
Chapter 6

Emittance Growth and Beam Loss

R. Carrigan, V. Lebedev, N. Mokhov, S. Nagaitsev, V. Shiltsev, G. Stancari,

D. Still, and A. Valishev

A wide range of diffusion and beam loss mechanisms were studied during the

Tevatron Run II commissioning and operations. Many of them were well known

[Coulomb scattering, residual gas and intrabeam scattering (IBS)] but required

substantial studies and deeper theoretical insights because of unique experimental

conditions and beam parameters.

6.1 Single and Multiple Scattering

Conventionally, multiple and single particle scattering in a storage ring are consid-

ered to be independent. Such an approach is simple and often yields sufficiently

accurate results. Nevertheless, there is a class of problems where such an approach

is not adequate and single and multiple scattering need to be considered together.

This can be achieved by solving an integro-differential equation for the particle

distribution function, which correctly treats particle Coulomb scattering as well as

the betatron motion. We start our consideration from the Fokker–Planck equation

describing the evolution of particle distribution due to multiple scattering, then we

consider multiple IBS, and finally we will move to a simultaneous treatment of

multiple and single Coulomb scattering, where we will consider two problems: the

beam scattering on the residual gas and an evolution of longitudinal particle

distribution in a hadron collider due to single and multiple IBS.
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6.1.1 Diffusion Equation in the Action-Phase Variables

Let f(x, θ, t) be a one-dimensional beam transverse phase-space distribution func-

tion at time t. In the presence of damping and diffusion the evolution of the function

f in a ring can be described by a Fokker–Planck equation:

∂f
∂t

þ v0θ
∂f
∂x

þ ∂
∂θ

κ x; tð Þxfð Þ ¼ ∂
∂θ

λ x; θ; tð Þθfð Þ þ 1

2

∂
∂θ

Dθ x; θ; tð Þ ∂f
∂θ

� �
: ð6:1Þ

Here the functions κ(x, t), λ(x, θ, t) and Dθ(x, θ, t) describe the focusing, damping,

and diffusion in the ring, and v0¼ βc is the average beam velocity. Making the

transition to the action-phase variables (I, ψ), assuming that the distribution func-

tion does not depend on the phase ψ , and performing averaging over the ring

circumference one obtains the general form of the Fokker–Planck equation for

nonlinear oscillator:

∂f
∂t

� ∂
∂I

λ Ið ÞIfð Þ ¼ ω 0ð Þ
2

∂
∂I

D Ið Þ
ω Ið Þ I

∂f
∂I

� �
: ð6:2Þ

Here λ(I) and D(I) are the damping rate and the diffusion averaged over the

betatron phase and the ring circumference, ω(I) is the betatron frequency, and the

action for small amplitude betatron oscillations is introduced as follows:

I ¼ 1

2
βxθ

2 þ 2αxxθ þ x2

βx
1þ ax

2
� �� �

: ð6:3Þ

In the case of three-dimensional motion the general form of Eq. (6.2) is:

∂f
∂t

�
X3
k¼1

∂
∂Ik

λk Ið ÞIkfð Þ ¼ 1

2

X3
k¼1

ωk 0ð Þ ∂
∂Ik

Dk Ið Þ
ωk Ið Þ Ik

∂f
∂Ik

� �
, I

¼ Ix; Iy, ; Iz
� �

, k ¼ x, y, z: ð6:4Þ

Note that Eqs. (6.2) and (6.4) conserve the number of particles.

In the case of linear focusing and damping, and amplitude independent diffusion

the functions κ(x, t), λ(x, θ, t) and Dθ(x, θ, t) do not depend on x and θ; and they are

directly related to the functions of Eq. (6.1) averaged over circumference (revolu-

tion time): λ¼hλ(t)it, D¼hβx(t)Dθ(t)it. That yields the following form of Fokker–

Planck equation:

∂f
∂t

� λ
∂
∂I

Ifð Þ ¼ D

2

∂
∂I

I
∂f
∂I

� �
: ð6:5Þ
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Multiplying Eq. (6.5) by I and integrating we obtain

d

dt
I �

ð1
0

I
∂f
∂t

dI ¼
ð1
0

I
∂
∂I

λIfð Þ þ 1

2

∂
∂I

DI
∂f
∂I

� �� �
dI ¼ �λI þ D

2
: ð6:6Þ

The replacement of action by the betatron amplitude a ¼ ffiffiffiffiffi
2I

p
converts the right-

hand side of Eq. (6.5) being proportional to the two-dimensional laplacian of f:

D

2

d

dI
I
df

dI

� �
¼ D

4
Δaf � D

4

1

a

d

da
a
df

da

� �
: ð6:7Þ

As an example of Eq. (6.5) application we will find the beam lifetime

corresponding to the evolution of particle distribution at the stationary stage

when all details of initial distribution are smeared out by diffusion and damping.1

For unlimited aperture and nonzero damping rate the beam life time is infinite and

the equilibrium distribution function is:

f I; tð Þ ¼ Ce�I=I0 , ð6:8Þ

where I0¼D/2λ is the average beam action. Further we assume that the aperture

limitation is important for one dimension only. Then the boundary condition is:

f0(Ib)¼ 0, where Ib determines the ring acceptance. Looking for a solution in the

following form:

f I; tð Þ ¼ C e�t=τf 0 Ið Þ, ð6:9Þ

and substituting it into Eq. (6.5) one obtains

f 0
0 0 þ 1

I
þ 1

I0

� �
f 0

0 þ 1

I I0
1þ 1

λτ

� �
f 0 ¼ 0: ð6:10Þ

where τ is the beam intensity lifetime and C is a constant. The substitutions ξ¼� I/I0
and a¼ 1+ 1/(λτ) reduce this equation to the equation of the confluent

hypergeometric function 1F1(a, b, ξ) with b¼ 1. Thus the solution (for α, λ> 0) is:

f 0 Ið Þ ¼ 1F 1þ 1

λτ
, 1, � I

I0

� �
: ð6:11Þ

1 This case describes well the beam lifetime in an electron synchrotron when the horizontal beam

emittance is set by equilibrium between synchrotron radiation (SR) damping and diffusion due to

SR. The vertical emittance is much smaller and therefore the beam loss due to diffusion in vertical

plane is negligible. It makes the problem being single dimensional.
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where τ is determined by the requirement that the first root is located at ξ¼� Ib/I0,
i.e., 1F1(1 + 1/(λτ), 1,� Ib/I0)¼ 0. In the practically interesting case of sufficiently

large aperture the numerical solution yields approximate equation for beam

lifetime:

τ � 0:612

λ
exp 0:812

Ib
I0

� �
, ð6:12Þ

which has an accuracy better than 2 % for 2:2 <
ffiffiffiffiffiffiffiffiffiffi
Ib=I0

p
< 8. In the absence of

damping the solution is:

f I; tð Þ ¼ C e�t=τJ0 μ0

ffiffiffiffi
I

Ib

r� �
, τ ¼ 8Ib

Dμ02
, μ0 ¼ 2:405 . . . , ð6:13Þ

where J0(x) is the Bessel function of zero order and μ0 is its first root.
In conclusion we will find the beam lifetime in the absence of cooling for the

case of equal aperture limitations and equal diffusions for both the horizontal and

vertical planes. We assume a round vacuum chamber, equal beta-functions and

sufficiently small momentum spread so that its contribution to the beam sizes could

be neglected. Then Eq. (6.4) can be rewritten in the following form:

∂f
∂t

¼ D

2

∂
∂Ix

Ix
∂f
∂Ix

� �
þ ∂
∂Iy

Iy
∂f
∂Iy

� �� �
, ð6:14Þ

with the boundary condition f 0 Ix; Iy
� �		

IxþIy¼Ib
¼ 0. Making transition to amplitudes,

ax ¼
ffiffiffiffiffiffi
2Ix

p
, ay ¼

ffiffiffiffiffiffi
2Iy

p� �
and using Eq. (6.7) we can rewrite Eq. (6.14) as

follows:

∂f
∂t

¼ D

4
Δ4 f , ð6:15Þ

where Δ4 denotes the laplacian in the four-dimensional phase space. An axial

symmetric solution can be presented as a function of single variable—the radius

in the four-dimensional space a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ ay2

p
. That yields:

∂f 0
∂t

¼ D

4

1

a3
d

da
a3

df 0
da

� �
: ð6:16Þ

Looking for solution in the following form f(a, t)¼C e� t/τf0(a)/a with boundary

condition f 0
ffiffiffiffiffiffiffi
2Ib

p� � ¼ 0 one obtains:

f I; tð Þ ¼ C
e�t=τffiffiffiffiffiffiffiffi
I=Ib

p J1 μ10

ffiffiffiffi
I

Ib

r� �
, τ ¼ 8Ib

Dμ102
, μ10 ¼ 3:832 . . . , ð6:17Þ
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where function J1(x) is the Bessel function of the first order, and μ10 is its first root.
Comparing Eqs. (6.13) and (6.17) one can see that the beam lifetime in the case of

two-dimensional aperture limitation with round vacuum chamber is �2.54 times

shorter than in the case of single dimensional aperture limitation.

6.1.2 Multiple IBS

IBS of charged particles in beams results in an exchange of energy between various

degrees of freedom resulting in an increase of average energy of particles in the beam

frame and an increase of the total beam emittance in 6D phase space. The total

Coulomb cross section of a two-particle scattering in vacuum diverges; however, it

has a finite value for collisions in plasma (or beam) due to field screening by other

particles [1] or finite beamdimensions. Usually two scattering regimes are considered:

(1) single scattering, when a rare single collision produces a large change of particle

momentum (the Touschek effect), and (2) multiple scattering, whenmultiple frequent

collisions cause diffusion. The first phenomenon is usually responsible for the creation

of distribution tails and the beam loss in electron machines, while the second one for

changes in the distribution core. Such separation is useful in many applications. It

usually represents a good approximation for electron synchrotrons where the RF

bucket length is much larger than the bunch length. However there are cases when it

fails to deliver an accurate result. In particular it cannot be used to compute the beam

lifetime in Tevatron where particles fill the entire RF bucket.

The IBS in accelerators is already a rather well-understood subject. The first

decisive published work appears to be that of Piwinski [2], followed by Bjorken and

Mtingwa [3]. These two earlier works were both carried out from first principles of

two-body Coulomb collisions and largely ignored multiple scattering prior works

on Coulomb scattering in plasma [4, 5] and astrophysics [6]. In what follows we

re-derive the results of [3] using the Landau kinetic equation [4]. The new theoret-

ical results include: (1) closed-form IBS rate expressions using symmetric elliptic

integrals, (2) new IBS expressions for beams with coupled betatron motion and the

vertical dispersion, and (3) a theoretical approach that combines the small and large

angle Coulomb scattering. These new results are then compared with experimental

measurements in several Fermilab machines.

Multiple Scattering in Single Component Plasma

Consider spatially homogeneous non-relativistic one-component plasma. The evo-

lution of the velocity distribution function, f(vx, vy, vz), in such plasma is described

by the Landau kinetic equation [4]:

df

dt
¼ �2πnr20c

4Lc
∂
∂vi

ð
f
∂f

0

∂v0
j

� f
0 ∂f
∂vj

 !
ωijd

3v
0
, ð6:18Þ
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where

ωij ¼
v� v

0� �2
δij � vi � v

0
i

� �
vj � v

0
j


 �
v� v

0j j3 , ð6:19Þð
f vð Þd3v ¼ 1, ð6:20Þ

r0 is the particle classical radius, n is the plasma density, c is the speed of light,

Lc¼ ln(ρmax/ρmin) is the Coulomb logarithm,

ρmin ¼ r0c
2=v2 ,

ρmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2=4πnr0c2

q
,

v2 ¼ σ2vx þ σ2vy þ σ2vz, ð6:21Þ

and σvi �
ffiffiffiffiffiffi
vi2

q
, i ¼ x; y; zð Þ are the rms velocity spreads. Equation (6.18) is obtained

in the logarithmic approximation and is justified when ln(ρmax/ρmin)� 1, where the

plasma perturbation theory can be used. The Landau kinetic equation (6.18) is a

nonlinear second-order integro-differential equation on the unknown function f,
which is assumed to be nonnegative and integrable together with its moments up to

order 2. The general time-dependent solution of this equation is not known. However,

one can verify by inspection that the stationary solution of Eq. (6.18) is any Maxwel-

lian velocity distribution function. It can be also easily checked that the following

quantities are conserved: ð
f d3v,

ð
fvd3v, and

1

2

ð
f vj j2d3v, ð6:22Þ

corresponding respectively to the spatial density, momentum, and kinetic energy of

plasma. The symmetric form of Eq. (6.18) can be easily rewritten in a Fokker–

Planck form:

df

dt
¼ � ∂

∂vi
Fifð Þ þ 1

2

∂
∂vi

Dij
∂f
∂vj

� �
, ð6:23Þ

where

Fi vð Þ ¼ �4πnr20c
4Lc

ð
f v

0

 � ui

uj j3d
3v

0
,

Dij ¼ 4πnr20c
4Lc

ð
f v

0

 � u2δij � uiuj

uj j3 d3v
0
,

u ¼ v� v
0
,

ð6:24Þ

thus demonstrating that the Landau kinetic equation includes both the dynamic

friction and the diffusion.

192 R. Carrigan et al.



Let us assume a general Gaussian velocity distribution. By appropriate rotation

of coordinate frame it can be reduced to the three-temperature distribution function

f ¼ 1

2πð Þ3=2σvxσvyσvz
exp � 1

2

v2x
σ2vx

þ v2y
σ2vy

þ v2z
σ2vz

 ! !
: ð6:25Þ

Then let us calculate the growth rate for the second moments of the distribution

function

Σij ¼
ð
f vivjd

3v: ð6:26Þ

First, it is clear from symmetry of Eq. (6.25) that only the diagonal elements of Σ
are nonzero, Σ¼ diag(σ2vx, σ

2
vy, σ

2
vz). Second, using Eq. (6.18) we can find the rate of

change of these second order moments due to Coulomb scattering in plasma

d

dt
Σij ¼

ð
∂f
∂t

vivjd
3v: ð6:27Þ

The result describes the rate of energy exchange between degrees of freedom in

plasma:

dΣ
dt

¼ 2πð Þ3=2nr02c4Lcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2vx þ σ2vy þ σ2vz

q Ψ σvx; σvy; σvz
� �

0 0

0 Ψ σvy; σvz; σvx
� �

0

0 0 Ψ σvz; σvx; σvy
� �

0@ 1A:

ð6:28Þ

The function Ψ (x, y, z) can be expressed [7] through the symmetric elliptic

integral of the second kind, RD(x, y, z), so that:

Ψ x; y; zð Þ ¼
ffiffiffi
2

p
r

3π
y2RD z2; x2; y2

� �þz2RD x2; y2; z2
� �� 2x2RD y2; z2; x2

� ���
, ð6:29Þ

RD u; v;wð Þ ¼ 3

2

ð1
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ uð Þ tþ vð Þ tþ wð Þ3

q ð6:30Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; x, y, z � 0. An algorithm for fast numerical evaluation

of RD(u, v,w) is discussed in [7]. The function Ψ (x, y, z) is chosen such that it

depends on the ratios of its variables but not on r. It is symmetric with respect

to the variables y and z, and is normalized such that Ψ (0, 1, 1)¼ 1. The energy

conservation yields: Ψ 1; 0; 1ð Þ ¼ Ψ 1; 1; 0ð Þ ¼ � 1
2

and Ψ (x, y, z) +Ψ (y, z, x) +

Ψ (z, x, y)¼ 0. And in a thermal equilibrium, Ψ (1, 1, 1)¼ 0. In a case of two equal
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temperatures, the temperature relaxation rate given by (6.28) is identical to that

given in [8] and can be expressed in terms of elementary functions:

Ψ x; y; yð Þ ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2y2

p
πy2

F x2; y2
� �

y2 þ 2x2
� 
� 2x

� �
, ð6:31Þ

where

F u; vð Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� uð Þ3

q vacos

ffiffiffi
u

v

s0@ 1A� ffiffiffi
u

p ffiffiffiffiffiffiffiffiffiffiffi
v� u

p
0@ 1A, u < v,

2

3
ffiffiffi
v

p , u ¼ v,

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u� vð Þ3

q vacosh

ffiffiffi
u

v

s0@ 1A� ffiffiffi
u

p ffiffiffiffiffiffiffiffiffiffiffi
u� v

p
0@ 1A, u > v:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð6:32Þ

Figure 6.1 shows the function Ψ (x, 1, 1) for x from 0 to 10. If one of the

temperatures is zero, a very useful approximation (with a ~0.5 % accuracy) was

obtained in [9]:

Ψ 0; x; yð Þ � 1þ
ffiffiffi
2

p

π
ln

x2 þ y2

2xy

� �
� 0:055

x2 � y2

x2 þ y2

� �2

: ð6:33Þ

Note that Eq. (6.28) is not self-consistent; i.e., it implies that the distribution

function remains Gaussian; however, the diffusion and the friction due to multiple

scattering does not allow for the beam distribution to remain Gaussian during the

process of temperature exchange until it reaches the thermal equilibrium and the

distribution becomes Maxwellian. Additionally, the single large-angle scattering

(not considered in this section) creates non-Gaussian tails. However deviations

from the Gaussian distribution are comparatively small and Eq. (6.28) represents a

good approximation in most practical cases. In particular, it describes well the

temperature relaxation in the course of electron beam transport on the case of

non-magnetized electron cooling.

0 2 4 6 8 102-

1-

0

1

Ψ (x,1,1)  

x

Fig. 6.1 The function

Ψ (x, 1, 1) for two equal

temperatures
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Multiple Scattering (IBS) in Accelerators

Although the beam focusing and dispersion effects in accelerators significantly

complicate computation of IBS, they do not change the essence of the process.

