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Abstract

The goal of this work is to improve our understanding of the dynamical aspects of
the nonlinear Landau-Ginzburg-Higgs (LGH) equation, which offers a theoretical
framework for characterizing several phenomena, including the spontaneous break-
down of symmetries and the emergence of superconducting states. The proposed
model integrates the concepts of the Higgs mechanism and the Landau-Ginzburg
theory when symmetry breaking appears in phase transitions in particle physics
or condensed matter systems. The equation is essential for describing the Higgs
field and its constituent particles, such as the Higgs boson. New extended direct
algebraic approaches and modified F-expansion techniques are used to address this
problem. The obtained solutions, which include kink, anti-kink, bright, dark, and
periodic solitons, are essential because they shed light on the stability and nonlinear
dynamics of field theories that are pertinent to cosmology and condensed matter
physics. To advance the essential propagating features, a few obtained solutions
are presented as 3D, contour, and 2D graphics by applying certain values to the
parameters under the given constraints. The dynamical insights are examined and
significant aspects of the phenomenon under study are discussed through the use of
the bifurcation analysis. Additionally, the chaos analysis is carried out to show the
quasi-periodic and periodic chaotic patterns. The sensitivity analysis of the studied
model is also looked at and presented at different initial conditions. Furthermore,
we guarantee that every found solution is precise, effective, and a great addition
to the literature of solitary wave theory. To calculate the soliton solutions for non-
linear models in communication engineering and operations research, the methods
utilized in this work to derive inclusive and standard solutions are more accessible,
effective, and quick.
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1 Introduction

In many different fields, such as engineering, physics, and biology, nonlinear par-
tial differential equations (NLPDEs) are essential for simulating distinct physical
phenomena [1-8]. By taking nonlinearity into account and maintaining compli-
cated dynamics, these equations describe intricate systems and processes. In fluid
dynamics, NLPDEs are utilized to depict and evaluate fluid flow phenomena, such as
modeling turbulent flow and investigating fluid-structure interactions. In the field of
optics, NLPDEs are utilized to mathematically characterize and study nonlinear pro-
cesses that transpire within optical systems. These phenomena have a broad range of
applications, such as studying nonlinear optical systems, ultrashort pulse propagation
characteristics, and nonlinear wave behavior [9—11]. The Korteweg-de Vries (KdV)
model is a widely recognized model that represents wave motion in shallow canals.
A nonlinear Schridinger equation is the second one that arises in this area. The KdV
equation is specifically regarded in this sense as a test problem for the recently sug-
gested approach, which means that it is a solved equation with known behavior. Mod-
eling, solving problems, and developing new methodologies depend not just on one
field but also on other areas of mathematics and allied fields like physics, biology,
optical physics, quantum, and so forth. A number of effective techniques have been
reported in the literature to find the analytical solutions for nonlinear evolution equa-
tions (NLEEs) [12, 13], such as Hirota’s bilinear technique [14], modified expansion
function scheme [15], sine-cosine approach [16], tanh technique [17], exponential
rational function approach [18], sine-Gordon expansion scheme [19], Improved Ber-
noulli Sub-Equation Function (IBSEF) method [20], modified extended tanh-func-
tion method and modified generalized Kudryashov method [21], extended hyperbolic
function method [22], modified auxiliary equation method and Sardar sub-equation
method [23], tanh-coth expansion approach [24, 25], first integral technique [26,
27], new auxiliary equation approach [28—-30], modified simplest equation approach
[31, 32], Riccati equation technique [33, 34], generalized Riccati equation mapping
method[35], extended direct algebraic approach [36-38], Kudryashov scheme [39,
40], the modified extended exp-function technique [41, 42], the Backlund transfor-
mation method [43, 44], Jacobi elliptic function expansion approach [45, 46], modi-
fied Khater technique [47, 48], generalized exponential rational function approach
[49, 50], and many more [51-56]. To the best of our understanding, there is a signifi-
cant deficiency in substantial research regarding our suggested techniques for deriv-
ing the LGH equation. Additionally, the innovative extended direct algebraic method
and the modified F—expansion method (MFEM) have proven to be exceptionally
effective, offering a thorough and practical framework for achieving accurate solu-
tions to NLPDEs in the context of traveling waves[57]. As a consequence of the
previous research, the goal of this study is to use the proposed techniques to find
soliton solutions of the LGH model. The ODE of a NLPDE can be solved analyti-
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cally by integrating a transformation with a novel extended direct algebraic method
and a modified F-expansion technique. These methods are particularly employed to
address the nonlinear LGH equation. The primary advantages of the proposed meth-
ods lie in their analytical characteristics and their capacity to manage a wide range of
nonlinear fractional differential equations. Additionally, the bifurcation analysis, sen-
sitivity analysis, and chaotic behavior of the suggested model are also discussed. Sta-
bility and bifurcation analysis are crucial for comprehending the behavior of dynamic
systems. This analysis offers a foundational framework for investigating intricate
phenomena and dynamics across a range of scientific fields, including physics, reac-
tion diffusion processes, chemical reactions, biology, engineering, economics, and
numerous other areas. Furthermore, it assists in forecasting the long-term behavior of
dynamical systems. In engineering, it is instrumental in the design and optimization
of stable and resilient systems, such as electrical circuits, mechanical structures, and
chemical processes. Stability analysis plays a crucial role in the design and regula-
tion of systems, ensuring their stability and mitigating undesirable behaviors such
as oscillations, instabilities, or chaotic dynamics. Conversely, bifurcation analysis
investigates the qualitative transformations that a system experiences as a parameter
is altered. This analysis reveals critical parameter values at which the system transi-
tions, leading to the emergence of new equilibrium points or the onset of intricate
dynamics, including chaos. Through the examination of stability and bifurcations,
researchers acquire significant insights into the behavior and stability of dynami-
cal models, facilitating a more profound comprehension of complex systems across
various scientific fields. Different wave solitons are formed by inserting specified
values of arbitrary components, and these achieved solitons have not been reported
in the prior literature. In comparison with the previously researched methodologies,
the current methodology performs more effectively and efficiently and offers more
broad solutions. By employing the suggested techniques, the solitonic structures of
the LGH equation have been effectively demonstrated and the TWs have provided
exact solutions. The uniqueness of the obtained results is provided and the survey
results are contrasted with the highly regarded outcomes. We are confident that our
efforts will enable physicists to predict new concepts in mathematical physics. The
LGH equation is given as: [57]

