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Abstract
The goal of this work is to improve our understanding of the dynamical aspects of 
the nonlinear Landau-Ginzburg-Higgs (LGH) equation, which offers a theoretical 
framework for characterizing several phenomena, including the spontaneous break-
down of symmetries and the emergence of superconducting states. The proposed 
model integrates the concepts of the Higgs mechanism and the Landau-Ginzburg 
theory when symmetry breaking appears in phase transitions in particle physics 
or condensed matter systems. The equation is essential for describing the Higgs 
field and its constituent particles, such as the Higgs boson. New extended direct 
algebraic approaches and modified F-expansion techniques are used to address this 
problem. The obtained solutions, which include kink, anti-kink, bright, dark, and 
periodic solitons, are essential because they shed light on the stability and nonlinear 
dynamics of field theories that are pertinent to cosmology and condensed matter 
physics. To advance the essential propagating features, a few obtained solutions 
are presented as 3D, contour, and 2D graphics by applying certain values to the 
parameters under the given constraints. The dynamical insights are examined and 
significant aspects of the phenomenon under study are discussed through the use of 
the bifurcation analysis. Additionally, the chaos analysis is carried out to show the 
quasi-periodic and periodic chaotic patterns. The sensitivity analysis of the studied 
model is also looked at and presented at different initial conditions. Furthermore, 
we guarantee that every found solution is precise, effective, and a great addition 
to the literature of solitary wave theory. To calculate the soliton solutions for non-
linear models in communication engineering and operations research, the methods 
utilized in this work to derive inclusive and standard solutions are more accessible, 
effective, and quick.
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1  Introduction

In many different fields, such as engineering, physics, and biology, nonlinear par-
tial differential equations (NLPDEs) are essential for simulating distinct physical 
phenomena [1–8]. By taking nonlinearity into account and maintaining compli-
cated dynamics, these equations describe intricate systems and processes. In fluid 
dynamics, NLPDEs are utilized to depict and evaluate fluid flow phenomena, such as 
modeling turbulent flow and investigating fluid-structure interactions. In the field of 
optics, NLPDEs are utilized to mathematically characterize and study nonlinear pro-
cesses that transpire within optical systems. These phenomena have a broad range of 
applications, such as studying nonlinear optical systems, ultrashort pulse propagation 
characteristics, and nonlinear wave behavior [9–11]. The Korteweg-de Vries (KdV) 
model is a widely recognized model that represents wave motion in shallow canals. 
A nonlinear Schrädinger equation is the second one that arises in this area. The KdV 
equation is specifically regarded in this sense as a test problem for the recently sug-
gested approach, which means that it is a solved equation with known behavior. Mod-
eling, solving problems, and developing new methodologies depend not just on one 
field but also on other areas of mathematics and allied fields like physics, biology, 
optical physics, quantum, and so forth. A number of effective techniques have been 
reported in the literature to find the analytical solutions for nonlinear evolution equa-
tions (NLEEs) [12, 13], such as Hirota’s bilinear technique [14], modified expansion 
function scheme [15], sine-cosine approach [16], tanh technique [17], exponential 
rational function approach [18], sine-Gordon expansion scheme [19], Improved Ber-
noulli Sub-Equation Function (IBSEF) method [20], modified extended tanh-func-
tion method and modified generalized Kudryashov method [21], extended hyperbolic 
function method [22], modified auxiliary equation method and Sardar sub-equation 
method [23], tanh-coth expansion approach [24, 25], first integral technique [26, 
27], new auxiliary equation approach [28–30], modified simplest equation approach 
[31, 32], Riccati equation technique [33, 34], generalized Riccati equation mapping 
method[35], extended direct algebraic approach [36–38], Kudryashov scheme [39, 
40], the modified extended exp-function technique [41, 42], the Backlund transfor-
mation method [43, 44], Jacobi elliptic function expansion approach [45, 46], modi-
fied Khater technique [47, 48], generalized exponential rational function approach 
[49, 50], and many more [51–56]. To the best of our understanding, there is a signifi-
cant deficiency in substantial research regarding our suggested techniques for deriv-
ing the LGH equation. Additionally, the innovative extended direct algebraic method 
and the modified F–expansion method (MFEM) have proven to be exceptionally 
effective, offering a thorough and practical framework for achieving accurate solu-
tions to NLPDEs in the context of traveling waves[57]. As a consequence of the 
previous research, the goal of this study is to use the proposed techniques to find 
soliton solutions of the LGH model. The ODE of a NLPDE can be solved analyti-
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cally by integrating a transformation with a novel extended direct algebraic method 
and a modified F-expansion technique. These methods are particularly employed to 
address the nonlinear LGH equation. The primary advantages of the proposed meth-
ods lie in their analytical characteristics and their capacity to manage a wide range of 
nonlinear fractional differential equations. Additionally, the bifurcation analysis, sen-
sitivity analysis, and chaotic behavior of the suggested model are also discussed. Sta-
bility and bifurcation analysis are crucial for comprehending the behavior of dynamic 
systems. This analysis offers a foundational framework for investigating intricate 
phenomena and dynamics across a range of scientific fields, including physics, reac-
tion diffusion processes, chemical reactions, biology, engineering, economics, and 
numerous other areas. Furthermore, it assists in forecasting the long-term behavior of 
dynamical systems. In engineering, it is instrumental in the design and optimization 
of stable and resilient systems, such as electrical circuits, mechanical structures, and 
chemical processes. Stability analysis plays a crucial role in the design and regula-
tion of systems, ensuring their stability and mitigating undesirable behaviors such 
as oscillations, instabilities, or chaotic dynamics. Conversely, bifurcation analysis 
investigates the qualitative transformations that a system experiences as a parameter 
is altered. This analysis reveals critical parameter values at which the system transi-
tions, leading to the emergence of new equilibrium points or the onset of intricate 
dynamics, including chaos. Through the examination of stability and bifurcations, 
researchers acquire significant insights into the behavior and stability of dynami-
cal models, facilitating a more profound comprehension of complex systems across 
various scientific fields. Different wave solitons are formed by inserting specified 
values of arbitrary components, and these achieved solitons have not been reported 
in the prior literature. In comparison with the previously researched methodologies, 
the current methodology performs more effectively and efficiently and offers more 
broad solutions. By employing the suggested techniques, the solitonic structures of 
the LGH equation have been effectively demonstrated and the TWs have provided 
exact solutions. The uniqueness of the obtained results is provided and the survey 
results are contrasted with the highly regarded outcomes. We are confident that our 
efforts will enable physicists to predict new concepts in mathematical physics. The 
LGH equation is given as: [57]

