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Zusammenfassung

Quantencomputer versprechen Rechenprobleme effizienter zu l6sen, als dies mit klassischen
Computern je moglich wire. Gefangene '"'Yb* -Ionen in einer linearen Paul-Falle, die
einem Magnetfeldgradienten ausgesetzt sind, wurden bereits verwendet um Quantencom-
puting zu demonstrieren. Dabei werden die Qubits in Hyperfeinzustianden des elektronis-
chen Grundzustands von '"'Yb™* kodiert. Die Suszeptibilitit der Qubit-Niveaus gegeniiber
Magnetfeldern durch einen linearen Zeeman-Effekt erzeugt die Kopplung der Qubits und
ermoglicht auflerdem eine individuelle Adressierung im Frequenzraum. In einem Regis-
ter von lonen-Qubits, die in einer linearen Paul-Falle gespeichert sind, ist die durch den
Magnetfeldgradienten erzeugte Kopplung eine inhérente "Alle-zu-Alle"-Kopplung. Die Im-
plementierung eines bestimmten Quantenschaltkreises in einem Register von lonen-Qubits
erfordert die Abstimmung der Kopplungsstérke. In dieser Arbeit wird dies mit bis zu vier
Qubits unter Verwendung einer gepulsten dynamischen Entkopplungssequenz erreicht, die
die Qubits vor Dephasierung schiitzt, wahrend die Kopplung gewéhlt werden kann. Die
direkte Implementierung von Quantengattern mit drei oder mehr Qubits ist vorteilhaft,
um das Potential eines Quantencomputers mit gefangenen Ionen voll auszuschépfen. Ein
Beispiel ist das hier implementierte Toffoli-Gatter. Ein treibendes Feld, das auf das Ziel-
Qubit angewendet wird, wird verwendet, um eine Qubit-Rotation auf dem Ziel-Qubit in
Abhéngigkeit vom Zustand der Kontroll-Qubits durchzufithren. Um die Qubits wéihrend
dieser Zeit vor Dephasierung zu schiitzen und die dauerhafte Wechselwirkung der Qubits zu
ermoglichen, wird eine dynamische Entkopplungssequenz angewendet und mit dem treiben-
den Feld auf dem Ziel-Qubit verschachtelt. Das Toffoli-Gatter wird dann eingesetzt, um
einen Drei-Qubit- "Greenberger Horne Zeilinger"-Zustand und einen Halbaddierer zu real-
isieren. Halbaddierer, die als elementare Einheiten in der klassischen Informatik verwendet
werden, bilden die Grundlage klassischer Rechenwerke. In einem Quantencomputer kénnen
sie mit Hilfe des hier vorgestellten Toffoli-Gatters und eines CNOT-Gatters realisiert wer-
den. Perzeptren sind als Teil kiinstlicher neuronaler Netze ein anderer Baustein der mod-
ernen Informatik. Im Rahmen dieser Arbeit wird ein Perzeptron-Gatter an einem Register
aus drei Qubits demonstriert, wobei zwei Qubits als Steuerqubits und eines als Perzep-
tron dienen. Eine abstimmbare sigmoidale Anregung des Perzeptrons wird mittels eines
adiabatischen Antriebsfeldes erzeugt, das mit einer dynamischen Entkopplungssequenz
verschachtelt ist, um die Kohérenzzeiten zu verlangern und die Wechselwirkungsstarke
zwischen den Qubits abzustimmen. Das Perzeptron wird dann in einem zweischichtigen
neuronalen Netz eingesetzt, um eine XNOR-Operation zu implementieren. Zusétzlich zur
Anwendung als Qubit erlaubt die Abhéngigkeit der Qubit-Resonanz vom Magnetfeld, ein
Tonen-Qubit als Quantensensor fiir Magnetfelder und damit unter Nutzung eines Magnet-
feldgradienten zur Messung von Kréften im 10723 N-Bereich zu verwenden.



Abstract

Quantum computers promise to solve computational problems more efficiently than classi-
cal computers ever could. Trapped "' Yb™ ions in a linear Paul trap exposed to a magnetic
field gradient have already been used to demonstrate quantum computing. The qubits are
encoded in hyperfine states of the electronic ground state of "1 YbT ions. The susceptibil-
ity of the qubit levels to magnetic fields by a linear Zeeman effect generates the coupling of
the qubits and allows for individual addressing in frequency space. In a register of qubits
stored in a linear Paul trap, the coupling generated by the magnetic field gradient is an
inherent all-to-all coupling. Implementing a given quantum circuit on a register of qubits
requires tuning the coupling strength. Here tuning the coupling with up to four qubits
is demonstrated using a pulsed dynamical decoupling sequence, which protects the qubits
from dephasing while the coupling can be chosen. Direct implementation of quantum gates
with three or more qubits is necessary to exploit the full capabilities of a trapped-ion quan-
tum computer. An example is the Toffoli gate implemented here. A driving field, applied
to the target qubit, is used to perform a conditional rotation based on the control qubits
state, while a dynamical decoupling sequence protects the coherence of the qubits. The
Toffoli gate is then applied in a half-adder and is used to generate a three-qubit Green-
berger Horne Zeilinger state. Half-adders, which are used as elementary units in classical
computer science, form the basis of classical arithmetic units. In a quantum computer, they
can be realized using the Toffoli gate and a CNOT gate. Perceptrons are a part of neural
networks, a fundamental building block in modern computer science. Here a Perceptron
gate is demonstrated on a register of three qubits where two qubits serve as control qubits
and one as a perceptron. The characteristic tunable sigmoid excitation of the perceptron
is shown using an adiabatic driving field interleaved with a dynamical decoupling sequence
to prolong coherence times and tune the interaction strength between the qubits. The per-
ceptron is then applied in a two-layer neural network to implement an XNOR operation.
In addition to its use as a qubit, the dependence of the qubit resonance on the magnetic
field allows an ion qubit to be used as a quantum sensor for magnetic fields and thus, using
a magnetic field gradient, to measure forces in the 10723 N range.
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Introduction

Information technology has revolutionized the way we live. Whether it is the constant
availability of information, the automation of production, or the ability to conduct re-
search that was impossible a century ago. The development of computers has changed the
world we live in. Fundamental research is the foundation of today’s information technology.
Mechanical calculating machines in the 19th century [1] paved the way for their electrical
counterparts using relays or tubes in the 20th century. The invention of the first transistor
in 1947 [2], its miniaturization and the massive increase in the number of transistors avail-
able led to modern semiconductor-based computers [3]. As a result of fundamental research
at CERN, the next revolution in computer science was launched [4]. The need to connect
researchers across the campus, and later across the globe, led to the development of the In-
ternet as we know it today. Computers have become increasingly powerful, interconnected,
and capable of calculations and numerical simulations unimaginable a century ago. Cur-
rently, computer science is being revolutionized again, as neurons have been implemented
into mathematical models [5]. Despite three centuries of development and amazing results,
classical computers are limited. All information in a computer is encoded in a logic that
can distinguish between two states, namely 0 and 1. Numbers are therefore represented
in a binary system such that a binary number containing n digits can represent a number
between 0 and 2". Complex calculations are performed using basic arithmetic operations,
which can be broken down into more basic operations. For example, the multiplication
of two numbers is implemented using adding operations, which are implemented as an
operation that bit-wise adds two numbers. These adders consist of half-adders, and these
half-adders are based on logical gates such as AND, OR, or NOT operations. The gates
are then implemented using digital circuits of transistors, which are the basic element of
all computers. Although the number of arithmetic operations performed by modern pro-

cessors is on the order of billions to trillions per second, there are computational problems
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in science that are so complex that even the impressive performance of semiconductor
processors is insufficient to solve them. Quantum mechanical problems, for example, are
of interest in chemistry and can lead to important discoveries. Because the mathematical
dimensionality of quantum mechanical problems increases rapidly and the Hilbert space
describing possible configurations is huge, even small chemical systems cannot be solved
accurately on today’s computers. To solve quantum mechanical problems, Richard Feyn-
man proposed a computer based on a quantum system [6]. Such a computer, called a
quantum computer, could cover the vast configuration space of chemical systems because

it would be based on quantum mechanics itself.

In addition to chemical systems, it is believed that a quantum computer will be able to
solve other problems that are currently intractable by classical computers. Some examples
are the factorization of numbers into prime factors or the traveling salesman problem.
This class of problems is inherently interesting to solve, and possible solutions could have
a significant impact on our daily lives. Therefore, the development of a quantum computer

capable of solving previously unsolvable problems is of great interest to society.

A quantum computer will not make classical computers obsolete, but rather will become
an additional computing platform to solve specific problems that are primarily relevant in

professional use cases such as research and development.

One promising platform for a quantum computer is a trapped-ion quantum computer. In
such systems, each qubit is represented by the state of an atom. The system used in
this thesis is particularly promising because it has several advantages over other quantum
computing platforms. The qubits are reproducible and controllable and can be stored for

long periods of time.

Similar to the development of classical computer science, the development of quantum
computers has reached the point where the first devices have started to leave the laboratory
environment. Typical systems still occupy entire rooms, just as classical computers did
in the beginning. In addition, modern classical computers used for scientific research or
large-scale data analysis still occupy entire facilities. However, the commercialization of

quantum computers is just beginning.

So far, quantum computers (QCs) require special environments and trained personnel to

operate and maintain, and they are not easily scalable. The need for constant maintenance



by trained personnel needs to be overcome in a commercial environment. Therefore, the
first part of this thesis is dedicated to automation, allowing the user to focus on his research.
Furthermore, chapter 2 will give an overview of the basic physical effects used. Since each
ion can also be used as a sensor of magnetic fields, advances in the automatic calibration of
the quantum computer allow the study of fundamental physics, such as the measurement
of the ion’s position. Using this technique, the diagnosis of the ion chain forming a register
in a QC can be applied to select an appropriate error mitigation strategy in case a qubit

ends up in a dark state.

A key advantage of trapped-ion QC over other systems is the inherent all-to-all coupling
between all qubits in a register. This all-to-all coupling allows conditional operations to
be performed directly on the entire register. Efficient control of the qubit interactions is
essential for the implementation of advanced quantum algorithms. Therefore, in chapter 4
a method to tune the coupling between qubits in a register using radio frequency control
pulses is outlined and demonstrated. The parallelization of computational tasks is crucial.
Using the qubit coupling control scheme presented here will allow parallelized quantum

circuits to run on quantum computers with always-present interactions between qubits.

The inherent all-to-all coupling within the quantum register is a valuable tool for imple-
menting quantum logic gates consisting of three or more qubits. This reduces the complex-
ity and runtime of quantum circuits by avoiding the decomposition of a circuit into two
qubit gates. An essential operation in a classical computer is the addition of two numbers.
In chapter 5, a half-adder is implemented using a Toffoli gate in which two control qubits
control a target qubit, similar to classical computation. The classical computing infrastruc-
ture consumes a significant part of the world’s electrical energy, and quantum computers
will contribute to this energy demand in the future, so it is of interest to study the fun-
damental energy consumption of quantum computers. For this purpose, the implemented
half-adder circuit can serve as a toy model to estimate the power consumption of current
quantum computers and to outline possible ways to estimate the power consumption of

future quantum computing platforms.

The latest revolution in classical computer science is the neural network implemented in a
mathematical model. They can be seen as a mathematical graph with vertices represent-
ing neurons and edges representing their respective connections. The inherent all-to-all

coupling in a trapped-ion quantum computer makes these systems promising candidates
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for implementing neural networks, where each qubit is a neuron and their interconnections
are realized by the coupling. Using techniques introduced in chapters 4 and 5, chapter 6

presents the implementation of a perceptron gate controlled by two control qubits.

After classical computing, quantum computing is evolving along a similar path, possibly

opening the door to unforeseen applications.



Basic principles

This chapter briefly describes the basics necessary to understand the work presented here.
This is not the first thesis describing the hardware and principles of a trapped-ion quantum
computer. Each of the previous dissertations on the experimental setup used focuses
on different aspects of the experiment. The Ph.D. thesis of Anastasia Khomorova [7]
focuses on the setup of the ion trap, the microwave and the laser system required for the
basic operation. The next thesis to be mentioned is the PhD thesis of Christian Piltz [8],
which focuses on the dynamical decoupling of qubits from their environment, the selective
coupling in a three-ion crystal, the addressing of single qubits in a quantum byte, and the
implementation of a quantum Fourier transform on three qubits. The most recent Ph.D.
thesis was written by Theeraphot Sriarunothai [9] and is dedicated to multi-qubit gates and

quantum-enhanced deliberation learning. All of them describe the experiment in detail.

The experiment was first set up in 2012 [10], and the majority of the experiment’s hardware
has remained the same. Therefore, the description of the experimental setup in this chapter
will be relatively brief. Nevertheless, it will provide an overview of the experiment for the
reader to understand the work presented in this thesis. While working on this experiment, I
was accompanied by Patrick Barthel, who was simultaneously working on his Ph.D. thesis.
His thesis will show the implementation of robust two-qubit gates and two-qubit entangling
dressed state gates. In particular, the description of the microwave system required for
coherent control of the qubit is discussed in detail. It is recommended to read this thesis
to get a better insight into the current state of the art experiment. If, at some point, more

details are needed, a look at the other dissertations should be enlightening.

The chapter is organized as follows: First, the ion trap is described, followed by the
hyperfine qubit levels of the ytterbium ion and its interaction with a microwave field.

Later, the structure of a typical experiment is presented, and the current detection scheme
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and data analysis methods are explained.

With these information as a basis, it is possible to understand the experimental proce-
dures described, such as automated ion loading, stabilization of cooling fluorescence, and
fast addressing frequency correction. At the end of this chapter, the effective Hamiltonian
coupling the motional state and the spin state of the ions is described. This allows to un-
derstand the principle of sideband cooling and the induced qubit-qubit interaction needed

to implement conditional quantum dynamics.

2.1 Trapped ions in a magnetic field gradient

An essential requirement to realize a quantum computer based on a system of ions is to
trap these ions and isolate them from the environment. This trap has been realized in
a linear Paul trap introduced by Wolfgang Paul over half a century ago [11]. The basic
principle of trapping a charged particle in free space in a vacuum using electrodynamic
forces allowed the development of a trapped-ion quantum computer. The experimental
apparatus used in this work was built in 2011 and described in detail in the PhD thesis of
Anastasia Khomorova [7]. Here a short introduction is given to understand the principles

of all following chapters of this thesis.

To confine charged particles in three dimensions, an effective three-dimensional potential
well must be realized. Because electrostatics is described by the Laplace equation A¢ = 0,
where ¢ is the electrostatic potential, it follows that an electrostatic force cannot have a
stable minimum. Since 8§¢+8§¢+53¢ = 0, at least one part of the sum must be negative.
This implies a repulsive force when the stored particle is slightly displaced. W. Paul realized
that this could be circumvented by using a time-dependent electric field [11]. A set of six
electrodes can produce the necessary fields. Four electrodes generate a confining radially
symmetric potential in the zy plane, while the other two electrodes generate a confining
potential in the axial z direction. To satisfy the above conditions, two opposing electrodes
in the xy plane, shown in the simplified version of the trap in fig. 2.1.1, are set to an
AC voltage, and two opposing electrodes in the xy plane are set to a DC potential. This
creates the radial confinement potential. The axial confinement potential in the z direction

is provided by two electrodes facing each other in this direction. In summary, the electrodes
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Figure 2.1.1: Simplified view of the linear Paul trap setup by A. Khomorova [7]. The four
electrodes generate a trapping potential in the radial xy-plane, which, combined with the
DC potential of the axial electrodes, allows stable trapping in three dimensions. The round
electrodes generate a trapping DC potential along the z axis. The weaker confinement
along the z direction compared to the radial confinement in the zy plane allows a set of
ions to crystallize along the z axis, forming the linear Coulomb crystal that will serve as the
quantum processor. The silver cylinders are sintered SmCo permanent magnets oriented
in a way that the same magnetic pole faces the center of the trap, creating a magnetic
gradient of 19T /m [7,12].

generate an effective quadratic potential in 3D that trap charged particles. The quadratic
shape of the effective trapping potential quantizes the motion of the trapped particles:
R S S S o
¢ = SMwer” + Sz, (2.1.1)
where m is the mass of the '"1Yb™T -ion, w, is the radial trapping frequency, and w, is the
axial trapping frequency. A trapped particle in a harmonic (quadratic) potential is a well-
known example in quantum mechanics for which its describing equation, the Schréodinger

equation, can be solved. The solution of the Schrédinger equation yields a quantized

harmonic oscillator with equidistant energies for all possible solutions. Its energies are
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E, = (1/2 + n)hw, and its energy splitting is AE = hw, where £ is the reduced Planck
constant and w is the resonant frequency of the quantized motion. w, depends on the
quadratic potential and is called the trapping frequency. Due to the symmetry of the
effective potential, there are two trapping frequencies. w, is the trapping frequency in the
radial direction and w, is the trapping frequency in the axial direction. By choosing the
voltages at the electrodes, the trap frequencies w, and w, can be chosen. Since the trapped
ions are charged particles, each ion repels the other ions present due to the Coulomb force.
A choosing the axial confinement potential along the z-axis shallow enough, allows the
trapped ions to align in a linear ion chain. A linear ion crystal is formed when the ratio of

the radial trapping frequencies to the axial trapping frequencies obeys [13]

Yr S 0.73N056, (2.1.2)

Wz

where N is the number of ions stored in the trap. If a linear ion chain forms, the length

scale [ for the distance between the ions in the chain is given by [14]

2
: q —-2/3
= ——— 2.1.3
\/ Amegmypw? X ( )

where ¢, is the electron charge, €y is the vacuum permittivity, myyp is the mass of the
1Y+ jon, and w, is the angular trap frequency along the trapping axis z. In the case of
our experiment, the length scale is [ ~ 10 um. Each linear ion chain consisting of N ions
is a set of IV coupled oscillators, where each ion participates in different vibrational modes

of the crystal.

These vibrational modes are part of the coupling scheme used in this setup, which couples
the motion of the ions to their internal degrees of freedom. With the MAgnetic Gradient
Induced Coupling(MAGIC) direct qubit-qubit coupling can be realized. It requires a mag-
netic field gradient in this case generated by a set of permanent magnets. The permanent
magnets are installed so that the same pole of each magnet faces the center of the trap.
This configuration produces a zero magnetic field at the center of the trap with a magnetic
field gradient oriented along the trap axis of 19 T/m. The linear ion chain is slightly dis-
placed from the trap center to produce an offset magnetic field, allowing the ions to align
their spin with the field and define the quantization axis in the laboratory frame. Overall,

a linear chain of ions in the axial direction z allows a one-dimensional approximation of the
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dynamics of the system. The quantized axial secular motion, together with the magnetic
field gradient, gives rise to the induced spin-spin coupling in the system, which is exploited

in the MAgnetic Gradient Induced Coupling (MAGIC) scheme [15].

2.2 The '"'Yb" ion qubit

A qubit is a system with two different energy eigenstates, which can be labeled |0) and |1).
A useful qubit must have some crucial properties. First, one should be able to distinguish
the two levels to read the qubit [16-18]. Another requirement is the ability to initialize
the qubit to a desired state [19-21]. The next ingredient for a useful qubit is the ability
to coherently control its state [22,23]. Furthermore, the qubit should hold its quantum
information for some time and therefore must have a coherence time long enough to perform
the desired quantum operation [24]. Since computation requires the existence of conditional
operations, it should also be possible to realize conditional dynamics with the qubit [25].
In addition, qubits used in a future quantum computer should be reproducible to allow a

clear scale-up concept. [15]

Using atoms as qubits is a reasonable choice because atoms of the same isotope are identical
in their physical properties of nucleus and electron configuration. Using atoms therefore

eliminates variations in production of the qubits.

A good candidate for a qubit is an atom that has a non-zero nuclear spin in its ground state,
which limits possible candidates to isotopes with an odd number of nucleons. To make it
as easy as possible to work with this isotope, it is advantageous that the level scheme is
simple. The element of choice is the Yb atom, or more precisely the '"'Yb* ion, which
has a hyperfine structure due to its nuclear spin of I = /2. The Yb atom, once ionized,
forms a hydrogen-like ion with a 25, /2 orbit as its ground state. The free electron spin
couples with the free nuclear spin and produces a hyperfine splitting of the electronic 2.5, /2
ground state [26,27]. The energy splitting of the hyperfine level in the GHz regime is small
compared to the electronic transitions in the optical THz regime. This is advantageous
because it allows manipulation of the quantum state by radiation in the radiofrequency
(RF) regime and increases the lifetime of the excited hyperfine state. The qubit state |0)
is encoded in the hyperfine ground state |25 /2, F'=0), while [1) is encoded in the state
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281 /2, F = 1,mp = +1). The state |25 o, F' = 1,mp = —1) is also a valid choice for the
state [1), which also depends linearly on the magnetic field but with the opposite sign,
but in this thesis the state is not used. The state |251/2,F = 1,mp = 0) does not show
a linear magnetic Zeeman shift and could therefore serve as a memory. These states are
represented in fig. 2.2.1. They form the physical qubit and can be prepared and read out

optically as described in section 2.5.

F—1 , m, =1
/ : mF - O
2S1/2 /’/ ) mg —1
-_— 126 GHz 9-| 7 04
VP =0
B=0 B#£0

Figure 2.2.1: Level scheme of the hyperfine '"'Yb* ground state 251/2. The nu-
clear and electronic spin 1/2 couple to the total angular momentum F. An exter-
nal magnetic field B lifts the degeneracy of the state |25, /2, F' = 1), making the states
128, /2, F'=1,mp = —1,0,+1) distinguishable in their energy. This allows addressing the
different transitions in frequency space. [28]

Using the hyperfine levels in "1 Yb* provides a naturally long lifetime of the population of
the state |1) [27], whereas the relatively small frequency of 12.6 GHz allows for a reasonably
easy coherent control of the qubit, based on well-established RF technology and commer-
cially available hardware. The generation of RF fields in this regime with reasonable

frequency, amplitude, and phase control is possible without demanding field generation.

The transitions ]25’1/2,F =1,mp==1) < \QSl/z,F = 0) are called magnetic o transi-
tions, while the transition ]251/2, F=1mp=0)« |251/2, F = 0), which does not change
the magnetic quantum number my, is called the 7 transition. The nuclear spin I and
the angular momentum J of the electronic orbital couples to the total angular momentum
F =1+Jwith |l —J| < F <|I+J|. Since the relevant orbital is an S orbital, the orbital
angular momentum L is zero, and J = L + S is generated by the electronic spin angular

momentum.

This coupling of angular momenta leads to the hyperfine splitting(HF'S) where the energy

10
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gap between two levels is given by

A
AByps = 5 [F(F+1) = I(I+1) = J(J + 1)), with (2.2.1)
g1k Bo

= 0T

Here g; denotes the nuclear g factor, ug is the nuclear magnetic moment, and By corre-

(2.2.2)

sponds to the magnetic field generated by the electronic shell at the position of the nucleus.
In the case of '"'Yb™T | the hyperfine constant A is determined precisely for the ground
state 25 5 [26,27] as

% = 2712 642 812 118.471(9) Hz. (2.2.3)

Here A is the reduced Plancks constant.

Exposing the '"'Yb* ion to a magnetic field defines the quantization axis relative to the
magnetic field and orients the ion in the lab frame. This lifts the degeneracy corresponding
to the magnetic quantum number mp. In our case of F' = I 4+1/2, the energy dependence

of the transition can be described analytically by using the Breit-Rabi equation [29]:

AEO Ia AEO 4mF
AE(B, F = B+ (-1 =—7= /1 XB + X2B2
(B, F,mp) 4I+2+mF91MK +(—1) 5 +2I+1 + ;
(2.2.4)
with AEy = A(I +1/2), (2.2.5)
and X = JIHE — IIPK (2.2.6)

AT +1/2)

Here gy is the g factor of the electronic shell, and up is the Bohr magneton. The nuclear
g factor is given as gy = 0.9837 [30]. In the case of a nuclear spin of I = 1/2 this leads to
AFEy = A. For 'Yb* we have I = 1/2 and therefore, this simplifies to

A A
AE(B,F.mp) =~ + mpgrpxB + (—1)F+15¢1 +2mpXB + X2B2, (2.2.7)

The transition energy is given by the energy difference between the two levels. For the o

transition, the energy is calculated as follows:
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hvo, (B) = Ep2g, ), F=tmp=+1) — Ej28, 15, F=0,mp=0) (2.2.8)

A A
= grui B + 5\/1 +2XB+ X2B? + 5\/1 + X2B2, (2.2.9)

As described in section 2.1, the ions trapped in this Paul trap form a linear ion crystal.
This crystal defines the position of the ion within the trap. Together with the magnetic
field gradient generated by the permanent magnets installed in the setup, the dependence
of the transition frequencies v,, on the magnetic field allows the individual addressing
of the ions by RF radiation [31]. In our experimental setup, the distance between the
addressing frequencies is about 15 — 1 & 27 - 3.2 MHz for a two-ion crystal and a trap
frequency of w ~ 27 - 120 kHz. This allows us to address each ion by selectively selecting
its resonance. It has been shown that this splitting of the ion resonances allows RF qubit

manipulation with a low crosstalk of about 1075 [32] for an 8-ion Coulomb crystal.

2.3 Quantum dynamics

The quantum dynamics exploited in a trapped-ion quantum computer can be formulated
as a Hamiltonian, which represents the energy operator of the system. In the case of an
ion string of length IV, the total energy of the system is given by the Hamiltonian given
by the equation (2.3.1). This Hamiltonian contains all relevant energy contributions to
the system. In addition to the energy contributions already mentioned, there is a direct
effective spin-spin coupling: the MAgnetic Gradient Induced Coupling (MAGIC) [33]. It is
mediated by the magnetic field gradient, the motion of the ions in the trap and the Zeeman

splitting. The effective Hamiltonian is:

A N N A N
n n n l
H = 5 v(z™M)o M 4 Z heon (al ay) — 5 Z Jpo™a® (2.3.1)
n=1 n=1 n<l
I 17 II7

Here (I) is the energy contribution of the Zeeman split hyperfine levels, containing the
transition frequency v of ion n at the position z(™), (II) the energy of the Harmonic

oscillator potential of all N vibrational modes with frequencies w,, where a! and a, is
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2.3 Quantum dynamics

the creation and annihilation operator of a vibrational excitation respectively, (I11) is the
energy contribution of the MAGIC spin-spin interaction. Additionally 0';72’3 are the Pauli

operators acting on the n-th qubit:

0 1 0 —i 1 0
Ox = y Oy = y Oz = .
10 i 0 0 —1
The coupling of all ions in the crystal is given by:

hN
Hm:_§§;hmyw9. (2.3.2)

n<l

Since the eigenvalues of o, are +1, the element of the sum j:Jnlagn) changes the sign of the

contribution of ion n depending on the state of ion [. The effective J coupling is mediated

by the coupling of two ions to the same vibrational mode €,; [33]. Its magnitude is given

as
N
Jij = ) wieueji, (2.3.3)
I=1
with
€nl = Nef fnl, (2.3.4)
Az
%ﬁza%wwwaa (2.3.5)

where Az = /h/2mw; is the extension of the ions wave function in the [-th excited
vibrational state of the ion with mass m and S,,; is the dimensionless amplitude of the n-th
ions vibrational mode I. In total, it follows that assuming a linear dependence of v(B),

the effective J coupling scales as
9.B(2)\>
Jij —Q ) (2.3.6)

where w is the energy split of the harmonic oscillator formed by the quadratic trapping
potential. Note that this spin-spin coupling is always present in the given experimental

setup and directly connects all qubits in an ion string.

For the scope of this work, these dynamics generated by the Hamiltonian are fixed so that
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the coupling and the energy of the harmonic motion from equation (2.3.1) are constant.
The only external control available is the driving RF field 2. By performing a rotating
wave approximation (RWA) with respect to the ion resonance frequency and neglecting

the contribution of the harmonic trapping potential, the effective Hamiltonian becomes

~

M =

N
(2 cos(9n)0 + Qusin(6a)o + 5,0) = 23" S0 ol (237)

n=1 n<l

gl ==
2

where 0,, is the relative detuning between the atomic resonance and the applied RF field,
), is the Rabi frequency of the RF driving field resonant with ion n, and ¢, is the phase
of the applied RF field to the reference frame co-rotating with the spin.

In the setup typically the coupling strength is of the order J;; ~ 27 - 40 Hz, whereas the
possible Rabi frequencies are of the order of Q =~ 27 - 40kHz. The relative difference is
about three orders of magnitude and thus justifies dropping the J coupling term in this
Hamiltonian in the presence of a strong €2 driving field. In addition, if 2 is constant in time,
the time evolution of a single qubit can be written as the exponential of a time-independent
Hamiltonian

i

Ult,tg) = e~ wH(tt0), (2.3.8)

In the case of a driving field present, it follows that

Qg cos(¢) Oy
—i (tl_to)ﬂﬁ,g = 1 .
U(ti,to,¢,2,0) =e™" 2 =g | Qosin(9), i=\|o,|.- (239)
19 o

Here 77 defines the rotation axis with phase ¢ and detuning ¢ between the driving field
and atomic resonance. The time £y and t; correspond to the pulse start and stop time and
Q = /Q2 + 62 is the generalized Rabi frequency. Having 6 = (¢; — %), the unitary time
evolution operator can be written in terms of the rotation angle 6 and the phase ¢. These

angles correspond to the angles of the Bloch sphere representation of the quantum state.

Typical single qubit rotations are rotating the qubits state by 6 = 7 or § = w/2. They are

called 7 or m/2-pulses respectively. The short notation for these specific pulses is

RO=m¢)=ms or R(O=r/2¢)= gd). (2.3.10)
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2.3 Quantum dynamics

Figure 2.3.1: (a) Bloch sphere representation of a state [¢)) by the angles 6 and ¢ (b)
Induced rotation of a state from |0) to |¢)) by a rotation R(#, ¢). The rotation is generated
by a resonant magnetic field B, resonant with the qubit transition, for B which is stationary
during the pulse evolution. The phase ¢ defines the direction of the magnetic field in the
equatorial plane that drives the transition. (c¢) Shows the phase acquired over time from
state [1) to state [¢').

2

Figure 2.3.2: In terms of a circuit model, single qubit rotations are depicted as boxes,
indicating the angle and phase of rotation. Here the single qubit rotation R(6, ¢) is executed
on qubit one, while nothing happens with qubit two. The operator discribing this scenario
isU=R(0,¢)®1

At times when no driving field €2 is present, the effective Hamiltonian reduces to
P
He:=—3 S JueMa®, (2.3.11)
n<l

coupling all qubits present simultaneously.

Note that in the linear approximation only qubits in the states |25, 2 F=1mp = —1) or
]25’1/2,F =1,mp = +1) couple.

In contrast to these two states, an ion in the \251/2, F =1,mp = 0) state will not partici-

pate in a qubit-qubit interaction in the linear approximation.
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Since the magnetic field gradient is continuous, the Hamiltonian is time-independent.
Therefore, the unitary time evolution can be expressed as in the equation (2.3.8). How-
ever, the effective Hamiltonian does not have to be dominated by either a driving field
or a coupling. The intermediate regime is also possible and is used to generate a unitary
evolution of a multi-qubit system, which can produce interesting quantum dynamics. For
example, in chapter 6 the implementation of a quantum mechanical perceptron is demon-
strated using an intermediate regime. In general, the unitary evolution of the quantum
system can include anything that the effective Hamiltonian can realize. Note that in the
case of a quantum register containing more than one qubit, this evolution may include
pulses or free evolution times in parallel. A schematic illustrating a local rotation on one

qubit while a second qubit is idle is shown in fig. 2.3.2.

2.4 Quantum circuits

In a working quantum computer, the algorithms executed can be represented as quantum
circuits and can be decomposed into building blocks. Ultimately, these building blocks of
a quantum circuit represent the elementary operations provided by the quantum processor
executing the quantum algorithm. Thus, the available elementary building blocks define

the structure of a quantum circuit for a given hardware.

In our case, any quantum circuit that we can execute with the system shown above must
follow a certain structure. Section 2.5 will show that the valuable feature of requiring only
global laser beams leads to the restriction that re-initialization is not possible during the
execution of a circuit once it is initialized to |O>®N . The same holds for a readout, since

the global laser beam would project all qubits to |0) or |1), respectively.

