10P Publishing

® CrossMark

OPENACCESS

RECEIVED
20 September 2024

REVISED
5December 2024

ACCEPTED FOR PUBLICATION
16 December 2024

PUBLISHED
13 January 2025

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 4.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

Phys. Scr. 100 (2025) 025107 https://doi.org/10.1088,/1402-4896 /ad9tb6

Physica Scripta

PAPER

Algebraic language for the efficient representation and optimization
of quantum circuits

Daniel Escanez-Exposito'* @, Pino Caballero-Gil' ®, Marcos Rodriguez-Vega' ®,
Francisco Costa-Cano’® and Eduardo Sdenz-de-Cabezén’

' University of La Laguna La Laguna Tenerife, Spain

2 Qubitalent SL U Murcia, Spain

* University of La Rioja Logrofio La Rioja, Spain

*Author to whom any correspondence should be addressed.

E-mail: jescanez@ull.edu.es, pcaballe@ull.edu.es, mrodrive@ull.edu.es, francisco.cc@qubitalent.com and
eduardo.saenz-de-cabezon@unirioja.es

Keywords: quantum computing, quantum circuit representation, quantum gate identities, quantum simulation, quantum circuit
optimization

Abstract

The use of graphical language in quantum computing for the representation of algorithms, although
intuitive, is not very useful for different tasks such as the description of quantum circuits in text
environments, the calculation of quantum states or the optimization of quantum circuits. While
classical circuits can be represented either by circuit graphs or by Boolean expressions, quantum
circuits have until now predominantly been illustrated as circuit graphs because no formal language
for quantum circuits that allows algebraic manipulations has so far been accepted. This work proposes
ameans to represent quantum circuits in a convenient and concise manner, similar to the way Boolean
expressions are used in classical circuits. The proposed notation allows the consistent and
parameterized description of quantum algorithms, as well as the easy handling of the elements that
compose it to achieve powerful optimizations in the number of gates of the circuits. To visualize it, a
software implementation of an algebraic quantum circuit framework has been made, which allows
describing quantum circuits, as well as their respective state vectors, using the proposed algebraic
language.

CCS CONCEPTS

* Theory of computation — Quantum computation theory; » Computing methodologies — Representation of
mathematical objects; Quantum mechanic simulation; * Software and its engineering — Formal language
definitions.

1. Introduction

Quantum circuits, pioneered by Deutsch in [1], are widely acknowledged as a practical and commonly used
approach for illustrating the operations of quantum gates on qubits, ultimately describing the unitary matrix of a
quantum computer through graphical representations. Consequently, quantum algorithms and protocols are
typically depicted in the format of quantum circuits. This leads to a challenge when dealing with complex
quantum algorithms or protocols, as their circuit graphs can quickly surpass manageable sizes, making drawing
and manipulation impractical.

In classical computing, circuits can be not only graphically represented but also expressed as Boolean
expressions using Boolean gates that implement logic based on truth tables. These Boolean expressions are well-
suited for algebraic manipulations. Conversely, the derivation of an algebraic expression for a quantum circuit
has been challenging because quantum computing lacks a language analogous to Boolean expressions in classical
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computing. The present paper aims to introduce a formal semantics for a novel algebraic language designed to
streamline the expression of quantum circuits in a concise manner so that fundamental algebraic laws for
quantum circuits can be easily proven, and complex quantum algorithms can be simplified when expressed in
this language.

A bibliographic review shows the great interest that the problem arouses, although no solution has been fully
accepted to date.

In the work [2], a Mathematica package is presented for the simulation of quantum computing based on the
circuit model, providing an interface to specify and draw a quantum circuit and to build the corresponding
unitary matrix for quantum computing defined by the circuit. Another method for representing the unitary
matrix of a quantum circuit as an algebraic equation is presented in the paper [3]. Note that the present work
does not require the use of Mathematica or matrices.

Another close paper is [4], which presents the design of an algebraic language for formally specifying
quantum circuits in distributed quantum computing so that using that language, quantum circuits can be
represented in a compact way. However, the language proposed in the present work is simpler and closer to
simulation programming, which facilitates its implementation. Indeed, this issue is demonstrated through the
presentation of a first version of a software implementation of the proposal. In particular, the present notation
proposal is more intuitive as it sets the quantum gates in order of execution (from left to right).