	
∂2u

∂t2 − ∂2u

∂x2 − m2u + n2u3 = 0,� (1.1)

where u(x,  t) is the ion-cyclotron wave’s electrostatic potential, m and n are real 
parameters, x and t represent the nonlinear spatial and temporal coordinates. In phys-
ics, the LGH system is a theoretical framework that combines the Higgs mechanism 
and the Landau-Ginzburg theory. In the 1950s, Lev Landau and Alexei Ginzburg 
developed the Landau-Ginzburg theory to give a phenomenological understanding 
of phase transitions, particularly in superconductors. To describe the conversion of a 
normal to a superconducting state, an order parameter has been introduced. In 1964, 
Peter Higgs and several physicists, including Robert Brout and Francois Englert, sug-
gested the Higgs mechanism, which explains how particles gain mass. The mecha-
nism relies on the spontaneous breaking of symmetry and the collision of a scalar 
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field (Higgs field) with particles, which results in the production of particle masses. 
When Landau-Ginzburg theory and the Higgs mechanism were combined in the 
1970s, the LGH structure was created. This conceptual framework is particularly 
relevant for particle physics and the investigation of phase transitions in certain con-
densed matter systems.

The ability of NLPDEs to provide profound insights into the behavior of intricate 
physical phenomena makes their accurate solution extremely important [58, 59]. In 
many scientific fields, such as physics, engineering, biology, and finance, NLPDEs 
are commonly encountered because linear approximations are not always sufficient 
to explain the complexities of real-world systems. The utilization of exact solu-
tions facilitates the understanding of the underlying principles guiding the system 
by offering a detailed mathematical depiction of its dynamics. Additionally, these 
solutions enable the validation of computational models by acting as standards for 
approximate approaches and numerical simulations. Finding exact solutions also 
aids in the creation of novel mathematical methods and instruments, which advances 
our knowledge of nonlinear processes and offers new avenues for creative scien-
tific and technological applications [60, 61]. To assess the unique soliton solutions 
to the integrable NLEE (1.1), various techniques have been used. Bekir and Unsal 
[62] found several solutions for exponential functions by exploring the NLEE (1.1) 
using the first integral approach. Iftikhar et al. [63] used the 

(
G′

G , 1
G

)
-expansion 

technique to investigate various types of analytical solutions to NLEE (1.1). They 
have determined kink shape soliton and general soliton solutions for various para-
metric choices. By employing the IBSEF approach, Islam and Akbar [64] obtained 
a few different kinds of solutions. In this work, we utilized two efficient analytical 
approaches to find the soliton solutions of proposed model. Several authors have 
developed these two proposed techniques to ascertain the exact solutions of vari-
ous Nonlinear Evolution Equations (NLEEs). However, there has been no successful 
application of these methods to our preferred LGH equation. In this context, the new 
exact solution we have identified for the LGH equation is more accurate, efficient, 
and accessible. These solutions can be applied across multiple domains, including 
computational physics, engineering, and areas related to wave analysis. The acquired 
results offer a variety of soliton shapes, including periodic, kink wave, singular, and 
other shapes that help in understanding the dynamical behaviour of governing sys-
tems. The remainder of the article is organized as follows: In section 2, we present 
algorithms of analytical techniques, and in section 3, the application of the LGH 
equation is provided. In sections 4, 5 and 6, we study the dynamical behavior of the 
LGH equation, containing the phase portraits, chaos, and sensitivity analysis using 
dynamical systems respectively. The results and discussion are presented in Section 
7. A detailed evaluation of previous studies is provided in Section 8, while the con-
clusion is presented in Section 9.
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2  Algorithm of the Schemes

2.1  The New Extended Direct Algebraic Method

A thorough description of the primary steps involved in the new extended direct alge-
braic method is given in this section.

Step 1.
Let us consider NLPDE of the following form

	 F (w, wt, wx, wtt, wxx, ...) = 0.� (2.1)

By utilizing the transformation

	 w(x, t) = U(ψ) = x − ct,� (2.2)

where c ̸= 0, and we obtain ordinary differential equation (ODE) of the form

	 G(U, U ′, U ′′, .......) = 0.� (2.3)

Step 2.
By assuming the following solution of the ODE as

	
U = U(ψ) =

K∑
j=0

ajZj(ψ),� (2.4)

where aj(j = 0, 1, 2, ...K) are constant coefficients to be found and Z(ψ) satisfies 
the ODE of the form

	 Z ′(ψ) = ln(ρ)
(
χ + vW (ψ) + λW 2(ψ)

)
, ρ ̸= 0, 1.� (2.5)

Here v, χ, along with λ are the real constants that can be seen in the auxiliary equa-
tion. The list of numerous solutions is exposed below [65].

Family-1 When ϕ < 0 and λ ̸= 0, where ϕ = v2 − 4χλ,

	




Z1(ψ) = − v
2λ +

√
−ϕ

2λ tanρ

(√
−ϕ

2 ψ

)
,

Z2(ψ) = − v
2λ +

√
−ϕ

2λ cotρ

(√
−ϕ

2 ψ

)
,

Z3(ψ) = − v
2λ +

√
−ϕ

2λ

(
tanρ

(√
−ϕψ

)
±

√
ghsecρ

(√
−ϕψ

))
,

Z4(ψ) = − v
2λ +

√
−ϕ

2λ

(
cotρ

(√
−ϕψ

)
±

√
ghcscρ

(√
−ϕψ

))
,

Z5(ψ) = − v
2λ +

√
−ϕ

4λ

(
tanρ

(√
−ϕ

4 ψ

)
− cotρ

(√
−ϕ

4 ψ

))
.
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Family-2 When ϕ > 0 and λ ̸= 0,

	





Z6(ψ) = − v
2λ −

√
−ϕ

2λ tanhρ

(√
ϕ

2 (ψ)
)

,

Z7(ψ) = − v
2λ −

√
−ϕ

2λ cothρ

(√
ϕ

2 (ψ)
)

,

Z8(ψ) = − v
2λ +

√
ϕ

2λ

(
−tanhρ

(√
−ϕψ

)
± i

√
ghsechρ

(√
ϕψ

))
,

Z9(ψ) = − v
2λ +

√
ϕ

2λ

(
−cothρ

(√
−ϕψ

)
± i

√
ghcschρ

(√
ϕψ

))
,

Z10(ψ) = − v
2λ −

√
ϕ

4λ

(
tanhρ

(√
ϕ

4 ψ

)
− cothρ

(√
ϕ

4 ψ

))
.

