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Abstract. Using the simplest yet meaningful Peters-Mathews model describing the orbital
damping of a compact binary system under the emission of gravitatonal radiation, we show
that the chirp-mass of an eccentric inspiraling binary, and its (Keplerian) orbital eccentricity
at some reference time, can be estimated from the time-frequency skeleton of its gravitational
wave signal. The estimation algorithm is nicely simple, and is robust against the non-ideal (non
Gaussian, non stationary) features of detector noise.

1. Introduction
Several mechanisms exist whereby compact binary systems with large eccentricities may form
[1], including close-encounters and other many-body interactions in dense stellar environments
[2]-[5], and the Lidov-Kozai mechanism [6],[7]. These may result in the formation of systems with
both relatively high orbital frequencies, within the observational frequency window of present-
day Earth-based detectors, and large eccentricities, that wouldn’t otherwise form as an effect of
radiation damping alone [8].

Circular-orbit template banks are known since long to be inefficient for matched-filter
detection of gravitational waves from eccentric binaries [9]-[11], due to accumulating phase-
mismatch [12] resulting in large SNR loss and unacceptable false-dismissal rate; and/or
eventually in selection effects, and misestimation of the source parameters [13].

Efforts to construct gravitational wave template families with eccentricity, in the time-domain
and/or in the frequency domain, are ongoing following different approaches, including post-
Newtonian expansions, effective-one-body models, numerical solutions, etc. - see e.g. [14]-[23].
As of today, however, no ready-to-use template family is available covering the full eccentricity
range, and incorporating spin effects as well - which is needed in view of the observed degeneracy1

between eccentricity and spin [25].
Model independent methods, based on excess-power detection in time-frequency (TF)

representations [26],[27], proved effective in reconstructing injected waveforms obtained from
hybrid (analytic/numeric) modeling of highly eccentric sources [28], [29]. Re-examination of

1 Degeneracies can be circumvented, at the expense of some loss in physical insight, by orthogonalization and
dimensional reduction of the parameter basis [24].
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the data gathered during the 1st and 2nd observing run of the advanced LIGO and Virgo
detectors, using a well tested pipeline belonging to this class [30], didn’t find any signal, though,
beyond those already confidently detected as originating from circular binaries [31]. Among the
gravitational wave events detected by LIGO/Virgo in the O3 science-run, on the other hand, at
least one (GW190521) has been indicated as possibly originating from a highly-eccentric source
[32].

The possible use of TF representations for parameter estimation, other than detection of GWs
from eccentric binaries was suggested in [33]-[35], and certainly deserves further investigation.
It is worth noting that while the orbital phase (needed for template-based data analysis) is
strongly affected by higher-order PN corrections, the orbital frequency (the main observable of
TF representation based analysis) is affected to a much lesser extent.

This communication adds to the TF based approach, and proposes a simplest method for
estimating the source chirp mass, and its (Keplerian) eccentricity at some reference time, using
the time-frequency skeleton of its gravitational waves. For the sake of simplicity and readability,
we adopt the seminal Peters-Mathews model, that makes the whole derivation straightforward
(Sect. 2 and Appendix), allows to track explicitly the intensity evolution of the GW spectral
lines, while they sweep the detector observational frequency-window (Sect. 3), and suggests
almost naturally the proposed algorithm (Sect. 4).

2. Simplest Orbital Damping Model
The first orbital evolution model of a binary systems made of compact bodies under the emission
of gravitational radiation was formulated in 1963 by J. Mathews (Caltech) and P.C. Peters (his
student, at the time) [36], [37]. The relevance of the the Peters-Mathews (PM) model is threefold:
historical (it supported the first indirect evidence of gravitational wave emission from continued
observation of the orbital evolution of the binary pulsar PSR1913+16 [38], [39]); conceptual
(all higher-order post-Newtonian models are rooted in it), and, not least, pedagogical, in view
of its full mathematical solvability, and the high physical readability of the ensuing solution,
describing a universal evolutionary scenario.

