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Abstract We shed new light on the standard current alge-
bra approach to the nonleptonic two-body decays of single
and double heavy charm baryons. By making use of the com-
pleteness relation for the flavor wave functions of the ground
state baryon 20′ representation we are able to rewrite the
results of the current algebra approach in terms of the seven
topological tensor invariants describing the decays. The rep-
resentation of the current algebra results in terms of topo-
logical tensor invariants depends only on the initial and final
state of the process. The summation over intermediate states
inherent to the current algebra result is automatically taken
care of in the tensor representation. In this way one arrives
at a new, quick and very compact assessment of the results
of the current algebra/pole model calculation. For example,
one can quickly identify the decays in which the p.v. S-wave
amplitude is predicted to vanish implying zero polarization
asymmetries in these decays. We provide tables of the val-
ues of the seven topological tensor invariants for all Cabibbo
favored and singly and doubly Cabibbo suppressed nonlep-
tonic single and double charm baryon decays. In total we
treat 196 charm baryon decays. We also discuss the charm
preserving �C = 0 decays of single charm baryons and the
usual hyperon decays.

1 Introduction

The experimental landscape of charm baryon decays has
considerably changed in 2015 through the detection of �+

c
pair production by the BESIII collaboration at the Beijing
e+ e− collider BEPCII [1]. Not only was it now possible
to determine the absolute branching ratios of various non-

Communicated by Wolfgang Hollik.

a e-mail: groote@ut.ee (corresponding author)

leptonic �c decays through tagging techniques (see also
Ref. [2]), but the BESIII collaboration could also deter-
mine the asymmetry parameters of the nonleptonic two-body
decays �+

c → pK 0
S, �0π+, �+π0 and �0π+ [3] (see also

the review [4]). The decay asymmetry parameter of the decay
�0

c → �−π+ was recently measured by the Belle collabo-
ration with the result α�0

c→�−π+ = −0.60 ± 0.04 [5].
Both the absolute branching ratios and the asymmetry

parameters provide essential input for attempts to theoret-
ically understand the nonleptonic two-body decays of charm
baryons. The first Cabibbo suppressed decay �c → p φ was
measured by the CLEO collaboration in 1995 [6], followed
by more precise measurements of this mode later on [7,8].
At a later stage the BESIII collaboration measured the singly
Cabibbo suppressed decay �+

c → p η [9], later on made
more precise in Ref. [10] including an improved upper limit
on the Cabibbo suppressed decay �+

c → p π0. By using
double tag techniques, the BESIII collaboration also iden-
tified the decay �+

c → nK 0
s π+ involving a neutron [11]

which raises the hope that final states including a neutron
can be measured in the future. A considerably larger data
sample of �+

c pairs is expected in the near future at BEPCII.
The rate of �+

c pairs is to be increased by a factor of 16
from a total of about 105 to 1.6 × 106 �+

c pairs [12] which
will considerably enlarge the data sample of �+

c decays. At
the same time an approved energy upgrade will increase the
energy of BEPCII to 4.9 GeV, opening the possibility of �c

pair production. If the energy of the BEPCII could be further
increased to a little above 4.95 GeV one could also detect the
production of �+

c and �0
c pairs.

Absolute values of the branching fractions of the �+
c

and �0
c have recently become available again from the

BELLE collaboration through tagging techniques in the
decays B− → �̄−

c �0
c and B0 → �̄−

c �+
c [13,14]. Using

similar techniques one could also determine the absolute val-
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ues of the branching fractions of the decays of the 
0
c e.g.

in the kinematically accessible decay B− → 
0
c �+

c [15].
This would be quite welcome since the absolute branching
ratios of the decays of the 
0

c are experimentally unknown
at present.

The LHCb collaboration has shown that it is now even
possible to detect doubly Cabibbo suppressed (DCS) non-
leptonic charm baryon decays by their measurement of the
decay �+

c → pφ [16]. Furthermore, the LHCb collaboration
recently provided results on a branching ratio measurement
of the charm conserving �C = 0 singly Cabibbo suppressed
(SCS) decay �0

c → �+
c π− [17]. Finally, the LHCb collabo-

ration has extended the scope of possible charm baryon decay
measurements by presenting results on the nonleptonic dou-
ble charm baryon two-body decay �++

cc → �+
c π+ [18].

It is apparent that the experimentalists have provided us
with a rich sample of results on exclusive charm baryons
decays with the hope of much more to come. This has led to an
upsurge of interest in charm baryon decays in the theoretical
community documented by the many recent papers on this
subject.

Basic to the current–current (more precisely coined
current×current) quark model description of nonleptonic
charm baryon two-body decays are the five generic quark
diagrams depicted in Fig. 1 which are also termed topolog-
ical diagrams. Diagrams Ia and Ib are usually referred to as
factorizable diagrams or tree diagrams while diagrams IIa,
IIb and III are referred to as nonfactorizable or W -exchange
diagrams. In this paper we concentrate on the structure of
the W -exchange diagrams IIa, IIb and III which we relate
to the s- and u-channel contributions of the current algebra
approach.

The theoretical papers on exclusive two-body charm
baryons decays roughly fall into three classes which differ
by their dynamical input. In the simplest case one exploits
SU(3) symmetry to relate the amplitudes of different charm
baryon decays [19–29]. An open issue is whether to apply
SU(3) symmetry to the invariant or to the helicity amplitudes
of these decays. This will make a big difference for decays
involving the η and η′ mesons. The SU(3) approach has
been extended to include SU(3) symmetry breaking effects
[20,27]. Even more insight can be gained by incorporating
the topological diagram approach [30–33] into the SU(3)
analysis where the topological diagrams are characterized by
the five diagrams Fig. 1 described above. It is, however, not
sufficient to simply associate a given decay with its accom-
panying topological diagrams, but one has to calculate the
appropriate weight factors for each decay. The SU(3) fit in
Ref. [34] using topological diagrams must therefore be con-
sidered to be invalid.

In the constituent quark model approach one attempts to
calculate the nonleptonic transitions represented by Fig. 1

in terms of constituent quark model transitions. While dia-
grams Ia, Ib and IIb are directly accessible to a constituent
quark model calculation [35,36], diagrams IIa and III involve
the creation of a quark pair from the vacuum in addition to
the constituent quark model transitions. In the covariantized
constituent quark model (CCQM) calculations [30,37] the
quark pair creation from the vacuum is effectively described
by the 3P0 model where the strength of the 3P0 interaction
is fixed by a fit to the data. Both of the above papers are
based on an approach developed much earlier by Hussain
and Rotelli [38] and by Körner and Gudehus [39] for study-
ing nonleptonic hyperon decays. In the covariant confined
quark model calculations of Refs. [40–42] the five diagrams
in Fig. 1 are interpreted as multiloop Feynman diagrams with
nonlocal interactions describing the three- and four-point
hadron-quark vertices.

Even more dynamics is added in the standard current alge-
bra plus pole model approach [21,43–54]. This approach has
its roots in the description of nonleptonic hyperon decays
developed in the 1960s [55–58] which is based on current
algebra and the soft pion theorem. Even if the criterion of a
soft pseudoscalar meson is not always satisfied in the nonlep-
tonic decays of single and double charm baryons (in excep-
tion are the �C = 0 single charm baryon decays), the current
algebra approach to charm baryon decays provides a definite
calculational framework which can be tested against exper-
iment. In a recent series of papers Cheng and collaborators
presented a detailed analysis of the nonleptonic decays of sin-
gle and double charm baryons using a variant of the current
algebra approach in which the purported current algebra con-
tributions of the topological diagram III in Fig. 1 are dropped
[59–62]. The authors of Ref. [36] make use of the current
algebra approach in addition to calculating the diagram I and
IIb transitions in the constituent quark model. This possibly
amounts to a double counting of the contribution from the
W -exchange diagram IIb.

Our paper is structured as follows. In Sect. 2 we write
down the effective Hamiltonian for the nonleptonic current–
current transition. In Sect. 3 we discuss issues of SU(4) and
SU(3) relevant to the nonleptonic single and double charm
baryon decays. In particular, we introduce the 20 ground
state baryons comprising the 20′ representation of SU(4)
and write down the third rank flavor tensors that are asso-
ciated with them. We present the orthonormality and com-
pleteness relation of the third rank flavor tensors of the 20′
representation. We introduce a minimal set of seven topo-
logical tensor invariants in flavor space, built from the ten-
sor representations of the ground state baryons, the ground
state pseudoscalar mesons, and the effective Hamiltonian.
The seven tensor invariants are each associated with one of
the corresponding topological quark diagrams.

In Sect. 4 we present tables of the values of the topological
tensor invariants for the antitriplet and sextet single charm
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Ia Ib IIa IIb III

Fig. 1 The topological diagrams contributing to the nonleptonic charm baryon decays

baryon decays, the �C = 0 single charm baryon decays,
the triplet double charm baryon decays to the antitriplet
and sextet single charm baryons, and the double charm
baryon decays to the light baryon octet and heavy D, Ds

mesons, each for the Cabibbo favored (CF), singly Cabibbo
suppressed (SCS) and doubly Cabibbo suppressed (DCS)
decays. Altogether we list the values of the topological ten-
sor invariants for 196 single and double nonleptonic charm
baryon decays. For each class of decays we explicate the
linear relations among the associated tensor invariants. For
completeness we also list the values of the tensor invariants
for the ordinary nonleptonic hyperon decays.

In Sect. 5 we briefly recapitulate the current algebra plus
pole model approach to nonleptonic charm baryon decays
where we closely follow the presentation and notation of
Refs. [59–62]. Using the completeness relation for the ground
state baryons we explicitly derive the relation of the so-called
s-channel and u-channel contributions of the current algebra
approach to the topological tensor invariants. The represen-
tation of the current algebra results in terms of topological
tensor invariants depends only on the initial and final state of
the process. The summation over intermediate states inher-
ent to the current algebra result is automatically taken care
of in the tensor representation. In Sect. 6 we discuss several
explicit examples, leading to the exposure of general features
of the topological tensor and current algebra approaches in
Sect. 7. Sect. 8 contains our summary and outlook, while
technical issues are treated in five Appendices.

In Appendix A we list explicit values of the tensor com-
ponents of the ground state baryons, the ground state pseu-
doscalar mesons, and the effective Hamiltonian. Appendix B
contains the derivation of the completeness relation for the
members of the 20′ representation. In Appendix C we define a
set of flavor tensor invariants describing the strong and weak
transitions 〈B f M |Bi 〉 and 〈B f |Heff |Bi 〉 involving the charm
baryon states, the values of which are needed for the com-
parison of the current algebra and the topological diagram
approaches. We provide tables of the values of the strong
and weak tensor invariants needed for the example cases dis-
cussed in the main text. In Appendix D we clarify the impli-
cations and shortcomings of the variant of the current algebra

approach introduced in Refs. [59–62]. In Appendix E we are
dealing with the spin kinematics.

2 The effective weak current–current Hamiltonian

The �C = 1 effective Hamiltonian for the Cabibbo favored
(CF) decays is given by

Heff = GF

2
√

2
VcsV

∗
ud (c+O+ + c−O−) + H.c. (1)

where the four-quark operators read

O± = (s̄c)(ūd) ± (ūc)(s̄d) (2)

with (q̄1q2) = q̄1γμ(1 − γ5)q2.
The �C = 1 singly Cabibbo suppressed (SCS) decays

are induced by two distinct effective Hamiltonians which are
labeled by a and b. They read

Heff(a) = GF

2
√

2
VcsV

∗
us (c+O+(a) + c−O−(a)) + H.c. (3)

Heff(b) = GF

2
√

2
VcdV

∗
ud (c+O+(b) + c−O−(b)) + H.c. (4)

withO±(a) = (s̄c)(ūs)±(ūc)(s̄s) andO±(b) = (d̄c)(ūd)±
(ūc)(d̄d), respectively. Using e.g. the Wolfenstein
parametrization one finds that VcsV ∗

us = −VcdV ∗
ud + O(λ4)

from unitarity, i.e. to a very good approximation one has
VcsV ∗

us = −VcdV ∗
ud which we shall always use.

The �C = 1 doubly Cabibbo suppressed decays (DCS)
are induced by the effective Hamiltonian

Heff(c) = GF

2
√

2
VcdV

∗
us (c+O+(c) + c−O−(c)) + H.c. (5)

where O±(c) = (d̄c)(ūs) ± (ūc)(d̄s).
Finally, the �C = 0 charm baryon decays are induced by

the two SCS effective Hamiltonians

Heff(a
′) = GF

2
√

2
VusV

∗
ud

(
c+O+(a′) + c−O−(a′)

) + H.c.

(6)

Heff(b
′) = GF

2
√

2
VcdV

∗
cs

(
c+O+(b′) + c−O−(b′)

) + H.c.

(7)
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with O±(a′) = (ūs)(d̄u) ± (d̄s)(ūu) and O±(b′) =
(d̄c)(c̄s) ± (c̄c)(d̄s), respectively. From unitarity one has
VcdV ∗

cs = −VusV ∗
ud which again is true up to O(λ4) in the

Wolfenstein parametrization.
In this paper we will mostly be concerned with the so-

called W -exchange contributions which, according to the
Körner–Pati–Woo (KPW) theorem [63,64], are related to
the operators O− = (q̄1q2)(q̄3q4) − (q̄3q2)(q̄1q4) only, i.e.
induced by the effective Hamiltonian

Heff(O−) = GF

2
√

2
Vq2q1V

∗
q3q4

(c−O−) + H.c. (8)

3 SU(4), SU(3) and topological tensor invariants

The 20 ground state baryons with spin parity quantum num-
bers J P = 1/2+ make up the 20’ representation of SU(4)
associated with the Young tableaux

.

In the C = 0 sector one has the usual light baryon octet
comprised of the eight light baryons (p, n, �0, �+, �0,
�−, �+, �0). The C = 1 single charm sector contains the
antitriplet charm baryons (�+

c , �+
c , �0

c) and the sextet charm
baryons (�+

c , �0
c , �−

c , �′+
c , �′ 0

c , 
0
c).

In HQET (or in the spectator quark model) the nineC = 1
antitriplet and sextet single charm baryons can be viewed as
the 21 members of the 21 representation of the approximate
light spin–flavor symmetry group SU(6) with the subgroup
SU(2)×SU(3). The decomposition reads

21 ⊂ 1 ⊗ 3 ⊕ 3 ⊗ 6 (9)

where 1 and 3 denote the J = 0 and J = 1 representa-
tions of spin SU(2) with dimensions 2J + 1. The SU(6)
spin–flavor wave functions of the antitriplet and sextet single
charm baryons can be found e.g. in Ref. [60].

Finally, the C = 2 double charm baryons are made up by
the triplet of the double heavy charm baryons (�++

cc , �+
cc,


+
cc). In Table 1 we list the quark content, the quantum num-

bers and, when available, the experimental mass values [65]
of the 12 charm baryon states. The masses of the double
charm states �+

cc and 
+
cc have not been measured yet. For

�+
cc we assume equality of the mass value with �++

cc , drop-
ping, however, the fifth digit and the error specification. For

+

cc we list the mass prediction of Refs. [37,66] based on the
one-gluon exchange model of de Rujula, Georgi and Glashow
which features a Breit–Fermi spin–spin interaction term [67].
In as much as the model prediction (dated from 1992) for the
mass of the �cc iso-doublet of 3621 MeV is very close to the
measured value of 3621.2±0.7 MeV [65], we feel quite con-

fident about the predicted mass of the 
+
cc listed in Table 1

based on the same model calculation [37,66].
In the charm sector the single charm baryons �

++,+,0
c

decay dominantly via one-pion emission while the dominant
decay modes of the �′+

c and �′ 0
c are the one-photon emis-

sion modes. The remaining seven single and double charm
baryons (�+

c , �+
c , �0

c , 
0
c , �++

cc , �+
cc, 
+

cc) decay via weak
interactions. An important class of these weak charm baryon
decays are their nonleptonic two-body decays into a ground
state baryon with J P = 1/2+ and a pseudoscalar meson
with J P = 0−. The two-body nonleptonic decays of the
seven single and double charm baryons (�+

c , �+
c , �0

c , 
0
c ,

�++
cc , �+

cc, 
+
cc) are the subject of this paper.

In this paper we will not be concerned with the 20 C =
0, 1, 2, 3 J P = 3/2+ ground state baryons which, in SU(4),
belong to the 20 representation with the associated Young
tableaux

.

The properties of the 20 representation are discussed in
Ref. [66]. In principle, the states of the 20 representation
could contribute as intermediate states in the current alge-
bra plus pole model approach discussed in Sect. 5 but are
prevented from contributing as intermediate states by the
KPW theorem [63,64] which states that the contraction of
the flavor antisymmetric current–current operator with a fla-
vor symmetric final state configuration is zero in the SU(3)
limit.

It is quite illuminating to represent the baryon flavor wave
functions as third rank tensors Babc in flavor space instead of
the second rank tensors Bb

a frequently used in the literature.
In this way one can keep track of the quark content of the
baryons. Moreover, in the transitions involving baryons one
can identify the flavor flow in the transitions which directly
leads to the concept of topological diagrams and the topo-
logical tensor invariants associated with them. Explicit rep-
resentations of the third rank flavor tensors of the twenty
J P = 1/2+ ground state baryons are given in Appendix A.
For the ground state baryons and mesons we have used the
phase conventions of Lichtenberg [68].

The flavor wave functions of the J P = 1/2+ ground state
baryons satisfy a Jacobi-type identity which reads

B

a[bc] + B


b[ca] + B

c[ab] = 0, (10)

for each of the flavor wave functions of the ground state
multiplet, where 
 = 1, . . . , 8 in SU(3) and 
 = 1, . . . , 20
in SU(4). They are normalized and orthogonal according to

∑

k,m,n

Bk[mn]

 B
′

k[mn] = δ
′

 . (11)
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Table 1 Ground state charm baryon states with J P = 1/2+. The square and curly brackets [ab] and {ab} denote antisymmetric and symmetric
flavor label combinations

Notation Quark content SU(3) (I, I3) S C Mass (MeV)

�+
c c[ud] 3 (0, 0) 0 1 2286.46 ± 0.14

�+
c c[su] 3 (1/2, 1/2) −1 1 2467.95 ± 0.19

�0
c c[sd] 3 (1/2,−1/2) −1 1 2470.99 ± 0.40

�++
c cuu 6 (1, 1) 0 1 2453.97 ± 0.14

�+
c {cud} 6 (1, 0) 0 1 2452.9 ± 0.4

�0
c cdd 6 (1,−1) 0 1 2453.75 ± 0.14

�′+
c c{su} 6 (1/2, 1/2) −1 1 2578.4 ± 0.5

�′ 0
c c{sd} 6 (1/2,−1/2) −1 1 2579.2 ± 0.5


0
c css 6 (0, 0) −2 1 2695.2 ± 1.7

�++
cc ccu 3 (1/2, 1/2) 0 2 3621.2 ± 0.7

�+
cc ccd 3 (1/2,−1/2) 0 2 3621


+
cc ccs 3 (0, 0) −1 2 3710

Furthermore, they satisfy the completeness relation

∑




B

k[mn]B

b[cd]

 = 2

6
(δbk δ

c
mδdn − δbk δ

d
mδcn)

−1

6
(δbmδcnδ

d
k − δbmδdn δck)

−1

6
(δbnδ

c
kδ

d
m − δbnδ

d
k δcm). (12)

Contracting the completeness relation (12) with δkb δmc δnd one
obtains the dimension d = N (N 2 − 1)/3 of the ground state
representation in SU(N ) which agrees with the dimension of
the representation calculated according to the hook rule with
the result

dim

( )
= N (N + 1)(N − 1)

3 · 1 · 1
= 1

3
N (N 2 − 1).

(13)

One thus obtains d = 8 and d = 20 for SU(3) and SU(4),
respectively, as expected.

The completeness relation (12) is central to the chain of
reasoning in Sect. 5 which, in the limit of SU(3) and the
absence of hyperfine interactions, links the results of the cur-
rent algebra approach to a linear superposition of topological
reduced matrix elements with coefficients given by the topo-
logical tensor invariants. For the interested reader we provide
an explicit proof of the completeness relation in Appendix B.
Using the completeness relation we never invoke SU(4) sym-
metry but rather make use of the SU(3) symmetry of the
separate C = 0, C = 1 and C = 2 sectors of the complete-
ness relation (12). For a given flavor configuration defined
by the in and out states, the sum over intermediate states

 in Eq. (12) extends either over one of the ground state
baryons or, in the case of the flavor degenerate pairs of states
(�0, �0), (�+

c , �+
c ), (�0

c, �
′ 0
c ) and (�+

c , �′+
c ), over maxi-

mally two ground state baryons. In most of the cases analyzed
in this paper, due to symmetry and constituent quark model
considerations only one state of the flavor degenerate pair
of states contribute as intermediate state. When both flavor
degenerate states contribute to a given intermediate state we
assume mass degeneracy of the two states to sum the two
contributions. More details can be found in Sect. 5.