2 2
%f%fm%m%ﬁ:o, (1.1)

where u(x, f) is the ion-cyclotron wave’s electrostatic potential, m and n are real
parameters, x and ¢ represent the nonlinear spatial and temporal coordinates. In phys-
ics, the LGH system is a theoretical framework that combines the Higgs mechanism
and the Landau-Ginzburg theory. In the 1950s, Lev Landau and Alexei Ginzburg
developed the Landau-Ginzburg theory to give a phenomenological understanding
of phase transitions, particularly in superconductors. To describe the conversion of a
normal to a superconducting state, an order parameter has been introduced. In 1964,
Peter Higgs and several physicists, including Robert Brout and Francois Englert, sug-
gested the Higgs mechanism, which explains how particles gain mass. The mecha-
nism relies on the spontancous breaking of symmetry and the collision of a scalar
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field (Higgs field) with particles, which results in the production of particle masses.
When Landau-Ginzburg theory and the Higgs mechanism were combined in the
1970s, the LGH structure was created. This conceptual framework is particularly
relevant for particle physics and the investigation of phase transitions in certain con-
densed matter systems.

The ability of NLPDESs to provide profound insights into the behavior of intricate
physical phenomena makes their accurate solution extremely important [58, 59]. In
many scientific fields, such as physics, engineering, biology, and finance, NLPDEs
are commonly encountered because linear approximations are not always sufficient
to explain the complexities of real-world systems. The utilization of exact solu-
tions facilitates the understanding of the underlying principles guiding the system
by offering a detailed mathematical depiction of its dynamics. Additionally, these
solutions enable the validation of computational models by acting as standards for
approximate approaches and numerical simulations. Finding exact solutions also
aids in the creation of novel mathematical methods and instruments, which advances
our knowledge of nonlinear processes and offers new avenues for creative scien-
tific and technological applications [60, 61]. To assess the unique soliton solutions
to the integrable NLEE (1.1), various techniques have been used. Bekir and Unsal
[62] found several solutions for exponential functions by exploring the NLEE (1.1)

using the first integral approach. Iftikhar et al. [63] used the (%, é)—expansion

technique to investigate various types of analytical solutions to NLEE (1.1). They
have determined kink shape soliton and general soliton solutions for various para-
metric choices. By employing the IBSEF approach, Islam and Akbar [64] obtained
a few different kinds of solutions. In this work, we utilized two efficient analytical
approaches to find the soliton solutions of proposed model. Several authors have
developed these two proposed techniques to ascertain the exact solutions of vari-
ous Nonlinear Evolution Equations (NLEEs). However, there has been no successful
application of these methods to our preferred LGH equation. In this context, the new
exact solution we have identified for the LGH equation is more accurate, efficient,
and accessible. These solutions can be applied across multiple domains, including
computational physics, engineering, and areas related to wave analysis. The acquired
results offer a variety of soliton shapes, including periodic, kink wave, singular, and
other shapes that help in understanding the dynamical behaviour of governing sys-
tems. The remainder of the article is organized as follows: In section 2, we present
algorithms of analytical techniques, and in section 3, the application of the LGH
equation is provided. In sections 4, 5 and 6, we study the dynamical behavior of the
LGH equation, containing the phase portraits, chaos, and sensitivity analysis using
dynamical systems respectively. The results and discussion are presented in Section
7. A detailed evaluation of previous studies is provided in Section 8, while the con-
clusion is presented in Section 9.
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2 Algorithm of the Schemes
2.1 The New Extended Direct Algebraic Method
A thorough description of the primary steps involved in the new extended direct alge-
braic method is given in this section.
Step 1.
Let us consider NLPDE of the following form
F(wawtawwawtt;wwl‘a---) =0. (21)
By utilizing the transformation
w(z,t) =UW) =z —ct, (2.2)
where ¢ # 0, and we obtain ordinary differential equation (ODE) of the form
GU,U U, ... ) =0. (2.3)
Step 2.

By assuming the following solution of the ODE as

K
=UW) =Y a; 2 (¥), (24)

=0

where a;(j =0,1,2,...K) are constant coefficients to be found and Z(¢) satisfies
the ODE of the form

Z' () = In(p) (x + oW (¥) + AW3(¥)) ,p # 0, 1. (2.5)
Here v, x, along with X are the real constants that can be seen in the auxiliary equa-

tion. The list of numerous solutions is exposed below [65].
Family-1 When ¢ < 0 and A # 0, where ¢ = v? — 4\,

Zi(Y) = =55 + \ﬁtanp (‘/27)1?) :
Za() = — 35 + Yorlcot, (\/;7’@ ,

Za(4) = % + Q (tan, (V=) + vahisec, (v=3v)).
Zy() = =55 + 2§ (cot (F ) £ Vghese, (vV=6v)) ,
Zs(Y) = =55 + \/7 (tanp (\/7 ) — cot, (%?1/})
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Family-2 When ¢ > 0 and A # 0,

Zs() = —% tanh <\é$ )

Z7(¢) = —3x — Yo coth (@ )

Zs(w) = — 2 + L2 (—tanh, (V=¢1) + iv/ghsech, ( w))
Zo(@) = — & + Y2 (—coth, (v=g¢) + iv/ghesch, (V)
Z10(Y) = —55 — i (tanh (\éazb — coth,, < ))

Family-3 When xyA > 0 and v = 0,

Z11(¢)*\ftanp(\/71/))

Za(p) = — \/7(70t ( )

Zis(¥) = /X (tanp(2f V) +\/ghsec, (2v/X\Y)) ,
Z1(¥) = /% (— cot, (2v/XA) £ Vghese, (2/XM)))
2009~/ (s (3550 oo (420)).