The equational theory of quantum circuits is discussed in the paper [5], which presents an axiomatization of
the relationship between measurement, qubit initialization and a set of unitary gates. Another recent work [6]
proposes the unification of quantum and classical computing in open quantum systems. Also recently, the paper
[7] describes the flow of quantum compilation with several NP-hard tasks (problems that are at least as complex
as the toughest NP problems, even if they are not in NP or are even undecidable) and proposes algorithms based
on Boolean satisfiability to address those computationally complex problems. Note that the three
aforementioned recent papers address related but different topics than the one addressed in the present paper.

In the paper [8], the existence of quantum logic gate identities is highlighted to address the connectivity
problems of quantum hardware equipment in the Noisy Intermediate-Scale Quantum (NISQ) era. This stage of
quantum computing is characterized by quantum processors with a limited number of qubits (currently around a
thousand qubits), which are not yet advanced enough to guarantee fault tolerance. Optimisation schemes are
proposed in this sense, in order to respect the coupling map of the qubits involved. However, this approach focuses
on equivalences between the products of matrices, and not on identities emanating from pre-established rules.

Finally, one of the latest related works is [9] on the equivalence of dynamic quantum circuits. That proposal
looks promising, but has only been evaluated on toy examples, with no available software packages for
checking yet.

This paper is structured as follows. Section 2 provides a brief introduction to the topic, including the first
fundamental notations for states and gates. Section 3 contains several general basic properties, while section 4
focuses on specific properties of the controlled Pauli- X gate. Section 5 introduces a beta software
implementation that makes use of the proposed language. Section 6 shows the usefulness of the proposed
language by demonstrating a use case that illustrates an effective circuit simplification based on the introduced
notation. Section 7 completes this paper with some conclusions and future work. Appendix A includes the
longest proofs of the theoretical results. Finally, appendix B further emphasises the operation and importance of
the method of applying the rules.

2. Preliminaries

The fundamental information unit within a quantum computing system is the qubit, which is denoted by a
unitary vector within a Hilbert space of dimension 2. Multiple qubits can be taken together so that an element of
the Hilbert space of n qubits is considered. This case can be seen as the tensor product of the n Hilbert spaces
corresponding to each qubit in the system, so that the resulting space dimension is 2".

Let N and C denote the sets of natural and complex numbers, respectively. The notation N, is used to denote
the subset of N that contains the natural numbers smaller or equal than 7. In set theory, for any finite set S, its
number of elements | ] is called the cardinality of S.

2.1.Kets
Asintroduced in [10], qubits are normally written in the so-called bra-ket notation.

On the one hand, each qubit is represented as a ket, of the form |a), which denotes a vector a in a vector space
V. For instance, the computational basis states are written as |0) and |1), and called ket 0 and ket 1, respectively
(see [11]). Thus, any qubit can be described by a linear combination of these two basis states as
la) = ao|0) + iy |1), where g, oy € C such that |ag|* + |y [* = 1.

2
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On the other hand, a bra is of the form (f] and denotes a linear form fthat represents a linear map that maps
each vector in Vto a number in C.
In this way, when the function (f] acts on a vector |a), the result is written as (f|a).

Notation 2.1.1. For any qubit |ay) = a0|0) + ayy|1), the following notation is used: cvg = (a;|0) and
A = (ak| 1>

For example, for two qubits |a;) and |a,), the following can be written:

laaz) = ai0l0ay) + aui|lay)
= ayol@0) + aglar1)
= a9 020[00) + ap21|01) + aq100|10) + aqran|11). (1)

In general, for nn qubits |a,)...|a,), the composite ket |a) = |a; -+~ a,,) can be written as shown below:

|a> = agolar --+ ax—10ag4q -+ an> + apilay -+ ag_1lag - an>- (2)

Notation 2.1.2. For any ket |a) = |a;...a,,) of n qubits, the following notation is used:
|a>ﬁ = |ay --+ ag_juay,, -+ a,), wherek € N,andu € {0, 1}.

Consequently, the expression (2) can be written as follows:
la) = axola)y + ala)y. 3)
For instance, if |a,), |a,) and |as) are three qubits, then:
* |ayy = [0)and |a); = [1).
¢ |(11‘12>(2) = |a,0).
* |mazas) = agola0as) + aglarlas) = agla)y + azla)y.

+ 100as); = |001).

2.2. Quantum gates
A quantum gate is a basic quantum circuit operating on a small number of qubits.

For example, a single-qubit gate A can be applied over the first qubit of a ket |a,a,) and the result is
Ala;) ® |a,). It can also be applied over the last of both qubits and then the resultis |a,) ® A|as).

