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Abstract
We apply quantum group methods to quantum computing, starting with the
notion of interacting Frobenius Hopf algebras for ZX calculus with noncom-
mutative algebra and noncocommutative coalgebra. We introduce the notion of
x-structures in ZX calculus at this algebraic level and construct examples based
on the quantum group u,(sl) at a root of unity. We provide an abstract formu-
lation of the Hadamard gate related to Hopf algebra self-duality. We then solve
the problem of extending the notion of interacting Hopf algebras and ZX calcu-
lus to take place in a braided tensor category. In the ribbon case, the Hadamard
gate coming from braided self-duality obeys a modular identity. We give the
example of b,(sl»), the self-dual braided version of u,(sl>).

Keywords: quantum group, braided category, ZX calculus, Hopf algebra
quantum computing

(Some figures may appear in colour only in the online journal)
1. Introduction

This work is on the interface between quantum computing based particularly on a diagrammatic
formulation of ZX calculus [8], and the theory of Hopf algebras or quantum groups as under-
stood in algebra and mathematical physics, including condensed matter physics. Quantum
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groups are the natural ‘group objects’ in noncommutative geometry and their deeper noncom-
mutative differential geometry is closely tied to braided geometry, e.g. the braided-Lie algebras
dual to invariant one-forms for differential structures [26]. Braided versions of quantum groups
are also at the heart of topological quantum field theories [17] and hence should be important
for topological quantum computing. It is also widely recognised that methods developed for
quantum gravity can be repurposed for quantum computing, as for example the Kitaev model
[18], at which point the noncommutative differential geometry itself should become relevant
also. Although the latter does not feature in the present work, this provides the backdrop and
motivation for a braided version of computer science constructions.

The preliminaries in section 2 start with a concise but self-contained reworking of the cen-
tral algebraic structure, namely that of a Frobenius Hopf algebra or ‘interacting pair of Hopf
algebras’, but without assuming that our algebras are commutative or coalgebras cocommuta-
tive or our Frobenius forms symmetric. Here, corollary 2.9 revisits a recent result in [9] that
every finite-dimensional Hopf algebra H ‘amplifies’ to such a pair, but with a more direct
treatment that extends to the braided case and identifies the other member of the pair as H*P.
We keep track of braid crossings in the diagrammatic proofs as preparation for the braided
theory later, and we compute details for the example of u,(sl») at g a primitive nth root of
unity. The simplest case is n = 2 which, in our conventions from [1], is noncommutative and
noncocommutative even for ¢ = —1 and given in detail.

Section 3 introduces x-structures on Frobenius and Frobenius—Hopf algebras. The nicest
assumptions are with A a usual *-Hopf but require unimodularity. For u,(sl,) we show how
this gets modified, with its natural * operation making it a flip-+ Hopf algebra. Phases and
an abstract formulation of a ‘Hadamard gate’ are also discussed, the latter in three types.
Here, type 1 is the more obvious one but type 2 is equivalent to H being self-dual as a
Hopf algebra and type 3 to H being anti-self dual, which are therefore more natural from a
Hopf algebra point of view. u_;(sl>) and the reduced Taft algebra u,(b,) C u,(sl,) provide
examples.

The main new result of the paper is in section 4, where we construct interacting Hopf alge-
bras and ZX calculus in a braided tensor category. The general result in the braided case that
every braided Hopf algebra with suitable integrals amplifies to a braided Frobenius—Hopf alge-
bra (corollary 4.3) is read off from the diagrammatic proofs in section 2, so that the main
additional work is the construction of examples. We do this (proposition 4.4) by a process of
transmutation [19, 21] whereby every quasitriangular Hopf algebra in the sense of Drinfeld
[11,24] has a braided version. We include detailed computations for b,(sl,) obtained by trans-
mutation from u,(sl). Our type 2 ‘braided Hadamard gate’ b here is essentially the braided
Fourier transform for this class of braided Hopf algebras, shown in [17] along with the ribbon
structure to obey the modular identities needed for topological invariants.