A general quantum circuit that can be executed is shown in fig. 2.4.1.
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o— A
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Figure 2.4.1: Circuit diagram for the possible experiment settings in the current setup. In
the beginning, all qubits are initialized to state |0). The unitary time evolution acting on
all qubits is generated by the system Hamiltonian presented in equation (2.3.7) and may
consist of arbitrary RF fields and spin-spin interactions. In the end all qubits are projected
and measured.

2.5 Experimental methods

This thesis deals with the implementation of multi-qubit quantum gates, the tuning of
the qubit-qubit interaction, and the measurement of the center-of-mass position of an ion
in the trap. All these implementations need to be quantified in order to estimate their
potential. A similar experimental procedure is always used to quantify the properties of

the gates or to measure the properties of the '"'Yb* ion.

One of the advantages of the applied magnetic field gradient for single qubit addressing
and spin-spin coupling is the experimental simplicity of the laser setup and RF control.
A global light field is sufficient for all operations requiring the manipulation of qubits
in the optical frequency range. Due to the individual addressability in the RF frequency
domain, a global RF field is also sufficient. The reduction to global fields limits the possible
structure of the experiments. The global light field for the preparation and measurement of
the ion state limits the experiments to a specific sequence of actions as shown in figs. 2.4.1
and 2.5.1. Reading the state of the qubit using a global light field will project each qubit
into either |0) or |1) state, destroying any superposition of states in the quantum register,
which stops the execution of a quantum algorithm. The preparation with this light field
initializes all qubit states to |0). Between the preparation of the qubits in the initial state
|0) and the readout, the absence of a light field allows the quantum system to evolve
unobserved. This darkness is the key to the existence of superpositions and the generation
of entangled states. To measure a property of a quantum system, the experiment must

be repeated in order to reconstruct the quantum state. In addition to the preparation,
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Cooling Preparation Evolution Readout “
100..0) U(t)

Figure 2.5.1: Schematic of one experimental cycle showing the individual steps performed in
most experiments. Each cycle defines the experiment for a given unitary evolution U (t) and
delivers the measurement result as one bit string during the readout step. Depending on
the experiment, the cooling step might contain a Doppler cooling and a sideband cooling
step as shown in section 2.5.2 and section 2.5.3. Figure 2.4.1 shows the corresponding
circuit diagram.

evolution, and readout steps, it is necessary to cool the motion of the ion in the trap to
allow precise manipulation of the qubit. A set of experimental steps is called a cycle, as
shown in fig. 2.5.1. Each cycle has a defined set of measurement parameters of the unitary
evolution U(t). Due to the probabilistic nature of quantum mechanics, it is necessary to

repeat the experiment to find the output probability.

2.5.1 Loading '"'Yb™

Before a quantum computation can begin, the desired number of qubits must be loaded
into the trap. If there is no chemical reaction of the ''Yb* ions with the background
gas present in the vacuum recipient, a single loading of the trap is sufficient. Due to the
geometry of the trap, the trapping potential is deep enough to keep the ions in the trap as

long as the trap drive voltage is present.

Loading is accomplished using a source of enriched '"'Yb, which is thermally evaporated
and ionized in a two-step laser ionization process. The origin of the name of this method

is the heating process for the source, which is called the oven. Once the oven is heated,
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thermally a neutral atomic beam is emitted through the center of the trap. A laser beam
near 398 nm excites an electron of the neutral atom. A second laser field then transfers
enough energy to the electron that it is no longer bound to the atom. The laser beam for
the second step of ionization must have a wavelength < 394nm [34]. This is necessary to
excite the electron into the continuum. A laser with a wavelength of 369 nm is already
available in the setup for Doppler cooling, preparation and readout. It is used for the second
ionization step. The electron leaves the trap due to its different mass-to-charge ratio, but
the confining RF potential traps the ionized '"'Yb* . Since the source of neutral atoms is a
heated sample of '"1Yb, the loading procedure is not deterministic. However, reducing the
atomic flux by lowering the oven temperature reduces the trapping rate enough to allow

individual ' Yb™ ions to be trapped.

2.5.2 Doppler cooling

Immediately after loading, the hot ions are trapped, but their kinetic energy causes them
to oscillate around the trap. Cooling of these ions is required for the ions to form the
Coulomb crystal, which serves as the quantum register. An ion crystal defines the position
of the ions in the trap. Doppler cooling is based on the directed transfer of momentum
during the absorption of a photon from a laser beam and the periodic motion of the ion.
The Doppler effect shifts the frequency of a light field as a function of the speed of the
observer. This allows the scattering rate to be changed based on the direction of the
ion’s motion. From the absorber’s point of view, the Doppler-shifted frequency is linearly
approximated by v/ = v(1 — v/¢). Where v is the frequency of the emitted laser photon

and v is the velocity of the ion/observer relative to the emitter.

The optical dipole transition ]25’1/2, F=1,mp=0) < \2P1/2,F = 0) with a wavelength
of about 369nm is used for Doppler-cooling. The lifetime of the state \2P1/2,F =0) is
8.12ns [35, 36] and allows for frequent relaxation of the exited state by emission of a
photon. The non vanishing probability of off-resonant excitation of the state |2P, /2, B =1)
requires a RF field to close the cooling cycle since the state |* P, 12, B = 1) decays to the state
28, 2. F = 0). This would interrupt the cooling process. Application of a RF field resonant
with the transition \2S1/2, F=1,mp=0) < |251/2, F = 0) transfers the population back
to state |25, /2, F'=1,mp = 0) which again is nearly resonant with the laser light field.
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Figure 2.5.2: Partial term scheme of '"'Yb™ (not to scale) in the rest frame of the ions,
showing the optical transition relevant for Doppler cooling. Here Doppler cooling is per-
formed on the optical dipole transition |2S; 2, F=1) < 2P /2, F"'=0). The light field
is detuned by A ~ —27 - 19 MHz to lower frequencies compared to the center of optical
resonance. This is comparable to the width of the optical transition and therefore shows
the largest slope of the scattering rate as a function of velocity. This implements the most
effective Doppler cooling by absorption of momentum along the beam axis. The ion is
decelerated as it moves towards the laser source and this, in combination with the har-
monic trapping potential forcing the ion to have a periodic velocity component in the laser
direction, generates an effective cooling [28].

The absorption of a photon transfers the momentum Av/c to the ion. Since this absorption
occurs more frequently as the ion moves toward the laser source, the ion slows down. The
spontaneous decay emits a photon so that the average momentum of the spontaneous
emission cancels out. As the ion moves away from the laser source, the frequency of the
light is shifted away from the atomic resonance, reducing the absorption rate. The detuning
is chosen so that the laser is about half a FWHM red detuned from the optical resonance
of a resting ion. This choice of detuning A = —27 - 19 MHz uses the strongest slope of the
spectrum to achieve efficient Doppler cooling. See section D for details on the '"*Yb* term
scheme. The periodic motion of the ion in the trapping potential then leads to effective
cooling of the ion. However, the achievable temperature T is limited by the momentum

of the emitted photons. It is [37]:
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A’
]{ZBTD = ? = <n)th (2.5.1)

Where I' = 27 -19.6 MHz is the line width of the transition and Ty is the Doppler temper-
ature, while kp is the Boltzmann constant and wp = 27 - 128 KHz is the trap frequency.
This results in a minimal thermal excitation of about 80 phonons or 47 uK. Cooling further

requires a sub Doppler cooling technique which is sideband cooling in this thesis.

2.5.3 Sideband cooling

When the Doppler cooling is finished, some residual thermal excitation remains. The
sideband cooling technique briefly described here allows the cooling of an ion close to
the motional ground state of the quantum mechanical harmonic oscillator. Equal en-
ergy splitting AE = hw,, of the harmonic oscillator formed by the trapping potential
and using the coupling between the spin and the vibrational state allows the ion to be
cooled. The coupling between the motion and the spin state generates two motion side-
bands at the frequency v = v,, £ wy, of the magnetically sensitive o transition. These
transitions occur at a frequency offset equal to the energy splitting of the harmonic oscil-
lator wy,. Detuning the RF field |25’1/2,F =0) < |25’1/2,F =1,mp = 1) by a frequency
—wyy will drive a motional sideband transition. Choosing the red sideband transition at
the frequency v,, — wy, absorbs a motion excitation. Excitation of the optical transi-
tion |251/2,F =1l,mp=1) < |2P1/2,F = 1) allows the following spontaneous decay of
]2P1/2,F =1) — |231/2,F = 0) to close the cooling cycle. The decay can be used as a

suitable dissipative process. The principle scheme is shown in fig. 2.5.3.

By repeating this cycle, a motion excitation, called a phonon, is absorbed each time. The
cooling rate is given by the duration of the entire cooling cycle and limits the minimum
thermal excitation of the system, since a heating process also takes place during the cooling
process. This limits the minimum motion excitation to more than zero quanta. While the

Rabi frequency for driving the sideband transition is given by:

Qpp_1 = Qneff\/ﬁ, (2.5.2)

where €2, ,,—1 denotes the Rabi frequency for the transition from n to n — 1 phonons, €2
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Figure 2.5.3: Sideband cooling scheme (not to scale). Here the optical transition
S1/2, F =1,mp =1) < [*Pj5, F =1) is driven, while a red detuned RF field drives
the transition between |251/2, F=0)« \251/2, F =1,mp = 1) — hw,, implementing side-
band cooling. The RF field is detuned by Aw,,, which is the energy of the vibrational
mode to be cooled. Each cycle reduces the excitation of the vibrational mode m by one,
eventually ending in the motional ground state for mode m. O(w,,) = 27 - 100 kHz.

is the resonant Rabi frequency of the carrier, n.ss is the effective Lamb Dicke parameter
and n is the phonon number. If more than one ion is loaded in the trap, and if they
form a crystal, they behave as a system of coupled harmonic oscillators. As such several
vibrational modes in the crystal are present. Each with different energy and different ions

participating in this motion [14].

The ion crystal’s Center Of Mass(COM) mode frequency is associated with the energy
splitting of the harmonic oscillator generated by the trapping potential and is independent
of the number of ions in the crystal. Since each ion contributes the same mass as well
as the same charge, the COM frequency is constant. The other vibrational modes of the
crystal have a higher frequency than the COM mode. Due to this, selecting the frequency
of the RF driving field allows selecting which mode to cool accordingly [9]. In principle, it
is desired to cool all vibrational modes as well as possible. A cooling scheme allowing to

cool of different crystal vibrational modes simultaneously is presented in section 2.7.
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2.5.4 Preparation of the logical ground state
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Figure 2.5.4: Preparation of the ground state |0). The population in state |25’1/2, F=1)
is excited to state |2P1/2,F = 1) using laser light near 369nm. It decays to the state
]251/2,F =1)or |251/2, F = 0). The branching ratio of decays in the '"'Yb* ion can be
found in the appendix section D. Is the qubit in state |2S1/2, F = 0)=]0), no resonant laser
light is present and the state |0) is prepared [28, 38].

Every quantum computation requires a defined qubit state at the beginning. To prepare a
'Yb* qubit in the |0) state, the |1) state must be depleted. Tuning the frequency of the
laser light close to 369 nm allows selective depletion of the |1) state. If the laser light is
resonant with the transition S, F' = 1) = [1) ¢+ [Py 5, F' = 1) the state [*P} 5, F = 1)
is populated. By spontaneous emission 2P 2. F = 1) preferentially decays to the state
251 /9, F =0) = |0). When the excited state decays to |1), the laser field excites the
electron back to [2P 2, F'=1). This is repeated until the qubit is finally prepared in
the state |0). The principle is shown in fig. 2.5.4. The transition at 369 nm has a Full-
Width Half Maximum (FWHM) of 27 - 36(2) MHz [37] and is therefore broad enough in
frequency space to cover all three transitions of |25 /2, F'=1,mp = +1,0,—1). This allows
all |251/2,F =1,mp = +1,0,—1) states to be depleted and drives the system to the |0)

state.
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2.5.5 Detection of the qubits state
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Figure 2.5.5: Partial term scheme of !"'Yb™ (not to scale) showing the relevant optical
transition for detection. To detect the qubit state, laser light close to 369 nm is used to
drive the transition [1) < 2P, /2, F'' = 0) generating fluorescence if the ion was in state
|1). A possible off-resonant excitation of state |>P; 2, F'=1) allows the ion to decay to
the state |0), limiting the number of photons during the readout process. The frequency
difference between |2P1/2,F =1) and |2P1/2,F =0) is v = 27 - 2.1 GHz [2§]

To read the result at the end of the unitary evolution, each qubit is assigned one of the
binary logical values. This is realized by a projective measurement of the qubit state.
Shining laser light on the ions resonant with the transition |QSl/2, F=1)« |2P1/2, F =0)
will excite the ion if and only if the state |1) = |251/2,F = 1) is occupied. Once the
ion is excited, a photon is emitted by spontaneous decay ]2P1/2, F=0)— ]25’1/2, F=1).
Since the laser light is present, the ion will be excited again so that in each excitation,
de-excitation cycle a photon is emitted near 369nm. This excitation cycle is shown in
fig. 2.5.5. The emitted photons are eventually collected by the objective lens and projected
onto the Electron Multiplying Carge Coupled Device (EMCCD) camera chip. The camera,
which is used to observe the emitted fluorescence of the ions, allows to spatially resolve the
ion on an image. This image is digitized and then analyzed to assign a logical 1 if and only
if fluorescence is detected at the position of the ion in the image. Otherwise a logical 0

is assigned to the readout. Since the state |2P, /2, F' = 1) might be excited of resonantly a
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spontaneous decay to |5} /o, F = 0) = |0) might occur [21]. This effect limits the number
of photons emitted by an initially bright |1) qubit. Due to a limited solid angle imaged
by the camera, absorption or reflection processes in the imaging optics, the number of
photons detected during a readout when the ion is bright is limited. How to distinguish a
signal of a few photons from the background signal is shown in section 2.5.6. It is therefore

advantageous to collect as much fluorescence light as possible during a readout.

It should be noted that during the readout the three states |25’1/2,F =1,mp==+1,0)
are all read out as a logical |1). These three states undergo a Zeeman splitting of about
2110 — 27 - 20 MHz and are covered by the same laser light field. Increasing the magnetic

field will increase this splitting correspondingly, resulting in a decrease in fluorescence [37].

2.5.6 Calculation of excitation probabilities

At the end of each experiment, a projective measurement is performed, where the readout
is an image of the ion string. In the following, it is described how the image taken during
the readout process is interpreted to finally calculate an excitation probability P of a
quantum state in z basis. Due to the limited number of photons collected by the camera,
the distinction between the logical readout 0 and 1 is performed using a double-threshold

method.

Discriminating the logical state of a qubit between |0) and |1) using the double-threshold
method requires finding the area on the CCD chip exposed to fluorescence light for each
individual ion and finding the threshold values to ensure optimal detection fidelity. This
subsection describes the principle of calibration of the detection system as implemented in

the current setup.

Calibration of a system always requires comparison with a known reference. In this case,
the known reference is the ion itself. For this calibration, it is assumed that after shining
in the 369 nm laser field for a sufficient time, the whole qubit register is initialized in state
|00..0) with certainty. This initialization is described in section 2.5.4. Since the laser light
fields for the initialization and readout process are laser fields covering the entire register,

the register is prepared and read out globally.

In principle not much of the system is known at this point, for example the addressing
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frequencies v,, of the o transition between \281/2,F =0) < |2Sl/2,F =1,mp=1) of
the qubit is unknown, as well as the exact Rabi frequency (), of this transition. Using
the insensitivity of the 7 transition frequency v, |2Sl/2, F=0)«+ |25’1/2, F=1,mp=0)
to the first order of magnetic fields, a specific reference pulse can be applied. The Rapid
Adiabatic Passage (RAP) pulse, where Q(t) is Gaussian shaped while the RF frequency v
is ramped across the atomic resonance [19]. This pulse has been shown to reliably excite
the qubit state from |0) to |1) without precise knowledge of either the atomic resonance

frequency or the exact Rabi frequency of the applied RF field.
To perform the calibration measurement, the following two steps are performed:
1. preparation of the register in the ground state |00..0) and a readout.

2. Preparation of the register in the ground state |00..0) application of a RAP-pulse
on the |25’1/2,F =0) < |251/2,F = 1,mp = 0) transition exciting state |11..1) and

a readout.

After image acquisition, a matrix containing a value for each pixel in the readout image is

analyzed to calibrate the detection.

The acquired physical signal is amplified and digitized in the camera during the readout
process. This process is not noise free and therefore affects the readout image by adding
electronic noise to each pixel. In addition to the electronic noise, which produces a mini-
mum base level of the signal, misalignment of the readout laser and imaging errors in the
imaging setup will add additional signals in the readout area of the CCD chip. Once the
detection is calibrated, the two thresholds found compensate for the extra base level in the

readout signal.

The first step is to identify the ion signal region in the image. In a second step, the readout

images must be post-selected and then the two thresholds must be found.

The first step is to identify the pixels that represent the light collected from a single ion.
Three images are acquired during the measurement cycle. During the Doppler cooling
step, the ions scatter light that is partially collected by the objective and imaged on
the CCD camera. The Doppler cooling images contain the most fluorescence. The raw,

unprocessed Doppler-cooling images are described by d(; j) ,, where n is the experiment
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cycle in which the image was acquired and i () indexes the column (row) of the image.
First, the Doppler cooling images are summed D;; =}, d; j)»n- Due to the orientation of
the imaging system, the light from a single ion may be spread over several pixels, which
must be correctly assigned. The ions are arranged horizontally in a linear chain in the
acquired images. Averaging the values of the first column of the image dpas = >_; D1 /Nrow
gives an estimate of the base level of the signal. Here N, is the number of rows in the
acquired image and Dy, is the first column of the summed Doppler cooling image. This
approximate base level and a relative threshold, r;, allow finding a matrix that indicates
the region of the ions as
1 Dij > rindpas

A = . (2.5.3)
0 else

In the next step, the ions need to be assigned individual regions.

To do this, the ion regions must be separated by at least one pixel that is not assigned
as an ion region. In order to capture as much signal as possible from a single ion, it is
advantageous to assign an ion area as large as possible, as long as the readout noise of the
CCD chip does not degrade the measured signals. To do this, the relative threshold for
ion identification ry, is chosen as small as possible, as long as the ions can be separated.
Here the set {(7, j)}r denotes the set of pixel coordinates assigned to ion k. An example is

shown in fig. 2.5.6.

After successful ion identification, the average background signal can be calculated by
averaging over all pixels of the image that are at least one pixel away from the identified ion
regions. The distance of one pixel to the ion area ensures that the pixels used to determine
the background do not contain ion fluorescence. This average background fluorescence is

subtracted from all images for subsequent analysis.

During the repeated execution of experimental cycles, various events may occur that could
affect the measurement result if not handled properly. For example, the ion could decay
from the state |*Py 5, F = 0) — [2D3)5). This state has a lifetime of T|2D, ) = 92.7ms,
which is considerably longer than the lifefime of the state 7)2p, o) = 8.12ns. More details
about the '"'Yb*t therm scheme can be found in section D. As a result, the ion is in

an undefined state, no longer participating in cooling and no longer being addressed by
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Figure 2.5.6: Instructive example of ion identification and background selection. The area
indicated in blue corresponds to the ion area of ion 1, the area indicated in orange corre-
sponds to ion 2, and the area indicated in green corresponds to ion 3. The gray area is
used to calculate the mean background signal of the image. The dashed areas are not used
by the analysis but ensure proper separation of the found ion areas.

microwave radiation. The measurement cycle in which such an event occurs corrupts the
experimental data and must be removed from further analysis. This type of event and the
formation of unwanted molecules in the ion string show a decrease in the measured Doppler

cooling fluorescence and can therefore be removed from the data set to be analyzed.

After successful ion identification and background correction, the fluorescence during Doppler
cooling is analyzed. The total ion Doppler cooling fluorescence of the cycle n and the kth
ion is given by

D;c,n = Z (d(i,j),n - dgnd)- (2.5.4)
{@9)} e

The average total Doppler cooling fluorescence for the kth ion is calculated by evaluating
the acquired Doppler cooling image for each cycle n. Based on the average total ion
fluorescence and assuming that the ion remains in the same state until the end of the
cycle, a measurement is accepted if the measured Doppler fluorescence is higher than a

threshold r4 relative to the average fluorescence
Cycle n —1,n,n + 1 is rejected if Dy, ,, < rq- (D ,)n- (2.5.5)

When the Doppler cooling fluorescence is below this threshold, the readout of the quantum
state f,/m is rejected. Here <D;m)n is the averaged Doppler-cooling fluorescence of ion k

averaged over all cycles n. The total ion fluorescence f; , for the image containing the
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quantum logical information of cycle n and the kth ion is given by

fin=>_ fijn (2.5.6)
{(@0)} e

where f(; ;) » is the readout image of cycle n containing the logical readout of the quantum
state. The number of photons measured during the experiment is limited by off-resonant
excitation to the state |2P1/2, F = 1) and spontaneous decay to \QSI/Q,F = 0) [21], which
destroys the state |1). This results in a Poissonian distribution of different expectation
values for the measured signal of the EMCCD camera depending on the logical qubit
state. These Poissonian distributions for the dark and bright states of the ion partially
overlap. This leads to an ambiguity of the detected events in the overlapping region. To
clearly distinguish a bright state |1) from a dark state |0), a double-threshold method
is used. Details of this double-threshold are given in [39]. This method defines a lower
and an upper threshold. Events with fluorescence below the lower threshold, f' < Thy,
are identified as dark state d, and events with fluorescence, Thy < f’, above the upper
threshold are identified as bright state b. All other events with fluorescence between the

lower and upper thresholds, Thy < f' < Thy, are considered ambiguous and are discarded.

Applying the two threshold method flags each ion as either a logical 0, 1 or discarded.
An example of the distribution is shown in fig. 2.5.7. Based on the experiment performed
for a given setting in a cycle, there are two ways to interpret the flagged events. One
possible interpretation is as a single ion excitation probability independent of the state
of the other ions in the chain. Another interpretation is a product state representing a
number between 0 and 2" — 1, where n is the number of qubits present. In the case of the
single ion excitation interpretation, the procedure is as follows. For each repetition of the
cycle, the useful result is bright or dark. By evaluating all repetitions of a cycle, N, events
are identified as bright and Ny events are identified as dark. This allows the calculation of
a relative excitation probability N

b

Pr=——1. 2.5.
PN N, (2.5.7)

There is a non-vanishing probability of misidentifying a bright state as a dark state o and
a probability of misidentifying a dark state as a bright state «;. These probabilities, as
well as the applied threshold, are the result of a calibration measurement to find the best

possible thresholds. Details can be found in [39]. Knowing this quantity allows to correct
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Figure 2.5.7: Background signal corrected histogram of detected ion fluorescence for ion
2 in a three-ion crystal. Using the two-threshold method, symmetrically discarding 20%
of the events for the bright prepared state and the dark prepared state yields a detection
fidelity for the state 1y = 0.991(15), Py = 0.991(15). Events showing an ion fluorescence
below the lower threshold are detected as |0), events showing a fluorescence above the
higher threshold are detected as |1), and events in between are discarded.

this misidentification as

Byt o) () (2.5.8)
Py Y2 l-=-m) \Iu

Where P, is the true probability of finding the ion in state |1), Py is the true probability of
finding the ion in state |0), v; is the probability of identifying it as dark while it is bright,
and -2 is the probability of identifying it as bright while it is dark. Taking this into account

allows calculating the correct Probability of finding the system in state |1)

(I=y)P—m(l- 1)
L=y =) —mnr

P, = (2.5.9)

The uncertainty in excitation probability P, is given by the variance of the data sample of

all cycle repetitions:
N(Ny+1) - NZ+1
(N +2)2(N +3)

Var(P,) = (2.5.10)
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Here N = N, + N4. Each measured excitation probability is calculated using this method.
Based on this variance, the statistical error bar on measured data points presented in this

thesis is calculated as op = /Var(F).

The following procedure is used when it is necessary to interpret the state as a product
state. The method described so far can be used to calculate and correct the excitation
probability of each ion at the end of an experiment. These probabilities reflect the fre-
quencies of occurrence of bright events for a given experimental setting. On the other
hand, suppose that the state of the ion string is interpreted as a logical state of a quantum
register. In this case, the readout is a product state, i.e., the state of the register must
be interpreted as one of the 2" logical states it can represent. Thus, the readout of an
experiment is no longer a single possibility, but a vector of length 2", where each entry

represents a logical state.

So far, the method relies on discarding a certain fraction of the readout events. If the
readout is analyzed separately for each ion, this discarded fraction adds to the measurement
effort. This is acceptable since the additional measurement effort is about 20%. If the
readout is to be interpreted as a bit string, each ion must be assigned either 0 or 1.
This happens with the probability Psyccess = (1 — Piiscara) per ion. Thus, assuming
statistical independence, the probability of getting a valid readout of a register of size N
is Psyccess = (1 — Pyiscara)” . For a typical setting in this thesis, Pyiseqrqa = 0.2 and N = 3
ions, Psyecess = 0.51 follows. Even for a three-ion system, a significant fraction of the
measurements will be discarded. In this case, this leads to a doubling of the measurement
time needed to collect data with a desired statistical significance. Scaling the system to
more qubits therefore requires more efficient state detection. This unfavorable scaling must

be overcome in future data analysis.

The read out probability vector is

Pioooy Py
Pioor) Py

P=|Poy|=|P]. (2.5.11)
Py Pr
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Here Pjoggy = [) is the probability to find the register in state 0. To calculate this proba-

bility vector of the register, the following steps are performed:

1. If the readout fluorescence of one or more ions is in the range between the two

thresholds, the readout is rejected and no longer considered in further analysis.

2. For each experiment cycle, the logical readout string is constructed as S = (I, 2, 3)
where [; is the logical state of the ion where the readout of each ion must be flagged

valid.
3. For each logical readout string S, an integer value is assigned v = Zi]\il 5201,

4. The probability P, is then calculated as P, = N, /N, where N, is the number of
occurred readouts of value v in all repetitions, where Ny is the total number of valid

readouts.

During this readout, there is a possibility of misinterpretation of the readout due to im-
perfect separation of the individual ion fluorescence on the camera and electronic noise.

To quantify this error, a detection calibration must be performed.

Extending the scheme above, a linear map between the real excitation probability vector

P and the measured probability vector P can be found:

By Moo Moy Moz -+ Moy _y P
P Mg My My - My on_yy Py
ﬁ fr— P’2v = MQO M21 MQQ v M2(2N_1) . P2 = Mﬁ
P27v\fl M(2N—1)0 M(2N—1)(2N—1) Pyv_4

(2.5.12)
Here, the diagonal elements correspond to the probability of correctly reconstructing the
excitation probability for each possible state such that, in the ideal case, M = 1. If the two
thresholds for each ion are known, an additional calibration of the product state detection

is required.

All possible product states must be prepared and detected to find the map M between the
actual and reconstructed quantum states. The preparation of a defined state is realized by

preparing the state |00..0) using laser light as described above and applying a RAP pulse
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on the o4 transition of the ions to selectively excite the qubits to the desired product state.
The register is then read out. The preparation of P in a defined state allows to find M ,
as the first column is the measured P(0) for a system prepared to state 0 = [00..0). The

second column corresponds to P(1) for the prepared state 1 = |00..1) and so on.

Applying the inverse matrix

—

M™'P=M"'MP=P, (2.5.13)
1

allows extraction of the excitation probabilities for the system’s state, compensating for

detection errors.

An example of a measured 8-state detection matrix M is shown in fig. 2.5.8. The cells in
dark colors show probability values close to 1, while the cells in light blue show probabilities
close to 0. From this matrix, some properties of the detection setup and the detection
method can be seen. For each state reported, there is a non-vanishing probability of
detecting a completely dark state, e.g. [000). If only one ion is to be prepared in an
excited state, in this case the states |001),]010) and |100), the probability of finding the
state |000) is approximately 3 - 1072, whereas if the prepared state contains two excited
ions, |011),|101) and |110), the probability of finding the state |000) is approximately equal
to 5-1073. The probability of finding a readout containing two-bit flip errors is suppressed

compared to errors containing one bit flip, as would be expected.

Using this calibration measurement allows reconstruction of the true state of the system
without systematic detection errors by applying the inverse of the detection matrix M !
to the readout state. The statistical errors of this correction must be taken into account,
since the calibration measurement always contains statistical errors. For this calculation,
the statistical error of the elements in the inverse matrix must be calculated. The error

propagation using a matrix inversion operation is given by [40]:

Cov(My, My') = > My Mo M My cov(Mij, M) (2.5.14)
i7j7k7l

In case of known variances in the form of standard errors, the sum can be reduced to
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Figure 2.5.8: Measured detection matrix M of output states |lmo) for given input states
lijk). The upper matrix shows the detection matrix M, while the lower matrix shows the
standard errors o) for each value in the upper matrix. This measurement consists of the
preparation of the desired state |ijk) by a RAP pulse on the o transition of each ion to be
prepared in the state |1) and a readout. The frequency of the occurring state is calculated

Detected state

Detected state

|000)

|001)

[010)

[011)

[100)

[101)

[110)

[111)

|000)

|001)

[010)

[011)

[100)

[101)

[110)

[111)

Probabilities

0.02625 0.0302 0.005486 | 0.02534 | 0.003918 | 0.003666 | 0.004121
0.004326 0.01646 0 0.01254 0 0.003434
0.000721 0.02273 0 0 0.01246 0.00206
0 0.004633 | 0.00898 0 0 0.009615
0.006489 0 0 0.01959 0.02126 | 0.001374
0 0.003861 0 0.0007837 | 0.003726 0.01168
0 0 0.005714 0 0.004471 0.01786
0 0 0.0008163 | 0.04232 0 0.003918 | 0.01906
[000) 001) |010) |011) [100) [101)  [110) [111)
Prepared state
Errors
0.002867 0.002068 0.001749 | 0.001636 | 0.001679
0.001762 0 0 0.003115 0 0.001533
0.0007207 0 0.005968 0 0 0.003004 | 0.001188
0 0.001887 | 0.002695 [MeNe[oy4e; 0 0 0 0.002557
0.002156 0 0 0 0.0009706
0 0.001723 0 0.0007834 | 0.001663 0 0.002815
0 0 0.002154 0 0.001821 0 0.006249
0 0 0.000816 0 0.001749
[000) 001) |010) |011) [100) [101)  [110)  [111)

Prepared state

to extract the excitation probabilities.
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calculate the standard deviation of the elements of the inverse matrix as:

?W,Bl =3 (M(;Z-laMijMﬂglf. (2.5.15)
1,]

Using the matrix multiplication

P = ZM;E, (2.5.16)

one can use Gaussian error propagation to calculate the errors of the reconstructed state

assuming a Gaussian distribution as follows:

b =3 (M a~) +3 (EaMijl)Q . (2.5.17)

J

Using eq. (2.5.16), a readout probability distribution P can be mapped to the real probabil-

ity distribution P. The error for the calculated probabilities P, can be calculated according

to [9] as
(ki + 1)(N+ M — k; — 1)
=/ Var(P, \/N—i—M AN M) (2.5.18)

where k; is the number of occurrences of the bit string ¢, NV is the number of measurements,

and M = 2Nien is the number of possible readouts.

Measuring the full detection matrix is therefore only feasible for a small set of ions, since

the number of prepared states and thus the measurement effort scales exponentially.

A possible extension to larger quantum systems would require a significant reduction of the
measurement effort. Assuming that bit flip and next neighbor crosstalk are the dominant
error sources, it would be sufficient to sample only a few bit patterns. A possible set of
patterns for a qubyte could be as follows:

|10010010), |01001001), and |[00100100). From these three examples, the possibilities of
misidentifying a |0) state as |1) can be deduced, given that the next neighboring ion is in
the |1) state. The states [01010101) and |10101010) would allow to study the rate of false
identifications given that both neighboring qubits are in state |1). The states |00000000)
and [11111111) allow to estimate the probability of a random bit flip. These bit patterns
can be easily extended to larger quantum systems while keeping the measurement effort

the same. This reduced measurement does not allow to reconstruct the full detection ma-
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trix, but assuming only next-neighbor crosstalk, this reduced set of measurements may be
sufficient to quantify next-neighbor detection crosstalk. Thus, the mitigation of detection

crosstalk in large quantum registers remains to be investigated.

