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Abstract The successes of f (R) gravitational theory as
a logical extension of Einstein’s theory of general relativ-
ity (GR) encourage us to delve deep into this theory and
continue our study to attempt to derive an extension of the
Schwarzschild black hole (BH) solution. In this study, in
order to solve the output nonlinear differential equation, we
closed the form of the system by assuming the derivative
of f (R) with respect to the scalar curvature R to have the
form F(r) = d f (R(r))

dR(r) = 1 − α
r4 , where α is a dimensional

constant. Our study shows that when α → 0, we obtain
the Schwarzschild BH solution of GR assuming some con-
straints on the constant of integration, and if these constraints
are bounded, we obtain the anti-de Sitter (AdS)/de Sitter (dS)
spacetime. For the general case, i.e., when α �= 0, we obtain a
BH solution that tends asymptotically to AdS/dS spacetime.
Moreover, we derive the timelike and null particle geodesics
of the BH solution studied in this article. The equation of
motion and effective potential of test particles are calculated
to study the stability of radial orbits (trajectories). The energy
and angular momentum are calculated to study the circular
motion and stability of circular orbits. We also derive the sta-
bility condition using the geodesic deviation. Moreover, we
discuss the physics of the output BH solutions through cal-
culation of the thermodynamic quantities including entropy,
the Hawking temperature, and Gibbs free energy. Finally,
we check the validity of the first law of thermodynamics
applied to the BH of this study. Although we can derive a
Schwarzschild black hole solution in the lower order of f (R),
specifically when f (R) = R, where the gravitational mass
is generated from the source of gravity, we demonstrate that
in the higher orders of f (R), when f (R) �= R, the source
of gravity is attributed primarily to higher-order corrections,
and the source of gravity that was originally derived from the
Schwarzschild black hole has ceased to be dominant.

a e-mail: nashed@bue.edu.eg (corresponding author)

1 Introduction

An elegant and straightforward scientific theory, the Einstein
theory of general relativity (GR) is currently the most effec-
tive theory of gravity for explaining a wide range of observa-
tions, including the perihelion precession of mercury, light
bending, and gravitational redshift of radiation from dis-
tant stars [1–3]. Recently, the Event Horizon Telescope’s
astounding success has been furthered by the discovery of
the black hole (BH) shadow in the Messier 87 (M87) image
[4–6]. However, it is necessary to put GR through additional
tests, as it is tainted with unresolved problems like singular-
ities [7–9] and fails to adequately explain the nature of dark
energy and dark matter [10–14]. In addition, the quantum
nature of gravity is still unclear and elusive [15–17]. In light
of all of this, the search for a more comprehensive theory
of gravity becomes more compelling and eventually leads to
GR in the low-energy limit. Numerous alternative models of
gravity have been proposed to address the shortcomings in
GR. A viable alternative gravity theory must not produce a
fifth force in local physics, must be free of ghost modes and
consistent with solar system-based tests, and must satisfacto-
rily account for observations that GR theory does not address.
The three categories of alternative gravity models that meet
these criteria are as follows: (i) modified gravity models, such
as f (R) gravity, where the gravity action is supplemented
with higher curvature terms [18–21], or Lanczos–Lovelock
models [22–26]; (ii) extra-dimensional models, which due
to the bulk Weyl stresses and higher-order corrections to the
stress tensor may alter the real four-dimensional gravitational
field equations [27–33]; and (iii) gravitational scalar-tensor
theories, such as the Brans–Dicke theory and the more gen-
eral Horndeski models [34–37].

Among the various modified gravity model, physics
researchers have long been interested in f (R) theories
[18,38–41], since these models use the simplest modifica-

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-12349-2&domain=pdf
http://orcid.org/0000-0001-5544-1119
mailto:nashed@bue.edu.eg


    5 Page 2 of 20 Eur. Phys. J. C             (2024) 84:5 

tion of the Einstein–Hilbert action while still demonstrat-
ing the ability to address a wide range of cosmological and
astrophysical observations. The late time acceleration is one
of these [41–43], along with the universe’s initial power-
law inflation [41,44], the rotation curves of spiral galaxies
[45,46], the four cosmological phases [19,47], and the detec-
tion of the gravitational wave [48–50]. Although these mod-
els frequently suffer from ghost modes, some f (R) models,
such as f (R) theory on a constant curvature hypersurface,
can be demonstrated to be ghost-free [51–54]. Furthermore,
they can outperform the solar system tests, which only place
restrictions on f ′′(R) and consequently the model parame-
ters [55–57].

Extra dimensions were proposed mainly as a way to com-
bine gravity and electromagnetism into a single theoretical
framework [58–60]. This later provided the foundation for
string theory and M-theory, which aim to unify all forces
of nature under one overarching theory [61–63]. The huge
differences between the electroweak scale and the Planck
scale led to many string-inspired brane world models [64–
68]. Most of these models assume that the observable uni-
verse is restricted to a 3-brane, where the standard model
particles and forces exist, while gravity can move into the
extra dimensions [64–70]. These models have interesting and
observable consequences [71–76], such as the production of
mini-BHs that can be detected at colliders [77,78]. On galac-
tic scales, they offer an alternative to dark matter [45,79–82],
while in cosmology they provide implications for inflation
and dark energy [31,83–95]. Since we do not fully under-
stand quantum gravity, deviations from Einstein’s theory of
gravity could emerge at high energies through extra dimen-
sions. The curvature of spacetime in the extra dimensions is
expected to be near the Planck scale, so higher-order cor-
rections to Einstein’s equations should become important at
high energies.

While BH solutions in GR are also valid in many alterna-
tive gravity theories, including a broad class of f (R) gravity
models [96], BH solutions that differ from those in GR can be
used to distinguish between different modified gravity the-
ories. They can also place constraints on model parameters
using gravitational waves or BH shadows. As a result, finding
exact BH solutions in f (R) gravity theories is important but
difficult due to the complexity of the equations of motion,
which contain higher-order terms.

Despite the difficulties, many precise and numerical solu-
tions have been obtained using different methods, includ-
ing the Lagrange multiplier [97] and the generator method
[98]. First, the simplest case is a special class of f (R) grav-
ity with constant curvature. The solutions of this class, such
as Schwarzschild-like [96,98–101], Reissner Nordström-like
[102,103], and Kerr-Newman-like solutions [104], differ
from GR solutions only by a constant coefficient f ′(R0)

that can be absorbed into Newton’s constant. Solutions

with dynamic curvatures [96,97,105–113], however, have
real differences from GR solutions. Static spherically sym-
metric solutions with perfect fluid [114], Yang–Mills field
[115], nonlinear Yang–Mills field [102,116], Maxwell field,
and nonlinear electromagnetic field [117–120] have also
been obtained. Using Noether symmetries, axially symmet-
ric solutions can be derived from exact spherically sym-
metric solutions [121]. Interestingly, there is a correspon-
dence between solutions in Einstein-conformally invariant
Maxwell theory and solutions in f (R) gravity without mat-
ter in arbitrary dimensions [122,123]. Furthermore, spheri-
cally symmetric vacuum solutions in f (R) gravity in higher
dimensions have been studied. In summary, while exact solu-
tions in f (R) gravity can be quite complex, methods have
been developed to find many precise and numerical solutions
that differ meaningfully from GR solutions in important ways
[98,124].