We conclude this introduction with a little of the background from computer science. In
quantum computing, any unitary operator can be regarded as a ‘quantum gate’, but the useful
content is to identify a specific collection of such ‘gates’ from which others can be built or
approximated to arbitrary accuracy. To this end, let V = C? for a singe ‘qubit’ system and
consider unitaries on the m-qubit system V®™. Then some useful gates are the Hadamard gate
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Hopf algebra CZ, and its dual Hopf algebra [8]. One can further include versions of the nodes
modified by phases. The merit of this particular collection of ‘gates’ is that the Hopf algebra
structures allow one to simplify and rewrite compositions according to certain identities, lead-
ing to an efficient framework for working with them. Moreover, composition of these linear
maps can conveniently be expressed as ‘string diagrams’ where the copies of V are written side
by side and maps applied as for a flow chart or ‘quantum circuit’ flowing down the page. In
this case, the core identities between the ‘gates’ appear more abstractly at the diagram level as
a graphical ZX calculus [8] and the role of CZ; is to realise this concretely. The role of CZ,
and its dual can then be played by another ‘interacting pair’ of Hopf algebras [12] namely H
and an associated Hopf algebra H with green product /. and red coproduct A, .

In these string diagrams as used in ZX calculus, there is no significance to the over or under
crossings of strings. On the other hand, the idea of doing algebraic operations at a string dia-
gram level has already been familiar in algebra since the early 1990s as the theory of ‘braided
groups’ or Hopf algebras in braided categories [19-24]. Here the ‘wiring diagram’ approach
to algebraic identities was essential to keep track of under- and over-crossings, as these cor-
respond to typically different operations. In the simplest ‘anyonic’ example, the braiding is a
power of a parameter g and the inverse crossing at the same point would be require g~ '. The
theory was needed as a way to understand deeper aspects of g-deformation quantum groups
[11]. This body of work therefore begs the question as to whether ZX calculus has a useful ver-
sion at the level of braided tensor categories. Here, we show that at least for the core algebraic
notions of a pair of interacting Hopf algebras and a Hadamard gate, this is indeed the case. The
paper concludes with some remarks about further directions.

2. Construction of noncommutative interacting Hopf algebras

This section is based heavily on [8, 9, 12] and does not claim to be particularly new, but
we are careful to ensure that where possible we do not assume that our (co)algebras A are
(co)commutative or that our bilinear forms are symmetric. Section 2.1, in particular, is strictly
preliminary and included only to be self-contained for readers from a more algebraic back-
ground. Section 2.2 is a reworking of [9] but we go further with new more direct proofs and
in which we keep track of braid crossings as preparation for section 4. We also strip out the
formal categorical setting and focus on the content at an algebraic level.

We will write our maps composed flowing downward and use juxtaposition of objects to
denote the tensor product ® of vector spaces. Braidings are represented by braid crossings
[15] through which other morphisms can be pulled as part of the functoriality of the braiding.
An introduction to algebra and Hopf algebra at this braided level can be found in [23-25].
We will give main formulae in both conventional and diagrammatic form. However, we will
denote coproducts by A as usual in Hopf algebra theory, not by § as favoured in the computer
science literature. Adjunction of morphisms is done by rotating anticlockwise in the plane,
which it seems is the opposite of the more common convention in computer science. Purely
diagrammatic proofs work in any braided category, but for examples built from Hopf algebras
we will assume we are in the k-linear case, where k is a field.

2.1. Preliminaries on F-algebras

We recall that a unital algebra A over a field k is Frobenius if there is a bilinear form
(,):A®A — k which is nondegenerate and such that (ab, c) = (a, bc) for all a,b,c € A. The
latter says that the Frobenius bilinear form descends to a map A ®4 A — k or equivalently a
map A — k. Nondegenerate as a linear map has its usual meaning which we write explicitly as
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existence of a metric g = g' ® g € A ® A (sum of terms understood) such that for all a € A,

0 (g%.a) =a = (a,g")", J=I= lﬂ

where we also write the diagrammatic ‘snake identities’ form with (,) = U and g = N. This
makes A arigid object in the category of vector spaces and requires that A is finite-dimensional.

Lemma 2.1. In a Frobenius algebra, g commutes with the algebra product.