2.6 Fast addressing-frequency measurement

A critical capability for any quantum computer is to address its qubits to implement local
rotations on desired qubits. Here, addressing of individual qubits is realized by applying
a global RF field resonant with the desired qubit transitions. The use of Zeeman split
hyperfine levels as qubits allows frequency addressing. Using a linear ion crystal with
defined ion positions and a magnetic field gradient shifts the resonance frequency for each
ion, making it unique. The exact addressing frequency must be known to minimize pulse
errors. Compensating for a drifting addressing frequency requires a fast measurement
within seconds that allows the known resonance frequency to be used in the experiment.
To do this efficiently, a method developed during my master thesis [28] can be used. It is

summarized here, since this method was used for the measurements presented in chapter 3.

After applying an RF pulse of duration 7 to a qubit prepared in state |0), the excitation

probability as a function of the phonon number n can be expressed as

2

Q
Po(0.7) = gty sin® (MQ% + 52;) . (2.6.1)

Here, €, is the Rabi frequency of the observed transition when n phonons are present,
and J is the detuning relative to the observed resonance. The Rabi frequency 2, can be
calculated as [41]

Q, = QLY (%), (2.6.2)

where n is the phonon number, and LY are the associated Laguerre polynomials.

Since the cooling step only consists of Doppler cooling for fast measurement, the thermal

excitations need to be considered:

B L P8, T)
P(m,d,71)= E _ 2.6.3
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This defines the expected shape of an atomic resonance for an ion stored in a harmonic

trapping potential at a given mean thermal excitation of 7 phonons.

As shown in equation (2.6.1), applying a detuned tophat RF pulse excites the addressed
ion. Since the shape of the resonance is known, the measurement to determine the ion’s
resonance can be efficient by minimizing the number of data points to acquire. Measuring
the excitation probability of an ion after the application of an RF pulse intentionally
detuned to the atomic resonance to lower (higher) frequency by k€ yields the excitation
probability Py = P(7, A + k), 7). Precalculation of

P —P_

9(A) = P+ P (2.6.4)

allows to numerically invert the map g to find A = g~ ' ([P, — P_]/[Py + P_]). The

measured value of A then is the offset of the expected to the real resonance frequency.

The width of the transition scales with the Rabi frequency 2, reduction of €2, therefore,
allows the measurement of the resonance frequency to be more precise. All relevant res-
onance frequencies can be measured simultaneously by applying an RF pulse to each ion
before readout. This has been demonstrated up to a register of eight qubits in the current

setup.

Since the addressing frequencies of the ions can vary during the course of an experiment,
these fast addressing frequency measurements are interleaved between the cycles of the
experiments. This allows to follow the slow changes of the atomic resonances and reduces
the pulse errors and the dephasing of the qubit state, since the rotating frame of the qubits

is better known.
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Figure 2.6.1: (a) Schematic of the resonance as a function of RF frequency for a fixed pulse
duration. Here 1 is the assumed resonance frequency before this recalibration step. The
frequencies v+ are the frequencies at which the resonance is sampled. It is calculated as
vy = vy £ k). Py is the excitation probability after applying a top hat pulse with fre-
quency v4. (b) Map between the normalized excitation probability (Py — P_)/(Py + P-)
difference and the frequency correction to apply A. Measuring two excitation probabilities
P, after applying two detuned RF pulses is sufficient to measure the resonant frequency
of a [2S) /9, F = 0) <+ [25)/5, F = 0,mp = £1,0) [28].

Observation of the atomic oy transition |25 9, F = 0) < |25 )9, F = 0,mp = 1) is suf-
ficient to calculate the magnetic field at the position of the ions using the equation
eq. (2.2.4) and thus allows to calculate the resonance frequencies of the 7 transition
|251/2, F=0)« |251/2, F =0,mp = 0) and the resonance frequency of the o_ transition
281 /2, F = 0) < [°Sy ), F = 0,mp = —1).

In the current experimental setup, the statistical uncertainty of the addressing frequency
measurement exceeds the coupling strength in the register o, > J;;. In the upcoming
setups with stronger coupling between the qubits, this is no longer true. The coupling can
be seen as a state dependent detuning, making it necessary to increase the driving fields
Rabi frequency or the use of broadband pulses to compensate for addressing errors due
to the state of other qubits in the register. Nevertheless, the addressing error due to the

coupling will be relevant and requires further investigation in the future.
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2.7 Multi-tone sideband cooling

2.7 Multi-tone sideband cooling

To perform experiments involving the coupling of qubit states with vibrational excitation
of the ion crystal, it is often necessary to cool all the vibrational modes of the ion crystal
close to its motional ground state. As shown in [9,42], one ion in the crystal can be used
to sympathetically cool the other ions. Using the cooling scheme presented in this work,
individual serial cooling of vibrational modes was previously required, taking up to 120 ms
to cool a single mode of the ion crystal [9]. In the current setup, three frequency generators,
each capable of generating a single tone, allow an RF field containing three tones. This
can be used to cool three vibrational modes of a three-ion crystal simultaneously, reducing

the cooling time required per cycle.

In a three ion crystal, the vibrational mode frequencies are given in terms of the Center Of
Mass (COM) mode as, voou,ve = 1.732 vooar and v3 = 2.408 voops which can be found

numerically [14].

The absolute amplitudes are given by

0.577 0.577 0.577
S=1o077 0 —0707], (2.7.1)
~0.408 0.816 —0.408

where the rows of S denote the vibrational mode, columns of S denote the ion, and the
entries of S are the relative amplitudes of the oscillation. This dynamical matrix allows

the extraction of a recipe to cool three motional modes of a three-ion crystal:
e Cool mode 2 on ion 1,
e Cool mode 3 on ion 2,
e Cool the COM mode on ion 3.

This combination of ions and vibrational modes assigned the ion with the largest amplitude
to the mode, resulting in the strongest coupling and cooling. As described in section 2.5.3,
sideband cooling requires both a laser field and an RF field to be present simultaneously. It
has been found that for a given RF Rabi frequency 2, sideband cooling works best when the
intensity of the laser field is matched. Due to the different Rabi frequencies of the sideband
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transitions of the other modes on different ions, the Rabi frequencies of the RF transition
must be matched. Experimentally, it is advantageous to choose the largest possible RF
Rabi frequency. Optimizing the frequency of the RF fields of each sideband transition then
maximizes the cooling rate. Because of the light field present to complete the cooling cycle,
the optimal sideband cooling frequencies of the RF transition must be found. Since the
number to be optimized is the residual excitation of the vibrational modes, it is sufficient
to optimize the frequencies to address the modes. Full sideband spectroscopy is a time-
consuming task to measure the phonon excitation as used in [9]. Instead, a method is
used here in which the red sideband can no longer be driven, indicating that the ions are
in their motional ground state. Thus, it is sufficient to optimize the experimental set to
search for a vanishing red sideband transition. Since the sideband frequencies are known
and the full microwave power is used to increase the cooling rate, the only free parameter
left to vary is the intensity of the laser at 369nm. The intensity of the light field must
be adjusted to match the microwave Rabi frequency for optimal cooling. If they match,
a global optimum for the laser field intensity used can be found, as shown in fig. 2.7.1.
The optimum is indicated by a minimum of the observed excitation after application of
a readout pulse resonant with the red sideband transition as a function of the applied
cooling laser intensity /. Compared to full sideband spectroscopy, this method is about
30 times more time-efficient, since only one point is sampled for each cooling laser power

level instead of a full spectrum.

By applying sideband cooling to three ions and three modes in parallel, the three vibrational
modes are cooled simultaneously by irradiation with three RF fields. The heating rate of
the system limits the minimum achievable vibrational excitation. The dominant heating is
that of the COM mode. To effectively heat higher order modes, each ion must be subjected
to a force of different amplitude or direction. This results in a two-stage parallel sideband
cooling scheme. Similarly, COM mode cooling can be enhanced by simultaneously cooling
the COM mode on three ions with three RF fields. This increases the cooling rate and

further reduces the residual excitation.

In the first step, all three modes of a three-ion crystal are cooled simultaneously, followed
by a step in which the COM mode is cooled on all three ions. This second step can be

relatively short because the motion of the ions in the COM mode is pre-cooled. This
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Figure 2.7.1: Experimental result of the search for the optimal optical cooling intensity
1. Here the intensity I of the laser light near 369 nm is varied during the 50 ms sideband
cooling step as described in section 2.7. The qubits are then prepared in the |000) state
as described in section 2.5.4, and a microwave readout pulse resonant to the red sideband
transition is applied to each qubit in the absence of a light field. (a) Ion 1 readout of mode
2 (b) Ion 2 readout of mode 3 (c) Ion 3 readout of COM mode. The resulting excita-
tion probability P indicates the presence of a red sideband transition, where a vanishing
sideband transition indicates ground state cooling. All three modes show a dip at about
0.1, indicating simultaneous cooling of the three modes. The scanned range of laser power
is limited to efficiently implement the sideband cooling optimization, so that even at the
highest laser power applied, the system is already cooled.

two-step scheme is implemented in the experiments performed here with 50 ms cooling on
three different modes and 10ms cooling on the COM mode on three ions. This reduces
the cooling time from 300 ms using the classical method [9] to 60 ms using the technique
introduced here. The duration of coherent evolution in the experiments performed for
this work is less than 20 ms, making sideband cooling the most time-consuming task in an
experiment. Therefore, the application of this fast sideband cooling scheme speeds up data

acquisition by a factor of five in the case of a three-mode SBC.
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Figure 2.7.2: Timeline of a two-stage sideband cooling process. (D) is the fast Doppler
cooling of 5ms duration, followed by a 50 ms parallel three-mode sympathetic sideband
cooling. Finally, a 10ms parallel three-qubit COM cooling is applied to cool the COM
mode at three times the cooling rate during the three-mode SBC to reduce the residual
phonon level limited by the predominant COM mode heating.

2.8 Lab automation

One step in developing a quantum computer is to automate the system as much as possible
to allow for automated operation. During the time in the lab, it became clear that it would
be beneficial to reduce the human factor in the experiment to increase reproducibility and
improve results. Automating routine tasks improves the reliability of the experiment and
allows the operator to focus on other aspects of the experiment. Some common tasks are
loading the trap or adjusting the laser frequencies. These two tasks have been automated

and are described below.

The phenomenological description of the detection of unwanted molecules in the ion crystal
allows to decide whether it is necessary to reload or not. This procedure is described in

chapter 3.

2.8.1 Automatic loading

Loading the trap is a standard lab task. The trapping potential is deep enough that even
uncooled ions remain in the trap overnight, so it is rare for an ion to be lost. Therefore,
reloading the trap with "' Yb™T is necessary if the trap has been turned off, a molecule
has formed, or the number of '"'Yb¥ in the trap is incorrect. Regardless of the reason for

reloading the trap, the loading procedure is always the same. Here I will describe how to
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automate the loading process. This procedure is based on experience in daily lab operation

and may be improved in the future:

e Switching the trap drive:
At the beginning of a loading procedure, the trap drive is switched off for a short
moment. This allows us to get rid of ions in a dark state. The trapping potential is
switched by switching the frequency generator’s output amplitude, which generates

the signal to the RF resonator.

o Heating the oven:
To load "'Yb™ | atomic 1"1YDb is thermally evaporated by heating an oven [43]. To

heat, the oven current is switched and left on during the loading process.

e Setting the lasers:
The 369nm laser is set roughly to the Doppler cooling setting detuned by about
27 - 100 MHz to the atomic resonance of a resting ion, to allow it to cool down fast

ions after ionization.
e The RF field is set to the 7 transition to close the Doppler cooling cycle.
e The 935 nm repump laser is switched on.

e The 399 nm laser for ionization is switched on and scanned across the atomic reso-

nance line to allow for laser ionization.
e The camera image is observed using a long exposure time.

o If one pixel of the camera image exceeds a hard set threshold, indicating the presence

of an ion, the ionizing laser is switched off.
o Waiting some seconds to let the ion or ions cool down and form a crystal.

e Scanning the laser frequency and observing the ion fluorescence as incoherent spec-

troscopy is used to determine the optical resonance.

e Counting the number of ions in the trap. If not enough ions are present, continue

loading; otherwise, finish the loading procedure.

e Setting the 935 nm repump laser to resonance found by spectroscopy, and the 369 nm

43



2 Basic principles

laser about 27 - 100 MHz detuned.
e Switching on the 399 nm ionizing laser.
e Waiting till sufficiently many ions are counted.

Depending on the parameters: 399 nm laser power, 369 nm laser power, sweep speed and
range of the 399 nm laser frequency, overlap and beam size of both lasers, and heating power
of the atomic oven, loading times for "1 YbT are on the order of 5min for the first ion to
be loaded. If the oven remains on during loading, additional ions can be loaded in about
three minutes. This procedure relies on proper ion counting and a quasi-deterministic
appearance of freshly loaded ions in the crystal, which limits the loading rate so that one

ion is cooled down before the next ion is ionized.

2.8.2 Laser spectroscopy

The optical transition of 369nm from [>S)5, F =1) < [*Pyj5, F =0,1) is used in the
experiment each time the ions are initialized, cooled, or readout, so knowledge of the
optical resonances is necessary to run the experiment. In addition to the UV transition
at about 369 nm, the infrared transition at about 935nm must be known. The 935 nm
transition [2Dy/5) <+ [*D[3/2];2) pumps the qubit back to the [2S; ) state. More details
about the ion resonances can be found in the appendix D. Both optical transitions have
to be found spectroscopically. This is done using the resonance fluorescence detected by
the camera. All fluorescence obtained is of wavelength 369 nm. The 935 nm transition is
observed indirectly by observing the photons emitted by the 369 nm spontaneous emission,
while the 369 nm transition is driven red detuned to maintain Doppler cooling during the

process.
Each spectroscopy performed is structured as follows:

o An image containing Doppler cooling fluorescence is acquired.

e An ion area is estimated by selecting pixels exceeding a fixed threshold.

e In the case of the 935 nm laser scan, the laser power is reduced from Py35 = 1.1 mW to

Py35 ~ 110 uW to reduce power broadening on the transition to FWHM ~ 27-50 MHz.
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2.8 Lab automation

o The laser wavelength close to 369 nm is detuned to the red from the current frequency.

e Successive images are acquired while the laser frequency is scanned stepwise in

fstep,935 = 27 - 6.4 MHz from the red towards the blue detuning.

e For each image, the fluorescence is found, summing up the values of each pixel in the

ion area.

e In the case of the laser scan of the 935 nm laser, a Gaussian profile is fitted to the

fluorescence curve to find the resonance.

In the case of a scan of the 369 nm laser wavelength, it is necessary to perform the wave-
length sweep from the red to the blue detuning, since blue detuned to the resonance, the
369 nm laser will Doppler heat the system, causing the ion crystal to melt. The point
at which the Doppler cooling stops working and the crystal melts can be found in the
integrated fluorescence data over the ion regions as a rapid drop. An example of a laser

spectrum observing the transition at about 369 nm is shown in fig. 2.8.1.

The laser frequency is shifted to about 27 - 19 MHz below the rapid drop of the measured
fluorescence to achieve optimal Doppler cooling efficiency. In this part of the optical
resonance, the largest slope of the scattering rate as a function of laser frequency occurs,

resulting in optimal Doppler cooling.

2.8.3 Stabilization of cooling fluorescence

During all experiments, the 369 nm laser field frequency may drift slowly. This can be
caused by ambient pressure, temperature, and humidity. This is due to the locking to the
resonance of a reference cavity. The cavity is in air, so a change in the refractive index
due to a change in the above parameters changes the resonant frequency of the cavity and
therefore the frequency of the laser locked to it. Since the thresholds found during the
detection calibration process are only valid as long as the number of photons captured
when the qubit is projected onto |1) remains constant, the fluorescence obtained must be
kept stable. Furthermore, the fluorescence must be the same for all experiments using
the same detection calibration. To ensure this, a scan of the laser frequency is performed

automatically before the experiment starts, as described in section 2.8.2.
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Figure 2.8.1: Example spectrum of the 369nm cooling transition |231/2, F=1) «
2P, /2, F' = 0). The laser is tuned from lower frequencies to higher frequencies since, at the
resonance, the Doppler-cooling does not work anymore, and the ion string melts, producing
a rapid drop in measured fluorescence. Here A = 27 - 0 MHz corresponds to no detuning
of the laser frequency relative to the lasers frequency prior to the spectroscopy performed.
Using a laser frequency detuned by approximately —A = 27 - 19 MHz from the rapid drop
in fluorescence is used for Doppler cooling the ion string during the experiments. This
corresponds to the steepest slope of the resonance, indicating the best Doppler cooling
configuration.

After the resonance is found, the frequency of the 369 nm laser field is detuned by 27 -
19 MHz to the red. This is done automatically before starting an experiment, including the
calibration measurement to find the detection thresholds. This ensures that the thresholds
are valid at the beginning of the experiment. However, the laser frequency may drift during

the experiment.

To compensate for this drift, live analysis of the Doppler cooled fluorescence can be used.
Once the experiment is started, the Doppler cooling images should always contain the
same fluorescence. After the experiment has started, a floating average over the last N4
Doppler cooling images d;, is calculated based on the detection ion areas:

Dy (2.8.1)

I
M=
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2.8 Lab automation

At the start of the experiment, the reference fluorescence D,y = Dy, , is evaluated after
Navg cycles.  After a period of 7y4p, Dy is calculated and compared with D,.y, if the

deviation is greater than Dy, a frequency step fsp is applied:

fstep when Dref — Dg > Duyin
Af(zppl = _fstep when Dref - Dk < _Dwin (282)
0 else.
Typical choices during the experiment are Nyyg = 100, fstep = 27-0.48 MHz and 74, = 2.

With these parameters, the application of this technique allows to compensate sufficiently

slow drifts of the laser frequency, less than 27 - 240 kHz/s.
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Quantum sensing

Microscopes have paved the way for advances in basic research. The development of opti-
cal microscopy has historically led to breakthroughs in science. Although limited by the
wavelength of light used in optical microscopes, the resolution of optical microscopes was
improved through the use of novel techniques. Scanning near-field optical microscopy [44]
has been used extensively at wavelengths in the visible regime [45] and has been extended
to the radiofrequency regime [46,47]. The highest wavelength-relative resolution attained
to date was reported by Keilmann et al. [46] as Az/\ < 5 x 10~7 using wavelengths up to
20 cm. Using a spatially varying magnetic field and a probe sensitive to magnetic fields,
the position of the probe can be measured. Electron spins in single nitrogen vacancy defect
centers in diamond can be selectively addressed [48,49], and were used for measuring mag-
netic fields, in the present gradient resulting in a wavelength-relative resolution of 2.8 x 1076
using a wavelength of 10.4 cm. [50]. Combining scanning force microscopy and magnetic
resonance imaging was proposed in 1991 [51] and demonstrated shortly after [52]. Trapped
atomic ions have been succesfully employed probes for magnetic fields [53-55], electric

fields, and forces in the yoctonewton regime [56—60].

In this chapter, a single '"'Yb* ion is used as a quantum sensor of magnetic fields to

calculate the position of the ion and ultimately as a sensor of tiny DC electric forces.

At the end of this chapter, measurements of the resonance frequency of the qubits, routinely
performed during lab operations, are used to indirectly diagnose whether or not an ion that
is not visible and not addressed by laser light has formed a molecule. In addition, precise
knowledge of the qubit resonance frequency allows us to observe the axial trap frequency

and the J-coupling.
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3 Quantum sensing

3.1 Measuring 0.B

A ''YDbT -jon trapped in a quadratic potential as described in chapter 2 can be Doppler-
cooled, state-selectively prepared and read out with laser radiation close to 369 nm. An
EMCCD camera observes it with a pixel size of 16 pm. The imaging optics used here
provides a magnification of 12.5 and images the fluorescence light of ions on about 12 -8
pixels. Given the setup used in its normal mode of operation, the observed ion fluorescence
extends over ~ 10 pm in the trap. This is sufficient to spatially identify and separate the
qubits in the trap. The size of the image and the width of the ion wave function in the
trap can easily be mistaken for a limit to the resolution of the ion position. In this chapter,

the center of the ion wave function in the trap is referred to as the position of the ion.

h
2my pwz

Although the ion wave function extends over Az = ~ 16 nm, the center of the

wave function and therefore the position can be defined with higher accuracy.

To measure the position of the ions, a measurement of the magnetic field with a known
magnetic field gradient can be used. To determine the magnetic field gradient in the
setup, it is necessary to probe the magnetic field at different points along the trap axis.
Assuming a harmonic potential and Coulomb repulsion between charged ions, the position
of the ions in a Coulomb crystal can be calculated for a given trap frequency [14]. The
distance between the ions is therefore defined by electrostatics and can be determined
without using optical imaging or the magnetic field at the ion position. A linear Coulomb
crystal can therefore be used as a reference for the ion position to determine the magnetic

field gradient.

The following steps were performed to measure the gradient. These steps are explained in

the following paragraphs.

1. Measurement of the axial trapping frequency w, by resonant excitation of the move-

ment of the ions in the trap.

2. Calculating the ion’s relative positions in the trap by minimizing the overall potential

as shown in eq. (3.1.2).

3. Measurement of the addressing frequencies v; of a string of ions as shown in sec-

tion 2.6.
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3.1 Measuring 0, B

4. Calculating the magnetic field from the measured resonance frequencies at the qubits

position by inverting eq. (2.2.9).

5. Calculating the gradient from calculated ion positions and magnetic fields as shown

in fig. 3.1.1.

To measure the axial trap frequency w,, an AC voltage is applied to an electrode while
it frequency v4¢ is scanned over the resonance and the ion image is observed. When the
applied AC signal is close to the resonance (v4c = w,), the motion of the ions in the trap is
excited until it is visible by a distortion of the image on the camera. The frequency of the
voltage applied to the electrode is then resonant with the ion motion. The lowest frequency
that occurs while a distortion of the ion image along the trapping axis is observed is the
Center Of Mass (COM) mode. Its frequency is independent of the number of ions in the

linear Coulomb crystal and can therefore be clearly identified.

The different qubit resonance frequencies of all ions in the crystal allow for addressing the
ions individually. In the case of a Coulomb crystal containing multiple ions, the qubit
resonances can be measured simultaneously for all qubits using the method described in
section 2.6. Periodic recalibration of qubit resonances is routinely applied to minimize
addressing errors during the execution of quantum circuits. Therefore, long data sets of

continuous frequency calibration are available.

Two properties can be extracted: The magnetic field gradient and the stability of the trap

frequency, and hence the long-term stability of the J-coupling, can be estimated.

According to [14], the ions’ position in a trap is determined by the minimum of the electric
potentials assuming harmonic axial confinement and the Coulomb potentials generated by

each ion. The positions are given as

) 1/3
5= <q6> : (3.1.1)

41 engbwg

where ¢, is the elementary charge, myyp is the mass of an Ytterbium ion, w, = 27 -

128.24(1) kHz is the trap frequency and w; is the solution to the equation:

1—1 1 N 1
O=u—y ——— + (3.1.2)
' JZ:; (wi —ug)? 5y (i —uy)?
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3 Quantum sensing

Ton ‘ Scaled positions u; ‘ Absolut positions z; ‘ magnetic field B

1 —1.43680 —15.4853(8) pm 346.60(2) uT
2 —0.45438 —4.8971(3) pm 548.70(2) T
3 0.45438 4.8971(3) pm 735.68(2) T
4 1.43680 15.4853(8) um 937.89(2) T

Table 3.1.1: Calculated ion position of 4 ions for a measured axial trapping frequency
of w, = 27 - 128.24(1) kHz measured by observing a blurring of the ion image while an
alternating electric field excites the motion of the ions. The magnetic field B is calculated
as an average of the ion resonance frequencies over a consecutive observation time of 6h
using 357 measurements of the addressing frequency per qubit. The errors are calculated
as standard errors of the samples of B, while the error on z is calculated from the error on

W,.

The trap frequency was determined manually in this case with an estimated error of 27 -
10 Hz, where the measured trapping frequency is w, = 27 - 128.24 kHz. Based on this

uncertainty according to eq. (3.1.1), the error of the relative length scale is
2= x5.1070. (3.1.3)

The calculated ion positions’ results are shown in table 3.1.1.

The magnetic field gradient corresponds to the linear slope of B(z) and is derived by a fit
to the measured data shown in fig. 3.1.1 and table 3.1.1 respectively. Since the errors in
the calculated position are given by the frequency error of the measured trap frequency,
they are correlated. The systematic error of this axis is 0,/z ~ 5-107°. The slope is linear

in the scaling errors of the z-axis, so the relative errors add up to

00.B 00.B 0z,
B (29 + < ) : 3.1.4
8ZB ( azB >fit Zi / syst ( )

where 0, B is the magnetic field gradient. The magnetic field gradient is found to be

9.B =19.09(1) T/m. (3.1.5)
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3.2 Observing an "' Yb* ion
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Figure 3.1.1: Linear fit of the magnetic field at the ion position for a measured trap fre-
quency w, = 27-128.24(1) kHz. The barely visible error bars correspond to standard errors.
From the linear fit 0, B = 19.092(1) T'/m can be estimated. Incorporating the systematic
error of 0, /z ~ 5-107° derived in eq. (3.1.3), in total, the magnetic field gradient can be
estimated to be 9,B = 19.09(1) T/m. The calculated position and magnetic fields can be
found in table 3.1.1.

3.2 Observing an '"'Yb* ion

The minimal motional excitation as shown in section 2.5.2 is m = 80 after a Doppler
cooling step is applied. Two assumptions are made. The Rabi frequency (2, depends on
the phonon number n. This is described by the equation (2.6.2). Second, the thermal
occupation of the vibrational modes is described by (2.6.3). These equations can be used
to synthesize the shape of an atomic resonance. In fig. 3.2.1 the calculated shape is given for
two exemplary phonon numbers. From this shape, a numerical search for the point where
the expected excitation probability is 0.5 yields the Full-Width Half Maximum (FWHM)
of the resonance. In a range from m = 20 to 7 = 100 the FWHM of the resonance changes
by 1.7-1072€2. This demonstrates the robustness of the method summarized in section 2.6
against thermal excitations of the ion motion, and therefore a fast Doppler cooling step is

sufficient for the measurement.

Using this shape of the atomic resonance and equation (2.6.4), the measurement of two

excitation probabilities is sufficient to determine a frequency offset A. Equation (2.5.10)
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Figure 3.2.1: (a) Exemplary calculated excitation probability P of the hyperfine resonance
|2Sl/2,F =0) < |2Sl/2,F = 0,mp = 1) with different motional excitations 7 = 0;100 as
a function of the detuning 0 with respect to the atomic resonance in units of the Rabi
frequency Q. (b) Full-width half maximum (FWHM) of the synthesized atomic resonances
in units of the Rabi frequency 2. The relative change of the resonance width of about
0.02 justifies the validity of the resonance measurement if only a Doppler cooling step with
n = 80 phonons, in the end, is applied.

allows to calculate the error of a measured excitation probability op, and using eq. (2.6.3)
allows to calculate Py for a given A, as shown in [28]. The error in the frequency mea-

surement can be calculated as

o (ag>—1 2P0} +2P%0}, (32,1
A7 \oA P, +P. -

The updated frequency is ¥ = vy + A and therefore the statistical error of the updated
frequency is 0, = oa. The resulting statistical errors are shown in fig. 3.2.2 for a fixed
measurement time and a fixed frequency offset A. For a given number of repetitions of
Nyep = 50 corresponding to a measurement time of 2s the minimal achievable statistical
error is oo = 0.06 - Q). For a fixed measurement duration of two seconds, the expected
statistical uncertainty for a given frequency offset A during this measurement is shown in
fig. 3.2.2. Around A = 0.8 -2, the error rapidly increases, limiting a beneficial window for
corrections with A < 0.8 - €. For a given offset A, also the scaling of the statistical error

with the measurement time is shown, indicating a o, /Q oc 1/+/T scaling.
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Figure 3.2.2: (a) Relative statistical uncertainty of the addressing frequency o, /€2, given a
frequency offset during the measurement of A/Q2 = [0,0.3,0.7]. Indicated points correspond
to calculated uncertainties based on the calculated measurement error, as shown above,
dashed lines are showing an oc 1/ VT scaling, where T is the measuring time. (b) Calculated
uncertainty for an experiment of a fixed duration 2s as a function of the frequency offset
using equation (3.2.1).

First, the fast adaptive addressing frequency measurement was implemented to compensate
for drifts in the addressing frequency. To demonstrate the ability to resolve the position
of an ion along the z axis, a change in position is introduced by changing the minimum
position of the trapping potential. This potential along the z direction is generated by
the voltage applied to the end cap electrodes shown in fig. 2.1.1. Figure 3.2.3 shows a
schematic of the end cap electrodes that generate the trapping potential. To calculate the
trapping potential, the electrodes in the calculation are replaced by a dummy charge at

the center of the electrode tips. This reduces the problem to one dimension.

The electrostatic potential can be calculated as

6= < "o, = > (3.2.2)

Admeg \z — 21 29— %

Solving 0,¢ = 0 results in:

2 2 2

zZ9 — z Z5 — z zZ9 — z

z:\/((hQ q2 1) _ WA T @A nF T R (3.2.3)
41— q2 42 —q1 qr — g2
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Figure 3.2.3: Schematic of the experimental setup to introduce a shift of the position of the
ion by changing voltage Us. The radius of the metallic end cap electrodes is 7, = 0.15 mm,
the distance between the electrode tips is d = 3mm. The charges ¢; and g2 represent
the replacement charge for the voltage applied to the end caps, generating the trapping
potential at the location of the ion.

where z is the position of the ion, z; are the positions of the replacement charges ¢; and
€o is the vacuum permittivity. The replacement charges here are ¢; = 4mwegr.U; where 7. is

the end cap tips’ radius and U; is the voltage applied.

An offset magnetic field is required to define the quantization axis and lift the degeneracy
of |2S1/2, F =1,mp = +£1,0). An imbalanced voltage is applied to the end cap electrodes,
shifting the ions position in the trap out of the low magnetic field region. The voltages
where Uy = 15.38V and Uy = 19V resulting in a displacement of the ion from the center
of r4;s = 87.3 pm. To modify the voltage Us in the mV range to obtain a shift on the nm
scale, a second voltage Uy, is added to Us using a voltage divider. Uj = Uy +9.8-1073U, .

A quadratic fit of the calculated trapping potential at the ion’s location yields a calcu-
lated trap frequency weqie = 27 - 181.48 kHz. In contrast, the measured trap frequency is
Wirap = 27-108.10 kHz. This discrepancy can be caused by the trap geometry, by imperfect
assembly of the trap electrodes, or by possible offset voltages on the DC ground electrodes.
The real trap differs from the ideal assumptions because the ions remain in the trap even
when no voltage is applied to the trap electrodes. The deviation from the idealized model
assumptions can be taken into account by introducing a factor kK = wirqp/weate. The re-
sulting linear response to the changed voltage is Az = KAUQE with & = 2.11- 1077 m/V

found by fitting the calculated potential with a parabola and extracting the minimum.

Since the ions resonance drifts during the experiment, a measurement with a biased voltage
AU = Uy — Uy # 0 is alternated with a measurement with AU = 0. Figure 3.2.4 shows

the measurements of the ions resonance. Using the Allan variance, a drift rate of the ions
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Figure 3.2.4: (a) Measurement of the ions resonance v during the experiment when the
additional voltage imbalance is switched off. Error bars are standard errors and are barely
visible. (b) The fit of the Allan variance for different lengths of bins. A drift rate of
04 = 8.3Hz/s can be extracted.

resonance of o4 = 27 - 8.3Hz/s is estimated. Details of the procedure used to estimate
this can be found in [28]. From these measured frequencies, an amplitude of the magnetic
field B(v) can be calculated by inverting equation (2.2.4). Assuming a constant magnetic
field gradient along the z direction of 0,B = 19.09(1) T/m the position of the ion can be

inferred from

(3.2.4)

The unbiased position during voltage biased measurements is not accessible. The ion po-
sition is given by linear interpolation between successive measurements without additional
voltage bias. This is shown in fig. 3.2.5. Comparing these positions gives the position offset
due to the applied voltage bias. Measurements with AU = 0 are 29,41 and measurements

with AU # 0 are zg,. The induced position change and its error can be calculated as:
Z2k—1 t 22k+1

Azipdk = 22k — — (3.2.5)

1 1
O-Azind,k = \/0-22}@ + 50-22k—1 + 50-22k+1' (326)
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Figure 3.2.5: (a) Series of position measurements with and without additional voltage bias
AU at the endcap electrodes to induce ion displacement. The positions with AU = 0
are interpolated (dashed line) at times where a bias AU # 0 is applied to extract the
induced ion displacement Az;,q. (b) Comparison of the expected ion displacement Az =
AU -1.25-10""m/V, shown as a dashed line, and the measured displacements from (a),
where no fit was performed. The error bars shown are standard errors and are barely visible.
A drift of v produces deviations from the expected displacements within the experiment,
which did not exactly follow the linear assumption.
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3.2 Observing an "' Yb* ion

The measurement typically consists of 50 repetitions for two different RF pulses applied.
Therefore, 100 cycles have to be measured, resulting in a measurement duration of 2s,
since the duration of a single cycle is 20 ms. A statistical error of the measured addressing
frequencies of o, = 27 - 28 Hz could be achieved during these measurements. Converted
to a position it is 0, = 0.12nm. The extension of the atomic wave packet in the trap
is given by Az = /h/2mw; = 16.5nm, which is about two orders of magnitude larger
than the achieved resolution of its position. It should be emphasized that the measured
ion positions reported here correspond to the center of mass (COM) position. This does
not contradict the extension of the ion wave packet. Another noteworthy feature is that
this experiment was performed using RF radiation around w,; ~ 27 - 12.6 GHz, which
corresponds to a wavelength of A,y = 2.38cm. Thus, the wavelength used to detect a
position is 5 - 10° times larger than the resolution, making it the best relative wavelength

resolution reported today.