Family-3 When χλ > 0 and v = 0,

	




Z11(ψ) =
√

χ
λ tanρ

(√
χλψ

)
,

Z12(ψ) = −
√

χ
λ cotρ

(√
χλψ

)
,

Z13(ψ) =
√

χ
λ

(
tanρ

(
2
√

χλψ
)

±
√

ghsecρ

(
2
√

χλψ
))

,
Z14(ψ) =

√
χ
λ

(
− cotρ

(
2
√

χλψ
)

±
√

ghcscρ

(
2
√

χλψ
))

,

Z15(ψ) = 1
2
√

χ
λ

(
tanρ

(√
χλ

2 ψ

)
− cot

(√
χλ

2 ψ

))
.

Family-4 When χλ < 0 and v = 0,

	




Z16(ψ) = −
√

− χ
λ tanhρ

(√
−χλψ

)
,

Z17(ψ) = −
√

− χ
λ cothρ

(√
−χλψ

)
,

Z18(ψ) =
√

− χ
λ

(
−tanhρ

(
2
√

−χλψ
)

± i
√

ghsechρ

(
2
√

−χλψ
))

,
Z19(ψ) =

√
− χ

λ

(
−cothρ

(
2
√

−χλψ
)

± i
√

ghcschρ

(
2
√

−χλψ
))

,

Z20(ψ) = − 1
2
√

− χ
λ

(
tanhρ

(√
−χλ

2 ψ

)
+ cothρ

(√
−χλ

2 ψ

))
.

Family-5 When v = 0 and χ = λ,

	




Z21(ψ) = tanρ(χ(ψ)),
Z22(ψ) = −cotρ(χ(ψ)),
Z23(ψ) = tanρ(2χ(ψ)) ±

√
ghsecρ(2χψ),

Z24(ψ) = −cotρ(2χ(ψ)) ±
√

ghcscρ(2χψ),
Z25(ψ) = 1

2
(
tanρ

(
χ
2 ψ

)
− cotρ

(
χ
2 ψ

))
.

Family-6 When v = 0 and χ = −λ,

	




Z26(ψ) = −tanhρ(χψ),
Z27(ψ) = −cothρ(χψ),
Z28(ψ) = −tanhρ(2χψ) ± i

√
ghsechρ(2χψ),

Z29(ψ) = −cothρ(2χψ) ±
√

ghcschρ(2χψ),
Z30(ψ) = − 1

2 tanhρ

(
ψ
2 χ

)
+ cothρ

(
ψ
2 χ

)
.
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Family-7 When v2 = 4χλ,

	
Z31 = −2χ(vψ ln ρ + 2)

v2(ψ) ln ρ
.

Family-8 When v = p, χ = pq, (q ̸= 0) and λ = 0,

	 Z32 = ρp(ψ) − q.

Family-9 When v = λ = 0,

	 Z33 = χ(ψ) ln ρ.

Family-10 When v = χ = 0,

	
Z34 (ψ) = −1

ζψ ln ρ
.

Family-11 When χ = 0 and v ̸= 0,

	

{
Z35 = − gv

λ(coshρ(vψ)−sinhρ(vψ)+g) ,

Z36 = − v(sinhρ(vψ)+coshρ(vψ))
λ(sinhρ(vψ)+coshρ(vψ)+h) .

Family-12 When v = p, λ = pq,(q ̸= 0, χ = 0),

	
Z37 = − gρpψ

g − qhρpψ
.

Now, the hyperbolic and trigonometric functions are given as follows:

	




sinhρ(ψ) = gρψ−hρ−ψ

2 ,

coshρ(ψ) = gρψ+hρ−ψ

2 ,

tanhρ(ψ) = gρψ−hρ−ψ

gρψ+hρ−ψ ,

cothρ(ψ) = gρψ+hρ−ψ

gρψ−hρ−ψ ,

sechρ(ψ) = 2
gρψ+hρ−ψ ,

cschρ(ψ) = 2
gρψ−hρ−ψ ,

sinρ(ψ) = gρiψ−hρ−iψ

2i ,

cosρ(ψ) = gρiψ+hρ−iψ

2 ,

tanρ(ψ) = −i gρiψ−hρ−iψ

gρiψ+hρ−iψ ,

cotρ(ψ) = i gρiψ+hρ−iψ

gρiψ−hρ−iψ ,

secρ(ψ) = 2
gρiψ+hρ−iψ ,

cscρ(ψ) = 2i
gρiψ−hρ−iψ ,
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where g, h > 0 are called parameters of deformation. By balancing the highest-order 
derivative term with the highest-order nonlinear term in Eq. (2.2), we may get the 
value of K. The set of algebraic equations can be obtained by substituting Eq. (2.4) 
and its necessary derivatives in Eq. (2.2) and comparing the coefficients of power of 
Z(ψ) in the resulting equation.

2.2  The Modified F-Expansion Method

The main steps of the MFEM are given [66–68].

	
U(ψ) = a0 +

m∑
i=1

a1F i(ψ) +
m∑

i=1
b1F −i(ψ),� (2.6)

where a0, ai and bi are real parameters to be determined. F (ψ) satisfies the nonlinear 
ODE of the form:

	 F ′(ψ) = Q + RF (ψ) + SF 2(ψ),� (2.7)

where Q, R and S are constants given in Table 1. The determination of an integer m 
can be achieved by using the balancing principle.

Eq. (2.7) yields the distinct Riccati function solution F (ψ), by giving distinct 
values of Q, R, and S (see Table 1).

Step 1: By assuming the Eqs. (2.1), (2.2), and (2.3).
Step 2: Expand the solution to Eq. (2.3).
Step 3: An algebraic system of equations for ai and bi can be obtained by replacing 

Eq. (2.7) and Eq. (2.6) into Eq. (2.3) and collecting coefficients of F i(ψ) to zero.

Q R S F (ψ)
Q = 0 R = 1 S = - 1 1

2 + 1
2 tanh( ψ

2 )
Q = 0 R = - 1 S = 1 1

2 − 1
2 coth( ψ

2 )
Q = 1

2
R = 0 S = - 1

2
coth(ψ) ± csch(ψ), 
tanh(ψ) ± i sech(ψ)

Q = 1 R = 0 S = - 1 tanh(ψ), coth(ψ)
Q = 1

2
R = 0 S = 1

2
sec(ψ) + tan(ψ), 
csc(ψ) − cot(ψ)

Q = - 1
2

R = 0 S = - 1
2

sec(ψ) − tan(ψ), 
csc(ψ) + cot(ψ)

Q = - 1 R = 0 S = - 1 tan(ψ), cot(ψ)
Q =0 R = 0 S ̸= 0 1

Sψ+ε
, ε is arbitrary constant

Arbitrary 
constant

R = 0 S = 0 Qψ

Arbitrary 
constant

R ̸= 0 S = 0 (−Q+exp(Rψ)
R

Table 1  Relations between Q, R, 
and S with F
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Step 4: Utilizing MATHEMATICA, solve the system of algebraic equations. By 
inserting these findings into Equation (2.7), we can derive the general structure 
of TWs for Eq. (2.3).

