Chapter 6
Emittance Growth and Beam Loss

R. Carrigan, V. Lebedev, N. Mokhov, S. Nagaitsev, V. Shiltsev, G. Stancari,
D. Still, and A. Valishev

A wide range of diffusion and beam loss mechanisms were studied during the
Tevatron Run II commissioning and operations. Many of them were well known
[Coulomb scattering, residual gas and intrabeam scattering (IBS)] but required
substantial studies and deeper theoretical insights because of unique experimental
conditions and beam parameters.

6.1 Single and Multiple Scattering

Conventionally, multiple and single particle scattering in a storage ring are consid-
ered to be independent. Such an approach is simple and often yields sufficiently
accurate results. Nevertheless, there is a class of problems where such an approach
is not adequate and single and multiple scattering need to be considered together.
This can be achieved by solving an integro-differential equation for the particle
distribution function, which correctly treats particle Coulomb scattering as well as
the betatron motion. We start our consideration from the Fokker—Planck equation
describing the evolution of particle distribution due to multiple scattering, then we
consider multiple IBS, and finally we will move to a simultaneous treatment of
multiple and single Coulomb scattering, where we will consider two problems: the
beam scattering on the residual gas and an evolution of longitudinal particle
distribution in a hadron collider due to single and multiple IBS.
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6.1.1 Diffusion Equation in the Action-Phase Variables

Let f(x, 0,t) be a one-dimensional beam transverse phase-space distribution func-
tion at time . In the presence of damping and diffusion the evolution of the function
fin a ring can be described by a Fokker—Planck equation:
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Here the functions x(x, 1), A(x, 8, t) and Dy(x, 6, t) describe the focusing, damping,
and diffusion in the ring, and vy = fc is the average beam velocity. Making the
transition to the action-phase variables (/, y), assuming that the distribution func-
tion does not depend on the phase y, and performing averaging over the ring
circumference one obtains the general form of the Fokker—Planck equation for
nonlinear oscillator:
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Here A(I) and D(I) are the damping rate and the diffusion averaged over the
betatron phase and the ring circumference, w(/) is the betatron frequency, and the
action for small amplitude betatron oscillations is introduced as follows:
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In the case of three-dimensional motion the general form of Eq. (6.2) is:
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Note that Egs. (6.2) and (6.4) conserve the number of particles.

In the case of linear focusing and damping, and amplitude independent diffusion
the functions x(x, 7), A(x, 0, t) and Dy(x, 8, f) do not depend on x and ; and they are
directly related to the functions of Eq. (6.1) averaged over circumference (revolu-
tion time): = (A(r)),, D = (B.(1)Dy(?)),. That yields the following form of Fokker—

Planck equation:
0 f D 0 [ of
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Multiplying Eq. (6.5) by I and integrating we obtain
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The replacement of action by the betatron amplitude a = v/2I converts the right-
hand side of Eq. (6.5) being proportional to the two-dimensional laplacian of f:
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As an example of Eq. (6.5) application we will find the beam lifetime
corresponding to the evolution of particle distribution at the stationary stage
when all details of initial distribution are smeared out by diffusion and damping.’
For unlimited aperture and nonzero damping rate the beam life time is infinite and
the equilibrium distribution function is:

f,t) = Ce !/, (6.8)

where Iy =D/24 is the average beam action. Further we assume that the aperture
limitation is important for one dimension only. Then the boundary condition is:
fo,) =0, where I, determines the ring acceptance. Looking for a solution in the
following form:

ft)y=C e o), (6.9)

and substituting it into Eq. (6.5) one obtains

s 1Y, 1 1
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where 7 is the beam intensity lifetime and C is a constant. The substitutions & = — I/I,
and a=1+1/(Azr) reduce this equation to the equation of the confluent
hypergeometric function (F(a, b, ) with b= 1. Thus the solution (for a, 4 > 0) is:

1 1

! This case describes well the beam lifetime in an electron synchrotron when the horizontal beam
emittance is set by equilibrium between synchrotron radiation (SR) damping and diffusion due to
SR. The vertical emittance is much smaller and therefore the beam loss due to diffusion in vertical
plane is negligible. It makes the problem being single dimensional.
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where 7 is determined by the requirement that the first root is located at £ = — I/,
ie., 1F1(1+1/(41), 1, — I,/Iy) = 0. In the practically interesting case of sufficiently
large aperture the numerical solution yields approximate equation for beam
lifetime:

0.612 I
T exp( 08122 ), (6.12)
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which has an accuracy better than 2 % for 2.2 < \/I,,/Ip < 8. In the absence of
damping the solution is:
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where Jy(x) is the Bessel function of zero order and gy is its first root.