However, the time-dependent nature of transverse focusing results in a continuous

growth of the 6-D beam emittance [2, 3]. In difference to plasma where the energy

is conserved the binary collisions do not conserve energy in the beam frame

resulting in unlimited emittance growth supported by energy transfer from the

longitudinal beam motion (with nearly infinite reservoir of energy) to the internal

particle motion in the beam frame (BF). The calculations of the IBS rates in

accelerators will proceed in the following manner. First, one can verify that for

the typical parameters at the Tevatron complex, the beam velocity spread in the BF

is far from being relativistic2 and the particle collision time, ρmax/v, is much smaller

than the period of betatron oscillations in the BF. This implies that the results of the

previous section can be used in each location and then averaged over the entire

length of the accelerator to obtain the overall IBS rates. Second, we will make an

assumption that at each location of the accelerator the distribution function, f(v, r, t),
in the BF, is Gaussian in the 6D phase space. Third, we will calculate the growth

rates in the BF using Eq. (6.28). And finally, we will convert these rates into the

laboratory frame (LF) emittance growth rates.

Generalizing the Landau kinetic equation [see Eq. (6.23)] for a spatially

non-homogeneous distribution function in the BF one obtains:

df

dt
¼ �2πNr20c

4Lc
∂
∂vi

ð
f
∂f

0

∂v
0
j

� f
0 ∂f
∂vj

 !
ωijd

3v
0
d3r

0
δ r

! � r
!0� �

, ð6:34Þ

where N is the number of particles per bunch, the distribution function is normal-

ized to 1 ð
f v; r; tð Þd3vd3r ¼ 1, ð6:35Þ

and we assume that in the absence of collisions the beam is in the equilibrium state,

i.e., ∂f/∂t¼ 0. The same as above we choose the initial distribution being Gaussian:

f v; rð Þ ¼
ffiffiffiffiffiffi
Ξj jp

8π3
exp �XTΞX
� �

, ð6:36Þ

where XT¼ (x, vx, y, vy, z, vz), and Ξ is a symmetric positively defined 6� 6 matrix

determined by ring Twiss parameters and mode emittances of the beam

2Actually this condition is satisfied for all circular accelerators build to this time with exception of

LEP presenting a weakly relativistic case.
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(see Chap. 2). By definition its determinant is the squared product of inversed mode

emittances, |Ξ|� det(|Ξ|)¼ 1/(ε1ε2ε3)
2.

Let us define the second moments of the distribution function (6.36) in the BF:

Σij ¼
ð
f v; rð Þvivjd3vd3r,

Kij ¼
ð
f v; rð Þrivjd3vd3r,

Λij ¼
ð
f v; rð Þrirjd3vd3r:

ð6:37Þ

Similar to Eq. (6.27) let us find the rate of change of these moments by using the

Landau kinetic equation (6.34) for the distribution function (6.36). Simple integra-

tion immediately yields3

dK

dt
¼ dΛ

dt
¼ 0: ð6:38Þ

To calculate the rate for elements of matrix Σ we will introduce the rotation

matrix T, reducing Σ to its diagonal form

TTΣT ¼
σ21 0 0

0 σ22 0

0 0 σ23

0@ 1A, ð6:39Þ

and the matrix function ΨIBS(T
TΣT) such that

ΨIBS TTΣT
� � ¼ Ψ σ1; σ2; σ3ð Þ 0 0

0 Ψ σ2; σ3; σ1ð Þ 0

0 0 Ψ σ3; σ1; σ2ð Þ

0@ 1A, ð6:40Þ

with Ψ (x, y, z) given by Eq. (6.29).

Similar to Eq. (6.28) one can now calculate the rate for matrix Σ due to the IBS

in the beam frame in the absence of betatron and synchrotron oscillations:

dΣ
dt

¼ Nr0
2c4Lc

4
ffiffiffi
2

p
a1a2a3

ffiffiffiffiffiffiffiffiffiffiffiffi
Tr Σð Þp TΨIBS TTΣT

� �
TT, ð6:41Þ

where a1a2 and a3 are the rms sizes of 3D bunch ellipsoid (principle rms beam

dimensions). We will now convert this rate to the laboratory frame and calculate the

3Note that at this point we consider only variations of f related to the scattering. Effects of betatron
motion will be accounted at the next stage of calculations.
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emittance growth rates. For accelerators with linear optics, the bunch distribution

(6.36) is defined in the LF as:

F r; θð Þ ¼ 1

2πð Þ3ε1ε2ε3
exp � I1

ε1
� I2
ε2

� I3
ε3

� �
, ð6:42Þ

where r and θ are the LF canonical coordinates and momenta, Ik are the particle’s
action variables, and εk are the mode emittances of the beam. The mode emittances

are defined such that:

εk ¼
ð
IkF r; θð Þd3θd3r: ð6:43Þ

For a given particle the action variables are bi-linear forms of coordinates and

momenta:

Ik ¼ Bk
ijθiθj þ Ck

ijθirj þ Qk
ijrirj, ð6:44Þ

where B, C, and Q are real 3� 3 matrices, defined by the accelerator lattice at each

location, and summation on the repeated subscripts is implied. It is obvious that

(6.36) implies,

�ln Fð Þ ¼
X
k

Ik
εk

¼ 1

2
Θijθiθj þ 1

2
Hijθirj þ 1

2
Mijrirj, ð6:45Þ

where Θ, Η, and M are real 3� 3 matrices, uniquely defined by the lattice at each

accelerator location and related to BF matrices (6.37). We can now calculate the

emittance growth rates as

dεk
dt

¼
ð
Ik
dF

dt
d3θd3r

� �
s

, ð6:46Þ

where his implies averaging over the accelerator circumference. Using (6.40) and

(6.41) we obtain

dεk
dt

¼ Nr20c
2

4
ffiffiffi
2

p
β2γ4

Lc
X3
i, j¼1

Bk
ijRij

a1a2a3
ffiffiffiffiffiffiffiffiffiffiffiffi
Tr Σð Þp* +

s

, ð6:47Þ

where β and γ are the usual relativistic Lorentz factors of the bunch in the lab frame,

ai are the principle rms bunch sizes in the laboratory frame, and the 3� 3 matrix

R is given by the following expression:

R ¼ G�1
� �T

TΨIBS TTΣT
� �

TTG�1: ð6:48Þ
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The BF matrix Σ is related to the LF matrix Θ as follows:

Σ ¼ βγcð Þ2GTΘ�1G, ð6:49Þ

whereG¼ diag(1, 1, 1/γ). Equation (6.47) is the most general IBS emittance growth

rate for an arbitrary Gaussian 6D distribution function in a linear accelerator lattice.

Let us now discuss several specific cases. As a first example consider an

accelerator lattice with uncoupled x� y betatron motion. However we will account

that both dispersions can be nonzero. Then,

Θ ¼
βx=εx 0 �βxΦx=εx
0 βy=εy �βyΦy=εy

�βxΦx=εx �βyΦy=εy Θ33

0@ 1A, ð6:50Þ

where Θ33 ¼ σp�2 þ Ax

εx
þ Ay

εy
, Φx ¼ D

0
x þ αxDx

βx
, Φy ¼ D

0
y þ αyDy

βy
,

Ax ¼ 1
βx

Dx
2 þ βxΦxð Þ2


 �
, Ay ¼ 1

βy
Dy

2 þ βyΦy

� �2
 �
; FD ¼ 1þ Dx

2σp2

εxβx
þ Dy

2σp2

εyβy
;

βx, βy, αx, and αy, are the beta-functions and their negative half derivatives; Dx,

Dy, D
0
x, and D

0
y are the dispersions and their derivatives; εx, εy and εz¼ σzσp are the

non-normalized transverse and longitudinal rms beam emittances; σz is the rms

bunch length and σp is the relative rms momentum spread. In this case the Eq. (6.47)

becomes:

dεk
dt

¼ Nr0
2c2

4
ffiffiffi
2

p
σzβ

2γ4
ffiffiffiffiffiffiffiffi
εxεy

p
Lc
X3
i, j¼1

B k
ijRijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βxβyFDTr Σð Þ
q* +

s

, ð6:51Þ

with

Bx ¼
βx 0 �Φxβx
0 0 0

�Φxβx 0 Ax

0B@
1CA,By ¼

0 0 0

0 βy �Φyβy
0 �Φyβy Ay

0B@
1CA,

Bz ¼
0 0 0

0 0 0

0 0 βz

0B@
1CA,

ð6:52Þ

where βz¼ σz/σp. The Coulomb logarithm is computed similar to the plasma case

with the following correction affecting the value of maximum impact parameter in

Eq. (6.21):

ρmax ¼ min σmin, γ σz,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr Σð Þ
4πnr0c2

s !
, ð6:53Þ

198 R. Carrigan et al.



where 2σmin
2 ¼ σx2 þ σy2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σx2 � σy2
� �2 þ 4Dx

2Dy
2σp4

q
, σx

2¼ εxβx +Dx
2σp

2,

and σy
2¼ εyβy +Dy

2σp
2. If one of the dispersions is equal to zero, then

σmin¼min(σx, σy).
The above equations can be used for a coasting beam with following substitu-

tions: σz ! L= 2
ffiffiffi
π

pð Þ, Bz¼ diag(0, 0, 2) implying that dε3=dt ! dσp2=dt. Note that
the factor of 2 in matrix Bz reflects the absence of the synchrotron motion, taken

into account in Eq. (6.51).

In many practical applications the longitudinal temperature in the BF is

much smaller than the transverse one (θ||/γ� θ⊥) and the vertical dispersion

can be neglected. The Eq. (6.51) (bunched beam) then can be reduced to the

following:

d

dt

εx
εy
σp2

0@ 1A ¼ Nr0
2c

4
ffiffiffi
2

p
β3γ3σz

Lc
σxσyθ⊥

Ψ x θx; θy
� �

Ψ y θx; θy
� �

Ψ 0; θx; θy
� �

0@ 1A* +
s

, ð6:54Þ

where Ψ y(θy, θx)¼Ψ (θy, θx, 0)βy/γ
2, Ψ x(θx, θy)¼Ψ (0, θx, θy)Ax +Ψ (θx, θy, 0)βx/γ

2,

θ⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θx

2 þ θy
2

q
, θx

2¼ εx/βx(1 + σp
2(Φxβx)

2/σx
2), θy

2¼ εy/βy. For an ultra-

relativistic machine, γ�Qx, the terms with βx,y/γ
2 are small and can be neglected.

Similar to the suppression of IBS in an electron beam by magnetic field the

multiple IBS is suppressed if σp becomes so small that the collision time becomes

comparable to the betatron frequency [10]. Such conditions can be achieved in the

case of deep beam cooling.

6.1.3 Single and Multiple Scattering at the Residual Gas

It was already mentioned in the previous section that the Coulomb scattering

creates non-Gaussian tails. In this section we will consider how Coulomb scattering

can be treated so that both single and multiple scattering are correctly accounted.

The diffusion coefficient for particle scattering in the medium is well known. For

scattering in a ring it can be expressed in the following form:

D ¼ 4πcβ
r0

γβ2

� �2X
i

Zi Zi þ 1ð ÞLi
c

þ
ni sð Þβx sð Þ ds

L
, ð6:55Þ

where the summing is performed over partial densities of residual gas, Zi is their
charges, and the integration over ring circumference averages the gas density, ni(s),
weighted by the horizontal beta-function, βx(s). For simplicity of equation we are

considering an evolution of particle distribution in the horizontal plane. The same

expressions are applicable to the vertical plane. For the high energy scattering

(β> αFSZi, αFS� 1/137) the Coulomb logarithm is:
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Li
c ¼ ln

θ i
max

θ i
min

� �
, θ i

min � αFSZi
1=3 mec

p
, θ i

max � min
274

Ai
1=3

mec

p
, θb

� �
, ð6:56Þ

where p is the particles momentum and the minimum and maximum angles are

determined by the field screening due to atomic electrons and by the diffraction on

nuclei.

The solutions of Eq. (6.5) with diffusion of Eq. (6.55) are commonly used to

describe the emittance growth in particle accelerators due to various random

diffusion processes, including multiple elastic Coulomb scattering. This equa-

tion describes the core of the beam distribution well, but completely fails to

describe its tails in the case of Coulomb scattering. Far-away tails can be

sufficiently well estimated using a single scattering approximation, but in

many applications a prediction of tails behavior in the vicinity of the core is

required. It is possible to computer-model the distribution function by Monte

Carlo methods. However, we found it beneficial to advance the analytical

treatment of the Coulomb scattering process to a point, where, for a given

residual gas pressure, the distribution function can be obtained by solving an

integro-differential equation, proposed below. In what follows we consider

Coulomb scattering on the residual gas, but the theory can be easily adapted to

other Coulomb scattering phenomena.

To simplify formulas we omit the summation over different gas species below.

Neglecting the nuclear form-factor, one can write the differential elastic small angle

cross section in the following form [11]:

dσ

dΩ
� 4Z Z þ 1ð Þ r0

γβ2

� �2
1

θ2x þ θ2y þ θ2min


 �2 , ð6:57Þ

After integrating this over θy one obtains the one-dimensional cross section

dσ

dθx
� 2πZ Z þ 1ð Þ r0

γβ2

� �2
1

θ2x þ θ2min

� �3=2 ð6:58Þ

and the total cross section

σtot � 4πZ2

θ2min

r0

γβ2

� �2

: ð6:59Þ

For a combined treatment of both the small- and large-angle elastic scattering

let us write the right-hand side of Eq. (6.5) in a general form of the collision

integral [3]:
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∂f
∂t

� λ
∂ Ifð Þ
∂I

¼
ð1
�1

dσ

dθx

						
θ�θ

0ð Þ
� σtotδ θ � θ

0

 �0B@

1CAnvo f δ x� x
0


 �
dθ

0
dx

0
* +

ψ , s

¼
ð1
�1

2πZ Z þ 1ð Þ r0

γβ2

0@ 1A2

1

θx � θx
0� �þ θ2min

� �3=2 � σtot; δ θ � θ
0


 �0B@
1CA*

nvof δ x� x
0


 �
dθ

0
dx

0
�

ψ , s

, ð6:60Þ

where δ(. . .) is the Dirac delta-function, and averaging is performed over the

betatron phase, ψ , and machine circumference. Expressing particle angles and

coordinates through the action-phase variables, (I, ψ), one obtains

∂f
∂t

� λ
∂
∂I

Ifð Þ ¼
ðIb
0

W I; I
0


 �
f I

0
; t


 �
dI

0
, I < Ib, ð6:61Þ

where Ib is the ring acceptance, and we introduced a scattering kernel, W(I, I ’),

W I; I
0


 �
¼ nvo

ð1
�1

dσ

dθx

				
θ�θ

0ð Þ
� σtotδ θ � θ

0

 � !

δ x� x
0


 �
dφ

0 dφ

2π

* +
s

: ð6:62Þ

Neglecting θmin in the cross section (6.58), denoting

B ¼ 4πv0
rp

γ0β
2
0

 !2

Z Z þ 1ð Þ
þ
n sð Þβ sð Þ ds

L
, ð6:63Þ

and temporally omitting the term with σtotδ(θ� θ0) one obtains

W I; I
0


 �
¼ B

16π

ð2π
0

dφ

ð2π
0

dφ
0 δ

ffiffi
I

p
cosφ�

ffiffiffi
I
0p
cosφ

0

 �
ffiffi
I

p
sinφ�

ffiffiffi
I
0p
sinφ0

			 			3 : ð6:64Þ

A lengthy integration yields4

4Method of the integration can be found below in the computation of similar integral for intra-

beam scattering [see details further down Eq. (6.80)]. Note also that the Kernel (6.66) can be used

without δ-function [like in Eq. (6.65)] in alternative form of integro-differential equation:

∂f=∂t� λ∂ Ifð Þ=∂I ¼
ðIb
0

W I; I
0


 �
f I

0
; t


 �
� f I; tð Þ


 �
dI

0
.
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W I; I
0


 �
¼ B

4

I þ I
0

I � I
0		 		3 : ð6:65Þ

Neglecting θmin in our transition from Eq. (6.60) to Eq. (6.64) causes divergence

of the integral (6.65) at I� I0, when the scattering angle is small. Instead of

performing the exact integration using Eq. (6.58) (which is already an approxima-

tion), one can eliminate this divergence by modifying the kernel of Eq. (6.65)

similar to the method used to limit the divergence in Eq. (6.57). Combining

Eqs. (6.60) and (6.65) one obtains the kernel:

W I; I
0


 �
¼ B

4

I þ I
0 þ Imin=2

I � I
0� �2 þ I þ I

0� �
Imin þ I2min=4


 �3=2 � 2

Imin

δ I � I
0


 �0B@
1CA,

ð6:66Þ

where to find the coefficient in front of δ-function we used the law of particle

conservation which requires thatð1
0

W I; I
0


 �
dI

0 ¼ 0: ð6:67Þ

The divergence in Eq. (6.65) was eliminated artificially by adding terms

containing Imin in a manner similar to θmin in Eq. (6.57). Thus, although the new

kernel (6.66) is not exact, it, however, has the correct asymptotic. It is symmetric

with respect to I and I ’ as it can be seen from its definition (6.64). At small

scattering angles it has the accuracy similar to Eq. (6.5) but it correctly accounts

for single and multiple scatterings. Note that the form of the kernel, W(I, I ’),
assumes that the range of beam particle angles is smaller than the maximum

scattering angle θmax, which is well justified in most practical cases. Otherwise

θmax has to be explicitly taken into account in Eq. (6.57).

The accelerator aperture is always finite. Therefore, the upper limit in the

integral of Eq. (6.65) should be replaced with the boundary action value, Ib. This
also yields the boundary condition for the distribution function, f(Ib, t)¼ 0.

