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Abstract
Achieving practical applications of quantum machine learning (QML) for real-world scenarios
remains challenging despite significant theoretical progress. This paper proposes a novel approach
for classifying satellite images, a task of particular relevance to the earth observation industry, using
QML techniques. Specifically, we focus on classifying images that contain solar panels, addressing a
complex real-world classification problem. Our approach begins with classical pre-processing to
reduce the dimensionality of the satellite image dataset. We then apply neural quantum
kernels-quantum kernels derived from trained quantum neural networks-for classification. We
evaluate several strategies within this framework, demonstrating results that are competitive with
the best classical methods. Key findings include the robustness of or results and their scalability,
with successful performance achieved up to 8 qubits.

1. Introduction

Recent advancements in the field of quantum machine learning (QML) [1–3] have significantly enhanced
our understanding of how quantum resources can be utilized to design various new paradigms [4–7]. These
developments have shed light on the trainability [8–14] and generalization capabilities of quantum models
[15–19] and have even demonstrated theoretical advantages over classical methods for certain tailored
problems [20–24]. Despite these breakthroughs and the successful implementation of quantum models on
quantum processors [25–29], the practicality of QML remains uncertain [30].

Image classification is one of the most usfeul tasks due to its significant industrial applications. Various
approaches have been explored, including quantum convolutional neural networks [31–36] and models that
leverage symmetries [37–40]. There is increasing recognition that combining classical and quantum
approaches can be more beneficial than trying to replace one by the other. The pursuit of better machine
learning techniques with new methodologies involves a deeper consideration of various factors such as
resource efficiency, data requirements, and the practical applications of these technologies. As addressed in
this work, this involves pre-processing images classically before applying a quantum data processing model
[41, 42]. The aim is to demonstrate the development and implementation of models using components
executable on quantum processors, with the goal of scaling them up to create models that cannot be
simulated on classical processors.

Most studies in this context focus on typical classification problems that serve as benchmarks for
evaluating these models, while just a few address more realistic classification challenges. Earth observation
(EO), with the use of remote sensing technologies, provides valuable data for a wide range of applications,
including climate change monitoring, disaster management, agricultural productivity assessment, and urban
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planning. By using machine learning, EO has become essential for extracting useful insights from this data,
helping us manage Earth’s systems more effectively. Recently, the daily volume of satellite image products has
surged significantly due to a wide range of institutional and commercial missions [43, 44]. This growth has
prompted the EO community to explore computational paradigms that could enhance current methods.

Few studies have addressed complex classification tasks using quantum resources; this work aims to
bridge that gap by combining classical and quantum resources to demonstrate that quantum methods can
achieve effective results in real-world scenarios. Our focus is on the identification of solar photovoltaic (PV)
panels, utilizing a challenging dataset from a real-world scenario [45] to address a high-priority social and
environmental application. In order to achieve this, we developed an effective classical pipeline tailored to
preprocess images from this complex satellite imagery dataset, reducing them to a limited number of features
suitable for encoding in a quantum architecture. Building on previous studies that underscore the
dependency of results on ansatz selection in approaches using parameterized quantum circuits [46–49] or on
the choice of embedding in support vector machines based on quantum kernels [50–53], we chose to employ
neural quantum kernels (NQKs) [54]. This model uses a quantum neural network (QNN) to generate a
embedding quantum kernel (EQK) tailored to the classification task.

The decision to utilize NQKs addresses several challenges in the current QML landscape. Firstly, it
introduces a scalable model that mitigates trainability issues known in parametrized quantum circuits and
QNNs [8–10, 55, 56]. As we show in this work, we achieve consistently improved results with the addition of
qubits. Additionally, since training QNNs can be problematic, constructing a kernel from the network has
proven to be resilient to these training difficulties. This resilience allows us to demonstrate that constructing
an effective kernel model does not require the ability to finely tune a QNN. Finally, while the impact of
entanglement on enhancing QML models remained uncertain [57], our findings demonstrate that the
performance improvements observed when adding qubits to NQKs are solely due to the presence of
entanglement. This clarifies the crucial role of entanglement in these models.

Within the framework of NQKs, we consider two model constructions. The first, the 1-to-nmodel, is
built by training a single-qubit QNN and then using the trained parameters to construct an n-qubit EQK.
With this model, we observe that using just 2–3 qubits yields results comparable to classical counterparts,
and we show its robustness with respect to the training of the single-qubit QNN. The second model, the
n-to-nmodel, involves training an n-qubit QNN by iteratively adding qubits to ensure scalability, then using
the trained architecture to construct the corresponding n-qubit EQK. In this case, the trained QNN
functions directly as the quantum embedding. We show that results improve progressively as qubits are
added. With both models, we achieve accuracies approaching 90%.

This paper is organized as follows: section 3 outlines the dataset generation process, explaining how p
features are extracted from the original images to serve as inputs for the quantum model. In section 4, we
introduce NQKs, a quantum classification approach proposed in reference [54]. Section 5 presents and
analyzes the numerical results. Section 6 explores the implications and limitations of our work, proposing
directions for future research. Finally, section 7 summarizes our findings, providing a concise conclusion to
the manuscript.

2. Related work

QML techniques have shown potential in advancing remote sensing image classification by addressing
challenges like high-dimensional data and leveraging quantum computational power. This section provides
an integrated overview of key contributions in feature extraction and dimensionality reduction, hybrid
QNNs, and support vector machines based on quantum kernels.

Feature extraction and dimensionality reduction play a critical role in adapting high-resolution satellite
images to the limited qubit capacity of NISQ computers. Studies such as [49] and [46] have demonstrated
the effectiveness of classical preprocessing methods like convolutional autoencoders (CAEs) and principal
component analysis (PCA) for reducing dimensionality before quantum processing. Notably, CAE-based
techniques were found to outperform naive downsampling methods, embedding relevant features into
parameterized quantum circuits. Furthermore, [58] introduced quantum convolutional filters trained
through variational circuits, demonstrating their efficacy in classifying datasets like DeepSat SAT-4 using real
quantum hardware.