Notation 2.2.1. If A is a single-qubit gate and |a) = |a; - - a,,) is a ket with n qubits, the following notation is used:
|a1 ahAah+l an> = |a1 ah*1> ®A|ah> X ‘athl [ln>, wherel <h<n.

For example, if |a) = |a;a,) then |a;Aa,) = Ala,) ® |a,) and |a1a,A) = |a;) ® Alay).

Notation 2.2.2. The effect over the k-th qubit of the ket |a) =|a, --- a,,) of the quantum gate A can be denoted
by: |a) Ar = |a)k.

Notation 2.2.3. Foranyset I' = {I;,...,][;} C N, and anysingle-qubit gate A, the following notation is used:

= erf‘ Ak (4)

Note that, according to the previous notation, for the specific case of the empty set I' = &, the resulting
quantum gate is the identity gate Ap = L.

In conclusion, for example, the action of a single-qubit gate A over the ket |a) = |a,a,) can be expressed using
four distinct forms:

Alm) ® |ay) = |mAd) = |max) A = |a1a2>1A
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2.3. Pauli gates
Pauli gates are physical and mathematical operators in quantum computing represented by the well-known
Pauli matrices, which are a set of three 2 x 2 complex matrices that are traceless, Hermitian, involutory and

unitary. They are represented by the following matrix expressions: X :((1) (1)), Y= ((z) _()l)’ Z= ((1) _0 1).

In particular, the identity and Pauli gates I, X, Y, Z can be expressed according to the notation introduced above
as follows:

la) I = agola)s + axila)f )
|a) Xi = arola)f + awla)g (6)
a) Y = iagola)k — iag|a)k 7)
|a) Zi = ajola)y — apla)f ®)

2.4.Hadamard gate

The Hadamard gate is a well-known single-qubit gate that maps the basis states |0) and |1) to |[+) = l Obél U and
|-) = ! 0>JE| b respectively.
Thus, the Hadamard gate can be expressed using the introduced notation as follows:
|a) Hi = aola). + ajila)t
— %o+ an |a>16 4 S |a>f )

7 7

2.5. Controlled gates
Controlled gates are applied to kets formed by multiple qubits so that one or more qubits serve as controllers for
aspecific operation on one or more qubits of the ket.

The simplest controlled gate A over aket |a) = |a;...a,) has only one control qubit |a;,) and only one target
qubit |ay).

Notation 2.5.1. The effect over the ket |a) = |a; - a,,) of the controlled gate A with control qubit |a;,) and target
qubit |a;) can be denoted by:

|a>A,f’ = ﬂho|a>g + ﬂh1|a>{lAk

= apla)y + amla)y (10)

Notation 2.5.2. The effect over the ket |a) = |a; -+ a,,) of a controlled gate A with various control qubits
' = {hy,....ly} C N, andvarious target qubits A = {k;,....k,,} C N, canbe denoted by: A}; = A,?;"“’k’li-

.....

Note that, according to the previous notation, for the specific case of the empty set I' = &, the resulting
quantum gate is AR = Ay

3. General basic properties
Some generic properties of gates in a quantum circuit are proven below.

Proposition 3.1. Let A and B be two single-qubit gates. Then, for any two distinct indexes h, k € N,

AgBj, = BhAg (1D

Proof. Let |a) be aket. For any two distinct indexes h, k € N,

la) AcBy = la)i By = la)iy = la)jAx = |a) ByAx.

Proposition 3.2. Let A be a single-qubit gate. Then, for any four indexes h, k, i, k' € N, such thath =k and
o= K
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ja)AfAE =

D Escanez-Exposito et al

APAL = AL AL
k' € N,suchthath=kand b’ = k’:
ah0|a>gA£5, + ah1|a>f'AkAlf5/
anoarolaln + apayila)i Ay
+ ahlah’o|ﬂ>%{f\k + ﬂhlah’1|ﬂ>{'1h’AkAk'
anoarola)m + apagola)iy Ay
+ apoarla)er Ag + apaila)y AyAx
ayola)y Al + ayla) AgAf

la) AL AL

More generally, it be can extend this result to sets

(12)

Proposition 3.3. Let A and B be two single-qubit gates. Then forall T, A, T, A C N, sets such that 'NA = @ and

I'nA = o

ArBy = ByAr

Al By =By A{

Proof. LetI'={h,, ..., i} and A = {k,, ..., k,,,} be two subsets of N,,. Then

ArBy = ArBy, -+ By

Since 'NA = g, then h; = k. Thus, according to (11), the following is true Ay, By, = By, Ay, The same

reasoning is valid for all elements of I, so Ar

ArBy =

= Ah1 Ahlqu Bk,n-

By, = By, Ar. Consequently,

ArBy, -+ B, = By ArBy, -+ Bi
-.=By, --- Bi, Ar = By\Ar

m

For the same reason, using the result (12) the equality (14) is obtained.

