ( ]2’2””% p2§1§2> . (2.16)

D T2x1 pPTXY

As both of these data points have an uncertainty of the same percentage, each should
provide an identical weighting to their combination which should result in a combined
value Z that is the trivial average of the two data points, £ = 1. However, the com-
bination of these data points results in =~ 0.98. This bias, known as the d’Agostini
bias [73], occurs as combining data with the fully correlated uncertainties defined by
the data alone results in a bias towards the data point with the smaller value [73,74],
in this case x;.

The fr method in [21,46,47] employed the fitting of renormalisation factors as nui-
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sance parameters through a non-linear y2-minimisation to avoid such a bias. However,
using the fr method to determine the combination of the same example of two points
as above yields an answer of £ = 1.0050125, indicating that this method also exhibits
the potential for bias. This effect is shown more generally in Figure 2.5 (which follows
the analysis methodology in [71]), where the resulting upward shift in the combined
result is clearly visible. In addition, although the non-linear y2-minimisation used
in [21] was adjusted to include covariance matrices, the method’s reliance on fitting en-
ergy independent renormalisation factors prevented the use of correlated uncertainties
to their full capacity. Recent precise data (specifically radiative return measurements
in the 777~ and K™K~ channels have been released with energy dependent uncer-
tainties and non-trivial bin-to-bin correlations for both the statistical and systematic
uncertainties. Consequently, it follows that the previous combination procedure should

be modified to allow the full use of all available correlations in a bias-free approach.

2.3.2 Fixing the covariance matrix: an iterated fit

In this work, as an alternative approach to the fitting of renormalisation factors (nui-
sance parameters) via the f; method, an iterative fit procedure as advocated in [71]
has been adopted, which re-initialises the full covariance matrices at each iteration
step. The concept of this method utilises the knowledge that the use of the uncertain-
ties/covariance matrix as defined by the data alone leads to the d’Agostini bias, which
should be avoided. Notably, for large data combinations which commonly require an
iteration of a fit to reach convergence, the d’Agostini bias could be further driven by
the uncertainties being repeatedly defined by the data in each iteration. Therefore, the
covariance matrix should be redefined in the data combination to avoid this undesirable
effect. Instead of the uncertainties being defined as percentages of the data itself, they
should be redefined as percentage uncertainties of some estimated theory value. In the
simple two-point example, the covariance matrix is redefined to be
2~2 22
C= <§2;2 §2;2> ) (2.17)
where T is the estimated theory value of the combination of 1 and x2. In this approach,
the combination of these two data points yields the unbiased result £ = 1. In the more
complicated case of a larger data combination, the theory estimate for each contributing
data point is recalculated at every step of the iteration until the fit converges.
In this work, a new method has been devised based on the concepts outlined above
to replace the restricted fr method and minimise the effect of the d’Agostini bias.
Previously, in [21,46,47], a constant cross section had been assumed across the width

of each cluster. In this work, the fitted cross section values at the cluster centres are

4In [71], it is explained that this bias arises due to the non-linear nature of the x? function, implying
that a linear function that avoids the d’Agostini bias should be explored.
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obtained from an iterative y2-minimisation where the cross section is taken to be linear
between adjacent cluster centres. This is not only a more physically realistic represen-
tation of the shape of the cross section in the data combination than the constant cross
section approach, but allows for a more stable fit and is consistent with the trapezoidal

rule integration utilised for the alﬁad’vp integrals (see Section 2.5).5

)

For each hadronic channel, if data points at energies /s = El(m are combined into
cluster m, then the weighted average of the cross section value R,, and energy FE,, for
the cluster centre are

-1

> . (2.18)

and .
N(m) N(m)
E™

1
En= |3 == | | X 7| (2.19)
i1 (ngm)) i=1 (de(m)>
where Rl(m) is the cross section value of data point i contributing to cluster m, N(™ is

the total number of data points contributing to cluster m and

dR™ = \/ (dR™ 2 4 (dR™ 2. (2.20)

1; stat i SyS
dRE;mS)tat and ng;n?ys denote the absolute statistical and systematic uncertainties, re-

spectively. With a linear cross section now assumed, if data point ¢ belongs to cluster

m and Ei(m) > E,,,, then its interpolant cross section value R, is given by

(B = Bnn)

)

(Eerl - Em)

(Rm+1 - Rm) ) (2'21)
where the superscript ‘+’ indicates that Ei(m) > Ep,. If, on the other hand, Ei(m) < En
then

(E'™ — Epy)

)

(Em - mfl)

where the superscript ‘—’ indicates that E,L.(m) < E,,. For data points at the borders

R =Rp1+ (Rm — Rm—1), (2.22)

where no interpolation is possible, R%. is found by linear extrapolation.

A covariance matrix is constructed for the combination which contains all the uncer-
tainty and correlation information of all data points. Importantly, this matrix should
be constructed to satisfy the necessary mathematical properties of a covariance matrix.

Any covariance matrix, C, of dimension n X n must satisfy the following requirements:

°In this work, the high population of data points and, therefore, resulting number of clusters for
the numerous hadronic channels means the linear/trapezoidal rule representation of the cross section
is much more reliable than in the previous analyses [21,46,47]. In Section 2.5, comparisons with higher
order polynomial determinations of the cross section are shown which highlight that differences between
these and the linear approach are small due to the densely populated data content.
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e As the diagonal elements of any covariance matrix are populated by the corre-
sponding variances, all the diagonal elements of the matrix are positive. There-

fore, the trace of the covariance matrix must also be positive
n n
Trace(C) = Y C(i,i) = » Var; > 0. (2.23)
i=1 i=1

e It is a symmetric matrix, C'(i,7) = C(j,1), and is, therefore, equal to its transpose,
C(i,j) = CT(i. ).

e It is a positive, semi-definite matrix,
alCa>0; aeR", (2.24)
where a is an eigenvector of the covariance matrix C.

e The eigenvalues A\, of the covariance matrix must be real, non-negative and the

distinct eigenvectors must be orthogonal
bTC a= Xa(b-a)=a’C b= )\,(a-b) (2.25)
Sif da # Ap = (a-b) =0. (2.26)
e Its determinant is greater than or equal to zero: Det (C (1, ])) > 0.

With many experimental analyses providing error contributions from multiple sources
of uncertainty for both statistics and systematics, the contributions of these individual
sources must be summed correctly in order to satisfy the necessary conditions for a
covariance matrix. In general, should sources of uncertainty be correlated, the element
(¢,7) of a covariance matrix that describes the total covariance o;; between the two

data points should be constructed as

C(i,j) =0ij = ZZaf‘pgﬁaf .
B

o

Here, o and 3 denote individual sources of uncertainty, of* is the standard deviation of
the data point ¢ due to the uncertainty source «, af is the standard deviation of the
data point j due to the uncertainty source 8 and pf‘jﬁ is the correlation coefficient that
describes the correlation (—1 < p < 1) between the uncertainty source « of data point
i and the uncertainty source 8 of data point j. In general, unless stated otherwise,
different sources of uncertainty are assumed to be independent and, therefore, uncor-
related (p%,g lazg = 0). Correspondingly, the element (4, ) of the covariance matrix is

determined from

Cli,j) =Y plofod = C%Gj), (2.27)
« (0%
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where C®(i, j) is the covariance matrix specifically due to the uncertainty source av. It
follows that to define the total covariance of two data points, the correlation coefficient
and absolute error of each data point for each source of uncertainty must be known,
which are then summed in accordance with equation (2.27). In this work, if the ex-
perimental analysis does not provide covariance matrices or corresponding correlation
information, then statistical uncertainties are assumed to be uncorrelated (pg; = 0) and
systematic uncertainties are assumed to be fully correlated (pf; = 1) between all bins
in a given experimental measurement.

For each channel, the total covariance matrix C(i(m), j(")) is given as the sum of
the statistical covariance matrix CStat (i(m), J (")) and the systematic covariance matrix
Csys (i(m) , j(”)). As described above, using the covariance matrix as defined by the data
alone could result in bias. The covariance matrix is therefore redefined at each step of

the iteration using the fitted R, values. At each stage of the iteration, it is defined as

(sys '(m), i(n) ) ;
W RET-DRII-) (2.28)

J

C, (i(m),j(”)) — (stat (i(m),j(”)) +

where the quantities RE and RET are the interpolant cross sections given by either
equation (2.21) or (2.22) and I denotes the iteration number of the fit. This is then
used as input into the now linear x?-function,

Ntot Niot

=D (B = REDCTH(E, j) (RS — RET) (2.29)
=1 j—1

where Niot is the total number of contributing data points in the given channel and
CI_1 (i(m), j (”)) is simply the inverse of the covariance matrix defined in equation (2.28).
Performing the minimisation yields a system of linear equations

Ntot

Z (Rgn) _ i) OR;, Vil (m® n®) =0, i=1,.., N, (2.30)
= OR,
where,
N(m) Ny(n)
Vi ) = 3730 € (). 231
i=1 j=1

As in equations (2.21) and (2.22), the term R, is to be taken as either RS, if Ej(.n) > By,
or Rff, if E](n) < E,. Subsequently, if Efm) > FE,,, then

oR: oRi: ( (B — Ey) ) (E™ — Bn)
m _ o= (1= ) e+ e Ot 10 (2.32
OR, E™sE,. IR, (Em+1— Em) (Em+1 = Em) e { )

and, if E\™ < E,,, then

i i— (m) _ (m) _
ORL, _ ORL <1_(Ei Em—l))(sml’a_'_(El En-1)

OR,

OR,

E™ <Ep,
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Fig. 2.6: The behaviour of the combined value T as the ratio of the multiplicative
normalisation uncertainties, dz; and dzs, of the two contributing data points, z; = 0.9
and z9 = 1.1, are varied. The unbiased result, indicated by the solid light-blue line,
corresponds to £ = 1 and should pass through this point when dz; = dzy. The result
from the new data combination method used in this work is shown by the dashed red
line.

where § denotes the Kronecker delta. The solution to equation (2.30) yields the cluster
centres R,,. The overall quality of the data combination is described by the global
X2, /d.of.. In addition, the output of the method includes the local x2; /d.o.f. for
each cluster and the total output covariance matrix VI(m, n), which describes the
correlation between the errors dR,,, and dR,,. For each channel, this matrix is checked
to ensure it satisfies the required properties of a covariance matrix as described above.
As in [21], in order to account for any tensions between the data, the output matrix is

inflated according to the local x2, /d.o.f. by

V (m,n) = Vi (m.n)y/x2/d.ot.(m)y /X2 /dof.(n) (2.34)

if the local x2. /d.o.f. > 1 for each cluster.

In [71], it was stated that for the fit of parton distribution functions, convergence
is expected to occur after very few iterations, which is also observed here. The use
of the full covariance matrix allows for the inclusion of any-and-all uncertainties and
correlations that may exist between the measurements. The flexibility to now make
use of fully energy dependent uncertainties ensures that the appropriate influence of
the correlations is incorporated into the determination of the cluster centres R,,, with

the correct propagation of all experimental errors to the g — 2 uncertainty.
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Channel This work Potential d’Agostini biased | Difference
ato— 502.99 + 1.97 500.36 + 1.95 2.63
ata—n0 47.82 4+ 0.89 45.9440.73 1.88
atr rtr | 1517 +£0.21 14.61 £0.15 0.56
ata—n0r0 19.80 +0.79 16.58 4 0.71 3.22
KtK~ 23.05 £ 0.22 22.40 £ 0.22 0.65
KJK) 13.05 £+ 0.19 12.89 & 0.17 0.16

Table 2.1: Comparison of the contributions to agad’ LOVP from leading and major sub-

leading hadronic channels determined with the data combination method devised in this

work and with the normalisation uncertainties defined by the data alone. All results are

found in the energy range /s < 2 GeV and are given in units of aﬁad’ LOVP 1010, The

first column indicates the final state or individual contribution, the second column gives

the estimate of agad’LO VP from this work, the third column states the corresponding

potentially d’Agostini bias affected results and the last column gives the difference
between the two evaluations.

2.3.3 Data combination analysis

The results of the simple two-point example now determined with the new data com-
bination method are shown in Figure 2.6, where both the d’Agostini bias and the bias
arising from the non-linear nature of the fi method are now eliminated. Concerning
the d’Agostini bias, although it not possible to predict the unbiased result for the full
data combination of an individual channel as in the simple two-point example, marked
differences should be visible in the results of data combined with the covariance ma-
trices as defined by the data alone and the fixed iterative method used in this work.
A comparison of results using both approaches in shown in Table 2.1, where the dif-
ferences in the results for all channels are significant and outside of the quoted errors.
Interestingly however, in all cases the new method produces results that are larger than
those determined with the normalisation uncertainties defined by the data alone, sug-
gesting that there is a strong effect of the d’Agostini bias driving the results towards
smaller values in the latter case.

Comparative results from the fi method and the new data combination method
with identical input for the hadronic cross section data are shown in Table 2.2.5 Note
that, for all channels, the differences between the old and the new data combination

procedures lead to changes of aﬁad’vp

within the quoted errors. Importantly, as shown
in Table 2.3, examples of combining data which have only global normalisation un-
certainties result in negligible differences between [21] and this work, indicating that
previous results were largely unaffected by the potential bias issue.

A final interesting study is to understand the impact of defining the cross section

In Section 4.5.1, a full comparison between this work and the previous analysis in [21] is given.
However, as there is much new data included in this work that was not available in [21], it would not
be possible in the full analysis comparison to distinguish whether any differences observed are due to
the new data combination method or the new data input.
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Channel This work | f; method [21] | Difference
ntm 505.06 +£2.23 | 505.77 + 3.09 —0.71
ntan0 47.38 +0.99 47.51 4 0.99 —0.13
atr rtaT | 14.59 £ 0.47 14.65 4 0.47 —0.06
ata= 7070 | 20.57+£1.24 20.37 + 1.26 0.20
KTK~ 22.09 £ 0.42 22.15 + 0.46 —0.06
KJK? 13.46 +0.17 13.33 +0.16 0.13

Table 2.2: Comparison of the contributions to ahad’LO VP from leading and major

sub-leading hadronic channels determined with the data combination method devised
in this work and using the f; method. Here, for the purpose of this comparison,
all data that have been released more recently than the HLMNT11 analysis [21] are
omitted. All results are found in the energy range /s < 2 GeV and are given in units of
a,}iad’ LOVP . 1010, The first column indicates the final state or individual contribution,
the second column gives the estimate of azad’ LOVP from this work, the third column
states the estimate using the fi method and the last column gives the difference between
the two evaluations.

Channel This work | f; method [21] | Difference
atr~ [123-125] | 481.42 +4.05 481.42 +4.26 0.00
KtK~ [86] 16.92 £ 0.71 16.93 £ 0.81 —0.01

Table 2.3: Comparison of results from this work and using the f;r method when
combining data which have only global normalisation uncertainties. All results are
found in the full energy range of the combined data and are given in units of aﬁad’ LOVP
10'9. The first column indicates the final state or individual contribution, the second
column gives the estimate of aﬁad’ LOVP from this work, the third column states the
estimate using the fi method and the last column gives the difference between the two

evaluations.

Channel This work (linear) | Constant cross section | Difference
atr 502.99 + 1.97 502.49 + 1.98 0.50
ntr= 0 47.82 4+ 0.89 48.11 +0.93 —0.29
atr-ate 15.17 4+ 0.21 15.07 £0.16 0.10
atr =070 19.80 4 0.79 19.89 4 0.53 —0.09
KtK- 23.05 4 0.22 23.34 £+ 0.32 —-0.29
KK} 13.05 +0.19 13.13+£0.17 —0.08

Table 2.4: Comparison of the contributions to a,llad’LOVP from leading and major
sub-leading hadronic channels determined in this work (where the clusters are defined
to be linear between each bin) and the constant cross section representation of the
clusters. All results are found in the energy range /s < 2 GeV and are given in units
of a,}jad’ LOVFP 21019, The first column indicates the final state or individual contribution,
the second column gives the estimate of aﬁad’ LOVP from this work, the third column
states the estimate using the constant cross section representation and the last column
gives the difference between the two evaluations.

of each cluster as linear instead of constant across the width of each cluster. Although

the integration method is unchanged from a linear trapezoidal rule integral since the

34



previous analysis [21] (see Section 2.5), the representation of the cross section as linear
between each bin in the y?-function in equation (2.29) can cause variations in the final
fit solution for all clusters in a given channel. Results comparing the two methods are
given in Table 2.4. Again, the differences between the two approaches are not outside
the quoted errors, indicating there was not a large misrepresentation of the cross section

in the constant representation.

2.4 Determining the full hadronic R-ratio

Once the combination procedure has been applied to each individual hadronic chan-
nel, the resulting determined cross section data and corresponding covariance matrices
must be summed to determine the full hadronic R-ratio, R(s). With the data from
each channel having a different binning as a result of its individual combination, the
sum of these states requires an interpolation of both the cross section and its covariance
matrix. This process is described in detail in Section 2.4.5. Importantly, the covariance
matrix for the full hadronic R-ratio has not been previously fully determined by any
other work and is achieved here. Before this, any missing contributions that are not
available from experimental measurements must be estimated through various means
in order to determine the most comprehensive representation of the full hadronic spec-
trum that is possible. These missing contributions include threshold contributions,
narrow resonances and those hadronic channels that have not been measured at all by

experiment.

2.4.1 Estimating contributions: chiral perturbation theory (ChPT)

For some hadronic final states, the available experimental data do not extend to the
physical lower energy limit of the respective hadronic production thresholds. The 7%~

channel, for example, defines the lower energy border of the dispersion integral in
2

equation (1.45) to be s = m2. However, the available 7%y data only reach a lower
energy limit of 0.6 GeV. With the dispersion integrals being weighted towards lower
energies, the energy range m, < /s < 0.6 GeV is an important contribution and should
not be excluded. This is also true for the 777, 777~ 7% and 1y channels, all of which
do not have data available that extend down to their respective thresholds.

Without experimental data, the contributions from low energy regions for these final
states must be estimated.” As in [21,46,47], this is achieved via previously determined
chiral perturbation theory (ChPT) determinations of these threshold contributions.
ChPT is a low-energy effective theory describing the hadronic interactions of low-mass
mesons such as pions. In this setup, as opposed to an expansion in the strong coupling

constant ay like in pQCD (which is a divergent expansion at low energies as ag >> 1),

" As the low energy cross sections are not linear in s, an extrapolation of the available data down to
production threshold would result in overestimates of these low energy contributions.
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Fig. 2.7: The threshold contributions of the 7%y, 777, 777~ 7% and 7y channels as
estimated using chiral perturbation theory. In each case, the ChPT estimate is given
by the red line (with the theoretical uncertainties determined by the ChPT relation
and input parameters, e.g. masses, of each respective final state), whilst the yellow
band represents the uncertainty of the corresponding experimental data.

an expansion is performed in small momenta p or the light quark masses mg, which are
chiral symmetry breaking parameters. Massless particles have chiral symmetry and,
consequently, the introduction of quark masses spontaneously breaks the chiral nature
of the theory. Therefore, in ChPT, the quarks and gluons from pQCD are replaced
by mesons, which are the Nambu-Goldstone bosons of spontaneous chiral symmetry
breaking. The expansion is performed in the ratio of these parameters with some
safe energy scale A (% or %), where p,m,; << A and, therefore, the expansion is
well-defined. At leading order, this expansion assumes that the mesons are point-like
particles that couple to the photon.

Fortunately, in other dedicated works, the theoretical low-energy cross sections have
been determined using ChPT and can be implemented here for the purpose of extending
the lower boundary of the relevant experimental data to their production thresholds.

For the 7%y channel, the contribution in the range m, < /s < 0.6 GeV is determined
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from the theoretical description of the low energy cross section given in [75] as

8ral'(7® — 2 m2,\ 3 2 \?2
R R e (O N ) IEE Y
me, 5 m2 — s

Here, I'(7" — 2v) is the decay width of the process 7

— 27 (which dominates the
decay of the 7 meson [16]) and m,, is the mass of the w resonance. The last term in
equation (2.35) is an improvement of the pure ChPT cross section using a vector meson
dominance approach [75]. This accounts for the presence of the w resonance in the 7%y

channel by replacing the virtual photon propagator with the resonant form

1 1 m?
L (2.36)

o
S smg — S

For the w7~ threshold contribution in the range 2m, < Vs < 0.305 GeV, a

compact prediction for the pion form factor given in [76] as
1
Fr(s) =1+ 8 (r*)_ s+ cps® +0O(s%), (2.37)

where the coefficients (r?) = 0.431 £ 0.026 (fm?) and ¢, = 3.2 £ 1.0 (GeV™%), are
found in [76] by fitting to space-like pion scattering data [77]. The 7+ 7~ 7" contribution
between 3m, < /s < 0.66 GeV is estimated using the ChPT prescription in [78,79].
The threshold 7y contribution in the range m,, < /s < 0.66 GeV is estimated according
to Appendix A.2 of [46], although it provides a negligible contribution to a,. For all
four of these channels, the estimated cross sections are displayed in Figure 2.7, where
each plot shows the point where the ChPT prediction is overtaken by the measured
experimental data. In all cases, there is good agreement between the ChPT estimate

and the data.

2.4.2 Estimating contributions: isospin

For many of the sub-leading hadronic final states, there are no experimental measure-
ments of their cross sections. Many of these contributions, although small compared
to the leading contributions, have production thresholds that are below the boundary
where the sum of exclusive final states is replaced by the inclusive data. It is clear
that, for a high precision analysis, these should be included in the exclusive sum to
ensure that they contribute to the hadronic R-ratio and, therefore, the determination
of glsdVP.

Following [21, 46,47], the cross sections for these final states are estimated using
relations based on the Pais isospin class [80]. As a simple example of this setup, consider
the process of electron-positron annihilation into a two-pion final state. The three pions
0

(7, 7Y, 77) form a triplet under isospin symmetry, where the quark contents of each

are described by the wave-functions

- 1 -
|7T) : —|ud) , |7°): |%(uu—dd)> , |m7) s —|da) . (2.38)
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Pions are eigenstates of G-parity (G = £1),

72

G=CRy=Ce ™2 =¢"35 (2.39)

which is a symmetry described by combination of a 7 rotation about the 2-axis in isospin

space Ro with charge conjugation C. Under G-parity, the pion triplet transforms as

7*) —|7")
Gl ) = -1 |. (2.40)
) —|7)

It follows that pions have a G-parity quantum number G = —1 [16]. The photon can
be either be isospin I = 0 or I = 1, implying that isospin is not conserved in photon

interactions and resulting in

G |vr=0) = — |v1=0) , Glyi=1) = |y1=1) - (2.41)

However, from this it can be seen for the process ete™ — ~* — nm, the G-parity
assignment for n pions in the final state is given by G™Pio" —= (—1)" conserving
G = —1 for odd n and conserving G = 1 for even n [81].8 Using this setup and the
knowledge that the photon is either I = 0 or I = 1, the two-pion final states consistent
with the isospin of the photon can be constructed from the table of Clebsch-Gordan

coefficients [16] as

1 1 1
0,0) = — |7 —— 7Y+ — |7t
0.0) = w7 ) = w00 + o )
1 1
1,0)= —|ntn )y — —=|x 7). 2.42
1.0) = 5 w77 — ) (2.42)
The process v — 77 is forbidden due to charge conjugation symmetry (with C7 = —1

and C™ = +1) and, therefore, only the second final state is allowed. Hence, the
use of isospin has shown that the only allowed two-pion final is the process ete™ —
v* — w7~ and, in the isospin limit, can be constructed from the valid relation in
equation (2.42).

