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Abstract
The use of graphical language in quantum computing for the representation of algorithms, although
intuitive, is not very useful for different tasks such as the description of quantumcircuits in text
environments, the calculation of quantum states or the optimization of quantum circuits.While
classical circuits can be represented either by circuit graphs or by Boolean expressions, quantum
circuits have until nowpredominantly been illustrated as circuit graphs because no formal language
for quantum circuits that allows algebraicmanipulations has so far been accepted. This work proposes
ameans to represent quantum circuits in a convenient and concisemanner, similar to theway Boolean
expressions are used in classical circuits. The proposed notation allows the consistent and
parameterized description of quantumalgorithms, as well as the easy handling of the elements that
compose it to achieve powerful optimizations in the number of gates of the circuits. To visualize it, a
software implementation of an algebraic quantum circuit framework has beenmade, which allows
describing quantum circuits, as well as their respective state vectors, using the proposed algebraic
language.

CCSCONCEPTS

•Theory of computation → Quantum computation theory; •Computingmethodologies → Representation of
mathematical objects; Quantummechanic simulation; • Software and its engineering → Formal language
definitions.

1. Introduction

Quantumcircuits, pioneered byDeutsch in [1], are widely acknowledged as a practical and commonly used
approach for illustrating the operations of quantum gates on qubits, ultimately describing the unitarymatrix of a
quantum computer through graphical representations. Consequently, quantumalgorithms and protocols are
typically depicted in the format of quantum circuits. This leads to a challengewhen dealingwith complex
quantumalgorithms or protocols, as their circuit graphs can quickly surpassmanageable sizes,making drawing
andmanipulation impractical.

In classical computing, circuits can be not only graphically represented but also expressed as Boolean
expressions using Boolean gates that implement logic based on truth tables. These Boolean expressions are well-
suited for algebraicmanipulations. Conversely, the derivation of an algebraic expression for a quantum circuit
has been challenging because quantum computing lacks a language analogous to Boolean expressions in classical
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computing. The present paper aims to introduce a formal semantics for a novel algebraic language designed to
streamline the expression of quantum circuits in a concisemanner so that fundamental algebraic laws for
quantum circuits can be easily proven, and complex quantumalgorithms can be simplifiedwhen expressed in
this language.

A bibliographic review shows the great interest that the problem arouses, although no solution has been fully
accepted to date.

In thework [2], aMathematica package is presented for the simulation of quantum computing based on the
circuitmodel, providing an interface to specify and draw a quantum circuit and to build the corresponding
unitarymatrix for quantum computing defined by the circuit. Anothermethod for representing the unitary
matrix of a quantum circuit as an algebraic equation is presented in the paper [3]. Note that the present work
does not require the use ofMathematica ormatrices.

Another close paper is [4], which presents the design of an algebraic language for formally specifying
quantum circuits in distributed quantum computing so that using that language, quantum circuits can be
represented in a compact way.However, the language proposed in the present work is simpler and closer to
simulation programming, which facilitates its implementation. Indeed, this issue is demonstrated through the
presentation of afirst version of a software implementation of the proposal. In particular, the present notation
proposal ismore intuitive as it sets the quantumgates in order of execution (from left to right).

The equational theory of quantum circuits is discussed in the paper [5], which presents an axiomatization of
the relationship betweenmeasurement, qubit initialization and a set of unitary gates. Another recent work [6]
proposes the unification of quantumand classical computing in open quantum systems. Also recently, the paper
[7] describes theflowof quantum compilationwith several NP-hard tasks (problems that are at least as complex
as the toughestNPproblems, even if they are not inNPor are even undecidable) and proposes algorithms based
onBoolean satisfiability to address those computationally complex problems. Note that the three
aforementioned recent papers address related but different topics than the one addressed in the present paper.

In thepaper [8], the existence of quantum logic gate identities is highlighted to address the connectivity
problemsof quantumhardware equipment in theNoisy Intermediate-ScaleQuantum (NISQ) era. This stage of
quantumcomputing is characterized by quantumprocessorswith a limited number of qubits (currently around a
thousandqubits), which arenot yet advanced enough to guarantee fault tolerance.Optimisation schemes are
proposed in this sense, in order to respect the couplingmapof the qubits involved.However, this approach focuses
on equivalences between the products ofmatrices, andnot on identities emanating frompre-established rules.

Finally, one of the latest relatedworks is [9] on the equivalence of dynamic quantum circuits. That proposal
looks promising, but has only been evaluated on toy examples, with no available software packages for
checking yet.

This paper is structured as follows. Section 2 provides a brief introduction to the topic, including the first
fundamental notations for states and gates. Section 3 contains several general basic properties, while section 4
focuses on specific properties of the controlled Pauli-X gate. Section 5 introduces a beta software
implementation thatmakes use of the proposed language. Section 6 shows the usefulness of the proposed
language by demonstrating a use case that illustrates an effective circuit simplification based on the introduced
notation. Section 7 completes this paper with some conclusions and futurework. Appendix A includes the
longest proofs of the theoretical results. Finally, appendix B further emphasises the operation and importance of
themethod of applying the rules.