The remainder of the paper is organized as follows: In
Sect. 2, we present the building block of the f (R) grav-
itational theory and obtain its field equations. In Sect. 3,
we apply the field equations of f (R) gravity to a space-
time having spherically symmetric and unequal metric poten-
tials. We present the nonlinear differential equations which
are composed of four nonlinear differential equations hav-
ing three unknown functions: one is the derivative f ′(R) of
f (R), and the other two are related to the metric potentials.
We study special cases that yield a consistent BH solution
derived in previous studies. Then, we study the general case
and derive a new BH solution assuming that the derivative
f ′(R) = 1 − α

r4 . In Sect. 4, we study the physical properties
of this new BH solution by giving the form of the metric
potentials in asymptotic form and show that it is different
from the GR metric potential of the Schwarzschild BH. This
difference is due to the contribution of the nonlinear curvature
scalar terms. We also study the scalars of the BH solution and
show that its peculiarity is stronger than that of GR because
of the contribution of the higher-order curvature. In Sect. 5,
we study the geodesic of the extension of the Schwarzschild
BH. In Sect. 6, we derive the trajectories of the test parti-
cles near the extension of the Schwarzschild BH. In Sect. 7,
we study the radial motion and derive the conserved quan-
tities momentum, h2, and energy, E2, of the extension of
the Schwarzschild BH. In Sect. 7.3, we present the stability
constraints of this BH solution by using geodesic deviation
and investigate the regions of stability graphically. In Sect. 8,
we evaluate the basic thermodynamic expressions, namely
the Hawking temperature, entropy, quasi-local energy, heat
capacity, and Gibbs free energy, related to our new BH solu-
tion and show that it is physically acceptable. In Sect. 8.2,
we explain that the new BH solution fulfills the first law of
thermodynamics. In the final section, we discuss our derived
results.
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2 f (R) gravity theory

The f (R) gravitational theory is different from GR when
f (R) �= R, and when f (R) = R we recover GR. In the four-
dimensional case, the action of f (R) gravity theory yields
the form [18,41,125–131],

S := 1

2κ

∫
d4x

√−g f (R), (1)

where κ is the Newtonian gravitational constant and g is the
determinant of the metric.

Using the variation principle of the action (1), we obtain
the equations of motion of the f (R) gravitational theory in
the form [132]

Rμν fR − 1

2
gμν f (R) + [

gμν� − ∇μ∇ν

]
fR = 0, (2)

where the symbol � refers to the d’Alembertian operator,
and fR is the derivative of the arbitrary function with respect
to the Ricci scalar, i.e. fR = d f

dR . The trace of equations (2)
yields the form

3� fR + R fR − 2 f (R) = 0. (3)

From Eq. (3) we get

f (R) = 1

2
[3� fR + R fR]. (4)

The use of Eq. (3) in Eq (2) gives the field equations of f (R)

as [133]

Rμν fR − 1

4
gμνR fR + 1

4
gμν� fR − ∇μ∇ν fR = 0. (5)

The field equations (5) reduce the order of derivatives from
fourth order, which characterized the field equations (2), to
third order. Thus, it is important to examine the field equa-
tions (5) to a spherically symmetric spacetime whose line
element has two different unknown functions. This task will
be discussed in the next section.

3 Construction of spherically symmetric BH solutions

Let us assume that the spherically symmetric line element
has the form

ds2 = −A(r)dt2 + dr2

A1(r)
+ d� where d�

= r2
(

dθ2 + sin2 θdφ2
)

, (6)

and A(r) and A1(r) are two unknowns of r . The Ricci scalar
of the spacetime (6) has the form

R(r) = r2A1A′2 − r2AA′A′
1 − 2r2AA1A′′

1 − 4r A
[
A1A′ − AA′

1

] + 4A2(1 − A1)

2r2A2 , (7)

with A ≡ A(r), A1 ≡ A1(r), A′ = dA
dr , A′′ = d2A

dr2 , and

A′
1 = dA1

dr . Using Eqs. (3) and (5) with Eq. (6) and by using
Eq. (7), we obtain the nonvanishing components of the field
equations (5), i.e., the (t, t), (r, r), and (θ, θ) (or (φ, φ)), as

0 = 1

8A2r2

[
FA′2A1r

2 − FA′A′
1Ar

2 − 2 FA1A
′′Ar2

−4 Fr A1A
′A + 4 Fr A′

1 (A)2 − 4 FA2 + 4 FA2A1

−3 Ar2F ′A1A
′ + 2 A2r2F ′′A1 + A2r2F ′A′

1 + 4 A2r F ′A1

]
,

(8)

0 = 1

8A2r2

[
FA′2A1r

2 − 2 FA1A
′′Ar2 − FA′A′

1Ar
2

−4 Fr A2A′
1 + 4 Fr A1A

′A − 4 FA2 + 4 FA2A1 + Ar2F ′A1A
′

−6A2r2F ′′A1 − 3 A2r2F ′A′
1 + 4A2r F ′A1

]
, (9)

0 = − 1

8A2r2

[
−4 FA2 + 4 FA2A1 − FA′A′

1Ar
2

−2 FA1A
′′Ar2 + FA′2A1r

2 − Ar2F ′A1A
′

−2 A2r2F ′′A1−A2r2F ′A′
1+4 A2r F ′A1

]
. (10)

The use of Eq. (3) gives the trace of the f (R) equation in the
form

0 = 1

2A2r2

[
3 Ar2F ′A1A

′ + 6 A2r2F ′′A1 + 3 A2r2F ′A′
1

+12 A2r F ′A1 − FA′A′
1Ar

2 − 2 FA1A
′′Ar2A′2A1r

2

−4 Fr A1A
′A − 4 Fr A′

1A
2 + 4 FA2

−4 FA2A1 − 4 f A2r2
]
, (11)

where F ≡ F(r) = d f (R(r))
dR(r) , F ′ = dF(r)

dr , F ′′ = d2F(r)
dr2 ,

F ′′′ = d3F(r)
dr3 , and f is an arbitrary function of the radial

coordinate r . Now let us analyze the system of differential
equations (8), (9), and (10) in detail.