Family-4 When yA < Oand v = 0,

Zm(ﬁ)): V= Stanh, (vV=x) ,
Z17(¥) = —\/=%coth, (v=xA¥),

Zig(1) = /=X (—tanh,, (2v/=—x M) % iv/ghsech, (2v/—xM))

Z19(¥) = /=% (—coth, (2v/=x ) £ iv/ghesch, (2v/=x ),

Zoo($) = ~3vF <tanhp (520 + com, (59)).

Family-5 When v = 0 and x = A,

Z1 () = tan,(x(¥)),

Zza () = —cot,(x(¥)),

Zy3 () = taﬂp( x(¥)) £ Vghsec,(2x¥),
Zoa () = oty 2x (1)) £ Vghesc, (2x1)),
Za5(¢Y) = (tanp (5¢) — cot, (%w)) .

Family-6 When v = 0 and xy = — A\,

Za6(p) = —tanh,(x1)),

Z27(¢) = —coth (Xi/i),

Zos () = —tanh, p(2x1) £ iv/ghsech,(2x1),
Z29(y) = —coth, ( x¥) £ Vghesch, (2w)
Z30(¢) = —ltan h, (wx) + coth, (2X>
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Family-7 When v? = 4y ),

7. — —2x(vpInp+2)
T W) np

Family-8 When v = p, x = pq, (¢ #0) and A = 0,
Zgy = pP) —q.
Family-9 Whenv = A\ = 0,
Zss = x(¢) Inp.

Family-10 When v = x = 0,

~1
Cplnp

Z34 (V) =

Family-11 When y = 0 and v # 0,

T — v (sinh, (vtp)4-cosh, (ve)))
36 = 7 X(sinh, (vp)+cosh, (V) +h) °

{ Z3s = 7)\(cosh,,(1Jw)flls}inhp(vw)+g)’

Family-12 When v = p, A = pq,(q # 0, x = 0),

gp*?

Zyr = ————.
T g —qhpr

Now, the hyperbolic and trigonometric functions are given as follows:

tanh, () = L5k C,
coth, (1) = L,
sech,(v) TR
csch,(¥) = gpwfhp—wa
sin, () = 2-he
cos, (1) = gp‘¢+2hp w
tan () = —i Lo
coty (1)) = i 2 the
S0y (1) = porar e
escp(Y) = W,
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where g, h > 0 are called parameters of deformation. By balancing the highest-order
derivative term with the highest-order nonlinear term in Eq. (2.2), we may get the
value of K. The set of algebraic equations can be obtained by substituting Eq. (2.4)
and its necessary derivatives in Eq. (2.2) and comparing the coefficients of power of
Z (1)) in the resulting equation.

2.2 The Modified F-Expansion Method

The main steps of the MFEM are given [66—68].

U)=ao+ Y _ arF () + > b F (1), (2.6)
=1 =1

where ag, a; and b; are real parameters to be determined. F'(¢)) satisfies the nonlinear
ODE of the form:

F'(1) = Q + RF(¢) + SF2(¥), 2.7)

where O, R and S are constants given in Table 1. The determination of an integer m
can be achieved by using the balancing principle.

Eq. (2.7) yields the distinct Riccati function solution F'(v), by giving distinct
values of O, R, and S (see Table 1).

Step 1: By assuming the Egs. (2.1), (2.2), and (2.3).

Step 2: Expand the solution to Eq. (2.3).

Step 3: An algebraic system of equations for a; and b; can be obtained by replacing
Eq. (2.7) and Eq. (2.6) into Eq. (2.3) and collecting coefficients of F*(v) to zero.

Table 1 Relations between Q, R,

R S F
and S with F Q_O R=1 S—_1 1(1ZJ)1 m

Q= = =- 5 1 3 tanh(%)

Q=0 R=-1 S=1 1 _1eopp(¥)

Q=1 R=0 g=_1 coth(¥) =+ csch(1)),
tanh (1)) =+ isech(v))

Q=1 R= S=-1 tanh(v), coth(v)

Q= % R= S = % sec(y)) + tan(v)),
csc(y) — cot(v)

Q:-% R=0 S:-% sec(y)) — tan(v)),
csc(y) + cot(v)

Q=-1 R=0 S=-1 tan(y), cot(e)

Q=0 R=0 #0 ﬁ, € is arbitrary constant

Arbitrary R=0 S=0 QY

constant

Arbitrary R#0 S=0 (=Q+exp(Ry)

constant B

@ Springer



Journal of Nonlinear Mathematical Physics (2025) 32:22 Page 9 of 35 22

Step 4: Utilizing MATHEMATICA, solve the system of algebraic equations. By
inserting these findings into Equation (2.7), we can derive the general structure
of TWs for Eq. (2.3).

Step 5: Several soliton-like solutions, solutions for trigonometric functions, and
rational solutions to Eq. (2.1) may be found by taking O, R, S and F'(¢) from
Table 1 and inserting them into Eq. (2.6) along with a; and b;. More rich forms
of solutions to the NLPDEs will be obtained using this approach. It demonstrates
that the MFEM is more effective at creating exact solutions for NLPDE:s.