The PM analysis tracks the binary evolution starting from known initial values of the orbital
frequency ωorb and Keplerian orbital eccentricity e, and can be boiled down to the following
equations [40] (see Appendix for details) :

Tc[e(0) = 0] =
5

256
ω
−8/3
orb (0)

(
c3

GM⊙

)5/3

M−5/3
(1)

yielding the lifetime (fiducial time to coalescence) of a circular-orbit (e(0) = 0) binary, where
ωorb(0) is the orbital frequency at t = 0, M is the binary chirp-mass in solar masses, and all
other symbols have the usual meaning;

Tc[e(0)]

Tc(0)
= [1− e2(0)]4

[
1 +

121

304
e2(0)

]−3480/2299

Ω[e2(0)] (2)

yielding the lifetime reduction due to a non-zero initial eccentricity e(0) ∈]0, 1[, where

Ω(x) = 2F1

[
24

19
,
3

2
,−1181

2299
,
43

19
;x,−121

304
x

]
, (3)

2F1(·) being Appell hypergeometric function of the first kind2;

τ

Tc[e(0)]
= 1−

[
e2(τ)

e2(0)

]24/19
Ω[e2(τ)]

Ω[e2(0)]
(4)

2 The Appell function 2F1(·) is available, e.g., in the standard WOLFRAM MATHEMATICA® package.
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Figure 1. The PM model in a nutshell: left to right: the ratio Tc[e(0)]/Tc(0) vs. e(0) from
eq. (2); the Keplerian eccentricity vs t/Tc[e(0)], from eq. (4); the scaled orbital frequency
ωorb/ωorb(0) vs t/Tc[e(0)], from eq. (5), for different values of e(0). These curves, together with
eq. (1) provide a universal description of binary evolution under gravitational emission.

relating (upon inversion3) orbital eccentricity to scaled time t/Tc[e(0)], and

ωorb(t)

ωorb(0)
=

[
e(t)

e(0)

]−18/19 [ 1− e2(t)

1− e2(0)

]3/2 [ 1 + 121
304e

2(t)

1 + 121
304e

2(0)

]−1305/2299

(5)

relating ωorb(t) and e(t) throughout the binary lifetime4. Equations (1) to (5) provide a simple,
general and readable description of binary evolution under gravitational radiation, illustrated in
Figure 1.

3. Gravitational Waves from Eccentric Binaries
The steady-state gravitational wave luminosity spectrum of an elliptical-orbit binary was also
first derived in [36], and further elaborated in [42]-[44]. The luminosity of the n-th harmonic of
the orbital frequency (sum over both polarizations) can be accordingly written

Ln = Π M10/3
(
ωorb(t)

ωorb(0)

)10/3

gtot(n, e), (6)

where Π = (32/5)G7/3c−5 (M⊙ωorb(0))
10/3 (erg/sec), and

gtot(n, e) =
n4

32

{[
Jn−2(ne)− Jn+2(ne)− 2e [Jn−1(ne)− Jn+1(ne)] +

2

n
Jn(ne)

]2
+

+ (1− e2) [Jn−2(ne)− 2Jn(ne) + Jn+2(ne)]
2 +

4

3n2
J2
n(ne)

}
.

(7)

3 The function Ω(x) is strictly monotonic in [0, 1[, and numerical inversion of (4) is straightforward to any desired
accuracy.
4 Note that in the asymptotic circular-orbit limit, e ∼ e(0) ∼ 0, Ω(x) ∼ 1, Tc[e(0)] ∼ Tc(0), 1 − t/Tc(0) ∼
[e(τ)/e(0)]48/19, and, from eq. (5),

ωorb(t) ∼ ωorb(0)

(
1− t

Tc(0)

)−3/8

.
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Figure 2. Left to right: steady state gravitational wave luminosity spectrum gtot(n, e) for
three different values of e, from eq. (7); harmonic-order of the strongest line in the steady-
state spectrum (black) and of the lowest (red) and highest (blue) frequency lines such that
Ln ≥ 0.1Lmax, vs. orbital eccentricity; fraction of the binary lifetime where e(t) ≥ 0.9e(0) as a
function of e(0).

Jn(·) being the Bessel function of the first kind5.
The function gtot(n, e) is shown in Figure 2 for different values of e.

It is seen that as Keplerian eccentricity increases, the order of the strongest harmonic in the
spectrum and the spectral width also increase.

A non-trivial consequence of eq.s (2) and (4) is that while the binary lifetime is a decreasing
function of e(0), the fraction of the binary lifetime over which e(t) ≈ e(0) is an increasing
function of e(0), as shown in Figure 2.