2. Preliminaries

The fundamental information unit within a quantum computing system is the qubit, which is denoted by a
unitary vector within aHilbert space of dimension 2.Multiple qubits can be taken together so that an element of
theHilbert space of n qubits is considered. This case can be seen as the tensor product of the nHilbert spaces
corresponding to each qubit in the system, so that the resulting space dimension is 2n.

Let  and  denote the sets of natural and complex numbers, respectively. The notation n is used to denote
the subset of  that contains the natural numbers smaller or equal than n. In set theory, for anyfinite set S, its
number of elements |S| is called the cardinality of S.

2.1. Kets
As introduced in [10], qubits are normally written in the so-called bra-ket notation.

On the one hand, each qubit is represented as a ket, of the form |a〉, which denotes a vector a in a vector space
V. For instance, the computational basis states are written as |0〉 and |1〉, and called ket 0 and ket 1, respectively
(see [11]). Thus, any qubit can be described by a linear combination of these two basis states as
|a〉=α0|0〉+α1|1〉, where a a Î ,0 1 such that |α0|

2+ |α1|
2= 1.

2
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On the other hand, a bra is of the form 〈f| and denotes a linear form f that represents a linearmap thatmaps
each vector inV to a number in .

In this way, when the function 〈f| acts on a vector |a〉, the result is written as 〈f|a〉.

Notation 2.1.1. For any qubit |ak〉=αk0|0〉+αk1|1〉, the following notation is used:αk0= 〈ak|0〉 and
αk1= 〈ak|1〉.

For example, for two qubits |a1〉 and |a2〉, the following can bewritten:

∣ ∣ ∣
∣ ∣

∣ ∣ ∣ ∣ ( )

a a
a a
a a a a a a a a

ñ = ñ + ñ
= ñ + ñ
= ñ + ñ + ñ + ñ

a a a a

a a

0 1

0 1

00 01 10 11 . 1

1 2 10 2 11 2

20 1 21 1

10 20 10 21 11 20 11 21

In general, for n qubits |a1〉K|an〉, the composite ket |a〉= |a1L an〉 can bewritten as shownbelow:

∣ ∣ ∣ ( )   a añ = ñ + ñ- + - +a a a a a a a a a0 1 . 2k k k n k k k n0 1 1 1 1 1 1 1

Notation 2.1.2. For any ket |a〉= |a1Kan〉 of n qubits, the following notation is used:
∣ ∣  ñ = ñ- +a a a ua au

k
k k n1 1 1 , where Î k n and uä {0, 1}.

Consequently, the expression (2) can bewritten as follows:

∣ ∣ ∣ ( )a añ = ñ + ña a a . 3k
k

k
k

0 0 1 1

For instance, if |a1〉, |a2〉 and |a3〉 are three qubits, then:

• ∣ ∣ñ = ña 01 0
1 and ∣ ∣ñ = ña 11 1

1 .

• ∣ ∣ñ = ña a a 01 2 0
2

1 .

• ∣ ∣ ∣ ∣ ∣a a a añ = ñ + ñ = ñ + ña a a a a a a a a0 11 2 3 20 1 3 21 1 3 20 0
2

21 1
2.

• ∣ ∣ñ = ña00 0013 1
3 .

2.2.Quantumgates
Aquantumgate is a basic quantum circuit operating on a small number of qubits.

For example, a single-qubit gateA can be applied over the first qubit of a ket |a1a2〉 and the result is
A|a1〉⊗ |a2〉. It can also be applied over the last of both qubits and then the result is |a1〉⊗A|a2〉.

Notation 2.2.1. IfA is a single-qubit gate and |a〉= |a1L an〉 is a ket with n qubits, the following notation is used:
|a1L ahAah+1L an〉= |a1L ah−1〉⊗A|ah〉⊗ |ah+1L an〉, where 1< h< n.

For example, if |a〉= |a1a2〉 then |a1Aa2〉=A|a1〉⊗ |a2〉 and |a1a2A〉= |a1〉⊗A|a2〉.

Notation 2.2.2.The effect over the k-th qubit of the ket |a〉= |a1L an〉 of the quantum gateA can be denoted
by: ∣ ∣ñ = ña A ak A

k .

Notation 2.2.3. For any set { }G = ¼ Í l l, , h n1 and any single-qubit gateA, the following notation is used:

( )
=
= 

G ¼

ÎG

A A

A 4
l l

k k

, , h1

Note that, according to the previous notation, for the specific case of the empty set G = Æ, the resulting
quantumgate is the identity gateAΓ= I.