This theoretical setup can be extended to derive relations for hadronic final states
for which there is no experimental data available. Specifically, the missing states are
approximated using theoretical forms of the cross section determined from isospin rela-
tions to measured cross section data as derived in [51]. In this work, the channels that

are estimated via these relations are 77370, 77470, K K3r, w2r, w3n, wK K and

8This is an important result and is responsible for the dominant decay of p — 77~ instead of

p — w7 The p resonance has G = 41 [16] and the decay of the p to an odd number of pions is
almost entirely suppressed by G-parity [81]. This is also true for the decay of the w resonance, where
G“ = —1 and consequently the w dominantly decays to 777~ 7° instead of to 777 ~. The presence of
the w resonance in the 777~ cross section (clearly visible in its interference with the p resonance) is
evidence of isospin being an inexact symmetry of nature and is, therefore, an isospin breaking effect.
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nrtm=279.2 In each case, the isospin relation used from [51], along with the corre-
sponding estimated contribution to a]ﬁad’LO VP, is given in the respective discussion of
each channel in Section 4.2. The use of these relations is far from preferable, as it has
been shown that for some final states the isospin relations can result in poor estimates
of the resulting cross section (see, for example, the discussion of the K K27 channel in
Section 4.1.8). However, with no better alternative approach available, it is important
that these channels are included in some form. In addition, all of the estimated states
provide small contributions to aﬁad’ LOVP helow ~ 2 GeV and will not drastically alter
the final result. It should also be noted that, in many cases, the estimates for the

channels have conservative errors applied to account for any incorrect approximation.

2.4.3 Estimating contributions: narrow resonances

The narrow resonances in the c¢é and bb regions are not resolved by the measured data
and, therefore, must be estimated and added separately to the inclusive R-ratio data.
These resonances are the J/v, ¢’ and T (1S — 45) states.'® This is achieved using the

Breit-Wigner (BW) resonance approximation given by

127 TY, sI'2
M2, T (s— M2)2+ M2 12’

res res ) res

oBw(s) (2.43)

where M, is the mass of the resonance, I is the full width of the resonance and I'%, is
the undressed electronic width of the resonance as given in equation (2.10). The input
values and uncertainties of these quantities are taken from [16], all of which are propa-
gated to determine the total uncertainty of the estimated cross section opw. Ensuring
a fine enough binning, the cross sections of resonance contributions are individually

estimated and added to the compilation for the total hadronic R-ratio.

2.4.4 pQCD and R(— o0)

For the determination of aﬁad’vp at higher energies (11.2 < /s < 1000.2 GeV), R(s)
is determined via pQCD using the dedicated and publicly available code rhad [238].
As stated previously, at these energies and away from quark flavour thresholds, pQCD
provides a good prediction of the hadronic cross section and is safe to use. The physical
rapid variations that are part of the hadronic spectrum in the regions of flavour thresh-
olds are not present in the determination of R(s) as calculated by rhad. Fortunately,

the energy region > 11.1985 GeV is above the bottom quark production threshold and,

9New measured data contributing to the channels K K7 and K K27 have allowed for these states to
be determined without the need for dedicated isospin relations as was previously done in [21,46, 47].
This is explained in detail with a comparison of the estimates for these states from the experimental
data and isospin relations in Section 4.1.8.

9From [82], the inclusion of Ry, data [234] has resolved the resonances of the Y(55) and Y (65) states,
removing the need to estimate these structures as was done in [21,46,47]. This is discussed in further
detail in Section 4.3.2.
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therefore, the contributions from the first five quark flavours are included as part of the
data compilation described above. For the top quark, the low energy weighting of the
integrand and kernel function in equation (1.46) means the variations due to top quark
production provide a very small contribution to azad’ VP and can be safely neglected.!!
In this work, all relevant input parameters used by rhad have been updated to the most
recent values [16] and an uncertainty on R(s) is determined from the uncertainties of
Qg (M%), the mass of the bottom quark, the mass of the top quark and a variation of
the renormalisation scale.

The contribution to the dispersion integral above the pQCD cut-off and up to s = oo
is negligibly small. It can be approximated using the knowledge that in this relevant,
six quark flavour region, R(y/s 2 1 TeV) ~ 5. In addition, if the kernel function K(s)

in equation (1.46) is modified to be

K(s) = 2 K(s), (2.44)

then K(s) is a monotonically increasing kernel function with K(s — oo) — 1. Ap-
plying these assumptions to the corresponding dispersion integral modified from equa-
tion (1.46) results in

2 roo
al b LOVP (/5 > 1 TeV) :(O‘m“> / L Ris)K(s)
1

3m TeV 52
~ 5 & i / * ds
3 1TeV 52
~0.0003 x 10719, (2.45)
which is insignificant compared to HLMNT11 estimate of a}ﬁad’ Love given in equa-

tion (1.31).

2.4.5 Combining all contributions

In this work, the full hadronic R-ratio is determined by summing all determined cross
section data and corresponding covariance matrices, either taken from the data com-
bination or from the estimated contributions listed above. In the works preceding
this analysis [21,46,47], the contributions to aﬁad’vp were found by integrating over
the data for various channels/contributions individually and then summing the sepa-
rate contributions to aﬁad’vp and its error. Although this approach is equivalent to
summing the data before integrating, the previous works had not achieved the sum

of correlated uncertainties to produce a covariance matrix for the total R-ratio. This

"' This is not true for the dispersion integral used to determine Aanaq in equation (2.3), where due
to a different weighting of the integrand, the top quark threshold provides larger contributions. Hence,
in this case, rhad is used to determine R<5)(s) above 11.1985 GeV using only five active quark flavours
and, as described in Section 2.1.1, equation (2.3) is only used to calculate the contributions from the
first five quark flavours. The top quark contributions are evaluated separately [62].
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is accomplished in this work for the first time and is described here. The resulting
data vector and corresponding covariance matrix of the hadronic R-ratio in the range
my < /s < 1000.1985 GeV is determined in this work.'? However, the contributions to
azad’vp from individual channels are still determined as a major part of the individual
channel analysis. All results from individual channels are given in Section 4.

Before summing the data from different channels, the uncertainties from all error
sources must be combined to define a total covariance matrix for each channel. The
output covariance f/(m, n) of the y2-minimisation contains all experimental uncertain-
ties and is inflated by local x2 . /d.o.f. according to equation (2.34). For any additional
uncertainty due to VP corrections, a covariance matrix Vyp(m,n) is constructed ac-
cording to equation (2.12) as

Vop(m,n) = & (R — B3 VP) S

where the superscript ‘no VP’ indicates the cross section value of the cluster without

R, — R2°VPy | (2.46)

a VP correction applied. For the additional uncertainty due to FSR radiative correc-
tions, following the discussion in Section 2.1.2, the FSR uncertainty covariance matrix

Vrsr (m,n) for the 77~ channel is found from
V]:_?‘TS-'E (m’ n) _ (R;Tn+7r_ . jow_, no FSR)(RZ+7F_ B Rg"'ﬂ_, no FSR) 7 (2.47)

where the superscript ‘no FSR’ indicates the cross section value of the cluster without a
FSR correction applied. For all other channels requiring an additional FSR correction

uncertainty, the corresponding covariance matrix is given by
Vesr(m,n) = (0.01) R, (0.01)R,, . (2.48)
Therefore, for each channel, the total covariance matrix is found from the sum
V(m,n) = f/(m, n) + Wp(m,n) + Vesr(m,n). (2.49)

Following this, the total value R(\/s = E,) is found from the sum of the linear
interpolants of all available cross section data. The energy array E, is defined by the

energies of all clusters, from all channels, contributing to the total R-ratio. For all
channels X, if EX < E, < E2 ., then

E, - E2
R(E,) = ; [Ré + M(Rm+l Ry)|. (2.50)

Therefore, if EX < E, < Ex ., and ExX < Ey < EX,{, then the calculation of the total

covariance matrix V(Ea, Eb) follows accordingly using the standard error propagation

formula . +1
langs OR(Ey)
X X
V(Ea, Ey) ZZZ aRX V(EX.E)) ORY (2.51)
X p=mg=n

12The data for the R-ratio in the range m, < /s < 11.1985 GeV is available upon request from the
authors of [87].
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where V(EX EX ) is the covariance matrix of the channel X at the cluster energies
EX = En Ex  and EX = EX ExX |13

m

2.5 Integration

Once the determination of the total R-ratio and its covariance matrix is complete, or
for the contribution from each channel individually, the integral over the available data
given in equation (1.46) is found using a trapezoidal rule integral that is consistent
with the linear cross section representation of the clusters that has been adopted in the
X2—minimisation. In the respective available energy range Epin < v/s < Emax GeV, the
integral to be determined, I, is given as
2 ,E2.. 2 Fmax

It 1OVP] = £ / % R(s)K(s) = % / - d]f R(EDK(E?).  (2.53)
If the lower integral boundary exists between the clusters F,, < Fnin < Fp41 or
the upper boundary exists between F,,_1 < Fnax < E,, then the cross section values
R(EZ2,.) or R(E?,,) are found by linear interpolation. Alternatively, if either integral
boundary required are beyond the borders of the available energy of the data, then the
integral boundaries are found by linear extrapolation. The trapezoidal rule integral is

therefore given by'4

20[2 E - Emin E — Emin
I=32 (%R(E;IH)K(Eim) %Rm—&-lK(Em—i-l))
n—2
Eyi1 — By
+< > WRkK(EiO
k=m+2
Em X En— Em X E
(Eop et m et ) + BB (e )|

(2.54)

The error of the integral, A, is then found from the covariance matrix using

1
max max 6[ 2
(Z ZaRkvmaRl> , (2.55)

k=min [=min

where the sums run between the lower and upper integral boundaries,

13Note that, in this work, no correlation is assumed between separate hadronic channels due to the
lack of experimental information. However, should this information become available, this can be easily
incorporated to the error contribution of R(s) by extending equation (2.51) to include a second sum
over all channels X’. Therefore, if EX < E, < EffH_l of the channel X and E,)f, < Ey, < Eff_;l of the
channel X', then

o ' OR(E
V(Eq, Eb) ZZZZ aRX V(ES, EX) 8]%?). (2.52)

X X'’ p=mgqg=n

Here, V(EX EX /) is the covariance matrix describing the correlation between the channel X and the

channel X’ at the cluster energies EX EX, Em+1 and EX = Eff/, En+1
1 Note that exceptions to this trapezmdal rule definition of the integral exist in special cases such as
Emax < Em+17 Emax < Em+27 etc.
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Fig. 2.8: The differences observed using linear, quadratic and cubic integration rou-
tines in prominent resonance regions in the 777~ and K™K~ channels.

k,l=minm+1,m+2,...,n—2,n— 1, max, (2.56)

as given by equation (2.54). Importantly, in this work, the calculation of the uncertainty

of aﬁad’vp has been modified to improve the determination of the error contribution at

the integral boundaries. Should the integral boundaries R(Efnin) or R(Efnax) be found
by linear interpolation (or extrapolation if it is necessary to extend the integral bound-
aries), then the covariance matrix V(k,l) is interpolated (extrapolated) accordingly
using the standard error propagation formula

OR OR,
V(1) => " TRIZV(@ q)a—Ré : (2.57)
p q

where p, ¢ run over all clusters and V(l, k) = V(k, l).

In principle, the use of the trapezoidal rule integral could lead to unreliable results
due to the form of the kernel function or at narrow resonances if data are sparse.
However, with the current density of cross section measurements, especially in the
dominant hadronic channels, the differences between trapezoidal rule integration and
any higher order polynomial approximation are consequently small (less than 10% of
the error in the largest instance of the KT K~ channel) and of no concern. This can

be seen in the plots in Figure 2.8.
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Chapter 3

Combination of KLOE
J(€+€_ — 7T+7T_*y(7))
measurements

The three precision measurements of the cross section o(ete™ — nT7~7(v)) using ini-
tial state radiation by the KLOE collaboration [88-90] provide an important input for
the prediction of the hadronic contribution to the anomalous magnetic moment of the
muon. These measurements are correlated for both statistical and systematic uncer-
tainties and, therefore, the simultaneous use of these measurements requires covariance
matrices that fully describe the correlations. The study and construction of these co-
variance matrices, coupled with their use to determine a combined KLOE measurement
for a(e+e_ — 7r+7r_’y(’y)), demonstrate the importance of the correct construction of
experimental covariance matrices and provide a prominent example of the power of the

data combination method described in the previous section.

3.1 The KLOE measurements of O’(€+6_ — 7T+7T_’)/(’}/))

The KLOE collaboration have made three precise measurements of the cross section
o(efe” — atm~v(v)) in 2008 [88,91], 2010 [89,92] and 2012 [90,93]. The contribution
of the 777~ final state to the anomalous magnetic moment of the muon, am e

o
70% of the total estimate of azad LOVE and is also the largest contributor to its uncer-

, is over

tainty. As such, the three measurements of the cross section a(e+e_ — 7r+7r_7(7)) by
rta~

w
The simultaneous input of the three KLOE measurements requires a detailed analy-

the KLOE collaboration provide an important input to precisely determine a

sis to attain the correct combination of the three, which will have a non-trivial influence
on af”i Although each of the KLOE measurements of o(ete™ — 777 (7)) has
individual covariance matrices provided for both statistical and systematic uncertain-
ties, the measurements themselves are, in part, highly correlated, necessitating the

construction of full statistical and systematic covariance matrices describing the cor-
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relation between the bins of all three measurements to be used in any combination of
these data. To combine the data without the correlations would result in an underes-
timate of the uncertainty of aﬁad LOVP and, potentially, a bias of its mean value. The
construction of these covariance matrices must be statistically robust in order to ensure
that they correctly describe the correlated relationship of the three measurements.
From the experimental analysis, all three published cross sections are bare (un-
dressed of all VP effects) and include FSR effects (ogﬂﬁ). For the first two, denoted
here as KLOEO08 [88] and KLOE10 [89], the bare cross section is obtained according
to the procedure described in Section 2.1.1, but using a different publicly available VP
namely KLOE12 [90], the data

were normalised bin-by-bin by a reciprocal measurement of the p*u~ cross section.

routine [94,95]. For the third measurement of o, _,
The ratio of the 777~ and u™ ™ cross sections benefits from the cancellation of the
luminosity correction, the radiator function for initial state radiation (ISR) and the VP
correction, manifestly resulting in a bare cross section.! For all three measurements,
the FSR contribution to the 777~ production is included according to Section 2.1.2.
The KLOEO8 measurement consists of 60 data points in the range 0.5916 < /s <
0.9746 GeV, covering the dominant p resonance structure and the p — w interference
region in the 777~ final state. The uncertainties of the cross section are dominated by
the systematics uncertainties, especially in the region where the cross section is large.
From [88], integrating the originally published KLOEO8 data (following the integral

procedure in Section 2.5), results in?

al" ™ (KLOEO0S, 0.5916 < /s < 0.9746 GeV) = (387.2£0.54ta1 £3.35y5) x 1070 (3.2)

The KLOE10 measurement totals 75 data points in the range 0.3162 < /s < 0.9220
GeV. The fifty energy bins of the data in the range 0.5916 < /s < 0.9220 GeV are
identical to the fifty KLOEOS bins in the same interval. From [89], the original KLOE10

cross section results in

al" ™ (KLOE10,0.3162 < v/s < 0.9220 GeV) = (478.5£2.0stat £6.7ys) x 10710 (3.3)

As previously described, the KLOE12 measurement was determined as a u™ ™~ nor-

malised cross section. The pu+u™ cross section was measured for the KLOE12 analysis,

'For the same invariant mass squared, the ratio of the measured 77~ and pp~ v differential

cross sections allows the relation
+ —

= M o(eTe” = ptuT,s), (3.1)

do(utp=y)/ds
where s = M2, = M, 5‘, As both these processes exist only through s-channel exchange, the contribu-
tions to the photon vacuum polarisation are both purely time-like and exactly cancel in the ratio.

2The emphasis on the originally published data is relevant here as studies into the construc-
tion of the covariance matrices resulted in the experimental analysis of each KLOE measurement
of U(6+€7 — 7r+7r7'y('y)) being reviewed and, in some cases, updated in order to ensure a more pre-
cise and consistent combination of the three measurements. The changes to the results given here are
presented in Section 3.2.

U?rm'y(s)
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Fig. 3.1: The flow of the experimental analyses of all three o(ete™ — mrm (7))
cross section measurements. The point where the KLOEO8 77~ ~(y) data enter the
KLOEI12 analysis is indicated by the bold black arrows.

whereas the KLOEOS 777~ data were used as the input for the two-pion cross sec-
tion, with the KLOE12 measurement having an identical binning and energy range to
KLOEO08. From [90], the original KLOE12 data give a contribution to af’f of

ajj*”’ (KLOE12,0.5916 < /s < 0.9746 GeV) = (385.14+ 11540t £2.75ys) x 10710 (3.4)

As KLOEOS8 and KLOE12 share the same two-pion data, these measurements are highly
correlated, and it is important that they be treated as such in any combination of the
two measurements.

The flow of the experimental analyses for the KLOE(OS, KLOE10 and KLOE12
measurements is shown in Figure 3.1. Each stage in the flow diagram corresponds to
a specific part of the experimental analysis or a specific correction to the cross section
measurement. In the case of the KLOE12 measurement, the beginning of the flow refers

to the measurement of 1+~ (7). The point where the KLOEOS8 717~ v(v) data enters
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is clearly marked. This diagram exhibits the extent of the correlation between KLOE(Q8
and KLOE12, with correlations existing for all elements of the KLOEOS agm,y analysis
from the observed spectrum of 777~ () events up to the acceptance correction. In
addition, the degree of correlation between KLOEO8 and KLOE10 or KLOE10 and
KLOE]12 is clearly shown, with many parts of the experimental analyses being common

to a pair of measurements or having been obtained through a similar method.

3.1.1 The initial combination of the KLOE data

In [96,97], a construction of the necessary statistical and systematic covariance matri-
ces for the three measurements was attempted. These were released to use in a com-
bination of the three measurements to incorporate the various correlations depicted in
Figure 3.1. The preliminary combination of these data in [97,98] utilised a method that
neglected the correlations of the systematic uncertainties in the combination to avoid
the d’Agostini bias. The data combination method used in this work safely allows for
all correlated uncertainties (statistical and systematic) to fully influence the results of
the data combination.

The results of this combination, where the covariance matrices constructed in [96,97]
were used as input into the routine described in Section 2.3, are shown in Figure 3.2.
In plot (a), the comparison of the KLOE10 data with the combination in the non-
overlapping, low energy data region shows that the influence of the correlated uncer-
tainties at higher energies has produced erratic variations in the combined cross section.
In the high energy region, where only KLOE(O8 and KLOE12 data are present, the com-
bined cross section has seemingly jumped in a step-like fashion to be distinctly higher
than the contributing data. In plot (b), it is clear that overall the fit is higher than

rta—

o
range of 0.6 < /s < 0.9 GeV from the three KLOE measurements and the combination

all the contributing data. In addition to this, results for a in the overlapping data
are compared in Table 3.1. Here, it can be seen that the combination yields a noticeably
higher value than the individual measurements contributing to it. Together, all these
results indicate that the covariance matrices as constructed in [97,98] do not appropri-
ately describe the correlations of these data, with the behaviour of both the combined
cross section and the value of af”i being different from what would be expected from
the combination of these data. A study into the structure of these covariance matrices
revealed that the matrices had not been constructed to satisfy the necessary proper-
ties of a covariance matrix as described in Section 2.3.2. In particular, the eigenvalues
of the systematic covariance matrix were not all > 0 and, consequently, it was not a
positive semi-definite matrix.? It followed that it was necessary for new matrices to be

constructed, ensuring that they were robust with regards to the mathematical structure

3The eigenvalues ranged from —18.9 to 4148.9. The causes of the negative eigenvalues are discussed
in Section 3.2.2.
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Fig. 3.2: The normalised difference of the KLOE combination and the individual
KLOE measurements, where the KLOE combination has been determined using the
previously constructed KLOE covariance matrices [96,97]. The yellow band repre-
sents the statistical and systematic uncertainties of the KLOE combination summed in
quadrature and the KLOEO8, KLOE10 and KLOE12 cross section measurements are
given by the blue, black and pink markers, respectively.

and fulfilled the required properties of a covariance matrix.

3.2 Constructing the KLOE combination covariance ma-

trices

In the process of constructing the KLOE combination covariance matrices, the ex-
perimental analysis of each KLOE measurement of a(e+e_ — 7T+7T_'y(7)) has been
reviewed and, in some cases, updated in order to ensure a more precise and consis-
tent combination of the three measurements. The KLOEOS, KLOE10 and KLOE12

data have been updated with respect to [88-90] to incorporate the following necessary
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KLOE 77 v(v) data set | a™ ™ (0.6 < /5 < 0.9 GeV)

KLOEOS8 : 368.3 £ 3.3¢0t
KLOE10 366.0 £ 3.2¢¢
KLOE12 366.6 £ 3.5¢0t
KLOE combination 369.6 £ 2.9¢0t

Table 3.1: Comparative results of the values obtained for a/’;+”_ (0.6 < /s < 0.9 GeV)
from the KLOE combination and the individual KLOE measurements, where the KLOE
combination has been calculated using the previously constructed KLOE covariance
matrices [96,97]. All results are given in units of af’f x 1010,

changes:

e The data have been undressed of VP effects using an updated routine [95] com-
pared to the one used previously [94], which now corrects the data using a more

appropriate energy grid parametrisation for the determination of the VP.

e The VP correction contains both real and imaginary parts, whereas previously

the data were only corrected for the real part of the VP.

e The data are not rounded as they were in [88] to ensure that the statistical and
systematic uncertainties correspond to the variances that enter into the diagonal

elements of the corresponding covariance matrices.

e The calculation of the cross section has been updated with respect to the precision

of input parameters and fundamental constants [16].

Using the updated KLOE data yields two-pion contributions to the anomalous magnetic

moment of the muon from each measurement of

a” ™ (KLOEO8, 0.5916 < /5 < 0.9746 GeV) = (386.6 = 0.4q1aq + 3.35y5) X 10710,

7

al" ™ (KLOEL0,0.3162 < v/5 < 0.9220 GeV) = (477.9 £ 2.05tat = 6.75ys) x 10710,

al" ™ (KLOE12,0.5916 < v/5 < 0.9746 GeV) = (385.1 £ 1.25t; = 2.35y5) x 10710
(3.5)

Here, the estimates from the KLOEO8 and KLOE10 data exhibit a decrease in the

mtn—
w

equation (3.3) respectively, which is largely due to the updated determination of the VP.
This does not apply to the KLOE12 data which, as stated previously, benefits from the

mean value of a when compared to the estimates quoted in equation (3.2) and

cancellation of the VP correction due to the normalisation by the pu*pu ™ cross section.
However, for KLOE12 the error has reduced when comparing to equation (3.4), where
a flaw in the previous error calculation resulted in an overestimation of the published
systematic uncertainty and, as a result, there have also been necessary changes to the

KLOE12 systematic covariance matrix construction.
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KLOEO08 .-+ KLOEO0810 ---| KLOE(0812
60 x 60 60 x 75 60 x 60

KLOE1008 | --- KLOE10 ---| KLOE1012
75 x 60 75 X 75 75 x 60

KLOE1208 |--- KLOE1210 --- KLOE12
60 x 60 60 x 75 60 x 60

Fig. 3.3: The KLOE 77~ () combination matrix structure for both the statistical
and systematic covariance matrices.

In this work, the KLOE statistical and systematic combination covariance matrices
have been carefully constructed to satisfy all the necessary mathematical properties of
a covariance matrix as described in Section 2.3.2, where the eigenvalues of the matrix
now range from 0.0 to 5131.3. They are 195 x 195 matrices and are depicted in Fig-
ure 3.3. The KLOEO08, KLOE10 and KLOE12 diagonal blocks are simply the covariance
matrices of the individual measurements. The KLOEO810 block describes the correla-
tion between KLOEO8 and KLOE10, with corresponding definitions for KLOE0812 and
KLOE1012. Statistical uncertainties are, in general, uncorrelated and only contribute
to the diagonal elements of the corresponding correlation block of the combination co-
variance matrix. The exceptions to this are the unfolding [99-101] and unshifting [99]
corrections, which both contribute to the non-diagonal elements of the statistical ma-
trix (see Section 3.2.1). The unfolding correction accounts for the smearing due to
the detector resolution and the unshifting is a redistribution correction of the observed
value of s from M2_— (M2 )2 where, here, M?2,_ denotes the squared invariant mass of
the pion pair. This accounts for photons emitted through final state radiation that shift
s away from the squared invariant mass of the virtual photon, s7 [102]. For systematic
(sys) uncertainties, all data points are taken to be 100% correlated or anti-correlated.
The resulting correlation structures for both the statistical and systematic matrix are

shown in Figure 3.4.
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Fig. 3.4: The correlation structure of the 195x195 statistical and systematic combi-
nation matrices. In each case, the axis on the right represents the overall correlation
coefficient (p;; = —1 < p < 1), where the corresponding colour indicates the degree of
correlation at each point in the respective matrix. For the statistical matrix, correla-
tions are only present between the KLOEOS and KLOE12 measurements, which share
the same two-pion data.
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3.2.1 Statistical correlations

Other than those that exist as part of the individual analyses for the KLOE08, KLOE10
and KLOE12 diagonal sub-matrices in the statistical 195 x 195 combination covariance
matrix depicted in Figure 3.3, the only statistical correlations that are present are
those due to the two-pion data that are shared between KLOE(O8 and KLOE12. These
occupy the KLOEO812 and KLOE1208 blocks of the statistical combination covari-
ance matrix. As no statistical correlations exist between KLOE08 and KLOE10 or
KLOE10 and KLOE12, all elements of the KLOE0810 (KLOE1008) and KLOE1012
(KLOE1210) correlation blocks of the statistical covariance matrix are zero. This can
be seen diagrammatically in Figure 3.4.

