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Based on the gradient flow, we propose a new method to determine the bounce configuration for false 
vacuum decay. Our method is applicable to a large class of models with multiple fields. Since the bounce 
is a saddle point of an action, a naive gradient flow method which minimizes the action does not work. 
We point out that a simple modification of the flow equation can make the bounce its stable fixed point 
while the false vacuum configuration an unstable one. Consequently, the bounce configuration can be 
obtained simply by following the flow without a careful choice of an initial configuration. With numerical 
analysis, we confirm the validity of our claim, checking that the flow equation we propose indeed has 
solutions that flow into the bounce configuration.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Study of false vacua (and metastable states) has been impor-
tant in various fields, like particle physics, cosmology, nuclear 
physics, condensed matter physics, and so on. For example, in 
the field of particle physics and cosmology, the stability of the 
electroweak vacuum has been attracted much attention. In par-
ticular, taking the best-fit values of the observed top-quark and 
Higgs-boson masses, and assuming that the standard model of 
particle physics is valid up to a very high scale (like the Planck 
scale), the electroweak vacuum is metastable [1,2]. It is because 
the Higgs quartic coupling constant becomes negative at a high 
energy scale due to the renormalization group effects. Performing 
precise calculation based on relativistic quantum field theory, the 
decay rate of the electroweak vacuum per unit volume is known 
to be ∼ 10−582 Gyr−1Gpc−3 [3–5], with which the stability of our 
universe looks plausible for the present cosmic time scale. How-
ever, this conclusion may be altered with the introduction of new 
physics beyond the standard model. The studies of the stability of 
the electroweak vacuum in such new physics models remain im-
portant.

In relativistic quantum field theory, the decay of the false vac-
uum is mainly induced by the field configuration called “bounce” 
[6–8]. Bounce is a configuration obeying the classical equation of 
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motion (EOM) derived from the Euclidean action. With the bounce, 
which we denote as φ̄ , the decay rate of the false vacuum per unit 
volume is given in the following form:

γ = Ae−S[φ̄], (1)

where S[φ̄] is the bounce action while A is a prefactor. The decay 
rate is highly sensitive to the bounce action so that the profile of 
the bounce should be well understood for an accurate calculation 
of the decay rate.

In spite of the importance of determining the bounce configura-
tion with a generic potential, it is not easy in general. The difficulty 
mainly comes from the fact that the bounce is a saddle point, not 
a minimum, of the action. Consequently, the fluctuation matrix 
around the bounce has a negative eigenvalue and a small fluc-
tuation destabilizes the bounce. Although there have been many 
attempts to find methods to determine the bounce configuration 
with overcoming this difficulty [9–24], new ideas are still awaited 
for a detailed understanding of the bounce as well as for a precise 
calculation of its configuration via numerical analysis.

In this letter, we propose a new method to determine the 
bounce configuration, where we use the gradient flow method.1 It 
does not work if we naively use the action, S , to calculate the gra-
dient in the configuration space. The failure of the naive method 
is due to the negative eigenvalue mode as we have mentioned. 

1 Refs. [15,16] also discuss the possibility to use gradient flow to derive the 
bounce configuration. The idea of Refs. [15,16] is to introduce back steps during 
the flow, and is different from ours.
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We discuss that, with a simple modification of the flow equation, 
the bounce configuration can become a stable fixed point while it 
makes the false vacuum and other stable solutions of the classical 
EOM unstable.2 We also show that, with numerical analysis, the 
bounce configuration can be obtained by solving the flow equation 
we propose.

2. Formulation

We adopt the action in the following form:

S[φ] =
∫

dD x

[
1

2
∂μφA∂μφA + V (φ)

]
, (2)

where D is the dimension of the Euclidean space, φA denotes a 
real scalar field (with A being flavor index), and V is the scalar 
potential.3 Because the bounce is a spherical object [25,26], φA de-
pends only on the radial coordinate of the Euclidean space, r, and 
obeys the following classical EOM:

δS[φ]
δφA

∣∣∣∣
φ→φ̄

= −∂2
r φ̄A − D − 1

r
∂r φ̄A + ∂V

∂φA

∣∣∣∣
φ→φ̄

= 0, (3)

satisfying the following boundary conditions:

∂r φ̄A(r = 0) = 0, φ̄A(r → ∞) = v A, (4)

where v A is the field amplitude of the A-th scalar field at the false 
vacuum. In the following, we explain how we obtain the bounce 
configuration.