Proof. g!(g%a,b) = g'(g*, ab) = ab = ag'(g?,b) for all a,b € A, using the Frobenius
and inverse properties. This implies g'(g%a, g') ® g*=ag'(g% g") ® g* and hence
g @ (g%a, ¢"g¥=ag' @ (g% g")g¥, where g'® g¥ is another copy of g. Hence
g' ®g’a=ag' ® g*foralla € A. O

In particular, the element y(g), where we apply the product ;1 : A ® A — A of A to g, is in the
centre, (u(g) € Z(A). Next, recall that reversing the axioms of a unital algebra gives the notion
of a counital coalgebra (A, A, ¢) where the coproduct A : A — A ® A is coassociative and
the counit € : A — k obeys (¢ ® id)A = id = (id ® €)A. These have a standard diagrammatic
representation in terms of tree diagrams and pruning identities [23]. The parallel notion in
computer science to a Frobenius algebra is at first sight different and we will therefore denote
it differently, as an F-algebra.

Definition 2.2. [8] an F-algebrais a pair consisting of a unital algebra (A, , 1) and counital
coalgebra (A, A, €) where n = \/ and A = /A are such that

I
(ideou)(Aeid) = Ap=(peid)(id® A), m:x ) Ul]

An F-algebra is called special if pA = id or O =| (or quasispecial if a nonzero multiple of this).
In fact, the concept of an F-algebra is more general than the one presented.
Lemma 2.3. The following are equivalent for a unital algebra A.

(1.) A is the algebra part of an F-algebra.
(2.) Ais a Frobenius algebra.

The F-algebra is special if and only if u(g) = 1.

Proof. (i) If we are given an F-algebra then let (,) = U = ep and g = N = A(1). The first
half of the F-algebra axiom with 1 on the top left leg and € on the bottom right leg, recovers
the first half of the axiom for a nondegenerate bilinear pairing. Similarly for the other side.
Figure 1 part (a) then checks that we have a Frobenius algebra with respect to this pairing and
that the categorical adjoint of the product with respect to the pairing is the coproduct, and vice
versa. Note that these categorical adjoints are the opposite of the usual vector space adjoints so
as to avoid an unnecessary transposition, as for braided-Hopf algebras in [23]. (ii) Conversely,
suppose that A is a Frobenius algebra with bilinear (, ) = U and inverse g = N. It is convenient
to define A in terms of the bilinear and y as shown in figure 1(b), and € = (, 1) as adjoint to
1. This implies that exr = (, ), A(1) = g and 1 = (id ® €)(g). In the figure, we also recover p
in terms of A using the snake identity and the Frobenius algebra property. The snake identity
applied to this then gives a useful second expression for A in terms of p, then reflecting the
first step gives a parallel second expression for p. We then check the main identities for an
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Figure 1. (a) and (b) Proof that F-algebras and Frobenius algebras are equivalent and
(c) the special property as u(g) = 1.

F-algebra. Once these are established, we go back in the last two lines of part (b) and check
that A is coassociative and € a counit, using properties already proven. From an identity in part
(a), we also see that A, y are adjoint in the categorical sense. It is clear that this construction is
inverse to the one in part (i), proving the equivalence. (iii) Part (c) of the figure makes it clear
that the special property corresponds to 1(g) being a left and right identity for the product g,
i.e. 1. (The same proof up-side-down means it is also equivalent to (,)A = €.) O

The significance of the F-algebra point of view is that all the identities for associativity,
unity, coassociativity, counity, and the identities in definition 2.2 take the form that different
ways to compose A, i, 1, € to give a connected planar graph with fixed m legs in and n legs
out are equal. Here 1 is regarded as a node with no legs in and one leg out (m = 0,n = 1) and
€ is regarded as a node with one leg in and no legs out (m = 1,n = 0). This leads iteratively
to:

Corollary 2.4. [14, 28] for a special F-algebra, all compositions of A, p, 1, € correspond-
ing to a connected planar graph with m legs in and n legs out can be obtained in the standard
form of an iterated m — 1-fold product and an iterated n — 1-fold coproduct. By associativity
and coassociativity, we can depict these as a single node with m-legs going in at the top and
n legs out at the bottom (a ‘spider’), in our case keeping the order of legs.
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Composing spiders along a contiguous subset of legs necessarily gives the spider with
the remaining legs, which is also clear using coassociativity and associativity to isolate the
branches to be contracted and using the special property iteratively. The empty morphism is
the element 1 of the field, which must therefore equal €(1) as the spider with m = 0,n = 0.
(This is not really a connected graph but we formally include it.) The same will apply up to
an overall scale factor in the quasispecial case. The commutative and cocommutative case of
primary interest in computer science (and where we do not need to restrict to planar graphs,
i.e., can allow crossings) is the celebrated spider theorem in [8]. The noncommutative case but
with the Frobenius form symmetric occurs somewhat implicitly in [16], and is also studied in
[31]. Short proofs in the fully general case are in [14, 28].