Hybrid QNNs, combining classical neural networks with quantum circuits, have emerged as a promising
approach for EO. Works such as [47] and [59] utilized PQCs within classical convolutional pipelines to
encode and classify RGB EuroSAT and Onera Satellite Change Detection datasets. These studies highlighted
the importance of convolutional embeddings and explored various ansatz, with real amplitude circuits
offering compact architectures but slightly lower performance compared to ResNet-based solutions.
Additionally, [60] explored quantum transfer learning by freezing classical layers and training quantum
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layers, finding that strongly entangled multi-qubit circuits performed best. Hyperparameter tuning in hybrid
QNNs, a complex yet critical aspect, was systematically addressed in [61], providing strategies for optimizing
circuit depth and qubit count using EuroSAT as a benchmark.

Various studies have explored the use of quantum kernels for solving real-world tasks, though these
kernels are typically problem-agnostic [29, 62–66]. The development of NQKs, however, opens the door to
creating quantum kernels specifically tailored to individual problems. In the context of satellite image
classification, both gate-based circuits and quantum annealing have been applied, as demonstrated in [51],
where these methods achieved performance comparable to classical SVMs on multispectral data. Despite
this, real hardware limitations imposed constraints on data scalability. Recent advancements, such as those
in [52], revealed that while both classical and quantum runtimes scale logarithmically with dimensionality,
real quantum hardware can offer runtime advantages over simulations, suggesting potential for
intermediate-scale quantum systems.

Collectively, these works underline the synergistic potential of combining classical preprocessing with
quantum methodologies, while also highlighting the challenges and opportunities in developing scalable and
efficient QML frameworks for remote sensing applications.

3. The dataset

This study utilizes an annotated dataset comprising of over 19 000 solar panels distributed across 601
high-resolution satellite images taken from four cities in California. The dataset was originally introduced in
reference [45]. The dataset has been extensively used in the fields of machine learning and deep learning for
tasks such as solar forecasting (estimating solar power generation), environmental and socioeconomic
analyses, as well as mapping and detection of PV installations [67–69].

The following sections 3.1 and 3.2, report details about the dataset preparation and feature engineering
steps, required for the following implementation of classical and quantum classification models. The whole
workflow is shown in figure 1.

3.1. Data preparation
The dataset comprises annotated images, each of which is a 5000-by-5000 pixel RGB satellite image with a
spatial resolution of 30 cm. The images are accompanied by geospatial coordinates and manually annotated
polygons for each solar array. These annotations facilitate tasks such as image classification, semantic
segmentation and object detection.

Before using this dataset, two main considerations must be taken into account. Firstly, the dataset is not
readily prepared for classification tasks. Secondly, it is too large and complex to be fed raw into any quantum
algorithm in the NISQ era. Therefore, it is necessary to take a few steps to simplify the problem, reduce the
size of the data and make it available for classification tasks. The data preparation pipeline involves the
following steps:

1. Convert polygon annotations to segmentation masks. The dataset includes georeferenced annotations in
JSON format, which specify the coordinates of the polygons that comprise the panels. To label each image
and extract features from them, it was necessary to convert these polygons to binary segmentation masks
where each pixel indicates the presence (white) or absence (black) of solar arrays. The process was carried
out using the open-source scikit-image Python library, which offers features for drawing the inner
area of a polygon.

2. Image partitioning.Working with high-resolution images is demanding in terms of memory usage and
computational time. This challenge, already significant for classical hardware, becomes even more
pronounced on quantum devices due to limited quantum resources, such as the number of available
qubits and allowable circuit depth. To address these constraints, each 5000-by-5000-pixel image is
divided into 400 smaller images, each measuring 250-by-250 pixels. While all original high-resolution
images contain panels, cropping small sections of these images produces samples without panels,
enabling the creation of a dataset with both positive samples (images containing panels) and negative
samples (images without panels).

3. Sampling and rebalance classes. After slicing the original 463 images, we obtained 185 200 smaller images,
of which only 10 863 were positive instances, representing 5.768% of the total. Defining a ‘positive
instance’ for each image is not straightforward, as this information is not directly available in the dataset.
However, using the image mask, we can establish a local criterion to assign class labels. In this work, an
image’s class label is defined as follows

ŷ ∈
{
+1, if γ > ε
−1, if γ = 0,

(1)
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Figure 1. Flowchart of the image processing workflow. The input dataset for the classification model is prepared, and features are
extracted to meet the requirements for encoding the information into a quantum model.

where γ = 1
N

∑
i,jMij represents the proportion of positive (white) pixels in each image mask

Mij ∈ {0,1}, ε is a threshold set to exclude ‘edge cases’ and N is the total number of pixels in each image.
Note that if an image’s mask contains a proportion of white pixels between zero and the threshold ε, it is
excluded from the dataset.
Additionally the dataset’s class imbalance was removed ad-hoc by undersampling the majority class.

4. Prune the positive cases. As defined in equation (1), it is necessary to establish a threshold to filter out
non-representative cases. For instance, an image containing only a few pixels of solar arrays may be
visually indistinguishable from a negative image, even to the human eye. Expecting a classification model
to accurately identify such ‘edge cases,’ where the object is barely recognizable, would be unrealistic.
Therefore, to avoid training the model on structures that might be confused with background noise,
these ambiguous cases are excluded from the dataset.
The threshold value ε for filtering was determined based on the distribution of solar array pixels across

all cropped images. Specifically, the 15th percentile of the pixel count distribution was selected as the
minimum value to retain positive samples. This threshold corresponds to a maximum panel coverage of
0.2% of the entire cropped image area and balances the goal of retaining sufficient samples while
ensuring a high-quality dataset.

A final outcome example of a positive and a negative sample image is shown in figure 2. It is important to
note that the dataset is not yet fully prepared for use and encoding in a quantum circuit. A step of thorough
feature extraction and dimensionality reduction is needed, as will be seen.

