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Abstract

In this work, we discuss four dimensional SCFTs which descend from string theory and
M-theory. These SCF'Ts arise naturally from stacks of string and M- theory branes and
are useful tools for studying various phenomena in four dimensional quantum field theory.

In the first chapter we give a brief non-technical introduction and historical background
to string theory and supersymmetry which motivates the study of these fields.

The second chapter contains a review of background material related to supersymmet-
ric gauge theories and conformal field theories. In this context, we discuss anomalies and
moduli spaces, and their utility in quantum field theory. Additionally, we introduce how
to construct some exotic field theories by coupling non-Lagrangian sectors to Lagrangian
theories.

In the third chapter, we examine a special family of four dimensional N = 2 SCFTs
that are obtained by wrapping the six dimensional (2,0) theory on a Riemann surface.
We derive some properties of these theories and discover various dualities involving them.
We then give a brief introduction to the superconformal index and use it to examine the
operator content of these theories. Finally we construct new N = 1 gauge theories by
coupling these N' = 2 theories to N’ = 1 matter and examining the resulting RG flows.

In the fourth chapter, we discuss the problem of counting chiral primary gauge-
invariant operators in D-brane world-volume gauge theories. These theories live on a
flat stack of D3-branes with various transverse toric geometries. We investigate the six di-
mensional transverse space, as well as the moduli space and chiral ring of the world-volume

theory, and find previously unknown relationships between these elements.



Acknowledgements

Firstly, I would like to thank my supervisor, Dr. Brian Wecht, for his support through-
out my PhD. His door was always open and he was always happy to talk to me about any
problems I was having. I have enjoyed very much the past three years largely because of
his friendliness and support.

I would also like to thank the other academics in the Centre for Research in String
Theory. They have all always been happy to have a chat about anything physics related or
indeed unrelated. Particular thanks go to Sanjaye Ramgoolam with whom I collaborated.

I am also very grateful to Queen Mary University of London for providing the stu-
dentship which supported this work.

A great thanks is due to my fellow PhD students, namely Joel Berkeley, David Garner,
Omer Gurdogan, Joseph Hayling, Ed Hughes, Zac Kenton, Dimitrios Korres, Martyna
Kostacinska, Paolo Mattioli, Robert Mooney, Emanuele Moscato, Edvard Musaev, Jurgis
Pasukonis, Brenda Penante, Sam Playle and Felix Rudolph. Their support, interesting
discussions and companionship over the past few years have made my time as a PhD
student both fruitful and thoroughly enjoyable. I greatly value the friendships I have built
with them over the years and am sure that they are friendships that will last a lifetime.

Finally I would like to thank my family and friends outside of physics for their support.
Particular thanks go to my father to whom this thesis is dedicated. His support whether

financial, emotional or otherwise throughout the years has led to this thesis.



Declaration

I, James McGrane, confirm that the research included within this thesis is my own
work or that where it has been carried out in collaboration with or supported by others,
this is duly acknowledged below and my contribution indicated. Previously published
material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original,
and does not to the best of my knowledge break any UK law, infringe any third party’s
copyright or other intellectual property right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check
the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree
by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or infor-

mation derived from it may be published without the prior written consent of the author.

Signature:

.d %M
Date: 11 August 2015

Details of collaboration and publications:

This thesis describes research carried out in collaboration with Brian Wecht and San-
jaye Ramgoolam. Some of the results of this work have been published in [I] and [2].
Where other sources of information have been used, they have been cited in the bibliog-

raphy.



Contents

23 N =1, N=2 Quiversand SCFTs. . .. ... ... ... ... .......

2.4 Generalised Quiver Theories|. . . . . . . . . . ... ... ...

PA1

Central Charge of the Flavour Symmetry] . . . . . .. ... ... ..

PRW)

Constructing Generalised Quiver Theories| . . . . . . . . ... .. ..

2.5 Moduli Space| . . . . ...

[3.3 The T Theories| . . . . ... ...

B3.1

Higgs Branch Operators| . . . . . . . ... ... ... ... ......

3.4  'The Superconformal Index|{. . . . . . ... ... ... ... ... .......

B42

The 4d Superconformal Index from g-deformed 2d Yang-Mills| . . . .

B43

The Superconformal Index for the Ty . . .. . .. ... ... ...

B5 New SCFTsand Flowsl. . . . . . . . . . . . .

[3.5.1

Sy Theories With T'n’s| . . . . . . . . . . . .. .. ...

B5.2

S¢ Theories With Ty ps| . . . . . o oo o o000 o000

B5.3

Other N =1 Theories With T ;’s| . . . . . .. ... ... ...

B54

Flows From Higgsing|. . . . .. .. ... ... ... ... .......

B55

Linear Deformations of the T, . . .. . ... ... ... ... ...

13.6  Theories Without Non-Abelian Flavor Symmetries| . . . . . . ... ... ..

11
11
16
18
20
21
22
25
25
26
27
29



CONTENTS

B.6.1  B3W Theories] . . ... ... ... ... ... ... ... ... 54
3.6.2 Our Setup|. . . . . . . .. 55
3.6.3 A Subclass of Theories|. . . . . . .. ... ... ... ... ... 57
3.6.4 A Genus Three Example|. . . . . . ... ... ... ... .. 58
3.6.5 Another Subclass of Theories| . . . . . . .. .. ..., 59

B.7 Conclusionsl . . . . . . . . . 60
4 Chiral Ring Generating Functions & Moduli Space| 62
4.1 Introduction|. . . . . . . . . . L 62
B2 REVIEW . « o o v v v e e e 64
[4.2.1 Moduli Space| . . . . ... 64
4.2.2  Rings, Ideals, and Quotient Rings| . . . . . . ... ... ... .. .. 65
[4.2.3 Chiral Ringl . . . . . ... o oo 65
4.2.4  Generating Functions and Plethystics| . . . . ... ... ... .. .. 66

A3 N =4SYM . ..... ... . e 67
4.3.1 N =1DModuli Spacef . . . . . ... ... 68
4.3.2 W =0 Large N Chiral Ring|. . . . .. ... ... ... ....... 68
4.3.3 W #0 Large N Chiral Ring|. . . . ... ... ... ... ....... 70
434 N=1Chiral Ring| . . . ... ... ... ... ... ... ....... 71
435 Conclusion| . . . .. .. .. 72

HE4 Conifoldl . . . . . o o ot 72
441 N =1ModuliSpace| . . . . .. ... ... .. 73
.42 W =0 Large N Chiral Ring|. . . . ... ... ... .. ........ 73
4.4.3 W #0 Large N Chiral Ring|. . . . . ... .. ... ... ....... 74
444 N=1Chiral Ringl . . . ... ... ... ... ... ... ....... 75
445 Conclusion| . . . . . . . . . . 75
....................................... 75
451 N =1DModuliSpace| . . . . .. ... ... ... ... ... 76
4.5.2 W =0 Large N Chiral Ring|. . . . ... ... ... .. ........ 77
4.5.3 W #0 Large N Chiral Ring|. . . . ... .. ... ... ........ 77
454 N=1Chiral Ringl . . .. ... ... ... ... ... ........ 79
4.5.5 Conclusionl . . .. . . . . . . .. 80
....................................... 81
4.6.1 N =1Moduli Space| . . . . . ... ... 82
4.6.2 W =0 Large N Chiral Ring|. . . . ... ... ... .......... 83
4.6.3 W #0 Large N Chiral Ring|. . . . ... ... ... ... ....... 83
6.4 U(oo) Fock Space| . . . .. .. ... ... .. 84
465 N=1Chiral Ring| . . . ... ... ... ... ... ... ....... 84
4.6.6  Conclusion| . . .. . . . .. . . 84

4.7 Co/Zyn| . . o o e e e 85
471 N =1DModuli Spacef . . . . . ... ... 85




CONTENTS

[4.7.2 W =0 Large N Chiral Ring|. . . . . ... .. ... ... ... .... 86
473 W #£0 Large N Chiral Ring|. . . . ... ... ... .......... 87
474 N=1Chiral Ringl . . . ... ... ... ... ... 89
A75 Conclusionl . . . . . . . . e 90
....................................... 91
[4.8.1 N =1DModuli Space] . . . . .. ... ... o 92
4.8.2 W =0 Large N Chiral Ring|. . . . . .. ... ... ... ... .... 92
4.8.3 W #0 Large N Chiral Ring|. . . . . .. .. ... ... ... .. .. 92
484 N=1Chiral Ringl . . .. ... ... ... ... ... ... ..., 93
485 Conclusionl . . ... ... . 94

49 Conclusiond . . . . . . . ... 95
|A Appendix: Extra Results For N' =1 Theories 97
[A.T S, Theories With A Ty, And A Tl - - o o o o o oo 0000 97
[A.2 Sy Theories With Adjoint Matter| . . . . . . . ... ... ... ... .... 98
IA.3 Simplification of ST Generating Function for N =4 5YM With W #£0]. . . 98
[A.4 Derivation of C°/Zy Molien Series| . . . . . . .. ... ... ... ...... 99
[A.5 Derivation of Generating Functions for C°/Z,|. . . . . . .. ... ... ... 100




Chapter 1

Introduction

The universe as we know it is described extremely well by two theories of physics.
The first of these is the Standard Model (SM) of particle physics which explains physics
at extremely small scales, specifically at the subatomic particle level. This theory has
been tested and probed by extremely high energy colliders and cosmic observations and
has produced some of the most precise measurements in science. The second theory
is Einstein’s General Theory of Relativity (GR) which describes physics at the largest
scales, e.g. planetary motion, galactic formation and cosmic evolution. Again this theory
has been tested to a high degree of accuracy and seems to be a good description of large
scale physics.

There is however a problem with these two theories which is that they are incompatible.
In the Standard Model of particle physics we assume that there is no gravity. Hence it
works well for describing particle interactions but is useless for describing gravitational
interactions. Similarly in General Relativity there is no sign of quantum physics so it is
useless for describing subatomic physics. In addition to these problems there are other
indications that we do not have a complete description of the universe e.g. the existence
of dark matter and dark energy, the hierarchy problem and the prediction of black hole
space-time singularities none of which are explained by the SM or GR.

For decades physicists have tried to find theories to explain these problems. Two
theories which attempt to solve some of the problems mentioned above are Supersymmetry
(SUSY) and String Theory which form the cornerstones of this thesis.

Fundamental particles in our universe very generally come in two types, bosons and
fermions. Supersymmetry states that all particles come in pairs and that for every boson
there is a fermion and for every fermion there is a boson. It has been suggested that Su-
persymmetry if broken at a low enough energy could partially solve the hierarchy problem
and could also contain dark matter candidates.

Modern theories of particle physics state that all particles are point-like; that is, no
matter how far we zoom in on a particle the particle still just looks like a point in space-
time. In String Theory it is postulated that if we zoom in far enough we will see that

particles are actually extended in one dimension and appear like a piece of string. The
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strings can vibrate and different frequencies of vibration correspond to different particles.
The reason that String Theory is interesting is that it is a consistent theory of quantum
gravity and particles physics. That is to say at small length scales it looks like quantum
physics and at large length scales it looks like gravity. It is for this reason that people
originally studying String Theory thought that it might be a grand unifying theory of
everything for physics in our universe.

It should be stated however that obtaining a version of String Theory that describes
our universe is non-trivial and it is in fact not obvious that String Theory can describe
our universe at all. String Theory has been criticised for the fact that it can accommodate
a large number (possibly infinite number) of vacua only one of which would describe
our universe. Furthermore String Theory contains massless bosons which have not been
observed in our universe. For these reasons amongst others hopes of String Theory being
a unifying theory of everything have been somewhat diminished over the years.

Nonetheless, String Theory remains a fascinating field of study precisely because it
is a consistent theory of quantum gravity. String Theory also contains some complex
mathematics and has led to many interesting discoveries in mathematics. It may also
be the case that learning to understand String Theory gives us a deeper understanding
of mathematical physics and potentially leads us to a theory which does describe our
universe.

As well as containing one dimensional strings, String Theory also contains higher
dimensional objects called “branes” which will play an important role in this thesis. Strings
can begin and end on these branes and from the point of view of branes which see the
end-points of the strings these end-points describe particle physics interactions. Thus, if
we lived on the world-volume of one of these branes we would only see the end-points of
the strings and we would see a theory of particle physics.

Another peculiarity of String Theory is that it is only mathematically consistent in
ten space-time dimensions. One way to obtain a four dimensional theory from String
Theory is to postulate that the extra six dimensions are wrapped up and very small.
Another way to obtain a four dimensional theory is to look at the world-volume of a three
dimensional brane and examine the physics that lives on the world-volume arising from
strings interacting with/on the brane. Finally a third way to obtain a four dimensional
theory from String Theory is a combination of these two: take the world-volume theory
that lives on a (3 + k) dimensional brane and compactify k& dimensions. In this thesis we
will deal with theories that live on the world-volume of branes both four dimensional and
higher dimensional which need to be compactified. Ten dimensional String Theory can
also be obtained by taking an eleven dimensional theory, M-theory, and compactifiying on
a circle.

The goal of the current work is to examine some of the four dimensional quantum
field theories that we can obtain from String Theory. In particular the four dimensional
field theories that are studied in this thesis arise from studying brane world-volume gauge

theories in String Theory and M-theory. By studying these theories we hope to gain



CHAPTER 1. INTRODUCTION

greater insight into mathematical physics that might be useful in describing the physics
of our universe.

The four dimensional quantum field theories that we study in this thesis are typically
much more exotic than the physics of our universe. For example, they all contain some
level of Supersymmetry and normally do not contain massive fields. While these aspects
might seem undesirable at first since we do not observe them in our universe it is often
the case that these aspects allow us to examine the theory in greater detail and calculate
quantities that would otherwise be difficult /impossible to calculate.

As for the structure of this thesis, in chapter [2| we present the basics of SUSY gauge
theories, Conformal Field Theories (CFTs) and Superconformal Field Theories (SCFTs),
knowledge of which is necessary to understand the research that is presented in later
chapters. We talk about quiver theories, non-Lagrangian field theories and generalised
quiver theories. We also talk about moduli spaces and describe a few simple examples
which will be helpful for understanding more complex examples in later chapters. We
finish with a discussion of conformal manifolds which arise naturally in some conformal
field theories that we study in later chapters.

In chapter [3] we take a stack of five dimensional branes in M-theory and compactify
two of the world-volume dimensions. The resulting so-called theories of class & are four
dimensional A/ = 2 superconformal field theories. We present a sub-family of theories of
class § and examine dualities that they appear in. We also use the superconformal index
to study the operator content and examine flows that arise when we couple these theories
to N =1 matter.

In chapter [ we look at the problem of counting chiral primary gauge-invariant oper-
ators in D-brane world-volume gauge theories. In this setup we take a flat stack of D3
branes in a ten dimensional space where the space transverse to the branes can be some
non-trivial space; this non-trivial transverse space gives rise to the field content of the
world volume gauge theory. We look at various different transverse geometries and find
some interesting relationships between the transverse geometry, the moduli space of the

world-volume gauge theory and the chiral ring of the world-volume gauge theory.
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Chapter 2

Review

In this chapter we review the basic technology of Conformal Field Theories (CFTs),
N = 1,2,4 supersymmetry (SUSY) and Superconformal Field Theories (SCFTs). This
chapter is meant to introduce some basic topics which will be taken for granted in later

chapters. More advanced topics will be introduced as necessary in later chapters.

2.1 Conformal Field Theories

Conformal field theories are field theories that are invariant under conformal transfor-
mations. That is to say they are invariant under a co-ordinate transformation, x — 2,

that leaves the metric invariant up to a position-dependent scale change:

I (T) — g;/w(x,) = Q) gy (z), (2.1)

where g,,, is the metric in flat space-time and z* are the space-time co-ordinates. These
transformations preserve angles between vectors and contain as a subgroup the group of
Lorentz transformations (corresponding to (z) = 1). The group of conformal transfor-
mations also contains as a subgroup the group of scale transformations, z# — x'* = \z#,
(corresponding to Q(x) = A72). Because of this any field theory that has an associated
length scale is not scale invariant and thus not conformally invariant. Infinitesimal con-
formal transformations are transformations z# — 2'* = x# + €/(x) where there is some

constraint on e* which we now derive. The line element transforms as
ds? = g, datdr” — g detdr’ = datdz” (g, + Oue, + Ovey) - (2.2)

For this to be a conformal transformation we need that d,€,+0,€, = C(z)g,,. Multiplying
both sides of this equation by g,, gives us that C(z) = 20 - €. This gives us the equation

that constrains the e*s for a conformal transformation,

Oper + 0pey = = (0 €) G- (2.3)

ISHIN
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After multiplying both sides by 0,0” (summing over v) and interchanging p <> p we get
(guw0* + (d —2) 0,0,) 0 - € = 0. (2.4)

When we specialise to d = 2 equation tells us that
0161 = 069, 0169 = —hey. (2.5)

If we define the complex co-ordinate €(z) = €1(2) + iea(2), where z = x! + ix? then these
constraints are just the Cauchy-Riemann equations. Thus € can be any analytic function
of z. In terms of finite transformations this means that the theory is invariant under the

transformations

z— f(2), z— f(2), (2.6)

the local algebra of which is infinite dimensional. For d # 2 equation tells us that e
can be at most quadratic in the co-ordinates and thus the algebra is finite dimensional.
A consequence of conformal invariance is that the expectation value of the trace of the
energy-momentum tensor vanishes. It is not difficult to see the converse classically. To
see this we note that under an infinitesimal conformal transformation the variation in the

action is

1
08 = /dde“”ﬁue,, =7 /ddmﬁpepT”N. (2.7)

So if the trace of the energy momentum tensor vanishes the variation of the action vanishes
and so the theory is conformally invariant.

Because a conformal field theory is also scale invariant the dilatation current
ju = qup,V (28)

is conserved. Since the energy-momentum tensor is conserved in a Poincaré invariant
theory the conservation equation 9#j,, = 0 implies that the trace of the energy momentum
tensor vanishes in a conformal field theory.

Quantum mechanically the corresponding Ward identity [3] tells us expectation value
of the trace of the energy-momentum tensor vanishes (7%,) = 0. There is a caveat here
though and this is that the trace of the energy-momentum tensor will only vanish in flat
space-time. This is because introducing curvature means introducing a length scale and
so in non-flat space-time the trace of the energy-momentum tensor generally does not
vanish. This is known as the Weyl anomaly and in quantum theories that are conformally
invariant in flat space-time the trace of the energy-momentum tensor has a prescribed
structure when the theory is put on a non-flat background. In 2 dimensions it is [3]

C

<THH> = 247TRa (2.9)

12
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where R is the Ricci scalar and in 4 dimensions it is [4]

C 2 a
(T",) = 1602 (Weyl)” — 1622 (Euler) , (2.10)
where
1
(Weyl)® = R2, , — 2R, + gRP, (Euler) = R2,, — 4R2, + R%. (2.11)

CFTs are characterised by the anomaly coefficients a,c (only ¢ for d = 2) that appear in
the trace.

Because the group of conformal transformations in 2 dimensions is infinite dimensional
it is easier to find examples of interacting 2d conformal field theories. This is because there
are more constraints on the theory. Interacting CFTs in 4 dimensions (and also any other
number of dimensions not equal to 2) however are much harder to find than 2 dimensional
ones. The first example of an interacting 4 dimensional conformal field theory was N' = 4
Supersymmetric Yang-Mills (SYM) [5].

N = 4 SYM can be thought of as an N' = 1 SUSY gauge theory with 3 chiral
supermultiplets that transform in the adjoint representation and a particular choice of
superpotential or instead as an AN/ = 2 gauge theory with one adjoint hypermultiplet. The
N = 4 theory contains the right matter content in the single N’ = 4 multiplet and the
right symmetries to ensure that the theory is invariant under conformal transformations.
Because the theory is conformally invariant it is necessarily scale invariant and in particular
this means that the theory does not flow because there is no energy scale dependence.

It is important to emphasise that it is in general very difficult to find an interact-
ing quantum field theory that is conformally invariant. Renormalising a theory involves
introducing an energy scale and this energy scale breaks conformal invariance except at
certain values of the parameters of the theory which constitute a renormalisation group
fixed point. For the A" = 4 SYM theory, we presented the structure of the theory and said
that there is no RG flow however we could have had the N/ = 4 theory as a conformal
fixed point in an RG flow. These “conformal fixed points” exist at asymptotically high
energies, “UV fixed points”, or asymptotically low energies, “IR fixed points”, and we
normally talk about flowing from the UV to the IR.

In gauge theories that are conformally invariant one consequence of conformal invari-
ance is the vanishing of the beta function for the gauge coupling constant (8 = ,ug—z, where
g is the gauge coupling constant and p is the energy scale). A non-vanishing beta function
would imply an energy scale dependence and thus break scale invariance which is a subset
of conformal invariance.

The beta function for the gauge coupling constant of a theory with a UV fixed point
is plotted on the left of figure When the gauge coupling constant satisfies g < g* we
have that 8 = d—z > 0 (where p is the energy scale) and when g > ¢g* we have 8 < 0. This

means that as the energy scale tends to infinity the gauge coupling constant g tends to g*.
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Figure 2.1: Left: Sketch of the beta function for a theory with a UV fixed point. Right:
Sketch of the beta function for an asymptotically free theory near g = 0. Arrows indicate
the direction of RG flow from the UV to the IR.

On the right of figure[2.1] the beta function for an asymptotically free theory is sketched
near g = 0; at higher g the beta function can decrease monotonically or reach a minimum.
Because 5 is less than zero the gauge coupling constant g tends to 0 as the energy scale
tends to infinity.

The first evidence to support the idea that CFTs existed as the IR phases of quantum
field theories came in the form of the Banks-Zaks fixed point [0, [7]. The Banks-Zaks fixed
point is an example of a weakly coupled conformal fixed point in an asymptotically free
theory. The beta function for the gauge coupling constant, g, for an SU(N) gauge theory

with N Dirac fermions in the fundamental representation of SU(N) is

5

g
(1672)

3
Blg) = n% = g9 5

_ g 7
=1 = s +0(g7), (2.12)

where

1
Bo = 3 (11N — 2Np),

34 1 N2 -1 20
= NZ - -Np(2-¢€ =N,
B 3 Ve — 5 F( No +3 c>,

and where u is the energy scale. When Np < %NC, Bo is positive and the beta function
is negative close to g = 0, i.e. this is the condition on N for asymptotic freedom. The
beta function looks like the one sketched on the right of figure close to g = 0. From
equation we can see that there is a also zero of the beta function at g = ¢* where
g2 = —%?ﬁ). Thus there will be a second zero of the beta function when 37 is negative.
This occurs for values of Ng that are close to but less than %NC. This scenario is sketched
in figure If we let Np = %NC — n where n is a small positive half-integer such that
B1 is negative (and such that n is of order O (Ng)) then the zero of the beta function, g*,
will be of order NLC and the 't Hooft coupling parameter ¢g*?> N¢ will be of order NLC This
means that if we take N¢ large enough the conformal fixed point will occur at a value of

g where perturbative methods are still valid.

14
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ANN
g- 9

Figure 2.2: Beta function for an asymptotically free gauge theory with an IR fixed point.

Another example of a 4d CFT came with the discovery of Seiberg duality [§]. This
deals with the theory of Supersymmetric Quantum ChromoDynamics (SQCD). This is
an N = 1 supersymmetric theory of Ng chiral superfields that transform in the funda-
mental representation of an SU(N¢) gauge group (quarks) and N chiral superfields that
transform in the anti-fundamental representation of SU(N¢) (anti-quarks). This theory
is asymptotically free when the number of flavours is less than 3 times the number of
colours, i.e. Np < 3N¢. The charges under global symmetries and the gauge symmetry
are tabulated below. The U(1)g charges are determined by ensuring that the symmetry

| SU(Nc) | SU(NF) SU(Np) U(l)p U()r
Np—N,

29| © ! b

0| o 1 5 -1 M

Table 2.1: Charges of the quarks and anti-quarks under gauge and global symmetries.

is anomaly-free (more about this later). It is a general result of SFCT's that

D[O] > '23[0} , (2.13)

where D][O] and R[O] are the scaling dimension and R charge of a gauge invariant operator
O respectively. The inequality is saturated for chiral/anti-chiral primary operators. In
SQCD the mesons, M = QQV, are gauge invariant chiral primaries. The @) superfields
have scaling dimension, D[Q] = 1 + %'y, where « is the anomalous dimension of the @
superfields. The anomalous dimension is 0 in the limit where the quarks are free fields
and then varies away from the free field limit. Thus in SQCD if the theory tends to a
conformal fixed point on the RG flow the inequality in eq will be satisfied at that
point. The R charge in eq is the superconformal R charge. Since there is only one
anomaly-free R-charge that preserves Q — @ invariance (the one given in table , this
R-charge can be identified as the superconformal R-charge if the theory flows to a fixed
point. In [§] it is argued that A/ =1 SQCD tends to an SCFT and that there is a dual

15
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theory that also tends to the same SCEFT. At the conformal fixed point the mesons obey

3
DIM] = SR[M],
3 Np— Ng
=2y = o ¢
+ 7 5 Np
3N¢
- y=1- 2 92.14
Y N, (2.14)

This tells us the value of the anomalous dimension v of the Q) superfield at the conformal
fixed point.

