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"If I have seen further, it is by standing on the shoulders of Giants." 1

1Turnbull, H. W. ed., 1959. The Correspondence of Isaac Newton: 1661-1675, Volume 1, London, UK:
Published for the Royal Society at the University Press. p. 416



Zusammenfassung
Quantencomputer versprechen Rechenprobleme effizienter zu lösen, als dies mit klassischen
Computern je möglich wäre. Gefangene 171Yb+ -Ionen in einer linearen Paul-Falle, die
einem Magnetfeldgradienten ausgesetzt sind, wurden bereits verwendet um Quantencom-
puting zu demonstrieren. Dabei werden die Qubits in Hyperfeinzuständen des elektronis-
chen Grundzustands von 171Yb+ kodiert. Die Suszeptibilität der Qubit-Niveaus gegenüber
Magnetfeldern durch einen linearen Zeeman-Effekt erzeugt die Kopplung der Qubits und
ermöglicht außerdem eine individuelle Adressierung im Frequenzraum. In einem Regis-
ter von Ionen-Qubits, die in einer linearen Paul-Falle gespeichert sind, ist die durch den
Magnetfeldgradienten erzeugte Kopplung eine inhärente "Alle-zu-Alle"-Kopplung. Die Im-
plementierung eines bestimmten Quantenschaltkreises in einem Register von Ionen-Qubits
erfordert die Abstimmung der Kopplungsstärke. In dieser Arbeit wird dies mit bis zu vier
Qubits unter Verwendung einer gepulsten dynamischen Entkopplungssequenz erreicht, die
die Qubits vor Dephasierung schützt, während die Kopplung gewählt werden kann. Die
direkte Implementierung von Quantengattern mit drei oder mehr Qubits ist vorteilhaft,
um das Potential eines Quantencomputers mit gefangenen Ionen voll auszuschöpfen. Ein
Beispiel ist das hier implementierte Toffoli-Gatter. Ein treibendes Feld, das auf das Ziel-
Qubit angewendet wird, wird verwendet, um eine Qubit-Rotation auf dem Ziel-Qubit in
Abhängigkeit vom Zustand der Kontroll-Qubits durchzuführen. Um die Qubits während
dieser Zeit vor Dephasierung zu schützen und die dauerhafte Wechselwirkung der Qubits zu
ermöglichen, wird eine dynamische Entkopplungssequenz angewendet und mit dem treiben-
den Feld auf dem Ziel-Qubit verschachtelt. Das Toffoli-Gatter wird dann eingesetzt, um
einen Drei-Qubit- "Greenberger Horne Zeilinger"-Zustand und einen Halbaddierer zu real-
isieren. Halbaddierer, die als elementare Einheiten in der klassischen Informatik verwendet
werden, bilden die Grundlage klassischer Rechenwerke. In einem Quantencomputer können
sie mit Hilfe des hier vorgestellten Toffoli-Gatters und eines CNOT-Gatters realisiert wer-
den. Perzeptren sind als Teil künstlicher neuronaler Netze ein anderer Baustein der mod-
ernen Informatik. Im Rahmen dieser Arbeit wird ein Perzeptron-Gatter an einem Register
aus drei Qubits demonstriert, wobei zwei Qubits als Steuerqubits und eines als Perzep-
tron dienen. Eine abstimmbare sigmoidale Anregung des Perzeptrons wird mittels eines
adiabatischen Antriebsfeldes erzeugt, das mit einer dynamischen Entkopplungssequenz
verschachtelt ist, um die Kohärenzzeiten zu verlängern und die Wechselwirkungsstärke
zwischen den Qubits abzustimmen. Das Perzeptron wird dann in einem zweischichtigen
neuronalen Netz eingesetzt, um eine XNOR-Operation zu implementieren. Zusätzlich zur
Anwendung als Qubit erlaubt die Abhängigkeit der Qubit-Resonanz vom Magnetfeld, ein
Ionen-Qubit als Quantensensor für Magnetfelder und damit unter Nutzung eines Magnet-
feldgradienten zur Messung von Kräften im 10−23 N-Bereich zu verwenden.



Abstract
Quantum computers promise to solve computational problems more efficiently than classi-
cal computers ever could. Trapped 171Yb+ ions in a linear Paul trap exposed to a magnetic
field gradient have already been used to demonstrate quantum computing. The qubits are
encoded in hyperfine states of the electronic ground state of 171Yb+ ions. The susceptibil-
ity of the qubit levels to magnetic fields by a linear Zeeman effect generates the coupling of
the qubits and allows for individual addressing in frequency space. In a register of qubits
stored in a linear Paul trap, the coupling generated by the magnetic field gradient is an
inherent all-to-all coupling. Implementing a given quantum circuit on a register of qubits
requires tuning the coupling strength. Here tuning the coupling with up to four qubits
is demonstrated using a pulsed dynamical decoupling sequence, which protects the qubits
from dephasing while the coupling can be chosen. Direct implementation of quantum gates
with three or more qubits is necessary to exploit the full capabilities of a trapped-ion quan-
tum computer. An example is the Toffoli gate implemented here. A driving field, applied
to the target qubit, is used to perform a conditional rotation based on the control qubits
state, while a dynamical decoupling sequence protects the coherence of the qubits. The
Toffoli gate is then applied in a half-adder and is used to generate a three-qubit Green-
berger Horne Zeilinger state. Half-adders, which are used as elementary units in classical
computer science, form the basis of classical arithmetic units. In a quantum computer, they
can be realized using the Toffoli gate and a CNOT gate. Perceptrons are a part of neural
networks, a fundamental building block in modern computer science. Here a Perceptron
gate is demonstrated on a register of three qubits where two qubits serve as control qubits
and one as a perceptron. The characteristic tunable sigmoid excitation of the perceptron
is shown using an adiabatic driving field interleaved with a dynamical decoupling sequence
to prolong coherence times and tune the interaction strength between the qubits. The per-
ceptron is then applied in a two-layer neural network to implement an XNOR operation.
In addition to its use as a qubit, the dependence of the qubit resonance on the magnetic
field allows an ion qubit to be used as a quantum sensor for magnetic fields and thus, using
a magnetic field gradient, to measure forces in the 10−23 N range.
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1
Introduction

Information technology has revolutionized the way we live. Whether it is the constant

availability of information, the automation of production, or the ability to conduct re-

search that was impossible a century ago. The development of computers has changed the

world we live in. Fundamental research is the foundation of today’s information technology.

Mechanical calculating machines in the 19th century [1] paved the way for their electrical

counterparts using relays or tubes in the 20th century. The invention of the first transistor

in 1947 [2], its miniaturization and the massive increase in the number of transistors avail-

able led to modern semiconductor-based computers [3]. As a result of fundamental research

at CERN, the next revolution in computer science was launched [4]. The need to connect

researchers across the campus, and later across the globe, led to the development of the In-

ternet as we know it today. Computers have become increasingly powerful, interconnected,

and capable of calculations and numerical simulations unimaginable a century ago. Cur-

rently, computer science is being revolutionized again, as neurons have been implemented

into mathematical models [5]. Despite three centuries of development and amazing results,

classical computers are limited. All information in a computer is encoded in a logic that

can distinguish between two states, namely 0 and 1. Numbers are therefore represented

in a binary system such that a binary number containing n digits can represent a number

between 0 and 2n. Complex calculations are performed using basic arithmetic operations,

which can be broken down into more basic operations. For example, the multiplication

of two numbers is implemented using adding operations, which are implemented as an

operation that bit-wise adds two numbers. These adders consist of half-adders, and these

half-adders are based on logical gates such as AND, OR, or NOT operations. The gates

are then implemented using digital circuits of transistors, which are the basic element of

all computers. Although the number of arithmetic operations performed by modern pro-

cessors is on the order of billions to trillions per second, there are computational problems
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1 Introduction

in science that are so complex that even the impressive performance of semiconductor

processors is insufficient to solve them. Quantum mechanical problems, for example, are

of interest in chemistry and can lead to important discoveries. Because the mathematical

dimensionality of quantum mechanical problems increases rapidly and the Hilbert space

describing possible configurations is huge, even small chemical systems cannot be solved

accurately on today’s computers. To solve quantum mechanical problems, Richard Feyn-

man proposed a computer based on a quantum system [6]. Such a computer, called a

quantum computer, could cover the vast configuration space of chemical systems because

it would be based on quantum mechanics itself.

In addition to chemical systems, it is believed that a quantum computer will be able to

solve other problems that are currently intractable by classical computers. Some examples

are the factorization of numbers into prime factors or the traveling salesman problem.

This class of problems is inherently interesting to solve, and possible solutions could have

a significant impact on our daily lives. Therefore, the development of a quantum computer

capable of solving previously unsolvable problems is of great interest to society.

A quantum computer will not make classical computers obsolete, but rather will become

an additional computing platform to solve specific problems that are primarily relevant in

professional use cases such as research and development.

One promising platform for a quantum computer is a trapped-ion quantum computer. In

such systems, each qubit is represented by the state of an atom. The system used in

this thesis is particularly promising because it has several advantages over other quantum

computing platforms. The qubits are reproducible and controllable and can be stored for

long periods of time.

Similar to the development of classical computer science, the development of quantum

computers has reached the point where the first devices have started to leave the laboratory

environment. Typical systems still occupy entire rooms, just as classical computers did

in the beginning. In addition, modern classical computers used for scientific research or

large-scale data analysis still occupy entire facilities. However, the commercialization of

quantum computers is just beginning.

So far, quantum computers (QCs) require special environments and trained personnel to

operate and maintain, and they are not easily scalable. The need for constant maintenance

2



by trained personnel needs to be overcome in a commercial environment. Therefore, the

first part of this thesis is dedicated to automation, allowing the user to focus on his research.

Furthermore, chapter 2 will give an overview of the basic physical effects used. Since each

ion can also be used as a sensor of magnetic fields, advances in the automatic calibration of

the quantum computer allow the study of fundamental physics, such as the measurement

of the ion’s position. Using this technique, the diagnosis of the ion chain forming a register

in a QC can be applied to select an appropriate error mitigation strategy in case a qubit

ends up in a dark state.

A key advantage of trapped-ion QC over other systems is the inherent all-to-all coupling

between all qubits in a register. This all-to-all coupling allows conditional operations to

be performed directly on the entire register. Efficient control of the qubit interactions is

essential for the implementation of advanced quantum algorithms. Therefore, in chapter 4

a method to tune the coupling between qubits in a register using radio frequency control

pulses is outlined and demonstrated. The parallelization of computational tasks is crucial.

Using the qubit coupling control scheme presented here will allow parallelized quantum

circuits to run on quantum computers with always-present interactions between qubits.

The inherent all-to-all coupling within the quantum register is a valuable tool for imple-

menting quantum logic gates consisting of three or more qubits. This reduces the complex-

ity and runtime of quantum circuits by avoiding the decomposition of a circuit into two

qubit gates. An essential operation in a classical computer is the addition of two numbers.

In chapter 5, a half-adder is implemented using a Toffoli gate in which two control qubits

control a target qubit, similar to classical computation. The classical computing infrastruc-

ture consumes a significant part of the world’s electrical energy, and quantum computers

will contribute to this energy demand in the future, so it is of interest to study the fun-

damental energy consumption of quantum computers. For this purpose, the implemented

half-adder circuit can serve as a toy model to estimate the power consumption of current

quantum computers and to outline possible ways to estimate the power consumption of

future quantum computing platforms.

The latest revolution in classical computer science is the neural network implemented in a

mathematical model. They can be seen as a mathematical graph with vertices represent-

ing neurons and edges representing their respective connections. The inherent all-to-all

coupling in a trapped-ion quantum computer makes these systems promising candidates

3



1 Introduction

for implementing neural networks, where each qubit is a neuron and their interconnections

are realized by the coupling. Using techniques introduced in chapters 4 and 5, chapter 6

presents the implementation of a perceptron gate controlled by two control qubits.

After classical computing, quantum computing is evolving along a similar path, possibly

opening the door to unforeseen applications.

4



2
Basic principles

This chapter briefly describes the basics necessary to understand the work presented here.

This is not the first thesis describing the hardware and principles of a trapped-ion quantum

computer. Each of the previous dissertations on the experimental setup used focuses

on different aspects of the experiment. The Ph.D. thesis of Anastasia Khomorova [7]

focuses on the setup of the ion trap, the microwave and the laser system required for the

basic operation. The next thesis to be mentioned is the PhD thesis of Christian Piltz [8],

which focuses on the dynamical decoupling of qubits from their environment, the selective

coupling in a three-ion crystal, the addressing of single qubits in a quantum byte, and the

implementation of a quantum Fourier transform on three qubits. The most recent Ph.D.

thesis was written by Theeraphot Sriarunothai [9] and is dedicated to multi-qubit gates and

quantum-enhanced deliberation learning. All of them describe the experiment in detail.

The experiment was first set up in 2012 [10], and the majority of the experiment’s hardware

has remained the same. Therefore, the description of the experimental setup in this chapter

will be relatively brief. Nevertheless, it will provide an overview of the experiment for the

reader to understand the work presented in this thesis. While working on this experiment, I

was accompanied by Patrick Barthel, who was simultaneously working on his Ph.D. thesis.

His thesis will show the implementation of robust two-qubit gates and two-qubit entangling

dressed state gates. In particular, the description of the microwave system required for

coherent control of the qubit is discussed in detail. It is recommended to read this thesis

to get a better insight into the current state of the art experiment. If, at some point, more

details are needed, a look at the other dissertations should be enlightening.

The chapter is organized as follows: First, the ion trap is described, followed by the

hyperfine qubit levels of the ytterbium ion and its interaction with a microwave field.

Later, the structure of a typical experiment is presented, and the current detection scheme

5



2 Basic principles

and data analysis methods are explained.

With these information as a basis, it is possible to understand the experimental proce-

dures described, such as automated ion loading, stabilization of cooling fluorescence, and

fast addressing frequency correction. At the end of this chapter, the effective Hamiltonian

coupling the motional state and the spin state of the ions is described. This allows to un-

derstand the principle of sideband cooling and the induced qubit-qubit interaction needed

to implement conditional quantum dynamics.

2.1 Trapped ions in a magnetic field gradient

An essential requirement to realize a quantum computer based on a system of ions is to

trap these ions and isolate them from the environment. This trap has been realized in

a linear Paul trap introduced by Wolfgang Paul over half a century ago [11]. The basic

principle of trapping a charged particle in free space in a vacuum using electrodynamic

forces allowed the development of a trapped-ion quantum computer. The experimental

apparatus used in this work was built in 2011 and described in detail in the PhD thesis of

Anastasia Khomorova [7]. Here a short introduction is given to understand the principles

of all following chapters of this thesis.

To confine charged particles in three dimensions, an effective three-dimensional potential

well must be realized. Because electrostatics is described by the Laplace equation Δφ = 0,

where φ is the electrostatic potential, it follows that an electrostatic force cannot have a

stable minimum. Since ∂2
xφ+∂2

yφ+∂2
z φ = 0, at least one part of the sum must be negative.

This implies a repulsive force when the stored particle is slightly displaced. W. Paul realized

that this could be circumvented by using a time-dependent electric field [11]. A set of six

electrodes can produce the necessary fields. Four electrodes generate a confining radially

symmetric potential in the xy plane, while the other two electrodes generate a confining

potential in the axial z direction. To satisfy the above conditions, two opposing electrodes

in the xy plane, shown in the simplified version of the trap in fig. 2.1.1, are set to an

AC voltage, and two opposing electrodes in the xy plane are set to a DC potential. This

creates the radial confinement potential. The axial confinement potential in the z direction

is provided by two electrodes facing each other in this direction. In summary, the electrodes

6



2.1 Trapped ions in a magnetic field gradient

Figure 2.1.1: Simplified view of the linear Paul trap setup by A. Khomorova [7]. The four
electrodes generate a trapping potential in the radial xy-plane, which, combined with the
DC potential of the axial electrodes, allows stable trapping in three dimensions. The round
electrodes generate a trapping DC potential along the z axis. The weaker confinement
along the z direction compared to the radial confinement in the xy plane allows a set of
ions to crystallize along the z axis, forming the linear Coulomb crystal that will serve as the
quantum processor. The silver cylinders are sintered SmCo permanent magnets oriented
in a way that the same magnetic pole faces the center of the trap, creating a magnetic
gradient of 19 T/m [7,12].

generate an effective quadratic potential in 3D that trap charged particles. The quadratic

shape of the effective trapping potential quantizes the motion of the trapped particles:

Φ =
1
2

mω2
rr2 +

1
2

mω2
zz2, (2.1.1)

where m is the mass of the 171Yb+ -ion, ωr is the radial trapping frequency, and ωz is the

axial trapping frequency. A trapped particle in a harmonic (quadratic) potential is a well-

known example in quantum mechanics for which its describing equation, the Schrödinger

equation, can be solved. The solution of the Schrödinger equation yields a quantized

harmonic oscillator with equidistant energies for all possible solutions. Its energies are

7



2 Basic principles

En = (1/2 + n)�ω, and its energy splitting is ΔE = �ω, where � is the reduced Planck

constant and ω is the resonant frequency of the quantized motion. ωz depends on the

quadratic potential and is called the trapping frequency. Due to the symmetry of the

effective potential, there are two trapping frequencies. ωr is the trapping frequency in the

radial direction and ωz is the trapping frequency in the axial direction. By choosing the

voltages at the electrodes, the trap frequencies ωr and ωz can be chosen. Since the trapped

ions are charged particles, each ion repels the other ions present due to the Coulomb force.

A choosing the axial confinement potential along the z-axis shallow enough, allows the

trapped ions to align in a linear ion chain. A linear ion crystal is formed when the ratio of

the radial trapping frequencies to the axial trapping frequencies obeys [13]

ωr

ωz
> 0.73N0.86, (2.1.2)

where N is the number of ions stored in the trap. If a linear ion chain forms, the length

scale l for the distance between the ions in the chain is given by [14]

l = 3

√
q2

e

4πε0mYbω2
z

∝ ω−2/3
z (2.1.3)

where qe is the electron charge, ε0 is the vacuum permittivity, mYb is the mass of the
171Yb+ ion, and ωz is the angular trap frequency along the trapping axis z. In the case of

our experiment, the length scale is l ≈ 10 μm. Each linear ion chain consisting of N ions

is a set of N coupled oscillators, where each ion participates in different vibrational modes

of the crystal.

These vibrational modes are part of the coupling scheme used in this setup, which couples

the motion of the ions to their internal degrees of freedom. With the MAgnetic Gradient

Induced Coupling(MAGIC) direct qubit-qubit coupling can be realized. It requires a mag-

netic field gradient in this case generated by a set of permanent magnets. The permanent

magnets are installed so that the same pole of each magnet faces the center of the trap.

This configuration produces a zero magnetic field at the center of the trap with a magnetic

field gradient oriented along the trap axis of 19 T/m. The linear ion chain is slightly dis-

placed from the trap center to produce an offset magnetic field, allowing the ions to align

their spin with the field and define the quantization axis in the laboratory frame. Overall,

a linear chain of ions in the axial direction z allows a one-dimensional approximation of the

8



2.2 The 171Yb+ ion qubit

dynamics of the system. The quantized axial secular motion, together with the magnetic

field gradient, gives rise to the induced spin-spin coupling in the system, which is exploited

in the MAgnetic Gradient Induced Coupling (MAGIC) scheme [15].

2.2 The 171Yb+ ion qubit

A qubit is a system with two different energy eigenstates, which can be labeled |0〉 and |1〉.
A useful qubit must have some crucial properties. First, one should be able to distinguish

the two levels to read the qubit [16–18]. Another requirement is the ability to initialize

the qubit to a desired state [19–21]. The next ingredient for a useful qubit is the ability

to coherently control its state [22, 23]. Furthermore, the qubit should hold its quantum

information for some time and therefore must have a coherence time long enough to perform

the desired quantum operation [24]. Since computation requires the existence of conditional

operations, it should also be possible to realize conditional dynamics with the qubit [25].

In addition, qubits used in a future quantum computer should be reproducible to allow a

clear scale-up concept. [15]

Using atoms as qubits is a reasonable choice because atoms of the same isotope are identical

in their physical properties of nucleus and electron configuration. Using atoms therefore

eliminates variations in production of the qubits.

A good candidate for a qubit is an atom that has a non-zero nuclear spin in its ground state,

which limits possible candidates to isotopes with an odd number of nucleons. To make it

as easy as possible to work with this isotope, it is advantageous that the level scheme is

simple. The element of choice is the Yb atom, or more precisely the 171Yb+ ion, which

has a hyperfine structure due to its nuclear spin of I = 1/2. The Yb atom, once ionized,

forms a hydrogen-like ion with a 2S1/2 orbit as its ground state. The free electron spin

couples with the free nuclear spin and produces a hyperfine splitting of the electronic 2S1/2

ground state [26,27]. The energy splitting of the hyperfine level in the GHz regime is small

compared to the electronic transitions in the optical THz regime. This is advantageous

because it allows manipulation of the quantum state by radiation in the radiofrequency

(RF) regime and increases the lifetime of the excited hyperfine state. The qubit state |0〉
is encoded in the hyperfine ground state |2S1/2, F = 0〉, while |1〉 is encoded in the state

9



2 Basic principles

|2S1/2, F = 1, mF = +1〉. The state |2S1/2, F = 1, mF = −1〉 is also a valid choice for the

state |1〉, which also depends linearly on the magnetic field but with the opposite sign,

but in this thesis the state is not used. The state |2S1/2, F = 1, mF = 0〉 does not show

a linear magnetic Zeeman shift and could therefore serve as a memory. These states are

represented in fig. 2.2.1. They form the physical qubit and can be prepared and read out

optically as described in section 2.5.

2S1/2

F = 1

F = 0

mF = 1
mF = 0
mF = −1

12.6 GHz

B = 0 B�= 0

πσ− σ+

Figure 2.2.1: Level scheme of the hyperfine 171Yb+ ground state 2S1/2. The nu-
clear and electronic spin 1/2 couple to the total angular momentum F . An exter-
nal magnetic field B lifts the degeneracy of the state |2S1/2, F = 1〉, making the states
|2S1/2, F = 1, mF = −1, 0, +1〉 distinguishable in their energy. This allows addressing the
different transitions in frequency space. [28]

Using the hyperfine levels in 171Yb+ provides a naturally long lifetime of the population of

the state |1〉 [27], whereas the relatively small frequency of 12.6 GHz allows for a reasonably

easy coherent control of the qubit, based on well-established RF technology and commer-

cially available hardware. The generation of RF fields in this regime with reasonable

frequency, amplitude, and phase control is possible without demanding field generation.

The transitions |2S1/2, F = 1, mF = ±1〉 ↔ |2S1/2, F = 0〉 are called magnetic σ± transi-

tions, while the transition |2S1/2, F = 1, mF = 0〉 ↔ |2S1/2, F = 0〉, which does not change

the magnetic quantum number mf , is called the π transition. The nuclear spin I and

the angular momentum J of the electronic orbital couples to the total angular momentum

F = I + J with |I − J | ≤ F ≤ |I + J |. Since the relevant orbital is an S orbital, the orbital

angular momentum L is zero, and J = L + S is generated by the electronic spin angular

momentum.

This coupling of angular momenta leads to the hyperfine splitting(HFS) where the energy

10



2.2 The 171Yb+ ion qubit

gap between two levels is given by

ΔEHF S =
A

2
[F (F + 1) − I(I + 1) − J(J + 1)] , with (2.2.1)

A =
gIμkB0√
J(J + 1)

. (2.2.2)

Here gI denotes the nuclear g factor, μK is the nuclear magnetic moment, and B0 corre-

sponds to the magnetic field generated by the electronic shell at the position of the nucleus.

In the case of 171Yb+ , the hyperfine constant A is determined precisely for the ground

state 2S1/2 [26, 27] as
A

�
= 2π · 12 642 812 118.471(9) Hz. (2.2.3)

Here � is the reduced Plancks constant.

Exposing the 171Yb+ ion to a magnetic field defines the quantization axis relative to the

magnetic field and orients the ion in the lab frame. This lifts the degeneracy corresponding

to the magnetic quantum number mF . In our case of F = I ± 1/2, the energy dependence

of the transition can be described analytically by using the Breit-Rabi equation [29]:

ΔE(B, F, mF ) = − ΔE0

4I + 2
+ mF gIμKB + (−1)F +1 ΔE0

2

√
1 +

4mF

2I + 1
XB + X2B2,

(2.2.4)

with ΔE0 = A(I + 1/2), (2.2.5)

and X =
gJμB − gIμK

A(I + 1/2)
. (2.2.6)

Here gJ is the g factor of the electronic shell, and μB is the Bohr magneton. The nuclear

g factor is given as gI = 0.9837 [30]. In the case of a nuclear spin of I = 1/2 this leads to

ΔE0 = A. For 171Yb+ we have I = 1/2 and therefore, this simplifies to

ΔE(B, F, mF ) = −A

4
+ mF gIμKB + (−1)F +1 A

2
√

1 + 2mF XB + X2B2. (2.2.7)

The transition energy is given by the energy difference between the two levels. For the σ+

transition, the energy is calculated as follows:

11



2 Basic principles

hνσ+(B) = E|2S1/2,F =1,mF =+1〉 − E|2S1/2,F =0,mF =0〉 (2.2.8)

= gIμKB +
A

2
√

1 + 2XB + X2B2 +
A

2
√

1 + X2B2. (2.2.9)

As described in section 2.1, the ions trapped in this Paul trap form a linear ion crystal.

This crystal defines the position of the ion within the trap. Together with the magnetic

field gradient generated by the permanent magnets installed in the setup, the dependence

of the transition frequencies νσ± on the magnetic field allows the individual addressing

of the ions by RF radiation [31]. In our experimental setup, the distance between the

addressing frequencies is about ν2 − ν1 ≈ 2π · 3.2 MHz for a two-ion crystal and a trap

frequency of ω ≈ 2π · 120 kHz. This allows us to address each ion by selectively selecting

its resonance. It has been shown that this splitting of the ion resonances allows RF qubit

manipulation with a low crosstalk of about 10−5 [32] for an 8-ion Coulomb crystal.

2.3 Quantum dynamics

The quantum dynamics exploited in a trapped-ion quantum computer can be formulated

as a Hamiltonian, which represents the energy operator of the system. In the case of an

ion string of length N , the total energy of the system is given by the Hamiltonian given

by the equation (2.3.1). This Hamiltonian contains all relevant energy contributions to

the system. In addition to the energy contributions already mentioned, there is a direct

effective spin-spin coupling: the MAgnetic Gradient Induced Coupling (MAGIC) [33]. It is

mediated by the magnetic field gradient, the motion of the ions in the trap and the Zeeman

splitting. The effective Hamiltonian is:

H =
�

2

N∑
n=1

ν(z(n))σ(n)
z︸ ︷︷ ︸

I

+
N∑

n=1
�ωn(a†

nan)︸ ︷︷ ︸
II

− �

2

N∑
n<l

Jnlσ
(n)
z σ(l)

z︸ ︷︷ ︸
III

. (2.3.1)

Here (I) is the energy contribution of the Zeeman split hyperfine levels, containing the

transition frequency ν of ion n at the position z(n), (II) the energy of the Harmonic

oscillator potential of all N vibrational modes with frequencies ωn, where a†
n and an is

12



2.3 Quantum dynamics

the creation and annihilation operator of a vibrational excitation respectively, (III) is the

energy contribution of the MAGIC spin-spin interaction. Additionally σ
(n)
x,y,z are the Pauli

operators acting on the n-th qubit:

σx =

⎛⎝0 1

1 0

⎞⎠ , σy =

⎛⎝0 −i

i 0

⎞⎠ , σz =

⎛⎝1 0

0 −1

⎞⎠ .

The coupling of all ions in the crystal is given by:

Hzz = −�

2

N∑
n<l

Jnlσ
(n)
z σ(l)

z . (2.3.2)

Since the eigenvalues of σz are ±1, the element of the sum ±Jnlσ
(n)
z changes the sign of the

contribution of ion n depending on the state of ion l. The effective J coupling is mediated

by the coupling of two ions to the same vibrational mode εnl [33]. Its magnitude is given

as

Jij =
N∑

l=1
ωlεilεjl, (2.3.3)

with

εnl = ηeff Snl, (2.3.4)

ηeff = ∂zνn(B(z))
Δzl

ωl
, (2.3.5)

where Δzl =
√
�/2mωl is the extension of the ions wave function in the l-th excited

vibrational state of the ion with mass m and Snl is the dimensionless amplitude of the n-th

ions vibrational mode l. In total, it follows that assuming a linear dependence of ν(B),

the effective J coupling scales as

Jij ∝
(

∂zB(z)
ω

)2
, (2.3.6)

where ω is the energy split of the harmonic oscillator formed by the quadratic trapping

potential. Note that this spin-spin coupling is always present in the given experimental

setup and directly connects all qubits in an ion string.

For the scope of this work, these dynamics generated by the Hamiltonian are fixed so that
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the coupling and the energy of the harmonic motion from equation (2.3.1) are constant.

The only external control available is the driving RF field Ω. By performing a rotating

wave approximation (RWA) with respect to the ion resonance frequency and neglecting

the contribution of the harmonic trapping potential, the effective Hamiltonian becomes

Heff =
�

2

N∑
n=1

(
Ωn cos(φn)σ(n)

x + Ωn sin(φn)σ(n)
y + δnσ(n)

z

)
− �

2

N∑
n<l

Jnlσ
(n)
z σ(l)

z , (2.3.7)

where δn is the relative detuning between the atomic resonance and the applied RF field,

Ωn is the Rabi frequency of the RF driving field resonant with ion n, and φn is the phase

of the applied RF field to the reference frame co-rotating with the spin.

In the setup typically the coupling strength is of the order Jij ≈ 2π · 40 Hz, whereas the

possible Rabi frequencies are of the order of Ω ≈ 2π · 40 kHz. The relative difference is

about three orders of magnitude and thus justifies dropping the J coupling term in this

Hamiltonian in the presence of a strong Ω driving field. In addition, if Ω is constant in time,

the time evolution of a single qubit can be written as the exponential of a time-independent

Hamiltonian

U(t, t0) = e− i
�

H(t−t0). (2.3.8)

In the case of a driving field present, it follows that

U(t1, t0, φ, Ω, δ) = e−i
(t1−t0)Ω

2 �n·�σ, �n =
1
Ω

⎛⎜⎜⎜⎝
Ω0 cos(φ)

Ω0 sin(φ),

δ

⎞⎟⎟⎟⎠ �σ =

⎛⎜⎜⎜⎝
σx

σy

σz

⎞⎟⎟⎟⎠ . (2.3.9)

Here �n defines the rotation axis with phase φ and detuning δ between the driving field

and atomic resonance. The time t0 and t1 correspond to the pulse start and stop time and

Ω =
√

Ω2
0 + δ2 is the generalized Rabi frequency. Having θ = (t1 − t0)Ω, the unitary time

evolution operator can be written in terms of the rotation angle θ and the phase φ. These

angles correspond to the angles of the Bloch sphere representation of the quantum state.

Typical single qubit rotations are rotating the qubits state by θ = π or θ = π/2. They are

called π or π/2-pulses respectively. The short notation for these specific pulses is

R(θ = π, φ) = πφ or R(θ = π/2, φ) =
π

2 φ
. (2.3.10)
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(a) (b) (c)

Figure 2.3.1: (a) Bloch sphere representation of a state |ψ〉 by the angles θ and φ (b)
Induced rotation of a state from |0〉 to |ψ〉 by a rotation R(θ, φ). The rotation is generated
by a resonant magnetic field B, resonant with the qubit transition, for B which is stationary
during the pulse evolution. The phase φ defines the direction of the magnetic field in the
equatorial plane that drives the transition. (c) Shows the phase acquired over time from
state |ψ〉 to state |ψ′〉.

1 R(θ, φ)

2

Figure 2.3.2: In terms of a circuit model, single qubit rotations are depicted as boxes,
indicating the angle and phase of rotation. Here the single qubit rotation R(θ, φ) is executed
on qubit one, while nothing happens with qubit two. The operator discribing this scenario
is U = R(θ, φ) ⊗ 1

At times when no driving field Ω is present, the effective Hamiltonian reduces to

Hzz = −�

2

N∑
n<l

Jnlσ
(n)
z σ(l)

z , (2.3.11)

coupling all qubits present simultaneously.

Note that in the linear approximation only qubits in the states |2S1/2, F = 1, mF = −1〉 or

|2S1/2, F = 1, mF = +1〉 couple.

In contrast to these two states, an ion in the |2S1/2, F = 1, mF = 0〉 state will not partici-

pate in a qubit-qubit interaction in the linear approximation.
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Since the magnetic field gradient is continuous, the Hamiltonian is time-independent.

Therefore, the unitary time evolution can be expressed as in the equation (2.3.8). How-

ever, the effective Hamiltonian does not have to be dominated by either a driving field

or a coupling. The intermediate regime is also possible and is used to generate a unitary

evolution of a multi-qubit system, which can produce interesting quantum dynamics. For

example, in chapter 6 the implementation of a quantum mechanical perceptron is demon-

strated using an intermediate regime. In general, the unitary evolution of the quantum

system can include anything that the effective Hamiltonian can realize. Note that in the

case of a quantum register containing more than one qubit, this evolution may include

pulses or free evolution times in parallel. A schematic illustrating a local rotation on one

qubit while a second qubit is idle is shown in fig. 2.3.2.

2.4 Quantum circuits

In a working quantum computer, the algorithms executed can be represented as quantum

circuits and can be decomposed into building blocks. Ultimately, these building blocks of

a quantum circuit represent the elementary operations provided by the quantum processor

executing the quantum algorithm. Thus, the available elementary building blocks define

the structure of a quantum circuit for a given hardware.