2.2. F-Hopf algebras

We recall that an algebra and coalgebra H form a bialgebra if A, e are unital algebra homs
(where H ® H has the tensor product algebra structure) and a Hopf algebra if there is addition-
ally a map S : H— H such that (S ® id)A = le = u(id ® S)A. See [24] for more details. A
single F-algebra can never be a bialgebra other than the trivial case where A = k is the field
(which we exclude). This is because (i, h') = e(hh') for all L, €A and g = A(1)=1® 1
need to be inverses to each other, which needs 1e to be the identity map on A.

Remark 2.5. In the computer science literature, a ‘bialgebra’ often means what we will
call an unnormalised bialgebra (or ‘scaled bialgebra’ [8]), where we assume an algebra and a
coalgebra and only that e(1) is invertible and

Lol =eDAN), exe=eDen, Ap=eDpaea(A @A)

IT=th =Y ‘f’]=r[;‘{\{j.

There is no significance to the braid crossing at the moment (the operation so far is just the
usual flip map). The unit and counit are represented by a univalent node as before. In this
case, it is easy to see that if ¢(1) = A\ € k is invertible then \A, A~ 'e form a usual bialgebra.
An unnormalised Hopf algebra is an unnormalised bialgebra and an antipode S obeying the
same condition as for bialgebras. In this case A~S makes the associated bialgebra into a Hopf
algebra in the usual sense. Hence it suffices to work in the usual normalised case. There is also
no significance so far to colouring of the algebra and coalgebra nodes of a bialgebra other than
to remind that they cannot belong to the same F-algebra.

Definition 2.6. [9, 12] an F-bialgebra is a pair of F-algebras on the same vector space such
that for each F-algebra, the algebra of one and the coalgebra of the other forms a bialgebra.
It is called an F-Hopf algebra if these bialgebras are Hopf algebras. It is called special if both
F-algebras are special.

Here is where, because there are now two F-algebras, it is useful to colour one red and the
other green (in a black and white, printout, the green will appear lighter). Then the definition
says that they fit together e.g. as in remark 2.5, except that we stay in the usual (normalised)

6
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Figure 2. (a) Proof of proposition 2.7 that we obtain a Hopf algebra. (b) Three equivalent
forms of the third condition. (c) Proof that the third condition holds in the symmetric
case.

(b)

case. Similarly with the colours swapped. If we are given one, say the red product/green coprod-
uct Hopf algebra, as primary then we refer to the other as the associated Hopf algebra in the
pair.

Proposition 2.7. [12] if an F-bialgebra obeys the three conditions

=l Nl o=

then it is an F-Hopf algebra with antipode for the red product/green coproduct bialgebra
given by the expressions in the third condition. The latter holds if the Frobenius forms are
symmetric, in which case the antipode for the red product bialgebra and the green product
bialgebra respectively can also be written as

S=U) =My

Proof. The proof that we have an antipode for the red product bialgebra is shown in
figure 2(a) and is similar to [12] but with a different S as we do not assume here that our
algebra is commutative. The left-right reflections of the first two stated conditions also hold
by applying the unit or counit to the third stated condition. Next, applying the snake identities
for duals to the third condition in the statement gives two equivalent versions in succession as
shown in (b). One similarly has that the colour-reversal of the first two stated conditions hold.
The colour-reversal of (a) is then the proof for the other Hopf algebra. Part (c) shows that the
third stated condition holds if the red Frobenius form and the green metric are symmetric (with
the latter equivalent to the green Frobenius form symmetric) and in this case it provides the
second way to write the antipode for the red product bialgebra. Similarly for the green product
bialgebra. (|

The first two conditions here say that the categorical dual of the green unit with respect to
the red Frobenius form is the green counit, and the green Frobenius dual of the red counit is the
red unit. This result is for motivation and in what follows we only take away the second special
form of the antipode, without the symmetry or other assumptions. In fact, we will assume S to

7
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be the inverse of the one at the end of proposition 2.7, i.e. the stated form on the Hopf algebra
with opposite coproduct.