Using Eqs. (8) and (9), i.e., (8) minus (9), we obtain
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0 = 2 FA1A
′ − 2 FA′

1A + FA1A
′r

−2 F ′′AA1r − F ′A′
1Ar. (12)

Additionally, Eqs. (8) and (10), i.e., (8) plus (10), yield

0 = 2 FA1A
′ − 2 FA′

1A + F ′A1A
′r

−2 F ′′AA1r − F ′AA′
1r. (13)

An in-depth examination of the above equations indicates
that Eqs. (12) and (13) agree with each other. Thus we obtain
two independent differential equations from Eqs. (8), (9),
and (10). From the above discussion, it is clear that Eq. (8)
is equivalent to Eq. (9) with a minus sign and equivalent
to minus two times Eq. (10). Therefore, Eqs. (8) and (13)
are two independent equations which contain all possible
solutions. Now, we have three unknown functions A, A1,
and F , which is the main reason we are unable to fix one
function. To obtain specific solutions and to investigate the
physical properties of the derived solutions indicating that
Eqs. (8) and (13) involve all physically reasonable and natural
solutions, we will assume the form of F in the following.

It was shown in previous studies that when A = A1, we
obtain from Eq. (12)

F ′′ = 0, which leads to F = F1 + F2r. (14)

From Eqs. (14) and (8) we obtain

= −2r2 (F1 + F2r) A
′′ − 2r2F2A

′ + 4 (F1 + 2F2r) A

− 4 (F1 + F2r) . (15)

If we suppose that F2 = 0, then Eq. (15) gives

0 = F1[r2A′′ − 2A + 2]. (16)

From Eq. (16) we obtain

A = 1 + a0

r
+ a1r

2, provided F1 �= 0, (17)

where a0 and a1 are constants of integration. Equation (17)
is the well-known Schwarzschild-AdS spacetime.

If F1 = 0, then Eq. (15) yields

0 = F2[r2A′′ + 2 − 4A + r A′]. (18)

The solution of Eq. (18) has the following form:

A = 1

2
+ ã0r

2 + ã1

r2 . (19)

Here, ã0 and ã1 are constants of integration. Equation (19) is
derived in [113,134].

In previous studies [113,134] we have assumed F =
1 + α

r2 to solve the system of differential equations (11).
In the present study, we will solve the system of differential

equations (11) assuming that1

F = 1 − α

r4 , (20)

where α is a dimensional constant. The use of Eq. (20) in the
system of equations (8), (9), and (10) gives

0 = 1

8r6A2

[
A1r

2
(
α − r4

)
A′2 − 2 A1Ar

2
(
α − r4

)
A′′

−
{
r
(
α − r4

)
A′

1 − 4 A1α
}
r AA′

+4 A2
{
A′

1αr −
(
r4 + 13 α

)
A1 + r4 − α

}]
, (21)

0 = 1

8r6A2

[
2 AA1r

2
(
α − r4

)
A′′ − A1r

2
(
α − r4

)
A′2

+r A
[
r
(
α − r4

)
A′

1 − 4 A1

(
r4 + 2α

)]
A′ + 4

{
A′

1r
5

−
(

7α − r4
)
A1 − r4 + α

}
A2

]
, (22)

0 = 1

8r6A2

[
2 AA1r

2
(
α − r4

)
A′′ − A1r

2
(
α − r4

)
A′2

+r2A
[(

α − r4
)
A′

1 + 4 A1r
3
]
A′ − 4

{
A′

1r(2α + r4)

−
(

33α + r4
)
A1 + r4 − α

}
A2

]
. (23)

We will try to solve the system of differential equations (21),
(22), and (23) assuming some specific forms of the unknowns
A and A1.

3.1 The case when A(r) = (
1 − 2M

r

)
X (r) Y (r) and

A1(r) = (
1 − 2M

r

)
Y (r)

Now we will assume the two unknowns A(r) and A1(r) in
the following form:

A(r) =
(

1 − 2M

r

)
X (r) Y (r), and A1(r)

=
(

1 − 2M

r

)
Y (r). (24)

The form of the unknown functions A and A1 given by
Eq. (24) is a very important choice in the frame of f (R)

gravitational theory because this choice is a natural exten-
sion of the Schwarzschild BH solution in f (R) gravitational
theory. Here, X (r) and Y (r) are two unknown functions
of the radial coordinate. Of course we can write the two
unknown functions A and A1 in many different forms, such
as A(r) = (

1 − 2M
r

)
X (r) and A1(r) = (

1 − 2M
r

)
Y (r) but

we chose the form given by Eq. (24) because it will repro-
duce a physical BH, as we will see below. Furthermore, if

1 The assumption given by Eq. (20) is a logical assumption, because
if we assume that F = 1 − α

r , then we will get a spacetime that is not
asymptotically flat, and the case F = 1 − α

r2 is studied in [106,109–
112,135], while F = 1− α

rn , n > 4 makes the calculation very tedious.
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X (r) = 1 and Y (r) = 1, we naturally return to Einstein GR.
Therefore, let us proceed and put the form of the unknowns
A and A1 given by Eq. (24) in Eqs. (8), (9), and (10), and
obtain

0 = 1

8r7X2

[
r2Y

(
α − r4

)
(2M − r) X ′2 − 2 r2Y X

(
α − r4

)

× (2M − r) X ′′ − 2 r2X2
(
α − r4

)
(2M − r) Y ′′

−r X
{

3r
(
α − r4

)
(2M − r) Y ′

−2Y
(

2r5 − 7Mr4 + 3Mα
)}

X ′

+4 X2
{

2r
(

3Mα − Mr4 − rα
)
Y ′

+
(
r5 + 33rα − 72 Mα

)
Y + r

(
α − r4

)}]
,

0 = 1

8r7X2

[
2r2Y X

(
r4 − α

)
(2M − r) X ′′

+2 r2X2
(
r4−α

)
(2M−r) Y ′′−r2Y

(
r4−α

)
(2M−r) X ′2

−r X
{

3r
(
α − r4

)
(2M − r) Y ′

−2Y
(

2r5 − Mr4 − 11Mα + 4rα
)}

X ′

+4 X2
{

2r
(

3Mα − Mr4 − rα
)
Y ′

+
(
r5 − 7rα + 8 Mα

)
Y + r

(
α − r4

)}]
,

0 = 1

8r7X2

[
2r2Y X

(
α − r4

)
(2M − r) X ′′

+2 r2X2
(
α−r4

)
(2M−r) Y ′′−r2Y

(
α−r4

)
(2M−r) X ′2

+r X
{

3r
(
α−r4

)
(2M−r) Y ′+2Y

(
2rα+3Mr4−7Mα

)}
X ′

−4 X2
{

2r
(

3Mα − Mr4 − rα
)
Y ′

+
(
r5 − 13rα − 32 Mα

)
Y + r

(
α − r4

)}]
. (25)

The analytical solution of the above system, given by Eq.
(25), takes the following form:

X (r) = c1

(
1 + 5α

r4 + 10α2

r8 + 10α3

r12 + 5α4

r16 + α5

r20

)
,

Y (r) = − r2c2

F3
5a(r)

+ r2c3

F3
5a(r)

∫ √
F3

5

r4F
dr + r2

F3
5a(r)

×
[∫

F
√
F3

5

(∫ √
F3

5

r4F
dr

)
dr+

(∫
F

√
F3

5dr

)

×
(∫ √

F3
5

r4F
dr

)]
, (26)

where F3 = 1 + α
r4 ≡ F + 2α

r4 , and a(r) = (
1 − 2M

r

)
.