In our case, any quantum circuit that we can execute with the system shown above must

follow a certain structure. Section 2.5 will show that the valuable feature of requiring only

global laser beams leads to the restriction that re-initialization is not possible during the

execution of a circuit once it is initialized to |0〉⊗N . The same holds for a readout, since

the global laser beam would project all qubits to |0〉 or |1〉, respectively.

A general quantum circuit that can be executed is shown in fig. 2.4.1.
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|0〉

U|0〉

|0〉

Figure 2.4.1: Circuit diagram for the possible experiment settings in the current setup. In
the beginning, all qubits are initialized to state |0〉. The unitary time evolution acting on
all qubits is generated by the system Hamiltonian presented in equation (2.3.7) and may
consist of arbitrary RF fields and spin-spin interactions. In the end all qubits are projected
and measured.

2.5 Experimental methods

This thesis deals with the implementation of multi-qubit quantum gates, the tuning of

the qubit-qubit interaction, and the measurement of the center-of-mass position of an ion

in the trap. All these implementations need to be quantified in order to estimate their

potential. A similar experimental procedure is always used to quantify the properties of

the gates or to measure the properties of the 171Yb+ ion.

One of the advantages of the applied magnetic field gradient for single qubit addressing

and spin-spin coupling is the experimental simplicity of the laser setup and RF control.

A global light field is sufficient for all operations requiring the manipulation of qubits

in the optical frequency range. Due to the individual addressability in the RF frequency

domain, a global RF field is also sufficient. The reduction to global fields limits the possible

structure of the experiments. The global light field for the preparation and measurement of

the ion state limits the experiments to a specific sequence of actions as shown in figs. 2.4.1

and 2.5.1. Reading the state of the qubit using a global light field will project each qubit

into either |0〉 or |1〉 state, destroying any superposition of states in the quantum register,

which stops the execution of a quantum algorithm. The preparation with this light field

initializes all qubit states to |0〉. Between the preparation of the qubits in the initial state

|0〉 and the readout, the absence of a light field allows the quantum system to evolve

unobserved. This darkness is the key to the existence of superpositions and the generation

of entangled states. To measure a property of a quantum system, the experiment must

be repeated in order to reconstruct the quantum state. In addition to the preparation,
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Cooling ReadoutPreparation
Coherent 
Evolution

Figure 2.5.1: Schematic of one experimental cycle showing the individual steps performed in
most experiments. Each cycle defines the experiment for a given unitary evolution U(t) and
delivers the measurement result as one bit string during the readout step. Depending on
the experiment, the cooling step might contain a Doppler cooling and a sideband cooling
step as shown in section 2.5.2 and section 2.5.3. Figure 2.4.1 shows the corresponding
circuit diagram.

evolution, and readout steps, it is necessary to cool the motion of the ion in the trap to

allow precise manipulation of the qubit. A set of experimental steps is called a cycle, as

shown in fig. 2.5.1. Each cycle has a defined set of measurement parameters of the unitary

evolution U(t). Due to the probabilistic nature of quantum mechanics, it is necessary to

repeat the experiment to find the output probability.

2.5.1 Loading 171Yb+

Before a quantum computation can begin, the desired number of qubits must be loaded

into the trap. If there is no chemical reaction of the 171Yb+ ions with the background

gas present in the vacuum recipient, a single loading of the trap is sufficient. Due to the

geometry of the trap, the trapping potential is deep enough to keep the ions in the trap as

long as the trap drive voltage is present.

Loading is accomplished using a source of enriched 171Yb, which is thermally evaporated

and ionized in a two-step laser ionization process. The origin of the name of this method

is the heating process for the source, which is called the oven. Once the oven is heated,
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thermally a neutral atomic beam is emitted through the center of the trap. A laser beam

near 398 nm excites an electron of the neutral atom. A second laser field then transfers

enough energy to the electron that it is no longer bound to the atom. The laser beam for

the second step of ionization must have a wavelength < 394 nm [34]. This is necessary to

excite the electron into the continuum. A laser with a wavelength of 369 nm is already

available in the setup for Doppler cooling, preparation and readout. It is used for the second

ionization step. The electron leaves the trap due to its different mass-to-charge ratio, but

the confining RF potential traps the ionized 171Yb+ . Since the source of neutral atoms is a

heated sample of 171Yb, the loading procedure is not deterministic. However, reducing the

atomic flux by lowering the oven temperature reduces the trapping rate enough to allow

individual 171Yb+ ions to be trapped.

2.5.2 Doppler cooling

Immediately after loading, the hot ions are trapped, but their kinetic energy causes them

to oscillate around the trap. Cooling of these ions is required for the ions to form the

Coulomb crystal, which serves as the quantum register. An ion crystal defines the position

of the ions in the trap. Doppler cooling is based on the directed transfer of momentum

during the absorption of a photon from a laser beam and the periodic motion of the ion.

The Doppler effect shifts the frequency of a light field as a function of the speed of the

observer. This allows the scattering rate to be changed based on the direction of the

ion’s motion. From the absorber’s point of view, the Doppler-shifted frequency is linearly

approximated by ν ′ = ν(1 − v/c). Where ν is the frequency of the emitted laser photon

and v is the velocity of the ion/observer relative to the emitter.

The optical dipole transition |2S1/2, F = 1, mF = 0〉 ↔ |2P1/2, F = 0〉 with a wavelength

of about 369 nm is used for Doppler-cooling. The lifetime of the state |2P1/2, F = 0〉 is

8.12 ns [35, 36] and allows for frequent relaxation of the exited state by emission of a

photon. The non vanishing probability of off-resonant excitation of the state |2P1/2, F = 1〉
requires a RF field to close the cooling cycle since the state |2P1/2, F = 1〉 decays to the state

|2S1/2, F = 0〉. This would interrupt the cooling process. Application of a RF field resonant

with the transition |2S1/2, F = 1, mF = 0〉 ↔ |2S1/2, F = 0〉 transfers the population back

to state |2S1/2, F = 1, mF = 0〉 which again is nearly resonant with the laser light field.
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2P1/2

2S1/2

F = 1

F = 0

F = 1

F = 0
Δ

2π · 12.6 GHz

369 nm

Figure 2.5.2: Partial term scheme of 171Yb+ (not to scale) in the rest frame of the ions,
showing the optical transition relevant for Doppler cooling. Here Doppler cooling is per-
formed on the optical dipole transition |2S1/2, F = 1〉 ↔ |2P1/2, F = 0〉. The light field
is detuned by Δ ≈ −2π · 19 MHz to lower frequencies compared to the center of optical
resonance. This is comparable to the width of the optical transition and therefore shows
the largest slope of the scattering rate as a function of velocity. This implements the most
effective Doppler cooling by absorption of momentum along the beam axis. The ion is
decelerated as it moves towards the laser source and this, in combination with the har-
monic trapping potential forcing the ion to have a periodic velocity component in the laser
direction, generates an effective cooling [28].

The absorption of a photon transfers the momentum �ν/c to the ion. Since this absorption

occurs more frequently as the ion moves toward the laser source, the ion slows down. The

spontaneous decay emits a photon so that the average momentum of the spontaneous

emission cancels out. As the ion moves away from the laser source, the frequency of the

light is shifted away from the atomic resonance, reducing the absorption rate. The detuning

is chosen so that the laser is about half a FWHM red detuned from the optical resonance

of a resting ion. This choice of detuning Δ = −2π · 19 MHz uses the strongest slope of the

spectrum to achieve efficient Doppler cooling. See section D for details on the 171Yb+ term

scheme. The periodic motion of the ion in the trapping potential then leads to effective

cooling of the ion. However, the achievable temperature TD is limited by the momentum

of the emitted photons. It is [37]:
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kBTD =
�Γ
2

= 〈n〉�ωT . (2.5.1)

Where Γ = 2π · 19.6 MHz is the line width of the transition and TD is the Doppler temper-

ature, while kB is the Boltzmann constant and ωT = 2π · 128 KHz is the trap frequency.

This results in a minimal thermal excitation of about 80 phonons or 47 μK. Cooling further

requires a sub Doppler cooling technique which is sideband cooling in this thesis.

2.5.3 Sideband cooling

When the Doppler cooling is finished, some residual thermal excitation remains. The

sideband cooling technique briefly described here allows the cooling of an ion close to

the motional ground state of the quantum mechanical harmonic oscillator. Equal en-

ergy splitting ΔE = �ωm of the harmonic oscillator formed by the trapping potential

and using the coupling between the spin and the vibrational state allows the ion to be

cooled. The coupling between the motion and the spin state generates two motion side-

bands at the frequency ν = νσ+ ± ωm of the magnetically sensitive σ+ transition. These

transitions occur at a frequency offset equal to the energy splitting of the harmonic oscil-

lator ωm. Detuning the RF field |2S1/2, F = 0〉 ↔ |2S1/2, F = 1, mF = 1〉 by a frequency

−ωm will drive a motional sideband transition. Choosing the red sideband transition at

the frequency νσ+ − ωm absorbs a motion excitation. Excitation of the optical transi-

tion |2S1/2, F = 1, mF = 1〉 ↔ |2P1/2, F = 1〉 allows the following spontaneous decay of

|2P1/2, F = 1〉 → |2S1/2, F = 0〉 to close the cooling cycle. The decay can be used as a

suitable dissipative process. The principle scheme is shown in fig. 2.5.3.

By repeating this cycle, a motion excitation, called a phonon, is absorbed each time. The

cooling rate is given by the duration of the entire cooling cycle and limits the minimum

thermal excitation of the system, since a heating process also takes place during the cooling

process. This limits the minimum motion excitation to more than zero quanta. While the

Rabi frequency for driving the sideband transition is given by:

Ωn,n−1 = Ωηeff

√
n, (2.5.2)

where Ωn,n−1 denotes the Rabi frequency for the transition from n to n − 1 phonons, Ω

21



2 Basic principles

2P1/2

2S1/2

F = 1

F = 0

F = 1

F = 0

369 nm

ωm

2π · 12.6 GHz − ωm

Figure 2.5.3: Sideband cooling scheme (not to scale). Here the optical transition
|2S1/2, F = 1, mF = 1〉 ↔ |2P1/2, F = 1〉 is driven, while a red detuned RF field drives
the transition between |2S1/2, F = 0〉 ↔ |2S1/2, F = 1, mF = 1〉 − �ωm implementing side-
band cooling. The RF field is detuned by �ωm, which is the energy of the vibrational
mode to be cooled. Each cycle reduces the excitation of the vibrational mode m by one,
eventually ending in the motional ground state for mode m. O(ωm) = 2π · 100 kHz.

is the resonant Rabi frequency of the carrier, ηeff is the effective Lamb Dicke parameter

and n is the phonon number. If more than one ion is loaded in the trap, and if they

form a crystal, they behave as a system of coupled harmonic oscillators. As such several

vibrational modes in the crystal are present. Each with different energy and different ions

participating in this motion [14].

The ion crystal’s Center Of Mass(COM) mode frequency is associated with the energy

splitting of the harmonic oscillator generated by the trapping potential and is independent

of the number of ions in the crystal. Since each ion contributes the same mass as well

as the same charge, the COM frequency is constant. The other vibrational modes of the

crystal have a higher frequency than the COM mode. Due to this, selecting the frequency

of the RF driving field allows selecting which mode to cool accordingly [9]. In principle, it

is desired to cool all vibrational modes as well as possible. A cooling scheme allowing to

cool of different crystal vibrational modes simultaneously is presented in section 2.7.

22



2.5 Experimental methods

2.5.4 Preparation of the logical ground state

2P1/2

2S1/2

F = 1

F = 0

F = 1

F = 0

369 nm

Figure 2.5.4: Preparation of the ground state |0〉. The population in state |2S1/2, F = 1〉
is excited to state |2P1/2, F = 1〉 using laser light near 369 nm. It decays to the state
|2S1/2, F = 1〉 or |2S1/2, F = 0〉. The branching ratio of decays in the 171Yb+ ion can be
found in the appendix section D. Is the qubit in state |2S1/2, F = 0〉=|0〉, no resonant laser
light is present and the state |0〉 is prepared [28,38].

Every quantum computation requires a defined qubit state at the beginning. To prepare a
171Yb+ qubit in the |0〉 state, the |1〉 state must be depleted. Tuning the frequency of the

laser light close to 369 nm allows selective depletion of the |1〉 state. If the laser light is

resonant with the transition |2S1/2, F = 1〉 = |1〉 ↔ |2P1/2, F = 1〉 the state |2P1/2, F = 1〉
is populated. By spontaneous emission |2P1/2, F = 1〉 preferentially decays to the state

|2S1/2, F = 0〉 = |0〉. When the excited state decays to |1〉, the laser field excites the

electron back to |2P1/2, F = 1〉. This is repeated until the qubit is finally prepared in

the state |0〉. The principle is shown in fig. 2.5.4. The transition at 369 nm has a Full-

Width Half Maximum (FWHM) of 2π · 36(2) MHz [37] and is therefore broad enough in

frequency space to cover all three transitions of |2S1/2, F = 1, mF = +1, 0, −1〉. This allows

all |2S1/2, F = 1, mF = +1, 0, −1〉 states to be depleted and drives the system to the |0〉
state.
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2.5.5 Detection of the qubits state

2P1/2

2S1/2

F = 1

F = 0

|1〉

|0〉

F = 1

F = 0

369 nm

Figure 2.5.5: Partial term scheme of 171Yb+ (not to scale) showing the relevant optical
transition for detection. To detect the qubit state, laser light close to 369 nm is used to
drive the transition |1〉 ↔ |2P1/2, F = 0〉 generating fluorescence if the ion was in state
|1〉. A possible off-resonant excitation of state |2P1/2, F = 1〉 allows the ion to decay to
the state |0〉, limiting the number of photons during the readout process. The frequency
difference between |2P1/2, F = 1〉 and |2P1/2, F = 0〉 is ν = 2π · 2.1 GHz [28]

To read the result at the end of the unitary evolution, each qubit is assigned one of the

binary logical values. This is realized by a projective measurement of the qubit state.

Shining laser light on the ions resonant with the transition |2S1/2, F = 1〉 ↔ |2P1/2, F = 0〉
will excite the ion if and only if the state |1〉 = |2S1/2, F = 1〉 is occupied. Once the

ion is excited, a photon is emitted by spontaneous decay |2P1/2, F = 0〉 → |2S1/2, F = 1〉.
Since the laser light is present, the ion will be excited again so that in each excitation,

de-excitation cycle a photon is emitted near 369 nm. This excitation cycle is shown in

fig. 2.5.5. The emitted photons are eventually collected by the objective lens and projected

onto the Electron Multiplying Carge Coupled Device (EMCCD) camera chip. The camera,

which is used to observe the emitted fluorescence of the ions, allows to spatially resolve the

ion on an image. This image is digitized and then analyzed to assign a logical 1 if and only

if fluorescence is detected at the position of the ion in the image. Otherwise a logical 0

is assigned to the readout. Since the state |2P1/2, F = 1〉 might be excited of resonantly a
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spontaneous decay to |2S1/2, F = 0〉 = |0〉 might occur [21]. This effect limits the number

of photons emitted by an initially bright |1〉 qubit. Due to a limited solid angle imaged

by the camera, absorption or reflection processes in the imaging optics, the number of

photons detected during a readout when the ion is bright is limited. How to distinguish a

signal of a few photons from the background signal is shown in section 2.5.6. It is therefore

advantageous to collect as much fluorescence light as possible during a readout.

It should be noted that during the readout the three states |2S1/2, F = 1, mF = ±1, 0〉
are all read out as a logical |1〉. These three states undergo a Zeeman splitting of about

2π · 10 − 2π · 20 MHz and are covered by the same laser light field. Increasing the magnetic

field will increase this splitting correspondingly, resulting in a decrease in fluorescence [37].

2.5.6 Calculation of excitation probabilities

At the end of each experiment, a projective measurement is performed, where the readout

is an image of the ion string. In the following, it is described how the image taken during

the readout process is interpreted to finally calculate an excitation probability P of a

quantum state in z basis. Due to the limited number of photons collected by the camera,

the distinction between the logical readout 0 and 1 is performed using a double-threshold

method.

Discriminating the logical state of a qubit between |0〉 and |1〉 using the double-threshold

method requires finding the area on the CCD chip exposed to fluorescence light for each

individual ion and finding the threshold values to ensure optimal detection fidelity. This

subsection describes the principle of calibration of the detection system as implemented in

the current setup.

Calibration of a system always requires comparison with a known reference. In this case,

the known reference is the ion itself. For this calibration, it is assumed that after shining

in the 369 nm laser field for a sufficient time, the whole qubit register is initialized in state

|00..0〉 with certainty. This initialization is described in section 2.5.4. Since the laser light

fields for the initialization and readout process are laser fields covering the entire register,

the register is prepared and read out globally.

In principle not much of the system is known at this point, for example the addressing
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frequencies νσ+ of the σ+ transition between |2S1/2, F = 0〉 ↔ |2S1/2, F = 1, mF = 1〉 of

the qubit is unknown, as well as the exact Rabi frequency Ωσ+ of this transition. Using

the insensitivity of the π transition frequency νσπ |2S1/2, F = 0〉 ↔ |2S1/2, F = 1, mF = 0〉
to the first order of magnetic fields, a specific reference pulse can be applied. The Rapid

Adiabatic Passage (RAP) pulse, where Ω(t) is Gaussian shaped while the RF frequency ν

is ramped across the atomic resonance [19]. This pulse has been shown to reliably excite

the qubit state from |0〉 to |1〉 without precise knowledge of either the atomic resonance

frequency or the exact Rabi frequency of the applied RF field.

To perform the calibration measurement, the following two steps are performed:

1. preparation of the register in the ground state |00..0〉 and a readout.

2. Preparation of the register in the ground state |00..0〉 application of a RAP-pulse

on the |2S1/2, F = 0〉 ↔ |2S1/2, F = 1, mF = 0〉 transition exciting state |11..1〉 and

a readout.

After image acquisition, a matrix containing a value for each pixel in the readout image is

analyzed to calibrate the detection.

The acquired physical signal is amplified and digitized in the camera during the readout

process. This process is not noise free and therefore affects the readout image by adding

electronic noise to each pixel. In addition to the electronic noise, which produces a mini-

mum base level of the signal, misalignment of the readout laser and imaging errors in the

imaging setup will add additional signals in the readout area of the CCD chip. Once the

detection is calibrated, the two thresholds found compensate for the extra base level in the

readout signal.

The first step is to identify the ion signal region in the image. In a second step, the readout

images must be post-selected and then the two thresholds must be found.

The first step is to identify the pixels that represent the light collected from a single ion.

Three images are acquired during the measurement cycle. During the Doppler cooling

step, the ions scatter light that is partially collected by the objective and imaged on

the CCD camera. The Doppler cooling images contain the most fluorescence. The raw,

unprocessed Doppler-cooling images are described by d(i,j),n, where n is the experiment
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cycle in which the image was acquired and i (j) indexes the column (row) of the image.

First, the Doppler cooling images are summed Dij =
∑

n d(i,j),n. Due to the orientation of

the imaging system, the light from a single ion may be spread over several pixels, which

must be correctly assigned. The ions are arranged horizontally in a linear chain in the

acquired images. Averaging the values of the first column of the image dbas =
∑

j D1j/Nrow

gives an estimate of the base level of the signal. Here Nrow is the number of rows in the

acquired image and D1j is the first column of the summed Doppler cooling image. This

approximate base level and a relative threshold, rth, allow finding a matrix that indicates

the region of the ions as

Aij =

⎧⎪⎨⎪⎩
1 Dij > rthdbas

0 else
. (2.5.3)

In the next step, the ions need to be assigned individual regions.

To do this, the ion regions must be separated by at least one pixel that is not assigned

as an ion region. In order to capture as much signal as possible from a single ion, it is

advantageous to assign an ion area as large as possible, as long as the readout noise of the

CCD chip does not degrade the measured signals. To do this, the relative threshold for

ion identification rth is chosen as small as possible, as long as the ions can be separated.

Here the set {(i, j)}k denotes the set of pixel coordinates assigned to ion k. An example is

shown in fig. 2.5.6.

After successful ion identification, the average background signal can be calculated by

averaging over all pixels of the image that are at least one pixel away from the identified ion

regions. The distance of one pixel to the ion area ensures that the pixels used to determine

the background do not contain ion fluorescence. This average background fluorescence is

subtracted from all images for subsequent analysis.

During the repeated execution of experimental cycles, various events may occur that could

affect the measurement result if not handled properly. For example, the ion could decay

from the state |2P1/2, F = 0〉 → |2D3/2〉. This state has a lifetime of τ|2D3/2〉 = 52.7 ms,

which is considerably longer than the lifetime of the state τ|2P1/2〉 = 8.12 ns. More details

about the 171Yb+ therm scheme can be found in section D. As a result, the ion is in

an undefined state, no longer participating in cooling and no longer being addressed by
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Figure 2.5.6: Instructive example of ion identification and background selection. The area
indicated in blue corresponds to the ion area of ion 1, the area indicated in orange corre-
sponds to ion 2, and the area indicated in green corresponds to ion 3. The gray area is
used to calculate the mean background signal of the image. The dashed areas are not used
by the analysis but ensure proper separation of the found ion areas.

microwave radiation. The measurement cycle in which such an event occurs corrupts the

experimental data and must be removed from further analysis. This type of event and the

formation of unwanted molecules in the ion string show a decrease in the measured Doppler

cooling fluorescence and can therefore be removed from the data set to be analyzed.

After successful ion identification and background correction, the fluorescence during Doppler

cooling is analyzed. The total ion Doppler cooling fluorescence of the cycle n and the kth

ion is given by

D′
k,n =

∑
{(i,j)}k

(
d(i,j),n − dgnd

)
. (2.5.4)

The average total Doppler cooling fluorescence for the kth ion is calculated by evaluating

the acquired Doppler cooling image for each cycle n. Based on the average total ion

fluorescence and assuming that the ion remains in the same state until the end of the

cycle, a measurement is accepted if the measured Doppler fluorescence is higher than a

threshold rd relative to the average fluorescence

Cycle n − 1, n, n + 1 is rejected if D′
k,n < rd · 〈D′

k,n〉n. (2.5.5)

When the Doppler cooling fluorescence is below this threshold, the readout of the quantum

state f ′
k,n is rejected. Here 〈D′

k,n〉n is the averaged Doppler-cooling fluorescence of ion k

averaged over all cycles n. The total ion fluorescence f ′
k,n for the image containing the
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quantum logical information of cycle n and the kth ion is given by

f ′
k,n =

∑
{(i,j)}k

f(i,j),n, (2.5.6)

where f(i,j),n is the readout image of cycle n containing the logical readout of the quantum

state. The number of photons measured during the experiment is limited by off-resonant

excitation to the state |2P1/2, F = 1〉 and spontaneous decay to |2S1/2, F = 0〉 [21], which

destroys the state |1〉. This results in a Poissonian distribution of different expectation

values for the measured signal of the EMCCD camera depending on the logical qubit

state. These Poissonian distributions for the dark and bright states of the ion partially

overlap. This leads to an ambiguity of the detected events in the overlapping region. To

clearly distinguish a bright state |1〉 from a dark state |0〉, a double-threshold method

is used. Details of this double-threshold are given in [39]. This method defines a lower

and an upper threshold. Events with fluorescence below the lower threshold, f ′ < Thd,

are identified as dark state d, and events with fluorescence, Thb < f ′, above the upper

threshold are identified as bright state b. All other events with fluorescence between the

lower and upper thresholds, Thd < f ′ < Thb, are considered ambiguous and are discarded.

Applying the two threshold method flags each ion as either a logical 0, 1 or discarded.

An example of the distribution is shown in fig. 2.5.7. Based on the experiment performed

for a given setting in a cycle, there are two ways to interpret the flagged events. One

possible interpretation is as a single ion excitation probability independent of the state

of the other ions in the chain. Another interpretation is a product state representing a

number between 0 and 2n − 1, where n is the number of qubits present. In the case of the

single ion excitation interpretation, the procedure is as follows. For each repetition of the

cycle, the useful result is bright or dark. By evaluating all repetitions of a cycle, Nb events

are identified as bright and Nd events are identified as dark. This allows the calculation of

a relative excitation probability

P
b̃

=
Nb

Nb + Nd
. (2.5.7)

There is a non-vanishing probability of misidentifying a bright state as a dark state γ2 and

a probability of misidentifying a dark state as a bright state γ1. These probabilities, as

well as the applied threshold, are the result of a calibration measurement to find the best

possible thresholds. Details can be found in [39]. Knowing this quantity allows to correct
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|0 |1

Discarded

Figure 2.5.7: Background signal corrected histogram of detected ion fluorescence for ion
2 in a three-ion crystal. Using the two-threshold method, symmetrically discarding 20%
of the events for the bright prepared state and the dark prepared state yields a detection
fidelity for the state P|1〉 = 0.991(15), P|0〉 = 0.991(15). Events showing an ion fluorescence
below the lower threshold are detected as |0〉, events showing a fluorescence above the
higher threshold are detected as |1〉, and events in between are discarded.

this misidentification as ⎛⎝P
b̃

P
d̃

⎞⎠ =

⎛⎝1 − γ2 γ1

γ2 1 − γ1

⎞⎠⎛⎝Pb

Pd

⎞⎠ . (2.5.8)

Where Pb is the true probability of finding the ion in state |1〉, Pd is the true probability of

finding the ion in state |0〉, γ1 is the probability of identifying it as dark while it is bright,

and γ2 is the probability of identifying it as bright while it is dark. Taking this into account

allows calculating the correct Probability of finding the system in state |1〉

Pb =
(1 − γ1)P

b̃
− γ1(1 − P

b̃
)

(1 − γ1)(1 − γ2) − γ1γ2
. (2.5.9)

The uncertainty in excitation probability Pb is given by the variance of the data sample of

all cycle repetitions:

Var(Pb) =
N(Nb + 1) − N2

b + 1
(N + 2)2(N + 3)

. (2.5.10)
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Here N = Nb + Nd. Each measured excitation probability is calculated using this method.

Based on this variance, the statistical error bar on measured data points presented in this

thesis is calculated as σP =
√

Var(Pb).

The following procedure is used when it is necessary to interpret the state as a product

state. The method described so far can be used to calculate and correct the excitation

probability of each ion at the end of an experiment. These probabilities reflect the fre-

quencies of occurrence of bright events for a given experimental setting. On the other

hand, suppose that the state of the ion string is interpreted as a logical state of a quantum

register. In this case, the readout is a product state, i.e., the state of the register must

be interpreted as one of the 2n logical states it can represent. Thus, the readout of an

experiment is no longer a single possibility, but a vector of length 2n, where each entry

represents a logical state.

So far, the method relies on discarding a certain fraction of the readout events. If the

readout is analyzed separately for each ion, this discarded fraction adds to the measurement

effort. This is acceptable since the additional measurement effort is about 20%. If the

readout is to be interpreted as a bit string, each ion must be assigned either 0 or 1.

This happens with the probability Psuccess = (1 − Pdiscard) per ion. Thus, assuming

statistical independence, the probability of getting a valid readout of a register of size N

is Psuccess = (1 − Pdiscard)N . For a typical setting in this thesis, Pdiscard = 0.2 and N = 3

ions, Psuccess ≈ 0.51 follows. Even for a three-ion system, a significant fraction of the

measurements will be discarded. In this case, this leads to a doubling of the measurement

time needed to collect data with a desired statistical significance. Scaling the system to

more qubits therefore requires more efficient state detection. This unfavorable scaling must

be overcome in future data analysis.

The read out probability vector is

�P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P|000〉
P|001〉
P|010〉

...

P|111〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0

P1

P2
...

P7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.5.11)
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Here P|000〉 = P0 is the probability to find the register in state 0. To calculate this proba-

bility vector of the register, the following steps are performed:

1. If the readout fluorescence of one or more ions is in the range between the two

thresholds, the readout is rejected and no longer considered in further analysis.

2. For each experiment cycle, the logical readout string is constructed as S = (l1, l2, l3)

where li is the logical state of the ion where the readout of each ion must be flagged

valid.

3. For each logical readout string S, an integer value is assigned v =
∑N

i=1 Si2i−1.

4. The probability Pv is then calculated as Pv = Nv/Ntot where Nv is the number of

occurred readouts of value v in all repetitions, where Ntot is the total number of valid

readouts.

During this readout, there is a possibility of misinterpretation of the readout due to im-

perfect separation of the individual ion fluorescence on the camera and electronic noise.

To quantify this error, a detection calibration must be performed.

Extending the scheme above, a linear map between the real excitation probability vector
�P and the measured probability vector �̃

P can be found:

�̃
P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0̃

P1̃

P2̃
...

P
2̃N −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M00 M01 M02 · · · M0(2N −1)

M10 M11 M12 · · · M1(2N −1)

M20 M21 M22 · · · M2(2N −1)
... . . .

M(2N −1)0 · · · M(2N −1)(2N −1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0

P1

P2
...

P2N −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= M �P.

(2.5.12)

Here, the diagonal elements correspond to the probability of correctly reconstructing the

excitation probability for each possible state such that, in the ideal case, M = 1. If the two

thresholds for each ion are known, an additional calibration of the product state detection

is required.

All possible product states must be prepared and detected to find the map M between the

actual and reconstructed quantum states. The preparation of a defined state is realized by

preparing the state |00..0〉 using laser light as described above and applying a RAP pulse
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on the σ+ transition of the ions to selectively excite the qubits to the desired product state.

The register is then read out. The preparation of �P in a defined state allows to find M ,

as the first column is the measured �̃
P (0) for a system prepared to state 0 = |00..0〉. The

second column corresponds to �̃
P (1) for the prepared state 1 = |00..1〉 and so on.

Applying the inverse matrix

M−1 �̃
P = M−1M︸ ︷︷ ︸

1

�P = �P , (2.5.13)

allows extraction of the excitation probabilities for the system’s state, compensating for

detection errors.

An example of a measured 8-state detection matrix M is shown in fig. 2.5.8. The cells in

dark colors show probability values close to 1, while the cells in light blue show probabilities

close to 0. From this matrix, some properties of the detection setup and the detection

method can be seen. For each state reported, there is a non-vanishing probability of

detecting a completely dark state, e.g. |000〉. If only one ion is to be prepared in an

excited state, in this case the states |001〉, |010〉 and |100〉, the probability of finding the

state |000〉 is approximately 3 · 10−2, whereas if the prepared state contains two excited

ions, |011〉, |101〉 and |110〉, the probability of finding the state |000〉 is approximately equal

to 5 ·10−3. The probability of finding a readout containing two-bit flip errors is suppressed

compared to errors containing one bit flip, as would be expected.

Using this calibration measurement allows reconstruction of the true state of the system

without systematic detection errors by applying the inverse of the detection matrix M−1

to the readout state. The statistical errors of this correction must be taken into account,

since the calibration measurement always contains statistical errors. For this calculation,

the statistical error of the elements in the inverse matrix must be calculated. The error

propagation using a matrix inversion operation is given by [40]:

Cov(M−1
αβ , M−1

ab ) =
∑

i,j,k,l

M−1
αi M−1

jβ M−1
ak M−1

lb cov(Mij , Mkl). (2.5.14)

In case of known variances in the form of standard errors, the sum can be reduced to
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Figure 2.5.8: Measured detection matrix M of output states |lmo〉 for given input states
|ijk〉. The upper matrix shows the detection matrix M , while the lower matrix shows the
standard errors σM for each value in the upper matrix. This measurement consists of the
preparation of the desired state |ijk〉 by a RAP pulse on the σ+ transition of each ion to be
prepared in the state |1〉 and a readout. The frequency of the occurring state is calculated
to extract the excitation probabilities.
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calculate the standard deviation of the elements of the inverse matrix as:

σ2
M−1

αβ

=
∑
i,j

(
M−1

αi σMij M−1
jβ

)2
. (2.5.15)

Using the matrix multiplication

Pi =
∑

j

M−1
ij P̃j , (2.5.16)

one can use Gaussian error propagation to calculate the errors of the reconstructed state

assuming a Gaussian distribution as follows:

σ2
Pi

=
∑

j

(
M−1

ij σ
P̃j

)2
+

∑
j

(
P̃jσM−1

ij

)2
. (2.5.17)

Using eq. (2.5.16), a readout probability distribution �̃
P can be mapped to the real probabil-

ity distribution �P . The error for the calculated probabilities P̃i can be calculated according

to [9] as

σ
P̃i

=
√

Var(P̃i) =

√
(ki + 1)(N + M − ki − 1)
(N + M)2(N + M + 1)

, (2.5.18)

where ki is the number of occurrences of the bit string i, N is the number of measurements,

and M = 2Nion is the number of possible readouts.

Measuring the full detection matrix is therefore only feasible for a small set of ions, since

the number of prepared states and thus the measurement effort scales exponentially.

A possible extension to larger quantum systems would require a significant reduction of the

measurement effort. Assuming that bit flip and next neighbor crosstalk are the dominant

error sources, it would be sufficient to sample only a few bit patterns. A possible set of

patterns for a qubyte could be as follows:

|10010010〉, |01001001〉, and |00100100〉. From these three examples, the possibilities of

misidentifying a |0〉 state as |1〉 can be deduced, given that the next neighboring ion is in

the |1〉 state. The states |01010101〉 and |10101010〉 would allow to study the rate of false

identifications given that both neighboring qubits are in state |1〉. The states |00000000〉
and |11111111〉 allow to estimate the probability of a random bit flip. These bit patterns

can be easily extended to larger quantum systems while keeping the measurement effort

the same. This reduced measurement does not allow to reconstruct the full detection ma-
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trix, but assuming only next-neighbor crosstalk, this reduced set of measurements may be

sufficient to quantify next-neighbor detection crosstalk. Thus, the mitigation of detection

crosstalk in large quantum registers remains to be investigated.