It is possible to combine eq. (7) with eqs. (4) and (5) allowing to express the orbital
eccentricity and frequency as functions of (scaled) time t/Tc[e(0)], to see how the spectral lines
and their luminosities evolve during the binary lifetime6.

Doing so, we should keep in mind that GW data from interferometric detectors are pass-
banded, in order to get rid of the technical noises [45] occurring below and above some typical
frequencies, denoted here as fin and fout. Hence, the n-th spectral line will become visible
(provided its luminosity exceeds the noise-floor of the detector) only in the time interval where
fin ≤ fn(t) ≤ fout.

In general, different harmonics will be dominant in different time-intervals, until the n = 2
line will take the lead, and higher harmonics will eventually vanish as t/Tc[e(0)] → 1, because of
asymptotic orbit circularization, for any e(0) ∈]0, 1[. The higher harmonics, however will exceed,
or remain comparable to, the 2nd one throughout a fraction of the binary lifetime that increases
with e(0). To illustrate the above, we consider two sources7 with e(0) = 0.75 and e(0) = 0.25,
respectively, forb(0) = 1Hz for both, and assume fin = 20Hz, fout = 150Hz. In Figure 3 all
harmonics for which Ln ≥ 0.01Lmax at t = 0 are included, as they sweep through the spectral
window (fin, fout). It is seen that a bunch of higher harmonics of the more eccentric source falls
in the detector spectral window already at t = 0; the situation is different for the less eccentric
source, whose spectral lines enter the observational window much later.

5 Efficient computational tools for evaluating the Bessel functions in eq. (7) were first discussed in [44].
6 For simulation purposes, the evolving transverse-traceless components of the emitted gravitational waves from
[37],[44] can be consistently computed using the orbital phase evolution equations derived in [12].
7 By suitable choice of their chirp masses, these two sources can be designed using eqs. (1) and (2) to have the
same lifetime. Their luminosities will be different, though, according to eq. (6).
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Figure 3. Frequency evolution of gravitational wave lines (harmonics of the orbital frequency)
for which Ln ≥ 0.01Lmax at t = 0, as they sweep the detector observational frequency window
(here between 20Hz and 150Hz). Left: source with e(0) = 0.75; right: source with e(0) = 0.25;
forb(0) = 1Hz for both sources.
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Figure 4. Evolution of the luminosity of the five strongest gravitational wave lines (harmonics
of the orbital frequency) in the lifetime fraction where they sweep the detector observational
freuency window (here from 20Hz to 150Hz). Left: source with e(0) = 0.75; right: source with
e(0) = 0.25; forb(0) = 1Hz for both sources.

In Figure 4 the luminosity of the five most intense spectral lines in the late evolutionary phase
is shown, again for both cases. It is seen that for the source with e(0) = 0.25, all harmonics with
n > 2 are fainter by a factor ∼ 103 compared to the 2nd one, throughout the interval where
they sweep through the detector spectral window, between fin = 20Hz and fout = 150Hz; for
the source with e(0) = 0.75, one or more of the higher harmonics exceed, or are comparable to,
the asymptotically dominant 2nd one over extended fractions of the lifetime.

We may thus expect a fairly richer time-frequency scenario, compared to the simplest circular-
orbit case, when observing binaries with relatively large eccentricities.

3.1. Time-Frequency Representations
Time-frequency (TF) representations aim at displaying the energy content of nonstationary
signals as a function of time and frequency. Many such representations have been proposed,
each with its own pros and cons [46], [47]. See [48] for a comparative discussion in the context
of GW data analysis.
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For multi-line chirping GW signals, consisting of harmonically-related quasi-monochromatic
signals whose frequency and amplitude change adiabatically in time, TF representations should
be rated according to their ability to produce uniformly sharp, faithful and clean (devoid of, e.g.,
nonlinear artifacts) estimates of the time-dependent (instantaneous) frequencies of the various
harmonic components throughout the time-frequency plane - such ability being ultimately
limited by Gabor-Heisenberg inequality.

The instantaneous frequency lines (henceforth IFLs) form the so called skeleton or ridge of the
TF representation. In practice, discrete TF representations are used, where at each (discrete)
time, the hottest (or a few hottest) pixel is selected to extract the skeleton. For an eccentric
binary, the skeleton will accordingly consists of different tracks spanning different time intervals,
reflecting the locally dominant harmonics.