Equation (26) shows that when the dimensional constant α

is vanishing, then F = F3 = 1, and in that case

X (r) = c1, and Y (r) = −3r3c2 + c3 − 3r

3ra(r)
. (27)

For X (r) and Y (r) to have asymptotic flat spacetime, we
must put c1 = 1 and c2 = 0 and c3 = −6M .

Using Eq. (26) in (11), we derive the form of f (r) as
follows:

f (r) = 2

r3F
√
F1

13

{
3r3F

√
F1

(
1 + 6α

r4 − 15α2

r8

)

×
([

2
∫

F
√
F1

5dr − c3

]

×
∫ √

F1
5

r4F
dr − 2

∫
F

√
F1

5

(∫ √
F1

5

r4F
dr

)
dr

)

+2F1
4
(

1 − 5α

r4

) ∫
F

√
F1

5dr + r
√
F1F

×
(

1 + 3r2c2 + 18αc2

r2 + 5α

r4 + 9α2

r8 − 45α2c2

r6

+5α3

r12 − 5α4

r16 − 9α5

r20 − 5α6

r24

− α7

r28

)
−

(
1 − 5α

r4

)
F1

4c3

}
. (28)

Using Eq. (28) in Eq. (7), we obtain the Ricci scalar in the
form

R= 4√
F1

13

{
3r16F2

√
F1

(
1+6α

r4

) {[
2

∫
F

√
F1

5dr−c3

]

×
∫ √

F1
5

r4F
dr − 2

∫
F

√
F1

5

(∫ √
F1

5

r4F
dr

)
dr

}

−2r7F1
4
(

1 − 2α

r4

)[∫
F

√
F1

5dr + r10
√
F1F

2

×
(
α6 + 6r4α5 + 15r8α4 + 20r12α3 + 15r16α2

+18r22αc2 + 6r20α + r24 + 3r26c2

)]

−r7
(

1 − 2α

r4

)
F1

4c3

}
, (29)

When α = 0, we obtain

R = 12r10c2, (30)

and when c2 = 0, we obtain a vanishing scalar Ricci which
corresponds to the Schwarzschild BH.

Now we rewrite f (r) and R(r) at large r , i.e., as r → ∞,
and small r, i.e., r → 0, and obtain

f (r → ∞) ≈ 6c2 − 36α

r6 + 16αc3

r7 − 180α2c2

r8 + 1152α2

r10 ,
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f (r → 0) ≈ − 12α

11r6 + 1024

429r2 − 1280r2

1001α
− 6016r6

9009α2 ,

R(r → ∞) ≈ 12c2−36α

r6 +16αc3

r7 −180α2c2

r8 +1044α2

5r10 ,

R(r → 0) ≈ 36α2

11
− 3188αr4

429
+ 46624r8

9009α
. (31)

From Eq. (31) we obtain

r(R) ≈ 1

380

√
570

√
20449R2α2 + 237120α − 81510Rα,

f (R) ≈ C̃1 + C̃2R + C̃3R
2, (32)

where C̃1, C̃2, and C̃3 are constants structured by the con-
stants c1, c2, and c3. Equation (32) shows that f (R) has
ultraviolet terms.

In the next section, we will analyze the physical properties
of the solution given by Eq. (24) using Eq. (26).

4 Intrinsic physical properties of the BH solutions given
by Eq. (24)

Now we will extract the intrinsic physics of the BH solution
given by Eq. (24) using Eq. (26). The asymptotic forms of
the metric potentials given by Eq. (24) after using Eq. (26)
take the following forms:

A(r) ≈ −r2c1c2 + c1 − c1c3

3r
+ αc1

r4 − αc1c3

2r5

+ 26α2c1

r8 − 43α2c1c3

r9 ,

A1(r) ≈ −r2c2+1− c3

3r
+5αc2

r2 −4α

r4 +7αc3

r5
−15α2c2

r6

+ 376α2

35r8 − 15α2c2

r6 − 263α2c3

88r9 . (33)

Using Eq. (33) in Eq. (6), we rewrite the line element in the
form

ds2 ≈ −
{
−r2� + 1 − 2M

r
+ α

r4 − 3Mα

r5
+ 26α2

r8 − 258Mα2

r9

}
dt2

+ dr2

1 − r2� − 2M
r + 5α�

r2 − 4α
r4 + 42αM

r5 − 15α2�
r6 + 376α2

35r8 − 789α2M
44r9

+ d�2, (34)

where we have put c1 = 1, c2 = �, and c3 = 6M.
Equation (34) shows that the line element expresses the

asymptotic (A)dS spacetime when � > 0, and the dS space-
time when � < 0, and is not identical to the Schwarzschild
spacetime due to the contribution of the extra terms of the
higher-order curvature of f (R) gravity which come mainly

from the dimensional constant α. Equation (34) ensures what
we have stated in the introduction, that is, in f (R) grav-
ity, one can derive a spacetime that is different from the
Schwarzschild one, and when F2 = 0, we can recover the
Schwarzschild (A)dS/dS metric [136] as usual. In conclu-
sion, at a higher-order curvature, we can obtain a neutral
spacetime that is unlike the Schwarzschild solution and coin-
cides with the Schwarzschild (A)dS/dS at a lower order of
f (R) = R + constant.

Now we will calculate the invariants of the solution given
by Eq. (33) and obtain

Rμνρσ R
μνρσ = 24�2 + 48M2 − 144�

r6 − 384�αM
r7

− 120�2

r8 + · · ·

RμνR
μν = 36�2−216α�

r6 +576�αM
r7 − 780α2�2

r8

+ · · ·

R = −12� − 36α

r6 + 96αM
r7 − 180α2�

r8

+ · · · , (35)

where
{
R, RμνRμν, Rμνρσ Rμνρσ

}
are the Ricci scalar, the

Ricci tensor square, and the Kretschmann scalar, respec-
tively, and they all have a true singularity at r = 0. It
must be noted that the dimensional constant α is the source
of the differentiation of the present study from the (A)dS
Schwarzschild BH solution of GR whose invariants behave as(
Rμνρσ Rμνρσ , RμνRμν, R

) =
(

24�2 + 48 M2

r6 , 36�2, 12�
)

.

Equation (35) shows that the leading order of the scalars(
Rμνρσ Rμνρσ , RμνRμν, R

)
is

(
1
r6 , 1

r6 , 1
r6

)
, which coincides

with the form of the (A)dS Schwarzschild BH solution whose

leading term of the Kretschmann is
(

1
r6

)
. Thus, Eq. (35)

shows that the singularity of the Kretschmann coincides with
the (A)dS Schwarzschild BH solution of GR.