It is now quite trivial to obtain a Fokker–Planck equation from Eq. (6.61) by

expanding the function f in series at I ’¼ I, f I
0
; t

� � � f I; tð Þ þ f
0
I; tð Þ I

0 � I
� �

þ 1
2
f
00
I; tð Þ I

0 � I
� �2

, and integrating to Ib ¼ βθ2max, where β is the average ring

beta-function. The integration yields:

∂f
∂t

� λ
∂
∂I

Ifð Þ � B

4
ln

Imax

Imin

� �
∂
∂I

I
∂f
∂I

� �
: ð6:68Þ

Recalling that ln(Imax/Imin)¼ 2Lc we arrive to Eq. (6.5) with diffusion of

Eq. (6.55).
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Normally the difference between the maximum and minimum impact parame-

ters is many orders of magnitude. It makes it impossible to solve Eq. (6.61) directly.

However considered above diffusion model allows one to create an effective

numerical algorithm which solves for the distribution function evolution under

single and multiple scattering. For a numerical solution we split the total range of

the action variable, [0, Ib], into N equal size cells,ΔI¼ Ib/N. Then, Eq. (6.61) can be
rewritten as

δf n ¼
δt

ΔI
λ
f nþ1Inþ1 � f n�1In�1

2
þ
XN�1

m¼0

eW n;mð Þf m
 !

, In ¼ nΔI: ð6:69Þ

Taking into account that the cell size is much larger than the minimum action,

Imin, we can write the probability of a particle exchange for two distant cells

eW n;mð Þ ¼ B

4

nþ m

n� mj j3 , n 6¼ m, m	 1: ð6:70Þ

To find the probability of the particle exchange for nearby cells we use diffusion

equation. It yields:

eW n, n	 1ð Þ ¼ BLc
2

n	 1

2

� �
: ð6:71Þ

The probability eW n; nð Þ is determined by the particle conservation so that

X1
m¼0

eW n;mð Þ ¼ 0 : ð6:72Þ

The index m in this sum is running to infinity. It takes into account that a particle

can be scattered outside of the accelerator aperture. Consequently, the particle

number is not conserved in a finite aperture of a ring.

6.1.4 Single and Multiple Scattering for Longitudinal Degree
of Freedom in Hadron Colliders

The single IBS scattering becomes important when there is a large difference

between rms velocities of different degrees of freedom in the BF. In this case a

single scattering can result in a momentum transfer significantly exceeding the rms

value of the coldest degree of freedom thus creating non-Gaussian tails and particle

loss. In ultra-relativistic colliders and storage rings the longitudinal momentum

spread in the beam frame, Δp0
jj ¼Δp||/γ, is much smaller than the transverse one.
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In this case a single scattering with large momentum transfer can result in that both

particles scatter out of longitudinal machine acceptance. For the case when the

longitudinal temperature is much smaller than the transverse one it is called the

Touschek effect. It was first investigated in electron storage rings for a flat beam

and non-relativistic energies in the BF [12, 13]. The radiation damping in electron

synchrotrons typically results in the rms momentum spread being much smaller

than the RF bucket height. That allows one to consider single and multiple scatter-

ing separately resulting in a simple treatment of the single IBS developed in

[13]. However this approximation is usually not valid in hadron colliders where

initially the beam is usually well inside of the RF bucket and the beam loss is

dominated by single scattering; but shortly later, the multiple scattering results in

the beam distribution reaching the RF bucket boundary leading to domination of

multiple scattering in the particle loss.

As it was already pointed out the considered above model of IBS assumes that the

beam stays Gaussian in the course of its distribution evolution and the focusing is

linear. These conditions are satisfied sufficiently well for transverse degrees of free-

dom. However such approximation is quite coarse for the longitudinal degree of

freedom if the bunch length is comparable to the RF bucket length. In further consid-

eration we assume that the longitudinal momentum spread in the BF is much smaller

than the transverse one (σp/γ� θ⊥); that the transverse distributions are Gaussian and
do not depend on the longitudinal action; and we also take into account that the

longitudinal motion is nonlinear and is described by dimensionless Hamiltonian:

H ¼ p̂ 2

2
þ U ϕð Þ �������!

Single

harmonic RF p̂ 2

2
þ 2Ωs

2 sin
ϕ

2

� �2

, ð6:73Þ

where Ωs is the small amplitude synchrotron frequency.

In the case when multiple scattering is only accounted the evolution of longitu-

dinal distribution and the particle loss from the RF bucket can be described by

Eq. (6.2) with λ¼ 0:

∂f
∂t

¼ 1

2

∂
∂I

D				 Ið Þ
ω Ið Þ I

∂f
∂I

0@ 1A: ð6:74Þ

Here in comparison to Eq. (6.2) we redefined diffusion coefficient so thatD||(ω)¼ω
(0)D(ω). It simplifies formulas and looks more natural for description of diffusion

in the longitudinal motion. To find D||(ω) we will follow the following procedure.

As one can see from Eq. (6.73) a momentum change δp̂ results in an energy change:

δH ¼ p̂ δp̂ . Taking into account that dH¼ω(I) dI we obtain:

d

dt
δI2 ¼ p̂ 2

ω Ið Þ2
d

dt
δp̂ 2

* +
ψ

, ð6:75Þ
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where h . . . iψ denotes averaging over synchrotron phase. On the other hand,

multiplying Eq. (6.74) by (I0 � I)2 and integrating it with f(I)¼ δ(I0 � I) one obtains

d

dt
δI2 ¼ 1

2

ð
I
0 � I


 �2 ∂

∂I
0

D				 I
0� �

ω I
0� � I

0 ∂f

∂I
0

0@ 1AdI
0 ¼

ð D				 I
0� �

ω I
0� � I

0 þ I
0 � I


 � d

dI
0

D				 I0� �
ω I

0� � I
0

0@ 1A0@ 1Af I
0� �
dI

0 �������!f I
0ð Þ¼δ I

0�Ið Þ D				 Ið Þ
ω Ið Þ I:

ð6:76Þ

Comparing Eqs. (6.75) and (6.76) one obtains

D				 Ið Þ ¼ p̂ 2

Iω Ið Þ
d

dt
δp̂ 2

� �
ψ

: ð6:77Þ

Using cross section of Eq. (6.57) and performing averaging one finally obtains5:

D				 Ið Þ ¼
eALc

2πIω Ið Þ
þ
p̂ 2n ϕð Þdψ , ð6:78Þ

where we took into account that the local diffusion is proportional to the beam

linear density n ϕð Þ ¼
ð
f I ϕ; p̂ð Þð Þdp̂ normalized so that at the process beginningÐ

π
� πn(ϕ)dϕ¼ 1, the choice of parameter

eA ¼ 4π3
ffiffiffiffiffi
2π

p Nr0
2f RF

3η2

β4γ3
Ψ 0; θx; θy
� �

σxσy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θx

2 þ θy
2

q* +
s

, ð6:79Þ

will be clarified later in this section, fRF is the RF frequency, η is the ring slip factor,
and N is the initial particle number in the bunch. Substituting diffusion (6.78) into

Eq. (6.6) (for λ¼ 0) and performing integration with linear RF and Gaussian

distribution yield the momentum growth rate of Eq. (6.54).

5 For rectangular distribution with total bunch length ϕtot (n(ϕ)¼ 1/ϕtot within bunch) and linear

RF one obtains

þ
p̂ 2n ϕð Þdψ ¼ 2πωI=ϕtot, and, consequently, D

				 Ið Þ ¼ eALc=ϕtot.
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To take into account the single scattering one needs to replace the Fokker–

Planck equation (6.74) by integro-differential equation6 [14]:

∂f I; tð Þ
∂t

¼
ðab
0

W I; I
0


 �
f I

0
; t


 �
� f I; tð Þ


 �
dI

0
, ð6:80Þ

where ab is the longitudinal acceptance determined by a finite value of the maxi-

mum momentum deviation or by RF bucket size. Further we will assume that the

upper limit of the integral is equal to infinity but the boundary condition determines

that f(a)¼ 0 for a> ab. To proceed further we need to take into account that even

strong single scattering which instantly moves a particle to the longitudinal bucket

boundary implies a small angle scattering (in the BF) which differential cross

section is proportional to 1/q3, where q̂ ¼ p̂ � p̂0
is the longitudinal momentum

transfer. Integrating over longitudinal distribution and averaging over betatron

motion one obtains:

∂f I; tð Þ
∂t

¼
eA
8π

ð1
0

n ϕð Þ f I
0
; t

� �� f I; tð Þ
p̂ � p̂ 0j j3 δ ϕ� ϕ

0

 �

dψdψ
0
dI

0
: ð6:81Þ

In difference to Eq. (6.60) the local diffusion (scattering) is position dependent,

i.e., is proportional to the local density, n(ϕ). For now we also neglect the diver-

gence in the integral at p̂ ¼ p̂
0
. This deficiency will be addressed later in a manner

similar to the one used in the derivation of integro-differential equation (6.61)

describing scattering on the residual gas. The parameter eA used in Eq. (6.81) should

be determined by averaging over transverse distributions and the ring circumfer-

ence. As will be shown below that it is determined by Eq. (6.79). Comparing

Eqs. (6.80) and (6.81) one can write for the kernel in the integral:

W I; I
0� � ¼ eA

8π

ð π
�π

ð π
�π

n ϕð Þ δ ϕ� ϕ
0� �

p̂ � p̂ 0j j3 dψdψ
0 ¼

eAωω0

8π

þ þ
n ϕð Þ δ ϕ� ϕ

0� �
p̂ � p̂ 0j j3

dϕdϕ
0

p̂ p̂ 0

¼ eA ωω
0

4π

ðmin b Ið Þ,b I
0ð Þð Þ

max a Ið Þ,a I
0ð Þð Þ

n ϕð Þ 1

p̂ � p̂ 0j j3 þ
1

p̂ � p̂ 0j j3

0@ 1A dϕ

p̂ p̂ 0 :

ð6:82Þ

where b(I) and a(I) determine the range of motion (ϕ ∈ [a(I), b(I)]), and we used

that dψ ¼ ωdϕ=p̂ . This equality can be obtained by making a ratio of two

6Here we choose alternative form of Eq. (6.61).
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straightforward equations: dψ ¼ω dt and dϕ ¼ p̂ dt. Substituting

p̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H Ið Þ � U ϕð Þp

and performing integration one obtains for I0 � I:

W I; I
0


 �
¼

eAωω0

8π H I
0� ��H Ið Þ� �3 H I

0

 �

�H Ið Þ

 �ðb Ið Þ

a Ið Þ
n ϕð Þdϕ

p̂
þ 2

ðb Ið Þ

a Ið Þ
n ϕð Þp̂ dϕ

" #
,

I0 � I:

ð6:83Þ

Taking into account that the kernel is a symmetric function, W(I, I0)¼W(I0, I),
one obtains the kernel for I� I0. To remove divergence at I¼ I0 we follow the recipe

of Eq. (6.66). That yields:

W I; I
0


 �
¼ eAωω0

H I
0� �� H Ið Þ� �ðb Ið Þ

a Ið Þ
n ϕð Þ dϕ

p̂
þ 2

ðb Ið Þ

a Ið Þ
n ϕð Þp̂ dϕ

8π H I
0� �� H Ið Þ� �2 þ H I

0� �� H Ið Þ� �
ΔEmin þ ΔEmin

2=4

 �3=2 ,

I0 � I:

ð6:84Þ

To verify that the parameters eA used in Eqs. (6.78) and (6.80) are equal we obtain

the diffusion equation (6.74) from integro-differential (6.80). Expending distribu-

tion function into Tailor series one obtains:

∂f I; tð Þ
∂t

�
ðImax

Imin

 
W I, I þ I

0

 �

f
0
Ið ÞI0 þ f

00
Ið Þ I

02

2

 !

þW I � I
0
, I


 �
�f

0
Ið ÞΔI þ f

00
Ið Þ I

02

2

 !!
dI

0
,

ð6:85Þ

where the term with f(I ) is equal to zero and was omitted due to particle conserva-

tion [see Eq. (6.67)]. Changing the integration variable to H¼ Iω, introducing
functions

B Hð Þ ¼ 1

2

ðb Hð Þ

a Hð Þ
n ϕð Þ dϕ

p̂
¼ 1

4ω

þ
n ϕð Þdψ and C Hð Þ ¼ 1

2

ðb Hð Þ

a Hð Þ
n ϕð Þp̂ dϕ

¼ 1

4ω

þ
n ϕð Þp̂ 2dψ ,
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and expending the kernel to Tailor series we obtain:

∂f
∂t

�
eAω
4π

ðHmax

Hmin

hB Hð Þ þ C Hð Þð Þ f
0
H Hð Þhþ f

00
H Hð Þ h

2

2

0@ 1A0@
þ h B Hð Þ � B

0
H Hð Þh� �þ C Hð Þ � C

0
Hh

� � �f
0
H Hð Þhþ f

00
H Hð Þ h

2

2

0@ 1A1A dh

h3

�
eAω
2π

ðHmax

Hmin

f
0
H Hð ÞC0

H þ f
00
H Hð ÞC Hð Þ


 � dh
h

¼
eAω
2π

f
0
H Hð ÞC0

H þ f
00
H Hð ÞC Hð Þ


 �

ln
Hmax

Hmin

0@ 1A, ð6:86Þ

where h¼H(I0)�H(I) and in the final two equalities we left only logarithmic

terms. After simple transformations taking into account that ln(Hmax/Hmin)¼ 2Lc
we obtain Eq. (6.74) with diffusion of Eq. (6.78).

In conclusion we note that to find an evolution of bunch population and rms

emittances, Eq. (6.80) with kernel (6.84) has to be solved together with the

equations describing the evolution of transverse emittances. For numerical solution

one can adopt an algorithm considered above in Sect. 6.1.3.

6.2 Diffusion due to RF Noise

Another important mechanism instigating longitudinal emittance growth is related

to noise in the RF system of a storage ring. In the absence of longitudinal cooling

(which is normally the case for hadron colliders) this effect has to be accounted in

computations of particle distribution evolution and all means have to be applied to

minimize it to an acceptable level. In this section we generalize the theory which

was initially developed in [15] and which describes an effect of RF system noise on

the evolution of longitudinal particle distribution.

6.2.1 Noise Induced Diffusion for Nonlinear Oscillator

A particle motion in the field of nonlinear oscillator perturbed by noise can be

described by a HamiltonianH ϕ; p̂; tð Þ consisting of the main unperturbed part and a

perturbation driven by a small random value α(t):
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H ϕ; p̂; tð Þ ¼ H0 ϕ; p̂ð Þ þ α tð ÞV̂ ϕ; p̂ð Þ: ð6:87Þ

Let us apply a canonical transformation to the action and phase variables I, ψ of

the unperturbed Hamiltonian: H0 ϕ; p̂ð Þ ¼ H0 Ið Þ, leading to the oscillation fre-

quency ω(I)¼ dH0/dI.
Perturbation changes the action I so that:

dI

dt
¼ �α tð Þ∂V̂

∂ψ
¼ � α tð Þ

ω

dV̂

dt
� � α tð Þ

ω
W ϕ; p̂ð Þ, ð6:88Þ

where W ¼ �dV̂ =dt is a power function of the perturbation. The noise α(t) is
conventionally described by its correlator K(τ):

α tð Þh i ¼ 0, α tð Þα t� τð Þh i ¼ K τð Þ: ð6:89Þ

LetΔt be a time interval, large compared with the noise correlation time, but still

so small, that action changes only a little for that time.7 Thus, at lowest order over

the small parameter α, the action changes according to

ΔI2
� � ¼ 1

ω2

ðtþΔt

t

ðtþΔt

t

α t1ð ÞW t1ð Þα t2ð ÞW t2ð Þdt1dt2
� �

¼ Δt
ω2

ð1
�1

K τð Þc τð Þdτ, ð6:90Þ

where c(τ)�hW(t)W(t� τ)it and hit denotes time averaging over a period of the

nonlinear oscillations T¼ 2π/ω.
Ensemble of these oscillators can be described by a distribution function f (I, t).

Its evolution is induced by the noise and satisfies the Fokker–Planck equation (FPE)

of (6.74). Taking initial distribution being localized at small interval of actions near

I, or f(I0)¼ δ(I0 � I), a change of action is determined by Eq. (6.76). Comparing

Eqs. (6.90) and (6.76), one obtains the diffusion coefficient:

D				 Ið Þ ¼ 1

Iω

ð1
�1

K τð Þc τð Þdτ: ð6:91Þ

To express the diffusion through the noise spectral density we expend the

periodic function c(t) into the Fourier series:

7 It implies that the emittance growth rate is sufficiently small which is true in hadron colliders and

storage rings.
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c τð Þ ¼
X1
n¼�1

cnexp inωτð Þ,

cn ¼ 1

T

þ
exp �inωτð Þc τð Þdτ ¼ 1

T2

þ þ
dV

dt0
dV

dt00
exp �inω t

0 � t
00


 �
 �
dt

0
dt

00

¼ Wnj j2 ¼ n2ω2 Vnj j2,

ð6:92Þ

where the Fourier amplitudes are given by

Vn ¼ 1

T

þ
V̂ ϕ tð Þ, p̂ tð Þð Þexp �inωtð Þdt: ð6:93Þ

Usually, the unperturbed Hamiltonian is presented as a sum of kinetic and

potential energies: H0 ϕ; p̂ð Þ ¼ p̂ 2=2þ U ϕð Þ. In this case, it can be more conve-

nient to perform a calculation of the Fourier images (6.93) transforming them to

integrals over the coordinate:

Wn ¼ 1

T

þ
W exp �inωtð Þdt ¼ 1

T

þ
W exp �inωt ϕð Þð Þ dϕ

p̂ ϕð Þ , ð6:94Þ

where t(ϕ) is a function inverse to ϕ(t). Note that the functions p(ϕ) and t(ϕ) are not
single-valued; they require separate analytic equations for every trajectory interval

between the turning points in the unperturbed potential U(ϕ). In a simplest case

when U(ϕ) is an even function with a single local minimum at ϕ¼ 0 there are only

two turning points, ϕ¼	α(I), and

t ϕð Þ ¼ t0 ϕð Þ �
ð x
0

dϕ
0
= p̂ ϕ

0

 �			 			, for thehalf cyclewith p̂ > 0,

T0=2þ t0 �ϕð Þ, otherwise:

8<: ð6:95Þ

These expressions can be further simplified when the perturbing potential V̂ tð Þ
¼ V̂ ϕ tð Þ, p̂ tð Þð Þ has a definite parity. If it is odd V̂ tþ T=2ð Þ ¼ �V̂ tð Þ� �

, all even

harmonics of Eq. (94) are zeroed, and the result can be presented as:

Wnj j ¼
4

T

ð a
0

dϕ

p̂
W sin nωt0 ϕð Þð Þ

						
						, forodd n

0 , otherwise

8>><>>: , forodd V̂ ,W: ð6:96Þ

In opposite case

Wnj j ¼
4

T

ð a
0

dϕ

p̂
W cos nωt0 ϕð Þð Þ

						
						, for even n 6¼ 0

0 , otherwise

8>><>>: , foreven V̂ ,W:

ð6:97Þ
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The diffusion coefficient of Eq. (6.91) can be expressed as a Fourier series of the

noise power at harmonics nω:

D Ið Þ ¼ 4π

Iω

X1
n¼1

Wnj j
2

P nωð Þ, ð6:98Þ

where

P ωð Þ ¼ 1

2π

ð1
�1

K τð Þe�iωτdτ ð6:99Þ

is the noise spectral power at n-th harmonic of oscillations, so that K(τ)¼ Ð 1
�1P(ω)

eiωτdω.
The diffusion is driven by the noise power at resonance harmonics. If the noise is

white, P(nω)¼P and K(τ)¼ 2πPδ(τ), the diffusion comes out as

D Ið Þ ¼ 2πP W2
� �
Iω

¼ P

I

þ
W2dt: ð6:100Þ

The above equations solve a general problem of nonlinear oscillator affected by

noise. The distribution function of such oscillators is described by the FPE (6.74),

and the diffusion coefficient is calculated by one or another method described

above.