3.2. Feature engineering
Since the input to the problem consists of geospatial images, and the purpose of this work is to study QML
algorithms designed for tabular data, it becomes necessary to extract tabular features from the images. In
recent years, widespread methods for extracting features from high-dimensional (i.e. high-resolution)
images have relied on the use of pre-trained classification CNNs (e.g. ResNet, EfficientNet, etc) as well as the
use of CAEs [70]. Preliminary tests indicated that solving the PV identification problem classically using
pre-trained CNNs was not viable, as benchmarking the extracted embeddings revealed low performance.
This observation led to the conclusion that general-purpose multiclass CNNs trained on ImageNet may be
unsuitable for detecting small objects in high-resolution aerial or satellite images, which typically feature
diverse geometric structures and geospatial patterns. On the other hand, CAE architectures capable of
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Figure 2. (a) Positive image sample with solar panels (ŷ=+1) and (b) negative image sample without solar panels (ŷ=−1),
each accompanied by their respective binary segmentation masks. The negative sample illustrates a case where the proportion of
white pixels is γ= 0.

learning to reconstruct the input image are often considered for feature extraction and dimensionality
reduction of images before performing other downstream tasks. In both cases, the so-called bottleneck
features (also known as the latent vectors) represent a global summary of the input image.

Given the specificity of the small structure identification problem in this work, we decide to approach the
classification problem in a different way: from a ‘general to specific approach’ to a ‘specific to general
approach’. While identifying solar panels in an image is generally considered a global classification task, a
more specific task is to identify the exact silhouette of the object in the image. Semantic segmentation
techniques are commonly used to achieve this, using CAE architectures such as the well-known U-Net [71].
Thus, it was determined that training a U-Net architecture from scratch using the images and their
segmentation masks would yield optimal features for small object identification. This approach was
previously proposed in reference [72] for classifying small lesions in medical images using features extracted
from the bottleneck of semantic segmentation models.

The segmentation features used for the binary classification task were extracted from a slightly modified
U-Net architecture, which is further described in appendix A. This method was found to be particularly
efficient both as a feature extraction method and dimensionality reduction strategy in order to smartly pave
the way to the usage of quantum algorithms that can be tackled on NISQ computers. The network was
trained from scratch with a set of training images. To extract the latent vector features, only the encoder part
up to the bottleneck layer is used for each image.

The encoder produces 64-sized vectors as output from the bottleneck dense layer. Depending on the size
of the parameterized circuit, these features can be further reduced through dimensionality reduction
techniques. Once the latent features have been obtained, z-score normalization is applied to them prior to
the application of dimensionality reduction through PCA. The number of components p for PCA is selected
as a hyperparameter of the model that depends on the specific requirements of the circuit’s encoding. Before
embedding the features into the quantum circuit, their values are scaled to fit within the range of [−1,1].
Finally, the circuit yields the prediction ŷ, that is either+1 (positive class) or−1 (negative class).

It is important to mention that a large variety of alternative feature extractions techniques might also
have been considered, such as: (a) classical computer vision features extraction techniques applied at image
level (e.g. SIFT, HOG, etc), (b) object-based image analysis techniques based on the sequential application of
unsupervised segmentation methods (such as Quickshift, Felzenszwalb, SNIC, SLIC, etc) followed by
extraction of features related to shapes, colors, and other useful image patterns (e.g. GLCM, Hough
transform, etc) , (c) the application of other deep learning techniques adopting a neural network for
extracting features in a more end-to-end, task oriented fashion (e.g. VGGNet, ResNet, EfficientNet, Vision
Transformers, etc). While some of them may also result to be effective for the task at hand, a comparison of
alternative feature extraction methods is not implemented in this work that instead focuses on the application
of the proposed hybrid QML algorithms, and their variants, to the selected complex real dataset use case.
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Figure 3. Diagram illustrating the complete architecture, from the input image to the construction of the NQK. Starting with
large, complex images, a dataset X ofM data points is generated, consisting of 2- or 3-dimensional points, through classical
preprocessing. The upper branch represents the 1-to-n NQK construction, while the lower branch illustrates the n-to-n NQK,

which is built using an n-qubit QNN. This QNN is trained iteratively to ensure scalability. θ⃗ and φ⃗ denote the trainable
parameters.

4. Methodology

Classical pre-processing serves as a vital step in handling highly intricate real-world datasets. Within our
pre-processing framework detailed in section 3, PCA stands out as a key technique which inherently
introduces nonlinearities to the model. This way, the choice of the number of principal components p
becomes a crucial hyperparameter of the model.

In our study, we focus on p= 2 and p= 3 features since we are using qubits for the quantum part.
Additionally, despite retaining more data information, considering a larger number of principal components
does not guarantee improved performance, as shown in the appendix.

As outlined in figure 3, after reducing the data dimensionality, we combine two well-known QML
architectures, namely QNNs and EQKs, to create a more robust model termed NQKs.

4.1. Data re-uploading QNN
We adopt the data re-uploading architecture described in references [73, 74] for our QNN. For a
single-qubit, this is defined by

QNNθ⃗ (⃗x)≡
L∏

l=1

U
(
θ⃗l

)
U (⃗x) = U

(
θ⃗L

)
U (⃗x) . . .U

(
θ⃗1

)
U (⃗x) . (2)

This structure alternates parametrized gates U(θ⃗l) with encoding gates U(⃗x). Here, U represents a generic
SU(2) unitary, parameterized by three angles. The number of free parameters is 3× L, where L denotes the
number of layers, contained within the vector θ⃗ = {θ⃗1, . . ., θ⃗L}. With a single unitary we can encode up to
p= 3 features. For data points with p= 2 features, we set the third angle of the encoding gate to 0. This
architecture yields highly expressive models, as demonstrated by the analyzed Fourier frequencies of the
functions generated by the model [75, 76]. Remarkably, even with a single qubit, one can perform complex
classification tasks [77, 78].