2.6 Fast addressing-frequency measurement

A critical capability for any quantum computer is to address its qubits to implement local

rotations on desired qubits. Here, addressing of individual qubits is realized by applying

a global RF field resonant with the desired qubit transitions. The use of Zeeman split

hyperfine levels as qubits allows frequency addressing. Using a linear ion crystal with

defined ion positions and a magnetic field gradient shifts the resonance frequency for each

ion, making it unique. The exact addressing frequency must be known to minimize pulse

errors. Compensating for a drifting addressing frequency requires a fast measurement

within seconds that allows the known resonance frequency to be used in the experiment.

To do this efficiently, a method developed during my master thesis [28] can be used. It is

summarized here, since this method was used for the measurements presented in chapter 3.

After applying an RF pulse of duration τ to a qubit prepared in state |0〉, the excitation

probability as a function of the phonon number n can be expressed as

Pn(δ, τ) =
Ω2

n

Ω2
n + δ2 sin2

(√
Ω2

n + δ2 τ

2

)
. (2.6.1)

Here, Ωn is the Rabi frequency of the observed transition when n phonons are present,

and δ is the detuning relative to the observed resonance. The Rabi frequency Ωn can be

calculated as [41]

Ωn = ΩL0
n(η2), (2.6.2)

where n is the phonon number, and L0
n are the associated Laguerre polynomials.

Since the cooling step only consists of Doppler cooling for fast measurement, the thermal

excitations need to be considered:

P (n, δ, τ) =
2n∑

n=0

Pn(δ, τ)
(n + 1)

(
n

n+1

)n . (2.6.3)
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This defines the expected shape of an atomic resonance for an ion stored in a harmonic

trapping potential at a given mean thermal excitation of n phonons.

As shown in equation (2.6.1), applying a detuned tophat RF pulse excites the addressed

ion. Since the shape of the resonance is known, the measurement to determine the ion’s

resonance can be efficient by minimizing the number of data points to acquire. Measuring

the excitation probability of an ion after the application of an RF pulse intentionally

detuned to the atomic resonance to lower (higher) frequency by κΩ yields the excitation

probability P± = P (n, Δ ± κΩ, τ). Precalculation of

g(Δ) =
P+ − P−
P+ + P−

(2.6.4)

allows to numerically invert the map g to find Δ = g−1 ([P+ − P−]/[P+ + P−]). The

measured value of Δ then is the offset of the expected to the real resonance frequency.

The width of the transition scales with the Rabi frequency Ω, reduction of Ω, therefore,

allows the measurement of the resonance frequency to be more precise. All relevant res-

onance frequencies can be measured simultaneously by applying an RF pulse to each ion

before readout. This has been demonstrated up to a register of eight qubits in the current

setup.

Since the addressing frequencies of the ions can vary during the course of an experiment,

these fast addressing frequency measurements are interleaved between the cycles of the

experiments. This allows to follow the slow changes of the atomic resonances and reduces

the pulse errors and the dephasing of the qubit state, since the rotating frame of the qubits

is better known.
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Figure 2.6.1: (a) Schematic of the resonance as a function of RF frequency for a fixed pulse
duration. Here ν0 is the assumed resonance frequency before this recalibration step. The
frequencies ν± are the frequencies at which the resonance is sampled. It is calculated as
ν± = ν0 ± κΩ. P± is the excitation probability after applying a top hat pulse with fre-
quency ν±. (b) Map between the normalized excitation probability (P+ − P−)/(P+ + P−)
difference and the frequency correction to apply Δ. Measuring two excitation probabilities
P± after applying two detuned RF pulses is sufficient to measure the resonant frequency
of a |2S1/2, F = 0〉 ↔ |2S1/2, F = 0, mF = ±1, 0〉 [28].

Observation of the atomic σ+ transition |2S1/2, F = 0〉 ↔ |2S1/2, F = 0, mF = 1〉 is suf-

ficient to calculate the magnetic field at the position of the ions using the equation

eq. (2.2.4) and thus allows to calculate the resonance frequencies of the π transition

|2S1/2, F = 0〉 ↔ |2S1/2, F = 0, mF = 0〉 and the resonance frequency of the σ− transition

|2S1/2, F = 0〉 ↔ |2S1/2, F = 0, mF = −1〉.

In the current experimental setup, the statistical uncertainty of the addressing frequency

measurement exceeds the coupling strength in the register σν > Jij . In the upcoming

setups with stronger coupling between the qubits, this is no longer true. The coupling can

be seen as a state dependent detuning, making it necessary to increase the driving fields

Rabi frequency or the use of broadband pulses to compensate for addressing errors due

to the state of other qubits in the register. Nevertheless, the addressing error due to the

coupling will be relevant and requires further investigation in the future.

38



2.7 Multi-tone sideband cooling

2.7 Multi-tone sideband cooling

To perform experiments involving the coupling of qubit states with vibrational excitation

of the ion crystal, it is often necessary to cool all the vibrational modes of the ion crystal

close to its motional ground state. As shown in [9, 42], one ion in the crystal can be used

to sympathetically cool the other ions. Using the cooling scheme presented in this work,

individual serial cooling of vibrational modes was previously required, taking up to 120 ms

to cool a single mode of the ion crystal [9]. In the current setup, three frequency generators,

each capable of generating a single tone, allow an RF field containing three tones. This

can be used to cool three vibrational modes of a three-ion crystal simultaneously, reducing

the cooling time required per cycle.

In a three ion crystal, the vibrational mode frequencies are given in terms of the Center Of

Mass (COM) mode as, νCOM , ν2 = 1.732 νCOM and ν3 = 2.408 νCOM which can be found

numerically [14].

The absolute amplitudes are given by

S =

⎛⎜⎜⎜⎝
0.577 0.577 0.577

0.707 0 −0.707

−0.408 0.816 −0.408

⎞⎟⎟⎟⎠ , (2.7.1)

where the rows of S denote the vibrational mode, columns of S denote the ion, and the

entries of S are the relative amplitudes of the oscillation. This dynamical matrix allows

the extraction of a recipe to cool three motional modes of a three-ion crystal:

• Cool mode 2 on ion 1,

• Cool mode 3 on ion 2,

• Cool the COM mode on ion 3.

This combination of ions and vibrational modes assigned the ion with the largest amplitude

to the mode, resulting in the strongest coupling and cooling. As described in section 2.5.3,

sideband cooling requires both a laser field and an RF field to be present simultaneously. It

has been found that for a given RF Rabi frequency Ω, sideband cooling works best when the

intensity of the laser field is matched. Due to the different Rabi frequencies of the sideband
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transitions of the other modes on different ions, the Rabi frequencies of the RF transition

must be matched. Experimentally, it is advantageous to choose the largest possible RF

Rabi frequency. Optimizing the frequency of the RF fields of each sideband transition then

maximizes the cooling rate. Because of the light field present to complete the cooling cycle,

the optimal sideband cooling frequencies of the RF transition must be found. Since the

number to be optimized is the residual excitation of the vibrational modes, it is sufficient

to optimize the frequencies to address the modes. Full sideband spectroscopy is a time-

consuming task to measure the phonon excitation as used in [9]. Instead, a method is

used here in which the red sideband can no longer be driven, indicating that the ions are

in their motional ground state. Thus, it is sufficient to optimize the experimental set to

search for a vanishing red sideband transition. Since the sideband frequencies are known

and the full microwave power is used to increase the cooling rate, the only free parameter

left to vary is the intensity of the laser at 369 nm. The intensity of the light field must

be adjusted to match the microwave Rabi frequency for optimal cooling. If they match,

a global optimum for the laser field intensity used can be found, as shown in fig. 2.7.1.

The optimum is indicated by a minimum of the observed excitation after application of

a readout pulse resonant with the red sideband transition as a function of the applied

cooling laser intensity I. Compared to full sideband spectroscopy, this method is about

30 times more time-efficient, since only one point is sampled for each cooling laser power

level instead of a full spectrum.

By applying sideband cooling to three ions and three modes in parallel, the three vibrational

modes are cooled simultaneously by irradiation with three RF fields. The heating rate of

the system limits the minimum achievable vibrational excitation. The dominant heating is

that of the COM mode. To effectively heat higher order modes, each ion must be subjected

to a force of different amplitude or direction. This results in a two-stage parallel sideband

cooling scheme. Similarly, COM mode cooling can be enhanced by simultaneously cooling

the COM mode on three ions with three RF fields. This increases the cooling rate and

further reduces the residual excitation.

In the first step, all three modes of a three-ion crystal are cooled simultaneously, followed

by a step in which the COM mode is cooled on all three ions. This second step can be

relatively short because the motion of the ions in the COM mode is pre-cooled. This
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(a) (b) (c)

Figure 2.7.1: Experimental result of the search for the optimal optical cooling intensity
I. Here the intensity I of the laser light near 369 nm is varied during the 50 ms sideband
cooling step as described in section 2.7. The qubits are then prepared in the |000〉 state
as described in section 2.5.4, and a microwave readout pulse resonant to the red sideband
transition is applied to each qubit in the absence of a light field. (a) Ion 1 readout of mode
2 (b) Ion 2 readout of mode 3 (c) Ion 3 readout of COM mode. The resulting excita-
tion probability P indicates the presence of a red sideband transition, where a vanishing
sideband transition indicates ground state cooling. All three modes show a dip at about
0.1, indicating simultaneous cooling of the three modes. The scanned range of laser power
is limited to efficiently implement the sideband cooling optimization, so that even at the
highest laser power applied, the system is already cooled.

two-step scheme is implemented in the experiments performed here with 50 ms cooling on

three different modes and 10 ms cooling on the COM mode on three ions. This reduces

the cooling time from 300 ms using the classical method [9] to 60 ms using the technique

introduced here. The duration of coherent evolution in the experiments performed for

this work is less than 20 ms, making sideband cooling the most time-consuming task in an

experiment. Therefore, the application of this fast sideband cooling scheme speeds up data

acquisition by a factor of five in the case of a three-mode SBC.
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Figure 2.7.2: Timeline of a two-stage sideband cooling process. (D) is the fast Doppler
cooling of 5 ms duration, followed by a 50 ms parallel three-mode sympathetic sideband
cooling. Finally, a 10 ms parallel three-qubit COM cooling is applied to cool the COM
mode at three times the cooling rate during the three-mode SBC to reduce the residual
phonon level limited by the predominant COM mode heating.

2.8 Lab automation

One step in developing a quantum computer is to automate the system as much as possible

to allow for automated operation. During the time in the lab, it became clear that it would

be beneficial to reduce the human factor in the experiment to increase reproducibility and

improve results. Automating routine tasks improves the reliability of the experiment and

allows the operator to focus on other aspects of the experiment. Some common tasks are

loading the trap or adjusting the laser frequencies. These two tasks have been automated

and are described below.

The phenomenological description of the detection of unwanted molecules in the ion crystal

allows to decide whether it is necessary to reload or not. This procedure is described in

chapter 3.

2.8.1 Automatic loading

Loading the trap is a standard lab task. The trapping potential is deep enough that even

uncooled ions remain in the trap overnight, so it is rare for an ion to be lost. Therefore,

reloading the trap with 171Yb+ is necessary if the trap has been turned off, a molecule

has formed, or the number of 171Yb+ in the trap is incorrect. Regardless of the reason for

reloading the trap, the loading procedure is always the same. Here I will describe how to
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automate the loading process. This procedure is based on experience in daily lab operation

and may be improved in the future:

• Switching the trap drive:

At the beginning of a loading procedure, the trap drive is switched off for a short

moment. This allows us to get rid of ions in a dark state. The trapping potential is

switched by switching the frequency generator’s output amplitude, which generates

the signal to the RF resonator.

• Heating the oven:

To load 171Yb+ , atomic 171Yb is thermally evaporated by heating an oven [43]. To

heat, the oven current is switched and left on during the loading process.

• Setting the lasers:

The 369 nm laser is set roughly to the Doppler cooling setting detuned by about

2π · 100 MHz to the atomic resonance of a resting ion, to allow it to cool down fast

ions after ionization.

• The RF field is set to the π transition to close the Doppler cooling cycle.

• The 935 nm repump laser is switched on.

• The 399 nm laser for ionization is switched on and scanned across the atomic reso-

nance line to allow for laser ionization.

• The camera image is observed using a long exposure time.

• If one pixel of the camera image exceeds a hard set threshold, indicating the presence

of an ion, the ionizing laser is switched off.

• Waiting some seconds to let the ion or ions cool down and form a crystal.

• Scanning the laser frequency and observing the ion fluorescence as incoherent spec-

troscopy is used to determine the optical resonance.

• Counting the number of ions in the trap. If not enough ions are present, continue

loading; otherwise, finish the loading procedure.

• Setting the 935 nm repump laser to resonance found by spectroscopy, and the 369 nm
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laser about 2π · 100 MHz detuned.

• Switching on the 399 nm ionizing laser.

• Waiting till sufficiently many ions are counted.

Depending on the parameters: 399 nm laser power, 369 nm laser power, sweep speed and

range of the 399 nm laser frequency, overlap and beam size of both lasers, and heating power

of the atomic oven, loading times for 171Yb+ are on the order of 5 min for the first ion to

be loaded. If the oven remains on during loading, additional ions can be loaded in about

three minutes. This procedure relies on proper ion counting and a quasi-deterministic

appearance of freshly loaded ions in the crystal, which limits the loading rate so that one

ion is cooled down before the next ion is ionized.

2.8.2 Laser spectroscopy

The optical transition of 369 nm from |2S1/2, F = 1〉 ↔ |2P1/2, F = 0, 1〉 is used in the

experiment each time the ions are initialized, cooled, or readout, so knowledge of the

optical resonances is necessary to run the experiment. In addition to the UV transition

at about 369 nm, the infrared transition at about 935 nm must be known. The 935 nm

transition |2D3/2〉 ↔ |3D[3/2]1/2〉 pumps the qubit back to the |2S1/2〉 state. More details

about the ion resonances can be found in the appendix D. Both optical transitions have

to be found spectroscopically. This is done using the resonance fluorescence detected by

the camera. All fluorescence obtained is of wavelength 369 nm. The 935 nm transition is

observed indirectly by observing the photons emitted by the 369 nm spontaneous emission,

while the 369 nm transition is driven red detuned to maintain Doppler cooling during the

process.

Each spectroscopy performed is structured as follows:

• An image containing Doppler cooling fluorescence is acquired.

• An ion area is estimated by selecting pixels exceeding a fixed threshold.

• In the case of the 935 nm laser scan, the laser power is reduced from P935 = 1.1 mW to

P935 ≈ 110 μW to reduce power broadening on the transition to FWHM ≈ 2π·50 MHz.
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• The laser wavelength close to 369 nm is detuned to the red from the current frequency.

• Successive images are acquired while the laser frequency is scanned stepwise in

fstep,935 = 2π · 6.4 MHz from the red towards the blue detuning.

• For each image, the fluorescence is found, summing up the values of each pixel in the

ion area.

• In the case of the laser scan of the 935 nm laser, a Gaussian profile is fitted to the

fluorescence curve to find the resonance.

In the case of a scan of the 369 nm laser wavelength, it is necessary to perform the wave-

length sweep from the red to the blue detuning, since blue detuned to the resonance, the

369 nm laser will Doppler heat the system, causing the ion crystal to melt. The point

at which the Doppler cooling stops working and the crystal melts can be found in the

integrated fluorescence data over the ion regions as a rapid drop. An example of a laser

spectrum observing the transition at about 369 nm is shown in fig. 2.8.1.

The laser frequency is shifted to about 2π · 19 MHz below the rapid drop of the measured

fluorescence to achieve optimal Doppler cooling efficiency. In this part of the optical

resonance, the largest slope of the scattering rate as a function of laser frequency occurs,

resulting in optimal Doppler cooling.

2.8.3 Stabilization of cooling fluorescence

During all experiments, the 369 nm laser field frequency may drift slowly. This can be

caused by ambient pressure, temperature, and humidity. This is due to the locking to the

resonance of a reference cavity. The cavity is in air, so a change in the refractive index

due to a change in the above parameters changes the resonant frequency of the cavity and

therefore the frequency of the laser locked to it. Since the thresholds found during the

detection calibration process are only valid as long as the number of photons captured

when the qubit is projected onto |1〉 remains constant, the fluorescence obtained must be

kept stable. Furthermore, the fluorescence must be the same for all experiments using

the same detection calibration. To ensure this, a scan of the laser frequency is performed

automatically before the experiment starts, as described in section 2.8.2.

45



2 Basic principles

Figure 2.8.1: Example spectrum of the 369 nm cooling transition |2S1/2, F = 1〉 ↔
|2P1/2, F = 0〉. The laser is tuned from lower frequencies to higher frequencies since, at the
resonance, the Doppler-cooling does not work anymore, and the ion string melts, producing
a rapid drop in measured fluorescence. Here Δ = 2π · 0 MHz corresponds to no detuning
of the laser frequency relative to the lasers frequency prior to the spectroscopy performed.
Using a laser frequency detuned by approximately −Δ = 2π · 19 MHz from the rapid drop
in fluorescence is used for Doppler cooling the ion string during the experiments. This
corresponds to the steepest slope of the resonance, indicating the best Doppler cooling
configuration.

After the resonance is found, the frequency of the 369 nm laser field is detuned by 2π ·
19 MHz to the red. This is done automatically before starting an experiment, including the

calibration measurement to find the detection thresholds. This ensures that the thresholds

are valid at the beginning of the experiment. However, the laser frequency may drift during

the experiment.

To compensate for this drift, live analysis of the Doppler cooled fluorescence can be used.

Once the experiment is started, the Doppler cooling images should always contain the

same fluorescence. After the experiment has started, a floating average over the last Navg

Doppler cooling images din is calculated based on the detection ion areas:

Dk =
k∑

n=k−Navg

Nion∑
i=1

din. (2.8.1)
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At the start of the experiment, the reference fluorescence Dref = DNavg is evaluated after

Navg cycles. After a period of τstab, Dk is calculated and compared with Dref , if the

deviation is greater than Dwin, a frequency step fstep is applied:

Δfappl =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
fstep when Dref − Dk > Dwin

−fstep when Dref − Dk < −Dwin

0 else.

(2.8.2)

Typical choices during the experiment are Navg = 100, fstep = 2π ·0.48 MHz and τstab = 2 s.

With these parameters, the application of this technique allows to compensate sufficiently

slow drifts of the laser frequency, less than 2π · 240 kHz/s.
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Microscopes have paved the way for advances in basic research. The development of opti-

cal microscopy has historically led to breakthroughs in science. Although limited by the

wavelength of light used in optical microscopes, the resolution of optical microscopes was

improved through the use of novel techniques. Scanning near-field optical microscopy [44]

has been used extensively at wavelengths in the visible regime [45] and has been extended

to the radiofrequency regime [46, 47]. The highest wavelength-relative resolution attained

to date was reported by Keilmann et al. [46] as Δx/λ < 5 × 10−7 using wavelengths up to

20 cm. Using a spatially varying magnetic field and a probe sensitive to magnetic fields,

the position of the probe can be measured. Electron spins in single nitrogen vacancy defect

centers in diamond can be selectively addressed [48,49], and were used for measuring mag-

netic fields, in the present gradient resulting in a wavelength-relative resolution of 2.8×10−6

using a wavelength of 10.4 cm. [50]. Combining scanning force microscopy and magnetic

resonance imaging was proposed in 1991 [51] and demonstrated shortly after [52]. Trapped

atomic ions have been succesfully employed probes for magnetic fields [53–55], electric

fields, and forces in the yoctonewton regime [56–60].

In this chapter, a single 171Yb+ ion is used as a quantum sensor of magnetic fields to

calculate the position of the ion and ultimately as a sensor of tiny DC electric forces.

At the end of this chapter, measurements of the resonance frequency of the qubits, routinely

performed during lab operations, are used to indirectly diagnose whether or not an ion that

is not visible and not addressed by laser light has formed a molecule. In addition, precise

knowledge of the qubit resonance frequency allows us to observe the axial trap frequency

and the J-coupling.
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3.1 Measuring ∂zB

A 171Yb+ -ion trapped in a quadratic potential as described in chapter 2 can be Doppler-

cooled, state-selectively prepared and read out with laser radiation close to 369 nm. An

EMCCD camera observes it with a pixel size of 16 μm. The imaging optics used here

provides a magnification of 12.5 and images the fluorescence light of ions on about 12 · 8

pixels. Given the setup used in its normal mode of operation, the observed ion fluorescence

extends over ≈ 10 μm in the trap. This is sufficient to spatially identify and separate the

qubits in the trap. The size of the image and the width of the ion wave function in the

trap can easily be mistaken for a limit to the resolution of the ion position. In this chapter,

the center of the ion wave function in the trap is referred to as the position of the ion.

Although the ion wave function extends over Δz =
√

�
2mY bωz

≈ 16 nm, the center of the

wave function and therefore the position can be defined with higher accuracy.

To measure the position of the ions, a measurement of the magnetic field with a known

magnetic field gradient can be used. To determine the magnetic field gradient in the

setup, it is necessary to probe the magnetic field at different points along the trap axis.

Assuming a harmonic potential and Coulomb repulsion between charged ions, the position

of the ions in a Coulomb crystal can be calculated for a given trap frequency [14]. The

distance between the ions is therefore defined by electrostatics and can be determined

without using optical imaging or the magnetic field at the ion position. A linear Coulomb

crystal can therefore be used as a reference for the ion position to determine the magnetic

field gradient.

The following steps were performed to measure the gradient. These steps are explained in

the following paragraphs.

1. Measurement of the axial trapping frequency ωz by resonant excitation of the move-

ment of the ions in the trap.

2. Calculating the ion’s relative positions in the trap by minimizing the overall potential

as shown in eq. (3.1.2).

3. Measurement of the addressing frequencies νi of a string of ions as shown in sec-

tion 2.6.
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4. Calculating the magnetic field from the measured resonance frequencies at the qubits

position by inverting eq. (2.2.9).

5. Calculating the gradient from calculated ion positions and magnetic fields as shown

in fig. 3.1.1.

To measure the axial trap frequency ωz, an AC voltage is applied to an electrode while

it frequency νAC is scanned over the resonance and the ion image is observed. When the

applied AC signal is close to the resonance (νAC = ωz), the motion of the ions in the trap is

excited until it is visible by a distortion of the image on the camera. The frequency of the

voltage applied to the electrode is then resonant with the ion motion. The lowest frequency

that occurs while a distortion of the ion image along the trapping axis is observed is the

Center Of Mass (COM) mode. Its frequency is independent of the number of ions in the

linear Coulomb crystal and can therefore be clearly identified.

The different qubit resonance frequencies of all ions in the crystal allow for addressing the

ions individually. In the case of a Coulomb crystal containing multiple ions, the qubit

resonances can be measured simultaneously for all qubits using the method described in

section 2.6. Periodic recalibration of qubit resonances is routinely applied to minimize

addressing errors during the execution of quantum circuits. Therefore, long data sets of

continuous frequency calibration are available.

Two properties can be extracted: The magnetic field gradient and the stability of the trap

frequency, and hence the long-term stability of the J-coupling, can be estimated.

According to [14], the ions’ position in a trap is determined by the minimum of the electric

potentials assuming harmonic axial confinement and the Coulomb potentials generated by

each ion. The positions are given as

zi = ui

(
q2

e

4πε0mYbω2
z

)1/3

, (3.1.1)

where qe is the elementary charge, mYb is the mass of an Ytterbium ion, ωz = 2π ·
128.24(1) kHz is the trap frequency and ui is the solution to the equation:

0 = ui −
i−1∑
j=1

1
(ui − uj)2 +

N∑
j=i+1

1
(ui − uj)2 . (3.1.2)
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Ion Scaled positions ui Absolut positions zi magnetic field B

1 −1.43680 −15.4853(8) μm 346.60(2) μT
2 −0.45438 −4.8971(3) μm 548.70(2) μT
3 0.45438 4.8971(3) μm 735.68(2) μT
4 1.43680 15.4853(8) μm 937.89(2) μT

Table 3.1.1: Calculated ion position of 4 ions for a measured axial trapping frequency
of ωz = 2π · 128.24(1) kHz measured by observing a blurring of the ion image while an
alternating electric field excites the motion of the ions. The magnetic field B is calculated
as an average of the ion resonance frequencies over a consecutive observation time of 6h
using 357 measurements of the addressing frequency per qubit. The errors are calculated
as standard errors of the samples of B, while the error on z is calculated from the error on
ωz.

The trap frequency was determined manually in this case with an estimated error of 2π ·
10 Hz, where the measured trapping frequency is ωz = 2π · 128.24 kHz. Based on this

uncertainty according to eq. (3.1.1), the error of the relative length scale is

σz

z
=

2
3

σωz

ωz
≈ 5 · 10−5. (3.1.3)

The calculated ion positions’ results are shown in table 3.1.1.

The magnetic field gradient corresponds to the linear slope of B(z) and is derived by a fit

to the measured data shown in fig. 3.1.1 and table 3.1.1 respectively. Since the errors in

the calculated position are given by the frequency error of the measured trap frequency,

they are correlated. The systematic error of this axis is σz/z ≈ 5 ·10−5. The slope is linear

in the scaling errors of the z-axis, so the relative errors add up to

σ∂zB

∂zB
=

(
σ∂zB

∂zB

)
fit

+
(

σzi

zi

)
syst

, (3.1.4)

where ∂zB is the magnetic field gradient. The magnetic field gradient is found to be

∂zB = 19.09(1) T/m. (3.1.5)
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Figure 3.1.1: Linear fit of the magnetic field at the ion position for a measured trap fre-
quency ωz = 2π ·128.24(1) kHz. The barely visible error bars correspond to standard errors.
From the linear fit ∂zBfit = 19.092(1) T/m can be estimated. Incorporating the systematic
error of σz/z ≈ 5 · 10−5 derived in eq. (3.1.3), in total, the magnetic field gradient can be
estimated to be ∂zB = 19.09(1) T/m. The calculated position and magnetic fields can be
found in table 3.1.1.

3.2 Observing an 171Yb+ ion

The minimal motional excitation as shown in section 2.5.2 is n = 80 after a Doppler

cooling step is applied. Two assumptions are made. The Rabi frequency Ωn depends on

the phonon number n. This is described by the equation (2.6.2). Second, the thermal

occupation of the vibrational modes is described by (2.6.3). These equations can be used

to synthesize the shape of an atomic resonance. In fig. 3.2.1 the calculated shape is given for

two exemplary phonon numbers. From this shape, a numerical search for the point where

the expected excitation probability is 0.5 yields the Full-Width Half Maximum (FWHM)

of the resonance. In a range from n = 20 to n = 100 the FWHM of the resonance changes

by 1.7 · 10−2Ω. This demonstrates the robustness of the method summarized in section 2.6

against thermal excitations of the ion motion, and therefore a fast Doppler cooling step is

sufficient for the measurement.

Using this shape of the atomic resonance and equation (2.6.4), the measurement of two

excitation probabilities is sufficient to determine a frequency offset Δ. Equation (2.5.10)
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(a) (b)

Figure 3.2.1: (a) Exemplary calculated excitation probability P of the hyperfine resonance
|2S1/2, F = 0〉 ↔ |2S1/2, F = 0, mF = 1〉 with different motional excitations n = 0; 100 as
a function of the detuning δ with respect to the atomic resonance in units of the Rabi
frequency Ω. (b) Full-width half maximum (FWHM) of the synthesized atomic resonances
in units of the Rabi frequency Ω. The relative change of the resonance width of about
0.02 justifies the validity of the resonance measurement if only a Doppler cooling step with
n = 80 phonons, in the end, is applied.

allows to calculate the error of a measured excitation probability σP± and using eq. (2.6.3)

allows to calculate P± for a given Δ, as shown in [28]. The error in the frequency mea-

surement can be calculated as

σΔ =
(

∂g

∂Δ

)−1
√√√√2P 2

+σ2
P− + 2P 2−σ2

P+

P+ + P−
. (3.2.1)

The updated frequency is ν = ν0 + Δ and therefore the statistical error of the updated

frequency is σν = σΔ. The resulting statistical errors are shown in fig. 3.2.2 for a fixed

measurement time and a fixed frequency offset Δ. For a given number of repetitions of

Nrep = 50 corresponding to a measurement time of 2 s the minimal achievable statistical

error is σΔ = 0.06 · Ω. For a fixed measurement duration of two seconds, the expected

statistical uncertainty for a given frequency offset Δ during this measurement is shown in

fig. 3.2.2. Around Δ = 0.8 · Ω, the error rapidly increases, limiting a beneficial window for

corrections with Δ < 0.8 · Ω. For a given offset Δ, also the scaling of the statistical error

with the measurement time is shown, indicating a σν/Ω ∝ 1/
√

T scaling.
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3.2 Observing an 171Yb+ ion

(a) (b)

Figure 3.2.2: (a) Relative statistical uncertainty of the addressing frequency σν/Ω, given a
frequency offset during the measurement of Δ/Ω = [0, 0.3, 0.7]. Indicated points correspond
to calculated uncertainties based on the calculated measurement error, as shown above,
dashed lines are showing an ∝ 1/

√
T scaling, where T is the measuring time. (b) Calculated

uncertainty for an experiment of a fixed duration 2 s as a function of the frequency offset
using equation (3.2.1).

First, the fast adaptive addressing frequency measurement was implemented to compensate

for drifts in the addressing frequency. To demonstrate the ability to resolve the position

of an ion along the z axis, a change in position is introduced by changing the minimum

position of the trapping potential. This potential along the z direction is generated by

the voltage applied to the end cap electrodes shown in fig. 2.1.1. Figure 3.2.3 shows a

schematic of the end cap electrodes that generate the trapping potential. To calculate the

trapping potential, the electrodes in the calculation are replaced by a dummy charge at

the center of the electrode tips. This reduces the problem to one dimension.

The electrostatic potential can be calculated as

φ =
1

4πε0

(
q1

z − z1
+

q2

z2 − z

)
. (3.2.2)

Solving ∂zφ = 0 results in:

z =

√(
q1z2 − q2z1

q1 − q2

)2
− q1z2

2 − q2z2
1

q2 − q1
+

q1z2 − q2z1

q1 − q2
, (3.2.3)
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Figure 3.2.3: Schematic of the experimental setup to introduce a shift of the position of the
ion by changing voltage U2. The radius of the metallic end cap electrodes is re = 0.15 mm,
the distance between the electrode tips is d = 3 mm. The charges q1 and q2 represent
the replacement charge for the voltage applied to the end caps, generating the trapping
potential at the location of the ion.

where z is the position of the ion, zi are the positions of the replacement charges qi and

ε0 is the vacuum permittivity. The replacement charges here are qi = 4πε0reUi where re is

the end cap tips’ radius and Ui is the voltage applied.

An offset magnetic field is required to define the quantization axis and lift the degeneracy

of |2S1/2, F = 1, mF = ±1, 0〉. An imbalanced voltage is applied to the end cap electrodes,

shifting the ions position in the trap out of the low magnetic field region. The voltages

where U1 = 15.38 V and U2 = 19 V resulting in a displacement of the ion from the center

of rdis = 87.3 μm. To modify the voltage U2 in the mV range to obtain a shift on the nm

scale, a second voltage Uvar is added to U2 using a voltage divider. U ′
2 = U2+9.8·10−3Uvar.

A quadratic fit of the calculated trapping potential at the ion’s location yields a calcu-

lated trap frequency ωcalc = 2π · 181.48 kHz. In contrast, the measured trap frequency is

ωtrap = 2π ·108.10 kHz. This discrepancy can be caused by the trap geometry, by imperfect

assembly of the trap electrodes, or by possible offset voltages on the DC ground electrodes.

The real trap differs from the ideal assumptions because the ions remain in the trap even

when no voltage is applied to the trap electrodes. The deviation from the idealized model

assumptions can be taken into account by introducing a factor κ = ωtrap/ωcalc. The re-

sulting linear response to the changed voltage is Δz = κΔU ′
2k̃ with k̃ = 2.11 · 10−7 m/V

found by fitting the calculated potential with a parabola and extracting the minimum.

Since the ions resonance drifts during the experiment, a measurement with a biased voltage

ΔU = U2 − U1 �= 0 is alternated with a measurement with ΔU = 0. Figure 3.2.4 shows

the measurements of the ions resonance. Using the Allan variance, a drift rate of the ions
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3.2 Observing an 171Yb+ ion

(a) (b)

Figure 3.2.4: (a) Measurement of the ions resonance ν during the experiment when the
additional voltage imbalance is switched off. Error bars are standard errors and are barely
visible. (b) The fit of the Allan variance for different lengths of bins. A drift rate of
σA = 8.3 Hz/s can be extracted.

resonance of σA = 2π · 8.3 Hz/s is estimated. Details of the procedure used to estimate

this can be found in [28]. From these measured frequencies, an amplitude of the magnetic

field B(ν) can be calculated by inverting equation (2.2.4). Assuming a constant magnetic

field gradient along the z direction of ∂zB = 19.09(1) T/m the position of the ion can be

inferred from

z =
B(ν)
∂zB

. (3.2.4)

The unbiased position during voltage biased measurements is not accessible. The ion po-

sition is given by linear interpolation between successive measurements without additional

voltage bias. This is shown in fig. 3.2.5. Comparing these positions gives the position offset

due to the applied voltage bias. Measurements with ΔU = 0 are z2k±1 and measurements

with ΔU �= 0 are z2k. The induced position change and its error can be calculated as:

Δzind,k = z2k − z2k−1 + z2k+1

2
, (3.2.5)

σΔzind,k
=

√
σ2

z2k
+

1
2

σ2
z2k−1 +

1
2

σ2
z2k+1 . (3.2.6)
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zind

(a) (b)

Figure 3.2.5: (a) Series of position measurements with and without additional voltage bias
ΔU at the endcap electrodes to induce ion displacement. The positions with ΔU = 0
are interpolated (dashed line) at times where a bias ΔU �= 0 is applied to extract the
induced ion displacement Δzind. (b) Comparison of the expected ion displacement Δz =
ΔU · 1.25 · 10−7 m/V, shown as a dashed line, and the measured displacements from (a),
where no fit was performed. The error bars shown are standard errors and are barely visible.
A drift of ν produces deviations from the expected displacements within the experiment,
which did not exactly follow the linear assumption.
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3.2 Observing an 171Yb+ ion

The measurement typically consists of 50 repetitions for two different RF pulses applied.