6.2.2 Linear Oscillator

A simplest application of the suggested approach is a linear oscillator driven by

noise. Then H0 ¼ p̂ 2=2þ U ϕð Þ,

U ϕð Þ ¼ Ωs
2ϕ2=2, ϕ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2I=Ωs

p
sinψ , p̂ ¼

ffiffiffiffiffiffiffiffiffiffi
2IΩs

p
cosψ : ð6:101Þ

In the case of phase noise the perturbation is described by V̂ ϕð Þ ¼ Ωs
2ϕ and

α tð Þ � eϕ tð Þ, where eϕ tð Þ is the function describing RF phase fluctuations with

corresponding spectral density of Pϕ(ω). That yields a constant diffusion deter-

mined by the noise spectral density at the synchrotron frequency:

D ¼ 2πΩs
4Pϕ Ωsð Þ, d

dt
ϕ2 ¼ πΩs

2Pϕ Ωsð Þ, d

dt
I ¼ πΩs

3Pϕ Ωsð Þ: ð6:102Þ

In the case of amplitude noise the perturbation is described by V̂ ϕð Þ ¼ Ωs
2ϕ2=2

and α tð Þ ¼ eV tð Þ=V0, where α(t) is the relative RF voltage fluctuations with
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corresponding spectral density of Pu(ω). That yields a constant diffusion linearly

growing with action determined by the noise spectral density at the double syn-

chrotron frequency:

D ¼ πΩs
3IPu 2Ωsð Þ, d

dt
ϕ2 ¼ πΩs

2ϕ2Pu 2Ωsð Þ,
d

dt
I ¼ πΩs

2IPu 2Ωsð Þ:
ð6:103Þ

6.2.3 Phase and Amplitude Noise in Storage Rings
with Single Harmonic RF

Now let us apply a general theory developed above to an analysis of the bunch

widening due to noise in a single harmonic RF system. Then the unperturbed

longitudinal motion is described by the Hamiltonian:

H ϕ; pð Þ ¼ p̂ 2

2
þΩs

2 1� cosϕð Þ, ð6:104Þ

where Ωs ¼ ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eV0hη= 2πmc2γβ2

� �q
is the synchrotron frequency, η is the ring

slip-factor, ω0 is the angular frequency of particle revolution, and h is the harmonic

number. The canonical momentum p̂ is associated with the energy offset as

p̂ ¼ ηhω0 δp=p. A noise in the amplitude eV tð Þ and phase eϕ tð Þ of RF voltage is

accounted by substitution,

V0 ! V0 þ eV tð Þ, ϕ ! ϕþ eϕ tð Þ,

leads to the Hamiltonian similar to (6.87):

H ϕ; p̂ð Þ ¼ p̂ 2

2
þΩs

2 1� cos ϕð Þð Þ �Ωs
2eu tð Þ cosϕþΩs

2eϕ tð Þ sinϕ

¼ H0 þ eu tð ÞVu þ eϕ tð ÞVϕ: ð6:105Þ

where eu tð Þ ¼ eV tð Þ=V0, and we assume that γ> γt.
The solution for unperturbed motion is well known. The turning point phase, the

action and frequency are:

ϕmax ¼ 2a sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H= 2Ωsð Þp� �

,

I ¼ 1

2π

þ
p̂ dx ¼ 8Ωs

π
E κð Þ � 1� κ2

� �
K κð Þ� � 
 8Ωs

π
,

ω ¼ 2π

þ
dx
p̂

 !�1

¼ πΩs

2K kð Þ 
 Ωs,

ð6:106Þ
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where κ ¼ sin ϕmax=2ð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H= 2Ωsð Þp

, and a substitution

sin ϕ=2ð Þ ¼ sin ϕmax=2ð Þ sinψ � κ sinψ ð6:107Þ

was used to reduce the integrals to the elliptic functions:

E kð Þ ¼
ðπ=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin 2 ϕ=2ð Þ

q
dϕ and K kð Þ ¼

ðπ=2
0

dϕ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin 2 ϕ=2ð Þ

q
.

To find the diffusion for the white noise we use (6.100), where we take into

account that the correlation functions for phase and amplitude noises are Kϕ(τ)¼
2πPϕδ(τ) and Ku(τ)¼ 2πPuδ(τ), and Pϕ and Pu are the spectral powers of the phase

and amplitude noise eϕ tð Þ and eu tð Þ. Simple calculations yield both diffusion

coefficients:

Dϕ¼8PϕΩs
5

I

ðϕmax

0

cos2ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2�sin2 ϕ=2ð Þ

p
dϕ¼8PϕΩs

5

I
2E κð Þ�2 1�κ2

� �
K κð Þ�R κð Þ� �

,

Du¼8PuΩs
5

I

ðϕmax

0

sin2ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2�sin2 ϕ=2ð Þ

p
dϕ¼8PuΩs

5

I
R κð Þ,

ð6:108Þ

where

R κð Þ ¼ 8

15
2 1� κ2 þ κ4
� �

E κð Þ � 2� 3κ2 þ κ4
� �

K κð Þ� 

: ð6:109Þ

The curves marked as C1 in Fig. 6.2 present dependencies of these diffusions on

the action in a dimensionless form. For small amplitude oscillations these functions

coincide with the results for linear approximation of Eqs. (6.102) and (6.103).

For colored noise using Fourier amplitudes of Eq. (6.93) one obtains:

Fig. 6.2 Dimensionless diffusions for the phase (left) and amplitude (right) RF noise

6 Emittance Growth and Beam Loss 213



Dϕ ¼
X1
n¼1

Pϕ nωð ÞCϕn Ið Þ, Cϕn

�
I
� ¼ ωΩs

4

πI

þ
dϕ cosϕ exp inωt ϕð Þð Þ

				 				2,
Du ¼

X1
n¼1

Pu nωð ÞCun Ið Þ, Cun

�
I
� ¼ ωΩs

4

πI

þ
dϕ
2π sinϕ exp inωt ϕð Þð Þ

				 				2: ð6:110Þ

Due to symmetry function Cϕn(I)¼ 0 for even n, and Cun(I)¼ 0 for odd. The first

few nonzero functions are presented in Fig. 6.3. In the case of white noise the

spectral density is the same at all harmonics. Consequently, it can be moved out of

sums in Eq. (6.110). Then the coefficients

Cϕ1 ¼
X1
n¼1

Cϕn, Cu1 ¼
X1
n¼1

C2n, ð6:111Þ

describe the diffusion due to white noise so that Dϕ¼PCϕ1 and Du¼PCu1. These

equations are identical to Eq. (6.108).

The integrals in Eq. (6.110) can be calculated using properties of the Jacobian

elliptic functions appearing after the substitution (6.107) and leading to:

θ ¼ am ϑ; κð Þ, sin ϕ=2ð Þ ¼ κsn ϑ; κð Þ, p ¼ 2Ωscn ϑ; κð Þ with

ϑ ¼ 2K κð Þψ=π: ð6:112Þ

From here (see [16], p. 911, [17], pp. 292, 295),
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Vϕ,n ¼Ωs
2

þ
dψ

2π
sinϕexp inψð Þ ¼�ω

þ
dψ

2π
ϕexp inψð Þ dp

dψ

¼
2inω2

cosh nvð Þ , for odd n

0, otherwise n

8<: Vu,n ¼Ωs
2

þ
dψ

2π
cosϕexp inψð Þ

¼�2ωs
2κ2
þ
dψ

2π
sn2 ϑ;κð Þexp inψð Þ ¼

2inω2

sinh nvð Þ , for even n

0, otherwise n

8<: ð6:113Þ

where v¼πK0(κ)/(2K(κ)).
In conclusion we need to note that in the case when the bandwidth of RF noise is

larger than the revolution frequency (like for the LHC RF system) the summing in

Eq. (6.110) should also include the revolution frequency harmonics:∑1
n¼ 1CnP

(nωs)!∑1
n;m¼ 1CnP(nωs +mω0).

6.3 Experimental Studies of Single and Multiple Scattering

6.3.1 IBS in the Fermilab Recycler Ring

The Fermilab Recycler is a 3.3-km 8.9-GeV/c fixed momentum storage ring located

in the Fermilab Main Injector tunnel. Table 6.1 presents relevant Recycler param-

eters. On the Run II, the Recycler played a key role as the repository of large stacks

of antiprotons (6� 1012) with the appropriate phase space characteristics to be used

in collider stores. Small-angle multiple IBS is the dominant heating mechanism,

which determines the equilibrium emittance achievable in the Recycler.

The longitudinal IBS heating has been of concern because of a small longitudi-

nal emittance required for Tevatron collisions. Figure 6.3 shows the calculated

longitudinal IBS diffusion rate. The IBS theory, described above, has been used to

make these calculations. Also, the measured Recycler lattice functions have been

used. One can see in Fig. 6.3 (solid line) that the longitudinal heating vanishes for a

certain rms momentum spread, δpo, and becomes cooling above this momentum

spread. For comparison, also shown in Fig. 6.3 is the heating (cooling) rate

calculated in a smooth, round-beam, zero-dispersion approximation using the

value of the average β-function, βave from Table 6.1. One can exploit this feature

of the longitudinal diffusion rate to minimize the longitudinal emittance growth by

compressing the bunch length, and thus increasing the momentum spread, until the

diffusion rate vanishes. In the Recycler ring this is accomplished by employing a

barrier-bucket RF system. For a typical 95 % transverse emittance of 5–7 mm mrad

the point of vanishing longitudinal heating cannot be reached without losing the

“tail” particles at the momentum aperture. A practical solution has been to maintain

the momentum spread as high as possible (around 4 MeV/c), while preserving the
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beam lifetime. Figure 6.4 shows the value of the rms momentum spread, δpo, for
which the diffusion rate vanishes, as a function of the transverse beam emittance.

Below, we describe an experiment in which we created a beam distribution with

the momentum spread less than δpo for a given emittance and observed longitudinal

heating, and an experiment in which we created a beam distribution with the momen-

tum spread greater than δpo for a given emittance and observed longitudinal cooling.

To verify the Recycler IBS model we first created a beam distribution with a

large transverse emittance and a small rms momentum spread. According to the IBS

model this would correspond to longitudinal heating and small transverse cooling.

The vacuum-related transverse heating rate was measured in a separate experiment

by recording emittances of a coasting beam with very low current (1� 1010) to

avoid the IBS contribution. This vacuum-related growth rate was measured to be

0.60 mm mrad/h. Figure 6.5 shows the transverse emittance evolution for a costing

beam of 100� 1010 protons.

One can observe from Fig. 6.5 that the emittance growth rate is in fact smaller

than that for a zero beam current. We attribute the difference to IBS-related

transverse cooling, which, according to our model, is �0.15 mm mrad/h.

The longitudinal degree of freedom allows us to observe the effect of IBS

directly because it is the dominant effect. All other heating mechanisms are

negligible for high beam currents. Figure 6.6 shows the evolution of the rms

momentum spread for the same beam as in Fig. 6.5. The IBS model uses the

transverse emittance growth rate as an input parameter.

The second experiment was to demonstrate the longitudinal IBS cooling. The

measurements were conducted with a bunched antiproton beam of 25� 1010,

which was initially cooled transversely to a very small emittance (<2 mm mrad).

Table 6.1 Recycler ring

parameters
Parameter Value Units

Average β-function, βave 30 m

Max. dispersion 2 m

Transition, γt 20.7

Typ. transverse beam emittances (n, 95 %), εn 3–7 mm mrad

Number of antiprotons 
6 1012
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Fig. 6.4 The calculated

value of the rms momentum

spread in MeV/c, for which
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vanishes, as a function of
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The rms momentum spread was increased to over 4.5 MeV/c by compressing the

beam longitudinally. Figures 6.7 and 6.8 show the measured transverse emittance

and longitudinal rms momentum spread evolutions. Also shown is the IBS model.

The only adjustable parameter in this model is the vacuum-related emittance

growth rate. The best fit corresponds to this rate being 0.55 mm mrad/h—consistent

with our previous measurements.

In conclusion, we would like to note that the developed IBS model for the

Recycler has been verified with beam measurements made during storage and

Fig. 6.5 The transverse emittance (horizontal and vertical) evolution for a coasting beam of

100� 1010 protons in the Recycler. The linear fit yields a growth rate of 0.44 μm/h
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Fig. 6.6 A comparison of the measured rms momentum spread (MeV/c) and the IBS model as a

function of time for a coasting beam of 100� 1010 protons
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cooling of the antiprotons before extraction to the Tevatron. We separately verified

longitudinal IBS heating and cooling effects by adjusting the beam parameters to

demonstrate these effects. Furthermore, the good agreement observed between

model and measurement increased our confidence in the beam diagnostics.
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Fig. 6.7 The measured transverse emittance evolution for a bunched antiproton beam (25� 1010).

Also shown is the IBS model (solid line)
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Fig. 6.8 The longitudinal rms momentum spread (MeV/c) as a function of time (hours). The IBS

model (solid line) has only one adjustable parameter—the vacuum-related transverse emittance

growth rate
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6.3.2 Single and Multiple Gas Scattering in Tevatron

The luminosity evolution model described below required separation of different

mechanisms affecting the particle loss and emittance growth. In particular we

needed to separate the contributions of the gas scattering and the emittance growth

driven by external noises, e.g., magnetic field fluctuations, vibrations, etc. Both

mechanisms create transverse diffusion but in difference to the magnetic noise the

gas scattering creates non-Gaussian tails. This difference was utilized to separate

these contributions in the below described experiment [18] carried out in 2002.

First, using the beam scraping it was verified that the particle distribution of a

150 GeV proton beam, injected into Tevatron, is very close to a Gaussian one.

Second, a new beam was injected. It was unbunched to exclude the beam heating by

the RF noise and the IBS. The beam intensity was sufficiently small tomake sure that

the coherent effects did not affect the beam dynamics. Third, the beam was scraped

horizontally and vertically. The scraping time of a few minutes is much shorter than

a characteristic time of the beam evolution. The fraction of particles removed by the

vertical scraping (~25 %) allowed us to predict the initial vertical particle distribu-

tion with sufficient accuracy. Fourth, the beam scrapers were removed and the beam

was left untouched for 1 h. Then, we moved the vertical scraper in, while recording

the beam intensity as a function of the scraper position. The vertical scraper was

chosen so that the beam momentum spread would not affect the measurements.

The results of the measurements and the comparison with numeric simulations are

shown in Fig. 6.9. Taking into account that only one fitting parameter, the unknown

average Tevatron beampipe vacuum pressure, is used there is a good agreement

between the theory and the measurements. Note that although the Coulomb logarithm

is not a well-determined value and depends on Z its uncertainty does not exceed 10–

20 %. The experimentally determined value, Lc, coincides with the theoretical one

within 5 % for Z¼ 7. The measured 0.8 mm mrad/h emittance growth rate (rms

normalized) corresponds to an average Tevatron vacuum of 4� 10�9 Torr (room-

temperature N2 equivalent). Note that high accuracy of the beam current measure-

ments allowed us to measure tiny tails of the distribution function, which could not be

seen by regular beam profile monitors. If the large angle scattering is switched off in

the simulations, so that particle scattering is described by diffusion only, there is large

difference between calculations and measurements as presented in Fig. 6.10.

A good agreement between the observed and the predicted distribution function

tails yields an important practical conclusion that the emittance growth at the

injection energy is largely due to gas scattering. However the accuracy of the

experiments does not exclude an emittance growth rate excited by noise in magnets

at the level of about 20 %, i.e., about 0.16 mm mrad/h. Vacuum improvements

carried out in 2003–2006 further reduced the emittance growth rate and the beam

loss due to scattering on the residual gas by a factor of 5–10. Indirect measurements

point out that the emittance growth rate does not exceed 0.1 mmmrad/h at injection.

The normalized emittance growth due to gas scattering is inversely proportional to

the beam energy and is about 6.5 times smaller at the collision energy. We have
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limited knowledge about the magnetic field fluctuations in the Tevatron magnets but

have reasons to believe that their contribution to the normalized emittance growth rate

at the top energy is bigger than the one due to the vacuum (see next section).