The optimal model parameters θ⃗∗ = {θ⃗∗1 , . . ., θ⃗∗L} are defined as

θ⃗∗ = argmin fcost
(
θ⃗
)
. (3)

The cost function we use is the fidelity cost function

fcost
(
θ⃗
)
=

1

M

M∑
i=1

(
1− |⟨ϕi

l|ϕ
(
θ⃗, x⃗i

)
⟩|2
)
, (4)

where |ϕi
l⟩ denotes the correct label state for data point x⃗i (which are chosen to be either |0⟩ or |1⟩) and

|ϕ(θ⃗, x⃗i)⟩=QNNθ⃗ (⃗xi)|0⟩. Once it is trained, the single-qubit QNN assigns labels according to the decision
rule

ŷ [⃗xt] = sign
(
tr
(
|0⟩⟨0| ρθ⃗∗ (⃗xt)

)
− 1/2

)
∈ {−1,+1} , (5)

where ρθ⃗∗ (⃗xt)≡QNNθ⃗∗ (⃗xt)|0⟩⟨0|QNNθ⃗∗ (⃗xt)†.
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Figure 4. Detailed NQK construction process. The diagram begins with the training of a single-qubit QNN, from which the

optimal parameters θ⃗∗ are obtained. Using these parameters, two types of NQKs can be constructed. The first is the 1-to-n NQK,
which is shown in the upper part of the figure, illustrating the specific case where n= 2. The second is the n-to-n NQK, where we
iteratively add qubits to construct an n-qubit QNN. The first step in constructing the 2-qubit QNN is shown in the lower-left part
of the figure. This n-qubit QNN is then used directly as the embedding to create the n-to-nNQK, as shown in the lower-right part.

Starting from the single-qubit QNN, we can scale this up by adopting the iterative training strategy
outlined in reference [54], where the construction of an n-qubit QNN proceeds iteratively. This method
gradually adds qubits, ensuring that the performance of the n-qubit QNN equals or surpasses that of the
(n− 1)-qubit counterpart.

This iterative construction is based on considering a local measurement on the first qubit. Thus, when
adding an additional nth qubit, if we do so in a way that it is initially decoupled from the previous n− 1
qubits and initialize the training with the parameters from the previous step, we can ensure that adding this
new qubit can only further reduce the value of the cost function. To achieve this decoupling between qubits,
all that needs to be done is to initialize the parameters of the controlled rotations that couple the new qubit
to the previous ones to 0, resulting in an identity operation.

To implement this strategy, we start by training a single-qubit QNN to determine the optimal parameters
θ⃗(1)∗. Subsequently, we expand the network to include a second qubit, constructing the following
architecture

QNN(2)

θ⃗,φ⃗
(⃗x) =

L∏
l=1

(
CU1

2

(
φ⃗
(1)
l

)(
U
(
θ⃗
(1)
l

)
⊗U

(
θ⃗
(2)
l

))
U (⃗x)⊗n

)
. (6)

Here, θ⃗(1)l is initialized with θ⃗
(1)∗
l and φ⃗

(1)
l is set to zero for each l ∈ [1,L] as depicted in figure 4.

Optimization encompasses all parameters, and the optimal values are then used to initialize the 3-qubit

QNN, following the same procedure. Thus, we can scale this up to construct QNN(n)

θ⃗,φ⃗
(⃗x), where θ⃗ contains

all the single-qubit gate trainable parameters and φ⃗ the trainable parameters of the entangling gates.
In this process, the cost function is the same as in equation (4), but including now dependency on φ⃗, and

the decision rule is expressed as

ŷ [⃗xt] = sign
(
tr
(
|0⟩⟨0| ⊗1(n−1) ρ

(n)

θ⃗∗,φ⃗∗ (⃗xt)
)
− 1/2

)
, (7)

where ρ(n)
θ⃗∗,φ⃗∗ (⃗xt)≡QNN(n)

θ⃗∗,φ⃗∗ (⃗xt)|⃗0⟩⟨⃗0|QNN
(n)

θ⃗∗,φ⃗∗ (⃗xt)
†, is the quantum state which comes from applying

the trained QNN to the |⃗0⟩ state.

4.2. NQKs
As introduced in reference [54], NQKs are parameterized EQKs whose parameters are obtained from the
training of a QNN. Generally, we denote n-to-n ·m NQK to signify that a n-qubit QNN was used to
construct a n ·m-qubit EQK.

Considering some classical data point x⃗ and a quantum embedding S(⃗x), EQKs are constructed as follows

k
(⃗
xi, x⃗j

)
= |⟨⃗0|S (⃗xi)† S

(⃗
xj
)
|⃗0⟩|2, (8)
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where |⃗0⟩= |0⟩⊗n. However, the optimal embedding varies depending on the problem. Therefore, we allow
the embedding to be parameterized, defining a parameterized EQK. For NQKs, the embedding parameters
are obtained from the training of a QNN.

As depicted in figure 4, we distinguish between two different NQK architectures: the 1-to-n and the
n-to-n. In the 1-to-n approach, a single-qubit QNN is trained, and the obtained parameters are used to
construct an n-qubit EQK. In the n-to-n approach, the single-qubit QNN is scaled to an n-qubit QNN, and
this architecture is directly used to construct an n-qubit EQK. By combining these approaches, one could
build the general n-to-n ·m NQK model.

To construct a 1-to-n NQK, we proceed as follows: we replicate the data re-uploading QNN structure
across the n qubits, using the parameters θ⃗∗ obtained from the QNN training as the arguments for the
parameterized unitaries. Between layers, we implement a cascade of CNOT gates between nearest neighbor
qubits, though other configurations could also be chosen. The precise expression of such embedding is

Sθ⃗∗ (⃗x) =
L∏

l=1

((
n−1∏
s=1

CNOTs+1
s

)
U
(
θ⃗∗l

)⊗n
U
(⃗
xj
)⊗n

)
, (9)

where we use the convention
∏n

i=1Ai = An . . .A1, and in CNOTs+1
s , the subscript and the superscript denote

the control and the target qubits, respectively. The detailed construction of the embedding for the 1-to-2 case
is shown in figure 4.

On the other hand, the n-to-n case requires only taking the trained n-qubit QNN directly as the
embedding

Sθ⃗∗,φ⃗∗ (⃗x) =QNN(n)

θ⃗∗,φ⃗∗ (⃗x) . (10)

Once the quantum embeddings have been define, we construct the kernel matrix K with entries
kij = k(⃗xi, x⃗j). This matrix serves as input for a SVM, which solves a convex optimization problem to find
optimal α⃗ parameters defining the decision rule

ŷ [⃗xt] = sign

(
M∑
i=1

αi ŷi
k (⃗xt, x⃗i)+ 1

2

)
, (11)

where {⃗xi}Mi=1 denotes training points from set X.
Figure 4 illustrates the entire process of constructing NQKs for both the 1-to-n and n-to-n cases. The

process begins with the training of a single-qubit neural network (top left), where we obtain the optimal
parameters θ⃗∗. Once we have these parameters, two construction approaches are possible. The 1-to-n
approach, exemplified for the case n= 2 in the top right, involves replicating the architecture of the trained
single-qubit QNN and adding CNOT gates between the two qubits in each layer. This results in a 2-qubit
EQK, referred to as a 1-to-2 NQK. The n-to-n approach, described at the bottom of the figure, requires
constructing an n-qubit QNN through a scalable iterative process explained earlier in this section. Once the
QNN is built, it is used as an embedding to generate an n-qubit EQK, as shown in the bottom right.