Step 5: Several soliton-like solutions, solutions for trigonometric functions, and 
rational solutions to Eq. (2.1) may be found by taking Q, R, S and F (ψ) from 
Table 1 and inserting them into Eq. (2.6) along with ai and bi. More rich forms 
of solutions to the NLPDEs will be obtained using this approach. It demonstrates 
that the MFEM is more effective at creating exact solutions for NLPDEs.

3  Application of the Techniques

Let us take the transformation of the form:

	 U(x, t) = U(ψ), ψ = x − ct.� (3.1)

By using Eq. (3.1) into Eq. (1.1), we obtain the subsequent ODE

	 c2U ′′ − U ′′ − m2U + n2U3 = 0,� (3.2)

where m, c, and n are free parameters.

3.1  Solutions with New Extended Direct Algebraic Method

Using the homogeneous balancing method between U ′′ and U3 in Eq. (3.2), we 
obtain N = 1. Consequently, the solution form can be represented as

	 U(ψ) = a0 + a1Z(ψ),� (3.3)

where a0 and a1 are unknown parameters. The set of equations involving a0, a1, and 
other parameters is obtained by summing up all the coefficients of distinct powers of 
Z(ψ) and combining Eqs. (3.3) and (2.5) into Eq. (3.2). The following outcomes are 
obtained by solving these equations:

	 a0 = ∆v, a1 = 2∆λ, m = ∆n
√

ϕ, ϕ = v2 − 4χλ,� (3.4)

where ∆ =
√

1−c2
√

2n
.

The solution to Eq. (3.2), which corresponds to (3.4), can be determined as fol-
lows, accordingly.
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Set 1. When ϕ < 0 and λ ̸= 0, then

	




u1 = ∆
√

−ϕtanρ

(√
−ϕ

2 ψ

)
,

u2 = −∆
√

−ϕcotρ

(√
−ϕ

2 ψ

)
,

u3 = ∆
√

−ϕ
(
tanρ

(√
−ϕψ

)
±

√
ghsecρ

(√
−ϕψ

))
,

u4 = ∆
√

−ϕ
(
cotρ

(√
−ϕψ

)
±

√
ghcscρ

(√
−ϕψ

))
,

u5 = ∆
√

−ϕ

2

(
tanρ

(√
−ϕ

4 ψ

)
− cotρ

(√
−ϕ

4 ψ

))
.

� (3.5)

Set-2 When ϕ > 0 and λ ̸= 0, then

	




u6 = −∆
√

−ϕtanhρ

(√
ϕ

2 ψ

)
,

u7 = −∆
√

−ϕcothρ

(√
ϕ

2 ψ

)
,

u8 = ∆
√

ϕ
(
−tanhρ

(√
−ϕψ

)
± i

√
ghsechρ

(√
ϕψ

))
,

u9 = −∆
√

ϕ
(
−cothρ

(√
−ϕψ

)
± i

√
ghcschρ

(√
ϕψ

))
,

u10 = −∆
√

ϕ

2

(
tanhρ

(√
ϕ

4 ψ

)
− cothρ

(√
ϕ

4 ψ

))
.

� (3.6)

Set-3 When χλ > 0 and v = 0, then

	




u11 = 2∆
√

χλtanρ

(√
χλψ

)
,

u12 = −2∆
√

χλcotρ

(√
χλψ

)
,

u13 = 2∆
√

χλ
(
tanρ

(
2
√

χλψ
)

±
√

ghsecρ

(
2
√

χλψ
))

,
u14 = 2∆

√
χλ

(
− cotρ

(
2
√

χλψ
)

±
√

ghcscρ

(
2
√

χλψ
))

,

u15 = ∆
√

χλ

(
tanρ

(√
χλ

2 ψ

)
− cot

(√
χλ

2 ψ

))
.

� (3.7)

Set-4 When χλ < 0 and v = 0, then

	




u16 = −2i∆
√

χλtanhρ

(√
−χλψ

)
,

u17 = −2i∆
√

χλcothρ

(√
−χλψ

)
,

u18 = −2i∆
√

χλ
(
−tanhρ

(
2
√

−χλψ
)

± i
√

ghsechρ

(
2
√

−χλψ
))

,
u19 = −2i∆

√
χλ

(
−cothρ

(
2
√

−χλψ
)

± i
√

ghcschρ

(
2
√

−χλψ
))

,

u20 = −∆i
√

χλ

(
tanhρ

(√
−χλ

2 ψ

)
+ cothρ

(√
−χλ

2 ψ

))
.

� (3.8)
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Set-5 When v = 0 and χλ, then

	





u21 = 2∆λtanρ(χψ),
u22 = −2∆λcotρ(χψ),
u23 = 2∆λ

(
tanρ(2χψ) ±

√
ghsecρ(2χψ)

)
,

u24 = 2∆λ
(
−cotρ(2χψ) ±

√
ghcscρ(2χψ)

)
,

u25 = ∆λ
(
tanρ

(
χ
2 ψ

)
− cotρ

(
χ
2 ψ

))
.

� (3.9)

Set-6 When v = 0 and χ = −λ, then

	




u26 = 2∆µtanhρ(χψ),
u27 = 2∆µcothρ(χψ),
u28 = −2∆χ

(
−tanhρ(2χψ) ± i

√
ghsechρ(2χψ)

)
,

u29 = −2∆χ
(
−cothρ(2χψ) ± i

√
ghcschρ(2χψ)

)
,

u30 = ∆χ
(
tanhρ

(
χ
2 ψ

)
± cothρ

(
χ
2 ψ

))
.

� (3.10)

Set-7 When v2 = 4χλ, then

	
u31 = 2∆χλ

(
1√
χλ

− 2χ(vψ ln ρ + 2)
v2ψ ln ρ

)
.� (3.11)

Set-8 When v = µ = 0, then

	
u32 = −2∆

ψ ln ρ
.� (3.12)

Set-9 When χ = 0 and v ̸= 0, then

	




u33 = ∆v
(

1 − 2g
(coshρ(vψ)−sinhρ(vψ)+g)

)
,

u34 = ∆v
(

1 − 2(sinhρ(vψ)+coshρ(vψ))
λ(sinhρ(vψ)+coshρ(vψ)+h)

)
.