3 Application of the Techniques
Let us take the transformation of the form:
U(z,t) =U®), v =2 —ct. 3.1
By using Eq. (3.1) into Eq. (1.1), we obtain the subsequent ODE
AU" —U" —m?U +n2U? =0, (3.2)
where m, ¢, and n are free parameters.
3.1 Solutions with New Extended Direct Algebraic Method

Using the homogeneous balancing method between U” and U3 in Eq. (3.2), we
obtain N = 1. Consequently, the solution form can be represented as

U(y) = ao +a1Z(y), (3.3)

where ag and a; are unknown parameters. The set of equations involving ag, a1, and
other parameters is obtained by summing up all the coefficients of distinct powers of
Z (1)) and combining Egs. (3.3) and (2.5) into Eq. (3.2). The following outcomes are
obtained by solving these equations:

ap = Av,a; = 2A\,m = An\/gg, ¢ = v — 4y, (3.4)

_ /1-=c2
where A = Tan

The solution to Eq. (3.2), which corresponds to (3.4), can be determined as fol-
lows, accordingly.
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Set 1. When ¢ < 0 and A # 0, then

Uy = A\/j()btanp <\/27)¢> ’
w2 = —ay=geot, (Y350,

us = AV=F Et (V=60 = Vahsec, (vV=av)) (3.3)
uy = A= cot, (\/:W) + \/QihCSC;) (Mwy )

= A\/Qj‘b (tanp (‘CTW) — cot, (X/Fi/))

Set-2 When ¢ > 0 and A # 0, then

ug = —Ay/—¢tanh, <\é$w> ,

ur = —Ay/~¢coth, (@d}) ’

s = AV (—tan, (y/=F0) + iv/Fisech, (yF)). oo
uy = —A/g (—coth,, (v=¢) iz\/gTzcsch (Vo)) ,

Ulp = —A@ (tanhp <\£$1/1) — coth, (\4[7?)) .

Set-3 When xA > 0 and v = 0, then

upr = 2Ay/xMtan, (vVx\),

U12 = —QAFCOtp (Fw)
U1z = 2A/x X Etanp (Qrw) + Vghsec, (2v/X\Y)) , 37)
u1g = 28X (— cot,, (2v/ X)) £ v/ghese, (Qrw)) :

uis = Av/xA <tanp <‘?w> — cot (@w))

Set-4 When xA < 0 and v = 0, then

urg = —2iAy/xAtanh, (vV=x\),
U7 = —QiA\/ﬁcothp (\/ —X)ﬂﬂ) s
u1g = —2iAy/xX (—tanh, (2¢/=xM) £ iy/ghsech, (2/—xM))) , 3.8
u1g = —2iA\/xX (—coth, (2v/=xA) £ iy/ghesch, (2/=x ) , (3.8)

uzo = —Aiv/XA (tanhp (\/?w) + coth, (@@) .
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Set-5 When v = 0 and x A, then

Ug1 = 2A/\tanp(x¢),

Uge = —2AXcot, (x¥),

Upg = 24\ Etanp(2xw) + Vghsec,(2xv)) , (3.9)
uzq = 2AX (—cot,(2x1) £ v/ghesc, (2xY))

uzs = AN (tan, (X¢) — cot, (39)) .

Set-6 When v = 0 and x = — A, then

uge = 2Aptanh, (x1)),

uz7 = 2Apcoth, (xv),

ugg = —2Ax (—tanh,(2xv) + iv/ghsech,(2xv)) , (3.10)
Uzg = —2Ax (—coth,(2xt) £ iv/ghesch, (2xv))

uzp = Ay (tanhp (%¢) + coth, (%w)) )

Set-7 When v? = 4y )\, then

1 2x(vplnp + 2)
= 2AxA\ — . 11
u31 X <\/X7 'U2’(/) lnp (3 )
Set-8 When v = p = 0, then
Y 3.12
= o (3.12)
Set-9 When y = 0 and v # 0, then
_ _ 29
U3z = Av (1 (cosh,,(mp)—sinh,,(vw)—&-g)) ’ (3 13)
o 2(sinh, (vyp)+cosh, (ve))) .
uzy = Av (1 - )\(sinhp(pvw)+cc‘)csohp(pvw)+h)) :
Set-10 When v = p, A = pq, and (¢ # 0, x = 0), then
g™
= - 3.14
s = = o (G.14)

3.2 Solutions with the Modified F Expansion Method

We get N =1 from Eq. 3.2 by applying the homogeneous balancing approach
between U” and U3. For N = 1, Eq. (2.6) becomes:

b
Uqum+mF+§, (3.15)
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where ay and a; are real constants. Inserting Egs. (3.15) and (2.7) into Eq. (3.2) and
adding up all the coefficients of different powers of Z(n) allows us to derive the sys-
tem of equations including ag, a1, and other parameters. By solving these equations,
we arrive at the subsequent results:

ag = Av,
ay = 2A>\,
m = An/3, (3.16)
¢ =v? — 4y,
_/1=c2
where A = o

Using Eq. (3.15) into Eq. (3.2) along with the solution of Eq. (2.7), we obtain

Q:O,Rzl,S:_l
2
ar=" =2 b —0.c= vT=2m (317

Put Eq. (3.17) into Eq. (3.15) along with the solution of Eq. (2.7), we get

—"]wnh(g>. (3.18)

n

uy
ForQ=0,R=-1,5=1.

2
aoz—m,m = 7m>b1 :Ovc:_m'
n

n
m

uz = —— coth (15) . (3.19)
ForQ =% R=0,5=—-1.

ao =0,a1 =0,b; :f%,c:\/lf%n. (3.20)

= ! 3.21

uz =— — ) .

’ n \ (coth(e)) + csch(t))) (3.21)

ForQ=1,R=0,5=—1.
Family-1
m m 8 —m?
= =—b=—c=—"—""—— 3.22
ap =0, a1 g 1= 5 ¢ o) (3.22)
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g :% (tanh(z/)) + m}i@;)) . (3.23)
Family-2
ap =0,a; = 0,b; _:,C_QﬂmQ. (3.24)
m( 1
us === (tanh(u))) . (3.25)

ForQ:S:%,R:().

ao =0, a1, = 0,b, z—%,c:\/l—i—sz. (3.26)

n ((tan(w) i sec(w))) ' (3.27)

ao =0,a1,= 0,0y = 2 ¢ = —\/1+ 2m2. (3.28)
n
) 1
wy =2 : (3.29)
n \ (sec(y) + tan(y))
For@Q=S5=-1,R=0.
m m 1
:05 a:_iab = =73 4 — 2. .
ag aq Jon 1 Jon c 5 m (3.30)
m 1
ug = — E (COt('[/J) — COt(q}[})) . (331)
For@ =0,R=0.
1 — o2
ao :0’%:*M7b1 —0,m = 0. (3.32)
n
_ 2
up =22V1 = (3.33)
n(Sy + ¢)