In the following, we will start with one Hopf algebra H and denote by H” the categorical
dual defined by nested adjoints (in the style of figure 1(a), but now for the duality between H
and its dual space). Hence H* is the op-algebra and op-coalgebra to the usual H*, but the two
are isomorphic as Hopf algebras via the antipode. We will assume that H, H* as algebras are
Frobenius. The latter means that H is a Frobenius coalgebra in the sense of a coalgebra and an
invertible metric g such that

(A®id)g = >1d® A)g,

equivalent to definition 2.2 by lemma 2.3 read up side down.

Proposition2.8. LetH = (uu,,1.,A.,¢.) be a Hopfalgebra such that the algebra and coal-
gebra are Frobenius and the antipode S is | (\. Then we have an F-Hopf algebra where the
associated Hopf algebra I = (p,1.,A ) has antipode S:= (- Moreover, H = H*P as
Hopf algebras.

o, €e

Proof. Given H with red product and green coproduct, we use the Frobenius structure on
H to define a dual red coproduct also on H. We use that the coalgebra is Frobenius to define
a dual green product also on H. We then show in figure 3(a) that these fit together to form
a bialgebra H, recognising S~ where S denotes the assumed antipode for the red product
and green coproduct and using the (braided)-anti-algebra property of antipodes [24] to take it
through the product and cancel against the red metric, turning it green. In the second line we
start off with the wrong braid crossing, which is of no significance at the moment, recognise
S and use the same (braided)-anti-algebra property to move them through the product. This
then cancels against the red metric to turn it green and give the same expression as in the result
of the first line after rearrangement. That the red counit (red-adjoint to the red unit) provides
the counit of the bialgebra, etc are immediate and left to the reader. In part (b), we verify the
proposed antipode S for the green product/red coproduct Hopf algebra in terms of the antipode
property for S. In (c) we check that H* computed using (say) the red duality gives the product
of H°P and its antipode S~!. In the first line, we insert some snake identities, recognise S and
its inverse and use the (braided)-anti-coalgebra property of S to arrive at the opposite product
of H. The second line uses the form of § and S. (]

This gives a canonical F-Hopf algebra amplified under certain conditions from a single Hopf
algebra. It provides a slightly different route to the following result in [8], which also applies
more generally for a Hopf algebra in a symmetric monoidal category such that integrals exist
and give a nondegenerate bilinear form as for the vector space case on which we focus. We
recall in this case that any finite-dimensional Hopf admits a ‘right-invariantintegral’ [ : H — k
and a ‘left integral element’ A € H characterised by

(/@id)A:l/, /A:l, hA = Ae(h) (1

for all i, € H. These are each unique up to scale and we are free to fix the relative nor-
malisation as stated. That this is always possible is part of the theory of Hopf algebra Fourier
transform, see [6, p 100]. Here A corresponds to a left-invariant integral on H*.

Corollary 2.9. [8] every finite-dimensional Hopf algebra H and its dual H*F form an
F-Hopfalgebra. This is quasispecial, with i, (ge ) # 0 if and only if H is semisimple and p.(g.)
= 0 if and only if H is cosemisimple (these being equivalent in characteristic 0).

8
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Figure 3. Proof of proposition 2.8. Part (a) checks the bialgebra property and (b) the
antipode properties.

Proof. The algebra of any finite-dimensional Hopf algebra H is necessarily Frobenius [30]
with

(h,h') fhh 9o = (1d®S)AA,  j1a(ga) = €(A)

where the (red) product of H is omitted and A is the (green) coproduct. We will use the
compact notation Ah = h; ® hy (with more numbers for iterated coproducts and sum of such
terms understood; alternatively this can be done with strings, given later). We check the metric
inversion identities,

</hA1) SA, = </h1A1> (S(haA2))hs = </h1A> S(Hh, = e(hl)hz/A =h

Al / (SA)SH) = (Shy)hoA, / S(haAs) = (SWA, / S,

= (SH)S™'(SA), / (SA); = (SHS~(1) / SA = Sh / SA

9
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for all h € H. Here, computing the following middle expression two ways by the results just
found,

A ® SA, = A /(SA;)AI @SN = Ay /SA ®@ S\,

tells us that [ SA = 1, as required. Here A’ is another copy of A. These calculations can also
be done with diagrams, which we defer to section 4. This gives the red Frobenius form, i.e.
on H as an algebra. We have 1. (g.) = A1SA; = le(A), so this is quasispecial. A property of
integrals is that e(A) # 0 if and only if the algebra is semisimple.