� (3.13)

Set-10 When v = p, λ = pq, and (q ̸= 0, χ = 0), then

	
u35 = − gρpψ

g − qhρpψ
.� (3.14)

3.2  Solutions with the Modified F Expansion Method

We get N = 1 from Eq. 3.2 by applying the homogeneous balancing approach 
between U ′′ and U3. For N = 1, Eq. (2.6) becomes:

	
U(ψ) = a0 + a1F + b1

F
,� (3.15)
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where a0 and a1 are real constants. Inserting Eqs. (3.15) and (2.7) into Eq. (3.2) and 
adding up all the coefficients of different powers of Z(η) allows us to derive the sys-
tem of equations including a0, a1, and other parameters. By solving these equations, 
we arrive at the subsequent results:

	





a0 = ∆v,
a1 = 2∆λ,
m = ∆n

√
ϕ,

ϕ = v2 − 4χλ,

� (3.16)

where ∆ =
√

1−c2
√

2n
.

Using Eq. (3.15) into Eq. (3.2) along with the solution of Eq. (2.7), we obtain

	 Q = 0, R = 1, S = −1.

	
a0 = m

n
, a1 = −2m

n
, b1 = 0, c =

√
1 − 2m.� (3.17)

Put Eq. (3.17) into Eq. (3.15) along with the solution of Eq. (2.7), we get

	
u1 = −m

n
tanh

(
ψ

2

)
.� (3.18)

For Q = 0, R = −1, S = 1.

	
a0 = −m

n
, a1 = 2m

n
, b1 = 0, c = −

√
1 − 2m.

	
u2 = −m

n
coth

(
ψ

2

)
.� (3.19)

For Q = 1
2 , R = 0, S = − 1

2 .

	
a0 =0, a1 = 0, b1 = −m

n
, c =

√
1 − 2m. � (3.20)

	
u3 = − m

n

(
1

(coth(ψ) + csch(ψ))

)
. � (3.21)

For Q = 1, R = 0, S = −1.
Family-1

	
a0 =0, a1 = m

2n
, b1 = m

2n
, c = −

√
8 − m2

2
√

2
. � (3.22)
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u4 = m

2n

(
tanh(ψ) + 1

tanh(ψ)

)
. � (3.23)

Family-2

	
a0 =0, a1 = 0, b1 = −m

n
, c = −

√
2 − m2
√

2
. � (3.24)

	
u5 = − m

n

(
1

tanh(ψ)

)
. � (3.25)

For Q = S = 1
2 , R = 0.

	
a0 =0, a1, = 0, b1 = − im

n
, c =

√
1 + 2m2. � (3.26)

	
u6 = − im

n

(
1

(tan(ψ) + sec(ψ))

)
. � (3.27)

For Q = S = − 1
2 , R = 0.

	
a0 =0, a1, = 0, b1 = im

n
, c = −

√
1 + 2m2. � (3.28)

	
u7 = im

n

(
1

(sec(ψ) + tan(ψ))

)
. � (3.29)

For Q = S = −1, R = 0.

	
a0 =0, a1, = − m√

2n
, b1 = m√

2n
, c = −1

2
√

4 − m2. � (3.30)

	
u8 = − m√

2n

(
cot(ψ) − 1

cot(ψ)

)
. � (3.31)

For Q = 0, R = 0.

	
a0 =0, a1, = −

√
2S

√
1 − c2

n
, b1 = 0, m = 0. � (3.32)

	
u9 =2S

√
1 − c2

n(Sψ + ε)
. � (3.33)

For R = 0, S = 0.
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a0 =0, a1, = 0, b1 = −

√
2Q

√
1 − c2

n
, m = 0. � (3.34)

	
u10 =

√
2A

√
1 − c2

n(Qψ)
. � (3.35)

For S = 0.

	
a0 = − m

n
, a1, = 0, b1 = −2Qm

Rn
, c =

√
R2 − 2m2

R
. � (3.36)

	
u11 = − m

n

(
1 + 2Q

(eRψ − Q)

)
. � (3.37)

4  Qualitative Dynamics

Bifurcation is a phenomenon in dynamic systems where small changes in param-
eters lead to fundamental qualitative changes in the behavior of the system. This 
process often facilitates the emergence of new stable states, periodic orbits, or chaotic 
dynamics. Bifurcation theory provides information on the underlying mechanisms 
driving these abrupt transitions and enables the prediction of system behavior under 
different conditions. In this study, a comprehensive perspective on the bifurcation and 
phase diagrams of the proposed planner dynamic framework is presented. The sug-
gested methodology, known for its versatility, offers a robust tool for the qualitative 
analysis of nonlinear models. Within this framework, a broad set of trajectories can 
be identified, ranging from points to simple closed curves and various other geom-
etries. These trajectories represent diverse solution forms of Eq. (1.1) across different 
physical contexts.

Taking into account dU
dψ , the dynamic framework for the planner concerning Eq. 

(3.2) can be expressed as follows:

	





dU(ψ)
dψ

= V,

dV (ψ)
dψ

= G1U3(ψ) − G2U(ψ),
� (4.1)

where G1 = − n2

c2−1  and G2 = m2

1−c2 . The Hamiltonian function is obtained by apply-
ing the first integral to Eq. (4.1)

	
H(U, V ) = V 2

2
− G1U4

4
+ G2U2

2
= h,� (4.2)
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where h denotes the constant total energy of the system. To determine the equilibrium 
points, the following system of equations is solved:

	

{
V = 0,

G1U3(ψ) − G2U(ψ) = 0.
� (4.3)

The equilibrium points of Eq. (4.1) are determined by solving the system (4.3). This 
analysis reveals three potential equilibrium point scenarios, depending on the solu-
tions of the equations.

The first solution, U = 0, always represents an equilibrium point corresponding to 
a trivial state where the system remains at rest. This point is denoted as:

	 H1 = (0, 0).

The second type of solution arises from the quadratic equation G1U2 = G2, giving 
U = ±

√
G2
G1

.

The existence of these non-trivial equilibrium points depends on the sign of G2
G1

. 
When G1 and G2 share the same sign, two symmetric equilibrium points exist, given 
by:

	
Hi =

(
±

√
G2

G1
, 0

)
, (i = 2, 3).

These points may correspond to stable or unstable states, depending on the potential 
function’s nature. However, if G1 and G2 have opposite signs, G2

G1
 becomes negative, 

and no real non-trivial equilibrium points exist.