In conclusion, for example, the action of a single-qubit gateA over the ket |a〉= |a1a2〉 can be expressed using
four distinct forms:

∣ ∣ ∣ ∣ ∣ñ Ä ñ = ñ = ñ = ñA a a a Aa a a A a a A1 2 1 2 1 2 1 1 2
1

3
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2.3. Pauli gates
Pauli gates are physical andmathematical operators in quantum computing represented by thewell-known
Paulimatrices, which are a set of three 2× 2 complexmatrices that are traceless, Hermitian, involutory and

unitary. They are represented by the followingmatrix expressions: ( ) ( )= = - =
-

i
i

X 0 1
1 0

, Y 0
0

, Z 1 0
0 1

⎛
⎝

⎞
⎠

.

In particular, the identity and Pauli gates I,X,Y,Z can be expressed according to the notation introduced above
as follows:

∣ ∣ ∣ ( )ñ = ñ + ña I a a a a 5k k
k

k
k

0 0 1 1

∣ ∣ ∣ ( )ñ = ñ + ña X a a a a 6k k
k

k
k

0 1 1 0

∣ ∣ ∣ ( )ñ = ñ - ña Y ia a ia a 7k k
k

k
k

0 1 1 0

∣ ∣ ∣ ( )ñ = ñ - ña Z a a a a 8k k
k

k
k

0 0 1 1

2.4.Hadamard gate

TheHadamard gate is awell-known single-qubit gate thatmaps the basis states |0〉 and |1〉 to ∣ ∣ ∣+ñ = ñ+ ñ0 1

2
and

∣ ∣ ∣-ñ = ñ- ñ0 1

2
, respectively.

Thus, theHadamard gate can be expressed using the introduced notation as follows:

∣ ∣ ∣

∣ ∣ ( )

ñ = ñ + ñ

= ñ + ñ
+ -

+ -

a H a a a a

a a 9

k k
k

k
k

a a k a a k

0 1

2 0 2 1
k k k k0 1 0 1

2.5. Controlled gates
Controlled gates are applied to kets formed bymultiple qubits so that one ormore qubits serve as controllers for
a specific operation on one ormore qubits of the ket.

The simplest controlled gateA over a ket |a〉= |a1Kan〉 has only one control qubit |ah〉 and only one target
qubit |ak〉.

Notation 2.5.1.The effect over the ket |a〉= |a1L an〉 of the controlled gateAwith control qubit |ah〉 and target
qubit |ak〉 can be denoted by:

∣ ∣ ∣
∣ ∣ ( )

ñ = ñ + ñ

= ñ + ñ

a A a a a a A

a a a a 10

k
h

h
h

h
h

k

h
h

h A
hk

0 0 1 1

0 0 1 1

Notation 2.5.2.The effect over the ket |a〉= |a1L an〉 of a controlled gateAwith various control qubits
{ }G = ¼ Í h h, , l n1 and various target qubitsΛ= { }¼ Í k k, , m n1 can be denoted by: =L

G
¼
¼A Ak k

h h
, ,
, ,

m

l

1

1 .

Note that, according to the previous notation, for the specific case of the empty set G = Æ, the resulting
quantumgate is =G

L
LA A .

3.General basic properties

Some generic properties of gates in a quantum circuit are proven below.

Proposition 3.1. LetA andB be two single-qubit gates. Then, for any two distinct indexes Î h k, n

( )=A B B A 11k h h k

Proof. Let |a〉 be a ket. For any two distinct indexes Î h k, n

∣ ∣ ∣ ∣ ∣ñ = ñ = ñ = ñ = ña A B a B a a A a B A .k h A
k

h AB
kh

B
h

k h k

,

Proposition 3.2. LetA be a single-qubit gate. Then, for any four indexes Î¢ ¢ h k h k, , , n such that h≠ k and
¹¢ ¢h k

4

Phys. Scr. 100 (2025) 025107 DEscanez-Exposito et al



( )=¢

¢

¢

¢
A A A A 12k

h
k
h

k
h

k
h

Proof. Let |a〉 be a ket. For any four Î¢ ¢ h k h k, , , n such that h≠ k and ¹¢ ¢h k :

∣ ∣ ∣

∣ ∣

∣ ∣

∣ ∣

∣ ∣

∣ ∣

∣

ñ = ñ + ñ

= ñ + ñ

+ ñ + ñ

= ñ + ñ

+ ñ + ñ

= ñ + ñ

= ñ

¢

¢

¢

¢

¢

¢

¢
¢

¢
¢

¢

¢
¢

¢
¢

¢

¢
¢

¢
¢

¢
¢

¢ ¢
¢

¢

¢
¢

¢
¢

¢

¢

¢

a A A a a A a a A A

a a a a a a A

a a a A a a a A A

a a a a a a A

a a a A a a a A A

a a A a a A A

a A A

k
h

k
h

h
h

k
h

h
h

k k
h

h h
hh

h h
hh

k

h h
hh

k h h
hh

k k

h h
hh

h h
hh

k

h h
hh

k h h
hh

k k

h
h

k
h

h
h

k k
h

k
h

k
h

0 0 1 1

0 0 00 0 1 01

0 10 1 11

0 0 00 0 10

0 1 01 1 11

0 0 1 1

1 1

1

1

,

More generally, it be can extend this result to sets

Proposition 3.3. LetA andB be two single-qubit gates. Then for all G L G L Ì¢ ¢ , , , n sets such that GÇL = Æ and
GÇL = Æ¢ ¢