Moreover, the same data [, A can be viewed as [ € H* and A : H* — k and make this
similarly Frobenius, i.e. the coalgebra of H Frobenius. We have explicitly

(h,h'). = f(Sh)h' = (Sh,h)e, g.=AA=(id®S Vg,

from which it is clear that these are also inverse to each other, since the previous pair were,
and that S has the form needed in proposition 2.8. We have . (g.) = A [ 1, so as a Frobenius
algebra, this too is quasispecial with nonzero value if and only if H* is semisimple. The latter,
in characteristic 0, is equivalent to H semisimple and to S> = id due to results of Larson and
Radford, see [32, theorem 3.14] for an exposition. O

For an example, we recall [24] that if X is a group (not necessarily Abelian) then its associ-
ated group Hopf algebra kX has basis given by elements of X with the product extended linearly
and Ax = x ® x,e(x) = 1,Sx = x~! for all x € X. Elements, as here, where the coproduct is
diagonal, are called group-like [24] (or set-like in the computer science literature). If X is finite
then the associated function Hopfalgebra k(X ) has basis {d, } of §-functions with § .6, = 0.y,
Ab, = Zyz:x 0y ® 0,, €0y = 0y and So, = ,-1 forall x € X. Here e € X is the group identity
and d,,, denotes the Kronecker delta.

Example 2.10. If X is a finite group then H = kX with product £y = xy and coproduct
A.x = x ® x amplifies to an F-Hopf algebra by corollary 2.9. The integral is [ x = d,, and
the integral element is A = erx x. The Frobenius form on H as an algebra, its inverse, and
the associated coproduct are

(,9)e =041, go= . 2®x ", Ax= Y  y®2 €IT=0,

reX y,zeX |yz=x

and (16 (ge) = |X|, which is quasi-special in characteristic 0. The Frobenius form on H as a
coalgebra, its inverse and the associated product are

(x7y)° = 5a:,y; ge = Z x@x, TeY = 61,yaj7 1. = Z €T
zeX reX

from which we see that the green algebra/red coalgebra has the structure of H* on matching x
to d, there. We also see that the green F-algebra is special.

The work [9] considers the simplest noncommutative noncocommutative example, the Taft
algebra. Going beyond this, we will now look at the reduced Drinfeld—Jimbo quantum group
ug(sus) at g a root of unity. There are different conventions for this and we use essentially the

10
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version denoted u,(sl) in the recent work [1] which is noncommutative and noncocommutative
even when ¢ = —1, when understood correctly.

Example 2.11. Let g be a primitive nth root of unity and let H = u,(sl,) be generated by
E,F,K and

n n n —1 —1 1 K—K!
E'=F'=0, K'=1, KEK =q E, KFK ' =qgF, [E,F]zi1
q9—q
AK=K®K, ANE=1QE+ER®K, AF=F®1+K_1®F, eK=1, eE=¢F =0

with antipode (and the quasitriangular structure, needed later),

r(q _ qfl)rqfab
[r]qq!

n—1
1 -1
SK=K ', SE=—EK!, SF=—KF, R=- § D F'K°® E'K?,
n

r,a,b=0
where [m], .= (1 — ¢"™)/(1 — g) denotes a ‘q-integer’. When ¢ = —1 we omit the g — g~ fac-

tors in the relations and in R, which amounts to a different normalisation of E, F' [1]. The right
integral on H and left integral in H are

n—1
/ K'FIEN =66, 1 00100 A=AcF B A=) K
r=0

so that [ A = 1. One also has that SA = A. We compute the associated H product and
coproduct

hel = Iy f((Shg)h’), A=A ®(SA2)h

for all h, I € uy(sly) can then be computed and must be isomorphic to ¢,[SL,]°" for the
appropriate reduced quantum group dual to u,(sl>). We have f14(ge) = pto(g.) = 0.
We compute these products for the n = 2 case where ¢ = —1 and [1]