Another feature of the experiment is the weak confinement along the z axis. The effective
potential is given by the equation (2.1.1). The axial component of the effective potential
®, is given by:

1
P, = §mwa§Z2 = Qe®:, (327)

where ¢, is the electric potential and ¢, is the elementary charge. From this potential, the
force is given by
F,=0,%, =mypw?z=131-10""N/m - 2. (3.2.8)
k

and therefore the error of the force can be calculated as:
op, = ko, =1.57-107%N., (3.2.9)

A harmonic trapping potential is characterized by a linear dependence of the ion position
on the applied force. Therefore, Hook’s law can be applied. Hook’s constant £ = 1.31 -
10713 N/m for an ion mass of myp, = 170.94u = 2.84 - 1072 kg and an axial trapping
frequency of w, = 27-108.1 kHz. Together with a position resolution of O(1071%m) a force

resolution of O(10723N) can be achieved.
The results of the measurements are summarized in table 3.2.1.

A typical physical property of a force measurement device is its sensitivity in units of
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Parameter value
Measurement time 2s

Driving field Rabi frequency €2 27 - 367 Hz
Trap frequency w, 27 - 108.1kHz
Statistical uncertainty of frequency o, 21 - 28 Hz
Sensitivity for resonance frequency 40Hz/+/Hz
Statistical uncertainty of DC magnetic field op || 2.3nT
Sensitivity for DC magnetic field 3.2nT/vVHz
Statistical uncertainty of position o, 0.12nm
Sensitivity of position 0.17nm/+/Hz
Statistical uncertainty of force op 1.6-10723N
Sensitivity of force 2.2.1072 N/\/E
Natural drift rate o4 8.3Hz/s

Table 3.2.1: Overview of measurements obtained with a single ion in a 19.09(1) T'/m mag-
netic field gradient along the trapping axis.

s = Ft~'/2 with units of N/v/Hz, where F is a force and ¢ is the measurement time.
The sensitivity defined as such is an instructive measure to calculate the possible reso-
lution or = s/+/t directly from the sensitivity and the applied measurement time. The

experimental procedure must be as fast as possible to obtain a good sensitivity.

The results obtained in this section are summarized in the table 3.2.1 and a publication is

in preparation.

3.3 Measuring the stability of the trapping potential

When a coulomb crystal is used as a register of qubits, periodic recalibration of the ad-
dressing frequencies is performed. The calibration data can also be used to observe the

trapping potential.

Assuming that the magnetic field gradient is constant, the measurement of the addressing
frequencies of the qubits allows the calculation of changes in the dimensions of the crystal as
shown in the previous section. Since the dimensions of the crystal [ as shown in eq. (3.1.1)

2/3

[14] scale as | o< w. *'” o z; — z;, a measure of the axial positions can be used to observe

the axial trapping frequency.
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3.4 Identification of an unrecoverable dark state

During a day of continuous lab operation, the resonance frequencies of the qubits are rou-
tinely calibrated. Based on 6 h of continuous measurements, fig. 3.3.1 shows the calculated
change of the inter-ion spacing Az;; = 2z; — z;. The example histogram of Azpz over the
day has a width of oa,,, = 0.82nm. At an interion distance of Azgz = 9.793(1) um the
relative error is oy, /Azo3 = 8.4-1075. The relative error of the trapping frequency is

therefore 0y, /w, = 3/2 - O, /Azez = 1.3- 1074

The axial trapping frequency is related to the coupling in an ion crystal as .J oc w; 2. Thus,

the relative stability of the J-coupling is

aJj Ow
e
J

=26-1071 (3.3.1)

Wy

This relative stability during the day refers to the contributions due to fluctuations in the
trap frequency. The trap frequency measurements are taken approximately every 20s. This
measurement does not resolve changes in trap frequency on a faster time scale. Therefore,

this stability must be considered as long-term stability.

Parameter Relative stability over a day

Relative inter ion distance 7az Az, | 8.4-107°
Relative trap frequency 9w. fw. 1.3-1074
Relative J coupling /s 2.6-1074

Table 3.3.1: Relative stability of the inter ion distance over a day and the accordingly
derived quantities for trapping frequency and J-coupling.

3.4 Identification of an unrecoverable dark state

The trap is installed in an ultra-high vacuum recipient to protect the qubits from the
environment. Nevertheless, there is some background gas in the setup. Occasionally,
collisions of the ion crystal with the background gas occur. Such a collision can drive the
system into a long-lived metastable state, or a chemical reaction can occur. If a chemical
reaction occurs, a molecule consisting of a Ytterbium ion and a background gas atom is

formed, changing the energy level structure. Either case is a problem. In both cases, the
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Figure 3.3.1: (a) Addressing frequency calibration data for four ions during one day of
measurements. The initial frequencies v,(t = 0) have been subtracted to remove the
frequency offset of about 27 - 3.2 MHz for clarity. (b) Drift of the position of the ions
relative to each other Azog = z3 — 2z9. Although the addressing frequency of all qubits
jump as seen in (a), the distance between the ions is continuous. (c¢) Histogram of the ion
spacing Azps during the day minus the mean spacing of Azgz = 9.793 um. The width of
the distribution is oa,, = 0.82nm.
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3.4 Identification of an unrecoverable dark state

cooling, preparation, and readout laser is no longer resonant near 369 nm, so there are no
emitted photons to detect. In this case, the ion is dark. Ions in the dark state are not
cooled and are not addressed by the microwave fields. Due to the unknown state of dark
ions, they would interfere with the calculation being performed. A molecule would change
the vibrational mode structure that produces the all-to-all coupling, thereby changing the
coupling between the bright ions. It would couple to the bright ions in an uncontrolled
way and cannot be used for a calculation itself. If 1"'Yb™ is in a unknown metastable state
12F; /2, "' = 3,4), the dark ion would also couple to the bright ions in an uncontrolled way
and thus spoil the computation. Therefore, the trapped-ion qubits cannot be used as long
as the dark state exists in the register. The long-lived metastable state can be resolved
by applying an appropriate re-pumping scheme to pump the ion back to the desired state.
This is done using a laser light field near 638 nm. Using this technique, the population
trapped in the [2F; ) state is transferred to the ]1D[5/2][5/2]) state. From this excited
state, the ion undergoes spontaneous emission back to the |2Ds /2> state. In the primary
re-pumping scheme, the population in |?Ds /2) is efficiently transferred back to the ground
state and can therefore be recovered. The ionic level scheme can be found in the appendix
as fig. D.1. Therefore, these long-lived metastable states are resolvable. In contrast, when
a molecule is formed, the exact dissociation energy is unknown and therefore cannot be
resolved. When such an event occurs, it is necessary to reload the trap to get rid of the
molecular ion. Reloading the trap is time-consuming, and then the system needs time
to thermally stabilize before reliable operation is possible. Therefore, it is advantageous
to keep the ions in the trap as long as possible. Distinguishing between these two states
would allow a decision to be made whether or not to reload the trap. Looking at the
camera image, it is not possible to distinguish the resolvable state |2F; /2, F' = 3,4) from a
permanently dark molecule. If the ion has formed a molecule, the addressing frequency of
the other bright ions in the trap may change. Fig. 3.4.1 and fig. 3.4.2 show the addressing
frequency and Doppler cooling florescence during an experiment when an ion in a crystal
consisting of three !"'Yb* ions went dark. What can be seen in the Doppler cooling
fluorescence plots is that at different times the Doppler cooling fluorescence disappears for
one ion and reappears for another. This indicates a jump of the dark ion between trapping
sites. These jumps can occur on a time scale long enough to perform a resonance frequency
calibration of the qubit addressing frequency as described in section 2.6. In fig. 3.4.2 the

measured addressing frequency of the bright qubits jumps, indicating that a molecule has
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formed. In fig. 3.4.1 no such jump is visible. In this case the state has recovered.

In the example of the permanent dark state shown in fig. 3.4.2, the trapping frequency
w, was measured and was found to change. In the permanently dark state, w. = 27 -
102.81(1) kHz, while the trapping frequency with 3 bright ions present was w, = 2w -
104.55(1) kHz. As discussed earlier in this chapter, the trapping potential forms a harmonic
oscillator. For a classical harmonic oscillator, the resonant frequency is given by w =
Vk/m. This allows us to calculate the relative change in mass based on the trapping
frequency as:

ma w1

ml_WQ

(3.4.1)

The mass in the case where all three ions are bright is m = 3myy ~ 3-171 u, while for the
case where one molecule is present it is mo = 3myy,+ M. The additional mass was therefore
M = 17.5(3) u, where u is the unit of atomic mass. The atomic mass of oxygen is 16 u,
and the atomic mass of hydrogen is 1u. A candidate for a molecule therefore would be one
oxygen and one hydrogen atom. Water contributes to the residual gas pressure and could
be a candidate for a chemical reaction. It is known that reactions with water molecules
can occur [61]. The additional molecule would therefore have a weight of 17 u. During lab
operation, dark states occurred several times in an ion crystal. The trap frequency was
not measured at each event, but when it was measured the change in trap frequency was
found. Measuring the trap frequency by applying an AC electric field requires the removal
of filters in the trapping setup and therefore takes some time. Thus, states recovered within
a few minutes are difficult to identify using the method of resonant excitation of the ion

motion in the trap.
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Figure 3.4.1: (Top) Addressing frequencies v of three ions during a J-coupling measurement
that was discarded due to an ion going dark. An ion has gone dark but reappears later, the
frequency offsets are removed here for clarity. (Bottom three) Doppler cooling fluorescence
D. The scale on the horizontal axis corresponds to measurement cycles. The horizontal
axis can be associated with a time due to the fixed cycle duration. At time t ~ 45s ion 2
went dark, indicated by the first drop of Doppler cooling fluorescence. At this time, the
Doppler cooling fluorescence stabilization described in section 2.8.3 tries to stabilize the
overall Doppler cooling fluorescence, so the Doppler cooling fluorescence of the bright ions
increases until the end of the experiment. At time ¢ ~ 65s the dark ion jumps from site 2
to site 3, indicated by the drop of the fluorescence at site 3 while the fluorescence at site
2 recovers. At time t &~ 75s the dark ion jumps from site 3 to site 1. A total of seven
jumps occur during 100s. Jumps from location 3 to 1 indicate a random resorting of the

ion crystal.
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Figure 3.4.2: (Top) Addressing frequencies v of three ions during a Rabi frequency cali-
bration that was discarded due to an ion going dark. An ion has gone dark at this time,
the measured addressing frequencies change. The dark ion remained dark after this exper-
iment was completed. The frequency offsets of the addressing frequencies v are removed
for clarity at ¢ = 0. (Bottom three) Doppler cooling fluorescence D. The scale on the
horizontal axis corresponds to measurement cycles. The horizontal axis can be associated
with a time due to the fixed cycle duration. At time ¢ &~ 70s ion 1 went dark, indicated by
the first drop of Doppler cooling fluorescence. At this time, the fluorescence stabilization
described in section 2.8.3 attempts to stabilize the overall Doppler cooling fluorescence, so
that the Doppler cooling fluorescence of the bright ions increases. At time ¢ ~ 72s the dark
ion jumps from site 1 to site 2, indicated by the drop in fluorescence at site 2 while the
fluorescence at site 1 recovers. At time t &~ 100s the dark ion jumps from site 2 to site 3.
A total of 16 jumps occur during 270s. Jumps from site 1 to 3, as they occur at ¢ ~ 210s,
indicate a random repositioning of the ion crystal. The trap frequency in this case changed
from w, = 27 - 104.55(2) kHz to w), = 27 - 102.82(2) kHz, measured by resonant excitation
of the ions motion in the trap. The change in w, indicates an additional mass of 16.5u. A
%%mp in the resonance frequency indicates the presence of an additional mass.



3.5 Background gas collisions

From this observation, a strategy can be derived for when it is necessary to reload the ion
crystal. If at an instance where an ion enters a dark state, the addressing frequencies of
the other ions change significantly, a heavy molecule was formed, and it is necessary to

reload the trap.

The trapping potential along the trapping axis is generated by electrostatic fields. There-
fore, the electrostatic potential that defines the quadratic trapping potential does not

depend on the mass of the trapped particles, but only on their charge.

The effective radial potential depends on the mass of the trapped charged particle. Adding
mass to the trapped ions will therefore weaken the radial confinement. An electric field
present in the presence of imperfect micromotion compensation will consequently shift the
position of the center of mass of the ion string, resulting in an observable change in the

resonance frequency of the visible ions.

3.5 Background gas collisions

Background gas collisions create dark states within an ion crystal. A collision, even if there
is no chemical reaction and no transition to a dark state, corrupts the result of the quantum
computation. In this subsection, the collision rate with background gas is estimated and

an error rate is derived.

Once a dark ion is trapped in a string of bright ions, different configurations of the ion
crystal become distinguishable from the camera image and can therefore be used to calcu-
late the rate of background gas collisions. A collision with a background gas is necessary
to change the crystal configuration, as shown in fig. 3.4.2 and fig. 3.4.1. The rate of rear-
rangement of the ion crystal can be used to infer the rate at which collisions occur [62].
After a collision with a background gas at room temperature of 300 K, it is very likely
that the new configuration of the ion crystal is random. In the publication by Hankin [62],
background gas temperatures of O(10K) are sufficient to induce a change in the ion string
configuration. For this example with n = 3 ions, there are 3! = 6 possibilities for the
crystal to rearrange. Two of them, the exchange of the two bright ion positions, would not
be visible when observing the Doppler cooling fluorescence. Both ions would still appear

bright. If the configuration does not change during the collision, no event will be detected.
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Given an ion crystal of size n with one dark ion, n — 1 different reconfigurations of the ion
string can be detected using the Doppler cooling fluorescence. The configuration of the
bright ions cannot be detected in such a way that there are (n — 1)! cases that look the
same. The total number of possible configurations is n!, and therefore the real collision

rate can be calculated as

r n—1)[(n—1)! n—1
FO:( )5! M _ — (3.5.1)

where I is the rate of collisions that change the ion-string configuration, while I'p is the rate
of observed reconfigurations. For the current setup it follows that the real collision rate is
about 3/2 times larger than the observed reconfiguration rate I'o. From the measurements

-1

presented here, an observed collision rate of I'o ~ 7-1072s~! can be estimated. The real

collision rate is therefore about I' ~ 1.05 - 1071 s~1.

Each collision with background gas destroys the quantum information stored in the register
and reorders the qubits. If a collision occurs during the execution of a quantum algorithm,
an unrecoverable error will occur. In the current setup, for a three ion gate such as the
Toffoli gate described in chapter 5 with a run time of T' ~ 17ms with the possibility
P.,; =T'T ~ 1.7-1073 an irrecoverable error might occur. The probability of a background
gas collision scales with the number of qubits in the register. The collision rate per qubit for
the current setup is therefore I';, = I'/n ~ 0.3 - 107! s~ 1. In a larger qubit register, it does
not matter which qubit is hit by a background gas particle, and the current computation

will be spoiled.

3.6 Summary

A Paul trap, as used in this work, allows the study of single atoms in isolation from
their environment. The confinement of the '"1Yb* ion by electrostatic fields, the applied
magnetic field gradient and the susceptibility of the confined atom to the magnetic field,

allow the remarkable results presented in this chapter.

All of these properties are necessary to operate as a MAGIC quantum computer reliably.
What is a challenge for quantum computing is an opportunity for demonstrating the sensing

of tiny electric forces.
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3.6 Summary

In this chapter it is demonstrated how to detect DC magnetic fields on the scale of nT

and to measure the COM position of an ion on the order of 0.1 nm.

These results were obtained using a single !""Yb* ion stored in a linear Paul trap and
subjected to a magnetic field gradient while the wavelength of the RF control field exceeded
the error in the ion position by a factor of 5- 107", making it the best relative wavelength
resolution reported. Combined with the confinement of the '"'Yb™T ion in the trapping
potential, a force on the order of 10723 N can be resolved. This technique may pave the
way for future scanning probe microscopy using the most miniature probe imaginable, a

single ion.

Applied to the MAGIC quantum computer, observing the resonance frequency of the ion
also allows diagnosis of the axial trapping potential. In the current setup, the axial trap
frequency w, is stable on the order of 10~ during a day of lab operation. Assuming a
perfectly stable magnetic field gradient, the stability of the J coupling is estimated to be

on the order of 1074,

Furthermore, it was shown how the resonance frequency of the qubits in a register allows an
indirect observation of the mass of an ion in the dark state. In future trapped-ion quantum
computers, this technique will allow the diagnosis of a quantum register. It allows us to
decide if a heavy molecule has formed or if a re-pumping scheme can be applied. This may
be important in future multi-species trapped ion quantum computers for diagnosing qubits

that are never exposed to laser light.

In addition, a collision rate of ions and background gas in the vacuum recipient was mea-
sured by observing the Doppler cooling fluorescence. The collision rate per qubit for the

current setup is found to be T'), = T'/n ~ 0.3 - 1071 s 1.
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Tuning the qubit-qubit interaction

The inherent always-on all-to-all connectivity provided by the MAGIC scheme is a powerful
tool for implementing multi-qubit quantum logic operations. It is present whether or not
it is desired. The challenge is to use this feature in a desired quantum circuit efficiently.
A linear string of trapped ions, confined in a linear Paul trap, can be seen as a quantum
memory or quantum processor. Each ion may serve as a memory or processor qubit,
depending on the hyperfine level chosen. This flexibility has been shown in the Ph.D. thesis
of Christian Piltz [37] and Theeraphot Sriarunothai [9]. A set of bits storing information
is called a register in the classical information science context. Since each qubit may be

used as memory, a linear ion string is called a quantum register.

A quantum circuit may operate on a register to implement the desired operation. Within
such a circuit, single-qubit and multi-qubit gates need to be performed. Individual ad-
dressing of the qubits must be possible to carry out single qubit gates. Implementing
multi-qubit gates having the always-on coupling comes with the challenge of the inher-
ent coupling of the system as shown in eq. (2.3.3) possibly not matching the interaction

required to implement the desired gate.

To implement desired conditional gates on computing qubits in a register, it is necessary to

control the coupling of the qubits. For that purpose, different techniques can be applied:
(A) Controlling atomic states to selectively couple [38],
(B) Controlling the trapping potential [63],
(C) Controlling the magnetic field gradient dynamically [64],

(D) Controlling the coupling dynamically [32].
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4 Tuning the qubit-qubit interaction

(A) Different atomic levels can be chosen and individually addressed to selectively couple
the qubits within a register, selecting whether or not a Zeeman shift is present. The atomic
state |29, /2, F'=1,mp = 1) = |1) undergoes a linear Zeeman shift and therefore couples
with other qubits present, whereas the atomic state ]25’1/2, F=1,mp =0) =|1') does not
undergo a Zeeman shift and therefore qubits in this memory state do not couple with other
qubits. Depending on the chosen atomic state a qubit participates in the coupling or not.
Changing the qubit’s state from |1) to |1’) or vice versa requires the application of three
m-pulses on the qubit, using different RF transitions. This is called recode operation [65].
It must be pointed out that this technique removes the target’s qubits coupling to all other
ions in a register. Recoding all qubits in a register but two allows an arbitrary coupling
to be generated by pairwise step-by-step coupling. Each pairwise coupling is represented
by an entry in the coupling matrix and therefore, it would require (N? — N)/2 steps to

synthesize an arbitrary coupling, where N is the number of qubits in the register.

(B) For example, controlling the axial confining potential in a segmented linear ion trap
allows us to tailor the interaction strength [63]. Due to the distance of the electrodes, very
high voltages might be required to achieve the desired coupling. Therefore, the possible
implementable couplings are limited predominantly to local interactions between neighbor-
ing ions. In parallel to this work, this method is investigated by Florian Képpen. Details
for this approach will be found in his Ph.D. thesis.

(C) Dynamically controlling the gradient present in the setup requires a coil to generate a
tunable magnetic field gradient. Due to the distance between the ion and the coil compared
to register size, the generated magnetic field gradient can be seen as global. Therefore only

global control can be achieved.

(D) The dynamical approach to controlling the qubits’ coupling relies on a periodic inver-
sion of the qubit’s state. It is carried out by applying local m pulses to the qubits. Using
this procedure, the qubits stay in a magnetic sensitive level all the time, so the coupling
between all qubits in the register is present. The interaction between two qubits can be
interpreted in the single qubit reference frame as a detuning based on the state of the
other qubit. Its magnitude is given by the absolute value of the coupling and its direction

is given by the o, eigenvalue of the other qubit.

The techniques mentioned will most likely be used in a future quantum processor to achieve
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an optimized control of the coupling of the qubits. The trap here features a permanent
magnetic field gradient and a constant effective trapping potential, ruling out the dynamical

control of the magnetic field gradient and the axial trapping potential.

This chapter describes a trapping hardware-independent approach that shapes the cou-
pling topology J;; as introduced in eq. (2.3.1), using timed Dynamical Decoupling (DD)
sequences. First, the principle of dephasing and the usage of pulsed dynamical decoupling
will be discussed. To introduce these concepts, I will orient myself on the Ph.D. thesis
of Christan Piltz, who worked on the same experiment before [8]. This principle will be
expanded later to allow tuning the effective coupling while protecting the qubits from de-
phasing. It will explain how a dynamical decoupling sequence can be adapted to match
a specific noise spectrum in the lab and how an arbitrary global o,0, interaction on the
whole register can be implemented. Later, an extended principle is introduced that allows
partitioning a quantum register in multiple subregisters, while the coupling can be tuned

within these subregisters.

In the following chapters, this technique is then used to implement a Toffoli gate (chapter 5)
or a Perceptron gate (chapter 6).

4.1 Pulsed dynamical decoupling sequences

Let us consider a qubit’s quantum state. For one qubit, the state can be described as a
Bloch vector, as shown in fig. 2.3.1. The quantum information itself is encoded into this
Bloch vector’s position on the Bloch sphere’s surface, where the two angles 0 and ¢ contain
the information. The angle 6 determines the excitation probability of the qubit in the
computational basis {|0),|1)}. This excitation probability is accessible in the experimental
setup, when a projective measurement is performed, as introduced in section 2.5.5. The
information encoded in @ is long-lived and is referred to as coherence time 77 in literature.
The coherence time 75 describes the decay of the information encoded in ¢. Extending
the coherence time 75 is crucial to allow for deeper quantum circuits and therefore this

chapter describes how to extend the coherence time using pulsed dynamical decoupling.

Ultimately, for each experiment described in this thesis, the quantum state is projected in

the z- basis {|0),|1)}. If a qubits state shall be quantified in another basis, this basis has
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to be rotated to the z-basis before readout. The definitions of frequency and phase depend
on the exact reference frame chosen. For the following, a specific choice of the reference

frame is helpful.

The reference frame of choice is the one that rotates with the assumed resonance frequency
of the qubit’s transition |25 5, F = 1,mp = 1) ¢ [25] )5, F = 0) around the z-axis. This
frequency is typically the frequency of the RF driving field. In this frame, the RF field
applied can be seen as a static magnetic field pointing in a specific direction in the xy-plane
of the Bloch sphere, defined by its phase ¢. Phases occurring in this chapter are usually
the phases in this reference frame. After preparation in the ground state |0), the first
pulse applied to the qubit defines this frame. The description of RF pulses can be found

in section 2.3.

To introduce the concept of decoherence, let us consider a single qubit in a superposition

state, consisting of its ground state |0) and excited state |1). Let the quantum state be
) = col0) + c1]1), (4.1.1)

where the coefficients cg,c; are complex and obey 1 = \/|co[? + [c1]2. Here, P = |c1/|? is the

probability of finding the qubit in state |1).

Once the qubit is excited, its excitation will decay in a time corresponding to a coher-
ence time Ti. For 1T'Yb™ it is recently reported to exceed 3.3h [66], using a dynamical

decoupling scheme. This long time 77 can be considered infinite for practical applications.

In addition to the z-axis, quantum information is stored in the xy-plane in the Bloch
picture. It can be described as the phase ¢ of a qubits state. The decay of quantum
information in xy-plane is associated with the coherence time 75. In the following, it
is assumed that the reference frame is co-rotating with the unperturbed ions resonance
frequency, such that without a perturbation, the Bloch vector stays at rest. Changes in
the ion’s resonance lead to a frequency mismatch of the chosen rotating frame and the
ion’s spin. Let us assume, a time-dependent mismatch of the frequency of the rotating
frame co-rotating with the RF field and the qubits resonance (t) exists. The Hamiltonian
describing the system is

Hy, =

h
UL (4.1.2)
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This Hamiltonian induces the unitary evolution from time ty to time ¢

. t
—it fto Hyp, (¢)dt!

Uph(t, to) =€ (4.1.3)
If this unitary is applied to a state, the state will acquire a phase
Upn (£, t0) [tho) = [1b) = coe™®H10)|0) + ¢re™ #0101, (4.1.4)
where |1g) is given by equation (4.1.1) and
1t
B(t, to) = 3 S(t)dt'. (4.1.5)

to

Given an unknown random frequency mismatch §(t), the quantum state acquires an un-
known phase over time. To compensate for this phase, a spin echo pulse can be introduced.
If, during the unitary evolution from time ¢y to to, a m-pulse is inserted at time ¢y, then

the evolution can be written as follows:

;h(tg,to) = Uph(tg,tl)iO'xUph(tl,to) (416)

ot ot
671% j;f th(t’)dt’i —iy ftol Hy,p (t')dt

o€
1 [t2 / / -1 rt1 ’ /
—i= 6(todt" . —i= 6(t" o dt
=e 3 )iy 9o ioge 3 Jiy 900
— 677f'¢(t27t1)gzz'o-xefi(b(tlvto)o'z

— e_i[¢(t27t1)_¢(t17t0)]0'z(_Z'O.m). (417)
Now the properties of the Pauli matrices can be used:
0,0, = —0,0,, Oy0, = —0,0y, (4.1.8)

- 0 0
1877 — 1 cos <2> + i (ngoy + nyoy + n.0;)sin <2> . (4.1.9)

Here |7i| = 1 is the rotation axis in the Bloch picture and 1 is the identity operator [37].

Therefore, the phase is
P(t2,t0) = P(t2,t1) — H(t1,t0). (4.1.10)

This result holds true, not only for m-pulses around the z axis o, , but for o, pulses as
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well and therefore for each arbitrary m-pulse. A m-pulse with a phase « is defined as:
T = cos(a)oy + sin(a)oy. (4.1.11)
With this follows:
Uph(ta, t1)TaUpp (t1, to) = e~ 10Uttt to)lowr (4.1.12)

Assuming 0(t) is constant in time, the acquired phase vanishes, and the phase information
is protected. The reappearance of coherence is referred to as a spin echo, while the pulse

producing it is referred to as a spin echo pulse.

4.2 J-Tuning

4.2.1 Dynamical decoupling

As introduced in section 4.1, a single spin echo pulse is sufficient to compensate for a fixed
frequency offset. If the frequency offset is a function of time, it is beneficial to introduce
additional pulses, to reduce the free evolution time between them. Those pulses are called
Dynamical Decoupling (DD) pulses. They are routinely used to protect quantum states
and consist of a set of m-pulses. Figure 4.2.1 illustrates the timeline of a DD-sequence
with m-pulses m,, at times tg,. If the m-pulses of a DD-sequence are assumed to be
instantaneous, the unitary evolution of a system can be seen as a product of unitaries,
generated by stepwise constant Hamiltonians and instantaneous m-pulses 7, . The total

time evolution is given by a product of several instances of eq. (4.1.12)

Ul(tan+1,ton)Ta, Ulton, tan—1)

-
[
=

3
Il
—

I
=

|:e_i[¢(t2n+1 ton)—od(tan,tan—1)loz Wan} 7 (4_2. 1)
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Figure 4.2.1: Tllustration of the timeline of a Dynamical Decoupling sequence (DD-
sequence), consisting of m-pulses with phase ay, at times to, as described in eq. (4.1.11).
The vertical lines indicate the time when a w-pulse flips the qubits state. For the evolution
of the quantum system, it is assumed that the m-pulses are instantaneous.

where we have used eq. (4.1.8). If a dynamical decoupling sequence fulfills the condition

N
1= ] man, (4.2.2)
n=1

the total phase acquired is

N N
=3 dtant1,tan) = Y O(tan, t2n-1)- (4.2.3)
n=1 n=1

Since the phases ¢(t,+1,t,) are given by the integrated detuning in the time interval
[tn,tnt1], the acquired total phase ® depends on d(¢). For a fixed detuning and a periodic
DD-sequence, the acquired phase is ® = 0, if §(¢) = const. The quantum state is therefore

protected against constant detuning.

On the other hand, if the §(¢) has frequency components with v = 27 /(t,41 — ), it is res-
onant with the DD-sequence and the effect of the detuning is amplified. This susceptibility
to specific noise components can be exploited to construct a quantum sensing device or it
can spoil quantum computing. How to construct a magnetometer using this technique is
shown by Ingo Baumgart [54]. At the same time, its effect during quantum computation

is investigated in the Ph.D. Thesis of Theeraphot Sriarunothai [9].
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4.2.2 Qubit-qubit interaction in the presence of a dynamical decoupling

sequence

This subsection describes how a DD-sequence on multiple qubits can be used to couple
qubits in a register selectively while the susceptibility of the quantum states to external
noise is reduced. Let us consider a system of two qubits ¢ and j. Each of those qubits can
be described by a Hamiltonian of dimension 2-2, if its motional excitation and other atomic
levels are neglected. Similar to the case of a single qubit, the unitary operator generating
the time evolution of a n qubit system can be the exponential of the Hamiltonian, describing

the system if it is time-independent.

A freely evolving system of a pair of interacting qubits generates the unitary evolution:
S OPE
Uj, (1) = e 2% ©0= T, (4.2.4)

where J;; is the coupling constant between qubit ¢ and qubit j. A 7-pulse applied to the
i-th qubit can be written as m(j ). To match the dimension of the Hilbert space, on which
the operator acts, it is appropriatly tensored with the unity operation. As an example,
m-pulses acting on a system of two qubits are

7 =7, ® 1,

«

70 =1 @ my. (4.2.5)

(67

Here () denotes the first qubit in a set of two while ) is the second qubit on which the
pulse is applied. If now a m-pulse is applied to qubit i, using eq. (4.1.8), the sign of the
coupling is changed such that:

; iy (0 (F)
WS)UJU (1) = (1o @ 1)e 2717 ®os''T

i () (9)
= 270192 ®92 T (1, @ 1)

=U_y, (1)7{V). (4.2.6)
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4.2 J-Tuning

This can be interpreted as a reversal of the direction of evolution:
Usyy(—=7) = U_y, (1) = UJ_(7). (4.2.7)
If a m-pulse is applied to the second qubit, the previous argument can be applied again:

«

W(gj)UJij (T) = U—Jij (T)W(j)‘ (428)

Accordingly, applying two 7- pulses alters the coupling J;; twice and therefore the coupling

is preserved such that:

= Uy, (N @ 7). (4.2.9)

This is used when a DD-sequence is applied to a system of two qubits. A synchronous
DD-sequence therefore protects the addressed qubits from noise, while their interaction is
conserved. Thus, this principle allows the implementation of conditional qubit dynamics

at a time scale longer than the system’s unprotected coherence time 7%

An interesting result is that the phases of the m-pulse in the DD sequence are arbitrary.
Especially during conditional evolution, applying the DD-pulses with the same phase to
all qubits is not necessary. Later on in this thesis, this is used to implement the Toffoli

(chapter 5) and the Perceptron gate (chapter 6).