From the beta function for the gauge coupling constant which will be given later
(equation ([2.22))) one can see that the beta function for SQCD obeys

B(g) o< BN¢ — Nr (1 —7)), (2.15)

and by substituting in the value of v given in equation it can be seen that at this
point on the RG flow the beta function vanishes as is required of the beta functions for
any SCFT.

The theories mentioned above along with many others have lead to the realisation
there is a rich family of conformal field theories in 4 dimensions. The ones that we will

be interested in in this thesis are superconformal field theories (SCFTs) such as the last
example and V' =4 SYM.

2.2 Anomalies

In the last section we used an anomaly constraint to determine the anomaly-free U (1) g
symmetry and in later chapters we will use anomaly constraints to determine when a theory
is consistent and when it is not. Here we briefly sketch what anomalies are and how to
determine if they spoil a theory or not. This section roughly follows the introduction given
in [9].

An anomaly refers to a symmetry which is preserved in a classical theory but is broken

by quantum effects. If we have some symmetry classically then it has an associated current:

i = 5T (T, (2.16)
where T, are the generators of the symmetry group. For this to be a symmetry classically
means that 9,74 = 0. However, even if the symmetry is preserved classically the symmetry
can be broken by “triangle” diagrams such as those shown in figure [2.3] These triangle
diagrams contribute to the three-point functions of currents and so the divergence of a
current will be of the form

Ot o< Tr(Tu Ty T ) FY, Foy et (2.17)

16
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[

Figure 2.3: Triangle diagrams for: 2 gauge currents and 1 global current (left); three gauge
currents (right)

For this to vanish we require that ), Try, (T,{T},T¢}) = 0, where the sum is over all
fermions, in representations r;, that can run in the loop of these triangle diagrams.

If the current we are computing the anomaly for is a global current, then if we calculate
all triangle diagrams with two gauge fields in them such as that shown on the left of figure
then if the sum does not vanish this means that the global symmetry is not preserved
by quantum effects.

If the current we are computing the anomaly for is a gauge current, then we must add
all diagrams which are like the one on the right of figure If the sum of these does not
vanish then this is much more serious as it implies that the theory is inconsistent.

In this thesis we will often be interested in calculating the anomaly for U(1) global
symmetries. When we are calculating the gauge-gauge-global anomaly the anomaly splits
up into

A=Tr(T,T,Ta) = Te(T,Tp) Te(Ta), (2.18)

where T, are the generators of the gauge symmetry and T4 are the generators of the global

symmetry. When the global symmetry is a U(1) symmetry this becomes

A=) "JiT(xy), (2.19)

where the sum is over fermions that can run in the loop, J; is the U(1) charge of the
fermion and r; is the representation of the gauge group that the fermion is in. 7'(r) is the
index of the representation, r, defined by T'(r)éa = Tr(T; Ty ).

As an example we will now compute the anomaly-free U (1) g charges for N' =1 SQCD
that were quoted without derivation in table In order to preserve the classical Q < @
symmetry we must have that R(Q) = R(Q) = R. Then the anomaly of the U (1) current
is S Tr(SU(N)2U(1)g) which gives us

T(Ad) + (R — 1)T(0)2Np = 0, (2.20)

where T'(r;) is the index of the representation and [J, (J and Ad mean the fundamental,
anti-fundamental and adjoint representations respectively. For SU(N) we can normalise
the generators so that T((J) = T(d) = 1/2 and T(Ad) = N. A different normalisation will

rescale these quantities by the same factor so the ratio between these two never changes.
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This gives us
Nr — N¢
Np

This is the value of the R-charge that was stated in table

R= (2.21)

2.3 N =1, N =2, Quivers and SCFTs

Gauge theories with N/ = 1 supersymmetry are constructed from chiral and vector
multiplets. A chiral multiplet contains a Weyl fermion and a scalar field and a vector

multiplet contains a Weyl fermion and a vector field:
: : Q . Ay
Chiral Multiplet : o) Vector Multiplet : NIE

We can use these representations to build N' =1 quiver theories. An N’ = 1 quiver theory
is any theory that can be described by an N' = 1 quiver diagram such as that given in

figure An N =1 quiver diagram is made using three components: boxes, circles and

S TSSIET

Figure 2.4: Quiver diagram for an N’ = 1 SU(2) x SU(3) gauge theory with 1 chiral
multiplet in the (2, 3) representation, 1 chiral multiplet in the (2, 3) and 4 chiral multiplets
in the (1, 3) representation.

directed lines. A circle denotes a gauge group and thus an NV = 1 vector multiplet; a
directed line denotes a chiral multiplet; and a box denotes a flavour symmetry. A directed
line going from one circle (box) to another circle (box) denotes a chiral multiplet in the [
representation of the first gauge (flavour) group and in the [J of the second gauge (flavour)
group.

When we move to N/ = 2 theories the representations needed for constructing gauge
theories are the A/ = 2 vector multiplet and the A/ = 2 hypermultiplet. The N = 2
hypermultiplet consists of two A/ = 1 chiral multiplets (i.e. two Weyl fermions and two
scalars) and the N' = 2 vector multiplet consists of one N' = 1 vector multiplet and one

N =1 chiral multiplet (i.e. two Weyl fermions, one scalar and one vector):

(4 Ay
Hypermultiplet : | Q Q' | , Vector Multiplet : | A N
Pt ¢
We can use these representations to build N' = 2 quiver theories, where an A = 2 quiver

theory is one that can be described using an N = 2 quiver diagram such as the one in

figure N = 2 quiver diagrams like their N' = 1 counterparts consist of boxes, circles
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and lines but now the circles denote N' = 2 vector multiplets and lines denote N' = 2 hy-
permultiplets. The lines are no longer directed because every hypermultiplet contains two
N =1 chiral multiplets in conjugate representations. We call these hypermultiplets, with
one chiral multiplet in the ((J,) and one chiral multiplet in the (0,00), “bifundamental”

u(3) @ @ u(3)

Figure 2.5: N = 2 quiver diagram for an SU(3)? gauge theory with 1 bifundamental
hypermultiplet, three hypermultiplets that transform in the fundamental representation
of SU(3); and three hypermultiplets that transform in the fundamental representation of
SU(3)2

hypermultiplets.

For the quiver shown in figure the gauge group is SU(3); x SU(3)2. There is a
bifundamental hypermultiplet which consists of two N’ = 1 chiral multiplets: one N' =1
chiral multiplet, @, transforms in the ([J,J) representation of SU(3); x SU(3)2 and by
N = 2 symmetry the second chiral multiplet, Q, transforms in the (7,[]) representation
of SU(3); x SU(3)3. There are also 3 hypermultiplets that transform in the fundamental
representation of SU(3);. These have an U(3) flavour symmetry which is represented by
the left-most box in the quiver. Likewise for SU(3)s.

Many of the theories that are constructed later consist of strongly interacting super-
conformal field theories. As discussed in the previous section, a necessary condition for
conformality is the vanishing of the beta function. For A/ = 1 theories the exact beta

function is given by [10]

9 8r* _ 3T(Adj) — >3, T(r:)(1 —(9))

ﬁ&rz/gz = 7@ logugT = 1_ 2T (Adj) )
872

(2.22)

where p is the energy scale, g is the gauge coupling constant and ~; is the anomalous

dimension of the i-th chiral superfield. The sum is over all chiral superfields and T'(r;) is

the index of the representation r; of the gauge group that the ¢-th chiral multiplet is in.
For N = 2 theories, because there are no anomalous dimensionsEL the condition for

conformality if?]
T(Adj) ZT r;) = 0. (2.23)

We can construct a simple N’ = 2 supersymmetric gauge theory by taking a vector mul-
tiplet and Np hypermultiplets that transform in the fundamental representation of the
gauge group. This theory is called N' = 2 SQCD. If we do this then the condition for

!This is true for N/ = 2 theories with marginal gauge couplings. There are theories however,
e.g. Argyres-Douglas theories [II] where the holomorphic gauge coupling, 7, is fixed at some value
and in these theories there are anomalous dimensions.

2This equation is written in A" = 1 language so the sum is over all N = 1 chiral superfields, including
the adjoint chiral superfield that lives in the A/ = 2 vector multiplet.
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conformality becomes
3T (Adj) — T(Adj) — 2NpT(0O) = 0. (2.24)

The first term in the formula above comes from the N' = 1 vector superfield. The second
term comes from the N' = 1 adjoint chiral superfield which lives inside the N' = 2 vector
multiplet. The last term is for the 2Np N = 1 chiral superfields; there are 2 N = 1
chiral superfields for each hypermultiplet, one in the [J representation and one in the OJ
representation but since T'(0J) = T'(0J) we get the final term.

If the gauge group is SU(N) then 7(0) = 3 and T(Adj) = N are the indices for the
fundamental and adjoint representation. This means that the condition on the number of
hypermultiplets that we should have for superconformality in SU(N) N =2 SQCD is

Np = 2N. (2.25)

One final aspect which should be mentioned is what happens when we give a vev to a
scalar field in an N = 2 theory. Two ways of doing this are often referred to as moving out
on the Coulomb branch and moving out on the Higgs branch. The Coulomb branch is the
branch we move onto when we give vev’s to the scalar fields in N/ = 2 vector multiplets
(i.e. (¢) # 0). It is so-called because the SU(N) gauge symmetry is then generically
broken to U(1)M~!. The Higgs branch is the branch we move onto when we give vev’s
to the scalars in hypermultiplets (i.e. <Q@> # 0). We could of course give vev’s to the
scalars in vector multiplets and hypermultiplets provided the D- and F-terms are satisfied;
this is referred to as moving out on the mixed branch. The reason that we highlight the
Coulomb and Higgs branches is because there are a lot of interesting results that can be

obtained for them.

2.4 Generalised Quiver Theories

In chapter [3| we will be interested in constructing theories by coupling non-Lagrangian
theories to Lagrangian theories. In this section we introduce some of the necessary back-
ground information on how exactly this is done.

A non-Lagrangian theory is any theory for which we do not have a construction in terms
of a Lagrangian. Instead we normally have a construction in terms of compactification of
a higher dimensional theory such as the 6 dimensional (2,0) theory. There may indeed
be a construction for these “non-Lagrangian theories” in terms of a Lagrangian however
the quality of being non-Lagrangian means that no such construction is known. These
theories in general have some flavour symmetry which we can gauge and it is by gauging
these flavour symmetries of non-Lagrangian theories that we couple non-Lagrangian and
Lagrangian sectors together.

In order to construct these theories where non-Lagrangian and Lagrangian theories are
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coupled together we must first answer the question of what happens when we gauge the
flavour symmetry (or some subset of the flavour symmetry) of a non-Lagrangian SCFT.

Once we have done this we will look at constructing theories.

2.4.1 Central Charge of the Flavour Symmetry

This section follows the nice introductions given in [4, 12] about coupling Lagrangian
and non-Lagrangian theories.

Any superconformal field theory with a flavour symmetry has a real dimension 2 op-
erator J¢ that transforms in the adjoint representation of the flavour symmetry. This
operator is the current superfield and contains the conserved current Jy in the 0o"6 com-
ponent.

Gauging the flavour symmetry, or some subset thereof, of some non-Lagrangian SCFT
just entails adding a term to the Lagrangian of the form [ d*0JV?, where V* is a vector
superfield. This means that we will have some non-Lagrangian sector, some Lagrangian
sector and an extra interaction term in the Lagrangian, J%V®, which which couples the two
sectors. This is precisely the same prescription we use when gauging a flavour symmetry
of a set of hypermultiplets. In this case the flavour symmetry has the current superfield
J¢ = ®&'T?® (where T are the generators of the flavour symmetry group) which we gauge
in the same way as just mentioned.

The contribution of the non-Lagrangian sector to the beta function of the coupling
constant for the gauge group is proportional to the central charge of the flavour symmetry,
ka. The central charge of the flavour symmetry is defined via the flavour symmetry OPE
[12):

_ 3ka 5ab :UQQW —2x,m,
4t a8

JE@30) et S

2
+ ﬁfabc R (2.26)

26
where f%¢ are the structure constants for the flavour symmetry group.

n free hypermultiplets have a U(n) flavour symmetry and the central charge of this
flavour symmetry is ky;(,) = 1; the central charge of the flavour symmetry of some subgroup
G C U(n) is given by

kg =2 Z T(ry), (2.27)

where the fundamental representation of U(n) decomposes as n = @;r;.
If there is a flavour symmetry H with a gauged subgroup G where the fundamental
representation of H, r, decomposes as r = @;r; then the contribution to the beta function

is proportional to kg where

kcecn = lgnukm, (2.28)

and Ig, g is the embedding index:

Tooon = 2. (2.29)
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Now we look at how to generalise the beta function to superconformal field theories with
a non-Lagrangian sector. If we use holomorphically normalised gauge fields [I3] then the
denominator in equation ([2.22)) is identically 1. We can rewrite the numerator asﬂ

T(Adj) ZT r;)(1—7) = 3T(Adj) +3> (R — NT(r;) = X, (2.30)

7

where X¢% = 3Tr RT®T®, R; is the R-charge of the superfields and the trace is over
the Weyl fermions (the gauginos have been incorporated into the trace since they have
R-charge 1). The R symmetry in this formula is the exact superconformal R symmetry.
Also the final term contains an extra 6% factor.

At one loop (obtained by setting 7; = 0) the beta function for a theory with a La-

grangian sector and a non-Lagrangian sector is

G
Bi1- loop = 3T AdJ ZT rz - = (2.31)
—— A,_/ ~—
N =1vector N =1 matter Non-Lag
multiplets multiplets sector

where we have used equation ([2.27)) to obtain the 1-loop contribution of the non-Lagrangian
sector.
Using
1
=3 (Dovior+ 50101). (2.32)

the full beta function is

B =3T(Adj)+3) (Ri—DT(r:) - K, (2.33)

where K§% = ]%Gé“b —Tr~T*T®. The second term involving + is the contribution from the
anomalous dimension of the non-Lagrangian sector. We now look at using this information

to construct theories with Lagrangian and non-Lagrangian sectors.

2.4.2 Constructing Generalised Quiver Theories

In chapter [3] of this thesis we will be interested in constructing theories which have
a non-Lagrangian sector and a Lagrangian sector and which have an RG flow. We will
be interested in asking if there is an interacting IR fixed point and in determining the
R-charge of the IR CFT and using it to ask (a) are there are any a-theorem violations
and (b) are there are unitarity violating operators in the resulting theory. If the answer
to either of these questions is yes then it is likely that we have not correctly determined
the IR fixed point of the flow.

3Here we have used equation (2.13). This is valid since all the non-Lagrangian theories that we are
considering are superconformal.
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The a-theorem, originally proposed in [I4] and recently proven in [15], relates to the
Weyl anomaly coeflicient, a, in equation . If we calculate this coefficient for the UV
and IR fixed points then the a-theorem tells us that agyy > arg so that the coefficient in
some sense counts degrees of freedom. Once we know the R-charge of the IR theory we

can use it to calculate the anomaly coefficients using the relations [16] [17]

: 1
a= 3% [3Tr R}—, — Tr Ry—1] c=35 [9Tr RY,— — 5Tr Ry—1] . (2.34)

We can then use the first of these to check that ayy > arp.

The unitarity violations that were referred to are simply related to the dimensions of
gauge-invariant operators. A consequence of unitarity is that any gauge-invariant opera-
tors O satisfies D[O] > 1 where the inequality is saturated for a free field. Equivalently
since we will be analysing IR fixed points the unitarity constraint is R[O] > %, where R
is the superconformal R-charge.

Determining the IR R-symmetry is in general non-trivial. Even if we know the UV
R-symmetry the IR R-symmetry could be different. This is because in the IR any anomaly-
free U(1) symmetries can mix with the R-charge so that the IR R-charge can be any linear
combination of UV R-charge and anomaly-free U(1) symmetries. In addition to this there
are often so-called emergent symmetries that were not present in the UV theory but
which emerge in the IR theory. These can also mix with the R-symmetry in the IR. There
is however a unique superconformal R-symmetry which appears in the superconformal
algebra and which is related to the dimensions of operators. This superconformal R-
symmetry is determined by using a-maximisation which is presented in the next subsection.

As an example of the process of constructing generalised quiver theories we look briefly
at the Sy theories constructed in [I8]. We start by taking an N/ = 2 superconformal
quiver theory which contains a chain of SU (V) gauge groups connected by bifundamentals.
For the theory to be conformal we could couple the first and last gauge group to N
fundamental hypermultiplets. Instead we couple to the first and last gauge group a non-
Lagrangian SCFT each of which contributes the same amount to the beta function for
the gauge coupling of the first/last gauge group as N fundamental hypermultiplets. The
generalised quiver diagram for this theory is given in figure [2.6] where the triangles denote

non-Lagrangian SCFTs.

>—0—0—0—0<]

Figure 2.6: Theory with 4 SU(N) gauge groups, 3 bifundamental hypermultiplets and an
SCFT at each end of the quiver.

The interacting SCFTs that we have coupled to the first and last gauge group must
have SU(N) as a subgroup of the flavour symmetry where the central charge of this SU (V)
flavour symmetry which is kg vyce = 2N. This way the beta function of the first/last
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gauge group is (again using holomorphically normalised gauge fields)

kst (v ksu ()

g =2T(Adj)) —2NT(O) — =2N — N — (2.35)
which is equal to zero if ksy(nvycq = 2N. The non-Lagrangian theories that were used in
[18] were Ty theories, first found in [I9]. These theories have an SU(N)?3 flavour symmetry
and indeed kgy(n)csu(nvy = 2N.

Once we have constructed these N' = 2 superconformal generalised quiver theories we
will break to N'= 1. We will do this by deleting the adjoint A/ = 1 chiral multiplets that
live inside the N' = 2 vector multiplets. What we will be left with is a series of N' =1
vector superfields coupled to hypermultiplets and non-Lagrangian SCFTs. Another way
of doing this is to give a mass to the adjoint chiral superfield and taking the limit m — oc.
We wish to analyse the resulting IR SCFT.

For N/ = 2 SCFTs the R symmetry is an SU(2)g x U(1)r symmetry. For the fields
that live in a hypermultiplet or vector multiplet the charges are tabulated below. In the

table Ryr—g is the U(1)g charge and I3 is the third generator of the SU(2)gr group.

Ry=\I3 3 0 -1 Ry=\I3 3 0 -1
0 Ay 1 "
1 A Y 0 0 ot
P ¢ 1 "

If we are interested in the N/ = 1 properties of these theories we will make use of the

following symmetries:

1 4
Rpy—1 = gRN:Q + 5137

J = R_/\[:2 - 2[3. (236)

This is one choice of linear combinations of the U(1) symmetries that live inside the
SU(2)r x U(1)gr symmetry where J is a non-R symmetry and Ry—; is the UV exact
N =1 superconformal R-symmetry.

When we start with the initial N' = 2 theory and give masses to the adjoint chiral
superfields in the theory the R-symmetry that is preserved by this deformation is

1 1
Ry = Rn—1 + 6:] = §RN:2 + Is. (2.37)

This is one particular choice of IR R-symmetry for the S, theory however it is possible
that anomaly-free U(1) symmetries mix with this in the IR so that the superconformal
R-symmetry is some linear combination. In addition to this R-symmetry there is one

anomaly-free U(1) symmetry:
é .
F=J+ )M+ (-1 E, (2.38)
i=1
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where J; is the U(1) J current associated to the left-most Ty in the quiver, Jo is the U(1)
J current associated to the right-most T and F; is U(1) J current associated to the i-th
hypermultiplet (appropriately normalised so that the F-charge of the i-th hypermultiplet
is 1).

For even ¢ this current has Tr F = 0 and so does not mix with the R symmetry (this
is explained in the next subsection). This means that the IR R-symmetry is simply Ry.

When ¢ is odd Tr F # 0 and the symmetry does mix with the R symmetry so we have
to use a maximisation to find the exact superconformal R symmetry. This was done in [18]
and they found that the S, theories present no cases of unitarity violations or a-theorem

violations.

2.4.3 a-maximisation

As described in the previous subsection the theories we plan to examine have some
anomaly-free R symmetry which we have chosen but also have an additional anomaly-free
U(1) symmetry. We will always be able to choose the R symmetry to be some linear
combination of an R symmetry and any additional anomaly-free U(1) symmetries in the
theory:

Ririal = Ro + Z srFy, (2.39)
I

where F7 are the additional anomaly-free U(1) symmetries and sy are parameters. In [20]
it was shown that if we have some choice of U(1)r symmetries the unique superconformal

R symmetry is the one that locally maximises the function
triat = 3Tr R> ... — Tr Ripiar. (2.40)

The maximum value of this function is equal to the central charge a at the conformal
point. We will use this tool in what follows.

If we have some anomaly-free U(1) current, Fj, for which Tr(F7) = 0 then because
of the extremum condition 9 Tr R?F; = Tr F; we can always take the R-symmetry to
commute with F7[20].

2.5 Moduli Space

In this section we briefly describe the moduli space of vacua that preserve supersym-
metry. For a more information on this subject see [9, 21}, 22].

It is a generic feature of four-dimensional supersymmetric gauge theories that the
potential is often independent of combinations of vev’s. For this reason there will often be
a space of vacua of the theory that preserve supersymmetry. This space of vacua is called

the moduli space.
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If |0) is a SUSY-invariant vacuum this means that
Qal0) =0, Qal0) =0. (2.41)

From the SUSY algebra,
{Qa: Qa} = 2044y, (2.42)

one can see that the Hamiltonian can be expressed as

H=P"= i (Q1Q1 +Q1Q1 + Q2Q5 + Q5Q0) - (2.43)

This means that any vacuum of a theory that preserves SUSY must have zero energy.
For a theory with superpotential, W, the scalar potential is given by the sum of the

“D-terms” and the “F-terms”:
1 2
V(®;) = Za: S DD+ Z W 2, (2.44)
T

where the second term is the derivative of the superpotential with respect to the i-th field
and D¢ is
D= T, (2.45)
i

where Ty! is the generator of the representation of the gauge group that ®' is in. We do
not consider here theories with Fayet-Iliopoulos terms

The D-terms and F-terms are both positive definite and so in order to have a vacuum
with zero energy we must have that the D- and F-terms both vanish. Solving these
equations gives us the space of vacua that preserve supersymmetry. We must also, however,
take into account vacua related by gauge symmetry. Only the space of gauge-inequivalent
vacua is the true space of vacua of the gauge theory, the moduli space.

We will explicitly solve two relatively simple examples so that we can use the insights

in later sections.

2.5.1 SQED

The SQED theory is a theory of N chiral superfields that are all charged under a U(1)
gauge group. The chiral superfields ®; have scalar components ¢; and their respective
charges are denoted ¢;. There is no superpotential for this theory and so the F-terms are
automatically zero. Thus the moduli space is just the space of solutions to the D-term

equations. The D-term equations are
aldi|* = 0. (2.46)

In this equation it is understood that ¢; denotes the vev of the scalar components of the

®; chiral superfield. There are additional constraints coming from anomaly cancellation
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conditions which are >, ¢ = >, qf’ = qﬂ It is the space of solutions to equation
subject to anomaly constraints and modulo gauge transformations that is the moduli space
of vacua of the theory.

For the simple case of 2 chiral superfields the anomaly constraint gives us that the two

superfields have opposite charge g+ = 1 so that a gauge transformation is given by:

b — €%y,
b — e .

For this set of chiral superfields the vacuum equations are:

[¢+1* = lo—* =0
= [o+] = [o-|.
If we say ¢y = e’ then ¢_ = re'? and the moduli space is spanned by (r,6,6s).