Proposition 3.4. Let A be a single-qubit gate such that AA =1. Then ¥ h, k € N,

ArAr =1

AMAl =1

Proof. Let |a) beaket and two indexes h = k € N,.. To prove expression (16):

la) ArAk

= la)h Ak = la)i, = la)} = |a).

Analogously, to prove expression (17), according to (10):

) ALAL = apola) AL + amla)is Al

ahola% + ah1|€l>{l,]§A

ah0|a>g + ah1|a>f = |a).

13)

(14)

15)
(16)

O

Proposition 3.5. Let |a be a ket and let A be a single-qubit gate such that AA =1. Then forallT', A C N, setssuch

thatI'NA = @

ApAr =1
ARAR = 1.

Proof.LetI' = {hy, ..., iy} and A = {ky, ..., k,,,} be two subsets of N,,. According to (11),

AyAy, = Ay Ay, Y h = hy. Consequently,

17)
(18)




10P Publishing

Phys. Scr. 100 (2025) 025107 D Escanez-Exposito et al

ArAr = ArAy, - Ay = Ay, o ApAp, - Ay,
ApAp, - ApAy, - Ay = IAy, - A Ay, - A,
= =ApAp =1.

Proposition 3.6. Let A be a single-qubit gate. Then, foranytwosets I', A C N,
ArAy = AraArna (19)
Proof. From basic set theory, I U A can be expressed as (I' — (' N A)) U(A — (TN A)) U (' N A). Then, the

followingis true

ArAy = ] An ] A«
hel ke

= II 4 I a II A Il A

heT —('NA) HelnA keA—(TNA) KelTnA

= I1 VR I
he(@—(TNA) JA—TNA) JTNA) KenA

= JI Ar JI Ay =Arusdraa
heT JA KeTnA

Below a theoretical result shows that if a single-qubit gate is applied over a subset of qubits that are
eigenstates of the gate with eigenvalue -1, then the result coincides with that of the result with another subset
with the same cardinality parity (see [11]). On the other hand, if this latter subset has a different cardinality
parity, then the result coincides with the product of the first result with the eigenvalue.

Proposition 3.7. Let A be a single-qubit gate. Let |a) beaketand T', A C N, suchthat Vke I'UA, |a)A, = —|a).
Then

la) Ap = (=DM a) A, (20)
Proof. If "= {ky, ..., k;} where = |T'|, then

la)Ap = la) [] Ak = la)AxAy, ... Ay,
kel

= (=Dla)As, ... Ay=--=(=1)"l]a).
Analogously, |a) Ay = (—1)!*!|a). Then
@A = (~Da) = (<D (1))
= (=DT=1Ma) A,

4. Specific properties of the controlled pauli-X gate
In this section, some specific properties involving the controlled Pauli-X gate are demonstrated.

Proposition 4.1. Let h, k € N, be two indexes. Then
X{ZX{ = Zys 21
Proof.If|a) isaketand h = k € N, are two indexes, then
) XEZXE = awla) ZXE + amla)ix ZiXi
= anla)gy Xi' + anla)iy X}
= awla)ey + amla)yzx
= ﬂho|a>g.kz - ah1|a>{l§

= apla)gZy — apla)) Zy
= |a)Zyx
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For the following result, it is necessary to introduce the SWAP gate, which acts over two qubits, exchanging
the state of both positions:

la) (SWAP),.x = anoarola)es + anoarla)is

+ amaola)yy + amala)y (22)

Proposition 4.2. Let h, k € N, be two indexes. Then
XIXEX] = (SWAP),, (23)
Proof.If|a) isaketand h = k € N, are two indexes, then

hyh
|a) X{XAXE = anola)o X{Xh + amla)’s X¢ X
= apola) Xy X{' + amaola)t Xy X]
hk kv h bk yh
+ amanla)io Xy Xy’ = anoaxola)oo Xi
bk yh hk v h
+ apoanla) Xy + amakola)o; Xy
h h
+ amanla)s X{ = apoarola)es
hk hk hk
+ ahoakl|a>1o + ahlak0|a>01 + ahlaklla>11

== (SWAP)h)k

O

Finally, the last three propositions are stated. The proofs of these, due to its extensive length, are given in the
Appendix A.