6.3.3 Emittance Growth Mechanisms in the Tevatron Beams

The luminosity in the head-on collisions can be obtained from a well-known

formula

L ¼ γf B
NaNp

4πβ�ε
H σs=β

�ð Þ, ð6:114Þ

where ε is the average rms normalized emittances of two round beams (εa+ εp)/2,
H(x) is the “hourglass factor” which depends on the ratio of the RMS bunch length

σs and beta-function at IPs β*, γ is the relativistic factor, and fB is the frequency of
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bunch collisions. Evolution of the Tevatron luminosity over the course of colliding

store can be well approximated by a simple empirical fit [19]:

L tð Þ ¼ L0
1þ t=τL

, ð6:115Þ

with only two parameters are used: the initial luminosity L0 and the initial lumi-

nosity lifetime τL. The luminosity integral I¼ Ð Ldt is the most critical parameter

for collider experiments. It depends on the product of peak luminosity and the

luminosity lifetime, e.g., for a single store with initial luminosity L0 and duration T,
the integral is I� L0τLln(1+T/τL). From Eq. (6.114), one obtains:

τ�1
L ¼ dL tð Þ

L tð Þdt ¼
		τ�1

ε

		þ τ�1
Na

þ τ�1
Np

þ τ�1
H : ð6:116Þ

The luminosity lifetime has four major contributions coming from the growth

rates of beam emittances, the beam intensity decay rates, and the hourglass factor
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decay rate. For the end of the Collider Run II operation with range of initial

luminosities between 3.0� 1032 cm�2 s�1 to 4.0� 1032, the largest contribution

to the luminosity lifetime of about τL¼ 5.2–5.7 h came from the beam emittance

growth with a typical time of τε ~ 10–13 h. The growth was dominated by IBS in

the proton and antiprotons bunches, with small contributions coming from the

beam gas scattering and external noises. The beam–beam effects can lead to fast

emittance blowups and significant losses (see discussion in Chap. 8) but those

were routinely corrected or compensated. The hourglass factor decays with

τH ~ 70–100 h due to longitudinal IBS heating and a smaller contribution coming

from the RF system noises.

Several beam experiments have been conducted to separate contributions of

different phenomena to the emittance growth. In one of them [20], 15 proton

bunches with various intensities were accelerated to 980 GeV, positioned to the

proton helix with the low-beta optics (see Fig. 6.11). The bunches had very different

emittances ε varied from 2.3 to 3.6 π mm mrad and rms bunch lengths σz in the

range from 1.71 to 2.10 ns. The bunches were left in the machine for 3.1 h and their

emittances, bunch lengths, and intensities were regularly measured by the Flying

Wires system and the SBD system, correspondingly (see details on the Tevatron

beam instrumentation in Chap. 9).

The transverse velocity spread is much larger than the longitudinal one for the

Tevatron bunches. Then, neglecting the dispersion contribution to the beam size

and further simplifying Eq. (6.54) one obtains estimates for the growth rates:

dεT
dt

� γ3=4NpCT

εT1:5ε0:5L

,
dσ2z
dt

� NpCL

γ1=4εT1:5ε0:5L

, ð6:117Þ

where CL and CT are the constants determined by machine parameters, and both

vertical and horizontal emittances are assumed equal, εx� εy� εT. Equation

(6.117) suggests that the IBS-driven emittance growth has to be proportional to

the factor FIBS¼Np/(εT
1.5σs). Note that in the described below analysis we used the

vertical emittance only because its systematic error and uncertainty for the Tevatron

Flying Wires system are much smaller than for the horizontal emittance.

Fig. 6.11 Proton bunch

populations at the beginning

of the experimental studies

store [20]
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Such choice is justified by the presence of strong x� y coupling which is addition-

ally amplified by operation close to the coupling resonance. That results in an

equalization of emittances so that they are quite close and are proportional to each

other. The experience accumulated in the course of Run II also verifies such choice.

Since the bunch emittances are evolving in time, then FIBS is a function of time, too.

The observed growth rates for the emittance and the rms bunch length are plotted

versus FIBS for all the bunches are presented in Fig. 6.12.

The observed growth rates can be approximated by linear fits:

dεV
dt

πmmmrad=h½ � ¼ �0:072	 0:02
�þ �0:0079	 0:0015

� 
 FIBS,

dσ2s
dt

ns2=h
� 
 ¼ �0:0063	 0:0193

�þ �0:0173	 0:0013
� 
 FIBS:

ð6:118Þ

The intercept in the transverse emittance growth of 0.072 πmmmrad/h yields an

upper estimate on the growth rate due to intensity independent effects such as

scattering on the residual gas and diffusion driven by external noises. The emittance

growth due to the gas scattering is equal to

dεx,y
dt

¼ 2πcrp2

γβ2
X
i

niZi Zi þ 1ð ÞLCi

 !
βx,y , ð6:119Þ

where βx,y ¼
ð
βx,yds=C � 70 m. It yields that the observed zero-intensity emit-

tance growth rate corresponds to an equivalent average room-temperature

N2 (Zi¼ 7) vacuum pressure of (2.4	 0.7)� 10�9 Torr, which, consequently,

yields the beam intensity lifetime due to nuclear beam-gas interaction of about

140	 40 h. It contradicts to the measured beam lifetime of about τH ~ 800	 500 h

(confirmed in many other similar measurements), i.e., less than 20 % of the

observed low intensity beam emittance growth rate is due to the gas scattering.

Fig. 6.12 Vertical emittance growth rates (rms, norm.) of proton bunches vs the IBS factor FIBS

(left); the rms bunch length growth rates vs the IBS factor FIBS (right) [20]
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Consequently, the corresponding equivalent average pressure of room-temperature

N2 is less than P� 0.5� 10�9 Torr; and that most of the growth rate

(�0.06 π mm mrad/h) is related to other mechanism. The most probable reason is

the emittance growth related to the transverse beam shaking at the lowest betatron

sideband exited by noise in magnets. Note that the large angle electromagnetic

scattering on the residual gas and the Touschek scattering give rise to the lifetimes

of about 30,000 and 7,000 h, respectively, and, thus, produce negligible contribu-

tions to beam loss.

Indirect confirmation of the noise effect comes from the observed ambient beam

betatron motion amplitude of some 110 nm in one of the high-beta (900 m) BPMs

during collisions (corresponding to Aβ� 10-25 nm at the arcs, see Chap. 2,

Sect. 2.4). That exceeds the Schottky noise by more than an order of magnitude.

If that motion is due to the external noise, then corresponding emittance growth rate

can be estimated as:

dεT
dt

� γf 0
A2
β

2βNdec

, ð6:120Þ

where Ndec the decoherence time expressed in the number of turns. That yields the

growth rate of about 0.01–0.05 π mm mrad/h in high luminosity stores. Here we

assumed that Ndec is mostly determined by nonlinearity of the beam–beam forces

and is estimated to be about 50–100 turns for protons with beam-beam parameter of

ξ ~ 0.02.
The intercept in the bunch length growth is proportional to lengthening due to

RF noise. Assuming that the phase noise dominates one obtains a spectral density of

phase noise at the synchrotron frequency8 5 · 10�11 rad2/Hz. It coincides with the

direct phase noise measurements within measurement accuracy.

6.4 Tevatron Run II Beam Halo Collimation System

and Collimation Studies

Even in good operational conditions, a finite fraction of the beam will leave the

stable central area of accelerator because of beam–gas interactions, IBS, proton–

antiproton interactions in the IPs, RF noise, ground motion, and resonances excited

by the accelerator elements imperfection. These particles form a beam halo. As a

result of halo interactions with limiting apertures, hadronic and electromagnetic

showers are induced in accelerator and detector components causing numerous

deleterious effects ranging from minor to severe. The most critical for colliders are

beam losses in superconducting magnets and accelerator related backgrounds in the

8Note that by definition the spectral density used in measurements is 4π larger than the spectral

density used in Sect. 6.2.3.
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collider detectors. Only with a very efficient beam collimation system can one

reduce uncontrolled beam losses in the machine to an allowable level. Beam

collimation is mandatory at any superconducting hadron collider to protect com-

ponents against excessive irradiation, minimize backgrounds in the experiments,

maintain operational reliability over machine life, and reduce the impact of radia-

tion on the environment [21].

During the Collider Run I (1994–1996) the Tevatron halo removal system expe-

rienced limitations that prompted a design of a new system for the Collider Run

II. The new design specified that the entire halo removal process needed to be more

efficient and putting the collimators in after the beam acceleration has to be much

faster with the target time of about 5 min. This implied that the halo removal process

would have to be based on a two-stage collimation and setting the collimation up

have to be automated. A new collimation system [22] has been designed for the

Tevatron Run II to localize most of the losses in the straight sections D17, D49, EØ,

F17, F48, F49, and AØ. It incorporated four primary collimators (targets) and eight

newly built 1.5-m long secondary collimators. New motion control hardware capable

of fast processing of data from beam loss beam intensity monitors was installed. That

allowed us to build a computer controlled feedback allowing us to achieve a 2 in.

collimator displacement (full travel) within 15 s. A central control software system

was also developed to coordinate the global sequence of motion for all 12 collimators

while incorporating the halo removal system into the Tevatron Collider sequencer

software. At the design stage, a multi-turn particle tracking and beam halo interac-

tions with the collimators were performed with the STRUCT code [23]. Using the

STRUCT calculated beam loss distributions and the MARS code [24] we carried out

the Monte Carlo hadronic and electromagnetic shower simulation, and the secondary

particle transport in the accelerator and detector components, including shielding

calculations with real materials and magnetic fields. The Collider Run II halo removal

system was installed, commissioned, and became operational since June 2001.

The system was upgraded several times following operational needs. For exam-

ple, in 2002, the Tevatron Electron Lenses (TEL) have been set up to remove

undesirable uncaptured particles from the abort beam gaps and, thus, reduce the risk

of damage of high-energy physics particle detectors CDF and D0 during beam

aborts. In 2003, following several instances of unsynchronized abort kicker

pre-fires in the Tevatron, an additional tertiary collimator was installed at the

A48 location to protect the CDF detector components [25]. In 2005 the beam

scraping procedures were optimized for faster operation and highly efficient

repeated scraping (double scraping) of the beams. Also, in 2010 a collimation

during the portion of the low-beta squeeze was added in order to reduce losses at

CDF and D0 that were causing frequent quenches. Quenching the low-beta quad-

rupoles during the squeeze became more of a problem once the antiproton intensity

and beam brightness became larger. Sensitive steps in the low-beta squeeze, where

the beam separation between the proton and antiproton is small, create losses at

large beta locations, mainly the cryogenic low-beta quadrupoles. A single collima-

tor at E0 was placed at 5σ to create a limiting aperture moving the loss point of

sensitive steps away from CDF and D0 IPs to a region that has robust quench limits.
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This additional collimator has worked well, allowing an increase in number of

antiprotons while basically excluding quenches in the low-beta squeeze. Novel

ideas to improve the beam collimation efficiency—namely, a bent crystal collima-

tion and hollow electron beam collimation— have been extensively and success-

fully studied at the end of Run II.

6.4.1 Collimation System Design

The principles of a two-stage collimation system are described in [21]. The system

consists of horizontal and vertical primary collimators and a set of secondary

collimators placed at an optimal phase advance, to intercept most of the particles

out-scattered from the primary collimators during the first turn after beam halo

interaction with primary collimators. An impact parameter of multi-GeV and TeV

protons on the primary collimators is ~1 μm [26]. The design studies [22] show that

in the Tevatron, a 5-mm thick tungsten primary collimator positioned at 5σ (of rms

beam size) from the beam axis in both vertical and horizontal planes would function

optimally, reducing the beam loss rates as much as a factor of 4–10 compared to the

system without such a scatterer. Secondary collimators located at the appropriate

phase advances are a 1.5-m long L-shaped steel jaws positioned at 6σ from the

beam axis in the horizontal and vertical planes. They are aligned parallel to the

envelope of the circulating beam. Figure 6.13 schematically depicts placement of

the collimators in such a system.

In the course of Run II the halo removal system consist of 12 collimators. Four of

them are primary collimators and eight are secondary collimators. The collimators

are arranged in four sets: two proton and two antiproton sets. They are installed

around the Tevatron ring as shown in Fig. 6.14. Placement of collimators in the

Tevatron is limited to a few locations since there is limited warm space and the

proton and antiproton beams are on helical orbits.
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A proton primary collimator is placed at the beginning of the D17 straight

section outward and up of the closed orbit (Fig. 6.14). It intercepts the large

amplitude protons and a positive off-momentum beam. Protons scattered from

Fig. 6.14 Tevatron Collider Run II Halo Removal Collimator Layout. CDF and D0 detectors are

located at B0 and D0, respectively [27]
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this collimator are presented by a vertical line in the transverse phase diagram

(Fig. 6.14). Protons with a positive angle are intercepted by a D17(3) secondary

collimator at the end of the D17 straight section. An A0 secondary proton collima-

tor positioned outward and up of the circulating beam is intended to intercept the

negative angle protons emitted from the primary collimator. A primary collimator

D49 and secondary collimators E0(1) and F17(2) are used to deal with the protons

with negative momentum deviations. Antiproton beam cleaning consists of primary

collimators F49, F17(3) and secondary collimators D17(2), F48, F17(1) and E0(2).

Detailed STRUCT/MARS simulations assumed that halo particles first hit the

primary collimator with a 1 to 3 μm impact parameter. On the next turns, the impact

parameter—as a result of scattering—increases to about 0.3 mm. After the first

interaction with a primary collimator, high amplitude particles are intercepted by

the secondary collimators, but a large number of particles survive. Some fraction of

the halo is not intercepted by a primary/secondary collimator pair and will interact

with a primary collimator on the next turns. On average, halo protons interact with

the primary collimator 2.2 times. Particles with the amplitudes less than 6σ are not

intercepted by the secondary collimators and do survive for several tens of turns

until they increase amplitude in the next interactions with the primary collimator.

The tail of halo is extended above 6σ (Fig. 6.15). Large-amplitude particles, which

escape from the cleaning system at the first turn, are able to circulate in the

machine, before being captured by the collimators on the later turns. This defines

the machine geometric aperture.

The calculations [22] have shown and later measurements confirmed that the

inefficiency of the Tevatron collimation system defined as a leakage of halo protons

from its components is ~10�3. At the same time, the most critical function of the

system in Run II has been identified as reduction of background rates in the collider

Fig. 6.15 Proton beam halo on a secondary collimator [27]
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experiments. Beam loss in the B0 and D0 depends strongly on the secondary

collimator offset with respect to the primary collimators. It has been shown in

[28] that a part of the accelerator-related backgrounds in the D0 and CDF detectors

is originated from the beam halo loss in the inner triplet region. The studies [29]

have revealed that it is mainly due to beam-gas elastic scattering in the regions

between the nearest to the IP secondary collimator and the corresponding inner

triplet. This process will obviously increase the background rates. In addition to the

optically small aperture at βmax location, the aperture restrictions in this area are the

D0 forward detector’s Roman pots placed at 8σ and the B0 Roman pots placed at

10σ at the entrance and exit of the beam separators. Note that the Roman pot

systems had been removed in the middle of the Collider Run II. Thus, for the

collider detectors, the above-defined inefficiency is not the whole story. The more

appropriate definition of collimation inefficiency would be a ratio of backgrounds

in the detectors with collimation to that without collimation. For the Tevatron Run

II it is calculated as 6.7� 10�3, or a factor of 150 reduction of losses. The

corresponding measurements are described below.

6.4.2 Collimation System Operation

The collimator hardware consists of a Motorola VME 162 processor and Advanced

Controls System Corp. Step/Pac stepping motor drivers that interface to the VME

processor [30]. LVDT’s (linear voltage differential transformers) are used to read

collimator positions. Figure 6.16 is the block diagram for the hardware controls for

a single collimator.

The Collider II collimator halo removal system was designed with the capability

of incorporating feedback into the motion of a collimator. The system uses two

sources for feedback. The first source is feedback from a local beam loss monitor.

Four standard Tevatron beam loss monitors and amplifiers are interfaced to the

VME processor to provide loss monitor feedback. Two of these loss monitors are

used to detect losses in the proton direction and two in the antiproton direction. Two

loss monitors for each particle type are used to provide redundant loss monitor

signals in case of failure during collimator movement. The second source of

feedback comes from a beam intensity signal. A Fast Bunch Integrator system

(see Chap. 9) is used to provide beam intensity signals for both proton and

antiproton beams at a 360 Hz update rate. Feedback is accomplished by encoding

proton and antiproton intensity signals onto the global machine data link (MDAT).

The MDAT signal is decoded by each of the VME processors at a 720 Hz rate.

Processing the feedback internal to the VME is accomplished by sampling the

loss monitor and/or beam intensity signal periodically while the collimator is

moving. The smallest step the collimator can make is 25 μm. This minimum step

takes 20 ms to complete. A wait step occurs after the move step to provide more

flexibility to timing movements. During this step, loss monitor signals and/or beam

intensity signals are sampled every 4 ms and are compared to a loss limit value or
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beam intensity percentage allowed to be removed to decide if the collimator is to be

halted for the next step. Each collimator VME frontend has 17 parameters that the

user can change to specify details about feedback processing.

The halo removal system also utilizes software that allows global coordination

of all 12 local collimator VME front ends. This global coordination software is

called an open access client (OAC). An OAC is a central process that runs on a

VAX (LINUX after control system change) and has controls hooks into the main

Tevatron sequencer software [30]. The OAC employs a finite state machine that is

configurable by the user to preprogram one or many collimators to complete a task

on a transition of a state. For example, on the state “Goto injection positions” all

collimator front ends are preprogrammed with local parameters that define their out

of beam positions. The OAC owns a configurable matrix of states of the collimators

and the user specifies which collimators are to move when the state is transitioned.

Once the state is transitioned, all collimators will be moved back to their injection

positions. There were 11 defined collimator states with names like: “Go to injection

positions”, “Begin halo removal scraping”, and “Retract proton collimators”. There

is one special collimator state which is “Global Collimator Abort”. A transition to
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this state stops all 12 collimators immediately. Figure 6.16 is a block diagram of

the OAC.