However there are gauge transformations that relate different vacua in the moduli space.

Under a gauge transformation a point in the moduli space transforms as:
(T’, 91, 92) — (T, 0, + «, 0y — a) .

Thus the gauge orbits are lines of constant 6; + 2. (r,0; + 63) then covers the entire
moduli space modulo gauge transformations.
This means that the holomorphic gauge-invariant co-ordinate ¢, ¢_ spans the entire

moduli space and can be used to identify different vacua.

2.5.2 SQCD

After doing the simple example of SQED we now more on to the slightly more compli-
cated example of SQCD however we will only deal with this theory classically. The matter
content of SQCD and the charges of the fields under the various symmetries are given in

table There is no superpotential and thus no F-terms. The D-term equations are
b [ — . ~ =i
D4 =(1%), (Q? Q) — Q?Qb> =0. (2.47)

For convenience we define the matrices df = Q?QZ and d? = @fé; The generators T4
along with the identity matrix form a basis of NV x N matrices and as a consequence of
this we get that

d—d=al. (2.48)

4The second of these conditions is the familiar gauge anomaly that was presented in section which
must vanish for consistency of the theory. The first of these conditions is a anomaly constraint with one
local current and two energy-momentum tensors. This is called the gauge-gravity anomaly and must also
vanish for consistency of the theory.
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There are then two different cases: Ng < Ng and Ng > Ng¢.

NF<NC

For Ngp < N¢ the rank of d is at most Np and the same goes for d. We can use an
SU(N¢) gauge transformation to put d and d in diagonal form so that they both have at

most N non-zero eigenvalues:

2
Uy U1

d= v , d= 07 . (2.49)

From this we see that v = 0 and so d = d. Then we can use the SU(Np)? flavour symmetry

to put @ and QV in diagonal form and since d = d we have

U1
= UNp
=Q = 2.50
Q=0=1 0 (2.50)
0 0

Thus for a generic vacuum the SU(N¢) symmetry breaks to SU(N¢ — Np) meaning that
(N2 —1)— ((Nc — Np)? — 1) = 2NpN¢ — N2 gauge bosons acquire mass. We originally
had 2NgN¢ chiral superfields however 2NpNo — N% of these will be eaten by the massive
vector superfields. This means that there will be N% chiral superfields left which can be
given a vev and thus there are NI% massless directions.

Analogously to the SQED case we can define holomorphic gauge-invariant co-ordinates

that span the moduli space:
J a g ~Sas _ Ae J
M; = Qi@ = Qi Q, = Q; Q3.
This confirms that the dimension of the moduli space is indeed N127-

Np > N¢

For the case where Np > N¢g we again get that d — d = al. Again we can do an

SU(N¢) transformation so that d is diagonal. This time d is of maximal rank N¢ so

28



CHAPTER 2. REVIEW

generally it has no zero eigenvalues:

o1 ]2
d = c. . s
’UNC|2
and again because we have that d — d = al we can say that d is diagonal as well with

eigenvalues |7;/?. The vacuum equations then become:
[oil* = [0 + .

~ , —i
Again since d and d are invariant under flavour transformations we can put @}, and @, in

diagonal form:

(%1 0
Q. =
a

U, 0

G

e
Q= “No
¢ =
0

In this case the SU(N¢) gauge symmetry has been completely broken so Né — 1 gauge
superfields have acquired mass leaving 2NoNp — N% + 1 massless directions. In this case

the holomorphic gauge-invariant co-ordinates are:

i i
M! = Q'Q
21...1N, _ 11 C a]...aN
B ¢ = Q- Qan,€ c
B. . - O N Nc
B’L1...ZNC, - Q’il et QiNC Eal...aNC, .

It should be noted however that there seem to be 2(]Nvg ) +N1% holomorphic gauge-invariant
co-ordinates for the 2NoNp —Ng—i— 1 dimensional moduli space. The reason for this is that

these co-ordinates form an over-complete basis and they are subject to various constraints.

2.6 Conformal Manifold

Another important concept that arises in the study of quantum field theories is the
conformal manifold. For any quantum field theory with a marginal operator, O we may

add the term hO to the Lagrangian to get a new theory which is also conformal. This
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defines a conformal line and for multiple marginal operators there will be a conformal
manifold. Marginality of the operator O at h = 0 does not necessarily imply that O is
marginal at h # 0 since the dimension of @ may depend on h. For N/ = 1 theories [23] (or
equivalently [24]) gives a method for computing the dimension of the conformal manifold
which we now briefly describe.

If we have some operator, W = h¢; ... ¢,, which can be added to the superpotential

then the beta function for this term is

LLIC ( dw+z[ (61) + w»]) —h(An  (250)

Olnp

where dyy is the canonical dimension of the superpotential, d(¢;) is the canonical dimension
of ¢; and y(¢;) is the anomalous dimension of ¢;.

Similarly, for a gauge coupling constant the beta function is given by

8, = 99U _ o) (

Olnp

3T(Adj) — ZT r;) (1 — (g ))]) = f(g[:u])Ag (2.52)

Here we have defined the scaling coefficients A, and Aj, which must equal zero for the
theory to be conformal.

If we have a theory with n gauge coupling constants and m marginal operators then
we automatically have n + m beta functions that need to be set to zero for the theory to
be conformal. These beta functions however need not be linearly dependent and so if we
only have k < n + m linearly independent beta functions then if any solution exists to
the equations setting the beta functions to zero the solution space will be (n +m — k)-
dimensional.

As an example of a theory with a conformal manifold we consider a typical two dimen-
sional Landau-Ginsburg model with n identical chiral superfields, ¢; and superpotential
W =AY, (¢:)". Since dw = 1 and d; = 0 the beta function for the superpotential satisfies

Bx o< =1+ ny(A). A is the anomalous dimension of each of the chiral superfields which

2

are all equal by symmetry. Thus if a conformal fixed point exists then we have y(\*) = =

at this point.

We now consider adding the marginal operator W = h¢y ... ¢, to the superpotential.
The beta function for this superpotential term satisfies 5, oc —1 + % > Y(A k) o< By and
so the two beta functions are linearly dependent. This means that if there is a solution to
the equations setting the beta functions to zero the solution space is one dimensional, i.e.
the space (A, h) subject to y(\, h) =

The prescription outlined in [23] for determining the dimension of the conformal man-
ifold is: add the number of gauge coupling constants to the number of marginal operators
and subtract from this the number of independent anomalous dimensions. We will use
this method later in the thesis to determine the dimension of the conformal manifolds of

some of the theories that we study.
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As was mentioned at the beginning this chapter it is intended as an introduction to
some basic concepts which are taken as understood later in the thesis. Introductions to

more advanced topics will be given as needed in later chapters.
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Chapter 3

Theories of Class S and New
N =1 SCFTs

This chapter is based on the paper [1].

3.1 Introduction

We are living in a golden age of quantum field theories. The diversity of theories avail-
able to study is astonishing, and due to the technological advances of recent years, many
strongly coupled theories that had been considered intractable are now able to be investi-
gated. There are no better examples of this than the supersymmetric compactifications of
the still-mysterious six-dimensional (2,0) theory. These exotic theories, which generically
do not have free-field limits, are nevertheless rather understandable, and many quantities
of interest (e.g. operator dimensions) are calculable. Although a great deal of progress has
been made on compactifications of the (2,0) theory to two and three dimensions, in the
present work we will be most interested in the four-dimensional theories that come from
compactifying the (2,0) type A theory on a (punctured) Riemann surface. This compact-
ification can be done in such a way as to preserve N' = 2 SUSY in four dimensions [25],
and the resulting theories are called theories of class S.

For theories of class S and type A, we need only specify two pieces of compactification
data in order to determine the theory: the genus g of the Riemann surface, and the pole
structures of the punctures. Since any (punctured) Riemann surface with genus g > 1 can
be described with a suitable gluing of thrice-punctured spheres, we can describe any such
theory by a set of these spheres, (called “fixtures” in [26]) with some subset of punctures
connected by cylinders, so that the final object has the required genus and punctures. The
most famous examples of fixtures, and the flagship examples for novel four-dimensional
SCFTs, are Gaiotto’s Ty theories [19]. Using this construction, the punctures correspond
to global symmetries, and the cylinders correspond to gauge symmetries. In this manner,
we can construct infinitely many N' = 2 SCFTs.

Because of the tremendous amount of freedom available to us in constructing such
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theories, the landscape of theories of class S still seems like the Wild West, and although
general principles for these theories are known, not overly many specific examples have
been explored. Much as in the case with D3-branes at the tip of a toric singularity, it
would be useful to have a nice infinite family of theories to play with, like the Y}, or
Ly, 4 theories. In this chapter, we point out the existence of such an infinite family, which
includes and generalises Gaiotto’s Ty theories. For reasons that will become apparent in
the body of the chapter, we refer to these as the Tl theories.

Many properties of these theories are still mysterious. For theories of class S, although
much is known about the Coulomb branch via the Seiberg-Witten curve, the Higgs branch
remains relatively unexplored. One reason is because, unlike in theories with Lagrangian
descriptions, there is no candidate basis of UV-free fields one could use to build a list
of Higgs branch operators. Thus, it remains unclear how to even find the Higgs branch
operators, much less the intricate relationships between them.

One window we do have into the Higgs branch is through the superconformal index
(SCI) [27, 28], which is a useful tool for finding operators. In theories of class S, a reduced
version of the SCI was found in [29], and it is possible to use this to infer the existence
of some Higgs branch operators which are difficult to see from duality alone, along with
some of their quantum numbers.

Although it is far from obvious from the fixtures-and-punctures approach, we can
similarly construct a huge variety of new A" = 1 theories. Geometrically, one way of doing
this is to change the embedding of the Riemann surface in the 11-dimensional space by
suitably twisting the normal bundle. The existence of certain N’ = 1 supergravity solutions
was first shown in [25]; these solutions were then shown to be part of a much larger set
of solutions in [30], and further supergravity solutions were found in [3I]. Alternately,
one could use a recently-discovered class of punctures [32] 33| 34, 35] which preserve only
N =1 SUSY. From a field theory perspective, although certain of these solutions arise
at the endpoints of flows from theories of class S [4], the overwhelming majority are not
known to do so.

Another goal of the present work is to further the study of N’ = 1 theories built out of
class S fixtures, as begun in [4] and continued in [I8], [30} [32] 33| 34} 36, 37, 38, 39, [40, [41].
The study of these N' = 1 theories is still in its infancy, and many of their properties are
unknown. In particular, it is not in general known which such theories are superconformal,
and just as in conventional gauge theories, finding the IR phase of a given theory is often a
difficult process. In [18], several such theories were analysed, and flows between them were
used to establish evidence for the existence or non-existence of the conformal fixed points.
In the present work we re-examine these flows, and find a subtlety in the previous analysis
which indicates that some of the theories not previously believed to flow to interacting
conformal points may in fact do so.

The remainder of the chapter is structured as follows. In Section [3.2] we review some
basic class S technology. In Section 3.3 we introduce a particularly interesting subfamily

of theories of class S, the T ’s, and describe some of their properties. In Section @
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we review the superconformal index, and use it to elucidate further properties of the T 4
theories. In Section we construct ' = 1 theories from the Ty ’s, and describe some
flows between them. Finally, in Section [3.6] we describe some initial attempts to construct

theories in the manner of [36]. Various results are collected in appendices.

3.2 Review

Even though many of the results in this work will be for N' = 1 theories, we will need
to begin by reviewing some relevant N’ = 2 technology. This will allow us to construct an

interesting subclass of theories, which we will then explore in the remainder of the chapter.

3.2.1 Theories of Class S

We begin with a brief review of theories of class §. This subsection roughly follows
the format of [26]. These theories are obtained by compactifying the six-dimensional (2, 0)
theory on a Riemann surface C with punctures. In this work we only consider theories
coming from type Ay_; six-dimensional (2,0) theories; these theories arise on the world-
volume of a stack of N Mb-branes.

In [19], Gaiotto showed that the space of marginal couplings of these theories could be
identified with the moduli space of a curve Cg 5 with genus g and h punctures. Since then,
these theories have seen a great deal of study, and it has been observed that the parameters
defining the four-dimensional theory are completely determined by the two-dimensional
compactification surface. These defining parameters of the theory are, in addition to
the genus g of C, 4, the location and type of the punctures on the surface. This data is
encoded in the Seiberg-Witten curve, which is of the form AN = ch\;Q AN=Fkg,.. where A
is the Seiberg-Witten differential and ¢y, are k-differentials (k = 2, ..., N). The ¢y will, in
general, have poles at each of the punctures. Each puncture then can be characterised by
its pole structure {py} = {p2,ps,...,pn} where pj is the order of the pole that ¢ has at
the puncture. Then, for a given surface Cy j, we can specify both the number of punctures
as well as their individual pole structures.

Punctures come in two varieties, regular and irregular; which category a given puncture
is in is determined by its pole structure. A regular puncture is a puncture to which we

can assign a Young tableau using the following ruleﬂ
e Draw a Young tableau with two boxes in a row;

e Foreach k =3,..., N, if pr = pr._1+1 add a box to the current row, and if pr. = pr_1

start a new row with one box.

!More generally for theories of class S, regular punctures are classified by embeddings of SU(2) in the
ADE Lie algebra of the six-dimensional theory. For class S theories of type A we can use Young tableaux,
however, for type A theories in the presence of an outer automorphism twist, or type D or E theories, this
will not suffice. For more information see [42] [43], 44}, [45] 46, [47].
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All regular punctures must have po = 1. As an example of a regular puncture, we have
drawn the Young tableau in figure for the puncture with pole structure {py} =
{1,2,3,4,5,6,7,7,8,9,10,11,12,12,13, 14, 15,16, 16,17, 18,19, 20, 20, 21}. The associated
flavour symmetry is SU(3) x SU(2)% x U(1)3.

The non-R global (flavour) symmetry group associ-

ated to a puncture is given by G = S ([[, U(ny)), where

1](2[3]4a]|5|6]|7]|
11(12

the product is over column heights of the Young tableau

and ny is the number of columns with height h. The 7189110
S(...) means an overall U(1) is removed. There are |12|13[14|15/16
two special regular punctures worth highlighting. The 16|17]18]19|20

first is a maximal puncture which has pole structure 20|21

[ —

{1,2,...,N — 1} and flavour symmetry SU(N); the cor- u@ W u ue
responding Young tableau has one row of N boxes. The Figure 3.1: A Young tableau for

second is a minimal puncture, which has pole structure a regular puncture; the flavour
symmetry associated to it is

1,1,...,1} and flavour symmetry U(1); the correspond-
{ J ymmetry U(1) PO S 03) x U@ x U(1)).

ing Young tableau has one row of 2 boxes and N — 1 rows
of 1 box each.

Irregularﬂ punctures are those punctures which do not satisfy the conditions for regular
punctures, but do satisfy a different set of conditions whose structure we do not detail

here; for useful discussions on irregular punctures see [43] or [49].

Fixtures and Cylinders

A fizture is a thrice-punctured sphere specified by the pole structure of each of the
punctures. The quantity

3
dp =1— 2k + (Zp,(j)> , (3.1)
=1

where the sum is over the punctures, gives us the number of Coulomb branch operators
of dimension k. We can thus find the dimension of the Coulomb branch by summing over
k =2,...,N. If the dimension of the Coulomb branch is zero then the fixture corresponds
to a set of free hypermultiplets, and if the dimension of the Coulomb branch is greater
than zero, then the fixture corresponds to a “non-Lagrangian” SCFTEL or a combination
of a non-Lagrangian SCFT and free hypers. Although the flavour symmetry of a fixture
is usually just the product of the flavour symmetries associated to each of the punctures,
there are some cases where the symmetry enhances.

One example of a fixture is one with two maximal punctures and one minimal puncture.
This fixture has di, = 0 for all k = 2,..., N and corresponds to a theory of N? free

hypermultiplets. A second useful example is the fixture with three maximal punctures.

2“Trregular” here is used in the sense of [26], and not in the same sense as most of the Hitchin system
literature, e.g. [48].

3As usual, the phrase “non-Lagrangian” merely means that no free-field UV description is known to
exist, and not that such a description has been conclusively ruled out.
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This fixture corresponds to the Ty theory [19]. The Ty has flavour symmetry SU(N)3,
when N > 3. The case N = 3 is the Eg SCFT of [50], and N = 2 is a theory of
4 free hypermultiplets. The graded dimensionlﬂ of the Coulomb branch for the Ty is
{dx} =1{0,1,2,3,...., N — 2}.

Punctures can be connected via cylinders, which correspond to a gauge group G which
must be a subgroup of the flavour symmetry group associated to each of the two punctures
that it is connecting; this corresponds to gauging a flavour symmetry. As the cylinders
get longer, the corresponding gauge coupling becomes weaker. Even for class S theories
of the same type, not every pair of punctures admits a cylinder connecting them; for the

complete rules for type A theories, see [26].

S-Duality

From the perspective of punctured surfaces, S-duality corresponds to different degener-
ation limits into thrice-punctured spheres connected by cylinders. As an example we look
at the case of Argyres-Seiberg duality [12], which is depicted in Figure The theory in

N

Figure 3.2: The two degeneration limits of a punctured sphere with two maximal punctures
and two minimal punctures. The picture on the left corresponds to the degeneration limit
corresponding to an SU(3) gauge theory with 6 fundamental hypermultiplets. The picture
on the right corresponds to an SU(2) gauge theory with one fundamental hypermultiplet
and the Fg SCFT, where an SU(2) subgroup of the Fg flavour symmetry is gauged.

question is derived by wrapping the six-dimensional (2,0) Ay theory on a Riemann surface
with two maximal and two minimal punctures.

This theory can be decomposed into thrice-punctured spheres connected by cylinders
in two ways. In one limit, there is an SU(3) gauge theory with six hypermultiplets. In
the other limit, there is an SU(2) gauge theory with one hypermultiplet, where the SU(2)
gauges part of the global symmetry of the Eg SCFT of [50]. Dualities of this form obey a
set of consistency checks that were set out in [51].

Gaiotto duality is another example of S-duality and relates an SU (N )V ~2 gauge theory
to a non-Lagrangian theory, the T, coupled to a Lagrangian “superconformal tail” (more

about this in the next section). This duality can be seen as two ways in which a genus 0

4Graded dimension here means graded by operator dimension.
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curve with two maximal punctures and N — 1 minimal punctures can degenerate. These

two ways are shown in figure [3.3

i {1,2,...N-1}
/ {1,2,...N-1}_]_SU(N) - SUN) {1,2,...N-1}
1,1}

{1,2,....N-1}
{1,2,....N-1}
1,1}

{1,1,..,1}
{1,1,..,1}

Figure 3.3: Two different degeneration limits of a Riemann surface with two maximal
punctures and N — 1 minimal punctures. On the top is an SU(N)¥~2 gauge theory with
bifundamental hypermultiplets. Each fixture by itself corresponds to N? free hypermul-
tiplets and each cylinder corresponds to an SU(N) gauge group which weakly gauges
the flavour symmetries of the hypermultiplets. On the bottom is the T coupled to a
superconformal tail.

3.3 The Ty, Theories

In [19], evidence was given for the existence of a one-parameter family of N' = 2
SCFTs, the Ty theories. These theories are the low-energy energy limit of a stack of N M5
branes wrapping a sphere with three maximal punctures. In the present work, we consider
a related class of theories which will display a variety of interesting properties. These
theories, which we will call Ty, come from N Mb-branes wrapping a sphere with two
maximal punctures and a third puncture with pole structure {1,2,3,....k — 1, k, k, ..., k}.
The flavour symmetry of this theory is then SU(N)? x SU(k) x U(1).

These theories form part of an interesting S-duality which is shown in figure[3.4 This
duality corresponds to different ways in which a curve with two maximal punctures and k
minimal punctures can degenerate into thrice-punctured spheres connected by cylinders.
This set of S-dualities generalises the Gaiotto duality found in [19]. Gaiotto duality (see
the middle row of figure relates an SU(N)N~2 gauge theory with bifundamental
hypermultiplets to a Ty coupled to a superconformal tail (i.e. an SU(N)xSU(N—1)x---x
SU(2) gauge theory with bifundamental hypermultiplets). A related natural question to
ask is what theory is S-dual to an SU(N)*~! linear quiver gauge theory for general k. For
the case kK > N —1 one can see that the dual theory is again a Ty coupled to a Lagrangian
theory. This time the Lagrangian part is an SU(N)*V*!1 x SU(N — 1) x --- x SU(2)
gauge theory, as in the bottom row of figure [3.4, However, for the case k < N — 1, we find

that the dual theory is a Ty x coupled to a superconformal tail, as in the top row of figure
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B4
SU(N)
g A
1<k<N-1 SU(N) g @ A e A @ a SU(N) 53?1()) D . . u(1)
| —
k-1 SU(N)
SU(N)
SU(N)QA _..Aq SUN) SU(N):)...Um
k=N-1
—
N-2 SU(N)
SU(N) n
—
k=N-1+n " |SU(N) QA . Aq SU(N) SU(N) :)... "'U(1)
%r_J Q
N-2+n SU(N)
u()

Figure 3.4: Duality between N = 2 linear quiver gauge theories (left) and Ty theories
coupled to an A/ = 2 superconformal tail (right). Circles represent gauge symmetries,
boxes represent flavour symmetries, and lines represent bifundamental hypers. Trivalent
vertices represent Ty j, theories. D represents gauging of a subgroup of a flavour symmetry.
In one duality frame, we have an SU(N)¥~! gauge theory with bifundamental hypermul-
tiplets. In the other frame, we have a T coupled to a quiver theory with gauge groups
of decreasing rank. In the case of k = 1, we have N? free hypermultiplets in both duality
frames, and for the case of k = N — 1 we have a Ty coupled to a superconformal tail. For
all k > N —1 we have a Ty coupled to SU(N)*N+1x SU(N —1)x SU(N —2) x---x SU(2)
gauge theory.

These theories also appear in another duality. In section we reviewed how Gaiotto
duality corresponds to two ways in which a genus 0 curve with two maximal punctures
and N — 1 minimal punctures can degenerate into thrice-punctured spheres connected
by cylinders (see figure . The first way is to have one maximal puncture on each
end sphere; this corresponds to the SU(N)N~2 gauge theory. The second is to have the
maximal punctures both on one end, which then corresponds to the T coupled to the
conformal tail. However, we can ask what happens when we degenerate the curve in such
a way that the maximal punctures appear on fixtures in the middle of the curve rather
than at the ends. In this case, the corresponding SCFT is a generalised quiver theory
which involves T j, theories, and the corresponding quiver diagram is as shown in figure
15.0)

One can also ask what happens for the different degeneration limits of a Riemann
surface with 2 maximal punctures and k£ minimal punctures (i.e., the other S-dual frames
of the theories in figure . These different limits can be described by T ;’s and N = 2
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{12..N-1 ) SUN SU(N)
{1.35,..2N-3 TSU@) |, , TSUKD| {12 knseki} SU(Kk v —2U2
- _ — ~— —_—
k4 N-ky-kz-1 ky

u(1) C fLﬂ,((ﬁ‘)) SU(N) D c SU(N) ELLJJ((’::)) D u(1)

%‘f—J
N-k;k,
SU(N) SU(N)

Figure 3.5: Top: the degeneration limit of a surface with two maximal punctures and N —1
minimal punctures into thrice-punctured spheres connected by cylinders. The maximal
punctures appear on the ki-th sphere from the left and the ko-th sphere from the right.
Bottom: the quiver diagram for the corresponding theory, which contains a Ty, and a

TN}kQ.

vector and hyper multiplets.

There are a few special cases of the Ty ;,’s worth mentioning, which we now go through
in order of increasing k. First, as can be seen from the pole structure, the Ty ; theory
corresponds to N? free hypermultiplets. For k = 2, the Ty, theory has its flavour sym-
metry enhanced to SU(2N) x SU(2). For k = N — 1, Ty ny—1 is identically the T, so the
flavour symmetry is enhanced to SU(N)3. As can be seen from the pole structure of the
third puncture, we cannot have £ > N — 1. We further note that the Ty 2, T3 and T 4
theories feature in [26], where they are called Ry n, Uy, and Wy respectively.

