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Abstract. Conditional Invertible Neural Networks (cINNs) provide a new technique for the
inference of free model parameters by enabling the creation of posterior distributions. With
these distributions, the mean parameter values, their uncertainties and the correlations between
the parameters can be estimated. In this contribution, we summarize the functionality of
cINNs, which are based on normalizing flows, and present the application of this new method
to a scenario from astroparticle physics. We show that it is possible to constrain properties
of the currently unknown sources of ultra-high-energy cosmic rays and compare the posterior
distributions obtained with the network to those acquired using the classic Markov Chain Monte
Carlo method.

1. Introduction
Often, measurements in physics can be described by a mathematical or simulation-based model
with free parameters. In this scenario, the aim is to reconstruct these parameters using the
measurements. In the Bayesian formulation of parameter inference, the parameters θ of a model
are constrained by posterior distributions p(θ|y) given the observation y. They can be related to
the likelihood L(y|θ) and a prior distribution p(θ) using Bayes theorem p(θ|y) ∝ L(y|θ)p(θ). The
likelihood describes the probability of the observation given specific model parameters, whereas
the prior distribution includes prior knowledge of the parameter space. The correct modeling of
the posterior distribution is crucial for Bayesian parameter estimation. Unfortunately, usually,
when the model’s likelihood is not analytically calculable, accordingly, the posterior is not
tractable. Hence, one resorts to techniques for approximation, like Markov chain Monte Carlo
(MCMC) [1]. The MCMC technique is based on efficient sampling, which is mathematically
shown to converge to the correct posterior distributions in the limit of infinite samples. A
caveat is the theoretical limit of infinite sampling steps with which the convergence is only
ensured. Alternative methods are also developed, ranging from different levels of expressiveness
of the approximate posterior. Among these are variational methods, like variational inference [2]
and normalizing flows [3, 4].
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Figure 1: Schematic representation of a (conditional) normalizing flow. The transformation
between a complex distribution (left) and a simple distribution (right) can be represented by
a normalizing flow. If the complex distribution is a conditional probability distribution, a
conditional normalizing flow can be used, using the condition as additional information. In
Bayesian parameter inference, the complex distribution corresponds to the posterior distribution
of the model parameters θ under the condition of the observables y. Note that, in general, the
observables are related to the model parameters via simulations.

2. From normalizing flows to conditional Invertible Neural Networks
The aim of this work is the exploration of a new technique for the determination of posterior
distributions, the so-called conditional Invertible Neural Network (cINN), which is based on the
concept of normalizing flows.

2.1. Normalizing flows
In recent years, normalizing flows arose as a concept usable for the approximation and modeling
of complex probability distributions given samples from that distribution [3]. With this, e.g.,
the generation of additional samples from a complex distribution is enabled. The basis is the
transformation of a simple probability distribution with so-called latent variables z to the more
complex distribution of the parameters of interest θ; see the upper part of Fig. 1 for a schematic
representation. The transformation is employed by a composition of differentiable and invertible
mappings, and the simple probability distribution for the latent space can be chosen freely,
whereby often a standard normal distribution is adopted. Advantages of normalizing flows
are their high expressive power as well as fast and efficient computation due to a tractable
Jacobian [4].

2.2. Conditional normalizing flows
Additionally, it is possible to reconstruct conditional probability distributions with normalizing
flows by extending the concept to a conditional setup. This procedure allows the approximation
of posterior distributions p(θ|y) of the parameters of interest θ conditioned on an observation
y. Here, the parameters of interest are mapped to the latent space, following a fixed and
known distribution p(z), with the observables y as additional information, see Fig. 1. There
are different ways to implement a conditional normalizing flow: examples of architectures are
masked autoregressive flows [5], variational autoencoders and cINNs [6, 7, 8]. The network
structure of cINNs is based on affine coupling layers, introduced in [9, 10], of which several
chained together constitute the total network. After the training, the network can be evaluated
in the inverse direction given specific observables as well as samples from the known simple
probability distribution, which is enforced on the latent space. With this, the network returns
samples from the wanted posterior distributions of the parameters of interest. cINNs have
already been applied to different problems, see, e.g., [8, 11, 12]. For the implementation, we use
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the Framework for Easily Invertible Architectures [13], which is based on pytorch [14]. For a
more detailed description of the network architecture and training procedure, see [15].