In the construction of NQKs, training the QNN integrates information about the classification problem
into the EQK, resulting in a more robust QML model. Indeed, in the following section, we demonstrate that
even a QNN that is not perfectly trained can still effectively determine parameters to construct an NQK that
performs remarkably well.

5. Numerical results and analysis

Once introducing both, the real-world classification problem and the methodologies, we demonstrate that
we can achieve performance levels ranging between 85%–90%, which is remarkable given the complexity of
the classification task. In the following section, we present numerical results showcasing the performance of
the described models. Additionally, we provide a classical benchmark for the classification of this dataset,
aiming to be as rigorous as possible in evaluating and comparing the performance of the different models.

For each experiment, a different split of the dataset is used to ensure there is no data leakage:

• U-Net training set: this set of 108 95 images is used just to train the U-Net architecture from scratch to
generate the embeddings.

• U-Net test set: this set comprising 6630 images is used for inference on the U-Net to extract image latent
features. This approach ensures that there is no data leakage on the extracted embeddings, since the mask is
not used.
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Figure 5. Numerical results for the 1-to-n NQKs approach. 1q, 2q, and 3q refer to one-qubit, two-qubit, and three-qubit
constructions, respectively. In (a) and (b), we consider the 1-to-2 NQK, while in (c) we examine the 1-to-3 NQK. The results are
displayed for p= 2 features. The training and test accuracies are drawn from the 10-fold process using the described ‘1-to-n set’ of
2000 samples. In the box plots, the upper and lower parts of the boxes represent the 25th and 75th percentiles of the accuracies
obtained by evaluating the accuracy of the classifiers using 10-fold. The horizontal line inside the box indicates the median, while
the whiskers extend from the box to the most distant evaluation score that lies within 1.5 times the interquartile range (IQR) from
the box. Score values beyond the whiskers are considered outliers.

• 1-to-n set: it is a 2000-sample random subset from the U-Net test set to be used in both the 1-to-n NQK
experiments and the classical benchmarking. It is used by performing the stratified 10-fold strategy to get
robust test results.

• n-to-n set: random subsets from the U-Net test set are selected to perform n-to-n NQK experiments. We
consider a total of 700 samples, which are divided into 500 training points and 200 test points.

Please refer to appendix B for further details on the approximation carried out in this work to avoid leakage
through dataset splits.

5.1. 1-to-nNQK
For these experiments, we used the ‘1-to-n set’ comprising 2000 images. The k-fold method was performed
with k= 10 to obtain robust and reliable evaluation metrics. On each of the 10 iterations, 9 folds of the
dataset were used for training (1800 images), and 1 fold was used for testing (200 images). This approach
yields the results illustrated in figure 5, which depicts the training and test accuracies for the single-qubit
QNN and the NQK. This visualization highlights that models with fewer or no outliers and narrower boxes
are more robust, as their performance remains more consistent across different evaluation folds.

We examine both p= 2 and p= 3 features but primarily focused on p= 2, as using three features
performs less effectively with this model. The results for p= 3 are presented in appendix C. For the number
of qubits in the EQK, we considered n= 2 and n= 3, corresponding to 1-to-2 and 1-to-3 NQKs, respectively.
For this classification task, increasing the number of qubits does not enhance performance. Notably, we
achieved high classification accuracies even with a small number of qubits.

We distinguish between optimal and sub-optimal QNN training scenarios, both employing an Adam
optimizer. For optimal QNN training, the QNN is allowed to converge over 10 epochs with a learning rate of
0.01. In contrast, for sub-optimal QNN training, the process is truncated after 2 epochs to prevent
convergence of the loss function, and a lower learning rate of 0.001 was used. This differentiation aims to
demonstrate the robustness of NQKs. We observe that while better trained QNNs show minimal
improvement from introducing NQK, the NQK’s performance remains high even when the QNN training is
suboptimal. This indicates that only a few training iterations are sufficient to select a suitable embedding for
constructing a robust NQK. While optimal QNN training is straightforward for systems with few qubits, the
robustness of NQK becomes crucial for larger QML models where optimal training is not guaranteed. In
such cases, NQKs could be a candidate to circumvent QNN trainability problems.

In analyzing figure 5, we observe that the best results across the three plots reach close to 90% accuracy,
with a mean around 86%. In figure 5(a), where the single-qubit QNN is optimally trained, constructing the
2-qubit NQK offers minimal improvement, although the results with NQK are more concentrated. In
figure 5(b), with sub-optimal QNN training, QNN accuracies drop to around 75%–80%, while the 2-qubit
NQK performs nearly as well as in the optimal training scenario. Additionally, the wider boxes of the QNN
indicate a strong dependency on parameter initialization and the image set used, whereas the narrow NQK
boxes demonstrate its robustness. Figure 5(c), corresponding to the sub-optimal scenario with a 3-qubit
EQK, shows results similar to the 2-qubit case but more concentrated around the mean. This may be due to
the larger Hilbert space enhancing the linear separation.
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Figure 6. Numerical results for the n-to-n architecture, tested using datasets with 500 training points and 200 test points. The
experiments show the mean results from five independent trials, with 2 features displayed in panels (a) and (b), and 3 features in
panels (c) and (d). The ‘scale QNN set’, which is described in the main text, was utilized for these experiments. The figure displays
the average training and test accuracies for both the QNN and the corresponding n-to-n NQK.

Table 1.Mean training and test accuracies for two classical classification methods are presented. All experiments employ the same
10-fold setup used in the NQK experiments, with 1800 training points and 200 test points. The results from the NQKs come from the
optimal training of the QNNs.