5 Study of the geodesics

In this section, we will derive the geodesic equation for the
BH given by Eq. (33) and also study the geodesic deviation
equation to derive its stability condition.
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5.1 Geodesics of the BH (33)

Because of the spherical symmetry of an improved
Schwarzschild BH, we can study the motion of the test parti-
cles on the equatorial plane, i.e at θ = π

2 . Therefore, we have
three geodesic equations:

d2t

dε2 + A′(r)
A(r)

dt

dε

dr

dε
= 0, (36)

d2r

dε2 + 1

2
A1(r)A

′(r)
( dt

dε

)2 − A′
1(r)

2A1(r)

(dr

dε

)2

−r A1(r)
(dφ

dε

)2 = 0, (37)

d2φ

dε2 + 2

r

dφ

dε

dr

dε
= 0, (38)

where A(r) and A1(r) are given by Eq. (33).
To solve these geodesic equations we will consider two meth-
ods in the next section. One is the effective Newtonian poten-
tial method as studied in [137,138], and the other is dynam-
ical system analysis [139].

6 Effective Newtonian potential approach

The Lagrangian of a particle motion of the extended
Schwarzschild BH is given by

2L = −
{
−r2� + 1 − 2M

r
+ α

r4 − 3Mα

r5
+ 26α2

r8 − 258Mα2

r9

}

ṫ2 + ṙ2

1 − r2� − 2M
r + 5α�

r2 − 4α
r4 + 42αM

r5

+r2(θ̇2 + sin2 θφ̇2), (39)

where the overdot refers to the differentiation with respect to
the affine parameter ε. Here, the Lagrangian L is not explic-
itly dependent on the coordinates t and φ. Thus, because of
these two cyclic coordinates, we obtain two conserved quan-
tities, the energy E and the momentum h conjugate to φ.
Energy:

E = gtt
dt

dε
= A(r)

dt

dε
. (40)

Momentum:

2h = ∂L
∂φ̇

= 2r2φ̇ = constant, (41)

where h refers to the total angular momentum of the particles.
Recalling the normalization condition

gμν

dxμ

dε

dxν

dε
= −ε, (42)

where ε is a parameter whose value for timelike geodesics
is ε = 1 and for null geodesics ε = 0 [139], we have on the

equatorial plane

(dr

dε

)2 = E2
(
A1(r)

A(r)

)
− A1(r)

(h2

r2 + ε
)
. (43)

Therefore, Eqs. (40), (41), and (43) are the equations required
to describe the dynamics of particle trajectories at the equa-
torial plane of the extension of the Schwarzschild BH.

Now we will rewrite Eq. (43) as

1

2

(dr

dε

)2 = Eef f − Vef f , where Eef f = E2

2
and

Vef f ≈ A1

(h2

r2 + ε
)

− 5α

r4 + 7C1

r7 − 10C2

r8 + 7C3

r9

≈
(

1 − r2� − 2M
r

+ 5α�

r2 − 4α

r4 + 42αM
r5

)
(h2

r2 + ε
)

− 5C
r4 + 7C1

r7 − 10C2

r8 + 7C3

r9 , (44)

where C = αEef f , C1 = αMEef f , C2 = α2Eef f , and
C3 = αMEef f /�. Therefore, Eq. (44) describes the equa-
tion of motion of a particle with a unit mass and an effective
energy Eef f moving in a one-dimensional effective potential
Vef f (r). Therefore, E describes the conserved energy of the
particle per unit mass, Vef f (r) is the effective potential for
the radial coordinate r , and Eef f is the effective energy. The
physically acceptable regions are given by the values of those
r for which Eef f > Vef f (r). Thus, Eq. (44) represents the
energy equation for the radial coordinate r . This equation is
necessary to study the radial free fall and the stability of the
particle trajectories.

By imposing A(r), Eq. (43) takes the form

(dr

dε

)2 ≈ E2 − ε + r2�ε + 2Mε

r
− 5α�ε

r2 + 4αε

r4

− 42αMε

r5
− h2

r2 + �h2 + 2Mh2

r3 − 5α� h2

r4

+ 4αh2

r6 − 42αMh2

r7 + 5C
r4 − 7C1

r7

+ 10C2

r8 − 7C3

r9 . (45)

The geometry of the geodesics in the equatorial plane θ = π
2

can be determined by Eq. (45). To determine the shape of the
trajectories, we use Eq. (41) to express dr

dε
as

dr

dε
= dr

dφ

dφ

dε
= h

r2

dr

dφ
. (46)

Now, we introduce the transformation u = 1
r , which yields

(du

dε

)2 = u4
(dr

dε

)2
. (47)
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Using Eq. (47) in Eq. (45), we obtain

(du

dε

)2 = −7C3u
13 + 10C2u

12 + C4u
11 + 4Ch2u10

− 42CMεu9 + C5u
8 + 2Mh2u7 + C6u

6

+ 2Mεu5 + (E2 − ε + �h2)u4 + �εu2, (48)

where C4 = −(7C1 +42CMh2), C5 = 5C(1−�h2 +4/5ε),
and C6 = −5C�ε−h2. Now, using Eqs. (46), (47), and (48),

we obtain the expression
(

du
dφ

)2
as follows:

( du

dφ

)2 = −7C3u9

h2 + 10C2u8

h2 + C4u7

h2 + 4C5u10

h2

−42CMεu5

h2 +C6u4

h2 +2Mu3+C6u2

h2 +2Mεu

h2

+ (E2 − ε + �h2)

h2 + �ε

h2u2 = S(u). (49)

Equation (49) describes the trajectories of the test particles
near the extension of the Schwarzschild BH. From the phys-
ical viewpoint, the radial motion and the circular motion of
the particles are two critical topics for studying the parti-
cle trajectories. Thus, in the next section we will study the
particle trajectories for these two cases.

7 Radial motion

It is important to study the radial geodesics to investigate the
ingredient properties of the spacetime for which the angu-
lar momentum becomes zero. Also, for the radial motion,
φ = constant , in which Eq. (49) fails to provide us with the
information about the radial trajectories because most of the
terms blow up as h → 0. Additionally, to study the radial
trajectories of the particles, we can consider Eq. (43), which
becomes(dr

dε

)2 = E2
(
A1(r)

A(r)

)
− A1(r)ε. (50)

7.1 Motion of massive particles

For massive particles, ε = 1 and Eq. (50) yields
(dr

dε

)2 = E2 − 1 + r2� + 2M
r

− 5C�

r2 + 4C

r4 − 42CM
r5

+5C
r4 − 7C1

r7 + 10C2

r8 − 7C3

r9 . (51)

By differentiating Eq. (51) with respect to ε, we obtain

d2r

dε2 = −
(M
r2 + 10(C + 5C/4)

r5
+ 45C2

r9

)

+
(
r� + 15C�

2r3 + 126CM
r6 + 28C1

r8 + 35C3

r10

)
. (52)

Since the trajectories of massive particles feature timelike
geodesics, we suppose that along the path, the affine param-
eter proper time is τ rather than ε. Therefore, the motion of
massive particles can be studied by the above equation, and
the condition of attractive force per unit mass is given by

(M
r2 + 10(C + C/4)

r5
+ 45C2

r9

)

>
(
r� + 15C�

2r3

126CM
r6 + 28C1

r8 + 35C3

r10

)
. (53)

The condition given by Eq. (53) is important because it gives
the bound states of massive particles. The particle can gain
kinetic energy during the gravitational interaction when it
passes through the gravitational field of any BH. Then we can
calculate the change in the potential energy of the particle
in that gravitational field by considering the particle’s rest
position, so that the radial coordinate r changes to R. Now,
we are interested in describing the trajectories of the particle
in the (t, r)-plane. With the help of Eqs. (40) and (51),

(dr

dt

)2 =
[
E2

(
A1(r)

A(r)

)
− A1(r)

] A2(r)

E2 . (54)

It is clear that dr
dt = 0 for all points when E2 = A(r). From Eq.