( )=G L L GA B B A 13

( )=G
G

L
L

L
L

G
G¢ ¢ ¢ ¢

A B B A 14

Proof. LetΓ= {h1,K, hl} andΛ= {k1,K, km} be two subsets of n. Then

  = =G L GA B A B B A A B B .k k h h k km l m1 1 1

Since GÇL = Æ, then hl ≠ k1. Thus, according to (11), the following is true =A B B Ah k k hl l1 1
. The same

reasoning is valid for all elements ofΓ, so =G GA B B Ak k1 1
. Consequently,

 
 

= =
= = =

G L G G

G L G

A B A B B B A B B

B B A B A
k k k k k

k k

m m

m

1 1 2

1

For the same reason, using the result (12) the equality (14) is obtained. ,

Proposition 3.4. LetA be a single-qubit gate such thatAA= I. Then " Î h k, n

( )=A A I 15k k

( )=A A I. 16k
h

k
h

Proof. Let |a〉 be a ket and two indexes ¹ Î h k n. To prove expression (16):

∣ ∣ ∣ ∣ ∣ñ = ñ = ñ = ñ = ña A A a A a a a .k k A
k

k AA
k

I
k

Analogously, to prove expression (17), according to (10):

∣ ∣ ∣
∣ ∣
∣ ∣ ∣

ñ = ñ + ñ

= ñ + ñ

= ñ + ñ = ñ

a A A a a A a a A

a a a a

a a a a a .

k
h

k
h

h
h

k
h

h A
hk

k
h

h
h

h AA
hk

h
h

h
h

0 0 1 1

0 0 1 1

0 0 1 1

,

Proposition 3.5. Let |a〉be a ket and letA be a single-qubit gate such thatAA= I. Then for all G L Ì , n sets such
that GÇL = Æ

( )=G GA A I 17

( )=G
L

G
LA A I. 18

Proof. LetΓ= {h1,K, hl} andΛ= {k1,K, km} be two subsets of n. According to (11),
= " ¹A A A A h hh h h h 11 1

. Consequently,

5
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  
   



= =
= =
= = =

G G GA A A A A A A A A

A A A A A IA A A A

A A I.

h h h h h h

h h h h h h h h h

h h

l l l

l l l l

l l

1 1 1

1 1 2 2 2

,

Proposition 3.6. LetA be a single-qubit gate. Then, for any two sets G L Ì , n

( )È Ç=G L G L G LA A A A 19

Proof. Frombasic set theory,Γ∪Λ can be expressed as (Γ− (Γ∩Λ))∪ (Λ− (Γ∩Λ))∪ (Γ∩Λ). Then, the
following is true

( ) ( )

( ( )) ( ( )) ( )

 

   

 

 
È È

È

=

=

=

= = È Ç

G L
ÎG ÎL

ÎG- GÇL ÎGÇL ÎL- GÇL ÎGÇL

Î G- GÇL L- GÇL GÇL ÎGÇL

ÎG L ÎGÇL
G L G L

¢

¢

¢

¢

¢

¢

¢

¢

A A A A

A A A A

A A

A A A A

h
h

k
k

h
h

h
h

k
k

k
k

h
h

k
k

h
h

k
k

,

Below a theoretical result shows that if a single-qubit gate is applied over a subset of qubits that are
eigenstates of the gate with eigenvalue -1, then the result coincides with that of the result with another subset
with the same cardinality parity (see [11]). On the other hand, if this latter subset has a different cardinality
parity, then the result coincides with the product of the first result with the eigenvalue.

Proposition 3.7. LetA be a single-qubit gate. Let |a〉 be a ket and G L Í , n such that ∀ käΓ∪Λ, |a〉Ak=− |a〉.
Then

∣ ( ) ∣ ( )∣ ∣ ∣ ∣ñ = - ñG
L - G

La A a A1 . 20

Proof. IfΓ= {k1,K, kl}where l= |Γ|, then

∣ ∣ ∣

( )∣ ( ) ∣∣ ∣

ñ = ñ = ñ ¼

= - ñ ¼ = = - ñ

G
ÎG

G

a A a A a A A A

a A A a1 1 .
k

k k k k

k k

l

l

1 2

2

Analogously, ∣ ( ) ∣∣ ∣ñ = - ñL
La A a1 . Then

∣ ( ) ∣ ( ) ( ) ∣
( ) ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

ñ = - ñ = - - ñ

= - ñ
G

G G - L L

G - L
L

a A a a

a A

1 1 1

1 .