Model # features (p) Training accuracy Test accuracy

SVC p= 2 86.1±0.3 86.2±2.5
p= 3 88.0±0.3 88.1±2.7
p= 45 89.4±0.3 89.4±2.5

Random forest p= 2 91.1±0.3 87.2±2.7
p= 3 93.0±0.3 87.6±2.0
p= 10 96.9±0.2 88.3±2.8

1-to-2 NQK p= 2 86.6±0.3 86.5±2.5
p= 3 81.7±1.8 81.1±2.9

1-to-3 NQK p= 2 86.6±0.3 86.5±2.6
p= 3 85.9±0.6 85.6±2.7

5.2. n-to-nNQK
In our second approach, instead of constructing an EQK after training a single-qubit QNN, we scale the
model up to an n-qubit QNN and then derive an n-qubit NQK. This scaling is performed iteratively, ensuring
that the cost function does not increase when adding qubits, allowing for progressive model improvement.

The results are presented in figure 6, which shows the mean training and test accuracies along with the
standard deviation across 5 independent runs, each using distinct training and test sets. For this analysis, we
employed a 6-layer QNN, the Adam optimizer with a learning rate of 0.005 and 10 epochs, scaling the model
up to n= 8 qubits.

The four plots in the figure reveal that accuracies generally increase with the number of qubits, with a
more pronounced improvement in training accuracy due to its direct link to the cost function. The standard
deviation of test accuracies is naturally larger, reflecting the variability across different subsets.

In figures 6(a) and (b), results with p= 2 features are shown, while figures 6(c) and (d) depict the
outcomes with p= 3 features. Overall, the NQK approach consistently outperforms the QNN architecture
across all configurations. Specifically, with p= 3 features, the average training accuracy nears 90%, and the
mean test accuracy exceeds 86%. In contrast, with p= 2 features, the NQK approach achieves average
training and test accuracies of over 88% and 84%, respectively. However, slight overfitting is observed, as
indicated by the higher training accuracies compared to test accuracies, which is expected given the dataset’s
complexity.

5.3. Classical benchmark
Until now, our investigation has revolved around a hybrid architecture combining classical preprocessing
with two distinct QML methodologies. Presently, we delve into classical approaches as substitutes for the
quantum components to benchmark our models. In order to accomplish this, we use the preprocessing
framework outlined in section 3 and then perform the same 10-fold approximation for training and
evaluation with classical machine learning algorithms.

The selected models for benchmarking are support vector machine classifier (SVC) and random forest
classifier. As shown in table 1, three runs are performed for each model. In order to ensure a fair comparison
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with the NQK models, the number of features is fixed to p= 2 and p= 3 in the first two rows for each model.
A hyperparameter optimization with randomized search is then performed to yield nearly optimal test
results. In the last row for each model, also p is treated as an hyperparameter in the randomized search to
determine if it would yield better results than using p ∈ {2,3}. The results of our analysis indicate that the
optimal value of p for the SVC is p= 45, while for the Random Forest it is p= 10. The values for the
remaining hyperparameters for each model can be found in appendix D.

6. Discussion and limitations

This work highlights some conclusions from previous studies while also paving the way for new insights. As
observed, the feature selection and classical preprocessing pipeline significantly influences the overall
performance of the model, a finding consistent with prior literature [46, 49]. Our results further emphasize
that, with effective classical preprocessing, quantum models can be competitive in addressing real-world
classification problems. Notably, these results are achievable with a limited number of qubits, making such
models potentially quantum-inspired, as they can be directly simulated on classical computers, which opens
the door to the development of new classical models.

However, as shown in our classical benchmark models, the findings also underline that classical models
remain highly competitive in terms of performance. This suggests that the benefits of using quantum or
quantum-inspired models may not lie solely in accuracy but in other metrics such as a reduced number of
parameters or improved generalization capabilities, which merit further investigation.

Despite these promising insights, this work has limitations that should be addressed in future research.
First, the model is restricted to a very small number of features. As observed, the straightforward method of
adding features beyond proves ineffective, highlighting the necessity of exploring alternative approaches. A
promising direction could involve leveraging qudits, which offer more degrees of freedom and could enable
the encoding of additional features through single-qudit gates [79, 80].

Another significant limitation is the inherent hardware noise in quantum processing units. While
simulations have been used here as an initial proof of concept to showcase the competitiveness of quantum
models, future studies should evaluate the effects of noise and the robustness of the models under realistic
hardware conditions. Furthermore, if the addition of more features requires additional quantum gates, it
becomes even more crucial to study the effects of hardware noise, as more gates naturally introduce more
noise. Additionally, if more features necessitate the use of more qubits, the current limitations of quantum
hardware size must be carefully considered.

7. Conclusions and future work

This work demonstrates that quantum models, when combined with effective classical preprocessing, can
achieve competitive performance on a real-world binary classification task. Our results show that quantum
models based on NQKs achieve accuracies close to 90%, rivaling well-optimized classical methods. We
explored two NQK approaches: the 1-to-nmethod, which uses a single-qubit QNN and proves particularly
robust, and the n-to-nmethod, which improves accuracy as the number of qubits increases, addressing the
scalability challenges commonly discussed in QML.

Although quantum models show promise, classical models remain highly competitive in terms of
accuracy, suggesting that the real advantages of quantum or quantum-inspired methods may lie in metrics
beyond raw performance. Future work should focus on scaling these models to more qubits, addressing noise
in quantum hardware, and exploring the potential of qudits for handling larger feature sets. This research
opens the door for further exploration of quantum techniques in real-world industrial applications.
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Appendix A. Modified U-Net architecture

The classical architecture chosen for semantic segmentation purposes was the well-known U-Net [71] due to
its simplicity and adaptability to the PV plants use case. However, the architecture has been slightly modified
to extract one-dimensional bottleneck features to be used in classification tasks, as the main goal was not to
solve a semantic segmentation problem.

As shown in figure A1, the principal changes in the architecture are:

• New added fully-connected layers. At the end of the encoder part of the U-Net, a new 64-sized fully-
connected layer is introduced to be used as the bottleneck layer to extract features later. These new layers
have been trained from scratch along with the rest of the architecture, thus transfer learning is not applied
in this case.