In conclusion we will find the beam lifetime in the absence of cooling for the
case of equal aperture limitations and equal diffusions for both the horizontal and
vertical planes. We assume a round vacuum chamber, equal beta-functions and
sufficiently small momentum spread so that its contribution to the beam sizes could
be neglected. Then Eq. (6.4) can be rewritten in the following form:

of D(O [ O\ O O
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with the boundary conditionf, (Ix, 1 y) = (. Making transition to amplitudes,

‘1‘+1y:1,,
(ax =2, a,= ,/2Iy) and using Eq. (6.7) we can rewrite Eq. (6.14) as
follows:

of D

= =—A4f, 6.15

or 4 if (6.15)
where A, denotes the laplacian in the four-dimensional phase space. An axial
symmetric solution can be presented as a function of single variable—the radius
in the four-dimensional space a = /a,*> + a,’. That yields:

o D1d <a3df—0>.

4dda\” da
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Looking for solution in the following form f(a, f) = C ¢~ "*fy(a)/a with boundary
condition f, (\/21 ;,) = 0 one obtains:

el I 81,
(1,t) = C—— — = — =3.832... 6.17
flt) C\/[/—[hjl (/410\/1:>’ T Dﬂloz’ﬂlo , (6.17)
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where function J;(x) is the Bessel function of the first order, and y is its first root.
Comparing Egs. (6.13) and (6.17) one can see that the beam lifetime in the case of
two-dimensional aperture limitation with round vacuum chamber is ~2.54 times
shorter than in the case of single dimensional aperture limitation.

6.1.2 Multiple IBS

IBS of charged particles in beams results in an exchange of energy between various
degrees of freedom resulting in an increase of average energy of particles in the beam
frame and an increase of the total beam emittance in 6D phase space. The total
Coulomb cross section of a two-particle scattering in vacuum diverges; however, it
has a finite value for collisions in plasma (or beam) due to field screening by other
particles [1] or finite beam dimensions. Usually two scattering regimes are considered:
(1) single scattering, when a rare single collision produces a large change of particle
momentum (the Touschek effect), and (2) multiple scattering, when multiple frequent
collisions cause diffusion. The first phenomenon is usually responsible for the creation
of distribution tails and the beam loss in electron machines, while the second one for
changes in the distribution core. Such separation is useful in many applications. It
usually represents a good approximation for electron synchrotrons where the RF
bucket length is much larger than the bunch length. However there are cases when it
fails to deliver an accurate result. In particular it cannot be used to compute the beam
lifetime in Tevatron where particles fill the entire RF bucket.

The IBS in accelerators is already a rather well-understood subject. The first
decisive published work appears to be that of Piwinski [2], followed by Bjorken and
Mtingwa [3]. These two earlier works were both carried out from first principles of
two-body Coulomb collisions and largely ignored multiple scattering prior works
on Coulomb scattering in plasma [4, 5] and astrophysics [6]. In what follows we
re-derive the results of [3] using the Landau kinetic equation [4]. The new theoret-
ical results include: (1) closed-form IBS rate expressions using symmetric elliptic
integrals, (2) new IBS expressions for beams with coupled betatron motion and the
vertical dispersion, and (3) a theoretical approach that combines the small and large
angle Coulomb scattering. These new results are then compared with experimental
measurements in several Fermilab machines.

Multiple Scattering in Single Component Plasma
Consider spatially homogeneous non-relativistic one-component plasma. The evo-

lution of the velocity distribution function, f{v,, vy, v.), in such plasma is described
by the Landau kinetic equation [4]:

G pupret aj o N,y
= 2znryc LCaW fav_} favj w;;d’v, (6.18)
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where

(6.19)

Jf (v)dv =1, (6.20)

ro is the particle classical radius, n is the plasma density, ¢ is the speed of light,
L. =In(pmax/Pmin) 1s the Coulomb logarithm,

Pmin = ’4062/‘}27

— V2 = 05‘.—1—03 + 62 6.21
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ando,; = ﬁ .1 = (x,y,z) are the rms velocity spreads. Equation (6.18) is obtained
in the logarithmic approximation and is justified when In(p,ax/Pmin) =>> 1, where the
plasma perturbation theory can be used. The Landau kinetic equation (6.18) is a
nonlinear second-order integro-differential equation on the unknown function f,
which is assumed to be nonnegative and integrable together with its moments up to
order 2. The general time-dependent solution of this equation is not known. However,
one can verify by inspection that the stationary solution of Eq. (6.18) is any Maxwel-
lian velocity distribution function. It can be also easily checked that the following
quantities are conserved:

J fdv, J fvd?v,and %J fIvPd, (6.22)

corresponding respectively to the spatial density, momentum, and kinetic energy of
plasma. The symmetric form of Eq. (6.18) can be easily rewritten in a Fokker—
Planck form:

daf 0 10 of
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where
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thus demonstrating that the Landau kinetic equation includes both the dynamic
friction and the diffusion.
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Let us assume a general Gaussian velocity distribution. By appropriate rotation
of coordinate frame it can be reduced to the three-temperature distribution function

1 1 v% V>2, v2
/ ‘WMG“I’(-z(aﬁazmz . (629)
vx¥vyHvz VX vy vz

Then let us calculate the growth rate for the second moments of the distribution
function

%zywww (6.26)

First, it is clear from symmetry of Eq. (6.25) that only the diagonal elements of X
are nonzero, X = diag(c? , afy, 2.). Second, using Eq. (6.18) we can find the rate of
change of these second order moments due to Coulomb scattering in plasma

do _[of
EZU = Jav,v_,d V. (6.27)

The result describes the rate of energy exchange between degrees of freedom in
plasma:

ax_ 0 wper, (¥ o) ol :
dt 6\2;x+0-\2)y +6%z 0 \,}70\;3 vx lf/(gvmawwavy)

(6.28)

The function ¥(x,y,z) can be expressed [7] through the symmetric elliptic
integral of the second kind, Rp(x,y, z), so that:

V2r

P(x,y,z) = KPS (yzRD (zz,xz,y2)+zzRD (xz,yz, 22) —2x*Rp (y2,22,x2)), (6.29)
RD(W‘HW)::%JL‘ dt (6.30)

e+ 04w

where r = \/x% + y2 4+ z%; x,y,z > 0. An algorithm for fast numerical evaluation
of Rp(u,v,w) is discussed in [7]. The function ¥(x,y,z) is chosen such that it
depends on the ratios of its variables but not on r. It is symmetric with respect
to the variables y and z, and is normalized such that ¥(0, 1,1)=1. The energy
conservation yields: ¥(1,0,1) =¥(1,1,0) = =1 and ¥(x,y,2)+¥(y,z,x)+
¥(z,x,y)=0. And in a thermal equilibrium, ¥(1,1,1)=0. In a case of two equal
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Fig. 6.1 The function 1
¥(x,1,1) for two equal
temperatures
0
Y (x,1,1)
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temperatures, the temperature relaxation rate given by (6.28) is identical to that
given in [8] and can be expressed in terms of elementary functions:

24/x2 4+ 2y?
Wry.y) = W FE) D +20] -2, (631)
where
1 u
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2
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Figure 6.1 shows the function ¥(x,1,1) for x from O to 10. If one of the
temperatures is zero, a very useful approximation (with a ~0.5 % accuracy) was
obtained in [9]:

V2 (2 Jryz 2 yz 2
Y0 ~l+—Inl—— ) —0055|——) . 6.33
( ,X,y) + e Il< 2)(_)7 ) (X2 +y2> ( )

Note that Eq. (6.28) is not self-consistent; i.e., it implies that the distribution
function remains Gaussian; however, the diffusion and the friction due to multiple
scattering does not allow for the beam distribution to remain Gaussian during the
process of temperature exchange until it reaches the thermal equilibrium and the
distribution becomes Maxwellian. Additionally, the single large-angle scattering
(not considered in this section) creates non-Gaussian tails. However deviations
from the Gaussian distribution are comparatively small and Eq. (6.28) represents a
good approximation in most practical cases. In particular, it describes well the
temperature relaxation in the course of electron beam transport on the case of
non-magnetized electron cooling.
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Multiple Scattering (IBS) in Accelerators

Although the beam focusing and dispersion effects in accelerators significantly
complicate computation of IBS, they do not change the essence of the process.
However, the time-dependent nature of transverse focusing results in a continuous
growth of the 6-D beam emittance [2, 3]. In difference to plasma where the energy
is conserved the binary collisions do not conserve energy in the beam frame
resulting in unlimited emittance growth supported by energy transfer from the
longitudinal beam motion (with nearly infinite reservoir of energy) to the internal
particle motion in the beam frame (BF). The calculations of the IBS rates in
accelerators will proceed in the following manner. First, one can verify that for
the typical parameters at the Tevatron complex, the beam velocity spread in the BF
is far from being relativistic? and the particle collision time, pax/v, is much smaller
than the period of betatron oscillations in the BF. This implies that the results of the
previous section can be used in each location and then averaged over the entire
length of the accelerator to obtain the overall IBS rates. Second, we will make an
assumption that at each location of the accelerator the distribution function, f{(v,r, ?),
in the BF, is Gaussian in the 6D phase space. Third, we will calculate the growth
rates in the BF using Eq. (6.28). And finally, we will convert these rates into the
laboratory frame (LF) emittance growth rates.