Before going into the details, we introduce the fluctuation op-
erator, which plays important roles in our discussion. In D-dimen-
sional Euclidean space, the fluctuation operator around the bounce 
is given by

MAB ≡ −
(

∂2
r + D − 1

r
∂r

)
δAB + ∂2 V

∂φA∂φB

∣∣∣∣
φ→φ̄

. (5)

Spherical fluctuations around the bounce can be expressed as lin-
ear combinations of the eigenfunctions of MAB . We denote eigen-
functions of MAB as χn,A (n = −1, 1, 2, · · · ), i.e.,

MABχn,B = λnχn,A, (6)

where λn is the eigenvalue. The eigenfunctions should satisfy the 
following boundary conditions:

∂rχn,A(r = 0) = 0, χn,A(r → ∞) = 0, (7)

and are normalized as

〈χn|χn′ 〉 = δnn′ , (8)

where the inner product of two sets of functions is defined as

〈 f | f ′〉 ≡
∞∫

0

drrD−1 f A(r) f ′
A(r). (9)

An important property of the bounce is that the fluctuation op-
erator around the bounce has one negative eigenvalue [7], which 

2 There is another approach to make the negative eigenvalue mode harmless by 
adding new terms, which vanish with the bounce configuration, to the action [10]. 
In this approach, the bounce becomes a minimum of the improved action. It is, 
however, not guaranteed that the obtained configuration is indeed the bounce.

3 Here and hereafter, the summation over the repeated flavor indices is implicit.
we call λ−1 < 0. We also assume that all the other eigenvalues are 
positive.

Hereafter, we discuss a method in which a function �A(r, s), 
with s being the “flow time,” evolves to the bounce configuration 
as s → ∞. The initial profile �A(r, s = 0) is required to satisfy 
the boundary conditions same as the bounce (see (4)). Then, the 
boundary conditions are kept during the flow by the flow equa-
tion introduced below. In other words, �A(r, s) − φ̄A stays in the 
configuration space spanned by the eigenfunctions of MAB , and 
hence �A(r, s) can be expressed as

�A(r, s) = φ̄A(r) +
∑

n

an(s)χn,A(r). (10)

To obtain the bounce configuration using a flow equation, we 
need to flip the sign of the negative eigenvalue around the bounce. 
The flow equation we propose is as follows4:

∂s�A(r, s) = F A(r, s) − β〈F |g〉g A(r), (11)

where β is a dimensionless constant. Here, g A is a function sat-
isfying the same boundary conditions as χn,A (see Eq. (7)), and is 
normalized as

〈g|g〉 = 1. (12)

We expand g A as

g A(r) =
∑

n

cnχn,A(r), (13)

where 
∑

n c2
n = 1. In addition,

F A ≡ −δS[�]
δ�A

= ∂2
r �A + D − 1

r
∂r�A − ∂V (�)

∂�A
. (14)

Notice that F A satisfies the same boundary conditions as χn,A as 
far as �A is in the form of Eq. (10), guaranteeing that �A is ex-
pressed as in Eq. (10) for any value of s. As we will see in the 
following, the second term in the right-hand side of Eq. (11) can 
make the bounce configuration a stable fixed point.

Importantly, for β 
= 1, any fixed point solution of Eq. (11), 
which satisfies ∂s�A = 0, is a solution of the classical EOM, F A = 0. 
This can be understood by using the following relation:

〈∂s�|g〉 = (1 − β)〈F |g〉. (15)

If ∂s�A = 0 is realized with non-vanishing F A , F A and g A should 
be proportional to each other to satisfy the flow equation. Such a 
requirement contradicts with Eq. (15) because the left-hand side 
of Eq. (15) vanishes while the right-hand side does not. It also 
implies that the flow equation of our proposal does not have any 
unwanted fixed point that does not correspond to a solution of the 
classical EOM.