We can easily obtain the graded dimensions of the Coulomb branch using equation
(3.1); these turn out to be (ds,ds, ...,dn) = (0,1,2,3,....k—2,k—1,k—1,..., k—1).
We also could have calculated this by looking at the duality in figure and noting that
dy, is the same in either duality frame. Since we know dj for the linear quiver theory,
we can just subtract the number of Coulomb branch operators of the superconformal tail
from the whole dual theory to get dj for the T .

The central charges for these theories are

(6k —5) N2 — 2k3 — 3k* — 1k +5 (3k —2) N2 — k% — k%2 42
o1 y CTyy = , (3.2)

ATy =
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again obtained by subtracting the central charges of the superconformal tail from those
of the whole dual theory. For k = N — 1, these recover the known expressions for T . By
similar methods, we can compute the leading coefficient of the two-point function of the
flavour currents, also known as the central charge kg for a flavour symmetry G. When we
gauge a flavour symmetry, as we will do later, this quantity appears in the beta function
of the associated coupling (for more info see [4]). For either SU(N) the central charge is
ksu(ny = 2N, and for SU(k), the central charge is kgy(x) = 2(k + 1).

3.3.1 Higgs Branch Operators

Our knowledge of the Higgs branch of theories of class § is still quite incomplete.
Although some Higgs branch operators are known, and in some special cases we can make
concrete statements, our knowledge of such operators is limited. In this subsection we
review some relevant facts about Higgs branch operators for the T theories, and then use
similar arguments to establish the existence of analogous operators for the T} ; theories.
We leave the much more difficult question of the structure of the Higgs branch to future
work; our goal here is merely to describe some of its operators, and not the various relations
between them.

The authors of [52] give an argument for the existence of certain Higgs branch oper-
ators, which goes as follows. Consider the SU(N)™~! linear quiver with bifundamental
hypermultiplets (i.e., the bottom left quiver of figure with n = 1). There is a gauge-
invariant operator H;; = ¢; A1 As...AN_2q; where ¢; and ¢; are the (fundamental) quarks,
and the A’s are the bifundamentals; 7 and j are flavour indices. This operator transforms
in the (N, N) representation of the SU(N)? flavour symmetry and has dimension N. In
the dual frame where the T is coupled to a superconformal tail, this operator can be
written as H;; = (’)iijk, where QF is the quark that transforms in the fundamental rep-
resentation of the SU(N) gauge group and O;;j, is an dimension-(N — 1) operator in the
(N, N, N) representation of the SU(N)? flavour symmetry of the 7. This trifundamental
is one of the Higgs branch operators in the T theory, and a similar tri-antifundamental
operator exists as well.

It is also worth considering what happens in linear quivers with different numbers of
nodes. First, consider the SU(N)"N~2 linear quiver. Here, the gauge-invariant operator of
interest is H;; = ¢; A1 As...AN_3q;, which has dimension N —1. The dual frame corresponds
to a Ty where one of the SU(N) C SU(N)? flavour symmetries has an SU(N —1) subgroup
gauged. In this case, also discussed in [52], the operator H;; can be identified with O;;n,
which is the part of O;j;, which transforms as a singlet under the SU(N — 1) gauge group.
For the dualities denoted by k = N — 1 4 n in figure [3.4] the analogous operator can be
written in the dual frame as H;; = C’)ijk(AlAg...An_lQ)k, where we have hidden most
gauge group indices.

As is well known, the existence of the O;;, operators in the T theory explains the

enhancement of the SU(N)3 flavour symmetry to Eg for the case of N = 3. In this
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case, the O;;;, operator is dimension two and contains a conserved current in its multiplet.

Because the adjoint representation of Eg decomposes under Eg — SU(3)? as

78 — (8,1,1)® (1,8,1) ® (1,1,8) ® (3,3,3) ® (3,3,3) , (3.3)

we see that the operators O%* (and Oz;) combine with the currents of the SU (3)3 flavour
symmetry to lift the symmetry to Fg.

We can similarly argue for the existence of certain Higgs branch operators in the
T ; theories. If we look at the SU(N )=1 linear quiver, there is a dimension k operator
H;j = ¢;A;...Ax_2g; that transforms in the (N, N) representation of the SU(N)? flavour
symmetry. As described above, for the Ty, there are two arguments for the existence
of the operators O, one relying on the existence of a quark in the dual theory (when
k = N) and one relying on a subgroup of the SU(N) flavour symmetry being gauged
(when £k = N — 1). However, for £k < N — 1 there is no quark in the dual theory, nor
is there a gauged subgroup of the SU(k). Instead we argue that the dual operator is
an operator H;; = O;; that transforms in the (N, N, 1) of the SU(N)? x SU(k) flavour
symmetry of the Tl and has dimension k.

One can easily see that this is the case for k¥ = 1, where the T ; corresponds to
free hypermultiplets. In this case the operator O;; is dimension one, and corresponds
to the free hypermultiplets themselves. When k = 2, these operators are dimension
two. Since this case has an enhanced flavour symmetry, from SU(N)? x SU(2) x U(1)
to SU(2N) x SU(2), we expect that the O;; has in its multiplet the conserved currents
necessary to exhibit this enhancement. The adjoint representation of SU(2/N) decomposes
under SU(2N) — SU(N)? x U(1) as

AN? -1 (N’ -1,1) @ (1,N*-1) & (1,1);& (N,N), & (N,N) _ (3.4)

99
so the O;; and 07 are exactly what we need to enhance the flavour symmetry. In the next
section, we will further bolster the case for the existence of these operators by showing
that the O;; appear in the superconformal index.

Along with the O;ji, the Ty also contains three dimension-two Higgs branch operators
Wi, i = 1,2, 3, that transform in the adjoint representation of each SU(NN). These operators
are necessarily coupled to any relevant vector multiplets for gauged flavour symmetries
via a superpotential W = u®, as required by N' = 2 SUSY. This superpotential term is
the analogue of the Q@@ term in N = 2 theories with weakly coupled matter. Since the
T'n’s also appear as part of N’ = 2 superconformal field theories, they should also contain
operators f;, i = 1,2, 3 that transform in the adjoint representations of SU(N ), SU(N )2
and SU (k).
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3.4 The Superconformal Index

In this section we review the technology of the superconformal index [27, 28], which
we then use as a way of understanding some properties of the Tl theories. Our main

tool is the reduced index for type A theories of class S found in [29].

3.4.1 Index Basics

The N = 2 superconformal index is defined as [27], 28]
I="Tr (—1)Fp¥+jlq¥_j1u_(r+m, (3.5)

where F' is the fermion number, E is the conformal dimension, R is the charge under the
Cartan subgroup of the SU(2)g symmetry, r is the charge under the U(1), symmetry,
and (j1,J2) are the charges under the SU(2); x SU(2)2 Lorentz group. p, ¢ and u are
fugacities which keep track of the quantum numbers for each state in the theory, and the
trace is over states on S® in the usual radial quantisation. Only states which satisfy the
relationship

E—-2j—-2R+r=0 (3.6)

contribute to the index.

To help get a feel for this technology, it is useful to compute the “single letter” contri-
butions f(p,q,u). These are the contributions to the index from all single-field operators
with arbitrary numbers of derivatives. For vectors and half-hypers, the single-letter par-

tition functions are given by (see e.g. [53])

foo o Wt (g el (uu () — (ot a) + 20
2huper (1-p)(1-q) L (1-p)(1-q) '

(3.7)

The interesting-looking 2 in the numerator of f,.. comes from including a wrong-statistics

state with the quantum numbers of a particular equation of motion. Said another way, this

term subtracts contributions from states proportional to the quantity which is identified
with zero by the equation of motion.

The index in which we will be interested here, the “reduced” index, is obtained by

setting p = ¢ and v = 1, resulting in
T ="Tr(-1)"¢"F (3.8)

It is easy to see that the reduced single-letter partition functions for vectors and hypers

are given by s
—q fvec,red = 1— q- (39)

When flavour symmetries are present, extra fugacities can be introduced to keep track of

f _ q
%hyper,red - 1

the charges under the flavour symmetry. This is done in the next section.
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3.4.2 The 4d Superconformal Index from ¢-deformed 2d Yang-Mills

In [29] it was conjectured that for the theories that appear in [26], the reduced index
can be obtained using a relation to two-dimensional ¢-deformed Yang-Mills. Using this

relationship, the index for Ty is conjectured to be

2, (1= )] 3 ()]
=)™

ITN (Xi7 Q) =

5 v () v () e ()
R q

(3.10)
The fugacities in Z are ¢ (which keeps track of the E' and R charges), as well as the vectors
x;,1 = 1,2,3, which are associated to the three punctures (and keep track of the charges
under the flavour symmetry); we will go into greater detail about these below. The sum
in is over irreducible representations of SU(N), and the ¢g-deformed dimension of a

representation is given by

—Aj+J—
dim; R = H ], (3.11)

— Z
1<J ‘]

where Ay > Ao > ... > Ay_1 > Ay = 0 are the row lengths of the Young tableau

corresponding to the representation, R, and a g-deformed number [z], is defined as

qu q%
el = "5 (3.12)
q 2 —q:z
The characters in equation (3.10) are given by the Schur polynomials:
det ( Aj+N— ])
(3.13)

XR (X) = W,

where e.g. :va_j is to be thought of as the entry in the i*" row and j*" column of a matrix.

Finally, the quantity n(x) is given by

n (x) —exp{ ZZ—

To get the index for a more general fixture, rather than one with only maximal punc-

7 XAdi (X")} : (3.14)

tures, we must first associate flavour fugacities to each puncture using the prescription
outlined in [29]. The prescription is as follows: Take the Young tableau associated to the
puncture, and associate a fugacity to each column of the tableau. For each box in the
tableau, associate the fugacity for that column times some power of q. The powers of ¢
should decrease by one down each column and be symmetric about 0; a column with n
boxes will begin with the power q(”_l)/ 2. Finally, impose the condition that the product of

the quantities associated to each box in the tableau equals 1. This procedure is exemplified
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in figure [3.6] The conjecture then is that the index for a fixture is given by

ag® | bg' | cqt | dgt | eq fq gq h j
aq bg* | cqt | dg: e f g
a | bg?| cqt | dg* |eq' | fq' | gq”

aq' | bg?| cq? | dg*

aq?

Figure 3.6: An example of the association of flavor fugacities to a Young tableau. The
flavour symmetry associated to this puncture is S (U(3)? x U(2) x U(1)) = SU(3)* x
SU(2) x U(1)? and the S(...) constraint imposes a®(bcd)*(efg)>hj = 1.

3
1
Z(xs) = Ma) [Hl A(xn] % G R e R 2 ), (3.15)
1=

where NV and A are normalisation factors associated to the fixture and punctures, respec-
tively. For the case of a maximal puncture, A(x) = n(x).

As a warm-up to the T, we can expand the expression (3.10) to get some useful
information. It is useful to note before we begin that each factor goes to 1 as ¢ goes to

zero, so it is easy to read off the low powers of ¢. First, since
1
n72(x) =1+ qxagj(x) + O (¢°), (3.16)

we see a contribution to Zr, of the form ng’:l XxAdj(xi). These terms represent the
dimension-2 Higgs branch operators y; in the adjoint of each SU () flavour symmetry of
the Ty.

Now consider the terms with R = [0,[J. Because dim,0=dim,[0= [N], =¢~ 2 (1+
O(q)), there is a term of the form

N—-1

g 2 |[xg(x1) xo(x2) xo (x3) + x5 (x1) X5 (x2) x5 (x3) | - (3.17)

This is the contribution from the dimension-(N — 1) operators O;;;, and o7 , which are
in the trifundamental and tri-antifundamental representations.
Finally, we look at the term that comes from R = A!, the l-index fully antisymmetric

representation. Since
1

Lin_
T =+ 0G), (3.18)
q
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there will be a term of the form q2(V— (xat(x1)x a1 (x2)xat(x3)), indicating the presence
of dimension-I/(NN —[) operators in the (Al, AL Al) representation. It is interesting to note
that at present it is not known how to get these operators with [ # 1, N — 1 from duality

arguments.

3.4.3 The Superconformal Index for the Ty

We now look at calculating the reduced superconformal index for the T}y ; theory. The
T~ i, theory has two maximal punctures and one puncture with pole structure {1,2, ...,k —

1,k,k, ...k}, so the superconformal index is

1 XR(X1)XR(X2)XR (X3)
ITN,k(xi) :NTNk [Hn 2 XZ ] X3 [ dlqu ] :

The Young tableau for the non-maximal puncture has one column of height N — k and k

columns of height one, giving the flavour fugacities

—k—1

N—k—1 _ N—k k=N k—N b1, 171 E=N
x3=\|aq 2 ,..,aq" 2 ,bia F ,baa F .., bp_ 1a 5 [H b] a* |. (3.19)

We first look at the terms in the last factor with R = 0,0 Eq. (3.13) gives us
xo(x) = >, x;, so the characters of the third puncture are given by

N—k—1 N—k—1 E—N
2

+..+aqg 2 +a & x(b), (3.20)

X (x3) = aq™

with X given by taking a — 1/a and O — 0. x(b) and X (b) are the charac-
ters of the fundamental and anti-fundamental representations of SU(k) in terms of the
flavour fugacities by, ...,br_1. Multiplying by the factors from the maximal punctures,
q%(N_l)XD(Xl)XD(XQ) and q%(N_l)Xi(Xl)Xi(Xg) respectively, we see the presence of op-
erators given in table In addition to the (perhaps expected) presence of trifundamental
and tri-antifundamental operators, it is interesting to note the presence of bifundamentals
of various dimensions increasing in increments of two including the dimension k& bifunda-

mental operators found in the last section.

No of Operators Representation Dimension
N —k (0,0,1), kk+2,k+4,....,2N —k—2
N -k (0,0,1)1 kk+2k—+4...,2N—k—2
1 (O,0, D)% N -1
1 O,00) v N -1

Table 3.1: The flavor symmetry representations (under SU(N)? x SU(k) x U(1)) and
dimensions of operators for the Ty .

Note that the number of operators coming from the R = [Jor R = [ terms is N2(N —
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k + k) = N3, which is the same counting as in the analogous terms for the T. This
has to be the case since x (x3) has the same number of terms regardless of the puncture.
Moreover, when k& = N — 1, the dimension-(/N — 1) bifundamental and trifundamental
operators combine to give us the trifundamental operator of the Ty, as expected.

It is also interesting to consider the operators transforming in the various ¢-index
antisymmetric representations A’. Using equation one can see that the characters

of these representations are given by

N
XAl (X) = Z Ljy Lig--- Ty (321)

i1 =1,
12 > 11,0000 > 1 —1

and so for the third puncture we have

. N—k—1
min(l,k) 2
(N Wiy i
Xat(x3) = a (%) > q1q"”...q"=" | xpr (b). (3.22)
'=0 i1 = _N—2k—17
12 > 01, by >

We find that the operators coming from the R = Al term are those given in table
Again we see that the number of operators coming from the R = A! term is equal to that

of the T, which we can see via Vandermonde’s identity:

min(l,k) N—k i N
% () 6)-0) -

No of Operators Representation Dimension
(N ; "’) (Al AL ), ik, 2IN — kI — 21?]
N -k I Al [N+kl—20—k—1,
(l—1> (AvAﬂ)zf(%) 2N — N — 202 — kl+ 2l +k — 1]
N -k I Al Al [k +UN —1"k— 20" +12,
<l—l,> (A’A7A )l_l/(llj) (k+20)(' =)+ N(21 = 1") — 1'?]

Table 3.2: This table gives the flavour symmetry representations (under SU(N)? x SU (k) x
U(1)) and range of dimensions of operators of the T . I’ will stop at [ or k, whichever is
less.
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3.5 New SCFTs and Flows

In this section we use the T theories to construct new ' =1 SCFTs, and describe
flows between these theories. The analysis in this section extends the work done in [I8]
and answers an open question about flows that appeared to violate the a-theorem. We
note here that the evidence presented in this and the following section is necessary but
not sufficient for the theories in question to be SCFTs. Although some of the theories we
will build have obvious problems such as unitarity violations, it is possible that even the
ones that do not appear to be problematic do not actually dynamically reach a conformal
fixed point. To determine without question whether or not the theories we consider are
conformal would require stronger evidence, such as an AdS dual. Nevertheless, we believe

the evidence presented here is suggestive that many of these theories are SCFTs.

3.5.1 S, Theories With T’s

An S, theory, first analysed in [I8], is an N/ = 1 SU(N)**! gauge theory with ¢
bifundamental hypermultiplets, two Tx’s, and an SU(N)*x U(1) x U(1) g global anomaly-
free symmetry. The theory is represented by the generalised quiver shown in figure [3.7

Since we are now dealing with A/ = 1 theories, in this section circles will correspond to N/ =

:...c

1+1

Figure 3.7: The Sy quiver.

1 vector multiplets. Lines will still correspond to bifundamental N' = 2 hypermultiplets,
or in A = 1 language, two chiral multiplets in the ([J,0J) and ({J,[0) representations.
A useful global symmetry is

1 1
Ry = Rn—1 + EJ = iRN:Q + I3, (3.24)

which is the R-symmetry preserved when flowing to the Sy theory by giving masses to
adjoint chiral superfields in vector multiplets in the analogous N' = 2 theory. The U(1)
global symmetries Ryr—2, Ry=1, J, and I3 are detailed in [I8]. Here we only note that Rar—o
and I3 are the charges under the U(1)g x U(1), which descends from the U(1)r x SU(2),
N = 2 R-symmetry; Ry—1 and J are just particular linear combinations. Additionally,
each of the bifundamentals comes with a U(1) which we call F;, normalised as F;(Q;) =

FZ(@]) = 0;; where Q;, ij are the j™ bifundamentals. These Fj are individually anomalous
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but can be combined into the anomaly-free global symmetry
Z .
F=JD+Y (-)7'E+ (-1)7 1, (3.25)
i=1

where Ji o are global symmetries under which only the Ty theories are charged. When /¢
is even, Tr F = 0, so F will not mix with the R-symmetry [20], which is therefore Ry.
When ¢ is odd, Tr F # 0, so we must use a-maximization [20] to determine the IR

R-symmetry. In other words, we must find the value of o that maximises
Qtrial (Oé) =31Tr R?rial —Tr Rtrial: (326)

where Ryiqi(a) = Ry + aF. This was done in [I8], with the result that

A—+/B
O )

a:

(3.27)
where

A =4N3 4+ 3(N? — 4N,
B =64N% +8 (3¢ —25) N® + 3 (3¢* + 41) N* — 24 (¢ — 9) N® — 208N? — 64N + 64,
C=6(4N*>—11N? +38).

3.5.2 Sy Theories With Ty ;’s

We now look at the Sy theory as in the last section but now with T ’s and an
SU(N) c SU(N)? x SU(k) x U(1) gauged at each end of the quiver. We again find
that there is an anomaly-free R-symmetry as in equation and an anomaly-free U (1)
flavor symmetry as in equation . As before, the case with even / is trivial, and the
R-symmetry is Ry. However, for £ odd, we must use a-maximization.

If we perform a-maximization then we find that the value of o that maximises a;iq; 18

A++VB
O )

a=

(3.28)

where

A= — (304 6k)N? + 2k> — 2k,

B = N* (144k* + 36k¢ — 204k + 9> + 91)
+ N? (=96k* — 12k%¢ — 28k® + 80K” + 12k( + 204k — 160)
+ 16k + 32k° + 16k* — 64k3 — 64k> + 64,

C =6((7—6k)N>+ 2k + 4k* + 2k — 8) .

@, which is plotted in figure [3.8] seems to be negative for all values of ¢, N and k and
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—6k—304++/144k2 —204k+36k(+902+91

approaches 6(7—6k) at large N.
0.00F : : : 5 0.00F=—= : ‘ ‘ 7
_0.027\¥ \\
-0.04} ] 0,05 ]
—0.06¢
Re} e
—0.08¢ 1
-0.10¢
-0.10f

-012 ] \\
~0.141\ : —0150 N

20 40 60 80 100
N

20 40 60 80 100
N

Figure 3.8: The value of o that maximises ay . for the Sy theory with two Tvi’s. o
is plotted against N for k = 5 (left), and k = N — 2 (right) each with ¢ = 1 (blue), 11

(purple), 101 (yellow), 1001 (green).

In order to verify that there are no gauge-invariant
operators in this theory that violate the unitarity bound
R > % we note that o never goes below —% for any k
and . One can then easily verify using the results of ta-
ble that indeed no gauge-invariant operators violate
unitarity.

We can also ask what happens when we construct the
S theory with two different Ty ;’s at either end of the
quiver, i.e., Ty, and Ty ,. The behaviour is qualita-
tively similar to when k1 = ko, and we have included the
result in the appendix. For now, we merely note that no
gauge-invariant operators violate the unitarity bound, so

these theories do not appear to be problematic.

3.5.3 Other N =1 Theories With Ty ,’s

In [18], the authors additionally studied two other
theories formed from 7Tx’s and Lagrangian matter,

namely the Sf and the S;. We now wish to construct

Operator R-charge

Qi %-i- (_1)#10(
Q@ 3+ (D)a
" 1 -2«
On (3 — ) Apy
U, (14+2a)n

Table 3.3: Operator dimen-
sions for the Sy theory with
Tnyi’s. Og is any of the Higgs
branch operators in table
and Ayy is the operator’s di-
mension given in the same ta-
ble. u,, are the Coulomb branch
operators.

analogues of the theories using Ty ;’s instead of Ty’s. The generalised quiver diagrams

for these theories are given in figures [3.9] and [3.10]

The extension of the S E theory is straightforward, since it is a special case of the theo-

ries at the end of the previous section. Because the Ty ; is a set of IV 2 free hypermultiplets,

the theories at the end of the previous section with k2 = 1 are the S, theory.

For the S; theories, we use the same Ry symmetry as in the previous section. In

order for Ry to be anomaly-free we require that Ro(®) =

%, where ® is the adjoint chiral

superfield. The extra adjoint chiral superfield ® comes with a U(1) flavour symmetry F,
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SU(N)
——y SU(N) :) SU(N) @ na @ SU(N)
— _—
SU(k) N’
xu) 1+1

Figure 3.9: The generalised quiver diagram for an S, theory.

SU(N)
»——y SU(N) :) SU(N) @ " SU(N)
—— _—
SU(k) N’
xu) 1+1

Figure 3.10: The generalised quiver diagram for an S; theory. The loop denotes a chiral
superfield in the adjoint representation.

which we normalise so that F,(®) = 1. The only anomaly-free U(1) symmetry is

F=J0+ Y (-1)7'F+ (-1)'F, (3.29)

Again we can get the IR R-symmetry by maximising asiq(a) = 3 Tr R}

trial

= Tr Rypial
with respect to a, where Ry.jqp = Ro+aF. The answer is unwieldy, so we merely note that
« does not seem to drop below —% for any ¢,k and consequently there are no unitarity
bound violations for the same reasons as for the S, theories. Thus, the theories in this
subsection are likely to be good SCFTs.

It is interesting to note that when we add the superpotential term Qﬂ)@g to the theory,
some of the operators violate unitarity. In the theory without this superpotential term
the R-charge of the Q[‘I)@g operator is R(ng)@g) = % — (—1)6 a, where a is the value
of a that maximises a;-jq;. There are also operators in the theory Tr(®"™) which have
R-charge R(®") = n (3 4+ (—1)‘@). In the theory with the superpotential term turned on
a-maximization is not needed because the R charge of the ng)@g term is fixed to equal 2.
This effectively sets the value of @ so that (—1)‘@ = —3. This means that the R-charge
of the Tr(®") operators will be zero. Thus, these theories with the superpotential term

turned on appear to be problematic, and are likely not SCFTs.

3.5.4 Flows From Higgsing

We now look at what happens when we take an Sy theory with T ;’s and give a vev
to the k-th hypermultiplet. In [I8] it was argued that the theory that emerges in the IR
is the Sy_1 theory with a chiral superfield ® in the adjoint representation of the (k —1)-th
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gauge group H This is represented by the quivers in figure

vev

Figure 3.11: If we give a vev to the k-th hypermultiplet in the Sy theory (above) then this
induces a flow to the Sy_1 theory with an chiral superfield in the adjoint representation of
the (k — 1)-th gauge group.