The tracks representing such harmonics can be combined into a single line representing the
(estimated) IFL of the source orbital frequency.

In the next section we shall assign, for simplicity, a unit level to all TF pixels on the orbital
IFL, and a zero level value to all other pixels8.

4. A Simple Chirp Mass Estimator for Eccentric Sources
The PM model suggests a simple algorithm for estimating, given the orbital IFL, the chirp
mass of an eccentric binary together with its (Keplerian) orbital eccentricity at some reference
time9. The first equation in (A.1), integrated between t1 and t2 and combined with (A.5) can
be formally solved for the normalized chirp mass M = M/M⊙, yielding

M =

(
c3

GM⊙

)
5

256

ω
−8/3
orb (t1)− ω

−8/3
orb (t2)∫ t2

t1

f [e(t)]dt


3/5

. (8)

From (8) we may obtain as many values of the chirp mass M, as the number of available TF
pixel-pairs 10 {{t1, ωorb(t1)}, {t2, ωorb(t2)}} from the given orbital IFL. In the absence of noise
and numerical (roundoff) errors, one would obtain from (8) the same value of M from all TF
pairs . In practice, the computed values of M will be different, and can be binned to form a
histogram, D(M), to obtain an estimate of the source chirp-mass [49].

The computation of (8) is straightforward for circular orbits11 where the integral in the
denominator is simply (t2 − t1). In the general case of elliptical orbits, in order to compute the
integral in (8) we first need to set a time origin t = 0 at some (arbitrary) time-sample in the
available IFL, and retrieve the corresponding ωorb(0). Then, for any trial value of e(0) ∈ [0, 1[,
we can derive an instantaneous eccentricity line (IEL) from the available IFL and the above
determined ωorb(0), by numerical inversion of (5), and use it to compute the integral in the
denominator of (8). We may accordingly obtain a family of histograms corresponding to a
suitable set of trial values of e(0).

The results of such procedure are illustrated by examples in Table 1, and suggest the
following simple algorithm for estimating both the chirp-mass and the Keplerian eccentricity
at the reference time t = 0:

8 Extension to the more general case where each TF pixel (and hence each pixel pair) has a non-binary level is
straightforward, and amounts to adding the (non-unitary) levels of the pairs to the histogram bin counts.
9 A possible choice for this latter is e.g. the time when some (visible) spectral line enters the detector spectral
window.
10 In practice, only pairs for which |t2 − t1| ≫ δt and |ωorb(t2) − ωorb(t2)| ≫ δω should be used, δt, δω being the
time and frequency resolution of the available TF representation.
11 Note that retrieving the chirp mass from the IFL via eq. (8) does not require differentiation of the IFL, at
variance of the conceptually similar method proposed in [34].
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Table 1. Retrieving the chirp mass from eccentric inspirals, using eq. (8). Two illustrative
examples are considered: left: {e(0) = 0.5,M = 2.8}, and right: {e(0) = 0.1,M = 30}. We
use noise-free one-bit coded orbital IFLs, and a typical number of time-frequency TF pixel pairs

∼ 5·103. The quantities M̂ and σ̂ are the median and std. deviation of the chirp mass histograms
computed from eq. (8) for various values of e(0). For both examples t = 0 was chosen as the
time when the 2nd harmonic of the orbital frequency enters the detector observational frequency
window at fin = 20Hz. The trial value ek that most closely matches the true (unknown) e(0)
is signaled by minima in both the spread (σ̂) and the L2 error between the actual IFL and the
one reconstructed from the trial eccentricity and the corresponding estimated chirp mass.