,

4. Specific properties of the controlled pauli-X gate

In this section, some specific properties involving the controlled Pauli-X gate are demonstrated.

Proposition 4.1. Let Î h k, n be two indexes. Then

( )=X Z X Z 21k
h

k k
h

h k,

Proof. If |a〉 is a ket and ¹ Î h k n are two indexes, then

∣ ∣ ∣
∣ ∣
∣ ∣
∣ ∣
∣ ∣

∣

ñ = ñ + ñ

= ñ + ñ

= ñ + ñ

= ñ - ñ

= ñ - ñ
= ñ

a X Z X a a Z X a a Z X

a a X a a X

a a a a

a a a a

a a Z a a Z

a Z

k
h

k k
h

h
h

k k
h

h X
hk

k k
h

h Z
hk

k
h

h ZX
hk

k
h

h Z
hk

h XZX
hk

h Z
hk

h Z
hk

h
h

k h
h

k

h k

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

,

,

6
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For the following result, it is necessary to introduce the SWAPgate, which acts over two qubits, exchanging
the state of both positions:

∣ ( ) ∣ ∣
∣ ∣ ( )

ñ = ñ + ñ

+ ñ + ñ

a SWAP a a a a a a

a a a a a a 22

h k h k
hk

h k
hk

h k
hk

h k
hk

, 0 0 00 0 1 10

1 0 01 1 1 11

Proposition 4.2. Let Î h k, n be two indexes. Then

( ) ( )=X X X SWAP 23k
h

h
k

k
h

h k,

Proof. If |a〉 is a ket and ¹ Î h k n are two indexes, then

( )

∣ ∣ ∣
∣ ∣

∣ ∣
∣ ∣
∣ ∣
∣ ∣ ∣

ñ = ñ + ñ

= ñ + ñ

+ ñ = ñ

+ ñ + ñ

+ ñ = ñ

+ ñ + ñ + ñ
=

a X X X a a X X a a X X

a a X X a a a X X

a a a X X a a a X

a a a X a a a X

a a a X a a a

a a a a a a a a a

SWAP

k
h

h
k

k
h

h
h

k
h

h
k

h X
hk

k
h

h
k

h
h

h
k

k
h

h k
hk

h
k

k
h

h k
hk

h
k

k
h

h k
hk

k
h

h k
hk

k
h

h k
hk

k
h

h k
hk

k
h

h k
hk

h k
hk

h k
hk

h k
hk

h k

0 0 1 1

0 0 1 0 11

1 1 10 0 0 00

0 1 11 1 0 01

1 1 10 0 0 00

0 1 10 1 0 01 1 1 11

,

,

Finally, the last three propositions are stated. The proofs of these, due to its extensive length, are given in the
Appendix A.

Proposition 4.3. Let Î h k, n be two indexes. Then

( )=H X H X 24hk h
k

hk k
h

Proposition 4.4. Let Î j h l, , n be three indexes. Then

( )=X X X X X 25l
jh

h l
jh

l
j

h

Proposition 4.5. Let Î j h k l, , , n be four indexes. Then

( )=X X X X X 26l
jhk

h l
jhk

l
jk

h

5. Implementation

An independent Pythonmodule has been developed for the simulation of quantum circuits [12], adapted to the
previously described notation. From the source code in LaTeX for the description of any circuit, following the
instructions of the proposal, an automatic calculation is obtained that outputs a corresponding state vector. This
tool also optimises an initial expression of a circuit, using a set of rules defined from the propositions of the
previous section. In addition, it has different functionalities for the representation of the circuit and its
associated state vector.

5.1. Formal grammar
In order to achieve a consistent notation, close to how a programming language could be defined, aspects close
to the underlying compiler theory have been defined, resulting in a formal analysis of the allowed expressions.
The context-free grammar generated by the proposed language is as follows:
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∣
∣

∣ ∣ ∣
∣ ∣

∣ { }
∣ { }

∣
∣

∣ ∣
∣ ∣ ∣

e











^ ^

S TAG ARGS S 

TAG LETTER TAG  LETTER

LETTER A  B  ...  Z

ARGS TARGET CONTROL  CONTROL TARGET  TARGET

TARGET _DIGIT  _ INDEXES

CONTROL DIGIT  INDEXES

NUMBER DIGIT NUMBER  DIGIT

INDEXES RANGE  LIST
RANGE NUMBER : LIST

LIST NUMBER , LIST  NUMBER , RANGE  NUMBER

DIGIT 0  1  ...  9

The non-terminal TAG symbol defines the name of the gate in capital letters (when derived in LETTER
sequences). Each gate is always accompanied by a number of arguments (ARGS), which are the targets and
controls of the gate. The order of the arguments is not relevant, and the control argument is optional. In both
cases, if the argument is a uniqueDIGIT, the brackets can be omitted. Otherwise, itmay be an index range,
which is continuous or discontinuous thanks to the INDEXES production rule (RANGE | LIST), and the use of
the corresponding separator.