We note that in the UV theory there are the marginal operators Qk_lék_leka
and Qk@kaHékH, so we must in general consider these terms to be turned on. After
Higgsing, these terms become Qk_1¢©k_1 and Qk+1¢@k+1 respectively, where ® is the
adjoint chiral superfield. These superpotential terms were not taken into consideration in
[18], and since they are allowed by all symmetries, should in general be includedﬁ

Including such terms results in the one-parameter family of R-symmetries
Rypiar = Ro + Ozf, (330)
where the additional anomaly-free U(1) symmetry is

F=l+F—F+..+ (1) F+ 21" F 4+ (-1)F 2R+
+ (=) F + (1), (3.31)

In this formula Fj, is the additional U(1) symmetry that comes with the adjoint chiral
superfield, which we normalise as F,(®) = 1. We can then use a-maximization to find the
value of o that maximises a; this result is again in the appendix.

If we then calculate ayy — arg then we see that there are no a-theorem violations for
this flow. The value of ayy — arg for even and odd ¢ is plotted against N in figure [3.12]
We can repeat this analysis for the S, with two general T 1, , Ty, and we find that there
are no a-theorem violations for any of these flows. Although not in and of itself conclusive,
the fact that none of these flows violates the a-theorem lends credence to the existence
of the IR theories as interacting conformal points. This is perhaps not surprising, since
many examples of such quivers which mix N' =1 and N' = 2 vector multiplets are now

known to be SCFTs, though these were not known at the time of the original work [18].

5The authors of [18] only considered the S theory with Tn’s but the argument still holds.
6 A similar point was discussed in [34].
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dyyv — 4R ayv — 4R
N ? N ?

2.5¢

2.0t
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Figure 3.12: Left: ayy — argr, which is independent of k, plotted for even ¢. Right:
ayy — argr plotted for ¢ odd and k even (bottom) and odd (top).

3.5.5 Linear Deformations of the Ty

In this section we look at what happens when we deform a T} j, theory with an operator
of the form Tr(¢u), where ¢ is a constant adjoint-valued matrix. This in general breaks
the flavour symmetry of the Ty and drives a flow to a new theory in the IR. We can use
the methods of [54] to determine the R-symmetry in the IR.

For simplicity, as was done in [54], we assume that the matrix ¢ takes block diagonal
form, ¢ = ®,¢@, where each ¢ is an n, x n, upper-diagonal matrix; this breaks the
theory to N' = 1. Then there is an SU(2) subalgebra of the original flavour symmetry
associated to each ¢(@, where ¢(® is in the spin—%(na — 1) representation. As discussed in
[54], the entries of #@ along the first superdiagonal are the most relevant and drive the
flow, so we further assume that each gZ)(“) is a nilpotent Jordan block.

The IR R-symmetry then is given by

t
Rir = 5RN:2 + (2 — t)]g — t13, (332)

where T5 = 3, Tga) and T: ?Sa) is the generator of the Cartan subalgebra of the SU(2) flavor

symmetry associated to ¢(®: t is determined by a-maximization to be

2
8ary, — 4ery, — \/4CTN,I<: + (4aTN,k — cTN’k)kGr

x , (3.33)

t =
16ary, — 12cry, — kar

W =

where k¢ is the central charge of the flavour symmetry under which the 1 we are deforming

with transforms; r = 2 Tr(7373) measures the sizes of the $@ blocks. We will look only

n3fn

6
We can calculate the central charge a for this theory in the IR and compare it to ayy

at the case where ¢ has just a single n x n upper-diagonal block so that r =

given in eq.(3.2). When we do this, we see that ayy (N, k) —arr(V, k,n) never drops below
zero, as dictated by the a-theorem, and is monotonically increasing in IV, k& and n. This
makes intuitive sense, because increasing N or k corresponds to adding degrees of freedom

to the UV theory, and increasing n corresponds to integrating out a larger proportion of
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the IR degrees of freedom.

We can also ask what the operator dimensions are in these theories. First we look at
the Coulomb branch operators, which have dimension equal to %tAUV. Since the lowest
lying operators have dimension Ayy = 3, to check if unitarity bounds are violated, it
suffices to check if ¢ drops below %. It is easy to show that this happens for many values of
N and k provided n is large enough. Thus it seems that these are likely not good SCFTs
in general, although it is possible that there is some interesting reason for critical values
of n. In the absence of an understanding of why this transition should happen, it seems
most reasonable to conclude that none of these theories are conformal.

We now look at the dimension of the u operator. Because we deformed by a Tr(¢u)
operator and identified a U(1) symmetry to ¢ (or equivalently u) we see that u splits
up into many operators with different 73 charge. The dimensions of these operators are
%(2 —t(14T3)). It is easy to verify that many of these operators violate the unitarity
bound, A > 1, for many values of N, k and n.

For the Higgs branch operators that we found using the superconformal index (i.e.
those given in table the operator dimensions are % (AUV (1 — %) — tTg) and again we
can see many cases of unitarity violations.

We can also ask what happens when we deform by more than one of the u operators
(i.e. deform by Tr (¢p1p1 + daps + ¢3us)). Using the same reasoning as [54] and above we
find that the R-charge is

t
Rip = gRn=2+ 2 -0 — TV + 1Y + T3Y), (3.34)

where now there is a T3 assigned to each ¢ (or equivalently each p). The value of ¢ is again
determined by a-maximization to be the same as that given in with the replacement
kgr — Zf kg)r(i). The analysis is qualitatively the same as has been done already.

It is worth noting that these unitarity violations appear to persist even for k = 1 if
one naively uses eq. . However, there the theory consists of free hypermultiplets,
and the superpotential deformation W = Tr(¢u) gives these a mass, so no unitarity
problems should occur. In this case, the enhanced symmetry of the free hypers makes
a-maximization unnecessary, and the theory retains N' = 2 SUSY, so eq. is not
applicable.

We also note that for theories exhibiting unitarity violating operators, this violation
could be remedied by an emergent IR symmetry which would require a-maximization to
be done again, as in [55]. Thus, the apparent violation of unitarity by a few operators

does not necessarily mean that the theory is not conformal.

3.6 Theories Without Non-Abelian Flavor Symmetries

In this section we construct an interesting family of new SCFTs using the T theo-

ries as building blocks. This approach mirrors that of [30), 4 36] which used Tn’s coupled
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by gauging SU(N)giag C SU(N)1 x SU(N )2, where SU(N); and SU(N )z can belong to
different Tv’s. The introduction of T ’s creates significant differences, and the classifi-
cation of the allowed theories is significantly more complex than that of the T quivers.
In this section we examine various aspects of these theories and in particular find a puzzle

relating to the dimensions of the conformal manifolds.

3.6.1 B?W Theories

We begin with a brief review of the theories in [30} [36], which we refer to as the B3W
theories. These theories are constructed by taking a collection of Ty theories and gauging
an SU(N)giag C SU(N) x SU(N). The vector multiplet associated to SU(N)giag can be
either N =1 or N/ = 2. These theories can usefully be pictured by generalised quivers,
where we use the convention that white circles are N’ = 2 multiplets, while black circles
are N = 1. In addition to a U(1) R-symmetry, these theories also possess exactly one
anomaly-free non-R U(1) global symmetry F. When Tr F # 0, this can mix with the

R-symmetry, and a-maximization is necessary. A useful choice of R-symmetry is
Ro=R +12J»+1ZF (3.35)
0 — LN =1 6 : % 3 A .
7 A
and the non-R anomaly-free U(1) symmetry can be taken to be

F=) 0iJi+2) oaFa, (3.36)
) A

where Fy is the U(1) symmetry associated to the adjoint chiral superfield living in the
A-th N/ = 2 vector multiplet, normalised so that F4(®p) = dap, and assigning a sign
o; = £1 to each Ty. The B3W theories follow the rule that T’s of opposite sign must be
connected by a shaded node and Tn’s of the same sign must be connected by an unshaded
node. One then also assigns a sign 04 = %1 to each N' = 2 vector multiplet, depending
on whether it connects two T'x’s of positive or negative sign, respectively. Two examples
of these theories are given in figure

<
\/
/N
0%

Figure 3.13: Two examples of B*W theories: one with genus two (left) and one with genus
three (right).

The supergravity duals of these theories were also found in [30, 36]. In this construc-
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tion, which generalises the famous Maldacena-Nufiez result [25], the authors found the
near-horizon geometries for an infinite family of A/ = 1 theories that come from M5-
branes wrapping a Riemann surface. The theories are specified by two integer parameters
p and ¢, which for p,q > 0 are dual to the above quivers. In the UV, this geometry can
also be thought of as Mb5-branes wrapping a Riemann surface X, inside a Calabi-Yau,
such that the total space is a decomposable line bundle £1 ® L2 — X, with p and ¢ being
the Chern numbers of each factor in the bundle. The Calabi-Yau condition then requires
p+q = 29 — 2. In the dual field theory, p and g have the interpretation of being the
number of o; of each sign. One check of the duality of the two sides of the AdS/CFT
correspondence is the leading-order agreement between the central charges computed on
either side; the next-order agreement was found in [56].

Another check of the correspondence is given by the dimensions of the conformal
manifolds for these theories, which is 49 — 3. This quantity can be easily computed in
the field theory via either Leigh-Strassler [23] or the technique of [24]. Geometrically, the
marginal deformations can be thought of as the 3g — 3 complex structure deformations of
the Riemann surface along with the g allowed shifts of the Wilson lines around each cycle

by a flat connection, for a total of 4g — 3.

3.6.2 Our Setup

Here, we will use Ty ;’s to construct analogues of the B3W theories. This change leads
to some profound differences; in particular, we no longer have a known AdS solution that
we can use to check our answers. Nevertheless, we will provide some evidence that these

constructions lead to interesting new SCFTs in the IR.

<] o< o< [>0—<]
i j i j i j i j
(a) (b) (c) (d)

Figure 3.14: The four different ways of coupling Ty ;’s to vector multiplets. A triangle
denotes a T, a shaded circle with an n denotes an N’ =1 SU(n) vector multiplet and
an unshaded circle with an n denotes an N' =2 SU(n) vector multiplet.

The first thing we must determine is how to couple T ;’s to vector multiplets by
gauging diagonal subgroups of flavour symmetries. There are four different ways of doing
this, as shown in figure The first two gaugings, a and b, are the same as we had
with the B3W theories, and gaugings ¢ and d are new. The first of these new gaugings is
an SU(k) gauging using an N = 2 vector multiplet and the second is an SU (k) gauging
with an A/ = 1 vector multiplet. The 1-loop beta function coefficients by for the gauge
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couplings for each of these gauge groups are:

SU(N)
(a) N =2= —by = 2T(G) — 25kspy(n) = 2N —2N =0
(b) N'=1= —by = 3T(G) — 23kgy(n) =3N —2N = N
SU (k)
(c) N =2= —by = 2T(G) — 25kgy ) = 2(k)
(d) N =1= —by =3T(G) — 25ksy) = 3(k)

—2(k+1)=-2
—2(k+1)=k—2

Of the two new gaugings, only the A" =1 SU(k) will become strongly coupled in the IR.
The N = 2 gauging goes free in the IR. In the theories we wish to construct we will not
be interested in this type of gauging, so we will only consider gaugings a, b, and d.

The theories we study here will, as before, be constructed by taking an even number
of T 1;’s and gauging diagonal subgroups until there is no non-Abelian flavour symmetry
left. Note that one difference with the B3W theories is that here we only gauge SU(N)
or SU (k) inside SU(N)? x SU(k) x U(1). This means that the theories that we construct
will have a residual U(1)", where n is the number of T 4’s, in addition to any additional
anomaly-free U(1) which is a linear combination of J;’s and F4’s. Each of these residual
U(1) factors is trace-free, so they will not mix with the IR R-symmetry.

These theories have an IR R-symmetry of the form

Ry = Rn—1 + ZaiJi + ZﬁAFA- (3.37)
i A

The anomaly-free condition Tr RyT*T? = 0 gives us constraints on the constants o, 54,
and there are additional constraints from enforcing that superpotential terms p®, which
are necessary for an A/ = 2 gauging, have R-charge two. For gaugings of type a, b and d
in figure these constraints are as follows:

1
SUNN) N=2=aqa,=qa; = 55,47
1
j\/’:1:>ai—|—aj:§,
SU(k‘)N*léO&"FOJ‘*L—g (3.38)
B k41 3 '
Any anomaly-free additional U (1) current will be of the form
F = Z pidi + Z vaFa, (3.39)
i=1 A

and the anomaly-free constraint Tr FT®T® = 0, along with the constraint F(u®) = 0,
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imposes the following:

1
/\/':2:>,ui:,uj:§1/14,
N:1:>Ni+ﬂj:0- (3.40)

An interesting difference between the original B3W theories and the theories we wish to
construct here is that the additional anomaly-free U (1) symmetry will always be traceless.
One way to see this is to note that because each Ty ;, has only one SU (k) factor, the Ty 1’s
come in pairs connected by N =1 SU (k) vector multiplets. For a pair that connects the
ith and jt TN, the anomaly-free constraint on F is that p; = —pj. This means that
the first term in (3.39) vanishes. One can also show that all N' = 2 vector multiplets
either: (a) come in pairs with cancelling contributions to F (i.e. v4 = vp), or; (b) have
vy = 0 . This means that for the theories we construct here we will never need to use

a-maximization to determine the IR R-symmetry.

3.6.3 A Subclass of Theories

Operator R-charge
We first consider a subclass of theories that s 9 _ ijLl
are constructed in the UV from Ty ’s, N =1 ) n <L
SU(k) vector multiplets, and N' = 2 SU(N) , ktl N
vector multiplets. For the moment, we do not O Auv (1 2 (TH))
include N/ = 1 SU(N) vectors. An example of 74 n (lgiﬂ)

{ these theories is gi by th i i
One Of These Lheores 1s glvett by The quiver - my hle 3.4: Some operators of the IR the-

figure [3.15} ory with R-charges. p; are the p oper-
Using the rules in (3.38) and symmetry of ators and !’ (n > 3) are the Coulomb
the quiver diagram we find that the IR R- branch operators for the ith TN k- (’)}I

symmetry is given by are the Higgs branch operators that ap-
pear in the SC index (see table for
1 k 2 the i*® Ty x, and Ayy corresponds to the
Rip =Fy=1+ 2 (1434_1 - 3> Z Ji dimension given in table[3:2] Finally, ®4
f 5 ! are the adjoint chiral superfields belong-
. th _ .
+ <k+1 - 3) ;FA. (3.41) ing to the A™ A = 2 vector multiplet.

The operator dimensions in the IR for this
theory are those given in table

It is easy enough to see that it is impossible to form any gauge-invariant operators
that violate the unitarity bound R > % To determine the dimensions of the conformal
manifolds for these theories we use the method of Leigh and Strassler [23] (or equivalently
[24]). From tablewe see that there are 4g — 4 marginal operators (where g is the genus
of the quiver), all of the form u®. Also, the number of gauge coupling constants is 3g — 3.
Finally, there are 49 — 5 constraints coming from fixing anomalous dimensions: 2g — 2

from the T ’s plus 2g — 2 from the adjoint chiral superfields minus one overall linear
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1L 1D

Figure 3.15: The generalised quiver for a theory with no A/ =1 SU(N) vector multiplets.

combination. This means that the dimension of the conformal manifold for these theories

is 3g — 2. At present, we lack a geometric understanding for this number.

3.6.4 A Genus Three Example

We now look at a particular example where the conformal manifold exhibits a peculiar

behaviour. The theory we wish to consider is given by the quiver diagram in figure [3.16

Figure 3.16: A generalised quiver for a theory with genus three. This theory has 4 Ty s,
2 N =2 SU(N) vector multiplets, 2 V' = 1 SU(N) vector multiplets, and 2 N" = 1 SU (k)

vector multiplets.

Again, by using the rules in (3.38) and symmetry of the quiver we find that the IR R

symmetry for this theory is

Rip = Ryn=1+ <k‘—]f—1 - 2) (J1 + J4)+é (Jo+ J3)+2 (k‘—lf—l - 2) (Fa+ Fp). (3.42)
The operators in this theory in the IR and their R-charges are shown in table
We once again use the method of Leigh and Strassler [23] to determine the dimension
of the conformal manifold. We begin by counting the number of marginal operators.
From table we see that there are 6 operators, u2, u2 and pojus which are all marginal.
These come from the 3 p’s associated to each Ty, related by chiral ring relations ﬂ each
transforming in the adjoint of one part of the flavour symmetry. Furthermore, there are 4
marginal operators p1® 4, us®p. There are also 6 gauge coupling constants, which means
that the total number of marginal parameters is 16. There are 5 constraints: 4 from

fixing the anomalous dimensions of the Tx’s, 2 from fixing the anomalous dimensions of

"This means that there are 3 Tr(u}) operators and 3 Tr(u3) operators related by the chiral ring relation:
Tr(ui) = Tr(u3) for each T, where p12 transform in the adjoint of the SU(N) factors of the flavour
symmetry. See [4]. Also there are 2 Tr(u2pus3) operators.
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the adjoint chiral superfields, minus one overall linear combination. This means that the
dimension of the conformal manifold is 11.
There is, however, a puzzle. When k = 3, the number

of marginal deformations increase, because the Tr ((1)?4)

and Tr (®}) operators and the ui’4 operators (of which Operator R-charge
there are 4) become marginal. The number of constraints K14 3 - 21%1
stays the same, and so the dimension of the conformal H2,3 1
manifold increases from 11 to 17. This seems a bit “%174) n (_1 +2ﬁ)
strange, since from a geometrical point of view, there u7(12’3) n

is no obvious reason why the £ = 3 theory should be any (’)}}4 Ayy (% — k—il)
different from the theories with general k. Perhaps this (923 Apy %)

is evidence that these theories are not good SCFTs, but % n (_1 i 2%)

without an AdS dual, it is difficult to say for sure.
Table 3.5: The operators of

3.6.5 Another Subclass of Theories the theory of section3.6.4]along
with their IR R-charges.

Inspired by the results of the previous section, we
now look at a family of theories that generalise those of
the last section. Specifically, we look at theories whose

quiver diagrams have the structure given in figure |3.17

2p-1 2p B

Figure 3.17: The generalised quiver diagram for a subclass of theories. There are 2p =
29 — 2 T s where g is the genus of the quiver. Only the two end nodes represent N = 2
gauge groups; the rest are N’ = 1.

The R-symmetry for this theory is

2p
Ro=Ry-1+) aiJi+ ) BcFe, (3.43)
i=1 C=A,B
where
1 n- %p 1 n-— %p -1
=-— =2 3.44
2y, 5 Pl Q2n—1 6+ Er1 ( )

The dimensions of various operators in the theory are given in table From this ta-
ble is is easy to construct unitarity violating operators. For instance, we may construct
one of these theories with T ;’s and increase the number of Ty ;’s until p = k + 1.
For this theory the Tr(®'} p) operators have dimension 0. Since the number of problem-

atic operators increases in the large N limit, these theories are most likely not SCFTs.
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It is interesting, though disappointing, that these

theories (that is, all the theories considered in Sec- Operator R-charge
tion [3.6] not just the ones in this subsection), do not on 1+ ZIZ:{’
fall into a neat classification like their Ty counter- [U2n—1 1— 2"]; i 2
parts do. As we have seen, some of the theories we ug”) m (1 — 2’;:119 )

attempted to build out of Tx ’s do not appear to (2n—1) 2n—p—2
’ Um m 1+ =55

be good SCFTs. It would be interesting to find an e A ,  n-ip
organisational principle, such as the one in [30], that H vV <§ - R+I )

) ) (2n—1) 1 n—3p—1
allows us to construct an obvious family of SCFTs. On Apv <§ S| )
It is of course possible that no such theories are ac- B m (1 - k%ﬁ)

tually conformal, and perhaps the puzzle over the
Table 3.6: The operators of the the-

ory in section [3.6.5| along with their
conformal dimensions.

counting of marginal deformations discussed in the
previous subsection is evidence of this. To conclu-
sively solve this puzzle once and for all, we would
need a method for constructing the AdS duals to
these theories, and such an understanding is still lacking. Until then, we will have to

regard the results of the present work as merely preliminary.

3.7 Conclusions

In this work, we investigated various properties of an interesting infinite family of
theories of class &, which we call the Tl theories. These theories generalise Gaiotto’s
Tn theory and naturally arise when considering various S-duality frames of curves with
two maximal punctures and multiple minimal punctures. Using techniques from duality
as well as the superconformal index we described various properties of these theories, such
as their global anomalies, central charges, and various operators and dimensions. We then
used these theories as building blocks for constructing new A/ = 1 SCFTs, and checked
whether the various theories under consideration appeared to be good conformal theories.

Our work raises some interesting questions. The most pressing is, of course, whether
or not there exist AdS duals to these theories. Even in the case of the earlier work [34], it
still remains unclear whether or not AdS duals for Sy theories exist, and our understanding
of the N' = 1 AdS duals with punctured surfaces remains very incomplete. In order to
establish beyond a reasonable doubt the existence of the SCFTs in this work as well as
[34], it remains a pressing problem to find such duals. This would presumably also help
us understand the dimension of the conformal manifold, a quantity for which at present
we lack a geometric understanding for these theories.

Another interesting question is whether or not there exists a general principle, like
the ones found for the B3W theories, we could use for building analogous quivers out of
the Tv;’s. We were unable to find such a general principle, though it is possible that
one exists. It is also possible that the absence of such a principle, as well as a seeming

mismatch between various quantities of interest (e.g., the dimension of the conformal
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manifold) in what would naively be considered different duality frames, may indicate that
these theories are not indeed good SCFTs. On the other hand, it is also possible that
there is an interesting geometric reason why the A/ = 1 theories we consider here do not
allow the full range of dualities found in the analogous N/ = 2 cases, and in the absence of
a good geometric understanding of these constructions, it may indeed be the most likely
possibility that no such dualities exist. This possibility is especially tantalising, since
understanding the geometric origin of such an obstruction would no doubt be of great
interest.

The larger question explored by this work is which N' = 1 SCFTs can be built out
of class S building blocks. As we know from our study of general N' = 1 theories with
weakly coupled matter, it is no easy task to determine when a theory reaches a conformal
fixed point in the IR. However, it is not outside the realm of possibility that, by using the
techniques employed in this work as well as others, we could find large new tracts of the
landscape of N =1 SCFTs.
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Chapter 4

Chiral Ring Generating Functions
& Moduli Space

This chapter is based on the paper [2].

4.1 Introduction

The study of D3-branes transverse to conical non-compact Calabi-Yau spaces has a long
and storied past. As the transverse geometry has increased in complexity from C? [57] to
the conifold [58] to orbifold singularities [59,[60] and beyond [61], 62, [63], our understanding
of the related world-volume theories, as well as the techniques used to study them, has
increased dramatically. The motivations for these studies have ranged across a variety of
themes: the fundamentals of D-brane physics, matrix models [64], brane-engineering of
gauge theory dynamics, geometric engineering and reverse geometric engineering [65], and
AdS/CFT [66} 67, [68]. Nevertheless, despite so many years of study, many interesting and
important questions about these theories remain.

A particularly interesting part of any N = 1 supersymmetric theory is the set of
chiral gauge-invariant operators. These operators are annihilated by the supersymmetry
generators of one chirality, Q, and are usefully considered modulo an equivalence relation
where commutators with @Q, i.e. Q-exact operators, are set to zero. With this equivalence,
derivatives can be set to zero. The ring formed by these operators, called the chiral
ring, will play a pivotal role in the current work. In SCFTs, chiral primary operators
(the lowest weight states in their representation of the conformal group) can be chosen
as representatives of the chiral ring equivalence classes. We will focus on the chiral ring
operators which are constructed from matter multiplets.

One particularly interesting question is how to derive the spectrum of chiral primary
operators. For D3-branes at the tip of a Calabi-Yau cone, the dimensions of such operators
can be computed with a-maximisation [20] (or, on the geometry side, Z-minimisation [69]).
Additionally, the dimension A of two gauge-invariant chiral primary operators O and Os
are additive in the sense that A(O102) = A(O1) + A(O3). A central question about such
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operators is then how many there are with a given dimension. This counting has been
achieved in many theories thanks to the “plethystic program” of [70l [71]. In many cases
of interest, the theories have a number of U(1) global symmetries. A basis of the chiral
ring can be formed from operators with definite charges, and generating functions can be
defined for this refined counting.

A closely related object of interest in a supersymmetric gauge theory is the moduli
space of constant (space-time independent) zero energy configurations of the scalar matter
fields. Since the energy is a sum of squares of F- and D-terms, these configurations solve D-
and F-term equations. Vacuum expectation values of gauge-invariant chiral ring operators
can be used to parametrise the moduli space. As a result, the chiral ring is expected to
be the ring of holomorphic polynomial functions on the moduli space (see e.g. [72], [73]).
This connection between the space and the ring is of the form one encounters in algebraic
geometry, where the study of ideals in the ring is an important part of the story.