The Jacobian matrix of the structure described by Eq. (4.3) is expressed with the 
following determinant form:

	
J(U, V ) =

∣∣∣∣
0 1

3G1U2 − G2 0

∣∣∣∣ = G2 − 3G1U2.� (4.4)

The equilibrium points are classified based on the value of the Jacobian determinant 
J(U, V) as follows:

	● Saddle Points (J(U, V ) < 0): When the Jacobian determinant is negative, the 
equilibrium points exhibit saddle-like behavior. This means the system is unsta-
ble in some directions and stable in others.

	● Center Points (J(U, V ) > 0) 0)]]>: A positive Jacobian determinant corresponds 
to center points, where the system shows oscillatory or neutral stability, with tra-
jectories forming closed loops around the equilibrium.

	● Cuspid Points (J(U, V ) = 0): When the Jacobian determinant equals zero, the 
equilibrium points exhibit more complex nonlinear characteristics. Depending 
on the parameters G1 and G2, the dynamic behavior of the system is examined 
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in different regimes in terms of stable and unstable points, trajectory shapes, and 
transition behaviors as follows:

	 Case-1 By assigning specific parameter values m = 3, c = 2, and n = 3, we 
calculate G1 = −3 and G2 = −3. The system exhibits three equilibrium points: 
H1 = (0, 0), H2 =

(√
G2
G1

, 0
)

= (1, 0), and H3 =
(

−
√

G2
G1

, 0
)

= (−1, 0). 
The equilibrium point H1 = (0, 0) is classified as a saddle point because 
J(H1) < 0. In contrast, H2 = (1, 0) is identified as a center point since 
J(H2) > 0 . Similarly, H3 = (−1, 0) is also classified as a center point for 
J(H3) > 0 . These classifications are illustrated in Fig.1(a).

	 Case-2 Assigning specific values to the parameters m = 0; c = 2; n = 1, we ob-
tain G1 = −0.333 and G2 = 0. The system has a equilibrium point: H1 = (0, 0),  
For J(H1) = 0, the equilibrium point H1 = (0, 0) is classified as a cuspid point, 
as depicted in Fig.1(b).

	 Case-3 Assigning specific parameter values m = 3, c = 0.5, and n = 1, we com-
pute G1 = 1.333 and G2 = 12. The system exhibits three equilibrium points: 
H1 = (0, 0), H2 =

(√
G2
G1

, 0
)

= (3, 0), and H3 =
(

−
√

G2
G1

, 0
)

= (−3, 0). 
The equilibrium point H1 = (0, 0) is classified as a center since J(H1) > 0 . 
Meanwhile, H2 = (3, 0) is identified as a saddle point due to J(H2) < 0, and 
similarly, H3 = (−3, 0) is classified as a saddle point for J(H3) < 0. These clas-
sifications are illustrated in Fig.1(c).

5  Qualitative Dynamics Under Perturbation

The study of perturbed systems offers a comprehensive framework for exploring the 
intricate dynamics exhibited by nonlinear systems. This research employs advanced 
graphical methods, including 3D and 2D phase portraits, time series, and Poincaré 
sections, to systematically analyze the system’s behavior across both stable and cha-
otic regimes. Such visualization techniques are instrumental in capturing the underly-
ing dynamics of the system under varying conditions and in quantifying the influence 
of external perturbations. Notably, these analyses highlight the interplay between 
nonlinear structures and periodic forces, shedding light on their critical role in shap-
ing the system’s behavior. Within this framework, the following perturbed system is 
examined:

Fig. 1  Phase portrait of the system (4.1)
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



dU(ψ)
dψ

= V,

dV (ψ)
dψ

= G1U3(ψ) − G2U(ψ) + δ cos(σψ),
� (5.1)

where δ cos(σψ) represents perturbation term. δ and σ signify the amplitude and the 
frequency of the system, respectively. This system combines the effects of external 
periodic forces and nonlinear interactions. In this study, the phase portraits, time 
series, and Poincaré sections of the system are analyzed in detail, and equilibrium 
points, periodic behaviors, and chaotic regimes are evaluated based on parameters 
and initial conditions through graphical analyses.

Remark 1  Figure 2 investigates the system with the parameters G1 = −3, G2 = −3 
derived from c = 2, m = 3, n = 3, δ = 0.5, and σ = 1. The 2D and 3D phase dia-
grams shown in (a) and (b) illustrate the chaotic behavior of the system. Additionally, 
the time series in (c) and the Poincaré sections in (d) confirm that the system operates 
within a chaotic regime, with no evidence of quasi-periodic structures.

Fig. 2  The chaotic behaviors of system (5.1)
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Figure 3 examines the system with the parameters G1 = −3,G2 = −3, δ = 0.1, 
and σ = π. The 2D and 3D phase diagrams in (a) and (b) reveal chaotic dynamics, 
which are further supported by the time series in (c). The Poincaré sections in (d) 
demonstrates the absence of quasi-periodic structures, confirming that the system 
remains within a chaotic regime under these conditions.

Figure 4 presents the system with the parameters G1 = −3, G2 = −3, δ = 0.1, 
and σ = π

6 . The phase diagrams in (a) and (b) highlight the chaotic structure of the 
system. Furthermore, the time series in (c) and the Poincaré sections in (d) reinforce 
this chaotic behavior.

Figure 5 investigates the system with parameters G1 = 1.33, G2 = 12, derived 
from c = 0.5, m = 3; n = 1, δ = 1, and σ = π, which result in quasi-periodic struc-
tures. The 2D and 3D phase diagrams in (a) and (b) exhibit closed curves, indicating 
quasi-periodic dynamics. This behavior is further corroborated by the ordered pat-
terns observed in the time series in (c) and the Poincaré sections in (d).

Figure 6 analyzes the system with parameters G1 = 1.33, G2 = 12, δ = 1, and 
σ = π

6 . The 2D and 3D phase diagrams in (a) and (b) clearly demonstrate quasi-
periodic behavior. This observation is further supported by the time series in (c) and 
the regular patterns evident in the Poincaré sections in (d).

Fig. 3  The chaotic behaviors of system (5.1)
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Figure 7 explores the system with parameters G1 = 1.33, G2 = 12, δ = 7, and 
σ = 0.5. The 2D and 3D phase diagrams in (a) and (b) depict chaotic behavior, as 
evidenced by the lack of closed curves and the irregular trajectories. The time series 
in (c) shows irregular oscillations, which are indicative of chaotic dynamics. Addi-
tionally, the Poincaré sections in (d) exhibits a scattered distribution of points, further 
confirming that the system operates within a chaotic regime under these conditions.