4.2.3 Multi-qubit coupling and dynamical decoupling

The Hamiltonian describing the interaction of the qubit eq. (2.3.1) contains the sum of

tensor products o, ® o, acting on different qubits. The unitary evolution operator is:
_i Z JiioP e r
UJ(T) — e 24uigj MuE 2. (4210)

Next the Baker-Campbell-Haussdorf identity

oATB _ A B,~[AB]/2 (4.2.11)
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4 Tuning the qubit-qubit interaction

is used. Since the o, and 1 matrices commute, the unitary evolution of the interaction of

the full system can be written as:

(1) ¢+ (9) i 1) ()
U]( ) —ec 2 Zz<] ijOz ®oy T H@ii ijO ®o'] T HUJij(T)' (4212)
1<j 1<J
Analogous to the previous argument, a m-pulse applied to qubit k£ changes the sign of
Jij and Jy, . For simplicity, the time argument of the unitary evolution and the tensor
products with the 1 operator are dropped here. A m-pulse applied to qubit k in a register

of qubits can be written as:

k) HUJU = H [UJU} H [U—Jij] H [Uﬁ]ij] F&k). (4.2.13)

i<j i<j 1<j i<j

ik i=k j=k
Here it is used that all unitary operators Uy, are mapped to U_;,; when a 7 pulse is
applied to either qubit ¢ or j. From this, several useful procedures can be derived. Using
that U_;,, = U}Z_j and the unitary evolution of equal duration, the coupling between the

k-th qubit and the rest is effectively canceled out:

[T (O, | 71T Vo] = TT [0 TT (O] TL (0] 1T [0 T [0, ) 1T (03, ] 282

1<j 1<j 1<j 1<j 1<j 1<j 1<j 1<j
jii#k i=k j=k J,i#k i=k j=k
_ k
- H [UJU} H [UJij} W& )' (4'2‘14)
1<J 1<j
jriFk Jrik

The remaining qubits interact, while the addressed qubit is removed from the interaction.
It has been used that all occurring unitaries except m, on different qubits & # n only

contain o, and 1 operators and therefore commute.

If now two m-pulses are applied simultaneously on different qubits, the unitary evolution

transforms as:

w020 ] [0,] = =4 1T [0, X1 [0}, ] TT [0, ] <9 (42,19

i<j i<j i<j i<j

jik i=k ik

= 11 (o] IT o3, IT (o3, TT [0, ) 1T [0, ) O 5.
BAY 1<J 1<] i<j 1,<]
prn i T 7k Ik
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4.2 J-Tuning

Accordingly it follows for two m-pulses applied to qubits n # k that:

il;[j [UJZ-J} W&k)’f((n) g [UJZ.J} = g |:UJij:| g |:UJij:| %W&k)ﬂ(ﬁn)' (4.2.16)
JiiFkn gi#kmn (b)

(a)

This is a significant result. It shows that using two simultaneous 7w-pulses on two different
qubits allows these two qubits to couple (b), while the interaction between these two qubits
with the others is removed. The important part is that all the other qubits still interact (a).
This example is the most straightforward way to create two separate interacting subsets
of qubits in a register that do not interact. This enables a single register to operate two
different conditional unitaries at the same time. An example could be the parallel execution
of two CNOT operations on a register containing four qubits. The required CZZ operation

is shown in fig. 4.2.9.

4.2.4 Asynchronous dynamical decoupling

Until now, only synchronous m-pulses are considered. For simplicity, let’s assume a system
of two qubits coupled with .J;;. The total evolution time 7" consists of three times 74,7,
and 7, such that T' = 7, + 7, + 7.. The time 7, is the arrival time of the m-pulse on qubit i,
Tp 18 the time between the m-pulse on qubit ¢ and qubit j and time 7. is the time after the

m-pulse on qubit j arrives until 7. The arrival times of 7w-pulses are illustrated in fig. 4.2.2.
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4 Tuning the qubit-qubit interaction

~Y

(a)
:
U(7a) U(m) Ul(re)
j
Uj,; (T, 7)
(b)

Figure 4.2.2: Illustration of pulse timings of 7., mg-pulses to implement a desired effective
J-coupling during the total evolution. The coupling is positive during time 7, and 7., while
it is negative during time 7,. In this case the effective coupling is J¢// = J(T — 27,)/T.
(a) Time line of pulses. (b) Circuit diagram showing the implementation of J¢//. During
U(r,) and U(7.) the coupling is positive, while during U(7;) the coupling is negative.

The unitary evolution then is:

UJij (TC)WS)UJL']' (Tb)ﬂ.gzj)UJij (Ta) - UJij TC>UJ (_Tb)ﬂf(xi)ﬂg)UJij (Ta)

7e)Us, (1)U, (ra)7i) )

)

B

T - 2n)n{)rd). (4.2.17)

This is a remarkable result. The delay of the pulses with respect to each other can be
arbitrarily chosen in a range 0 < 7, < T and the effective evolution time 7/ = T — 27,
can be selected from —T < T¢/f < T. The total evolution time is fixed and therefore one

can also think of an effective J coupling, which can be implemented as —J;; < ijf F < Jij.
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4.2 J-Tuning

It follows that:

T -2
IS = 7 ( - Tb) . (4.2.18)

During the execution of a quantum gate, usually a DD-sequence is used to protect the
qubit’s coherence. The simplest DD-sequence is a sequence of m-pulses with a fixed pulse
interval. Assuming a periodic DD-sequence with n pulses, total evolution time 7" and pulse
interval T'/n, the previous argument can be used to construct the evolution during the full

DD-sequence as:

k=1
n T n
=11 [, — 2] T1 [+ T [=9)]
=1 n =1 =1
1 1
= Uy, (T - 2myn). (4.2.19)

It has been used that DD-sequences are designed so that the set of pulses is applied to
form a unit operation. An example of such sequences is the CPMGxy [67] sequence or the
Universal Robust (UR) [68] pulse sequences, which are specifically designed to compensate
for pulse errors. The result is independent of the phases of the applied m-pulses. Therefore
it is possible to use a DD-sequence by proper choice of 7, ;, to implement a conditional
gate with an effective coupling. This result holds for each pair of qubits ¢ and j in a larger

register, where 7, is the time shift between the DD-pulses applied.

To demonstrate that the coupling strength can be chosen continuously in a range —J <
JeIT < J, the couplings in a three ion crystal have been measured as a function of the
delay time between dynamical decoupling sequences. To measure the coupling a Ramsey
type experiment has been performed. The target qubit 2 has been prepared in an equal
superposition state by applying a m/2-pulse followed by a free evolution time while the
control qubits 1 and 3 couple to the target and in the end a 7/2-pulse is applied. The
experiment is repeated for different phases ¢ of the second 7/2-pulse, and the excitation
probability of the target qubit has been estimated. A sinusoidal has been fitted to the

measured excitation probabilities and the phase is extracted. To determine the conditional
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Figure 4.2.3: Ramsey type circuit to measure the tuned coupling strength of qubit 1 and 3 to
qubit 2. Starting with all qubits initialized in state |0), qubit 2 is put into an superposition
state. (a) During evolution the target qubit acquires a phase based on the control qubits
state and the delay time A between the DD-pulses of qubit 1 and 3 with respect to qubit
2. The state of qubit 2 in the end is analyzed using a Ramsey readout pulse with a varying
phase ¢ = [0..27]. The resulting excitation probability of qubit 2 as a function of ¢ is fitted
with a sinusoidal and the phase from the fit is extracted. (b) Same as (a) but the control
qubits are initialized in state |1). The difference of the measured qubits phase for case (a)
and (b) are used to calculate the sum of the coupling between qubits 1 and 2 and 2 and 3.
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Figure 4.2.4: Ramsey type circuit to demonstrate individual tuning of the coupling strength
between qubit 1 and 2. Starting with all qubits initialized in state |0), qubit 2 is put into
an superposition state. (a) During evolution the target qubit acquires a phase based on
the control qubits state and the delay time A between the DD-pulses of qubit 2 and 1.
The state of qubit 2 in the end is analyzed using a Ramsey readout pulse with a varying
phase ¢ = [0..27]. The resulting excitation probability of qubit two as a function of ¢ is
fitted with a sinusoidal and the phase from the fit is extracted. (b) Same as (a) but the
control qubits are initialized in state |1). The difference of the measured qubits phase for
case (a) and (b) are used to calculate the sum of the coupling between qubits 1 and 2 and
2 and 3.
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Figure 4.2.5: Here the capability of J-tuning to tune the couplings continuously is demon-
strated by measurement of the total J coupling J* = Ji5 + Jog in a three-ion crystal
as a function of the delay time A in units of the DD-sequence period T see eq. (4.2.18).
The delay between the DD-pulses of ion 1 and ion 2 is varied for the data indicated by
squares, while the decoupling sequences between ion 2 and 3 are synchronous. The circuit
describing this measurement is shown in fig. 4.2.4. The measurement data indicated by
circles correspond to a scan of the simultaneous delay of ion 1 to 2 and ion 1 to 3. The
corresponding measurement circuit is shown in fig. 4.2.3. The measured delay times exceed
a full period of the DD-sequence indicated by the turning point. Following eq. (4.2.18),
the dashed line is the theoretical assumption.
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4.2 J-Tuning

acquired phase shift 6¢ = (@)1 —¢|0)) due to the coupling after the total evolution time Tjo,
the experiment is repeated with the control qubits being in state |0) and |1) respectively .
The coupling then is J = §¢/2T}. Figure 4.2.5 shows the measured couplings as a function
of the delay time 7. To demonstrate the simultaneous tuning of couplings between qubit 1
and 2 and 2 and 3, the total coupling Jfg;f = Jf{ 4 JS:{ 7 has been measured. For identical
J-tuning between qubit’s 1 and 2, and 2 and 3, the DD-sequences of qubit 1 and 3 have
been delayed by the same time 7, = A. For different J-tuning between qubits 1 and 2 and
2 and 3 only the DD-sequence of qubit one is delayed, such that the coupling of qubit 2
and 3 is kept constant wile the coupling between qubits 1 and 2 is tuned. Figure 4.2.4

and fig. 4.2.3 visualize the Ramsey-type experiment performed to measure the conditional

phase shift of qubit 2.

Selecting the absolute arrival time of the DD-pulse on ion ¢ to be ¢t = 0, in a register of size
N, N —1 times 75,; can be chosen to tailor the coupling of qubit ¢ to the qubits j. This
allows for a column (row) wise tuning of .J. The coupling matrix has N columns (rows) with
zeros as diagonal elements. Another tool in the quantum toolbox is the selective re-coding
of individual qubits in magnetic insensitive states. It removes the qubit’s interaction with
all other qubits. Expressed in terms of a J-coupling matrix, if qubit ¢ is in an insensitive
magnetic state, the coupling J;; = 0. This gives rise to a procedure to stepwise tune the

coupling.

The conditional phases can define a general controlled ZZ rotation ®;;, which shall be
acquired by each qubit. The unitary is:

i1 ROMED
= i3 Quicy P02 0 (4.2.20)

Uphase

Using the above-mentioned technique, one can construct a set of tuned effective J-couplings

to generate the desired conditional phase rotations.
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4 Tuning the qubit-qubit interaction

1 — REC REC
2 — REC REC
U(T1, 7sy;)
3 — U(Tz, ,;)
U(T3, ;)
4 p—

Figure 4.2.6: Example of an implementation of an arbitrary CZZ(®;;) gate on four qubits.
During each unitary U(Tj;, Tp,;) with total evolution time T; and delays 7, a DD-sequence
is applied to implement the J-tuning. After each step, one qubit is removed from the
interaction via recoding (REC). Finally, all qubits are recoded to the interacting qubit
state. This allows to synthesize an arbitrary coupling between all qubits in a register of
size N=41in N — 1 = 3 steps.

For example, in a register of size 4, The arbitrary coupling can be implemented as:

o Jgt gl gt 00 0 0 000 0
VI o Jgr gt 00 0
(I)ij - appl 1 appl 2 eff 5.
0 Jy 0 J 0 Ja
0 0 0
J1 Jo J3
(4.2.21)

The implementation is shown in a circuit diagram in fig. 4.2.6. After the first step, in
which the coupling of qubits 2, 3 and 4 to qubit 1 is generated, the first qubit is removed
from the interaction, and the coupling of qubits 3 and 4 to qubit 2 is tuned. After this
step, qubit 2 is also removed from the interaction by re-coding, and the final last step
implements the conditional rotation of qubits 3 and 4. Therefore, this procedure allows
tuning a given J-coupling matrix with (N2 — N)/2 entries in N — 1 steps in any target
CZZ gate. The direct approach to implement a CZZ gate would be its decomposition in
one step per entry in the coupling matrix where, in each step, only the desired two qubits
are interacting while all other qubits are re-coded in the magnetic insensitive state and
therefore removed from the interaction. J-tuning improves the number of steps compared

to the direct implementation by a factor of N — 1.
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4.2 J-Tuning

An example of a relevant coupling matrix is the one having an equal coupling between any
pair of qubits. Figure 4.2.6 shows the according circuit diagram to implement a three-step
J-tuning, while fig. 4.2.10(a) shows the J-coupling matrix measured following the procedure
shown in fig. 4.2.7. Figure 4.2.10(c) Shows the first J-tuning step, fig. 4.2.11(a) shows the
second and fig. 4.2.11(c) shows the third J-tuning step. In total, the tuned J-coupling
matrix is shown in fig. 4.2.12 and achieves an equal effective coupling between all four

qubits of the register with ijff =27 - 30 Hz.

Since arbitrary couplings within a register are a powerful tool to reduce the circuit depth
of a quantum algorithm, J-tuning allows to reduce the overall run time. The example
coupling shown here is arbitrarily chosen to be an equal coupling between all four qubits.
It demonstrates the elaborate coupling mechanism of a MAGIC trapped-ion quantum

computer.
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Figure 4.2.7: (a) Circuit diagram showing the measurement of tuned J-coupling matrices,
where the target qubit j is prepared in an equal superposition state while the control qubit
is prepared in state |0), or |1),. After that, a unitary to tune the J-coupling is applied N
times. During each repetition of U(T/N, 7, ,) DD-pulses are applied at times defined by
Tp,,; as shown in (b). A readout pulse is applied to the target qubit j with varying phase ¢.
The excitation probability P(¢) of qubit j is analyzed, and a sinusoid is fitted. From the
fit parameter, the phase ¢ is extracted. ¢ is a function of the prepared state of the control
qubit ¢ and therefore the coupling can be calculated as J;; = (¢(]1);) — ¢(]0),))/(2T).
Results of this measurement are shown from fig. 4.2.8 till fig. 4.2.11.
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£

Nl:

B Jij/2m(Hz)
Ti2 | 32.6(8)
Jis | 23.8(6)
Jia | 20.3(8)
Jos | 32.6(8)
Jot | 23.6(11)
Jaa | 33.1(8)

(b)

Figure 4.2.8: J-coupling matrix with simultaneous dynamical decoupling sequences on all
four qubits. Total evolution time T = 6.3ms. Trap frequency w = 27 - 128.24 kHz,
Q; = 2m-28.27 kHz, DD-sequence UR10 5 blocks, 50 pulses in total. An Arbitrary Waveform
Generator (AWG) is used to synthesize four driving fields simultaneously. To measure J;;
qubit ¢ (j) was prepared in a superposition state while all other qubits in the register were
in state |0). After the unitary evolution, a Ramsey readout pulse is applied to qubit i (j),
and a fit determines the phase of the Ramsey fringe to the excitation probability. The
experiment is repeated with qubit j (i) prepared in state |1). J;; then is calculated as
Jij = (¢(]1);) — ¢(]0),;)/(2T"). The measurement sequence is shown in fig. 4.2.7. Although
the next-neighbor coupling in a register is dominant, there is coupling between all qubits

in the register.
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4 Tuning the qubit-qubit interaction

(d)

Figure 4.2.9: Exemplary J-coupling matrices showing the separation of a register of four
qubits {1,2,3,4} into two sub registers (a, b) {1,2},{3,4} and sub registers (c, d)
{1,4},{2,3} using J-tuning with (a, b) 7, = [0,0,7/(2N),T/(2N)] and (c, d) 7
[0,T/(2N),0,T/(2N)] trap frequency w = 27 - 128.24(1) kHz, Evolution time 7' = 6.3 ms,
DD-sequence UR10 5 blocks, Rabi frequency €2 = 27-28.27 kHz, the measurement sequence
is shown in fig. 4.2.7. Splitting a register into subregisters allows two conditional phase
gates to be executed in parallel, enabling quantum computation to be parallelized.
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Jij/2m(Hz)
Jiz | 34.6(14)
Jis | —2.8(10)
Jia | 1.3(8)
Jog | —0.8(9)
Jog | 1.1(9)
Jsa | 32.6(10)
(b)
Jij/2m(Hz)
Tia | 0.0(6)
5 Jis | —1.5(10)
5 Jia | 19.6(6)
= Jos | 33.5(9)
Jos | 0.6(10)
Jsg | —0.4(9)
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60

Jij/2m(Hz)
Jiz | 47(2)
Jiz | 36(2)
Jia | 34(2)
Jos | 44(2)
Jos | 35(2)
ot | 44(2)
Jo1 | 48(2)
T3 | 33(2)
Ja | 29(2)
T | 44(2)
T | 39(2)
Tus | 55(3)

Ji]’/27l'(HZ)

Jij/2m(Hz)
T2 | 33(2)
Jis | 30(2)
Jia | 28(2)
Jas | 46(2)
Jog | 27(2)
Ja4 | 44(2)
T | 34(2)
T | 28(2)
Ju | 26(2)
T3z | 44(2)
Ji | 21(2)
Jus | 44(3)

Jij /ZW(HZ)

Figure 4.2.10: (a, b) Untuned J-coupling in a four-qubit register with simultaneous
DD-sequence on all four qubits. (¢, d) Tuned J-coupling matrix with delays Thy, =
[0ps, 19.3 ps, 12.85 ps, 0 ps] implementing the first step in fig. 4.2.6 with all qubits and the
first column (row) of J is tuned to match 27 -30 Hz. This implements an equal coupling be-
tween qubit 1 and the rest of the register. The trap frequency is w = 27-115.0(1) kHz, evo-
lution time 7" = 2.475 ms, DD-sequence UR10 5 blocks, Rabi frequency €2 = 27 - 18.0 kHz,
the measurement sequence is shown in fig. 4.2.7. In one step, the coupling to one qubit
can be chosen, while the other qubits acquire some conditional phases, which have to be
compensated in the next steps.
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Jij/2m(Hz)
60 Jag | 16(2)
Jog | 1(2)
5 . Jss | 45(2)
i Jso | 17(3)
3 Jao | 2(2)
Jus | 45(2)
(b)
:E ‘ Jij/2m(Hz)
= J34 | 30(2)
Jus | 31(2)

Figure 4.2.11: (a, b) Tuned J-coupling in a four-qubit register with DD-sequence on three
qubits with delays 7, = [Ops, 0 s, 24.6 ps, 35.2 ps], implementing the second step in
fig. 4.2.6 for J-tuning where qubit 2, 3 and 4 are interacting. (¢, d) Tuned J-coupling ma-
trix with 7,,. = [0ps, 0 ps, 0 ps, 18.0 ps] implementing the third step in fig. 4.2.6 with qubits
3 and 4 interacting, trap frequency w = 27 - 115.0(1) kHz, evolution time 7' = 2.475 ms,
DD-sequence UR10 5 blocks, Rabi frequency 2 = 27 - 18.0 kHz, the measurement sequence

is shown in fig. 4.2.7.
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o J gl gt 00 0 0 000 0
Jeff — 0 Jgpet gowel 0o —Jgb st 00 0
0 J5p 0o —J 0 Jii!
0 0 0
Ji Jo J3
(a)
Jij/2m(Hz)
Jiz | 33(2)
Jis | 30(2)
60 Jia | 28(2)
Jos | 31(3)
g Jos | 29(3)
& Jas | 29(4)
<5 Jo1 | 34(2)
Js1 | 28(2)
Ju1 | 26(2)
Jsz | 26(3)
Jaz | 24(3)
Jis | 30(4)

(c)

Figure 4.2.12: (b, ¢) The total J-coupling matrix tuned to J = 27 - 30 Hz as the sum of the
three-step J-tuning shown in fig. 4.2.10, and fig. 4.2.11 following the scheme in fig. 4.2.6.
The resulting J-coupling matrix is not directly measured but calculated from J-tuning
steps 1, 2 and 3 assuming a 7w-pulse on qubit 3 before and after step 2 Jy as shown in
(a). Jo contributes with the negative sign of entries Jo3, J34. The same evolution time
T = 2.475ms has been chosen for all steps, with the same DD-sequence. In total, an
arbitrary coupling matrix consisting of (N? — N)/2 = 6 couplings could be synthesized in
these N — 1 = 3 steps, showing a quadratic improvement over selective pairwise coupling.
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4 Tuning the qubit-qubit interaction

4.3 Computing dynamical decoupling delay times 7,

In the previous subsection it was shown that J-tuning can be used to synthesize an equal
coupling between all qubits in a register. Therefore, an asynchronous DD-sequence was
applied in three time steps. The delay of the DD-sequences is given by the time 7, ;, where
i is the index of the step and j is the index of the qubit.

If a given controlled phase gate with phases ®;; shall be implemented, the times per step 7T},
and the delays 7, need to be computed. The following algorithm computes the required

times T} and the delays T, - For each column ¢ of the coupling matrix:
1. Calculate li; = (I)Z'j/Jij.

2. Calculate T; = max;(|t;;|) to find the longest time necessary for the desired phase

rotation in column 4.
3. Caleulate 7, = (T; — t;5)/(2n), where n is the number of DD-pulses applied.

4. Calculate the applied phase rotation as

a 1 1
(I)Z,Jl?pl _ —QJZ‘j (2 — 2’m0d1 [Tbij’n/(QTi)] — 2’) T;. (4.3.1)

5. Update the conditional phases still to be applied as ®;; = moda, <<I>ij — o l), and

then repeat steps 1-4 for each column of ®;;.

The result is a triangular matrix of times 7,,; containing the required delays to implement
the desired controlled z-rotations in N — 1 steps and the evolution times necessary in each

step T},. Each column (i) of 7, contains the delays to implement in step i.
This procedure is not optimized to the total evolution time but is kept relatively simple.

A DD-sequence acts as a frequency filter [8,9] and might therefore be susceptible to a
specific noise component in the experiment, which might be amplified. It has been shown
in the current experiment setup that, for that reason, a sudden drop of the qubit’s coherence
can occur. It can be circumvented by choosing a different pulse interval and shifting the
resonance of the DD-sequence away from the noise components present in the setup. This

can be done by selecting a longer evolution time for the gate to implement. If this is not
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4.3 Computing dynamical decoupling delay times T,

compensated for, additional conditional phases will occur, limiting the gate’s fidelity. Using
shifted pulse sequences, the effective coupling during the gate time can be chosen such that
no additional unwanted phases are acquired. Therefore, it is experimentally beneficial to
tune the coupling. For each step to generate the desired conditional zz-rotation, the run
time is chosen such that the applied DD-sequences are not resonant with known noise
components. The prior result can be used as a starting point for optimizing the calculated

sequence to avoid problematic noise components.

Here a short algorithm shall be described to optimize the sequence accordingly. Assuming
a time T, is known that avoids resonances with noise, the sequence can be modified as

follows: For each column ¢ of the coupling matrix:
1. Calculate ti]’ = (I>1]/Jz]

2. Calculate T} = max;(|t;;|) to find the longest time necessary for the desired phase

rotation in row j.

3. Calculate the optimal number of pulses n?”" = T/ /T,p — moda (T} /Typt) + 2 ensuring

an even total number of DD-pulses rounded up.
4. Calculate the optimal total evolution time as T; = ng” topt,
5. Calculate 7, = (T; — ti;)/(2nd).

6. Calculate the applied phase rotation as

1 1
e = o, (2 — 2Jmod; [my, n™ /(2T3)] — 21) 7. (4.3.2)

7. Update the conditional phases still to be applied as ®;; = moda.(®;; — ®F}” ") and

repeat steps 1-6 for each column of ®;;.
The result is a triangular matrix 7, containing the required delays to implement the
desired controlled zz-rotations in N — 1 steps, as well as the necessary evolution times in

cach step T; and the number of DD-pulses per step n"

. This algorithm is designed to
deliver a sequence containing an even number of DD-pulses with a specific inter-pulse time

T,y making it possible to apply a UR-sequence.
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4 Tuning the qubit-qubit interaction

4.4 Parallel computing in an ion chain

A trapped-ion quantum computer based on MAGIC featuring an always-on all-to-all cou-
pling is a powerful platform to implement global CZZ gates on the entire register. Up to
here, the powerful tool of J-tuning has been introduced and demonstrated, allowing the
implementation of arbitrary CZZ gates on a quantum register. Even though any CZZ gate
can be synthesized in principle, the number of steps required is of the order of register size

N. For large registers, it might require an unfavorable circuit depth.

If not compiled directly into global unitary gates, several quantum algorithms can be sped
up by parallel execution of quantum gates in a register. For example a Quantum Fourier
Transform [69-71] or Shors integer factorizing algorithm [72]. Running a quantum circuit
in parallel requires disentangling groups of entangling Z7Z gates from each other during

execution.

Up to here, DD-sequences on a set of qubits have been considered to feature the same
period of spin flips. If one now drops the requirement of the same periodicity, using DD-
sequences, subsets of the quantum register can be decoupled from each other, while within
these subsets, the coupling is preserved. Assuming one subset of qubits is exposed to a
DD-sequence with period T" and another subset of qubits is exposed to a DD-sequence with
period T”, it can be shown that for specific choices of T” the subsets can be decoupled from
each other while within a subset, J-tuning can be used. Figure 4.4.1 illustrates the pulse

timings and the occurring coupling between the qubits.

Assuming a time interval 27", a time interval 7" = T'/N, where N is a natural number, one
can see that the phase acquired in the first time interval 0 < ¢ < T is canceled out by the
phase acquired in the second time interval T < ¢t < 27T". Here 7 is the time shift between
the m-pulse on qubit 7 and the first m-pulse on qubit j. The conditional phases as shown

in fig. 4.4.1 are:

1 =2J1 = J[T + Z DET 4 (T = 7)) 0<t<T, (4.4.1)
N— 1

po = —2J17=J[— T — 7)) T <t<2T
k::l
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Figure 4.4.1: Top: Schematic DD-sequence on qubit ¢ with periodicity 7. The time frame
is chosen arbitrarily to be synchronized with the first DD-pulse on qubit i. The m-pulses
creating the DD-sequences are indicated by vertical black bars. Middle: DD-sequence
applied to qubit j with periodicity 7”. For illustration purposes, 7" = T/8 has been
chosen, even though only 7" = T'/N is required where N is an even number. Additionally,
a shift of the DD-sequence on qubit j is chosen to be 7 to the DD-sequence on qubit 7.
Bottom: Resulting coupling J between qubit ¢ and j. As shown in Eq. (4.4.2), the effective
coupling cancels out independent of the choice of 7 as long as 7" = T'/N with N even holds.
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4 Tuning the qubit-qubit interaction

If N is even the acquired phases add up to zero ¢1 + ¢ = 0. This is illustrated in fig. 4.4.1.

If N would be odd, the phases

N—-1
oy =JT +2r)=Jr+ > ()T — (T - 7)) 0<t<T, (4.4.2)
k=
o
¢h=J[T' +2r] = Jr = > (-1)T" = (T" - 7)] T <t<?2T
k=1

will not cancel out since ¢} + ¢4 = J(41 + 2T").

If the two DD-periods T,7" are fulfilling 7" = T'/N, with N even, the acquired phases

vanish independently of a delay 7.

Applying the DD-sequences with different periods to a set of qubits instead of single qubits
will allow this subset of qubits to interact with each other. Using this, one can create two
disjoint sub registers in a register of qubits. Since the sub registers are decoupled from
each other independent of 7, J-tuning can be applied within the sub registers, keeping

them decoupled from each other.

Further on, it follows that a register can be split into more than two sub registers if,
for each sub register, the condition is fulfilled that each sub registers DD-period fulfilling
7@ = 7@ /N = 7MW /M with M, N even and M is an even multiple of N. Choosing
T = T /2"t directly fulfills this set of conditions for an arbitrary number of sub registers

n.

In summary, it is possible to generate sub registers in a quantum register while J-tuning

can be applied in each sub register.
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Figure 4.4.2: Schematic of the decoupling of two qubits, independent of the relative time
delay between the dynamical decoupling sequences, using two different periodicities for
the DD- sequence. The m-pulses that generate the DD-sequences are indicated by vertical
black bars. The top graph corresponds to the qubit ¢ protected by a DD-sequence with
period T and delay t.. The middle graph corresponds to the qubit j protected by a DD-
sequence with period 7/2 and delay t,. t, + t, = T/2 generates a DD-sequence with
fixed periodicity. The lower graph shows the coupling direction between ion 7 and ion j.
To guide the eye of the reader, different areas corresponding to conditional phase shifts
are shown in different shades of gray to indicate which couplings cancel out. The areas
shaded in the same color cancel independently of the values of t,, ¢, and t., allowing the
qubits to be decoupled. This allows to create sub registers of qubits in a larger register
and thus provides to implement parallel quantum computing. It should be noted that with
this finding, J-tuning in sub registers is possible if they are generated by DD-sequences of
different periodicity.

4.5 Summary

In this chapter, a method was introduced, that allows shaping a given coupling matrix
such that an arbitrary global CZZ gate can be implemented. The dynamical decoupling
technique can be tailored to match the noise spectrum in the device, while simultaneously

tuning a given J-coupling matrix.

Analog tuning of the coupling strength has been experimentally demonstrated in a register
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4 Tuning the qubit-qubit interaction

containing three qubits as the function of the respective delays of DD-sequences. Tuning a
coupling matrix of a register containing four qubits has been demonstrated experimentally
to realize an equal coupling strength between each qubit or to enable the parallel execution

of two CNOT gates.

Furthermore, a method is introduced to compile a required CZZ gate into a set of DD-
pulses. Even though the method is not optimized for the shortest runtimes possible, it

outlines a simple way to implement a CZZ gate.

The idea has been proposed that changing the periodicity of the used DD-sequences allows
a register to be partitioned in disjoint sub registers while J-tuning within the registers is

still possible.

Since these results are obtained exclusively using a dynamical approach implemented in
single qubit rotations, by no means is it restricted to a trapped-ion quantum computer.
This technique also can be applied to systems that feature a fixed natural qubit-qubit
interaction, such as, but not exclusively, to color centers in crystals where the interaction
strength is given by the geometric properties of the substrate and the position of the defect

centers.

In parallel to this work, based on the same techniques as used in this chapter, a different
ansatz to compile an arbitrary multi-qubit gate has been formulated in collaboration with
Prof. Martin Kliesch and his group. The work is published in [73] and focuses on the time-
optimal decomposition of circuits. This work and the methods described in this chapter
rely on the inversion of a qubit’s coupling when a w-pulse is applied. Here, a J-tuning
sequence is used that uses the asynchronous timing of dynamical decoupling sequences to
tune the qubi-qubit interaction. The periodicity of the dynamical decoupling sequence can
be optimized with respect to the noise spectrum. In contrast to the work presented here,
an arbitrary coupling matrix is achieved by synchronous w-pulses applied to a given subset
of qubits in the register followed by a free evolution. The timings for the free evolution
result from a novel optimization of overall run time. A dynamical decoupling scheme with
a fixed periodicity is not intended to be used. My contribution to the publication [73]

mainly is the intense discussion and parts of the ideas presented in this thesis.
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The emergence of quantum computation has led to a commercial interest in different quan-
tum computing platforms. A new branch of industry is currently being created. As the
industry grows, so does its energy consumption. Currently, quantum computing devices
in the Noisy Intermediate Scale Quantum Computing (NISQ) regime operate on small
sets of qubits with limited interconnectivity between them. Once the first systems prove
their scalability, they will be replicated and used for many applications. Typical quantum
computing applications are, by now, of interest for professional use cases. This can be
compared to the current situation in which computation-intensive tasks are mainly carried
out in data centers. These include training neural networks, hosting the global Internet
infrastructure, and storing all kinds of data. These applications are currently centralized
in data centers. Future quantum computers are also likely to be located in such data or

quantum computing centers.