Proposition 4.3. Let h, k € N, be two indexes. Then

Hie X Hye = X! (24)

Proposition 4.4. Let j, h, | € N, be three indexes. Then

X" Xu X" = X/ Xy (25)
Proposition 4.5. Let j, h, k, | € N, be four indexes. Then
XX, X" = x/* X, (26)
5.Implementation

An independent Python module has been developed for the simulation of quantum circuits [12], adapted to the
previously described notation. From the source code in LaTeX for the description of any circuit, following the
instructions of the proposal, an automatic calculation is obtained that outputs a corresponding state vector. This
tool also optimises an initial expression of a circuit, using a set of rules defined from the propositions of the
previous section. In addition, it has different functionalities for the representation of the circuit and its
associated state vector.

5.1. Formal grammar

In order to achieve a consistent notation, close to how a programming language could be defined, aspects close
to the underlying compiler theory have been defined, resulting in a formal analysis of the allowed expressions.
The context-free grammar generated by the proposed language is as follows:
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S — TAGARGSS|e
TAG — LETTER TAG|LETTER
LETTER — A|B|..|Z
ARGS — TARGET CONTROL | CONTROL TARGET | TARGET
TARGET — _DIGIT | _{INDEXES}
CONTROL — ~DIGIT | ~ {INDEXES}
NUMBER — DIGIT NUMBER | DIGIT
INDEXES — RANGE | LIST
RANGE — NUMBER: LIST
LIST — NUMBER, LIST | NUMBER , RANGE | NUMBER
DIGIT — 0]1]..]9

The non-terminal TAG symbol defines the name of the gate in capital letters (when derived in LETTER
sequences). Each gate is always accompanied by a number of arguments (ARGS), which are the targets and
controls of the gate. The order of the arguments is not relevant, and the control argument is optional. In both
cases, if the argument is a unique DIGIT, the brackets can be omitted. Otherwise, it may be an index range,
which is continuous or discontinuous thanks to the INDEXES production rule (RANGE | LIST), and the use of
the corresponding separator.

5.2. Greedy optimization

To take advantage of and demonstrate in a practical way the applicability of the proposed notation in the
optimization of quantum circuits, a first approximation of a greedy algorithm to tackle this task is suggested in
algorithm 1.

Algorithm 1. Quantum Circuit Synthesis

Data: Initial quantum circuit QC, set of rules R

1QC"—QC

2 repeat

3 for each rule in R do

4 QC'« Apply ruleto QC until no further changes occur
5 if |QC’| < |QC*| then
6 QC* «— QC'

7 end

8 if QC" has changed then

9 QC+—QC*

10 until QC" has not changed

11 return QC*

The Quantum Circuit Synthesis algorithm is designed to improve an initial quantum circuit QC using a set of
transformation rules R derived from specific theorems presented in the research (e.g. Equation (21), 24, 25). The
primary objective is to iteratively apply these rules to simplify the circuit, focusing on minimizing certain aspects
such as circuit depth, the total number of gates or the number of two-qubit gates.

The input of this first approach of the optimization algorithm is:

+ Initial quantum circuit QC: It represents the starting circuit to be optimised, using the presented notation.

+ Setof rules R: The rules are derived from theoretical foundations and are expressed as equalities. Each rule has
a left part, which identifies a pattern in the circuit, and a right part, which, in this context, conveniently
specifies the transformation that minimizes the expression in the circuit (|left| >|right]).

The algorithm outputs the optimised quantum circuit QC”, which represents the best configuration found
through the synthesis process. This procedure is particularly efficient in scenarios where the transformation
rules can effectively reduce the total number of gates of the quantum circuits. However, its performance is highly
dependent on the quality and comprehensiveness of the rule set R.

Note that, as a greedy algorithm, the choice at each step is locally optimal, with the expectation that those
local choices will lead to a globally optimal solution. In particular, the idea of the algorithm is that the generated
circuit QC" is locally optimal with respect to the applied rules, but, since the rules can be applied in different
ways, a global optimum cannot be guaranteed (see appendix B). In this sense, certain rule sets prevent the
described greedy optimization from achieving the global optimum. For example, it might be necessary to apply

8
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the rules to deliberately enlarge the expression, using the right-hand side for pattern recognition and the left-
hand side for the corresponding substitution. However, for those rules that can be applied recursively without
limit, this may pose a problem. It is worth studying the possibilities of defining upper bounds for the number of
successive applications of this type of rule sets, and of generating equivalent rule sets that are confluent and
terminating. In any case, the more complete the set of defined rules, the better the results of this greedy
algorithm, which for different executions always returns the same local optimum value in a deterministic way, as
itis the best solution found in the defined space of solutions. Therefore, further optimization techniques or
more sophisticated rule sets may be necessary for more complex quantum circuits. Both issues are currently
being investigated using a metaheuristic techniques approach.