In flavor space the ground state to ground state transi-
tions 1/2+ → 1/2+ + 0−(1−) induced by the antisymmet-
ric flavor-changing tensor H [q2q4]

[q1q3] representing the effective
HamiltonianHeff (O−) in Eq. (8) are represented by the seven
topological tensor invariants

I−
1 (
, 
′) = Ba[bc]


 B
′
a[bc′]M

d
d ′ H

[c′d ′]
[cd]

I−
2 (
, 
′) = Ba[bc]


 B
′
b[c′a]M

d
d ′ H

[c′d ′]
[cd]

I3(
, 

′) = Ba[bc]


 B
′
a[b′c′]M

d
c H

[c′b′]
[db]

I4(
, 

′) = Bb[ca]


 B
′
a[b′c′]M

d
c H

[c′b′]
[db]

Î3(
, 

′) = Ba[bc]


 B
′
a[b′c′]M

c′
d H [db′]

[cb]
Î4(
, 


′) = Ba[bc]

 B
′

b′[c′a]M
c′
d H [db′]

[cb]
I5(
, 


′) = Ba[bc]

 B
′

a′[b′c′]M
c′
c H [a′b′]

[ab] (14)

for the baryonic transitions 
′ → 
, where the fourth rank fla-
vor changing tensor H [q2q4]

[q1q3] takes the values ±1 as specified
in Appendix A. A summation over doubly occurring indices
in Eq. (14) is implied. In the present application in which we
consider various SU(3) subsector transitions, the summation
runs over the three light quarks (u = 1, d = 2, s = 3) and
the charm quark which we label as c = 4. After having used
the Jacobi identity (10) and/or by rearranging tensor labels
including the exchange of dummy summation indices, the
set of seven tensor invariants comprise the minimal set of
possible tensor contractions. For example, the tensor invari-
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ant I ′
5(
, 


′) = Ba[bc]

 B
′

b′[c′a′]M
c′
c H [a′b′]

[ab] is redundant since
it can be seen to be equal to I5(
′, 
) by simply rearrang-
ing the tensor labels. The list (14) contains only connected
tensor contractions. We have thus not included the tadpole-

type unconnected tensor contraction Ba[bc]

 B
′

a[bc]M
d
d ′ H

[cd ′]
[cd]

which vanishes for the �C = 1 transitions since H [cd ′]
[cd] = 0

(see Appendix A).
In Table 2 the SU(3) and SU(2) properties of the fourth

rank flavor changing tensor are listed. Note that each of the
tensors H [su]

[cs] and H [du]
[cd] inducing the SCS transition trans-

forms separately as 6 ⊕ 3 in SU(3). Only their difference
H [su]

[cs] − H [du]
[cd] transforms as the 6 representation in SU(3)

as can be explicitly verified by using the Clebsch–Gordan
tables of Kaeding [69]. In Fig. 2 we display the weight dia-
grams of the 6 and 3 representations where we have marked
the locations of the CF, SCSa, SCSb and DCS effective quark
transitions in the two weight diagrams. When taking the dif-
ference of the two SCS contributions one remains with a
U -spin triplet at the left boundary of the 6 weight diagram.
We have somewhat dwelt on this point because we have not
found an adequate discussion concerning this cancellation in
the literature.

We mention that the reduction to a minimal set of ten-
sor invariants has not been attained in Refs. [31,33]. As
an example we take the Cabibbo enhanced decays of the
antitriplet charm baryons. The authors of Ref. [33] introduce
six and three topological tensor invariants each for the topol-
ogy classes IIa and III where only two and one are needed
(I3, I4 and I5, resp.) while Kohara [31] defines four and one
topological tensor invariants for the same topology classes
IIa and III where, as before, only the two invariants I3, I4
and the invariant I5 are needed. This makes it quite cumber-
some to compare mutual results. Note that the distinction of
whether the strange quark from the charm quark transition
ends up in the meson or the baryon for the topology class IIa,
as done in Ref. [33], is not warranted in SU(3).

Let us briefly pause to discuss the charge conjugation
properties of the seven tensor invariants (14). In flavor space
the charge conjugation operation raises or lowers the ten-
sor indices, i.e. one has B̄a[bc]


 = B

a[bc], B̄


a[bc] = Ba[bc]

 ,

M̄b
a = Ma

b , and H̄ [cd]
[ab] = H [ab]

[cd] . As an example we consider
the charge conjugation operation on the tensor invariant I3.
One has

Ī3(
, 

′) = B


a[bc]B
a[b′c′]

′ Mc

d H
[db]
[c′b′] = Î3(


′, 
). (15)

Similarly one has Ī4(
, 
′) = Î4(
′, 
), Ī−
1,2(
, 


′) =
I−
1,2(


′, 
), and Ī5(
, 
′) = I5(
′, 
). Therefore, there are two
antisymmetric and five symmetric tensor combinations under
the flavor charge conjugation operation. The two antisym-
metric combinations are

( Ī3 − ¯̂I3)(
, 
′) = −(I3 − Î3)(

′, 
),

( Ī4 − ¯̂I4)(
, 
′) = −(I4 − Î4)(

′, 
). (16)

They would contribute to the parity violating (p.v.) amplitude
A of Sect. 5. The five symmetric combinations read

( Ī3 + ¯̂I3)(
, 
′) = +(I3 + Î3)(

′, 
)

( Ī4 + ¯̂I4)(
, 
′) = +(I4 + Î4)(

′, 
)

Ī−
1 (
, 
′) = I−

1 (
′, 
)
Ī−
2 (
, 
′) = I−

2 (
′, 
)
Ī5(
, 


′) = I5(

′, 
). (17)

They would contribute to the parity conserving (p.c.) ampli-
tude B of Sect. 5. Note, however, that the dynamics of the tree
diagram contributions leads to an extra factor of (m1 − m2)

in the case of the p.v. amplitude A which implies that the tree
diagram invariants also contribute to the amplitude A.

Returning to the topological analysis one can associate
each of the tensor invariants (14) with one of the topolog-
ical diagrams in Fig. 1 by following the flavor flow in the
diagrams. It is important to realize that it is not sufficient to
just associate a given decay with a given set of topological
diagrams. Instead, one needs to calculate the projection of
that given decay onto the topological diagrams in terms of
the topological tensor invariants. The association reads

(I−
1 , I−

2 ) ←→ diagrams Ia, Ib

(I3, I4) ←→ diagram IIa (18)

( Î3, Î4) ←→ diagram IIb

I5 ←→ diagram III. (19)

Note that this relation is not one-to-one. For example, from
the flavor flow the decay �+

c → �0K+ can be seen to be
contributed to by the topology IIa. However, from an explicit
calculation one finds that only the topological tensor invariant
I4 becomes populated. This has important ramifications for
the structure of the decay as will be discussed in Sect. 4.

To conclude, in flavor space a general amplitude A f ki

describing the decay Bi → B f + Mk can be expanded along
seven topological reduced amplitudes T j with coefficients
given by the seven topological tensor invariants I−

1 , . . . , I5.
One has

A(Bi
H−→ B f Mk) = A f ki =

∑

j

I jf ki T j

j = 1−, 2−, 3, 4, 3̂, 4̂, 5 (20)

where the Bi and B f belong to some given SU(3) repre-
sentation. The T j are the topological invariant amplitudes

of the process while the tensor invariants I jf ki project onto
these invariant amplitudes. Put in a different language, the
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Table 2 SU(3) and SU(2) properties of the effective �C = 1 and �C = 0 Hamiltonian Heff (O−) in Eq. (8), represented in flavor space by the
fourth rank tensor H [q2q4]

[q1q3]

Y I3 SU (3) �I �U �U3 �V

CF H [su]
[cd] 2/3 −1 6 1 1 1 0

SCS H [su]
[cs] −1/3 −1/2 6 ⊕ 3 1/2 1, 0 0, 0 1/2

H [du]
[cd] −1/3 −1/2 6 ⊕ 3 1/2 1, 0 0, 0 1/2

H [su]
[cs] − H [du]

[cd] −1/3 −1/2 6 1/2 1 0 1/2

DCS H [du]
[cs] −4/3 0 6 0 1 −1 1

�C = 0 H [ud]
[su] −1 1/2 8 1/2 1 −1 1/2

H [dc]
[cs] −1 1/2 8 1/2 1 −1 1/2

Fig. 2 Weight diagrams of the
sextet (left) and antitriplet
(right) representation of the
effective weak Hamiltonian. The
locations of the CF, SCS and
DCS transitions are marked by a
circle dot symbol �

+1

+2/3
0

−4/3

−1 −1/3

CF

SCS
a,b

DCS

6

U V

3

Y

I
0

−1/3

+2/3
3
_

−1/2 +1/2

SCS

3

Y

I

a,b

topological tensor invariants I jf ki would correspond to SU(3)
Clebsch–Gordan coefficients while the reduced matrix ele-
ments T j would correspond to the SU(3) invariant ampli-
tudes. All SU(3) relations between given transition ampli-
tudes including the subclasses of I , U and V sum rules are
implicit in the expansion (20).

In the general case one is overcounting the number of ten-
sor invariants in the expansion (20), i.e. the number of signif-
icant SU(3) invariants can generally be less than the number
of seven SU(3) invariants in Eq. (20). In general, the rank of
the coefficient matrix I jf ki linking A f ki with T j is less than
seven. This implies that one cannot, in general, determine
the reduced topological amplitudes T j from a given set of
experimentally measured amplitudes A f ki . In such a case
there will be a number of linear relations among the seven
tensor invariants I jf ki which will be commented on and writ-
ten down for the different SU(3) transitions treated in this
paper. Some of the linear relations involve tensor invariants
of the same topology class. In such a case the linear rela-
tions can be obtained by combining the information on the
symmetry or antisymmetry of the (u, d, s) light quark com-
ponents of a given class of charm baryons with the use of the

Jacobi identity. The remaining linear relations between ten-
sor invariants involving different topology classes cannot be
obtained by mere tensor manipulations. We conjecture that
one needs Schouten type identities to derive these additional
tensor identities. In this paper we use linear algebra meth-
ods to construct these additional linear relations explicitly.
With the help of the linear relations between tensor invari-
ants one can recombine the topological invariant amplitudes
to a minimal set of significant (nontrivial) topological invari-
ant amplitudes. However, it should be clear that this set of
minimal reduced amplitudes is not unique.

The flavor space tensor contractions represent a conve-
nient way of calculating Clebsch–Gordon coefficients enter-
ing in nonleptonic charm baryon decays. They were first
introduced in Ref. [30] which also contains some supple-
mentary background material. The values of the topolog-
ical tensor invariants for all Cabibbo favored (CF), singly
Cabibbo suppressed (SCS) and doubly Cabibbo suppressed
(DCS) nonleptonic charm baryon decays needed in this paper
are for instance given in Tables 3, 4, 5, 6 and 7.
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The transition to the isoscalar states are written in terms of
the ideally mixed states ηω = 1√

2
(uū+dd̄) and ηφ = ss̄. For

each decay we have factored out the products of the denomi-
nator factors appearing in the flavor space wave functions, the
inverse of which appear as factors multiplying the amplitude
of the respective decays.

4 Tables of the topological tensor invariants

In this section we proceed to discuss the various classes of
charm baryon decays. They are classified according to the
SU(3) transitions that specify the decays. Even though we
do not discuss the factorizable contributions, we also list the
values of the tensor invariants I−

1 and I−
2 since they enter

in the linear relations between the seven O− induced tensor
invariants. The corresponding tensor invariants I+

1 and I+
2

induced by the operator O+ can be easily obtained from I−
1

and I−
2 as described in Appendix A.

For the transitions involving the isospin zero neutral
meson states we separately list results for the octet state
η8 = (uū + dd̄ − 2ss̄)/

√
6 and the singlet state η1 =

(uū + dd̄ + ss̄)/
√

3. The physical η and η′ states are lin-
ear superpositions of these two states according to

η = cos θη8 − sin θη1 η′ = sin θη8 + cos θη1 (21)

with θ = −15.4◦ [70,71]. We also list the transitions into the
ideally mixed states ηω = (uū + dd̄)/

√
2 and ηφ = ss̄ with

obvious applications to the corresponding 1/2+ → 1/2+ +
1− transitions involving the ideally mixed vector states ω and
φ.

4.1 The charm baryon decays Bc(3)
H(6)−→ B(8) + M(8, 1)

The nonleptonic two-body decays of the three antitriplet
charm baryons (�+

c , �+
c , �0

c) belong to this class of decays.
The SU(3) decomposition of the transitions read (we use the
notation of Kaeding for multiple SU(3) representations [69])

3 → 6 ⊗ 8 ⊗ 8 = 3 · 3 ⊕ 4 · 6 ⊕ 5 · 15

⊕15 ′ ⊕ 21 ⊕ 24 ⊕ 2 · 42 ⊕ 60. (22)

As explained in Sect. 3, the effective Hamiltonian induc-
ing the W -exchange contributions transforms as a sextet in
SU(3). For the SCS decays this comes about by a cancellation
of the antitriplet contributions when the two effective Hamil-
tonians Heff(c → s; s → u) and Heff(c → d; d → u) are
subtracted from one another. The 3 representation appears
three times in the decomposition. Therefore, there are three
SU(3) invariant amplitudes. This in turn implies that there
are four linear relations among the seven topological tensor

invariants. They read

I−
1 = I−

2 , 2 Î3 + Î4 = 0,

I3 + I4 = 2I5, 2I−
1 = I3 + Î3. (23)

The relation I−
1 = I−

2 can be obtained by rewriting the tensor
labels of the parent baryon in the tensor invariant I−

2 in the
way B1

b[c′a] → −B1
a[c′b] → B1

a[bc′] by realizing that the
indices a and b refer to light quarks. Similarly one can proof
2 Î3 + Î4 = 0 by realizing that a and c′ are the light quarks
in the parent baryon B1

b′[c′a] and using the Jacobi identity

B1
b′[c′a] + B1

c′[ab′] + B1
a[b′c′] = 0.

A more direct access to a minimal set of independent ten-
sor contractions is to switch to second rank tensor represen-
tations of the antitriplet charm baryons, the octet baryons
and the effective Hamiltonian [19,29]. As a result one now
has only three independent tensor contractions, the number
of which agrees with the above number of SU(3) invariants.
The linear relations (23) can be seen to be in agreement with
the analysis of Jia et al. [29].

Equations (23) are very useful when checking the results
for the topological tensor invariants I j ( f ki) that will be listed
later on. Note in particular that the linear relations (23) do not
separately hold for the contributions of the two transitions (a)
c → s; s → u and (b) c → d; d → u. They can be seen to
hold true only for the sum of the two contributions. Note that
the last equation does not hold for all decay processes listed
in Tables 3, 4, 5, 6 and 7, in particular not for decays into η1

and, related to that, into ηω and ηφ , as those are members of
(a mixture of M(8) and) M(1).

Therefore, we also need to discuss the transition Bc(3)
H(6)−→

B(8)+ M(1) involving the singlet meson state M(1). In this
case the SU(3) decomposition reads

3 → 6 ⊗ 8 ⊗ 1 = 3 ⊕ 6 ⊕ 15 ⊕ 24. (24)

Thus there is only one SU(3) invariant amplitude describing

the transition Bc(3)
H(6)−→ B(8) + M(1) which means that all

transitions involving a singlet meson state M(1) are propor-
tional to one another which is manifest in the decays into η1.
In the corresponding rows of Tables 3, 4, 5, 6 and 7 one has

I−
1 = I−

2 = 0, I3 = −2I4 = 2 Î3 = − Î4 = 4I5. (25)

The vanishing of the tree diagram invariants can be argued
again directly, as the single quark line transition 1 → 6 ⊗
1 ⊗ 3 = 8 ⊕ 10 into singlet meson states vanishes in SU(3).

We list the values of the seven topological tensor invari-
ants separately for the Cabibbo favored (CF) (Table 3), singly
Cabibbo suppressed (SCS) (Tables 4, 5 and 6), and doubly
Cabibbo suppressed (DCS) (Table 7) antitriplet charm baryon
decays. The SCS decays are induced by the two SCS transi-
tions (a) c → s; s → u and (b) c → d; d → u which are
listed separately in Tables 4 and 5. As explained in Sect. 2, in
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Table 3 Values of the seven topological tensor invariants for the
antitriplet charm baryon decays Bc(3) → B(8) + M(8, 1) induced
by the CF flavor transitions (c → s; d → u). We have always factored
out the products of the normalizing denominator factors appearing in

the flavor space quark model wave functions. The product of the denom-
inator factors appear as overall factors of the process specification in
column 2

I−
1 I−

2 I3 I4 Î3 Î4 I5

CF 12 �+
c → �0π+ −2 −2 −2 +4 −2 +4 +1

4
√

3 �+
c → �0π+ 0 0 +2 0 −2 +4 +1

4
√

3 �+
c → �+π0 0 0 −2 0 +2 −4 −1

4
√

3 �+
c → �+ηω 0 0 −2 0 −2 +4 −1

2
√

6�+
c → �+ηφ 0 0 −2 +2 0 0 0

12�+
c → �+η8 0 0 +2 −4 −2 +4 −1

6
√

2�+
c → �+η1 0 0 −4 +2 −2 +4 −1

2
√

6 �+
c → pK̄ 0 +1 +1 +2 −2 0 0 0

2
√

6 �+
c → �0K+ 0 0 0 −2 0 0 −1

2
√

6 �+
c → �+ K̄ 0 +1 +1 0 0 +2 −4 0

2
√

6 �+
c → �0π+ −1 −1 0 0 −2 +4 0

12 �0
c → �0 K̄ 0 −1 −1 −4 +2 +2 −4 −1

4
√

3 �0
c → �0 K̄ 0 +1 +1 0 −2 +2 −4 −1

2
√

6 �0
c → �+K− 0 0 0 +2 0 0 +1

4
√

3 �0
c → �0π0 0 0 +2 −2 −2 +4 0

4
√

3 �0
c → �0ηω 0 0 +2 −2 +2 −4 0

2
√

6 �0
c → �0ηφ 0 0 +2 0 0 0 +1

12 �0
c → �0η8 0 0 −2 −2 +2 −4 −2

6
√

2 �0
c → �0η1 0 0 +4 −2 +2 −4 +1

2
√

6 �0
c → �−π+ −1 −1 −2 +2 0 0 0

the SU(3) limit dealt with in this paper one has to subtract the
two contributions (a) and (b). The result of this subtraction
is shown in Table 6.

As discussed in Sect. 3, Kohara has introduced four
reduced matrix elements d1, d2, d3, d4 for the topology class
IIa where only two are needed [31]. Using the results of
e.g. Table 3 for the decays involving octet mesons one finds
that the four topological reduced matrix elements of Kohara
are related to our topological reduced matrix elements by
d1 = 2T3, d2 = −2(T3−T4), d3 = 2T4, and d4 = 2T3−T4.
This shows again that the set d1, d2, d3, d4 is redundant
since one has d1 = d3 + d4 and d2 = −d4. We do not agree
with Ref. [31] on the contributions of the di to the decays
involving the SU(3) singlet meson η1.

4.2 The charm baryon decaysBc(6)
H(6)−→ B(8) + M(8, 1)

The nonleptonic two-body decays of the charm baryon 
0
c

belong to this class of decays. The SU(3) decomposition of
the direct product 6 ⊗ 8 ⊗ 8 has been written down before
in Eq. (22). One notes that the 6 representation appears four
times in the decomposition. The transition 6 → 6 ⊗ 8 ⊗ 8

is thus described by four SU(3) invariants. This implies that
there are 7 − 4 = 3 linear relations among the 7 tensor
invariants. These are

I−
1 + I−

2 = 0, Î4 = 0, 2I−
1 = I3 + Î3. (26)

The first relation I−
1 + I−

2 = 0 follows from the Jacobi
identity rewriting I−

2 as

I−
2 (
, 
′) = Ba[bc]


 B
′
b[c′a]M

d
d ′ H

[c′d ′]
[cd]

= Ba[bc]

 (−B
′

c′[ab] − B
′
a[bc′])M

d
d ′ H

[c′d ′]
[cd] (27)

and noting that the first term on the r.h.s. of Eq. (27) van-
ishes due to the fact that c′ must be the charm quark, and
that the light quarks a, b are symmetric in the 6 represen-
tation. With the same reasoning one can show that Î4 = 0.
The relation 2I−

1 = I3 + Î3 cannot be obtained by tensor
label manipulations but can be derived from the values of the
three respective tensor invariants in Table 8. In the case of
the SCS transitions the suffixes a and b identify the origin
of the respective flavor transitions (a) and (b) including the
relative sign. Note that we always keep the (a)- and (b)-type
contributions in the SCS contribution apart for two reasons:
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Table 4 Values of the seven topological tensor invariants for the SCS antitriplet charm baryon decays Bc(3) → B(8) + M(8, 1) induced by the
flavor transition (c → s; s → u)

I−
1 I−

2 I3 I4 Î3 Î4 I5

SCSa 12 �+
c → �0K+ +2 +2 0 0 +2 −4 0

4
√

3 �+
c → �0K+ 0 0 0 0 +2 −4 0

2
√

6 �+
c → �+K 0 0 0 0 0 −2 +4 0

2
√

6 �+
c → nπ+ 0 0 0 0 0 0 0

4
√

3 �+
c → pπ0 0 0 0 0 0 0 0

4
√

3 �+
c → pηω 0 0 0 0 0 0 0

2
√

6 �+
c → pηφ −1 −1 0 0 0 0 0

12 �+
c → pη8 +2 +2 0 0 0 0 0

6
√

2 �+
c → pη1 −1 −1 0 0 0 0 0

2
√

6 �+
c → �0K+ +1 +1 0 −2 +2 −4 −1

4
√

3 �+
c → �+π0 0 0 −2 0 0 0 −1

4
√

3 �+
c → �+ηω 0 0 −2 0 0 0 −1

2
√

6 �+
c → �+ηφ −1 −1 −2 +2 −2 +4 0

12 �+
c → �+η8 +2 +2 +2 −4 +4 −8 −1

6
√

2 �+
c → �+η1 −1 −1 −4 +2 −2 +4 −1

2
√

6 �+
c → pK̄ 0 0 0 +2 −2 0 0 0

12 �+
c → �0π+ 0 0 −2 +4 0 0 +1

4
√

3 �+
c → �0π+ 0 0 +2 0 0 0 +1

2
√

6 �0
c → �0K 0 0 0 0 0 +2 −4 −1

2
√

6 �0
c → �−K+ +1 +1 0 −2 0 0 0

2
√

6 �0
c → �+π− 0 0 0 0 0 0 −1

2
√

6 �0
c → �−π+ 0 0 +2 0 0 0 0

4
√

6 �0
c → �0π0 0 0 −2 0 0 0 +1

4
√

6 �0
c → �0ηω 0 0 −2 0 0 0 −1

4
√

3 �0
c → �0ηφ −1 −1 −2 +2 −2 +4 0

12
√

2 �0
c → �0η8 +2 +2 +2 −4 +4 −8 −1

12 �0
c → �0η1 −1 −1 −4 +2 −2 +4 −1

12
√

2 �0
c → �0π0 0 0 −2 +4 0 0 +1

12
√

2 �0
c → �0ηω 0 0 −2 +4 0 0 −1

12 �0
c → �0ηφ +1 +1 −2 −2 −2 +4 0

12
√

6 �0
c → �0η8 −2 −2 +2 +8 +4 −8 −1

12
√

3 �0
c → �0η1 +1 +1 −4 +2 −2 +4 −1

2
√

6 �0
c → pK− 0 0 0 −2 0 0 0

2
√

6 �0
c → nK̄ 0 0 0 +2 0 0 0 0

in order to incorporate some SU(3) breaking effects in this
way, and for comparison with parts of the literature in which
the two contributions have been kept apart. Note that the ten-
sor relation 2I−

1 = I3 + Î3 does not hold separately for the
transitions (a) and (b) but only for their sum, and it does not
hold if the singlet meson state is involved.