It is natural to interpret the moduli space of the world-volume theory of a stack of
D3-branes as the transverse geometry. For example, in the case of a single, flat D3-brane
in R%! the three (uncharged) chiral superfields in the world-volume theory naturally
correspond to the coordinates on the transverse space C3. For multiple branes, the moduli
space is expected to be a symmetric product Sym® (X), where X is the transverse space
and NV is the number of branes; similarly, the gauge group of the world-volume gauge theory
is a product of U(N) factors. The ring of functions on the symmetric product corresponds
to bosonic wavefunctions of an N-particle system on X. The explicit demonstration for
C? is in [57] and for the conifold in [58]; the moduli spaces for orbifold theories are also
considered in [59] [74]. The appearance of symmetric products plays an important role in
matrix theory [64] as well as reverse geometric engineering [65]. In the large N limit, the
ring of functions on Sym™ (X) can be mapped to a Fock space of states obtained by acting
on a vacuum with oscillators, one for each holomorphic monomial function on the space
X. The emergence of Fock spaces at large N is central to the AdS/CFT correspondence.
On the AdS side, the Fock spaces arise from multi-particle states obtained from Kaluza-
Klein reduction on the base of the cone transverse to the 3-branes. The counting of
Fock space states is related to the counting of single particle states by the plethystic
exponential and, as such, this has played an important role in the plethystic program
[Tl [70} [75]. The problem of counting chiral operators in M2-brane world-volume gauge
theories transverse to orbifold geometries was also considered in [76]. A similar problem
of calculating the superconformal index [28|, 27] for D3-brane world-volume gauge theories
has been completed for the transverse geometries C3 [28], the conifold [77], and other
orbifold theories [78].

The goal of the present work is to explore these relationships between chiral rings,
moduli spaces, large N Fock spaces, and the transverse geometry in various examples of
D3-branes transverse to non-compact Calabi-Yau spaces. We will pay particular attention
to the fact that, even in very simple cases such as C?/Zs, the existence of multiple branches

of the moduli space brings additional subtleties to the web of inter-relations linking gauge
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theory combinatorics to geometry. Along the way, we will also examine the close relation
observed [70] between the chiral ring of the U(1) theory and the single trace operators
in the large N theory (throughout this work, we will refer to the large N theory as the
U(oo) theory). In this chapter we will only consider mesonic operators since the gauge
group will always be a product of unitary gauge groups. The baryonic branch has been
considered for similar theories with special unitary gauge groups in [79, [80].

The outline of the remainder of this chapter is as follows. In Section 2, we review some
basic technology for quiver theories, chiral rings, and the generating functions that count
chiral primaries. The remaining sections then consider a variety of examples in increasing
order of complexity: A" = 4 (Section 3), the conifold (Section 4), C3/Zs (Section 5), C?/Z,
(Section 6), and C3/A,, (Section 7), where A, is the order n cyclic subgroup of SU(2).

Finally, in Section 8, we briefly conclude, and various details are relegated to appendices.

4.2 Review

Throughout this chapter we will be looking at gauge theories that live on the world-
volume of a flat stack of D3-branes with a 3-complex dimensional transverse space. Our

main goal in this work is to describe the relationships between the following objects:

e The space transverse to the D3-branes

The moduli space of the world-volume theory

e The U(1) (i.e., single-brane) chiral ring of the world-volume theory

The set of single-trace operators of the world-volume theory

The ring of multi-trace operators of the world-volume theory

The generating functions for counting operators in these sets/rings

In this section, we review these concepts.

4.2.1 Moduli Space

It is common for supersymmetric theories to have a moduli space of supersymmetric
vacua. For a SUSY gauge theory with gauge group G, three different but equivalent ways

of finding the classical moduli space are:
1. Solve the D- and F-term relations modulo G transformations.

2. Solve the F-term relations modulo G¢ transformations, where G¢ is the complexified

gauge group.

3. Find the holomorphic gauge-invariant monomials modulo algebraic relations.
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For a review, see e.g. [81] [73]. Throughout the present work, we will use methods 1 and
3. In the context of the moduli space, we will be talking about the ring of holomorphic

polynomials on the space, so we now introduce some basic ideas in ring theory.

4.2.2 Rings, Ideals, and Quotient Rings

A ring R is a set of elements with two binary operations: addition and multiplication.
The ring is an abelian group under addition (R,+) and a monoid under multiplication
(R,-), i.e. there is not necessarily a multiplicative inverse. Additionally, multiplication is
distributive under addition. The rings we consider in this chapter will all be commutative
under multiplication.

An ideal 7 is any subset of a ring which along with the addition operation (Z, +) forms
a subgroup of (R, +) and satisfies

VeeZIVyeR:x-yeZandy -z €Z. (4.1)

The ideal generated by a set of elements {X;}, is denoted (X;) and is the minimal ideal
containing the elements X;; more precisely, (X;) is the intersection of all ideals containing
{Xi;}. In other words the elements of an ideal generated by {X;} are ), a;X; for all
possible a; € R.

For any ring R and ideal Z, the quotient ring R /Z is the ring R modulo an equivalence
relation which identifies two elements if their difference is an element of Z. As a simple
example, consider C? with coordinates (x,%). The space of holomorphic polynomials on
C? with complex coefficients corresponds to the ring of polynomials in two variables with
complex coefficients, C[z, y]ﬂ The space of holomorphic polynomials on C? has as a linear
basis of monomials of the form z™y", with m,n € Z>o. One ideal of C[z,y] is the ideal
generated by y, Z = (y). This ideal contains y and anything with a factor of y in it. The
quotient ring Clz,y]/Z has a linear basis monomials of the form z™, with m € Z>¢. In
other words, Clz, y]/(y) = Clz].

4.2.3 Chiral Ring

We now review some basic facts about chiral rings. For reviews see [82, [83].

A chiral operator is any operator that is annihilated by the supersymmetry generators
of one chirality, Q. The OPE of chiral operators is non-singular and thus we can define a
ring of chiral operators with a multiplication operation. Since an OPE of chiral operators
does not depend on the positions of the operators, cluster decomposition implies that
the OPE only depends on the vevs of fields. Thus, within the chiral ring, operators

with the same vev are considered equivalent. As a consequence of the vacuum being

Throughout this chapter when we refer to the ring of holomorphic polynomials on a space we mean
the space of holomorphic polynomials on this space with multiplication and addition defined in the usual
way. Also, we will discuss the generating function for the ring of holomorphic polynomials on a space.
This generating function will have one term for each basis holomorphic monomial in the ring.
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annihilated by supersymmetry generators, chiral operators should be considered equivalent
if they differ by a term of the form {Q,,...]; two operators O; and Qs are equivalent if
01 = 03 +{Q4, X9].

In superspace, the condition that a superfield ® is a chiral superfield is Dgy® = 0.
Two chiral operators being equivalent if they differ by {Q,, ...] implies that the two chiral
superfields X7, X5 they belong to are equivalent if X7 = Xo + EdﬁdZ . In Wess-Zumino

models the equation of motion of a chiral superfield @ is
O W (®) = D3 D", (4.2)
from which we can see that in the chiral ring the F-term relations
oW (®) =0 (4.3)

are satisfied. If we take the gauge-variant F-terms and contract with all possible operators
that result in gauge-invariant terms then we can define the ideal, Zp, which is generated
by these gauge-invariant terms. Then if R is the ring of chiral gauge-invariant operators,
R = Ro/Iy is the chiral ring of a theory with non-zero superpotential. For a theory with
no superpotential there are no F-terms and so the chiral ring is R = Ry.

For the theories we study in this chapter, all elements of the chiral ring will be either
single- or multi-trace operators, i.e., a single trace of products of operators or several single-
trace operators multiplied by each other. We will not consider determinants because the

theories in questions will have unitary, not special unitary, gauge groups.

4.2.4 Generating Functions and Plethystics

In [70, [7T] the authors describe a method of counting operators in a theory using

generating functions. Such a generating function typically looks like

f(tl, e ,tk) = Z Cil,...,iktif e t;:ck, (44)

015000k

where t; is the fugacity (chemical potential) for the i-th quantum number and ¢;, . ;, gives
the number of operators with quantum numbers (iy, ..., ).

A useful tool in [70] is the “plethystic exponential”, which is used to get the generating
function for multi-trace operators from the generating function for single-trace operators
at large N. If we have some function Fg(¢;), the plethystic exponential of the function is
defined to be

o0

P.E. [Fs(t:)] = exp {Z W} . (4.5)

k=1
To see how this gives the multi-trace operator generating function from the single-trace
operator generating function, consider a generating function for single-trace operators

where each single-trace operator has a different chemical potential. In this case, Fg(t;) =
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>, ti- The plethystic exponential is thus

1
1—t;

Fu(t) = PE.[Fs(t:)] = [ [ (4.6)

i
This will give one term for each way the ¢; can be raised to different powers and multiplied,
so this is indeed the generating function for multi-trace operators.

In [70], the authors identify the set of large N single-trace operators with the set of
holomorphic polynomials on the moduli space, which in turn is identified with the set
of holomorphic polynomials on the transverse space. They use this logic to derive the
generating function for single-trace operators using results from algebraic geometry. We
will find that these relations between moduli space, transverse geometry and single traces
are only true modulo subtleties due to the existence of multiple branches of moduli space

which we will describe.

4.3 N =4SYM

We begin with U(N) N = 4 SUSY Yang-Mills (SYM) as a particularly simple example
which will illustrate the ideas used throughout the remainder of the chapter. This is the

world-volume theory on a flat stack of N D3-branes, with transverse space C3. In N = 1

X

Figure 4.1: The N = 1 quiver diagram for N’ =4 SYM.

language, we can write the theory as a U(N) gauge theory with three adjoint chiral
superfields X, Y, Z whose quiver diagram is given in figure The N = 1 superpotential

1S

W=Tr(X[,Z2]), (4.7)

which yields the F-term equations
XY =YX, XZ=7X, YZ =727Y, (4.8)

where we have suppressed gauge indices.
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4.3.1 N =1 Moduli Space

The F-terms enforce that the matrices X, Y and Z all commute. This means that
they can be simultaneously put in to upper triangular form by a unitary transformation.
The D-term constraint

X, XN+ [Y,Y+[2,2T1=0 (4.9)

then enforces that X, Y and Z must be diagonal. After diagonalising, there is still a
residual Sy gauge symmetry which interchanges the eigenvalues, so the moduli space is
(C3)N /S or Sym™ (C?).

For a single brane, N = 1, so the moduli space is just C3. This demonstrates the
first relationship we would like to highlight: the N = 1 moduli space of the D3-brane
world-volume theory is the transverse space. For multiple branes, one can interpret the
Sy action as swapping the positions of the N D3-branes in the transverse space C3, with

the same result.

4.3.2 W =0 Large N Chiral Ring

It is interesting to consider this theory when the superpotential is turned off but the
gauge coupling remains non-zero; this breaks A’ = 4 SUSY but preserves N' = 1. In this
situation, we now look to find the generating function for multi-trace operators. Now,
the operators X,Y,Z do not commute. Thus, the single-trace operators in the theory
consist of various configurations of the adjoint chiral superfields with given orderings. The
generating function for single-trace-operators in the large N theory is then given by the
generating function for 3-ary necklaces of beadﬂ7 a problem whose solution can be found
in combinatorics. The generating function is found using the Pélya enumeration theorem
[84, 85]|E|7 but before describing this theorem we first introduce a few ideas.

For a finite group G C S, the cycle index is defined as

1 (0 i A
Za(t1,ta, oo tn) = i ST D) i), (4.10)
geG

where j;(g) is the number of cycles of length i in g. Let X be a set of n objects and let
G be a finite group that acts on X. Additionally, let Y = {c1,...,cx} be a set of |Y| =k
colours so that YX is the set of coloured arrangements of these n objects. The colour
generating function is defined to be f(ci,...,cx) = Zle ¢;. Then the Pélya enumeration

theorem counts the number of orbits under G of the coloured arrangements of n beads.

2A necklace is an arrangement of objects (or beads) that is invariant under the action of the cyclic
group. The generating function for k-ary necklaces of beads counts how many necklaces we can construct
using beads of & different colours.

3An introductory treatment of the theorem along with a wide range of applications can be found in
[86].
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According to the theorem, the counting is given by the generating function

Fe (c1y.oycr) = Za (f(cz),f(cf), - f(cf)) . (4.11)

We are interested in counting k-ary necklaces of n beads so for this case the finite
group is the cyclic group G = C),. The cyclic group C,, has ¢(d) elements of order d for
each divisor d of n, where ¢(d) is the Euler totient functionﬁ Thus the cycle index is

Ze, (t1, ..t Z‘P tg)d . (4.12)

d|n

This means that the generating function for k-ary necklaces of n beads is given by

Fe, (c1y... ) = %Z o(d) (Elecf)% , (4.13)

dln

and the generating function for k-ary necklaces of any number of beads is

Fo (et o c Z ng ( )%:, Soild)log[l(zlecgﬂ. (4.14)

n= 1 dln d=1

For the case of N = 4 SYM with W = 0, the generating function for single-trace
operators is exactly the generating function for 3-ary necklaces of beads (i.e., set k = 3 in

the previous formula):

F) (2,y, 2 i ‘Pgld log [1 - (xd oyl zd)} : (4.15)
d=1

We can then get the generating function for multi-trace operators by taking the plethystic

exponential of this function

o oo > 1 o0
F]E/[ ) (z,y,2) = P.E. [Fé ) (z,y, 2)} = exp{ EFé ) (xk,yk,zk>} , (4.16)
k=1
so that we get
( (o]
F . 4.1
(z,y,2 |:|1_xn+y oy (4.17)

These results were originally found in [87].

We can get back to the single-trace operator generating function by using the plethystic

“The Euler totient function ¢(n) counts the number of positive integers less than or equal to n that are
co-prime to n.
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logarithm:
o0 - o - k (e.)
F(@,y,2) = PE [F) (2, y, z)] -y “(k ) 1o0g (F}W )(xk,yk,zk)) (4.18)
k=1
and using the identity
©(n) p(d)
- = —_—. 4.1
- 7 (4.19)

4.3.3 W # 0 Large N Chiral Ring

We now look to find the generating function for multi-trace operators in the theory
with non-zero superpotential. Turning on the superpotential enforces the commutativity
of the adjoint chiral superfields. The generating function for single-trace operators with
zero superpotential in equation is of the form

) (0502 = 30 30 3 Conmama™ 5 (4.20

n1=0n9=0n3=0

which counts the number ¢, p, n, of single-trace operators that we can make with n; X’s,
ne Y’s and ng Z’s. When we enforce the commutativity of operators, all these coefficients
are 1. Thus the single-trace operator generating function for large N AN/ = 4 SYM with

non-zero superpotential is

Fé (x,y,z ZZZ:U’” 2 na_lixliyliz' (4.21)

n1=0n9=0n3=0

This generating function is equal to the generating function for the ring of holomorphic
polynomials on C3. We also could have obtained this formula using the Pélya enumeration
theorem with G = S,,; see Appendix

We can once again take the plethystic exponential of equation to give us the
generating function for multi-trace operators in large N N' = 4 SYM with non-zero su-

perpotential:

n n—nmi

F (2,y,2 H 11 H mmymzn s | (4.22)

n=1n1=0ng9= O

)

This formula could have alternately been derived from first principles by using F]E;O =

[T, (1 —t;)~", where the product is over all single-trace operators.

U(oo) Fock Space

In this example, the generating function for the chiral ring of the U(1) theory tells
us the operator content of the theory; for ' = 4 SYM this generating function is the

generating function for holomorphic polynomials on C3. This generating function is also
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the generating function for the Hilbert space of a single boson on C? and gives a basis of
wavefunctions for a particle on C3. In the spirit of [64], we can interpret this Hilbert space
in terms of wavefunctions of a single brane moving on the transverse space.

Equation tells us that the generating function for the large N chiral ring is equal
to the generating function for the multi-particle Fock space for bosons on C? which is the
Fock space of the multiple branes moving on the transverse space. More explicitly, the

space of wavefunctions for the i-th boson on C? is spanned by
Yipar (@, 2) = 2000 2 (4.23)
The space of wavefunctions for two bosons is spanned by the symmetric sum

pr,q1 7T q1 71

1 T T
3 (%)yu)Z(l)xg)y?;)z(zZ) + x€5>y(2>z<2)xl()f>y?f>z<f)) : (4.24)

This space has a one-to-one correspondence with the Hilbert space of two bosons on C3,
which is spanned by
B Bl |0), (4.25)

P1,91,7177P2,92,72

where B;,q,r is the creation operator for a particle with wavefunction zPy9z", satisfying

[B;Zl,ihﬂ"lv B}];Q,QQJ“Q] =0.
More generally, for n bosons the symmetrised wavefunctions

1 .

Di qi T

o (2; Hxa(i)ya(i)za(i)> (4.26)
oES, 1=

are in one-to-one correspondence with the Hilbert space of n bosons on C3 spanned by

Bl .- B} |0). (4.27)

P1,41,71 P PnyqnTn

By inspecting equation (4.22)) one can see that
F](\/IOO) (x7 Y, Z) = FFock((Cg)' (428)
where Froq is the generating function for the Fock space of bosons on C3.

4.3.4 N =1 Chiral Ring

The generating function for operators in the chiral ring of the U(1) N/ = 4 SYM theory
is simply equal to the large N single-trace operator generating function given in equation
(4.21]). This is because there is a mapping which maps every operator in the U(1) N/ = 4
SYM theory to a single-trace operator in the U(c0) theoryﬂ This mapping is

XMy .z Tr(X™MY™27). (4.29)

SWe use the notation U(oco) to denote the large N theory.

71



CHAPTER 4. CHIRAL RING GENERATING FUNCTIONS & MODULI SPACE

Although this mapping is rather intuitive here, we will see in later sections that naive
intuition fails for more complicated theories, and in fact the generating function for the
chiral ring of the U(1) theory is not equal to the large N single-trace operator generating
function.

This highlights two more relationships that are part of this story. The first is that
the U(1) chiral ring is equal to the ring of holomorphic polynomials on the transverse
space. The second is that the set of elements in the U(1) chiral ring is equal to the set of

single-trace operators in the large N gauge theory.

4.3.5 Conclusion

In this section, we observed the following relationships for U(N) N =4 SYM:
1. The N =1 moduli space is the same as the space transverse to the D3-branes.

2. The U(1) chiral ring is equal to the ring of holomorphic polynomials on the moduli

space, and thus equal to the ring of holomorphic polynomials on the transverse space.

3. The set of elements in the U(1) chiral ring is equal to the set of single-trace operators
in the U(oo) theory.

4. The multi-trace operator generating function for the U(oo) theory gives us a gener-

ating function for bosons moving on the transverse space.

In the coming sections we see while some of these relationships persist in more complicated

examples, some of them do not.

4.4 Conifold

Our next example is a stack of N D3-branes transverse to the conifold C, as studied
in [58]. The world-volume theory is an N =1 U(N) x U(N) gauge theory with two chiral
superfields, A; and As, in the (N, N) representation and two chiral superfields, B; and
Bs, in the (N, N) representation. The quiver for this theory is given in figure

Figure 4.2: N’ =1 quiver diagram for the conifold theory.
The theory also has the superpotential

W ="Tr (AlBlAQBQ - A1B2A2B1) 5 (430)
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so the F-term relations are

B1AsBy — BoAsBy =0, B1A1By — ByA1By =0,
A1ByAy — As By A1 =0, A1B1As — A3 B1 A1 = 0. (431)

Gauge-invariant operators must consist of combinations of

W:AlBl, X:A1B27
Y = A,B,, 7 = AyB,, (4.32)

which are in the N ® N representation of the one of the U(IN) gauge groups, although we
have suppressed the indices.

The F-term relations expressed in terms of these are
W X]=WY]=[W Z] = [X,Y]=[X,Z] = [V, Z] = 0 (4.33)

and
WZ=XY. (4.34)

4.4.1 N =1 Moduli Space

In the N = 1 (i.e., U(1)?) theory, the superpotential vanishes. Thus we need only

solve the D-term equation
D = |[A1]* +|A2)* — |B1* — |B2|* = 0, (4.35)

which is the equation for the conifold. (We do not consider an FI term.) We once again

see that the N = 1 moduli space is exactly the same as the space transverse to the brane.

4.4.2 W =0 Large N Chiral Ring

For the theory with zero superpotential, the generating function for single-trace oper-

ators is given by the generating function for 4-ary necklaces:

FE (w,2,y,2) = — i (pild) log [1 - (w + 27 +y"+27) ] | (4.36)
d=1

Rewriting w, x,y, and z in terms of a; 2 and by 2 via the relations in (4.32), the generating

function is of the form

o0 n n

FY (ar,a2,b1,02) = S 57 S Conyng, a1 072ay 05T, (4.37)

n=0n1=0n2=0
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where ¢y, n, counts the number of single-trace operators that can be constructed using
n1 Aj operators, n —ny As operators, no B operators, n — ny By operators. The number
of A operators and the number of B operators must be equal for the single-trace operator
to be gauge-invariant. The generating function for multi-trace operators is obtained by
taking the plethystic exponential of (4.36)):

)
1
7 : 4.38

This is in agreement with [8§].

4.4.3 W # 0 Large N Chiral Ring

All single-trace operators in the conifold theory have alternating A’s and B’s, i.e. they
are of the form Tr(ABAB...AB). Turning on the superpotential means that the F-term
relations allow us to organise the trace so that the first ny A operators are A;’s and the
last n — ny A operators are As’s, and similarly for the B’s. Thus the generating function
is just the function in equation with all the coefficients set to 1:

Féoo)(al,az,bl,bg Z Z Z PO %ay by | (4.39)

n=0n1=0n2=0

This formula has a closed form expression in terms of w, z, y and z:

1 1 L 1 !
o _ B B _ 4.4
5 (w,z,y,2) w—x—y+z<1—w 1—x 1—y+1—2> (40

The generating function for multi-trace operators can once again be found by taking the
plethystic exponential of equation (4.39):

0o n n
o0 1
F]ﬁd )(al’az’bl’ bz) = H H H 1— allbnz al mbgb—m ’ (4'41)

n=0n1=0n2=0

which can again be seen intuitively from F = [[s (1 —®)", where the product is
over single-trace operators. Also as before, F é ) can alternately be derived from the
Pélya enumeration theorem by taking the product of two generating functions for 2-ary
necklaces.

If we take equation and make the substitutions w — qa, v — ¢b, y — €, and

z = L we regain the form of the generating function presented in [70]:

ab(g—1)(g+1)
(a—q)(ag—1)(g —b)(bg — 1)

F$™(a,b,q) = (4.42)

This substitution is indicative of the relationships between the charges that we have chosen
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here and the charges that are chosen in [70].

U(oo) Fock Space

Equation (4.41)) tells us that the generating function for multi-trace operators in the
U(oo) theory is equal to the generating function for the Fock space of bosons on the

conifold:
Fi7 (a1,a2,b1,by) = Fioah(C). (4.43)

As was the case for N' =4 SYM, we can again interpret this as the Fock space for branes

on the transverse space.

4.4.4 N =1 Chiral Ring

As with V' = 4, there is a one-to-one mapping between operators in the U(1) theory

and single-trace operators in the U(oo) theory. This mapping is
ATYATT™M BBy " — Tr(AT Ay " BY? By "?). (4.44)

Thus the generating function for the chiral ring of the U(1) theory is equal to the generating
function for single-trace operators in the U(co) theory given in equation (4.39)).

4.4.5 Conclusion

We see from this slightly more complicated example many of the same phenomena that
we saw with A/ = 4 SYM. First, the moduli space is equal to the transverse space, and the
chiral ring of the U(1) theory is the ring of holomorphic polynomials on this space. The
chiral ring has the same elements as the set of single-trace operators in the large N theory.
Also, in the U(oo) theory we can identify a Fock space of bosons which we interpret as
the Fock space of the branes moving on the transverse space. In the next section, we will

see that some of these relationships do not hold more generally.