For R=0,5=0.
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2QV1 — c?
ag =0,a1,= 0,01 Z—WJRZQ (3.34)
241 — ¢?
w10 :u, (3.35)
n(Qy)
For S =0.
2 2
o= — " gy =0, by = _29m VIR 2mT (3.36)
n Rn R
_om, 2@ 3.37
ull - n (eRw _ Q) * ( * )

4 Qualitative Dynamics

Bifurcation is a phenomenon in dynamic systems where small changes in param-
eters lead to fundamental qualitative changes in the behavior of the system. This
process often facilitates the emergence of new stable states, periodic orbits, or chaotic
dynamics. Bifurcation theory provides information on the underlying mechanisms
driving these abrupt transitions and enables the prediction of system behavior under
different conditions. In this study, a comprehensive perspective on the bifurcation and
phase diagrams of the proposed planner dynamic framework is presented. The sug-
gested methodology, known for its versatility, offers a robust tool for the qualitative
analysis of nonlinear models. Within this framework, a broad set of trajectories can
be identified, ranging from points to simple closed curves and various other geom-
etries. These trajectories represent diverse solution forms of Eq. (1.1) across different
physical contexts.

Taking into account 4V

i
(3.2) can be expressed as follows:

dU (4)
dy
av(y)
dy

the dynamic framework for the planner concerning Eq.

=V,
4.1)
= GiU°(p) — G2U(9),

2
where G = —CQ”—_I and Go = lrfj

ing the first integral to Eq. (4.1)

. The Hamiltonian function is obtained by apply-

2 4 2
Hwvy < VGt GaU?

42
5 . 5 h, (4.2)
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where & denotes the constant total energy of the system. To determine the equilibrium
points, the following system of equations is solved:

=0 43
{le%w) _GU) =0, 43)

The equilibrium points of Eq. (4.1) are determined by solving the system (4.3). This
analysis reveals three potential equilibrium point scenarios, depending on the solu-
tions of the equations.

The first solution, U = 0, always represents an equilibrium point corresponding to
a trivial state where the system remains at rest. This point is denoted as:

H, = (0,0).

The second type of solution arises from the quadratic equation G1U? = G4, giving
_ G

U==,/&.
The existence of these non-trivial equilibrium points depends on the sign of g—f

When G; and G share the same sign, two symmetric equilibrium points exist, given

by:
ey :
H;,=|+4/= =2,3).
? < G1’O>7 (Z 73)

These points may correspond to stable or unstable states, depending on the potential
function’s nature. However, if G; and G5 have opposite signs, G—f becomes negative,
and no real non-trivial equilibrium points exist.

The Jacobian matrix of the structure described by Eq. (4.3) is expressed with the
following determinant form:

0 1

JUV)=| 30,02 -Gy 0

=Gy — 3G U~ (4.4)

The equilibrium points are classified based on the value of the Jacobian determinant
J(U, V) as follows:

e Saddle Points (J(U,V) < 0): When the Jacobian determinant is negative, the
equilibrium points exhibit saddle-like behavior. This means the system is unsta-
ble in some directions and stable in others.

e Center Points (J(U, V) > 0) 0)]]>: A positive Jacobian determinant corresponds
to center points, where the system shows oscillatory or neutral stability, with tra-
jectories forming closed loops around the equilibrium.

e Cuspid Points (J(U,V) = 0): When the Jacobian determinant equals zero, the
equilibrium points exhibit more complex nonlinear characteristics. Depending
on the parameters G; and G2, the dynamic behavior of the system is examined
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in different regimes in terms of stable and unstable points, trajectory shapes, and
transition behaviors as follows:
Case-1 By assigning specific parameter values m =3, ¢ =2, and n = 3, we

calculate G; = —3 and G = —3. The system exhibits three equilibrium points:
Hy =(0,0), Hy= ( %,0) = (1,0),and Hj = (f %0) = (~1,0).

The equilibrium point H; = (0,0) is classified as a saddle point because
J(Hy) < 0. In contrast, Hy = (1,0) is identified as a center point since
J(Hz) >0 . Similarly, Hs = (—1,0) is also classified as a center point for
J(H3) > 0. These classifications are illustrated in Fig.1(a).

Case-2 Assigning specific values to the parameters m = 0;¢c = 2;n = 1, we ob-
tain G; = —0.333 and G = 0. The system has a equilibrium point: H; = (0, 0),
For J(H;) = 0, the equilibrium point H; = (0, 0) is classified as a cuspid point,
as depicted in Fig.1(b).

Case-3 Assigning specific parameter values m = 3, ¢ = 0.5,and n = 1, we com-
pute G; = 1.333 and G5 = 12. The system exhibits three equilibrium points:

Hy = (0,0), Hy=(/%.0) = (3,0,a0d Hy = (~/&,0) = (-3,0).

The equilibrium point H; = (0,0) is classified as a center since J(Hi) >0 .
Meanwhile, Hy = (3,0) is identified as a saddle point due to J(Hz) < 0, and
similarly, H3 = (—3,0) is classified as a saddle point for J(H3) < 0. These clas-
sifications are illustrated in Fig.1(c).