Therefore, 100 cycles have to be measured, resulting in a measurement duration of 2 s,

since the duration of a single cycle is 20 ms. A statistical error of the measured addressing

frequencies of σν = 2π · 28 Hz could be achieved during these measurements. Converted

to a position it is σz = 0.12 nm. The extension of the atomic wave packet in the trap

is given by Δzl =
√
�/2mωl = 16.5 nm, which is about two orders of magnitude larger

than the achieved resolution of its position. It should be emphasized that the measured

ion positions reported here correspond to the center of mass (COM) position. This does

not contradict the extension of the ion wave packet. Another noteworthy feature is that

this experiment was performed using RF radiation around ωrf ≈ 2π · 12.6 GHz, which

corresponds to a wavelength of λrf = 2.38 cm. Thus, the wavelength used to detect a

position is 5 · 109 times larger than the resolution, making it the best relative wavelength

resolution reported today.

Another feature of the experiment is the weak confinement along the z axis. The effective

potential is given by the equation (2.1.1). The axial component of the effective potential

Φz is given by:

Φz =
1
2

mYbω2
zz2 = qeφz, (3.2.7)

where φz is the electric potential and qe is the elementary charge. From this potential, the

force is given by

Fz = ∂zΦz = mYbω2
z︸ ︷︷ ︸

k

z = 1.31 · 10−13 N/m · z. (3.2.8)

and therefore the error of the force can be calculated as:

σFz = kσz = 1.57 · 10−23N. (3.2.9)

A harmonic trapping potential is characterized by a linear dependence of the ion position

on the applied force. Therefore, Hook’s law can be applied. Hook’s constant k = 1.31 ·
10−13 N/m for an ion mass of mYb = 170.94 u = 2.84 · 10−25 kg and an axial trapping

frequency of ωz = 2π ·108.1 kHz. Together with a position resolution of O(10−10 m) a force

resolution of O(10−23 N) can be achieved.

The results of the measurements are summarized in table 3.2.1.

A typical physical property of a force measurement device is its sensitivity in units of
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Parameter value
Measurement time 2 s
Driving field Rabi frequency Ω 2π · 367 Hz
Trap frequency ωz 2π · 108.1 kHz
Statistical uncertainty of frequency σν 2π · 28 Hz
Sensitivity for resonance frequency 40 Hz/

√
Hz

Statistical uncertainty of DC magnetic field σB 2.3 nT
Sensitivity for DC magnetic field 3.2 nT/

√
Hz

Statistical uncertainty of position σz 0.12 nm
Sensitivity of position 0.17 nm/

√
Hz

Statistical uncertainty of force σF 1.6 · 10−23 N
Sensitivity of force 2.2 · 10−23 N/

√
Hz

Natural drift rate σA 8.3 Hz/s

Table 3.2.1: Overview of measurements obtained with a single ion in a 19.09(1) T/m mag-
netic field gradient along the trapping axis.

s = Ft−1/2 with units of N/
√

Hz, where F is a force and t is the measurement time.

The sensitivity defined as such is an instructive measure to calculate the possible reso-

lution σF = s/
√

t directly from the sensitivity and the applied measurement time. The

experimental procedure must be as fast as possible to obtain a good sensitivity.

The results obtained in this section are summarized in the table 3.2.1 and a publication is

in preparation.

3.3 Measuring the stability of the trapping potential

When a coulomb crystal is used as a register of qubits, periodic recalibration of the ad-

dressing frequencies is performed. The calibration data can also be used to observe the

trapping potential.

Assuming that the magnetic field gradient is constant, the measurement of the addressing

frequencies of the qubits allows the calculation of changes in the dimensions of the crystal as

shown in the previous section. Since the dimensions of the crystal l as shown in eq. (3.1.1)

[14] scale as l ∝ ω
−2/3
z ∝ zi − zj , a measure of the axial positions can be used to observe

the axial trapping frequency.
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3.4 Identification of an unrecoverable dark state

During a day of continuous lab operation, the resonance frequencies of the qubits are rou-

tinely calibrated. Based on 6 h of continuous measurements, fig. 3.3.1 shows the calculated

change of the inter-ion spacing Δzij = zi − zj . The example histogram of Δz23 over the

day has a width of σΔz23 = 0.82 nm. At an interion distance of Δz23 = 9.793(1) μm the

relative error is σΔz23/Δz23 = 8.4 · 10−5. The relative error of the trapping frequency is

therefore σωz /ωz = 3/2 · σΔz23/Δz23 = 1.3 · 10−4.

The axial trapping frequency is related to the coupling in an ion crystal as J ∝ ω−2
z . Thus,

the relative stability of the J-coupling is

σJ

J
= 2

σωz

ωz
= 2.6 · 10−4 (3.3.1)

This relative stability during the day refers to the contributions due to fluctuations in the

trap frequency. The trap frequency measurements are taken approximately every 20 s. This

measurement does not resolve changes in trap frequency on a faster time scale. Therefore,

this stability must be considered as long-term stability.

Parameter Relative stability over a day

Relative inter ion distance σΔz23/Δz23 8.4 · 10−5

Relative trap frequency σωz/ωz 1.3 · 10−4

Relative J coupling σJ/J 2.6 · 10−4

Table 3.3.1: Relative stability of the inter ion distance over a day and the accordingly
derived quantities for trapping frequency and J-coupling.

3.4 Identification of an unrecoverable dark state

The trap is installed in an ultra-high vacuum recipient to protect the qubits from the

environment. Nevertheless, there is some background gas in the setup. Occasionally,

collisions of the ion crystal with the background gas occur. Such a collision can drive the

system into a long-lived metastable state, or a chemical reaction can occur. If a chemical

reaction occurs, a molecule consisting of a Ytterbium ion and a background gas atom is

formed, changing the energy level structure. Either case is a problem. In both cases, the
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(a) (b)

(c)

Figure 3.3.1: (a) Addressing frequency calibration data for four ions during one day of
measurements. The initial frequencies νn(t = 0) have been subtracted to remove the
frequency offset of about 2π · 3.2 MHz for clarity. (b) Drift of the position of the ions
relative to each other Δz23 = z3 − z2. Although the addressing frequency of all qubits
jump as seen in (a), the distance between the ions is continuous. (c) Histogram of the ion
spacing Δz23 during the day minus the mean spacing of Δz23 = 9.793 μm. The width of
the distribution is σΔz23 = 0.82 nm.
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3.4 Identification of an unrecoverable dark state

cooling, preparation, and readout laser is no longer resonant near 369 nm, so there are no

emitted photons to detect. In this case, the ion is dark. Ions in the dark state are not

cooled and are not addressed by the microwave fields. Due to the unknown state of dark

ions, they would interfere with the calculation being performed. A molecule would change

the vibrational mode structure that produces the all-to-all coupling, thereby changing the

coupling between the bright ions. It would couple to the bright ions in an uncontrolled

way and cannot be used for a calculation itself. If 171Yb+ is in a unknown metastable state

|2F7/2, F = 3, 4〉, the dark ion would also couple to the bright ions in an uncontrolled way

and thus spoil the computation. Therefore, the trapped-ion qubits cannot be used as long

as the dark state exists in the register. The long-lived metastable state can be resolved

by applying an appropriate re-pumping scheme to pump the ion back to the desired state.

This is done using a laser light field near 638 nm. Using this technique, the population

trapped in the |2F7/2〉 state is transferred to the |1D[5/2][5/2]〉 state. From this excited

state, the ion undergoes spontaneous emission back to the |2D3/2〉 state. In the primary

re-pumping scheme, the population in |2D3/2〉 is efficiently transferred back to the ground

state and can therefore be recovered. The ionic level scheme can be found in the appendix

as fig. D.1. Therefore, these long-lived metastable states are resolvable. In contrast, when

a molecule is formed, the exact dissociation energy is unknown and therefore cannot be

resolved. When such an event occurs, it is necessary to reload the trap to get rid of the

molecular ion. Reloading the trap is time-consuming, and then the system needs time

to thermally stabilize before reliable operation is possible. Therefore, it is advantageous

to keep the ions in the trap as long as possible. Distinguishing between these two states

would allow a decision to be made whether or not to reload the trap. Looking at the

camera image, it is not possible to distinguish the resolvable state |2F7/2, F = 3, 4〉 from a

permanently dark molecule. If the ion has formed a molecule, the addressing frequency of

the other bright ions in the trap may change. Fig. 3.4.1 and fig. 3.4.2 show the addressing

frequency and Doppler cooling florescence during an experiment when an ion in a crystal

consisting of three 171Yb+ ions went dark. What can be seen in the Doppler cooling

fluorescence plots is that at different times the Doppler cooling fluorescence disappears for

one ion and reappears for another. This indicates a jump of the dark ion between trapping

sites. These jumps can occur on a time scale long enough to perform a resonance frequency

calibration of the qubit addressing frequency as described in section 2.6. In fig. 3.4.2 the

measured addressing frequency of the bright qubits jumps, indicating that a molecule has
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formed. In fig. 3.4.1 no such jump is visible. In this case the state has recovered.

In the example of the permanent dark state shown in fig. 3.4.2, the trapping frequency

ωz was measured and was found to change. In the permanently dark state, ω′
z = 2π ·

102.81(1) kHz, while the trapping frequency with 3 bright ions present was ωz = 2π ·
104.55(1) kHz. As discussed earlier in this chapter, the trapping potential forms a harmonic

oscillator. For a classical harmonic oscillator, the resonant frequency is given by ω =√
k/m. This allows us to calculate the relative change in mass based on the trapping

frequency as: √
m2

m1
=

ω1

ω2
. (3.4.1)

The mass in the case where all three ions are bright is m1 = 3mYb ≈ 3 ·171 u, while for the

case where one molecule is present it is m2 = 3mYb+M . The additional mass was therefore

M = 17.5(3) u, where u is the unit of atomic mass. The atomic mass of oxygen is 16 u,

and the atomic mass of hydrogen is 1 u. A candidate for a molecule therefore would be one

oxygen and one hydrogen atom. Water contributes to the residual gas pressure and could

be a candidate for a chemical reaction. It is known that reactions with water molecules

can occur [61]. The additional molecule would therefore have a weight of 17 u. During lab

operation, dark states occurred several times in an ion crystal. The trap frequency was

not measured at each event, but when it was measured the change in trap frequency was

found. Measuring the trap frequency by applying an AC electric field requires the removal

of filters in the trapping setup and therefore takes some time. Thus, states recovered within

a few minutes are difficult to identify using the method of resonant excitation of the ion

motion in the trap.
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3.4 Identification of an unrecoverable dark state

Figure 3.4.1: (Top) Addressing frequencies ν of three ions during a J-coupling measurement
that was discarded due to an ion going dark. An ion has gone dark but reappears later, the
frequency offsets are removed here for clarity. (Bottom three) Doppler cooling fluorescence
D. The scale on the horizontal axis corresponds to measurement cycles. The horizontal
axis can be associated with a time due to the fixed cycle duration. At time t ≈ 45 s ion 2
went dark, indicated by the first drop of Doppler cooling fluorescence. At this time, the
Doppler cooling fluorescence stabilization described in section 2.8.3 tries to stabilize the
overall Doppler cooling fluorescence, so the Doppler cooling fluorescence of the bright ions
increases until the end of the experiment. At time t ≈ 65 s the dark ion jumps from site 2
to site 3, indicated by the drop of the fluorescence at site 3 while the fluorescence at site
2 recovers. At time t ≈ 75 s the dark ion jumps from site 3 to site 1. A total of seven
jumps occur during 100 s. Jumps from location 3 to 1 indicate a random resorting of the
ion crystal.
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Figure 3.4.2: (Top) Addressing frequencies ν of three ions during a Rabi frequency cali-
bration that was discarded due to an ion going dark. An ion has gone dark at this time,
the measured addressing frequencies change. The dark ion remained dark after this exper-
iment was completed. The frequency offsets of the addressing frequencies ν are removed
for clarity at t = 0. (Bottom three) Doppler cooling fluorescence D. The scale on the
horizontal axis corresponds to measurement cycles. The horizontal axis can be associated
with a time due to the fixed cycle duration. At time t ≈ 70 s ion 1 went dark, indicated by
the first drop of Doppler cooling fluorescence. At this time, the fluorescence stabilization
described in section 2.8.3 attempts to stabilize the overall Doppler cooling fluorescence, so
that the Doppler cooling fluorescence of the bright ions increases. At time t ≈ 72 s the dark
ion jumps from site 1 to site 2, indicated by the drop in fluorescence at site 2 while the
fluorescence at site 1 recovers. At time t ≈ 100 s the dark ion jumps from site 2 to site 3.
A total of 16 jumps occur during 270 s. Jumps from site 1 to 3, as they occur at t ≈ 210 s,
indicate a random repositioning of the ion crystal. The trap frequency in this case changed
from ωz = 2π · 104.55(2) kHz to ω′

z = 2π · 102.82(2) kHz, measured by resonant excitation
of the ions motion in the trap. The change in ωz indicates an additional mass of 16.5 u. A
jump in the resonance frequency indicates the presence of an additional mass.
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3.5 Background gas collisions

From this observation, a strategy can be derived for when it is necessary to reload the ion

crystal. If at an instance where an ion enters a dark state, the addressing frequencies of

the other ions change significantly, a heavy molecule was formed, and it is necessary to

reload the trap.

The trapping potential along the trapping axis is generated by electrostatic fields. There-

fore, the electrostatic potential that defines the quadratic trapping potential does not

depend on the mass of the trapped particles, but only on their charge.

The effective radial potential depends on the mass of the trapped charged particle. Adding

mass to the trapped ions will therefore weaken the radial confinement. An electric field

present in the presence of imperfect micromotion compensation will consequently shift the

position of the center of mass of the ion string, resulting in an observable change in the

resonance frequency of the visible ions.

3.5 Background gas collisions

Background gas collisions create dark states within an ion crystal. A collision, even if there

is no chemical reaction and no transition to a dark state, corrupts the result of the quantum

computation. In this subsection, the collision rate with background gas is estimated and

an error rate is derived.

Once a dark ion is trapped in a string of bright ions, different configurations of the ion

crystal become distinguishable from the camera image and can therefore be used to calcu-

late the rate of background gas collisions. A collision with a background gas is necessary

to change the crystal configuration, as shown in fig. 3.4.2 and fig. 3.4.1. The rate of rear-

rangement of the ion crystal can be used to infer the rate at which collisions occur [62].

After a collision with a background gas at room temperature of 300 K, it is very likely

that the new configuration of the ion crystal is random. In the publication by Hankin [62],

background gas temperatures of O(10 K) are sufficient to induce a change in the ion string

configuration. For this example with n = 3 ions, there are 3! = 6 possibilities for the

crystal to rearrange. Two of them, the exchange of the two bright ion positions, would not

be visible when observing the Doppler cooling fluorescence. Both ions would still appear

bright. If the configuration does not change during the collision, no event will be detected.
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Given an ion crystal of size n with one dark ion, n − 1 different reconfigurations of the ion

string can be detected using the Doppler cooling fluorescence. The configuration of the

bright ions cannot be detected in such a way that there are (n − 1)! cases that look the

same. The total number of possible configurations is n!, and therefore the real collision

rate can be calculated as

ΓO

Γ
=

(n − 1)[(n − 1)!]
n!

=
n − 1

n
, (3.5.1)

where Γ is the rate of collisions that change the ion-string configuration, while ΓO is the rate

of observed reconfigurations. For the current setup it follows that the real collision rate is

about 3/2 times larger than the observed reconfiguration rate ΓO. From the measurements

presented here, an observed collision rate of ΓO ≈ 7 · 10−2 s−1 can be estimated. The real

collision rate is therefore about Γ ≈ 1.05 · 10−1 s−1.

Each collision with background gas destroys the quantum information stored in the register

and reorders the qubits. If a collision occurs during the execution of a quantum algorithm,

an unrecoverable error will occur. In the current setup, for a three ion gate such as the

Toffoli gate described in chapter 5 with a run time of T ≈ 17 ms with the possibility

Pcol = ΓT ≈ 1.7 ·10−3 an irrecoverable error might occur. The probability of a background

gas collision scales with the number of qubits in the register. The collision rate per qubit for

the current setup is therefore Γn = Γ/n ≈ 0.3 · 10−1 s−1. In a larger qubit register, it does

not matter which qubit is hit by a background gas particle, and the current computation

will be spoiled.

3.6 Summary

A Paul trap, as used in this work, allows the study of single atoms in isolation from

their environment. The confinement of the 171Yb+ ion by electrostatic fields, the applied

magnetic field gradient and the susceptibility of the confined atom to the magnetic field,

allow the remarkable results presented in this chapter.

All of these properties are necessary to operate as a MAGIC quantum computer reliably.

What is a challenge for quantum computing is an opportunity for demonstrating the sensing

of tiny electric forces.
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3.6 Summary

In this chapter it is demonstrated how to detect DC magnetic fields on the scale of nT

and to measure the COM position of an ion on the order of 0.1 nm.

These results were obtained using a single 171Yb+ ion stored in a linear Paul trap and

subjected to a magnetic field gradient while the wavelength of the RF control field exceeded

the error in the ion position by a factor of 5 · 10−9, making it the best relative wavelength

resolution reported. Combined with the confinement of the 171Yb+ ion in the trapping

potential, a force on the order of 10−23 N can be resolved. This technique may pave the

way for future scanning probe microscopy using the most miniature probe imaginable, a

single ion.

Applied to the MAGIC quantum computer, observing the resonance frequency of the ion

also allows diagnosis of the axial trapping potential. In the current setup, the axial trap

frequency ωz is stable on the order of 10−4 during a day of lab operation. Assuming a

perfectly stable magnetic field gradient, the stability of the J coupling is estimated to be

on the order of 10−4.

Furthermore, it was shown how the resonance frequency of the qubits in a register allows an

indirect observation of the mass of an ion in the dark state. In future trapped-ion quantum

computers, this technique will allow the diagnosis of a quantum register. It allows us to

decide if a heavy molecule has formed or if a re-pumping scheme can be applied. This may

be important in future multi-species trapped ion quantum computers for diagnosing qubits

that are never exposed to laser light.

In addition, a collision rate of ions and background gas in the vacuum recipient was mea-

sured by observing the Doppler cooling fluorescence. The collision rate per qubit for the

current setup is found to be Γn = Γ/n ≈ 0.3 · 10−1 s−1.
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4
Tuning the qubit-qubit interaction

The inherent always-on all-to-all connectivity provided by the MAGIC scheme is a powerful

tool for implementing multi-qubit quantum logic operations. It is present whether or not

it is desired. The challenge is to use this feature in a desired quantum circuit efficiently.

A linear string of trapped ions, confined in a linear Paul trap, can be seen as a quantum

memory or quantum processor. Each ion may serve as a memory or processor qubit,

depending on the hyperfine level chosen. This flexibility has been shown in the Ph.D. thesis

of Christian Piltz [37] and Theeraphot Sriarunothai [9]. A set of bits storing information

is called a register in the classical information science context. Since each qubit may be

used as memory, a linear ion string is called a quantum register.

A quantum circuit may operate on a register to implement the desired operation. Within

such a circuit, single-qubit and multi-qubit gates need to be performed. Individual ad-

dressing of the qubits must be possible to carry out single qubit gates. Implementing

multi-qubit gates having the always-on coupling comes with the challenge of the inher-

ent coupling of the system as shown in eq. (2.3.3) possibly not matching the interaction

required to implement the desired gate.

To implement desired conditional gates on computing qubits in a register, it is necessary to

control the coupling of the qubits. For that purpose, different techniques can be applied:

(A) Controlling atomic states to selectively couple [38],

(B) Controlling the trapping potential [63],

(C) Controlling the magnetic field gradient dynamically [64],

(D) Controlling the coupling dynamically [32].
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4 Tuning the qubit-qubit interaction

(A) Different atomic levels can be chosen and individually addressed to selectively couple

the qubits within a register, selecting whether or not a Zeeman shift is present. The atomic

state |2S1/2, F = 1, mF = 1〉 = |1〉 undergoes a linear Zeeman shift and therefore couples

with other qubits present, whereas the atomic state |2S1/2, F = 1, mF = 0〉 = |1′〉 does not

undergo a Zeeman shift and therefore qubits in this memory state do not couple with other

qubits. Depending on the chosen atomic state a qubit participates in the coupling or not.

Changing the qubit’s state from |1〉 to |1′〉 or vice versa requires the application of three

π-pulses on the qubit, using different RF transitions. This is called recode operation [65].

It must be pointed out that this technique removes the target’s qubits coupling to all other

ions in a register. Recoding all qubits in a register but two allows an arbitrary coupling

to be generated by pairwise step-by-step coupling. Each pairwise coupling is represented

by an entry in the coupling matrix and therefore, it would require (N2 − N)/2 steps to

synthesize an arbitrary coupling, where N is the number of qubits in the register.

(B) For example, controlling the axial confining potential in a segmented linear ion trap

allows us to tailor the interaction strength [63]. Due to the distance of the electrodes, very

high voltages might be required to achieve the desired coupling. Therefore, the possible

implementable couplings are limited predominantly to local interactions between neighbor-

ing ions. In parallel to this work, this method is investigated by Florian Köppen. Details

for this approach will be found in his Ph.D. thesis.

(C) Dynamically controlling the gradient present in the setup requires a coil to generate a

tunable magnetic field gradient. Due to the distance between the ion and the coil compared

to register size, the generated magnetic field gradient can be seen as global. Therefore only

global control can be achieved.

(D) The dynamical approach to controlling the qubits’ coupling relies on a periodic inver-

sion of the qubit’s state. It is carried out by applying local π pulses to the qubits. Using

this procedure, the qubits stay in a magnetic sensitive level all the time, so the coupling

between all qubits in the register is present. The interaction between two qubits can be

interpreted in the single qubit reference frame as a detuning based on the state of the

other qubit. Its magnitude is given by the absolute value of the coupling and its direction

is given by the σz eigenvalue of the other qubit.

The techniques mentioned will most likely be used in a future quantum processor to achieve
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4.1 Pulsed dynamical decoupling sequences

an optimized control of the coupling of the qubits. The trap here features a permanent

magnetic field gradient and a constant effective trapping potential, ruling out the dynamical

control of the magnetic field gradient and the axial trapping potential.

This chapter describes a trapping hardware-independent approach that shapes the cou-

pling topology Jij as introduced in eq. (2.3.1), using timed Dynamical Decoupling (DD)

sequences. First, the principle of dephasing and the usage of pulsed dynamical decoupling

will be discussed. To introduce these concepts, I will orient myself on the Ph.D. thesis

of Christan Piltz, who worked on the same experiment before [8]. This principle will be

expanded later to allow tuning the effective coupling while protecting the qubits from de-

phasing. It will explain how a dynamical decoupling sequence can be adapted to match

a specific noise spectrum in the lab and how an arbitrary global σzσz interaction on the

whole register can be implemented. Later, an extended principle is introduced that allows

partitioning a quantum register in multiple subregisters, while the coupling can be tuned

within these subregisters.

In the following chapters, this technique is then used to implement a Toffoli gate (chapter 5)

or a Perceptron gate (chapter 6).

4.1 Pulsed dynamical decoupling sequences

Let us consider a qubit’s quantum state. For one qubit, the state can be described as a

Bloch vector, as shown in fig. 2.3.1. The quantum information itself is encoded into this

Bloch vector’s position on the Bloch sphere’s surface, where the two angles θ and φ contain

the information. The angle θ determines the excitation probability of the qubit in the

computational basis {|0〉, |1〉}. This excitation probability is accessible in the experimental

setup, when a projective measurement is performed, as introduced in section 2.5.5. The

information encoded in θ is long-lived and is referred to as coherence time T1 in literature.

The coherence time T ∗
2 describes the decay of the information encoded in φ. Extending

the coherence time T ∗
2 is crucial to allow for deeper quantum circuits and therefore this

chapter describes how to extend the coherence time using pulsed dynamical decoupling.

Ultimately, for each experiment described in this thesis, the quantum state is projected in

the z- basis {|0〉, |1〉}. If a qubits state shall be quantified in another basis, this basis has
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4 Tuning the qubit-qubit interaction

to be rotated to the z-basis before readout. The definitions of frequency and phase depend

on the exact reference frame chosen. For the following, a specific choice of the reference

frame is helpful.

The reference frame of choice is the one that rotates with the assumed resonance frequency

of the qubit’s transition |2S1/2, F = 1, mF = 1〉 ↔ |2S1/2, F = 0〉 around the z-axis. This

frequency is typically the frequency of the RF driving field. In this frame, the RF field

applied can be seen as a static magnetic field pointing in a specific direction in the xy-plane

of the Bloch sphere, defined by its phase φ. Phases occurring in this chapter are usually

the phases in this reference frame. After preparation in the ground state |0〉, the first

pulse applied to the qubit defines this frame. The description of RF pulses can be found

in section 2.3.

To introduce the concept of decoherence, let us consider a single qubit in a superposition

state, consisting of its ground state |0〉 and excited state |1〉. Let the quantum state be

|ψ〉 = c0|0〉 + c1|1〉, (4.1.1)

where the coefficients c0,c1 are complex and obey 1 =
√|c0|2 + |c1|2. Here, P = |c1|2 is the

probability of finding the qubit in state |1〉.

Once the qubit is excited, its excitation will decay in a time corresponding to a coher-

ence time T1. For 171Yb+ it is recently reported to exceed 3.3 h [66], using a dynamical

decoupling scheme. This long time T1 can be considered infinite for practical applications.

In addition to the z-axis, quantum information is stored in the xy-plane in the Bloch

picture. It can be described as the phase φ of a qubits state. The decay of quantum

information in xy-plane is associated with the coherence time T ∗
2 . In the following, it

is assumed that the reference frame is co-rotating with the unperturbed ions resonance

frequency, such that without a perturbation, the Bloch vector stays at rest. Changes in

the ion’s resonance lead to a frequency mismatch of the chosen rotating frame and the

ion’s spin. Let us assume, a time-dependent mismatch of the frequency of the rotating

frame co-rotating with the RF field and the qubits resonance δ(t) exists. The Hamiltonian

describing the system is

Hph =
�

2
δ(t)σz. (4.1.2)
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This Hamiltonian induces the unitary evolution from time t0 to time t1

Uph(t, t0) = e
−i 1

�

∫ t

t0
Hph(t′)dt′

. (4.1.3)

If this unitary is applied to a state, the state will acquire a phase

Uph(t, t0)|ψ0〉 = |ψ〉 = c0eiφ(t,t0)|0〉 + c1e−iφ(t,t0)|1〉, (4.1.4)

where |ψ0〉 is given by equation (4.1.1) and

φ(t, t0) =
1
2

∫ t

t0
δ(t′)dt′. (4.1.5)

Given an unknown random frequency mismatch δ(t), the quantum state acquires an un-

known phase over time. To compensate for this phase, a spin echo pulse can be introduced.

If, during the unitary evolution from time t0 to t2, a π-pulse is inserted at time t1, then

the evolution can be written as follows:

U ′
ph(t2, t0) = Uph(t2, t1)iσxUph(t1, t0) (4.1.6)

= e
−i 1

�

∫ t2
t1

Hph(t′)dt′
iσxe

−i 1
�

∫ t1
t0

Hph(t′)dt′

= e
−i 1

2

∫ t2
t1

δ(t′)σzdt′
iσxe

−i 1
2

∫ t1
t0

δ(t′)σzdt′

= e−iφ(t2,t1)σz iσxe−iφ(t1,t0)σz

= e−i[φ(t2,t1)−φ(t1,t0)]σz (−iσx). (4.1.7)

Now the properties of the Pauli matrices can be used:

σxσz = −σzσx, σyσz = −σzσy, (4.1.8)

ei θ
2 �n�σ = 1 cos

(
θ

2

)
+ i (nxσx + nyσy + nzσz) sin

(
θ

2

)
. (4.1.9)

Here |�n| = 1 is the rotation axis in the Bloch picture and 1 is the identity operator [37].

Therefore, the phase is

φ(t2, t0) = φ(t2, t1) − φ(t1, t0). (4.1.10)

This result holds true, not only for π-pulses around the x axis σx , but for σy pulses as
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4 Tuning the qubit-qubit interaction

well and therefore for each arbitrary π-pulse. A π-pulse with a phase α is defined as:

πα = cos(α)σx + sin(α)σy. (4.1.11)

With this follows:

Uph(t2, t1)παUph(t1, t0) = e−i[φ(t2,t1)−φ(t1,t0)]σz πα. (4.1.12)

Assuming δ(t) is constant in time, the acquired phase vanishes, and the phase information

is protected. The reappearance of coherence is referred to as a spin echo, while the pulse

producing it is referred to as a spin echo pulse.

4.2 J-Tuning

4.2.1 Dynamical decoupling

As introduced in section 4.1, a single spin echo pulse is sufficient to compensate for a fixed

frequency offset. If the frequency offset is a function of time, it is beneficial to introduce

additional pulses, to reduce the free evolution time between them. Those pulses are called

Dynamical Decoupling (DD) pulses. They are routinely used to protect quantum states

and consist of a set of π-pulses. Figure 4.2.1 illustrates the timeline of a DD-sequence

with π-pulses παn at times t2n. If the π-pulses of a DD-sequence are assumed to be

instantaneous, the unitary evolution of a system can be seen as a product of unitaries,

generated by stepwise constant Hamiltonians and instantaneous π-pulses παn . The total

time evolution is given by a product of several instances of eq. (4.1.12)

U =
N∏

n=1
U(t2n+1, t2n)παnU(t2n, t2n−1)

=
N∏

n=1

[
e−i[φ(t2n+1,t2n)−φ(t2n,t2n−1)]σz παn

]
, (4.2.1)
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4.2 J-Tuning

Figure 4.2.1: Illustration of the timeline of a Dynamical Decoupling sequence (DD-
sequence), consisting of π-pulses with phase αn at times t2n as described in eq. (4.1.11).
The vertical lines indicate the time when a π-pulse flips the qubits state. For the evolution
of the quantum system, it is assumed that the π-pulses are instantaneous.

where we have used eq. (4.1.8). If a dynamical decoupling sequence fulfills the condition

1 =
N∏

n=1
παn , (4.2.2)

the total phase acquired is

Φ =
N∑

n=1
φ(t2n+1, t2n) −

N∑
n=1

φ(t2n, t2n−1). (4.2.3)

Since the phases φ(tn+1, tn) are given by the integrated detuning in the time interval

[tn, tn+1], the acquired total phase Φ depends on δ(t). For a fixed detuning and a periodic

DD-sequence, the acquired phase is Φ = 0, if δ(t) = const. The quantum state is therefore

protected against constant detuning.

On the other hand, if the δ(t) has frequency components with ν = 2π/(tn+1 − tn), it is res-

onant with the DD-sequence and the effect of the detuning is amplified. This susceptibility

to specific noise components can be exploited to construct a quantum sensing device or it

can spoil quantum computing. How to construct a magnetometer using this technique is

shown by Ingo Baumgart [54]. At the same time, its effect during quantum computation

is investigated in the Ph.D. Thesis of Theeraphot Sriarunothai [9].
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4 Tuning the qubit-qubit interaction

4.2.2 Qubit-qubit interaction in the presence of a dynamical decoupling
sequence

This subsection describes how a DD-sequence on multiple qubits can be used to couple

qubits in a register selectively while the susceptibility of the quantum states to external

noise is reduced. Let us consider a system of two qubits i and j. Each of those qubits can

be described by a Hamiltonian of dimension 2·2, if its motional excitation and other atomic

levels are neglected. Similar to the case of a single qubit, the unitary operator generating

the time evolution of a n qubit system can be the exponential of the Hamiltonian, describing

the system if it is time-independent.

A freely evolving system of a pair of interacting qubits generates the unitary evolution:

UJij (τ) = e− i
2 Jijσ

(i)
z ⊗σ

(j)
z τ , (4.2.4)

where Jij is the coupling constant between qubit i and qubit j. A π-pulse applied to the

i-th qubit can be written as π
(i)
α . To match the dimension of the Hilbert space, on which

the operator acts, it is appropriatly tensored with the unity operation. As an example,

π-pulses acting on a system of two qubits are

π(i)
α = πα ⊗ 1,

π(j)
α = 1 ⊗ πα. (4.2.5)

Here (i) denotes the first qubit in a set of two while (j) is the second qubit on which the

pulse is applied. If now a π-pulse is applied to qubit i, using eq. (4.1.8), the sign of the

coupling is changed such that:

π(i)
α UJij (τ) = (πα ⊗ 1)e− i

2 Jijσ
(i)
z ⊗σ

(j)
z τ

= e
i
2 Jijσ

(i)
z ⊗σ

(j)
z τ (πα ⊗ 1)

= U−Jij (τ)(πα ⊗ 1)

= U−Jij (τ)π(i)
α . (4.2.6)
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This can be interpreted as a reversal of the direction of evolution:

UJij (−τ) = U−Jij (τ) = U †
Jij

(τ). (4.2.7)

If a π-pulse is applied to the second qubit, the previous argument can be applied again:

π(j)
α UJij (τ) = U−Jij (τ)π(j)

α . (4.2.8)

Accordingly, applying two π- pulses alters the coupling Jij twice and therefore the coupling

is preserved such that:

(π(i)
α ⊗ π

(j)
β )UJij (τ) = (π(i)

α ⊗ π
(j)
β )e− i

2 Jijσ
(i)
z ⊗σ

(j)
z

= e− i
2 Jijσ

(i)
z ⊗σ

(j)
z (π(i)

α ⊗ π
(j)
β )

= UJij (τ)(π(i)
α ⊗ π

(j)
β ). (4.2.9)

This is used when a DD-sequence is applied to a system of two qubits. A synchronous

DD-sequence therefore protects the addressed qubits from noise, while their interaction is

conserved. Thus, this principle allows the implementation of conditional qubit dynamics

at a time scale longer than the system’s unprotected coherence time T ∗
2 .