The individual KLOE08, KLOE10 and KLOE12 statistical covariance matrices (cor-
responding to the diagonal blocks of the statistical combination matrix given by Fig-
ure 3.3) describe all statistical uncertainties inherent in the respective experimental
analysis. The contributions to the statistical covariance matrices from the unfolding
and unshifting procedures are partially correlated, where the correlation coefficients are
defined by the unfolding [99-101] and unshifting [99] procedures themselves.

The KLOEO0812 statistical correlation block receives contributions from all cor-
rections to the KLOEO8 77~ () data up to the point where these data enter the
KLOE12 analysis. Following the experimental analysis flow for KLOEOS in Figure 3.1,
these include the detector resolution correction (unfolding), the correction for bor-
der efficiency in the acceptance, the pion identification efficiency (7 /e likelihood), the
tracking efficiency, the trigger corrections, the unshifting of M2, — (M2.)? and the
acceptance for the cuts in 0, and 0., [91]. All corrections prior to the unfolding in the
analysis flow are included in the unfolded KLOEO8 77~ v(7) spectrum and, therefore,
manifestly enter the KLOE0812 correlations through the correlations of the unfolding.
As the unfolding (unf) and unshifting (uns) corrections are identically correlated for
the KLOEO8 and KLOE12 statistical covariance matrices, these correlations must be
reflected in the KLOEO812 correlation block exactly in the form

0812,unf/uns 12,unf/uns (3 6)

1208,unf/uns __
1] 7t 1] 1

08,unf/uns _
Not doing so would result in the statistical covariance matrix having negative eigen-
values, therefore violating the condition that the covariance matrix is a positive semi-
definite matrix.* All remaining correlated statistical uncertainties only enter into the
diagonal elements of the KLOEO0812 correlation block, as they are fully correlated only

for the same energy bins between the two measurements.

4This is also true for the systematic covariance matrix and, in fact, was a contribution to negative
eigenvalues of the systematic covariance matrix constricted in [96,97].
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3.2.2 Systematic correlations

All correlation blocks in Figure 3.3 receive contributions from systematic uncertainties,
as can be seen clearly in Figure 3.4. Unless stated otherwise, for any two bins i and
J, systematic uncertainties where correlations exist are fully correlated (p;; = +1) or
anti-correlated (p;; = —1).

For the individual measurements, apart from two exceptions, all sources of system-
atic uncertainty are fully correlated between all energy bins. The first exception is
the systematic uncertainty due to the unfolding, which only contributes at the sharp
descent of the cross section in the p — w interference region. Here, an identical un-
folding uncertainty enters for five bins of the KLOEO8 and KLOE12 analyses and is
anti-correlated only for pairs of bins that are on different sides of this sharp descent
of the cross section. For KLOE10, the only two affected bins are those directly be-
fore and directly after the sharp descent in the cross section, where the uncertainties
are fully anti-correlated between these two bins. The second exception is the weighted
background subtraction for KLOE12, where in the experimental analysis the weights of
the fitted eTe™y, Ty and w7 backgrounds to the u* =~y (y) spectrum are distributed
over neighbouring two-bin intervals from 0.32 to 0.96 GeV? (with each bin covering
an energy interval of 0.01 GeV?). For the KLOE12 systematic covariance matrix, this
results in only neighbouring bins from 0.36 to 0.94 GeV? being correlated with each
other for this background subtraction uncertainty, where the first and last bin remain
entirely uncorrelated in this case.

Importantly, for the KLOE12 systematic covariance matrix, the trigger, L3 (soft-
ware trigger), trackmass, tracking efficiency, acceptance and background subtraction
corrections are applied to both the 777~y and u™p~~ data that enter into the nor-
malisation ratio and, therefore, the corresponding uncertainties from a given source
between the 7+ 7~ and utpu~~ data are correlated.® Formally, the ratio of these cor-
rection uncertainties results in a reduction of the total uncertainty of aff, where the
contributions of the positive correlations between the KLOEO8 and KLOE12 uncer-
tainties contribute negatively to the overall uncertainty due to the partial derivative
of the p* ™~ data in the denominator of the ratio. However, the uncertainties due to
a given source are defined in terms of the ratio of 77~ over u* ™7, such that the
contributions from both data sources are already fully incorporated.

In addition, the KLOE12 systematic uncertainty vector for the non-weighted back-
ground subtraction was constructed in [90,93] such that it contained the ratio of the
contributions from the corrections of the ee — eemrm and ee — eeup background pro-

cesses, along with a trackmass (M) tail correction, summed in quadrature. For this

5This only refers to the correlation of uncertainties from a specific source between the w7~y
analysis and the p™p~ v analysis that enter into the KLOE12 ratio. The correlation between the
KLOEOS 7" 7™~ data and the KLOE12 cross section ratio are described in detail in the discussion of
the KLLOEO812 block of the systematic covariance matrix.
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analysis, in order to correctly correlate these independent sources of systematic uncer-
tainty according to equation (2.27), these contributions are separated and correlated
individually. This has contributed to the reduction of the KLOE12 error estimate in
equation (3.5), where previously the correlation of the combined vector resulted in an
incorrect overestimate of the systematic uncertainty.

For KLOEO8 and KLOE10, the contributions to the systematic uncertainty from the
trackmass, tracking efficiency, L3 (software trigger) efficiency, acceptance, luminosity,
radiator function, vacuum polarisation correction and final state radiation correction
are considered to be fully correlated in the KLOE0810 (KLOE1008) covariance matrix
blocks. For the correlation of the systematic uncertainty due to the acceptance, only
half of the KLOE10 uncertainty is correlated with the KLOEOS8 uncertainty in order to
ensure that the photon detection acceptance that enters into the KLOE10 uncertainty
(that is not present in the KLOEOS8 analyses) is not correlated and only the correlation
of the pion tracks is duly accounted for. Importantly, although the KLOEO8 and
KLOE10 measurements only overlap for the 50 data points in the energy range 0.35 to
0.85 GeV?2, all energy bins in the 60 x 75 KLOE0810 (75 x 60 KLOE1008) correlation
block must be fully correlated. Note that this is a change with respect to the previous
construction in [96,97], where 100% correlation was applied to only the overlapping
50 x 50 region which contributed to the systematic matrix having negative eigenvalues.

Again, for KLOE0812 (KLOE1208), the systematic uncertainties inherent in the

Tr~v(vy) data shared between the two analyses are correlated between the KLOE0OS

T
and KLOE12 measurements. These include the uncertainties from the L3 efficiency, the
background subtraction, the trackmass (M), the unfolding, the tracking efficiency,
the trigger efficiency and the acceptance from the KLOEOS analysis. The determined
uncertainties for the L3, M.y, tracking, trigger and acceptance corrections for KLOE12
are fully correlated for KLOE0812 such that the anti-correlation that occurs due to the
ratio in KLOE12 is propagated accordingly. This is also true for the non-weighted back-
ground subtraction contribution, ensuring that only the corrections for the ee — eenn
background from the KLOEOS8 analysis are correlated with the ratio of the corrections
of the ee — eerm and ee — eeup background processes as they enter in the KLOE12
analysis. The unfolding uncertainties for the KLOEQ812 correlation block are, in part,
anti-correlated as they are for KLOE08 and KLLOE12 individually. All other systematic
uncertainties are 100% correlated between KLOEO8 and KLOE12.

With the same 7"7~v(y) data being shared between the KLOEO8 and KLOE12
measurements, the KLOE1012 (KLOE1210) correlation blocks follow a similar struc-
ture to the KLOE0810 (KLOE1008) correlation blocks. The caveats to this statement
are that there are no correlated uncertainties here due to the luminosity, radiator
function or vacuum polarisation correction, as these effects cancel in the ratio of the

7tr () data over the putu~v(y) data for the KLOE12 measurement. Therefore,
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the correlated systematic uncertainties for KLOE1012 are the trackmass, tracking effi-
ciency, L3 efficiency, acceptance and final state radiation correction uncertainties, where
it is again necessary to correlate only half of the KLOE10 acceptance uncertainty with
KLOE]12 in order to ensure that only the effect due to the acceptance of the pion tracks

is incorporated.

3.3 Combination and results

The updated data vectors for the three cross section measurements and the newly
constructed covariance matrices have been combined according to Section 2.3.2. The
combination of the KLOE data represents a simpler case than the combination of all
available data with different energy bins for an entire hadronic channel, as the identical
binning of the KLOE data means that the clustering of data points is trivial, and no
linear interpolation is required for the data between bins in the minimisation. The
resulting combined cross section and corresponding pion form factor data are listed in
Table B.1 in Appendix B.% Figure 3.5 shows the combined cross section and the indi-
vidual measurements. Figure 3.6, in comparison with Figure 3.2, shows the normalised
differences of the individual KLOE measurements and the new combination. Here, the
erratic behaviour observed in Figure 3.2 is no longer present and good agreement is
observed between the data and the combination. KLOE12 exhibits the largest fluctu-
ations when comparing to the fitted combination but is well within the errors of the
data. In plot (a) of Figure 3.6, it can be seen that the KLOE0810 and KLOE1012
systematic uncertainties have a non-trivial effect in the lower energy region where only
the KLOE10 data exist, exhibiting the power and flexibility of the new data combi-
nation method to incorporate the influence of the correlated uncertainties to their full
capacity. In this case, the correlations provide an expected upward pull (which is well
within the errors of the combination) to the KLOE combination cross section away
from the KLOE10 data points.

For the two-pion contribution to the anomalous magnetic moment of the muon in
the full energy range, the KLOE combination results in

mtn—

TITT(0.3162 < /5 < 0.9747 GeV) = (489.8 £+ 1.7gae £ 4.85) x 10710 (3.7)

ntn~
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from the KLOE combination and the individual measurements are given in Table 3.2

For the overlapping energy region of all three measurements, the estimates for a

and Figure 3.7. For both these comparisons, unlike previously in Table 3.1, it can be
seen that the influence of the correlations from the now correctly constructed covariance
matrices result in the KLOE combination agreeing well with the estimate from the three

individual measurements. In all cases, the errors include all correlation contributions.

5The input cross section vectors and combination covariance matrices, along with the combined
output cross section vector and total covariance matrix are available from [103].
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Fig. 3.5: The KLOE combination (yellow band) plotted with the individual cross
section measurements, where the KLOE(O8, KLOE10 and KLOE12 cross section mea-
surements are given by the blue, black and pink markers, respectively. In all cases, the
error bars shown are the statistical and systematic uncertainties summed in quadrature.
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Fig. 3.6: The normalised difference of the KLOE combination and the individual
KLOE measurements, where the yellow band represents the statistical and system-
atic uncertainties of the KLOE combination summed in quadrature and the KLOEOS,
KLOE10 and KLOE12 cross section measurements are given by the blue, black and
pink markers, respectively. Here, the errors bars of the individual measurements are
not shown in order to be able to distinguish the data points but are in good agreement

with the KLOE combination. 56
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KLOE nf7~v(vy) data set | am ™ (0.6 < /s < 0.9 GeV)

KLOEOS8 : 368.2 £ 3.1;0¢
KLOE10 365.5 £ 3.3¢0t
KLOE12 366.7 £ 2.5¢0¢
KLOE combination 366.9 + 2.1¢0¢

Table 3.2: Comparison of the values obtained for az+”_(0.6 < /s < 0.9 GeV) from
the individual KLOE measurements and the full combination. All results are given in
units of af”_ x 1010,

For the combination, they have been inflated according to the local Xilin/d.o.f. in
each energy bin according to Section 2.3.2. This local effect is shown in Figure 3.8
and has resulted in an increase to the overall uncertainty of the estimate of af”i of
~ 13%. While the statistical uncertainty of az+”_ from the combination is dominated
by KLOEO8 (which has the smallest statistical uncertainty of the three individual
measurements), the combination mean value of afr”_ is closest to that obtained with
the KLOE12 data alone, which has the smallest systematic and, therefore, the smallest
total error of the three. This in turn leads to the improved systematic error of the

combined result and, consequently, its improved total error.
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KLOE combination: 377.5 +2.2 ——=—

KLOEO08: 378.9 £ 3.2 +——

KLOE10: 376.0 + 3.4 +——e—

KLOE12:377.4+2.6
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a," ™ (0.5916 <'s < 0.9220 GeV) x 10"

Fig. 3.7: Comparison of estimates of af”f from the KLOE combination and the
individual KLOE measurements in the entire overlapping data range 0.5916 < /s <
0.9220 GeV. The KLOE combination is represented by the yellow band. In all cases,
the uncertainties shown are the statistical and systematic uncertainties summed in
quadrature. All results are given in units of az+”_ x 10'°. Note that the results
presented here differ to those given in Table 3.2 due to the slightly increased energy
range.
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Fig. 3.8: The effect of the local X?nin/d.o.f. error inflation on the KLOE combina-
tion, which is applied in each energy bin if the local sznin /d.o.f. > 1. The total effect
on the KLOE combination is represented by the yellow blocks. The relative contribu-
tions to each local 2. /d.o.f. from the KLOE0S, KLOE10 and KLOE12 measurements
individually are given by the blue, black and pink markers respectively.
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Chapter 4

Results

The following section summarises the data combination and estimates of a,}}ad’ Lovp

from all data-based and estimated hadronic final states. In total, the compilation of
these various sources results in 43 hadronic channels which are combined. All contri-
butions from the exclusive hadronic channels are evaluated up to 1.937 GeV, which is
the chosen transition point between the sum of exclusive channels and the inclusive
R-ratio data in this work. This is discussed in detail in Section 4.3.1. Each contribu-
tion to aﬁad’LO VP s quoted with its respective statistical uncertainty dgtat, systematic
uncertainty dsys, VP correction uncertainty ., and FSR correction uncertainty o
individually. This is followed by the contribution with the total uncertainty ¢, deter-

mined from the individual sources added in quadrature,

had, LOVP _ _had,LOVP
a'ua = aua £ Ogtar = 5sys + 5Vp + O

— g LOVP 45 (4.1)

In all cases, the uncertainties include all available correlations and local x? inflation.
In the following, for each channel, all contributing data sets are referenced and the
corresponding combinations are discussed individually. For the exclusive channels,
the purely data-based channels (including the threshold contributions estimated using
ChPT) are discussed first in Section 4.1 and the channels estimated using dedicated
isospin relations are discussed in Section 4.2. Results from the combination of the
inclusive data, the narrow resonances and pQCD are discussed in Section 4.3. Summing
all contributions, the total predictions of aﬁad’ LOVE and a]ﬁad’ NLOVP £.0m this work are
given in Section 4.4. Following this, comparisons with other similar works (including
the HLMNT11 analysis) are given in Section 4.5. A discussion of future prospects to

improve the determination of the contributions to agad’vp is given in Section 5.2.
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4.1 Data-based exclusive channels

4.1.1 7%y channel

2
.
As the available data starts at only 0.60 GeV, the threshold contribution is estimated
using ChPT (see Section 2.4.1). The channel now combines four data sets [104-107],
with the most recent being the precise, new measurement by the SND collaboration
between 0.60 < /s < 1.35 GeV [107]. The data set defines the maximum available

energy range for the data combined in this channel, extending the higher energy border

The 7%y final state defines the lower integral border of equation (1.45) to be s = m

slightly since [21]. The contribution from this channel is found to be

alr’7[0.60 < /s < 1.35 GeV] = (4.46 £ 0.04 = 0.07 £ 0.06 % 0.04) x 107 1°
= (4.46 +0.10) x 10710, (4.2)

The resulting cross section 0°(ete™ — 7%y) and all contributing data are shown in Fig-
ure 4.1, where the w and ¢ resonance structures are visible. The threshold contribution
is found from ChPT to give

alr’(ChPT)[my < /5 < 0.60 GeV] = (0.12 £ 0.01) x 10710, (4.3)

4.1.2 7tn~ channel

The 77~ channel dominates the contributions to aﬁad’vp, accounting for over 70% of
the total value of azad’ LOVP " This is due to the large p resonance structure in the low

energy region below 1 GeV that almost exclusively decays as p — 777~ and is highly
weighted by K (s) in equation (1.45).! Consequently, it also dominates the uncertainty
of the hadronic vacuum polarisation contributions resulting in many experiments hav-
ing measured this final state in an attempt to more precisely determine aZﬂF. It is
therefore the largest individual data combination for a single hadronic channel, combin-
ing twenty-six data sets [88-90,108-128] that total almost one thousand data points.
In addition to the inclusion of the KLOE combination described in Section 3, the
BESIII collaboration [127] have also released a new measurement in the important p
region, which has contributed to the improvement of the estimate of this final state
since [21]. These measurements, coupled with the precise, finely binned measurement
by the BaBar experiment [126] (which defines both the lower and upper boundaries of
the available 77~ data combination to be 0.305 < /s < 3.00 GeV), constitute all the
data in the two-pion channel measured via radiative return which now entirely domi-

nate this data combination. For these radiative return measurements, all the respective

'The w resonance is also present in this channel. However, the decay of w — 77~ in the same

energy region as the p resonance causes a mixing of these two structures. This mixing is apparent when
observing the 77 m~ cross section in Figure 4.3, which exhibits the familiar p — w interference structure
in the peak of the resonance and distorts the otherwise Breit-Wigner resonance configuration of the p.
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Fig. 4.1: The cross section 0”(ete™ — 707) in the range 0.60 < /s < 1.35 GeV, with
an enlargement in the prominent w resonance region.

experimental analyses have provided full statistical and systematic covariance matrices
(with the covariance matrices for the combination of the three KLOE measurements
being described in Section 3), which are fully incorporated into the determination of
both af’f and its uncertainty using the data combination procedure detailed in this

work. In addition, all these data are provided by their respective experimental analy-

0
T,y

radiative corrections and corresponding additional uncertainties.

ses as the bare cross section with FSR effects included, o minimising the effect of

Tension exists between the BaBar measurement and all other data, where the BaBar
data are considerably higher over much of the available energy range. This is evident

from Figure 4.2, which compares the estimates of al’f”_ from the full data combina-
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e Fit of all n*n” data: 369.41 £ 1.32 +——e—

e Direct scan only: 370.77 + 2.61 +——*—

—— KLOE combination: 366.88 + 2.15 =&
BaBar (09): 376.71 +2.72
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Fig. 4.2: The comparison of the integration of the individual radiative return measure-
ments and the combination of direct scan 77~ measurements between 0.6 < /s < 0.9

GeV.

tion, the radiative return measurements and all other measurements in this channel
(measured via direct energy scan) in the dominant p region. Noticeable disagreement
is evident in all comparisons with the BaBar data, where the deviation between the es-
timates from KLOE combination and the BaBar data in this range is ~ 2.80. With the
highly correlated nature of the KLOE combination now having a dominating influence
overall, a large disagreement is also noted between the full 777~ data combination and
the integral of the BaBar data alone. It is clear that the full #+7~ data combination
agrees well with the new BESIII data, the KLOE data and the combination of the
remaining direct scan data. Consequently, although BaBar still influences af”_ with
an increase due to its fine binning and high statistics, the agreement between the other
radiative return measurements and the direct scan data largely compensates for this
effect. This is made more apparent when considering this along with the plots of the
resulting cross section in Figure 4.3 and Figure 4.4. Interestingly however, it can be
seen from these that the BESIII data is in better agreement with the BaBar data at
the peak of the resonance where the cross section is largest, slightly alleviating the dis-
agreement between the full 777~ data combination and the BaBar data. The resulting
global ’/X?nin /d.o.f. is ~ 1.3, reflecting the good agreement between most of the data
in this channel. The tension between data sets is, however, reflected and accounted for

in the local x? error inflation, which results in an ~ 15% increase in the uncertainty

rtn—
w

where the difference in using a local scaling of the error instead of a global one is clearly

of a . The effect of this energy dependent error inflation is shown in Figure 4.5,
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Fig. 4.3: Contributing data in the p resonance region of the 77~ channel plotted
against the new fit of all data (left panel), with an enlargement of the p —w interference
region (right panel).
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Fig. 4.4: The relative difference of the radiative return and important direct scan
data sets contributing to af”i and the fit of all data. For comparison, the individual
sets have been normalised against the fit and have been plotted in the p region. The
light green band represents the BaBar data and their errors (statistical and systematic,
added in quadrature). The yellow band represents the full data combination which
incorporates all correlated statistical and systematic uncertainties. However, the width
of the yellow band simply displays the square root of the diagonal elements of the total
output covariance matrix of the fit.

visible. Penalties arise in particular in the p resonance region, where the cross section

is large and there is significant tension between the KLOE and BaBar data.
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In the desired energy range, the full combination of all 77~ data is found to give

Tt

al ™ [0.305 < /s < 1.937 GeV] = (502.97 + 1.14 4 1.59 + 0.06 & 0.14) x 10~"°
= (502.97 £1.97) x 10710, (4.4)

Although this value of af”f stays well within the error estimate of [21], it exhibits
a substantial decrease of the mean value and the uncertainty has reduced by approx-
imately one third. These effects are due to the new, precise radiative return data
which dominate the 777~ fit and suppress the influence of BaBar in the p resonance
region, the improvement of the overall data combination procedure to fully incorporate
the energy dependent correlations into the determination of the mean value as well as
the uncertainty and the suppression of additional radiative corrections uncertainties
from these cross section data being experimentally provided as a?mw data. A more
detailed comparison of the estimates of af”f between [21] and this work is given in
Section 4.5.1, where a full comparison with the HLMNT11 analysis is discussed.

In comparison with equation (4.4), the BaBar data alone in the same energy range
give an estimate of azﬂf (BaBar data only) = (513.243.8) x10~1%. Should all available
ntn~ data be combined using a simple weighted average as in equation (2.18) (which
only provides the error weighting to each cluster by its local uncertainty), the estimate
for aZ+”_ would be af“_ (Naive weighted average) = (509.14:2.9) x 10719, In this case,
the estimate is strongly pulled up by the fine binning and high statistics of the BaBar

data that dominate when no correlations are taken into account for the mean value.
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This difference of nearly 20 when comparing to equation (4.4) indicates the importance
of fully incorporating all available correlated uncertainties in any combination of the
data. This influence of the correlations and the stability of the data combination with
respect to the contrasting BaBar data is reinforced when considering the two-pion data
combination in the range 0.32 < /s < 1.937 GeV, which defines the contributing energy
range with the BaBar data excluded. In this range, the full 777~ data combination
results in a™ ™ (All data) = (501.4 + 1.9) x 1071°, whilst the combination without the

i
BaBar data gives a™ ™ (No BaBar) = (500.3 4 2.7) x 10710 Although the agreement

between these resul‘:s is an encouraging indication that the full data combination results
in a good representation of the contributing data, the large change in the uncertainty
indicates the importance of the precise BaBar data as a high statistics measurement in
this channel.