Generalizing the Landau kinetic equation [see Eq. (6.23)] for a spatially
non-homogeneous distribution function in the BF one obtains:

d (.0 '
di;:fznzv“L ETJ fa]: f f wyd*v dqra(; r) (6.34)

where N is the number of particles per bunch, the distribution function is normal-
ized to 1

J fv,r,)dvd’r =1, (6.35)

and we assume that in the absence of collisions the beam is in the equilibrium state,
i.e., 0f/0t = 0. The same as above we choose the initial distribution being Gaussian:

—
=

fvr) =%

exp(—X"EX), (6.36)

where X" = (X, v, ¥, vy, 2, V), and E is a symmetric positively defined 6 x 6 matrix
determined by ring Twiss parameters and mode emittances of the beam

2 Actually this condition is satisfied for all circular accelerators build to this time with exception of
LEP presenting a weakly relativistic case.
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(see Chap. 2). By definition its determinant is the squared product of inversed mode
emittances, IEl = det(IEl) = 1/(e,62¢3)°.
Let us define the second moments of the distribution function (6.36) in the BF:

= Jf(v, r)vividvd’r,
K[j = Jf(V, r)r,vjd3vd3r, (637)
Ajj = Jf(v7 r)rirdvd’r.

Similar to Eq. (6.27) let us find the rate of change of these moments by using the

Landau kinetic equation (6.34) for the distribution function (6.36). Simple integra-

tion immediately yields®
dK dA
U A (6.38)

To calculate the rate for elements of matrix X we will introduce the rotation
matrix T, reducing X to its diagonal form

0% 0 O
T'ET=|0 o 0 |, (6.39)
0 O 0%

and the matrix function Wis(TT2T) such that

¥(o1,02,03) 0 0
Wips (TTET) = 0 ¥(03,03,01) 0 , (6.40)
0 0 lP(G'j 01, 0'2)

with ¥(x,y,z) given by Eq. (6.29).
Similar to Eq. (6.28) one can now calculate the rate for matrix X due to the IBS
in the beam frame in the absence of betatron and synchrotron oscillations:

dE Nro2c*L,
dt  4\2a,ayas Tr(X)

T¥s (TTET) T, (6.41)

where aja, and a; are the rms sizes of 3D bunch ellipsoid (principle rms beam
dimensions). We will now convert this rate to the laboratory frame and calculate the

3 Note that at this point we consider only variations of frelated to the scattering. Effects of betatron
motion will be accounted at the next stage of calculations.
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emittance growth rates. For accelerators with linear optics, the bunch distribution
(6.36) is defined in the LF as:

F(r,0) :3lexp<—11—12—13), (6.42)
(271’) E16283

where r and 0 are the LF canonical coordinates and momenta, /; are the particle’s
action variables, and ¢; are the mode emittances of the beam. The mode emittances
are defined such that:

£ = JIkF(r, 0)d’0d°r. (6.43)

For a given particle the action variables are bi-linear forms of coordinates and
momenta:

Iy = BS6:6; + Cji0irj + Qfrir), (6.44)

where B, C, and Q are real 3 x 3 matrices, defined by the accelerator lattice at each
location, and summation on the repeated subscripts is implied. It is obvious that
(6.36) implies,
I, 1 1 1
—In(F) = —==-0;0,0; +=-H;0;ri +=-Mr;r;, 6.45
n(F) zk:gk 5 i /"’2 i r.1+2 iyl ( )

where O, H, and M are real 3 x 3 matrices, uniquely defined by the lattice at each
accelerator location and related to BF matrices (6.37). We can now calculate the
emittance growth rates as

d&‘k dF 3 3
— = I — - 4
“ <Jkdtd9dr>, (6.46)

s

where (), implies averaging over the accelerator circumference. Using (6.40) and
(6.41) we obtain

3
L:>  BR;
i,j=1
o (6-47)
ayazaz+/Tr(X) >S

where f and y are the usual relativistic Lorentz factors of the bunch in the lab frame,
a; are the principle rms bunch sizes in the laboratory frame, and the 3 x 3 matrix
R is given by the following expression:

dr o 42py

dey Nr3c? <

R=(G") TWes(T"ET) TG . (6.48)
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The BF matrix X is related to the LF matrix @ as follows:
T = (fre)’GTO'G, (6.49)

where G =diag(1, 1, 1/y). Equation (6.47) is the most general IBS emittance growth
rate for an arbitrary Gaussian 6D distribution function in a linear accelerator lattice.