ek M̂ σ̂ L2 error

0.1 4.94 0.78 1.81
0.15 4.84 0.72 1.68
0.2 4.69 0.65 1.46
0.25 4.49 0.55 1.07
0.3 4.25 0.45 0.56
0.35 3.95 0.33 1.42
0.4 3.61 0.22 2.32
0.45 3.22 0.11 1.90
0.5 2.80 0.02 0.45
0.55 2.37 0.05 0.52
0.6 1.94 0.10 0.85
0.65 1.52 0.13 1.04
0.7 1.14 0.14 1.16
0.75 0.80 0.12 1.24
0.8 0.51 0.09 1.31

ek M̂ σ̂ L2 error

0 30.65 0.23 0.06
0.025 30.61 0.21 0.05
0.05 30.49 0.17 0.04
0.075 30.29 0.11 0.02
0.1 30.00 0.02 0.00
0.125 29.63 0.10 0.02
0.15 29.17 0.23 0.04
0.175 28.64 0.38 0.06
0.2 28.02 0.55 0.08
0.225 27.31 0.73 0.11
0.25 26.53 0.92 0.17
0.275 25.67 1.11 0.24
0.3 24.73 1.30 0.31
0.325 23.72 1.48 0.38
0.35 22.64 1.66 0.44

(i) construct the histograms Dk(M) corresponding to a set of possible values {ek|k =

1, 2, . . . , N} of e(0) in [0, 1[, and let M̂k the corresponding chirp-mass estimate (e.g., the
median), and ∆k the L2 error between the available orbital IFL and the reconstructed IFL

obtained by letting {e(0),M} = {ek,M̂k};

(ii) find k for which Dk(M)/∆k has the highest peak, and take {ek,M̂k} as your estimate of
the source parameters.

The different heights of the histogram peaks resolve the estimation ambiguity originating from
the degeneracy between chirp mass and eccentricity pointed out in [51] and further discussed in
[52],[53]. An example of the histogram family obtained using simulated data added to a stretch
of (public domain) LIGO noise is shown in Figure 5.

4.1. Robustness
A quantitative assessment of the impact of noise in the data in terms of bias and spread of the
obtained estimates is in progress, based on massive numerical simulations.

Additive locally stationary/Gaussian noise in the data manifests itself in the 1-bit coded TF
skeleton as frequency jitter, whereby ωorb(tn) may be slightly different from its true/expected
value.

More interesting is the case where strong transients of untraced environmental/instrumental
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Figure 5. The weighted histogram Dk(M)/∆k for an eccentric inspiral with e(0) = 0.3 and
M = 12.16 (courtesy P. Addesso [50]). The waveform was generated using [12] and [44] and
added to a stretch of (public domain) LIGO background noise for an SNR = 25dB. The TF
representation used to produce the orbital IFL was a sparsified smoothed Wigner-Ville [48].

Figure 6. Left: noisy one-bit encoded IFL with excision. Source parameters: e(0) = 0.5,M =
2.8. The shown jitter corresponds roughly to an (energy) SNR∼ 20 in the simulated data; center:
the corresponding family of smoothed histograms Dk/∆k; right: a close-up of the smoothed and
raw ek = 0.5 histogram; a tiny second lobe is visible.

origin (nicknamed glitches) are present. These should be excised from the data, yielding a
lacunary IFL. Preliminary results indicate that the poposed algorithm is nicely robust against
both kinds of noises above. Qualitatively, the main effect of IFL jitter is to broaden the peaks of
the Dk histograms; the main effect of lacunarity is to produce moderate multi-modality in the
histograms, as illustrated in Figure 6.
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5. Conclusions
The PM binary evolution model may be deemed as exceedingly simple to describe a realistic
binary system, where e.g., higher order post-Newtonian corrections, spin and precession effects,
may be important. However, it provides a neat conceptual framework that may be used as a
guideline to build more sophisticated, yet readable and predictive, investigations.

In addition, it suggests a simple and nicely informative algorithm for estimating the source
chirp mass and the Keplerian eccentricity at some reference time from the TF skeleton of
the gravitational wave data, useful to restrict a full fledged template-based analysis, whose
computational burden would be otherwise unaffordable, to a suitably reduced subset of the
whole source parameter space.
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Appendix
The Peters-Mathews equations ruling two compact (point) masses in a Keplerian orbit are:

⟨da
dt

⟩ = −64

5

G3

c5
m1m2(m1 +m2)

a3(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)

⟨de
dt

⟩ = −304

15

G3

c5
m1m2(m1 +m2)

a4(1− e2)5/2

(
1 +

121

304
e2
)
e

(A.1)

where a and e are the (Keplerian) orbital semimajor axis and eccentricity, m1,2 the companion
masses, and ⟨·⟩ denotes averaging over an orbit. Equations (A.1) are obtained from conservation
of energy and angular momentum, after using the quadrupole gravitational radiation formula.
They are valid to lowest meaningful order in the usual v/c and rg/r parameters, rg being
the binary gravitational radius, and under the assumption that the orbital parameters change
adiabatically, viz., T (d/dt) log(T ) ≪ 1 ∧ T (d/dt) log(e) ≪ 1 . Using Kepler law relating the
semimajor axis to the orbital frequency,

a(t) = ω
−2/3
orb [G(m1 +m2)]