As described in Section 2.4.1, the threshold contribution from 2m, < /s < 0.305
GeV is determined using ChPT. The estimation of the cross section in this region is
found to give

ata—

T (ChPT)[2m, < /s < 0.305 GeV] = (0.87 £ 0.02) x 10717, (4.5)

4.1.3 7t7 7% channel

Ead’ LOVP after the two-

The n#t7~ 70 final state is the second largest contribution to a
pion channel, with the cross section receiving prominent contributions from the w and ¢
resonances. This channel combines 14 data sets [69,120,121,129-132,134-137] covering
an energy range of 0.66 < /s < 2.98 GeV. Since [21], there has only been one new ad-
dition to the 777~ 7% channel [137]. This new data set improves this channel away from
resonance, where previously only the BaBar data [135] had provided a contribution of
notable precision. In this work, an additional change is applied to three separate data
scans over the ¢ resonance in a measurement by CMD-2 [136]. Following discussions
with members of the CMD-2 collaboration concerning the potential for correlation be-
tween several data scans taken for the same measurement, the systematic uncertainties
between the three scans are now taken to be fully correlated [138].2 These changes,
along with the new data combination routine, have resulted in an improved estimate
of

a™ ™ 0,66 < /5 < 1.937 GeV] = (47.79 + 0.22 + 0.71 4 0.13 + 0.48) x 10710
Z+71' ™
= (47.79 £ 0.89) x 10719, (4.6)

With a global 4 /X?nin /d.o.f. ~ 2.1, the quality of this data combination for this channel

is far from ideal. This is largely due to older data that is still included in this channel

2Similar changes regarding the correlation of systematic uncertainties have also been applied to
measurements in the 37737, K™K, KYK?, nv, nii and inclusive channels, with details given in the
separate discussions of each channel.
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Fig. 4.6: The cross section 0’(ete™ — 77~ 7Y) in the range 0.66 < /s < 1.937 GeV,
where the prominent w and ¢ resonances are clearly visible.

being at tension with newer, precise data. This is true, for example, of the CMD data
measured between the two resonances [130], which contributes almost 20% of the this
global Xfmn /d.o.f.. Again, these tensions are accounted for in the local error inflation,
which in this channel increases the uncertainty on af”_’ro by ~ 32%. Figure 4.6 shows
the full integral range of the data for the 7t7 =70 cross section. Figure 4.7 shows an
enlargement of the w and ¢ resonance regions in this channel.

As with the 7%y and 7+ 7~ channels, the threshold cross section (for which there is

no data for this final state) is determined using ChPT. This results in a contribution

+ =70
TI'7T7TOf

to ay,

4,0

T

ay” (ChPT)[3m, < /5 < 0.66 GeV] = (0.01 £ 0.00) x 10710, (4.7)

4.1.4 4w channels

0

The four-pion channels are the 77~ 797 and 777~ 77~ final states, with the process

000

ete™ = v* = 710797979 being forbidden from charge conjugation symmetry. These

channels dominate R(s) above the ¢ resonance and up to 1.937 GeV. In [21], the data for
both these channels was limited and of fairly poor quality, especially in the 77~ 7070
channel where there had been no data measured of this final state since 2003.

The nta~ntn™
additions since [21]. First, an improved statistics measurement by the BaBar collab-
oration in the range 0.6125 < /s < 4.4875 GeV [150] supersedes their previous mea-
surement in this channel [152]. More recently, a data set by the CMD-3 collaboration
in the range 0.92 < /s < 1.06 GeV [151] has been completed, which better resolves

the interference pattern of the ¢ — 77~ 77~ transition that is clearly evident in the

channel now combines 14 data sets [120,139-151], with two new
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Fig. 4.7: Enlargements of the resonance regions in the 777~ 7 final state.

non-resonant cross section. In addition, the M3N thesis data [153] that were included
in the analyses preceding this work [21,46,47] are now discarded on the basis that they
are not published, are of poor quality and are not consistent with the more recent cross

section data in this channel.?> With these changes,

rtr—ntn—

" [0.6125 < /5 < 1.937 GeV] = (14.87 £ 0.02 + 0.13 + 0.03 4+ 0.15) x 10~ 1°

= (14.87 4+ 0.20) x 10719, (4.8)

Here, the mean value has increased since [21] largely due to the new BaBar data. The

uncertainty has decreased by more than 50% due to the inclusion of the new BaBar

3This is true for all channels which previously included data from the M3N thesis [153] and is stated
accordingly in the discussions of the relevant channels.
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Fig. 4.9: The cross section O'O(€+6_ — 7T+7T_7T07T0) in the range 0.850 < /s < 1.937
GeV.

and CMD-3 data coupled with the new data combination method. The combined cross
section and data are displayed in Figure 4.8.

The picture for the 7t7~ 7970 final state has also improved, with a new measure-
ment of this channel by BaBar [154] being the only new data in this channel since
2003, which extends the lower border of the data from 0.915 GeV in [21] to 0.85 GeV
in this work . In total, this channel now combines eight data sets [139,145,148,154-158]
where, as with the 777~ 777~ channel, the M3N data [153] in this channel have been

omitted. The estimate for this channel is

an ™ ™™[0.850 < v/s < 1.937 GeV] = (19.39 £ 0.09 £ 0.74 £ 0.04 £ 0.19) x 1071
= (19.39£0.78) x 10717, (4.9)

The improvement since [21] is substantial, where the combination of this channel with
the BaBar data omitted results in az m 77 (no BaBar) = (20.07 +1.19) x 10710, The
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mean value has reduced by a notable amount, although this change is well with the
error estimate of [21]. The reason for this can be seen in Figure 4.9, which shows the

070 and includes

new combination of the data for the bare cross section ete™ — 7777
the data combination without the new BaBar data for comparison. The reduction in
the mean value can be seen above ~ 1.6 GeV, where the now smooth cross section
has replaced the higher, more erratic cross section without the BaBar data.* Across
the entire available energy range, the large improvement provided by the new BaBar
is clear. The uncertainty contribution from 77~ 7970 is, however, still relatively large
and requires better, new data. With a fractional contribution to a]ﬁad’LO VP of ~ 3%,
it contributes ~ 10% to the total uncertainty. A large proportion of this uncertainty
comes from the local anin /d.o.f. error inflation, which can be seen clearly, for example,
at the peak of the cross section in Figure 4.9, where the new BaBar data disagree with

the old MEA [155] and GG2 [156] data.

4.1.5 57 channels

The five-pion channels include the 27727~ 7% and 77379 final states, with the pro-
cess ete™ — v* — 570 being forbidden from charge conjugation symmetry. As the only
data currently available for the 7+ 7~ 37° channel are those presented in the M3N the-
sis [153] discussed earlier, this channel is estimated via an isospin relation and discussed
in detail in Section 4.2.1.

The ntr~ntn~ 7" data combination includes data from six measurements [120,
144,155, 156, 159, 160], where there has been no new data since [21]. To ensure no
double counting of contributions from different channels with similar resonant decay
modes, it is necessary in many cases for the branching fractions of the decay of these
resonances to specific final states to be removed from the experimental data. For the
ata~rt 770 channel, potential double counting can arise with the nmt7~ channel
(from the decay n — 7t7~7%) and the wrt 7~ channel (from the decay w — 77~ 70).
In this work, the channel w(— npp)27 (detailed in Section 4.2.4) is determined such
that ‘npp’ denotes the w resonance decaying to only non-purely-pionic modes, hence
avoiding the double counting with the 7t7~ 777~ 7 channel. For the decay of the n
resonance, the branching fraction B(n — 77~ 70) is removed from the 7 t7 -7tz =70
data [16], indicated by the subscript ‘no n’. This is achieved by correcting the cross

section data using the relation
o (2721 1) 0o n](s) = oV [27 27 70 (s) — o [pm T ) (s) x B(n — 7w~ 7). (4.10)

To accomplish this, the contributing cross sections and covariance matrices are linearly

4This is an important factor contributing to the decision to shift the transition region between the
exclusive and inclusive data from 2.0 GeV in [21] to 1.937 GeV is this work, as discussed in Section 4.3.1.
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Fig. 4.10: The cross section 0%(eTe™ — atn~7t7~7%) in the range 1.0127 < /s <
1.937 GeV.

interpolated following the prescription in Section 2.4.5.° For the 2727~ 7% channel,
combining the data results and applying this correction results in

(27r+27r’7r0)no 7

a [1.0127 < /5 < 1.937 GeV] = (0.99 & 0.04 + 0.08 + 0.01 4 0.01) x 10~ 1°
= (0.99 £ 0.09) x 10710, (4.11)

This combined cross section is shown in Figure 4.10, where it can be seen that other
than the BaBar measurement, the data quality is poor and results in sizeable local

error inflation across the majority of the available energy range of the data.

4.1.6 67 channels

The six-pion channels are composed of the 37137~, 201277 27% and 7+ 7~ 47° final
states, with the process ete™ — 7* — 67Y being forbidden from charge conjuga-
tion symmetry. Experimental cross section data are available for the 3737~ and
27277270 channels, but not for the 77~ 47° channel which is estimated via an
isospin relation (see Section 4.2.2).

For the 37737~ channel, seven data sets are combined [144,161-164]. In comparison
with [21], three scans of the cross section measured by the CMD-3 collaboration [164]
are included (with the systematic uncertainties of all three taken to be fully correlated
between the scans [138]) and the M3N thesis data [153] previously included in this

channel are omitted. The combination of these data results in

afff*i’ﬂ’ [1.3125 < /5 < 1.937 GeV] = (0.23 £ 0.01 & 0.01 4 0.00 £ 0.00) x 10719
= (0.23£0.01) x 10710, (4.12)

The resulting cross section is shown in Figure 4.11.

5In all cases in this work where a resonance contribution is removed, a corresponding relation is
applied to the relevant cross section data. Should the relations involve data from different channels, the
cross section data and covariance matrices are also linearly interpolated as described in Section 2.4.5.
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Fig. 4.12: The cross section 0°(ete™ — 27127r7270) in the range 1.3223 < /s <
1.937 GeV.

In the 277277 27Y channel, four data sets are combined [144, 155,156, 163], where
no new data for this final state has been made available since [21]. To avoid a double
counting of the 7 and w resonance contributions with the nw and nat7~ 7% channels,
the relevant branching fraction corrections are applied to the combined data resulting
in
2722 e ne 11 3993 < /5 < 1.937 GeV] = (1.35 £ 0.08 = 0.15 = 0.02 £ 0.01) x 10710

= (1.354+0.17) x 10710, (4.13)

The combined cross section is shown in Figure 4.12.

4.1.7 KK channels

The KK channels are the K+ K~ and KgKg channels, both of which are dominated
by the ¢ resonance. In this work, the K™K~ channel combines 15 data sets [69, 108,
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110, 120, 165-173]. Since [21], one major change to this channel is the inclusion of
the precise and finely binned measurement by the BaBar collaboration, supplemented
with full statistical and systematic covariance matrices [171]. This is the first and only
example to date of the release of energy dependent, correlated uncertainties outside
of the 7t7~ channel and they, like the correlated uncertainties in the two-pion final
state, have an overwhelming influence on the data combination. There is also a new
measurement in this channel of the ¢ resonance by the CMD-3 collaboration [173]. The
existing CMD-2 scans in the same region [86] are omitted from this work as they suffer
from an overestimation of the trigger efficiency for slow kaons [173] and are awaiting
reanalysis [174]. In addition, two new scans by the SND collaboration measured at the
tail of the ¢ and into the continuum are included [172]. The systematic uncertainties
of these two scans, along with the existing two scans by SND [169], are considered to
be fully correlated [138]. The resulting cross section is shown in Figure 4.13, where the

combination of the available Kt K~ data results in

al" K7 0.9875 < /5 < 1.937 GeV] = (23.03 % 0.08 £ 0.20 £ 0.03 = 0.00) x 1071
=(23.03+£0.22) x 10719, (4.14)

The resulting cross section of the process ete™ — K™K~ is displayed in Figure 4.13.

K+tK—
I

the estimate in [21] attributed to the inclusion of the new BaBar and CMD-3 data.

This can be seen in Figure 4.14. In [21], the data combination in the ¢ resonance

This estimate of a exhibits an increase of the mean value of more than 1o from

region for this channel was dominated by the SND scans [169] visible in Figure 4.14
and the now omitted CMD-2 scans [86], which were in good agreement. The BaBar
data [171], which due to their precision and correlated uncertainties now dominate the
K™K~ data combination, are higher in this region than both the SND and CMD-2
data. The most recent CMD-3 data are higher still [173]. The reanalysis of the CMD-2
data will prove crucial in resolving the current differences in this channel and, should
they agree further with the BaBar and CMD-3 data, would result in a further increase
of the estimate from this channel.

The uncertainty has drastically improved since [21] with much of the change being
due to a finer clustering over the ¢ resonance after the inclusion of the new high statistics
BaBar data. However, the disagreement between the data seen in Figure 4.14 results
in a poor global y/x2. /d.o.f. ~ 2.1 and is accounted for in the local error inflation
which provides an increase to the uncertainty of aff KT of ~ 20%. Following from the
discussion in Section 2.1.2, there is now no FSR correction applied to this channel and,

therefore, there is no extra radiative correction uncertainty due to FSR. It should also

KtK~—
o

the strong influence the new data have had in this channel to increase the mean value

be noted that any FSR correction would result in an increase of a , showing again

since [21], where previously an FSR correction was applied.
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Fig. 4.13: The cross section 0”(ete”™ — K+K~) in the range 0.9875 < /s < 1.937
GeV and an enlargement of the ¢ resonance. The large influence of the BaBar data
(black squares) overwhelms the older data.

In the KYK? channel, 13 data sets are combined [169,175-180]. Since [21], new
data for the KgKg final state is included from the BaBar collaboration above the ¢
resonance [179] and from the CMD-3 collaboration on the ¢ [180]. In addition, two
existing measurements in this channel [169, 176] each consist of four data scans, of
which the systematic uncertainties are now taken to be fully correlated [138]. This

combination results in a contribution of

0 70
an " T11.00371 < /5 < 1.937 GeV] = (13.04 £ 0.05 + 0.16 = 0.10 = 0.00) x 1070
= (13.04+0.19) x 10719, (4.15)

Again, there is no additional FSR correction uncertainty applied to this channel, with
the reasoning in Section 2.1.2 enforced by the probability of photon emission being

highly suppressed for a neutral final state and given the limited phase space. The cross
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Fig. 4.14: The relative difference of the dominant data in the K+ K~ channel measured
in the ¢ resonance region and the fit of all data. For comparison, the individual sets have
been normalised against the fit. The yellow band represents the full data combination
which incorporates all correlated statistical and systematic uncertainties. However, the
width of the yellow band simply displays the square root of the diagonal elements of
the total output covariance matrix of the fit.

section of the process ete™ — KgK% is displayed in Figure 4.15.

4.1.8 K Knm channels

The K Knm channels included are the KK7w, KK2r and KK3r final states. In the
previous analyses [21,46,47], the lack of experimentally measured neutral modes that
contributed to these channels resulted in all three being estimated using isospin rela-
tions. In this work, the data required to complete the K K7 and K K27 channels have
now been experimentally measured and have removed the reliance on dedicated isospin
relations to estimate these final states. For the K K 3w channel, the data content is still
incomplete and, consequently, this channel is still estimated using an isospin relation
as described in Section 4.2.3.

For the K K channel, the contributing modes are KgKiij [181-184], KgKiﬁ,
KTK~n% [182-184], and K2K )70 [185,186]. The combinations of the available data
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(b) The ¢ resonance.

Fig. 4.15: The cross section o’(eTe™ — KJKY) with an enlargement of the ¢ reso-
nance.

for the respective modes result in individual contributions to a, of 6

KOK*+rnF

ay [1.260 < /s < 1.937 GeV] = (0.88 4 0.05) x 1071,
al¥ K™ [1.370 < /5 < 1.937 GeV] = (0.17 £ 0.01) x 10710,
0 071.0 _
ap "I [1.325 < /s < 1.937 GeV] = (0.79 £ 0.07) x 10710, (4.16)

In this work, the neutral final state K3K? 7" has been measured by BaBar [185] and

SND [186] for the first time, removing the reliance on isospin for this channel (other

SHere, the errors of these estimates only display the experimental uncertainties. The additional ra-
diative correction uncertainties are determined individually for each mode and their sum in quadrature
is given in the estimate for K K7 in equation (4.18). This is also the case for the discussions of the
KK2r and nK K channels.
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Fig. 4.16: The measured cross section ¢(K K7) compared to the estimate from the
previously used isospin relation.

than K9 ~ K?). Therefore, the K K7 cross section is now calculated using
o(KK7) = o(KYK*nT) + o(KYK*nF) + o (KT K~ 7°) + o(KYK)70)
~20(KYK*n7) + o(KT K~ 7°) 4+ o(KSKY70), (4.17)
resulting in a contribution of

alfF7(1.260 < /s < 1.937 GeV] = (2.71 £ 0.05 = 0.11 £ 0.01 £ 0.01) x 1071
= (2.7140.12) x 10719, (4.18)

In [21], the isospin estimate in the same energy range yielded
K™ (HLMNT11 isospin estimate) = (2.65 = 0.14) x 10717 (4.19)

This good agreement between the HLMNT11 isospin estimate and the data-based ap-
proach in this analysis is also demonstrated in Figure 4.16.

For K K2, BaBar have measured the previously missing modes K3K 7 m~ [179],
KYK9mtr= [179]), K3K?270 [185] and K3K*nTx0 [187]. These, summed with the
other contributing modes KYK%ntn~, KYK*rFn0, KTK 7070 [188, 189] and
KTK-ntr~ [152,182,188-191] (again assuming K9 ~ K?), have removed the re-
liance on isospin for this channel also. The combinations of the available data from

each mode are found to give

0 KO ptp— —
ap ST 1.425 < /5 < 1.937 GeV] = (0.17 £ 0.03) x 10710
KgKgTF+TF_ —-10
ay [1.630 < /s < 1.937 GeV] = (0.03 + 0.00) x 1077,
ngKgﬂ'Oﬂ'O —10
ay, [1.350 < /s < 1.937 GeV] = (0.14 £ 0.05) x 10~'7,
0 :l:7r 70 —
an 1510 < /s < 1,937 GeV] = (0.33 £ 0.02) x 10710
alf KT [1.460 < /5 < 1.937 GeV] = (0.12£0.01) x 10710,
alSTKTTTT(1.434 < /s < 1.937 GeV] = (0.78 £ 0.03) x 10710, (4.20)
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Fig. 4.17: The cross section o”(KKmn) compared to the previous estimate using
isospin relations.

In this work, the K K2x contribution is now determined using
o(KK2r1) = o(KTK 7% + o(K T K~ nt77) + o (K° Ko7 77 + o(K2K270)
+ o(KYK*nF10%) + o(KIK*rF70)
~o(KTK 7%7%) + o(KTK " ntn) + o(K°KOn 7)) + o (KK 210)
+ 20(K2K*rF7%), (4.21)

where,

o(K'Kontn™) = o(KeKntn™) + o(KeK3ntn™) + o (KY K97t n™)
~o(KYKntn™) + 20(KSK2nTn™). (4.22)

Therefore, the estimate in this channel is now found to be

a¥F27[1.350 < /s < 1.937 GeV] = (1.93 £ 0.03 £ 0.07 £ 0.01 £ 0.01) x 1071
= (1.934+0.08) x 10710, (4.23)

Comparing equation (4.23) with the HLMNT11 isospin estimate in the same energy
range of
alf **T(HLMNT11 isospin estimate) = (2.51 & 0.35) x 107"° (4.24)

and examining Figure 4.17, it is evident that the isospin relations provided a poor
estimate of this final state. Using the data, K K27 contributes a much smaller mean

value with a greatly reduced uncertainty.

4.1.9 n,w and ¢ channels

In the n7y channel, there are many measurements of the cross section for a relatively
small contribution to a,, with 9 data sets [69,104,106,192-196] now being combined.
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Fig. 4.18: The cross section o”(eTe™ — 1) in the range 0.66 < /s < 1.4 GeV.

In this work, the systematic uncertainties of two scans in the same measurement by
SND [195] are now taken to be correlated by 30% between the bins of the respective

scans [138].7 This results in a contribution of

a[0.66 < /s < 1.76 GeV] = (0.70 £ 0.02 £ 0.01 £ 0.00 £ 0.01) x 107"
= (0.70 £ 0.02) x 10717, (4.25)

The combined cross section of the 7y final state is shown in Figure 4.18. The ny
channel is the last of the four channels with a threshold contribution that has not been
measured by experiment. From Section 2.4.1, the threshold contribution is found from

ChPT to give a negligible value (within rounding) of

a"(ChPT)[m, < /s < 0.66 GeV] = (0.00 £ 0.00) x 10717 (4.26)

Four measurements of the process ete™ — nrt7~ have been included [197-200].

The combination of these data yields a contribution to a, of

al™ ™ [1.091 < /s < 1.937 GeV] = (1.29 £ 0.02 £ 0.05 £ 0.01 £ 0.01) x 10710
= (1.29 4+ 0.06) x 1071 (4.27)

with the resulting cross section displayed in Figure 4.19.
The nrt7~ 70 final state is included in this work for the first time, where it was

previously not measured by experiment and its contribution was not estimated in the

"The two data sets of the cross section in [195] are determined from the different decay channels of
n — 37° and n — w7~ 7°, respectively. In this case, for the n — 37° mode, a normalisation to the
process e*e” — v was used and, for n — 777~ 7°, the normalisation to Bhabha scattering was used.
For the correlation of these data, 30% correlation between the total systematic uncertainties of both
has been estimated. This is due to the acceptance efficiency [138] (which dominates the systematic
uncertainties), where different angles were used to determine the acceptance of either the 2y or Bhabha
final state and, clearly, 100% correlation would result in an overestimate of the correlated nature of

these sources of uncertainty.
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Fig. 4.19: The cross section 0°(ete™ — nprTn7) in the range 1.091 < /s < 1.937
GeV.

previous analyses [21,46,47]. It has since been measured by the CMD-3 collabora-

0

tion [201] and is included with the decay of w — 77w~ 7" removed to avoid double

counting of this resonance contribution with the nw channel. This results in

alr ™ ™o [1.3325 < \/5 < 1.937 GeV] = (0.60 = 0.03 £ 0.14 £ 0.01 £ 0.01) x 107 1°
= (0.60 = 0.15) x 10710, (4.28)

The 12727~ channel currently consists of only a single experiment measurement

of the cross section [160] which, when integrated over, gives

a2 27 [1.3375 < /s < 1.937 GeV] = (0.08 £ 0.01 = 0.01 £ 0.00 % 0.00) x 107 1°
= (0.08£0.01) x 10710, (4.29)

Another new addition to this work with respect to [21] is the n/ K K channel, which
consists of the nK K~ [184] and nK9K? [185] final states. The data for each channel

results in
e
ap ™ 01690 < /5 < 1.937 GeV] = (0.01 & 0.00) x 10710,
0 770
ap“STLIL575 < /s < 1.937 GeV] = (0.17 £ 0.03) x 10710 (4.30)

For both of these contributions, to avoid double counting with the n¢ channel, the
contributions of the decays of 7 — purely-pionic states and ¢ — KK are omitted from
the respective data. Therefore, the contribution from the determined cross section of

n(— npp) (K K )no ¢ gives a contribution to a, of

a7 o 011 5693 < /5 < 1.937 GeV] = (0.01 + 0.01 £ 0.01 £ 0.00 = 0.00) x 10~ 1°
= (0.01£0.02) x 10717, (4.31)
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The nw channel combines three data sets [163,201,202], resulting in an estimate of

a”[1.3325 < /s < 1.937 GeV] = (0.31 +0.01 + 0.02 £ 0.00 + 0.00) x 107"
= (0.31£0.03) x 10710, (4.32)

The nwn® channel is now included in this data compilation for the hadronic R-ratio,
having been measured for the first time by SND [203]. It provides a small contribution

to a, of

™ [1.550 < /s < 1.937 GeV] = (0.35 = 0.09 = 0.01 = 0.00 = 0.00) x 1071
= (0.354£0.09) x 10710, (4.33)

The combination of two measurements of the n¢ final state [160,184] results in a

contribution of

a’?[1.5693 < /s < 1.937 GeV] = (0.42 £ 0.03 £ 0.02 £ 0.01 & 0.00) x 10~ '°
= (0.42+0.03) x 10710, (4.34)

Data for the wn® final state are multiplied by the branching fraction B(w — 7%) =
(0.0828 + 0.0028) [16], so that this data is only included as the w(— 7%y)7® chan-
nel. This is done to ensure that there is no double counting with multi-pion chan-
nels. The data content for this channel is abundant, with a combination of 12 data
sets [120, 145,154,158, 204-210] (multiplied by the given branching fraction) resulting

in a contribution of

@m0 0.9245 < /5 < 1.937 GeV] = (0.88 £ 0.01 £ 0.02 = 0.00 £ 0.01) x 1071
= (0.8840.02) x 10717, (4.35)

The last of these resonant contributions to be included in this work is the ¢ —
unaccounted channel, which represents the contributions from the decay of the ¢ res-
onance to modes that are not already included as part of the 7%, n#t7n—, ntn =Y,
rrr e, KTK~, KoK, ny and wn® channels. The argument for doing this is
based on the knowledge that the sum of the branching fractions of the ¢ resonance
to all the modes listed above only accounts for 99.87% of the total contribution from
the ¢, meaning that the branching fraction B(¢ — unaccounted) = 0.0013 should be
included. To estimate this contribution, the total cross section contribution from the
¢ is determined using the cross section of ¢ — K™K~ in the energy range between

2my < /s <1.03 GeV and the branching fraction B(¢ — KT K~) = 0.498 + 0.005,
[KTK™;2mg < /s < 1.03 GeV](s)

UO
o°[8](s) =

4.36
Blp - KtK~) ( )

The cross section for ¢ — unaccounted is then determined from
0°[¢ — unaccounted](s) = 0°[¢](s) x B(¢ — unaccounted). (4.37)
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Integrating over these calculated data, and applying a 100% uncertainty, results in a

contribution of

aﬁaunaecountedBmK < /s <1.03 GeV] = (0.04 £0.04) x 10710, (4.38)

4.1.10 pp and nn channels

The thresholds of the pp and nn channels begin very close to the transition point be-
tween the exclusive and inclusive data at 1.937 GeV and, therefore, their exclusive data
contributions provide only very small contributions to a,. The pp channel combines

seven measurements [211-217] which, when combined, result in a contribution of

a?[1.8895 < /s < 1.937 GeV] = (0.03 £ 0.00 = 0.00 = 0.00 & 0.00) x 10~
= (0.03 £ 0.00) x 10710, (4.39)

The nn channel combines four data sets [217-219], where two recent scans in the
same measurement by the SND collaboration [219] are taken to be fully correlated [138].
These data give

al™[1.9115 < /s < 1.937 GeV] = (0.03 = 0.00 & 0.00 = 0.00 & 0.00) x 10~
= (0.0340.01) x 10710, (4.40)

4.2 TIsospin estimated exclusive channels

Following the discussion in Section 2.4.2 regarding those exclusive channels that must
be estimated using isospin relations, this section lists those exclusive channels, their re-
spective isospin relations and estimated contributions to a,. In all cases, the relations
used are those derived in [51] and subsequently have been used in the previous analy-
ses [21,46,47]. For the determination of the resulting data of each estimated channel,
the cross section and covariance matrix data of the contributing channels are linearly
interpolated according to the prescription in Section 2.4.5 and are then used as input

into the relevant isospin relation.