5.3. Additional available functionalities

Once the grammar has been defined and the greedy optimization algorithm has been implemented, a Parser has
been built capable of recognising and understanding instances generated by means of these syntactic structures,
transforming them into functional programming objects. In addition to this, a Writer has been implemented
capable of generating the file with LaTeX code that develops the expression introduced step by step, calculating
the final state vector. Initially, the main program allows setting a number of qubits in the system, and the desired
circuit encoding using this language. This allows the generated state vector to be obtained, as well as its
visualisation using Circle Notation (see [13]). It also performs the graphical visualisation of the entered circuit.
All these functionalities have been developed in an original way, without using external frameworks or libraries
for the simulation of quantum algorithms such as Qiskit [14], Pennylane [15], Q# [16], Amazon Braket [17],
Cirq [18], etc. A Parser, a Writer, an execution engine, and a circuit and state vectors visualisers have been
implemented to achieve the proposed functionalities.

5.4. Examples

Some of the best-known quantum circuits in the scientific literature [11] are presented below, showing the
equivalent notation that serves as input for the implementation. For each circuit, the output of the main
program is the mathematical workout of the expression until the final state vector is obtained, its representation
in Circle Notation and the circuit graphical representation. As these small circuits show no improvement in the
optimiser, it is in the next section that their effectiveness will be empirically demonstrated.

(1) Bell state: H,X;. This circuit generates a Bell entangled pair, driving the |00) state to the entangled
state %qoo) + |11).

(a) Generated mathematical workout:
00) F X,
= [0.5v2100) + 0.5v2]10)]1X;
= [0.52]00) + 0.5v2]11)]

(b) Circle Notation (figure 1).
(¢) Graphical representation (figure 2).

(2) Superdense coding (of |01) state): H; X, X; X, H,. Itis a protocol that transmits two classical bits using a single
communication qubit.

(a) Generated mathematical workout:

00) Hy X, X, X5 Hy
=[0.54/2]00) + 0.5+/2]10
=[0.5+/2100) + 0.5v2]11
=[0.5+/2]01) 4 0.5v/2]10
=[0.5/21]01) 4 0.5v2]11
= [[01)]

1X3X X, Hy
1X1X;, Hy
1X3H,

1H,

—_ —~ — =

(b) Circle Notation (figure 3).

(¢) Graphical representation (figure 4).
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® ()

|00y  [01) |10) |11}

Figure 1. Circle Notation of Bell State.

q[1] H—e—

q[2] X—

Figure 2. Graphical Representation of Bell State Circuit.

(3) Quantum Teleportation: H,X;X;H,. It is a protocol that transmits a qubit using two classical

communication bits.

(a) Generated mathematical workout:

|000) H, X5 X, Hy
= [0.5+/2]000) + 0.5v2]010)1X5 X} H
= [0.5+/2]000) + 0.5v/2]011)]1 X3 H;
= [0.5v2]000) + 0.5v2[011)1H,
= [0.5]000) + 0.5]011) 4 0.5/100) + 0.5[111)]

(b) Circle Notation (figure 5).

(¢) Graphical representation (figure 6).

6. Case of use

A clear example of an efficient use case of quantum circuit optimization is explained using the Deutsch-Jozsa
algorithm implementation described by the Qiskit IBM documentation [19]. It explains how to build a quantum
circuit for the oracle of a function from its truth table and shows the final result (see figure 7).

The circuit above can be intuitively improved through the Qiskit transpile function [20], to obtain a simpler

version (see figure 8).
This circuit can be expressed like algebraic circuit as:

X XpP X X XX X X X0y (27)

The developed implementation automatically performs the following optimization steps. Applying the result (26)
over the red box, the result (25) over the blue box and the result (15) over the green box, it is possible to reduce the

circuit, itis obtained:
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|00)  |01)  [10)  [11)

Figure 3. Circle Notation of Superdense Coding (of |01) State).

q[1] —H—e—X—e—H—

qL2] X X

Figure 4. Graphical Representation of Superdense Coding Circuit.