5.2. Greedy optimization
To take advantage of and demonstrate in a practical way the applicability of the proposed notation in the
optimization of quantum circuits, afirst approximation of a greedy algorithm to tackle this task is suggested in
algorithm1.

Algorithm1.QuantumCircuit Synthesis

Data: Initial quantumcircuitQC, set of rulesR

1QC*←QC

2 repeat

3 for each rule in R do

4 ¢¬QC Apply rule toQC until no further changes occur

5 if ∣ ∣ ∣ ∣¢  *QC QC then

6 ¬ ¢*QC QC

7 end

8 ifQC*has changed then

9 QC←QC*

10untilQC* has not changed

11 returnQC*

TheQuantumCircuit Synthesis algorithm is designed to improve an initial quantum circuitQC using a set of
transformation rulesR derived from specific theorems presented in the research (e.g. Equation (21), 24, 25). The
primary objective is to iteratively apply these rules to simplify the circuit, focusing onminimizing certain aspects
such as circuit depth, the total number of gates or the number of two-qubit gates.

The input of this first approach of the optimization algorithm is:

• Initial quantum circuitQC: It represents the starting circuit to be optimised, using the presented notation.

• Set of rulesR: The rules are derived from theoretical foundations and are expressed as equalities. Each rule has
a left part, which identifies a pattern in the circuit, and a right part, which, in this context, conveniently
specifies the transformation thatminimizes the expression in the circuit (|left|�|right|).

The algorithmoutputs the optimised quantum circuitQC*, which represents the best configuration found
through the synthesis process. This procedure is particularly efficient in scenarios where the transformation
rules can effectively reduce the total number of gates of the quantum circuits. However, its performance is highly
dependent on the quality and comprehensiveness of the rule setR.

Note that, as a greedy algorithm, the choice at each step is locally optimal, with the expectation that those
local choices will lead to a globally optimal solution. In particular, the idea of the algorithm is that the generated
circuitQC* is locally optimal with respect to the applied rules, but, since the rules can be applied in different
ways, a global optimumcannot be guaranteed (see appendix B). In this sense, certain rule sets prevent the
described greedy optimization from achieving the global optimum. For example, itmight be necessary to apply
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the rules to deliberately enlarge the expression, using the right-hand side for pattern recognition and the left-
hand side for the corresponding substitution.However, for those rules that can be applied recursively without
limit, thismay pose a problem. It is worth studying the possibilities of defining upper bounds for the number of
successive applications of this type of rule sets, and of generating equivalent rule sets that are confluent and
terminating. In any case, themore complete the set of defined rules, the better the results of this greedy
algorithm,which for different executions always returns the same local optimumvalue in a deterministic way, as
it is the best solution found in the defined space of solutions. Therefore, further optimization techniques or
more sophisticated rule setsmay be necessary formore complex quantum circuits. Both issues are currently
being investigated using ametaheuristic techniques approach.

5.3. Additional available functionalities
Once the grammar has been defined and the greedy optimization algorithmhas been implemented, a Parser has
been built capable of recognising and understanding instances generated bymeans of these syntactic structures,
transforming them into functional programming objects. In addition to this, aWriter has been implemented
capable of generating the file with LaTeX code that develops the expression introduced step by step, calculating
thefinal state vector. Initially, themain program allows setting a number of qubits in the system, and the desired
circuit encoding using this language. This allows the generated state vector to be obtained, as well as its
visualisation usingCircleNotation (see [13]). It also performs the graphical visualisation of the entered circuit.
All these functionalities have been developed in an original way, without using external frameworks or libraries
for the simulation of quantumalgorithms such asQiskit [14], Pennylane [15], Q# [16], AmazonBraket [17],
Cirq [18], etc. A Parser, aWriter, an execution engine, and a circuit and state vectors visualisers have been
implemented to achieve the proposed functionalities.

5.4. Examples
Some of the best-known quantum circuits in the scientific literature [11] are presented below, showing the
equivalent notation that serves as input for the implementation. For each circuit, the output of themain
program is themathematical workout of the expression until thefinal state vector is obtained, its representation
inCircleNotation and the circuit graphical representation. As these small circuits showno improvement in the
optimiser, it is in the next section that their effectiveness will be empirically demonstrated.

(1) Bell state: H X1 2
1. This circuit generates a Bell entangled pair, driving the |00〉 state to the entangled

state (∣ ∣ )ñ + ñ00 111

2
.

(a) Generatedmathematical workout:

∣
[ ∣ ∣ ]
[ ∣ ∣ ]

ñ

= ñ + ñ

= ñ + ñ

H X

X

00

0.5 2 00 0.5 2 10

0.5 2 00 0.5 2 11

1 2
1

2
1

(b) CircleNotation (figure 1).