Figure 8 examines the system with parameters G1 = 1.33, G2 = 12, δ = 7, and 
σ = 0.9. The 2D and 3D phase diagrams in (a) and (b), along with the time series 
in (c) and the Poincaré sections in (d), collectively demonstrate that the system is 
entirely chaotic under these conditions.

Remark 2  The bifurcation behavior of the system described by the system (5.1) is 
significantly influenced by the parameters σ and δ.

Effect of σ on the system dynamics. Figure 9 illustrates how the bifurcation 
patterns in the δ − r plane change for σ = 0.8, σ = 1, and σ = 1.2 while keeping 
G1 = −3 and G2 = −3. The results indicate that:

	● For σ = 0.8, the system exhibits quasi-periodic solutions for small δ values, tran-

Fig. 4  The chaotic behaviors of system (5.1)
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sitioning to chaos as δ increases.
	● For σ = 1, the chaotic behavior emerges at smaller δ values compared to σ = 0.8, 

with chaos dominating over a broader range.
	● For σ = 1.2, the system displays complex chaotic behavior over a wide range of 

δ, where periodic behavior is nearly absent.

Effect of δ on the system dynamics. Figure 10 presents the bifurcation patterns in 
the σ − r plane for different δ values. The observations are as follows:

	● For δ = 0.033, the system predominantly exhibits periodic behavior for small σ, 
while chaos emerges in a limited range as σ increases.

	● For δ = 0.33, the chaotic regime extends over a broader σ range, indicating the 
system’s increased sensitivity to external forces.

	● For δ = 0.91, the system demonstrates highly complex dynamics, with wide-
spread chaotic behavior and multiple solution branches forming at larger σ val-
ues.

These findings highlight the critical role of σ and δ in shaping the system’s bifur-
cation structure and dynamic transitions.

Fig. 5  The chaotic behaviors of system (5.1)
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6  Sensitivity Analysis

The sensitivity of systems to initial conditions plays a crucial role in understanding 
dynamic behaviors. Even minor variations in the initial values can lead to significant 
differences in the system’s behavior. This highlights that minor adjustments in initial 
conditions can have a substantial impact on the system’s long-term dynamics. In this 
section, the sensitivity analysis of the system under three different boundary condi-
tions is examined. Figure (11) illustrates the behaviors exhibited by the system under 
these distinct scenarios. The results clearly demonstrate how changes in external 
constraints or initial parameters influence the system’s trajectory and stability. This 
analysis underscores the critical role of boundary conditions and initial parameters in 
shaping the overall dynamic structure of the system.

7  Results and Discussion

Numerous studies have been carried out regarding the LGH equation. Baloch et al. 
[69] investigated analytical solutions of several nonlinear waves for the LGH equa-
tion. Ahmad et al. [70] studied the suggested model using two analytical techniques. 

Fig. 6  The chaotic behaviors of system (5.1)
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Iqbal et al. [71] investigated the optical soliton solution of the LGH equation using 
the auxiliary equation approach. Unal [72] investigated the analytical solutions of 
the LGH equation utilizing Jacobi elliptic functions. In this paper, we extract various 
soliton solutions for the proposed equation using two effective techniques. This sec-
tion employs contour plots and two- and three-dimensional visualizations to explain 
the obtained results in detail. Specific waveform solutions, such as kink, anti-kink, 
bell, anti-bell, periodic, and others, can be created from generic solutions by changing 
the values of the free parameters. The graphical portrayal of these solutions, which 
involve a range of arbitrary constants, draws attention to the rich physical phenomena 
and localized waves of the LGH equation for the proper selection of the correspond-
ing constants. The soliton solutions that have been found are kink and anti-kink-
shaped, hyperbolic, periodic, trigonometric, bright and dark, and periodic. There are 
some physical importance to these solutions. For instance, a dark soliton has less 
intensity than the background. They are not generated by a traditional pulse and in 
a continuous time beam, contain no energy. Periodic waves can also be classified 
as waves whose frequency and wavelength are established by a continuous pattern 
that repeats. The solution u3, represents 3D, 2D and contour profiles for the values 
of parameters n = 0.5, v = 1.5, λ = 1, m = 0.5, χ = 0.5, g = 5.5, h = 5.5, c = 3, 
which is anti-kink shaped soliton shown as in Fig. 12. For the parametric val-

Fig. 7  The chaotic behaviors of system (5.1)
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ues n = −5, v = 0.5, λ = −5, m = 0.5, χ = −0.5, g = −5, h = −0.5, c = 0.9, 
the 3D, 2D, and contour plots of the solution u4 illustrate the periodic soli-
ton with a small wavelength or large frequency, as seen in Fig. 13. For the solu-
tions u8 and u10, periodic soliton is displayed in Figs. 14 and 15 by considering, 
n = 0.5, v = −3.7, λ = 0.9, m = −0.5, χ = 5, g = 05, h = 0.05, c = 0.5, and n = 
− 0.5, v = −0.05, λ = 0.5, m = −0.5, χ = 0.5, g = 8, h = −0.05, c = 0.5, respec-

Fig. 9  The bifurcation behavior of the system (5.1) in the δ − r plane, with G1 = −3 and G2 = −3, 
is shown for different values of (a) σ = 0.8, (b) σ = 1, and (c) σ = 1.2

 

Fig. 8  The chaotic behaviors of system (5.1)
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tively. Fig. 16 illustrates the bell-shaped soliton solution u13, with parametric values 
of n = 0.005, v = 1.5, λ = 0.005, m = −5, χ = 0.05, g = 0.9, h = −0.5, c = 0.9
. The kink shaped soliton is depicted in in Fig. 17 for the solution u35, when 
n = 5, v = 1.5, λ = 5, m = 0.5, χ = −5, g = −0.9, h = −0.5, c = −0.9
. Figs. 18 and 19 illustrate bright faces of solutions for Eq. (3.18) and (3.19) for 
m = 1.5, n = 0.5, g = −5, h = 1.5, m = 1.5, n = 0.5, g = −5, h = 1.5, and m = 
1.5, n = −4.5, g = −15, h = −0.5, respectively. Fig. 21 represents anti-kink soli-
ton solution for the Eq. (3.25), when m = −0.9, n = 0.5, g = −0.5, h = 5. Fig. 22 
illustrates the kink-shaped soliton for solution of the Eq. (3.27), taking into account 

Fig. 11  Graph illustrating the sensitivity of the system to initial conditions under different boundary 
scenarios

 