The transitions involving the singlet meson state η1 are
again described by a single SU(3) invariant, as can be read

off from the decomposition (24). For these transitions on
finds I−

1 = I−
2 = Î4 = 0 and I3 = −2I4 = 2 Î3 = 4I5.

4.3 The �C = 0 singly Cabibbo suppressed charm baryon

decays Bc(3)
H(8)−→ Bc(3) + M(8) and

Bc(6)
H(8)−→ Bc(3) + M(8)
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Table 5 Values of the seven topological tensor invariants for the SCS antitriplet charm baryon decays Bc(3) → B(8) + M(8, 1) induced by the
flavor transition (c → d; d → u)

I−
1 I−

2 I3 I4 Î3 Î4 I5

SCSb 12 �+
c → �0K+ 0 0 −2 −2 0 0 −2

4
√

3 �+
c → �0K+ 0 0 +2 −2 0 0 0

2
√

6 �+
c → �+K 0 0 0 −2 +2 0 0 0

2
√

6 �+
c → nπ+ −1 −1 0 +2 −2 +4 +1

4
√

3 �+
c → pπ0 +1 +1 0 −2 +2 −4 −1

4
√

3 �+
c → pηω −1 −1 −4 +2 −2 +4 −1

2
√

6 �+
c → pηφ 0 0 0 0 0 0 0

12 �+
c → pη8 −1 −1 −4 +2 −2 +4 −1

6
√

2 �+
c → pη1 −1 −1 −4 +2 −2 +4 −1

2
√

6 �+
c → �0K+ 0 0 0 0 0 0 0

4
√

3 �+
c → �+π0 +1 +1 0 0 0 0 0

4
√

3 �+
c → �+ηω −1 −1 0 0 0 0 0

2
√

6 �+
c → �+ηφ 0 0 0 0 0 0 0

12 �+
c → �+η8 −1 −1 0 0 0 0 0

6
√

2 �+
c → �+η1 −1 −1 0 0 0 0 0

2
√

6 �+
c → pK̄ 0 0 0 0 0 +2 −4 0

12 �+
c → �0π+ −1 −1 0 0 −4 +8 0

4
√

3 �+
c → �0π+ −1 −1 0 0 0 0 0

2
√

6 �0
c → �0K 0 0 0 +2 0 0 0 0

2
√

6 �0
c → �−K+ 0 0 −2 0 0 0 0

2
√

6 �0
c → �+π− 0 0 0 +2 0 0 0

2
√

6 �0
c → �−π+ −1 −1 0 +2 0 0 0

4
√

6 �0
c → �0π0 +1 +1 0 −4 0 0 0

4
√

6 �0
c → �0ηω −1 −1 0 0 0 0 0

4
√

3 �0
c → �0ηφ 0 0 0 0 0 0 0

12
√

2 �0
c → �0η8 −1 −1 0 0 0 0 0

12 �0
c → �0η1 −1 −1 0 0 0 0 0

12
√

2 �0
c → �0π0 −1 −1 0 0 −4 +8 0

12
√

2 �0
c → �0ηω +1 +1 +8 −4 +4 −8 0

12 �0
c → �0ηφ 0 0 0 0 0 0 +2

12
√

6 �0
c → �0η8 +1 +1 +8 −4 +4 −8 −4

12
√

3 �0
c → �0η1 +1 +1 +8 −4 +4 −8 +2

2
√

6 �0
c → pK− 0 0 0 0 0 0 +1

2
√

6 �0
c → nK̄ 0 0 0 0 0 +2 −4 −1

The �C = 0 charm baryon decays are induced by the
SCS quark flavor transitions (a′) s → u; u → d and (b′)
c → d; s → c. The kinematical constraints of the �C = 0
decays only allow for the pionic modes. Therefore, there is
no need to discuss the decays into the η and η′ states or the
K -meson states. As concerns the application of the current
algebra approach to charm baryon decays, the�C = 0 charm
baryon decays are the favorites of all charm baryon decays
since the emitted pion has very little energy, i.e. the pion

satisfies the requirement of the soft pion theorem. The �C =
0 charm baryon decays have been discussed before in Refs.
[72–76].

There are two isospin decays in each the two classes

Bc(3)
H(8)−→ Bc(3) + M(8) and Bc(6)

H(8)−→ Bc(3) + M(8).
The four kinematically accessible decays are listed in Table 9
together with the values of the topological tensor invariants.
As mentioned in the Introduction, the decay �0

c → �+
c π−

has recently been observed [17].
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Table 6 Values of the seven topological tensor invariants for the SCS antitriplet charm baryon decays Bc(3) → B(8) + M(8, 1) induced by both
flavor transitions (a) and (b)

I−
1 I−

2 I3 I4 Î3 Î4 I5

SCS 12 �+
c → �0K+ +2 +2 +2 +2 +2 −4 +2

4
√

3 �+
c → �0K+ 0 0 −2 +2 +2 −4 0

2
√

6 �+
c → �+K 0 0 0 +2 −2 −2 +4 0

2
√

6 �+
c → nπ+ +1 +1 0 −2 +2 −4 −1

4
√

3 �+
c → pπ0 −1 −1 0 +2 −2 +4 +1

4
√

3 �+
c → pηω +1 +1 +4 −2 +2 −4 +1

2
√

6 �+
c → pηφ −1 −1 0 0 0 0 0

12 �+
c → pη8 +3 +3 +4 −2 +2 −4 +1

6
√

2 �+
c → pη1 0 0 +4 −2 +2 −4 +1

2
√

6 �+
c → �0K+ +1 +1 0 −2 +2 −4 −1

4
√

3 �+
c → �+π0 −1 −1 −2 0 0 0 −1

4
√

3 �+
c → �+ηω +1 +1 −2 0 0 0 −1

2
√

6 �+
c → �+ηφ −1 −1 −2 +2 −2 +4 0

12 �+
c → �+η8 +3 +3 +2 −4 +4 −8 −1

6
√

2 �+
c → �+η1 0 0 −4 +2 −2 +4 −1

2
√

6 �+
c → pK̄ 0 0 0 +2 −2 −2 +4 0

12 �+
c → �0π+ +1 +1 −2 +4 +4 −8 +1

4
√

3 �+
c → �0π+ +1 +1 +2 0 0 0 +1

2
√

6 �0
c → �0K 0 0 0 −2 0 +2 −4 −1

2
√

6 �0
c → �−K+ +1 +1 +2 −2 0 0 0

2
√

6 �0
c → �+π− 0 0 0 −2 0 0 −1

2
√

6 �0
c → �−π+ +1 +1 +2 −2 0 0 0

4
√

6 �0
c → �0π0 −1 −1 −2 +4 0 0 +1

4
√

6 �0
c → �0ηω +1 +1 −2 0 0 0 −1

4
√

3 �0
c → �0ηφ −1 −1 −2 +2 −2 +4 0

12
√

2 �0
c → �0η8 +3 +3 +2 −4 +4 −8 −1

12 �0
c → �0η1 0 0 −4 +2 −2 +4 −1

12
√

2 �0
c → �0π0 +1 +1 −2 +4 +4 −8 +1

12
√

2 �0
c → �0ηω −1 −1 −10 +8 −4 +8 −1

12 �0
c → �0ηφ +1 +1 −2 −2 −2 +4 −2

12
√

6 �0
c → �0η8 −3 −3 −6 +12 0 0 +3

12
√

3 �0
c → �0η1 0 0 −12 +6 −6 +12 −3

2
√

6 �0
c → pK− 0 0 0 −2 0 0 −1

2
√

6 �0
c → nK̄ 0 0 0 +2 0 −2 +4 +1

For the �
+,0
c and 
0 decays the SU(3) decomposition

reads

3 → 8 ⊗ 3 ⊗ 8 = 3 · 3 ⊕ 3 · 6 ⊕ 4 · 15 ⊕ 15 ′ ⊕ 2 · 24 ⊕ 42

(28)

6 → 8 ⊗ 3 ⊗ 8 = 3 · 6 ⊕ 3 · 6 ⊕ 4 · 15 ⊕ 15 ′ ⊕ 2 · 24 ⊕ 42

(29)

One concludes that one should have four linear relations
each among the seven tensor invariants. With the help of

tensor manipulations alone one finds the relations 2I3 = −I4

for both transitions 3
H(8)−→ 3 + 8 and 6

H(8)−→ 3 + 8. The data
base in Table 9 is not large enough to identify the remaining
tensor identities. From a group theoretical point of view one
could, of course, enlarge the data base by including also off-
shell decays. We have not pursued this possible avenue.

While there are three SU(3) reduced matrix elements each
for the two classes of decays there is only one isospin SU(2)
reduced matrix element for each of the two classes of decays.
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Table 7 Values of the seven topological tensor invariants for the DCS antitriplet charm baryon decays Bc(3) → B(8) + M(8, 1) induced by the
flavor transition (c → d; s → u)

I−
1 I−

2 I3 I4 Î3 Î4 I5

DCS 2
√

6 �+
c → pK 0 −1 −1 0 0 −2 +4 0

2
√

6 �+
c → nK+ +1 +1 0 0 +2 −4 0

12 �+
c → �0K+ +1 +1 −2 −2 +4 −8 −2

4
√

3 �+
c → �0K+ +1 +1 +2 −2 0 0 0

2
√

6 �+
c → �+K 0 −1 −1 −2 +2 0 0 0

4
√

3 �+
c → pπ0 0 0 0 −2 0 0 −1

2
√

6 �+
c → nπ+ 0 0 0 +2 0 0 +1

4
√

3 �+
c → pηω 0 0 −4 +2 0 0 −1

2
√

6 �+
c → pηφ 0 0 0 0 −2 +4 0

12 �+
c → pη8 0 0 −4 +2 +4 −8 −1

6
√

2 �+
c → pη1 0 0 −4 +2 −2 +4 −1

12 �0
c → �0K 0 +1 +1 −2 −2 +4 −8 −2

4
√

3 �0
c → �0K 0 −1 −1 −2 +2 0 0 0

2
√

6 �0
c → �−K+ +1 +1 +2 −2 0 0 0

2
√

6 �0
c → pπ− 0 0 0 −2 0 0 −1

4
√

3 �0
c → nπ0 0 0 0 +2 0 0 +1

4
√

3 �0
c → nηω 0 0 −4 +2 0 0 −1

2
√

6�0
c → nηφ 0 0 0 0 −2 +4 0

12 �0
c → nη8 0 0 −4 +2 +4 −8 −1

6
√

2 �0
c → nη1 0 0 −4 +2 −2 +4 −1

This becomes evident when doing the same exercise as in
Eq. (28) but now for isospin SU(2). One finds

2 → 2 ⊗ 1 ⊗ 3 = 2 ⊕ 4

(in spin notation 1
2 → 1

2 ⊗ 0 ⊗ 1 = 1
2 ⊕ 3

2 ),

1 → 2 ⊗ 2 ⊗ 3 = 1 ⊕ 2 · 3 ⊕ 5

(0 → 1
2 ⊗ 1

2 ⊗ 1 = 0 ⊕ 2 · 1 ⊕ 2). (30)

This leads to the �I = 1/2 isospin relations
√

2 M(�+
c → �+

c π0) = M(�0
c → �+

c π−) (31)√
2 M(
0

c → �0
cπ

0) = −M(
0
c → �+

c π−) (32)

in agreement with the entries in Table 9.

4.4 The double charm baryon decays

Bcc(3)
H(6)−→ Bc(3) + M(8, 1)

The nonleptonic two-body decays of the triplet of double
charm states �++

cc , �+
cc and 
+

cc into the antitriplet single
charm baryons belong to this class of decays. Of the many
possible two body decays only the decay �++

cc → �+
c π+

has been identified to date [18].
The 3 representation occurs twice in the decomposition

3 → 6 ⊗ 3 ⊗ 8 = 2 · 3 ⊕ 2 · 6 ⊕ 3 · 15 ⊕ 15′ ⊕ 24 ⊕ 42 (33)

There are thus 7−2 = 5 relations for the tensor invariants
which read

I−
1 + 2I−

2 = 0, I3 + 2I4 = 0,

Î3 + Î4 = 0, I5 = 0, 2I−
1 = I3 + Î3 (34)

As before, the last relation does not hold for the decay involv-
ing the octet singlet state. For the transitions involving the
singlet meson state one finds

3 → 6 ⊗ 3 ⊗ 1 = 3 ⊕ 15 (35)

which implies that all transitions involving the singlet meson
are proportional to each other with I−

1 = I−
2 = I5 = 0 and

I3 = −2I4 = 2 Î3 = −2 Î4. In Table 10 we list the values of
the tensor invariants for all the decays of this class.

4.5 The double charm baryon decays

Bcc(3)
H(6)−→ Bc(6) + M(8, 1)

The nonleptonic two-body decays of the double charm states
�++

cc , �+
cc and 
+

cc into the sextet single charm baryons
belong to this class of decays. Of the many possible decay
modes none has been identified to date.
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Table 8 Values of the seven topological tensor invariants for the non-
leptonic CF, SCS and DCS decays of the sextet charm baryon state 
0

c
belonging to the class of decays Bc(6) → B(8) + M(8, 1). The SCS
decays are induced by the flavor transition (a) (c → s; s → u) and

(b) (c → d; d → u). The subscripts a and b of the tensor invariants
identify the origin of the respective flavor transitions where the relative
sign of the two transitions has been accounted for

I−
1 I−

2 I3 I4 Î3 Î4 I5

CF 2
0
c → �0 K̄ 0 −1 +1 0 0 −2 0 0

SCS 2
√

2
0
c → �0π0 +1b −1b +2a −2a 0 0 0

2
√

2
0
c → �0ηω −1b +1b +2a −2a 0 0 0

2
0
c → �0ηφ +1a −1a +2a 0 +2a 0 +1a

2
√

6
0
c → �0η8 −2a − 1b +2a + 1b −2a −2a −4a 0 −2a

2
√

3
0
c → �0η1 +1a − 1b −1a + 1b +4a −2a +2a 0 +1a

2
√

6
0
c → �0 K̄ 0 0 0 −4a +2a +4b 0 −1a

2
√

2
0
c → �0 K̄ 0 0 0 0 −2a 0 0 −1a

2
0
c → �+K− 0 0 0 +2a 0 0 +1a

2
0
c → �−π+ −1b +1b −2a +2a 0 0 0

DCS 2
0
c → pK− 0 0 0 0 0 0 +1

2
0
c → nK̄ 0 0 0 0 0 0 0 −1

4
√

3
0
c → �0π0 0 0 0 0 0 0 0

4
√

3
0
c → �0ηω 0 0 +8 −4 0 0 0

2
√

6
0
c → �0ηφ 0 0 0 0 +4 0 +2

12
0
c → �0η8 0 0 +8 −4 −8 0 −4

6
√

2
0
c → �0η1 0 0 +8 −4 +4 0 +2

4
0
c → �0π0 0 0 0 −4 0 0 0

4
0
c → �0ηω 0 0 0 0 0 0 0

2
√

2
0
c → �0ηφ 0 0 0 0 0 0 0

4
√

3
0
c → �0η8 0 0 0 0 0 0 0

2
√

6
0
c → �0η1 0 0 0 0 0 0 0

2
0
c → �+π− 0 0 0 +2 0 0 0

2
0
c → �−π+ 0 0 0 +2 0 0 0

2
0
c → �−K+ −1 +1 −2 0 0 0 0

2
0
c → �0K 0 +1 −1 +2 0 0 0 0

The 3 representation occurs twice in the decomposition

3 → 6 ⊗ 6 ⊗8 = 2 · 3 ⊕ 2 · 6 ⊕ 4

·15 ⊕ 2 · 15′ ⊕ 2 · 24 ⊕ 2 · 42 ⊕ 48. (36)

Therefore, there are 7 − 2 = 5 relations among the seven
tensor invariants which can be derived by either tracking the
charm quark flavor flow in the respective topological dia-
grams or by taking into account that the single charm baryons
Bc(6) are symmetric in the light quark indices. The relations
read

I−
1 = I3 = Î3 = Î4 = I5 = 0, (37)

i.e. the only nonvanishing tensor invariants are I−
2 and I4. In

particular, the tensor invariants Î3 and Î4 are zero because

of the KPW theorem. The KPW theorem holds only in the
SU(3) limit. Violations of the KPW theorem due to the SU(3)
constituent mass breaking effectms �= mu were calculated in
Ref. [77] for the decays �++

cc → �′+
c π+ and 
+

cc → �′+
c K̄ 0

and turned out to be of the order of (1 − 4)%. The authors
of Ref. [59] obtained a mass breaking effect of the KPW
theorem of the order of 2% in their bag model calculation of
the same decays.

The singlet meson state 1 does not contribute to this class
of decays as can be seen from the decomposition

3 → 6 ⊗ 6 ⊗ 1 = 6 ⊕ 15 ⊕ 15′. (38)

In Table 11 we list the values of the seven topological flavor
invariants.
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Table 9 Values of the seven tensor invariants for the �C = 0 SCS
decays of the single charm baryons �+

c , �0
c , and 
0

c into antitriplet
charm baryons induced by the flavor transitions (a′) s → u; u → d

and (b′) c → d; s → c. The subscripts a′ and b′ of the tensor invariants
identify the origin of the respective flavor transitions where the relative
sign of the two transitions has been accounted for

I−
1 I−

2 I3 I4 Î3 Î4 I5

12
√

2�+
c → �+

c π0 −5a′ +4a′ −2b′ 4b′ −8a′ 4a′ 1b′

12�0
c → �+

c π− −5a′ +4a′ −2b′ 4b′ −8a′ 4a′ 1b′

2
√

6 
0
c → �+

c π− 1a′ −2a′ +2b′ −4b′ 0 0 0

4
√

3 
0
c → �0

cπ
0 −1a′ +2a′ −2b′ +4b′ 0 0 0

Table 10 Values of the seven topological tensor invariants for the CF,
SCS and DCS decays of the triplet double charm baryon states �++

cc ,
�+

cc and 
+
cc into the antitriplet single charm baryon states �+

c , �+
c and

�0
c belonging to the class of decays Bcc(3) → Bc(3) + M(8, 1). The

notation of the subscripts a and b is explained in Table 8

I−
1 I−

2 I3 I4 Î3 Î4 I5

CF 2
√

6 �++
cc → �+

c π+ −2 +1 0 0 −4 +4 0

2
√

6 �+
cc → �0

cπ
+ −2 +1 −4 +2 0 0 0

4
√

3 �+
cc → �+

c π0 0 0 +4 −2 −4 +4 0

4
√

3 �+
cc → �+

c ηω 0 0 +4 −2 +4 −4 0

2
√

6 �+
cc → �+

c ηφ 0 0 +4 −2 0 0 0

12 �+
cc → �+

c η8 0 0 −4 +2 +4 −4 0

6
√

2 �+
cc → �+

c η1 0 0 +8 −4 +4 −4 0

2
√

6 �+
cc → �+

c K̄
0 −2 +1 −4 +2 0 0 0

2
√

6 
+
cc → �+

c K̄
0 −2 +1 0 0 −4 +4 0

SCS 2
√

6 �++
cc → �+

c K
+ +2a −1a 0 0 +4a −4a 0

2
√

6 �++
cc → �+

c π+ +2b −1b 0 0 +4b −4b 0

2
√

6 �+
cc → �0

c K
+ +2a −1a +4b −2b 0 0 0

4
√

3 �+
cc → �+

c π0 +2b −1b 0 0 +4b −4b 0

4
√

3 �+
cc → �+

c ηω −2b +1b −8b +4b −4b +4b 0

2
√

6 �+
cc → �+

c ηφ +2a −1a 0 0 0 0 0

12 �+
cc → �+

c η8 −4a − 2b +2a + 1b −8b +4b −4b +4b 0

6
√

2 �+
cc → �+

c η1 +2a − 2b −1a + 1b −8b +4b −4b +4b 0

4
√

3 
+
cc → �+

c π0 +2b −1b +4a −2a 0 0 0

4
√

3 
+
cc → �+

c ηω −2b +1b +4a −2a 0 0 0

2
√

6 
+
cc → �+

c ηφ +2a −1a +4a −2a +4a −4a 0

12 
+
cc → �+

c η8 −4a − 2b +2a + 1b −4a +2a −8a +8a 0

6
√

2 
+
cc → �+

c η1 +2a − 2b −1a + 1b +8a −4a +4a −4a 0

2
√

6 
+
cc → �0

cπ
+ −2b +1b −4a +2a 0 0 0

2
√

6 
+
cc → �+

c K̄
0 0 0 −4a +2a +4b −4b 0

DCS 2
√

6 �++
cc → �+

c K
+ +2 −1 0 0 +4 −4 0

2
√

6 �+
cc → �+

c K
0 +2 −1 0 0 +4 −4 0

2
√

6 
+
cc → �0

c K
+ −2 +1 −4 +2 0 0 0

2
√

6
+
cc → �+

c K
0 +2 −1 +4 −2 0 0 0

4
√

3 
+
cc → �+

c π0 0 0 0 0 0 0 0

4
√

3 
+
cc → �+

c ηω 0 0 +8 −4 0 0 0

2
√

6 
+
cc → �+

c ηφ 0 0 0 0 +4 −4 0

12 
+
cc → �+

c η8 0 0 +8 −4 −8 +8 0

6
√

2 
+
cc → �+

c η1 0 0 +8 −4 +4 −4 0
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Table 11 Values of the seven tensor invariants for the CF, SCS and
DCS decays of the triplet double charm baryon states �++

cc , �+
cc, and


+
cc into sextet single baryon states, Bcc(3) → Bc(6) + M(8). The

subscripts a and b for the SCS decays has been explained in Table 8.
Decays into η1 states are not listed since they vanish identically