4.2.1 57 channels

The relevant five-pion channel which is estimated here is the 7t7~37% channel, for
which no experimental measurements currently exist. The isospin relation for this
channel is [51]

(737 0o 4] (5) = %0’0[(27T+27l'_7T0)n0 nl(s), (4.41)

where the contribution from the 7 resonance is necessarily omitted for this relation as
the final state n27° is forbidden due to charge conjugation symmetry. It follows that
the contribution to a, from this channel is

(773700 n

a [1.0127 < /5 < 1.937 GeV] = (0.50 +0.04) x 10719, (4.42)
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4.2.2 67 channels
For the unmeasured 77~ 470 final state, the relation
Ol (mt 747 0o 4)(5) = 0.06256°[37T 377 (s) + 0.145 6°[(27 T 27270 ) o 5] (5)  (4.43)

is used [51]. This, including an error of 100% to account for the uncertainty of this
relation [51], results in
(7T 7= 4700 n

a [1.3125 < /5 < 1.937 GeV] = (0.21 +£0.21) x 10712, (4.44)

4.2.3 K Knr channels

The K K3n channel is the last of the K Knm channels to be included in this data compi-
lation . To estimate this channel, it is assumed that below 1.937 GeV the K K3 cross
section is dominated by K Kw and, therefore, the contributions from modes involving
three neutral pions are small and can be neglected. This leaves the K+ K~ nt7 70
and KK t7~7% modes, where data currently exists for only K*K~ntn~x%. The
K*K~7t7~ 70 data consists of only one measurement [160] which, when integrated,

results in a contribution to a, of
alTETTITT 6125 < /s < 1.937 GeV] = (0.06 £ 0.01) x 10710, (4.45)

To ensure no double counting with the ¢ channel, the branching fractions of the decays
of n = 777 7% and ¢ - KTK~ are removed from this channel. The isospin relation
for this channel is then based on the assumption that o?[(KYK%nt 7 70)y0 ,](s) ~
V(KK nt 7~ 7140 4(s) [51] and, therefore,

O [KK37](s) = 20 (KT K~ mt ™ 1% 00 ](s) - (4.46)
Integrating these calculated data gives a small contribution of

4.2.4 w(— npp) and 7 channels

The w(— npp)27 channel accounts for those modes where the w decays only to non-
purely-pionic modes. This is done so that, should the w decay to 7T7~ 7, there is no
double counting with the 2727~ 7% or 777~ 37" channels and, should the w decay to

+

777w~ , there is no double counting with the 27+27~ or 7t7~27Y channels. In order to

remove these decays, the branching fraction B(w — npp) is defined as [16]
B(w —npp) =1 —B(w — ntr 1) — B(w — 7777) = 0.0927. (4.48)

The experimental data contribution to the isospin relation for this channel comes from
the measurements of the wr ™7~ final state [131,159,198]. The combination of these

data in the available energy range gives

as™ ™ [1.285 < /s < 1.937 GeV] = (0.72 £0.10) x 1071°. (4.49)
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For the w(— npp)27 channel, the isospin estimate for this cross section is [51]
o°[w(— npp)27)(s) = 1.5 [wrTn7](s) x B(w — npp), (4.50)
resulting in
a2 (7mPPI2T(] 985 < /s < 1.937 GeV] = (0.10 £ 0.02) x 10710, (4.51)

For the w(— npp)37 channel, no measurements of the modes contributing to w3m
currently exist. The w37 cross section is estimated from the measured 27127270 data

using [51]
o2t 2r =270 (s)

0 _
o°lw3n](s) = 1.145 B S )

(4.52)

The decay of w to non-purely-pionic states is then removed in a similar fashion to the

w(— npp)27 channel,
o°[w(— npp)37)(s) = 0°[w3n](s) x B(w — npp) (4.53)
and yields a contribution to a, of
a2 (7PPISTI] 3993 < /s < 1.937 GeV] = (0.17 £ 0.03) x 10710, (4.54)

The w(— npp)K K channel is estimated in a similar way to the w(— npp)3m chan-

nel, with the cross section for wK K being determined from the relation [51]

oK K3|(s
oK K](s) =2 (W[iKﬂi’ﬂ]E;O) . (4.55)
Then, applying
o[w(— npp)KK](s) = 0’| wK K](s) x B(w — npp) (4.56)

to ensure that only the decay of the w resonance to non-purely-pionic states is ac-
counted for (to avoid double counting with the K Knr channels), results in a negligible

contribution to a, of
as (=PRI KR 1 5693 < /5 < 1.937 GeV] = (0.00 £ 0.00) x 10710 (4.57)
The nrt 7270 final state is estimated from
o [nrtr21%(s) = o®m2n 217 (s), (4.58)

where 50% of the contribution is taken as a conservative error to account for the

uncertainty of this relation [51]. This results in

™ ™ 21,3375 < /s < 1.937 GeV] = (0.08 £ 0.04) x 10710, (4.59)
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4.3 Inclusive R-ratio data

The data for the inclusive hadronic R-ratio data are used in the energy range 1.937 <
V5 < 11.1985 GeV, covering both the c¢ and bb threshold regions that cannot be
predicted by pQCD. This channel combines 20 data sets [220-237], of which three
are new data additions since [21]. These new data are recent precise measurements
by the KEDR collaboration: one set between 1.84 < /s < 3.05 GeV [237] and two
scans in the energy range 3.12 < /s < 3.72 GeV [236]. For the latter, the systematic
uncertainties are taken to be fully correlated [138]. The fit of the inclusive data in the
range 1.937 < /s < 3.80 GeV is shown in Figure 4.20, which demonstrates the good
agreement between KEDR and pQCD. In [21], the decision was made to use pQCD in
the range 2.6 < /s < 3.73 GeV, where the quality of inclusive data was poor, with
an error inflated according to the percentage errors of the inclusive BES data in this
region [235]. With the new KEDR data [236,237], the inclusive data combination is
much improved, as shown in Figure 4.20. In this range, the data combination results
in

a0V inc. 2,60 < /s < 3.73 GeV] = (11.19 £ 0.17) x 10717, (4.60)

whereas using pQCD (with an inflated uncertainty [21]), the estimate is
aPtPOVPIHQED, 2.60 < /s < 3.73 GeV] = (10.82 +0.35) x 10710 . (4.61)

For the larger energy range 1.937 < /s < 11.1985 GeV, the resulting data combination
is displayed in Figure 4.21. As well as the differences observed between the data and
pQCD below the charm threshold, the data above it (unchanged since [21]) also show
a slight variation from the prediction of pQCD. Considering that with the new, precise
KEDR data the differences between the inclusive data and pQCD are not as large as
previously and that this work is aiming at a predominantly data-driven analysis, the
contributions in the entire inclusive data region are now estimated using the inclusive
data alone (other than the contributions from the narrow resonances, which are added
separately). Hence, for this analysis, the contribution from the inclusive data is found
to be

a0 VPine, 1,937 < /s < 11.2 GeV] = (43.67 £ 0.17 +0.48 = 0.01 £ 0.44) x 1071
= (43.67 £ 0.67) x 10719, (4.62)

4.3.1 Transition region between exclusive and inclusive data

With the inclusion of the new KEDR data since [21], the transition region between the
sum of exclusive states and the inclusive R-ratio data is of interest and deserves re-

examination. For the sum of exclusive channels, whilst many measurements extend to 2
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Fig. 4.20: The combination of inclusive R data in the region 1.937 < /s < 4.50 GeV.
For comparison, the fit and the contributing data are plotted against the estimate of
pQCD, represented by the dashed line and grey band.
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Fig. 4.21: Compilation of inclusive data in range 1.937 < /s < 11.2 GeV. The dashed
line and surrounding grey band shows the estimate from pQCD for comparison. The
yellow band represents the total uncertainty of the inclusive data combination.

GeV or beyond, with increasing energy the inclusion of more and more multi-hadronic
final states is required to achieve a reliable estimate of the total hadronic cross section.
Previously, in [21], the sum of exclusive data was used up to 2 GeV, which defined
the transition point between the exclusive sum and the inclusive data combination.
In this analysis, the new KEDR data [237] contribute two data points below 2 GeV,
extending the lower boundary of the inclusive data down to 1.841 GeV (compared to 2
GeV in [21]) and providing an opportunity to reconsider the previous choice concerning

the data input in this region.
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Input al* b LOVP] 841 < /5 < 2.00 GeV] x 1010
Exclusive sum 6.06 £0.17
Inclusive data 6.67 £ 0.26
pQCD 6.38 + 0.11
Exclusive (< 1.937 GeV) + inclusive (> 1.937 GeV) 6.23 +0.13

Table 4.1: Comparison of results for a}ﬁad’ LOVPI1 841 < /5 < 2.00 GeV] from the
different available inputs in this region.

From the lower boundary of the KEDR measurement up to 2 GeV, the resulting
contributions to agad’ LOVP from the sum of exclusive states, the inclusive data combi-
nation and pQCD are given in Table 4.1. The integrated values of the inclusive data
and pQCD agree within errors. However, the contribution from the sum of exclusive
states disagrees with the estimates from both the inclusive data and pQCD, where the
sum of exclusive states provides a smaller contribution. This is particularly visible in
Figure 4.22, where although the sum of exclusive states agrees with the two inclusive
data points below 2 GeV at their respective energies, the combined sum of exclusive
states is lower in general. This is largely attributed to the new data for the 77— 7070
final state, where Figure 4.9 shows that these new data result in a clear reduction of
the fitted cross section below 2 GeV.® Due to this effect, the previous transition point
in [21] between the sum of exclusive states and the inclusive data combination at 2 GeV
is no longer the preferred choice in this work, where it is clear from Figure 4.22 that
these two different choices for the data input are largely incompatible at this point. A
more natural choice for this transition point is 1.937 GeV, where it can be seen from
Figure 4.22 that all available data choices at this energy are in agreement within er-
rors. This is further substantiated by Table 4.1, where the value for azad’LOVP from
the contribution from exclusive states below 1.937 GeV summed with the contribution
from the inclusive data combination above 1.937 GeV is, within errors, in agreement
with the integrated values of all other choices for the data input. Consequently, in this
work, this is chosen to be the transition point between the sum of exclusive states and

the inclusive R-ratio data.

4.3.2 Narrow resonances

Following the discussion in Section 2.4.3, the contributions from the experimentally
unresolved narrow J/v, ¢’ and T(1S — 45) resonances in the ¢ and bb regions are
estimated using the Breit-Wigner resonance parametrisation and added separately to

the data compilation. In a separate work [82], the inclusion of Ry data measured by the

8Interestingly, as can be seen from Figure 4.22, the sum of exclusive states is in good agreement
with the imprecise and, therefore, unused inclusive hadronic cross section data that exist between
1.43 < /s < 2.00 GeV. This is in contrast with the findings in the previous analyses [21,46,47], which
observed that the inclusive data in this range were lower than the sum of exclusive states.
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Fig. 4.22: The energy region between 1.8 < /s < 2.2 GeV where the fit of inclusive R
ratio measurements (light blue band) replaces the sum of exclusive hadronic final states
(red band) from 1.937 GeV to 2 GeV. The patterned light blue band and patterned
red band show the continuation of the inclusive data combination below 1.937 GeV
and the continuation of the exclusive sum above 1.937 GeV respectively. The recent
KEDR data are individually marked and included in the inclusive data fit. The light
green band shows the data combination of old inclusive hadronic cross section data
that exist between 1.43 < /s < 2.00 GeV, which were previously discussed in [21] and
are not used due to their lack of precision. The estimate from pQCD is included for
comparison as a dashed line with an error band which is dominated by the variation of
the renormalisation scale p in the range %\/E < p < 24/s.

BaBar collaboration between 10.54 < /s < 11.20 GeV [234] has resolved the resonances
of the Y(55) and Y(6S) states, removing the need to estimate these structures as
was done in [21,46,47]. These data are shown in Figure 4.23, together with the
previously used resonance parametrisations which are clearly very different from the
bb cross section as measured by BaBar. Note that apart from the CLEO(98) data
point [228] at 10.52 GeV, the CLEO(07) data point [233] at 10.538 GeV and the CUSB
data point at 11.09 GeV [222], there are no other data in this bb resonance region.
For each of the narrow resonances, the cross section is determined according to

equation (2.43) (with the electronic width of each resonance undressed according to

°In [82], these data were deconvoluted of the effects from initial state radiation (ISR), had the
radiative tails of the resonances from the Y (1S — 45) states removed and then added to the pQCD
estimate of Rydse [238] to be included as an accurate data set in the inclusive channel in this region.
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Fig. 4.23: The fit of inclusive R data in the region of the BaBar R, data, with the
BaBar Ry is shown as light blue markers. The resonance structures of the Y (55) and
T(6S) states are clearly visible.

equation (2.10)) and are found to give contributions to a,, of

J/w _ 10710,

— (6.26 £ 0.19) x
= (1.58 £0.04) x 10710
T(ls = (0.05 £ 0.00) x 10717,
T@S = (0.02 £ 0.00) x 1071,
T(?’S = (0.01 £ 0.00) x 10717,
= ( )

T<4S 0.01 +0.00) x 10710 (4.63)

Here, the uncertainty of each resonance includes an additional VP correction uncer-

tainty due to the undressing of the electronic width.

4.3.3 pQCD

From the discussion in Section 2.4.4, the hadronic R-ratio in the range 11.1985 < /s <
1000.1985 GeV is estimated from pQCD using the dedicated program rhad [238]. The

contribution to a, from this is found to be
abP[11.1985 < /s < 1000.1985 GeV] = (2.07 £ 0.00) x 10717, (4.64)

where the error on R(s) is determined from the uncertainties of a(M%), the mass of

the bottom quark, the mass of the top quark and a variation of the renormalisation

scale yu in the range $1/s < p < 24/3.
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Channel Energy range (GeV) ‘ ahad’LOVP x 101% | New data
Chiral perturbation theory (ChPT) threshold contributions
Py Mmx < /s < 0.600 0.12 £ 0.01 5
Tt 2m, < /s <0.305 0.87 +£0.02 -
atr—n0 3my < /5 < 0.660 0.01 & 0.00 -
"y my < /5 < 0.660 0.00 = 0.00 -
Data based channels (/s < 1.937 GeV)
70y 0.600 < /5 < 1.350 446 £ 0.10 [107]
A 0.305 < /s < 1.937 502.97 + 1.97 [90, 127]
e 0.660 < /5 < 1.937 47.79 £ 0.89 [137]
rtrrta 0.613 < /s < 1.937 14.87 £ 0.20 [150,151]
ata—m0r0 0.850 < /s < 1.937 19.39 + 0.78 [154]
(2727 7)o 4 1.013 < /5 < 1.937 0.99 % 0.09 ]
3n+3r~ 1.313 < /5 < 1.937 0.23 4 0.01 [164]
(272727 00 o 1.322 < /5 < 1.937 1.35+0.17 _
KTK~ 0.988 < /s < 1.937 23.03 £0.22 [171-173]
KYKY 1.004 < /s < 1.937 13.04 £0.19 [179,180]
KKr 1.260 < /s < 1.937 2.71 +0.12 (185, 186]
KK2n 1.350 < /s < 1.937 1.93 £0.08 [179,185,187]
Y 0.660 < /5 < 1.760 0.70 £ 0.02 [196]
nrtaT 1.091 < /s < 1.937 1.29 + 0.06 [199,200]
770 w 1.333 < /s < 1.937 0.60 4 0.15 [201]
n2n 2w 1.338 < /s < 1.937 0.08 £0.01 -
W 1.333 < /s < 1.937 0.31 + 0.03 201, 202]
w(— 70)m° 0.920 < /s < 1.937 0.88 & 0.02 [209,210]
- 1.569 < /5 < 1.937 0.42 £ 0.03 _
¢ — unaccounted 0.988 < /s < 1.029 0.04 +0.04 -
nwr® 1.550 < /5 < 1.937 0.35 £ 0.09 203]
n(— mpp)K Koo oy | 1569 < /5 < 1.937 0.01 4 0.02 [184,185]
Pp 1.890 < /s < 1.937 0.03 +0.00 [216]
ni 1.912 < /5 < 1.937 0.03 4 0.01 [219]
Estimated contributions (1/s < 1.937 GeV)
(T 3100 1013 < /s < 1.937 0.50 £ 0.04 -
(r+ 47000 4 1.313 < /5 < 1.937 0.21 +0.21 _
KK3nm 1.569 < /s < 1.937 0.03 +£0.02 -
w(— npp)27 1.285 < /s < 1.937 0.10 £ 0.02 -
w(— npp)3T 1.322 < /5 < 1.937 0.17 + 0.03 :
w(— npp) KK 1.569 < /5 < 1.937 0.00 % 0.00 -
nrtm=27m0 1.338 < /s < 1.937 0.08 4 0.04 -
Other contributions (y/s > 1.937 GeV)
Inclusive channel 1.937 < /s < 11.199 43.67 £ 0.67 [234,236,237]
J /1 - 6.26 +0.19 -
4 - 1.58 £0.04 -
T(1S — 45) : 0.09 £ 0.00 _
pQCD 11.199 < /5 < 00 2.07 + 0.00 ;
[ Total [ mr <5< | 693.26+£246 | - |
had, LO VP

Table 4.2: Summary of the contributions to a,

calculated in this analysis. The

first column indicates the hadronic final state or individual contribution, the second
column gives the respective energy range of the contribution, the third column states

the determined value of a

had, LO VP
o

and the last column indicates any new data that

have been included since [21]. The last row describes the total contribution obtained
from the sum of the individual final states, with the uncertainties added in quadrature.
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had,LO VP
a, 0.9

Fig. 4.24: Pie charts showing the fractional contributions to the total mean value (left

pie chart) and (error)? (right pie chart) of aﬁad’ LOVP f.om various energy intervals. The

energy intervals for abad’ LOVP are defined by the boundaries m,, 0.6, 0.9, 1.43, 2.0 and
oo GeV. The (error)? includes all experimental uncertainties (including all available
correlations) and local x2, /d.o.f. inflation. The fractional contribution to the (error)?
from the radiative correction uncertainties are shown in black and indicated by ‘rad.’.

4.4 Total contribution of a}ljad’LOVP and azad’NLOVP

Table 4.2 lists all contributions from individual channels contributing to aﬁad’ LovP

Y
with the corresponding total. From the sum of these contributions, the estimate for

a}ﬁad’ LOVP ¢.6m this work is

apHEOVE = (693.26 £ 11950t & 2.014ys & 022y, & 0.71g,) x 10710
= (693.26 & 2.4640¢) x 10710 (4.65)

where the uncertainties include all available correlations and local x? inflation. The
total error is clearly dominated by the systematic uncertainties, mostly due to the large
amount of correlated data that is now present as part of the full data compilation. For
the radiative corrections, there is a notable error contribution from the additional FSR
correction uncertainty (although relatively small when added in quadrature with the
experimental uncertainties). This is due to the conservative choice to take an uncer-
tainty of 1% of the mean value for the possibility of missed FSR for all channels that
require an FSR correction (other than 77 ~) and for which there currently no calcu-
lations of these possible effects. The fractional contributions to the total mean value

and uncertainty of azad’LOVP from various energy intervals is shown in Figure 4.24.

had, LO VP .
Mad’ OVP and its un-

Here, the dominance of the energy region below 0.9 GeV for a
certainty is clearly evident, with this being predominantly due to the contributions
from the 777~ channel. Figure 4.25 shows the contributions from all hadronic final
states to the hadronic R-ratio and its uncertainty below 1.937 GeV. Here, the indi-

vidual final states are displayed separately as well as with the resulting total hadronic
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Fig. 4.25: Contributions to the total hadronic R-ratio from the different final states
(upper panel) and their uncertainties (lower panel) below 1.937 GeV. The full R-ratio
and its uncertainty is shown in light blue in each plot, respectively. Each final state

is included as a new layer on top in decreasing order of the size of its contribution to
had, LOVP
1 .
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Fig. 4.26: The resulting hadronic R-ratio shown in the range m, < /s < 11.1985
GeV, where the prominent resonances are labelled.

R-ratio. Following the discussion concerning the determination of the hadronic R ratio
and its covariance matrix in Section 2.4.5, the full compilation for the hadronic R-ratio
is shown in Figure 4.26. The integral over these calculated data are found to yield ex-

actly the same result for aEaCL LOVP

as from the sum of all channels given in Table 4.2
and equation (4.65). In addition, checks of the covariance matrix confirm that it is a
positive semi-definite matrix, correctly containing the available correlation information
for all hadronic channels and, therefore, all the data points in the resulting vector for
R(s). The data vector and corresponding covariance matrix of the hadronic R-ratio
in the range m, < /s < 11.1985 GeV determined in this work are publicly available
upon request from the authors of [87].