5 Qualitative Dynamics Under Perturbation

The study of perturbed systems offers a comprehensive framework for exploring the
intricate dynamics exhibited by nonlinear systems. This research employs advanced
graphical methods, including 3D and 2D phase portraits, time series, and Poincaré
sections, to systematically analyze the system’s behavior across both stable and cha-
otic regimes. Such visualization techniques are instrumental in capturing the underly-
ing dynamics of the system under varying conditions and in quantifying the influence
of external perturbations. Notably, these analyses highlight the interplay between
nonlinear structures and periodic forces, shedding light on their critical role in shap-
ing the system’s behavior. Within this framework, the following perturbed system is
examined:

.
il

| Wowranoa > o114
t i N
1 1 2
\ - :;’X//\\‘
‘ o PR ZA\
(@ G1<0,G2<0 ) G1<0,G2=0 © G1>0,G2>0

Fig. 1 Phase portrait of the system (4.1)
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@)
d‘% | (5.1)
T G1U?(Y) = GoU (¢) + 8 cos(ay)),

where § cos(o1)) represents perturbation term. § and o signify the amplitude and the
frequency of the system, respectively. This system combines the effects of external
periodic forces and nonlinear interactions. In this study, the phase portraits, time
series, and Poincaré sections of the system are analyzed in detail, and equilibrium
points, periodic behaviors, and chaotic regimes are evaluated based on parameters
and initial conditions through graphical analyses.

Remark 1 Figure 2 investigates the system with the parameters G; = —3, G2 = —3
derived from ¢ = 2,m =3,n =3, = 0.5, and 0 = 1. The 2D and 3D phase dia-
grams shown in (a) and (b) illustrate the chaotic behavior of the system. Additionally,
the time series in (¢) and the Poincaré sections in (d) confirm that the system operates
within a chaotic regime, with no evidence of quasi-periodic structures.

(a) 2D phase diagram

(c) Time series (d) Poincaré section

Fig. 2 The chaotic behaviors of system (5.1)
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(c) Time series (d) Poincaré section

Fig. 3 The chaotic behaviors of system (5.1)

Figure 3 examines the system with the parameters G; = —3,Go = —3, 6 = 0.1,
and o0 = 7. The 2D and 3D phase diagrams in (a) and (b) reveal chaotic dynamics,
which are further supported by the time series in (¢). The Poincaré sections in (d)
demonstrates the absence of quasi-periodic structures, confirming that the system
remains within a chaotic regime under these conditions.

Figure 4 presents the system with the parameters G; = —3, Go = —3, § = 0.1,
and o = . The phase diagrams in (a) and (b) highlight the chaotic structure of the
system. Furthermore, the time series in (c¢) and the Poincaré sections in (d) reinforce
this chaotic behavior.

Figure 5 investigates the system with parameters G; = 1.33, G2 = 12, derived
fromc=0.5,m =3;n=1,0 =1, and o0 = 7, which result in quasi-periodic struc-
tures. The 2D and 3D phase diagrams in (a) and (b) exhibit closed curves, indicating
quasi-periodic dynamics. This behavior is further corroborated by the ordered pat-
terns observed in the time series in (¢) and the Poincaré sections in (d).

Figure 6 analyzes the system with parameters G; = 1.33, G2 = 12, § = 1, and
o = %. The 2D and 3D phase diagrams in (a) and (b) clearly demonstrate quasi-
periodic behavior. This observation is further supported by the time series in (¢) and
the regular patterns evident in the Poincaré sections in (d).
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(c) Time series (d) Poincaré section

Fig. 4 The chaotic behaviors of system (5.1)

Figure 7 explores the system with parameters G; = 1.33, G = 12, 6 = 7, and
o = 0.5. The 2D and 3D phase diagrams in (a) and (b) depict chaotic behavior, as
evidenced by the lack of closed curves and the irregular trajectories. The time series
in (c) shows irregular oscillations, which are indicative of chaotic dynamics. Addi-
tionally, the Poincaré sections in (d) exhibits a scattered distribution of points, further
confirming that the system operates within a chaotic regime under these conditions.

Figure 8 examines the system with parameters G; = 1.33, G2 = 12, § = 7, and
o = 0.9. The 2D and 3D phase diagrams in (a) and (b), along with the time series
in (c) and the Poincaré sections in (d), collectively demonstrate that the system is
entirely chaotic under these conditions.

Remark 2 The bifurcation behavior of the system described by the system (5.1) is
significantly influenced by the parameters o and 4.

Effect of o on the system dynamics. Figure 9 illustrates how the bifurcation
patterns in the & — r plane change for 0 = 0.8, o = 1, and o = 1.2 while keeping

G1 = —3 and G5 = —3. The results indicate that:

e For o = 0.8, the system exhibits quasi-periodic solutions for small § values, tran-
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(a) 2D phase diagram (b) 3D phase diagram

(c) Time series (d) Poincaré section

Fig.5 The chaotic behaviors of system (5.1)

sitioning to chaos as ¢ increases.

e Foro = 1, the chaotic behavior emerges at smaller § values compared to o = 0.8,
with chaos dominating over a broader range.

e For o = 1.2, the system displays complex chaotic behavior over a wide range of
0, where periodic behavior is nearly absent.

Effect of 0 on the system dynamics. Figure 10 presents the bifurcation patterns in
the o — r plane for different § values. The observations are as follows:

e For § = 0.033, the system predominantly exhibits periodic behavior for small o,
while chaos emerges in a limited range as ¢ increases.

e For § = 0.33, the chaotic regime extends over a broader ¢ range, indicating the
system’s increased sensitivity to external forces.

e For § = 0.91, the system demonstrates highly complex dynamics, with wide-
spread chaotic behavior and multiple solution branches forming at larger o val-
ues.

These findings highlight the critical role of o and ¢ in shaping the system’s bifur-
cation structure and dynamic transitions.
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(a) 2D phase diagram (b) 3D phase diagram

(c) Time series (d) Poincaré section

Fig.6 The chaotic behaviors of system (5.1)
6 Sensitivity Analysis

The sensitivity of systems to initial conditions plays a crucial role in understanding
dynamic behaviors. Even minor variations in the initial values can lead to significant
differences in the system’s behavior. This highlights that minor adjustments in initial
conditions can have a substantial impact on the system’s long-term dynamics. In this
section, the sensitivity analysis of the system under three different boundary condi-
tions is examined. Figure (11) illustrates the behaviors exhibited by the system under
these distinct scenarios. The results clearly demonstrate how changes in external
constraints or initial parameters influence the system’s trajectory and stability. This
analysis underscores the critical role of boundary conditions and initial parameters in
shaping the overall dynamic structure of the system.