An interesting result is that the phases of the π-pulse in the DD sequence are arbitrary.

Especially during conditional evolution, applying the DD-pulses with the same phase to

all qubits is not necessary. Later on in this thesis, this is used to implement the Toffoli

(chapter 5) and the Perceptron gate (chapter 6).

4.2.3 Multi-qubit coupling and dynamical decoupling

The Hamiltonian describing the interaction of the qubit eq. (2.3.1) contains the sum of

tensor products σz ⊗ σz acting on different qubits. The unitary evolution operator is:

UJ(τ) = e
− i

2
∑

i<j
Jijσ

(i)
z ⊗σ

(j)
z τ

. (4.2.10)

Next the Baker-Campbell-Haussdorf identity

eA+B = eAeBe−[A,B]/2 (4.2.11)
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is used. Since the σz and 1 matrices commute, the unitary evolution of the interaction of

the full system can be written as:

UJ(τ) = e
− i

2
∑

i<j
Jijσ

(i)
z ⊗σ

(j)
z τ =

∏
i<j

e− i
2 Jijσ

(i)
z ⊗σ

(j)
z τ =

∏
i<j

UJij (τ). (4.2.12)

Analogous to the previous argument, a π-pulse applied to qubit k changes the sign of

Jkj and Jik . For simplicity, the time argument of the unitary evolution and the tensor

products with the 1 operator are dropped here. A π-pulse applied to qubit k in a register

of qubits can be written as:

π(k)
α

∏
i<j

UJij =
∏
i<j

j,i�=k

[
UJij

] ∏
i<j
i=k

[
U−Jij

] ∏
i<j
j=k

[
U−Jij

]
π(k)

α . (4.2.13)

Here it is used that all unitary operators UJij are mapped to U−Jij when a π pulse is

applied to either qubit i or j. From this, several useful procedures can be derived. Using

that U−Jij = U †
Jij

and the unitary evolution of equal duration, the coupling between the

k-th qubit and the rest is effectively canceled out:

∏
i<j

[
UJij

]
π(k)

α

∏
i<j

[
UJij

]
=

∏
i<j

j,i�=k

[
UJij

] ∏
i<j
i=k

[
UJij

] ∏
i<j
j=k

[
UJij

] ∏
i<j

j,i�=k

[
UJij

] ∏
i<j
i=k

[
U †

Jij

] ∏
i<j
j=k

[
U †

Jij

]
π(k)

α

=
∏
i<j

j,i�=k

[
UJij

] ∏
i<j

j,i�=k

[
UJij

]
π(k)

α . (4.2.14)

The remaining qubits interact, while the addressed qubit is removed from the interaction.

It has been used that all occurring unitaries except πα on different qubits k �= n only

contain σz and 1 operators and therefore commute.

If now two π-pulses are applied simultaneously on different qubits, the unitary evolution

transforms as:

π(k)
α π

(n)
β

∏
i<j

[
UJij

]
= π

(n)
β

∏
i<j

j,i�=k

[
UJij

] ∏
i<j
i=k

[
U †

Jij

] ∏
i<j
j=k

[
U †

Jij

]
π(k)

α (4.2.15)

=
∏
i<j

j,i�=k,n

[
UJij

] ∏
i<j
i=k
j �=n

[
U †

Jij

] ∏
i<j
j=k
j �=n

[
U †

Jij

] ∏
i<j
i=n
j �=k

[
U †

Jij

] ∏
i<j
j=n
j �=k

[
U †

Jij

]
UJkn

π(k)
α π

(n)
β .
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Accordingly it follows for two π-pulses applied to qubits n �= k that:

∏
i<j

[
UJij

]
π(k)

α π
(n)
β

∏
i<j

[
UJij

]
=

∏
i<j

j,i�=k,n

[
UJij

] ∏
i<j

j,i�=k,n

[
UJij

]
︸ ︷︷ ︸

(a)

UJkn︸ ︷︷ ︸
(b)

π(k)
α π

(n)
β . (4.2.16)

This is a significant result. It shows that using two simultaneous π-pulses on two different

qubits allows these two qubits to couple (b), while the interaction between these two qubits

with the others is removed. The important part is that all the other qubits still interact (a).

This example is the most straightforward way to create two separate interacting subsets

of qubits in a register that do not interact. This enables a single register to operate two

different conditional unitaries at the same time. An example could be the parallel execution

of two CNOT operations on a register containing four qubits. The required CZZ operation

is shown in fig. 4.2.9.

4.2.4 Asynchronous dynamical decoupling

Until now, only synchronous π-pulses are considered. For simplicity, let’s assume a system

of two qubits coupled with Jij . The total evolution time T consists of three times τa, τb

and τc such that T = τa + τb + τc. The time τa is the arrival time of the π-pulse on qubit i,

τb is the time between the π-pulse on qubit i and qubit j and time τc is the time after the

π-pulse on qubit j arrives until T . The arrival times of π-pulses are illustrated in fig. 4.2.2.
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(a)

i

j

U(τa)
πα

U(τb) U(τc)
πβ

UJij (T, τb)

(b)

Figure 4.2.2: Illustration of pulse timings of πα, πβ-pulses to implement a desired effective
J-coupling during the total evolution. The coupling is positive during time τa and τc, while
it is negative during time τb. In this case the effective coupling is Jeff = J(T − 2τb)/T .
(a) Time line of pulses. (b) Circuit diagram showing the implementation of Jeff . During
U(τa) and U(τc) the coupling is positive, while during U(τb) the coupling is negative.

The unitary evolution then is:

UJij (τc)π
(i)
β UJij (τb)π(j)

α UJij (τa) = UJij (τc)UJij (−τb)π(i)
α π

(j)
β UJij (τa)

= UJij (τc)UJij (−τb)UJij (τa)π(i)
α π

(j)
β

= UJij (τa − τb + τc)π(i)
α π

(j)
β

= UJij (T − 2τb)π(i)
α π

(j)
β . (4.2.17)

This is a remarkable result. The delay of the pulses with respect to each other can be

arbitrarily chosen in a range 0 < τb < T and the effective evolution time T eff = T − 2τb

can be selected from −T < T eff < T . The total evolution time is fixed and therefore one

can also think of an effective J coupling, which can be implemented as −Jij < Jeff
ij < Jij .
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It follows that:

Jeff
ij = Jij

(
T − 2τb

T

)
. (4.2.18)

During the execution of a quantum gate, usually a DD-sequence is used to protect the

qubit’s coherence. The simplest DD-sequence is a sequence of π-pulses with a fixed pulse

interval. Assuming a periodic DD-sequence with n pulses, total evolution time T and pulse

interval T/n, the previous argument can be used to construct the evolution during the full

DD-sequence as:

UDD(T ) =
n∏

k=1

[
UJij (

T

n
− 2τb)π(i)

αk
π

(j)
βk

]

=
n∏

k=1

[
UJij (

T

n
− 2τb)

] n∏
k=1

[
π(i)

αk

]
︸ ︷︷ ︸

1

n∏
k=1

[
π

(j)
βk

]
︸ ︷︷ ︸

1

= UJij (T − 2τbn). (4.2.19)

It has been used that DD-sequences are designed so that the set of pulses is applied to

form a unit operation. An example of such sequences is the CPMGXY [67] sequence or the

Universal Robust (UR) [68] pulse sequences, which are specifically designed to compensate

for pulse errors. The result is independent of the phases of the applied π-pulses. Therefore

it is possible to use a DD-sequence by proper choice of τbij
, to implement a conditional

gate with an effective coupling. This result holds for each pair of qubits i and j in a larger

register, where τbij
is the time shift between the DD-pulses applied.

To demonstrate that the coupling strength can be chosen continuously in a range −J <

Jeff < J , the couplings in a three ion crystal have been measured as a function of the

delay time between dynamical decoupling sequences. To measure the coupling a Ramsey

type experiment has been performed. The target qubit 2 has been prepared in an equal

superposition state by applying a π/2-pulse followed by a free evolution time while the

control qubits 1 and 3 couple to the target and in the end a π/2-pulse is applied. The

experiment is repeated for different phases φ of the second π/2-pulse, and the excitation

probability of the target qubit has been estimated. A sinusoidal has been fitted to the

measured excitation probabilities and the phase is extracted. To determine the conditional
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|0〉

|0〉

|0〉

U(τa) U(τb = Δ)

πβ

U(τc)
π
2 πα

π
2 φ

πβ

×N

(a)

|0〉

|0〉

|0〉

π

U(τa) U(τb = Δ)

πβ

U(τc)
π
2 πα

π
2 φ

π πβ

×N

(b)

Figure 4.2.3: Ramsey type circuit to measure the tuned coupling strength of qubit 1 and 3 to
qubit 2. Starting with all qubits initialized in state |0〉, qubit 2 is put into an superposition
state. (a) During evolution the target qubit acquires a phase based on the control qubits
state and the delay time Δ between the DD-pulses of qubit 1 and 3 with respect to qubit
2. The state of qubit 2 in the end is analyzed using a Ramsey readout pulse with a varying
phase φ = [0..2π]. The resulting excitation probability of qubit 2 as a function of φ is fitted
with a sinusoidal and the phase from the fit is extracted. (b) Same as (a) but the control
qubits are initialized in state |1〉. The difference of the measured qubits phase for case (a)
and (b) are used to calculate the sum of the coupling between qubits 1 and 2 and 2 and 3.
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|0〉

|0〉
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π
2 φ

πβ

×N

(a)

|0〉

|0〉

|0〉

π

U(τa) U(τb = Δ)

πβ

U(τc)
π
2 πα

π
2 φ

π πβ

×N

(b)

Figure 4.2.4: Ramsey type circuit to demonstrate individual tuning of the coupling strength
between qubit 1 and 2. Starting with all qubits initialized in state |0〉, qubit 2 is put into
an superposition state. (a) During evolution the target qubit acquires a phase based on
the control qubits state and the delay time Δ between the DD-pulses of qubit 2 and 1.
The state of qubit 2 in the end is analyzed using a Ramsey readout pulse with a varying
phase φ = [0..2π]. The resulting excitation probability of qubit two as a function of φ is
fitted with a sinusoidal and the phase from the fit is extracted. (b) Same as (a) but the
control qubits are initialized in state |1〉. The difference of the measured qubits phase for
case (a) and (b) are used to calculate the sum of the coupling between qubits 1 and 2 and
2 and 3.
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4 Tuning the qubit-qubit interaction

Figure 4.2.5: Here the capability of J-tuning to tune the couplings continuously is demon-
strated by measurement of the total J coupling J tot = J12 + J23 in a three-ion crystal
as a function of the delay time Δ in units of the DD-sequence period T see eq. (4.2.18).
The delay between the DD-pulses of ion 1 and ion 2 is varied for the data indicated by
squares, while the decoupling sequences between ion 2 and 3 are synchronous. The circuit
describing this measurement is shown in fig. 4.2.4. The measurement data indicated by
circles correspond to a scan of the simultaneous delay of ion 1 to 2 and ion 1 to 3. The
corresponding measurement circuit is shown in fig. 4.2.3. The measured delay times exceed
a full period of the DD-sequence indicated by the turning point. Following eq. (4.2.18),
the dashed line is the theoretical assumption.
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4.2 J-Tuning

acquired phase shift δφ = (φ|1〉−φ|0〉) due to the coupling after the total evolution time Ttot,

the experiment is repeated with the control qubits being in state |0〉 and |1〉 respectively .

The coupling then is J = δφ/2Ttot. Figure 4.2.5 shows the measured couplings as a function

of the delay time τb. To demonstrate the simultaneous tuning of couplings between qubit 1

and 2 and 2 and 3, the total coupling Jeff
tot = Jeff

12 +Jeff
23 has been measured. For identical

J-tuning between qubit’s 1 and 2, and 2 and 3, the DD-sequences of qubit 1 and 3 have

been delayed by the same time τb = Δ. For different J-tuning between qubits 1 and 2 and

2 and 3 only the DD-sequence of qubit one is delayed, such that the coupling of qubit 2

and 3 is kept constant wile the coupling between qubits 1 and 2 is tuned. Figure 4.2.4

and fig. 4.2.3 visualize the Ramsey-type experiment performed to measure the conditional

phase shift of qubit 2.

Selecting the absolute arrival time of the DD-pulse on ion i to be t = 0, in a register of size

N , N − 1 times τbij
can be chosen to tailor the coupling of qubit i to the qubits j. This

allows for a column (row) wise tuning of J . The coupling matrix has N columns (rows) with

zeros as diagonal elements. Another tool in the quantum toolbox is the selective re-coding

of individual qubits in magnetic insensitive states. It removes the qubit’s interaction with

all other qubits. Expressed in terms of a J-coupling matrix, if qubit i is in an insensitive

magnetic state, the coupling Jij = 0. This gives rise to a procedure to stepwise tune the

coupling.

The conditional phases can define a general controlled ZZ rotation Φij , which shall be

acquired by each qubit. The unitary is:

Uphase = e
i 1

2
∑

i<j
Φijσ

(i)
z σ

(j)
z . (4.2.20)

Using the above-mentioned technique, one can construct a set of tuned effective J-couplings

to generate the desired conditional phase rotations.
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1

2

3

4

U(T1, τb1j
)

REC REC

U(T2, τb2j
)

REC REC

U(T3, τb3j
)

Figure 4.2.6: Example of an implementation of an arbitrary CZZ(Φij) gate on four qubits.
During each unitary U(Ti, τbij

) with total evolution time Ti and delays τbij
a DD-sequence

is applied to implement the J-tuning. After each step, one qubit is removed from the
interaction via recoding (REC). Finally, all qubits are recoded to the interacting qubit
state. This allows to synthesize an arbitrary coupling between all qubits in a register of
size N = 4 in N − 1 = 3 steps.

For example, in a register of size 4, The arbitrary coupling can be implemented as:

Φij =

⎛⎜⎜⎜⎜⎜⎜⎝
0 Jeff

12 Jeff
13 Jeff

14

0 Jappl
23 Jappl

24

0 Jappl
34

0

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

J1

T1 +

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 Jeff
23 Jeff

24

0 Jappl
34

0

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

J2

T2 +

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0

0 Jeff
34

0

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

J3

T3.

(4.2.21)

The implementation is shown in a circuit diagram in fig. 4.2.6. After the first step, in

which the coupling of qubits 2, 3 and 4 to qubit 1 is generated, the first qubit is removed

from the interaction, and the coupling of qubits 3 and 4 to qubit 2 is tuned. After this

step, qubit 2 is also removed from the interaction by re-coding, and the final last step

implements the conditional rotation of qubits 3 and 4. Therefore, this procedure allows

tuning a given J-coupling matrix with (N2 − N)/2 entries in N − 1 steps in any target

CZZ gate. The direct approach to implement a CZZ gate would be its decomposition in

one step per entry in the coupling matrix where, in each step, only the desired two qubits

are interacting while all other qubits are re-coded in the magnetic insensitive state and

therefore removed from the interaction. J-tuning improves the number of steps compared

to the direct implementation by a factor of N − 1.
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4.2 J-Tuning

An example of a relevant coupling matrix is the one having an equal coupling between any

pair of qubits. Figure 4.2.6 shows the according circuit diagram to implement a three-step

J-tuning, while fig. 4.2.10(a) shows the J-coupling matrix measured following the procedure

shown in fig. 4.2.7. Figure 4.2.10(c) Shows the first J-tuning step, fig. 4.2.11(a) shows the

second and fig. 4.2.11(c) shows the third J-tuning step. In total, the tuned J-coupling

matrix is shown in fig. 4.2.12 and achieves an equal effective coupling between all four

qubits of the register with Jeff
ij = 2π · 30 Hz.

Since arbitrary couplings within a register are a powerful tool to reduce the circuit depth

of a quantum algorithm, J-tuning allows to reduce the overall run time. The example

coupling shown here is arbitrarily chosen to be an equal coupling between all four qubits.

It demonstrates the elaborate coupling mechanism of a MAGIC trapped-ion quantum

computer.
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|0〉i

|0〉j

|0〉

|0〉

π

U(T/N, τbki
)

π
2 0

π
2 φ

×N

(a)

(b)

Figure 4.2.7: (a) Circuit diagram showing the measurement of tuned J-coupling matrices,
where the target qubit j is prepared in an equal superposition state while the control qubit
is prepared in state |0〉i or |1〉i. After that, a unitary to tune the J-coupling is applied N

times. During each repetition of U(T/N, τbki
) DD-pulses are applied at times defined by

τbki
as shown in (b). A readout pulse is applied to the target qubit j with varying phase φ.

The excitation probability P (φ) of qubit j is analyzed, and a sinusoid is fitted. From the
fit parameter, the phase ϕ is extracted. ϕ is a function of the prepared state of the control
qubit i and therefore the coupling can be calculated as Jij = (ϕ(|1〉i) − ϕ(|0〉i))/(2T ).
Results of this measurement are shown from fig. 4.2.8 till fig. 4.2.11.
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(a)

Jij/2π(Hz)
J12 32.6(8)
J13 23.8(6)
J14 20.3(8)
J23 32.6(8)
J24 23.6(11)
J34 33.1(8)

(b)

Figure 4.2.8: J-coupling matrix with simultaneous dynamical decoupling sequences on all
four qubits. Total evolution time T = 6.3 ms. Trap frequency ω = 2π · 128.24 kHz,
Ωi = 2π·28.27 kHz, DD-sequence UR10 5 blocks, 50 pulses in total. An Arbitrary Waveform
Generator (AWG) is used to synthesize four driving fields simultaneously. To measure Jij

qubit i (j) was prepared in a superposition state while all other qubits in the register were
in state |0〉. After the unitary evolution, a Ramsey readout pulse is applied to qubit i (j),
and a fit determines the phase of the Ramsey fringe to the excitation probability. The
experiment is repeated with qubit j (i) prepared in state |1〉. Jij then is calculated as
Jij = (ϕ(|1〉i) − ϕ(|0〉i)/(2T ). The measurement sequence is shown in fig. 4.2.7. Although
the next-neighbor coupling in a register is dominant, there is coupling between all qubits
in the register.
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(a)

Jij/2π(Hz)

J12 34.6(14)

J13 −2.8(10)

J14 1.3(8)

J23 −0.8(9)

J24 1.1(9)

J34 32.6(10)

(b)

(c)

Jij/2π(Hz)

J12 0.0(6)

J13 −1.5(10)

J14 19.6(6)

J23 33.5(9)

J24 0.6(10)

J34 −0.4(9)

(d)

Figure 4.2.9: Exemplary J-coupling matrices showing the separation of a register of four
qubits {1, 2, 3, 4} into two sub registers (a, b) {1, 2}, {3, 4} and sub registers (c, d)
{1, 4}, {2, 3} using J-tuning with (a, b) τb = [0, 0, T/(2N), T/(2N)] and (c, d) τb =
[0, T/(2N), 0, T/(2N)] trap frequency ω = 2π · 128.24(1) kHz, Evolution time T = 6.3 ms,
DD-sequence UR10 5 blocks, Rabi frequency Ω = 2π ·28.27 kHz, the measurement sequence
is shown in fig. 4.2.7. Splitting a register into subregisters allows two conditional phase
gates to be executed in parallel, enabling quantum computation to be parallelized.
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(a)

Jij/2π(Hz)

J12 47(2)

J13 36(2)

J14 34(2)

J23 44(2)

J24 35(2)

J34 44(2)

J21 48(2)

J31 33(2)

J41 29(2)

J32 44(2)

J42 39(2)

J43 55(3)

(b)

(c)

Jij/2π(Hz)

J12 33(2)

J13 30(2)

J14 28(2)

J23 46(2)

J24 27(2)

J34 44(2)

J21 34(2)

J31 28(2)

J41 26(2)

J32 44(2)

J42 21(2)

J43 44(3)

(d)

Figure 4.2.10: (a, b) Untuned J-coupling in a four-qubit register with simultaneous
DD-sequence on all four qubits. (c, d) Tuned J-coupling matrix with delays τb1j

=
[0 μs, 19.3 μs, 12.85 μs, 0 μs] implementing the first step in fig. 4.2.6 with all qubits and the
first column (row) of J is tuned to match 2π ·30 Hz. This implements an equal coupling be-
tween qubit 1 and the rest of the register. The trap frequency is ω = 2π ·115.0(1) kHz, evo-
lution time T = 2.475 ms, DD-sequence UR10 5 blocks, Rabi frequency Ω = 2π · 18.0 kHz,
the measurement sequence is shown in fig. 4.2.7. In one step, the coupling to one qubit
can be chosen, while the other qubits acquire some conditional phases, which have to be
compensated in the next steps.
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(a)

Jij/2π(Hz)

J23 16(2)

J24 1(2)

J34 45(2)

J32 17(3)

J42 2(2)

J43 45(2)

(b)

(c)

Jij/2π(Hz)

J34 30(2)

J43 31(2)

(d)

Figure 4.2.11: (a, b) Tuned J-coupling in a four-qubit register with DD-sequence on three
qubits with delays τb2j

= [0 μs, 0 μs, 24.6 μs, 35.2 μs], implementing the second step in
fig. 4.2.6 for J-tuning where qubit 2, 3 and 4 are interacting. (c, d) Tuned J-coupling ma-
trix with τb3j

= [0 μs, 0 μs, 0 μs, 18.0 μs] implementing the third step in fig. 4.2.6 with qubits
3 and 4 interacting, trap frequency ω = 2π · 115.0(1) kHz, evolution time T = 2.475 ms,
DD-sequence UR10 5 blocks, Rabi frequency Ω = 2π · 18.0 kHz, the measurement sequence
is shown in fig. 4.2.7.
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Jeff =

⎛⎜⎜⎜⎜⎜⎜⎝
0 Jeff

12 Jeff
13 Jeff

14

0 Jappl
23 Jappl

24

0 Jappl
34

0

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

J1

+

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 −Jeff
23 Jeff

24

0 −Jappl
34

0

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

J2

+

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 0

0 Jeff
34

0

⎞⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

J3

(a)

(b)

Jij/2π(Hz)

J12 33(2)

J13 30(2)

J14 28(2)

J23 31(3)

J24 29(3)

J34 29(4)

J21 34(2)

J31 28(2)

J41 26(2)

J32 26(3)

J42 24(3)

J43 30(4)

(c)

Figure 4.2.12: (b, c) The total J-coupling matrix tuned to J = 2π · 30 Hz as the sum of the
three-step J-tuning shown in fig. 4.2.10, and fig. 4.2.11 following the scheme in fig. 4.2.6.
The resulting J-coupling matrix is not directly measured but calculated from J-tuning
steps 1, 2 and 3 assuming a π-pulse on qubit 3 before and after step 2 J2 as shown in
(a). J2 contributes with the negative sign of entries J23, J34. The same evolution time
T = 2.475 ms has been chosen for all steps, with the same DD-sequence. In total, an
arbitrary coupling matrix consisting of (N2 − N)/2 = 6 couplings could be synthesized in
these N − 1 = 3 steps, showing a quadratic improvement over selective pairwise coupling.
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4.3 Computing dynamical decoupling delay times τbij

In the previous subsection it was shown that J-tuning can be used to synthesize an equal

coupling between all qubits in a register. Therefore, an asynchronous DD-sequence was

applied in three time steps. The delay of the DD-sequences is given by the time τbij
, where

i is the index of the step and j is the index of the qubit.

If a given controlled phase gate with phases Φij shall be implemented, the times per step Tk

and the delays τbij
need to be computed. The following algorithm computes the required

times Tk and the delays τbij
. For each column i of the coupling matrix:

1. Calculate tij = Φij/Jij .

2. Calculate Ti = maxj(|tij |) to find the longest time necessary for the desired phase

rotation in column i.

3. Calculate τbij
= (Ti − tij)/(2n), where n is the number of DD-pulses applied.

4. Calculate the applied phase rotation as

Φappl
ij = −2Jij

(1
2

− 2|mod1[τbij
n/(2Ti)] − 1

2
|
)

Ti. (4.3.1)

5. Update the conditional phases still to be applied as Φij = mod2π

(
Φij − Φappl

ij

)
, and

then repeat steps 1-4 for each column of Φij .

The result is a triangular matrix of times τbij
containing the required delays to implement

the desired controlled z-rotations in N − 1 steps and the evolution times necessary in each

step Tk. Each column (i) of τbij
contains the delays to implement in step i.

This procedure is not optimized to the total evolution time but is kept relatively simple.

A DD-sequence acts as a frequency filter [8, 9] and might therefore be susceptible to a

specific noise component in the experiment, which might be amplified. It has been shown

in the current experiment setup that, for that reason, a sudden drop of the qubit’s coherence

can occur. It can be circumvented by choosing a different pulse interval and shifting the

resonance of the DD-sequence away from the noise components present in the setup. This

can be done by selecting a longer evolution time for the gate to implement. If this is not
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compensated for, additional conditional phases will occur, limiting the gate’s fidelity. Using

shifted pulse sequences, the effective coupling during the gate time can be chosen such that

no additional unwanted phases are acquired. Therefore, it is experimentally beneficial to

tune the coupling. For each step to generate the desired conditional zz-rotation, the run

time is chosen such that the applied DD-sequences are not resonant with known noise

components. The prior result can be used as a starting point for optimizing the calculated

sequence to avoid problematic noise components.

Here a short algorithm shall be described to optimize the sequence accordingly. Assuming

a time Topt is known that avoids resonances with noise, the sequence can be modified as

follows: For each column i of the coupling matrix:

1. Calculate tij = Φij/Jij .

2. Calculate T ′
i = maxj(|tij |) to find the longest time necessary for the desired phase

rotation in row j.

3. Calculate the optimal number of pulses nopt
i = T ′

i /Topt − mod2(T ′
i /Topt) + 2 ensuring

an even total number of DD-pulses rounded up.

4. Calculate the optimal total evolution time as Ti = nopt
i T opt.

5. Calculate τbij
= (Ti − tij)/(2nopt

i ).

6. Calculate the applied phase rotation as

Φappl
ij = −2Jij

(1
2

− 2|mod1[τbij
nopt

i /(2Ti)] − 1
2

|
)

Ti. (4.3.2)

7. Update the conditional phases still to be applied as Φij = mod2π(Φij − Φappl
ij ) and

repeat steps 1-6 for each column of Φij .

The result is a triangular matrix τbij
containing the required delays to implement the

desired controlled zz-rotations in N − 1 steps, as well as the necessary evolution times in

each step Ti and the number of DD-pulses per step nopt
i . This algorithm is designed to

deliver a sequence containing an even number of DD-pulses with a specific inter-pulse time

Topt making it possible to apply a UR-sequence.
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4.4 Parallel computing in an ion chain

A trapped-ion quantum computer based on MAGIC featuring an always-on all-to-all cou-

pling is a powerful platform to implement global CZZ gates on the entire register. Up to

here, the powerful tool of J-tuning has been introduced and demonstrated, allowing the

implementation of arbitrary CZZ gates on a quantum register. Even though any CZZ gate

can be synthesized in principle, the number of steps required is of the order of register size

N . For large registers, it might require an unfavorable circuit depth.

If not compiled directly into global unitary gates, several quantum algorithms can be sped

up by parallel execution of quantum gates in a register. For example a Quantum Fourier

Transform [69–71] or Shors integer factorizing algorithm [72]. Running a quantum circuit

in parallel requires disentangling groups of entangling ZZ gates from each other during

execution.

Up to here, DD-sequences on a set of qubits have been considered to feature the same

period of spin flips. If one now drops the requirement of the same periodicity, using DD-

sequences, subsets of the quantum register can be decoupled from each other, while within

these subsets, the coupling is preserved. Assuming one subset of qubits is exposed to a

DD-sequence with period T and another subset of qubits is exposed to a DD-sequence with

period T ′, it can be shown that for specific choices of T ′ the subsets can be decoupled from

each other while within a subset, J-tuning can be used. Figure 4.4.1 illustrates the pulse

timings and the occurring coupling between the qubits.

Assuming a time interval 2T , a time interval T ′ = T/N , where N is a natural number, one

can see that the phase acquired in the first time interval 0 < t < T is canceled out by the

phase acquired in the second time interval T < t < 2T . Here τ is the time shift between

the π-pulse on qubit i and the first π-pulse on qubit j. The conditional phases as shown

in fig. 4.4.1 are:

φ1 = 2Jτ = J [τ +
N−1∑
k=1

(−1)kT ′ + (T ′ − τ)] 0 < t < T, (4.4.1)

φ2 = −2Jτ = J [−τ −
N−1∑
k=1

(−1)kτ − (T ′ − τ)] T < t < 2T
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Figure 4.4.1: Top: Schematic DD-sequence on qubit i with periodicity T . The time frame
is chosen arbitrarily to be synchronized with the first DD-pulse on qubit i. The π-pulses
creating the DD-sequences are indicated by vertical black bars. Middle: DD-sequence
applied to qubit j with periodicity T ′. For illustration purposes, T ′ = T/8 has been
chosen, even though only T ′ = T/N is required where N is an even number. Additionally,
a shift of the DD-sequence on qubit j is chosen to be τ to the DD-sequence on qubit i.
Bottom: Resulting coupling J between qubit i and j. As shown in Eq. (4.4.2), the effective
coupling cancels out independent of the choice of τ as long as T ′ = T/N with N even holds.
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If N is even the acquired phases add up to zero φ1 +φ2 = 0. This is illustrated in fig. 4.4.1.

If N would be odd, the phases

φ′
1 = J [T ′ + 2τ ] = J [τ +

N−1∑
k=1

(−1)kT ′ − (T ′ − τ)] 0 < t < T, (4.4.2)

φ′
2 = J [T ′ + 2τ ] = J [τ −

N−1∑
k=1

(−1)kT ′ − (T ′ − τ)] T < t < 2T

will not cancel out since φ′
1 + φ′

2 = J(4τ + 2T ′).

If the two DD-periods T ,T ′ are fulfilling T ′ = T/N , with N even, the acquired phases

vanish independently of a delay τ .

Applying the DD-sequences with different periods to a set of qubits instead of single qubits

will allow this subset of qubits to interact with each other. Using this, one can create two

disjoint sub registers in a register of qubits. Since the sub registers are decoupled from

each other independent of τ , J-tuning can be applied within the sub registers, keeping

them decoupled from each other.

Further on, it follows that a register can be split into more than two sub registers if,

for each sub register, the condition is fulfilled that each sub registers DD-period fulfilling

T (3) = T (2)/N = T (1)/M with M , N even and M is an even multiple of N . Choosing

T (n) = T/2n−1 directly fulfills this set of conditions for an arbitrary number of sub registers

n.

In summary, it is possible to generate sub registers in a quantum register while J-tuning

can be applied in each sub register.
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Figure 4.4.2: Schematic of the decoupling of two qubits, independent of the relative time
delay between the dynamical decoupling sequences, using two different periodicities for
the DD- sequence. The π-pulses that generate the DD-sequences are indicated by vertical
black bars. The top graph corresponds to the qubit i protected by a DD-sequence with
period T and delay tc. The middle graph corresponds to the qubit j protected by a DD-
sequence with period T/2 and delay ta. ta + tb = T/2 generates a DD-sequence with
fixed periodicity. The lower graph shows the coupling direction between ion i and ion j.
To guide the eye of the reader, different areas corresponding to conditional phase shifts
are shown in different shades of gray to indicate which couplings cancel out. The areas
shaded in the same color cancel independently of the values of ta, tb, and tc, allowing the
qubits to be decoupled. This allows to create sub registers of qubits in a larger register
and thus provides to implement parallel quantum computing. It should be noted that with
this finding, J-tuning in sub registers is possible if they are generated by DD-sequences of
different periodicity.

4.5 Summary

In this chapter, a method was introduced, that allows shaping a given coupling matrix

such that an arbitrary global CZZ gate can be implemented. The dynamical decoupling

technique can be tailored to match the noise spectrum in the device, while simultaneously

tuning a given J-coupling matrix.

Analog tuning of the coupling strength has been experimentally demonstrated in a register
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containing three qubits as the function of the respective delays of DD-sequences. Tuning a

coupling matrix of a register containing four qubits has been demonstrated experimentally

to realize an equal coupling strength between each qubit or to enable the parallel execution

of two CNOT gates.

Furthermore, a method is introduced to compile a required CZZ gate into a set of DD-

pulses. Even though the method is not optimized for the shortest runtimes possible, it

outlines a simple way to implement a CZZ gate.

The idea has been proposed that changing the periodicity of the used DD-sequences allows

a register to be partitioned in disjoint sub registers while J-tuning within the registers is

still possible.

Since these results are obtained exclusively using a dynamical approach implemented in

single qubit rotations, by no means is it restricted to a trapped-ion quantum computer.

This technique also can be applied to systems that feature a fixed natural qubit-qubit

interaction, such as, but not exclusively, to color centers in crystals where the interaction

strength is given by the geometric properties of the substrate and the position of the defect

centers.