The current infrastructure of classical data centers utilizes 1% of the world’s total energy
budget for electric energy [74]. This figure may be augmented by the potential contribu-
tions of quantum computers. To provide a sense of scale, this 1% represents the electric
energy demands of the Federal Republic of Germany, assuming a homogenous global popu-
lation. Consequently, a methodology for estimating the energy consumption of a quantum

computer is of interest.

A comparable fundamental operation is studied here to provide a meaningful measure
of the required power of a quantum computer in comparison to the classical computing
infrastructure. One of the fundamental operations in a classical processor is the addition of
two numbers. A full-adder, comprising two half-adders and an OR operation, is commonly
used for the bitwise addition of a number. The half-adder circuit is implemented using

the MAGIC scheme while utilizing direct multi-qubit operations, providing a practical
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5 Implementation of a half-adder

demonstration.

Since the unitary evolution by construction describes the time evolution of a quantum
system, this time evolution can be inverted by the inverse unitary operator. It can be
argued that since the time evolution can be inverted, no energy is dissipated. This leads
to the idea that, under idealized assumptions, a quantum computer might need no energy

to perform the computation.

This chapter thus examines the implementation of a half-adder circuit comprising a Toffoli
and a CNOT gate. Concurrently, the energy consumption of the apparatus is quantified,
and an assessment of the requisite power to operate the gate is provided. The work

presented in this chapter was conducted in collaboration with Sagar Silva Pratapsi [75].

5.1 Half-adder

The four fundamental mathematical operations of addition, subtraction, multiplication,
and division are implemented in digital circuits through the use of a full-adder as a building
block. For instance, the addition of two N-digit binary numbers can be accomplished
through the use of either one full-adder, repeated N times, or N full-adders in parallel.
Regardless of the straightforward implementation, the essential building block is the full-
adder. A full-adder takes three inputs, adds them modulo two, and indicates with the carry
output if the sum exceeds one. The full-adder is composed of two half-adders and one OR
gate, making the half-adder the fundamental building block for all arithmetic operations

in digital circuits.

In a quantum computer, the half-adder can be implemented in a variety of ways. Fig-
ure 5.1.1 shows the implementation on three qubits using a Toffoli and a CNOT gate. This

implementation requires interaction between all three qubits.

In contrast to this implementation, fig. 5.1.2 shows the decomposition of the half-adder
circuit into local rotations and next neighbor CNOT operations. In contrast to the simple

implementation, shown in fig. 5.1.1, the number of conditional operations is considerably
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in | |abc) || |abc) | out
0 | |000Y | j000) | 0
1| Joo1) || joo1) | 1
a a
2 | 1010) || |010) | 2
b &P 0@ ab carry 3 ||011) || |011) | 3
4| 1100 || |101) | 5
¢ D a®b sum 5| |101) || [110) | 6
(a) 6 | |110) || |111) | 7
7 | 111y || J100) | 4

Figure 5.1.1: (a) Half-adder circuit proposed in [76] consisting of a Toffoli gate and a CNOT
gate implemented on three qubits. Two of the qubits are assigned as input (a,b) and two
are assigned as output (b,c). The CNOT operation on qubit ¢ calculates the addition of
the qubits a and ¢ modulo 2. The Toffoli gate acting on qubit b controlled by qubits a and
¢ checks if the sum exceeds 1 and sets the qubit b accordingly. (b) Logical truth table for
all computational basis states of the half-adder. The Toffoli gate’s truth table is shown in
fig. 5.1.3.

higher.

S. Bose proposed an implementation of a Toffoli gate that is necessary for the simplistic
realization of the half-adder circuit in [76]. The CNOT operation is a basic operation first

demonstrated on this experimental setup in [10].

|a) D N>
0 7 W7, B N 7 S S
‘C) @ A 2 @ \\ \\

Figure 5.1.2: Decomposition of a half-adder circuit based on the decomposition of a Toffoli
gate by [77], where the circuit is extended by SWAP gates assuming only next-neighbor
coupling. This corresponds to the decomposition for example in a semiconductor system.
Since these limitations do not apply to the system used in this thesis, the circuit can be
reduced to the circuit presented in fig. 5.1.1. Here the T gate is a local z-rotation by /8.
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Figure 5.1.3: (a) Circuit diagram of a Toffoli gate where qubit b is the target and qubits
{a, c} are the controls. (b) Logical truth table for the Toffoli gate with inputs abc.

5.2 Toffoli implementation

The inherent all-to-all couplings generated by the magnetic field gradient allow to imple-
ment global multi qubit gates in a register. As shown in chapter 4, the typical untuned
J-coupling in a register in a harmonic trapping potential features symmetries. In a three-
qubit system, the couplings are symmetric in a sense that Jjos = Jos. This is a useful
prerequisite to implement the Toffoli gate, as suggested by S. Bose [76]. This implemen-
tation is classical in a sense, since for the gate mechanism the coupling between the two
control qubits is neglected. The Toffoli gate is described by the Hamiltonian

oMo 4 0(2)U£S)> + %609) + ?0&2), (5.2.1)
where 0 is a detuning of the driving field {2 with respect to the qubit transition. In addition
to the J-coupling, a driving field around the x-axis is required. This part of the gate can
therefore be seen as being generated by a microwave pulse. The parameters to implement
the gate are § = 2J19 = 2.Jo3, and a driving field strength of = 1.1J. The gate mechanism
can be visualized using the Bloch sphere of the target qubit. Hp is constant in time such
that it describes a rotation of the state vector around some axis in the Bloch sphere.
The axis of rotation depends on the control qubits state, allowing for the controlled NOT
operation. Assuming a specific state of the control qubits and omitting factors of h/2 one
can separate three different possible input states of the control qubits. The states of the

control qubits are given by |00)_, |01),, [10), and |11)_.. Here the subscript ¢ denotes the
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5.2 Toffoli implementation

control qubits state. Depending on the state, each control qubit can be identified with
a state-selective detuning of the target qubit such that three different evolutions of the

target qubit can occur:

|00), = Hp o (—Ji2 — Jazg + 9) 0. + Qop = —4J0, + Qoy, (5.2.2)
01), = Hr o< (=Ji2 + Jog + 0) 0 + Qop = —2J 0, + Qoy, (5.2.3)
[11), = Hr o (Jig + Joz +0) 05 + Qo = Qo (5.2.4)

The generalized Rabi frequencies for the rotations are QTOO> =422 4 Q2,

QTOU = /2272 + 02 and Q\,H) = , for a choice of 6 = 2J and Qim = ). The idea of
the gate is such that during the gate time, in case the control qubits are in state [00), [01)
or [10), the Bloch vectors trajectory needs to be closed, e.g. the rotation angle around

the tilted axis need to be multiples of 2r. Whereas for the case |11)., a rotation angle

c?
of m around the o, axis needs to be completed. There are multiple possible approximate
solutions to that problem. For example, QTOU> ~ 4Q) and QTOU ~ 2(). Choosing 2 = 1.1J

approximately fulfills these conditions. The total gate time therefore is given by
T=—. (5.2.5)

The evolution time allows for two possible outcomes: either a m,-rotation on the target
is performed or the state of the target qubit is not changed. Starting the target qubits
evolution in state |0), therefore results in the trajectory of the qubits state as shown in
fig. 5.2.1. Closing the target qubits trajectories during the gate time can also be fulfilled
by choices of © < .J/2, while the gate time is extended accordingly. In order to facilitate
the experimental realization of this process, it is advantageous to select a gate time that
is as brief as possible. The shortest feasible gate time is on the order of 7"~ 15 ms, which
exceeds the free coherence time 75 by two orders of magnitude, or approximately 200 ps.
As the Toffoli gate is a slowly driven m-pulse, it is possible to study the fidelity of the
target qubit as a function of pulse errors if it is to be flipped. Figure 5.2.2 depicts the
calculated fidelity of the target qubit, F} = |(1|U]0)|?, and the fidelity of the target qubit,
Fy = [{0|U|0)|?, as a function of the detuning, J., in units of the Rabi frequency of the
Toffoli gate, 27 = 1.1 -2J. The x-axis of this diagram represents the detuning, the y-axis

depicts the systematic overshoot and undershoot 8 = QT', which is equivalent to an error
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Figure 5.2.1: (a) Trajectory of the Bloch vector of the target qubit of the Toffoli gate for the
control qubit’s in state |01), or |10),. The qubit’s trajectory starts and ends in state |0).
The trajectory is completed once during the gate time. (b) Trajectory of the Bloch vector
of the target qubit for the control qubits in state [00). . The qubit’s trajectory starts and
ends in state |0). The trajectory is completed twice during the gate time. (c) Trajectory of
the Bloch vector of the target qubit when the control qubits are in state |11).. The qubit’s
trajectory starts in |0) and ends in |1).

108



5.2 Toffoli implementation

in the driving field’s amplitude or duration. The effective detuning 6, = [0, —2J, —4.J] + §
contains the coupling as well as the detuning of the atomic resonance §. The color code

indicates the expected fidelity for a given parameter set.
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Figure 5.2.2: Illustration of the probabilities of finding the target qubit of the Toffoli gate
in the desired state. (a) The fidelity of the state |1), I} = [(1|U|0)|?> and (b) the fidelity of
the state |0), Fy = [(0|U|0)|? as a function of the effective detuning . and the systematic
over- and undershoot 0/6y. The unitary U is the Toffoli unitary. Here § = QT is the
pulse area, where 6y is the ideal pulse area, while # includes errors in pulse time or Rabi
frequency. The effective detuning J. is a result of the coupling between the control qubits
and the target and the error in the addressing frequency §. Depending on the state of
the control qubits, the effective detuning due to the gate construction can be expressed
as 0 = [0,—2J,—4J] + 6. This is emphasized by the vertical bars. If §. = 2.J or 4.J, the
qubit state is |0) and F} vanishes. Since the Rabi frequency is about Q ~ 27 - 36 Hz, an
addressing error would cause significant errors even for small absolute detunings. Therefore,
implementing the gate as theoretically proposed is challenging.

In the implementation of the gate, the detuning is a variable that can be adjusted to

highlight the detuning that generates the Toffoli gate.

It can be observed that detuning errors have a significant impact on the implementation
of the Toffoli gate. This is due to the fact that the coupling constants for three qubits
are on the order of Jio = Jog ~ 27 - 36 Hz, whereas the drift rate of the addressing
frequency is on the order of O ~ 2m - 8.1Hz/s. Furthermore, a systematic offset in

) influences the expected fidelity of the gates. To mitigate the effect of such detuning
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and suppress dephasing, a dynamical decoupling sequence must be employed. Without a
dynamical decoupling sequence, the addressing frequency drift and its uncertainty during

the experiment would prohibit a successful implementation.
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5.2 Toffoli implementation

5.2.1 Dynamical decoupling and driving fields.

As demonstrated in chapter 4, a pulsed dynamical decoupling (DD) scheme can be used
to prolong coherence times of qubits and tune their interaction strength. In contrast to
chapter 4, here the considered gate is generated by a continous driving field €2. Prior to this
investigation, it was unclear how a DD-sequence could be employed with such a driving

field. For the sake of simplicity, a single-qubit Hamiltonian is considered:
H =Q (a0, + foy +v02). (5.2.6)

The unitary time evolution then is

Ut to) = exp (-2 /t ! Ht) (5.2.7)

= 1 cos(#) —i(ao, + Boy + vo.)sin(f), (5.2.8)

where the angle of rotation driven is 6 = ttol Qdt.

Assuming a pulse applied to a system undergoing that unitary evolution,

o, U(t1,t0) = 05 (Lcos(0) —i(aoy + Boy + vo,)sin(6)) (5.2.9)
= (L cos(0) —i(aoy — Boy — v02)sin(6)) oy (5.2.10)

The anti-commutation relation of the Pauli operators, given by the equation {o;,0,} =
20;;1, implies that terms with o, and o, acquire a minus sign when a o, operator is shifted
across them. Consequently, the same is true for o, and o, terms when a o, operator is
shifted across them. This implies that the Hamiltonian, which has been modified with
adjusted signs for the Pauli matrices, produces the same dynamics. Consequently, when
the o, operator is represented by a m-pulse, the o, terms in the Hamiltonian acquire a

minus sign.

Assuming a unitary evolution of the state using the Hamiltonian (5.2.6), then from the

previous result we can infer that

U(H, ty, t1)o,U(H, t1,to) = U(H, to, t)U(H'™ 1, t0)0, (5.2.11)
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with
H'® = a0, — Boy — 0. (5.2.12)

Accordingly with oy, it follows that
U(H, ty,t1)o,U(H, t1,t0) = U(H, ta, t)U(H'W 11, t0)0y, (5.2.13)
and the modified Hamiltonian is:
H'Y = —a0, + o, —y0.. (5.2.14)

From equations (5.2.12) and (5.2.14), a method for modifying Hamiltonians to preserve the
quantum dynamics is derived, when a o, m-pulse or a o, 7- pulse can be derived. In both
cases, the possible detunings must flip according to the o, terms in H'(®¥%) . This effect is
exploited when the coupling is preserved, while the qubit is protected against noise. In
the case of a two-ion system with a synchronous DD-sequence, the sign’s flip is induced
by the inversion of the second qubit’s state. This effect is used in chapter 4 to modify the

effective coupling strength.

Let us assume the Hamiltonian that creates the desired quantum dynamics of an additional
driving field Q0,. In the toy Hamiltonian, we have that ao, = Qo,. If we now apply an
mz-pulse, we find that the driving field remains unchanged. However, if we apply a my-
pulse, we find that Qo, — —Qo,, which can be achieved by inverting the direction of
the driving field by adding a phase of 7. If a general pulse, represented by the expression
Ty = cos(¢)o,+sin(¢)oy, is considered, the application of the aforementioned recipe results

in a contradiction. For the sake of clarity, the times ¢ 2 are dropped:

UH)ngU(H) =U(H)cos(¢)o,U(H)+ U(H)sin(¢)o,U(H) (5.2.15)
= U(H)U(H'®) cos(¢)o, + U(H)U(H'W) sin(¢)o, (5.2.16)
4 U(H)U(H")my. (5.2.17)

No modified Hamiltonian can simultaneously change the sign of ¢, terms and not change
the sign of o, terms. The same argument holds for o, terms. Nevertheless, it is possible
to preserve the quantum dynamics of a system evolving with a Hamiltonian that includes

a driving field while protecting it from dephasing.
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The simplest DD-sequence is a single m-pulse. Concatenating these pulses has the disad-
vantage that pulse errors add up in a longer sequence, making it less robust to different
errors. Composite DD-sequences can compensate for different types of errors. Since this
receipt restricts us to o, dynamic decoupling pulses, the eminent DD-sequence is the

CPMGyxy-sequence.

However, the restriction to such types of DD-sequences is only necessary if there is a
driving field in the Hamiltonian. Other dynamical decoupling sequences can address ions
that are not exposed to such fields. As the name implies, the coupling that introduces a
state-dependent energy shift or detuning depends on the state in the z-basis of the control
qubit. This means that the phase of qubit a is irrelevant for qubit b. This is due to
the non-existent mixed terms, e.g. vaa; in the effective Hamiltonian (2.3.7). Thus, it is
possible to use different types of DD-sequences on different qubits while maintaining the
coupling. The Hamiltonian of the Toffoli gate reads

e 4 0(2)0(3)) + %609) + ? (Cos(gb)ag(f) + sin(qb)o?(f)) , (5.2.18)

where ¢ is the phase of the driving field. The generated unitary is U(H (6, ¢)) = U(4, ¢).

The pulse sequence to implement the gate therefore can be written as:

]NM . (5.2.19)

Ue = [UY2(6,0)m,U (=5,0)m,U (8, m)m, U (=5, m)my U/ (6, 0)

Here N is a multiple of 4 and denotes the number of CPMG xy-pulses used to realize the

gate.

The implementation of this development now allows to protect the dynamics of a quantum

system by means of a dynamical decoupling sequence, even if a driving field is present.
In terms of a circuit diagram, this can be represented as shown in fig. 5.2.3.

The fidelity of the Toffoli gate implemented as described above can be simulated as shown
in fig. 5.2.4. This figure shows the fidelity [(0|U|0)|?> and |(1|U]0)|? as a function of the
detuning §. In contrast to the simulation without applied DD-sequence shown in Fig-
ure 5.2.2, the simulated detuning range is extended by a factor of 20, while the fidelity
plateaus are significantly extended. Figure 5.2.4 (a) shows the fidelity |(1|U]0)|? when the
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5 Implementation of a half-adder

control qubits are in state |11),, (b) shows the fidelity |(0|U|0)|?> when the control qubits
are in state [10) or |[01), and (c) shows |(0]U]0)|> when the control qubits are in state |00),.
For this simulation, a Rabi frequency of € = 27 - 35 kHz has been assumed for the m-pulses
implementing the 200 length dynamic decoupling sequence, while the Rabi frequency of
the driving field for the Toffoli gate is Q7 = 1.1 - 27 - 30 Hz. The three different simula-
tions differ in the assumed conditional detuning 0, = £.J12 £ Jog + 2J = [0,2.J,4.J], which

changed its sign after each applied m-pulse.

N
— e _ﬂél) - —
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Figure 5.2.3: Decomposition of the Toffoli gate in unitary evolutions Ur(d, ¢) that generate
the gate and single-qubit rotations that implement dynamical decoupling. These blocks

are repeated 200 times with updated phases of the DD-pulses as well as updated Urop.

Wé]z) denotes a m-pulse on qubit k& with phase ¢,,. The phases of the DD-pulses are chosen

to implement a universal robust DD-sequence on qubit 1 and 3 while a ¢/, is chosen to
implement a CPMGxy-sequence on qubit 2.

Implementing the Toffoli gate requires precise control of three driving fields in amplitude
over three orders of magnitude. Generating a weak driving field and measuring Rabi
oscillations is challenging. In the weak field regime, the driving field no longer protects
the qubit from decoherence. The required gate time of the Toffoli is Tr = 7 /Qp, which
realizes a w-pulse. Therefore, the measurement of a Rabi oscillation frequency requires the
sampling of the pulse time on a time scale above 15 ms. Similar to the gate implementation,
a dynamic decoupling sequence must be used. Since there is no detuning, it is sufficient
to change the phase of the driving fields each time a my-pulse is applied during the DD-
sequence. A CPMGxy-sequence is used to be consistent with the gate implementation.

The applied sequence is the same as shown in eq. (5.2.19), where the evolution time between
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5.2 Toffoli implementation
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Figure 5.2.4: Illustration of the probabilities of finding the target qubit of the Toffoli gate in
the desired state. During the Toffoli gates evolution, the control qubits create a detuning
Se. The fidelity of the state |1), Fy = |(1|U]0)|? is shown in (a) and the fidelity of the state
0), Fy = [(0|U]0)* is shown in (b, ¢). (a) The control qubits state is [11),, generating
dc = 0. (b) The control qubits state is |01), or |01),, generating 6. = 2.J. (c) The control
qubits state is |00),., generating é. = 4.J. The simulation consists of the Toffoli driving field
interleaved with 200 CPMGxy-pulses. 6/6y is the relative pulse area error of the Toffoli
driving field, while §/Qp is the detuning of the Toffoli’s driving field with respect to the
atomic resonance v. For all three different cases of the control qubits, the high fidelity

region is significantly increased, allowing the implementation of the gate.
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5 Implementation of a half-adder

the applied DD-pulses is sampled. In contrast to the gate, only qubit 2 is addressed with
microwave fields, so that detunings due to the other present qubits cancel out. Figure 5.2.5
shows an example of a Rabi oscillation observed on qubit 2 in a three-qubit system with a
total pulse duration of up to 25 ms. The amplitude of the RF generator signal is A = 2-1073
with a measured Rabi frequency of 2 = 27-55(10) Hz. Although the excitation of the qubit
does not reach 1, this demonstrates the ability to drive the target qubit of a Toffoli gate
with Rabi frequencies relevant to the implementation of the gate mechanism as a frequency-

selective pulse. Besides the required amplitude of the frequency generator to drive 27, the
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Figure 5.2.5: (a) Rabi oscillations at signal generator amplitude A = 0.002. The driving
field is nested in a 250 pulse CPMGxy-sequence driven with Qpp = 27 - 27.54kHz at
App = 0.9129. The nesting sequence used is shown in eq. (5.2.19). The fitted Rabi
frequency is used in (b). The evolution time used here is up to 25ms, exceeding the gate
time of the Toffoli gate of 15ms and the coherence time T» ~ 200 us. (b) Linear fit to
measured Rabi oscillation frequency with respect to the signal generators amplitude. The
Rabi frequency as a function of the set amplitude is found to be 2(A) = 27-27.8(2) kHz- A.
This allows to extrapolate the required amplitude A to values relevant for the Toffoli gate
implementation.

coupling must be known. As shown in chapter 4, a Ramsey-type experiment can be used
to estimate the coupling constant. The coupling constant can then be calculated from
the observed conditional phase shift. Figure 5.2.6 shows the Ramsey-type measurement of
the coupling constant Ji2 in a three-qubit register. The experiment includes a Universal
Robust (UR) dynamic decoupling sequence with a block length of 10 pulses (UR10). For
each sampled evolution time, the periodicity of the dynamical decoupling sequence has been

kept constant to avoid sampling different frequency components of the noise spectrum, as

116



5.3 CNOT

shown in [9]. URI10 blocks are concatenated with a conditional evolution time of T79 = 1 ms

each. The coupling was found to be Ji2 = 27 - 36.5(1.1) Hz.

To implement the Toffoli gate, all parameters are known. Nevertheless, it is necessary to
fine-tune the gate parameters. The parameters accessible in the experiment are the logical
input state |ijk), the gate time Tp, the amplitude A, and the detuning 6. A working
set of parameters was found by measuring the excitation probability of the target qubit.
An iterative search for the best working parameters was performed. The best parameters
found were A = 0.003571, Tp = 14.86 ms, § = —2x - 78 Hz and a DD-sequence on control
qubits consisting of 20 UR10 blocks and on target qubit 200 CPMGxy-pulses.

2.5

Figure 5.2.6: (a) Relative acquired phase A¢ of qubit 2 in a three-qubit system as a function
of the evolution time. The phases are measured by a Ramsey type experiment. Linear
fit of coupling constant results in Jio = 27 - 36.5(1.1) Hz, here t is the total evolution
time. The applied DD-sequence was one UR10 block per ms, such that the free evolution
time between DD-pulses was kept constant at 7 = 0.1ms. Two experiments have been
interleaved with control qubit state |1) and |0) and A¢ is the phase difference of the fitted
Ramsey fringe. The axial trap frequency is vy = 27 - 128.4(1) kHz. (b) Ramsey amplitude
decay of the experiment shown in (a) to detemine the coherence time of a qubit in a three-
qubit register. The fitted Ramsey fringe amplitudes A are shown. The fitted decay time
is Tp = 4.5(5) ms.

5.3 CNOT

Besides the Toffoli gate, a half-adder consists of a CNOT gate between the control qubits of
the Toffoli gate. For symmetry reasons, the target of the Toffoli gate has been chosen to be
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5 Implementation of a half-adder

the center qubit in a register of size three. Therefore, it is necessary to implement a CNOT
operation on qubit 3 controlled by qubit 1. Due to the inherent all-to-all coupling, as shown
in chapter 4, a CNOT gate can be implemented among any arbitrary pair of qubits in a
register. The typical implementation of the CNOT gate consists of a m/2-pulse on the
target qubit, a waiting time of a duration T = 7/2.J, and a second 7 /2-pulse applied on
the target. A CNOT operation based on MAGIC has been demonstrated by [10]. The

unitary operation to implement the gate is:

Ug = (;T):) U..(T.) (g)(” (5.3.1)

3mw/2

Here the superscript (¢) denotes the target qubit, the subscript ¢ denotes the phase, and T,
is the free evolution time. Similar to the implementation of the Toffoli gate, a DD-sequence
is required to extend the coherence time. Implementing a CNOT gate on a subset of qubits
in a register requires removing the interaction with other present qubits. This can be
done dynamically by addressing only the participating qubits with a DD-sequence, or by
recoding all other qubits to a magnetically insensitive state [37]. The application of the
recode operation or J-tuning is necessary if the phase of the qubits not participating in the
gate is of interest. Since the implementation of the half-adder presented here is classical due
to the neglected coupling between the control qubits of the Toffoli gate, it is sufficient to use
only a DD-sequence on the qubits participating in the CNOT gate. The implemented pulse
sequence is shown in fig. 5.3.2. The DD-sequence used is a UR-sequence, since there are no
restrictions on the phase of the DD-pulses. For the CNOT implemented here T, = 8.75ms.
In the experiments shown here 120 DD-pulses of a UR12-sequence repeated ten times were

used. The results of the CNOT implementation are shown in fig. 5.4.2.

5.4 Quantum channel tomography

Quantum channel tomography can be used to quantify the implemented gate. Each possible
state in the computational basis must be prepared and propagated through the gate, and

its result in the same computational basis must be measured. The procedure is as follows:

1. Prepare state |abc).
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5.4 Quantum channel tomography
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Figure 5.3.1: (a) Bloch vector trajectory of the target qubit of a CNOT when the control
qubit is in state |0), assuming the target qubit starting in state [0),. After the first 7 -

pulse is applied, the conditional evolution implements a rotation of ¢ = 4+ /2 around the

™
23m/2
trajectory if the control qubit is in state |1) assuming the target qubit starting in state

z-axis and the second -pulse transfers the population back to |0). (b) Bloch vector

|0), after the first 5o-Pulse is applied, the conditional evolution implements a rotation of
gSw/?
Therefore, the state of the target qubits is inverted conditioned by the state of the control

¢ = —m/2 around the z-axis and the second -pulse transfers the population to |1).

qubit.

2. Apply gate.

3. Read the quantum state projected onto the computational basis and note the result,

also in this case from |000), |001) to state |111).
4. Repeat steps 1-3 to collect statistics.

5. Select another state prepared in step 1 and repeat until all possible 2® basis states

have been measured.

6. Calculate the frequency of readouts as fnr = Nui/N, where N, is the number of
readout values n that occur in the total N measurements performed for a given input

state k |abc).
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Figure 5.3.2: Decomposition of the CNOT gate between ions 1 and 3. Here ion 3 is the
target. The unitary evolution U,, implements the zz-coupling, whereas the single-qubit
m-pulses implement the dynamical decoupling sequence. This sequence is repeated 120
times. 7" denotes a m-pulse on qubit k with phase ¢,,. The phases of the DD-pulses are
chosen to implement a universal, robust DD-sequence on the control and target qubit.

7. Use the measured frequencies f,, for each possible input state to perform a maximum

likelihood analysis according to [78,79] to reconstruct the quantum gate.

8. Use the reconstructed quantum gate to evaluate the classical fidelity F' as

1
F =Y —MyGu, (5.4.1)
n
kl
where Mj; is the reconstructed gate and Gy, is the gate to be implemented, and n is

the dimension. Here n = 23 = 8.

The numerical data analysis was performed using an analysis script developed by Sagar

Silva Pratapsi.

The tomography of the Toffoli gate, the half-adder gate and the CNOT gate was performed

as an interleaved experiment.

Interleaved experiments allow a direct comparison of the results of two experiments. Be-
cause the experimental setup is subject to slow drifts, such as drifts in addressing frequency,
Rabi frequency, noise spectrum drifts, or laser frequency. It can be difficult to compare two
experiments run in sequence. The experiment control framework provides automatic recal-
ibration of the addressing frequencies, automatic scanning of the 369 nm laser resonance
and a feedback loop to actively stabilize the cooling fluorescence during the experiment.

The procedures used are described in chapter 2. Typical experiment durations are on the
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5.5 Creating a GHZ state

order of 10 min, so consecutive experiments will experience different experimental drifts,
making direct comparison difficult. Therefore, experiments can be run interleaved. Typi-
cally, an experiment tests a set of parameters, and the measurement result is a probability
distribution. To approximate these distributions, experiments are repeated. Typical ex-
periments are repeated on the order of 100 times. During each repetition, the experiment
is performed for each sample point. If two experiments, A and B, are interleaved, one
repetition of experiments A and B is measured before the next repetition is measured for
experiments A and B. Depending on the experiment settings, a single cycle corresponding
to one sample point with one repetition takes about 100 ms time. Therefore, the exper-
iments can be changed on the time scale of 100 ms in such a way that the time for free
drifts compared between two consecutive experiments is reduced by at least two orders of
magnitude, making the interleaved experiments more comparable with each other. The
half-adder tomography was always interleaved with either the CNOT or the Toffoli to-
mography in order to collect more measurement data for the half-adder and to make it
comparable to the tomography of its components. The result can be found in fig. 5.4.1.
For the CNOT operation, the results can be found in fig. 5.4.2 and for the half-adder in
fig. 5.4.3.

5.5 Creating a GHZ state

The Toffoli implementation shown here has been tested using computational basis states
as product states. A typical prototype state is the GHZ state. A two-qubit GHZ state is
generated by supplying an equal superposition state to control a CNOT operation. The
output GHZ state on two qubits is then present at the control inputs of the Toffoli such
that it generates the three-qubit GHZ state. Omitting the phases, since the Toffoli is

implemented as a classical gate, the following stepwise evolution can be implemented:

(1) (1,3) of foli
1000) 2 [000) + [100) YT 1000y + 1101) “LL 1000) + [111). (5.5.1)

Since all prerequisites introduced in this chapter are known, the circuit can be implemented

as shown in fig. 5.5.1. Finally, the quantum state can be projected and the frequency of the
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Figure 5.4.1: (a) Quantum process tomography of the Toffoli gate. For the experiment,
all different input states were prepared, the Toffoli gate was performed, and the qubit
states were read out.For each prepared basis state, the most likely output distribution
was evaluated. The parameters for the experiment were A = 0.003571, T = 14.86 ms,
0 = =27 - T8 Hz, DD-sequence on control qubits 20 UR10 blocks and on target qubit 200
CPMGxy-pulses with Q = 27 - 28.23kHz. The system was cooled with a two step three
mode sideband cooling of T¢y = 50ms and Toe = 10ms. The trapping frequency was
v = 27-128.4(1) kHz with a gradient of 9, B = 19.09(1) T /m resulting in the coupling Ji2 =
Ja3 = 21 - 36.5(1.1) Hz. This experiment was interleaved with the half-adder experiment.
(b) Maximum likelihood estimation of the Toffoli gate, with a 99% confidence interval of
Fy.99 = [0.15,0.70], with the most likely classical fidelity Fo = 0.58.