(51) we can obtain the effective potential Vef f as follows2

Vef f = 1

2

(
1 − r2� − 2M

r
+ 5C�

r2 − 4C

r4 + 42CM
r5

−5C
r4 + 7C1

r7 − 10C2

r8 + 7C3

r9

)
. (55)

In Fig. 1, we show the behavior of the effective potential,
Vef f , with respect to the radius r of the orbits for three dif-
ferent values of the cosmological constant. From Fig. 1a it is
clear that Vef f is an exponentially increasing function of the
redial coordinate r but with negative values.

Now, from Eq. (54), we can write

dr

dt
= A(r)

E

√
E2

(
A1(r)

A(r)

)
− A1(r). (56)

When � = 0, Eq. (54) will not be blow up for r → ∞.
Hence, Eq. (56) will only be a function of the total energy E ,
and therefore if we can observe the behavior of the particle at
infinite distance from the source, then it will behave like a free
particle. However, dr

dt and E will be finite for a measurable
distance from the source.

2 In the context of this research, we will utilize the natural units for
the physical system of measurement.:
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Fig. 1 Plots: (a) the potential given by Eq. (55), (b) the momentum given by (61), and (c) the energy given by Eq. (62). All these figures are
depicted against the coordinate u of the BH (33)

7.2 Motion of photons

For photon motion where ε = 0, Eq. (50) yields

(dr

dε

)2 = E2
(
A1(r)

A(r)

)
, (57)

where E is defined in Eq. (40). Also, defining dr
dt = dr

dε
dε
dt , we

obtain

dr

dt
= ±E

√
1 + 5α

r4 + 10α2

r8 + 10α3

r12 + 5α4

r16 + α5

r20 . (58)
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The solution of Eq. (58) is complicated, and thus it is difficult
to prescribe the trajectories of the photons using this method.
Circular motion:
It is clear from Eq. (49) that at equilibrium position of circular
orbits, u = constant , so S(u) = 0 and S′(u) = 0. From
Eq. (49) we have

S(u) = −7C3u9

h2 + 10C2u8

h2 + C4u7

h2 + 4C5u10

h2

− 42CMεu5

h2 + C6u4

h2 + 2Mu3 + C6u2

h2 + 2Mεu

h2

+ �ε

h2u2 + (E2 − ε + �h2)

h2 , (59)

and

S′(u) = −63C3u8

h2 + 80C2u7

h2 + 7C4u6

h2 + 40C5u9

h2

− 210CMεu4

h2 + 4C6u3

h2 + 6Mu2 + 2C6u

h2

+ 2Mε

h2 − 2�ε

h2u3 . (60)

Solving Eqs. (59) and (60), we obtain an expression of angu-
lar momentum (h) and energy (E) of the particle obeying
circular motion, respectively, as follows:

h2 = 63 C3 r − 80 C2 r2 − 7 C4 r3 − 40 C5 + 210 CMr5 − 4 C6 r6 − 2 C6 r8 − 2Mr9 + 2 � r12

6r7M , (61)

and

E2=− 1

6Mr10

{
− 6 Mr10 + 8 M2r9+2 �2r15 + 84 C3 Mr

+ 63 � C3 r
4 − 100 C2 Mr2 − 80 � C2 r

5 − 8 C4 Mr3

− 7 � C4 r
6 − 56 C5 M − 40 � C5 r

3 + 168 CM2r5

− 2 C6 Mr6 − 4 � C6 r
9 + 2 C6 Mr8 − 2 � C6 r

11

+ 8 M� r12 + 210 CM� r8
}
. (62)

The behavior of Eqs. (61) and (62) are shown in Fig. 1b, c.

7.3 Stability of the BH (33) using geodesic deviation

The geodesic equations have the following form: [136]:

d2xα

dε2 +
{

α

βρ

}
dxβ

dε

dxρ

dε
= 0, (63)

and the geodesic deviation equations take the form [140,141]

d2εσ

dε2 + 2

{
σ

μν

}
dxμ

dε

dεν

dε
+

{
σ

μν

}
, ρ

dxμ

dε

dxν

dε
ερ = 0,

(64)

with ερ being the four-vector deviation. Using Eqs. (63) and
(64) in Eq. (6), we obtain

d2t

dε2 = 0,
1

2
A′(r)

(
dt

dε

)2

− r

(
dφ

dε

)2

= 0,
d2θ

dε2 =0,

d2φ

dε2 = 0, (65)

and the form of the geodesic deviations using the line element
(6) gives

d2ε1

dε2 + A1(r)A
′(r) dt

dε

dε0

dε
− 2r A1(r)

dφ

dε

dε3

dε

+
[

1

2

(
A′(r)A′

1(r) + A1(r)A
′′(r)

) (
dt

dε

)2

− (
A1(r) + r A′

1(r)
) (

dφ

dε

)2
]

ε1 = 0 ,

d2ε0

dε2 + A′
1(r)

A(r)

dt

dε

dε1

dε
= 0 ,

d2ε2

dε2 +
(

dφ

dε

)2

ε2 = 0 ,

d2ε3

dε2 + 2

r

dφ

dε

dε1

dτ
= 0 , (66)

where A(r) and A1(r) are given by Eq. (33), and the prime,
i.e. “′”, is the derivative with respect to the radial coordinate
r . From the condition of a circular orbit, we obtain

θ = π

2
,

dθ

dε
= 0,

dr

dε
= 0. (67)

Using Eq. (67) in Eq. (65), we obtain
(

dφ

dε

)2

= A′(r)
r [2A(r) − r A′(r)]

,

(
dt

dε

)2

= 2

2A(r) − r A′(r)
. (68)

We can rewrite Eq. (66) as

d2ε1

dφ2 + A(r)A′(r) dt

dφ

dε0

dφ
− 2r A1(r)

dε3

dφ

+
[

1

2

[
A′(r)2 + A(r)A′′(r)

](
dt

dφ

)2

− [
A(r) + r A′(r)

]]
ζ 1 = 0 ,
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d2ε2

dφ2 + ε2 = 0 ,
d2ε0

dφ2 + A′(r)
A(r)

dt

dφ

dε1

dφ
= 0 ,

d2ε3

dφ2 + 2

r

dε1

dφ
= 0 . (69)