4.5 C3/Z,
We now consider the theory living on the world-volume of N D3-branes probing a
C3/Zy singularity [74]. This theory has a quiver as in figure and a superpotential

A1,2
<y

. 9 c
&K

B2,1

Figure 4.3: N’ =1 quiver diagram for the C3/Zs theory.
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given by
W =Tr[C1(A12B21 — Bi12A421) + C2(A21B12 — Ba1 A1 2)] . (4.45)

From the quiver and superpotential we can see that this theory is in fact an N' = 2 theory,
and can flow to the conifold theory via mass terms for the adjoint chiral superfields. The

F-term relations are

C1Ai2 = A0, C1B12 = B30,
CyAz1 = As (1, (B3 = B 1C,
A12B21 = B1pA2 1, A 1B = By A . (4.46)

It will prove useful to use the composite operators W = Bi2As1, X = A12421, Y =
B12B>1 and Z = Ay 2B throughout the remainder of this section.

4.5.1 N =1 Moduli Space
The F-terms equations have two branches of solutions:
1. {X,Y,Z,C1,0C5 | XY = Z2,Cy = Ca},
2. {X,)Y,Z,C1,Cy | X =Y =Z =0}.

On the first branch the moduli space is described by the gauge-invariant operators X, Y,
Z and C (= C1 = O3) subject to XY = Z?; this is just the space C3/Z3. On the second
branch, C does not necessarily equal Co, and X =Y = Z = 0; this is the simply C2. The
two branches intersect along the line C; = Co when X =Y = Z = 0. For a cartoon of

the full moduli space, see figure 4.4

Figure 4.4: Moduli space of the C3/Zy theory. The C; = C3 branch is 3 complex dimen-
sional and the C7 # (5 branch is 2 complex dimensional.
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We denote the full moduli space C3/Zy U C?, where the particular union that is meant

is the one where the two spaces share the line X =Y = Z =0, C; = Cs. In other words
M =C3/ZyUC?, C3/ZyNC%=C. (4.47)

In contrast to the previous two examples, we see here that the moduli space is not
simply the space transverse to the D3-branes. There is one main branch which is the
transverse space, but we also see the existence of an extra branch which has a different
dimension than the main branch. This extra branch of moduli space is something we will

see in later examples and has been observed, e.g. in [89] [75].

4.5.2 W =0 Large N Chiral Ring

The W = 0 large N single-trace operator generating function can be found using the
Pélya enumeration theorem, as in previous sections but this time counting 6-ary necklaces.
One wrinkle is that because the fields C; and Cy are not charged under the same gauge
group, the fields should not be placed next to each other in a trace. In combinatorics
language, we cannot place the beads of colour ¢; and ¢y next to each other in a necklace.

However, this problem is easily solved by using the colour generating function
f(w,.I,y,Z,Cl,CQ):7U+Jf+y+Z+C]_+CQ—ClCQ7 (448)

where the final term subtracts the contribution from necklaces with adjacent c¢; and co

beads (w,x,y, z are as in the previous section). This yields

o(k)
k

o
Fé'OO)(wvl‘ayaZ)ClaCZ) - — Z
k=1

log [17 (wk+xk+yk+zk+c’f+cl§fc]fcg)] )

(4.49)

and taking the plethystic exponential gives us the multi-trace operator generating function

1
wk + 2k + yk + 2F o 4 ok — k) |

(4.50)

oo
F(OO) s y <5 C1, =
M (’LU €,Y,z,C1 CQ) kl;[ll_(

This matches the formula given in [8§].

4.5.3 W # 0 Large N Chiral Ring

We now turn on the superpotential in equation . The F-term equivalences pre-
serve the number of A’s, the number of B’s, and the number of (C7’s +C5’s), so our
single-trace operator generating function can have at most three chemical potentials. All
operators can be arranged using the F-term relations so that they have the form Tr (CT),
Tr (CF) or Tr (C*A12A21A12B21B12...A12B21), with the order of A’s and B’s irrele-
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vant. The generating function is then

> > 1+ ab c
F(OO) b — m 20— kbk
s @b=3 ") ) a +§:C I—o(l-a)1—-05) " 1-¢/

(4.51)

with plethystic exponential

© oo 2

F( abc HHHl—cma% kbknl_cn : (4'52)

n=0¢=0 k=0

Using the methods in [70], one can derive the single-trace operator generating function

2
F) ) = L+t .
(1— 31 +1)?

We have included this short calculation in appendix To compare the result with our

(4.53)

answer, we make the substitution a — ¢, b — t, ¢ — t, which yields

23 2+t +1
(1—t)3 (1412 7’

F& (1) = (4.54)
which is different than the earlier result.

It is straightforward to find the source of the discrepancy. In [70] it was assumed
that the set of single-trace operators was equal to the set of elements in the ring of
holomorphic polynomials on the moduli space and thus equal to the set of elements in the
ring of holomorphic polynomials on the transverse space. As we have seen for the C3/Zs
theory, this is not quite correct. Instead we saw that the moduli space has two separate
branches, only one of which is the space transverse to the D3-branes. Indeed, we find that
subtracting the contribution from the Cy # C5 branch reproduces the previous result.

We can alternatively see the difference in the two approaches from a ring theoretic
perspective. For the full world-volume theory, the set of single-trace operators is not equal
to the set of elements in the ring of holomorphic polynomials on C3/Zs, since Tr(C¥) and
Tr(C'é“) are not necessarily equal. Denoting the ring of gauge-invariant operators in the
W = 0 C3/Zsy theory by Ry, we consider the ring Ry = {Ro|F-term equivalences}, while
the earlier work considered only Ry, = {Rw|C1 = Ca}, which is the ring of holomorphic
polynomials on C3/Z,.

U(oo) Fock Space

For N' = 4 SYM and the conifold, we saw that the multi-trace operator generating
function was equal to the generating function for the Fock space for bosons moving on
the transverse space. In the C3/Zy theory, the extra branch of moduli space changes this

story. Here, we have the generating function for the Fock space for bosons moving on
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C3/Zs multiplied by the generating function for bosons moving on C:
F{)(a,b,¢) = Froa(C?/Z2) X Fro(C). (4.55)

This means that the multi-trace operator generating function gives the Fock space for
bosons moving on C3/Zs ] C, where ] indicates a disjoint union. So wavefunctions for
the bosons can be any function in the space of functions on C3/Zs or any function on the

space of functions on C, with only one identity function.

4.5.4 N =1 Chiral Ring

In our previous examples, the generating function for the U(1) chiral ring has been
equal to the generating function for single-trace operators in the large N gauge theory.
However, this is not the case in the present example. In the U(c0) theory, we cannot have
Tr(C" C4*) operators since C and Cj transform in different gauge groups; however when
N =1 these fields become uncharged so that the C]"*C3" operator is gauge-invariant.
This means that we no longer have a one-to-one mapping between operators in the U(1)
theory and single-trace operators in the large N theory. The goal of this section is to
derive the N =1 chiral ring which includes the operators just mentioned.

We begin with the chiral ring of the U(1) theory with no superpotential, which we
denote Rg. A basis for this ring is the set of gauge-invariant monomials built out of the
fields W, X, Y, Z,C1,C2, Ry = {W™ X"2Y"3 7" C"*Cy%|n; > 0}. To enforce the F-terms,

we mod out by an ideal generated by the relevant constraints,
R = Ro/Zy, (4.56)

where IO = <X(Cl - CQ), Y(Cl — CQ), Z(Cl - CQ), XY — Z2, W — Z>. Thus the full chiral
ring R is spanned by the basis

{XmymzmCryu{cicyy, (4.57)
where ny,na,ng € Z>o, ng € {0,1}, my € Z>g, and mg € Z4 and the rule for multiplication
is

(menzanciu) . (C{M(jgw) — anynzzn3c?4+m1+m27 ny + ng + ng > 0

C?4+m1 Cgflz7 ny =ng =Nng = Q458)

From this way of expressing the basis we see that this ring is R[C3/Zy U C?], the ring
of holomorphic polynomials on the space C3/Zs U C2. The set of elements in this ring
is the union of the set of functions on C3/Zy and the set of functions on C2. These sets
of functions have the bases {X™Y"2Z"3C[*} and {C]"'C5"}, respectively, and share the

coordinate C.
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The generating function for the U(1) chiral ring is then

o oo oo 1 0o oo )
F (r,y,2,¢) = Z Z Z Z MMy Z Z cmtme _ Z ™. (4.59)
n4=0n1=07n2=0n3=0 m1=0m2=0 m=0

We can see from this expression that the generating function is the sum of the generating
functions for holomorphic polynomials on the two branches minus the generating function
for holomorphic polynomials on the intersection. This subtraction is necessary to avoid
double counting of operators.

We can further localise elements of R to the two branches of the moduli space by

modding out by
Iy = (C1 — Ca) = {CT" (O™ = CF)|my € Z>o,mp € Z4 } (4.60)
for C3/Zs or
Iy =(X,Y, Z) = {X™MY"™Z™C{"*|n; € Z>p,n1 + n2 +ng > 0}. (4.61)

for C2. The resulting quotient rings, R/Z; and R/Zs, are identically the rings of holo-
morphic functions on the two branches. An alternate description of these two quotient
rings of functions utilises minimal prime idealsﬂ Although the ideal Zy that we originally
used to quotient Rg by is not a prime ideal, there exist two minimal prime ideals over Zy,
Iy =(Cy — Co, XY — Z2 W — Z) and T, = (XY, Z,W — Z). If we instead quotient Ry
by Z} or 7, then we would have obtained R/Z; and R/Zs, respectively. This is illustrated
in figure [4.5

W=0 Chiral Ring

I

Ring of fu3nctions Ring of functions
on C3Z; I 7, on C?

Figure 4.5: Chiral rings for the C3/Zy theory. Following an arrow means quotienting by
an ideal.

W=0 Chiral Ring

4.5.5 Conclusion

In this section we described how some of the relationships found in previous sections

no longer hold. In particular:

1. The moduli space has two branches. One of these branches is the transverse space

SAn ideal 7 is prime if x - y € Z implies either & € T or y € Z, and a prime ideal Z is a minimal prime
ideal over Zy if there does not exist another prime ideal Z’ satisfying Z > 7’ D Zo.
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C3/Zs and the other is C2. This can be interpreted in terms of fractional branes as
in [75].

2. The U(1) chiral ring is equal to the ring of holomorphic polynomials on the moduli
space and is slightly “larger” that the ring of holomorphic polynomials on the trans-
verse space, in the sense that it contains the ring of holomorphic polynomials on the

transverse space as a quotient ring.

3. The set of elements in the U(1) chiral ring is different from the set of single-trace

operators in the large N theory due to the presence of adjoint fields.

4. The multi-trace operator generating function is equal to the generating function of

bosons moving on the space Transverse Space [ C.

We will build on the results that we have found here in the coming sections and further

elucidate these connections.

4.6 C*/7Z;3

We have seen some interesting phenomena in the C3/Z, theory which do not quite
fit in with the story that we had built up with the A/ = 4 SYM theory and the conifold
theory. The question remains about what is special about the C?/Z, theory. Is it the fact
that this is an N’ = 2 theory? Or is it this something we will see with orbifold theories
in general? In this section we look to examine the latter question by studying the C3/Zs
theory before going on in the next section to study the C3/Z,, in general. We will see that
the C3/Z3 theory does not share the peculiarities that the C3/Zy theory has.

The C3/Z3 theory is the world-volume gauge theory of N D3 branes probing a C3/Z3
singularity. From [74] we have that the theory is described by the N' = 1 quiver diagram

A1'2 A3,l
Bi, B3,
C12 C3,1
=
U(N), —523 U(N)
Aoz’

Figure 4.6: N' = 1 quiver diagram for the C3/Zs theory.
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in figure [4.6] and that the superpotential is

W =Tr [A1,2 (B23C31 — C23Bs1) + B2 (Co3As1 — As3C5 1)
+ Ch2 (A23B31 — Ba3Asz1) | (4.62)

and so the F-term relations are

By3C31 = Co3B3 1, Co3A31 = A23C3 1, A 3B31 = By3A3 1,
B3 1C12 = C31B1 2, C31A12 = A31C1 2, A31B12 = B3 1A 2,
B12C23 = C1 2B 3, C12A423 = A12C 3, A12Bo3 = By A3 3. (4.63)

4.6.1 N =1 Moduli Space

The moduli space of this theory is parametrised by the following gauge-invariants

Ay 2A23A31 A12A23C3, A12023C3 C1,2C2,3C3,1

A12A23B3 1 A12B23C3 1 B1,2C23C3 1

A12B23B3 1 B12B33C31

Bi 2B 3B31 : (4.64)

subject to relations that set products of these combinations to be equal if they have the

same number of A’s, B’s and C’s, e.g.
(A12A23A31) (B12B23B31) = (A12A423B31) (A12B23B3.1) . (4.65)

This is simply the space C3/Z3. To see this consider taking C3* with co-ordinates (x,v, z)

and quotient by Zg which has the following action on the co-ordinates:

w§
Ly = wh 1<k<njy. (4.66)
k
w3
Then the Zs invariant co-ordinates which parametrise the C3/Z3 space are 23, 22y, zy?,

22, wyz, y*z, w22, y22, 2° subject to the relations, e.g. (23)(y3) = (z%y)(wy?). We

Y, x
can see from this that there is a one-to-one mapping to the co-ordinates on our moduli
space where the mapping is roughly x ~ A, y ~ B, z ~ C.

In contrast to the previous section there is only one branch on the moduli space and
the moduli space is the same as the transverse space as was the case for ' =4 SYM and

the conifold theory.
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4.6.2 W =0 Large N Chiral Ring

For the W = 0 large N theory all single trace operators have 3n letters. The single
trace operator generating function is the generating function for 27-ary necklaces of beads.

The 27 colours correspond to A 9423431, A1 2423831, etc. The function is

Fs (21,..., 227) Z goild log {1 - (90‘11 +ad4 -+ x%)} : (4.67)
d=1

The plethystic exponential gives us the multi-trace operator generating function

[o.9]

FM (xl,...,x27 H

. 4.68
a:1+a:2+"‘+1‘§7) ( )

4.6.3 W # 0 Large N Chiral Ring

For the W # 0 large N theory again all single-trace operators must have 3n letters.
The F-term relations conserve three quantities: the number A’s, the number of B’s and
the number of C’s. So our generating function will have three chemical potentials. If we
have an operator with ny A operators, no B operators and 3n —n; — ng C operators then
the F-terms tell us that it is equivalent to any other operator with n; A operators, no B
operators and 3n — ny — ny C operators. So if we take the generating function for the
W = 0 case and set a12 = a23 = az1 = a, bio2 = baz = b31 = b, c12 = 23 = c31 = ¢
then it is of the form

oo 3n 3n—ni

(@,0,6) =D D" D" knymginga™ b ST, (4.69)

n=0n1=0 ny=0

Then the generating function for W # 0 is obtained by setting all ky,, 1, ny = 1:

oo 3n 3n—ni

(@he) =3 3 3 anpracinomione| (4.70)

n=0n1=0 nyo=0

This has the closed form

a? (B* +b+c) +a(b* +bc+c?) +b2c+ b +1
1-a?)(1-0%)(1—c3) '

Fs(a,b,c) = (4.71)

When we make the substitution a — t,b — ¢,¢ — ¢ we recover the formula from [70]:

1+ 73+ 16

e (4.72)
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Taking the plethystic exponential we get the generating function for multi-trace operators

oo 3n 3n—ni

Fy (b= IT I 1_ambn2103n_m_n2 : (4.73)

n=0n1=0 nyo=0

4.6.4 U(oco) Fock Space

The Fock space indicated by equation is simply the Fock space of bosons on
C3/Z3. This means that the multi-trace operator generating function is equal to the
generating function for the Fock space of bosons moving on the transverse space, C3/Zs,
and so fits in with the story that we built up with A/ =4 SYM and the conifold theory.

4.6.5 N =1 Chiral Ring

The generating function for the N = 1 chiral ring for this theory is given by equation
(4.70). This is because there is a one-to-one mapping between gauge-invariant operators in
the U(1) theory and single-trace operators in the large N theory. This mapping is simply

AMB™C" s Tr(A™ B C"™) (4.74)

This means that the U(1) chiral ring is just the ring of holomorphic polynomials on C?/Zs
and so this fits in the with the story that we were originally seeing with the N'= 4 SYM
theory and the conifold theory.

4.6.6 Conclusion

In order to try and answer the question of whether the peculiarities of the C3/Zs theory
were common to the family of C3/Z,, theories, or indeed orbifold theories in general, we
examined the C3/Z3 theory. We found that in fact it seems to fit in with the story that
was already emerging with the N' =4 SYM theory and the conifold theory. The N =1
moduli space is the same as the space transverse to the branes, the N = 1 chiral ring is
the ring of holomorphic polynomials on the transverse space and the multi-trace operator
generating function is the generating function for the Fock space of bosons moving on the
transverse space.

It seems that the C?/Z, theory was in fact a peculiarity in the C?/Z,, family of theories
however we will see in the next section that there are actually more theories in the C?/Z,,
family that exhibit the characteristics of the C3/Zy theory.
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4.7 C/7,

We now consider the world-volume gauge theory of N D3 branes probing a C3/Z,

singularity, with the Z,, action on the coordinates of C3 given by

Ly = wk JA<EkE<ny. (4.75)

w—2k

as studied in [74]. This theory has the quiver diagram in figure and superpotential

Figure 4.7: N = 1 quiver diagram for the C3/Z,, theory. The quiver is a circle of n nodes.

n

W = Z (Aiiv1Bivi,iv2 — Biiv14ir1,i+2) Cigai. (4.76)
i1

The F-term relations are

Aiit1Bitiive = Biiv1Air1ivo,
Bit1,i+2Ci42; = Cig1,i-1Bi—14,
Ait1,i+2Ci42; = Cip1,i-14i—1,- (4.77)

4.7.1 N =1 Moduli Space

To find the moduli space of this theory, we work with a set of gauge-invariant mono-

mials similar to those of the previous section. However, due to the structure of the quiver,

85



CHAPTER 4. CHIRAL RING GENERATING FUNCTIONS & MODULI SPACE

we must use slightly different sets for even and odd n. Useful coordinates are given by

a b c
Xape = H Aiin H Batjatj+1 H Catbt1+(k—1)(n—2),atb+1+k(n—2) (4.78)
i=1 j=1 k=1

so that essentially, X, . ~ A*BPC*¢ and all subscripts are modulo n. These parameters

are subject to the relation Xy, 4, c; Xag bo.c0 = Xai+as,b1+bs,c14+co- Lhe gauge-invariants for

n odd are
Xnoo  Xoo1 Xjgno Xoon
Xn—110 X111 XO,l,”T“
: X0,.2,1
Xon,0
The space spanned by these coordinates subject to Xy, p; c; Xasbo,co = Xay+as,bi+bo,c14co

is the space C3/Z,, with odd n. For even n, we use

Xn00 X201 Xoon/2
Xn-110 X111 Yoo/
Xo0,2,1

14

X0,1,0

where X p. is as above, and we have added X,/ = Cipn-1...C31 and Yy, =
Cop ...Cy2. There is now an additional relation Xa’b,cY({%m/2 ~ Xa,b,c+nm/2 when a+b >
0.

The additional coordinate Yy, /2 is required to account for the fact that there are
two distinct gauge-invariant operators with /2 C’s. The moduli space for even n has two

different branches:

L A{ X000 X0,1,00 X2,0,1, X1,1,1, X0,2,15, X0,0,n/25 Y0,0,n/2} Subject to Xa; b1 .e1 Xag bo.co

== Xa1+a2,b1+b2,cl+cz and XO,O,TL/Q = }/0,0,17,/27

2. { X000+ X010, X2,0,1, X1,1,1, X0,2.15 X0,0,n/2> Y0,0,n/2} Subject to Xgp . = 0 when
a+b>0.

We see that, as with the C3/Zy theory, there are multiple branches of moduli space.
Specifically, there is one main branch of the moduli space which is C3/Z,, and an extra
branch which is C?, with coordinates X0,0,n/2 and Yy g ,,/2. We denote this full moduli
space C3/Z,, UC?, where the union is defined so that the spaces share the line defined by
X0,0n/2 = Yo,0,n/2 and Xqp e =0 for a+b> 0.

4.7.2 W =0 Large N Chiral Ring

Using the Pélya enumeration theorem, the generating function for single-trace opera-

tors is of the form

FE (z;) = — i “ng) log [1 —f (:vk)} (4.79)

k=1
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and the multi-trace operator generating function is of the form

oo

(00) (1) 1
Fy7 () H1 I (4.80)
for some colour generating function f(z;). This function has a term for every closed loop
in the quiver. In combinatorics language, each closed loop constitutes a colour. We can
make necklaces (single-trace operators) by combining beads of different colours (closed
loops of operators) in a necklace (trace). However, in our colour generating function we
must subtract the product of any two loops that do not overlap and thus can not be
placed beside each other in a necklace. This means that we subtract the contributions
from operators where there is a product over two loops that do not share a node.
Similarly, it is necessary add terms to f ( ) that are cubic in non-intersecting loops,
subtract terms that are quartic, and so on. As an example, consider the colour generating
function for 3-ary necklaces of beads where none of the colours can be placed beside each

other. This is simply the sum of three generating functions of 1-ary necklaces:

o0
d)
Fé (xy,z ZSO(d log [1 —2"] +1log[1 — y"] + log[1 — 2"]
n=1
ngd log[l— (2" +y" + 2" —2"y" — 2"2" —y" 2" 4+ 2"y"2")].
n=1
(4.81)
The colour generating function is then
f(z,y,2) =2 +y+2—ay— a2z —yz +ayz (4.82)

As we go to higher number of colours, we must continue this pattern of addition and

subtraction. This is in agreement with the formula found in [90]:

Fjs/[oo)(x,y, z) = P.E.[F( (x,y, 2 H QeI =X (4.83)

(Yt 21))

where X, is the weighted adjacency matrix for the graph described by the quiver.

4.7.3 W # 0 Large N Chiral Ring

We now describe the generating functions for even and odd n. As these derivations are

rather lengthy, we relegate them to appendix and here simply summarise the results.
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For general odd n the generating function is

2l o ne42) 23 o nl42j41
F(oo a b, C [Z cnm] ZZ Z kbn€+2j kcj +C +1 ZZ Z akbn€+2j+l—kcj
§j=0 £=0 k=0 j=0 /(=0 k=0
(4.84)
which has the rational form
n+1 n
b(—bmem — (%) 2 +be"T 41
£ (a,b,c) = ! !
S Y b—al—c" (1—b%c) (1 —0b")
ntl
a (—a”c” — (a%c) * +ac gt 1)
_ 4.85
(1 —a2c) (1 —an) (4.85)
We can then get the multi-trace operator generating function using plethystics:
; oo nl+2j 5 oo nd+2j+1 1
(c0)
F (CL b C H H H H Cnm+]akbn€+2] H H H nm+"+1+j kbaner*k
m=0 | j=0/¢=0 k=0 j=0£=0 k=0 a
(4.86)
Taking a — t, b — t, ¢ — t in equation (4.84)), we get
(n
B B I o SR L 3
F (1) = o et 4 (4.87)

(t3 = 1)* (t» — 1)

which agrees with the result which can be calculated using the methods in [70] for general
odd n.

For even n the generating function is

) %_1 oo nl+2j ' ' 00
Féoo)(a, b,c) = Z c2 a2kl Z cz |, (4.88)
m=0 j=0 £=0 k=0 m=1

which has the rational form
1 a (1 — (aQC)n/Q) b <1 — (bQC)n/Z) /2
(@b —e?) |A-a2)(1—an) (d-be)(1—bm)| 1-cv2
(4.89)

F&(a,b,c) =

The multi-trace operator generating function is then

oo g = 1 > 1
Fy(ab0)= | ] H 11 1:[ ST [H nm] . (4.90)

m:11—62
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Taking a — t, b — t, ¢ — t in equation (4.88)) yields

n(l—(t3)"/2)tn 1—(t3)"/2 2(—%nt3"/2+(%—1)t37n+3+t3)
(1-83)(1—tm)? (1-t3)(1—t") (1-t3)2(1—t") n tn/?
1 —¢n/2 1 — n/2°

Féoo) (t) = (4.91)
While the first term is the one that can be found using the methods in [70], the second

term is new.