I−
1 I−

2 I3 I4 Î3 Î4 I5

CF 2
√

2 �++
cc → �′+

c π+ 0 −1 0 0 0 0 0

2 �++
cc → �++

c K̄ 0 0 +1 0 0 0 0 0

2
√

2 �+
cc → �′ 0

c π+ 0 −1 0 +2 0 0 0

4 �+
cc → �′+

c π0 0 0 0 −2 0 0 0

4 �+
cc → �′+

c ηω 0 0 0 −2 0 0 0

2
√

2 �+
cc → �′+

c ηφ 0 0 0 +2 0 0 0

4
√

3 �+
cc → �′+

c η8 0 0 0 −6 0 0 0

2 �+
cc → �++

c K− 0 0 0 +2 0 0 0

2
√

2 �+
cc → �+

c K̄ 0 0 +1 0 −2 0 0 0

2 �+
cc → 
0

c K
+ 0 0 0 −2 0 0 0

2
√

2 
+
cc → �′+

c K̄ 0 0 +1 0 0 0 0 0

2 
+
cc → 
0

cπ
+ 0 −1 0 0 0 0 0

SCS 2
√

2 �++
cc → �′+

c K+ 0 +1a 0 0 0 0 0

2
√

2 �++
cc → �+

c π+ 0 +1b 0 0 0 0 0

2
√

2 �++
cc → �++

c π0 0 −1b 0 0 0 0 0

2
√

2 �++
cc → �++

c ηω 0 +1b 0 0 0 0 0

2 �++
cc → �++

c ηφ 0 −1a 0 0 0 0 0

2
√

6 �++
cc → �++

c η8 0 +2a + 1b 0 0 0 0 0

2
√

2 �+
cc → �′ 0

c K+ 0 +1a 0 +2b 0 0 0

2 �+
cc → �0

cπ
+ 0 +1b 0 −2b 0 0 0

4 �+
cc → �+

c π0 0 −1b 0 +4b 0 0 0

4 �+
cc → �+

c ηω 0 +1b 0 0 0 0 0

2
√

2 �+
cc → �+

c ηφ 0 −1a 0 0 0 0 0

4
√

3 �+
cc → �+

c η8 0 +2a + 1b 0 0 0 0 0

2
√

2 
+
cc → �+

c K̄ 0 0 0 0 −2a 0 0 0

2
√

2 
+
cc → �′ 0

c π+ 0 +1b 0 +2a 0 0 0

2 
+
cc → 
0

c K
+ 0 +1a 0 −2a 0 0 0

DCS 2
√

2 �++
cc → �+

c K+ 0 +1 0 0 0 0 0

2 �++
cc → �++

c K 0 0 −1 0 0 0 0 0

2 �+
cc → �0

c K
+ 0 +1 0 0 0 0 0

2
√

2 �+
cc → �+

c K 0 0 −1 0 0 0 0 0

2
√

2 
+
cc → �′ 0

c K+ 0 +1 0 −2 0 0 0

2
√

2 
+
cc → �′+

c K 0 0 −1 0 +2 0 0 0

4 
+
cc → �+

c π0 0 0 0 −4 0 0 0

4 
+
cc → �+

c ηω 0 0 0 0 0 0 0

2
√

2 
+
cc → �+

c ηφ 0 0 0 0 0 0 0

4
√

3 
+
cc → �+

c η8 0 0 0 0 0 0 0
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Table 12 Values of the seven topological tensor invariants for the non-
leptonic CF, SCS and DCS decays Bcc(3) → B(8) + M(3) of the
triplet double charm baryon states �++

cc , �+
cc and 
+

cc into the light

baryon octet and the charm mesons D+, D0 and D+
s . The notation for

the SCS decays is explained in the caption of Table 8

I−
1 I−

2 I3 I4 Î3 Î4 I5

CF 2�++
cc → �+D+ 0 0 0 0 0 −2 0

2�+
cc → �+D0 0 0 0 0 0 0 +1

2
√

2�+
cc → �0D+ 0 0 0 0 0 −2 −1

2
√

6�+
cc → �0D+ 0 0 0 0 0 −2 +1

2�+
cc → �0D+

s 0 0 0 0 0 0 +1

2
+
cc → �0D+ 0 0 0 0 0 −2 0

SCS 2�++
cc → pD+ 0 0 0 0 0 +2b 0

2�+
cc → pD0 0 0 0 0 0 0 −1b

2�+
cc → nD+ 0 0 0 0 0 +2b +1b

2�++
cc → �+D+

s 0 0 0 0 0 +2a 0√
2�+

cc → �0D+
s 0 0 0 0 0 +2a 0

2
√

6�+
cc → �0D+

s 0 0 0 0 0 +2a −2b

2
+
cc → �+D0 0 0 0 0 0 0 +2a

2
√

2
+
cc → �0D+ 0 0 0 0 0 0 −1a

2
√

6
+
cc → �0D+ 0 0 0 0 0 +4b −1a

2
+
cc → �0D+

s 0 0 0 0 0 +2a +1a
DCS 2�++

cc → pD+
s 0 0 0 0 0 +2 0

2�+
cc → nD+

s 0 0 0 0 0 +2 0

2
+
cc → pD0 0 0 0 0 0 0 +1

2
+
cc → nD+ 0 0 0 0 0 0 +1

2
√

2
+
cc → �0D+

s 0 0 0 0 0 0 0

2
√

6
+
cc → �0D+

s 0 0 0 0 0 +4 +2

4.6 The double charm baryon decays

Bcc(3)
H(6)−→ B(8) + M(3)

None of this class of decays into a light baryon and a charm
meson in the final state has been observed. The final states in
these decays have a very distinct signature which could lead
to their discovery in the not too distant future. To our knowl-
edge the only theoretical paper dealing with these decays is
Ref. [78]. As a seed for the Bcc(3) → B(8) + M(3) decay,
Li et al. first consider the short distance decay of a double
charm baryon state into a single charm baryon and a C = 0
meson [78]. The charm quantum number is then transferred
from the baryon to the meson by long distance final state
interactions. The authors of Ref. [78] estimate that the CF
decays of this class of decays could be of the order of 1%
with the SCS and DCS decays suppressed by the respective
CKM suppression factors.

For the SU(3) decomposition one obtains

3 → 6 ⊗ 8 ⊗ 3 = 2 · 3 ⊕ 2 · 6 ⊕ 3 · 15 ⊕ 15′ ⊕ 24 ⊕ 42 (39)

The decomposition shows that there are two indepen-
dent SU(3) invariants. Therefore, one expects 7 − 2 = 5

relations among the seven topological tensor invariants.
By visual inspection of the five topologies one finds that
I−
1 = I−

2 = I3 = I4 = 0. The topological invariant

Î3(
, 
′) = Ba[bc]

 B
′

a[b′c′]M
c′
d H [c′b′]

[db] vanishes since b′ and
c′ are heavy charm quark labels which are necessarily sym-
metric such that the initial state tensor B
′

a[b′c′] vanishes. Alto-
gether one has

I−
1 = I−

2 = I3 = I4 = Î3 = 0. (40)

The only nonvanishing topological tensor invariants are Î4
and I5. In Table 12 we list the values of the nonzero tensor
invariants Î4 and I5 for the altogether 22 CF, SCS and DCS
double charm decays Bcc → B D+/0, B D+

s . Note that the
decay 
+

cc → �0D+
s is forbidden in the SU(3) limit because

of the KPW theorem.

4.7 The hyperon decays B(8)
H(8)−→ B(8) + M(8)

In complete the picture obtained so far, we also consider the
decays of hyperons into light baryons. The decomposition
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Table 13 Values of the seven SU(3) tensor invariants for the nonleptonic hyperon decays induced by the transitions (s → u; u → d)

I−
1 I−

2 I3 I4 Î3 Î4 I3 − Î3 I4 − Î4 I5

2
√

6 �0 → pπ− +1 +1 0 −2 +2 −4 −2 +2 −1

4
√

3 �0 → nπ0 −1 −1 0 +2 −2 +4 +2 −2 +1

2
√

2 �+ → pπ0 −1 +1 0 −2 −2 0 +2 −2 −1

2 �+ → nπ+ 0 0 0 +2 0 0 0 +2 +1

2 �− → nπ− −1 +1 0 0 −2 0 +2 0 0

2
√

6 �− → �0π− −2 +1 0 0 −4 +4 +4 −4 0

4
√

3 �0 → �0π0 −2 +1 0 0 −4 +4 +4 −4 0

8 → 8 ⊗ 8 ⊗ 8 = 2 · 1 ⊕ 8 · 8 ⊕ 4 · 10 ⊕ 4

·10 ⊕ 6 · 27 ⊕ 2 · 35 ⊕ 2 · 35 ⊕ 64 (41)

suggests that there are eight SU(3) invariant couplings which
outnumber the seven invariant tensor couplings by one. How-
ever, one with the help of a Fierz-type identity one can show
that the eight SU(3) couplings are not independent.

To proof this, consider the usual second rank tensor baryon
representation

B =

⎛

⎜⎜
⎝

− �0√
6

+ �0√
2

−�+ p

�− − �0√
6

− �0√
2

n

�− −�0 2�0√
6

⎞

⎟⎟
⎠ , (42)

together with the representations for mesons and the weak
transition tensor

M̄ =

⎛

⎜
⎜⎜
⎝

η8√
6

+ π0√
2

π− K−

−π+ η8√
6

− π0√
2

−K̄ 0

K+ K 0 − 2η8√
6

⎞

⎟
⎟⎟
⎠

, S =
⎛

⎝
0 0 0
0 0 1
0 0 0

⎞

⎠ . (43)

In SU(3) a Levi-Civita tensor with four indices in three
flavor dimensions vanishes. Therefore, one can write down
a Fierz-type identity which reads

εabcdε
e f gh =

∣
∣∣∣∣∣∣
∣∣

δea δ
f
a δ

g
a δha

δeb δ
f
b δ

g
b δhb

δec δ
f
c δ

g
c δhc

δed δ
f
d δ

g
d δhd

∣
∣∣∣∣∣∣
∣∣

= 0. (44)

When one contracts the Fierz-type identity with Ba
e B̄

b
f M̄

c
g S

d
h

one obtains the relation

0 = tr(B B̄M̄S) + tr(B B̄SM̄) + tr(BM̄SB̄)

+ tr(BM̄ B̄S) + tr(BSM̄ B̄) +
+ tr(BSB̄ M̄) − tr(B B̄) tr(M̄S)

− tr(BM̄) tr(B̄S) − tr(BS) tr(B̄ M̄). (45)

We conjecture that the use of this Fierz-type identity would
provide for the missing linear relations between tensor invari-

ants of differing topologies. In Table 13 one can identify the
�I = 1/2 (or octet) rules [79,80]

A(�0 → pπ−) = −√
2A(�0 → nπ0) (46)√

2A(�+ → pπ0) = −A(�+ → nπ+) + A(�− → nπ−)

(47)

A(�− → �0π−) = √
2A(�0 → �0π0). (48)

However, for some reason the Lee–Sugawara relation [81,
82] is not satisfied,

2A(�− → �0π−) + A(�0 → pπ−) �= √
3A(�+ → pπ0)

(49)

Topological tensor invariants for this class of processes
have been considered in Ref. [83].

5 The current algebra description of nonleptonic charm
baryon decays

In the second part of this general survey we add elements
of the current algebra approach to the information contained
in the tables. The current algebra approach was originally
developed for the description of nonleptonic hyperon decays
(see Refs. [84–87] and references therein) and later applied
to nonleptonic decays of charmed baryons [88,89]. As will
be described in the following it turns out that the flavor invari-
ants of the W -exchange contributions to the current algebra
amplitudes can be expressed in terms of the topological fla-
vor invariants Ii (i = 3, 4, 5) and Îi (i = 3, 4) introduced
in Sect. 3. We briefly recapitulate the standard current alge-
bra plus soft pion approach to nonleptonic two-body charm
baryon decays B(1/2+) → B(1/2+) + M(0−) where we
will stay quite close to the presentation and notation of Refs.
[54,59–62].

We define S- and P-wave amplitudes A f ki and B f ki , resp.,
by writing

〈B f Mk |Heff |Bi 〉 = ū f (A f ki − B f kiγ5)ui . (50)
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We follow the convention of Refs. [54,59–62] in that A f ki

and B f ki are defined with a relative minus sign in Eq. (50).
Note that the choice of this sign will affect the sign of the cal-
culated asymmetry parameter of the nonleptonic two-body
decays.

Again in the notation of Refs. [54,59–62] the p.v. and p.c.
amplitudes A and B are given by

A f ki = Afac
f ki + Apole

f ki + Acom
f ki ,

B f ki = Bfac
f ki + Bpole

f ki + Bcom
f ki . (51)

The factorizing contributions Afac
f ki and Bfac

f ki related to the

topological invariants I−
1 and I−

2 are complemented by the
nonfactorizing contributions, consisting of a pole and a com-
mutator part.

5.1 The parity violating S-wave amplitude Acom
f ki

For the commutator contribution one obtains

Acom
f ki =

√
2

fk
〈B f |[Mk,Hpc

eff ]|Bi 〉, (52)

where Hpc
eff is the p.c. part of the effective Hamiltonian,

Mk is the SU(3) vector charge associated with the pseu-
doscalar meson k, and where the fk are the pseudoscalar
coupling constants, with e.g. fπ = 0.95mπ . One then intro-
duces a sum over intermediate baryon states

∑

 |B
〉〈B
|

and
∑


′ |B
′ 〉〈B
′ | to rewrite Eq. (52) as

Acom
f ki =

√
2

fk

( ∑




〈B f |Mk |B
〉〈B
|Hpc
eff |Bi 〉

−
∑


′
〈B f |Hpc

eff |B
′ 〉〈B
′ |Mk |Bi 〉
)

= Acom
f ki (s) − Acom

f ki (u) (53)

Since Mk is a conserved vector charge operator, the sum over
intermediate states extends only over the twenty J p = 1/2 +
ground state baryons of the SU(4) 20′ representation.

The notation “s” and “u” stands for the s- and u-channel
contributions in the current algebra approach where the s-
channel contribution refers to the process where one has a
weak transition at the first stage followed by meson emission
and vice-versa for the u-channel contribution, as depicted in
Fig. 3. One can associate the topological diagrams with the s-
channel and u-channel contributions by cutting the diagrams
IIa, IIb and III in Fig. 1 at the appropriate places. Diagrams IIa
and IIb are clearly associated with the s- and u-channel con-
tributions, respectively, whereas diagram III can be seen to be
associated with both s- and u-channel contributions depend-
ing on where diagram III is cut. As it turns out, diagram III
contributes in equal amounts to the s- and u-channel parts
for both S- and P-wave transitions. Altogether the s-channel
contribution correspond to the contribution of diagram IIa

B1

Bl

B2

M

B1

Bl’

B2

M

Fig. 3 s-channel contribution (left) and u-channel contribution (right)

and one half of diagram III, while the u-channel contribution
corresponds to diagram IIb and one half of diagram III.

Our aim is to proof that the commutator contributions
Acom

f ki (s) and Acom
f ki (u) can be rewritten in terms of a linear

superposition of the topological tensor invariants I3, I4, Î3,
Î4 and I5 introduced in Sect. 3. This is achieved by making
use of the completeness relation (12). The same can be done
for the pole term contributions Apole

k f i (s) and Apole
f ki (u) in the

absence of hyperfine mass splittings for the flavor degenerate
members of the 20′ representation, as will be written down
later.

In Appendix C we demonstrate that the f -type baryon
matrix element 〈B f |Mk |B
〉 of the conserved vector charge
can be expressed in terms of two basic SU(3) contractions Ĩ1
and Ĩ2. One has

〈B f |Mk |B
〉 := (I f ) f k
 = 4( Ĩ1) f k
 + 2( Ĩ2) f k
 (54)

and similarly for 〈B
′ |Mk |Bi 〉. The two basic tensor contrac-
tions Ĩ1 and Ĩ2 are given by

( Ĩ1) f k
 = Ba[bc]
f B


a[bc′](Mk)
c′
c

( Ĩ2) f k
 = Ba[bc]
f B


b[c′a](Mk)
c′
c . (55)

The matrix element 〈B
|Hpc
eff |Bi 〉 of the effective Hamilto-

nian (called a
 i in Ref. [60]) splits into a dynamical piece and
a symmetry factor. In the bag model calculation the factors
a
 i can be expressed in terms of a single tensor contraction.
In the normalization of Ref. [60] one writes

〈B
|Hpc
eff |B
′ 〉 := a

′ = 6X̄2(4π)(I pc)

′ (56)

with

(I pc)

′ = Ba[bc]

 B
′

a[b′c′]H
[b′c′]
[bc] . (57)

In addition, one has

Acom
f ki (s) − Acom

f ki (u)

= 1

fk
6X̄2(4π)

(
Âcom

f ki (s) − Âcom
f ki (u)

)
(58)
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with

Âcom
f ki (s) − Âcom

f ki (u) =
∑




(I f ) f k
(I
pc)
 i

−
∑


′
(I pc) f 
′(I f )
′ki . (59)

In Ref. [60] the values of the bag integrals as e.g. X2 are
given as dimensionless numbers. This is puzzling at first sight
since the amplitude Acom

f ki is dimensionless. This conundrum
is resolved after a literature search. As stated some time ago
in Ref. [43], the values of the bag integrals are given in units
of c− GF GeV3 which should be augmented by the CKM
factor CCKM.

The relation to the topological tensor invariants is obtained
by using the completeness relation (12) in order to perform
the sum over the intermediate baryon states in Eq. (53). We
begin with the s-channel contribution Acom

f ki (s) for which
we go through the derivation step by step. As discussed
in Appendix C, the flavor invariant contribution I f can be
expressed as a linear superposition of the two building blocks
Ĩ1 and Ĩ2 in the form I f = 4 Ĩ1 + 2 Ĩ2. Let us write out the
contributions of the two building blocks Ĩ1 and Ĩ2 to the sum
over intermediate states in Acom

f ki (s). The result of taking the
sum over the intermediate states via the completeness rela-
tion (12) can be expressed in terms of the topological tensor
invariants I3, I4 and I5. One has
∑




( Ĩ1) f k
 I
pc

 i = Ba[bc]

f (Mk)
c′
c

×
( ∑




B

a[bc′]B

r [st]



)
Bi
r [a′b′]H

[a′b′]
[st]

= 2
3 I3 − 1

3 I4 + 2
3 I5,

∑




( Ĩ2) f k
 I
pc

 i

= Ba[bc]
f (Mk)

c′
c

(∑




B

b[c′a]B

r [st]



)
Bi
r [a′b′]H

[a′b′]
[st]

= − 1
3 I3 + 2

3 I4 + 2
3 I5. (60)

The contribution of I4 cancels in the sum I f = 4 Ĩ1 + 2 Ĩ2 of
the two contributions (60), and one arrives at

Âcom
f ki (s) = 4

∑




( Ĩ1) f k
 I
pc

 i

+2
∑




( Ĩ2) f k
 I
pc

 i = 2I3 + 4I5. (61)

Doing the same exercise for the u-channel contribution
Acom

f ki (u) in Eq. (53) one obtains
∑


′
(I pc) f 
′ ( Ĩ1)
′ki = Ba[bc]

f Hb′c′
bc

( ∑


′
B

a[b′c′]B

r [st]



)
Bi
r [sa′](Mk)

a′
t

= 2
3 Î3 − 1

3 Î4 + 2
3 I5,

∑


′
(I pc) f 
′ ( Ĩ2)
′ik = Ba[bc]

f H [a′b′]
[st]

( ∑




B

b[c′a]B

r [st]



)
Bi
s[a′r ](Mk)

a′
t

= − 1
3 Î3 + 2

3 Î4 + 2
3 I5, (62)

leading to

Âcom
f ki (u) = 4

∑


′
(I pc) f 
′( Ĩ1)
′ki

+2
∑


′
(I pc) f 
′( Ĩ2)
′ki = 2 Î3 + 4I5. (63)

Calculating the difference of the s- and u-channel contribu-
tions Âcom

f ki (s) and Âcom
f ki (u) according to Eq. (53), one obtains

the remarkable result that the contribution of the topological
tensor invariant I5 cancels out. The final result is

Âcom
f ki = Âcom

f ki (s) − Âcom
f ki (u) = 2(I3 − Î3). (64)

We mention that the result Acom
f ki ∼ I3 − Î3 was already been

derived in the early paper [30].
The p.v. pole contributions not dealt with in detail in this

paper read

Apole
f ki = −

∑




g f k
 b
 i

mi − m


−
∑


′

b f 
′ g
′ki
m f − m
′

= Apole
f ki (s) + Apole

f ki (u), (65)

where b

′ = 〈B
|Hpv
eff |B
′ 〉 are the p.v. matrix elements

which are much smaller than the p.c. matrix elements a

′
[90,91]. For the same reason, one also skips

Bcom
f ki =

√
2

fk

(∑




〈B f |Mk |B
〉〈B
|Hpv
eff |Bi 〉

−
∑


′
〈B f |Hpv

eff |B
′ 〉〈B
′ |Mk |Bi 〉
)
. (66)

5.2 The parity conserving P-wave amplitude Bpole
f ki

Using again the notation of Refs. [54,59–62], the pole con-
tribution to the p.c. P-wave amplitude B is given by

Bpole
f ki =

∑




g f k
 a
 i

mi − m


+
∑


′

a f 
′ g
′ki
m f − m
′

= Bpole
f ki (s) + Bpole

f ki (u). (67)

Again, the first and second terms in Eq. (67) represent the
s- and u-channel pole contributions, respectively. The sum
over the intermediate state labels 
 and 
′ extends over all
20 J P = 1/2+ ground state baryons that have the correct
quantum numbers to contribute to the s- and u-channel pole
contributions (67). In the present application one has zero,
one or maximally two contributions in the sum over inter-
mediate ground state baryons. The latter case occurs when
pairs of flavor degenerate states contribute to the sum as e.g.
the states (�0, �0) in the C = 0 sector or (�+

c , �+
c ), (�0

c ,
� ′ 0

c ) and (�+
c , � ′ +

c ) in the C = 1 sector. The members of
the ground state J P = 3/2+ 20-plet do not contribute to the
sum over intermediate states since the weak transitions a
 i
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and a f 
′ with 
, 
′ from the J P = 3/2+ 20-plet vanish in the
SU(3) limit because of the KPW theorem.