122



5.5 Creating a GHZ state

Figure 5.4.2: (a) Quantum process tomography of the CNOT gate between control qubit
1 and target qubit 3. For the experiment all different input sates have been prepared, the
CNOT gate was performed and the qubits state have been read out. For each prepared
basis state the most likely output distribution has been evaluated. The system was cooled
with a two step three mode sideband cooling of Ty = 50ms and Tos = 10ms. The
trapping frequency v = 27 - 128.4(1) kHz with a gradient of 9,B = 19.09(1) T/m resulting
in the gate time 7T, = 8.75ms The DD-sequence was 10 UR12 blocks with Q = 27 -
28.23kHz. The experiment was interleaved with the experiment for the half-adder. (b)
Maximum likelihood estimation of the CNOT gate, with a 99% confidence interval of
Fy.99 = [0.61,0.95] with the most likely classical fidelity Fo = 0.87.
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Figure 5.4.3: (a) Quantum process tomography of the half-adder. For the experiment,
all different input states were prepared, the Toffoli gate was performed, followed by the
CNOT gate, and the qubit state was read out. For each prepared basis state, the most
likely output distribution was evaluated. The parameters for the experiment where for the
Toffoli gate, A = 0.003571, Tr = 14.86 ms, 0 = —27- 78 Hz, DD-sequence on control qubits
20 UR10 blocks and on target qubit 200 CPMGyxy-pulses with = 27 - 28.23 kHz have
been performed. CNOT was performed with gate time Toyor = 8.75ms 10 UR12 blocks
on qubit 1 and 3. The system was cooled with two step three mode sideband cooling of
Ter = 50ms and Tog = 10ms. The trapping frequency was v = 27 - 128.4(1) kHz with a
gradient of 0,8 = 19.09(1) T/m resulting in the coupling Ji2 = Jog = 27 - 36.5(1.1) Hz.
The experiment was interleaved with the CNOT gate and Toffoli gate experiments. (b)
Maximum likelihood estimation of the CNOT gate, with a 99% confidence interval of
Fy.99 = [0.37,0.67] with the most likely classical fidelity Fo = 0.61.
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Figure 5.5.1: (a) The CNOT gate was performed with the control qubit in a superposition
state, followed by the Toffoli gate and readout. The parameters for the experiment were
for the Toffoli gate, A = 0.003571, Tr = 14.86 ms, § = —27-78 Hz, DD-sequence on control
qubits 20 UR10 blocks and on target qubit 200 CPMGxy-pulses with = 27 - 28.23 kHz.
CNOT was performed with a gate time of T, = 8.75ms using 10 UR10 blocks on qubit 1
and 3. The system was cooled with a two step three mode sideband cooling of 71 = 50 ms
and Too = 10ms. The trapping frequency is v = 27 - 128.4(1) kHz with a gradient of
0.B = 19.09(1) T/m resulting in the coupling Ji2 = Ja3 = 27 - 36.5(1.1) Hz. The desired
output state is [¢)) = 1/4/2]000) + €?/y/2|111) where ¢ is an arbitrary unknown phase
since the Toffoli is a classical gate. Therefore, the quantum state is evaluated only in the
z-basis. (b) Generation of a GHZ state using a CNOT and a Toffoli gate.(b) Quantum
circuit for generating a three-qubit GHZ state using a CNOT and a Toffoli gate.

occurring identified product state can be calculated. It can be seen that predominantly the
states |000) and |111) occur in the readout, indicating a three-qubit GHZ state, measured
in the z-basis. Due to the classical nature of the Toffoli gate, the phases of the quantum

state are omitted here.
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5 Implementation of a half-adder

5.6 Energy consumption

Up to this point in this chapter, the implementation of the half-adder circuit has been
discussed. It has been shown that the implementation shown here is suitable to repro-
duce a classical half-adder, which is a fundamental building block of classical arithmetic
units. Every classical computation consumes energy. In contrast to classical computation,
the unitary evolution of a quantum state can by definition be completely inverted, since
U'U = 1. From a thermodynamic point of view, this means that no energy is lost in
the system. Theoretically, if one could realize an ideal quantum control of the system,

arbitrary computations could be performed without energy cost.

In reality, a lot of power is needed to generate the EM fields for quantum control. The
trapping potential to store the qubits, the laser field of cooling to prepare and read out the
qubits, the microwave field to carry out the coherent control, or the generation of magnetic
fields to control the quantization axis require power. Currently, the DC magnetic field is
generated by sets of Helmholtz coils. These Helmholtz coils could be replaced by a suitable
permanent magnet arrangement, thus eliminating the power requirement for generating
the DC magnetic fields. On the other hand, the trapping potential must be generated
and maintained during a computation, which adds a fixed power consumption during the
computation. Depending on the realization of the trapping apparatus, a driving power in
the order of Pr, ~ 10 mW might be achievable with current traps [80]. Compared to future
planar ion traps, the trap setup used in this work is macroscopic and must be operated
at a trapping power of Pp. ~ 10W. This is by far the largest contribution to energy
consumption. A near-ideal resonator could significantly reduce the power requirement
in the future. By definition, the laser light used for cooling, preparation, and readout
drives a dissipative process. In the case of cooling, heat must be transported away. In
the case of preparation, the excitation of the qubit must be dissipated. For readout, the
qubit is intentionally excited to a state that quickly decays while emitting a photon that
is eventually detected. All of these laser processes are dissipative by design. Therefore,
energy must be dissipated. However, in principle there is no interaction between the qubits
and the laser light during the computation until the quantum state is projected. Therefore,
the energy spent on cooling the system before preparation and readout can be considered

a one-time energy cost, since it does not contribute to the energy consumption during
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5.6 Energy consumption

the actual computation. The energy consumed is therefore independent of the length of
the computation and can be considered insignificant in the limit of an arbitrarily long
computation. The delivered laser power can be measured using a power meter that probes
the laser beams before they enter the vacuum receiver. Integrated over time, the required

energy delivered by the laser beams can be estimated. The results are shown in table 5.6.2.

In addition to the one time energy expenses for the laser light, as shown in chapter 2, a
microwave field is required in the Doppler cooling and sideband cooling step. In case of
Doppler cooling it is required to close the cooling cycle while during sideband cooling it
is required to drive the motional sideband transition. To estimate the microwave power
required, the power delivered to the vacuum recipient has been measured using a Rhode und
Schwarz spectrum analyzer to be Py = 0.58 W /ion corresponding to a Rabi frequency
Q) ~ 27 - 33kHz. This exceeds the power required in the laser fields for the 369 nm laser
beam and the 935nm laser beam for re pumping by three orders of magnitude. The
full term scheme of !"'Yb* can be found in the appendix in fig. D.1. The total energy
required by the laser field and the microwave field adds up to Fy > 100 mJ per cycle of the

experiment. The results are summarized in table 5.6.2

In contrast to the one-time cost of cooling preparation and readout, the microwave signal
is required to perform a computation. By design, the interaction between the qubits is
free of energy cost, since it is generated by a permanent magnet setup that produces
the magnetic field gradient for the MAGIC scheme. For the half-adder circuit presented
here, the dominant contribution of energy consumption is the m-pulses to implement the
DD-sequences. In the case of the half-adder, three parallel microwave fields are required.
The duration of a m-pulse is t; &~ 15ps, resulting in an energy dissipation per m-pulse
of B, ~ 88nuJ. The measured power Py is transferred to the receiver via the SMA
feedthrough. As shown in [7], inside the vacuum receiver, an additional coaxial cable
connects the feedthrough to the circular waveguide, which is excited by a pin antenna.
The waveguide then conducts the generated microwave field to the trap consisting of steel
blade electrodes. A.Khromova in [7] states an output power loss of about 8dB for the
waveguide. Based on the dimensions of the waveguide calculated by S. Patrapasi in [75],
the theoretically required microwave energy is Fr; = 1.8 uJ. This theoretical estimation,
together with the output power loss of 8 dB, the estimated energy required for a 7-pulse on

the o-transition with a Rabi frequency 2 = 27 - 33kHz is Ep ~ 111J. This corresponds
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5 Implementation of a half-adder

to the measured power required and can be used to estimate the energy required for other

pulses.

The energy required for a pulse given a fixed angle of rotation scales as:

FoPuywt o —g (5.6.1)
o Parw g < o = .6.

Reducing the Rabi frequency of the pulse, therefore, reduces the energy required for the
single qubit rotation. Since the Q7 ~ € - 1073 the required energy to implement the
Toffoli gate would be on the nJ scale. If all sources of incoherence are eliminated, which
for the present setup makes DD-sequences obsolete, the CNOT gate would require at least
one m-pulse to decouple the Toffoli target qubit from the qubits involved in the CNOT,
and two 7/2-pulses to implement the CNOT operation itself. This would make the CNOT
gate three orders of magnitude more expensive in terms of energy required compared to

the Toffoli gate. The ultimate goal of building a quantum computer that, when used as a

MW  Dyn. decoupling

Gate Pul Total
ulse # m-pulses Cost

Estimated 1.871J - — 1.81J

NOT Measured  8.81J — 8.81d
Estimated 1.8pJ 0.44mJ 0.44mJ

CNOT Measured  8.81J 2-120 21mJ  2.1mlJ
. Estimated 2.0nJ 1.1mJ 1.1mJ
Toffoll poasured 9203 2720 53m) 53m)
Half- Estimated 1.81J 340 1.5mJ 1.5mJ
Adder Measured 8.8uJ 74mJ  T7.4mlJ

Table 5.6.1: Estimated and measured power consumption of the experimentally realized
gates. “MW Pulse” refers to the microwave energy required to implement the Hamiltonian.

“Total” includes the cost of dynamical decoupling m-pulses.

classical computer, is still more energy efficient than a classical computer seems unrealistic.
In such a classical application, each qubit could be replaced by a transistor. Controlling a
quantum register, even in a very simple way, requires at least accurate timing. For example,

the time at which a qubit state needs to be manipulated, e.g. a m-pulse needs to be applied,
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Laser Laser

369 nm 935 nm MW /ion Duration Energy

Doppler 0 6 )W 1.35mW  0.58W  S.0ms  14mJ
cooling

Sideband 16w 135mW 058 W 60ms  100mJ
cooling

Ground oo g W o135mW 0.20ms  0.28 7]
state prep.

Readout 48.0nW  1.35mW — 3.0ms 4.21d

Total 120 mJ

Table 5.6.2: Power and energy costs of one-time operations that contribute to the baseline
energy expenditure.

needs to be stored in a classical numerical value, using already some classical bits to store
this timing information. Even if the qubit control is idealized in a way that it does not
need any electronics and therefore does not consume any energy, the sequence definition
for the qubit manipulation still needs more electronics, since the circuit execution can be
substituted. As long as the control of a qubit requires at least one transistor, the energy

cost of a classical quantum computer will exceed the energy cost of a classical computer.

Nevertheless, the finding that the scaling of the energy cost of pulsesis Ep o € ﬁ, where
Tp is the duration of the pulse, allows us to estimate this part of the energy cost of quantum
computation in the future, since this result is not restricted to classical computation, but

is also valid for quantum computation.
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5.7 Outlook

In this chapter, the classical half-adder has been investigated theoretically and experimen-
tally. As mentioned above, a classical implementation of the Toffoli gate is not advanta-
geous in terms of energy efficiency if the gate is used only as a classical gate. However,
an advantage of the gate arises when it is modified to be a quantum Toffoli gate. The
basic idea is sketched in this section. The extension of the gate mechanism to more control

qubits is then briefly discussed.

5.7.1 A proposal for a quantum Toffoli gate

The Toffoli gate presented here is classical in the sense that the interaction between the
control qubits is neglected. The unwanted coupling must be removed if a quantum version
of the Toffoli gate is to be constructed. One possibility is to apply a correction to the
gate after its completion, inverting one of the Toffoli control qubits, followed by a zz-
interaction of the duration of the Toffoli gate. As shown in chapter 4, the effect of the
evolution over the entire evolution time would cancel the coupling between qubits one and
three. To protect qubit two from decoherence, either recoding is required, or J-tuning must

selectively decouple qubit two from qubits one and three.

N N
—— T (7] —{ 5, (7]
—&—= - Ur (7Y - Up -H{REC HH U UL, HREC
—— H HA HeH

Figure 5.7.1: A possible extension to the classical Toffoli gate shown in this chapter is to
incorporate the zz-coupling of qubits 1 and 3 and remove this effect by an effective refo-
cusing step after the Toffoli gate. For this scheme, the evolution time would be effectively
doubled.
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5.7.2 J-Tuning and driving field

As described in chapter 4, the effective coupling between arbitrary qubits in a register can
be achieved by an appropriately timed DD-sequence. In contrast to the Toffoli gate imple-
mentation and the perceptron gate implementation shown in chapter 6, for the derivation
of J-tuning only a Hamiltonian consisting of a?)aéj ) terms is considered. Without a driv-
ing field, the solution obtained is exact. For the gate implementation, which requires a
driving field, the use of J-tuning is not exact, but it approximates the ideal J-tuned case.
To quantify the approximation to the ideal J-tuned unitary, an approximation fidelity Fs

can be defined as
FAfl—fZ\U(A — Uyl (5.7.1)

which goes to 1 if the approximation U approaches the exact U. With the rotation
introduced in eq. (2.3.9), R(0, ¢,6,Q), the approximated unitary is

N,
0T Ty, 0O “a
(4) _ b D _
U R(Nang’¢?J+ 5’ Q)R((l T)Navg7¢7 J+67 Q) ) (5'7'2)
= R(0,¢,J(1 — 2%) +46,0). (5.7.3)

Where 6 is the angle of rotation assuming a resonant Rabi frequency 2. ¢ is the phase, J
is the coupling flipped at times 73,, and N4 is the number of spin flips of the control qubit
during the evolution of the gate. The fidelity of the approximate unitary with J-tuning in
the presence of a control field can be calculated. For the calculation 0 = 7w, 0 = 27 - 30 Hz,
J =27 -30Hz, and § = [0, 2J] were used. The resulting F4 as a function of Ny, and the
relative J-tuning time 73,/7 is shown in fig. 5.7.2. For both cases of detuning 6 = [0, 2.J], it
can be seen that the approximation accuracy Fq > 0.99 for Ny,y = 50 and, respectively,
Ngvg = 10. J-Tuning in the case of an active control field is not an exact solution, but it

is a good approximation.

5.7.3 Expanding the Toffoli gate to more control qubits

The basic idea of the Toffoli gate is that a narrow-band pulse selectively drives a rotation of

m, if due to the effective field generated by the control qubits, the qubit resonance frequency
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Figure 5.7.2: (a) Approximation fidelity F4 of a rotation U = R(0, ¢, J(1—-27t)+6,02) as a
function of Ng.g spin flips introduced to realize a J-tuning with relative delay 7,/7" where
0 =m, Q=2r-30Hz, J=27-30Hz, and § = 0. Here eq. (5.7.1) is used to calculate the
approximation fidelity using the unitary in eq. (5.7.3). (b) Approximation fidelity Fy with
the same parameters as in (a) but with a fixed detuning 6 = 2.J. For an increasing number
of average steps Nyyg, the approximation fidelity exceeds F'4 > 0.99, making it feasible to
be implemented in gates requiring a driving field 2.

is shifted by a certain detuning. The duration of this narrowband tophat-pulse is chosen
so that, if it is not resonant, the effective axis of rotation is tilted and a full n - 27 rotation

is performed.

Assuming a register of qubits of size V41 and an equal coupling of all qubits to the target,
in principle, by a proper choice of the detuning §, a gate can be constructed so that for a
given number of |1) compared to |0) states occurring among the control qubits, the state

of the target qubit flips.

A detuning 6 = nJ would be compensated by having n more control qubits in the |1) state
than in the |0) state. The Toffoli gate is a special case, where ¢ is chosen such that a flip
of the target qubit occurs if and only if the control qubits are in state |11),. Choosing
Q ~ J/2 would allow closing all trajectories where the residual detuning does not vanish,
while at the same time having § ~ n.J allows trajectories for all possible control qubit
states besides the one chosen to flip the target qubit. Thus, J-tuning allows the direct

implementation of a quantum Toffoli gate with more than two control qubits.

132



5.8 Summary

5.8 Summary

In this chapter, the implementation of the Toffoli gate, as proposed by S. Bose in [76],
has been modified by interleaving a dynamical decoupling sequence with the gate Hamil-
tonian. The implementation in the experiment has been demonstrated using the Toffoli
gate to create an GHZ state in the computational basis. The Toffoli gate and a long-range
CNOT operation were used to implement a half-adder circuit on three qubits. A stepwise
evaluation of the performance of the classical gate has been demonstrated. Possible ways
to improve the fidelity of the Toffoli gate were identified, such as using different RF sources
for the RF to generate low €2 driving fields. A possible way to create a full quantum gate
from this classical gate was formulated by adding a hypothetical disentangling step for
the two control qubits. Additionally, extensions to Toffoli gates with three or more con-
trol qubits have been sketched. The given coupling topology requires the use of J-tuning
in the extended gate implementation. Numerical calculations show that J-tuning can be
used to implement gates requiring a driving field. Furthermore, the energy requirements
in the current experimental setup have been measured and the energy requirements of the

half-adder have been estimated.

The results obtained in this chapter are published as [75].
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Perceptron gate

Neural networks implemented on classical computers have proven to revolutionize computer
science. They can identify faces, read a handwritten document, or understand the spoken
word. This classification power allows one to autonomously understand and translate a
text, or to control a machine using multiple sensor inputs. This chapter reports on the
implementation of a small quantum mechanical neural network (NN). The implementation

reported here is based on the ideas of E. Torrontegui and J. J. Garcia-Ripoll [81].

A single neuron is an essential element in biological systems that allows an organism to
respond adaptively to its environment. A neuron is a cell that can produce or receive
electrochemical signals. The excitation of a neuron is a direct response to its environ-
ment. If the external stimulus is large enough, the neuron can be activated. This external
stimulus may come from other nearby neurons. This activation of the neuron can in turn
stimulate other neurons through connections between them, forming a network. An im-
portant property of a biological neural network is its ability to learn. Learning is realized
by strengthening the connections between neurons. This defines the circumstances under
which a neuron can be activated. Because of this flexibility, a given number of neurons can

solve different tasks based on the learned strength of their connections.

A classical mathematical neural network mimics this behavior [82]. Here, a neuron, or for
the scope of this work, a perceptron, can be viewed as a function whose arguments are the
states of other neurons. If the neurons can be ordered, it can be represented as a layered
graph in which nodes correspond to neurons and edges represent the weighted input for

each neuron. A simple example is given in fig. 6.0.1.
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6 Perceptron gate

Neuron n

Weighted connection

Layer 0 Layer 1 Layer 2

Figure 6.0.1: (left) Example of a three-layer neural network with nine neurons and weights
indicated by different lines connecting each layer. (right) A perceptron controlled by
weights wy,; described the control field of the perceptron gate shown in eq. (6.1.1).

6.1 Perceptron

The state of a neuron is given by an activation function s, = f(z,), where the input of

the neuron is

Ty = Z Wen Sk — On. (6.1.1)
k<n

Here, wy, is the weight of the input of neuron k to the neuron n, and 6, is the neuron’s
bias. Suppose the function f(x) is a continuous sigmoid function. In that case, it is proven
that a three-layer neural network may serve as a universal approximation of an arbitrary

continuous function of the input state [83].

In analogy, E. Torrontegui and J. J. Garcia-Ripoll have shown that the quantum version
of the universal approximator theorem holds [81]. This theorem states that any bounded
continuous function Q(o1,...,0,) € [~1,1] of the quantum observables {o;}; can be
reconstructed up to an error € onto the state of a qubit using NV input qubits and M, + 1

applications of the quantum perceptron gate.

In a MAGIC trapped-ion quantum computer, the inherent all-to-all coupling Jg, can be
associated with the weights appearing in the network ws,. The state of the input neuron

(k)

si can be seen as the eigenstate of the control with respect to o2/. Therfore the weight
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6.1 Perceptron

can be associated with the coupling and the state of the input neuron can be associated
with the ng) operator as

Wen — Jin and s — o)

z

In addition to the weighted inputs, the classical model of a perceptron requires a bias.
The bias strength 6 needs to be on the order of magnitude of the interaction strength
and therefore might be generated by an additional neuron. In the system given in the

experiment, the standard procedure of simulating a bias 6 with other neurons can be used.

A Hamiltonian has been found to implement the desired sigmoid excitation of a perceptron

[81]. The Hamiltonian reads

=" (-2)0f) —200). (6.1.2)
2
Here, the activation is
.CCj = Z JijO'gi)O'gj) — 9]‘, (613)
1<J

where 6; is the bias of the perceptron j. In our implementation, it will be generated by an

additional qubit k as

0; = Jyjo). (6.1.4)
The full Hamiltonian is
H=9t)o¥ + > Jijele¥), (6.1.5)
1<j

where 0o, is absorbed in the sum.

The required sum of a weighted input for a perceptron [84] is shown in equation (6.1.1).
As shown in chapter 4, tuning of the average qubits interaction strength is possible by

applying J-tuning or by shaping of the trapping potential.

The ground state of the system is given in [81] as

) = /1 = g(z/D)|0) + /g(z/Q)[1) (6.1.6)

for a driving field 2 < J with

g(z)Q) = % (1 n %) : (6.1.7)
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6 Perceptron gate

whereas for a driving field Qo® alone (2 > J) the ground state is

1
+)=—=(0)+11)). 6.1.8
+) 7 (10) +11)) (6.1.8)
The adiabatic theorem states that when a system is in its ground state and this ground
state evolves slowly enough, the system will stay in its ground state [85]. This means that
starting with the ground state |+), application of a large driving field Q0 and turning it
off slowly enough, the system will end up in the ground state given by (6.1.6).

The Hamiltonian (6.1.5) is similar to the Hamiltonian shown in Eq. (5.2.1). As shown in
chapter 5, interleaving a driving field that generates a gate with a dynamical decoupling
sequence is possible. Furthermore, as shown in section 5.7.2, J-tuning can also be applied
with a driving field present. Therefore, all prerequisites to implement a perceptron gate

are set.

To generate the sigmoid excitation of the perceptron, during the evolution with the Hamil-
tonian (6.1.2), the driving field (¢) has to be shaped in time. The only requirement to
the driving fields amplitude is that it changes from Q > J to (2 < J slowly enough that
the state can follow. The exact shape can be chosen freely. It has been shown that a
FAst QUasi ADiabatic (FAQUAD) [86,87] state transfer can be achieved time efficiently.
To minimize the required evolution time while ensuring an adiabatic state transfer, the

driving field amplitude as calculated by E. Torrontegui is

4AEY S5 1 (A2 + (1 — 5)414/543)
(1-— S)A?g + 5+ 4—”2‘/5/1?

Q(s) = Q(Ao) : (6.1.9)

where s = t/Tp is a dimensionless time with Tp being the gate time of the perceptron.
Q); is the initial large driving field generated by a dimensionless microwave amplitude Ao,
while Ay is a dimensionless microwave amplitude corresponding to €, where Q; is the
final Rabi frequency at the end of the gate. For the adiabatic approximation to hold, the
final driving fields amplitude needs to be small 2y < J to allow the eigenstate to be |0) or
|1) in the z-basis. Different from the Toffoli gate’s implementation, the evolution time of
the gate is not fixed, since no condition like a full rotation around some axis needs to be
met. Nevertheless, 2y < J is a challenging condition due to the limited dynamic range of

the frequency generator available. The initial amplitude of the driving field needs to be as
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6.1 Perceptron
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Figure 6.1.1: Circuit diagram of the perceptron gate, where the first Hadamard gate creates
a superposition that is the eigenstate of the driving field that is applied during the unitary
evolution of the FAst QUasi ADiabatic passage (FAQUAD) Up.

big as possible, e.g. the frequency generator’s output amplitude needs to start at A =1
and needs to be ramped down to A ~ 10~*. The signal has to be generated by a single
frequency generator to ensure coherence of the microwave signal. A detailed description
of the approximation of the FAQUAD ramp using a VFG150 frequency generator can be
found in the appendix section C. The driving field is then interleaved with a CPMGxy-
sequence consisting of 200 pulses and is modified according to chapter 5 to implement the

gate.

The sequence for the perceptron gate is to prepare the perceptron or target of the gate
in a state |+), which is an eigenstate to the applied driving field Qo®. Starting with
Q; = Q(t = 0), a driving field is switched on instantaneously and is adiabatically ramped
down to transfer the system to the o eigenstate. This circuit is shown in fig. 6.1.1. The
perceptron is controlled by its potential shown in eq. (6.1.3). The activation or excitation
probability as a function of the control must be shown to demonstrate a working gate
implementation. As shown in chapter 5, a small driving field generates a measurable Rabi
oscillation. Nevertheless, the requirement for the gate is the adiabatic state transfer by
ramping down the driving field to the regime Q) < J. To observe an entire period of Rabi
oscillations, the evolution time would be on the scale of seconds. Given the bare state
coherence time on the order of T5 &~ 200 ps or the extended coherence time of the system
using a DD-sequence on the order of some ms, a Rabi measurement on the second scale is

challenging due to decoherence.

Since Rabi oscillations much slower than the coupling is challenging to be observed, the

required amplitudes A of the frequency generator, in a low amplitude regime, are extrap-
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6 Perceptron gate

olated to implement the perceptron gate.

The activation potential, which is generated by the control qubits, can be tailored using

J-tuning to be:

x lefgf + 83J§gf
— = : (6.1.10)
Ly §y

Here, J¢/7 is the effective coupling, € ¢ is the final amplitude of the FAQUAD ramp, and
s, = £1 is the control qubits logical state. For the state |0), we have s, = —1 and for
|1),, we have s, = +1 accordingly. The J-tuned effective coupling or the input state can

be varied to choose a specific input potential for the perceptron.

Figure 6.1.2 shows the scanned input potential with and without a bias 6. Due to the
limitations of the frequency generator, the scanned parameter range has been split into
multiple measurements. At first, the control qubits are set to |00), while the delay of the
target qubit to both control qubits has been scanned in a range of 7, = [0 ps, 68 us| while
the gates evolution time is 1" = 15 ms with 150 CPMGxy-pulses for dynamical decoupling.
Therefore following eq. (4.2.18) the effective coupling constant szf f (J;z,{ f ) is scanned in
a range [Ji2,0] ([J23,0]). The final driving field Rabi frequency is Q; = 27 - 8.1 Hz while
the coupling constant was Ji2 = 27 - 37.5(1.5) Hz. This effectively realizes a scan of the

input potential in a range from x/Q; = [-9.2,0]. For positive input potentials, the control

qubits have been prepared in |11), implementing a scan of x/Qy = [0,9.2].

The same experiment has been repeated to demonstrate the possibility of bias in the
perceptron. However, instead of the target qubit’s delay, the delay of one control qubit
has been scanned. In this case, one control qubit biases the perceptron with 6/Q; =
J12/y = £4.6 while the effective range is limited to half the scanning range of two
control qubits. Therefore, the measured perceptron’s excitation for the scanning range of
x/Q = [—4.6,4.6] with the bias beeing 6/ = +4.6, shows a rising edge at the end of

the scanning range.

Choosing the input state of the bias qubit allows one to choose the bias direction.
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Figure 6.1.2: (a) Perceptron activation with target qubit 2 in a three-qubit register con-
trolled by qubit 1 and 3 as depicted in (b). Maximal coupling between qubit 1 and 2,
and 2 and 3 respectively: Jig = 27 - 37.5(1.5) Hz, Jog = 27 - 37.5(1.5) Hz. Maximal ampli-
tude step for the approximation of the FAQUAD ramp using a DDS synthesizer (VFG)
A =5-107% Final amplitude of the VFG A = 3 - 1073 realizing Qy = 2m - 8.1 Hz, start
amplitude of the VFG at the beginning of the FAQUAD ramp Ay = 1. Minimal VFG
switching time 0t = 100 ns, Rabi frequency of the applied dynamical decoupling sequence
Qpp = 27 - 27.95kHz, gate time without DD-pulses T = 15ms, dynamical decoupling
pulses on the control qubits 15 UR10 blocks, 150 pulses total. DD-sequence applied to
the target qubit 150 CPMGxy-pulses. Scan of the activation potential = is implemented
by a scan of the effective coupling constant Jfg 7 and Jzeg ! respectively by a delay of the
DD-sequences of the control qubits following eq. (4.2.18).

The bias can be chosen freely using J-tuning. Figure 6.1.3 shows a scan of the perceptron
activation, where the bias qubit generates a bias of § = £+.J/2. The scanned activation range
therefore is 0/ = [-0.5J/Qy, —0.5J/€Q;] using the control qubit. This demonstrates the

applicability of J-tuning to control the bias of a perceptron.
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Figure 6.1.3: (a) Perceptron activation with target qubit 2 in a three-qubit register con-
trolled by qubit 1. Qubit 2 is chosen as bias qubit. The bias here is = +.J53/2 to show the
flipping point of the target. For 6 = 0, qubits 1 and 3 are used as control qubits, doubling
the scanning range for x/Q; effectively. Maximal coupling between the control qubit 1
and the target qubit 2 J1o = 27 - 37.5(1.5) Hz. Amplitude step size of the DDS synthesizer
(VFG) 6A = 5-107°. Final amplitude of the VFG at the end of the FAQUAD ramp
Ap = 3-1073. Initial amplitude of the VFG for the FAQUAD ramp Ag = 1. VFG switch-
ing time 0t = 50ns. Rabi frequency of the DD-sequences applied Qpp = 27 - 28.2 kHz.
Gate time without DD-pulses T' = 15ms. DD-sequence on the control qubits 20 UR10
blocks, 200 pulses in total. On the target qubit 200 CPMGyxy-pulses are applied. Scan
of the activation potential z is implemented by a scan of the effective coupling constant
Jleg ! and J;g ! respectively by a delay of the DD-sequences of the control qubits following
eq. (4.2.18).

Until now, the perceptron qubit was chosen to be the center qubit in a three-qubit register.
Since a J-tuned control field controls the perceptron, this choice is arbitrary. In contrast to
the Toffoli gate shown in chapter 5, the perceptron does not require a symmetric coupling.
Using J-tuning, the perceptron can be chosen freely in a register. This is demonstrated
in fig. 6.1.4, where qubit 1 is chosen to be the target qubit of the perceptron gate. The
different coupling constants Jjo = 27 - 37.5(1.5) Hz and Ji3 = 27 - 30(1) Hz of the control
qubits to the target are taken into account using eq. (4.2.18) and eq. (6.1.10).
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Figure 6.1.4: (a) Perceptron activation with target qubit 1 in a three qubit register con-
trolled by qubit 2 and 3 as depicted in (b). Maximal coupling between qubit 1 and 2,
and 1 and 3 respectively Jia = 27 - 37.5(1.5) Hz, J13 = 27 - 30(1) Hz. Parallel scan of the
couplings Jle?{ ! , Jleg ! using a delay between the control qubits and the target qubit’s DD-
sequence in a range of 7,1 = T = [0ps, 92.7 ps]. Maximal amplitude step to aproximate
the FAQUAD ramp 64 = 5-107°. Final amplitude of the VFG at the end of the gate
Ap = 31073, initial VFG amplitude at the beginning of the FAQUAD ramp Ay = 1.
Initial control qubits state |11),. VFG switching time 6¢ = 50ns. Rabi frequency of the
DD sequences applied Qpp = 27 - 28.2kHz. Gate time without DD-pulses T = 15ms.
DD-sequence on the control qubits 20 UR10 blocks, 200 pulses in total. On the target
qubit 200 CPMGyxy-pulses are applied. Scan of the activation potential x is implemented
by a scan of the effective coupling constant Jfg ! and Jfg ! respectively by a delay of the
DD-sequences of the control qubits following eq. (4.2.18).

6.2 Neural network

Neural Networks (NN) can be seen as a graph, where each vertex represents a neuron,
whereas each edge depicts an interconnect between the neurons as shown in fig. 6.0.1. The

more complex the task to be solved is, the more neurons are necessary for a network. As
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universal approximator, a neural network also can approximate basic logic gates. As a
simple example the XOR gate can be implemented. It requires at least two layers in a

neural network and therefore may serve as a proof of principle gate to be implemented.

To implement an XNOR gate, two perceptron gates must be executed consecutively. The
overall evolution time 7' = 30 ms is challenging due to the limited coherence time. Never-
theless, a two-layer neural network approximating an XNOR operation on the two control
qubits could be implemented. For this implementation, the weights for both applications of
the perceptron have been chosen based on estimations by E. Torrotegui and are optimized
for actual implementation in the lab. This has been necessary, since the implementation of
the perceptron has imperfections. The resulting weights selected to implement the XNOR
gate are shown in fig. 6.2.1.

The two-layer neural network output shown in fig. 6.2.2 differs from the ideal outcome.

The success probability is

P, = 5 (Poo) + Py — Ployy — Plaoy) = 0:327(13), (6:2.1)

N

where P;;) is the probabiliy to find the target qubit in state [1) given the control qubits
state |ij). This success probability must be compared with the expected coherence decay
during the evolution of the NN. A Ramsey type experiment using the same evolution time
and number of DD-pulses as the NN, but without the FAQUAD ramp, shows a Ramsey
fringe amplitude of A = 0.25(3). The Ramsey fringe contrast and the success probability
of the XNOR gate differ by P; — A = 0.08(3) and are therefore comparable, although
both are subject to fluctuations. Since no adiabatic gate is performed during the Ramsey
fringe amplitude measurement, the errors in the Ramsey experiment are due to decoherence
processes as well to imperfections in the applied dynamical decoupling sequence. Therefore,
no significant deviation is found within the fluctuations of the coherence time and the
fluctuations of the success probability of the XNOR gate implemented by a two-layer
neural network. It should be noted that both experiments are challenging because the
bare state coherence time is To & 200 us, which is 150 times shorter than the evolution

time of the neural network.
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Figure 6.2.1: (a) Two layer neural network implementing a XNOR, operation of input
qubits 1 and 3 while the target qubit is qubit 2. (b) Circuit diagram of the neural network
implemented to identify the states with the same input. The weights indicated in graph
(a) are implemented using J-tuning and are updated during the second application of the
perceptron gate.