• Global max pooling and reshaping layers. To adapt the new bottleneck layer, at the end of the last convolu-
tional layer in the encoder, a global max pooling layer is applied to get a one-dimensional output. Following
the application of the bottleneck layer, a bidimensional feature map of size 16× 16 is reconstructed by
adding a 256-sized fully-connected layer and then reshaping its output.

Appendix B. Dataset splits

Dividing a dataset in splits is a mandatory practice in machine learning experiments to ensure rigorous
results and to avoid data leakage, as it could lead to overly optimistic performance estimates and poor
generalization of the models to new data. When dealing with hybrid models with multiple steps in the
pipeline, special care must be taken.

In semantic segmentation, the label is the binary mask. During the training of the U-Net architecture,
some of the mask information from the training samples is being fed to the network through
backpropagation. Therefore, the U-Net training samples should not be used in later stages for quantum
experiments. Figure B1 illustrates the approximation for this work to avoid such phenomenon.

Appendix C. Additional numerical experiments

C.1. 1-to-n
Presented here are additional numerical findings not featured in the main text. In figure C1, we explore all
the 1-to-n NQK construction scenarios, encompassing p= 2 and p= 3 features, optimal and sub-optimal
QNN training methods, and n= 2 and n= 3 qubits. As discussed in the main text, employing p= 2 features
yields superior performance for this architecture and classification task. We can also observe no
improvement when transitioning from n= 2 to n= 3 qubits in this context.

C.2. Different number of features
As argued in the main text, when we use single-qubit unitaries to encode features, we are limited to encoding
only 3 features with a single encoding unitary. For cases where we have p> 3 features, as proposed in
reference [73], we require a number of encoding unitaries equal to ⌈p/3⌉. For example, if we consider p= 6
with a data sample x= (x1,x2,x3,x4,x5,x6), instead of using a single encoding unitary, we would need
two-namely, U(x1,x2,x3) ·U(x4,x5,x6).

However, a single qubit has a limited capacity for processing information, meaning that even with this
approach of adding more features, the qubit’s processing ability becomes a bottleneck. Including additional
features merely introduces more information than the qubit can handle effectively and increases the circuit
depth without necessarily improving model performance. This is evident in figure C2, which is intended to
clarify why we focus only on p= 2 and p= 3. The figure plots the mean training and test accuracies over the
5 dataset samples considered in figure 6 of the n-qubit QNN.
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Figure A1.Modified U-Net architecture used to extract bottleneck features.

Figure B1. Dataset splits used for each step of the pipeline.

Figure C1. Numerical results for the NQK approach: this figure illustrates the outcomes for all combinations involving p= 2 and
p= 3 features, optimal and sub-optimal training of the QNN component, and n= 2 and n= 3 qubits used in kernel construction.

As we can see, the best performance occurs with p= 3, followed by p= 2, where we are still able to use a
single encoding unitary. Beyond this, adding more features degrades the results. For training accuracy,
performance consistently drops as the number of features increases to p= 4,5,6, whereas for test accuracy,
p= 6 performs slightly better than p= 5.
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Figure C2.Mean training (left) and test (right) accuracies across 5 dataset samples for different number of features p using the
n-qubit QNN architecture described in the main text.

Figure C3.Mean training and test accuracies across five dataset samples from the ‘n-to-n’ set (described in the main text), for
p= 2 and p= 3 features. The results are presented for three dimensionality reduction techniques: independent component
analysis (ICA), truncated singular value decomposition (SVD), and principal component analysis (PCA), utilizing the n-qubit
QNN architecture outlined in the main text.

Figure C4. Numerical results for the 1-to-2 NQKs approach with optimal training, incorporating two additional dimensionality
reduction techniques: independent component analysis (ICA) and Truncated singular value decomposition (SVD). The results
are presented for p= 2 and p= 3 features. Training and test accuracies are obtained from a 10-fold cross-validation process using
the described ‘1-to-n’ dataset, consisting of 2000 samples. The box plots display the distribution of accuracies, where the upper
and lower edges of the boxes represent the 25th and 75th percentiles, respectively. The horizontal line inside the box marks the
median accuracy. The whiskers extend from the box to the most extreme evaluation score within 1.5 times the interquartile range
(IQR). Any scores beyond the whiskers are considered outliers.

C.3. Different dimensionality reduction techniques
In the main text, we used PCA as the feature reduction technique. Here, we present overlaid results for p= 2
and p= 3 features obtained with PCA, along with two additional techniques from scikit-learn Python
library: independent component analysis (ICA) and truncated singular value decomposition (SVD).

Figure C3 shows the results for the n-qubit QNN, presenting the average training and test accuracies
across the same five dataset samples used in figure 6. As observed, PCA outperforms the other two
techniques in most cases, except for the test accuracies with p= 2 features, where the results across all three
techniques are very similar.

Figure C4 shows the results for the 1-to-2 NQK approach with optimal training, using the two additional
dimensionality reduction techniques, ICA and SVD. The dataset splits are the same as those used to generate
figure 5. As we can see, and when comparing with figure C1, the results using the three dimensionality
reduction techniques are quite similar for both p= 2 and p= 3 features.
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Table 2. Optimal values for the hyperparameters of the SVC found by the randomized search.

Model # features (p) Kernel C Gamma

SVC p= 2 Linear 9.53 0.016
p= 3 Linear 10.09 0.079
p= 45 Linear 10.04 0.085

Table 3. Optimal values for the hyperparameters of the random forest classifier found by the randomized search.

Model # features (p) n_estimators max_depth max_features

Random forest p= 2 72 40 sqrt
p= 3 197 96 sqrt
p= 10 103 13 sqrt

With these additional experiments, we aim to demonstrate that, while the choice of dimensionality
reduction method does affect the results, selecting PCA as used in the main experiments is both reasonable
and representative for conducting our study.

Appendix D. Hyperparameters for the classical benchmark

In order to obtain reliable and robust classical results on the dataset to compare with the quantum
approaches, a randomized search of the hyperparameters for the selected models (SVC and random forest)
was performed. It should be noted that the randomised search is not guaranteed to reach the global optimum
in the parameter space, but with sufficient iterations it retrieves a satisfactory approximation. The number of
iterations set for these experiments was set to 5000.