The s- and u-channel pole contributions involve the strong
coupling coefficients denoted by g f k
 and the weak parity
conserving transition matrix elementa
 i which also appeared
in Acom

f ki . One then uses the generalized Goldberger–Treiman
relation

g f k
 =
√

2

fk
(m f + m
)g

A
f k
 (68)

to express the strong coupling coefficients g f k
 by the appro-
priate axial vector elements gA

f k
. One has

Bpole
f ki (s) + Bpole

f ki (u) =
√

2

fk

(
∑




gA
f k


m f + m


mi − m


a
 i

+
∑


′
a f 
′

mi + m
′

m f − m
′
gA

′ki

)

. (69)

As in the p.v. case we factor out the parameters depending on
the dynamic model to remain with a purely flavor dependent
contribution B̂. In the bag model calculation of Refs. [54,59–
62] this is achieved by writing

Bpole
f ki (s) + Bpole

f ki (u)

= 1

fk
6X̄2(4π)

2

3
Z̄(4π)

(
B̂pole

f ki (s) + B̂pole
f ki (u)

)
(70)

where

B̂pole
f ki (s) + B̂pole

f ki (u)

=
∑




ICQM
f k
 I pc


 i R f i (B
) +
∑




I pc
f 
′ I

CQM

′ki Ri f (B
′) (71)

with the compact notation for the two mass ratio expressions

R f i (B
) = m f + m


mi − m


= Rs(B
),

Ri f (B
′) = mi + m
′

m f − m
′
= Ru(B
′), (72)

the second ones used as pseudonyms. The flavor invariant
ICQM
f ki denotes the flavor structure of the matrix element

〈B
′Mk |Bi 〉 in the constituent quark model. In the bag model
the flavor structure of the strong coupling is given by a d/ f
ratio of d/ f = 3/2 (cf. Appendix C). In terms of the two
building blocks Ĩ1 and Ĩ2 introduced in Eq. (55) the strong
matrix element is given by

ICQM
f ki = (4 Ĩ1 + 5 Ĩ2) f ki

= Ba[bc]
f

(
4Bi

a[bc′] + 5Bi
b[c′a]

)
(Mk)

c′
c (73)

Different from the p.v. S-wave case the sum over intermediate
states cannot be taken because of the mass ratio factors which
differ for the contributions of the hyperfine doublet partners.
However, if one neglects the hyperfine mass splitting, the

sum over intermediate states can be performed as in the p.v.
S-wave case. To proceed, we define average values of the
masses of the set of hyperfine doublet partners {B
} denoted
by m̄
 and correspondingly average values for the mass ratio
factors by writing

R̄ f i = m f + m̄


mi − m̄


= R̄s({B
}),

R̄i f = mi + m̄
′

m f − m̄
′
= R̄u({B
′ }). (74)

The average mass ratio factors R̄ f i and R̄i f can then be
factored out from the sum over intermediate states and one
obtains

B̂pole
f ki (s) + B̂pole

f ki (u)

= R̄ f i

∑




ICQM
f k
 I pc


 i + R̄i f

∑


′
I pc
f 
′ I

CQM

′ki . (75)

The sum over the intermediate states can now be performed,
using again the completeness relation (12). The task is sim-
plified by the fact that the strong transition ICQM = 4 Ĩ1+5 Ĩ2
is a linear superposition of the same two building blocks Ĩ1
and Ĩ2 that were used in the evaluation of the correspond-
ing sums in the amplitude A. The result of calculating the
sum (75) is then given by
∑




ICQM
f k
 I pc


 i = I3 + 2I4 + 6I5,

∑


′
I pc
f 
′ I

CQM

′ki = Î3 + 2 Î4 + 6I5. (76)

The flavor content of the pole model contributions is thus
given by

B̂pole
f ki (s) + B̂pole

f ki (u) = (I3 + 2I4 + 6I5)R̄ f i

+( Î3 + 2 Î4 + 6I5)R̄i f . (77)

We have found again the quite remarkable fact that, in the
absence of hyperfine mass splittings for the flavor degenerate
members of the 20′ representation, the pole model represen-
tation of the p.c. P-wave amplitude B depends only on the
initial and final states of the nonleptonic decays and not on
the detailed structure of the intermediate states.

Equations (76) can be generalized to the case where the
strong d/ f ratio takes on general values (see Appendix C).
One obtains
∑




I gen
f k
 I

pc

 i (s) = 5

3d(I3 + 2I4 + 6I5)

−( 5
3d − f )(2I3 + 4I5),

∑


′
I pc
f 
′ I

gen

′ki (u) = 2

3d( Î3 + 2 Î4 + 6I5)

−( 2
3d − f )(2 Î3 + 4I5). (78)
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One can check that one recovers Eqs. (76) for d/ f = 3/2,
i.e. for d = 3/5 and f = 2/5.

6 Some more sample decays

Initiated by a thorough analysis of the methods applied in
Refs. [59–62] with details found in Appendix D, in this sec-
tion we present explicit results for some sample decays on the
connection of the current algebra results with the topological
tensor invariants. We emphasize again that this connection
holds true in the SU(3) limit. The relation between the two
approaches derived in Sect. 5 is explicitly verified in these
examples. We include at least one decay of each of the classes
of decays discussed in Sect. 4. For each decay we include in
the header the values of the seven tensor invariants in the
same sequence (I−

1 , I−
2 , I3, I4, Î3, Î4, I5) as in the tables.

For a better perception we have underlined the nonvanishing
contributions of the topological tensor invariants.

6.1 The CF decay �+
c → �0 π+

12(Ii ) = (−2,−2,−2, 4,−2, 4, 1)

In this case, all seven tensor invariants are non-zero. Together
with the SCS decay �+

c → �0 K+, this decay is the only one
in which I3 = Î3 �= 0. Since one has I3 − Î3 = 0, one con-
cludes that in these decays the W -exchange contribution to
the p.v. amplitude A is zero. Nevertheless, there are also tree
diagram contributions which will contribute to the amplitude
A. Expressed in terms of the topological tensor invariants, the
W -exchange contributions to the reduced amplitudes Â and
B̂ are given by

Âcom = (2I3 + 4I5) − (2 Î3 + 4I5) = 0 − 0,

B̂pole = (I3 + 2I4 + 6I5) Rs(�
+) + ( Î3 + 2 Î4 + 6I5) Ru(�0

c )

= 1 · Rs(�0) + 1 · Ru(�0
c ). (79)

The same result is obtained by explicit summation over the
intermediate states. The intermediate states are �+ in the s-
channel and �0

c in the u-channel. The intermediate states do
not contribute to the p.v. amplitude A since Fπ+ is a con-
served charge operator which implies I f

�0π+�+ = 0 and

I f
�0
cπ+�+

c
= 0. The contribution of the intermediate states

to the p.c. amplitude B is given in terms of the flavor fac-
tors multiplying the relevant mass ratio factors Rs(�

0) and
Ru(�

0
c ). One has

B̂pole
s (�0) : ICQM

�0π+�+ I
pc
�+�+

c
= 1,

B̂pole(u;�0
c ) : I pc

�0�0
c
ICQM
�0
cπ+�+

c
= 1, (80)

where I pc
�+�+

c
= −4/2

√
6, I pc

�0�0
c

= 4/2
√

6, ICQM
�0π+�+ =

−6/2
√

6, and ICQM
�0
cπ+�+

c
= 6/2

√
6 (see Tables 16 and 18 in

Appendix C). The mass ratios read

Rs(�
0) = m�0 + m�0

m�0
c
− m�0

= 2.11

Ru(�
0
c ) = m�0

c
+ m�0

c

m�0 − m�0
c

= −3.54, (81)

Our results are in agreement with the results in Ref. [60] up
to an overall sign difference. Note that there is a contribution
to B̂pole in Eq. (79) from the topology III given by the term
proportional to I5. We conclude that this term was in fact
included in the analysis of Ref. [60] despite the claim of the
authors that the contributions from the type III diagram were
omitted.

6.2 The CF decay �+
c → �0π+

4
√

3(Ii ) = (0, 2, 2, 0,−2, 4, 1)

The second decay we discuss is the CF decay �+
c → �0π+.

Again, this decay proceeds only by W -exchange. The asym-
metry parameter has been measured and is given by α(�c →
�0π+) = −0.73 ± 0.17 ± 0.07. This implies that the S-
wave amplitude must be nonvanishing. And in fact, a glance
at Table 3 shows that one has a s-channel contribution while
the u-channel contribution vanishes since 2 Î3 +4I5 = 0. Let
us check this in more detail. The W -exchange contributions
to the reduced amplitudes Â and B̂ are given by

Âcom = (2I3 + 4I5) − (2 Î3 + 4I5) = 2/
√

3 − 0(u),

B̂pole = (I3 + 2I4 + 6I5) Rs(�
+) + ( Î3 + 2 Î4 + 6I5) Ru(�0

c )

= 2/
√

3 Rs(�
+) + 3/

√
3 Ru(�0

c ) (82)

A direct summation over the intermediate state results in

Âcom(s;�+) : I f
�0π+�+ I

pc
�+�+

c
= 2/

√
3,

Âcom(u;�0
c ) : I pc

�0�0
c
I f
�0
cπ+�+

c
= 0,

B̂pole(s;�+) : ICQM
�0π+�+ I

pc
�+�+

c
= 2/

√
3,

B̂pole(u;�0
c ) : I pc

�0�0
c
ICQM
�0
cπ+�+

c
= 3/

√
3 (83)

where we have used I f
�0π+�+ = −4/2

√
2, I pc

�+�+
c

=
−4/2

√
6, I f

�0
cπ+�+

c
= 0, ICQM

�0π+�+ = −4/2
√

2 and

ICQM
�0
cπ+�+

c
= 6/2

√
6 from Tables 16 and 18 in Appendix C.

6.3 The SCS decay �0
c → pK−

2
√

6(Ii ) = (0, 0, 0,−2a, 0, 0,−1b)

This decay is interesting from the point of view that there are
altogether four states that contribute as intermediate states.
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These are (�0, �0) in the s-channel and (�+
c , �+

c ) in the
u-channel. The structure of the tensor invariants can be seen
to be identical for this decay and the decay �+

c → �0 K+
treated in the previous section. We anticipate that the treat-
ment in terms of tensor invariants will be a much simpler
undertaking than the explicit summation of the four con-
tributing intermediate states. In our analysis we shall retain
the identification of the weak transitions in terms of the (a)
and (b) type contributions.

The reduced commutator term Âcom and pole term B̂pole

are given by

Âcom = (2I3 + 4I5) − (2 Î3 + 4I5)

= (−4b/2
√

6) − (−4b/2
√

6) = 0,

B̂pole = (I3 + 2I4 + 6I5)R̄s(�
0, �0)

+( Î3 + 2 Î4 + 6I5)Ru(�0
c )

= −(4a + 6b)/2
√

6 R̄s(�
0, �0) − 6b/2

√
6 Ru(�0

c ). (84)

When taking the intermediate state route, one has to take
into account that I f

�+
c K−�0

c
= 0 and ICQM

�+
c K−�0

c
= 0 (see

Appendix C). For the relevant products of flavor factors one
obtains

Âcom(s;�0, �0) : I f
pK−�0 I

pc
�0 �0

c
+ I f

pK−�0 I
pc
�0 �0

c

= ( − (2a + 4b) + 2a
)
/2

√
6,

Âcom(u;�+
c ) : I pc

p�+
c
I f
�+

c K−�0
c

= (−4b)/2
√

6,

B̂pole(s;�0, �0) : ICQM
pK−�0 I

pc
�0�0

c
+ ICQM

pK−�0 I
pc
�0�0

c

= ( − (3a + 6b) − 1a
)
/2

√
6,

B̂pole(u;�+
c ) : I pc

p�+
c
ICQM
�+
c K−�0

c
= −6b/2

√
6. (85)

Keeping in mind that the two S-wave contributions have to
be subtracted while the two P-wave contributions have to be
added, one finds agreement of the two calculational routes.
The net result is that the commutator contribution to the decay
�0

c → pK− vanishes.

6.4 The CF decay 
0
c → �0 K̄ 0

2(Ii ) = (−1,−1, 0, 0,−2, 0, 0)

The only W -exchange contribution to this decay is from the
tensor invariant Î3 = −1 (see Table 8). Therefore, the decay
proceeds only via the u-channel, which becomes obvious
from

Âcom = (2I3 + 4I5) − (2 Î3 + 4I5) = 0(s) − (−2),

B̂pole = 0(s) + ( Î3 + 2 Î4 + 6I5) Ru(�
0
c, �

′ 0
c )

= 0(s) − R̄u(�
0
c, �

′ 0
c ). (86)

where 0(s) stands for the absence of an s-channel contri-
bution. The interest in this decay is caused by the fact that
both intermediate states �0

c and �
′0
c contribute to the P-wave

amplitude Bpole(u). In terms of the flavor invariants I f , I pc

and ICQM one obtains

Âcom(u;�
′0
c ) : I pc

�0�
′0
c
I f
�

′0
c K̄ 0
0

c
= −2,

B̂pole(u;�0
c , �

′ 0
c ) : I pc

�0�0
c
ICQM
�0
c K̄

0
0
c

+ I
pc
�0�

′0
c
ICQM
�

′0
c K̄ 0
0

c
= −1.

(87)

The results are in agreement with Ref. [62]. There is no
need to differentiate between the current algebra approach
and the modified current algebra result in this case since
I5 = 0.

In the limit of vanishing hyperfine splitting m�0
c

= m�′0
c

one can sum the two P-wave u-channel contributions to
obtain

B̂pole = 2( Î3 + 2 Î4 + 6I5)
m�0 − m̄�0

c

m
0
c
− m̄�0

c

= −2
m�0 − m̄�0

c

m
0
c
− m̄�0

c

, (88)

where m̄�0
c

denotes a suitable mass average of the two fla-

vor degenerate states �0
c and �′ 0

c . The decay was analyzed in
Ref. [50], again in the context of the current algebra approach.
In the first version of Ref. [50] there was the claim that the
contributions of the intermediate states �0

c and �′ 0
c cancel

each other for m�0
c

= m�′ 0
c

. This statement was corrected
later on in an Erratum to Ref. [50] with a result in agreement
with Eq. (88). That the two contributions do not, in fact, can-
cel can be easily checked by a mere visual inspection of the
tensor invariants in Table 8. We have provided this example
to illustrate the power of the current algebra approach when
expressed in terms of topological tensor invariants because
the compactness of the tensor invariant expressions allows
one to easily trace mistakes in a current algebra result.

6.5 The SCS decay 
0
c → �0 K̄ 0

2
√

2(Ii ) = (0, 0, 0,−2a, 0, 0,−1a)

The decay proceeds only through W exchange and via the
(a)-type weak interaction. The interest in this decay is based
on the fact that up to normalization factors the topological
invariant structure is identical to the one of the previous decay
�+

c → �0 K+. The same statement holds true for the decays

CF : �+
c → �0K+; �0

c → �+K−

SCS : 
0
c → �+K−, �0 K̄ 0; �0

c → �+π−, pK−

DCS : �+
c → pπ0, nπ+; �0

c → pπ−, nπ0. (89)

One obtains

Âcom = (2I3 + 4I5) − (2 Î3 + 4I5)

= (−4b/2
√

2) − (−4b/2
√

2) = 0,

B̂pole = (I3 + 2I4 + 6I5)R̄s(�
0)
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+( Î3 + 2 Î4 + 6I5)R̄u(�
0
c, �

′ 0
c ) =

= −(10a)/2
√

2 R̄s(�
0) − 6a/2

√
2 R̄u(�

0
c, �

′ 0
c )

(90)

or

Âcom(s;�0) : I f
�0 K̄ 0�0 I

H
�0
0

c
= −4a/2

√
2

Âcom(u;�0
c) : I H

�0�0
c
I f
�0
c K̄

0
0
c

= −4a/2
√

2

B̂pole(s;�0) : ICQM
�0K 0�0 I

H
�0
0

c
= −10a/2

√
2

B̂pole(u;�0
c, �

′0
c ) : I H

�0�0
c
ICQM
�0
c K̄

0
0
c
+ I H

�0�
′0
c
ICQM
�

′0
c K̄ 0
0

c

= (−2a − 4a)/2
√

2, (91)

where

Ru(�
0
c) = m
0

c
+ m�0

c

m�0 − m�0
c

= 4.83,

Ru(�
′ 0
c ) = m
0

c
+ m�′ 0

c

m�0 − m�′ 0
c

= 4.53. (92)

6.6 The �C = 0 SCS decays �+
c → �+

c π0 and
�0

c → �+
c π−

12
√

2(Ii (�+
c → �+

c π0)) = 12(Ii (�0
c → �+

c π−)) =
(−5a′ , 4a′ ,−2b′ , 4b′ ,−8a′ , 4a′ , 1b′)

The decays are contributed to by both the factorizing tree
diagram and the nonfactorizing W -exchange contributions.
The tree diagram contributions induced by the transition (a′)
s → u; u → d are purely p.v. S-wave contributions, as
follows from the light diquark transition 0+ → 0+ + 0− in
the background field of the heavy charm quark. It is therefore
interesting to have a closer look at the structure of the W -
exchange contributions.

Let us first state that the two decays are related by the
�I = 1/2 rule as follows (see Table 9)
√

2M(�+
c → �+

c π0) = M(�0
c → �+

c π−). (93)

For the tree level contribution this comes about since we are
using only the Heff(O−) contribution. For the W -exchange
contributions the �I = 1/2 rule is a consequence of the
KPW theorem.

Let us concentrate on the W -exchange contribution to the
decay �0

c → �+
c π−. We begin with the tensor invariant

representation. Since 2I3 + 4I5 = 0 (see Table 9), the S-
wave s-channel contribution vanishes, i.e. one has Acom(s) =
0. The nonvanishing S-wave u-channel and P-wave (s, u)-
channel contributions read

Âcom = 0(s) − (
2 Î3 + 4I5

) = 0(s) − (−16a′ + 4b′)/12,

B̂pole = (
I3 + 2I4 + 6I5

)
Rs(�

0
c ) + (

Î3 + 2 Î4 + 6I5
)
Ru(�′+

c )

= 12b′/12 Rs(�
0
c ) + 6b′/12 Ru(�′+

c ), (94)

where 2 Î3 + 4I5 = (−16a + 4b)/12, I3 + 2I4 + 6I5 =
12b/12 and Î3 + 2 Î4 + 6I5 = 6b/12 in agreement with the
result of the intermediate state route where

Âcom(u;�+
c ) : I H

�+
c �+

c
I f
�+
c π−�0

c
= (−16a′ + 4b′)/12,

B̂pole(s;�0
c ) : ICQM

�+
c π−�0

c
I H
�0
c�0

c
= 12b′/12,

B̂pole(u;�
′+
c ) : I H

�+
c �

′+
c
I pc (π−)

�
′+
c �0

c

= 6b′/12. (95)

Note that P-wave transitions are solely induced by the quark
level transition (b′) c → d; s → c. The transition (a′)
s → u; u → d does not contribute because of a quan-
tum number mismatch for the P-wave s-channel amplitude
as exemplified by the fact that the W -exchange topologies
IIa and III do not admit a contribution (a′). The KPW the-
orem is responsible for the absence of a contribution (a′)
to the P-wave u-channel amplitude. Contrary to what is
stated in the literature [74,75,92], one obtains a nonvanish-
ing P-wave contribution from the transition (b′) which, in
addition, is considerably enhanced by the mass ratio factors
Rs(�

0
c ) = 278.82 and Ru(�

′+
c ) = −17.29. Such a large P-

wave contribution is quite welcome since the present model
calculations, which are based on an assumed S-wave transi-
tion, are below or far below the experimental rate measure-
ment [17].

6.7 The �C = 0 SCS decays 
0
c → �+

c π− and

0

c → �0
c π0

2
√

6(Ii (
0
c → �+

c π−)) = 4
√

3(Ii (
0
c → �0

c π0)) =
(1a′,−2a′ , 2b′ ,−4b′ , 0, 0, 0)

The decays are contributed to by both tree diagram and W -
exchange contributions. Since one now has a D(1+) →
D(0+)+0− diquark transition in the background field of the
heavy charm quark, the tree contribution is purely P-wave.

The W -exchange contributions are induced by the quark
level transition (b′) c → d; s → c which is a pure �I = 1/2
transition for both Heff(O−) transitions. Therefore, for the
W -exchange contributions one has the �I = 1/2 relation

√
2M(
0

c → �0
cπ

0) = −M(
0
c → �+

c π−), (96)

regardless of whether one invokes the KPW theorem.
As Table 9 shows, the topologies IIb and III do not con-

tribute as can be surmise from the fact that Î3 = Î4 = I5 = 0,
i.e. there are no u-channel W -exchange contributions. One
obtains

Âcom = (
2I3 + 4I5

) − (
2 Î3 + 4I5

) = 4b′/2
√

6 − 0(u),

B̂pole = (
I3 + 2I4 + 6I5

)
Rs(�

′ 0
c ) + 0(u)

= −6b′/2
√

6 Rs(�
′ 0
c ) + 0(u), (97)
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where 2I3 = 4b/2
√

6 and I3 + 2I4 = −6b/2
√

6. It is appar-
ent that the W -exchange contributions generate an S-wave
contribution through the topology IIa.

Let us confirm that we obtain the same result for the
intermediate state representation. The s-channel intermedi-
ate states are �0

c and �′ 0
c , resp., since I f

�+
c π−�′ 0

c
= 0 and

ICQM
�+
c π−�0

c
= 0. One therefore has

Âcom(s;�0
c) : I f

�+
c π−�0

c
I pc
�0
c


0
c

= 4b′/2
√

6

B̂pole(s;�′ 0
c ) : ICQM

�+
c π−�

′0
c
I pc
�′ 0
c 
0

c
= −6b′/2

√
6. (98)

Again, the P-wave contribution is enhanced by the mass
factor Rs(�

′ 0
c ) = 43.51, but not as much as in the previous

case �0
c → �+

c π−.