Using the same data compilation as described for the calculation of ahad Love , the
dispersion integrals for the different classes of diagram for the NLO contributions to

azad’vp are found according to Section 1.3.2 to give,

ghad, NLO VP, 20.77 4 0.034a; £ 0.064ys & 0.01yp £ 0.03g,) x 10710

= (-
= (—20.77 £ 0.080¢) x 1071,
al - NLOVE. (b.e7100p) — (10,61 4 0.0241a¢ % 0.034ys £ 0.0y £ 0.014;) x 10710
= (10.61 £ 0.0444¢) x 10719,
afad- NLOVP. (b, 7=100p) — (0,01 4 0.005¢at & 0.00sys 3= 0.00yp £ 0.00¢) x 10710
= (0.01 £ 0.0040¢) x 10710
= (0.34 £ 0.00¢a + 0.01ys £ 0.00yp, % 0.00g,) x 10710
= (

0.34 £ 0.0140¢) x 10710, (4.66)

had NLO VP, (
a,

For all the results quoted above, the errors from the individual channels and sources

of uncertainty are added in quadrature to determine the total error. Combining the
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Fig. 4.27: The normalised difference of the clusters of the 7t7~ data fit from this
analysis with respect to those from the HLMNT11 analysis in the range 0.6 < /s < 0.9
GeV. The width of the yellow band represents the total uncertainties of the clusters of
the HLMNT11 analysis. The 777~ cross section is displayed for reference.

contributions from these different classes, the correlation due to the use of the identical
data input for R(s) must be accounted for. With the contribution from class (a) being
negative, the correlation between the uncertainty from this class and the other classes
results in a reduction in the total uncertainty. Therefore, summing these separate

contributions results in total NLO contribution of

aP P NFOVE = (—9.82 £ 0.025tat + 0.034ys £ 001y % 0.025) x 1071
= (—9.82 £ 0.04¢0¢) x 10710 (4.67)

An evaluation of Aagd(M%) using the same data compilation as for al;ad’ LOVP

and azad’NLo VP as input into the relevant dispersion integral in equation (2.3) has also

been determined as part of this work. A discussion of this and results for AO‘]ElZ)(i(M%)

and a(M%) are given in Appendix C.

4.5 Comparison with other works
4.5.1 Comparison with the HLMNT11 evaluation

To understand further how the changes in the data combination/input have altered the
estimate of agad’ LOVP and its uncertainty, a comparison of the results from this analysis
and the previous HLMNT11 evaluation [21] is particularly interesting. Table 4.3 gives
a channel-by-channel comparison of the two works, highlighting the differences in the

individual contributions for each channel and the total sum over their respective energy
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Channel This work | HLMNT11 [21] [ Difference
Chiral perturbation theory (ChPT) threshold contributions
70y 0.12+£0.01 0.12+0.01 0.00
Trre 0.87 £ 0.02 0.87 £+ 0.02 0.00
ata— 0 0.01 £ 0.00 0.01 +0.00 0.00
ny 0.00 £ 0.00 0.00 = 0.00 0.00
Data based channels (/s < 2 GeV)
oy 4.46 £0.10 4.54 +0.14 —0.08
Tt 502.99 £1.97 505.77 £ 3.09 —2.78
mtr a0 47.82 +0.89 47.51 +0.99 0.31
rta- e 15.17£0.21 14.65 +0.47 0.52
070 19.80 +0.79 20.37 +1.26 —0.57
2rt2r™ 150 5 1.08 £0.10 1.20+£0.10 —0.12
3nt3n~ 0.28 £0.02 0.28 £0.02 0.00
(27277270 16 o 1.60 £0.20 1.80 £0.24 —0.20
KTK~ 23.05£0.22 22.15+0.46 0.90
KJK? 13.05 +0.19 13.33 +0.16 —0.28
KK 2.80+0.12 2.77+0.15 0.03
KK2m 2.42 4+ 0.09 3.31 £0.58 —0.89
ny 0.70 £0.02 0.69 £ 0.02 0.01
nrta~ 1.32 £0.06 0.98 +0.24 0.34
(71100 0.63 4+ 0.15 - 0.63
n2nt2n~ 0.11£0.02 0.11 +£0.02 0.00
nw 0.31 +0.03 0.42 +0.07 —0.11
w(— m0y)x0 0.88 4 0.02 0.77 4 0.03 0.11
ne 0.45 +0.04 0.46 £+ 0.03 —0.01
¢ — unaccounted 0.04 +0.04 0.04 +0.04 0.00
nuwmd 0.42 4+0.10 - 0.42
n(—=npp) KK, 4 sk i 0.01 £0.01 - 0.01
p 0.07 £ 0.00 0.06 = 0.00 0.01
nn 0.06 £0.01 0.07 £ 0.02 —0.01
Estimated contributions (1/s < 2 GeV)
(7T 77310 0o 0.53 £ 0.05 0.60 + 0.05 —0.07
(rr = 4n0) 0o 0.25 £ 0.25 0.28 +0.28 —0.03
KK3r 0.08 £0.03 0.08 +0.04 0.00
w(— npp)2m 0.10 £0.02 0.11 +£0.02 —0.01
w(— npp)3m 0.20 £ 0.04 0.22 +0.04 —0.02
w(— npp) KK 0.01 +0.00 0.01 +0.00 0.00
nrta=270 0.11 £ 0.05 0.11 £+ 0.06 0.00
Other contributions (/s > 2 GeV)
Inclusive channel 41.27 + 0.62 41.40 £ 0.87 —0.13
J /Y 6.26 +0.19 6.24 +£0.16 0.02
)’ 1.58 £0.04 1.56 £ 0.05 0.02
T(1S —48) 0.09 +0.00 0.10 £ 0.00 —0.01
pQCD 2.07 +0.00 2.06 + 0.00 0.01
| Total 69326 £2.46 | 694.91+4.27 | —1.64 \

Table 4.3: Comparison of the contributions to a}ﬁad’ LOVP calculated in the HLMNT11
had, LO VP % 1010
" .

analysis [21] and in this work, where all results are given in units of a

The first column indicates the final state or individual contribution, the second column
gives the estimate from this work, the third column states the HLMNT11 estimate and

the last column gives the difference between the two evaluations.
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Channel This work | HLMINT11 [21]
T 1.3 14
atr—m0 2.1 3.0
atn - nta™ 1.8 1.7
atr = nOn0 2.0 1.3
2r 277100 4 1.0 1.2
(27217270 06 o 3.5 4.0
KtK~ 2.1 1.9
K3K? 0.8 0.8

Table 4.4: Comparison of the global \/x2. /d.o.f.for the leading and major sub-

leading channels determined in the HLMNT11 analysis [21] and in this work. The first
column indicates the final state or individual contribution, the second column gives the
value from this work, the third column states the HLMNT11 value.

ranges.'? The largest difference occurs in the 7+7~ channel, where the mean value in
this work is lower by almost 1o of the HLMNT11 analysis and the uncertainty has
reduced by approximately one third. Being the dominant hadronic contribution to a,,

Ead’ LOVP and its uncertainty. As described

a similar trend is seen in the final results for a
in the in-depth discussion of the 27 contribution in Section 4.1.2; this is largely due to
the new, precise and highly correlated radiative return data from KLOE and BESIII and
the capability of the new data combination method to utilise the correlations to their
full capacity. The global y/x2 /d.o.f.of the leading and major sub-leading channels in
this work are compared to those from the HLMNT11 analysis [21] in Table 4.4. The
reduction of the global |/x?2. /d.o.f.for the 77~ channel further highlights that the
data combination for this channel has improved. The energy dependent changes in the
resonance region are shown in Figure 4.27, where it can be seen that, as expected from
the comparison of the 777~ results in Table 4.3, the data combination from this work
is in good agreement with the HLMNT11 analysis but sits lower overall.

The K™K~ channel shows tension with the HLMNT11 analysis, where the new data,
in this channel from BaBar [171] and CMD-3 [173] have incurred a large increase in the
mean value, whilst also improving the uncertainty despite the small increase in global
\/X2,,/d.o.f. This is also the case for the 7*7 7"~ channel. Other tensions include
the KgK O mrta~, nw and w(— m9)7% channels, where again, the new, more precise
data have resulted in changes outside the quoted HLMNT11 uncertainties. As discussed
in Section 4.1.8, the K K27 channel exhibits a similar change due to the previously

inadequate isospin estimate used in [21]. All other channels are in good agreement

10Note that the results for individual contributions to aﬁad’Lo VP from this work that are listed in
Table 4.3 differ from those given earlier in this section and in Table 4.2, as for a comparison with
HLMNT11 [21], contributions to aﬂad’ LOVP from exclusive channels are evaluated up to 2 GeV. How-
ever, to consistently compare the final results for aﬁ“d’Lo VP between the two works, the total result
from this analysis given in Table 4.3 is not determined as the sum of the individual contributions listed
above it, but is the final result for aﬂad’ LOVP calculated in this work using the exclusive channels eval-
uated up to 1.937 GeV. Summing the values from this work listed in Table 4.3 (i.e. choosing to evaluate

the sum of exclusive states from this work up to 2 GeV), results in a*®*°VF = (693.06 +£2.45) x 10~ *°.
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between the different analyses. Following the discussion in Section 4.1.4, a marked
improvement is seen in the 777~ 7970 channel, where the new BaBar data [154] has
reduced both the mean value and uncertainty of this final state. It is important to note
that this work includes three channels that were not included as part of the HLMNT11
analysis: (w7~ 7")no o, nwn® and 7( — non-purely pionic (npp)) KK, 4 iz, where
these final states were previously unmeasured by experiment and not estimated through
isospin relations.

Overall, due to the large reduction in the 777~ channel, it is found that the estimate
of a,}}ad7 LOVP 1as decreased between the HLMNT11 analysis and this work, although
this decrease is well within the uncertainty of the HLMNT11 estimate. In total, the
uncertainty has been reduced by ~ 42% with respect to the HLMNT11 analysis. This
simultaneous reduction in mean value and uncertainty has the effect of increasing the

SM exp
n

current deviation between a)" and a, . Similar changes are also observed in the

NLO contribution, where the HLMNT11 analysis found aﬁad’ NLOVP(HLMNT11) =
(—9.84 4+ 0.07) x 10710,

4.5.2 Comparison with other similar works

The DHMZ group have recently released a new estimate of a,}jad’LO Ve [45] which, due

to a similar data input, is directly comparable with this work and provides insight
into how choices with regards to the data combination can affect results. In particular,
with the uncertainties of al,;ad’ LOVP f1om both this work and the DHMZ17 analysis now
being less than 0.5% of the respective mean values, it is important that these differences
are understood in order to quantify the reliability of different approaches and results.
In [45], the authors provide a channel-by-channel breakdown of their estimates for the
different final states, which are compared to the respective estimates from this work
in Table 4.5. For the exclusive data channels, the DHMZ group choose to take the
contributions from these data up to 1.8 GeV, relying on estimates from pQCD above
this (with inflated errors for the pQCD data below the c¢ threshold). As such, the
estimates from this work in Table 4.5 have been recalculated to mimic the chosen
energy regions of the DHMZ analysis and allow for a consistent comparison.

When comparing the total estimate of aﬁad’ LOVP from the two analyses, the results
seem to be in very good agreement. However, as can be seen from Table 4.5, this
masks much larger differences in the estimates from individual channels. The most
striking of these is the estimate for the 777~ channel, where there is a tension of
slightly more than 1o between this work and DHMZ17 result. This is unexpected
when considering the data input for both analyses are likely to be similar and, therefore,
points to marked differences in the way the data are combined. The higher value of the
DHMZ17 estimate seems to suggest that their data combination favours the data from

the BaBar measurement, with this data set being the only single set that could influence
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Channel ‘ This work ‘ DHMZ17 [45] | Difference
Data based channels (y/s < 1.8 GeV)
707 (data + ChPT) 158 £0.10 1.29+0.10 0.29
ntr~ (data + ChPT) 503.74 + 1.96 507.14 + 2.58 —3.40
atr~n0 (data + ChPT) 47.70 + 0.89 46.20 + 1.45 1.50
O 13.99 +£0.19 13.68 £0.31 0.31
atr 70q0 18.15+0.74 18.03 £ 0.54 0.12
27277 7% 0o 4 0.79 £ 0.08 0.69 £ 0.08 0.10
3nt3n~ 0.10 £0.01 0.11£0.01 —0.01
(27727727 10 0.77+0.11 0.72 £0.17 0.05
KtK~ 23.00 £ 0.22 22.81 £0.41 0.19
KJKY 13.04 £0.19 12.82 £0.24 0.22
KKm 2.44 £0.11 2.45+0.15 —0.01
KK2n 0.86 £ 0.05 0.85 £ 0.05 0.01
n7y (data + ChPT) 0.70 £ 0.02 0.65 £ 0.02 0.05
nrta~ 1.18 £ 0.05 1.18 £ 0.07 0.00
(T 7100 w 0.48 £0.12 0.39 £0.12 0.09
n2rt2n~ 0.03 £0.01 0.03 £0.01 0.00
nw 0.29 £ 0.02 0.32 £0.03 —0.03
w(— mOy)70 0.87 £0.02 0.94 £0.03 —0.07
ne 0.33 £0.03 0.36 £ 0.03 —0.03
¢ — unaccounted 0.04 +0.04 0.05 + 0.00 —0.01
nwm? 0.10 £0.05 0.06 £ 0.04 0.04
n(— npp) KK, b KR 0.00 £ 0.01 0.01 £0.01 —0.01*
Estimated contributions (/s < 1.8 GeV)
(T 310 4 0.40 +0.04 0.35 £0.04 0.05
(470 o 0.12 +0.12 0.11+0.11 0.01
KK3r —0.02+0.01 —0.03+0.02 0.01
w(— npp)27 0.08 £0.01 0.08 £0.01 0.00
w(— npp)3n 0.10 £ 0.02 0.36 £ 0.01 —0.26
w(— npp) KK 0.00 & 0.00 0.01 £0.00 —0.01
nrtn=2r0 0.03 4+ 0.01 0.03 4+ 0.01 0.00
Other contributions
J/Y 6.26 £0.19 6.28 £0.07 —0.02
v 1.58 +£0.04 1.57+0.03 0.01
T(1S —4S5) 0.09 £ 0.00 - 0.09**
Contributions by energy region
1.8 < /s < 3.7 GeV 34.54 £ 0.56 (data) 33.45 £ 0.65 (pQCD)*** 1.09
3.7< /s <50 GeV 7.33 £0.11 (data) 7.29 £ 0.03 (data) 0.04
5.0<4/5s <93 GeV 6.62 £ 0.10 (data) 6.86 £ 0.04 (pQCD) —0.24
9.3 < /s <12.0 GeV 1.12 £ 0.01 (data+pQCD) 1.21 £0.01 (pQCD) —0.09
12.0 < /s < 40.0 GeV 1.64 £0.00 (pQCD) 1.64 £0.00 (pQCD) 0.00
> 40.0 GeV 0.16 = 0.00 (pQCD) 0.16 + 0.00 (pQCD) 0.00
Total 693.3 £2.5 693.1+3.4 0.2

*DHMZ have not removed the decay of 1 to pionic states which incurs a double counting of this
contribution with the K Knm channels.

**DHMZ include the contributions from the Y resonances in the energy region 9.3 < /s < 12.0 GeV.
***DHMZ have inflated errors to account for differences between data and pQCD.

Table 4.5: Comparison of the contributions to azad’LOVP calculated by DHMZ17
and in this work, where all results are given in units agad’ LOVP » 1010, The first
column indicates the final state or individual contribution, the second column gives
the estimate from this work, the third column states the DHMZ17 estimate and the
last column gives the difference between the two evaluations. For the final states in
this work that have low energy contributions estimated from chiral perturbation theory
(see [46]), the contributions from these regions have been added to the contributions
from the respective data.
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the mean value of the 777~ channel to be as high. This behaviour is similar to the
result obtained from combining the 777~ data using only a simple weighted average as
discussed in Section 4.1.2. In turn, this effect is compensated by other major sub-leading
final states having larger estimates in this work compared to the DHMZ17 analysis.
Specifically, the 7*n~ 7%, at7r =777~ and K2K? estimates are noticeably lower in the
DHMZ17 analysis. In addition, there is tension in the region between 1.8 < /s < 3.7
GeV, where the choice to use data in this region has a higher integrated contribution
to aﬁad’ LOVP than the DHMZ17 estimate from pQCD. This is particularly significant
when reconsidering Figure 4.22, where it was observed that the sum of exclusive states
from in the range 1.8 < /s < 2.0 GeV has a cross section that is lower than the
estimate from pQCD. The differences seen in Table 4.5 above 1.8 GeV are then caused
by cross section data below the charm production threshold being higher than pQCD
(see Figure 4.20) and lower than pQCD above it (see Figure 4.21). It should be noted
that the estimate for the w(— npp)3~ final state from isospin relations, although only
a small contribution to aﬁad’LOVP, exhibits a significant difference between the two
analyses, suggesting a different relation has been used in the DHMZ17 analysis than in
this work.

As well as the DHMZ analysis, an updated work by F. Jegerlehner (FJ17) [36]
resulted in an estimate of a},iad’LOVP(FJN) = (688.07 4 4.14) x 107! based on the
available eTe~ data. Within errors, this result is in agreement with both this work
and the DHMZ17 analysis. Interestingly, unlike the comparison with DHMZ17, the
two-pion contribution in the energy range 0.316 < /s < 2.0 GeV is found in the FJ17
analysis to be af“_ (FJ17) = (502.16 42.44) x 10719 [239], which is in good agreement
with the estimate from this work in the same energy range of af”i (This work) =
(501.68 & 1.71) x 107!°. However, a more detailed comparison with the estimates of
other channels determined in [36,239] is not possible as the FJ17 analysis chooses to es-
timate certain resonance contributions using available parametrisations [16] instead of
using the available data. A comparison of recent and previous evaluations of a,}iad’ Love
determined from eTe~ — hadrons cross section data is shown in Figure 4.28, which
highlights the agreement between the different works and the improvement in the pre-

cision of the respective analyses.

4.6 The SM prediction of the anomalous magnetic mo-

ment of the muon, aEM

Following the review of the contributions to a, from the different sectors of the SM

had, LO VP had, NLO VP
m and ay

in Section 1.2.2, the new results for a determined in this

work allow for an updated determination of aEM. Summarising the different SM results

98



! DEHZ03:696.3 +7.2 +——=a—

= ! HMNTO03:692.4 £+ 6.4 +——e—

DEHZ06:690.9 + 4.4 +——=—-

HMNTO06:689.4 + 4.6 ——eo—

FJ06:692.1 +56 +H—=&—

DHMZ10:692.3+42 +———=—

JS11:690.8 +4.7 +——=—

HLMNT11:694.9 +43 +——eo—

FJ17:688.1 + 4.1 ——=—

|
|
|
|
i
A DHMZ17:693.1 £ 3.4 F—2—Ho

'_‘;_' This work: 693.3 + 2.5 It
A 1 A I N R
685 690 695 700 705 710 715
aMhad, LO VP X 1010
Fig. 4.28: Comparison of recent and previous evaluations of azad’LOVP determined
from eTe™ — hadrons cross section data. The analyses listed in chronological order are:

DEHZ03 [48], HMNTO03 [46], DEHZ06 [49], HMNTO06 [47], FJ06 [50], DHMZ10 [51],
JS11 [52], HLMNT11 [21], FJ17 [36] and DHMZ17 [45]. The prediction from this work
defines the uncertainty band that the other analyses are compared to.

discussed previously, the QED contribution gives [9,22]
a™P = (11 658 471.8971 £ 0.007) x 10717, (4.68)
From [34], the EW contribution is

a;, ¥ = (15.36 £ 0.10) x 107'7. (4.69)

For the hadronic vacuum polarisation contributions, the leading order and next-to-
leading order contributions have been calculated in this work. The LO contribution,
from equation (4.65), was found to be a1 VP = (693.26 + 2.46) x 10710 and the
NLO was given in equation (4.67) as aﬁad’ NLOVE _ (_9.82 4 0.04) x 10719, From [35]
the NNLO hadronic vacuum polarisation contribution was found to be azad’NNLO VP —
(1.2440.01) x 1071%. Summing these, the total contribution to the anomalous magnetic

moment from the hadronic vacuum polarisation is
Pt VP = (684.68 +2.42) x 10710 (4.70)

It should be noted that the negative NLO contribution results in an anti-correlation
between its uncertainty and the uncertainty from the LO contribution, consequently
resulting in a slight reduction in the overall uncertainty that has been incorporated

into equation (4.70). The chosen estimate for the LO hadronic LbL contributions in
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Fig. 4.29: A comparison of recent and previous evaluations of aEM. The analyses
listed in chronological order are: DHMZ10 [51], JS11 [52], HLMNT11 [21], FJ17 [36]
and DHMZ17 [45]. The prediction from this work defines the uncertainty band that
other analyses are compared to. The current uncertainty on the experimental mea-
surement [13-16] is given by the light blue band. The light grey band represents the
hypothetical situation of the new experimental measurement at Fermilab yielding the
same mean value for a;; © as the BNL measurement but achieving the projected four-fold
improvement in its uncertainty [17].

this work is a0 = (9.8 +2.6) x 10710 [43]. Summing this with the estimate
for the NLO contributions of aﬁad’NLO LPL — (0.3 £ 0.2) x 10710 [40], results in a total
hadronic LBL estimate of

aP Pl = (10.1 +2.6) x 10710 (4.71)

Following equation (1.17) and equation (1.30), the sum of all the sectors of the SM

results in a total value of the anomalous magnetic moment of the muon of

a;M = (11 659 182.04 £ 3.56) x 10717, (4.72)

where the error is determined from the uncertainties of the individual SM contributions,
added in quadrature. Comparing this with the current experimental measurement given

in equation (1.19) results in a deviation of
Aa, = (27.06 £ 7.26) x 10717, (4.73)

corresponding to a 3.70 discrepancy. This result is compared with other determinations
of aiM in Figure 4.29. Importantly, it can be seen here that should the new Muon g — 2

experiment at Fermilab measure a;,* to have the same mean value as equation (1.30)
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SM contribution HLMNT11 [21] This work
QED 11658471.8 £ 0.0 11658471.9 £+ 0.0
EW 15.4£0.2 15.4£0.1
had LO VP 694.9 £4.3 693.4 + 2.5
had NLO VP —98+0.1 —-98=+£0.0
had NNLO VP 1.2+£0.0
had LO LbL 10.5£2.6 9.8£2.6
had NLO LbL 0.3+0.2
Theory total 11659182.8 +4.9 11659182.0 + 3.6
Experiment 11659209.1 + 6.3 11659209.1 £ 6.3
Aay, 26.1+8.0 (3.30) 27.1+7.3 (3.70)

Table 4.6: Comparison of the contributions to aEM given in the HLMNT11 analy-
sis [21] and in this work, where all results are given in units of a, x 101%. The first col-
umn indicates the individual SM contribution, the second column states the HLMNT11
value and the last column gives the value from this work. The references for the eval-
uations for the individual SM contributions used to determine aEM in the HLMNT11
analysis are QED [240, 241], EW [32] and had LO LbL [37], with the hadronic VP
contributions being calculated in [21].

but achieve the projected four-fold improvement in the experimental uncertainty [17],
the (g — 2),, discrepancy would increase to 7.00. It should be noted that although, as
stated in Section 4.5.2, the DHMZ17 estimate for al,}ad’ LovP [45] is lower than the value
obtained in this work, the estimate of aEM from DHMZ17 is higher than the estimate
from this analysis as DHMZ17 choose to use the estimate for the hadronic light-by-light
contribution of aﬁad’LbL = (10.5 £ 2.6) x 10710 [37].