The halo removal process is conducted in the Tevatron at the flattop energy of

980 GeV after the proton and antiproton beams have been brought into collisions.

This process is initiated by the Tevatron sequencer software. There are four

sub-sequence operations that are necessary in order to complete the halo removal.

(1) Move Collimators to Initial Positions—this sub-sequence moves all the colli-

mators at 1.25 mm/s speed into the beam to the “half way” point to the beam. The

motivation of this sub-sequence is to speed up the process. (2) Intermediate Halo
Removal—here each set (proton and antiproton) of collimators and targets are

moved together under beam loss monitor feedback until a small loss is detected

and all collimators are stopped. This sub-sequence is also preformed in order to

reduce the total amount of time the halo removal process takes. (3) Perform Halo
Removal—each secondary collimator and target is moved serially into the beam.

Secondary collimators are moved under loss monitor feedback with a step size of

0.025 mm until they reach the edge of the beam to shadow the losses by the primary

collimator. After all secondary collimators are placed next to the beam, each target

is moved under loss monitor and beam intensity feedback until 0.4 % of each beam

(proton and antiproton) is removed. (4) Retract Collimators for Store—after targets

and secondary collimators have reached their final assignment, they are retracted

approximately 1 mm. This is the position they remain at for the duration of the

store. This roughly leaves the targets and secondary collimators at the 5 and 6σ
points as specified by the system design. The halo removal system is a necessary

and integral part of Tevatron Collider operations. The halo removal system is

completely automated and benefits operations with ease of use. The entire process

takes as fast as 7 min. Figure 6.17 presents loss rates during the process of beam

collimation early in store #8709 (May 2011).

A zero time in Fig. 6.17 corresponds to the moment when two 980-GeV beams

are brought to collisions. Over the next six and a half minutes collimators sequen-

tially approach the beams and scrape them. Horizontal position of one of the

collimators (D49H) is shown in the bottom plot. One can see that the collimator

moved very close to the beam twice—that is intentionally done to repeat the

scraping procedure and guarantee lower loss rates afterward. The proton beam

intensity on the upper plot shows a number of small drops due to the scraping. The

bottom plot shows proton halo loss rate as measured by CDF detector and the

antiproton loss rate measured by D0 detector. After the scraping is over—at about

7 min—the CDF detector luminosity monitor starts operation and reports maximum

luminosity of about 430� 1030 cm�2 s�1. Note that compared to the first moments

after the collisions are initiated, during the luminosity operation the proton halo loss

rate drops by factor of 100 from 2–3 MHz to 20–30 kHz, while antiproton rate is

down by a factor of 4–5 (from some 8–10 to 2 kHz).

The merit of halo removal efficiency is to simply record the proton and antipro-

ton halo losses at CDF and D0 IPs before halo removal, and, then, to divide it by the

same losses recorded at the completion of halo removal. Table 6.2 presents statistics

of the reduction in the losses averaged over 100 stores in January–May 2011.
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One can see that the biggest reduction is seen in the CDF proton rate (over a factor

of 100). The reduction in the D0 proton halo loss is relatively small, that can be

attributed to the fact that for the proton direction the CDF Interaction Point acts as

an additional collimator and, thus, reduces the proton halo losses at D0.

6.4.3 Abort Gap Beam Removal

Particles not captured by the Tevatron RF system, and, therefore, not synchronized

with it, pose a threat since they can quench the superconducting magnets during

acceleration or at beam abort [31]. The mechanisms of such uncaptured beam

Fig. 6.17 Collimation process early in store #8709 (May 2011). Upper plot shows proton beam

intensity and CDF luminosity. Bottom plot shows proton halo loss rate as measured by CDF

detector, D0 antiproton loss rate and horizontal position of one of the collimators (D49H). Zero

time corresponds to the moment when two beams are brought to collisions [27]

Table 6.2 Merit of halo removal efficiency (2010–2011)

Halo loss counter at CDF or D0 IP Factor of reduction of halo losses after halo removal

CDF proton halo loss 112

CDF antiproton halo loss 80

D0 proton halo loss 13

D0 antiproton halo loss 19
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generation are somewhat different at the injection (150 GeV) and top (980 GeV)

energies. Coalescing in the Main Injector typically leaves a few percent of the

150 GeV beam particles outside RF buckets. These particles are transferred

together with the main bunches to the Tevatron. In addition, the single IBS (the

Touschek effect), diffusion due to multiple IBS, and phase and amplitude noise of

the RF voltage, drive particles out of the RF buckets. This is exacerbated by the fact

that after coalescing and injection, 95 % of the particles cover almost the entire RF

bucket area. The uncaptured beam is lost at the very beginning of the Tevatron

energy ramp. These particles are out-of-sync with the Tevatron RF accelerating

system, so they do not gain energy and quickly (<1 s) spiral radially into the closest

horizontal aperture. If the number of particles in the uncaptured beam is too large,

the corresponding energy deposition results in a quench (loss of superconductivity)

of the superconducting (SC) magnets and, consequently, terminates the high-energy

physics store. At the injection energy, an instant loss of uncaptured beam equal to

3–7 % of the total intensity can lead to a quench depending on the spatial distribu-

tion of the losses around the machine circumference.

At the top energy, uncaptured beam generation is mostly due to the IBS and RF

noise while infrequent occurrences of the longitudinal instabilities or trips of the RF

power amplifiers can contribute large spills of particles to the uncaptured beam.

Uncaptured beam particles are outside of the RF buckets, and therefore move

longitudinally relative to the main bunches. Contrary to the situation at the injection

energy of 150 GeV, when synchrotron radiation (SR) losses are practically negli-

gible, 980 GeV protons and antiprotons lose about 9 eV/turn due to SR. For

uncaptured beam particles, this energy loss is not being replenished by the RF

system, so they slowly spiral radially inward and die on the collimators, which

determine the tightest aperture in the Tevatron during collisions. The typical time

for an uncaptured particle to reach the collimator is about 20 min.

The presence of the uncaptured beam is very dangerous not only for the collider

elements but also for the high-energy physics particle detectors CDF and D0 as the

abort gap particles generate unwanted background and can be kicked onto the

detectors’ components by the beam abort kickers. A number of ideas have been

proposed for elimination of the uncaptured beam in the Tevatron. The TEL has

been found to be the most effective. The advantages of the TELs are twofold: (1) an

electron beam is in close proximity to the proton or antiproton orbits and generates

a quite strong transverse kick; (2) the TELs possess short rise and fall times

(~100 ns), so they can be easily adjusted to operate in a variety of different pulsing

schemes. Another uncaptured beam removal method tested during machine studies

was a transverse strip line kicker operating with a narrow noise bandwidth. The

kicker signal was timed into the abort gap to diffuse uncaptured beam particles

transversely. With the noise power limited by a 300 W amplifier, that method was

found significantly less effective than using the TELs.

The TEL #1 and #2 were installed in the Tevatron in 2001 and 2006, respec-

tively, for compensation of beam–beam effects (see Chap. 8, Sect. 8.3). In early

2002, it was found that TEL-1 can effectively remove uncaptured protons if timed

into the abort gap and operated in a resonant excitation regime [31]. TEL-2 is also

6 Emittance Growth and Beam Loss 233

http://dx.doi.org/10.1007/978-1-4939-0885-1_8
http://dx.doi.org/10.1007/978-1-4939-0885-1_8#Sec6


able to function as an abort gap cleaner. For that, the electron beam pulse is

synchronized to the abort gap and positioned near the proton beam orbit. Electric

and magnetic forces due to the electron space charge produce a radial kick on high-

energy protons depending on the separation d:

Δθ ¼ � 1	 βe
βe


 2JeLerp
e 
 c 
 γp




d

a
, d < a,

a

d
, d > a,

8>>><>>>: ð6:121Þ

where the sign reflects repulsion for antiprotons and attraction for protons, βe¼ ve/c
is the electron beam velocity, Je and Le are the electron beam current and the

interaction length, a is the electron beam radius, rp is the classical proton radius, and
γp¼ 1,044 is the relativistic Lorentz factor for 980 GeV (anti)protons. The factor

1	 βe reflects the fact that the contribution of the magnetic force is βe times the

electric force contribution and depends on the relative direction of the electron and

proton velocities.

For 5 kV electrons with typical peak current of about 0.6 A and 5 mm away from

the protons, the estimated kick is about 0.07 μrad. When the pulsing frequency of

the TEL is near the proton beam resonant frequency, this beam–beam kick reso-

nantly excites the betatron oscillations of the beam particles.

In the uncaptured beam removal operation, the TEL electron beam is placed

2–3 mm away from the proton beam orbit horizontally and about 1 mm down

vertically as depicted in Fig. 6.18. For normal Tevatron operation, the fractional

part of the tunes are Qx¼ 0.583 and Qy¼ 0.579 for horizontal and vertical planes

respectively. These tunes are placed between the strong resonances at 4/7� 0.5714

and 3/5¼ 0.6. When an uncaptured particle loses energy due to synchrotron radi-

ation, its horizontal orbit is changed proportionally to the lattice dispersion,

Fig. 6.18 The relative positions of the proton, antiproton, and electron beam during uncaptured

beam removal [31]
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x¼Dx(δP/P), and its betatron tunes are changed due to the lattice chromaticity

Q0
x,y¼ dQx,y/(dP/P) so that

Qx,y ¼ Q0
x,y þ Q

0
x,y

dp

p0

� �
þ ΔQx,y x2

� �
, ð6:122Þ

where the third term accounts for slight tune changes due to nonlinear magnetic

fields. Typical operational chromaticities of the Tevatron at 980 GeV are set to

Q0
x,y� +(6–10), so the tune decreases with the energy loss. As the tune, driven by

the TEL, approaches one of the resonant lines, the amplitude of the particle betatron

oscillations grows, eventually exceeding a few millimeters until the particle is

intercepted by the collimators. Figure 6.19 presents one set of the simulation results

of the particle amplitude driven by the TEL in the vicinity of the 4/7th resonance.

The maximum amplitude is determined by the nonlinearity of the force due to the

electron beam and the nonlinearity of the machine. Note that without the TEL, a

particle would still be intercepted by a horizontal collimator after its orbit moved

about 3 mm inward due to SR. The TEL simply drives it more quickly, preventing

the accumulation of uncaptured beam.

The electron beam pulsing scheme is demonstrated in Fig. 6.20, where the green

oscilloscope trace is the signal from the TEL Beam Position Monitor (BPM) pickup

electrode and the blue trace is the total electron current. In the BPM signal, one can

see three negative pulses representing the electron beam pulses in the 3 abort gaps

whereas the 36 positive pulses are the proton bunch signals with the small negative

adjacent antiproton bunch signals. The intensity of the antiproton bunches was ten

times less than that of the proton bunches at the end of that particular store, so they

appear only as very small spikes near the large proton bunches. During a typical

HEP store, the train of three electron pulses is generated every seventh turn for the

purpose of excitation of the 4/7 resonance for the most effective removal of the

Fig. 6.19 Betatron

oscillation amplitude of the

particles driven by the TEL

in vicinity of the Q¼ 4/7th

resonance line (simulations)

[31]
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uncaptured proton beam particles. The electron pulse width is about 1 μs and the

peak amplitude is about 250 mA.

The uncaptured beam removal process was demonstrated in an experiment in

which the TEL was turned off for about 40 min and then turned on again as shown

in Fig. 6.21. The blue trace is the total bunched proton beam intensity measured by

the Fast Bunch Integrator (see Chap. 9); the red trace is the average electron current

measured at the TEL electron collector; the green trace is the total number of

particles in the Tevatron as measured by DCCT; and the cyan trace is the abort gap

proton beam loss rate measured by the CDF detector counters. After the TEL was

Fig. 6.20 Scope traces of

the electron beam pulses

(blue) and the TEL BPM

signal showing electron,

proton, and antiproton

bunches (green). One
division of the horizontal

axis is 2 μs. About one
Tevatron revolution period

is shown

Fig. 6.21 Uncaptured

beam accumulation and

removal by TEL: the

electron current was turned

off and turned back on

40 min later again
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turned off, the abort gap loss rate was reduced by about 20 % but then started to

grow. After about 20 min, the first spikes in the losses started to appear and grow

higher. Notably, the bunched beam intensity loss rate (blue line) did not change, so

the rate of particles escaping from the RF buckets was about constant. As soon as

the TEL was turned on, a large increase in the abort gap losses and reduction of the

total uncaptured beam intensity could be seen in Fig. 6.21. About 15� 109 particles

of the uncaptured beam in the abort gaps were removed by the TEL in about

τTEL¼ 3 min and the abort gap loss rate went back to a smooth equilibrium

baseline.

The calibration of the abort gap monitor (AGM—see details in Chap. 9) has been

performed using the TEL as presented in Fig. 6.22. The TEL was turned off during a

store (average electron current is shown in black) at about t¼ 20 min. Accumula-

tion of the uncaptured beam started immediately and can be measured as an excess

of the total uncaptured beam current with respect to its usual decay. The blue line in

Fig. 6.22 shows the excess measured by the Tevatron DCCT, δNDCCT(t)¼
NTEL on(t)�Ndecay fit TEL off(t). The abort gap uncaptured beam intensity measured

by the AGM (red line) and the DCCT excess grow for about 30 min before reaching

saturation at intensity of about 16� 109 protons. Then the TEL was turned on

resulting in the quick removal of the accumulated uncaptured beam from the abort

gaps. This method of calibration of the AGM with respect to DCCT interferes with

the collider operation resulting in higher losses (see Fig. 6.21 above and discus-

sion), so this operation is performed only when required. The AGM is used for the

routine monitoring of the uncaptured beam. The typical rms error of the uncaptured

beam intensity measurement is about 0.01� 109 protons for the AGM, and some

0.3� 109 protons for the DCCT.

The amount of the uncaptured beam is determined by the rate of its generation

and the removal time τ:

NDC ¼ dNbunched

dt

� �
� τ: ð6:123Þ

Fig. 6.22 Uncaptured

beam accumulation and

removal by the TEL. The

black line represents the
average electron current of

the TEL; the red line is the
uncaptured beam estimated

from the DCCT

measurement; the blue line
is uncaptured beam in the

abort gap measured by the

AGM [29]
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The characteristic time needed for a 980 GeV particle to lose enough energy due

to SR is about τSR¼ 20 min, so the TEL reduces the uncaptured beam population by

about one order of magnitude.

At injection energy, the synchrotron radiation of protons is negligible, so the

TEL is the only means to control uncaptured beam. As noted above, one of the

TELs is used routinely in the Tevatron operation for the purpose of uncaptured

beam removal at 150 and 980 GeV. In 2007, the typical antiproton intensity

increased to about a third of the proton intensity, and therefore the antiproton

uncaptured beam accumulation started to pose an operational threat. An antiproton

AGM, similar to the proton one, has been built and installed. By proper placement

of the TEL electron beam between the proton beam and the antiproton beam

(illustrated in Fig. 6.18), we are able to remove effectively both uncaptured protons

and uncaptured antiprotons. In addition, we have explored the effectiveness of the

uncaptured beam removal at several resonant excitation frequencies. For that, we

have pulsed the TEL every 2nd, 3rd, 4th, 5th, 6th, and 7th turn. Reduction of the

uncaptured beam intensity was observed at all of them, though usually the most

effective was the every 7th turn pulsing when the Tevatron betatron tunes were

close (slightly above) to Qx,y¼ 4/7¼ 0.571 or every 6th turn pulsing when tunes

were closer to Qx,y¼ 7/12¼ 0.583.

6.4.4 Beam Halo Collimation by Bent Crystals

Since the original suggestion of bent crystal channeling [32] there has been interest

in exploiting the technique for accelerator extraction [33] and, later, collimation

[34]. Luminosity-driven channeling extraction was observed for the first time in a

900 GeV study at the Fermilab Tevatron during Collider Run I [35]. The experi-

ment, Fermilab E853, demonstrated that useful TeV-level beams can be extracted

from a superconducting accelerator during high luminosity collider operations

without unduly affecting the background at the collider detectors. Multipass extrac-

tion was found to increase the efficiency of the process significantly. The beam

extraction efficiency was about 25 %. Studies of time-dependent effects found that

the turn-to-turn structure was governed mainly by accelerator beam dynamics.

Based on the results of the E853 experiment, it was concluded that it is feasible

to construct a parasitic 5–10 MHz proton beam from the Tevatron collider [36].

An efficient beam collimation system is mandatory for any collider or high-

power accelerator. The Tevatron Run II approach has been to use a two-stage

collimation system in which a primary collimator is employed to increase the

betatron oscillation amplitudes of the halo particles, thereby increasing their impact

parameters on secondary collimators (see preceding section). A bent crystal can

coherently direct channeled halo particles deeper into a nearby secondary absorber.

This approach has the potential of reducing beam losses in critical locations and,

consequently, to reduce the radiation load to the downstream superconducting

magnets.
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There are several processes which can take place during the passage of protons

through the crystals: (a) amorphous scattering of the primary beam; (b) channeling;

(c) dechanneling due to scattering in the bulk of the crystal; (d) “volume reflection”

off the bent planes; and (e) “volume capture” of initially unchanneled particles into

the channeling regime after scattering inside the crystal. The particle can be

captured in the channeling regime, oscillating between two neighboring planes if

it enters within crystal’s angular acceptance of:

θ < θc ¼
ffiffiffiffiffiffiffiffi
2U0

pc

s
, ð6:124Þ

where p is the particle momentum and U0 is the crystal’s planar potential well

depth. The critical angle θc is about 7 μrad for 980 GeV/c protons in the (110)

silicon crystal orientation. When the crystal is bent, particles still can be channeled

(and thus deflected) if the bend radius R is greater than a critical value Rc¼ pv/eEm,

where Em is the maximum strength of the electric field in the channel, about 6 GV/

cm for the (110) silicon crystal orientation. That yields Rc� 1.6 m for 980 GeV/c

protons. Bending of the crystal decreases the critical channeling angle, the capture

probability of particles into the channeling regime and the dechanneling length

[33]. If the particle momentum is not within the critical angle but has a tangency

point with the bent planes within the crystal volume, almost all particles are

deflected to the opposite direction with respect to the crystal bending. The effect

is called the volume reflection (VR) [33] and it has very wide angular acceptance

equal to the crystal bend angle (of the order of hundreds of microradians compared

to several microradians of the channeling acceptance). The drawback of the volume

reflection regime is that the deflection angle is small, approximately (1.5–2)� θc.
However, this can be overcome by using a sequence of several precisely aligned

bent crystals, so that the total deflection angle is proportionally larger.