In parallel to this work, based on the same techniques as used in this chapter, a different

ansatz to compile an arbitrary multi-qubit gate has been formulated in collaboration with

Prof. Martin Kliesch and his group. The work is published in [73] and focuses on the time-

optimal decomposition of circuits. This work and the methods described in this chapter

rely on the inversion of a qubit’s coupling when a π-pulse is applied. Here, a J-tuning

sequence is used that uses the asynchronous timing of dynamical decoupling sequences to

tune the qubi-qubit interaction. The periodicity of the dynamical decoupling sequence can

be optimized with respect to the noise spectrum. In contrast to the work presented here,

an arbitrary coupling matrix is achieved by synchronous π-pulses applied to a given subset

of qubits in the register followed by a free evolution. The timings for the free evolution

result from a novel optimization of overall run time. A dynamical decoupling scheme with

a fixed periodicity is not intended to be used. My contribution to the publication [73]

mainly is the intense discussion and parts of the ideas presented in this thesis.
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The emergence of quantum computation has led to a commercial interest in different quan-

tum computing platforms. A new branch of industry is currently being created. As the

industry grows, so does its energy consumption. Currently, quantum computing devices

in the Noisy Intermediate Scale Quantum Computing (NISQ) regime operate on small

sets of qubits with limited interconnectivity between them. Once the first systems prove

their scalability, they will be replicated and used for many applications. Typical quantum

computing applications are, by now, of interest for professional use cases. This can be

compared to the current situation in which computation-intensive tasks are mainly carried

out in data centers. These include training neural networks, hosting the global Internet

infrastructure, and storing all kinds of data. These applications are currently centralized

in data centers. Future quantum computers are also likely to be located in such data or

quantum computing centers.

The current infrastructure of classical data centers utilizes 1% of the world’s total energy

budget for electric energy [74]. This figure may be augmented by the potential contribu-

tions of quantum computers. To provide a sense of scale, this 1% represents the electric

energy demands of the Federal Republic of Germany, assuming a homogenous global popu-

lation. Consequently, a methodology for estimating the energy consumption of a quantum

computer is of interest.

A comparable fundamental operation is studied here to provide a meaningful measure

of the required power of a quantum computer in comparison to the classical computing

infrastructure. One of the fundamental operations in a classical processor is the addition of

two numbers. A full-adder, comprising two half-adders and an OR operation, is commonly

used for the bitwise addition of a number. The half-adder circuit is implemented using

the MAGIC scheme while utilizing direct multi-qubit operations, providing a practical
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demonstration.

Since the unitary evolution by construction describes the time evolution of a quantum

system, this time evolution can be inverted by the inverse unitary operator. It can be

argued that since the time evolution can be inverted, no energy is dissipated. This leads

to the idea that, under idealized assumptions, a quantum computer might need no energy

to perform the computation.

This chapter thus examines the implementation of a half-adder circuit comprising a Toffoli

and a CNOT gate. Concurrently, the energy consumption of the apparatus is quantified,

and an assessment of the requisite power to operate the gate is provided. The work

presented in this chapter was conducted in collaboration with Sagar Silva Pratapsi [75].

5.1 Half-adder

The four fundamental mathematical operations of addition, subtraction, multiplication,

and division are implemented in digital circuits through the use of a full-adder as a building

block. For instance, the addition of two N -digit binary numbers can be accomplished

through the use of either one full-adder, repeated N times, or N full-adders in parallel.

Regardless of the straightforward implementation, the essential building block is the full-

adder. A full-adder takes three inputs, adds them modulo two, and indicates with the carry

output if the sum exceeds one. The full-adder is composed of two half-adders and one OR

gate, making the half-adder the fundamental building block for all arithmetic operations

in digital circuits.

In a quantum computer, the half-adder can be implemented in a variety of ways. Fig-

ure 5.1.1 shows the implementation on three qubits using a Toffoli and a CNOT gate. This

implementation requires interaction between all three qubits.

In contrast to this implementation, fig. 5.1.2 shows the decomposition of the half-adder

circuit into local rotations and next neighbor CNOT operations. In contrast to the simple

implementation, shown in fig. 5.1.1, the number of conditional operations is considerably
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5.1 Half-adder

a a

b 0 ⊕ ab carry

c a ⊕ b sum
(a)

in |abc〉 |abc〉 out
0 |000〉 |000〉 0
1 |001〉 |001〉 1
2 |010〉 |010〉 2
3 |011〉 |011〉 3
4 |100〉 |101〉 5
5 |101〉 |110〉 6
6 |110〉 |111〉 7
7 |111〉 |100〉 4

(b)

Figure 5.1.1: (a) Half-adder circuit proposed in [76] consisting of a Toffoli gate and a CNOT
gate implemented on three qubits. Two of the qubits are assigned as input (a, b) and two
are assigned as output (b, c). The CNOT operation on qubit c calculates the addition of
the qubits a and c modulo 2. The Toffoli gate acting on qubit b controlled by qubits a and
c checks if the sum exceeds 1 and sets the qubit b accordingly. (b) Logical truth table for
all computational basis states of the half-adder. The Toffoli gate’s truth table is shown in
fig. 5.1.3.

higher.

S. Bose proposed an implementation of a Toffoli gate that is necessary for the simplistic

realization of the half-adder circuit in [76]. The CNOT operation is a basic operation first

demonstrated on this experimental setup in [10].

|a〉

|0〉

|c〉

H T † T T † T H T

T T †

Figure 5.1.2: Decomposition of a half-adder circuit based on the decomposition of a Toffoli
gate by [77], where the circuit is extended by SWAP gates assuming only next-neighbor
coupling. This corresponds to the decomposition for example in a semiconductor system.
Since these limitations do not apply to the system used in this thesis, the circuit can be
reduced to the circuit presented in fig. 5.1.1. Here the T gate is a local z-rotation by π/8.
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a

b

c

(a)

in |abc〉 |abc〉 out
0 |000〉 |000〉 0
1 |001〉 |001〉 1
2 |010〉 |010〉 2
3 |011〉 |011〉 3
4 |100〉 |100〉 4
5 |101〉 |111〉 5
6 |110〉 |110〉 6
7 |111〉 |101〉 7

(b)

Figure 5.1.3: (a) Circuit diagram of a Toffoli gate where qubit b is the target and qubits
{a, c} are the controls. (b) Logical truth table for the Toffoli gate with inputs abc.

5.2 Toffoli implementation

The inherent all-to-all couplings generated by the magnetic field gradient allow to imple-

ment global multi qubit gates in a register. As shown in chapter 4, the typical untuned

J-coupling in a register in a harmonic trapping potential features symmetries. In a three-

qubit system, the couplings are symmetric in a sense that J12 = J23. This is a useful

prerequisite to implement the Toffoli gate, as suggested by S. Bose [76]. This implemen-

tation is classical in a sense, since for the gate mechanism the coupling between the two

control qubits is neglected. The Toffoli gate is described by the Hamiltonian

HT =
�J

2

(
σ(1)

z σ(2)
z + σ(2)

z σ(3)
z

)
+

�δ

2
σ(2)

z +
�Ω
2

σ(2)
x , (5.2.1)

where δ is a detuning of the driving field Ω with respect to the qubit transition. In addition

to the J-coupling, a driving field around the x-axis is required. This part of the gate can

therefore be seen as being generated by a microwave pulse. The parameters to implement

the gate are δ = 2J12 = 2J23, and a driving field strength of Ω = 1.1J . The gate mechanism

can be visualized using the Bloch sphere of the target qubit. HT is constant in time such

that it describes a rotation of the state vector around some axis in the Bloch sphere.

The axis of rotation depends on the control qubits state, allowing for the controlled NOT

operation. Assuming a specific state of the control qubits and omitting factors of �/2 one

can separate three different possible input states of the control qubits. The states of the

control qubits are given by |00〉c, |01〉c, |10〉c and |11〉c. Here the subscript c denotes the
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5.2 Toffoli implementation

control qubits state. Depending on the state, each control qubit can be identified with

a state-selective detuning of the target qubit such that three different evolutions of the

target qubit can occur:

|00〉c ⇒ HT ∝ (−J12 − J23 + δ) σz + Ωσx = −4Jσz + Ωσx, (5.2.2)

|01〉c ⇒ HT ∝ (−J12 + J23 + δ) σz + Ωσx = −2Jσz + Ωσx, (5.2.3)

|11〉c ⇒ HT ∝ (J12 + J23 + δ) σz + Ωσx = Ωσx. (5.2.4)

The generalized Rabi frequencies for the rotations are Ω′
|00〉 =

√
42J2 + Ω2,

Ω′
|01〉 =

√
22J2 + Ω2 and Ω′

|11〉 = Ω, for a choice of δ = 2J and Ω′
|11〉 = Ω. The idea of

the gate is such that during the gate time, in case the control qubits are in state |00〉, |01〉
or |10〉, the Bloch vectors trajectory needs to be closed, e.g. the rotation angle around

the tilted axis need to be multiples of 2π. Whereas for the case |11〉c, a rotation angle

of π around the σx axis needs to be completed. There are multiple possible approximate

solutions to that problem. For example, Ω′
|00〉 ≈ 4Ω and Ω′

|01〉 ≈ 2Ω. Choosing Ω = 1.1J

approximately fulfills these conditions. The total gate time therefore is given by

T =
π

1.1J
. (5.2.5)

The evolution time allows for two possible outcomes: either a πx-rotation on the target

is performed or the state of the target qubit is not changed. Starting the target qubits

evolution in state |0〉, therefore results in the trajectory of the qubits state as shown in

fig. 5.2.1. Closing the target qubits trajectories during the gate time can also be fulfilled

by choices of Ω ≤ J/2, while the gate time is extended accordingly. In order to facilitate

the experimental realization of this process, it is advantageous to select a gate time that

is as brief as possible. The shortest feasible gate time is on the order of T ≈ 15 ms, which

exceeds the free coherence time T ∗
2 by two orders of magnitude, or approximately 200 μs.

As the Toffoli gate is a slowly driven π-pulse, it is possible to study the fidelity of the

target qubit as a function of pulse errors if it is to be flipped. Figure 5.2.2 depicts the

calculated fidelity of the target qubit, F1 = |〈1|U |0〉|2, and the fidelity of the target qubit,

F0 = |〈0|U |0〉|2, as a function of the detuning, δe, in units of the Rabi frequency of the

Toffoli gate, ΩT = 1.1 · 2J . The x-axis of this diagram represents the detuning, the y-axis

depicts the systematic overshoot and undershoot θ = ΩT , which is equivalent to an error
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5 Implementation of a half-adder

(a) (b)

(c)

Figure 5.2.1: (a) Trajectory of the Bloch vector of the target qubit of the Toffoli gate for the
control qubit’s in state |01〉c or |10〉c. The qubit’s trajectory starts and ends in state |0〉.
The trajectory is completed once during the gate time. (b) Trajectory of the Bloch vector
of the target qubit for the control qubits in state |00〉c . The qubit’s trajectory starts and
ends in state |0〉. The trajectory is completed twice during the gate time. (c) Trajectory of
the Bloch vector of the target qubit when the control qubits are in state |11〉c. The qubit’s
trajectory starts in |0〉 and ends in |1〉.
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5.2 Toffoli implementation

in the driving field’s amplitude or duration. The effective detuning δe = [0, −2J, −4J ] + δ

contains the coupling as well as the detuning of the atomic resonance δ. The color code

indicates the expected fidelity for a given parameter set.
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Figure 5.2.2: Illustration of the probabilities of finding the target qubit of the Toffoli gate
in the desired state. (a) The fidelity of the state |1〉, F1 = |〈1|U |0〉|2 and (b) the fidelity of
the state |0〉, F0 = |〈0|U |0〉|2 as a function of the effective detuning δe and the systematic
over- and undershoot θ/θ0. The unitary U is the Toffoli unitary. Here θ = ΩT is the
pulse area, where θ0 is the ideal pulse area, while θ includes errors in pulse time or Rabi
frequency. The effective detuning δe is a result of the coupling between the control qubits
and the target and the error in the addressing frequency δ. Depending on the state of
the control qubits, the effective detuning due to the gate construction can be expressed
as δe = [0, −2J, −4J ] + δ. This is emphasized by the vertical bars. If δe = 2J or 4J , the
qubit state is |0〉 and F1 vanishes. Since the Rabi frequency is about Ω ≈ 2π · 36 Hz, an
addressing error would cause significant errors even for small absolute detunings. Therefore,
implementing the gate as theoretically proposed is challenging.

In the implementation of the gate, the detuning is a variable that can be adjusted to

highlight the detuning that generates the Toffoli gate.

It can be observed that detuning errors have a significant impact on the implementation

of the Toffoli gate. This is due to the fact that the coupling constants for three qubits

are on the order of J12 = J23 ≈ 2π · 36 Hz, whereas the drift rate of the addressing

frequency is on the order of ∂tν ≈ 2π · 8.1 Hz/s. Furthermore, a systematic offset in

Ω influences the expected fidelity of the gates. To mitigate the effect of such detuning
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5 Implementation of a half-adder

and suppress dephasing, a dynamical decoupling sequence must be employed. Without a

dynamical decoupling sequence, the addressing frequency drift and its uncertainty during

the experiment would prohibit a successful implementation.
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5.2 Toffoli implementation

5.2.1 Dynamical decoupling and driving fields.

As demonstrated in chapter 4, a pulsed dynamical decoupling (DD) scheme can be used

to prolong coherence times of qubits and tune their interaction strength. In contrast to

chapter 4, here the considered gate is generated by a continous driving field Ω. Prior to this

investigation, it was unclear how a DD-sequence could be employed with such a driving

field. For the sake of simplicity, a single-qubit Hamiltonian is considered:

H = Ω (ασx + βσy + γσz) . (5.2.6)

The unitary time evolution then is

U(t1, t0) = exp
(

− i

�

∫ t1

t0
Ht

)
(5.2.7)

= 1 cos(θ) − i(ασx + βσy + γσz) sin(θ), (5.2.8)

where the angle of rotation driven is θ =
∫ t1

t0
Ωdt.

Assuming a pulse applied to a system undergoing that unitary evolution,

σxU(t1, t0) = σx (1 cos(θ) − i(ασx + βσy + γσz) sin(θ)) (5.2.9)

= (1 cos(θ) − i(ασx − βσy − γσz) sin(θ)) σx. (5.2.10)

The anti-commutation relation of the Pauli operators, given by the equation {σi, σj} =

2δij1, implies that terms with σy and σz acquire a minus sign when a σx operator is shifted

across them. Consequently, the same is true for σx and σz terms when a σy operator is

shifted across them. This implies that the Hamiltonian, which has been modified with

adjusted signs for the Pauli matrices, produces the same dynamics. Consequently, when

the σx operator is represented by a π-pulse, the σy terms in the Hamiltonian acquire a

minus sign.

Assuming a unitary evolution of the state using the Hamiltonian (5.2.6), then from the

previous result we can infer that

U(H, t2, t1)σxU(H, t1, t0) = U(H, t2, t1)U(H ′(x), t1, t0)σx (5.2.11)
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5 Implementation of a half-adder

with

H ′(x) = ασx − βσy − γσz. (5.2.12)

Accordingly with σy it follows that

U(H, t2, t1)σyU(H, t1, t0) = U(H, t2, t1)U(H ′(y), t1, t0)σy, (5.2.13)

and the modified Hamiltonian is:

H ′(y) = −ασx + βσy − γσz. (5.2.14)

From equations (5.2.12) and (5.2.14), a method for modifying Hamiltonians to preserve the

quantum dynamics is derived, when a σx π-pulse or a σy π- pulse can be derived. In both

cases, the possible detunings must flip according to the σz terms in H ′(x,y). This effect is

exploited when the coupling is preserved, while the qubit is protected against noise. In

the case of a two-ion system with a synchronous DD-sequence, the sign’s flip is induced

by the inversion of the second qubit’s state. This effect is used in chapter 4 to modify the

effective coupling strength.

Let us assume the Hamiltonian that creates the desired quantum dynamics of an additional

driving field Ωσx. In the toy Hamiltonian, we have that ασx = Ωσx. If we now apply an

πx-pulse, we find that the driving field remains unchanged. However, if we apply a πy-

pulse, we find that Ωσx → −Ωσx, which can be achieved by inverting the direction of

the driving field by adding a phase of π. If a general pulse, represented by the expression

πφ = cos(φ)σx+sin(φ)σy, is considered, the application of the aforementioned recipe results

in a contradiction. For the sake of clarity, the times t1,2 are dropped:

U(H)πφU(H) = U(H) cos(φ)σxU(H) + U(H) sin(φ)σyU(H) (5.2.15)

= U(H)U(H ′(x)) cos(φ)σx + U(H)U(H ′(y)) sin(φ)σy (5.2.16)

�= U(H)U(H ′(c))πφ. (5.2.17)

No modified Hamiltonian can simultaneously change the sign of σx terms and not change

the sign of σx terms. The same argument holds for σy terms. Nevertheless, it is possible

to preserve the quantum dynamics of a system evolving with a Hamiltonian that includes

a driving field while protecting it from dephasing.
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5.2 Toffoli implementation

The simplest DD-sequence is a single π-pulse. Concatenating these pulses has the disad-

vantage that pulse errors add up in a longer sequence, making it less robust to different

errors. Composite DD-sequences can compensate for different types of errors. Since this

receipt restricts us to σx,y dynamic decoupling pulses, the eminent DD-sequence is the

CPMGXY-sequence.

However, the restriction to such types of DD-sequences is only necessary if there is a

driving field in the Hamiltonian. Other dynamical decoupling sequences can address ions

that are not exposed to such fields. As the name implies, the coupling that introduces a

state-dependent energy shift or detuning depends on the state in the z-basis of the control

qubit. This means that the phase of qubit a is irrelevant for qubit b. This is due to

the non-existent mixed terms, e.g. σi
xσj

y in the effective Hamiltonian (2.3.7). Thus, it is

possible to use different types of DD-sequences on different qubits while maintaining the

coupling. The Hamiltonian of the Toffoli gate reads

HT =
�J

2

(
σ(1)

z σ(2)
z + σ(2)

z σ(3)
z

)
+

�δ

2
σ(2)

z +
�Ω
2

(
cos(φ)σ(2)

x + sin(φ)σ(2)
y

)
, (5.2.18)

where φ is the phase of the driving field. The generated unitary is U(H(δ, φ)) = U(δ, φ).

The pulse sequence to implement the gate therefore can be written as:

UG =
[
U1/2(δ, 0)πxU(−δ, 0)πyU(δ, π)πxU(−δ, π)πyU1/2(δ, 0)

]N/4
. (5.2.19)

Here N is a multiple of 4 and denotes the number of CPMGXY -pulses used to realize the

gate.

The implementation of this development now allows to protect the dynamics of a quantum

system by means of a dynamical decoupling sequence, even if a driving field is present.

In terms of a circuit diagram, this can be represented as shown in fig. 5.2.3.

The fidelity of the Toffoli gate implemented as described above can be simulated as shown

in fig. 5.2.4. This figure shows the fidelity |〈0|U |0〉|2 and |〈1|U |0〉|2 as a function of the

detuning δ. In contrast to the simulation without applied DD-sequence shown in Fig-

ure 5.2.2, the simulated detuning range is extended by a factor of 20, while the fidelity

plateaus are significantly extended. Figure 5.2.4 (a) shows the fidelity |〈1|U |0〉|2 when the
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5 Implementation of a half-adder

control qubits are in state |11〉c, (b) shows the fidelity |〈0|U |0〉|2 when the control qubits

are in state |10〉 or |01〉, and (c) shows |〈0|U |0〉|2 when the control qubits are in state |00〉c.

For this simulation, a Rabi frequency of Ω = 2π · 35 kHz has been assumed for the π-pulses

implementing the 200 length dynamic decoupling sequence, while the Rabi frequency of

the driving field for the Toffoli gate is ΩT = 1.1 · 2π · 30 Hz. The three different simula-

tions differ in the assumed conditional detuning δc = ±J12 ± J23 + 2J = [0, 2J, 4J ], which

changed its sign after each applied π-pulse.

. . .

. . .

. . .

UT

π
(1)
φn

U ′
T= π

(2)
φ′

n

π
(3)
φn

N

Figure 5.2.3: Decomposition of the Toffoli gate in unitary evolutions UT (δ, φ) that generate
the gate and single-qubit rotations that implement dynamical decoupling. These blocks
are repeated 200 times with updated phases of the DD-pulses as well as updated UT OF .
π

(k)
φn

denotes a π-pulse on qubit k with phase φn. The phases of the DD-pulses are chosen
to implement a universal robust DD-sequence on qubit 1 and 3 while a φ′

n is chosen to
implement a CPMGXY-sequence on qubit 2.

Implementing the Toffoli gate requires precise control of three driving fields in amplitude

over three orders of magnitude. Generating a weak driving field and measuring Rabi

oscillations is challenging. In the weak field regime, the driving field no longer protects

the qubit from decoherence. The required gate time of the Toffoli is TT = π/ΩT , which

realizes a π-pulse. Therefore, the measurement of a Rabi oscillation frequency requires the

sampling of the pulse time on a time scale above 15 ms. Similar to the gate implementation,

a dynamic decoupling sequence must be used. Since there is no detuning, it is sufficient

to change the phase of the driving fields each time a πy-pulse is applied during the DD-

sequence. A CPMGXY-sequence is used to be consistent with the gate implementation.

The applied sequence is the same as shown in eq. (5.2.19), where the evolution time between
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Figure 5.2.4: Illustration of the probabilities of finding the target qubit of the Toffoli gate in
the desired state. During the Toffoli gates evolution, the control qubits create a detuning
δc. The fidelity of the state |1〉, F1 = |〈1|U |0〉|2 is shown in (a) and the fidelity of the state
|0〉, F0 = |〈0|U |0〉|2 is shown in (b, c). (a) The control qubits state is |11〉c, generating
δc = 0. (b) The control qubits state is |01〉c or |01〉c, generating δc = 2J . (c) The control
qubits state is |00〉c, generating δc = 4J . The simulation consists of the Toffoli driving field
interleaved with 200 CPMGXY-pulses. θ/θ0 is the relative pulse area error of the Toffoli
driving field, while δ/ΩT is the detuning of the Toffoli’s driving field with respect to the
atomic resonance ν. For all three different cases of the control qubits, the high fidelity
region is significantly increased, allowing the implementation of the gate.
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5 Implementation of a half-adder

the applied DD-pulses is sampled. In contrast to the gate, only qubit 2 is addressed with

microwave fields, so that detunings due to the other present qubits cancel out. Figure 5.2.5

shows an example of a Rabi oscillation observed on qubit 2 in a three-qubit system with a

total pulse duration of up to 25 ms. The amplitude of the RF generator signal is A = 2·10−3

with a measured Rabi frequency of Ω = 2π ·55(10) Hz. Although the excitation of the qubit

does not reach 1, this demonstrates the ability to drive the target qubit of a Toffoli gate

with Rabi frequencies relevant to the implementation of the gate mechanism as a frequency-

selective pulse. Besides the required amplitude of the frequency generator to drive ΩT , the

(a) (b)

Figure 5.2.5: (a) Rabi oscillations at signal generator amplitude A = 0.002. The driving
field is nested in a 250 pulse CPMGXY-sequence driven with ΩDD = 2π · 27.54 kHz at
ADD = 0.9129. The nesting sequence used is shown in eq. (5.2.19). The fitted Rabi
frequency is used in (b). The evolution time used here is up to 25 ms, exceeding the gate
time of the Toffoli gate of 15 ms and the coherence time T2 ≈ 200 μs. (b) Linear fit to
measured Rabi oscillation frequency with respect to the signal generators amplitude. The
Rabi frequency as a function of the set amplitude is found to be Ω(A) = 2π ·27.8(2) kHz ·A.
This allows to extrapolate the required amplitude A to values relevant for the Toffoli gate
implementation.

.

coupling must be known. As shown in chapter 4, a Ramsey-type experiment can be used

to estimate the coupling constant. The coupling constant can then be calculated from

the observed conditional phase shift. Figure 5.2.6 shows the Ramsey-type measurement of

the coupling constant J12 in a three-qubit register. The experiment includes a Universal

Robust (UR) dynamic decoupling sequence with a block length of 10 pulses (UR10). For

each sampled evolution time, the periodicity of the dynamical decoupling sequence has been

kept constant to avoid sampling different frequency components of the noise spectrum, as
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5.3 CNOT

shown in [9]. UR10 blocks are concatenated with a conditional evolution time of T10 = 1 ms

each. The coupling was found to be J12 = 2π · 36.5(1.1) Hz.

To implement the Toffoli gate, all parameters are known. Nevertheless, it is necessary to

fine-tune the gate parameters. The parameters accessible in the experiment are the logical

input state |ijk〉, the gate time TT , the amplitude A, and the detuning δ. A working

set of parameters was found by measuring the excitation probability of the target qubit.

An iterative search for the best working parameters was performed. The best parameters

found were A = 0.003571, TT = 14.86 ms, δ = −2π · 78 Hz and a DD-sequence on control

qubits consisting of 20 UR10 blocks and on target qubit 200 CPMGXY-pulses.

(a) (b)

Figure 5.2.6: (a) Relative acquired phase Δφ of qubit 2 in a three-qubit system as a function
of the evolution time. The phases are measured by a Ramsey type experiment. Linear
fit of coupling constant results in J12 = 2π · 36.5(1.1) Hz, here t is the total evolution
time. The applied DD-sequence was one UR10 block per ms, such that the free evolution
time between DD-pulses was kept constant at τ = 0.1 ms. Two experiments have been
interleaved with control qubit state |1〉 and |0〉 and Δφ is the phase difference of the fitted
Ramsey fringe. The axial trap frequency is νT = 2π · 128.4(1) kHz. (b) Ramsey amplitude
decay of the experiment shown in (a) to detemine the coherence time of a qubit in a three-
qubit register. The fitted Ramsey fringe amplitudes A are shown. The fitted decay time
is T2 = 4.5(5) ms.

5.3 CNOT

Besides the Toffoli gate, a half-adder consists of a CNOT gate between the control qubits of

the Toffoli gate. For symmetry reasons, the target of the Toffoli gate has been chosen to be
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5 Implementation of a half-adder

the center qubit in a register of size three. Therefore, it is necessary to implement a CNOT

operation on qubit 3 controlled by qubit 1. Due to the inherent all-to-all coupling, as shown

in chapter 4, a CNOT gate can be implemented among any arbitrary pair of qubits in a

register. The typical implementation of the CNOT gate consists of a π/2-pulse on the

target qubit, a waiting time of a duration TC = π/2J , and a second π/2-pulse applied on

the target. A CNOT operation based on MAGIC has been demonstrated by [10]. The

unitary operation to implement the gate is:

UC =
(

π

2

)(t)

0
Uzz(Tc)

(
π

2

)(t)

3π/2
. (5.3.1)

Here the superscript (t) denotes the target qubit, the subscript φ denotes the phase, and Tc

is the free evolution time. Similar to the implementation of the Toffoli gate, a DD-sequence

is required to extend the coherence time. Implementing a CNOT gate on a subset of qubits

in a register requires removing the interaction with other present qubits. This can be

done dynamically by addressing only the participating qubits with a DD-sequence, or by

recoding all other qubits to a magnetically insensitive state [37]. The application of the

recode operation or J-tuning is necessary if the phase of the qubits not participating in the

gate is of interest. Since the implementation of the half-adder presented here is classical due

to the neglected coupling between the control qubits of the Toffoli gate, it is sufficient to use

only a DD-sequence on the qubits participating in the CNOT gate. The implemented pulse

sequence is shown in fig. 5.3.2. The DD-sequence used is a UR-sequence, since there are no

restrictions on the phase of the DD-pulses. For the CNOT implemented here Tc = 8.75 ms.

In the experiments shown here 120 DD-pulses of a UR12-sequence repeated ten times were

used. The results of the CNOT implementation are shown in fig. 5.4.2.

5.4 Quantum channel tomography

Quantum channel tomography can be used to quantify the implemented gate. Each possible

state in the computational basis must be prepared and propagated through the gate, and

its result in the same computational basis must be measured. The procedure is as follows:

1. Prepare state |abc〉.
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5.4 Quantum channel tomography

(a) (b)

Figure 5.3.1: (a) Bloch vector trajectory of the target qubit of a CNOT when the control
qubit is in state |0〉C assuming the target qubit starting in state |0〉T . After the first π

2 0-
pulse is applied, the conditional evolution implements a rotation of φ = +π/2 around the
z-axis and the second π

2 3π/2-pulse transfers the population back to |0〉. (b) Bloch vector
trajectory if the control qubit is in state |1〉 assuming the target qubit starting in state
|0〉T after the first π

2 0-pulse is applied, the conditional evolution implements a rotation of
φ = −π/2 around the z-axis and the second π

2 3π/2-pulse transfers the population to |1〉.
Therefore, the state of the target qubits is inverted conditioned by the state of the control
qubit.

2. Apply gate.

3. Read the quantum state projected onto the computational basis and note the result,

also in this case from |000〉, |001〉 to state |111〉.

4. Repeat steps 1-3 to collect statistics.

5. Select another state prepared in step 1 and repeat until all possible 23 basis states

have been measured.

6. Calculate the frequency of readouts as fnk = Nnk/N , where Nnk is the number of

readout values n that occur in the total N measurements performed for a given input

state k |abc〉.

119



5 Implementation of a half-adder

. . .

. . .

. . .

Uzz

πφn
1

Uzz=

π
2

0
3 πφn

3
π
2

3π/2
3

N

Figure 5.3.2: Decomposition of the CNOT gate between ions 1 and 3. Here ion 3 is the
target. The unitary evolution Uzz implements the zz-coupling, whereas the single-qubit
π-pulses implement the dynamical decoupling sequence. This sequence is repeated 120
times. πφn

k denotes a π-pulse on qubit k with phase φn. The phases of the DD-pulses are
chosen to implement a universal, robust DD-sequence on the control and target qubit.

7. Use the measured frequencies fn for each possible input state to perform a maximum

likelihood analysis according to [78,79] to reconstruct the quantum gate.

8. Use the reconstructed quantum gate to evaluate the classical fidelity F as

F =
∑
kl

1
n

MklGkl, (5.4.1)

where Mkl is the reconstructed gate and Gkl is the gate to be implemented, and n is

the dimension. Here n = 23 = 8.

The numerical data analysis was performed using an analysis script developed by Sagar

Silva Pratapsi.

The tomography of the Toffoli gate, the half-adder gate and the CNOT gate was performed

as an interleaved experiment.

Interleaved experiments allow a direct comparison of the results of two experiments. Be-

cause the experimental setup is subject to slow drifts, such as drifts in addressing frequency,

Rabi frequency, noise spectrum drifts, or laser frequency. It can be difficult to compare two

experiments run in sequence. The experiment control framework provides automatic recal-

ibration of the addressing frequencies, automatic scanning of the 369 nm laser resonance

and a feedback loop to actively stabilize the cooling fluorescence during the experiment.

The procedures used are described in chapter 2. Typical experiment durations are on the
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5.5 Creating a GHZ state

order of 10 min, so consecutive experiments will experience different experimental drifts,

making direct comparison difficult. Therefore, experiments can be run interleaved. Typi-

cally, an experiment tests a set of parameters, and the measurement result is a probability

distribution. To approximate these distributions, experiments are repeated. Typical ex-

periments are repeated on the order of 100 times. During each repetition, the experiment

is performed for each sample point. If two experiments, A and B, are interleaved, one

repetition of experiments A and B is measured before the next repetition is measured for

experiments A and B. Depending on the experiment settings, a single cycle corresponding

to one sample point with one repetition takes about 100 ms time. Therefore, the exper-

iments can be changed on the time scale of 100 ms in such a way that the time for free

drifts compared between two consecutive experiments is reduced by at least two orders of

magnitude, making the interleaved experiments more comparable with each other. The

half-adder tomography was always interleaved with either the CNOT or the Toffoli to-

mography in order to collect more measurement data for the half-adder and to make it

comparable to the tomography of its components. The result can be found in fig. 5.4.1.

For the CNOT operation, the results can be found in fig. 5.4.2 and for the half-adder in

fig. 5.4.3.

5.5 Creating a GHZ state

The Toffoli implementation shown here has been tested using computational basis states

as product states. A typical prototype state is the GHZ state. A two-qubit GHZ state is

generated by supplying an equal superposition state to control a CNOT operation. The

output GHZ state on two qubits is then present at the control inputs of the Toffoli such

that it generates the three-qubit GHZ state. Omitting the phases, since the Toffoli is

implemented as a classical gate, the following stepwise evolution can be implemented:

|000〉
π
2

(1)

→ |000〉 + |100〉 CNOT (1,3)→ |000〉 + |101〉 T offoli→ |000〉 + |111〉. (5.5.1)

Since all prerequisites introduced in this chapter are known, the circuit can be implemented

as shown in fig. 5.5.1. Finally, the quantum state can be projected and the frequency of the
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|0〉

|0〉

|0〉

π

π

π

(a)

(b)

Figure 5.4.1: (a) Quantum process tomography of the Toffoli gate. For the experiment,
all different input states were prepared, the Toffoli gate was performed, and the qubit
states were read out.For each prepared basis state, the most likely output distribution
was evaluated. The parameters for the experiment were A = 0.003571, TT = 14.86 ms,
δ = −2π · 78 Hz, DD-sequence on control qubits 20 UR10 blocks and on target qubit 200
CPMGXY-pulses with Ω = 2π · 28.23 kHz. The system was cooled with a two step three
mode sideband cooling of TC1 = 50 ms and TC2 = 10 ms. The trapping frequency was
ν = 2π ·128.4(1) kHz with a gradient of ∂zB = 19.09(1) T/m resulting in the coupling J12 =
J23 = 2π · 36.5(1.1) Hz. This experiment was interleaved with the half-adder experiment.
(b) Maximum likelihood estimation of the Toffoli gate, with a 99% confidence interval of
F0.99 = [0.15, 0.70], with the most likely classical fidelity FC = 0.58.
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|0〉

|0〉

|0〉

π

π

π

(a)

(b)

Figure 5.4.2: (a) Quantum process tomography of the CNOT gate between control qubit
1 and target qubit 3. For the experiment all different input sates have been prepared, the
CNOT gate was performed and the qubits state have been read out. For each prepared
basis state the most likely output distribution has been evaluated. The system was cooled
with a two step three mode sideband cooling of TC1 = 50 ms and TC2 = 10 ms. The
trapping frequency ν = 2π · 128.4(1) kHz with a gradient of ∂zB = 19.09(1) T/m resulting
in the gate time Tc = 8.75 ms The DD-sequence was 10 UR12 blocks with Ω = 2π ·
28.23 kHz. The experiment was interleaved with the experiment for the half-adder. (b)
Maximum likelihood estimation of the CNOT gate, with a 99% confidence interval of
F0.99 = [0.61, 0.95] with the most likely classical fidelity FC = 0.87.
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|0〉

|0〉

|0〉 .