Figure 5. Circle Notation of Quantum Teleportation.

|o§70) |o;1) |o;0) |o§r1) |1§0) |1:71) |1;0) |1§1)

1,2,3 1,2,3 1,2,3 1,2,3
X3[X4 XoXy JXLZ[X4 Xo X, Jxl,z,a

1,3( 1,3
= X3X2X4 ‘X1,2XZJX4 X1,2,3

1,3 1,3
= X3Xp| X" X1 Xy X123
] X3X2X1XZX1’233 = X3X2X2‘ X1X1,2,3]

3 ) 3
= X3X4‘\X2X23/‘ = X3X4X3

With the quantum circuit representation, the improvement can be appreciated in figure 9.

The additional results generated from the realised implementation on both circuits (unoptimised and
optimised) are shown below. Thanks to the tool developed, the difference between the number of operations
needed to compute one circuit or another is noticeable. Furthermore, the available representations of the results
are shown, showing the graphical difference between circuits, and the common state generated using Circle

Notation.

1. Generated mathematical workout of the unoptimised circuit:

[0000) X5 X37 X, X3 2 X1 ,X4 2 X X472 X3

= [|0010)] X4 X, X, X1 2X4 2 X0 X4 X1 3

= [|0010)]1X: X3 X . X3 Xo X, P X3
[10110)1X47 X1 2X4 7 X0 X3 Xi 5

= [|0110)]X,X3 X X3P X153
[11010)]1 X7 X, X3 X5

= [11010)]X,X;7 X3

= [|1110)]1X;° X3

= [[1111)]1 X3
[10001)]

11
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q[1] o—H—

|
q[2] H—e—X

q[3] X

Figure 6. Graphical Representation of Quantum Teleportation Circuit.
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Figure 7. Deutsch-Jozsa oracle described by Qiskit IBM documentation.
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Figure 8. Deutsch-Jozsa Oracle Optimised by Qiskit IBM Documentation.

Py M
\ul\u
N

Figure 9. Deutsch-Jozsa Oracle Optimised Using the Proposed Notation.

|0;0) \0!1) |o;o> |o;1) \o;m |0;1) \o;o) ID;I) \1;0) |1;1) |1;0) \1;“ |1;0) \1;1) |1;o> |1;1)

Figure 10. Circle Notation of Deutsch-Jozsa state.
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ql1] ° o—X—eo— o X—
| | | |
ql[2] o—X—eo—X—eo—X—eo—X—
| | | |
q[3] —X—e———o——0——0—X—
| | | |
ql4] X X X X

Figure 11. Graphical Representation of Unoptimised Deutsch-Jozsa Circuit.

q[1]

q[2]

q[3] X—eo—X—
I
ql[4] X

Figure 12. Graphical representation of Optimised Deutsch-Jozsa Circuit.

2. Generated mathematical workout of the optimised circuit:

|0000) X5X; X3
= []0010)]1X; X;
= [10011)]X;
= [|0001)]

3. Circle Notation (figure 10).
4. Graphical representation of the unoptimised circuit (figure 11).

5. Graphical representation of the optimised circuit (figure 12).

7. Conclusions and future works

In this paper, a notation with great potential to represent quantum circuits from an algebraic point of view has
been proposed. This new notation greatly facilitates the discovery and proof of new properties and relationships
between quantum gates, as well as the handling of calculations and the efficiency of systems that simulate them
classically. To demonstrate this, a computer tool has been developed that can be used to simulate classically the
evolution of the state vector through a circuit expressed in algebraic notation. Several examples are shown that
clarify the results and consolidate the idea of easier handling of circuits in algebraic notation compared to the
traditional graphical representation.

Four future lines of research are the following: extending the notation to add higher level abstraction
features, finding properties that simplify the most commonly used patterns in the development of quantum
algorithms, introducing the concept of measurement (both in notation and implementation) and improving
considerably the optimisation algorithm from a metaheuristic point of view. These lines can enhance the growth
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of the theoretical basis and the proposed implementation, leading to the creation of a new, manageable language
for the characterization and optimization of quantum circuits.
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Appendix A. Extensive proofs

The following proofs have been added as an appendix due to their excessive length. The proof of (24) is as
follows.

Proof.If |a) isaketand h = k € N, are two indexes, then
la) HuXj Hiy = anola) Hy X Higy + an |a)" Hi X Hy

= apaola)™®, X} Hy, + ano arla)’* X} Hy,
+ amagola)™ XFHy, + an awla)™ XFHy,

= apoarola)™®, Hy + apoamla)™ Hy
+ amagola)™ Hy + apag|a)™, Hy

= anarola)’yHy + anoarla)? Hy
+ apaxola)™ Hy + amala)yHy,

= ayla) Hy, + apla)" H, Xy

= apla)y + amla) X,

= la) Xy

Furthermore, the proof of (25) is shown below.