Let us now discuss several specific cases. As a first example consider an
accelerator lattice with uncoupled x — y betatron motion. However we will account
that both dispersions can be nonzero. Then,

ﬁx/ Ex 0 —p, D,/ &x
0= 0 B/ ey —B,®y /ey |, (6.50)
_ﬂx(px/gx _ﬂyq)y/gy 033
where O3 =0y > + 2+ D, =D, + %P, @y =D+,

A= (D2 4+ (B2.)). 4y = 1 (D2 + (,8,)7): Fp = 1+ 2507 4 2207

B By, oy, and a, are the beta;functions and their negative half derivatives; D,,
Dy, D;, and D;, are the dispersions and their derivatives; ¢,, ¢, and €, = 0.0, are the
non-normalized transverse and longitudinal rms beam emittances; o, is the rms

bunch length and o, is the relative rms momentum spread. In this case the Eq. (6.47)
becomes:

Lci B/R;
dep _ Nro’c < = > (6.51)
di 201 fEE \ | JppFoTi(E)]
with
B, 0 —dp, Y 0
B'=| 0 0 0 |\B=|0 p B |,
—Dp. 0 A 0 =&hy A (6.52)
00 0
B=|00 0],
00 p

where f. =0./c,. The Coulomb logarithm is computed similar to the plasma case

with the following correction affecting the value of maximum impact parameter in
Eq. (6.21):

. Tr(X)
Pmax = MIN <O'mim Y02, W) > (6.53)
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where  26min” = 0% + 0,% — \/ (axz — ayz)z + 4DX2Dy20p4, 6= €X/)’,\.+szo'p2,
and ayz = syﬂy+Dy26,,2. If one of the dispersions is equal to zero, then
Omin = Min(cy, 6,,).

The above equations can be used for a coasting beam with following substitu-
tions: o, — L/(2y/7), B. = diag(0,0,2) implying that de3 /dt — do,? /dt. Note that
the factor of 2 in matrix B, reflects the absence of the synchrotron motion, taken
into account in Eq. (6.51).

In many practical applications the longitudinal temperature in the BF is
much smaller than the transverse one (6,/y < 6,) and the vertical dispersion
can be neglected. The Eq. (6.51) (bunched beam) then can be reduced to the
following:

d | & NroZc L. £ EQX’ eyg
e | =hs | 7.0, , (6.54)
'\ 6,2 42736, \0:0y0. ¥(0,6,,06,) ‘

where ¥ ,(0,,0,) = ¥(8,,0.,0)8,/7*, ¥.(0.,0,) =P (0,0,,0)A +¥(0,,0,,08/r,
0, = /0> +6,%, 0°=elp(l+0,(®p)/c7), 0,>=e)B,. For an ultra-

relativistic machine, y > Q,, the terms with ,[},‘.,y/}/2 are small and can be neglected.

Similar to the suppression of IBS in an electron beam by magnetic field the
multiple IBS is suppressed if 6, becomes so small that the collision time becomes
comparable to the betatron frequency [10]. Such conditions can be achieved in the
case of deep beam cooling.

6.1.3 Single and Multiple Scattering at the Residual Gas

It was already mentioned in the previous section that the Coulomb scattering
creates non-Gaussian tails. In this section we will consider how Coulomb scattering
can be treated so that both single and multiple scattering are correctly accounted.
The diffusion coefficient for particle scattering in the medium is well known. For
scattering in a ring it can be expressed in the following form:

D= 47rcﬂ< > Zz (Zi+1 1; ()/3)() o (6.55)

where the summing is performed over partial densities of residual gas, Z; is their
charges, and the integration over ring circumference averages the gas density, n,(s),
weighted by the horizontal beta-function, §,(s). For simplicity of equation we are
considering an evolution of particle distribution in the horizontal plane. The same
expressions are applicable to the vertical plane. For the high energy scattering
(p > agsZ;, ags ~ 1/137) the Coulomb logarithm is:



200 R. Carrigan et al.

i 91; X i . (274 m,.c
chln< a>,9mm~apszil/3 o ! A min (A,-l/z ; 9;,) (6.56)

min

where p is the particles momentum and the minimum and maximum angles are
determined by the field screening due to atomic electrons and by the diffraction on
nuclei.