Now, we show that, with properly choosing β and g A , the flow 
equation (11) has solutions that evolve to the bounce as s → ∞. 
For this purpose, we analyze the flow around the bounce configu-
ration, where an can be treated as a small quantity. Keeping terms 
linear in an , we obtain

F A � −MAB(�B − φ̄B) = −
∑

n

λnanχn,A, (16)

4 We adopted Eq. (11) as our flow equation. Another possibility may be ∂s�A =
MAB F B ; with only the terms linear in an being kept, it gives ȧn = −λ2

nan , and 
hence all the fluctuations around the solution of the classical EOM damp. We leave 
its study as a future project.
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which gives 〈F |g〉 � − 
∑

n λncnan . Thus, the flow equation gives

ȧn � −λnan + β
∑

m

cncmλmam ≡ −
∑

m


nm(β)am, (17)

where the “dot” is the derivative with respect to s.
If we consider the naive flow equation which minimizes the 

action (i.e. the case with β = 0), we obtain ȧn � −λnan . Then, the 
coefficient of the mode with the negative eigenvalue λ−1 grows 
with flow time. This is the reason why the naive gradient flow 
method does not work to find the bounce.

With a non-vanishing value of β , the above conclusion may 
change. To see this, we express 
(β) in Eq. (17) in the matrix form:


(β) =
(

I − β�c �c T
)

diag(λ−1, λ1, λ2, · · · ), (18)

where I is the unit matrix, the superscript, T , denotes the trans-
pose, and

�c = (c−1, c1, c2, · · · ) T . (19)

If the real parts of all the eigenvalues of 
 are positive, �A(r, s →
∞) = φ̄A(r) is realized. Notice that �c is an eigenvector of the ma-
trix (I − β�c �c T ) with the eigenvalue of (1 − β). In addition, all the 
other eigenvalues are 1 because (I − β�c �c T )�v⊥ = �v⊥ if �c T �v⊥ = 0. 
Thus, we have

det
(

I − β�c �c T
)

= 1 − β, (20)

and hence

det
(β) = (1 − β)
∏

n

λn. (21)

For β > 1, det
 > 0 (because 
∏

n λn < 0), which opens a possibility 
to make the real parts of all the eigenvalues of 
(β > 1) posi-
tive.

The evolution of �a ≡ (a−1, a1, a2, · · · )T is complicated in general 
because 
 is not symmetric. If we consider the condition ∂s(�a T �a) <
0, which is a sufficient condition for the bounce to be a stable fixed 
point, the discussion becomes simpler; it requires 
 + 
T to be 
positive definite. In order for 
(β > 1) + 
T (β > 1) to be positive 
definite, �c T [
(β > 1) + 
T (β > 1)]�c > 0 should hold, and hence

〈g|Mg〉 =
∑

n

λnc2
n < 0, (22)

which gives a guideline in choosing the function, g A .5 In addition, 
because the smallest eigenvalue of 
 +
T is smaller than its small-
est diagonal element, β should be in the following range:

1

c2−1

< β <
1

maxn≥1c2
n
. (23)

We can see that a choice of g A with larger |c−1| and smaller |cn≥1|
is better though their exact values are unknown until the bounce 
is obtained. We will discuss the choice of g A later.