From the second equation of Eq. (69), we can show that
we have a simple harmonic motion, which is the stability
condition of the plane θ = π/2. The remaining equations of
(69) assume the following solutions:

ε0 = ζ1eiσφ, ε1 = ζ2eiσφ, and ε3 = ζ3eiσφ, (70)

where ζ1, ζ2, and ζ3 are constants and σ is an unknown func-
tion. Using the values of ε1 and ε3 given by Eq. (70) in the
fourth equation of Eq. (69), we obtain

ζ2 = −ζ3σ r

2
. (71)

Then, substituting the values of ε0 and ε1 given by Eq. (70)
into the third equation of Eq. (69) and using Eq. (71), we
obtain

ζ1 = ζ3
√

2A′ r3

2A
. (72)

Substituting Eq. (70), after using Eqs. (71) and (72), into the
first equation of Eq. (69), we obtain the stability condition as

3AA1A′ − σ 2AA′ − 2r A1A′2 + r AA1A′′

AA′ > 0. (73)

We show Eq. (73) in Fig. 2 using specific values of the model.
This figure exhibits the unshaded and shaded zones where the
BH is stable and unstable, respectively.

8 Thermodynamics of the BH solution (33)

In this section, we will investigate the thermodynamic prop-
erties of the BH solution (33) without/with the cosmological
constant, i.e., �. The Hawking temperature of a BH is defined

as [142–148]

T = 1

4π
lim
gtt→0

(
g′
t t

√
gtt grr

)
. (74)

The Hawking entropy of the horizons is defined as

S = 1

4
A fR, (75)

where A is the area of the horizons. The quasi-local energy
is defined as [142–145,149,150]

E = 1

4

∫ [
2 fR r + r2 {F0 (R (r)) − R (r) fR r}

]
dr. (76)

Finally, the Gibbs free energy is defined as [150,151]

G = E − T S. (77)

8.1 Thermodynamics of the BH (33)

In this subsection, we will study the thermodynamics of the
BH (33) without/with the cosmological constant. We will
now discuss the case � = 0 for the BH solution (33) taking

into account the BH up to O
(

1
r4

)
. The BH (33) is char-

acterized by the mass of the BH M and the dimensional
parameter α. The metric potentials when � �= 0 take the
following form:

A(r) ≈ −�r2 + 1 − 2M
r

− α

r4 , A1(r) ≈ −�r2 + 1

−2M
r

+ α

r4 . (78)

The metric potentials of the BH (78) are calculated in Fig. 3a
when � = 0.

From Fig. 3a we can easily see the two horizons of the
metric potential A(r). To find the horizons of this BH, given
by Eq. (78), we put A(r) = 0 in Eq. (78) when � = 0 [147].
This gives four roots, of which two are real and the others
are imaginary. These real roots, inner and outer, are given
respectively as

r− = 1

72 6
√

γ 4
√
M222/3 3

√
3 3
√

γ + 12 3
√

α
3
√

232/3γ 2/3 + 288 α2/3

(
6M 6

√
γ

4
√
M222/3 3

√
3 3
√

γ + 12 3
√

α
3
√

232/3γ 2/3 + 288 α2/3

+35/6
(
M222/3 3

√
3 3
√

γ + 12 3
√

α
3
√

232/3γ 2/3 + 288 α2/3
)3/4

22/3 + 24/331/2
{(

M2 3
√

2 6
√

3 3
√

γ − 6 3
√

α
√

3γ 2/3

−24 α2/335/622/3
)√

M222/3 3
√

3 3
√

γ + 12 3
√

α
3
√

232/3γ 2/3 + 288 α2/3 + M322/3 3
√

3
√

γ

}1/2

3
5

12

)
,

r+ = 1

72 6
√

γ 4
√
M222/3 3

√
3 3
√

γ + 12 3
√

α
3
√

232/3γ 2/3 + 288 α2/3

(
6M 6

√
γ

4
√
M222/3 3

√
3 3
√

γ + 12 3
√

α
3
√

232/3γ 2/3 + 288 α2/3

+35/6
(
M222/3 3

√
3 3
√

γ + 12 3
√

α
3
√

232/3γ 2/3 + 288 α2/3
)3/4

22/3 − 24/331/2
{(

M2 3
√

2 6
√

3 3
√

γ − 6 3
√

α
√

3γ 2/3

−24 α2/335/622/3
)√

M222/3 3
√

3 3
√

γ + 12 3
√

α
3
√

232/3γ 2/3 + 288 α2/3 + M322/3 3
√

3
√

γ

}1/2

3
5

12

)
, (79)
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Fig. 2 Plots of Eq. (73) against the radial coordinate r for the BH (33) which indicate the region of stability and non-stability for different values
of M , α, and �
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where γ = M2 + √M2 − 768α and M2 > 768α. It
is easy to check that the degenerate horizon for the metric
potential A(r) given by Eq. (78) occurs for specific values of
(α,M, r) ≡ (2, 66, 2.9), respectively, which correspond to
the Nariai BH. The degenerate behavior is shown in Fig. 3c,
and Fig. 3c shows that the horizon r− decreases with r while
r+ increases.

The degenerate behavior is indicated in Fig. 3c, which
shows that r− < rd . As we observe from Fig. 3c, as α

increases, we enter a parameter region where no horizon
exists, and thus the central singularity is a naked singular-
ity.

Now we will discuss the case when � �= 0 where we
obtain six roots, three of which are real and the others are
imaginary. The explicit forms of these roots are very lengthy,
but their behavior is shown in Fig. 3b. Figure 3b clearly shows
the three real roots, where we have two inner and outer roots,
as usual for any BH, and the third horizon corresponding to
the cosmological constant.

From Eq. (75), the entropy of the BH (33) takes the form

S+ ≈ π r+2
(

1 − α

r+4

)
. (80)

Plots of the entropy (80) when � = 0 and � �= 0 are drawn
in Fig. 3e, f, which indicate an increasing value for S+ when
� = 0 and � �= 0.

From Eq. (74), the Hawking temperature of the BH (33)
is calculated and we obtain

T+ ≈ (3�r6 − r4 + 3α)(5α − 2r+4)

8πr+9 . (81)

Plots of the entropy (81) when � = 0 and � �= 0 are
drawn in Fig. 3g, h, which indicate a decreasing value for T+
when � = 0 and � �= 0.

From Eq. (76) we evaluate the local energy of BH (33)
and obtain

E+ ≈ 21r+9 + 7αr+5 − 21�r+11 − 126α�r+7 + 378�α2r+3 + 54α2r+ − 21α2M
42r+8 . (82)

Equation (82) shows that when � = α = 0, we obtain
E+ = r+

2 , which is the energy of a spherically symmetric
spacetime. Plots of Eq. (82) when � = 0 and � �= 0 are
drawn in Fig. 3i, j, which also indicates positive increasing
values for E+.