π

π

π

(a)

(b)

Figure 5.4.3: (a) Quantum process tomography of the half-adder. For the experiment,
all different input states were prepared, the Toffoli gate was performed, followed by the
CNOT gate, and the qubit state was read out. For each prepared basis state, the most
likely output distribution was evaluated. The parameters for the experiment where for the
Toffoli gate, A = 0.003571, TT = 14.86 ms, δ = −2π ·78 Hz, DD-sequence on control qubits
20 UR10 blocks and on target qubit 200 CPMGXY-pulses with Ω = 2π · 28.23 kHz have
been performed. CNOT was performed with gate time TCNOT = 8.75 ms 10 UR12 blocks
on qubit 1 and 3. The system was cooled with two step three mode sideband cooling of
TC1 = 50 ms and TC2 = 10 ms. The trapping frequency was ν = 2π · 128.4(1) kHz with a
gradient of ∂zB = 19.09(1) T/m resulting in the coupling J12 = J23 = 2π · 36.5(1.1) Hz.
The experiment was interleaved with the CNOT gate and Toffoli gate experiments. (b)
Maximum likelihood estimation of the CNOT gate, with a 99% confidence interval of
F0.99 = [0.37, 0.67] with the most likely classical fidelity FC = 0.61.
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(a)

|0〉

|0〉

|0〉

π
2 0

(b)

Figure 5.5.1: (a) The CNOT gate was performed with the control qubit in a superposition
state, followed by the Toffoli gate and readout. The parameters for the experiment were
for the Toffoli gate, A = 0.003571, TT = 14.86 ms, δ = −2π ·78 Hz, DD-sequence on control
qubits 20 UR10 blocks and on target qubit 200 CPMGXY-pulses with Ω = 2π · 28.23 kHz.
CNOT was performed with a gate time of Tc = 8.75 ms using 10 UR10 blocks on qubit 1
and 3. The system was cooled with a two step three mode sideband cooling of TC1 = 50 ms
and TC2 = 10 ms. The trapping frequency is ν = 2π · 128.4(1) kHz with a gradient of
∂zB = 19.09(1) T/m resulting in the coupling J12 = J23 = 2π · 36.5(1.1) Hz. The desired
output state is |ψ〉 = 1/

√
2|000〉 + eiφ/

√
2|111〉 where φ is an arbitrary unknown phase

since the Toffoli is a classical gate. Therefore, the quantum state is evaluated only in the
z-basis. (b) Generation of a GHZ state using a CNOT and a Toffoli gate.(b) Quantum
circuit for generating a three-qubit GHZ state using a CNOT and a Toffoli gate.

occurring identified product state can be calculated. It can be seen that predominantly the

states |000〉 and |111〉 occur in the readout, indicating a three-qubit GHZ state, measured

in the z-basis. Due to the classical nature of the Toffoli gate, the phases of the quantum

state are omitted here.
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5 Implementation of a half-adder

5.6 Energy consumption

Up to this point in this chapter, the implementation of the half-adder circuit has been

discussed. It has been shown that the implementation shown here is suitable to repro-

duce a classical half-adder, which is a fundamental building block of classical arithmetic

units. Every classical computation consumes energy. In contrast to classical computation,

the unitary evolution of a quantum state can by definition be completely inverted, since

U †U = 1. From a thermodynamic point of view, this means that no energy is lost in

the system. Theoretically, if one could realize an ideal quantum control of the system,

arbitrary computations could be performed without energy cost.

In reality, a lot of power is needed to generate the EM fields for quantum control. The

trapping potential to store the qubits, the laser field of cooling to prepare and read out the

qubits, the microwave field to carry out the coherent control, or the generation of magnetic

fields to control the quantization axis require power. Currently, the DC magnetic field is

generated by sets of Helmholtz coils. These Helmholtz coils could be replaced by a suitable

permanent magnet arrangement, thus eliminating the power requirement for generating

the DC magnetic fields. On the other hand, the trapping potential must be generated

and maintained during a computation, which adds a fixed power consumption during the

computation. Depending on the realization of the trapping apparatus, a driving power in

the order of PT r ≈ 10 mW might be achievable with current traps [80]. Compared to future

planar ion traps, the trap setup used in this work is macroscopic and must be operated

at a trapping power of PT r ≈ 10 W. This is by far the largest contribution to energy

consumption. A near-ideal resonator could significantly reduce the power requirement

in the future. By definition, the laser light used for cooling, preparation, and readout

drives a dissipative process. In the case of cooling, heat must be transported away. In

the case of preparation, the excitation of the qubit must be dissipated. For readout, the

qubit is intentionally excited to a state that quickly decays while emitting a photon that

is eventually detected. All of these laser processes are dissipative by design. Therefore,

energy must be dissipated. However, in principle there is no interaction between the qubits

and the laser light during the computation until the quantum state is projected. Therefore,

the energy spent on cooling the system before preparation and readout can be considered

a one-time energy cost, since it does not contribute to the energy consumption during
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5.6 Energy consumption

the actual computation. The energy consumed is therefore independent of the length of

the computation and can be considered insignificant in the limit of an arbitrarily long

computation. The delivered laser power can be measured using a power meter that probes

the laser beams before they enter the vacuum receiver. Integrated over time, the required

energy delivered by the laser beams can be estimated. The results are shown in table 5.6.2.

In addition to the one time energy expenses for the laser light, as shown in chapter 2, a

microwave field is required in the Doppler cooling and sideband cooling step. In case of

Doppler cooling it is required to close the cooling cycle while during sideband cooling it

is required to drive the motional sideband transition. To estimate the microwave power

required, the power delivered to the vacuum recipient has been measured using a Rhode und

Schwarz spectrum analyzer to be PMW = 0.58 W/ion corresponding to a Rabi frequency

Ω ≈ 2π · 33 kHz. This exceeds the power required in the laser fields for the 369 nm laser

beam and the 935 nm laser beam for re pumping by three orders of magnitude. The

full term scheme of 171Yb+ can be found in the appendix in fig. D.1. The total energy

required by the laser field and the microwave field adds up to E1 ≥ 100 mJ per cycle of the

experiment. The results are summarized in table 5.6.2

In contrast to the one-time cost of cooling preparation and readout, the microwave signal

is required to perform a computation. By design, the interaction between the qubits is

free of energy cost, since it is generated by a permanent magnet setup that produces

the magnetic field gradient for the MAGIC scheme. For the half-adder circuit presented

here, the dominant contribution of energy consumption is the π-pulses to implement the

DD-sequences. In the case of the half-adder, three parallel microwave fields are required.

The duration of a π-pulse is tπ ≈ 15 μs, resulting in an energy dissipation per π-pulse

of Eπ ≈ 8.8 μJ. The measured power PMW is transferred to the receiver via the SMA

feedthrough. As shown in [7], inside the vacuum receiver, an additional coaxial cable

connects the feedthrough to the circular waveguide, which is excited by a pin antenna.

The waveguide then conducts the generated microwave field to the trap consisting of steel

blade electrodes. A.Khromova in [7] states an output power loss of about 8 dB for the

waveguide. Based on the dimensions of the waveguide calculated by S. Patrapasi in [75],

the theoretically required microwave energy is Eπt = 1.8 μJ. This theoretical estimation,

together with the output power loss of 8 dB, the estimated energy required for a π-pulse on

the σ+-transition with a Rabi frequency Ω = 2π · 33 kHz is EE ≈ 11 μJ. This corresponds
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5 Implementation of a half-adder

to the measured power required and can be used to estimate the energy required for other

pulses.

The energy required for a pulse given a fixed angle of rotation scales as:

E ∝ PMW
1
Ω

∝ Ω2

Ω
= Ω. (5.6.1)

Reducing the Rabi frequency of the pulse, therefore, reduces the energy required for the

single qubit rotation. Since the ΩT ≈ Ωπ · 10−3 the required energy to implement the

Toffoli gate would be on the nJ scale. If all sources of incoherence are eliminated, which

for the present setup makes DD-sequences obsolete, the CNOT gate would require at least

one π-pulse to decouple the Toffoli target qubit from the qubits involved in the CNOT,

and two π/2-pulses to implement the CNOT operation itself. This would make the CNOT

gate three orders of magnitude more expensive in terms of energy required compared to

the Toffoli gate. The ultimate goal of building a quantum computer that, when used as a

Gate MW
Pulse

Dyn. decoupling Total
# π-pulses Cost

NOT Estimated 1.8 μJ — — 1.8 μJ
Measured 8.8 μJ — 8.8 μJ

CNOT Estimated 1.8 μJ 2 · 120 0.44 mJ 0.44 mJ
Measured 8.8 μJ 2.1 mJ 2.1 mJ

Toffoli Estimated 2.0 nJ 3 · 200 1.1 mJ 1.1 mJ
Measured 9.2 nJ 5.3 mJ 5.3 mJ

Half-
Adder

Estimated 1.8 μJ 840 1.5 mJ 1.5 mJ
Measured 8.8 μJ 7.4 mJ 7.4 mJ

Table 5.6.1: Estimated and measured power consumption of the experimentally realized
gates. “MW Pulse” refers to the microwave energy required to implement the Hamiltonian.
“Total” includes the cost of dynamical decoupling π-pulses.

classical computer, is still more energy efficient than a classical computer seems unrealistic.

In such a classical application, each qubit could be replaced by a transistor. Controlling a

quantum register, even in a very simple way, requires at least accurate timing. For example,

the time at which a qubit state needs to be manipulated, e.g. a π-pulse needs to be applied,
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5.6 Energy consumption

Laser
369 nm

Laser
935 nm MW/ion Duration Energy

Doppler
cooling 48.0 μW 1.35 mW 0.58 W 8.0 ms 14 mJ

Sideband
cooling 0.16 μW 1.35 mW 0.58 W 60 ms 100 mJ

Ground
state prep. 35.0 μW 1.35 mW — 0.20 ms 0.28 μJ

Readout 48.0 μW 1.35 mW — 3.0 ms 4.2 μJ

Total 120 mJ

Table 5.6.2: Power and energy costs of one-time operations that contribute to the baseline
energy expenditure.

needs to be stored in a classical numerical value, using already some classical bits to store

this timing information. Even if the qubit control is idealized in a way that it does not

need any electronics and therefore does not consume any energy, the sequence definition

for the qubit manipulation still needs more electronics, since the circuit execution can be

substituted. As long as the control of a qubit requires at least one transistor, the energy

cost of a classical quantum computer will exceed the energy cost of a classical computer.

Nevertheless, the finding that the scaling of the energy cost of pulses is EP ∝ Ω ∝ 1
TP

, where

TP is the duration of the pulse, allows us to estimate this part of the energy cost of quantum

computation in the future, since this result is not restricted to classical computation, but

is also valid for quantum computation.

129



5 Implementation of a half-adder

5.7 Outlook

In this chapter, the classical half-adder has been investigated theoretically and experimen-

tally. As mentioned above, a classical implementation of the Toffoli gate is not advanta-

geous in terms of energy efficiency if the gate is used only as a classical gate. However,

an advantage of the gate arises when it is modified to be a quantum Toffoli gate. The

basic idea is sketched in this section. The extension of the gate mechanism to more control

qubits is then briefly discussed.

5.7.1 A proposal for a quantum Toffoli gate

The Toffoli gate presented here is classical in the sense that the interaction between the

control qubits is neglected. The unwanted coupling must be removed if a quantum version

of the Toffoli gate is to be constructed. One possibility is to apply a correction to the

gate after its completion, inverting one of the Toffoli control qubits, followed by a zz-

interaction of the duration of the Toffoli gate. As shown in chapter 4, the effect of the

evolution over the entire evolution time would cancel the coupling between qubits one and

three. To protect qubit two from decoherence, either recoding is required, or J-tuning must

selectively decouple qubit two from qubits one and three.
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Figure 5.7.1: A possible extension to the classical Toffoli gate shown in this chapter is to
incorporate the zz-coupling of qubits 1 and 3 and remove this effect by an effective refo-
cusing step after the Toffoli gate. For this scheme, the evolution time would be effectively
doubled.
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5.7.2 J-Tuning and driving field

As described in chapter 4, the effective coupling between arbitrary qubits in a register can

be achieved by an appropriately timed DD-sequence. In contrast to the Toffoli gate imple-

mentation and the perceptron gate implementation shown in chapter 6, for the derivation

of J-tuning only a Hamiltonian consisting of σ
(i)
z σ

(j)
z terms is considered. Without a driv-

ing field, the solution obtained is exact. For the gate implementation, which requires a

driving field, the use of J-tuning is not exact, but it approximates the ideal J-tuned case.

To quantify the approximation to the ideal J-tuned unitary, an approximation fidelity FA

can be defined as

FA = 1 − 1
4
∑
ij

|U (A)
ij − Uij |, (5.7.1)

which goes to 1 if the approximation U (A) approaches the exact U . With the rotation

introduced in eq. (2.3.9), R(θ, φ, δ, Ω), the approximated unitary is

U (A) =
[
R(

θτb

NavgT
, φ, J + δ, Ω)R((1 − τb

T
)

θ

Navg
, φ, −J + δ, Ω)

]Navg

, (5.7.2)

U = R(θ, φ, J(1 − 2
τb

T
) + δ, Ω). (5.7.3)

Where θ is the angle of rotation assuming a resonant Rabi frequency Ω. φ is the phase, J

is the coupling flipped at times τb, and Navg is the number of spin flips of the control qubit

during the evolution of the gate. The fidelity of the approximate unitary with J-tuning in

the presence of a control field can be calculated. For the calculation θ = π, Ω = 2π · 30 Hz,

J = 2π · 30 Hz, and δ = [0, 2J ] were used. The resulting FA as a function of Navg and the

relative J-tuning time τb/T is shown in fig. 5.7.2. For both cases of detuning δ = [0, 2J ], it

can be seen that the approximation accuracy FA ≥ 0.99 for Navg = 50 and, respectively,

Navg = 10. J-Tuning in the case of an active control field is not an exact solution, but it

is a good approximation.

5.7.3 Expanding the Toffoli gate to more control qubits

The basic idea of the Toffoli gate is that a narrow-band pulse selectively drives a rotation of

π, if due to the effective field generated by the control qubits, the qubit resonance frequency
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Figure 5.7.2: (a) Approximation fidelity FA of a rotation U = R(θ, φ, J(1−2 τb
T )+δ, Ω) as a

function of Navg spin flips introduced to realize a J-tuning with relative delay τb/T where
θ = π, Ω = 2π · 30 Hz, J = 2π · 30 Hz, and δ = 0. Here eq. (5.7.1) is used to calculate the
approximation fidelity using the unitary in eq. (5.7.3). (b) Approximation fidelity FA with
the same parameters as in (a) but with a fixed detuning δ = 2J . For an increasing number
of average steps Navg, the approximation fidelity exceeds FA ≥ 0.99, making it feasible to
be implemented in gates requiring a driving field Ω.

is shifted by a certain detuning. The duration of this narrowband tophat-pulse is chosen

so that, if it is not resonant, the effective axis of rotation is tilted and a full n · 2π rotation

is performed.

Assuming a register of qubits of size N +1 and an equal coupling of all qubits to the target,

in principle, by a proper choice of the detuning δ, a gate can be constructed so that for a

given number of |1〉 compared to |0〉 states occurring among the control qubits, the state

of the target qubit flips.

A detuning δ = nJ would be compensated by having n more control qubits in the |1〉 state

than in the |0〉 state. The Toffoli gate is a special case, where δ is chosen such that a flip

of the target qubit occurs if and only if the control qubits are in state |11〉c. Choosing

Ω ≈ J/2 would allow closing all trajectories where the residual detuning does not vanish,

while at the same time having δ ≈ nJ allows trajectories for all possible control qubit

states besides the one chosen to flip the target qubit. Thus, J-tuning allows the direct

implementation of a quantum Toffoli gate with more than two control qubits.
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5.8 Summary

In this chapter, the implementation of the Toffoli gate, as proposed by S. Bose in [76],

has been modified by interleaving a dynamical decoupling sequence with the gate Hamil-

tonian. The implementation in the experiment has been demonstrated using the Toffoli

gate to create an GHZ state in the computational basis. The Toffoli gate and a long-range

CNOT operation were used to implement a half-adder circuit on three qubits. A stepwise

evaluation of the performance of the classical gate has been demonstrated. Possible ways

to improve the fidelity of the Toffoli gate were identified, such as using different RF sources

for the RF to generate low Ω driving fields. A possible way to create a full quantum gate

from this classical gate was formulated by adding a hypothetical disentangling step for

the two control qubits. Additionally, extensions to Toffoli gates with three or more con-

trol qubits have been sketched. The given coupling topology requires the use of J-tuning

in the extended gate implementation. Numerical calculations show that J-tuning can be

used to implement gates requiring a driving field. Furthermore, the energy requirements

in the current experimental setup have been measured and the energy requirements of the

half-adder have been estimated.

The results obtained in this chapter are published as [75].
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Perceptron gate

Neural networks implemented on classical computers have proven to revolutionize computer

science. They can identify faces, read a handwritten document, or understand the spoken

word. This classification power allows one to autonomously understand and translate a

text, or to control a machine using multiple sensor inputs. This chapter reports on the

implementation of a small quantum mechanical neural network (NN). The implementation

reported here is based on the ideas of E. Torrontegui and J. J. García-Ripoll [81].

A single neuron is an essential element in biological systems that allows an organism to

respond adaptively to its environment. A neuron is a cell that can produce or receive

electrochemical signals. The excitation of a neuron is a direct response to its environ-

ment. If the external stimulus is large enough, the neuron can be activated. This external

stimulus may come from other nearby neurons. This activation of the neuron can in turn

stimulate other neurons through connections between them, forming a network. An im-

portant property of a biological neural network is its ability to learn. Learning is realized

by strengthening the connections between neurons. This defines the circumstances under

which a neuron can be activated. Because of this flexibility, a given number of neurons can

solve different tasks based on the learned strength of their connections.

A classical mathematical neural network mimics this behavior [82]. Here, a neuron, or for

the scope of this work, a perceptron, can be viewed as a function whose arguments are the

states of other neurons. If the neurons can be ordered, it can be represented as a layered

graph in which nodes correspond to neurons and edges represent the weighted input for

each neuron. A simple example is given in fig. 6.0.1.
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6 Perceptron gate

Figure 6.0.1: (left) Example of a three-layer neural network with nine neurons and weights
indicated by different lines connecting each layer. (right) A perceptron controlled by
weights ωnj described the control field of the perceptron gate shown in eq. (6.1.1).

6.1 Perceptron

The state of a neuron is given by an activation function sn = f(xn), where the input of

the neuron is

xn =
∑
k<n

ωknsk − θn. (6.1.1)

Here, ωkn is the weight of the input of neuron k to the neuron n, and θn is the neuron’s

bias. Suppose the function f(x) is a continuous sigmoid function. In that case, it is proven

that a three-layer neural network may serve as a universal approximation of an arbitrary

continuous function of the input state [83].

In analogy, E. Torrontegui and J. J. García-Ripoll have shown that the quantum version

of the universal approximator theorem holds [81]. This theorem states that any bounded

continuous function Q(σ1, ..., σn) ∈ [−1, 1] of the quantum observables {σi}N
i=1 can be

reconstructed up to an error ε onto the state of a qubit using N input qubits and Mε + 1

applications of the quantum perceptron gate.

In a MAGIC trapped-ion quantum computer, the inherent all-to-all coupling Jkn can be

associated with the weights appearing in the network ωkn. The state of the input neuron

sk can be seen as the eigenstate of the control with respect to σ
(k)
z . Therfore the weight
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6.1 Perceptron

can be associated with the coupling and the state of the input neuron can be associated

with the σ
(k)
z operator as

ωkn → Jkn and sk → σ(k)
z .

In addition to the weighted inputs, the classical model of a perceptron requires a bias.

The bias strength θ needs to be on the order of magnitude of the interaction strength

and therefore might be generated by an additional neuron. In the system given in the

experiment, the standard procedure of simulating a bias θ with other neurons can be used.

A Hamiltonian has been found to implement the desired sigmoid excitation of a perceptron

[81]. The Hamiltonian reads

H(t) =
�

2

(
−Ω(t)σ(j)

x − xσ(j)
z

)
. (6.1.2)

Here, the activation is

xj =
∑
i<j

Jijσ(i)
z σ(j)

z − θj , (6.1.3)

where θj is the bias of the perceptron j. In our implementation, it will be generated by an

additional qubit k as

θj = Jkjσ(j)
z . (6.1.4)

The full Hamiltonian is

H = Ω(t)σ(j)
x +

∑
i<j

Jijσ(i)
z σ(j)

z , (6.1.5)

where θσz is absorbed in the sum.

The required sum of a weighted input for a perceptron [84] is shown in equation (6.1.1).

As shown in chapter 4, tuning of the average qubits interaction strength is possible by

applying J-tuning or by shaping of the trapping potential.

The ground state of the system is given in [81] as

|ψ〉 =
√

1 − g(x/Ω)|0〉 +
√

g(x/Ω)|1〉 (6.1.6)

for a driving field Ω � J with

g(x/Ω) =
1
2

(
1 +

x/Ω√
1 + (x/Ω)2

)
, (6.1.7)
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6 Perceptron gate

whereas for a driving field Ωσx alone (Ω � J) the ground state is

|+〉 =
1√
2

(|0〉 + |1〉) . (6.1.8)

The adiabatic theorem states that when a system is in its ground state and this ground

state evolves slowly enough, the system will stay in its ground state [85]. This means that

starting with the ground state |+〉, application of a large driving field Ωσx and turning it

off slowly enough, the system will end up in the ground state given by (6.1.6).

The Hamiltonian (6.1.5) is similar to the Hamiltonian shown in Eq. (5.2.1). As shown in

chapter 5, interleaving a driving field that generates a gate with a dynamical decoupling

sequence is possible. Furthermore, as shown in section 5.7.2, J-tuning can also be applied

with a driving field present. Therefore, all prerequisites to implement a perceptron gate

are set.

To generate the sigmoid excitation of the perceptron, during the evolution with the Hamil-

tonian (6.1.2), the driving field Ω(t) has to be shaped in time. The only requirement to

the driving fields amplitude is that it changes from Ω � J to Ω � J slowly enough that

the state can follow. The exact shape can be chosen freely. It has been shown that a

FAst QUasi ADiabatic (FAQUAD) [86, 87] state transfer can be achieved time efficiently.

To minimize the required evolution time while ensuring an adiabatic state transfer, the

driving field amplitude as calculated by E. Torrontegui is

Ω(s) = Ωi(A0)

√√√√√4A4
f

1+
√

5
2 s + (A2

f + (1 − s)41+
√

5
2 A2

f )

(1 − s)A2
f + s + 41+

√
5

2 A2
f

, (6.1.9)

where s = t/TP is a dimensionless time with TP being the gate time of the perceptron.

Ωi is the initial large driving field generated by a dimensionless microwave amplitude A0,

while Af is a dimensionless microwave amplitude corresponding to Ωf , where Ωf is the

final Rabi frequency at the end of the gate. For the adiabatic approximation to hold, the

final driving fields amplitude needs to be small Ωf � J to allow the eigenstate to be |0〉 or

|1〉 in the z-basis. Different from the Toffoli gate’s implementation, the evolution time of

the gate is not fixed, since no condition like a full rotation around some axis needs to be

met. Nevertheless, Ωf � J is a challenging condition due to the limited dynamic range of

the frequency generator available. The initial amplitude of the driving field needs to be as
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|0〉

UF|0〉 H

|0〉

Figure 6.1.1: Circuit diagram of the perceptron gate, where the first Hadamard gate creates
a superposition that is the eigenstate of the driving field that is applied during the unitary
evolution of the FAst QUasi ADiabatic passage (FAQUAD) UF .

big as possible, e.g. the frequency generator’s output amplitude needs to start at A = 1

and needs to be ramped down to A ≈ 10−4. The signal has to be generated by a single

frequency generator to ensure coherence of the microwave signal. A detailed description

of the approximation of the FAQUAD ramp using a VFG150 frequency generator can be

found in the appendix section C. The driving field is then interleaved with a CPMGXY-

sequence consisting of 200 pulses and is modified according to chapter 5 to implement the

gate.

The sequence for the perceptron gate is to prepare the perceptron or target of the gate

in a state |+〉, which is an eigenstate to the applied driving field Ωσx. Starting with

Ωi = Ω(t = 0), a driving field is switched on instantaneously and is adiabatically ramped

down to transfer the system to the σz eigenstate. This circuit is shown in fig. 6.1.1. The

perceptron is controlled by its potential shown in eq. (6.1.3). The activation or excitation

probability as a function of the control must be shown to demonstrate a working gate

implementation. As shown in chapter 5, a small driving field generates a measurable Rabi

oscillation. Nevertheless, the requirement for the gate is the adiabatic state transfer by

ramping down the driving field to the regime Ω � J . To observe an entire period of Rabi

oscillations, the evolution time would be on the scale of seconds. Given the bare state

coherence time on the order of T2 ≈ 200 μs or the extended coherence time of the system

using a DD-sequence on the order of some ms, a Rabi measurement on the second scale is

challenging due to decoherence.

Since Rabi oscillations much slower than the coupling is challenging to be observed, the

required amplitudes A of the frequency generator, in a low amplitude regime, are extrap-
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6 Perceptron gate

olated to implement the perceptron gate.

The activation potential, which is generated by the control qubits, can be tailored using

J-tuning to be:
x

Ωf
=

s1Jeff
12 + s3Jeff

23
Ωf

. (6.1.10)

Here, Jeff is the effective coupling, Ωf is the final amplitude of the FAQUAD ramp, and

sk = ±1 is the control qubits logical state. For the state |0〉k we have sk = −1 and for

|1〉k we have sk = +1 accordingly. The J-tuned effective coupling or the input state can

be varied to choose a specific input potential for the perceptron.

Figure 6.1.2 shows the scanned input potential with and without a bias θ. Due to the

limitations of the frequency generator, the scanned parameter range has been split into

multiple measurements. At first, the control qubits are set to |00〉c while the delay of the

target qubit to both control qubits has been scanned in a range of τb2 = [0 μs, 68 μs] while

the gates evolution time is T = 15 ms with 150 CPMGXY-pulses for dynamical decoupling.

Therefore following eq. (4.2.18) the effective coupling constant Jeff
12 (Jeff

23 ) is scanned in

a range [J12, 0] ([J23, 0]). The final driving field Rabi frequency is Ωf = 2π · 8.1 Hz while

the coupling constant was J12 = 2π · 37.5(1.5) Hz. This effectively realizes a scan of the

input potential in a range from x/Ωf = [−9.2, 0]. For positive input potentials, the control

qubits have been prepared in |11〉c implementing a scan of x/Ωf = [0, 9.2].

The same experiment has been repeated to demonstrate the possibility of bias in the

perceptron. However, instead of the target qubit’s delay, the delay of one control qubit

has been scanned. In this case, one control qubit biases the perceptron with θ/Ωf =

J12/Ωf = ±4.6 while the effective range is limited to half the scanning range of two

control qubits. Therefore, the measured perceptron’s excitation for the scanning range of

x/Ωf = [−4.6, 4.6] with the bias beeing θ/Ωf = ±4.6, shows a rising edge at the end of

the scanning range.

Choosing the input state of the bias qubit allows one to choose the bias direction.
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(a) (b)

Figure 6.1.2: (a) Perceptron activation with target qubit 2 in a three-qubit register con-
trolled by qubit 1 and 3 as depicted in (b). Maximal coupling between qubit 1 and 2,
and 2 and 3 respectively: J12 = 2π · 37.5(1.5) Hz, J23 = 2π · 37.5(1.5) Hz. Maximal ampli-
tude step for the approximation of the FAQUAD ramp using a DDS synthesizer (VFG)
δA = 5 · 10−4. Final amplitude of the VFG AF = 3 · 10−3 realizing Ωf = 2π · 8.1 Hz, start
amplitude of the VFG at the beginning of the FAQUAD ramp A0 = 1. Minimal VFG
switching time δt = 100 ns, Rabi frequency of the applied dynamical decoupling sequence
ΩDD = 2π · 27.95 kHz, gate time without DD-pulses T = 15 ms, dynamical decoupling
pulses on the control qubits 15 UR10 blocks, 150 pulses total. DD-sequence applied to
the target qubit 150 CPMGXY-pulses. Scan of the activation potential x is implemented
by a scan of the effective coupling constant Jeff

12 and Jeff
23 respectively by a delay of the

DD-sequences of the control qubits following eq. (4.2.18).

The bias can be chosen freely using J-tuning. Figure 6.1.3 shows a scan of the perceptron

activation, where the bias qubit generates a bias of θ = ±J/2. The scanned activation range

therefore is θ/Ωf = [−0.5J/Ωf , −0.5J/Ωf ] using the control qubit. This demonstrates the

applicability of J-tuning to control the bias of a perceptron.
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6 Perceptron gate

Figure 6.1.3: (a) Perceptron activation with target qubit 2 in a three-qubit register con-
trolled by qubit 1. Qubit 2 is chosen as bias qubit. The bias here is θ = ±J23/2 to show the
flipping point of the target. For θ = 0, qubits 1 and 3 are used as control qubits, doubling
the scanning range for x/Ωf effectively. Maximal coupling between the control qubit 1
and the target qubit 2 J12 = 2π · 37.5(1.5) Hz. Amplitude step size of the DDS synthesizer
(VFG) δA = 5 · 10−5. Final amplitude of the VFG at the end of the FAQUAD ramp
AF = 3 · 10−3. Initial amplitude of the VFG for the FAQUAD ramp A0 = 1. VFG switch-
ing time δt = 50 ns. Rabi frequency of the DD-sequences applied ΩDD = 2π · 28.2 kHz.
Gate time without DD-pulses T = 15 ms. DD-sequence on the control qubits 20 UR10
blocks, 200 pulses in total. On the target qubit 200 CPMGXY-pulses are applied. Scan
of the activation potential x is implemented by a scan of the effective coupling constant
Jeff

12 and Jeff
23 respectively by a delay of the DD-sequences of the control qubits following

eq. (4.2.18).

Until now, the perceptron qubit was chosen to be the center qubit in a three-qubit register.

Since a J-tuned control field controls the perceptron, this choice is arbitrary. In contrast to

the Toffoli gate shown in chapter 5, the perceptron does not require a symmetric coupling.

Using J-tuning, the perceptron can be chosen freely in a register. This is demonstrated

in fig. 6.1.4, where qubit 1 is chosen to be the target qubit of the perceptron gate. The

different coupling constants J12 = 2π · 37.5(1.5) Hz and J13 = 2π · 30(1) Hz of the control

qubits to the target are taken into account using eq. (4.2.18) and eq. (6.1.10).
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(a)

(b)

Figure 6.1.4: (a) Perceptron activation with target qubit 1 in a three qubit register con-
trolled by qubit 2 and 3 as depicted in (b). Maximal coupling between qubit 1 and 2,
and 1 and 3 respectively J12 = 2π · 37.5(1.5) Hz, J13 = 2π · 30(1) Hz. Parallel scan of the
couplings Jeff

13 , Jeff
12 using a delay between the control qubits and the target qubit’s DD-

sequence in a range of τb1 = τb2 = [0 μs, 92.7 μs]. Maximal amplitude step to aproximate
the FAQUAD ramp δA = 5 · 10−5. Final amplitude of the VFG at the end of the gate
AF = 3 · 10−3, initial VFG amplitude at the beginning of the FAQUAD ramp A0 = 1.
Initial control qubits state |11〉c. VFG switching time δt = 50 ns. Rabi frequency of the
DD sequences applied ΩDD = 2π · 28.2 kHz. Gate time without DD-pulses T = 15 ms.
DD-sequence on the control qubits 20 UR10 blocks, 200 pulses in total. On the target
qubit 200 CPMGXY-pulses are applied. Scan of the activation potential x is implemented
by a scan of the effective coupling constant Jeff

12 and Jeff
13 respectively by a delay of the

DD-sequences of the control qubits following eq. (4.2.18).

6.2 Neural network

Neural Networks (NN) can be seen as a graph, where each vertex represents a neuron,

whereas each edge depicts an interconnect between the neurons as shown in fig. 6.0.1. The

more complex the task to be solved is, the more neurons are necessary for a network. As
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universal approximator, a neural network also can approximate basic logic gates. As a

simple example the XOR gate can be implemented. It requires at least two layers in a

neural network and therefore may serve as a proof of principle gate to be implemented.

To implement an XNOR gate, two perceptron gates must be executed consecutively. The

overall evolution time T = 30 ms is challenging due to the limited coherence time. Never-

theless, a two-layer neural network approximating an XNOR operation on the two control

qubits could be implemented. For this implementation, the weights for both applications of

the perceptron have been chosen based on estimations by E. Torrotegui and are optimized

for actual implementation in the lab. This has been necessary, since the implementation of

the perceptron has imperfections. The resulting weights selected to implement the XNOR

gate are shown in fig. 6.2.1.

The two-layer neural network output shown in fig. 6.2.2 differs from the ideal outcome.