6.8 The CF decay �++
cc → �+

c π+
2
√

6(Ii ) = (−2, 1, 0, 0,−4, 4, 0)

The decay belongs to the class of decays Bcc(3) → Bc(3) +
M(8). One has

Âcom = 0(s) − (2 Î3 + 4I5) = −8/2
√

6,

B̂pole = 0(s) + (
Î3 + 2 Î4 + 6I5

)
Ru(�

+
cc)

= 4/2
√

6 Ru(�
+
cc) (99)

or

Âcom(u; �+
cc) : I pc

�+
c �+

cc
I f
�+
ccπ

+�++
cc

= ( 8
2
√

6
)(−1) = −8/2

√
6,

B̂pole(u; �+
cc) : I pc

�+
c �+

cc
ICQM
�+
ccπ

+�++
cc

= ( 8
2
√

6
)( 1

2 ) = 4/2
√

6. (100)

6.9 The CF decay �+
cc → �+

c π0

4
√

2(Ii ) = (0, 0, 4,−2,−4, 4, 0)

This decay also belongs to the class Bcc(3) → Bc(3)+M(8).
The decay is not related to the previous decay �++

cc →
�+

c π+ by isospin symmetry, as a comparison of the ten-
sor invariants shows. There are, in fact, two reduced isospin
amplitudes describing the decays �cc → �cπ . Analyzing
the flavor flow in diagram III one concludes that the topolog-
ical invariant I5 vanishes. From the general analysis in Sect. 4
we know that I3 + 2I4 = 0 is a general result for this class
of decays. In the language of the current algebra approach
this implies that the P-wave s-channel contribution vanishes.
Candidates for the intermediate s-channel states are �+

c and
�′+

c . Still, �′+
c does not contribute since the weak transition

〈�′+
c |Hpc|�+

cc〉 vanishes in the SU(3) limit due to the KPW
theorem. In terms of the topological tensor invariants one has

Âcom = (2I3 + 4I5) − (2 Î3 + 4I5) = 8/4
√

3 − (−8/4
√

3),

B̂pole = (I3 + 2I4 + 6I5) Rs(�
+
c ) + ( Î3 + 2 Î4 + 6I5)

Ru(�
+
cc) = 4/4

√
3Ru(�

+
cc) (101)

with 2(I3 − Î3) = 4/
√

3 and Î3 + 2 Î4 + 6I5 = 1/
√

3. The
same result is obtained by the intermediate state analysis
where one has

Âcom(s;�+
c ) : I f

�+
c π0�+

c
I pc
�+
c �+

cc
= 8/4

√
3,

Âcom(u;�++
c ) : I pc

�+
c �+

cc
I f
�+
ccπ

0�+
cc

= −8/4
√

3,

B̂CQM(u;�+
cc) : I pc

�+
c �+

cc
ICQM
�+
ccπ

0�+
cc

= 4/4
√

3. (102)

6.10 The CF decay �+
cc → �++

c K−
2(Ii ) = (0, 0, 0, 2, 0, 0, 0)

This decay belongs to the class Bcc(3) → Bc(6) + P(8).
From the discussion in Sect. 4 we know that I3 = Î3 = Î4 =
I5 = 0 for this class of decays. The only nonvanishing con-
tribution is I4 = 1, i.e. there is no factorizing contribution
to this decay. When stated in terms of the current algebra
approach, this implies that the only nonvanishing contribu-
tion to this decay is the P-wave s-channel contribution.

We verify this in explicit form using the current algebra
representation. First note that there is no candidate for the u-
channel intermediate state. As concerns the s-channel, due
to the KPW theorem �′+

c does not contribute as intermediate
state. On the other hand �+

c does not contribute to the S-wave

s-channel since I f
�++
c K−�+

c
= 0. One thus remains with the

P-wave s-channel contribution Bpole(s). One has

B̂pole = (I3 + 2I4 + 6I5) Rs(�
+
c ) + 0(u)

= 2Rs(�
+
c ) + 0(u), (103)

where I3 + 2I4 + 6I5 = 2. In terms of the intermediate state
path one has

B̂pole(s, �+
c ) : ICQM

�++
c K−�+

c
I pc
�+
c �+

cc
= 2 (104)

in accord with the result in terms of tensor invariants. This
result is in agreement with the result in Ref. [59]. Note that
there is no need for modify the current algebra approach in
this case since I5 = 0.

6.11 The CF decay �++
cc → �+ D+

2(Ii ) = (0, 0, 0, 0, 0,−2, 0)

This decay belong to the class Bcc(3) → B(8) + M(3). The
current algebra approach applies to the P-waves only where
we can check the structure of the 1/2+ pole contributions. As
Table 12 shows, there are only u-channel pole contributions
since the only nonvanishing tensor invariant is Î4. This agrees
with the observation that, from the flavor flow, there can be
no intermediate s-channel contributions. One has

B̂pole(u;�+
c ,�+

c ) = ( Î3 + 2 Î4 + I5) R̄u(�
+
c ,�+

c )

= −2 R̄u(�
+
c ,�+

c ) (105)
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or

B̂pole(u;�+
c ,�+

c ) : I pc
�+�+

c
ICQM
�+
c D+�++

cc

+I H
�+�+

c
ICQM
�+

c D+�++
cc

= 1/2 − 5/2 = −2. (106)

6.12 The CF decay �+
cc → �+ D0

2(Ii ) = (0, 0, 0, 0, 0, 0, 1)

This decay belongs to the same class as the previous one,
Bcc(3) → B(8) + M(3). Since I±

1.2 = 0, there are no tree
diagram contributions. The only nonvanishing tensor invari-
ant is I5. This implies that one has both s- and u-channel pole
contributions. The current algebra approach only applies to
the P-wave pole contribution where we can check on the
structure of the 1/2+ pole contributions. The s-channel inter-
mediate state is �+

c . In the u-channel both �+
c and �+

c con-
tribute as intermediate states. The structure of the P-wave
contributions is given by

B̂pole(s;�+
c ) = (I3 + 2I4 + 6I5) Rs(�

+
c ) = 3Rs(�

+
c ),

B̂pole(u;�+
c , �+

c ) = ( Î3 + 2 Î4 + 6I5) Ru(�
+
c , �+

c )

= 3Ru(�
+
c , �+

c ). (107)

Since ICQM
�+D0�+

c
I H
�+
c �+

cc
= 3 and ICQM

�+
c D0�+

cc
+I H

�+�+
c
ICQM
�+
c D0�+

cc
=

1/2 + 5/2 = 3, the result obtained via intermediate states
agrees with this result. Note that the modified current algebra
approach predicts that the decay �+

cc → �+ D0 vanishes.

7 Some general features of the topological tensor and
current algebra approaches

The tables in Sect. 4 contain a wealth of physics infor-
mation on the nonleptonic decays of charm baryons. Just
by visual inspection one can identify many interesting pat-
terns of physical relevance concerning the nonleptonic charm
baryon decays. We divide the general remarks into two parts.
In the first part we list general features of the various charm
baryon decays without using any dynamical input. In the sec-
ond part we identify some general features in the tables using
elements of the current algebra approach. We begin with by
listing decays that have all zero entries in the tables, i.e. their
decay rates are predicted to be zero. They are all DCS decays
and read

�(
0
c → �0 π0, �0 η(η′)) = 0,

�(
+
cc → �+

c π0, �+
c η(η′)) = 0,

�(
+
cc → �0 D+

s ) = 0. (108)

A corresponding prediction is given in the following. Note
that there are no tree contributions to any of these decays
which implies that one only has transitions induced by the
effective Hamiltonian Heff(O−). According to Table 2 the

DCS Hamiltonian Heff(O−) from Eq. (5) transforms as an
isosinglet (�I = 0). From the isospin assignments of the
charm baryons in Table 1 and the fact that I (D(∗)+

s ) = 0
one can see that all the listed decays are isospin forbid-
den. A related derivation of the vanishing of the decay

+

cc → �0 D∗+
s can also be obtained from a topological

point of view and the KPW theorem. Both the isospin forbid-
den decay 
+

cc → �0 D∗+
s and the isospin allowed decay


+
cc → �0 D∗+

s proceed via the topological diagrams IIb
and III in which the final state quark pair [du] emerging
from the weak vertex is antisymmetric. It then follows that
the decay 
+

cc → �0 D∗+
s is forbidden while the decay


+
cc → �0 D∗+

s is allowed. In view of this observation the
result �(
+

cc → �0 D∗+
s )/�(
+

cc → �0 D∗+
s ) = 16.71

obtained in Ref. [78] is rather puzzling.
We discuss a sample of linear relations between pairs

of partner amplitudes that follow from the tables which
are based on SU(3) invariance. These relations can also be
derived by making use of the SU(2) isospin (I -spin), U -spin
and V -spin subgroups of SU(3). The identification of such
bilinear relations in terms of their I -spin, U -spin or V -spin
origin may sometimes be helpful from the mnemonic point
of view. We discuss a few examples for each of the I -spin,
U -spin and V -spin subgroup relations where we restrict our-
selves to bilinear relations between pairs of particle decay
amplitudes, leaving out triangular relations between three
decay amplitudes. We thus concentrate on bilinear ampli-
tude relations which are governed by a single I -spin, U -spin
or V -spin reduced matrix element.

7.1 I -spin sum rules

As an example we take the CF relation

A(�+
c → �+π0) = −A(�+

c → �0π+) (109)

following from Table 3. The relation (109) can also be derived
from the I -spin subgroup using the isospin decomposition
0 → (�I = 1)⊗1⊗1.1 We have used a calligraphic notation
A in Eq. (109) where A stands either for the p.v. amplitude
A or for the p.c. amplitude B. If one neglects isospin mass
breaking effects, this leads to the equality of the two rates

�(�+
c → �+π0) = �(�+

c → �0π+). (110)

There are many such isospin relations which can be read off
from the tables. We do not list them all except for an interest-
ing prediction on the vanishing of amplitudes following from
I -spin symmetry. This prediction comes about by noticing

1 Note that in this section we prefer to use the angular momentum
notation instead of the notation in irreducible representations of SU(3)
which are characterized by their multiplicity (in boldface). In terms
of these irreducible representations, the decomposition at hand reads
1 → 3 ⊗ 3 ⊗ 3.
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that the DCS transition c → d; s → u is an isospin scalar
with �I = 0. As a result one has three DCS decays that are
altogether isospin forbidden. These are

�(
0
c → �0 π0) = 0, �(
+

cc → �+
c π0) = 0, (111)

with an isospin decomposition 0 → (�I = 0) ⊗ 0 ⊗ 1 or
0 → (�I = 0) ⊗ 1 ⊗ 0. Of physical relevance are also the
related six forbidden decays involving the vector mesons ω,
φ and D∗+

s . First of all, these are the five �C = 1 DCS
decays

�(
0
c → �0 η8, �0 η1) = 0,

�(
+
cc → �+

c η8, �+
c η1) = 0. (112)

Finally, the �C = 2 DCS decay 
+
cc → �0 D+

s is allowed
from the topological diagram point of view IIb and III but
forbidden by the KPW theorem.

7.2 U -spin sum rules

First of all, note that the three effective CF, SCS and DCS
Hamiltonians belong to the same �U = 1 multiplet with
�U3 quantum numbers +1, 0, and −1, respectively (cf.
Table 2 and Fig. 2). Again we shall only discuss bilinear
U -spin sum rule relations. As an example we consider the
four decays �0

c → �+K+ (CF), �0
c → �+π− (SCS),

�0
c → p K− (SCS) and �0

c → p π− (DCS). There is only
one U -spin reduced matrix element for all four decays, as
can be seen from the decomposition of the U -spin product
0 → (�U = 1) ⊗ 1/2 ⊗ 1/2. Accordingly, one has the
amplitude relations

A(�0
c → �+K−)

c2 = −A(�0
c → �+π−)

cs

= −A(�0
c → p K−)

cs
= −A(�0

c → p π−)

s2 , (113)

where we have divided the amplitudes by the relevant
Cabibbo angle factors (one has Vus = λ = s = sin θC ≈
0.224 and c = cos θC ≈ 0.975). The relations (113) are in
agreement with the SU(3) analysis in the respective tables.
More U -spin relations involving also more than two decay
amplitudes can be found in Refs. [29,30].

7.3 V -spin sum rules

Again we shall only discuss bilinear V -spin sum rule rela-
tions. For example, using Table 3 for the CF decays Bc(3) →
B(8) + M(8) one reads off

A(�+
c → p K̄ 0) = −A(�0

c → �− π+),

A(�+
c → �0 π+) = −A(�+

c → �+ K̄ 0) (114)

which also follow from V -spin symmetry via the decompo-
sition of the V -spin products 1/2 → (�V = 0) ⊗ 1 ⊗ 1/2

and 0 → (�V = 0)⊗ 1/2 ⊗ 1/2. In the same way one finds
the V -spin CF amplitude relation

A(�+
c → �0 K+) = −A(�0

c → �+ K−). (115)

The V -spin sum rules (114) and (115) have been listed before
in Ref. [30] but have been missed in Ref. [29].

7.4 Combined sum rules

One can then combine the U -spin sum rule (113) and the
V -spin sum rule (115) into one sum rule involving the five
decays in Eqs. (113) and (115), as will be discussed further
on.

TheU -spin and V -spin amplitude relations do not directly
translate into the corresponding rate relations since the rate
formula involves different kinematical factors for the p.v.
|A|2 and p.c. |B|2 contributions which can differ considerably
from one another, as can be seen by the rate expression (cf.
Appendix E)

� = p

4πm2
i

(
Q+|A|2 + Q−|B|2

)

= p

32πm2
i

(
|Hpv

1/2 0|2 + |Hpc
1/2 0|2

)
(116)

(Q± = (m f ± mi )
2 − m2

k , p = √
Q+Q−/(2mi )). In the

last expression of Eq. (116) we have written the rate in terms
of the two helicity amplitudes of the process. As discussed
in the following, it can make a big difference for the SU(3)
rate predictions depending on whether one postulates SU(3)
invariance for the invariant amplitudes A and B or for the
helicity amplitudes Hpv

1/2 0 and Hpc
1/2 0. The SU(3) analysis in

Refs. [26,27,29] has been done using the helicity amplitude
option while the SU(3) analysis in Refs. [23,24,28] is based
on the invariant amplitude option. The authors of Ref. [25]
take an extreme view and postulate SU(3) invariance for the
rates or equivalently branching fractions, thereby disregard-
ing all kinematic factors. This may be justified for isospin
related decays but not for decays where the final states are
composed of differing hypercharges. Savage and Springer
advocate the use of an average of the kinematical S-wave
and P-wave factors Q+ and Q− when comparing rates to
SU(3) predictions [19].

7.5 More sum rules

Returning to the sum rules, more sum rules can be obtained
by visually scanning the tables for decays with repeating
patterns of the values of the tensor invariants. For example,
for the pattern (0, 0,−2, 0, 2,−4,−1) one has the amplitude
relation
√

2A(�+
c → �0 π+) = −√

2A(�+
c → �+ π0)

= −A(�0
c → �0 K 0) = A(�0

c → n K̄ 0). (117)
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The four listed decays proceed via W -exchange alone.
The four decays �+

c → n π+, �+
c → �0 π+, �+

c →
�0 π+ and �+

c → p K− follow from the pattern (x, x, x, x,
x,−4,−1). The tensor invariant relation Î4 = 4I5 holds in
addition to the four inherent relations listed in Eq. (23). This
implies that there are only two topological invariants each
for the amplitudes A and B describing the four decays. For
definiteness we take the topological invariants T3 and T5. In
this way one can then derive the sum rule

|A|2(�+
c → n π+)/s2 = 3 |A|2(�+

c → �0 π+)

+|A|2(�+
c → �0 π+) − |A|2(�+

c → p K̄ 0) (118)

involving only squared magnitudes of the amplitudes A =
A, B. A corresponding sum rule was listed in Eq. (27) of
Ref. [25]. However, the authors of Ref. [25] have written
their sum rule in terms of rates, or equivalently, in terms of
branching fractions assuming SU(3) to hold for the rates. In
view of the widely diverging kinematical factors in the rate
expression Eq. (116) the validity of their sum rule may be
called into question.

Further sum rules are obtained by visually scanning the
tables for decays with repeating patterns of the values of ten-
sor invariants. One of the patterns is (0, 0, 0,−2, 0, 0,−1)

/N j , where N j is the product of normalization factors of the
flavor wave functions in the decay process (Bc → B + M) j .
Collecting the decays with this pattern, we leave out decays
related to isospin. Left are the four decays �0

c → �+K−,
�0

c → �+π−, �0
c → p K− and �0

c → p π− listed in
Eq. (113), and the decay �+

c → �0 K+ (CF) listed in
Eq. (115). The decay 
0

c → �+K− (SCS) also possesses
the aforementioned flavor pattern and will be included in our
analysis by appealing to SU(6) symmetry (as discussed in
Sect. 3), even though the decay belongs to the class Bc(6) →
B(8) + M(8) and not to the class Bc(3) → B(8) + M(8) as
the other five decays. The SU(3) analysis can then be done
by relating the amplitudes of these six decays by the inverse
of the normalization factors 1/N j . There are no tree-graph
contributions to these decays and, adding a bit of dynam-
ics from the current algebra approach, one expects that the
p.v. amplitude A vanishes since I3 = Î3 = 0 in these cases.
This observation will be the basis of our following analysis
where we assume that the decays proceed via p.c. P-wave
W -exchange contributions and where we assume that SU(3)
invariance holds for the dimensionless amplitude B.

7.6 Spin kinematics

When comparing rates, one has to take into account the spin
kinematical P-wave rate factor which, according to Eq. (116)
reads p Q−/m2

i = Q−
√
Q+Q−/2m3

i . One can then write
down predictions for the six relative rates which read

�
�+
c →�0 K+ : �

�0
c→�+K− : �

�0
c→�+π− : �

�0
c→p K− :

�

0
c→�+K− : �

�0
c→p π−

=1 c4 : 2.25 c4 : 2.83 c2s2 : 3.86 c2s2 : 19.22 c2s2 : 4.54 s4.

(119)

If instead one assumes that SU(3) holds for the dimension-
ful helicity amplitudes (see Appendix E) the corresponding
kinematical factor is � ∼ p/m2

i |Hpc|2, and one arrives at
the relative rate prediction

�
�+
c →�0 K+ : �

�0
c→�+K− : �

�0
c→�+π− : �

�0
c→p K− :

�

0
c→�+K− : �

�0
c→p π−

= 1 c4 : 1.13 c4 : 1.23 c2s2 : 1.29 c2s2 : 6.70 c2s2 : 1.38 s4.

(120)

It is apparent that the SU(3) symmetry predictions diverge
widely depending on whether one postulates SU(3) symme-
try for the invariant amplitudes or for the helicity amplitudes.
As the numbers in Eqs. (119) and (120) show, the differ-
ence in the predicted rate ratios can amount up to a factor
of 3.3 for the rate ratio ��0

c→p π−/��+
c →�0 K+ . The issue

of whether to assume SU(3) invariance for the invariant or
helicity amplitudes cannot be decided on a purely theoretical
basis except for an aesthetic argument favoring the invariant
amplitude option because the invariant amplitudes carry no
mass dimension. In the long run only experiment can decide
which of the two options has to be favored.

7.7 Exclusive W -exchange contributions

The hope is that from these decays one can glimpse a hint of
the dynamics governing the W -exchange contributions with-
out interference from the tree diagram contributions. Apart
from the six decays listed in Eq. (119) there are a large num-
ber of decays that proceed via W -exchange contributions
alone. Some examples are the CF decays �+

c → �0 π+ and
�0

c → �0 π0 in Table 3. All of the decays Bcc → B + D in
Table 12 have solely W -exchange contributions.

7.8 Tree diagrams alone

While theoretical progress on the dynamics of the W -
exchange contributions has been rather slow, there exist a
large body of literature on the treatment of the tree dia-
gram contributions to charm baryon decays. The tree dia-
gram contributions are related to the current induced charm
baryon to light baryon transitions which have been studied in
a large number of papers using a variety of theoretical mod-
els, including also lattice calculations. Among the models are

(i) the relativistic quark model [93–95]
(ii) the MIT bag model [96]

123



Eur. Phys. J. C           (2022) 82:297 Page 29 of 41   297 

(iii) the covariant confined quark model [42,97–99]
(iv) the relativistic quark–diquark model [100,101]
(v) the semirelativistic quark model [102,103]

(vi) SU(3) based analysis [25,26]
(vii) light-cone sum rules [104–107]

(viii) the light front quark model [108]
(ix) QCD sum rules [109]
(x) lattice calculations [110].

For the single charm baryon decays one finds only one decay
which proceeds via the tree diagram alone: the well-measured
SCS decay �c → p φ [6–8] listed in Tables 4 and 5. This
decay has gained a certain prominence since it allows one to
fix the effective number of colors Nc(eff) coming into play
when calculating the nonleptonic decay amplitude from the
current induced transition amplitudes.

Contrary to the single charm decays, there are a large
number of double charm decays from the class Bcc(3) →
Bc(6) + M(8) in Table 11 which decay via the tree diagram
alone. From the CF decays of this class these are the four
decays �++

cc → �++
c K̄ 0, �++

cc → �′ +
c π+, 
+

cc → 
0
c π+

and 
+
cc → �′ +

c K̄ 0. From the flavor flow of diagram IIa one
can check that these four decays cannot proceed via diagram
IIa. As concerns the SCS and DCS decays, one finds a num-
ber of decays of this class in Table 11 which we do not list
separably.

7.9 Weak 1 → 3 quark decays

The topological diagrams in Fig. 1 can be divided up into two
classes. Diagrams Ia, Ib and IIb are characterized by weak
1 → 3 short distance quark transitions while diagrams IIa
and III are governed by 2 → 2 short distance quark tran-
sitions. Diagrams IIa and III both involve the creation of a
quark pair from the vacuum. Quantum mechanically such a
situation can be handled by the 3P0 model which, however,
brings in a considerable amount of uncertainties in terms
of model parameters and an unknown energy dependence
of the quark pair creation process. The covariant confined
quark model (CCQM) is a quantum field theoretical model
where the topological diagrams are interpreted as Feynman
loop integrals with nonlocal quark particle interactions. In
principle, a field theoretical model as the CCQM should also
be able to describe transitions involving quark pair creation.
However, as it turns out, the CCQM calculation of diagrams
IIa and III becomes unreliable because the energy release in
charm baryon decays is quite large and the energetic light
quark corresponding to one of the light quarks in the created
pair probes the nonlocal Gaussian wave functions in a prob-
lematic region. The CCQM does, however, provide reliable
results for diagrams Ia, Ib and IIb as exemplified by the recent
calculation of the decay �++

cc → �+
c π+ which obtains con-

tributions only from diagrams Ia, Ib and IIb. Therefore, it

is interesting to provide a list of decays that decay via the
rearrangement diagrams Ia, Ib and IIb. It would be interest-
ing to calculate this class of decays either in the quantum
mechanical model or in the quantum field theoretical CCQM
model.

