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Abstract

We calculate the tail term of the electromagnetic potential of a
pulsed source in arbitrary bounded motion in a weak gravitational
field and demonstrate that generally the received radiation tail arrives
after a time delay. We apply the results to a compact binary system
and conclude that the tail energy can be a noticeable fraction of the
direct pulse energy.

1 Introduction

At the present meeting, one of the keywords is certainly ”dimension”. So a
talk about wave tails is appropriate as the wave tail effect is very sensitive to
the spacetime dimension. In fact, the spacetime dimension n = 4 is the low-
est dimension where the Huygens principle can be valid, i.e., the spacetime
can be curved but the wave tails still do not occur. Physically speaking,
the wave tails arise because the radiation is backscattered by the spacetime
curvature. In certain cases backscattering can influence observations as it
weakens and disperses sharp initial pulses. For instance, a single radiation
pulse from a pulsed source in the vicinity of a massive body is received by
an observer as two distinct pulses: one arriving along the direct route from
the source and the other, the tail part, as a reflection from the spacetime
curvature.

At present the contribution of gravitational wave tails is recognized as
a significant factor and when calculating the wave forms for the detection
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experiments (LISA, etc.) then the wave tails are taken into account. On
the other hand, it seems to us that the electromagnetic wave tails are over-
looked. We think it that is easier to detect an electromagnetic wave tail
than gravitational radiation.

The aim of this presentation is to provide a compact outline of the results
obtained in a recent series of papers [1-6] by the present authors. We are
aware of the great number of papers on wave tails (see [7, 6]), however,
the limited scope of this paper, unfortunately, does not allow us to refer to
them.

2 Exact multipole solution of wave equation

We consider on a pseudo-Riemannian 4-space M a vector wave equation
Lu = £, which in local coordinates reads

Luc = gabvavbuc - RZU’G = fc’ (1)

where V, denotes covariant differentation with respect to 2%, and ¢g*® and
R, stand for the the metric and Ricci tensor, respectively. The source term
f in Eq. (1) is in general a distribution, i.e., f € D'1(Q).

Usually the wave equation is solved in the weak-field and slow-motion
limit using successive approximations. However, we have recently developed
a method [1-4] for calculating the exact solutions of scalar and tensor wave
equations whose source terms are arbitrary order multipoles. The method
is based on the higher order Green’s functions defined by us in Ref. [1]. In
one of our papers [3], we obtained an exact multipole solution of a multipole
vector wave equation, i.e., we calculated a unique retarded solution u:j of
the following vector wave equation (with the multipole source term pZ)

Lufy = pfy 1= (=1 M ()Y 4 (9705 (2, y(0) g5 (2, y(D)3(2, ). (2)

Here gf (x,y) stands for the transport bitensor; A(u) := a1 ...a, and I(u) :=
i1 ...1, denote multiindices with respect to x and y, respectively; the mul-
tipole moment M, (t) is a tensor field of order y + 1 on the worldline £
of the source of electromagnetic radiation. The line distribution &(z,&) in
Eq. (2) is defined by the relation (pf, ¢) := fy Mu"" (£);,1() (y(t))dt with
y(t) € &, where the parameter ¢ is the proper time along the worldline .
Let us suppose that there is a ¢y such that M, (t) = 0 for ¢t < ¢y. The
exact multipole solution w{® can be written as a sum u}* = df*+ V5, Vo €
JH(E\{E} of the direct wave d}* and the wave tail Vi. The expression for
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d;ja can be found in Ref. [3]. Here we are interested in the tail part

1 (@) ,

Vi) = g [ Vit y)M )
where 7(z) denotes the retarded time of the observer at x and Vi is the
tail term of the classical Green’s function. The exact form of the classical
Green’s function is known only for a few particular cases, e.g., for de Sit-
ter, Bianchi I type, and Robertson-Walker metrics. However, approximate
Green’s functions can be calculated.

3 Wave tails in weak gravitational fields

Now we assume that gravitational field is weak, expand the relevant quanti-
ties up to first order in a formal small parameter, and calculate the tail term
of the classical fundamental solution in the first approximation, obtaining

View) = 2 {6 [o @) P y)] + o ) Fie )} (@)

where

Play) = [ gh(a,2)GM(2)d5,(2) 5)
E(y)

By i= [ o (4RGDye + RDyy+ 2Fp00(r,9) w(2). (6)

These expressions are essential in the following analysis. Here o stands for
the world function, G?? for Einstein’s tensor and D, := 0.,(2, )0, (2,9)-
The quantity P’(z,y) is proportional to 4-momentum of the gravitational
field source. But it is more important to pay attention to the domains of
integration X(y) := C*(y) N J (z) and S(y) := C*(y) N C~(x), where
C~(x) is the past light-cone with vertex at z, D™ (x) is the interior of the
past light-cone and J~ (z) = D~ (z) UC~(z). C*(y) denotes the future
light-cone with vertex at y. The domains of integration depend on the
positions of the wave source and the observer. As in a 4-spacetime the wave
source and the observer inevitably move, then for different instants of time
the domains of integration are different. In the subdomain D*(y) := {z|z €
D*(y),Ct(y)NT C X(y), S(y)NL = @} the wavefront has passed the source
of gravitational field T'; the intergration region S (y) lies within vaccuum,
therefore Rp,(z) = 0 and F!(x,y) = 0. Hence in the subdomain D* the
wave tail has the simple form of (4) with F!(z,y) = 0.