The success probability is

Ps =
1
2

(
P|00〉 + P|11〉 − P|01〉 − P|10〉

)
= 0.327(13), (6.2.1)

where P|ij〉 is the probabiliy to find the target qubit in state |1〉 given the control qubits

state |ij〉. This success probability must be compared with the expected coherence decay

during the evolution of the NN. A Ramsey type experiment using the same evolution time

and number of DD-pulses as the NN, but without the FAQUAD ramp, shows a Ramsey

fringe amplitude of A = 0.25(3). The Ramsey fringe contrast and the success probability

of the XNOR gate differ by Ps − A = 0.08(3) and are therefore comparable, although

both are subject to fluctuations. Since no adiabatic gate is performed during the Ramsey

fringe amplitude measurement, the errors in the Ramsey experiment are due to decoherence

processes as well to imperfections in the applied dynamical decoupling sequence. Therefore,

no significant deviation is found within the fluctuations of the coherence time and the

fluctuations of the success probability of the XNOR gate implemented by a two-layer

neural network. It should be noted that both experiments are challenging because the

bare state coherence time is T2 ≈ 200 μs, which is 150 times shorter than the evolution

time of the neural network.
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(a)

|c1〉

UF UF|0〉 H H

|c2〉

(b)

Figure 6.2.1: (a) Two layer neural network implementing a XNOR operation of input
qubits 1 and 3 while the target qubit is qubit 2. (b) Circuit diagram of the neural network
implemented to identify the states with the same input. The weights indicated in graph
(a) are implemented using J-tuning and are updated during the second application of the
perceptron gate.

6.3 Outlook

To implement the perceptron gate described in this chapter, a qubit has been used to

provide a bias field θ = Jeff σz. Therefore, the bias is limited by the coupling of the qubits.

Another option would be to implement a detuning of the FAQUAD ramp to implement an

arbitrary bias. As shown in chapter 2, the error of the qubits addressing frequency exceeds

the coupling of the qubits, rendering a direct implementation of a detuned field on the

scale of Hz difficult. Nevertheless, as shown in chapter 5, using a dynamical decoupling

sequence allows tolerating bigger addressing frequency errors. At the same time, a selective

detuning on the Hz level is possible. This way to bias the perceptron would eliminate the

qubit overhead in a neural network.
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(a) (b) (c)

Figure 6.2.2: (a ,b, c) Measured excitation probabilities after the implementation of an XOR
gate where qubit 1 (a) is the input qubit and qubit 3 (c) is the second input. The excitation
probabilities here are shown as a function of the control qubits input states |jk〉c. The gate
parameters were: Evolution time per perceptron TP = 15 ms DD-sequence on the target
qubit 200 CPMGXY-pulses, 20 UR10 blocks on the control qubits with Ω = 2π · 28.2 kHz.
FAQUAD ramp parameter A0 = 1, AF = 2.14·10−4 FAQUAD amplitude step δA = 5·10−5,
minimal FAQUAD step duration δt = 150 ns delays of the control qubits DD-sequence for
perceptron 1 τ

(1)
b1

= 17 μs, τ
(1)
b2

= 86 μs for perceptron 2 τ
(2)
b1

= 18.6 μs, τ
(2)
b2

= 69.6 μs.

Further more, in this chapter, the RF signals to control the qubits were synthesized using

three VFG150 frequency generators. The frequency generator used in the experiments

described in chapter 4 would eliminate the need to approximate the FAQUAD ramp with a

stepwise constant driving field. However the AWG used in chapter 4 was installed only after

the experiments in this chapter were conducted. Using the AWG as a source of microwave

control signals would also allow to extend the number of ions controlled simultaneously

while eliminating the memory limitations of the VFG150 frequency generators.

The perceptron gate can be directly generalized to an arbitrary number of control qubits,

given that they are directly coupled to the target qubit and are therefore located in the
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(a) (b)

Figure 6.2.3: (a) Decay of Ramsey fringe amplitude as a function of evolution time. The
last measurement point at T = 30 ms was measured interleaved with the NN shown in
fig. 6.2.2. The used DD-sequence was 400 CPMGXY-pulses, to be comparable with the
execution of two layers of perceptrons. Measurement points for other evolution times where
conducted on the same day without interleaving and adjusting the number of DD-pulses to
keep the same DD-period. (b) Perceptron measurement interleaved with the measurement
of the NN shown in fig. 6.2.2. Initial state |00〉c T = 15 ms 200 CPMGXY-pulses on
target and 20 UR10 blocks on the control qubits with Ω = 2π · 28.2 kHz. FAQUAD ramp
parameter A0 = 1, AF = 2.14 · 10−4 FAQUAD amplitude step δA = 5 · 10−5, minimal
FAQUAD step duration δt = 150 ns. The delay of the control qubits was scanned in a
range τb = [0 μs, 82.8 μs]. The NN success probability is found to exceed the Ramsey fringe
contrast at the gate time.

same register. In such a scenario, J-tuning allows tuning the coupling of all control qubits

to the target at once, so that a perceptron controlled by multiple qubits in a register can

be executed in one step. As for the Toffoli gate implementation shown in chapter 5, the

gate Hamiltonian (6.1.2) ignores the coupling between the control qubits.

6.4 Summary

In this chapter the implementation of the perceptron gate suggested by E. Torrontegui,

and J. J. García-Ripoll [81] has been described. For this, several techniques introduced

in this thesis have been used. The gate, as proposed, relies on an adiabatic state transfer
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6 Perceptron gate

that is realized by a Fast Quasi ADiabatic (FAQUAD) passage. The FAQUAD passage is

realized by a stepwise approximation of a driving field’s trajectory. Since the activation of

a perceptron gate depends on the weighted input potential of control neurons, J-tuning was

used to select the desired coupling reflecting the weights of the control neurons. Since the

gate time required for the gate’s implementation is on the order of several ms, a dynamical

decoupling scheme is introduced during the gate’s evolution following chapter 5.

This technique allowed us to measure the perceptron excitation as a function of its effective

activation potential. To realize a bias of the perceptron, one of the two control qubits can

be used to generate a bias for the perceptron. The shift of the perceptron’s activation as

a function of the bias field has been demonstrated.

A two-layer neural network has been implemented to approximate a XNOR gate to demon-

strate a small use case for a neural network. The success probability of this two-layer neural

network is reduced but comparable to a Ramsey fringe amplitude measured after the same

evolution time using the same DD-sequence. This indicates that the perceptron gate im-

plementation is subject to the same sources of noise as the MAGIC phase gates, and that

improvements in overall fidelity would also benefit the perceptron gate.

The results obtained are partially published as [88].
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In this thesis, novel methods for trapped-ion quantum computing are explored. A MAGIC-

based trapped-ion quantum computer with a permanent magnetic field gradient and a

harmonic trapping potential generates an all-to-all two-body coupling between qubits in a

quantum register. The all-to-all interaction in a quantum register is a tool to parallelize

quantum computing and to directly implement multi-qubit gates. In chapter 4 a method

that uses only a pulsed dynamical decoupling sequence to tune the coupling between qubits

is presented. Up to a register size of four qubits, it is shown how J-tuning can be used

to implement a desired coupling topology. The chosen example realizes an equal coupling

between all four qubits. Using J-tuning, a coupling matrix can be synthesized column by

column. Therefore, J-tuning provides a quadratic improvement over pairwise sequential

interaction between pairs of qubits. A second example is the parallel execution of con-

ditional gates in a quantum register. The partitioning of a register into non-interacting

sub registers can be achieved by choosing a different repetition rate of dynamic decoupling

pulses on a sub register of qubits. Using this method, J-tuning can be applied within

sub registers of qubits, enabling parallel quantum computation. The choice of qubits to

form a sub register is arbitrary, allowing parallel execution of quantum algorithms on sub

registers. A simple algorithm to compute the required pulse timings is demonstrated.

Furthermore, section 5.2 shows how the driving fields required to implement a gate can be

interleaved with a dynamic decoupling sequence. This was used to demonstrate a three-

qubit Toffoli gate with a fidelity of F = 0.58 and a 99% confidence interval of F0.99 =

[0.15, 0.70]. The Toffoli gate is then used in a half-adder circuit consisting of a Toffoli

gate and a CNOT gate, which reduces the circuit depth compared to the decomposition

in next neighbor conditional gates. The fidelity of the half-adder circuit is F = 0.61

with a 99% confidence interval of F0.99 = [0.37, 0.67]. Half-adders are a fundamental
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building block of arithmetic operations in classical computers. The classical computing

infrastructure contributes significantly to the world’s energy consumption. The emerging

quantum computing industry will contribute to this demand, making it worthwhile to

study the energetics of quantum computing. As a prototypical system, the half-adder

implementation shown in this thesis is used to estimate its energy consumption. The

primary energy demands in the current setup are the trap drive and the microwave signals

used for local rotations applied to the participating qubits.

The combination of J-tuning and driving fields is studied numerically in section 5.7.2 and

it is shown that a Hamiltonian consisting of a driving field and an effective J-coupling

can be approximated. The combination of J-tuning with a driving field is then used to

implement a perceptron gate on three qubits. Here, the perceptron gate is realized by

an adiabatic state transfer, while J-tuning is used to select a desired interaction strength

between the two control qubits and the target. In section 6.2, a two-layer neural network

is implemented to realize a XNOR operation.

In order to scale up the current quantum computer to a useful device, it is necessary to

increase the number of qubits and their interaction strength. J-tuning becomes a tool to

implement multi-qubit gates in larger quantum systems. For example, it allows the direct

implementation of gates that operate on more and more qubits. Both the perceptron

gate and the Toffoli gate can be generalized to more than three qubits, demonstrating

the inherent scalability of a MAGIC-driven trapped-ion quantum computer. Nevertheless,

there are still challenges to be overcome in future devices.

A critical step in overcoming these challenges is the automated operation of the system.

Within this thesis, the automated operation of the lab has been implemented up to the

limitations given by the available hardware. An automatic loading procedure has been

installed, following the procedure outlined in section 2.8.1, based on live analysis of cam-

era images. In section 2.8.2 the automated laser scanning procedure is outlined, while

section 2.8.3 describes the active stabilization of the Doppler cooling fluorescence, which

allows to compensate the relative drift of the laser reference cavity of the 369 nm laser by

observing the optical fluorescence during the experiments. This allows drift rates up to

2π · 240 kHz/s to be compensated. These routines, together with the automatic recalibra-

tion of addressing frequencies developed in previous work, allow the user to focus on the

implementation of quantum gates and algorithms.
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The sympathetic multi-tone sideband cooling significantly reduced the experiment time

per cycle. Prior to this work, sideband cooling of an ion crystal required ≈ 120 ms per

cooled vibrational mode. Applying the parallel cooling scheme to three vibrational modes

as described in section 2.7 requires ≈ 60 ms, achieving a sixfold speedup of the sideband

cooling step. Effectively, the repetition rate could be increased up to five times due to the

comparatively short times of Doppler cooling, preparation, coherent operation and readout,

which require less than 20 ms. Optimization of the parameters of this cooling scheme is

efficiently implemented by a minimal experiment to observe the excitation of up to three

motional modes simultaneously as a function of the cooling laser intensity.

Automated recalibration of the addressing frequency of the qubits allows, besides precise

addressing, the observation of the magnetic field at the ion’s position. The magnetic

field gradient was found to be ∂zB = 19.09(1) T/m. Assuming a constant magnetic field

gradient generated by the installed permanent magnets, the position of the ions can be

determined. Chapter 3 describes the observation of a single ion and the measurement of

DC forces with a sensitivity of 2.2 · 10−23 N/
√

Hz. By evaluating the frequency calibration

data obtained during the measurements presented in chapter 4, the ion’s position and

corresponding long-term thermal stability of the axial trapping potential were measured.

The relative stability of the ion coupling over one day σJ/J = 2.6 · 10−4 was determined

as described in section 3.3.

The main challenge in the further development of the MAGIC trapped-ion quantum com-

puter is the susceptibility of the qubits to magnetic fields. Magnetic field perturbations can

be either external magnetic field perturbations or indirect electric field perturbations that

change the position of the qubits in the magnetic field gradient, so that the electric field per-

turbations indirectly create a magnetic field perturbation that limits the coherence of the

qubits. In future quantum processors, external magnetic fields can be shielded. Controlling

the electric field noise seems to be the most promising strategy to reduce qubit dephasing

and consequently improve the fidelity of multi-qubit gates. After the measurements in this

work were completed, two qubit-gates were investigated on the same experimental setup

and it was shown that two-qubit fidelities in the 99% range are already possible with the

existing setup [89]. Therefore, it seems reasonable that further improvements in dynamical

decoupling strategies will allow for high-fidelity multi-qubit gates.
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A Hardware

Experimental control

DSP Jäger GmbH ADwin-Pro

- Pro-CPU-T9

- Ethernet computer link

- 2x DIO 32

- AIN8/12

- AOUT8/16

Experiment sequence National Instruments LabVIEW 2015

DAC PLUG-IN Electronics USB-3112

Frame grabber card BitFlow Neon-CLB CameraLink

Paul trap

Function Generator RigolDG1022Z

Power amplifier RFPA 1500-20

RF Helical resonator Prague University Ivo Polak’s design

Permanent magnets Magnetic Component Engineering (UK) Ltd

SmCo tubes S2869 [7]

VFG synchronization

Atomic clock Stanford Research Systems FS725

4-way Power splitter Mini-Circuits ZCSC-3-R3+

Schmitt trigger In-house [90]

Data flip-flop In-house [91]

TTL Fan-out In-house [90]
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A Hardware

RF control chain

AWG Agilent M8190A

RF sequence In-house VFG-150 Versatile Frequency Generator

RF power amplifier Globes 10W PA Elisra (+35dB)

RF power amplifier Microwave Amplifiers Ltd AM43-12.4-12.8-43-43 (+45dB)

RF pre-amplifier Mini-Circuits ZFL-500LN+

RF pre-amplifier Mini-Circuits ZX60-183A+

RF pre-amplifier Mini-Circuits ZX60-14012L+

Power supply (for AM43) TOELLNER TOE 8851-16

RF low-loss cable Elspec Phase Master 300 PM300-SMA11-SMA11-1500

Dual loop PLL oscillator MITEQ DLCRO-010-12568-3-15P

MW switch Narda SPST S213D

3-way Power cominer/splitter Mini-Circuits ZFRSC-183-S+

3-way Power cominer/splitter Mini-Circuits ZFRSC-2-1W+

4-way Power cominer/splitter Mini-Circuits ZCSC-3-R3+

High-pass filter Mini-Circuits SHP-50+

MW mixer (SSB) Maki SSB-0618MXW-2

MW attenuator (-10dB) Elisra MW21110

MW attenuator (-6dB) Mini-Circuits BW-S6W2+

MW attenuator (-3dB) Mini-Circuits BW-S3W2+

MW isolator AtlanTecRF ACI-20240-SF-SF (5W)

MW isolator TKI Ferrit IC 12,5 (1W)

MW isolator TKI Ferrit IC 12,5-10W (10W)

MW isolator (Unknown) MW 11218

MW isolator MSC Microwave Ltd MCSM 0616 P-0190-08 (25W)

MW isolator Raditek RADI-10-15-S3-1WR-60W Fwd-g18 (60W)

MW isolator UIY UIYCI1220A10T13SF (60W)

MW termination api technologies corp. 50W SMA termination TS180M-50W

Vacuum Components

Ion Getter Pump StarCell VacIon Varian 919-0110 20 l/s

Vacuum Controller Varian MiniVac Controller 2008 Model 929-0290
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Helmholtz Coils

3-channel power supply Low residual ripple power supply Toellner TOE 8733-2

Optical Resonator

CF Windows (369 laser) Kurt J. Lesker Company UV Quartz DN16CF VPZL-133Q

Lemo cable Lemo cable Lemo Gmbh FGG.1B.306.CLAD52

Lemo connector (6 pins) Air-tight connector Lemo Gmbh HGG.1B.306.CLLSV

Lemo connector Air-tight connector Lemo Gmbh HGP.00.250.CTLSV

Pressure measurement In-house μTrap MPX4100A [92]

AOM Components

Acousto-optic modulator AOM (new) 90 MHz ISOMET AOM 1206C-833

Acousto-optic modulator AOM 960 MHz Brimrose TEF-1050-50-369

AOM driver (SUB-D9 port) Brimrose VFF-1050-50SPS-B1/B2-C1

Acousto-optic modulator AOM 115 MHz Crystal Technology 31110-125

Voltage-controlled oscillator VCO (for old AOM 65 MHz) Mini-Circuits ZX95-100-S+

Voltage-controlled oscillator VCO Mini-Circuits ZX95-200-S+

Five-Axis Kinetic mount Newport Five-Axis Aligner 9081-M

Stable mounting Radiant Dyes RD-PDT-B

Lasers

Laser diode (369 nm) Nichia NDU1113E 20 mW

Laser diode (399 nm) Unknown

Laser diode (638 nm) Thorlabs Mitsubishi ML520G54-01 110 mW

Laser diode (935 nm) eagleyard photonics EYP-RWE-0980-08020-1500-SOT02-0000

(serial AG-02607) 1 mW

Fiber collimator Schäfter+Kirchhoff 60FC-4-A11-01

Electro-optic modulator Photline NIR-MPX800 for 935 laser

(EOM)
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Ion Detection

EMCCD Camera Andor iXon Ultra 890 DU-897U-CS0-EXF X-8188

EMCCD software Andor Solis 64bit 4.28.30001.0

Photo-multiplier tube Hamamatsu R5600P

B AWG Sequencer

• Direct Digital Synthesizer (DDS)

A direct digital synthesizer generates a continuous monochromatic RF signal using

amplitude, frequency, phase, and duration parameters. It calculates a digital ampli-

tude at time t and transfers it to the DAC at sampling rate fs. The digital amplitudes

encode a sinusoidal signal of a given amplitude, frequency, and phase at a given time.

To generate a top-hat π- or π/2-pulse, a time is required for which the signal is gen-

erated. Using a DDS is therefore a reasonable choice if only a few qubits need to be

addressed. If multiple qubits need to be addressed simultaneously, it is necessary to

operate one DDS per qubit and add their output signals before the upmixing and

amplification stages of the microwave chain to generate a multi-tone RF field. The

DDS used for experiments with up to three qubits is the VFG150.

• Arbitrary Waveform Generator (AWG)

An Arbitrary Waveform Generator (AWG) is a device for generating arbitrary wave-

forms. Synthesis can be done by precomputing an RF waveform as a set of voltage

amplitudes an. Given a fixed sampling rate of a DAC, the signal amplitude at time

tn is given by an = A(tn), so that each waveform is stored in the memory of the

AWG prior to signal generation. A typical sampling rate used in this work is 1 GS/s

(giga samples per second). It is required to synthesize frequencies in the IF range

of 30 − 80 MHz. Creating a longer RF signal for the AWG means more samples to

calculate and store in memory. The key advantage of an AWG over a DDS would be

its ability to encode an arbitrary number of RF tones in amplitudes A(tn) simultane-

ously. An AWG is therefore able to address many qubits simultaneously. In contrast,

one DDS per qubit is required to generate a polyphonic RF signal. As the number

of qubits increases, an AWG becomes advantageous over a DDS, with the drawback
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of the massive data rate required to generate the RF signal.

An Agilent M8190A AWG was used for the experiments requiring four RF tones in parallel,

as used in chapter 4. The bottleneck when using an AWG is the limited memory of

the instrument and the time required to precalculate and upload the waveforms to the

instrument.

The simple method of writing a sequence into the memory of the AWG for each run of

the experiment is time consuming and memory inefficient. At a sampling rate of 1 GS/s

(giga samples per second), an amplitude resolution of 14 bits, and an experiment run time

on the order of 5 ms per run of the experiment, 70 MBit of data is required. A typical

experiment presented here to determine the J-coupling as described in chapter 4 consists

of 21 points to sample 21 different phases for a Ramsey readout pulse, 100 repetitions to

achieve the required statistical significance, and two different control qubit states, totaling

up to 294 GBit of AWG data. To save memory and computation time, the sequencing

capabilities of the AWG can be used. The memory in the device is divided into segments.

A segment is a chunk of waveform data that can be selectively transferred to the DAC. Due

to electronic limitations, a segment must contain a minimum number of samples to allow

the hardware to load the data from memory in real time. The minimum segment length is

12336 samples. During playback, the segments played can be selected in a sequence table.

Sequencing allows to reuse parts of the AWG memory.

A typical experiment consists of varying parts of the waveform from measurement step to

measurement step. For each measurement of the J-coupling, a Ramsey-type experiment

with 21 different readout phases was performed to extract a phase of the qubit from a

fit of the oscillating excitation probability. For each step, the pulse sequence is identical

except for the readout pulse, which varies with each step. Therefore, the fixed part of the

waveform can be played for each cycle of the experiment, followed by a π/2-readout-pulse,

which is different for each measurement point. A DD-sequence consists of π-pulses and

times with no signal. Although the signal before the readout pulse can be repeated, it is

advantageous for storage that the times between the DD-pulses are not only filled with

zero amplitudes. The sequencing option of the AWG allows to generate a sequence table,

which defines the order in which the segments are to be played. It is advantageous to

predefine a segment that contains only amplitudes of value 0 and has the duration of a
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minimal segment. During the execution of a quantum circuit on a MAGIC trapped-ion

quantum computer, there are several waiting times that allow the qubits to interact. The

segment containing only 0 amplitudes can be repeated in such waiting times as defined

by the sequence table. Since it contains no signal, it can be played at any time without

affecting the coherence of the RF control signals, thus saving memory. To allow the AWG

to jump from one part of its memory to another, e.g. from one segment to another, it

must have a minimum linear playtime. The minimum segment length is therefore 12336

entries. Figure B.1 illustrates a Ramsey type experiment to measure the coupling between

two qubits in the J-tuned case. Uploading a segment to the device has some overhead to

initialize a connection. Therefore, it is advantageous to upload as few segments as possible.

To minimize this overhead, adjacent segments can be combined into a block. As mentioned

above, there is a minimum duration of a segment, but they can be longer. A block is a set of

adjacent segments of minimal length that are combined to form a segment of longer length.

This is the case, for example, when a pulse is longer than a single minimum segment, or

when it crosses the boundary between two minimum segments. These minimum segments

can then be considered as a block and can be loaded into a longer segment in the device

at once. The procedure for calculating the signal for an experiment follows these steps:

1. Loop over each step of the experiment, one step corresponds to one measurement

point to be sampled.

• Loop over each qubit addressed during the experiment.

– Define the start time of the waveform in machine units.

– Calculate waveforms using mathematical expressions.

– Define the stop time of the waveform in machine units.

– Flag if the waveform changes during the experiment.

2. Find the maximal duration of the experiment.

3. Generate minimal segments according to the maximal duration of the experiment.

• Loop over all steps.

– Initialize all segments as empty.
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– Loop over all waveforms in this step. There is a waveform for each qubit in

each pulse in each step.

∗ Find the start minimal segment.

∗ Find the stop minimal segment.

∗ Flag all segments which contain a signal.

∗ Flag segments variable if their waveform is flagged as variable.

∗ Find the start sample in the minimal start segment.

∗ Find the stop sample in the minimal stop segment.

∗ If the minimal start and stop segment are identical, add the signal to

this segment. Flag the segment as variable, if the waveform is variable

otherwise:

· Add waveform samples to the start segment, from start sample in the

segment till the end sample in the segment and flag as variable if the

waveform is variable.

· Add waveform samples to the stop segment, from start sample in the

segment till stop sample if the waveform is variable flag the segment

accordingly.

∗ If the waveform extends over at least three segments, loop over inter-

mediate segments

· Add the waveform to intermediate segments.

· Flag intermediate segment as variable, if the waveform is variable.

4. Generate Blocks.

• Loop over each step.

– Find adjacent minimal segments that contain a signal.

– Generate a block containing minimal segments. This block might now be
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longer than a single minimal segment.

– Flag the block as variable, if it contains at least one variable segment.

5. Upload blocks to segments in the device.

• Upload constant blocks to segments.

• Upload variable blocks to segments.

6. Calculate the sequence table.

This procedure for minimizing memory requirements for an experiment is graphically il-

lustrated in fig. B.1. The resulting segment table is shown in table B.1. The resulting

sequence table is shown in table B.2.

The sequencing option allows to play a segment in a loop. It is used during pauses that

exceed the minimum segment length. The pause segment will be repeated accordingly. In

addition, the first segment contains no signal and is used to wait for an external trigger.

This external trigger is provided by the real-time experiment control system after the

qubits have been prepared in |0〉. From this point on, the AWG only performs coherent

qubit control. After the waveform playback from the AWG is finished, the real-time control

system continues with the readout of the qubits’ states.

Although the AWG can loop over segments, it is unlikely to repeat a segment containing

a waveform without phase jumps. Each waveform can contain multiple signals of any

frequency. The architecture of the AWG requires a fixed sample rate, a minimum number of

samples per segment, and a minimum granularity of segment length. Since the experiment

requires a distinct phase of the waveforms, repeating waveforms would require that the

playtime and the signal period match. Since the required frequencies are arbitrary, it is

unlikely to repeat a signal segment.

This method reduces the amount of memory required for an experiment. However, this

method is limited. For example, if a waveform parameter is changed for each step during

the experiment. For example, if the amplitude of a driving field is changed in each step. In

such a case, the entire waveform must be uploaded to the instrument for each step. Thus,

the efficiency of the method depends on the experiment.

ix



8 Appendix

So far, the method has only been optimized for memory consumption of the frequency

generator, but not for computation time or memory consumption on the host computer.

The first step in optimizing the computation time is to divide the procedure into three

parts. In the first part, no actual waveforms are calculated, but the start and stop times

are calculated and assigned to segments. The second part is memory optimization, while

the third part calculates and transfers the waveforms. In contrast to the implemented

method, in which the waveforms are stored in memory and copied from one variable to

another, these multiple storage and copying processes can be optimized. This optimization

will be critical in the future, as the expected longer coherence times and increased number

of qubits will increase the length and complexity of waveforms.
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Figure B.1: An instructive example of a typical multitone signal synthesized for J-tuning
measurements. In this example, two DD-sequences are applied to qubit 1 and 2 for a fixed
evolution time in two steps, and a π/2-readout-pulse is applied to qubit 2 at the end. All
waveforms addressing different qubits but assigned to the same step are summed, allowing
a single DAC to produce a waveform that simultaneously addresses multiple qubits. Here,
each signal shown in row 1 corresponds to a π-pulse on qubit 1. The vertical dashed lines
indicate the start and stop times of the pulses. The bottom line shows the segment number
at which a signal starts or stops, assuming the same minimum segment duration. This pulse
sequence can be efficiently stored in AWG memory because the parameter changed from
step 1 to 2 is the phase φ of the Ramsey pulse. Although a DD-sequence is used in steps
1 and 2, it is sufficient to store only one in the generator memory. In addition, several
segments do not contain a waveform, so during playback there may be instances of the same
segment containing only amplitudes of value 0. The assigned segments and the resulting
sequence table are shown in table B.1 and table B.2.
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min segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

contains signal? 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0

variable? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

combined block 1 # 2 # 3 # 4 #

block variable? 0 # 0 # 0 # 1 #

Table B.1: Exemplary table showing the steps necessary to minimize the usage of AWG
memory, following the example given in fig. B.1. The first row indicates the number of
the minimal segment, and therefore each column corresponds to the time interval of this
minimal segment. The second row indicates whether a signal is present in the minimal
segment. The third row indicates which minimal segments contain waveforms that change
for each step. The fourth row enumerates the combined block that can be written to the
AWGs memory. A combined block contains numerous minimal segments to reduce the
number of signals to upload, saving upload time. The last row indicates, whether or not a
block contains a waveform that changes during the experiment.
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Sequence table Segment loops Contains

Step 1 1 inf Wait for trig

3 1 Block 1

2 1 Pause

4 1 Block 2

2 1 Pause

5 1 Block 3

2 1 Pause

6 1 Block 4 Step 1

Step 2 1 inf Wait for trig

3 1 Block 1

2 1 Pause

4 1 Block 2

2 1 Pause

5 1 Block 3

2 1 Pause

7 1 Block 4 Step 2

Table B.2: The sequence table of the example is shown in fig. B.1. This sequence table
implements memory efficient playback of the stored waveform. At the first external trigger,
provided by the real-time experiment control system, the sequence is played until the
following wait for trigger segment is reached. The next trigger starts the playback of the
waveform for the second cycle. Since the sequence table ends, the AWG goes to row one
of the sequence table and waits for the next trigger. The third trigger starts the waveform
for step 1 again.
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C FAQUAD ramp using a VFG150

The frequency generator VFG150, is a direct digital synthesizer capable of generating only

top-hat-shaped output amplitudes of a given frequency. The adiabatic ramp needs to

be approximated by such. Even though the device can store 1000 sets of parameters to

generate the waveform, it is necessary to update the memory of the frequency generator at

the run time. The FAQUAD ramp is discretized in defined amplitude steps δA = 5 · 10−4

to limit the memory requirements and streaming bandwidth. At the beginning of the

FAQUAD ramp, its slope is significant, making it beneficial to calculate the amplitude in

time steps δt = 50 ns. Overall to save memory and bandwidth, The FAQUAD ramp is

recalculated in time steps of δt = 50 ns..150 ns and afterward, the calculated amplitudes

are rounded towards a multiple of δA. Only when the amplitude changes a new set of

parameters for the frequency generator is generated and transferred.

Limiting the sample time reduces the data rate at the steep slope while limiting the ampli-

tude resolution reduces the data rate required for the part of the FAQUAD ramp featuring

a low slope. The FAQUAD ramp and its approximation are shown in fig. C.1.

(a) (b)

Figure C.1: (a) FAQUAD ramp calculated with δt = 150 ns, a gate time of T = 15 ms, and
Ωf = 2.14 ·10−4Ωi. Here the dimensionless gate time is s = t/T . (b) Approximation of the
FAQUAD ramp shown in (a) using a minimal δA = 1 · 10−4 to limit the data rate required
to update the frequency generators memory.
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D The ion

D The ion

My successor T. Sriarunothai wrote a very exhaustive collection of properties of the 171Yb+

ion [9]. Even though only some of them are relevant for this thesis, it would be incomplete

without this information. T. Sriarunothai allowed me to use his work in my appendix;

Therefore, this section is a faithful replica of his collection of properties.

The detailed information about the energy structure of 171Yb+ ions is summarized in

tables D.1, D.2, and D.3. It is visualized in D.1.

Table D.1: Yb II energy levels and their lifetime. The energy levels are the calculated
values provided by the atomic database from NIST. The experimental observation of the
hyperfine splittings was performed using 171Yb+ ions. N/A means the experimental data
is not available.

Term Energy (cm−1) Hyperfine splitting Lifetime Ref.

[93] Δ/2π (GHz)
2S1/2 0 12.642 812 118 466 ± 0.000 000 000 002 - [26,27]
2P1/2 27 061.82 2.1049 ± 0.0013 (8.12 ± 0.02) ns [35,36]
2P3/2 30 392.23 1.7508 ± 0.0010 (6.15 ± 0.09) ns [94,95]
2D3/2 22 960.80 0.86 ± 0.02 (52.7 ± 2.4) ms [96,97]
2D5/2 24 332.69 0.191 ± 0.002 (7.2 ± 0.3) ms [98,99]
2F7/2 21 418.75 3.620 ± 0.002 5.4+9.3

−3.6yr [100–102]
3D[3/2]1/2 33 653.86 2.2095 ± 0.0011 (37.7 ± 0.5) ns [97,103]
3D[1/2]1/2 33 378.89 N/A N/A
1D[3/2]3/2 34 575.37 N/A (28.6 ± 0.4) ns [103]
1D[5/2]5/2 37 077.59 0.321 ± 0.018 < 172 ms [95,98]
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Table D.2: Yb II transitions. The upper shows our main transitions with the corresponding
laser wavelength in vacuum. The lower shows the other known transitions with their
references. The energy differences are provided by the atomic database from NIST. [9]

Transition Linewidth ΔE (cm−1) Wavelength Ref.

[93] (nm)
2S1/2 ↔2P1/2 19.6 MHz 27 061.82 369.5 [103,104]

2D3/2 ↔3D[3/2]1/2 4.2 MHz 10 693.06 935.2 [103,104]
2F7/2 ↔1D[5/2]5/2 > 0.9 Hz 15 658.84 638.6 [98,101,104]
2S1/2 ↔1D[3/2]3/2 5.4 MHz 34 575.37 289.139 [93,103,104]
2S1/2 ↔3D[3/2]1/2 4.2 MHz 33 653.86 297.056 [104,105]

2S1/2 ↔2P3/2 25.8 MHz 30 392.23 328.937 [104]
2S1/2 ↔2D5/2 22.9 Hz 24 332.69 410.97 [98,99]
2S1/2 ↔2D3/2 3.02 Hz 22 960.80 435 [101,106]
2S1/2 ↔2F7/2 0.9 nHz 21 418.75 467 [100,101]

2D3/2 ↔3D[1/2]1/2 N/A 16 418.09 609.1 [107]
2F7/2 ↔1D[3/2]3/2 5.4 MHz 13 156.62 760.072 [103,108,109]

2F7/2 ↔2D5/2 22.9 Hz 2913.94 3.43 · 103 [98, 110]

Table D.3: Yb II branching ratio. [9]

Initial state Final state Ratio Ref.
2P1/2

2S1/2 0.994 99 ± 0.000 15 [97]
2D3/2 0.005 01 ± 0.000 15

2D5/2
2F7/2 0.83 ± 0.03 [98]
2S1/2 0.17 ± 0.03

2P3/2
2S1/2 0.9875 ± 0.0006 [95]
2D3/2 0.0017 ± 0.0001
2D5/2 0.0108 ± 0.0005

3D[3/2]1/2
2S1/2 0.982* [111]
2D3/2 0.018*

*Calculated values

xvi



D The ion

Possible decay channel 
(branching ratio)

171Yb+

Coherent control

Figure D.1: Energy level structure of 171Yb+ . The schematic, not to scale, shows optical
transitions for Doppler cooling and repumping, indicated by color arrows. Dashed lines
show significant decay channels. Numbers in round parentheses show the branching ratio
for each possible channel. The main qubit states are highlighted in orange. Our optical
repumping scheme depopulates the states |2D3/2〉 and |2F7/2〉, using the 935 nm and the
638 nm laser. [9]
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