To ensure a fair comparison, the models were initially tested with the same number of features as the
NQK experiments (p ∈ {2,3}). Subsequently, the number of components was also set as an hyperparameter
on the search, as the original embeddings are of size 64. Tables 2 and 3 present the values of the
hyperparameters identified through the randomized search for each model.

In SVM classifiers, the key hyperparameters are kernel, C, and gamma. The kernel function (e.g. linear,
polynomial, RBF) transforms input data to find the optimal hyperplane for classification. The C parameter
controls the trade-off between low training error and generalization. The gamma parameter, specific to RBF,
polynomial, and sigmoid kernels, defines the influence range of a single training example. In the case of
table 2, even though the parameter gamma is optimized, it has no influence, because the optimal selected
kernel is linear in all three cases.

In Random Forest classifiers, some of the key hyperparameters are n_estimators, max_depth, and
max_features. The n_estimators parameter specifies the number of trees in the forest, where more trees
generally improve performance but increase computational cost. The max_depth parameter controls the
maximum depth of each tree, preventing overfitting by limiting how deep the trees can grow. The
max_features parameter determines the number of features to consider when looking for the best split,
balancing between the model’s accuracy and computational efficiency.

In order to ensure the reproducibility of the results, all of these classical experiments have been
conducted using the scikit-learn Python library.

ORCID iDs

Pablo Rodriguez-Grasa https://orcid.org/0009-0009-8622-2088
Robert Farzan-Rodriguez https://orcid.org/0009-0009-4062-4372
Gabriele Novelli https://orcid.org/0009-0006-6167-7930
Yue Ban https://orcid.org/0000-0003-1764-4470

References

[1] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Quantum machine learning Nature 549 195–202
[2] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L and Zdeborová L 2019 Machine learning and the

physical sciences Rev. Mod. Phys. 91 045002
[3] Dunjko V and Briegel H J 2018 Machine learning & artificial intelligence in the quantum domain: a review of recent progress Rep.

Prog. Phys. 81 074001

15

https://orcid.org/0009-0009-8622-2088
https://orcid.org/0009-0009-8622-2088
https://orcid.org/0009-0009-4062-4372
https://orcid.org/0009-0009-4062-4372
https://orcid.org/0009-0006-6167-7930
https://orcid.org/0009-0006-6167-7930
https://orcid.org/0000-0003-1764-4470
https://orcid.org/0000-0003-1764-4470
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1088/1361-6633/aab406
https://doi.org/10.1088/1361-6633/aab406


Mach. Learn.: Sci. Technol. 6 (2025) 015043 P Rodriguez-Grasa et al

[4] Huang H-Y, Broughton M, Mohseni M, Babbush R, Boixo S, Neven H and McClean J R 2021 Power of data in quantum machine
learning Nat. Commun. 12 2631

[5] Schuld M 2021 Supervised quantum machine learning models are kernel methods (arXiv:2101.11020)
[6] Jerbi S, Fiderer L J, Poulsen Nautrup H, Kübler J M, Briegel H J and Dunjko V 2023 Quantum machine learning beyond kernel

methods Nat. Commun. 14 517
[7] Schuld M and Killoran N 2019 Quantum machine learning in feature hilbert spaces Phys. Rev. Lett. 122 040504
[8] McClean J R, Boixo S, Smelyanskiy V N, Babbush R and Neven H 2018 Barren plateaus in quantum neural network training

landscapes Nat. Commun. 9 4812
[9] Cerezo M, Sone A, Volkoff T, Cincio L and Coles P J 2021 Cost function dependent barren plateaus in shallow parametrized

quantum circuits Nat. Commun. 12 1791
[10] Holmes Z, Sharma K, Cerezo M and Coles P J 2022 Connecting ansatz expressibility to gradient magnitudes and barren plateaus

PRX Quantum 3 010313
[11] Fontana E, Herman D, Chakrabarti S, Kumar N, Yalovetzky R, Heredge J, Hari Sureshbabu S and Pistoia M 2024 The adjoint is all

you need: characterizing barren plateaus in quantum ansätze (arXiv:2309.07902)
[12] Ragone M, Bakalov B N, Sauvage F’eric, Kemper A F, Ortiz Marrero C, Larocca M and Cerezo M 2023 A unified theory of barren

plateaus for deep parametrized quantum circuits (arXiv:2309.09342)
[13] Thanasilp S, Wang S, Cerezo M and Holmes Z 2024 Exponential concentration in quantum kernel methods (arXiv:2208.11060)
[14] Pesah A, M C, Wang S, Volkoff T, Sornborger A T and Coles P J 2021 Absence of barren plateaus in quantum convolutional neural

networks Phys. Rev. X 11 041011
[15] Caro M C, Gil-Fuster E, Jakob Meyer J J, Eisert J and Sweke R 2021 Encoding-dependent generalization bounds for parametrized

quantum circuits Quantum 5 582
[16] Caro M C, Huang H-Y, Cerezo M, Sharma K, Sornborger A, Cincio L and Coles P J 2022 Generalization in quantum machine

learning from few training data Nat. Commun. 13 4919
[17] Peters E and Schuld M 2023 Generalization despite overfitting in quantum machine learning models Quantum 7 1210
[18] Banchi L, Pereira J and Pirandola S 2021 Generalization in quantum machine learning: a quantum information standpoint PRX

Quantum 2 040321
[19] Gil-Fuster E, Eisert J and Bravo-Prieto C 2024 Understanding quantum machine learning also requires rethinking generalization

Nat. Commun. 15 2277
[20] Gyurik C and Dunjko V 2023 On establishing learning separations between classical and quantum machine learning with classical

data (arXiv:2208.06339)
[21] Sweke R, Seifert J-P, Hangleiter D and Eisert J 2021 On the quantum versus classical learnability of discrete distributions Quantum

5 417
[22] Jerbi S, Trenkwalder L M, Poulsen Nautrup H, Briegel H J and Dunjko V 2021 Quantum enhancements for deep reinforcement

learning in large spaces PRX Quantum 2 010328
[23] Liu Y, Arunachalam S and Temme K 2021 A rigorous and robust quantum speed-up in supervised machine learning Nat. Phys.

17 1013–7
[24] Pirnay N, Sweke R, Eisert J and Seifert J-P 2023 Superpolynomial quantum-classical separation for density modeling Phys. Rev. A

107 042416
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