For a wave pulse of a finite duration the generation of wave tails V;; and
the domains of a different wave tail structure are explained in Fig. 1. The
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Figure 1: A diagram in Minkowski 2-spacetime: The past light-cone C~ (%) originating
from the point Z is represented by the dotted lines. The bold-faced part of the future light-
cone G (y(to)) corresponds to the hypersurface % (y(to)) with = #, and the boundary of
the hyperplane 3(y(to)), i.e., S(y(to)) is seen as two points s. The remaining components
in the figure have been explained in the main text.

worldtube of the source of gravitational field with Ry (z) # 0 is denoted
by T; ¢ denotes the worldline of the source of electromagnetic field which
radiates only during a finite proper time interval [tg, t1], and A denotes the
worldline of observer. It can be seen that the observer represented by the
worldline A\ receives the principal (direct) pulse within the interval [a,b].
During the interval (b,c) on A a blackout between the direct pulse and the
wave tail occurs. During the interval [c, d] the observer receives the wave tail
of the general structure and during (d, c0) the tail of the simple structure.

A schematic representation of the geometry of wave tail generation in a
spacelike plane z'2? is given in Fig. 2. The plane of the figure is determined
by locations of the wave source y, of the observer x and of the center of the
gravitational source. The surface S(y), which spreads with time, is the
boundary of the ellipsoid of revolution X(y), with foci at the locations of
the observer x on worldline A and of the wave source y on worldline &.

The ellipses S; and Sy are the intersections of the plane of the figure
with the surface S(y) that, respectively, correspond to the instants of time at
which a delta-like wave pulse emitted by the wave source reaches and passes
the source of gravitation. Now we have the following picture. The wave
source y emits an instantaneous wave pulse. The direct pulse propagates
along the direct route yx to the observer x, after which there occurs a
blackout before the arrival of the first tail contribution. The duration of the
blackout is Ay =1y + 1 — |7 — 9.
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Figure 2: A schematic representation of the geometry of wave tail generation on a
spacelike plane z'z?. Here y is the wave source, x is the observer, the darker shadowed
circular disk is the gravitational source and K is the focusing region. The remaining
components in the figure have been explained within the main text.

If the surface S(y) has not yet reached the gravitational source, then
V = 0 and there is no wave tail. If the surface S(y) has passed the

gravitational source, the source will forever remain inside the domain of
integration X(y), while P(z,y)/87 = const will be the 4-momentum of
the gravitational source and F!(x,y) = 0. The area K, which includes the
source of gravitational field, corresponds to the region where the wave tail is
predominantly generated by gravitational focusing which deforms the direct
wave fronts.

It should be mentioned that the occurrence of a time delay between
the principal pulse and the wave tail in the case of a weak gravitational
field, as a rule, remains unrevealed by expansion of the wave equation into
spherical harmonics as in this case it is natural to choose the worldline of
the multipole radiation source inside the source of gravitation.

4 Energy carried by wave tails

To get an idea about energy magnitudes, we have constructed an example
for which we have obtained an estimate of the ratio of the intensity of the
wave tail, I, to the intensity of the direct pulse, Iy, radiated during the time
interval [to, 1] (see, [5, 6]), namely,

I(t + Ao(a)) :< oM >2< T )2 -
Io Ay(2) T+Asy(z))

where 2M is the Schwarzschild radius of the source of gravitational field; T'
denotes the duration of the direct pulse in the observer time; As and A,
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denote the duration of the blackout between the direct pulse and wave tail of
the simplest structure, respectively, in the observer time and in the proper
time of the source. To illustrate the above estimate, we have considered a
wave source rotating in a circular orbit of radius ry around a spherical source
of radius ry of gravitational field. We have found that if ro > r2/4M, then
in the case when the wave pulse is emitted in the region of the geometric
shadow of the source of gravitation or in its vicinity it is valid that Ay (z) ~
2M, and according to the estimate the intensity of the tail can be of the
same magnitude as the intensity of the primary pulse. For the model under
discussion we have found that the ratio of the energy £ transferred by the
tail term (beginning from the time t; + Ay(z)) to the energy of the direct
term & is equal to: £/ ~ 0.119(2M)?/A3(z) if T ~ 1.57A(x) and can
in this case make up nearly 10% of the energy of the direct pulse.

5 Summary

(i) The present results indicate that the electromagnetic wave tails should be
carefully considered when calculating the energy radiated by astrophysical
systems. The energy carried away by the tail can amount to approximately
10% of the energy of the low-frequency modes of the direct pulse. (ii) The
delay effect of the electromagnetic wave tails may be of great importance
for their observational detection.
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