As an inspection of the tables shows, there are many
decays that belong to this class. Listing again only CF decays,
we find the quark rearrangement transitions (I3, I4, I5 = 0)

�+
c → �+ K̄ 0, �0π+, 
c → �0 K̄ 0,

�+
cc → �+

c π+, �+D+, 
+
cc → �+

c K̄
0. (121)

7.10 No S-wave contributions from W -exchange

According to the current algebra analysis, the W -exchange
contribution to the p.v. amplitude A is proportional to
I3 − Î3, i.e. A(W -exchange) ∼ I3 − Î3. The vanishing of
A(W -exchange) can be realized in two ways. One can have
(i) I3 = Î3, I3 �= 0 or (ii) I3 = Î3 = 0. The tables show
that the first case I3 = Î3, I3 �= 0 is rather rare. We found
only two decays with this signature, namely the CF decay
�+

c → �0 π+ and the SCS decay �+
c → �0 K+. Both of

these decays also have tree graph contributions which will
also contribute to the S-wave amplitude. Therefore, concern-
ing the vanishing of the p.v. amplitude A and thus about
the vanishing of the asymmetry parameter, one cannot say
anything general about these two decays. The second case
I3 = Î3 = 0 occurs rather frequently. Among them are the
six decays listed in Eq. (119) including their isospin partners.
There are five DCS decays of the 
0

c charm baryon with the
signature I3 = Î3 = 0. These are

DCS : 
0
c → �+π−, �0π0, �−π+, pK−, nK̄ 0. (122)

Since there are no tree graph contributions to these decays,
within the current algebra approach the five decays are thus
predicted to have zero asymmetry.

All of the double charm baryon decays Bcc(3) → Bc(6)+
M(8) listed in Table 11 have the signature I3 = Î3 = 0. Of
particular interest are those decays that have no tree contri-
butions. These are

CF : �+
cc → �++

c K−, 
0
c K

+,

SCS : 
cc → �0
cπ

+,

DCS : 
cc → �+
c π0. (123)

The asymmetry parameters of these decays are predicted in
the current algebra approach to be zero.

As concerns the p.c. amplitude B, one cannot find a single
example in the tables for which B(W -exchange) = 0 holds
fully nontrivially. The signature would be I3 +2I4 +6I5 = 0
and Î3 + 2 Î4 + 6I5 = 0. Independently, each of these sig-
natures is found in many decays where the other signature
is not given. Still, there are a few examples in which both
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conditions are satisfied, though the second only in the trivial
way Î 3 = Î 4 = I 5 = 0. Except for a single DCS exam-
ple 
0

c → �0ηω from Table 8, all the examples are from
Table 10. We distinguish between cases with and without
tree contributions.

(i) The pattern (0, 0,+4,−2, 0, 0, 0) or multiples of it, indi-
cating a transition without tree contributions, is found
in the CF decay �+

cc → �+
c ηφ , and in the DCS decays


0
c → �0ηω and 
+

cc → �+
c ηω, with the common prop-

erty that the meson is an η.
(ii) The pattern (−2,+1,+4,−2, 0, 0, 0) is found in the

SCS decay 
+
cc → �+

c ηω.
(iii) The pattern (+2,−1,+4,−2, 0, 0, 0) or multiples of it,

indicating a transition with tree contributions, is found
in the CF decays �+

cc → �0
cπ

+ and �+
cc → �+

c K̄
0,

in the SCS decays �+
cc → �0

c K
+, 
+

cc → �+
c π0 and


+
cc → �0

cπ
+, and in the DCS decays 
+

cc → �0
c K

+
and 
+

cc → �+
c K

0, i.e. for decays into pions and kaons.

8 Summary and outlook

We have collected and organized a wealth of material on
196 nonleptonic Bi (1/2+) → B f (1/2+) + Mk(0−) decays
of single and double charm baryons which else is scattered
among many papers in the literature. We have collected some
group theoretical material on the symmetry groups SU(2)I ,
SU(2)U , SU(2)V , SU(3) and SU(6) needed in the analysis of
the decays. We have presented the results of calculating the
values of the seven topological tensor invariants for each of
the 196 decays in a number of tables. Without having to do
any explicit numerical calculation, the information contained
in the tables leads to a number of important observations on
the structure of the nonleptonic decays which we explicate.
In the second part of the paper we have discussed a dynamical
approach based on current algebra and the pole model, the
results of which can be represented very compactly in terms
of the topological tensor invariants introduced in the first part
of the paper. The compact result was achieved by performing
the sum over the intermediate baryon ground states inherent
to the current algebra approach, using a completeness rela-
tion. We have critically examined a modified version of the
current algebra approach introduced recently in the literature.
From the experimental point of view, the key experiment to
discard or to keep this new modified approach is to measure
the asymmetry parameter in the decay �+

c → �0 K+ and,
for that matter, to measure the asymmetry parameter in all the
decays listed in Eq. (119) plus their isospin partners. While
the asymmetry parameters in these decays are predicted by
the modified current algebra approach to be large, in the stan-

dard current algebra approach they are predicted to be zero
ore close to zero. Our results on the topological tensor invari-
ants are useful also for other dynamical calculations of charm
baryon decays such as constituent quark model approaches.
In this context we are planning to refine the covariantized
constituent quark model calculation of Ref. [37] and extend
it to include also the SCS and DCS decays of single charm
baryons.

An overall picture is difficult to obtain, as the experiments
are on the way. Therefore, no definite decision can be made on
whether and to what extend our estimates are compatible with
the current data, except for the examples we have exposed.
Still, we hope that the material presented in this paper will
aid and provide extra stimulus for the experimental search
of the many missing decay modes of charm baryon decays
including a measurement of their absolute branching ratios –
and, what is of utmost importance, to measure the asymmetry
parameters in their decays. We are thus looking forward to
new experimental results on charm baryon decays from Belle
II, BESIII and LHCb which should be forthcoming in the near
future.
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Appendix A: Representations of tensors

For the tensor representations of the meson and baryon flavor
wave functions we use the phase convention of the second
edition of Lichtenberg [68] (differing from the first edition).
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A.1 Flavor space wave functions for the mesons

For the meson flavor wave functions we use Table 12.7 in
Ref. [68],

π+ : M1
2 = −1,

π− : M2
1 = 1,

π0 : M1
1 = −M2

2 = 1/
√

2,

K 0 : M2
3 = 1,

K̄ 0 : M3
2 = −1,

K+ : M1
3 = 1,

K− : M3
1 = 1,

ηω : M1
1 = M2

2 = 1/
√

2,

ηφ : M3
3 = 1,

η8 : M1
1 = M2

2 = − 1
2 M

3
3 = 1/

√
6,

η1 : M1
1 = M2

2 = M3
3 = 1/

√
3,

D+ : M4
2 = −1, D− : M2

4 = −1,

D0 : M4
1 = 1, D̄0 : M1

4 = −1,

D+
s : M4

3 = 1, D−
s : M3

4 = −1. (A1)

By employing the conjugate representation Mb
a := M̄a

b =
Ma

b of the flavor space wave functions in the main text we
take into account that the outgoing mesons are considered
as incoming antiparticles to the interaction. The matrix M =
Mk is identical to the conserved vector charge operator of the
pseudoscalar meson k given in the first column of this list.

A.2 Flavor space wave functions for the baryons

For the baryon flavor wave function use the second set listed
in Table 12.4 labelled as “Octet 2” and the second set listed
in Table 12.5 labelled as “Second 20M” in Ref. [68]. Instead
of the ordering B[ab]c we use the ordering Bc[ab] such that
our flavor wave functions are antisymmetric in the last two
indices.

• The light baryon octet:

p(uud) : B112 = −B121 = 1/
√

2

n(udd) : B212 = −B221 = 1/
√

2

�+(uus) : B113 = −B131 = 1/
√

2

�0(uds) : B123 = −B132 = B213 = −B231 = 1/2

�−(dds) : B223 = −B232 = 1/
√

2

�(uds) : B132 = −B123 = B213 = −B231 = 1
2 B312

= − 1
2 B321 = 1/

√
12

�0(uss) : B313 = −B331 = 1/
√

2

�−(dss) : B323 = −B332 = 1/
√

2. (A2)

• The C = 1 charm baryon antitriplet:

�+
c (udc) : B142 = −B124 = B214 = −B241

= 1
2 B412 = − 1

2 B421 = 1/
√

12

�+
c (usc) : B143 = −B134 = B314 = −B341

= 1
2 B413 = − 1

2 B431 = 1/
√

12

�0
c(dsc) : B243 = −B234 = B324 = −B342

= 1
2 B423 = − 1

2 B432 = 1/
√

12. (A3)

• The C = 1 charm baryon sextet:

�++
c (uuc) : B114 = −B141 = 1/

√
2

�+
c (udc) : B214 = B124 = −B142 = −B241 = 1/2

�0
c (ddc) : B224 = −B242 = 1/

√
2

�′+
c (usc) : B314 = B134 = −B341 = −B143 = 1/2

�′ 0
c (dsc) : B324 = B234 = −B342 = −B243 = 1/2


0
c(ssc) : B334 = −B343 = 1/

√
2. (A4)

• The C = 2 double charm baryon triplet:

�++
cc (ucc) : B414 = −B441 = 1/

√
2

�+
cc(dcc) : B424 = −B442 = 1/

√
2


+
cc(scc) : B434 = −B443 = 1/

√
2. (A5)

The flavor space wave functions of the conjugate 20′ states
are given by B̄i jk = Bi jk .

A.3 The weak transition tensor H [i j]
[kl] (O−)

Early foundations for the properties in this section and in
Table 2 are found in Ref. [63].

• The �C = 1 effective Hamiltonian

CF : c → s, d → u : H [42]
[31] = −H [24]

[31] = −H [42]
[13]

= H [24]
[13] = 1

SCS : (a) c → s, s → u : H [43]
[31] = −H [34]

[31]
= −H [43]

[13] = H [34]
[13] = 1

(b) c → d, d → u : H [42]
[21] = −H [24]

[21]
= −H [42]

[12] = H [24]
[12] = 1

DCS: c → d, s → u : H [43]
[21] = −H [34]

[21] = −H [43]
[12]

= H [34]
[12] = 1. (A6)
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Fig. 4 Weak transition (left) and strong transition (right)

• The �C = 0 effective Hamiltonian

SCS : (a′) s → u, u → d : H [31]
[12] = −H [13]

[12]
= −H [31]

[21] = H [13]
[21] = 1

(b′) c → d, s → c : H [43]
[24] = −H [34]

[24]
= −H [43]

[42] = H [34]
[42] = 1. (A7)

• The �S = 1 hyperon decay effective Hamiltonian

SCS : s → u, u → d : H [31]
[12] = −H [13]

[12]
= −H [31]

[21] = H [13]
[21] = 1. (A8)

Appendix B: Derivation of the completeness relation

The completeness relation (12) can be derived by writing
down a sixth rank tensor T bcd

kmn built from a linear combina-
tion of the products of three δ-functions which is separately
antisymmetric under the exchange of the tensor labels c ↔ d
and m ↔ n. One has

∑




B

k[mn]B

b[cd]

 = a(δbk δ

c
mδdn − δbk δ

d
mδcn)

+b
(
(δbmδcnδ

d
k − δbmδdn δck) + (δbnδ

c
kδ

d
m − δbnδ

d
k δcm)

)
. (B1)

By contracting (B1) again with B
′
b[cd] and using B
′

m[nk] +
B
′
n[km] = −B
′

k[mn] one obtains a−b = 1/2. The coefficients
a and b can be determined by contracting Eq. (B1) with
δkbδ

m
c δnd which gives

1

3
N (N 2 − 1) = a(N 3 − N 2) + 2b(N − N 2) (B2)

due to the normalization and orthogonality relation (11) with
the solution b = −a/2. One thus has a = 2/6 and b = −1/6
as in the completeness relation (12).

Table 14 SU(3) properties of the weak transition matrix elements

Matrix element Direct product NSU(3)

�C = 1 〈B(8)|Hpc(6)|Bc(3)〉 3 ⊗ 6 ⊗ 8 1

〈B(8)|Hpc(6)|Bc(6)〉 6 ⊗ 6 ⊗ 8 1

〈Bc(3)|Hpc(6)|Bcc(3)〉 3 ⊗ 6 ⊗ 3 1

〈Bc(6)|Hpc(6)|Bcc(3)〉 3 ⊗ 6 ⊗ 6 0

�C = 0 〈Bc(3)|Hpc(8)|Bc(3)〉 3 ⊗ 8 ⊗ 3 1 (a′, b′)
〈Bc(6)|Hpc(8)|Bc(3)〉 3 ⊗ 8 ⊗ 6 1 (b′)
〈Bc(3)|Hpc(8)|Bc(6)〉 6 ⊗ 8 ⊗ 3 1 (b′)
〈Bc(6)|Hpc(8)|Bc(6)〉 6 ⊗ 8 ⊗ 6 1 (b′)

Appendix C: SU(3) structure of weak and strong transi-
tion matrix elements

In this appendix we present explicit values for the weak and
strong matrix elements needed in the current algebra analysis
of Sect. 6 and Appendix D and depicted in Fig. 4. We begin
with a discussion of the weak transition matrix elements.

C.1 Weak matrix elements

In Table 14 we list the SU(3) decomposition of the four
classes of decays each for the �C = 1 and �C = 0 decays.
The SU(3) analysis shows that all matrix elements but one
are allowed. The forbidden transition is the �C = 1 tran-
sition 〈Bc(6)|Hpc(6)|Bcc(3)〉 which vanishes in the SU(3)
limit since the direct product 3 ⊗ 6 ⊗ 6 does not contain the
unit representation. All the other transitions are governed by
one SU(3) reduced matrix element. While the �C = 0 quark
transition (b′) c → d; s → c contributes to all four possi-
ble matrix elements, the quark transition (a′) s → u; u → d
contributes only to the matrix element 〈Bc(3)|Hpc(8)|Bc(3)〉
because of the KPW theorem.2 This pattern is confirmed
by the tensor analysis. The only possible connected tensor
invariant is given by the contraction

I pc = Ba[bc]Ba[b′c′]H [b′c′]
[b c ] . (C1)

The notation I pc is a short-hand notation for I pc
B f Bi

=
〈B f |H |Bi 〉. That the tensor invariant I pc vanishes for the
transition Bcc(3) → H(6) + Bc(6) can be understood by
realizing that the flavor of the noninteracting quark line a
must be charmed. But then the quark lines b and c that go
into the final baryon must be light and symmetric {bc} in the
6 representation. This clashes with the antisymmetry of the
flavor wave function Ba[bc] of the final state.

2 We do not agree with the �C = 0 analysis of Cheng et al. [75,92]
who assert that the nondiagonal matrix elements 〈Bc(6)|Hpc(8)|Bc(3)〉
and 〈Bc(3)|Hpc(8)|Bc(6)〉 are zero.
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Table 15 �C = 1 values of the weak transition matrix element I pc = 〈B f |Hpc(6)|Bi 〉. The suffix labelling (a) and (b) for the SCS decays is
explained in the caption of Table 8

Matrix element I pc Matrix element I pc

CF 2
√

6〈�+|Hpc(6)|�+
c 〉 −4 SCS 2

√
6〈p|Hpc(6)|�+

c 〉 +4b

2
√

6〈�0|Hpc(6)|�0
c〉 +4 2

√
6〈�+|Hpc(6)|�+

c 〉 −4a

2
√

2〈�+|Hpc(6)|�+
c 〉 +4 4

√
3〈�0|Hpc(6)|�0

c〉 −4a

2
√

2〈�0|Hpc(6)|�0
c 〉 +4 12〈�0|Hpc(6)|�0

c〉 −4a − 8b

2
√

6〈�0|Hpc(6)|�0
c 〉 +4 2

√
2〈p|Hpc(6)|�+

c 〉 −4b

2
√

2〈�0|Hpc(6)|�′ 0
c 〉 +4 4〈�0|Hpc(6)|�′ 0

c 〉 +4a

2
√

6〈�+
c |Hpc(6)|�+

cc〉 +8 4
√

3〈�0|Hpc(6)|�′ 0
c 〉 +4a − 8b

2
√

2〈�′+
c |Hpc(6)|�+

cc〉 0 2〈�0|Hpc(6)|
0
c〉 +4a

Table 16 �C = 0 values of the weak transition matrix element I pc =
〈B f |Hpc(8)|Bi 〉. The suffix labelling (a′) and (b′) is explained in the
caption of Table 9

Matrix element I pc

SCS 12〈�+
c |Hpc(8)|�+

c 〉 −16a′ + 4b′

2
√

6〈�0
c |Hpc(8)|�0

c〉 −4b′

4
√

3〈�+
c |Hpc(8)|�′+

c 〉 −4b′

2
√

6〈�0
c |Hpc(8)|
0

c〉 +4b′

2
√

2〈�′ 0
c |Hpc(8)|
0

c〉 +4b′

We will not provide an exhaustive list of weak matrix
elements. Instead, in Tables 15 and 16 we list all the weak
matrix elements that appear in the sample decays discussed in
Sect. 6 and Appendix D. In Table 15 we confirm the vanishing
of the matrix element 〈�′+

c |Hpc|�+
cc〉 by explicit calculation.

C.2 The �Y = 1 hyperon decay

For the �Y = 1 hyperon decays there are two reduced SU(3)
matrix elements as can be seen by the reduction of the direct
product 8⊗8⊗8 → 2·1⊕· · · . It is common practise to char-
acterize the two couplings by their symmetry structure which
are labelled by d (symmetric coupling) and f (antisymmetric
coupling). As we shall see in a moment, the invariant (C1)
has a d/ f structure of d/ f = −1. In addition to the tensor
invariant (C1) one has a second tensor invariant given by the
contraction B j[bc]Bi[bc]H [ir ]

[r j] . This second invariant does not
contribute to the �C = 1 transitions because i) there are no
two same light quarks in the effective Hamiltonian for the
CF and DCS transitions and ii) the two contributions from
the internal contractions (a) (ss̄) and (b) (dd̄) cancel in the
SCS contributions.

To analyze the d/ f structure of the two invariants it is con-
venient to switch to the second rank tensor representation of
the baryon flavor wave function and the effective Hamilto-
nian. For the baryon flavor wave function this is achieved by

the transformation

Babc = 1√
2

εibc B
i
a ⇔ Bi

a = 1√
2

εibc Babc (C2)

B =

⎛

⎜
⎜
⎝

− �0√
6

+ �0√
2

−�+ p

�− − �0√
6

− �0√
2

n

�− −�0 2�0√
6

⎞

⎟
⎟
⎠ . (C3)

Compared to the conventional 3 × 3 representation of the
baryon octet we have changed the phases of the �+, �0 ad
�0 components to be in agreement with our phase convention
from Lichtenberg [68]. In the same vein one can transform the
fourth rank tensor H [ab]

[a′b′] to a second rank “spurion” tensor

Sij by writing

H [ab]
[a′b′] = εia′b′ ε jabSij ⇔ Sij = 1

4ε jrs εir
′s′ Hrs

r ′s′ . (C4)

The so-called spurion has S2
3 = 1 as only nonvanishing com-

ponent. One obtains

Ba[bc]

 B
′

a[b′c′]H
[b′c′]
[bc] = 2B̄a

i B
j
a S

i
j = 2 tr(B̄ BS)

= tr
(
(B B̄ + B̄ B)S − (B B̄ − B̄ B)S

)
,

B j[bc]

 B
′

i[bc]H
[ir ]
[r j] = Ba

i B
j
a S

i
j = tr(B B̄S)

= tr
( 1

2 (B B̄ + B̄ B)S + 1
2 (B B̄ − B̄ B)S

)
, (C5)

indicating the ratios d/ f = +1 and d/ f = −1 for the two
couplings C̃F = √

2 tr([B, B̄]S) and C̃D = √
2 tr({B, B̄}S)

mentioned by Lichtenberg in Sec. 9.7 of Ref. [68].

C.3 Strong matrix elements

In Sect. 5 we have introduced the two basic flavor tensor
invariants Ĩ1 and Ĩ2 to describe the strong matrix element
〈B f Mk |Bi 〉. They read

Ĩ1 = Ba[bc]Ba[bc′]Mc′
c , Ĩ2 = Ba[bc]Bb[c′a]Mc′

c . (C6)

Depending on the class of the transition, the two basic tensor
invariants are not always independent. This becomes evi-
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Table 17 SU(3) properties of the strong transition matrix elements

Matrix element Direct product NSU(3) Ĩ1/ Ĩ2

〈B(8)M(8)|B(8)〉 8 ⊗ 8 ⊗ 8 2 Indefinite

〈Bc(3)M(8)|Bc(3)〉 3 ⊗ 3 ⊗ 8 1 −5/4

〈Bc(6)M(8)|Bc(3)〉 3 ⊗ 6 ⊗ 8 1 −1/2

〈Bc(3)M(8)|Bc(6)〉 6 ⊗ 3 ⊗ 8 1 −1/2

〈Bc(6)M(8)|Bc(6)〉 6 ⊗ 6 ⊗ 8 1 +1/0

〈B(8)M(3)|Bc(3)〉 3 ⊗ 8 ⊗ 3 1 +1

〈Bc(3)M(3)|Bcc(3)〉 3 ⊗ 3 ⊗ 3 1 −2

〈Bc(6)M(3)|Bcc(3)〉 3 ⊗ 6 ⊗ 3 1 0/ − 1

〈Bcc(3)M(8)|Bcc(3)〉 3 ⊗ 3 ⊗ 8 1 −1

dent when one analyzes the strong transitions in terms of
the three partaking SU(3) multiplets, as shown in Table 17.
In the second column we list the direct products of the par-
ticipating SU(3) representations and in the third column we
register the number NSU(3) of SU(3) reduced matrix elements
needed to describe the transitions. For the cases NSU (3) = 1
with only one SU(3) reduced matrix element we list the
ratio Ĩ1/ Ĩ2 of the two basic couplings (C6) in column 4.
The respective ratios can be obtained by rewriting the ten-
sor invariant Ĩ2 in terms of Ĩ1 i) following the flavor flow of
the transitions, ii) using the Jacobi identity, and iii) mak-
ing use of the wave function symmetries of the involved
baryons. By the same reasoning one finds Ĩ2 = 0 for the class
of decays 〈Bc(6)M(8)|Bc(6)〉 and Ĩ1 = 0 for the class of
decays 〈Bc(6)M(3)|Bcc(3)〉. This is specified in column 4 of
Table 17 by the notation “1/0” and “0/1”. Note that the class
of light baryon transitions 〈B(8)M(8)|B(8)〉 is described by
two SU(3) invariant amplitudes, i.e. the ratio Ĩ1/ Ĩ2 is not
definite for this class of transitions as annotated in Table 17.
One can relate the two invariants Ĩ1 and Ĩ2 to the usual pair
of SU(3) d and f couplings as has been done for the weak
transition matrix elements (see Eq. (C5)). One finds

Ĩ1 = − 1
2 tr(B̄ BM̄) = − 1

4 tr
(
(B B̄ + B̄ B)M̄

)

+ 1
4 tr

(
(B B̄ − B̄ B)M̄

) = − 1
4 I

d + 1
4 I

f ,

Ĩ2 = 1
2 tr

(
(B B̄ + B̄ B)M̄

) = 1
2 I

d . (C7)

In the usual way of SU(3) labelling, the invariant Ĩ1 can be
seen to correspond to a coupling ratio d/ f = −1 while the
invariant Ĩ2 corresponds to a pure d coupling. One obtains

I d = 2 Ĩ2, I f = 4 Ĩ1 + 2 Ĩ2. (C8)

It is common knowledge that the generator of SU(3) is pro-
portional to the antisymmetric coupling of two baryon octets.
As Eq. (C7) shows, the antisymmetric coupling is propor-
tional to the linear combination I f ∼ 2 Ĩ1 + Ĩ2. The normal-
ization of the f coupling must be chosen such that the expec-
tation value of the charge operator between proton states

is given by the charge of the proton which is 1 in units of
the elementary charge e. Let us verify this for the choice
I f = 4 Ĩ1 + 2 Ĩ2. First we express the 3 × 3 charge operator
Q in terms of its π0 and η8 components. One has

Q=
⎛

⎝
2/3 0 0
0 −1/3 0
0 0 −1/3

⎞

⎠= 1√
2
Q(π0)+ 1√

6
Q(η8), (C9)

where the charge operator components are given by

Q(π0) = 1√
2

⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ , Q(η8) = 1√
6

⎛

⎝
1 0 0
0 1 0
0 0 −2

⎞

⎠ .