(c) Graphical representation (figure 2).

(2) Superdense coding (of |01〉 state): H X X X H1 2
1

1 2
1

1. It is a protocol that transmits two classical bits using a single
communication qubit.

(a) Generatedmathematical workout:

∣
[ ∣ ∣ ]
[ ∣ ∣ ]
[ ∣ ∣ ]
[ ∣ ∣ ]
[∣ ]

ñ

= ñ + ñ

= ñ + ñ

= ñ + ñ

= ñ + ñ
= ñ

H X X X H

X X X H

X X H

X H

H

00

0.5 2 00 0.5 2 10

0.5 2 00 0.5 2 11

0.5 2 01 0.5 2 10

0.5 2 01 0.5 2 11

01

1 2
1

1 2
1

1

2
1

1 2
1

1

1 2
1

1

2
1

1

1

(b) CircleNotation (figure 3).

(c) Graphical representation (figure 4).
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(3) Quantum Teleportation: H X X H2 3
2

2
1

1. It is a protocol that transmits a qubit using two classical
communication bits.

(a) Generatedmathematical workout:

∣
[ ∣ ∣ ]
[ ∣ ∣ ]
[ ∣ ∣ ]
[ ∣ ∣ ∣ ∣ ]

ñ

= ñ + ñ

= ñ + ñ

= ñ + ñ
= ñ + ñ + ñ + ñ

H X X H

X X H

X H

H

000

0.5 2 000 0.5 2 010

0.5 2 000 0.5 2 011

0.5 2 000 0.5 2 011

0.5 000 0.5 011 0.5 100 0.5 111

2 3
2

2
1

1

3
2

2
1

1

2
1

1

1

(b) CircleNotation (figure 5).

(c) Graphical representation (figure 6).

6. Case of use

A clear example of an efficient use case of quantum circuit optimization is explained using theDeutsch-Jozsa
algorithm implementation described by theQiskit IBMdocumentation [19]. It explains how to build a quantum
circuit for the oracle of a function from its truth table and shows the final result (see figure 7).

The circuit above can be intuitively improved through theQiskit transpile function [20], to obtain a simpler
version (see figure 8).

This circuit can be expressed like algebraic circuit as:

( )X X X X X X X X X 273 4
1,2,3

2 4
1,2,3

1,2 4
1,2,3

2 4
1,2,3

1,2,3

Thedeveloped implementation automatically performs the followingoptimization steps.Applying the result (26)
over the redbox, the result (25)over theblueboxand the result (15)over the greenbox, it is possible to reduce the
circuit, it is obtained:

Figure 1.CircleNotation of Bell State.

Figure 2.Graphical Representation of Bell State Circuit.
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With the quantum circuit representation, the improvement can be appreciated infigure 9.
The additional results generated from the realised implementation on both circuits (unoptimised and

optimised) are shown below. Thanks to the tool developed, the difference between the number of operations
needed to compute one circuit or another is noticeable. Furthermore, the available representations of the results
are shown, showing the graphical difference between circuits, and the common state generated using Circle
Notation.

1. Generatedmathematical workout of the unoptimised circuit:

∣
[∣ ]
[∣ ]
[∣ ]
[∣ ]
[∣ ]
[∣ ]
[∣ ]
[∣ ]
[∣ ]

ñ

= ñ

= ñ

= ñ

= ñ

= ñ

= ñ

= ñ
= ñ
= ñ

X X X X X X X X X

X X X X X X X X

X X X X X X X

X X X X X X

X X X X X

X X X X

X X X

X X

X

0000

0010

0010

0110

0110

1010

1010

1110

1111

0001

3 4
1:3

2 4
1:3

1,2 4
1:3

2 4
1:3

1:3

4
1:3

2 4
1:3

1,2 4
1:3

2 4
1:3

1:3

2 4
1:3

1,2 4
1:3

2 4
1:3

1:3

4
1:3

1,2 4
1:3

2 4
1:3

1:3

1,2 4
1:3

2 4
1:3

1:3

4
1:3

2 4
1:3

1:3

2 4
1:3

1:3

4
1:3

1:3

1:3

Figure 3.CircleNotation of Superdense Coding (of |01〉 State).

Figure 4.Graphical Representation of Superdense CodingCircuit.

Figure 5.CircleNotation ofQuantumTeleportation.
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Figure 6.Graphical Representation ofQuantumTeleportationCircuit.

Figure 7.Deutsch-Jozsa oracle described byQiskit IBMdocumentation.

Figure 8.Deutsch-JozsaOracleOptimised byQiskit IBMDocumentation.

Figure 9.Deutsch-JozsaOracleOptimisedUsing the ProposedNotation.