In the Tevatron beam crystal collimation experiment T980 [37–39] both single

crystals (for vertical and horizontal deflection) and multi-strip crystal assemblies (for

vertical multiple VR) have been used. Collimation of circulating beams is very

different from bent crystal experiments with extracted beams [40] because of smaller

initial “impact parameters” and the possibility of interplay of different effects. In an

accelerator such as the Tevatron several phenomena determine the impact parameter

(the depth of the particle penetration at the first interaction with the crystal). These

include four diffusion and two orbit processes. The first two diffusion processes are

scattering on the residual gas and noise in magnetic field. They produce the amplitude

growth of about 4 nm/√turn. The RF noise results in the diffusion rate of ~12 nm/√turn
(hor.) and ~1 nm/√turn (vert.). The beam diffusion due to beam–beam or other

nonlinear effects can produce up to ~10–40 nm/√turn; and, important only for the

uncaptured DC beam particles located in the abort gaps, the diffusion due to the

excitation by the TEL results in ~7 μm/turn. For interaction with amorphous targets,

the diffusion rates are ~200 μm/√turn for a 5 mm length of amorphous silicon, and

about ~1,200 μm/√turn for a 5 mm tungsten primary target. The two orbit processes
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are: transverse orbit oscillations with amplitude of ~20 μm and frequencies of ~15 Hz

(i.e., with period equal to some 3,000 revolutions in the Tevatron—see Chap. 2, Sect.

2.4) and synchrotron motion of particles near the boundary of the RF bucket with

amplitudes of ~1 mm (hor) and ~70 μm (vert) at ~35 Hz (1,300 turns). The orbit

motion due to synchrotron oscillations occurs at nonzero dispersion locations, e.g., at

the E03 location of the T980 experiment crystals where the dispersion is about

Dx¼ 2 m horizontally and 18 cm vertically. The resulting impact parameters are

estimated to be of the order of 0.2–1 μm for transverse halo particles and

~10–30 μm for the particles in the abort gaps which have leaked out of the RF buckets.

All that makes the properties of the surface of the crystal (rather than the bulk of the

crystal) pivotal for collimation (contrary to the extracted beam studies)—e.g., it’s

roughness or the miscut angle [40]. These processes are very hard to predict and

simulate; hence, the T-980 experimental studies are of great importance for under-

standing the beam physics aspects and determining feasibility of the method for high

energy colliders like the LHC and a Muon Collider.

Figure 6.23a shows a schematic of the T-980 experimental layout. During

normal Tevatron operations, a 5-mm tungsten target scatters the proton beam

halo into a 1.5-m long stainless steel secondary collimator E03, 50 m downstream

of the target. For the bent crystal experiments, a goniometer containing single or

multi-strip bent crystals is installed 23.7 m upstream of the E03 collimator. Scin-

tillation counter telescopes detect secondary particles from protons interacting with

the target and E03 collimator. An ionization chamber (beam loss monitor LE033)

also detects secondary particles scattered from E03. A PIN diode telescope detects

the secondaries scattered from the bent crystal. Under the above configuration,

channeled beam is signaled by a reduction of the rate in the PIN telescope (channel

LE033C) with attendant increases in the rates of the LE033 and E1 counters.

A modified BNL goniometer assembly [41] and an O-shaped 5-mm silicon crystal

with a bending angle of 0.44 mrad were originally installed in the Tevatron down-

stream of the horizontal primary collimator in the fall of 2004. The crystal was set at

5.5σb� 2.5 mm from the beam center and aligned in the halo by varying the crystal

angle in steps of several μrad. The interaction probability in the 5 mm long crystal was

monitored by the PIN diode and plotted as a function of the crystal angle as shown in

Fig. 6.23 (a) (Left) General layout of the T980 experiment at E0, the straight section used for the

crystal collimation test; (b) (right) “O”-shape crystal prepared by Petersburg Nuclear Phusics

Institute and used at RHIC and Tevatron. The length along the beam is 5 mm
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Fig. 6.24. A channeling dip is present at zero angle to the crystal’s planewith awidth of

22	 4 μrad (rms). The width of the channeling dip is a convolution of the beam

divergence, the channeling critical angle, multipass channeling effects, and possible

crystal distortions. It is difficult to do a deconvolution of the crystal angular scan to get

the critical angle. However, the distribution is consistent with the beam divergence and

7 μrad channeling critical angle at 980 GeV. At the bottom of the dip the LE033C

signal is 22 % of the signal at a random angular setting. This depth is a measure of the

channeling efficiency and gives a channeling efficiency of ηc¼ 78	 12 % including

the effects of multiple passes. A shoulder extends 460	 20 μrad to the right of the

channeling dip. This shoulder width is close to the expected magnitude of the crystal

bend. The shoulder is a coherent crystal effect acting over the whole arc of the crystal

bend due to volume reflection. Like channeling, the volume reflection diminishes

nuclear interactions and thereby decreases the LE033 rate. The whole-arc efficiency,

ηr, was 52	 12 %. The larger red dots and associated curve show the results of

Biryukov’s CATCH simulation [42] for the conditions in the Tevatron. Note that

there are no free parameters in this simulation except average counting rate. Most

impressive effect of using the bent crystal at the channeling angle instead of a tungsten

primary collimator is the reduction of the CDF beam losses at the opposite side of the

ring by a factor of two, in a good agreement with predictions [37].

In 2009 the 0.44-mrad bend O-shaped crystal in the horizontal goniometer was

replaced with the new 0.36-mrad O-shaped one with negative 0.12-mrad miscut

angle built by IHEP (Protvino), and a new vertical “push–pull”-type goniometer

was installed 4-m upstream, housing two crystals—the multiple (eight) strip crystal

from IHEP and the old 0.44 mrad O-shaped crystal, so that there were crystals for

collimation in both vertical and horizontal planes. Since then crystal collimation

has been routinely employed during many collider stores. Additional beam instru-

mentation was added. Fast automatic insertion of the crystals has been

implemented. A vertical multi-strip crystal system has been successfully tested

and both multiple-VR beam at the E03 collimator and channeled beam at the F17

Fig. 6.24 Crystal

angle (see text)
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collimator some 1 km downstream of the E03 have been observed. A reduction of

ring wide losses was reproducibly obtained along with local loss effects on the

collimator due to crystal channeling and VR. The first ever study of two plane

crystal collimation was also conducted.

To measure the deflection of the channeled (or VR) particles once the crystal

angle is set to the channeling (or VR) peak the position of an appropriate collimator

can be slowly scanned, starting from a completely retracted position and moving

toward the beam edge. An example of such a scan is shown in Fig. 6.25a for

horizontally deflected channeled protons at the E03H collimator. The curves show

the total measured loss rate (red dots) as well as the counting rate synchronized to

the abort gaps only (black dots). There are three distinct regions: (a) a region of

negligible losses, where the collimator does not intercept any beam; (b) a steep

increase in the losses, where the collimator intercepts the channeled beam; (c) a

region where the losses increase slowly: the collimator is additionally intercepting

Fig. 6.25 Collimator scan

with crystal set at: (a) (top)
the channeling angle; (b)

(bottom) Collimator scan

with 8-strip vertical crystal

set at the VR angle. Solid
lines are for “erf” fits of the
data [27]
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de-channeled and amorphous scattered particles. Both abort gap and total loss

signals show a small deflection angle of (3.6–3.8)mm/24 m¼ 150–160 μrad instead
of the expected 360 μrad. Such a difference can either be attributed to the effect of

the “miscut angle” [38] or be due to non-ideal crystal surface that becomes

important at the very small impact parameters. The angular spread in the channeled

beam is about of 0.4 mm/24 m¼ 17 μrad rms that is larger than the channeling

acceptance of 2� θc¼ 13.4 μrad. A similar scan of the VR beam made with the E03

vertical collimator presented in Fig. 6.25b shows the beam at 1.76 mm/

28 m¼ 63 μrad, i.e., approximately where it is supposed to be, and about 40 μrad
rms wide [39].

6.4.5 Hollow Electron Beam Collimator

The hollow electron beam collimator (HEBC) is a novel concept of controlled halo

removal for intense high-energy hadron beams in storage rings and colliders

[43, 44]. It is based on the interaction of the circulating beam with a 5-keV,

magnetically confined, pulsed hollow electron beam in a 2-m-long section of the

ring. The electrons enclose the circulating beam, kicking halo particles transversely

and leaving the beam core unperturbed (Fig. 6.26a, b). By acting as a tunable

Fig. 6.26 Hollow electron beam collimator: (a) transverse beam layout; (b) top view of the beams

in the Tevatron; (c) measured current profile; (d) measured charge density ρ and calculated radial

electric field Er; (e) photograph of the electron gun [27]
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diffusion enhancer but not as a hard aperture limitation, the HEBC extends con-

ventional collimation systems beyond the intensity limits imposed by tolerable

losses. The concept was tested experimentally at the Tevatron between October

2010 and September 2011. It represents a promising option for scraping high-power

beams in the Large Hadron Collider.

In high-power hadron machines, conventional two-stage collimation systems

offer robust shielding of sensitive components and are very efficient in reducing

beam-related backgrounds at the experiments. However, they have limitations. The

minimum distance between the collimator and the beam axis is limited by instan-

taneous loss rates (especially as jaws are moved inward), radiation damage, and by

the electromagnetic impedance of the device. Moreover, beam jitter, caused by

ground motion and other vibrations and only partially mitigated by active orbit

feedback, can cause periodic bursts of losses at aperture restrictions. The HEBC

addresses these limitations, emerging as a viable complement to conventional

systems.

In the TEL, the electron beam is generated by a pulsed 5-kV electron gun and

transported with strong axial magnetic fields. Its size in the interaction region is

controlled by varying the ratio between the magnetic fields in the main solenoid and

in the gun solenoid. Halo particles experience nonlinear transverse kicks and are

driven towards the collimators. If the hollow current distribution is axially sym-

metric, there are no electric or magnetic fields inside and the beam core is

unperturbed. A magnetically confined electron beam is stiff, and experiments

with electron lenses showed that it can be placed very close to and even overlap

with the circulating beam. Another advantage is that, contrary to conventional

systems, no nuclear breakup is generated in the case of ion collimation. In a setup

similar to that of the TEL, with a peak current of 1 A, an overlap length of 2 m, and

a hole radius of 3 mm, the corresponding radial kick is 0.3 μrad for 980-GeV

antiprotons. The intensity of the transverse kicks is small and tunable: the device

acts more like a soft scraper or a diffusion enhancer, rather than a hard aperture

limitation. Because the kicks are not random in space or time, resonant excitation is

possible if faster removal is desired.

Analytical expressions for the current distribution were used to estimate the

effectiveness of the HEBC on a proton beam. They were included in tracking codes

such as STRUCT [23], Lifetrac [45], and SixTrack [46] to follow core and halo

particles as they propagate in the machine lattice. These codes are complementary

in their treatment of apertures, field nonlinearities, and beam–beam interactions.

Preliminary simulations suggested that effects would be observable and that

measurements are compatible with normal collider operations [47, 48].

A 15-mm-diameter hollow electron gun was designed and built (Fig. 6.26c–e)

[49, 50]. It is based on a tungsten dispenser cathode with a 9-mm-diameter hole

bored through the axis of its convex surface. The peak current delivered by this gun

is 1.1 A at 5 kV. The current density profile was measured on a test stand by

recording the current through a pinhole in the collector while changing the position

of the beam in small steps. The gun was installed in one of the TEL-2 in
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August 2010. The pulsed electron beam could be synchronized with practically any

bunch or group of bunches.

The behavior of the device and the response of the circulating beams were

measured for different beam currents, relative alignments, hole sizes, pulsing

patterns, and collimator system configurations. Preliminary results were presented

in [51, 52]. Here, we discuss a few representative experiments illustrating the main

effects of the electron beam acting on antiproton bunches. Antiprotons were chosen

for two main reasons: their smaller transverse emittances (achieved by stochastic

and electron cooling in the Antiproton Source accelerators) made it possible to

probe a wider range of confining fields and hole sizes; and the betatron phase

advance between the electron lens and the absorbers was more favorable for

antiproton collimation.

The particle removal rate was measured by comparing bunches affected by the

electron lens with other control bunches. In the experiment described in Fig. 6.27,

the electron lens was aligned and synchronized with the second antiproton bunch

train, and then turned on and off several times at the end of a collider store. The

electron beam current was about 0.4 A and the radius of the hole was varied

between 6σy and 3.5σy, with σy¼ 0.57 mm being the vertical rms beam size. The

black trace is the electron-lens current. One can clearly see the smooth scraping

effect. The corresponding removal rates are of a few percent per hour.

There is a concern related to adverse effects of hollow beam on the core of the

circulating beam, because an asymmetry in the gun emission results in that the

Fig. 6.27 Scraping effect of the hollow electron beam acting on one antiproton bunch train

(magenta) at the end of a collider store. The intensities of the two control trains are shown in

cyan and blue. The electron beam current (black trace) was turned on and off several times with

different values of the hole radius, from 6σy to 3.5σy [27]
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beam in the overlap region is not a perfect hollow cylinder. The asymmetry is

amplified by evolution of electron beam distribution under space its charge, and by

the bends in the transport system. The problem was approached from several points

of view. First, one can see in Fig. 6.27 that no decrease in intensity was observed

with large hole sizes, when the hollow beam was shadowed by the primary

collimators. This implies that the circulating beam was not significantly affected

by the hollow electron beam surrounding it, and that the effect on the beam intensity

of residual fields near the axis was negligible. Second, we observed no difference in

the emittance growth for the affected bunches. If there was an emittance growth

produced by the electron beam, it was much smaller than that driven by other two

main factors, namely IBS and beam–beam interactions. The effect of halo removal

can also be observed by comparing beam scraping with the corresponding decrease

in luminosity. The luminosity is proportional to the product of antiproton and

proton bunch populations, and inversely proportional to the overlap area. If anti-

protons are removed uniformly and the other factors are unchanged, luminosity

should decrease by the same relative amount. If the hollow beam causes emittance

growth or proton loss, luminosity should decrease even more. A smaller relative

change in luminosity was observed, which is a clear indication of halo scraping.

Also, the ratio between luminosity decay rates and intensity decay rates increased

with decreasing hole size. Finally, one can attempt to directly measure the particle

removal rate as a function of amplitude. This was done with collimator scans.

A primary antiproton collimator was moved vertically in 50-μm steps towards the

beam axis. All other collimators were retracted. The corresponding beam losses and

decay rates were recorded. Particles were removed from the affected bunch train,

but as soon as the primary collimator shadowed the electron beam, eliminating the

halo at those amplitudes, the relative intensity decay rate of the affected bunch train

went back to the value it had when the lens was off. Even with a hole size of 3.5σy,
the effects of residual fields on the core appeared to be negligible. The time

evolution of losses during a collimator scan was also used to measure changes in

diffusion rate as a function of amplitude, using an extended version of the technique

presented in [26, 53].

Another observation was that the hollow electron lens mitigated the effects of

beam jitter. In the Tevatron, beams oscillate coherently at low frequencies (from

sub-Hz to a few Hz) with amplitudes of a few tens of microns, due to mechanical

vibrations and ground motion. This causes periodic bursts of losses at aperture

restrictions, with peaks exceeding a few times the average loss rate. When the

collimators are moved inward, these loss spikes can cause quenches in the

superconducting magnets or damage electronic components. In March 2011, to

measure the loss spikes and the effects of the hollow electron beam, scintillator

paddles were installed downstream of one of the antiproton secondary collimators

(F48). These loss monitors could be gated to individual bunch trains. It was

observed that losses from the two control trains were completely correlated, and

that their frequency spectra showed strong peaks at 0.39 Hz and its harmonics

(corresponding to the acceleration cycle of the Main Injector) and at 4.6 Hz

(mechanical vibrations from the Central Helium Liquefier). The electron lens
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suppressed these peaks and eliminated correlations with the other trains. This can

be interpreted as a reduction in the population of the beam tails. Note that it

adversely affects the beam stability reducing the Landau damping for the affected

bunches.

Losses generated by the electron lens were mostly deposited in the collimators,

with small changes in the loss observed by the experiments. Alignment of the

beams was done manually, with a setup time of about 15 min. Alignment is crucial

for HEBC operation, and the procedures based on the electron-lens beam-position

monitors were found to be reliable in spite of the different time structure of the

electron and (anti)proton pulses. No instabilities or emittance growth were observed

over the course of several hours at nominal antiproton intensities (1011 particles/

bunch) and electron beam currents up to 1 A in confining fields above 1 T in the

main solenoid. Most of the studies were done parasitically during regular collider

stores.

Experiments at the Tevatron showed that the HEBC is a viable option for

scraping high-power beams in storage rings and colliders. Its applicability to the

LHC is under study. To make the device more versatile, larger cathodes and higher

electron beam currents appear to be feasible, and experimental tests in this direction

are planned.

6.5 Luminosity Evolution Model

6.5.1 Longitudinal Dynamics and Particle Loss from RF
Bucket

While colliding at the top energy, the Tevatron proton and antiproton bunches lose

their intensities as particles escape stable RF buckets. That occurs mostly due to the

IBS and RF noise while infrequent occurrences of the longitudinal instabilities or

trips of the RF power amplifiers can contribute large spills of particles to the

uncaptured beam. Uncaptured beam particles are outside of the RF buckets, and

therefore, move longitudinally relative to the main bunches, lose about 9 eV/turn

due to the synchrotron radiation (SR), slowly spiral radially inward and die on the

collimators, which determine the tightest aperture in the Tevatron during collisions.