1/3 (A.2)

equations (A.1) can be written
d

dt

[
ωorb(t)

ωorb(0)

]−8/3

= −f [e(t)]

Tc(0)

de

dt
= −

[
ωorb(t)

ωorb(0)

]8/3 19
48

g[e(t)]

Tc(0)

(A.3)

where

f(e) = (1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4
)
, g(e) = (1− e2)−5/2

(
1 +

121

304
e2
)
e (A.4)

and

Tc(0) =
5

256
ω
−8/3
orb (0)

(
c3

GM⊙

)5/3

M−5/3
(A.5)
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M being the binary chirp mass in units of M⊙, and all other symbols having the usual meaning.
If e(0) = 0, it is seen that e(t) = 0,∀t, and the first equation in (A.3) yields

ωorb(t) = ωorb(0)

(
1− t

Tc(0)

)−3/8

(A.6)

whereby Tc(0) is understood as the fiducial binary lifetime for a circular orbit, i.e., the time until
the orbit radius vanishes (a = 0). We shall denote as Tc[e(0)] the binary lifetime for the general
case of non-zero initial eccentricity. If e(0) ̸= 0 the two equations in (A.3) can be combined to
obtain

d

de
log

[
ωorb(t)

ωorb(0)

]−8/3

=
48

19

f [e(t)]

g[e(t)]
(A.7)

which is readily integrated, yielding the following relationship between e(t) and ωorb(t), valid
throughout the binary lifetime.

ωorb(t)

ωorb(0)
=

[
e(t)

e(0)

]−18/19 [ 1− e2(t)

1− e2(0)

]3/2 [ 1 + 121
304e

2(t)

1 + 121
304e

2(0)

]−1305/2299

(A.8)

This can used in (A.3) to obtain

de

dt
= −19

48

[
e(t)

e(0)

]−48/19 [ 1− e2(t)

1− e2(0)

]4 [ 1 + 121
304e

2(t)

1 + 121
304e

2(0)

]−3480/2299
g[e(t)]

Tc(0)
. (A.9)

This latter can be integrated between t = τ and the coalescency time t = Tc[e(0)], where the
eccentricity vanishes,

Tc[e(0)]− τ

Tc(0)
=

48

19
[e(0)]−48/19[1− e2(0)]4

[
1 +

121

304
e2(0)

]−3480/2299

·

·
∫ e(τ)

0
e29/19[1− e2]−3/2

[
1 +

121

304
e2
]1181/2299

de.

. (A.10)

Upon letting e2 = xe2(τ), the integral on the r.h.s. of (A.10) becomes

[e(τ)]48/19

2

∫ 1

0
x5/19[1− xe2(τ)]−3/2

[
1 +

121

304
xe2(τ)

]1181/2299
dx, (A.11)

that is expressible in terms of P.E. Appell’s generalized hypergeometric function of the first kind
([41], eq. 3.211). Hence:

Tc[e(0)]− τ

Tc(0)
=

[
e(τ)

e(0)

]48/19
[1− e2(0)]4

[
1 +

121

304
e2(0)

]−3480/2299

Ω[e2(τ)]. (A.12)

where

Ω(x) = 2F1

[
24

19
,
3

2
,−1181

2299
,
43

19
;x,−121

304
x

]
. (A.13)

For τ = 0 this becomes

Tc[e(0)]

Tc(0)
= [1− e2(0)]4

[
1 +

121

304
e2(0)

]−3480/2299

Ω[e2(0)] (A.14)
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whereby (A.12) can be further written,

τ

Tc[e(0)]
= 1−

(
e2(τ)

e2(0)

)24/19
Ω[e2(τ)]

Ω[e2(0)]
. (A.15)

Equations (A.5), (A.8), (A.14) and (A.15) are the general exact solution of PM equations,
first obtained in [40].

As stressed in Sect. 1, this solution is both computationally cheap and numerically accurate.
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