U(oo) Fock Space

We can see from equation (4.90) that the generating function for multi-trace operators
in the large N C3/Z,, theory with even n is equal to the generating function for the Fock

space of bosons on the transverse space times an extra factor. More specifically, it is
F{)(a,b,¢) = Froak(C?/Z) X Froa(C). (4.92)

Similarly to the C3/Zy theory, this is the generating function for the Fock space of bosons
moving on C3/Z,, || C, where [] indicates a disjoint union. For odd n we do not have this
extra factor, and the multi-trace operator generating function is equal to the generating

function for the Fock space on C3/Z,,.

4.7.4 N =1 Chiral Ring

For the case of odd n there is a one-to-one mapping between operators in the U(1) the-
ory and single-trace operators in the large N theory; this mapping is Xq 4 = Tr(Xgpc)-
Because of this the generating function for the U(1) chiral ring for this theory is simply
the generating function for single-trace operators in the large NV theory, given in equation
. Here the chiral ring has the basis

{Xapela+b+c(n—2)=0 mod n}, (4.93)

with X, 5. as in section This is the ring generated by the gauge-invariant operators

Xno00 X201 XI,O,”T“ Xo0,0n

Xn-110 X111 Xpqna1
1y 2

X0,n,0

310y

For even n, things are slightly different. The set of elements in the U(1) chiral ring
for this theory is not equal to the set of single-trace operators in the large NN theory;
this is because for N > 1 the Xg,/2 and Yy, /2 operators transform in the adjoint
representations of the U(N); and U (V)2 gauge groups, respectively. Thus we cannot have
single-trace operators of the form Tr(Xg}in /QYE;?(Z)?TL /2) in the large IV theory, though in the

U(1) theory operators of the form X1 Y,

0,0.n/2 0”6271 /o are allowed. This means that there is
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not a one-to-one mapping between operators in the U(1) theory and single-trace operators
in the large IV theory.
For even n, the U(1) chiral ring has the basis

{Xapela+b+c(n—2)=0 mod n}U{Xo0nm, /2Y0,0mms/2lm1 € Z>o,ma € Z }, (4.94)

modulo the equivalence Xal,b1,c1 Xa2,b2,c2 ~ Xa1+027b1+b2761+62 and Xa,b,cYb,O,nm/Q ~ Xa,b,c+nm/2
when a+b > 0, with ¥,0.0m/2 = Y(75 /o and Xapc and ¥g0,/2 as defined in section@
Again we see that the chiral ring is equal to the ring of holomorphic polynomials on the

moduli space, C3/Z, UC? and the counting function is given by

—_

w[3

+

oo nb

2j

FD(a,b,c) = Z

m=0 j=

) o0 )
ané-l—Qj—kbkcj—i—% + Z Z Cg(ml—&-mQ) _ chm'
0 m1=0mgo=0 m=0

(4.95)

As was the case in the C3/Zy example, this generating function is a sum of three

o

=0

<
bl
Il

terms. The first is the generating function for the ring of holomorphic polynomials on
C3/Z,,. The second is the generating function for the ring of holomorphic polynomials on
C2. Finally, the last term subtracts the generating function for the ring of holomorphic
polynomials on the intersection. This generating function then is the generating function
for holomorphic polynomials on the moduli space C3/Z,, U C2.

As was the case with the C3?/Zy theory we can go from the chiral ring, R = Ro/Zo, to
the ring of holomorphic polynomials on the two branches of moduli space by quotienting by
two ideals. In the case of the C3/Z,, theory with even n the two ideals are Z; = (X0,0,n/2—
Yo0,n/2)) and Io = (X500, Xn-11,05- -5 Xom0, X20,1, X1,1,1, Xo,2,1). Alternatively, we
could have obtained these two rings from the W = 0 chiral ring using minimal prime
ideals. The ideal Zy is not a prime ideal and there are two minimal prime ideals, Z] and
T4 over Zy. Quotienting Ro by these two ideals gives the ring of functions on C?/Z,, and
C2. This is analogous to the situation depicted in figure

4.7.5 Conclusion

In this section we have attempted to find out how the C3/Z,, theory fits into our
description of moduli spaces, chiral rings, and Fock spaces of branes. For n odd, the
C3/Z,, theory fits into this story in the same way as N' = 4 and the conifold. The
moduli space is simply C3/Z,, and the set of elements in the U(1) chiral ring is the set of
functions on C3/Z,,. This set is equal to the set of single-trace operators, and the multi-
trace operator generating function is equal to the generating function for the Fock space
of bosons moving on C3/Z,.

For n even, the story needs to be amended slightly:

1. The moduli space has one main branch where the space is simply C3/Z,, however

it also has an extra branch where the space is C2.
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2. The set of elements in the U(1) chiral ring is then not quite the set of functions on
C3/Zy, but rather the set of functions on C3/Z,, U C2.

3. The set of elements in the U(1) chiral ring is also not equal to the set of single-trace

operators in the large N theory.

4. The multi-trace operator generating function is equal to the generating function for
the Fock space for bosons on C3/Z,, [ C.

4.8 C3/A,

We now consider the C3/A,, theory studied in [59, 01], with the action of A, defined
by

Ly = wk JA<k<ngy. (4.96)
1

The N = 1 quiver diagram for this theory is as shown in figure 4.8 and the superpotential

Figure 4.8: The N = 1 quiver diagram for the the C3/ A, theory.

is
n

W= Z Ci (Aiiv1Biv1i — Bii—14ii-1) - (4.97)
i=1

The F-term relations are

Aiiv1Bit1i = Bii—14i-1,
Bi1,C; = Ciy1Bit1,,
Aiiv1Cip1 = CiAi v (4.98)

The problem of counting multi-trace operators for this theory along with other N' = 2

theories was also considered in [75] where they derive the Higgs and Coulomb branch
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generating functions separately and then combine them.

4.8.1 N =1 Moduli Space

The moduli space of this theory is parametrised by the operators X = A12A423... Ay 1,
Y = BipBpn-1...Bo1, Z = A12B21, Ci,..., Cp—1, and Cp, subject to the relation
XY = Z". As was the case for the C?/Z,, theory with even n, there are two branches of

solutions:
1. {X,Y,Z,C4,...,Cy} subject to XY = 2", C, =Cy =--- = C),.
2. {X,Y,Z,Cy,...,C,} subject to X =Y = Z =0.

The first branch is simply C3/ A,,, and the second branch is C™. Again we see the presence
of one main branch identical to the transverse space to the D3-branes as well as an extra
branch. We denote this space as C3/ A, UC™, where the union is such that the two branches
share the line X =Y =27 =0, C; = Cy = --- = C,. The picture for this moduli space is
as in figure [4.4] except that now the extra branch is n-dimensional.

The first branch of this moduli space is a mixed branch since it contains both Higgs
and Coulomb branch operators. The second branch however is a purely Coulomb branch.

The first branch contains as a sub-space the C; = 0, pure Higgs branch.

4.8.2 W =0 Large N Chiral Ring

As in the previous section the single- and multi-trace operator generating functions

are

9 @) = =3 Mgt - g a1],
=1

n

AP e =11 e (4.99)

where the colour generating function is determined in the previous section, matching the
results of [90].

4.8.3 W # 0 Large N Chiral Ring

When we have a non-zero superpotential the F-term relations tell us that any single-
trace operator with n; A’s, ne B’s and ng C’s is equivalent to any other single-trace
operator with n; A’s, ng B’s and ng C’s. The only exception to this rule is when ny =
ng = 0. In that case there are n different operators we can have of the form Tr(C}").
For the first set of operators we can construct any gauge-invariant operator by inserting

A12B21, A12... Ap1, Bin,... B2y and C into a trace recursively. This means that the
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generating function will be

n—1 oo o]
F&(a,b,¢) => ) vt Z Zb“”m 1)) (4.100)
m=0 j=0 k=0 1=0 k=1
with rational form
00 1— (ab)” (n—1)c
F(a,b,c) = . 4.101
s (@bo) = G AT g —a) T T=c (4.101)
Taking a,b,c — t gives
o 1+ ¢" — 1)t
F&(t) = * (n=1) (4.102)

I—m-n1-2)  1-¢m

The first term of this formula matches the result given in [70]. The presence of the second
term is caused by considering the operators Tr(C¥) and Tr(C’]’-“) to be inequivalent for i # j
and is considered in [75].

We can use plethystics once again to get the multi-trace operator generating function:

n—1 co oo oo o)

n—1
1
T I V1) C— [z] )

m=0 j=0 k=0 {=0

U(oo) Fock Space

From equation one can see that the large N set of single-trace operators is not
equal to set of elements in the ring of holomorphic polynomials on C3 /fln As a conse-
quence of this, the multi-trace operator generating function is not equal to the generating
function for the Fock space of bosons on C3/ A,,. Instead, as can be seen from equation
(4.103]) we have

F{%(a,b,¢) = Froa(C*/An) x [Froak(C)" . (4.104)

This is the generating function for the multi-particle Fock space of bosons moving on
C3/A, [[IC]" Y, i.e., it is the Fock space for bosons that can have wavefunctions either in
the ring of holomorphic polynomials on C3/ A, or in the ring of holomorphic polynomials

on any of n — 1 copies of C.

4.8.4 N =1 Chiral Ring

As was the case in the previous two sections the set of elements in the N = 1 chiral
ring for the C3/ A,, theory differs from the set of single trace operators in the large N
theory. This is because there are operators of the form Cf v .C’ﬁ” in the N = 1 theory

whose analogue in the set of large N single-trace operators, Tr(C{Cl ...Ckn) do not exist.
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So, the chiral ring for the C3/ A,, theory has the following basis:

n
{X™Y™2 2" CP4 1 24 € Zizo,n € [0,n—1NZYU{CTCY*2 - C Imy € Zizo, Y mi > 0},
=2
(4.105)

modulo the relation X™Y"2Z"C{"Cy*? .- C'™ ~ X”lY”QZmClzi " when ny + ng +

ng > 0. The counting function for this ring is

0o 00 co n—1 00 00 o)
F(l) (.Z',y, z, C) _ § : § : § : § : mn1yn22n30n4 + § : . § : Cm1+...mn - § : oM.
n1=0n2=0n4=0n3=0 m1=0 myp=0 m=1

(4.106)

From this we can see once again that the generating function for the NV = 1 theory is the

sum of the generating functions for the two branches minus the generating function for
the intersection.This also matches the result found in [75].

We can go from the N =1 chiral ring, R, to the ring of functions on either of the two

branches by quotienting by the ideals
) = (C2=C1), (C3—C1),++ , (Co=Ch)) = {C]™ - O — = " m; € Zso}. (4.107)
for C*/A,, and

Iy = <X, Y, Z> = {anyn22n30?4|n1,274 S Zzo,ng € [O,H — 1] NZ,n1 + no + ng > 0}.
(4.108)
for C™. As with the other cases we also could have obtained these two rings by quotienting

the W = 0 chiral ring by the the two minimal prime ideals over Zj.

4.8.5 Conclusion

We have seen in this section another family of orbifold theories that have a very
interesting relationship between transverse space, moduli space, U(1) chiral ring and Fock

space of branes. In particular we saw that

1. The moduli space of this theory has two separate branches: one main branch where
the space is the same as the space transverse to the D3-branes, and one extra branch
which is C™.

2. The chiral ring of the U(1) theory is equal to the ring of functions on the moduli

space, C3/ A, UC™, rather than the ring of functions on the transverse space, C3/ A,.

3. The U(1) chiral ring has a set of elements that is not equal to the set of single-trace

operators in the large N theory.

4. The multi-trace operator generating function gave us the generating function for the
Fock space of bosons moving on C3/A,, [[JC]" .
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4.9 Conclusions

In this work, we have described how certain seemingly simple relationships between
chiral rings, moduli spaces, generating functions, and transverse geometries get modified
in all but the most symmetric examples. While there is generally a main branch of moduli
space which is the geometry transverse to the branes, or its symmetric products, there
are often extra branches of moduli space. This is a source of subtleties in the generating
functions counting chiral ring operators. They also modify the naive relationship between
the generating function of multi-trace operators and the Fock space of bosons moving on
the space transverse to the branes.

There are a number of natural questions for future work. Since we have here only
considered the N =1 and N — oo limits, it would potentially be interesting to understand
how our results are modified for finite N > 1. The explicit derivation of Sym®™(X) from
the chiral ring, where X is the transverse space, is only known in a few cases. From our
studies at N = 1 and N — oo, we expect this structure to be present, but with subtle
modifications due to the extra branches. A systematic description and derivation of this
structure would be fascinating. Restricting attention to the N = 1 and N — oo cases,
is there a simple general mathematical /geometrical formulation (bypassing explicit gauge
theory computations), perhaps based on physical ideas around fractional branes, which
can start from the chiral ring and moduli space at N = 1 and derive the Fock space
structure at large N? As we have seen in the examples, the Fock space structure we find
from the gauge theory chiral operators always contains a factor which is the Fock space
for the main branch corresponding to the geometry transverse to the 3-branes. However,
while the extra Fock space factors are correlated with the existence of extra branches,
there is no simple rule like the existence of a Fock space at N — oo for every branch at
N = 1. Is there a clear rule which replaces this naive rule? Even if such a rule existed,
what would be the geometrical /mathematical meaning behind it?

One of the motivations behind the present work was to ask whether there is a simple
general algorithm to deform the large NV counting formulae at zero superpotential to arrive
at those for non-zero superpotential. The latter have been the main focus of this work.
The former admit simple general expressions based on the weighted adjacency matrix
of the quiver graph [88, @0]. These expressions are also, somewhat surprisingly from a
physical point of view, related to some word-counting problems based on the quiver [90].
We might hope that a deeper geometrical understanding of the role of multiple branches
at N =1 and N — oo might provide useful hints in finding such an algorithm.

For the case of D3-branes at the tip of a general toric Calabi-Yau cone, all such theories
can be reached via Higgsing C3/Z,, x Z, theories, so it would nice to understand how
the generating functions behave under the resulting flows. Similarly, one could hope to
understand the relationship of generating functions in theories connected by (relevant)
superpotential deformations. Although such deformations are in general complicated, and

can lead to vastly different solutions to the F-terms, it might be possible to understand
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the effect of adding mass terms or other such very simple deformations.

96



Appendix A

Appendix: Extra Results For
N =1 Theories

A.1 S, Theories With A Ty ;, And A Ty,

In section we looked at the S, theory with two T ’s. Here we summarise the
results for the Sy theory with a Ty, at one end of the quiver and a Ty, at the other
end.

As for the Sy theory with two Ty ’s we have an R-symmetry which is the same as
that given in equation and also an additional anomaly-free U(1) symmetry .
In contrast to the Sy theory with two T’y ;’s it is no longer the case that Tr 7 = 0 when ¢
is even and so we must use a-maximization for all £. If we do this we find that the value

of o that maximises a is

a=

A++VB

. (A1)

where

A=—3N? (k1 + ko +0) + K +k§ — k1 — ko,
B =N" (18k1 € + 18kyl + 36k + 36k5 — 102k + T2k ky — 102ky + 9¢* + 91)
+ N2 (=630 + 610 — 6k30 + 6kol — 24kT — 24kok? + 10k7 — 24kok + 40k7
— 24k3ky — 24k3k1 + 102k — 24k3 + 10k3 + 40k3 + 102k2 — 160)
+ 4kS + 8K + Akt — 323 — 32k7 + 8k3KY + 8k3KY + Skik? + 8k3k?
+ 4KS + 8k5 + 4k3 — 32k3 — 32k2 + 64
C = (—18ky — 18ky + 42) N? 4 6k + 12k 4 6k + 6k3 + 12k3 + 6ko — 48.

We do not plot this here as the plots are much the same as those in figure however we

note that it approaches

3k 4+ ko + 6) + \/18 (1 + ko) € + T2k kg — 102 (ky + ko) + 36 (k2 + k2) + 902 + 91
6 (—3k1 —3ka +7)

97



APPENDIX A. APPENDIX: EXTRA RESULTS FOR N = 1 THEORIES

at large N. One can verify that this never goes below —% and so any gauge-invariant

operators that can be constructed satisfy the unitarity bound R > %

A.2 S, Theories With Adjoint Matter

In section we looked at what happens if we take the Sy theory and give a vev to
the k-th hypermultiplet. The theory that we get in IR is that represented by the bottom
quiver diagram in figure It is an Sy theory with an adjoint chiral superfield and extra
Q@@ superpotential terms. For this theory with two Ty ;’s at each end of the quiver the
R-symmetry is Rjgp = Ry + aF, where Ry is given in equation with Ro(®) =1, F
is given in equation and & is found using a-maximization to be

A++vVB
C )

a=

(A.2)
where

A =96N3 + 72(N? — 96N,

B =N* (13824(—1)l + 23040)
+ N° (20736(—1)’““ +20736(—1)" 4 138241 — 57600(—1)" — 57600)
+ N4 (—43200(—1)’?“ — 43200(—1)* + 518412 + 44640(—1)! + 41760)
+ N3 (—25344(—1)’f+l — 25344(—1)F — 138241 + 62208(—1)" + 62208)
+ N2 (59904(—1)’““ +59904(—1)F — 64512(—1)! — 82944)
+N (9216(—1)’“” +9216(—1)F — 18432(—1)! — 18432)
— 18432(—1)F+! — 18432(—1)% 4 18432(—1)" + 27648,

C= (288(—1)l + 288) N3 + N2 (432(—1)’“ —792(~1)! — 792)
— 576(—1)% +576(—1)! + 576.

When we do this for the same theory but with a Ty, at one end of the quiver and

a Ty i, at the other end, the IR R-symmetry is again given by Rjp = Ry + aF. As the

expression for @ would take up too much space, we do not include it here.

A.3 Simplification of ST Generating Function for N = 4
SYM With W # 0

In section it was said that the generating function for A" = 4 SYM with non-zero
superpotential could be derived using the Pélya enumeration theorem with G = S5,,. We

derive this now.

98



APPENDIX A. APPENDIX: EXTRA RESULTS FOR N = 1 THEORIES

The symmetric group has

n! T RN 1
e L (%) 1155 (A1)
elements each with ji cycles of length k for each partition {jix} of n. Thus the cycle index
for the symmetric group is
n
Zgn t1, .yt Z Hk, ) k‘]k ]k ) Hti:k (AQ)

{gr}Fn

The notation {jx} F n means {jx} is a partition of n so the sum is over partitions of n.
This means that the generating function for large N N’ = 4 SYM single-trace operators

with non-zero superpotential is

R =3 ¥ [ (A

n=1{j;}n k=1

To show that this is equal to (1 —z)~1(1 —y)~1(1 — 2)~! we start by changing the sum

over n and the sum over partitions of n to a infinite number of sums

Fi) (%y,z)zz ) H (f‘fﬂ/“>

n=1{j }rn k= 1

> i ﬁ 1 [(zF 4 yk 42\
N 71=0j2= Om k1‘7k'< k >

1 (z+y+z g1 1 a4y 2P 72
-(Xa () (Ea ()

I AR R N I = U £ oh Vo o
= al ) [= e (—F—
k=1 Ln=0 k=1

A.4 Derivation of C3/Z,; Molien Series

Here we calculate the single-trace operator generating function in the C3/Zs theory
using the methods given in [70]. In [70] it is said that the counting function for a C3/G
theory is given by the counting function for C? polynomials that are invariant under the

action of the group G. It is also said that this is a classical problem and that the counting
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function is given by the Molien series:
MEG) ==Y — L (B.1)
ENTE] = det (I —tg)’ ’

Since Zo has two elements whose action on the co-ordinates z, y, z is given by the matrices

100 -1 0 0
01 0], 0 -1 0 (B.2)
00 1 0 0 1

The Molien series is just

| 1 1 (14
M) =5 <(1 —s T a—a —|—t)2> BCEDEETE (B3)

This does not match the formula we have given in equation (4.54)).

A.5 Derivation of Generating Functions for C?/Z,

First let us consider single-trace operators that have no C operators in them. These
are all of the form Tr (A 2B2 343 4A45...An—2n—1Bn—1nBn 1), 1.e. A’s and B’s all over the
place. As required by gauge-invariance the number of A’s and B’s in the trace combined
will be #n where ¢ is the number of loops we have traced around the quiver by following
the arrows of the bifundamentals. The F-term equations allow us to interchange A’s and
B’s freely (e.g. A12B23 = Bi12A23) so that operators with the same number of A’s and
the same number of B’s are equivalent.

When constructing a gauge-invariant single-trace operator from A’s and B’s the A
and B operators move us from one node to the next and so we need n of them to get
back to the node we started at. The C' operators move us forward n — 2 nodes. So for
general n the lowest lying single-trace operators have #A’s +#B’s +#C"’s = 3 and are
Tr (A12423C31), Tr(A12B23C31) and Tr(B12B23C31). The F-term relations tells us
that any operator with ny A’s, ny B’s and n3 C’s is equivalent to any other operator with
ny A’s, ng B’s and ng C’s.

We can split the operators up into how many loops they do around the quiver. So,
let’s take the example of the C3/Zs theory and for the moment neglect the existence of

the B operators. At one loop there are 2 operators:
A5, A%C, (C.1)
At two loops we have 4 operators:

AN ATC, AYC?, ACE, (C.2)
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At three loops we have 6 operators:
A AV, A2C?, ASC3, A3CH, CP. (C.3)

And so on for higher number of loops.
Each time we have started with n A’s and gone from left to right by replacing n—2 = 3
A’s with a C'. This means that the generating function will be

Féoo)(a,c) = (1+a5+a10—|—a15+...)—|—c(a2+a7+a12—|—...)—1—62(a4+a9+...)
+ (a+a®+. )+t (@ +a®+.. )+ 1+ +a +..) +...

o
§ : cnvm
m=0

[(1—|—a5+a10—|—a15—|—...)+c(a2—|—a7+a12—|—...)

+F(a*+ad+. )+ (a+a®+.. )+t (P +a®+..)

(C.4)

Then for general odd n the generating function is

F& (ay¢) = [im] Zcfzawuc"“ Zc?Za"””“ . (CH)
m=0 7=0 = Jj=0 =

When we re-introduce the B operators this becomes

; oo nl+2j L—3 co 4241
F&) (a,b,¢) [Z c"m] ZZ 3 kAR g ZZ S akpnetick
7=0¢=0 k=0 j=0¢=0 k=0

(C.6)
If we make the replacements a — ¢, b — t, ¢ — ¢ in equation (C.6]) so that we only

have a chemical potential for the R-charge then we get

(n
B B B R = L
(3 — 1) (17 — 1)

FE () = (c.7)

It can be shown that the result that can be obtained using the methods of [70] for general

odd n matches equation (C.7)).
We can take the plethystic exponential to get the multi-trace operator generating

function:

oo nl+2j ; oo nl+2j+1

oo n2
1
F(OO a b C H H H H 1 _ cnm+]akbn£+2] k H H H _ cnm+nTH+]akan+2]—k
m=0 | j=0/=0 k=

j=0¢=0 k=0
(C.8)

Now let’s see what happens for even n. Again let’s simplify to the case with only A
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and C operators, i.e. no B’s. For even n we have to deal with the complication that
not all operators with the same number of C’s will be equal, e.g. Tr(Cip—1...C31) #
Tr(Cyp, ... Cy2). Operators with at least one A in the trace will not have this feature.
That is to say, all operators with n; A’s and ny C’s will be equal to one another when

n1 > 0. So our generating function is

—_

|3

0|3

Ja 4 3 ()" (C.9)

=0 m=1

_> (A) e

m=0 =0

<.

When we re-introduce the B’s this becomes

%) -1 oo ne+2j5 ' ' o0
F(OO (a,b,c) = Z cz2 Z a™tt2kpk Z c2 | (C.10)

j=0 ¢=0 k=0 m=1

w3

m=0

<.

When we make the substitution a — t, b — t, ¢ — t in equation (C.10|) we get

n(l—(t3)7’b/2>tn 17(1‘,3)"/2 2(_%nt3n/2+(%_1)t37”+3+t3)
(1—t3)(1—t")2 + (1—t3)(1—tn) (17t3)2(17t”) N tn/2
1 —¢n/2 1 — /2"

F& (1) =

(C.11)

It can be shown that the result that can be obtained using the methods of [70] for general
even n is equal to the first term in equation . The second term accounts for the fact
that there are two single-trace operators with *3* C’s for every m € Z, .

If we take the plethystic exponential of this then we get the multi-trace operator

generating function

1 oo

9 oo nl+2j 1
Py abe) = | T TT T H anmj T [H nm] . (C12)

m=0 j=0 =0 k=0 S l—ce

n__
2
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