Finally, using Eqs. (74), (80), and (82) in (77), we evaluate
Gibbs free energy as

G+ ≈ 42r+12 + 301αr+8 + 42�r+14 − 84α2Mr+3 − 330α2r+4 − 945α�r+10 + 1827α2�r+6 + 315α3

168r+11 . (83)

The plots of these energy values are drawn in Fig. 3k, l
when � = 0 and � �= 0, which indicate a positive increasing
value for G+.

8.2 First law of thermodynamics of the BH solutions (33)

An important step for any BH solution is to check its validity
for the first law of thermodynamics. Therefore, for the BH
given by Eq. (33) the Smarr formula and the differential form
for the first law of thermodynamics in the frame of f (R)

gravity can be expressed as [150,152]

M = 2 (T S − PV ) , dE = T dS + PdV, (84)

where S is the Hawking entropy, T is the Hawking temper-
ature, P is the radial component of the stress-energy tensor
that is used as thermodynamic pressure, i.e. P = Tr r |±, and
V is the geometric volume. The pressure, in the context of
f (R) gravity, is determined as [150]

P = − 1

8π

{
F

r+2 + 1

2
( f (R) − RF)

}
+ 1

4

(
2F

r+
+ F ′

)
T .

(85)

Using Eq. (78), when � = 0, we obtain

M ≈ 1

2

(
r+ + α

3r+3

)
. (86)

By calculating the necessary components of Eq. (84), we
obtain

P+ ≈ − 3

16π r+2

(
1 + 14α

9r+4

)
, T+ ≈ r+4 − 3 α

4πr+5
,

S+ ≈ π
[
r+4 − α

]
r+2 , V = 4

3
πr+3. (87)

Using Eq. (87) in Eq. (84), we can prove that the first law of
the BH (33) is verified when � = 0 and α2 = 0.

9 Discussion and conclusions

In this study, we focus on deriving an extension of the
Schwarzschild BH solution in the framework of the f (R)

amended gravitational theory. This so-called f (R) gravi-
tational theory is a fourth-order derivative theory, and thus
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Fig. 3 Plots of thermodynamic
quantities of the BH solution
given by Eq. (33): (a) the
behavior of the metric potentials
A and A1 for � = 0 when
M = 66 and α = 0.3; (b)
typical behavior of the metric
potentials A and A1 for
� = 0.001 when M = 12 and
α = 0.1; (c) typical behavior of
the horizons for � = 0 when
M = 66 and α = 2; (d) typical
behavior of the horizons for
� = 0.1 when M = 12 and
α = 0.001; (e) typical behavior
of the entropy for � = 0 and
α = 0.3; (f) typical behavior of
the horizons for � = 0.01 and
α = 10000; (g) typical behavior
of the Hawking temperature for
� = 0 and α = 0.3; (h) typical
behavior of the Hawking
temperature for � = 0.01 and
α = 10000; (i) typical behavior
of the quasi-local energy for
� = 0 and α = 0.3; (j) typical
behavior of the quasi-local
energy for � = 0.01 and
α = 10000; (k) typical behavior
of the Gibbs free energy for
� = 0 and α = 0.3; (l) typical
behavior of the Gibbs free
energy for � = 0.01 and
α = 10000

deriving an analytical solution in the realm of this theory is
very difficult. To overcome this issue, we employed the trace
equation of f (R) theory and solved it with respect to the
arbitrary function f (R). By using this solution, we write the
field equations of f (R) theory and apply them to a spher-
ically symmetric spacetime that has unequal metric poten-
tials and is of a radial coordinate, i.e., gtt �= grr . The out-

put differential equations are solved assuming the ansatzes
as gtt = (

1 − 2M
r

)
X (r) Y (r) and grr = (

1 − 2M
r

)
Y (r),

where X (r) andY (r) are two unknown functions of the radial
coordinate. To be able to close the system, we assume the
derivative of the F(r) = d f (R(r))

dR(r) = 1 − α
r4 , where α is

a dimensional constant. It is obvious from the assumption
of F(r) that when α = 0, we obtain F(r) = 1, which is
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Fig. 3 continued

the case of GR, and in that case we obtain X (r) = 1 and
Y (r) = 1, and in turn we obtain the Schwarzschild solution,
i.e., gtt = grr = (

1 − 2M
r

)
. In the general case, i.e., when

F(r) = 1 − α
r4 , we solved the equations of motion of f (R)

theory and derived the exact form of the metric potentials,
that is, we derived the form of the two functions X (r) and
Y (r).

To delve deep into the physics of this solution, we derive
the asymptotic forms of gtt and grr . From this asymptote,
we explicitly note that the BH solution of this study is com-
pletely different from the GR BH solution and coincides only
when F = 1, i.e., α = 0. Moreover, we write the line ele-
ment of this BH and investigate whether it asymptotically
behaves as (A)dS/dS spacetime. We calculate the asymptotic
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form of f (R) and show that it contains ultraviolet terms. We
evaluate the invariants of such BH and investigate whether
there is a true singularity as r → 0. Also, we show from
these invariants that we have a strong BH compared with
the Schwarzschild BH, and the source of this strength is
the dimensional constant α. Also, we study the geodesic of
this BH and derive the potential and the conserved quantities
of energy and momentum. We reveal the behavior of these
quantities as shown in Fig. 1. Additionally, we evaluate the
geodesic deviations of this BH and obtain the condition of
stability mathematically and graphically, as shown in Fig. 2.

Further checking the physics of this BH is carried out
through the study of the thermodynamics of this BH by cal-
culating its physical quantities of entropy, Hawking temper-
ature, quasi-local energy, and Gibbs free energy, and derive
their forms mathematically and draw them graphically. Addi-
tionally, we check the first law of thermodynamics and note
that this BH verifies the first law. Finally, if we follow the
procedure for odd perturbation discussed in [134], we can
show that this BH is stable.

In summary, this research has brought to light a signif-
icant discovery: the expansion of the Schwarzschild BH is
influenced primarily by the existence of higher-order grav-
ity terms rather than because of a point mass at its center.
The Schwarzschild BH is restored when the impact of these
higher-order curvature terms diminishes.

To summarize our study, we derived a new BH solu-
tion in the frame of f (R) gravity and showed that its Ricci
scalar is not constant. This BH is new, and its originality
comes from the dimensional constant that involves α, which
comes from our assumption of the first derivative of f (R),
i.e., F(r) = d f (R(r))

dR(r) = 1 − α
r4 . We stress that the source

of the gravitational field of this BH is not the gravitational
mass of the Schwarzschild BH, but the contributions of the
higher order of f (R). This means that the gravitational field
reproduced from the higher-order f (R) gravitational theory
is dominant in the Schwarzschild BH solution for the BH
reproduced from f (R). Finally, can the procedure applied in
this study be used to derive for the first time an extension
of the Kerr solution in f (R) gravitational theory? This case
needs further study and will be considered elsewhere.
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