7 Results and Discussion
Numerous studies have been carried out regarding the LGH equation. Baloch et al.

[69] investigated analytical solutions of several nonlinear waves for the LGH equa-
tion. Ahmad et al. [70] studied the suggested model using two analytical techniques.
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(c) Time series (d) Poincaré section

Fig. 7 The chaotic behaviors of system (5.1)

Igbal et al. [71] investigated the optical soliton solution of the LGH equation using
the auxiliary equation approach. Unal [72] investigated the analytical solutions of
the LGH equation utilizing Jacobi elliptic functions. In this paper, we extract various
soliton solutions for the proposed equation using two effective techniques. This sec-
tion employs contour plots and two- and three-dimensional visualizations to explain
the obtained results in detail. Specific waveform solutions, such as kink, anti-kink,
bell, anti-bell, periodic, and others, can be created from generic solutions by changing
the values of the free parameters. The graphical portrayal of these solutions, which
involve a range of arbitrary constants, draws attention to the rich physical phenomena
and localized waves of the LGH equation for the proper selection of the correspond-
ing constants. The soliton solutions that have been found are kink and anti-kink-
shaped, hyperbolic, periodic, trigonometric, bright and dark, and periodic. There are
some physical importance to these solutions. For instance, a dark soliton has less
intensity than the background. They are not generated by a traditional pulse and in
a continuous time beam, contain no energy. Periodic waves can also be classified
as waves whose frequency and wavelength are established by a continuous pattern
that repeats. The solution ug, represents 3D, 2D and contour profiles for the values
of parameters n =0.5,v =15, A=1,m=0.5,x =0.5,9g =5.5,h =5.5,¢c = 3,
which is anti-kink shaped soliton shown as in Fig. 12. For the parametric val-

@ Springer



Journal of Nonlinear Mathematical Physics (2025) 32:22 Page 23 of 35 22

(c) Time series (d) Poincaré section

Fig. 8 The chaotic behaviors of system (5.1)

et A g IR ¥ . A A Q: s
'\/_/\/\/\/\J L

(2) (b) (©)

Fig. 9 The bifurcation behavior of the system (5.1) in the § — r plane, with G; = —3 and G2 = —3,
is shown for different values of (a) 0 = 0.8, (b) 0 = 1,and (¢) 0 = 1.2

ues n=-5v=05A=-5m=05x=-05¢9g=-5h=-0.5¢=0.9,
the 3D, 2D, and contour plots of the solution w4 illustrate the periodic soli-
ton with a small wavelength or large frequency, as seen in Fig. 13. For the solu-
tions ug and w1, periodic soliton is displayed in Figs. 14 and 15 by considering,
n=0.5v=-37,2=09m=-05x=5,9=05h=0.05,c=0.5, and n =
- 0.5, v=-0.05,A=0.5,m=—-0.5,x =0.5,g =8 h = —0.05,¢c = 0.5, respec-
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(@) (b) ©

Fig. 10 The bifurcation behavior of the system (5.1) in the o — r plane, with G; = —3 and G2 = —3
, is shown for different values of (a) § = 0.033, (b) § = 0.33, and (¢) § = 0.91

12}

N U(0)=00,V(0)=05 >,10§ U(0)=05,v(0)=0

057
: L= U=00V0=0T g L — U)=07.Y()=0
oo 10— U[0)=00,V(0)=09 ; L — U0)=09,v()=0
1 06r J
05 1
0 1 2 3 4 5 0 1 2 3 5
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. |
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" = U=V 12
12¢ 1
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Fig. 11 Graph illustrating the sensitivity of the system to initial conditions under different boundary
scenarios

tively. Fig. 16 illustrates the bell-shaped soliton solution u13, with parametric values
of n=20.005,v =15\ A=0.005,m=—-5x=0.05¢9=09,h=-05,¢=0.9
. The kink shaped soliton is depicted in in Fig. 17 for the solution ugs, when
n=5v=15A=5m=0.5,x=-5,9g=-09,h=-05,c=-0.9

. Figs. 18 and 19 illustrate bright faces of solutions for Eq. (3.18) and (3.19) for
m=15n=059g=-5h=15m=15n=05,g=-5h=15, and m =
1.5, n = —4.5,9g = —15, h = —0.5, respectively. Fig. 21 represents anti-kink soli-
ton solution for the Eq. (3.25), when m = —0.9,n = 0.5,g = —0.5, h = 5. Fig. 22
illustrates the kink-shaped soliton for solution of the Eq. (3.27), taking into account

@ Springer



Journal of Nonlinear Mathematical Physics (2025) 32:22 Page 25 of 35 22

10f}

10 5 o 5 10

(a) 3D plot (b) contour plot (c) 2D plot

Fig. 12 3D, contour and 2D plots of wusz(z,t) visualizing to anti-kink wave soliton with

n=05v=15A=1,m=0.5,x=0.5,9g=55h=55c=3
AT
A

i
i

|

(a) 3D plot (b) contour plot (c) 2D plot

7

7

-10 E3 0 5 10

Fig. 13 3D, contour and 2D plots of wu4(z,t) visualizing to periodic wave soliton with
n=-50v=05X=-5m=05x=-0.59=-5h=-0.5c=0.9

5 o 5

(a) 3D plot (b) contour plot (c) 2D plot

Fig. 14 3D, contour and 2D plots of wug(x,t) visualizing to periodic wave soliton with
n=0.5v=-37X2=09m=-05,x=5,9g=05h=0.05c=0.5

@ Springer



22 Page 26 of 35 Journal of Nonlinear Mathematical Physics (2025) 32:22

10

10,

—

1. JWV(L

BlANASTRER
RRER B/
»’e‘,«\\%..
L4/ X
j «%’3

W,

S5

-5 [

(a) 3D plot (b) contour plot (c) 2D plot

Fig. 15 3D, contour and 2D plots of wio(z,t) visualizing to periodic wave soliton with
n=—0.5,v =—-0.05,A =0.5,m = —-0.5,x =0.5,9g =8,h = —0.05,c = 0.5