Let us summarize the properties of the flow equation of 
Eq. (11). If �A(r, s → ∞) converges with β > 1, it is guaran-
teed that (i) �A(r, s → ∞) is a solution of the classical EOM, (ii) 
�A(r, s → ∞) satisfies the boundary conditions relevant for the 
bounce, and (iii) the fluctuation operator around �A(r, s → ∞) has 
one negative eigenvalue. The statement (iii) is due to the fact that 

5 As noted, ∂s(�a T �a) < 0 is a sufficient condition and, with numerical analysis, we 
found that the bounce may become a stable fixed point with g A which does not 
satisfy 〈g|Mg〉 < 0.
the real parts of all the eigenvalues of 
(β > 1) should be positive 
to make �A(r, s → ∞) stable against fluctuations, which implies 
that 
(β = 0) has one negative eigenvalue assuming that there is 
no degeneracy in the eigenvalues of 
(β = 1). Thus, �A(r, s → ∞)

obtained with β > 1 is expected to be the bounce configuration. 
We also emphasize that, because of (iii), all the stable fixed points 
for 
(β = 0) are destabilized. Thus, for example, the resultant con-
figuration �A(r, s → ∞) cannot be the false vacuum configuration 
when β > 1.

3. Numerical analysis

So far, we have studied the behavior of the fluctuations around 
the bounce and have seen that the bounce configuration can be-
come a fixed point of the flow equation. In the following, by using 
numerical calculations, we explicitly show that there exist solu-
tions that indeed flow to the bounce configuration.

To perform numerical calculations, the function g A should be 
fixed. We take

g A ∝ r∂r�A, (24)

which is based on the following consideration. Since we have

∞∫
0

drrD−1(r∂r φ̄A)MAB(r∂r φ̄B)

= −(D − 2)

∞∫
0

drrD−1(∂r φ̄A)(∂r φ̄A), (25)

the condition (22) is satisfied for D > 2. It implies that g A of our 
choice has a large |c−1|. In addition, it satisfies the relevant bound-
ary conditions.

To solve Eq. (11), we discretize the radius coordinate, r, and 
solve the ordinary differential equations with respect to s. To im-
pose the boundary conditions of Eq. (4), it is better to shrink 
r ∈ (0, ∞) into x ∈ (0, 1) with

x = tanh
( r

R

)
, (26)

and attach the endpoints, x = 0 and x = 1. In our analysis, R is 
taken to the size of the bounce. Then, we discretize x into N + 1
lattice points:

x0 = 0, x1 = 1

N
, x2 = 2

N
, · · · , xN = 1. (27)

The flow equation in terms of x is given by

∂σ �̂A(x,σ ) = 2σ(1 − x2)

[
F̂ A(x,σ ) − β

〈 F̂ |ĝ〉x

〈ĝ|ĝ〉x
ĝ A(x,σ )

]
,

(28)

where σ = s1/2/R ,

�̂A(x,σ ) = R
D
2 −1�A(R arctanh(x), R2σ 2), (29)

ĝ A(x,σ ) = arctanh(x)∂x�̂A(x,σ ), (30)

and

F̂ A = (1 − x2)∂2
x �̂A + D − 1 − 2x arctanh(x)

arctanh(x)
∂x�̂A

− R
D
2 +1

1 − x2

∂V

∂φA
. (31)
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Furthermore, the inner product is defined as

〈 f̂ | f̂ ′〉x ≡
1∫

0

dx(1 − x2)arctanhD−1(x) f̂ A(x) f̂ ′
A(x). (32)

Here, we adopt the second-order central differences for the deriva-
tives with respect to x.

In numerically solving the flow equation, we take the following 
initial configuration of �̂A :

�̂A(xn,0) = R
D
2 −1[w A + x2

n(v A − w A)], (33)

where w A = �A(x0, 0) is a constant; �A(x0, 0) is set to be some-
where near the true vacuum (see figures). At each step of the flow, 
�̂A(x1, σ), · · · , �̂A(xN−1, σ) are determined by Eq. (28), while the 
endpoint values are fixed by the boundary conditions:

�̂A(x0,σ ) = 4�̂A(x1,σ ) − �̂A(x2,σ )

3
, (34)

�̂A(xN ,σ ) = R
D
2 −1 v A . (35)