A comparison with the HLMNT11 estimate given in equation (1.27) shows an im-
provement in the total uncertainty of aEM of ~ 27%. Table 4.6 compares the contri-
butions from the individual sectors of the SM as given in the HLMNT11 analysis and
in this work. Whereas in [21], the five-loop QED contributions were only estimated
from [240], the full calculation of these contributions in [9,22] has led to the small
change in the QED estimate. For the EW sector, the now relatively well-known Higgs
mass [16] has halved the uncertainty on this contribution since [21]. The comparison
of the differences in azad’ LOVE and a,}}ad’ NLOVP 1 otween this work and the HLMNT11
analysis have been discussed in detail in Section 4.5.1. Importantly, although there has
been a reduction of ~ 1.5 x 100 in agad’ LOVP petween the HLMNT11 analysis and
this work, this difference is largely cancelled by the newly estimated NNLO VP con-
tributions that were not included in [21]. The value for the LO LbL contributions has
reduced due to the re-evaluation of the contribution to aﬁad’LbL from axial exchanges
as discussed in Section 1.2.2; but this difference is also alleviated by the inclusion of

the previously missing NLO LbL contributions. Notably, the uncertainty of agad’ LOvP

is now smaller than the uncertainty of al,iad’LO LbL

SM
"

, making the hadronic light-by-light

sector the largest error contribution to a2 for the first time. In total, the changes in
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all the sectors of the SM have resulted in an increase in Aa, and, therefore, the (9 —2),
discrepancy, largely due to the reduction in the uncertainty of a}ﬁad’ VP as calculated in

this work.
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Chapter 5

Conclusions

5.1 Summary

The anomalous magnetic moment of the muon, a, = (g — 2),/2, provides a stringent
test of the Standard Model (SM), where the ~ 3.5¢ (or higher) discrepancy between the
experimental measurement ay;, "’ and the SM prediction aEM could be an indication of
the existence of new physics beyond the SM. The uncertainty of aEM is completely dom-
inated by the hadronic contributions. This analysis has completed a full re-evaluation
of the hadronic vacuum polarisation contributions to the anomalous magnetic mo-

2ad’VP. These quantities have been determined using the available

ment of the muon, a
ete~ — hadrons cross section data as input into corresponding dispersion relations,
with an aim to achieve both accurate and reliable results from a predominantly data
driven analysis.

Since the analysis preceding this work [21], all aspects concerning the radiative cor-
rections of the data and the data combination have been reassessed in this work. The
vacuum polarisation corrections have been updated and are found to have less effect on
the data combination than in previous analyses due to the large quantity of data that
have already been released as the bare cross section with FSR included, Ugadﬂ(s). This
is also true of the FSR corrections, where for the 777~ channel the overall impact of
the FSR corrections and the corresponding additional radiative correction uncertainty
on af’f is greatly reduced. In addition, studies into the previously applied FSR cor-
rections for the KK~ channel have shown these to be an overestimate in this final
state, as the possibility of FSR is limited by highly restricted phase space and, there-
fore, no FSR correction or additional uncertainty is now applied in this channel. For
the data combination, a re-analysis of the previously used non-linear x2-minimisation
highlighted the potential for systematic bias and that the method’s reliance on fitting
energy independent renormalisation factors prevented the use of correlated uncertain-
ties to their full capacity. Instead, the data are now combined using an iterative, linear

x2-minimisation developed in this work from a method that has been advocated to be

free of bias and that has been studied in detail. Importantly, this data combination
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method now allows for the full use of any available correlated statistical and systematic
uncertainties, robustly incorporating them into the determination of both the resulting
mean value and corresponding error.

The three precision measurements of the cross section o(ete™ — 777 (7)) us-
ing initial state radiation by the KLOE collaboration provide an important input for
the prediction of the hadronic contributions to the anomalous magnetic moment of
the muon. These measurements are correlated for both statistical and systematic un-
certainties and, therefore, the simultaneous use of these measurements requires co-
variance matrices that fully describe the correlations. The matrices constructed for
this purpose prior to this work were found to be mathematically unstable and their
construction had to be reassessed. To fully understand the correlations, it was nec-
essary to re-open the experimental analyses of all three measurements. At each ex-
perimental correction stage, any corresponding statistical or systematic uncertainty
was scrutinised and, in some cases, re-evaluated. This allowed for the improvement
of the calculated cross sections and for correct covariance matrices to be constructed,
which have been found to satisfy the necessary properties of positive semi-definite ma-
trices. The use of these matrices has allowed for the determination of a combined
KLOE measurement for o(ete” — 7tm (7)) and yields a two-pion contribution
to the muon magnetic anomaly in the energy range 0.3162 < /s < 0.9747 GeV of
am' T = (489.8 £ 1.7gar + 4.845) x 10710,

o
For the full calculation of aﬁad’ LOVE and azad’ NLOVP

, the large quantity of new
hadronic cross section data (coupled with the changes in the data combination method)
have resulted in improved estimates for nearly all hadronic channels. This is particularly
true for the 77~ channel, where the precision of this final state has improved by
approximately one third compared to [21], with aff from both analyses in very
good agreement. Significant progress is also observed in the major sub-leading 37, 47
and KK channels. Importantly, the inclusion of recent cross section measurements of
neutral final states in the K K7 and K K27 channels has removed the need to rely on
isospin relations to estimate these final states. In addition, new inclusive hadronic R-
ratio data from the KEDR collaboration have improved the inclusive data combination.
In particular, they have provided the opportunity to reconsider the transition region
between the sum of exclusive states and the inclusive data, which has resulted in the
transition point being chosen to be at 1.937 GeV in this work, where the different
choices for the data input in this point are in agreement within errors.

Importantly, the advancements of the data compilation in this work have yielded,
for the first time, the full hadronic R-ratio and its covariance matrix in the energy range
my < /s < 11.2 GeV. Using these combined data, this analysis found alﬁad’LOVP =
(693.26+2.46) x 10710 and aj*>NOVF — (—9.8240.04) x 1071, This has resulted in a

new estimate for the Standard Model prediction of aEM = (11 659 182.044:3.56) x 10710,
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which deviates from the current experimental measurement by 3.7c.

5.2 Future prospects

For the hadronic vacuum polarisation contributions, there is scope to further im-
prove the estimates. With regards to the prospect of new data, measurements of the

+

w7~ cross section are planned to be released in the near future from BaBar [242],

CMD-3 [243], SND [244] and, possibly, BELLE-2 [245]. With the 777~ channel still
providing the largest error contribution to aﬁad’ Lo VP, new data here will be invalu-
able to the overall determination of the hadronic VP contributions. In addition, these
new data may shed light on the issues regarding the tensions between the BaBar data
and the other measurements, especially those between the BaBar data and the KLOE
combination. Should the forthcoming high statistics cross section measurement by the
BaBar collaboration agree more with the other measurements in this channel, discard-
ing the current BaBar data may be a consideration. New data for both the 7tz 7°
and 7777970 channels would benefit both of these contributions, where new data for
7T~ 7Y could reduce the effects of the local x2. /d.o.f. error inflation and additional

T7~ 7970 to accompany the lone modern measurement from

new data is needed for 7
BaBar in this channel. For the K™K~ channel, the reanalysis of the omitted CMD-2
data will be crucial in further understanding the increase of the cross section at the
¢ peak due to the new BaBar and CMD-3 data in this region. Data to reduce the
reliance on isospin, as with the K Knm channels in this work, are vital to drive this
analysis towards the preferential data-based determination. Although the relative size
of the remaining isospin estimated contributions are small, the differences in the K K27
channel between the data and the isospin estimate have highlighted how these relations
can produce inadequate representations of the cross section. Efforts are also currently
being made to measure new inclusive R-ratio data by BESIII [246] and the experiments
at Novosibirsk (SND, CMD-3, KEDR). In particular, a detailed analysis at Novosibirsk
intends to determine the inclusive R-ratio at energies lower than 2 GeV [247], which
would allow further study into the choices of the transition region between the sum of
exclusive states and the inclusive data.

Further understanding and inclusion of correlations are paramount for future deter-
minations of abad’VP. This stems not only from the experimental data itself (although
this is important for future data), but also to obtain a better understanding of how
the correlated uncertainties should be included in these calculations. In this work, all
available experimental correlations have been included and allowed to influence the
data combination to their full capacity. This is seemingly not the case for the DHMZ17
approach [45], suggested by the higher value for af“_ obtained in their work. With
had, LOVE that are smaller than ~ 0.5%, it

is important to understand the origins of these differences. These efforts are currently

both these works quoting uncertainties for a
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under-way as part of the Muon g—2 Theory Initiative [248], where the dedicated groups
involved within it show great progress in studying these differences between these and
other similar analyses. The correlations between data in different channels, which are
not included in this work as the available information is not available, are also a fu-
ture step towards improving the hadronic vacuum polarisation contributions. However,
to allow these correlations to influence the mean value in a full determination of the
hadronic R-ratio would require a new (or extended) data combination method that
allowed for a global fit of all channels simultaneously.

The concept of employing a new data combination method is further motivated
by the limitations of the y? minimisation approach used in this work. Specifically,
the x? minimisation method assumes the experimental uncertainties to be Gaussian
which, in general, is not true for all experimental data. Although up until this point,
most experimental uncertainties have been made available under the same assumption
(i.e. symmetric with respect to the covariance matrix), the advancement of both the
experimental analyses and the determinations of aﬁad’ VP to include non-Gaussian un-
certainties would require a more developed data combination method than the more
simplistic x? minimisation.

had, LOVP d 1 . t L t
" are developing at a promising rate.

Alternative approaches to determine a
Lattice QCD determinations, in particular, are rapidly improving [249-251]. Recent
work that combines data from lattice QCD with those from experimental R-ratio data
have already provided extremely accurate results that are in good agreement with
the current estimates from the dispersive method [251]. Furthermore, efforts to ex-

Ead’ LOVP are progressing [252, 253]. By measuring the run-

perimentally measure a
ning of the QED coupling in a high precision, space-like u-e scattering experiment
and subtracting the theoretical determinations of all contributions to Aa(g?) other
than the hadronic contributions would result in the experimentally measured quantity
Aanaq(q?), which can be used as input into an alternative dispersion relation to deter-
mine a},;ad’ LovP [239]. This would provide the first direct experimental measurement of
purely hadronic vacuum polarisation contributions to a, and would be an alternative
check of the results from the dispersive approach.

In general, the predictions for aEM have been further scrutinised and are well estab-
lished. In particular, the improvements in the uncertainty are on track in preparation
for the new experimental results from Fermilab and J-PARC, with the Muon g—2 The-
ory Initiative showing great promise in improving the estimate of aﬁM further. This
is further driven by the fact that the result for a,}iad’ VP determined in this analysis is
the first estimate of the hadronic vacuum polarisation contribution that is more precise

had, LbL
I

than the currently quoted uncertainties for a . Should any or all these advances

reduce the uncertainty of aﬁad’ VP even further, the improvement of the hadronic light-

by-light estimates will become particularly crucial. Importantly, however, it should be
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noted that there is no indication thus far that the SM prediction does not deviate with
the current experimental measurement by more than 30. Given these developments
in improving the Standard Model prediction of a, and the formidable progress made
by the new Muon g — 2 experiments at Fermilab and J-PARC, the prospects of either
establishing the existence of new physics contributing to a,, or to rule out many new

physics scenarios, are highly compelling.
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Appendix A

Measurement of the kicker pulse

of the Muon g — 2 experiment
(E989)

A.1 The kicker system

At the Muon g — 2 experiment at Fermilab [17], the muon beam is injected into the
storage ring through the inflector onto an orbit that is displaced by 77mm radially
outward from the ideal orbit of the storage ring. In order to direct the beam back onto
the correct trajectory requires a ‘kick’ at the point where the muons on the displaced
trajectory cross the path of the ideal orbit. This occurs at approximately 90° around
the storage ring from the point where the muon beam exits the inflector, as can be seen
in Figure A.2. The crossing angle at this point is 10.8 mrad, requiring an angular kick
of 10.8 £ 0.4 mrad to maximise the muon capture efficiency [17]. To achieve this with
an additional error of margin, the kicker for the Muon g-2 experiment was designed to
reach a 14.0 mrad kick. Achieving a 10.8 - 14.0 mrad kick requires the kicker to reach
a magnetic field strength of 200-280 Gauss (0.020-0.028 Tesla) over the 120ns that the
muon beam pulse traverses the domain of the kicker and then return to zero before the
muon beam again reaches the kicker 149ns later, as shown in Figure A.1.

The kicker itself is comprised of three 1.27m long magnets (which shall be denoted
as K1, K2 and K3, with K1 being the magnet closest to the inflector that the muons
reach first) that reside inside the storage ring at the location indicated in Figure 1.2.
The requirements of field strength, pulse shape and time must be achieved by all three
magnets in order to deliver the nominal kick. A voltage of ~ 55 kV delivers the 4.5kA
current to the magnet plates of K1, K2 and K3 to produce the 200-280 Gauss field. To

generate this, each kicker magnet system consists of:

e A high voltage (HV) power supply and charging circuit to produce the required
~ 55 kV.

e A thyratron switch to form the current as a pulse.
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Fig. A.1: The ideal kicker pulse for the E989 experiment (blue) given in Gauss and
the overlapped length of the corresponding muon beam cycle with 149 ns period (red)
given in ns. This figure has been taken directly from [254].

Inflector
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Fig. A.2: The displaced orbit of the muon beam that enters the storage ring from the
inflector (red) and the required orbit (blue). This figure has been altered from [17].

e A transmission line (triaxial blumlein) to deliver the pulse to the kicker magnet.

e A load resistor (‘bazooka’ canister) to terminate the transmission and provide the

required 4.5kA current to the kicker magnet.
e The kicker magnet plate which generates the 200-280 Gauss field.

The magnetic field map associated with the kicker magnet plates is shown in Figure A.3.

A.2 Measuring the kicker field using a Faraday magne-
tometer

A.2.1 The Faraday magnetometer: concept

It is essential that the effectiveness of the kicker field is tested in order to maximise the

muon capture efficiency of the muon g-2 experiment. In order to do this, a Faraday

109



E989 Kicker B-field Magnitude 2.4

2.1

1.8

r1.5

€
E © F1.2
>
-20 0.9
40 EEE N | |os
A=

: R : e e : 0.3
-80 } ] } } ]

-100 -50 0 50 100 0.0

x (mm)

Fig. A.3: The relative magnitude of the magnetic field lines associated with the kicker
magnet plates of the E989 experiment [256]. This diagram is taken as a slice of the
radial direction of the beam, which is the direction of the magnetic field generated by
the kicker magnet plates.

magnetometer can be used to measure the time-dependent field. This device makes
use of the consequences of the Faraday effect, which states that when linearly polarized
light passes through a Faraday rotator medium, the polarization angle rotates propor-
tionally to the strength of the magnetic field B. The relationship between the plane of
polarisation and the field B is given by

AO =VBd, (A1)

where A# is the rotation angle of the plane of polarisation, V is the Verdet constant
which describes the strength of the Faraday effect for that medium and d is the distance
that the light travels through the medium. The chosen medium for the Faraday rotator
is a terbium gallium garnet (TGG) crystal [255], which has a particularly high Verdet
constant (= 134 rad T~!m~! for 632 nm light) and is therefore more sensitive to the
magnetic field.

The basic concept of the Faraday magnetometer is as follows. The TGG crystal
is placed inside the B field to be measured and a laser light is passed through it. As
the laser passes through the crystal, the B field acting on the crystal causes a rotation
of the plane of polarisation of the laser light. The light is then directed through a
polariser. By measuring the intensity after it has passed through the polariser, the

change in the angle of polarisation can be determined from Malus’ Law,
I = Iycos* 6, (A.2)

which states that the intensity of the light after passing through the polariser I is
simply given by the cosine squared of the angle of polarisation 6 multiplied by the
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Fig. A.4: The design concept of the Faraday magnetometer used to measure the kicker
field strength of the Muon g — 2 experiment [255].

initial intensity Iy. By choosing the polariser to have an initial polarisation angle of

0 = I, the intensity of the light is given by I = Ijcos ( ). Should the influence of the

B ﬁeld then introduce a rotation angle A6 on the plane of polarisation, it follows that
I=1 cosz(g + Af)

1+ cos(§ + 2A0)

=1 5
1«

1 sin(2A46) , (A.3)

2
which, when rearranged to find Af and combined with equation (A.1), results in

1 21

= i 1—— A4

ova ™™ < 10> (A-4)

Now, at the set angle of § = 7, the measured intensity is given by I = %IO. It follows
that when measuring a signal that introduces a deviation Af from 6 = 7, the deviation

in the measured intensity is given by I = %Io + AI. Therefore,

1y 20zl + AT

B = 577 i (1 B (A.5)
o1 (2A]
= oVd Sin (IO) N (AG)

meaning that to determine the field strength B requires knowing only know the Verdet
constant of the Faraday rotator V for a given wavelength, the length of the Faraday

rotator d, the measured signal AT and the initial intensity Io.!

A.2.2 The Faraday magnetometer for the Muon g — 2 experiment

To be able to measure the kicker field strength of the Muon g — 2 experiment requires

the TGG crystal to reside in the kicker field, specifically centred radially and vertically

In addition, it is possible to calibrate the Faraday magnetometer by measuring the change in
intensity induced by a magnetic field source with a field strength that is known to a high precision.
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Amplifier

Fig. A.5: A photograph of the parts of the magnetometer that exist outside the
vacuum chamber and the trajectory of the laser light. The laser light passes through
the first polariser, along the magnetometer arm inside the SRV chamber, through the
TGG crystal, back along the magnetometer arm out of the SRV chamber, reflected off
the mirror into the second polariser and into the amplifier.

between the kicker magnet plates of either K1, K2 or K3 situated inside the vacuum
chamber of the storage ring. The design concept of the magnetometer is shown in
Figure A.4 [255]. The TGG crystal is attached at 90° to a tubing arm that passes
through a flange and into the storage ring. The arm is rotatable and adjustable to
ensure that the crystal is centred between the kicker plates without damaging the
kicker plates or the crystal.? The laser is situated outside of the vacuum chamber
and the light is directed first through a polariser (to counteract the polarisation of the
laser light itself) and then projected through an A1l tube towards the crystal. This
can be seen in the annotated picture in Figure A.5. Once the laser light has passed
into the vacuum chamber through the Al tube, a 45° mirror at the end of the tubing
arm directs the laser light down through the crystal. It is then reflected by a second
mirror back through the path it came from through the crystal, the 45° mirror and the
A1 tube.? Should the crystal be subject to a magnetic field (such as the kicker field),
then the polarisation angle of the laser light passing through it is shifted by A which
is proportional to the magnitude of the field, as given by equation (A.1). Following
the trajectory of the laser light in Figure A.5, the light then passes out of the vacuum
chamber, through a second polariser (which is set at the polarisation angle § = 7) and
is reflected by a mirror into an amplifier which records the signal as a change in voltage.
This change in voltage AV is exactly the change in intensity A that is used as input
into equation (A.5).

2This freedom to rotate and retract the magnetometer arm also allows for the crystal to be moved
out of the trajectory of the muon beam and the field trolley, which takes data regarding the magnetic
field of the main storage ring magnet.

3 As the laser passes through the crystal twice, this must be accounted for in the determination of
the B field in equation (A.5). Hence, if the crystal has length [, then d = 2I.
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Current (A) | Magnetometer measurement (T) | Metrolab measurement (7T)
0.0 0.000 -
250.0 0.034 -
500.0 0.099 -
750.0 0.170 -
1000.0 0.247 -
1250.0 0.325 -
1500.0 0.403 -
1750.0 0.483 -
2000.0 0.555 -
2250.0 0.628 -
2500.0 0.708 -
2750.0 0.792 -
3000.0 0.871 0.88000
3250.0 0.950 -
3500.0 1.028 -
3750.0 1.103 -
4000.0 1.149 -
4250.0 1.214 -
4500.0 1.283 1.30000
4750.0 1.344 -
5000.0 1.401 -
5179.2 1.451 1.45103
5300.0 1.48000

Table A.1: The magnitude of the magnetic field of the g — 2 storage ring magnet as
measured by the Faraday magnetometer and a Metrolab device [258] at given values of
the magnet current.

A.2.3 Testing the magnetometer: mapping the B field of the Muon
g — 2 storage ring magnet

The Muon g — 2 storage ring magnet operates at a B field magnitude of 1.45 T, which
corresponds to a generated current of 5179.2 A. When ramping up the magnet to the
required current, the relationship between the current and the corresponding B field
is non-linear and must be measured at specific points to determine the field corre-
sponding to a given current. This has been done once previously using a Metrolab
device [258], which measured the B field of the storage ring magnet at the values given
in Table A.1 [259]. Below 3kA, the Metrolab is ineffective and could not measure the
field magnitude.

In order to test the magnetometer, it was used to measure the relative B field of
the storage ring magnet at different intervals of the current, which were then cross
checked against the values taken by the Metrolab. The results of the raw data taken
with the magnetometer over this exercise are shown in Figure A.6, where measurements

of the change in signal intensity were taken at intervals of 250 A ramping down from
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25

15

Magnetometer Signal (V)

0.5

0.0 1000.0 2000.0 3000.0 4000.0 5000.0 6000.0
Magnet Current (A)

Fig. A.6: The data taken when using the magnetometer to measure the magnetic field
of the storage ring magnet at intervals of 250 A.
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Fig. A.7: A map of the B field magnitude of the Muon g — 2 storage ring magnet
against the magnet current as measured by the Faraday magnetometer.

the nominal value of 5179.2 A to 0.0 amps.? It is clear from this that the change
in the field magnitude is very well represented by change in the polarisation angle as
given by Malus’ Law in equation (A.2). Calculating the relative change of the B field
magnitude with respect to the polarisation angle resulted in a map of the B field from
0.0 A to 5179.2 A as shown in Figure A.7. The values of the B field at each interval

4Note that although these measurements do not provide a resolution of the magnetic field at the level
generated by the kicker plates, the magnetometer has been shown to have the sensitivity to measure
the characteristics of the kicker pulse.
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are given in Table A.1, which are compared with the available Metrolab measurements.
The magnetometer is in fairly good agreement (without errors) with the Metrolab
measurements and, therefore, provides a reliable map of the B field magnitude of
the magnet at different current intervals. Following this, it can be assumed that the
magnetometer can be used to make measurements of the kicker field strength, with the
understanding that it will provide a reliable estimate of the field magnitude and pulse

shape.

A.3 Results
A.3.1 Kicker 1

The measurements taken of the K1 pulse shape are shown in Figure A.8 and Figure A.9.
Analysing these, it is important to note that the measurements taken by both the
kicker pickup coil and the magnetometer are almost identical, confirming that the
magnetometer measurements of the kicker pulse shape are reliable. For the principle

pulse, this results in the following characteristics:
e Magnitude = 169.4 & 14.1 Gauss.”?
e Duration ~ 327.0 ns.
e Pulse average ~ 82.5 Gauss.
e Full width, half maximum =~ 149.5 ns.

Although the principle pulse magnitude is much smaller than the required 200-280
Gauss, it was discovered some time after the measurements of K1 were made that the
TGG crystal was not radially centred between the kicker plates. This was seen in a
photo taken by the field trolley during a pass around the storage ring, as can be seen

in Figure A.10. Comparing this photo to the map of the B field magnitude associated

% Although the uncertainty on the magnitude here is much larger than required for a precision
measurement of the kicker field, understanding the magnetometer in these initial stages of use required
a conservative estimate of the corresponding error by correctly propagating the uncertainties on:

— The standard deviation of the DRSosc pulse averager.

— The uncertainty of the visual (by eye) determination DRS4 impedance correction: C' = (1.82 +
0.07).

— 2x crystal length, d = (0.022 £ 0.00) m.
— Wavelength of the magnetometer laser = (650 & 10) nm.
— Verdet constant of TGG crystal at 650 nm: V = (—120.0 £ 1.1) rad T™' m™*.

— Uncertainty of the visual (by eye) determination of the maximum signal voltage (intensity):
Io = (2.497 £ 0.010) V.

The measurements of K2 and K3 have similar large errors. This was necessary it order for the mea-
surements to be reliable but could very easily reduced by improving the magnetometer system and
calculation procedure.
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(a) Time (ns) vs. magnetometer signal (mV).
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Fig. A.8: Measurements of the field and pulse shape of kicker 1 taken from the
magnetometer and kicker 1 pickup coil.
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Fig. A.9: Measurements of the field and pulse shape of kicker 1 taken by the magne-
tometer in Gauss, where the width of the band represents the uncertainty on the field
magnitude.

with the kicker plates shown in Figure A.3, it is evident that the positioning of the
TGG crystal closer to the kicker plates could result in the magnetometer recording a
larger field magnitude than the muon beam would be subject to when centred directly
between the kicker plates. Therefore, it should be expected that the realistic B field
magnitude that the muon beam would be subject to is even smaller than 169.4 Gauss.

Having not met the required kick, it is clear this would result the muon beam not being
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Fig. A.10: A picture of the position of the TGG crystal for the measurements made
of K1 as seen by the field trolley in the radial direction of the beam.

fully displaced to the trajectory of the magic radius and would drastically impact the
muon capture efficiency.