Proof. If |a) isaketand j, h, | € N, are three distinct indexes, then the ket [b) = |a) X/ hX;,leh is for construction,
as shown below

ih ih 1 jh
b) = ajoang laYjy XnX)" + ajoan; )y} XpX]
jh Jjh Jjhl Jjh
+ajiap |a)10 Xth +ajiap |a)11XXth
_ Jjh jh jh .jh
=a;joano |ll>01 X{ +ajoap; |a>{)0 Xl

Jjhi

ih <.jh ih
+ajiapg |a){1 X; +ajiap |a>10X X{

ih ih jhl jhl
= ajoapg |a){)1 +ajoap; |a)60 +ajiapg |a){1X +ajiap |a){)0X

ih ih
= ajoah0|a){)0 Xp |+| ajoap |a)(j)1 Xn

b x hxx
+ ajiapg la)yy XiXn +| ajrap layy; XiXp

h i h i
= apg la)g X) Xp + apy |a)y X] X

= |a) X] X

14
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Finally, analogous to the previous proof, the expression (26) is proved. 0

Proof. If |a) isaketand j, h, k, | € N, are four distinct indexes, then the ket |b) = |a) leththjhk isfor
construction, as shown below

T
|6 = ajoanoako |a)000 XhX] + ajoangary g, XpX]

ih Jjhk
+ ajoap ko |a>o1o XnX; ‘4 ajoh1ak1 Ia>011 XnX)

jhk jhk jhk
+ ajiappago |a>{00 XhX{ + aj1apag |a)101 XhXj

jhk jhk jhk
+ ajlahlako |a>{10 XhX] + a]lahlakl |a>111XXhXJ

jhk ,jhk
= aj0Anoak0 |(l>010 XJ +ajoanoak; |a>{)11 XJ
Jjh Jjhk _]hk
+ajoapiako |a>000 X + ajodnh1ak1 |a>001 X
jhk Jjhk jhk
+aj1apoako |a>110 X +aj1apoag1 |a>111

]hk jhkl ]hk
+aji1ap1ago |a>100 1 +ajiap1ag; |a>101XXl

= ajoapoako |a>010 +ajoapoag |a>£?f
+ajoapiaky |a>{;f}(’,‘ +ajoapiagy |a>{;f)’{‘
+aj1an0ako |a>{%C +aj1ap0ak1 |a>{?f;l<
+aj1ap1ako |a>{f}§ +aj1ap1ak1 Ia>{f}{§’(

Jjhk Jjhk
=4aj0ahoak0 |a>000 Xp +| ajoapoar |a>001 X

jhk jhk
+ ajoan1ako 1@)yig Xn |+ ajoaniag lag;; Xu

jhk Jjhkl
+ [ajlahoako 12100 Xh] +[ajlah0akl Ia)leXh

jhk Jjhkl
+ [ajlahlako |a>{10 Xh} + [ajlahlakl |a>111Xth

ik ik
= ajoak |ayg, Xp + ajoars la)y; Xp

ik ikl
+ajiagg |a)]y Xn + ajiag @) Xn

ik
= |a) X" Xp,

Appendix B. Rule application

The Apply Rule algorithm is a subroutine designed to apply a specific transformation rule r to a quantum circuit
QC. Therule r consists of a left part and a right part, where the left part identifies a pattern in the circuit to be
transformed, and the right part defines the transformation that minimizes the expression or configuration of the
circuit. This process helps in optimizing the circuit by systematically reducing its complexity.

Algorithm 2. Apply Rule

Date: Quantum circuit QC, Rule r O
1QC' — QC

2 p> Inrule r, designate left as the part to be reduced and right as the target part to minimize the expression

3 while the left part matchesin QC’ do

4 Find the first match in QC’

5 Transform QC’ using the right part of r at the match position

6end

7 return QC’
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This procedure is crucial for incrementally transforming a quantum circuit using specific rules. Each rule
targets particular patterns within the circuit, enabling systematic simplification or optimization. The
effectiveness of this approach depends significantly on the selection of rules and the completeness of the rule set,
as the final optimised form of the circuit QC’ is limited to the transformations defined by these rules. This
algorithm is typically used in conjunction with broader optimization strategies that iteratively apply multiple
rules to achieve a more comprehensive circuit optimization.
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