The solutions of Eq. (6.5) with diffusion of Eq. (6.55) are commonly used to
describe the emittance growth in particle accelerators due to various random
diffusion processes, including multiple elastic Coulomb scattering. This equa-
tion describes the core of the beam distribution well, but completely fails to
describe its tails in the case of Coulomb scattering. Far-away tails can be
sufficiently well estimated using a single scattering approximation, but in
many applications a prediction of tails behavior in the vicinity of the core is
required. It is possible to computer-model the distribution function by Monte
Carlo methods. However, we found it beneficial to advance the analytical
treatment of the Coulomb scattering process to a point, where, for a given
residual gas pressure, the distribution function can be obtained by solving an
integro-differential equation, proposed below. In what follows we consider
Coulomb scattering on the residual gas, but the theory can be easily adapted to
other Coulomb scattering phenomena.

To simplify formulas we omit the summation over different gas species below.
Neglecting the nuclear form-factor, one can write the differential elastic small angle
cross section in the following form [11]:

do

2
ro 1
— ~A4Z(Z+1) ( 2) =, (6.57)
e 7P (62 + 6, + 02, )

min

After integrating this over 6, one obtains the one-dimensional cross section

do ro \2 1
~ 21Z(Z + 1)< ) _— (6.58)
0, B (92+92 )3/2

min

and the total cross section

47r22 2
Crot & < 2) . (6.59)
mm yﬂ

For a combined treatment of both the small- and large-angle elastic scattering
let us write the right-hand side of Eq. (6.5) in a general form of the collision
integral [3]:
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%_1%: <J 590 —amt5<9—l9’) nv(,fé(x—xl>d61dx’>
S\ e s
2
. & ro 1 /
= <J_9@ 2rZ(Z+ 1) W ((gﬁgg)Jrel )3/2_6t0175(9_9>
nvofé(x - xl)dé’,dx’> , (6.60)
W,

where &(...) is the Dirac delta-function, and averaging is performed over the
betatron phase, y, and machine circumference. Expressing particle angles and
coordinates through the action-phase variables, (I, ), one obtains

%—A%(If) - J:W(I,I')f(l’,t)dl’, 1<1y, (6.61)

where [, is the ring acceptance, and we introduced a scattering kernel, W(I,1°),

W(I,l’) = nv,,<JO; (5; o Ot (.9 - 9’))5(x - x’)dq/ ZZ‘:> . (6.62)

Neglecting 6,,,;, in the cross section (6.58), denoting

2
B = 4z, (%) 2z + l)fi;n(s)ﬂ(s) %, (6.63)

Y0Po

and temporally omitting the term with ¢,,,6(6 — @) one obtains

2 2 /5(\/icos¢f\/ljcoscpl>
|, o], ¢

@ : T (6.64)
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W(I,I’) _B
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A lengthy integration yields*

4 Method of the integration can be found below in the computation of similar integral for intra-
beam scattering [see details further down Eq. (6.80)]. Note also that the Kernel (6.66) can be used
without &-function [like in Eq. (6.65)] in alternative form of integro-differential equation:

3 /ot — A0(1f) /01 = [; w(Lr) (r(1.0) —ra.n)ar.
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W(l,]’) _B 1+II3 . (6.65)

Neglecting 0,,;, in our transition from Eq. (6.60) to Eq. (6.64) causes divergence
of the integral (6.65) at I~TI, when the scattering angle is small. Instead of
performing the exact integration using Eq. (6.58) (which is already an approxima-
tion), one can eliminate this divergence by modifying the kernel of Eq. (6.65)
similar to the method used to limit the divergence in Eq. (6.57). Combining
Egs. (6.60) and (6.65) one obtains the kernel:

N_B I+ + Inin/2 2
"= ((1_1’)2+(1+1)mln+1iln/4> ’ [mma(l V)
(6.66)

where to find the coefficient in front of é-function we used the law of particle
conservation which requires that

JO W(I,]’)dl’ —0. (6.67)

The divergence in Eq. (6.65) was eliminated artificially by adding terms
containing /,,;, in a manner similar to 6,,;, in Eq. (6.57). Thus, although the new
kernel (6.66) is not exact, it, however, has the correct asymptotic. It is symmetric
with respect to I and I’ as it can be seen from its definition (6.64). At small
scattering angles it has the accuracy similar to Eq. (6.5) but it correctly accounts
for single and multiple scatterings. Note that the form of the kernel, W(I,1"),
assumes that the range of beam particle angles is smaller than the maximum
scattering angle 6,,,x, which is well justified in most practical cases. Otherwise
Omax has to be explicitly taken into account in Eq. (6.57).