3. Scenario from astroparticle physics
The sources of ultra-high-energy cosmic rays are still unknown and, therefore, subject to ongoing
research. Currently, observatories on Earth, like the Pierre Auger Observatory [16], measure
three important quantities of extensive air showers induced by the cosmic rays reaching the
Earth’s atmosphere: the direction of arrival, the energy and the depth of shower maximum,
which correlates with the initial cosmic-ray mass. These observables contain information about
the origin of cosmic rays that is distorted by propagation effects such as energy loss and scattering
as well as detector effects. The goal of this work is the reconstruction of original characteristics
of the sources in a simple model using two of the three essential observables, the energy as
well as the depth of shower maximum, by means of inversion with the cINN. The procedure is
analogous to the analysis in [17], where traditional techniques were employed for the analysis.
The underlying model includes homogeneously distributed identical sources, which isotropically
emit cosmic rays. The emitted cosmic rays follow an energy spectrum of the form

Jinj(Einj, Ainj) = J0 · a(Ainj)
( Einj

1018 eV

)−γ
·
{
1 ZinjRcut < Einj

exp
(
1− Einj

ZinjRcut

)
ZinjRcut ≥ Einj

(1)

with the spectrum normalization J0, the fraction a(Ainj) of injected cosmic rays with mass Ainj

below the cutoff and the initial energy Einj. The steepness of this power law is given by the
spectral index γ until the start of the exponential cutoff at the maximum rigidity Rcut, whereby
rigidity denotes energy per charge. We model this scenario using the CRPropa 3 software [18] to
include propagation effects, namely interactions with the background radiation, nuclear decay
and adiabatic energy losses, which affect and thus distort the emitted energy spectrum as well
as the mass distribution until detection on Earth. We use five elements at the sources, namely
protons, helium, nitrogen, silicon and iron. In total, we have six free model parameters θ: four
representative values for the elemental fractions to always satisfy the side condition of sum to
unity [19], as well as the spectral index γ and the maximum rigidity Rcut describing the form of
the injected energy spectrum, see eq. 1.

3.1. Training of the cINN
We need to create training data to learn the connection between the source parameters θ and the
observables y on Earth. For that, the aforementioned six free source parameters are varied using
a flat prior for the values representing the elemental fractions, whereas the spectral parameters
γ and Rcut are constrained by the region found in the previous analysis in [17].

The chosen observables are modeled to mimic the measurements at the Pierre Auger
Observatory. For the energy spectrum on Earth, 17 logarithmic bins in the detected energy range
Edet = 1018.7 eV and Edet = 1020.4 eV are used. For better distinction of characteristic features
of the spectrum, it is multiplied with E3

det. The depths of shower maximum Xmax distributions
are binned in two dimensions into 25 Xmax bins between 550 g/cm2 and 1050 g/cm2 and similar
energy bins as the spectrum, using a combined bin above 1019.6 eV. An example observation is
shown in Fig. 2 where the source parameters are chosen to match the best-fit values of [17] in
the CRPropa 3-based setup, namely a spectral index γ of 0.87, a rigidity cut-off of 1018.62V,
88% nitrogen and 12% silicon. Bin-wise modifications of the modeled observation following a
Poisson distribution are added to mimic the statistical fluctuations of the measurements. These
modified observables are then used during the training, differing randomly in each epoch.