Figure 10.CircleNotation ofDeutsch-Jozsa state.
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2. Generatedmathematical workout of the optimised circuit:

∣
[∣ ]
[∣ ]
[∣ ]

ñ

= ñ
= ñ
= ñ

X X X

X X

X

0000

0010

0011

0001

3 4
3

3

4
3

3

3

3. CircleNotation (figure 10).

4. Graphical representation of the unoptimised circuit (figure 11).

5. Graphical representation of the optimised circuit (figure 12).

7. Conclusions and futureworks

In this paper, a notationwith great potential to represent quantum circuits from an algebraic point of viewhas
been proposed. This newnotation greatly facilitates the discovery and proof of new properties and relationships
between quantum gates, as well as the handling of calculations and the efficiency of systems that simulate them
classically. To demonstrate this, a computer tool has been developed that can be used to simulate classically the
evolution of the state vector through a circuit expressed in algebraic notation. Several examples are shown that
clarify the results and consolidate the idea of easier handling of circuits in algebraic notation compared to the
traditional graphical representation.

Four future lines of research are the following: extending the notation to add higher level abstraction
features,finding properties that simplify themost commonly used patterns in the development of quantum
algorithms, introducing the concept ofmeasurement (both in notation and implementation) and improving
considerably the optimisation algorithm from ametaheuristic point of view. These lines can enhance the growth

Figure 11.Graphical Representation ofUnoptimisedDeutsch-Jozsa Circuit.

Figure 12.Graphical representation ofOptimisedDeutsch-Jozsa Circuit.
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of the theoretical basis and the proposed implementation, leading to the creation of a new,manageable language
for the characterization and optimization of quantum circuits.
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AppendixA. Extensive proofs

The following proofs have been added as an appendix due to their excessive length. The proof of (24) is as
follows.

Proof. If |a〉 is a ket and ¹ Î h k n are two indexes, then

∣ ∣ ∣

∣ ∣

∣ ∣

∣ ∣

∣ ∣

∣ ∣

∣ ∣
∣ ∣

∣ ∣
∣

ñ = ñ + ñ

= ñ + ñ

+ ñ + ñ

= ñ + ñ

+ ñ + ñ

= ñ + ñ

+ ñ + ñ

= ñ + ñ

= ñ + ñ

= ñ

+ -

++ +-

-+ --

++ +-

-- -+

+ +

- -

+ -

a H X H a a H X H a a H X H

a a a X H a a a X H

a a a X H a a a X H

a a a H a a a H

a a a H a a a H

a a a H a a a H

a a a H a a a H

a a H a a H X

a a a a X

a X

kh h
k

kh h
h

k h
k

kh h
h

k h
k

kh

h k
hk

h
k

kh h k
hk

h
k

kh

h k
hk

h
k

kh h k
hk

h
k

kh

h k
hk

hk h k
hk

hk

h k
hk

hk h k
hk

hk

h k
hk

h h k
hk

h

h k
hk

h h k
hk

h

h
h

h h
h

h k

h
h

h
h

k

k
h

0 1

0 0 0 1

1 0 1 1

0 0 0 1

1 0 1 1

0 0 0 0 1 1

1 0 1 1 1 0

0 1

0 0 1 1

,

Furthermore, the proof of (25) is shown below.

Proof. If |a〉 is a ket and Î j h l, , n are three distinct indexes, then the ket ∣ ∣ñ = ñb a X X Xl
jh

h l
jh is for construction,

as shownbelow
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,Finally, analogous to the previous proof, the expression (26) is proved.

Proof. If |a〉 is a ket and Î j h k l, , , n are fourdistinct indexes, then theket ∣ ∣ñ = ñb a X X Xl
jhk

h l
jhk is for

construction, as shownbelow

,

Appendix B. Rule application

TheApply Rule algorithm is a subroutine designed to apply a specific transformation rule r to a quantum circuit
QC. The rule r consists of a left part and a right part, where the left part identifies a pattern in the circuit to be
transformed, and the right part defines the transformation thatminimizes the expression or configuration of the
circuit. This process helps in optimizing the circuit by systematically reducing its complexity.

Algorithm2.Apply Rule

Date:Quantum circuitQC, Rule r

1 ¢ ¬QC QC

2> In rule r, designate left as the part to be reduced and right as the target part tominimize the expression

3while the left part matches in ¢QC do

4 Find thefirstmatch in ¢QC

5 Transform ¢QC using the right part of r at thematch position

6 end

7 return ¢QC
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This procedure is crucial for incrementally transforming a quantum circuit using specific rules. Each rule
targets particular patternswithin the circuit, enabling systematic simplification or optimization. The
effectiveness of this approach depends significantly on the selection of rules and the completeness of the rule set,
as the final optimised formof the circuit ¢QC is limited to the transformations defined by these rules. This
algorithm is typically used in conjunctionwith broader optimization strategies that iteratively applymultiple
rules to achieve amore comprehensive circuit optimization.
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