K*=1, E*=F'=0, [E,F1=0, {EK}={F.K}=0,
AK=K®K, AE=E®K+1QE, AF=F®1+K®F
eK=1, ¢E=¢F=0, SK=K, SE=KE, SF=—KF

1
A=(+KEF, R=(181-F8BRx, Rg=,(101+Kk01+10K-KK).

This is the initial Hopf algebra with red algebra and green coalgebra understood. From these
we work out the values of (id ® S)A on our monomial basis. In particular,

go=AN®SNy=FQKE-KEQF+EFFQK+KQEF+EQ KF-KF® E+KEF®1+1Q KEF
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We let

x=01+4+KE, y=(0+KF, t=(K—-1)EF
and find for the associated Hopf algebra

Ad=t®t, Ax=z0t+A®x, Agy=yt+A®Y

zexr=yey=0, tet=A

goy=-yex =1+K, xet=—tex=(K-1)E, yet=-tey=(1-K)F.
Note that 1, = A is the unit element. In fact, u,(sl>) at ¢ = —1 is both self-dual and anti-self

dual, and indeed the associated Hopf algebra here is isomorphic to u,(sl,) if we identify

1»1,, Krt, E~x, Fw~yet.

3. x-algebra and Hadamard forms

In this section, we look at two other key ingredients of ZX calculus from a more systematic
point of view. The first concerns *-structures which are normally behind unitarity properties in
noncommutative geometry, while the second concerns a general notion of ‘Hadamard gate’.

On the first point, we recall that a x-algebra is an algebra over C equipped with an antilinear
anti-algebra involution *. A Hopf %-algebra is a Hopf algebra over C where the algebra is a
x-algebra and A, e commute with x (which on C is complex conjugation). In this case, one
can deduce that (S)? = id, albeit this is usually presented as an additional axiom. For a group
algebra CX, we have x* = x~! and for a function Hopf algebra C(X) we have f*(x) = f(x)
where the bar denotes complex conjugation of the value. This is the standard notion but will
not be the most relevant. Instead, there is another which we called a flip-Hopf *-algebra in
[6, 24], where

Ax =1A, -oe=cox, Sx==xS.

The last item can be deduced from the other assumptions, and we used the ‘Hermitian
conjugation’

1= flip(x ® *)

as a tensor product space over C. The categorical picture behind these ideas is that of a bar cat-
egory [5, 6] which will be particularly useful in the braided case. For any flip-Hopf *-algebra,
we define the associated antilinear Hopf algebra automorphism

0 = Sx, (2)
which squares to 2.

3.1. Unimodular setting

We start with the simplest setting, which is adequate for finite group examples and simpler
quantum groups.

12
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Definition 3.1. A Frobenius x-algebra is a Frobenius algebra A over C which is a x-algebra
and for which (a, b) = (b*, a*), or equivalently g' = g for the metric.

The metric property here is similar to the notion of a real metric in noncommutative geom-
etry [6] and the proof that this is equivalent to the property of ( , ) is parallel to the proof there.
In this case, it makes sense to define a sesquilinear form on H by

(h|n') = (n", 1)

which, under our assumption, makes A into a Hilbert space (upon completion in the infinite-
dimensional case). In the group algebra example 2.10 we have (x|y) = d,, for the (red) inner
product there, i.e. the group basis elements become an orthonormal basis.

Lemma 3.2. A Frobenius algebra is a Frobenius x-algebra if and only if the corresponding
F-algebra is equipped with an antilinear involution * obeying

Ax=1A, 1"=1.
In this case, - o € = € o * also holds.

Proof. Given a Frobenius x-algebra, we use Aa = ga and lemma 2.1 to deduce that
A(a*) = ga* = a*g = T(g'a) = t(ga) = tAa. We used that the metric obeys gl = g. We
also have 1* = 1 for a unital *-algebra and hence e(a*) = (1,a*) = (a, 1) = e(al) = e(a).
Conversely, suppose we are given an F-algebra and an antilinear map * with %> = id
and the displayed properties. Then tA(1) = A(1) and hence g' =g, which implies
a=(g'(g%a)) =g (g% a") = g*(g"",a*) and hence (a, b) = (g'", a*)(g% b) = (b*,a"). We
now use the two forms of the product in figure 1(b) to compute b*a* = b*|(b*,,a") =
by"(b1*,a*) = ((a,b1)by)* = (ab)*, where Aa = a; ® a, is our notation. This can also be done
diagrammatically. ([

We equally define a Frobenius x-coalgebra as a Frobenius coalgebra over C where the coal-
gebra obeys the conditions in lemma 3.2 and the Frobenius structure obeys the conditions in
definition 3.1, in which case the associated algebra is a x-algebra. In either case, we say that
the associated F-algebra is an F-x-algebra.