In total, we use 106 training sets and 105 validation sets and train the network for 13 hours
until convergence.
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Figure 2: Observables on Earth (energy spectrum multiplied with E3
det on the left and

depth of shower maximum distributions on the right) corresponding to the best-fit source
parameter values of [17]. The curves correspond to the simulations without additional statistical
fluctuations (database), the points show one realization of the resulting bin contents with the
added statistical fluctuations (benchmark simulation), also depicted with corresponding error
bars. The colored curves show the contribution of different elemental groups to the total observed
flux and the depth of shower maximum distributions, respectively.

4. cINN reconstruction quality
To evaluate the cINN reconstruction quality, we use the network to create posterior distributions
for a test dataset of size 104. This extensive test of the method’s accuracy is enabled by the
speed of the posterior creation using the trained network. To assess the quality of the parameter
estimator, we compare the mean of the posterior distribution of the parameters to the true
value of the corresponding simulation. In Fig. 3, the posterior mean value of the spectral index
and the rigidity cutoff are shown as a function of the true value. The reconstructed values lie
close to the grey line indicating perfect agreement for both parameters. Quantitatively, the
normalized root mean square error (NRMSE) [15] is below 2% for both parameters, affirming
the good agreement between the estimator of the parameters from the posterior distributions
obtained with the cINN and the true value of the simulations. Additionally, the accuracy of the
widths of the posteriors as an uncertainty measure can be evaluated. We use the calibration
error ecal as in [11], defined as the difference between a confidence interval q and the fraction
of test datasets where the true value of the parameter lies within this q-confidence interval of
the cINN posterior distribution. The calibration error is calculated over a range of confidence
intervals between 0.01 and 0.99 in steps of 0.01, and we report the median of the absolute values.
The median calibration error is close to zero if the widths of the cINN posterior distributions
are appropriate. We reach a value of 0.002 for both parameters, validating the accuracy of the
widths and their use for uncertainty estimation. For an evaluation of the reconstruction of the
elemental fractions, see [15].

For a further approval of the method, we compare the cINN posteriors for the specific
benchmark scenario shown in Fig. 2 to posterior distribution obtained with a more traditional
sampling technique, a Markov chain Monte Carlo. Here, sequential Monte Carlo sampling [20]
in the PyMC3 framework [21] is applied; see [15] for details. In Fig. 4, the results for the
posterior distributions obtained with both methods for the two parameters γ and Rcut are shown.
Generally, the posterior distributions including the correlation look very similar for the cINN
and the MCMC. The uncertainties on both parameters estimated with the 68% highest posterior
density interval are nearly identical. Further, the true simulation value lies approximately 1σ
away from the mean value of the distribution for both parameters for both methods.
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Figure 3: 2D histograms of the source parameters γ (left) andRcut (right) using 10
4 test datasets.

On the vertical axis the posterior mean value of the parameter is given, on the horizontal axis
is the true value of the simulation. Perfect agreement is depicted by the gray straight line.
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Figure 4: Posterior distributions for the source parameters γ and Rcut for the benchmark
simulation obtained with the cINN (left) and the MCMC method (right). The true value
of the simulation is depicted with the red line and the mean of the posterior distribution with
the black line.

5. Conclusion
We presented conditional Invertible Neural Networks as a technique based on normalizing
flows usable for the approximation of posterior distributions of parameters conditioned on an
observation. With these, not only an estimator of the parameter using, e.g., the mean of the
distribution can be obtained, but also an uncertainty and correlations between parameters can
be unveiled. We adopted this approach to reconstruct parameters of astrophysical sources of
ultra-high-energy cosmic rays using simulated data of the observables energy and depth of shower
maximum. We first evaluated the reconstruction quality of the method based on a test dataset
regarding the mean and the widths of the posterior distributions finding appropriate accuracy.
Additionally, the cINN method was compared to the more traditional approach of MCMC
sampling on a single scenario where a very good agreement between the posterior distributions
was acquired. Concluding, the conditional Invertible Neural Network is well-suited to perform
Bayesian parameter estimation as a computationally efficient and reliable method. For more
details and an extended description of the method and the application, see [15].
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