6.3 Outlook

To implement the perceptron gate described in this chapter, a qubit has been used to
provide a bias field § = J¢//o,. Therefore, the bias is limited by the coupling of the qubits.
Another option would be to implement a detuning of the FAQUAD ramp to implement an
arbitrary bias. As shown in chapter 2, the error of the qubits addressing frequency exceeds
the coupling of the qubits, rendering a direct implementation of a detuned field on the
scale of Hz difficult. Nevertheless, as shown in chapter 5, using a dynamical decoupling
sequence allows tolerating bigger addressing frequency errors. At the same time, a selective
detuning on the Hz level is possible. This way to bias the perceptron would eliminate the

qubit overhead in a neural network.
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Figure 6.2.2: (a ,b, ¢) Measured excitation probabilities after the implementation of an XOR
gate where qubit 1 (a) is the input qubit and qubit 3 (¢) is the second input. The excitation
probabilities here are shown as a function of the control qubits input states |jk).. The gate
parameters were: Evolution time per perceptron 7Tp = 15ms DD-sequence on the target
qubit 200 CPMGxy-pulses, 20 UR10 blocks on the control qubits with € = 27 - 28.2 kHz.
FAQUAD ramp parameter Ay = 1, Ap = 2.14-10* FAQUAD amplitude step 64 = 5-107?,

minimal FAQUAD step duration 6t = 150 ns delays of the control qubits DD-sequence for

(1) (1)
1

perceptron 1 7, 7 = 17 ps, Ty, = 86 s for perceptron 2 Tb(f) = 18.6 18, Tb(2) = 69.6 1.

2

Further more, in this chapter, the RF signals to control the qubits were synthesized using
three VFG150 frequency generators. The frequency generator used in the experiments
described in chapter 4 would eliminate the need to approximate the FAQUAD ramp with a
stepwise constant driving field. However the AWG used in chapter 4 was installed only after
the experiments in this chapter were conducted. Using the AWG as a source of microwave
control signals would also allow to extend the number of ions controlled simultaneously

while eliminating the memory limitations of the VFG150 frequency generators.

The perceptron gate can be directly generalized to an arbitrary number of control qubits,

given that they are directly coupled to the target qubit and are therefore located in the
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Figure 6.2.3: (a) Decay of Ramsey fringe amplitude as a function of evolution time. The
last measurement point at 1I' = 30ms was measured interleaved with the NN shown in
fig. 6.2.2. The used DD-sequence was 400 CPMGxy-pulses, to be comparable with the
execution of two layers of perceptrons. Measurement points for other evolution times where
conducted on the same day without interleaving and adjusting the number of DD-pulses to
keep the same DD-period. (b) Perceptron measurement interleaved with the measurement
of the NN shown in fig. 6.2.2. Initial state [00), 7" = 15ms 200 CPMGxy-pulses on
target and 20 UR10 blocks on the control qubits with 2 = 27 - 28.2kHz. FAQUAD ramp
parameter Ay = 1, Ap = 2.14 - 10~* FAQUAD amplitude step §A = 5-107°, minimal
FAQUAD step duration 0t = 150ns. The delay of the control qubits was scanned in a
range 7, = [0 ps, 82.8 ps]. The NN success probability is found to exceed the Ramsey fringe
contrast at the gate time.

same register. In such a scenario, J-tuning allows tuning the coupling of all control qubits
to the target at once, so that a perceptron controlled by multiple qubits in a register can
be executed in one step. As for the Toffoli gate implementation shown in chapter 5, the

gate Hamiltonian (6.1.2) ignores the coupling between the control qubits.

6.4 Summary

In this chapter the implementation of the perceptron gate suggested by E. Torrontegui,
and J. J. Garcia-Ripoll [81] has been described. For this, several techniques introduced

in this thesis have been used. The gate, as proposed, relies on an adiabatic state transfer
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6 Perceptron gate

that is realized by a Fast Quasi ADiabatic (FAQUAD) passage. The FAQUAD passage is
realized by a stepwise approximation of a driving field’s trajectory. Since the activation of
a perceptron gate depends on the weighted input potential of control neurons, J-tuning was
used to select the desired coupling reflecting the weights of the control neurons. Since the
gate time required for the gate’s implementation is on the order of several ms, a dynamical

decoupling scheme is introduced during the gate’s evolution following chapter 5.

This technique allowed us to measure the perceptron excitation as a function of its effective
activation potential. To realize a bias of the perceptron, one of the two control qubits can
be used to generate a bias for the perceptron. The shift of the perceptron’s activation as

a function of the bias field has been demonstrated.

A two-layer neural network has been implemented to approximate a XNOR gate to demon-
strate a small use case for a neural network. The success probability of this two-layer neural
network is reduced but comparable to a Ramsey fringe amplitude measured after the same
evolution time using the same DD-sequence. This indicates that the perceptron gate im-
plementation is subject to the same sources of noise as the MAGIC phase gates, and that

improvements in overall fidelity would also benefit the perceptron gate.

The results obtained are partially published as [88].

148



Summary and outlook

In this thesis, novel methods for trapped-ion quantum computing are explored. A MAGIC-
based trapped-ion quantum computer with a permanent magnetic field gradient and a
harmonic trapping potential generates an all-to-all two-body coupling between qubits in a
quantum register. The all-to-all interaction in a quantum register is a tool to parallelize
quantum computing and to directly implement multi-qubit gates. In chapter 4 a method
that uses only a pulsed dynamical decoupling sequence to tune the coupling between qubits
is presented. Up to a register size of four qubits, it is shown how J-tuning can be used
to implement a desired coupling topology. The chosen example realizes an equal coupling
between all four qubits. Using J-tuning, a coupling matrix can be synthesized column by
column. Therefore, J-tuning provides a quadratic improvement over pairwise sequential
interaction between pairs of qubits. A second example is the parallel execution of con-
ditional gates in a quantum register. The partitioning of a register into non-interacting
sub registers can be achieved by choosing a different repetition rate of dynamic decoupling
pulses on a sub register of qubits. Using this method, J-tuning can be applied within
sub registers of qubits, enabling parallel quantum computation. The choice of qubits to
form a sub register is arbitrary, allowing parallel execution of quantum algorithms on sub

registers. A simple algorithm to compute the required pulse timings is demonstrated.

Furthermore, section 5.2 shows how the driving fields required to implement a gate can be
interleaved with a dynamic decoupling sequence. This was used to demonstrate a three-
qubit Toffoli gate with a fidelity of F' = 0.58 and a 99% confidence interval of Fjg9 =
[0.15,0.70]. The Toffoli gate is then used in a half-adder circuit consisting of a Toffoli
gate and a CNOT gate, which reduces the circuit depth compared to the decomposition
in next neighbor conditional gates. The fidelity of the half-adder circuit is F' = 0.61
with a 99% confidence interval of Fyg9 = [0.37,0.67]. Half-adders are a fundamental
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7 Summary and outlook

building block of arithmetic operations in classical computers. The classical computing
infrastructure contributes significantly to the world’s energy consumption. The emerging
quantum computing industry will contribute to this demand, making it worthwhile to
study the energetics of quantum computing. As a prototypical system, the half-adder
implementation shown in this thesis is used to estimate its energy consumption. The
primary energy demands in the current setup are the trap drive and the microwave signals

used for local rotations applied to the participating qubits.

The combination of J-tuning and driving fields is studied numerically in section 5.7.2 and
it is shown that a Hamiltonian consisting of a driving field and an effective J-coupling
can be approximated. The combination of J-tuning with a driving field is then used to
implement a perceptron gate on three qubits. Here, the perceptron gate is realized by
an adiabatic state transfer, while J-tuning is used to select a desired interaction strength
between the two control qubits and the target. In section 6.2, a two-layer neural network

is implemented to realize a XNOR operation.

In order to scale up the current quantum computer to a useful device, it is necessary to
increase the number of qubits and their interaction strength. J-tuning becomes a tool to
implement multi-qubit gates in larger quantum systems. For example, it allows the direct
implementation of gates that operate on more and more qubits. Both the perceptron
gate and the Toffoli gate can be generalized to more than three qubits, demonstrating
the inherent scalability of a MAGIC-driven trapped-ion quantum computer. Nevertheless,

there are still challenges to be overcome in future devices.

A critical step in overcoming these challenges is the automated operation of the system.
Within this thesis, the automated operation of the lab has been implemented up to the
limitations given by the available hardware. An automatic loading procedure has been
installed, following the procedure outlined in section 2.8.1, based on live analysis of cam-
era images. In section 2.8.2 the automated laser scanning procedure is outlined, while
section 2.8.3 describes the active stabilization of the Doppler cooling fluorescence, which
allows to compensate the relative drift of the laser reference cavity of the 369 nm laser by
observing the optical fluorescence during the experiments. This allows drift rates up to
27 - 240kHz/s to be compensated. These routines, together with the automatic recalibra-
tion of addressing frequencies developed in previous work, allow the user to focus on the

implementation of quantum gates and algorithms.
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The sympathetic multi-tone sideband cooling significantly reduced the experiment time
per cycle. Prior to this work, sideband cooling of an ion crystal required ~ 120 ms per
cooled vibrational mode. Applying the parallel cooling scheme to three vibrational modes
as described in section 2.7 requires &~ 60 ms, achieving a sixfold speedup of the sideband
cooling step. Effectively, the repetition rate could be increased up to five times due to the
comparatively short times of Doppler cooling, preparation, coherent operation and readout,
which require less than 20 ms. Optimization of the parameters of this cooling scheme is
efficiently implemented by a minimal experiment to observe the excitation of up to three

motional modes simultaneously as a function of the cooling laser intensity.

Automated recalibration of the addressing frequency of the qubits allows, besides precise
addressing, the observation of the magnetic field at the ion’s position. The magnetic
field gradient was found to be 9,8 = 19.09(1) T/m. Assuming a constant magnetic field
gradient generated by the installed permanent magnets, the position of the ions can be
determined. Chapter 3 describes the observation of a single ion and the measurement of
DC forces with a sensitivity of 2.2- 10723 N/v/Hz. By evaluating the frequency calibration
data obtained during the measurements presented in chapter 4, the ion’s position and
corresponding long-term thermal stability of the axial trapping potential were measured.
The relative stability of the ion coupling over one day o.J/J = 2.6 - 10~* was determined

as described in section 3.3.

The main challenge in the further development of the MAGIC trapped-ion quantum com-
puter is the susceptibility of the qubits to magnetic fields. Magnetic field perturbations can
be either external magnetic field perturbations or indirect electric field perturbations that
change the position of the qubits in the magnetic field gradient, so that the electric field per-
turbations indirectly create a magnetic field perturbation that limits the coherence of the
qubits. In future quantum processors, external magnetic fields can be shielded. Controlling
the electric field noise seems to be the most promising strategy to reduce qubit dephasing
and consequently improve the fidelity of multi-qubit gates. After the measurements in this
work were completed, two qubit-gates were investigated on the same experimental setup
and it was shown that two-qubit fidelities in the 99% range are already possible with the
existing setup [89]. Therefore, it seems reasonable that further improvements in dynamical

decoupling strategies will allow for high-fidelity multi-qubit gates.
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A Hardware

Experimental control

DSP Jager GmbH ADwin-Pro

- Pro-CPU-T9

- Ethernet computer link

- 2x DIO 32

- AIN8/12

- AOUTS8/16
Experiment sequence National Instruments LabVIEW 2015
DAC PLUG-IN Electronics USB-3112
Frame grabber card BitFlow Neon-CLB Cameralink

Paul trap

Function Generator RigolDG10227
Power amplifier RFPA 1500-20
RF Helical resonator Prague University Ivo Polak’s design
Permanent magnets Magnetic Component Engineering (UK) Ltd

SmCo tubes S2869 [7]

VFG synchronization

Atomic clock Stanford Research Systems FS725
4-way Power splitter Mini-Circuits ZCSC-3-R3+
Schmitt trigger In-house [90]

Data flip-flop In-house [91]

TTL Fan-out In-house [90]
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A Hardware

RF control chain

AWG

RF sequence

RF power amplifier

RF power amplifier

RF pre-amplifier

RF pre-amplifier

RF pre-amplifier

Power supply (for AM43)

RF low-loss cable

Dual loop PLL oscillator
MW switch

3-way Power cominer /splitter
3-way Power cominer /splitter
4-way Power cominer /splitter
High-pass filter

MW mixer (SSB)

MW attenuator (-10dB)
MW attenuator (-6dB)
MW attenuator (-3dB)
MW isolator

MW isolator

MW isolator

MW isolator

MW isolator

MW isolator

MW isolator

MW termination

Vacuum Components

Ton Getter Pump

Vacuum Controller

Agilent M8190A

In-house VFG-150 Versatile Frequency Generator
Globes 10W PA Elisra (+35dB)

Microwave Amplifiers Ltd AM43-12.4-12.8-43-43 (+45dB)
Mini-Circuits ZFL-500LN+

Mini-Circuits ZX60-183A+

Mini-Circuits ZX60-14012L+

TOELLNER TOE 8851-16

Elspec Phase Master 300 PM300-SMA11-SMA11-1500
MITEQ DLCRO-010-12568-3-15P

Narda SPST S213D

Mini-Circuits ZFRSC-183-S+

Mini-Circuits ZFRSC-2-1W+

Mini-Circuits ZCSC-3-R3+

Mini-Circuits SHP-50+

Maki SSB-0618MXW-2

Elisra MW21110

Mini-Circuits BW-S6W2+

Mini-Circuits BW-S3W2+

AtlanTecRF ACI-20240-SF-SF (5W)

TKI Ferrit IC 12,5 (1W)

TKI Ferrit IC 12,5-10W (10W)

(Unknown) MW 11218

MSC Microwave Ltd MCSM 0616 P-0190-08 (25W)
Raditek RADI-10-15-S3-1WR-60W Fwd-g18 (60W)
UIY UITYCI1220A10T13SF (60W)

api technologies corp. 50W SMA termination TS180M-50W

StarCell Vaclon Varian 919-0110 201/s
Varian MiniVac Controller 2008 Model 929-0290

iii
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Helmholtz Coils

3-channel power supply

Optical Resonator

CF Windows (369 laser)
Lemo cable

Lemo connector (6 pins)
Lemo connector

Pressure measurement

AOM Components

Acousto-optic modulator
Acousto-optic modulator
AOM driver (SUB-D9 port)
Acousto-optic modulator
Voltage-controlled oscillator
Voltage-controlled oscillator
Five-Axis Kinetic mount

Stable mounting

Lasers

369 nm)
399 nm)
)
)

Laser diode (
(

Laser diode (638 nm
(

Laser diode
Laser diode
Fiber collimator

Electro-optic modulator

(EOM)

iv

Low residual ripple power supply Toellner TOE 8733-2

Kurt J. Lesker Company UV Quartz DN16CF VPZL-133Q
Lemo cable Lemo Gmbh FGG.1B.306.CLAD52

Air-tight connector Lemo Gmbh HGG.1B.306.CLLSV
Air-tight connector Lemo Gmbh HGP.00.250.CTLSV
In-house pTrap MPX4100A [92]

AOM (new) 90 MHz ISOMET AOM 1206C-833

AOM 960 MHz Brimrose TEF-1050-50-369

Brimrose VFF-1050-50SPS-B1/B2-C1

AOM 115 MHz Crystal Technology 31110-125

VCO (for old AOM 65 MHz) Mini-Circuits ZX95-100-S+
VCO Mini-Circuits ZX95-200-S+

Newport Five-Axis Aligner 9081-M

Radiant Dyes RD-PDT-B

Nichia NDU1113E 20 mW

Unknown

Thorlabs Mitsubishi ML520G54-01 110 mW

eagleyard photonics EYP-RWE-0980-08020-1500-SOT02-0000
(serial AG-02607) 1 mW

Schéfter+Kirchhoff 60FC-4-A11-01

Photline NIR-MPX800 for 935 laser
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Ton Detection

EMCCD Camera Andor iXon Ultra 890 DU-897U-CS0-EXF X-8188
EMCCD software Andor Solis 64bit 4.28.30001.0
Photo-multiplier tube Hamamatsu R5600P

B AWG Sequencer

o Direct Digital Synthesizer (DDS)
A direct digital synthesizer generates a continuous monochromatic RF signal using
amplitude, frequency, phase, and duration parameters. It calculates a digital ampli-
tude at time ¢ and transfers it to the DAC at sampling rate fs. The digital amplitudes
encode a sinusoidal signal of a given amplitude, frequency, and phase at a given time.
To generate a top-hat 7- or 7/2-pulse, a time is required for which the signal is gen-
erated. Using a DDS is therefore a reasonable choice if only a few qubits need to be
addressed. If multiple qubits need to be addressed simultaneously, it is necessary to
operate one DDS per qubit and add their output signals before the upmixing and
amplification stages of the microwave chain to generate a multi-tone RF field. The

DDS used for experiments with up to three qubits is the VFG150.

o Arbitrary Waveform Generator (AWG)

An Arbitrary Waveform Generator (AWG) is a device for generating arbitrary wave-
forms. Synthesis can be done by precomputing an RF waveform as a set of voltage
amplitudes a,. Given a fixed sampling rate of a DAC, the signal amplitude at time
tn is given by a, = A(t,), so that each waveform is stored in the memory of the
AWG prior to signal generation. A typical sampling rate used in this work is 1 GS/s
(giga samples per second). It is required to synthesize frequencies in the IF range
of 30 — 80 MHz. Creating a longer RF signal for the AWG means more samples to
calculate and store in memory. The key advantage of an AWG over a DDS would be
its ability to encode an arbitrary number of RF tones in amplitudes A(t,) simultane-
ously. An AWG is therefore able to address many qubits simultaneously. In contrast,
one DDS per qubit is required to generate a polyphonic RF signal. As the number

of qubits increases, an AWG becomes advantageous over a DDS, with the drawback
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of the massive data rate required to generate the RF signal.

An Agilent M8190A AWG was used for the experiments requiring four RF tones in parallel,
as used in chapter 4. The bottleneck when using an AWG is the limited memory of
the instrument and the time required to precalculate and upload the waveforms to the

instrument.

The simple method of writing a sequence into the memory of the AWG for each run of
the experiment is time consuming and memory inefficient. At a sampling rate of 1 GS/s
(giga samples per second), an amplitude resolution of 14 bits, and an experiment run time
on the order of 5ms per run of the experiment, 70 MBit of data is required. A typical
experiment presented here to determine the J-coupling as described in chapter 4 consists
of 21 points to sample 21 different phases for a Ramsey readout pulse, 100 repetitions to
achieve the required statistical significance, and two different control qubit states, totaling
up to 294 GBit of AWG data. To save memory and computation time, the sequencing
capabilities of the AWG can be used. The memory in the device is divided into segments.
A segment is a chunk of waveform data that can be selectively transferred to the DAC. Due
to electronic limitations, a segment must contain a minimum number of samples to allow
the hardware to load the data from memory in real time. The minimum segment length is
12336 samples. During playback, the segments played can be selected in a sequence table.

Sequencing allows to reuse parts of the AWG memory.

A typical experiment consists of varying parts of the waveform from measurement step to
measurement step. For each measurement of the J-coupling, a Ramsey-type experiment
with 21 different readout phases was performed to extract a phase of the qubit from a
fit of the oscillating excitation probability. For each step, the pulse sequence is identical
except for the readout pulse, which varies with each step. Therefore, the fixed part of the
waveform can be played for each cycle of the experiment, followed by a 7 /2-readout-pulse,
which is different for each measurement point. A DD-sequence consists of m-pulses and
times with no signal. Although the signal before the readout pulse can be repeated, it is
advantageous for storage that the times between the DD-pulses are not only filled with
zero amplitudes. The sequencing option of the AWG allows to generate a sequence table,
which defines the order in which the segments are to be played. It is advantageous to

predefine a segment that contains only amplitudes of value 0 and has the duration of a
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minimal segment. During the execution of a quantum circuit on a MAGIC trapped-ion
quantum computer, there are several waiting times that allow the qubits to interact. The
segment containing only 0 amplitudes can be repeated in such waiting times as defined
by the sequence table. Since it contains no signal, it can be played at any time without
affecting the coherence of the RF control signals, thus saving memory. To allow the AWG
to jump from one part of its memory to another, e.g. from one segment to another, it
must have a minimum linear playtime. The minimum segment length is therefore 12336
entries. Figure B.1 illustrates a Ramsey type experiment to measure the coupling between
two qubits in the J-tuned case. Uploading a segment to the device has some overhead to
initialize a connection. Therefore, it is advantageous to upload as few segments as possible.
To minimize this overhead, adjacent segments can be combined into a block. As mentioned
above, there is a minimum duration of a segment, but they can be longer. A block is a set of
adjacent segments of minimal length that are combined to form a segment of longer length.
This is the case, for example, when a pulse is longer than a single minimum segment, or
when it crosses the boundary between two minimum segments. These minimum segments
can then be considered as a block and can be loaded into a longer segment in the device

at once. The procedure for calculating the signal for an experiment follows these steps:

1. Loop over each step of the experiment, one step corresponds to one measurement

point to be sampled.
e Loop over each qubit addressed during the experiment.
— Define the start time of the waveform in machine units.
— Calculate waveforms using mathematical expressions.
— Define the stop time of the waveform in machine units.
— Flag if the waveform changes during the experiment.
2. Find the maximal duration of the experiment.
3. Generate minimal segments according to the maximal duration of the experiment.
e Loop over all steps.

— Initialize all segments as empty.

vii
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— Loop over all waveforms in this step. There is a waveform for each qubit in

each pulse in each step.
* Find the start minimal segment.
* Find the stop minimal segment.
x Flag all segments which contain a signal.
x Flag segments variable if their waveform is flagged as variable.
* Find the start sample in the minimal start segment.
* Find the stop sample in the minimal stop segment.

* If the minimal start and stop segment are identical, add the signal to
this segment. Flag the segment as variable, if the waveform is variable

otherwise:

Add waveform samples to the start segment, from start sample in the
segment till the end sample in the segment and flag as variable if the

waveform is variable.

Add waveform samples to the stop segment, from start sample in the
segment till stop sample if the waveform is variable flag the segment

accordingly.

x If the waveform extends over at least three segments, loop over inter-

mediate segments
Add the waveform to intermediate segments.
Flag intermediate segment as variable, if the waveform is variable.
4. Generate Blocks.
e Loop over each step.
— Find adjacent minimal segments that contain a signal.

— Generate a block containing minimal segments. This block might now be

viii
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longer than a single minimal segment.
— Flag the block as variable, if it contains at least one variable segment.
5. Upload blocks to segments in the device.
e Upload constant blocks to segments.
e Upload variable blocks to segments.
6. Calculate the sequence table.

This procedure for minimizing memory requirements for an experiment is graphically il-
lustrated in fig. B.1. The resulting segment table is shown in table B.1. The resulting

sequence table is shown in table B.2.

The sequencing option allows to play a segment in a loop. It is used during pauses that
exceed the minimum segment length. The pause segment will be repeated accordingly. In
addition, the first segment contains no signal and is used to wait for an external trigger.
This external trigger is provided by the real-time experiment control system after the
qubits have been prepared in |0). From this point on, the AWG only performs coherent
qubit control. After the waveform playback from the AWG is finished, the real-time control

system continues with the readout of the qubits’ states.

Although the AWG can loop over segments, it is unlikely to repeat a segment containing
a waveform without phase jumps. Each waveform can contain multiple signals of any
frequency. The architecture of the AWG requires a fixed sample rate, a minimum number of
samples per segment, and a minimum granularity of segment length. Since the experiment
requires a distinct phase of the waveforms, repeating waveforms would require that the
playtime and the signal period match. Since the required frequencies are arbitrary, it is

unlikely to repeat a signal segment.

This method reduces the amount of memory required for an experiment. However, this
method is limited. For example, if a waveform parameter is changed for each step during
the experiment. For example, if the amplitude of a driving field is changed in each step. In
such a case, the entire waveform must be uploaded to the instrument for each step. Thus,

the efficiency of the method depends on the experiment.

ix
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So far, the method has only been optimized for memory consumption of the frequency
generator, but not for computation time or memory consumption on the host computer.
The first step in optimizing the computation time is to divide the procedure into three
parts. In the first part, no actual waveforms are calculated, but the start and stop times
are calculated and assigned to segments. The second part is memory optimization, while
the third part calculates and transfers the waveforms. In contrast to the implemented
method, in which the waveforms are stored in memory and copied from one variable to
another, these multiple storage and copying processes can be optimized. This optimization
will be critical in the future, as the expected longer coherence times and increased number

of qubits will increase the length and complexity of waveforms.
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Figure B.1: An instructive example of a typical multitone signal synthesized for J-tuning
measurements. In this example, two DD-sequences are applied to qubit 1 and 2 for a fixed
evolution time in two steps, and a 7 /2-readout-pulse is applied to qubit 2 at the end. All
waveforms addressing different qubits but assigned to the same step are summed, allowing
a single DAC to produce a waveform that simultaneously addresses multiple qubits. Here,
each signal shown in row 1 corresponds to a m-pulse on qubit 1. The vertical dashed lines
indicate the start and stop times of the pulses. The bottom line shows the segment number
at which a signal starts or stops, assuming the same minimum segment duration. This pulse
sequence can be efficiently stored in AWG memory because the parameter changed from
step 1 to 2 is the phase ¢ of the Ramsey pulse. Although a DD-sequence is used in steps
1 and 2, it is sufficient to store only one in the generator memory. In addition, several
segments do not contain a waveform, so during playback there may be instances of the same
segment containing only amplitudes of value 0. The assigned segments and the resulting
sequence table are shown in table B.1 and table B.2.
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minsegment |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
contains signal? {1 1. 1. 1.0 1 1 1 1 o0 1 1 1 1 O 1 1 O
variable? |O O 0 O 0 0O O O O O O O O O O 1 1 0
combined block 1 # 2 # 3 # 4 #
block variable? 0 # 0 # 0 # 1 #

Table B.1: Exemplary table showing the steps necessary to minimize the usage of AWG
memory, following the example given in fig. B.1. The first row indicates the number of
the minimal segment, and therefore each column corresponds to the time interval of this
minimal segment. The second row indicates whether a signal is present in the minimal
segment. The third row indicates which minimal segments contain waveforms that change
for each step. The fourth row enumerates the combined block that can be written to the
AWGs memory. A combined block contains numerous minimal segments to reduce the
number of signals to upload, saving upload time. The last row indicates, whether or not a
block contains a waveform that changes during the experiment.
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Sequence table

Segment

loops

Contains

Step 1

1

inf

—_ = = = = e

Wait for trig
Block 1
Pause

Block 2
Pause

Block 3
Pause

Block 4 Step 1

Step 2

N N TN RN W RO NN e N W

inf

—_ = = = = e

Wait for trig
Block 1
Pause

Block 2
Pause

Block 3
Pause

Block 4 Step 2

Table B.2: The sequence table of the example is shown in fig. B.1. This sequence table

implements memory efficient playback of the stored waveform. At the first external trigger,

provided by the real-time experiment control system, the sequence is played until the

following wait for trigger segment is reached. The next trigger starts the playback of the

waveform for the second cycle. Since the sequence table ends, the AWG goes to row one

of the sequence table and waits for the next trigger. The third trigger starts the waveform

for step 1 again.
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C FAQUAD ramp using a VFG150

The frequency generator VFG150, is a direct digital synthesizer capable of generating only
top-hat-shaped output amplitudes of a given frequency. The adiabatic ramp needs to
be approximated by such. Even though the device can store 1000 sets of parameters to
generate the waveform, it is necessary to update the memory of the frequency generator at
the run time. The FAQUAD ramp is discretized in defined amplitude steps 64 = 51074
to limit the memory requirements and streaming bandwidth. At the beginning of the
FAQUAD ramp, its slope is significant, making it beneficial to calculate the amplitude in
time steps 6t = 50ns. Overall to save memory and bandwidth, The FAQUAD ramp is
recalculated in time steps of ¢ = 50ns..150ns and afterward, the calculated amplitudes
are rounded towards a multiple of JA. Only when the amplitude changes a new set of

parameters for the frequency generator is generated and transferred.

Limiting the sample time reduces the data rate at the steep slope while limiting the ampli-
tude resolution reduces the data rate required for the part of the FAQUAD ramp featuring
a low slope. The FAQUAD ramp and its approximation are shown in fig. C.1.

3 3
5 x10 ‘ ‘ ‘ ‘ 5 x10

0 0.2 0.4 0.6 0.8 1

(a) (b)

Figure C.1: (a) FAQUAD ramp calculated with 6¢ = 150 ns, a gate time of 7' = 15 ms, and
Qp = 2.14-1071Q;. Here the dimensionless gate time is s = ¢/T. (b) Approximation of the
FAQUAD ramp shown in (a) using a minimal 64 = 1-10~* to limit the data rate required
to update the frequency generators memory.

Xiv



D The ion

D The ion

My successor T. Sriarunothai wrote a very exhaustive collection of properties of the 1"1Yb+
ion [9]. Even though only some of them are relevant for this thesis, it would be incomplete
without this information. T. Sriarunothai allowed me to use his work in my appendix;

Therefore, this section is a faithful replica of his collection of properties.

The detailed information about the energy structure of '"'Yb* ions is summarized in

tables D.1, D.2, and D.3. It is visualized in D.1.

Table D.1: Yb II energy levels and their lifetime. The energy levels are the calculated
values provided by the atomic database from NIST. The experimental observation of the
hyperfine splittings was performed using "' Yb* ions. N/A means the experimental data
is not available.

Term Energy (cm’l) Hyperfine splitting Lifetime Ref.
[93] A/2m (GHz)
281 /2 0 12.642 812118 466 + 0.000 000 000 002 - 26, 27]
P12 27061.82 2.1049 4+ 0.0013 (8.1240.02)ns  [35,36]
2Py 30392.23 1.7508 + 0.0010 (6.1540.09)ns  [94,95]
Dy /s 22 960.80 0.86 4 0.02 (52.74+2.4)ms  [96,97]
D50 24 332.69 0.191 + 0.002 (7.240.3)ms  [98,99]
F7/2 21418.75 3.620 + 0.002 5415 3yr [100-102]
5D[3/2]1 2 33653.86 2.2095 4 0.0011 (37.74+0.5)ns  [97,103]
*D[1/2]1 2 33378.89 N/A N/A
'D[3/2]3/9 34575.37 N/A (28.6 +0.4) ns [103]
'D[5/2]52 37077.59 0.321 +0.018 < 172ms 95, 98]

XV
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Table D.2: Yb II transitions. The upper shows our main transitions with the corresponding
laser wavelength in vacuum. The lower shows the other known transitions with their
references. The energy differences are provided by the atomic database from NIST. [9]

Transition Linewidth AE (em™1) Wavelength Ref.
[93] (nm)

281 /9 <?P1 )9 19.6 MHz 27061.82 369.5 [103,104]
’Dy/p <+°D[3/2]1,  4.2MHz 10693.06 935.2 [103,104]
’Fr/0 <+'D[5/2]55 > 0.9Hz 15658.84 638.6 [98,101,104]
2819 <+'D[3/2]3/  5.4MHz 34575.37 289.139 [93,103,104]
2812 ¥*D[3/2]12  4.2MHz 33653.86 297.056 [104,105]

2812 <% P39 25.8 MHz 30392.23 328.937 [104]

%Sy /9 <+?Dj 5 22.9 Hz 24 332.69 410.97 [98,99]

%81 /5 <+?D3 )5 3.02 Hz 22 960.80 435 [101,106]

281 /5 <+?F7 0.9 nHz 21418.75 467 [100,101]
Dy <+*D[1/2]; 2 N/A 16 418.09 609.1 [107]
*F7/5 <+'D[3/2]3» 5.4 MHz 13156.62 760.072 (103,108, 109]

?F7 /9 <+*Ds o 22.9 Hz 2913.94 3.43-10° [98,110]

Table D.3: Yb II branching ratio. [9]

Initial state Final state Ratio Ref.
P12 281 /2 0.994 99 + 0.000 15 [97]
Dy /s 0.005 01 4 0.000 15
D59 ’F7/ 0.83 £ 0.03 98]
2812 0.17 £ 0.03
Py 281 /2 0.9875 4 0.0006 [95]
Dy /s 0.0017 4 0.0001
’Ds s 0.0108 = 0.0005
*D[3/2]12 %S9 0.982* [111]
Dy /s 0.018*

*Calculated values
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