The accelerator aperture is always finite. Therefore, the upper limit in the
integral of Eq. (6.65) should be replaced with the boundary action value, [,,. This
also yields the boundary condition for the distribution function, f(1,, ) =0.

It is now quite trivial to obtain a Fokker—Planck equation from Eq. (6.61) by

expanding the function f in series at ['=1, f(I,t) ~f(l,t)+f 1,0 —1I)

+%f”(1,t) (II 71) , and integrating to I, = p6>
beta-function. The integration yields:

% - AE 1f) ~ (’ ma") N [1%} . (6.68)

mll'l

L ax> Where S is the average ring

Recalling that In(/iax/Imin) =2L. we arrive to Eq. (6.5) with diffusion of
Eq. (6.55).
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Normally the difference between the maximum and minimum impact parame-
ters is many orders of magnitude. It makes it impossible to solve Eq. (6.61) directly.
However considered above diffusion model allows one to create an effective
numerical algorithm which solves for the distribution function evolution under
single and multiple scattering. For a numerical solution we split the total range of
the action variable, [0, I, ], into N equal size cells, Al =1I,/N. Then, Eq. (6.61) can be
rewritten as

- ot fn+117!+1 _fn711,171 &= g _
o, =57 </1 5 +Y Wmkf, |, L,=nAl.  (6.69)

m=0

Taking into account that the cell size is much larger than the minimum action,
Imin, We can write the probability of a particle exchange for two distant cells

~ B
W (n,m) = n+m

=————, n#m m*l (6.70)
4 |n—ml

To find the probability of the particle exchange for nearby cells we use diffusion
equation. It yields:

W(n,nil):BzLC (n:t%) (6.71)

The probability W(n, n) is determined by the particle conservation so that

iﬁ/(n,m) =0 . (6.72)

m=0

The index m in this sum is running to infinity. It takes into account that a particle
can be scattered outside of the accelerator aperture. Consequently, the particle
number is not conserved in a finite aperture of a ring.

6.1.4 Single and Multiple Scattering for Longitudinal Degree
of Freedom in Hadron Colliders

The single IBS scattering becomes important when there is a large difference
between rms velocities of different degrees of freedom in the BF. In this case a
single scattering can result in a momentum transfer significantly exceeding the rms
value of the coldest degree of freedom thus creating non-Gaussian tails and particle
loss. In ultra-relativistic colliders and storage rings the longitudinal momentum

spread in the beam frame, AP/H = Apy/ly, is much smaller than the transverse one.
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In this case a single scattering with large momentum transfer can result in that both
particles scatter out of longitudinal machine acceptance. For the case when the
longitudinal temperature is much smaller than the transverse one it is called the
Touschek effect. It was first investigated in electron storage rings for a flat beam
and non-relativistic energies in the BF [12, 13]. The radiation damping in electron
synchrotrons typically results in the rms momentum spread being much smaller
than the RF bucket height. That allows one to consider single and multiple scatter-
ing separately resulting in a simple treatment of the single IBS developed in
[13]. However this approximation is usually not valid in hadron colliders where
initially the beam is usually well inside of the RF bucket and the beam loss is
dominated by single scattering; but shortly later, the multiple scattering results in
the beam distribution reaching the RF bucket boundary leading to domination of
multiple scattering in the particle loss.

As it was already pointed out the considered above model of IBS assumes that the
beam stays Gaussian in the course of its distribution evolution and the focusing is
linear. These conditions are satisfied sufficiently well for transverse degrees of free-
dom. However such approximation is quite coarse for the longitudinal degree of
freedom if the bunch length is comparable to the RF bucket length. In further consid-
eration we assume that the longitudinal momentum spread in the BF is much smaller
than the transverse one (o,/y < 6 ); that the transverse distributions are Gaussian and
do not depend on the longitudinal action; and we also take into account that the
longitudinal motion is nonlinear and is described by dimensionless Hamiltonian:

Single
p? harmonic RF 2 N 2

where €2 is the small amplitude synchrotron frequency.

