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Abstract.

In this work, we use a hybrid equation of state that allows us to choose the smoothness of
the quark-hadron phase transition, by choosing the value of a continuous parameter p.. To
describe the hadron phase, we use an equation of state (EoS) based on a chiral effective field
theory (cEFT), and for the quark phase we use the equation of state of the MFTQCD (Mean
Field Theory of QCD). We solve simultaneously the TOV equations and the tidal deformability
equations and contruct the mass-radius and deformability-mass diagrams for several values of
the parameter p.. We find that the curves in these two diagrams are almost insensitive to the
smoothness of the phase transition.

1. Introduction

Neutron stars reproduce the conditions of a still poorly understood region of the QCD phase
diagram, where the temperature is low and the chemical potential is high. In this region, matter
may deconfine. In this case, the inner core of the star is made of quark matter, the crust is made
of hadronic matter and there is a phase transition inside the star. To obtain more information
about these compact objects, we use models for the equation of state. With them, we can solve
simultaneously the TOV and the tidal deformability equations and thus obtain the measurable
properties of these compact stars. Comparing the results with experimental data, we can decide
if the chosen model gives a good description of dense and cold matter. A good introduction to
the subject can be found in [1].

Until recently, the existing data were compatible with stars made of quark matter, of hadron
matter and of a combination of both. During the last years, new data started to appear
more rapidly, introducing new and stringent constraints on the mass-radius (M-R) diagram
and reducing the freedom in the choice of the equation of state. In this context an interesting
question is: can we learn something about the quark-hadron phase transition (if there is any)
from the new astrophysical data? In particular, can we know how sharp it is (first order? second
order?) and if there is a mixed phase?
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A first step along this direction was taken in Ref. [2], where several neutron star observables
were calculated with a hybrid equation of state which could be tuned to include a sharper or
smoother phase transition, depending on the choice of a contiuously varying parameter.

In this work, we follow the strategy of Ref. [2] using different equations of state for the two
phases and using different tools to control the sharpness of the transition.

2. Formalism

To obtain hybrid equations of state with phase transitions of different smoothness, we used the
equation proposed in [3]:
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The free parameters dy and u. allow us to choose the intensity of the phase transition. The
subscript indices H and @ refer to the hadron and quark phase quantities, respectively.
Therefore, choosing the values of §y and . and the equations of state of the quark and hadron
phases, we get the pressure, energy density, and baryonic density of the hybrid equation of state.
Originally, Egs. (1), (2) and (3) were formulated to describe the phase transition in high-energy
nuclear collisions. Applying them to neutron stars, we noticed that the pressure values do not
vanish when pp = 0. Then, to adapt these equations to the stellar medium, we consider that
the hybrid equation of state is given by
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In this work, we choose the model presented in [4] (called here HLPS) and recently used in [5]
for the hadronic phase and the MFTQCD [6, 7, 8] for the quark phase. The HLPS model was
designed to be consistent with a chiral effective field theory and is one of the most well accepted
models to describe hadronic matter. In this work, we choose the Soft equation of [4]. The
MFTQCD equations were obtained assuming that the gluon field can be decomposed into low
(soft) and high (hard) momentum components and that the sources of the latter are so intense
that the hard gluon field can be treated as a classical mean field. Using this assumption and
some other approximations, we can derive the equation of state from the QCD Lagrangian [8].
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where pup; = 1/]4:% +m? is the Fermi energy of particle i and £ = g/mg. ¢ is the strong
coupling constant and mg, the dynamical gluon mass. To apply these equations to neutron
stars, we assumed that quarks and electrons are in chemical equilibrium. We also imposed
charge neutrality and baryon number conservation [6, 7]. The first term of Eqgs. (5) and (6),
proportional to pQB, arises from the interaction between hard gluons and quarks. This term
results in a stiffer equation of state. The second term of these equations originates from soft

gluons and is defined by [8]

A p—

where F" is the soft gluon field tensor. We can notice in Egs. (5) and (6) that this term
has the same behavior as the MIT bag constant, which is why we denote it by B. The free

parameters of the equation of state of MFTQCD are B and &, and in this work, we choose
B =200 MeV/fm® and & = 0.0016 MeV .