(C10)

The expectation value of the charge operator between two
proton states can then be calculated to be 1 according to the
decomposition of the charge operator (C9). One has

〈p|Q|p〉 = 1√
2
I f
pπ0 p

+ 1√
6
I f
pη8 p = 1. (C11)

This is in accordance with Table 18 where we list the val-
ues of the strong transition matrix elements for the invari-
ants Ĩ1, Ĩ2, and for the linear combinations of invariants
I d = 2 Ĩ2 (not shown), I f = 4 Ĩ1+2 Ĩ2 and ICQM = 4 Ĩ1+5 Ĩ2
which appear in the current algebra description of the charm
baryon nonleptonic decays. The notation 〈B f , Mk |Bi 〉 means
either 〈B f Mk |Bi 〉 or 〈B f |Mk |Bi 〉, depending on whether one
deals with I f or ICQM, respectively. The same result can be
obtained by direct calculation of the matrix elements Ĩ1 and Ĩ2
for the charge operator. The result is Ĩ1 = 1/6 and Ĩ2 = 1/6
which confirms again that the invariant I f = 4 Ĩ1 + 2 Ĩ2 has
the correct normalization. Table 18 shows that the genera-
tor matrix element I f

�−π+�0 = 〈�−|Q(π−)|�0〉 vanishes
which follows from the fact that Q(π−) is a generator of the
subgroup SU(2).

We want to ascertain that I f = 4 Ĩ1 + 2 Ĩ2 is the correctly
normalized generator matrix element also from SU(4). As
an example we calculate the charge of the charm baryon
state |�+

c 〉. In SU(4) the charge operator is given by Q =
diag (2/3,−1/3,−1/3, 2/3). For the matrix elements of the
charge operator one finds Ĩ1 = 1/4 and Ĩ2 = 0 which gives
I f = 4 Ĩ1 + 2 Ĩ2 = 1, as required. Table 18 shows that
I f = 0 for the two classes of transitions 〈Bc(3)M(8)|Bc(6)〉
and 〈Bc(6)M(8)|Bc(3)〉. The vanishing of the f -type matrix
elements follows from the fact that the vector charges Mk

associated with the members Mk of light meson octet M(8)

are generators of SU(3) which do not connect different SU(3)
multiplets.

The second linear combination of Ĩ1 and Ĩ2 that enters the
current algebra calculation is the constituent quark model
(CQM) tensor invariant ICQM which reads

ICQM = 4 Ĩ1 + 5 Ĩ2 = 3
2 I

d + I f . (C12)
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Table 18 Values of tensor invariants for the strong transitions Bi → B f + Mk . I f and ICQM are related to Ĩ1 and Ĩ2 by I f = 4 Ĩ1 + 2 Ĩ2 and
ICQM = 4 Ĩ1 + 5 Ĩ2

Ĩ1 Ĩ2 I f ICQM

2
√

2〈p, π0|p〉 0 +1 +2 +5

2
√

6〈p, η8|p〉 +2 −1 +6 +3

2
√

2〈p, K−|�0〉 −1 +1 −2 +1

2
√

6〈p, K−|�0〉 +1 +1 +6 +9

2
√

2〈�−, π+|�0〉 −1 0 −4 −4

2
√

6〈�−, π+|�0〉 −1 +2 0 +6

2
√

6〈�0, π+|�+〉 +1 −2 0 −6

2
√

2〈�0, π+|�+〉 −1 0 −4 −4

2〈�0, K+|�+〉 0 +1 +2 +5

2
√

2〈�0, K̄ 0|�0〉 0 −1 −2 −5

2〈�0, K+|�+〉 0 +1 +2 +5

2
√

6〈�+
c , π−|�0

c 〉 +1 −2 0 −6

2
√

6〈�0
c , π

+|�+
c 〉 −1 +2 0 +6

12〈�0
c , K

+|�+
c 〉 −5 +4 −12 0

4
√

3〈�′ 0
c , K+|�+

c 〉 +1 −2 0 −6

12
√

2〈�+
c , π0|�+

c 〉 +5 −4 +12 0

2
√

6〈�++
c , K−|�+

c 〉 −1 +2 0 +6

12〈�+
c , π−|�0

c〉 +5 −4 +12 0

4
√

3〈�′+
c , π−|�0

c〉 +1 −2 0 −6

12〈�+
c , π−|�0

c〉 +5 −4 +12 0

4
√

3〈�′+
c , π−|�0

c〉 +1 −2 0 −6

12〈�+
c , π−|�0

c〉 +5 −4 +12 0

4
√

3〈�′+
c , π−|�0

c〉 +1 −2 0 −6

12〈�0
c , π

+|�+
c 〉 −5 +4 −12 0

2
√

12〈�′ 0
c , π+|�+

c 〉 −1 +2 0 +6

4
√

3〈�+
c , K−|�0

c〉 −1 +2 0 +6

12〈�+
c , K−|�0

c〉 −5 +4 −12 0

2
√

6〈�0
c , K̄

0|
0
c〉 −1 +2 0 +6

2
√

2〈�′ 0
c , K̄ 0|
0

c〉 −1 0 −4 −4

2
√

2〈�++
cc , π0|�++

cc 〉 +1 −1 +2 −1

2〈�+
cc, π

+|�++
cc 〉 −1 +1 −2 +1

2
√

2〈�+
cc, π

0|�+
cc〉 −1 +1 −2 +1

2
√

6〈�+, D0|�+
c 〉 +1 +1 +6 +9

2
√

6〈�+
c , D+|�++

cc 〉 −2 +1 −6 −3

2
√

2〈�+
c , D+|�++

cc 〉 0 −1 −2 −5

2
√

6〈�+
c , D0|�+

cc〉 −2 +1 −6 −3

2
√

2〈�+
c , D0|�+

cc〉 0 +1 +2 +5
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Q

Q

0+, 1+

0+, 1+ 0-

Fig. 5 Light diquark transitions

The constituent quark model coupling ICQM can be seen
to correspond to a d/ f ratio of 3/2. Table 18 shows that
the constituent quark model coupling ICQM vanishes for
the class of decays 〈Bc(3)M(8)|Bc(3)〉. This can be under-
stood from a LS coupling analysis of the light-side transi-
tion 0+ → 0+ + 0−. In the constituent quark model (or
in the Heavy Quark Effective Theory (HQET)) the light
side transition effectively decouples from the heavy side
charm quark transition as illustrated in Fig. 5. The light side
diquark has the quantum numbers J P = (0+, 1+) depend-
ing on whether the two light quark spins are in the spin sin-
glet or the spin triplet state. One can then do a LS anal-
ysis of the light side transitions D(0+) → D(0+) + 0−,
D(0+) → D(1+) + 0−, D(1+) → D(0+) + 0− and
D(1+) → D(1+) + 0−. From parity the orbital angular
momentum of the final state must be odd. One concludes
that the transition D(0+) → D(0+) + 0− must vanish since
even for the lowest possible angular momentum L = 1 the
final state D(0+)+0− cannot couple to the initial D(0+) state
because the total spin S of the final state is S = 0. A simi-
lar LS analysis for the other three diquark transitions shows
that these transitions are allowed. The coupling/decoupling
arguments presented here do not hinge on the diquark repre-
sentation of the light quarks but follow also in a single quark
picture as long as the two light quarks move independently
[66,111].

In Sect. 5 we have also considered the possibility that
the strong transition is described by a general mixture of
SU(3) d and f couplings. We denote the general coupling by
I gen(d/ f ) which we choose to parametrize by

I gen(d/ f ) = d( 5
3 ICQM − 2

3 I f ) + f I f (C13)

with d + f = 1. We have chosen the parametrization (C13)
such that i) for d = 0 and f = 1 one recovers the f -coupling
structure I f = 4 Ĩ1 + 2 Ĩ2 and ii) for d = 3/5 and f = 2/5
one recovers the coupling structure ICQM = 4 Ĩ1 + 5 Ĩ2.

Appendix D: Scrutinizing the Cheng et al. modification
of the current algebra approach

As the authors of Ref. [60] put it, the CF single charm baryon
decay �+

c → �0K+ deserves special attention. First, there
is no factorizing contribution to the decay as evidenced by
Table 3, i.e. the decay is contributed to only by the nonfac-
torizing W -exchange contributions. Second, as we reconfirm
below, theW -exchange contribution to the S-wave amplitude
Acom = Acom

f ki vanishes for this decay in the standard current

algebra approach since I3 = 0 and Î3 = 0 (see Table 3).
Thus the current algebra approach predicts the decay to be
purely P-wave. This implies that the asymmetry parameter
in this decay is predicted to be zero. Cheng et al. point out
that it will be difficult to reproduce the rather large experi-
mental branching ratio of this decay (B = (5.5±0.7)×10−3

[112]) with a P-wave contribution alone. They also suggest
a way out of what they call a puzzle by reinstalling an S-
wave contribution by appealing to the topological structure
of the decay. We believe that the construction of Ref. [60] is
based on an erroneous assumption about the contribution of
the topological diagram IIa to the S-wave amplitude Acom as
we shall demonstrate in the following.

In order to shed more light on the problem, we list the
current algebra W -exchange contributions to the amplitudes
Acom and Bpole = Bpole

f ki in terms of the intermediate baryon
states for the s- and u-channel contributions. The intermedi-
ate state in the s channel is given by �+. In the u channel
the intermediate states are given by the flavor degenerate pair
of states �0

c and �′ 0
c where �0

c contributes to Acom(u) and
�′ 0

c contributes to Bpole(u) since 〈�′ 0
c |K+|�+

c 〉 = 0 and
〈�0

c K
+|�+

c 〉 = 0 (see Appendix C). One therefore has

Acom = 1

fK
6(4π X̄2)

(
I f
�0K+�+ I pc

�+�+
c

− I pc
�0�0

c
I f
�0
c K

+�+
c

)
,

Bpole = 1

fK
6(4π)X̄2

2
3 (4π)Z̄

(
ICQM
�0K+�+ I

pc
�+�+

c
Rs(�

+)

+I pc
�0 �′ 0

c
ICQM
�′ 0
c K+�+

c
Ru(�

′ 0
c )

)
. (D1)

In line with the fact that we are working in the SU(3) limit we
define X̄2 and Z̄ as SU(3) averages of the bag model integrals
listed in Ref. [60]. Note that the bag model integral X1 does
not appear in Eqs. (D1), since X1 vanishes in the SU(3) limit.
Intrinsic SU(3) breaking effects are accounted for in the bag
model calculations but are quite small of O(1 − 2)%, as can
be estimated from the ratio X1/X2 and the relative size of the
bag model integrals Xd

2 and Xd
2 , and Z1 and Z2 in Ref. [60].

One can check that Eqs. (D1) agree with Eq. (40) of Ref. [60]
when the SU(3) limit is taken.

The flavor coefficients in Eqs. (D1) are given by

S-wave (s;�+) : I f
�0K+�+ I pc

�+�+
c

= −4/2
√

6

= 2I3 + 4I5
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S-wave (u;�0
c, �′ 0

c︸︷︷︸
0

) : I pc
�0�0

c
I f
�0
c K

+�+
c

= −4/2
√

6

= 2 Î3 + 4I5

P-wave (s;�+) : ICQM(K+)

�0�+ I pc
�+�+

c
= −10/2

√
6

= I3 + 2I4 + 6I5

P-wave (u; �0
c︸︷︷︸

0

, �′ 0
c ) : I pc

�0 �′ 0
c
ICQM(K+)

�′ 0
c �+

c
= −6/2

√
6

= Î3 + 2 Î4 + 6I5, (D2)

where we have included the corresponding results in terms
of the topological tensor invariants. As proven in Sect. 4,
the two results agree with each other. We emphasize that
the topological tensor invariants depend only on the initial
and final state particles. The summation over intermediate
states is automatically accounted for. It is for this reason
that the representation of the current algebra results in terms
of topological tensor invariants is much compacter than the
representation in terms of intermediate states.

The S-wave contribution in the first line of Eqs. (D1)
clearly vanishes for the decay �+

c → �0K+ since Acom ∼
I3 − Î3, and both I3 and Î3 vanish. As emphasized in Sect. 5,
the contribution of the nonvanishing topological invariant I5
cancels out in the total sum of the s- and u-channel contribu-
tions. Therefore, there is no need to banish the contribution
of the topological diagram III represented by the single topo-
logical invariant I5 as done in Ref. [60] since I5 does not con-
tribute to the S-wave amplitude altogether. Instead, Cheng et
al. reinstall an S-wave contribution by appealing to the topo-
logical structure of the nonleptonic transitions. Their idea is
that diagram IIa (see also Fig. 1b in Ref. [60]) allows for
an s-channel S-wave contribution to �+

c → �0K+, since
I4 �= 0. However, our analysis shows that the topological
tensor invariant I4 associated with diagram IIa does not con-
tribute to the S-wave s-channel amplitude Acom. The flaw in
the reasoning of Ref. [60] results from an incomplete knowl-
edge of how the topological diagrams are connected with the
current algebra contributions which are now available from
our analysis.

Nevertheless, let us present the results of the modified cur-
rent algebra approach of Ref. [60] where we again use the
representation in terms of topological tensor invariants. In
the modified current algebra approach the u-channel contri-
butions to �+

c → �0K+ are relinquished by observing that
i) there are no contributions from the topological diagram IIb
and from the postulate that ii) contributions from the topo-
logical diagram III must be set to zero. In the modification
of the current algebra approach one therefore has

Acom = 1

fK
6(4π X̄2)

(
I f
�0K+�+ I pc

�+�+
c

− 0(u)
)
,

Bpole = 1

fK
6(4π X̄2)

3
2 (4π Z̄)

(
ICQM
�0K+�+ I

pc
�+�+

c
Rs(�

+) + 0(u)
)
,

(D3)

where 0(u) stands for the banished u-channel contributions.
As a result of their modifications, in their numerical evalu-
ation Cheng et al. obtain a rather large value for the asym-
metry parameter α�+

c →�0K+ = 0.90 due to the fact that
Acom is no longer zero. This result is in crass contradiction
to the current algebra result where α�+

c →�0K+ = 0. The
issue of a vanishing or non-vanishing S-wave contribution to
the decay �+

c → �0K+ can be settled by a measurement of
the asymmetry parameter in this decay. Unfortunately, such
a measurement is not available at present. As concerns the
rate, however, Cheng et al. succeed in their original goal to
increase the branching ratio to B = 7.1 × 10−3 close to the
experimental branching ratio B = (5.5 ± 0.7)× 10−3 [112].

Since the arguments in Ref. [60] are based on an incom-
plete knowledge of how the topological invariants contribute
to the current algebra results, it is difficult to follow their rea-
soning in the treatment of some of the other charm baryon
decays. A case in point is the SCS decay �+

c → �0π+. The
W -exchange contributions proceed via the (c → s; s → u)

transitions (called (a) in Appendix A) with the nonvan-
ishing tensor invariants I3 = 2/4

√
3 and I5 = 1/4

√
3

(see Table 4). The intermediate state in the s-channel is
�+ for both Acom(s) and Bpole(s) while the intermediate
states in Acom(u) and Bpole(u) are � 0

c and �′ 0
c , respec-

tively, as follows from the fact that 〈�′0
c |π+|�+

c 〉 = 0 and
〈�0

cπ
+|�+

c 〉 = 0 (see Appendix C). One has

Acom = 1

fK
6(4π X̄2)

(
I f
�0π+�+ I pc

�+�+
c

− I pc
�0�0

c
I f
�0
cπ

+�+
c

)
,

Bpole = 1

fK
6(4π)X̄2

2
3 (4π)Z̄

(
ICQM
�0π+�+ I

pc
�+�+

c
Rs(�

+)

+I pc
�0 �′ 0

c
ICQM
�′ 0
c π+�+

c
Ru(�

′ 0
c )

)
(D4)

and

S-wave (s;�+) : I f
�0π+�+ I pc

�+�+
c

= (−√
2)(−2

√
6)

= 2/
√

3 = 2I3 + 4I5

S-wave (u;�0
c, �′ 0

c︸︷︷︸
0

) : I pc
�0�0

c
I f
�0
cπ

+�+
c

= (−1/
√

3)(−1) = 1/
√

3 = 2 Î3 + 4I5

P-wave (s;�+) : ICQM
�0π+�+ I

pc
�+�+

c
= (−√

2)(−√
2/3)

= 2/
√

3 = I3 + 2I4 + 6I5
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P-wave (u; �0
c︸︷︷︸

0

, �′ 0
c ) : I pc

�0 �′ 0
c
ICQM
�′ 0
c π+�+

c

= (1)(
√

3/2) = √
3/2 = Î3 + 2 Î4 + 6I5, (D5)

leading to

Âcom = (2I3 + 4I5) − (2 Î3 + 4I5)

B̂pole = (I3 + 2I4 + 6I5) Rs(�
+)

+( Î3 + 2 Î4 + 6I5) Ru(�
′ 0). (D6)

The results can be checked to be in agreement with the results
in Ref. [60] up to sign differences due to different sign con-
ventions for the flavor wave functions. The above results for
the decay �+

c → �0π+ in Ref. [60] were calculated in the
modified current algebra approach as defined earlier on in
the paper. An obvious question is why the u-channel con-
tributions were dropped in Eqs. (D1) and not in the decay
�+

c → �0π+. In both cases the u-channel contributions are
proportional to the tensor invariant I5 which are banished in
one case but not in the other case.

Another case of puzzlement are the SCS decays 
0
c →

�+ K̄− and 
0
c → �0 K̄ 0 treated in a follow-up paper

[62], again in the framework of the modified current alge-
bra approach. That the authors of Ref. [62] use the modified
current algebra approach is evident from the fact that they do
not even list the decays 
0

c → pK− and 
0
c → nK̄ 0 in their

list of 
0
c decays since these decays are proportional to I5

alone (see Table 8). Up to a normalization factor, the above
two decays 
0

c → �+ K̄− and 
0
c → �0 K̄ 0 can be seen to

have a topological invariant structure which is identical to the
one in the decay �+

c → �0K+ treated above (see Tables 3
and 8). Therefore, one would expect substantial S-wave con-
tributions and large values of the asymmetry parameter in
these decays in the modified current algebra approach, con-
trary to the numerical results listed in Ref. [62].

Apart from the misidentification in the S-wave contribu-
tion mentioned above, a second serious objection against
the prescription of Cheng et al. is the following. As writ-
ten down in Eq. (20), the topological tensor invariant I5
projects onto the reduced topological matrix elementT5. The
reduced matrix element T5 in turn is calculated in terms of
bag model integrals which certainly do not vanish as shown
in Refs. [59–62]. However, one cannot arbitrarily set T5 to
zero and keep the other reduced topological matrix elements
at their nonzero bag model values. As an additional justifi-
cation of their prescription to banish the contributions pro-
portional to I5, the authors of Ref. [60] cite the constituent
quark model calculation of Ref. [37] where the contributions
proportional to I5 were found to be numerically small. How-
ever, in Ref. [37] the reduced matrix element T5 given in
terms of an overlap integral H3 was found to be numerically
small which had no implications for the other two topologi-

cal contributions IIa and IIb since they are proportional to an
unrelated overlap integral H2.

Appendix E: Amplitudes, rates and asymmetry parame-
ter

As before we shall use the abbreviations Q± = (mi ±m f )−
m2

k such that the magnitude of the rest frame momenta of the
daughter particles read p = √

Q+Q−/2mi . We follow the
conventions of Ref. [37] except that we change the sign of
the p.c. amplitude B.

Invariant amplitudes: 〈B f M |H|B1〉 = ū f (A − Bγ5)ui

Helicity amplitudes: Hpv
1/2 0 = 2

√
Q+A, Hpc

1/2 0

= 2
√
Q−B

Rate: � = p

32πn2
i

(
|Hpv

1/2 0|2 + |Hpc
1/2 0|2

)

= p

8πm2
i

(
Q+|A|2 + Q−|B|2

)

Asymmetry parameter: |H1/2 0|2 − |H−1/2 0|2
|H1/2 0|2 + |H−1/2 0|2

= 2 Re(HpvHpc ∗)
|Hpv|2 + |Hpc|2

= 2
√
Q+Q− Re(AB∗)

(
Q+|A|2 + Q−|B|2) . (E1)
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