In the case when multiple scattering is only accounted the evolution of longitu-
dinal distribution and the particle loss from the RF bucket can be described by
Eq. (6.2) with A=0:

1o (PI1Y o
291 | W@ a1 ) (6:74)

o _
ot

Here in comparison to Eq. (6.2) we redefined diffusion coefficient so that Dy(w) = @
(0)D(w). It simplifies formulas and looks more natural for description of diffusion
in the longitudinal motion. To find D\(w) we will follow the following procedure.
As one can see from Eq. (6.73) a momentum change &p results in an energy change:
6H = p 8p . Taking into account that dH = w(I) dI we obtain:

d— pt d
—oI* = —8p2 ), 6.75
di <w(1)2 a”’ >w (6.75)
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where (...), denotes averaging over synchrotron phase. On the other hand,
multiplying Eq. (6.74) by (I' — I)* and integrating it with f(I) = (I' — I') one obtains

ar_1po 22 (A1 o
Eéﬂ ’EJ(I _I> ol \ w(l) Tar =
) , 6.76
DU IO NN e oy T
J G b NGk w@) "

Comparing Egs. (6.75) and (6.76) one obtains

52
D||(1) = <1£(1) %5,52>W. (6.77)

Using cross section of Eq. (6.57) and performing averaging one finally obtains:

AL,
D! | )= 2nla(])

i n(@)a. (6.78)

where we took into account that the local diffusion is proportional to the beam
linear density n(¢) = J f(¢,p))dp normalized so that at the process beginning
| .n(¢p)dp =1, the choice of parameter

- Nrofoen? ¥(0,0,,0,
A =4r°V2x ’OfRF"< (0,0:,0)) > (6.79)

ﬂ4y3 06,0y /9X2+9y2

will be clarified later in this section, fr is the RF frequency, # is the ring slip factor,
and N is the initial particle number in the bunch. Substituting diffusion (6.78) into
Eq. (6.6) (for A=0) and performing integration with linear RF and Gaussian
distribution yield the momentum growth rate of Eq. (6.54).

5 For rectangular distribution with total bunch length ¢ (7(¢p) = 1/¢ho; Within bunch) and linear
RF one obtains % p2n(p)dy = 2mwl /., and, consequently, D| | (I) = AL /-
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To take into account the single scattering one needs to replace the Fokker—
Planck equation (6.74) by integro-differential equation® [14]:

w: J:hW(””) (f(I'J) —f(I,t))dI', (6.80)

where a,, is the longitudinal acceptance determined by a finite value of the maxi-
mum momentum deviation or by RF bucket size. Further we will assume that the
upper limit of the integral is equal to infinity but the boundary condition determines
that fla) =0 for a > a;. To proceed further we need to take into account that even
strong single scattering which instantly moves a particle to the longitudinal bucket
boundary implies a small angle scattering (in the BF) which differential cross

section is proportional to 1/¢°, where § = p — p' is the longitudinal momentum
transfer. Integrating over longitudinal distribution and averaging over betatron
motion one obtains:

of(l,) A JOO F(0) —f1,1)
ot 8

M) =26 (g~ ¢ ) dydy (6.81)
p —p'|

In difference to Eq. (6.60) the local diffusion (scattering) is position dependent,
i.e., is proportional to the local density, n(¢). For now we also neglect the diver-
gence in the integral at p = p . This deficiency will be addressed later in a manner
similar to the one used in the derivation of integro-differential equation (6.61)
describing scattering on the residual gas. The parameterg used in Eq. (6.81) should
be determined by averaging over transverse distributions and the ring circumfer-
ence. As will be shown below that it is determined by Eq. (6.79). Comparing
Egs. (6.80) and (6.81) one can write for the kernel in the integral:

W(I,1) Kr r n(@MdWU/ Z“’“’/H;n(gb)é(d)—qﬁ’)dgbdqs’

S8l T -p T 87 p—p'[ PP
_ive Jmi"<”<””’(")>n<¢) L, L |4
AT Jmax(atr)a(1')) p—p'l 1p—p') PP
(6.82)

where b(I) and a(l) determine the range of motion (¢ € [a(l), b(I)]), and we used
that dy = wd¢p/p. This equality can be obtained by making a ratio of two

S Here we choose alternative form of Eq. (6.61).
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straightforward equations: dy=w dt and d¢ = pdt. Substituting
p = +/2H(I) — U(¢) and performing integration one obtains for I' > I

b(I) b(I)

0) =