Another point of concern here is the behaviour of the tail of the pulse after ~ 350ns,
where the shape is erratic and oscillates between a negative and positive value for the
kicker field magnitude. Assuming a nominal B field magnitude for the kick, inputting
this unwanted secondary feature of the pulse shape into muon injection simulations
has been shown to have a large detrimental effect on the muon capture efficiency of
the experiment, reducing the number of stored muons by ~ 35% [260]. It is therefore
imperative that the source of this behaviour be understood and, if possible, eradicated
in order to maximise the muon capture efficiency.

In order to determine whether certain environmental factors could have an influence
on the pulse shape of the kicker and contribute to either the low pulse magnitude or
the erratic tail behaviour, measurements of the pulse were taken under the following

conditions to ascertain if they caused a variation of the pulse shape:

e Different levels of supplied kicker voltage.
e Interference from other kickers pulsing simultaneously.
o Interference from the electrostatic quadrupoles pulsing simultaneously.

e Interference from the B field of the Muon g — 2 main storage ring magnet.

The results of all these tests are depicted in Figure A.11. In all cases it is evident that
the pulse shape measured in Figure A.8 and, in particular, its secondary tail behaviour
is not significantly influenced by any of these environmental factors. As such, it can be
assumed that there is no reason to believe that the behaviour observed is not a feature
of the kicker system itself. It should be noted, however, that plot (b) of Figure A.11
shows that the secondary pulse varies with the set voltage of the kicker, where the
lower voltage causes the secondary pulse to occur later in the tail. This implies that

the behaviour observed in the tail is dependent on the supplied voltage of the kick.
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Fig. A.11: Tests of environmental influence on the K1 pulse shape.

A.3.2 Kicker 2

For the K2 (and K3) measurements, the radial positioning of the TGG crystal that
hindered the K1 measurements was corrected and the Faraday rotator was centred
between the kicker plates as shown in Figure A.12. The measurements taken of the
K2 pulse shape are shown in Figure A.13 and Figure A.14, where it is clear that the
small magnitude and secondary tail behaviour of the pulse shape observed with K1
are features of the K2 measurements. Although the K2 pickup coil and magnetometer
signals do not match as they do for the K1 signal, it should be noted that the pickup
coil for K2 was damaged at the time of measurement and may consequently have

influenced the signal. In addition to this, the K2 measurements suffered from the
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Fig. A.12: The radially centred position of the TGG crystal for the measurements
made of K2 (and K3) as seen by the field trolley in the radial direction of the beam.

following setbacks:

1. When installing the magnetometer at the K2 position, it was discovered that a
support stand for the kicker plate blocked the central entry of the magnetometer
arm over the kicker plate. It was therefore necessary to rotate the magnetometer
clockwise by one flange bolt-hole in order to bypass the support stand. This
consequently altered the height of the TGG crystal relative to the kicker plate.

2. As the set-point voltages of the kicker GUI had not been calibrated at the time
of measurement, the measurements made of K2 were taken when the kicker was

pulsing at a voltage of ~ 62 kV.
Bearing these hindrances in mind, for the principle pulse, the results for K2 were:
e Magnitude = 134.9 + 12.5 Gauss.
e Duration ~ 353.8 ns.
e Pulse average ~ 60.4 Gauss.

e Full width, half maximum ~ 145.2 ns.

A.3.3 Kicker 3

The measurements taken of the K3 pulse shape are shown in Figure A.15, where again
the undesirable magnitude tail behaviour of the pulse seen in the measurements of K1
and K2 is also a feature of the K3 pulse shape. The measurements for K3 were taken
at the correct position and at the nominal kicker voltage of 55 kV, making these the
most reliable measurements of the true nature of the kicker field from the data of all

three kickers in this work. The characteristic properties of the K3 principle pulse are:
e Magnitude = 124.4 + 10.9 Gauss.

e Duration ~ 463.9 ns.
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Kicker 2 62kV Signal (11/15/17) Kicker 2 62kV Signal (11/15/17)
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Fig. A.13: Measurements of the field and pulse shape of K2 taken from the magne-
tometer and K2 pickup coil.
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Fig. A.14: Measurements of the field and pulse shape of K2 taken by the magne-
tometer in Gauss, where the width of the band represents the uncertainty on the field
magnitude.
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Fig. A.15: Measurements of the field and pulse shape of K3 made using the magne-
tometer.
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Kicker 1 vs. Kicker 2 vs. Kicker 3
(NOTE: need to correct K1 for radial crystal displacement)
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(b) Scaled to kicker 3 principle pulse magnitude.

Fig. A.16: A comparison of the pulse shapes of all three kickers.

e Pulse average ~ 57.9 Gauss.

e Full width, half maximum ~ 147.8 ns.

A.3.4 Comparing all three kickers

The comparison of the measured kicker pulse shapes of all three kickers is shown in
Figure A.16, where plot (a) shows the unaltered comparison of the measurements and
plot (b) compares the pulse shapes with all three measurements have been scaled to
the principle pulse magnitude of K3. It should first be noted that, once scaled, the
principle pulse shapes of all kickers are remarkably similar. However, this similarity
continues into the tail, where the erratic negative behaviour is a prominent feature of
all three kicks. Referring to the muon injection simulation using this pulse shape [260]
implies that at the nominal voltage for all three kickers, the muon capture efficiency of
the system as a whole is incurring a reduction of 35% due solely to this feature. As this
secondary behaviour seems to oscillate between a positive and negative field value, the
implication of the source of this behaviour point towards an impedance mismatch in the
transmission of the pulse. It has been suggested that an impedance mismatch at the end
of the blumlein could cause a reflection of the pulse back towards the thyratron [261].

Should a reflected voltage pass back to the thyratron, this could trigger a secondary

121



pulse and result in the pulse shape observed. This is (in part) supported by plot (b)
of Figure A.11, where it is observed that the secondary pulse occurs sooner at a higher

voltage, implying a dependence of the tail on the voltage.

A.4 Future improvements and conclusions

The Faraday magnetometer has been shown to be a useful tool in measuring the kicker
field and pulse shape. It has been used to measure the properties of all three kicker
plates. Moving forward, the measurements for all three kickers must be redone to
improve their accuracy. Particularly, a digitiser other than the DRS4 should be used
to record the signal, such that the dominant uncertainty due to this would therefore
be removed. Indeed, an effort should be made to better understand the contributing
uncertainties of all aspects of the magnetometer measurements in order to reliably
minimise them. In addition, kicker 1 must be re-measured to account for the previous
undesirable radial positioning of the TGG crystal between the kicker plates and kicker
2 must be re-measured at the nominal voltage.

Of particular importance are the magnitudes and secondary tail behaviour of the
pulse shape of all three kickers, where the measurements taken here have been shown
through simulation to have a detrimental effect of the muon capture efficiency. Being
features of all three kickers and seemingly not due to an environmental factor influencing
the shape, it is apparent that these effects are due to one or more elements of the kicker
system itself. Above all, the magnitude of the kickers must be addressed in order to
meet the requirements of the TDR and maximise the muon capture efficiency. These
effects are currently being studied in great detail to ensure that resolutions to the
issues are found and implemented in time for the high statistics data-taking period at

Fermilab that is due to start in the very near future.
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Appendix B

KLOE combination data

KLOE combination
s(GeV?) J?”rﬁ) (nb) [F(m)? 5(GeV?) a'?”rﬁ) (nb) [F(m)]?

0.105 47.27 + 8.41 1.74 + 0.31 0.535 1154.56 + 6.81 | 35.96 + 0.21
0.115 70.65 + 10.44 | 2.04 + 0.30 0.545 1207.69 £+ 6.83 | 38.20 + 0.22
0.125 80.13 £ 10.97 | 2.00 £+ 0.27 0.555 1243.32 £ 10.13 | 39.94 £ 0.33
0.135 80.42 £ 11.27 1.82 £ 0.26 0.565 1285.35 + 7.14 | 41.92 £ 0.23
0.145 87.58 + 11.70 1.86 + 0.25 0.575 1277.36 + 7.32 | 42.29 + 0.24
0.155 102.88 £ 12.35 | 2.10 £ 0.25 0.585 1279.89 £+ 7.31 | 42.98 £+ 0.25
0.165 115.16 + 13.85 | 2.29 4+ 0.28 0.595 1274.03 £ 10.32 | 43.27 £ 0.35
0.175 122.58 £+ 13.42 | 2.40 + 0.26 0.605 1228.97 £+ 12.29 | 42.18 £ 0.42
0.185 126.19 £+ 12.61 | 2.45 + 0.24 0.615 950.47 + 20.95 | 34.85 +£ 0.77
0.195 146.34 £+ 14.10 | 2.84 4+ 0.27 0.625 803.87 + 4.65 29.94 £+ 0.17
0.205 144.18 £ 13.35 | 2.80 £+ 0.26 0.635 781.82 +4.39 | 29.24 £+ 0.16
0.215 147.47 £ 12.68 | 2.88 + 0.25 0.645 731.86 + 5.74 27.61 £+ 0.22
0.225 154.64 £ 11.98 | 3.04 £ 0.24 0.655 679.26 + 3.93 | 25.90 £+ 0.15
0.235 170.47 £ 12,40 | 3.39 £ 0.25 0.665 620.73 &£ 3.46 | 23.93 £ 0.13
0.245 168.96 £+ 11.53 | 3.40 £+ 0.23 0.675 569.26 + 4.63 | 22.20 £+ 0.18
0.255 176.55 £ 10.84 | 3.60 &+ 0.22 0.685 518.39 + 5.62 | 20.45 £+ 0.22
0.265 202.38 + 11.63 | 4.18 £ 0.24 0.695 471.79 £ 2.69 18.82 £+ 0.11
0.275 203.28 + 10.70 | 4.26 + 0.22 0.705 431.19 + 2.44 17.39 + 0.10
0.285 215.28 + 10.60 | 4.58 £ 0.23 0.715 386.51 + 3.21 15.76 £+ 0.13
0.295 225.63 = 10.46 | 4.87 £ 0.23 0.725 356.81 + 2.03 14.70 £ 0.08
0.305 236.90 + 10.49 | 5.19 £ 0.23 0.735 327.36 + 1.91 13.63 £ 0.08
0.315 244.65 + 10.11 | 5.45 £ 0.23 0.745 299.08 + 1.96 12.59 + 0.08
0.325 248.45 £ 9.83 | 5.62 £ 0.22 0.755 273.28 = 1.80 11.62 + 0.08
0.335 255.64 + 9.62 | 5.88 + 0.22 0.765 249.34 + 1.45 10.71 + 0.06
0.345 280.05 + 9.46 | 6.54 + 0.22 0.775 228.91 + 1.94 9.93 + 0.08
0.355 305.24 +4.55 | 7.24 £0.11 0.785 211.31 + 1.27 9.26 + 0.06
0.365 330.21 £ 7.67 | 7.96 £ 0.18 0.795 196.17 £+ 1.36 8.68 + 0.06
0.375 349.58 + 4.60 | 8.56 + 0.11 0.805 183.29 + 1.08 8.19 + 0.05
0.385 376.70 & 4.63 | 9.37 £ 0.12 0.815 170.45 £+ 1.00 7.69 £ 0.05
0.395 400.82 £ 4.57 | 10.12 £ 0.12 0.825 157.72 + 1.09 7.19 £ 0.05
0.405 433.99 £ 6.28 | 11.13 £ 0.16 0.835 146.52 £ 0.95 6.74 + 0.04
0.415 465.70 + 4.79 | 12.13 £ 0.12 0.845 136.86 £+ 0.79 6.36 = 0.04
0.425 506.53 + 4.87 | 13.39 £ 0.13 0.855 126.97 £ 0.78 5.95 £+ 0.04
0.435 544.42 + 4.84 | 14.61 £ 0.13 0.865 119.05 £ 0.89 5.63 £ 0.04
0.445 585.65 + 5.04 | 15.95 £ 0.14 0.875 111.33 £+ 0.83 5.31 £ 0.04
0.455 640.09 + 7.95 | 17.69 £ 0.22 0.885 104.92 £+ 1.81 5.05 £ 0.09
0.465 691.86 = 7.66 | 19.41 £ 0.21 0.895 98.60 % 0.59 4.79 +£ 0.03
0.475 740.82 + 8.20 | 21.09 £ 0.23 0.905 93.05 £ 0.56 4.56 + 0.03
0.485 822.23 + 5.82 | 23.75 £ 0.17 0.915 87.66 + 0.74 4.33 £ 0.04
0.495 895.61 £ 17.85 | 26.26 = 0.52 0.925 82.76 4+ 0.49 4.13 + 0.02
0.505 953.15 + 13.08 | 28.36 + 0.39 0.935 78.84 £ 0.65 3.96 + 0.03
0.515 1032.72 £ 6.28 | 31.20 £ 0.19 0.945 74.74 £ 0.64 3.79 + 0.03
0.525 1078.01 £+ 8.23 | 33.06 £ 0.25 - - -

Table B.1: The combined KLOE measurement of the 77~ ~() bare cross section
and pion form factor in 0.01 GeV? intervals from 0.10 < s < 0.95 GeV?2. Here, s denotes
the bin centre. For both U?mr(ﬁ/) and |F(m)|?, the error shown is the total (statistical

and systematic) uncertainty.
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Appendix C

Determination of «a(M %)

The value of the effective QED coupling at the Z boson mass, a(M %), is the least
precisely known of the three fundamental EW parameters of the SM (the Fermi constant
Gp, Mz and a(M%)) and hinders the accuracy of EW precision fits. The uncertainty of
a(M2) is dominated by the five-flavour hadronic contribution, Aa}(g)d(M%), which (as
with the hadronic contributions to a“) cannot be determined reliably using pQCD in the
low energy regime and depends on experimentally measured hadronic cross section data.
Following from the discussion of the VP corrections in Section 2.1.1, the five-flavour
hadronic contribution to the QED coupling at the Z boson mass can be evaluated using
the dispersion relation
2 00

AaﬁZG(M%) = _%P /st; dss(sR—(i\)J%)' (C.1)
The integral must be evaluated for the given energy range including the principal value
s = MZ, where the integrand in equation (C.1) is not well defined. The data input for

Ead’ LOVP and aﬁad’ NLOVP " ovcept for the

R(s) is identical to that used to determine a
contribution from pQCD. The physical rapid variations that are part of the hadronic
spectrum in the regions of flavour thresholds are not present in the pQCD determination
of R(s) as calculated by rhad [238]. For Aal(lz)d(M%), to ensure that the contributions
from the top quark threshold are not neglected, rhad is used to estimate R(5)(5) above
11.1985 GeV using only five active quark flavours. The top quark contributions are
evaluated separately [62].

Due to the form of the integrand in equation (C.1), the integration procedure re-
quires greater care than the trapezoidal rule integral utilised for a}ﬁad’ LOVP " The be-
haviour of the kernel function —1/(s(s — M%)) is shown in Figure C.1, where the
nature of the principal value itself clearly indicates that the linear trapezoidal rule
integral would provide a poor representation of the integrand and, consequently, an
unreliable estimate of Aa}(lz)d(M 2). Therefore, defining an interval € to be some safe
distance away from the principal value s = M%, the integral over R(s) is determined

individually over four energy regions:

124



~1/(s(s-M,?)

—_
o

0.001 |

0.0005

—0.0005

1
-

o
N
[\)
N W A O O ~N 00 ©
(s)

-0.001 ' :
8280 8300 8320 8340 8360

s [GeVZ]

Fig. C.1: The behaviour of the function —1/(s(s — M2%)) at the principal value s =

(5)

M2, which is present in the integrand of the dispersion relation for Aoy (M 2). The
behaviour of R(s) in the same region is also plotted for reference. The value s = M2
is indicated by the dashed line.

e m2 < s < (MZ—¢): this region is evaluated using the trapezoidal rule integration

described in Section 2.5.

(M2 —¢) < s < (M2 + ¢€): to determine the principal value region, an itera-
tive Gauss-Legendre integral is used. In this approach, the Lagrange polynomial
interpolation provides a better and more accurate representation of the rapidly
changing function than the linear approximation. The integration is performed it-
eratively where, at each stage, corresponding intervals either side of the principal
value that are successively smaller and closer to the principal value are evalu-
ated and summed. This is repeated until the integral converges to a well-defined

solution.

(MZ +¢€) < s < (1000.1985 GeV)?: this region is evaluated using the trapezoidal

rule integration described in Section 2.5.

(1000.1985 GeV)? < s < oo: the contribution to the dispersion integral above
the pQCD cut-off and up to s = oo is not negligible as it is for a,}ftad’LOVP.
However, it can be estimated using the knowledge that, in this region, R(s) is
approximately constant. If from pQCD, spax = (1000.1985 GeV)?2, then in the
range Smax < s < 00, the dispersion relation in equation (C.1) is then given by

aM% 1

5 (o]
Aal(la)d(M%)[Smax S S S OO] ~ — 3 R(Smax) /S'max dSS(T]\@) . (02)
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Evaluating the integral by making the substitution v = 1/s results in
@
Aa®) (M2)[smax < 5 < 00] ~ 5= Rlsma) In (| (M /) = 11) (C.3)

which can be safely evaluated.

As all contributions to Aa}(lz)d(M 2) above the principal value are negative due to the

form of the kernel function displayed in Figure C.1, the correlation between data above
and below s = M2 results in a reduction in the total uncertainty. In the case of R(s)
determined in this work, this is true for the correlated uncertainties from pQCD above
11.1985 GeV. This is fully accounted for in the determination of Aaﬁz)d(M 2).

Table C.1 lists all contributions from individual channels contributing to Aal(lz)d(M 2),
with the corresponding total. From the sum of these contributions, the estimate for
Aa}(i)d(M%) is

Al (M) = (276.11 % 026410 = 0.684ys & 0.14y;, =+ 0.83,) x 1074

= (276.11 4 1.1140¢) x 10774, (C.4)

The errors from the individual channels and sources of uncertainty are added in quadra-
ture to determine the total error. The fractional contributions to the total mean value
and uncertainty of Aalgi)d(M 2) from various energy intervals is shown in Figure C.2.
Notably, in comparison with Figure 4.24, the pie chart depicting the fractional con-
tributions to the (error)? of Aaflz)d(M%) reveals how the uncertainty on this quantity
is dominated by the contributions from the radiative correction uncertainties. Mostly,
this large error contribution comes from the uncertainty due to possible FSR applied to
the inclusive data above 1.937 GeV. This, in particular, highlights the differences in the
kernel functions of the respective dispersion integrals for a}ﬁad’LO VP and Aoz}(i)d(Mg),
where contributions from higher energies have a larger influence on Aa}(i)d(M%) than

had, LO VP
on CLN

. If, instead of a data driven analysis, the region above 1.937 GeV was
estimated using pQCD, it would effectively eliminate the impacting radiative correction
uncertainties in this region.

Combining equation (C.4) with the leptonic contribution Aaye,(M2) = (314.979 +
0.002)x10~* [59,60] and the contribution due to the top quark Acep(M2) = (—0.71804
0.0054) x 10~* [61,62], the total value of the QED coupling at the Z boson mass is

found in this work to be
o™ (MF) = (1 - Ay (M) — Aaf?y (MF) — Aaop(MF) o™
= 128.946 % 0.015. (C.5)
A comparison of these results with other determinations of Aa}(l‘?d (M%) and o= *(M32)
is given in Table C.2. The smaller error of the DHMZ17 analysis [45] is a further
indication that the choice to use either the available inclusive data or pQCD above ~ 2

GeV can have a large impact. In [45], the choice to use pQCD in this region reduces

the total uncertainty compared to the estimate found in this analysis.
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Channel

‘ Energy range (GeV) ‘

Ao (M3) x 10*

Chiral perturbation theory (ChPT) threshold contributions

70y my < /5 < 0.600 0.00 £ 0.00
atm 2m, < /s < 0.305 0.01 £ 0.00
ata— 0 3my; < /s < 0.660 0.00 % 0.00
ny my, < /s < 0.660 0.00 £ 0.00
Data based channels (v/s < 1.937 GeV)
70y 0.600 < /s < 1.350 0.36 £ 0.01
atr 0.305 < /s < 1.937 34.26 +0.12
atn— 0 0.660 < /s < 1.937 4.77 4 0.08
rto—ata~ 0.613 < /s <1.937 4.02 £+ 0.05
ata—n0r0 0.850 < /s < 1.937 5.00 £ 0.20
2r 2770 e 1.013 < /s < 1.937 0.33+0.03
3nt3m~ 1.313 < /s < 1.937 0.09 £ 0.01
(27277279 0 e 1.322 < /s < 1.937 0.51 4+ 0.06
KtK- 0.988 < /s < 1.937 3.37+0.03
KJK? 1.004 < /s <1.937 1.77 £0.03
KKnr 1.260 < /s < 1.937 0.89 4 0.04
KK2r 1.350 < /s < 1.937 0.75 4 0.03
0y 0.660 < /s < 1.760 0.09 + 0.00
nrta 1.091 < /s < 1.937 0.39 & 0.02
(71700 w 1.333 < /s < 1.937 0.21 4 0.05
n2rt2n= 1.338 < /s < 1.937 0.03 £ 0.00
nw 1.333 < /s < 1.937 0.10 £ 0.01
w(— m0y)7° 0.920 < /s < 1.937 0.19 4 0.00
ne 1.569 < /s < 1.937 0.15+0.01
¢ — unaccounted 0.988 < /s < 1.029 0.01 +0.01
nwm° 1.550 < /s < 1.937 0.14 4 0.04
n(—=npp) KK, 4 ki | 1.569 < /5 <1.937 0.00 £ 0.01
pp 1.890 < /s < 1.937 0.01 £ 0.00
na 1.912 < /s < 1.937 0.01 £ 0.00

Estimated

contributions (v/s < 1.937 GeV)

(7777310 1 1.013 < /s < 1.937 0.16 & 0.01
(747 0 1 1.313 < /s < 1.937 0.08 +0.08
KK3r 1.569 < /s < 1.937 0.02 £ 0.01
w(— npp)27 1.285 < /s < 1.937 0.03 +£0.01
w(— npp)3m 1.322 < /s < 1.937 0.06 + 0.01
w(— npp) KK 1.569 < /s < 1.937 0.00 + 0.00
nrtr 270 1.338 < /s < 1.937 0.03 4 0.02
Other contributions (y/s > 1.937 GeV)
Inclusive channel 1.937 < /s < 11.199 82.82 + 1.05
J/Y - 7.07 +£0.22
! - 2.51 £ 0.06
T(1S — 49) - 1.06 £ 0.02
pQCD 11.199 < /s < ¢ 124.79 £ 0.10
| Total \ mx < /s <0 | 276.11+111 |

(5)

Table C.1: Summary of the contributions to Aay,);(M2) calculated in this analysis.
The first column indicates the hadronic final state or individual contribution, the second
column gives the respective energy range of the contribution and the third column states

the determined value of Aal(l?d(]\/[%). The last row describes the total contribution
obtained from the sum of the individual final states, with the uncertainties added in
quadrature.
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2
Aoy (M)

11

Fig. C.2: Pie charts showing the fractional contributions to the total mean value
(left pie chart) and (error)? (right pie chart) of Aa}(lz)d(M 2) from various energy inter-
vals. The energy intervals for Aal(lz)d(M%) are defined by the boundaries m,, 0.6, 0.9,
1.43, 2.0, 4.0, 11.2 and oo GeV. The (error)? includes all experimental uncertainties
(including all available correlations) and local x2. /d.o.f. inflation. The fractional con-
tribution to the (error)? from the radiative correction uncertainties are shown in black

and indicated by ‘rad.’.

Analysis Aa}(lz)d(M%) x 10% a (M%)

DHMZ10 [51] 275.59 £1.04 128.952 £ 0.014
HLMNT11 [21] 276.26 £ 1.38 128.944 £ 0.019
FJ17 [262] 27738 £1.19 128.919 £ 0.022
DHMZ17 [45] 276.00 £0.94 128.947 £ 0.012
KNT18 [This work] 276.11 +1.11 128.946 £+ 0.015

Table C.2: Comparison of recent and previous evaluations of Aaﬁi)d(M%) determined
from e*e~ — hadrons cross section data and the corresponding results for a~1(M2).
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