Fig. 10  The bifurcation behavior of the system (5.1) in the σ − r plane, with G1 = −3 and G2 = −3
, is shown for different values of (a) δ = 0.033, (b) δ = 0.33, and (c) δ = 0.91
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Fig. 14  3D, contour and 2D plots of u8(x, t) visualizing to periodic wave soliton with 
n = 0.5, v = −3.7, λ = 0.9, m = −0.5, χ = 5, g = 05, h = 0.05, c = 0.5

 

Fig. 13  3D, contour and 2D plots of u4(x, t) visualizing to periodic wave soliton with 
n = −5, v = 0.5, λ = −5, m = 0.5, χ = −0.5, g = −5, h = −0.5, c = 0.9

 

Fig. 12  3D, contour and 2D plots of u3(x, t) visualizing to anti-kink wave soliton with 
n = 0.5, v = 1.5, λ = 1, m = 0.5, χ = 0.5, g = 5.5, h = 5.5, c = 3
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Fig. 17  3D, contour and 2D plots of u35(x, t) visualizing to kink wave soliton with 
n = 5, v = 1.5, λ = 5, m = 0.5, χ = −5, g = −0.9, h = −0.5, c = 0.9

 

Fig. 16  3D, contour and 2D plots of u13(x, t) visualizing to bell shaped soliton with 
n = 0.005, v = 1.5, λ = 0.005, m = −5, χ = 0.05, g = 0.9, h = −0.5, c = 0.9

 

Fig. 15  3D, contour and 2D plots of u10(x, t) visualizing to periodic wave soliton with 
n = −0.5, v = −0.05, λ = 0.5, m = −0.5, χ = 0.5, g = 8, h = −0.05, c = 0.5
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Fig. 20  3D, contour and 2D plots of Eq. (3.23), visualizing to dark-bright singular soliton with 
m = 4, n = 5, g = −0.05, h = 5

 

Fig. 19  3D, contour and 2D plots of Eq. (3.19) visualizing to multiple bright faces solitons with 
m = 1.5, n = −4.5, g = −15, h = −0.5

 

Fig. 18  3D, contour and 2D plots of Eq. (3.18) visualizing to multiple bright faces solitons with 
m = 1.5, n = 0.5, g = −5, h = 1.5, m = 1.5, n = 0.5, g = −5, h = 1.5
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m = 0.9, n = 0.5, g = 0.5, h = 5. Fig. 23 presents multiple bright faces of the solu-
tion for Eq. (3.37) for m = 0.9, n = −0.5, B = 0.5, A = −5.5.

8  Comparison Analysis

This section presents our recent discoveries alongside the contributions of several 
earlier researchers. While the model has been thoroughly examined in existing lit-
erature, our study offers new perspectives on its attributes and dynamics. Asjad et al. 
studied the LGH equation and obtained several soliton solutions using generalized 
projective Riccati method [73]. Faridi and AL-Qahatani investigated the same model 
utilizing Khater method [74]. Rizvi et al. studied the LGH equation with the help 
of Lie symmetry approach [75]. We present two tables for comparison. In Table 2, 
we compare our results obtained using modified F-expansion approach and the new 
extended direct algebraic approach. In Table 3, we compare our results with those 
reported in the [73].

Fig. 22  3D, contour and 2D plots of Eq. (3.27), visualizing to kink wave soliton with 
m = 0.9, n = 0.5, g = 0.5, h = 5

 

Fig. 21  3D, contour and 2D plots of Eq. (3.25), visualizing to anti-kink wave soliton with 
m = −0.9, n = 0.5, g = −0.5, h = 5
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9  Conclusions

In this paper, we have effectively used the modified F-expansion approach and the 
new extended direct algebraic approach to determine the new precise TWs of the 
LGH equation. As rational, hyperbolic, and trigonometric forms, numerous com-
pletely new exact solutions have been found. These techniques provide a systematic 
and dependable approach for addressing nonlinear fractional governing equations 
encountered in mathematical physics, as well as for uncovering new exact solutions. 
However, a limitation of these techniques is their ineffectiveness in scenarios where 
the highest derivative terms do not uniformly balance with the nonlinear terms. 
Consequently, our forthcoming research will aim to enhance the applicability of the 

Table 2  Comparison between modified F-expansion approach and the new extended direct algebraic 
approach
New extended direct algebraic method Modified F-expansion method
(i) It provides solutions in the form of rational, hyperbolic 
trigonometric, and trigonometric functions

(i) It also provides solutions in the form 
of rational, hyperbolic trigonometric, and 
trigonometric functions

(ii) It provides 37 solutions (ii) It provides 11 solutions
(iii) It provides periodic, bright, anti-kink, and kink type 
solutions

(iii) It provides bright faces, dark-bright 
singular, anti-kink, and kink type solutions

Table 3  Comparison analysis of our solutions with [73]
Solutions in [73] Our solutions
(i) Utilized the generalized projective Riccati method (i) Utilized modified F-expansion approach and 

the new extended direct algebraic approach
(ii) These solutions include trigonometric and hyper-
bolic trigonometric solutions

(ii) These solutions included rational, hyperbol-
ic trigonometric, and trigonometric solutions

(iii) Periodic wave solutions, including bright, dark, 
and kink type, are generated using the proposed 
method

(iii) Our research results in various solutions 
such as bell, anti-bell, periodic, kink, anti-kink, 
and many others

(iv) The sensitivity analysis has been presented (iv) We conducted an analysis of sensitivity, 
examined chaotic behavior, and performed 
bifurcation analysis

Fig. 23  3D, contour and 2D plots of Eq. (3.37), visualizing to multiple bright faces soliton with with 
m = 0.9, n = −0.5, R = 0.5, Q = −5.5
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methods, particularly for highly nonlinear models and those characterized by vari-
able coefficients and variable order fractional partial differential equations. By setting 
the parameters to a particular value under constrained conditions, various solutions 
to the LGH equation are shown in 3D, contour and 2D plots to describe the physical 
phenomena. With the aid of the computing program Mathematica, the algebraic cal-
culations and visual depictions of the derived solutions for different parameter values 
are given in this article. Furthermore, the study highlights the impact of the pertur-
bation term on the dynamic behavior of the system, as examined through 2D phase 
portraits, 3D visualizations, Poincaré sections, and time series. These methods effec-
tively reveal the transitions between periodic, quasi-periodic, and chaotic regimes, 
emphasizing the critical role of perturbations in shaping the system’s behavior. The 
graphical analyses also demonstrate the system’s sensitivity to initial conditions, 
showing how minor variations can lead to significant differences in the dynamics. 
These analyses provide deep insights into the system’s response under varying con-
ditions, showcasing the significance of nonlinear interactions and external periodic 
forces in driving complex chaotic dynamics.
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