10 -10 -5 0 5

(a) 3D plot (b) contour plot (c) 2D plot

Fig. 16 3D, contour and 2D plots of wiz(x,t) visualizing to bell shaped soliton with
n = 0.005,v = 1.5, A\ = 0.005,m = —5,x = 0.05,g = 0.9,h = —0.5,¢ = 0.9

-10 -5 o 5 10

(a) 3D plot (b) contour plot (c) 2D plot

Fig. 17 3D, contour and 2D plots of wuss(x,t) visualizing to kink wave soliton with
n=5v=15A=5m=05x=-549g=-09,h=-05,c=0.9
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(a) 3D plot (b) contour plot (c) 2D plot

Fig. 18 3D, contour and 2D plots of Eq. (3.18) visualizing to multiple bright faces solitons with
m=15n=05,9g=-5h=15m=15n=0.5,g=-5h=1.5

-10 5 0 5 10

(a) 3D plot (b) contour plot (c) 2D plot

Fig. 19 3D, contour and 2D plots of Eq. (3.19) visualizing to multiple bright faces solitons with
m=15n=—4.5,9g=—15,h=—-0.5

-10 -5 [ 5 10

(a) 3D plot (b) contour plot (c) 2D plot

Fig. 20 3D, contour and 2D plots of Eq. (3.23), visualizing to dark-bright singular soliton with
m=4,n=>5,g9g=—0.05h=5
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(a) 3D plot (b) contour plot (c) 2D plot

Fig. 21 3D, contour and 2D plots of Eq. (3.25), visualizing to anti-kink wave soliton with
m=-0.9,n=05,9g=-05h=5

<10 5 [ 5 10 -4 -2 2 4

(a) 3D plot (b) contour plot (c) 2D plot

Fig. 22 3D, contour and 2D plots of Eq. (3.27), visualizing to kink wave soliton with
m=09,n=0.5,9g=05h=5

m = 0.9,n = 0.5,g = 0.5, h = 5. Fig. 23 presents multiple bright faces of the solu-
tion for Eq. (3.37) form = 0.9,n = —0.5, B = 0.5, A = —5.5.

8 Comparison Analysis

This section presents our recent discoveries alongside the contributions of several
earlier researchers. While the model has been thoroughly examined in existing lit-
erature, our study offers new perspectives on its attributes and dynamics. Asjad et al.
studied the LGH equation and obtained several soliton solutions using generalized
projective Riccati method [73]. Faridi and AL-Qahatani investigated the same model
utilizing Khater method [74]. Rizvi et al. studied the LGH equation with the help
of Lie symmetry approach [75]. We present two tables for comparison. In Table 2,
we compare our results obtained using modified F-expansion approach and the new
extended direct algebraic approach. In Table 3, we compare our results with those
reported in the [73].
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10

(a) 3D plot (b) contour plot (c) 2D plot

Fig. 23 3D, contour and 2D plots of Eq. (3.37), visualizing to multiple bright faces soliton with with
m=0.9,n=-05R=0.50Q=-55

Table 2 Comparison between modified F-expansion approach and the new extended direct algebraic
approach
New extended direct algebraic method Modified F-expansion method

(i) It provides solutions in the form of rational, hyperbolic (i) It also provides solutions in the form

trigonometric, and trigonometric functions of rational, hyperbolic trigonometric, and
trigonometric functions

(ii) It provides 37 solutions (ii) It provides 11 solutions

(iii) It provides periodic, bright, anti-kink, and kink type (iii) It provides bright faces, dark-bright

solutions singular, anti-kink, and kink type solutions

Table 3 Comparison analysis of our solutions with [73]

Solutions in [73] Our solutions

(i) Utilized the generalized projective Riccati method (i) Utilized modified F-expansion approach and
the new extended direct algebraic approach

(ii) These solutions include trigonometric and hyper-  (ii) These solutions included rational, hyperbol-

bolic trigonometric solutions ic trigonometric, and trigonometric solutions
(iii) Periodic wave solutions, including bright, dark,  (iii) Our research results in various solutions
and kink type, are generated using the proposed such as bell, anti-bell, periodic, kink, anti-kink,
method and many others

(iv) The sensitivity analysis has been presented (iv) We conducted an analysis of sensitivity,

examined chaotic behavior, and performed
bifurcation analysis

9 Conclusions

In this paper, we have effectively used the modified F-expansion approach and the
new extended direct algebraic approach to determine the new precise TWs of the
LGH equation. As rational, hyperbolic, and trigonometric forms, numerous com-
pletely new exact solutions have been found. These techniques provide a systematic
and dependable approach for addressing nonlinear fractional governing equations
encountered in mathematical physics, as well as for uncovering new exact solutions.
However, a limitation of these techniques is their ineffectiveness in scenarios where
the highest derivative terms do not uniformly balance with the nonlinear terms.
Consequently, our forthcoming research will aim to enhance the applicability of the
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methods, particularly for highly nonlinear models and those characterized by vari-
able coefficients and variable order fractional partial differential equations. By setting
the parameters to a particular value under constrained conditions, various solutions
to the LGH equation are shown in 3D, contour and 2D plots to describe the physical
phenomena. With the aid of the computing program Mathematica, the algebraic cal-
culations and visual depictions of the derived solutions for different parameter values
are given in this article. Furthermore, the study highlights the impact of the pertur-
bation term on the dynamic behavior of the system, as examined through 2D phase
portraits, 3D visualizations, Poincaré sections, and time series. These methods effec-
tively reveal the transitions between periodic, quasi-periodic, and chaotic regimes,
emphasizing the critical role of perturbations in shaping the system’s behavior. The
graphical analyses also demonstrate the system’s sensitivity to initial conditions,
showing how minor variations can lead to significant differences in the dynamics.
These analyses provide deep insights into the system’s response under varying con-
ditions, showcasing the significance of nonlinear interactions and external periodic
forces in driving complex chaotic dynamics.
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