The typical time for a particle between its escape from the RF bucket and its reach

of a collimator is about 20 min. The TEL operating in the abort cleaning regime (see

Sect. 6.4.3) reduces the removal time of uncaptured beam from 20 min to about

2 min, thereby significantly reducing the particle population in the abort gap. That

resulted in complete elimination of the quenches related to the uncaptured

beam [31].

In the case of single harmonic RF, a particle phase trajectory in the longitudinal

phase space (see Fig. 6.28) is described by the following equation [54]:
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Δp
p0

� �2

¼ 2Q2
s

η2h2
cosφ� cosφm þ φ� ϕmð Þ sinϕ0ð Þ, ð6:125Þ

whereΔp/p0 is the relative particle momentum deviation, η is the slip factor, h is the
harmonic number, Qs is the synchrotron tune, ϕ is the RF phase, φ0 is the

accelerating phase, and φm determines the boundary of phase space trajectory. In

the stationary state φ0 is determined by particle energy loss due to synchrotron

radiation eVSR: sinφ0¼VSR/VRF. The SR radiation damping is neglected in

Eq. (6.125) since the damping time is much longer than the store duration.

The outermost orbit, called the separatrix, determines the boundary of the RF

bucket:

Δp
p0

� �2

¼ 2Q2
s

η2h2
cosφþ cosφ0 þ φ� π þ φ0ð Þ sinϕ0ð Þ: ð6:126Þ

If the equilibrium phase ϕ0 is small, φ0� 1, the separatrix boundaries in the RF

phase are:

φ1 � �π þ ffiffiffiffiffiffiffiffiffiffi
4πφ0

p � φ0,

φ2 ¼ π � φ0:
ð6:127Þ

As an example Fig. 6.28 presents the phase space trajectories for φ0¼ 0.15. The

accelerating phase is much smaller for Tevatron at collisions: φ0� 10�11,

φ1��πþ 10�5 and φ2� π� 10�11. Thus, the Tevatron RF buckets are separated

by a gap of ~10�5 rad. A particle with initial momentum above the RF bucket

boundary is decelerated by energy loss due to SR and eventually passes through a

gap between buckets to the lower momentum side where it is decelerated to the

nearest apertures limiting the beam energy spread.

3.14 1.57 0 1.57 3.14 4.71 6.28
0

0.5

1

1.5

2

2.5

f1 f2

f (rad)

Fig. 6.28 Upper half of

phase space trajectories in

the vicinity of the separatrix

(red line) for φ0¼ 0.15.

Momentum spread (vertical
axis) is presented in units of

(ηh/Qs) Δp/p0
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6.5.2 Longitudinal Diffusion and Particle Loss

There are three major mechanisms creating the uncaptured beam. They are the

diffusion due to amplitude and phase RF noises (see, e.g., [55]), multiple IBS and

single IBS (Touschek effect) [56]. The RF bucket size at injection is 4.4 eV.

Measurement showed that it is completely filled at the injection. The bucket size

grows in the course of acceleration while the longitudinal emittance remains the

same. At the acceleration end the bucket size reaches 11 eV s. Acceleration is

sufficiently fast and therefore immediately after acceleration the bunch tails are

negligible and the bunch occupies the same phase space as at injection. In the

absence of tails the single IBS is the only mechanism for longitudinal particle loss.

Shortly after acceleration the diffusion due to IBS and RF noise creates tails in the

distribution function and results in additional beam loss, which significantly

exceeds the loss due to single IBS (see, e.g., [57]). Therefore, in the following

analysis we neglect the single IBS.

Figure 6.29 presents a numerical solution of diffusion equation (6.74) assuming

(1) constant diffusion, D(I )¼D0, as a zero-order approximation, (2) the initial

distribution being a δ-function, f0(I)¼ δ(I ), and (3) the boundary condition f(Ib)¼
0 at the RF bucket boundary with Ib¼ 8Ωs/π. Figure 6.30 presents the

corresponding beam intensity, rms momentum spread, and rms bunch length.

0 0.5 1 1.5 2 2.50

0.2

0.4

0.6

0.8

1
f(I)
f(0)

I/Ws

Fig. 6.29 Dependence of

the distribution function on

time for Dt/Ωs
2¼ 0, 0.125,

0.25, 0.5, 1 and asymptotic

at t!1
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Initially, the bunch length and the momentum spread grow proportionally to
ffiffi
t

p
and

the distribution function is close to the Gaussian distribution, f(I, t)/ (Ωs/Dt)exp
(�IΩs/Dt). However when the bunch length becomes comparable to the bucket

length, the non-quadratic behavior of the potential results in the bunch-length

growing faster than the momentum spread. Finally, the distribution function and,

consequently, the bunch length and momentum spread approach their asymptotic

values, and the intensity decays exponentially as ~ exp(�0.741 Dt/Ωs
2).

The results of simulations yield the following approximate relationships

between the bunch parameters:

Fig. 6.30 Time

dependence of beam

intensity (top) and rms

bunch length and

momentum spread (bottom)
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dN

dt
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� �
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ð6:128Þ

where ΔP/P|sep is the height of the RF bucket. The top equation accounts nonlinear

dependence between the bunch length σs and the momentum spread σΔp/p in the

single harmonic RF bucket. The second and third equations account for appearing

the particle loss from the bucket and the reduction in the momentum spread growth

rate which occur when the bunch distribution achieves the bucket boundary.

6.5.3 Longitudinal Evolution Model

Numerous factors affect the Tevatron collider luminosity and its evolution in time.

Each store is different and because of finite instrumentation accuracy it is practi-

cally impossible to state what was different or what came wrong for every particular

store. Nevertheless the luminosity evolution is very similar for most of the stores. It

is driven by some basic processes, which are not very sensitive to the details of

distribution functions, and therefore the luminosity evolution can be described by

comparatively simple parametric model [58] presented below. The model takes into

account the major beam heating and particle loss mechanisms. They are (1) the

emittance growth and the particle loss due to scattering on the residual gas, (2) the

particle loss and the emittance growth due to scattering in IPs, (3) the transverse and

longitudinal emittance growth due to IBS, (4) the bunch lengthening due to RF

noise, and (5) the particle loss from the bucket due to heating of longitudinal degree

of freedom. If the collider tunes are correctly chosen, the beam intensity is not too

high, and the beams are well formed, then the beam–beam effects are not very

important and the model describes the observed dynamics of beam parameters and

the luminosity comparatively well. Detailed discussion of how the beam–beam

effects and lattice nonlinearities interact with diffusion and how they can be

incorporated into the model can be found in Chap. 8.

If aperture limitations are sufficiently large in comparison with the beam size

(Ax,y� 5σx,y), then the multiple and single scattering on the residual gas atoms can

be considered separately. In this case the single scattering causes the particle loss,

while the multiple scattering causes the emittance growth.

The beam lifetime due to single scattering is described by the well-known

formula [59]
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τscat
�1 ¼¼ 2πcrp2

γ2β3
X
i

Zi Zi þ 1ð Þ βxni
εmx

þ βyni
εmy

 ! !
þ
X
i

niσicβ, ð6:129Þ

whereβx,yni ¼
ð
βx,ynids=C are the average gas density weighted by beta-functions,

εmx,my are the horizontal and vertical acceptances, rp is the proton classical radius,

γ and β are the relativistic factors, the summing is performed over all residual gas

species, and the averaging is performed over ring circumference. The first addend is

related to the electromagnetic scattering and the second one to the strong interac-

tion. Taking into account that the scattering angle due to strong interactions

(θ ~mπc/p� 140 μrad) significantly exceeds rms angles in the beam (~7 μrad) σi
can be considered to be the total nuclear cross section with sufficiently good

accuracy. At the collision energy of 980 GeV the beam lifetime is dominated by

the strong interaction.

The emittance growth rate due to multiple scattering is closely related to the

electromagnetic part of the single scattering lifetime and is determined by the

following formula:

dεx,y
dt

¼ 2πcrp2

γ2β3
X
i

βx,yniZi Zi þ 1ð ÞLc
 !

, ð6:130Þ

where Lc is the Coulomb logarithm (Lc� 9). Table 6.3 presents the gas composition

used in the model. Overall pressure was scaled to fit the measurement results.

Similar to the gas scattering the scattering in the interaction point (IP) can be

separated into the single scattering due to strong interaction and the emittance

growth due to electromagnetic scattering. The total pp cross section consists of two
parts: the inelastic cross section of 60 mbarn and the elastic cross section of

15 mbarn at 1 TeV energy. All particles scattered inelastically are lost immediately,

while as shown in [59] about 40 % of elastically scattered particles remain in the

beam (within 3σ). That happens because the beta-functions in the IP are small and,

consequently, particle angles are large; so that the scattering angles are comparable

to the particle angles (~100 μrad). The total cross section of particle loss obtained

by fitting of the observations to the model is equal to 69 mbarn which coincides well

with expectations.

The emittance growth due to electromagnetic scattering in one IP is equal to:

Table 6.3 Gas composition

used in the simulations
Gas H2 CO N2 C2H2 CH4 CO2 Ar

Pressure [nTorr] 1.05 0.18 0.09 0.075 0.015 0.09 0.15
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dεx,y
dt

¼ 4rp
2NLbb f 0

γ2β3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εpx þ εpy
� �

εax þ εay
� �q : ð6:131Þ

Here εpx, εpy, εax, and εay are the emittances for proton and antiproton beams, f0 is
the revolution frequency, Lbb is the Coulomb logarithm (Lbb� 20), and N is the

number of particles in the counter-rotating bunch. For two IPs and present Tevatron

parameters it yields the antiproton emittance growth rate of about

0.0015 mm mrad/h. Although emittance growth rate is almost negligible in com-

parison with gas scattering the nuclear absorption in the IP is the main mechanism

for antiproton loss during collisions.

Another important diffusion mechanism is determined by IBS. For the Tevatron

collider parameters the longitudinal energy spread in the beam frame is signifi-

cantly smaller than the transverse ones (e.g., the ratio of longitudinal to transverse

particle velocities in the beam frame is about v||/v⊥� 0.02 at collision energy, and

v||/v⊥� 0.15 at injection energy). In this case comparatively simple IBS formulas

presented in Eq. (6.54) can be used. Tevatron has sufficiently smooth lattice and

therefore IBS can be described with good accuracy in the smooth approximation. In

this case Eq. (6.54) can be rewritten as follows [58]:

dσΔp=p
2=dt

dεx=dt
dεy=dt

24 35 ¼ rp
2cNLcΞjj θx; θy

� �
4
ffiffiffi
2

p
γ3β3σxσyσs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θx

2 þ θy
2

q 1

Ax 1� κð Þ
Axκ

24 35, ð6:132Þ

where

σx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εxβy þ Dx

2
σΔp=p2

q
, σy ¼

ffiffiffiffiffiffiffiffiffi
εyβy

q
,

θx ¼
ffiffiffiffiffiffiffiffiffiffiffi
εx=βx

q
, θy ¼

ffiffiffiffiffiffiffiffiffiffiffi
εy=βy

q
:

ð6:133Þ

For Tevatron the averaged beta-functions, the dispersion and the horizontal motion

invariant are:βx ¼ R=νx¼ 49m,βy ¼ R=νy¼ 49m,Dx ¼
ð
Dxds=2πR¼ 2.84m, and

Ax ¼
ð
Axds=2πR ¼ 0.2 m. To obtain Eq. (6.132) we neglected in variations of

Ψ (0, θx, θy) along the lattice in Eq. (6.54) and assumed that Ψ (0, θx, θy)¼ 1 and Ψ x,

y(θx, θy)¼ 1 (their accounting makes quite small correction), and we additionally

introduced the coupling parameter κ which takes into account the redistribution of

heating between horizontal and vertical degrees of freedom. An experimental value

for κ is about 0.4. It is quite large and due to the strong coupling in Tevatron which

additionally is amplified by the beam–beam interaction. To verify accuracy of the

smooth approximation we performed averaging of Eq. (6.54) with Tevatron lattice

parameters for the rms bunch length of 62 cm, zero coupling (κ¼ 0) and 1.6� 1011

protons/bunch. It yielded the horizontal and longitudinal emittance growth lifetimes of
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22.5 and 28.5 h, correspondingly. The use of smooth approximation yields 18.9 and

26.9 h. As one can see the difference is sufficiently small and therefore the smooth

approximation has been used in the described below parametric model.

For Gaussian beams the luminosity of the collider is determined by the well-

known formula:

L ¼ f 0NbNpNa

2πβ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εpx þ εax
� �

εpy þ εay
� �q H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σsp2 þ σsp2

p ffiffiffi
2

p
β�

 !
, ð6:134Þ

where Nb is the number of bunches, Np and Na are the number of protons and

antiprotons per bunch, β* is the beta-function in the interaction point (IP), and εpx,
εpy, εax, and εay are the horizontal and vertical emittances for proton and antiproton

beams. The hourglass factor H(x) takes into account the finite value of the longi-

tudinal bunch size. It is equal to:

H xð Þ ¼ 2ffiffiffi
π

p
ð1
0

e�y2

1þ x2y2
dy !x
3 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1:3x23
p : ð6:135Þ

To describe the evolution of the luminosity we write a system of differential

equations, which bounds up all basic parameters of the proton and antiproton

beams:

d

dt

εpx
εpy
σpp2

Np

εax
εay
σpa2

Na

266666666664

377777777775
¼

2dεpx=dt
		
BB

þ dεpx=dt
		
IBS

þ dεpx=dt
		
gas

2dεpy=dt
		
BB

þ dεpy=dt
		
IBS

þ dεpy=dt
		
gas

dσpp2=dt
		
total

�Npτscat�1 � dNp=dt
		
L
� 2Lσpp=nb

2dεax=dtjBB þ dεax=dtjIBS þ dεax=dtjgas
2dεay=dt

		
BB

þ dεay=dt
		
IBS

þ dεay=dt
		
gas

dσpa2=dt
		
total

�Naτscat�1 � dNa=dtjL � 2Lσpp=nb

26666666666664

37777777777775
: ð6:136Þ

Here indices “p” and “a” denote protons and antiprotons, the derivatives dε/dt|BB
are the emittance growth rates due to scattering in the IP determined by Eq. (6.131)

(factor of 2 takes into account 2 IPs), the derivatives dε/dt|IBS are the emittance

growth rates due to IBS determined by Eq. (6.132), the derivatives dε/dt|gas are the
emittance growth rates due to multiple scattering on the residual gas determined by

Eq. (6.130), the derivatives dσ2/dt|total are the momentum spread growth rates

determined by Eq. (6.128), the derivatives dN/dt|L are the particle loss rate from

bucket determined by Eq. (6.128), and the addends 2Lσpp=nb determines particle

loss in two collision points due to luminosity. We also took into account that the

momentum spread growth rates used in Eq. (6.128) include contributions from the

IBS and RF noise.
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It is worth noting one more time that this model was able to predict evolution of

the beam parameters in the case of weak beam–beam effects. When these effects

are not small, it provides a reference for evaluation of their strength. We used that

analysis on a store-by-store basis to monitor the machine performance in real time

[60] because such calculations were very fast compared to a full numerical beam–

beam simulation.

Figure 6.31 presents an example comparison of the evolution of beam parame-

ters in an actual high luminosity store to the calculations. Note that there is no

transverse emittance blow up in both beams, and the emittance growth is dominated

by processes other than beam–beam interaction. The same is true for antiproton

intensity and bunch length. The most pronounced difference between the observa-

tion and the model is seen in the proton intensity evolution. Beam–beam effects

caused the proton lifetime degradation during the initial 2–3 h of the store until the

proton beam–beam tune shift drops from 0.02 to 0.015. The corresponding loss of

the luminosity integral was about 5 %.

The IBS model allows us to calculate the longitudinal beam loss rate in a typical

Tevatron store (Fig. 6.32). The initial longitudinal loss rate is not equal to zero

because of the Touschek effect. Later in the store, when more particles move closer

to the boundaries of the RF buckets through diffusion processes, multiple IBS

scattering starts to dominate over the single scattering effect. Note that for antipro-

tons, luminosity burning is the main loss contribution and the longitudinal loss due

to IBS is much smaller than its total intensity loss rate. Normally about 40 % of

antiprotons are “burnt” in the collisions due to elastic and inelastic interactions with

protons.

Fig. 6.31 Observed beam parameters in store 6683 compared to store analysis calculation (model).

L0¼ 3.5� 1032 cm�2 s�1. (a) Single bunch luminosity and luminosity integral. (b) Intensity of

proton bunch no. 6 and of antiproton bunch colliding with it (no. 13). (c) proton and antiproton rms

bunch lengths. (d) proton and antiproton horizontal 95 % normalized bunch emittances
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The calculated loss rate is in good qualitative agreement with the Tevatron

observations. For example, Fig. 6.33 shows the evolution of the total proton

bunched beam intensity, proton loss rate, proton rms bunch length, and the abort

gap beam intensity during HEP store #5157. Bunch length and bunch intensity are

reported from a wall current monitor (known as the “Sampled Bunch Display”,

described in Chap. 9). The loss rate is measured by gated scintillation counters on

the CDF detector, which integrate over the time intervals corresponding to the abort

gaps between the three proton bunch trains, while the simulation yields losses for

the whole Tevatron storage ring.

Fig. 6.32 Calculated

longitudinal beam loss rate

in unit of particles per

second for a typical store

using the IBS model, the red
curve is for the proton
bunch and the blue dashed
line is for the antiproton
bunch

Fig. 6.33 Decay of proton

bunch intensity (black
curve) and growth of its

length (blue) as well as
abort gap loss rate at CDF

detector (green) and proton

abort gap intensity (red) in a
typical HEP store (#5157,

the TEL was on)
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