3. Results

Having defined the EoS of the quark and hadron phases, we fixed the values of the free
parameters to be o9 = 50 (1\/[eV/fm3‘)2 and L 1imit = 1000 MeV. By fixing g, p. becomes
the only parameter that determines the intensity of the phase transition. To consider four phase
transitions with different smoothness, we have chosen p. = 0, 700, 1000, 2000 MeV. We have
checked that these values represent an extremely sharp, two intermediate and a very smooth
phase transition, respectively. When p. > 2000 the smooth transition curves suffer only sligth
changes. The obtained equations of state are shown in Fig. 1. In the panels of this figure, we
can see that the higher the value of ., the smoother the phase transition is. Thus, the red
curve (e = 0 MeV) represents a sharp phase transition. The yellow, green and blue curves
(e = 700, 1000, 2000 MeV, respectively) represent smoother phase transitions.

Solving simultaneously the TOV equations and the tidal deformability equations (for more
details see [6]), we obtain Fig. 2. In the left panel of the mass-radius diagram we see that the
four hybrid curves show the same behavior as the hadron curve in the region of R 2 12 km.
This behavior is expected, as this is the region of the M-R diagram where we find neutron stars
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Figure 1. Hybrid equations of state with the MFTQCD for the quark phase and the Soft
equation of the HLPS model for the hadron phase. The marks in the p(e) diagram show the
low and high energy constrainsts imposed by chiral perturbation theory and perturbative QCD
respectively.

that do not have a central pressure high enough to deconfine matter. In the region of R < 8 km,
the curves with different values of p. overlap in a behavior close to a quark star. In this region
of the M-R diagram neutron stars have very high central pressure. Therefore, these stars are
formed mostly of matter in the quark phase.

Changes in the smoothness of the phase transition produce effects only in the intermediate
region of the M-R diagram, i.e. for 8 km < R < 12 km. Smoother phase transitions lead to
slightly higher masses for the same radius value. For these transitions the hybrid star curve
goes smoothly from the hadron star curves (R 2 12 km) to the quark star curves (R < 8 km).
We notice that in the graph of P x up (graph at the top, on the left, of Fig. 1), the curves
with higher values of u. present higher values of pressure in the region of the phase transition.
Therefore, in this region, EOS with smoother phase transitions result in stiffer equations of
state. This implies larger values of mass in the mass-radius diagram. The same conclusion is
valid for the tidal deformability graph. The region of higher (smaller) values of masses of the
hybrid curves presents a behavior of quark (hadron) stars, which is consistent with the high
(low) values of central pressure of this region. The importance of the smoothness of the phase
transition is shown in the central region of the diagram (0.7 Mg < M < 1.3 Mg). Curves with
higher values of u. have smoother changes. We also observe that higher values of u. lead to
higher values of tidal deformability in this intermediate region.

As can be seen in the left panel of Fig. 2, our curves do not reproduce the experimental
data. This is due to the parameter choices made for the equations of state. In a future work,
we intend to use the hybrid equations (1), (2), and (3) with other parameters and/or other EoS
for the quark and hadron phases. For the purposes of this work, the disagreement with data
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is not crucial. The most important is the conclusion that the nature of the phase transition
has almost no visible effects in the mass-radius diagram or in the deformability-mass diagram.
Consequently these observables will not help us in discriminating a strong first order phase
transition from other smoother transitions.
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Figure 2. Mass-radius diagram, on the left, and tidal deformability as a function of mass, on
the right. The points show the experimental data (for details see [6]).

4. Conclusions

We worked with a hybrid equation of state in which, through the free parameter u., it was
possible to choose the smoothness of the quark-hadron phase transition. For the quark phase,
we used the EoS of the MFTQCD with B = 200 MeV/fm3 and ¢ = 0.0016 MeV !, while for
the hadron phase, we used the Soft EoS of the HLPS model. We obtained four EoS just by
changing the value of .. We found that higher values of . result in EoS with a smoother phase
transition. Solving simultaneously the TOV and the tidal deformability equations, we observed
that the equation of state with smoother phase transition results in slightly higher values of
the mass and tidal deformability. However, the most striking conclusion is that the mass-radius
diagram seems to be very insensitive to the nature of the quark-hadron phase transition. We
also conclude that the chosen EoS does not agree with current observational data, although this
fact is not essential for this work. This conclusion can be made more robust by considering other
EoS for both phases and also by selecting EoS which yield a good description of experimental
data.
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