Notice that Eq. (34) is equivalent to ∂r�A = 0 at r = 0 (where we 
used ∂x�̂A(x0, σ) � ∂x�̂A(x1, σ) − ∂2

x �̂A(x1, σ)/N), while Eq. (35)
guarantees �A(r = ∞) = v A . After the convergence of �̂A , we cal-
culate the bounce action. With the use of the equation of motion 
for the bounce, the action is calculated as

S[φ̄] = S D−1

D
〈∂x�̂|∂x�̂〉x, (36)

where S D−1 is the surface area of the (D − 1)-dimensional sphere.
Here, we take D = 3, and use the following benchmark poten-

tials for single- and double-scalar cases:

V (single) = 1

4
φ4 − k1 + 1

3
φ3 + k1

2
φ2, (37)

V (double) =
(
φ2

x + 5φ2
y

)[
5(φx − 1)2 + (φy − 1)2

]

+ k2

(
1

4
φ4

y − 1

3
φ3

y

)
, (38)

with k1 and k2 being constants. With our choices of parameters, 
the false and true vacua of V (single) (V (double)) are φ = 0 and 
1 ((φx, φy) = (0, 0) and (1, 1)), respectively. For the single-scalar 
(double-scalar) case, we take k1 = 0.47 and 0.2 (k2 = 2 and 80), 
which correspond to the thin-walled and thick-walled bounces, re-
spectively.

We emphasize that the initial configurations, the model param-
eters, β , and the other lattice parameters are not special choices. 
We checked that the bounce can be obtained as a result of flow 
with generic choices of parameters.

The flows of �A based on our method are shown in Figs. 1 (for 
the single-scalar potential) and 2 (for the double-scalar potential) 
with the solid lines. In each figure, the solid line with the largest 
σ shows the field configuration after the convergence; we checked 
that the flow after such an epoch is negligible. For comparison, we 
also determine the bounces for the same models by using Cos-
moTransitions [18], which are shown with the dotted lines. 
(We use the default control parameters of CosmoTransitions
except for fRatioConv=0.001, which improves the accuracy in 
the multi-field calculation.) In addition, we calculate the bounce 
action S[φ̄] for each case:
Fig. 1. The flow of � for the single-scalar potential. The configuration is shown with 
the solid line for each σ . The results of CosmoTransitions are also shown with 
dotted lines. The parameters are shown on the top of each panel.

S(single)

k1=0.47[φ̄] =
{

1086.6, Our result,

1092.8, CosmoTransitions,
(39)

S(single)

k1=0.2 [φ̄] =
{

6.6360, Our result,

6.6490, CosmoTransitions,
(40)

S(double)

k2=2 [φ̄] =
{

1763.7, Our result,

1767.7, CosmoTransitions,
(41)

S(double)

k2=80 [φ̄] =
{

4.4585, Our result,

4.4661, CosmoTransitions.
(42)

As we can see from the figures and the values of S[φ̄], our results 
well agree with those of CosmoTransitions. This strongly sug-
gests the validity of our gradient flow method to determine the 
bounce configuration.

4. Summary

In this letter, we have proposed a new method to determine the 
bounce configuration. We have pointed out that the bounce config-
uration can be a stable solution of the flow equation given in Eq. 
(11). If the solution of the flow equation evolves to a fixed con-
figuration for β > 1, the resultant configuration is always a saddle 
point of the action, i.e., the bounce configuration. We have ana-
lytically shown that the negative eigenvalue mode, which desta-
bilizes the bounce configuration, can be made harmless and that 
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Fig. 2. The flow of � for the double-scalar potential. The configuration is shown 
with the solid line for each σ . The results of CosmoTransitions are also shown 
with dotted lines. The parameters are shown on the top of each panel. We also 
show the contours of constant V (double) .

the bounce configuration can become a stable solution of the flow 
equation. We have verified our claims by numerical analysis. We 
believe that our method of finding the bounce configuration is 
simple, powerful, and useful in many cases. It can be used in 
multi-scalar cases and can easily be implemented to numerical 
code. We also comment that, even though we have concentrated 
on the bounce, our method is applicable to a generic problem to 
find a saddle point in a configuration space.
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