Corollary 3.3.(Unimodular case.) If H is a flip-Hopf *-algebra and [ox =_o [,
A" = Ain corollary 2.9 then both associated F-algebras are F-x-algebras and the associated
Hopf algebra in the induced F-Hopf algebra is also a flip-Hopf x-algebra.

Proof. Here (W*,h*)e = [ (hh')* = (h,h')e in corollary 2.9 under our assumption on f
Similarly, 9. = AA = A(A™) = g. for the Frobenius coalgebra in corollary 2.9. Hence the
red algebra and the green coalgebra are both Frobenius as *-(co)algebras. The associated red
coproduct therefore obeys the condition in lemma 3.2 and the green product is a x-algebra.
Hence the Hopf algebra that these form by corollary 2.9 is a flip-Hopf *-algebra. (]

We say in this case that we have an example of an F-Hopf *-algebra.

Example 3.4. Let H = CX for a finite group X with x* = x~!. This is a Hopf x-algebra
but we regard it as a flip-Hopf *-algebra since it is cocommutative. We have [ x* = 4,1 =
e = [x = [xand A* = D rex x~! = A as required. The induced red coproduct in example
2.10 obeys Ay(z*) =X, .cp1Y®2=1T,.p1 2 ' ®y ' = A,z as it had to by corollary
3.3. Likewise, the induced green product obeys y*ex* = y~tez™ = §, ya7! = (zey)*, so this
is a *-algebra as it had to be for an F-Hopf x-algebra.

13
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Note that the dual Hopf algebra C(X) with its usual x-algebra structure is not a flip-Hopf
x-algebra when X is non-Abelian. For that, we should take 0} = ¢ 1. This then matches up
with the red coproduct and green product just found.

Example 3.5. Let H = u,(s) at ¢ = —1 as in example 2.11. This forms a flip-Hopf
x-algebra with

K=K, E'=F, F'=E 0K =K, OF) =—-KF, OF)=KE.

We also have [S= [, SA = A (the Hopf algebra is unimodular in both aspects) and
[ h* = [h, A* = A as required. Using the same underlying %-operation, we have

t"=FE(K-1)=t, z*=F(+K)=(1-K)F =yet, y"=E(1+K)=(1-K)E =tex
which indeed makes the green product a *-algebra also. Similarly, for example

Auz® = A(yet) = (Asy)e(Adt) = (Y@t + AQy)e(t®1t) =yt @ A+t @ yot
=" @A+t®1" =1A.x

as it must for a flip-Hopf x-algebra. In fact, this is isomorphic as a flip-Hopf x-algebra to u,(sl»)
by the map in example 2.11.

On the other hand, the assumptions we made are not typical because in general [ox is an
(antilinear) left invariant integral and cannot be equated to -o [, and A” is a right integral
element and cannot be equated to A. This is because a typical quantum group will not be
unimodular in the sense that the left and right integrals will not be proportional. Note that the
Frobenius form, when it exists, is not unique. Hence it is also possible that we could stay in
the setting of definition 3.1 and lemma 3.2, which seems reasonable from a noncommutative
geometry point of view, but with the Frobenius form and its inverse not given by integrals.
However, we do not have any general results about this more general possibility. One could also
explore a version of the theory adapted to ordinary Hopf %-algebras, which is more relevant
to usual quantum geometry and applicable to U,(su,) and C,[SU,]| but not to the reduced
finite-dimensional versions at ¢ a root of unity.

3.2. General Hopf algebra case based on integrals

The less special assumptions we will take for the properties of the integrals on a flip-Hopf
x-algebra under * are

/ h* = [Sh, A*=SA. 3)

These have to hold up to scale as each space of integrals is one-dimensional, so it is not
unreasonable to assume them as part of the normalisations. This does, however, imply that
[o8* = [and S°A = A.

Proposition 3.6. Let H be a flip-Hopf *-algebra with integrals in corollary 2.9 obeying the
condition (3) and suppose that the antipodes on H and on the associated Hopf algebra H of
the induced F-Hopf algebra obey S* = S2. Then H is a flip-Hopf x-algebra with x-operation
S16 in terms of the antilinear automorphism 0 in (2).

Proof. The issue here is that [, A are not assumed to obey the stricter reality properties in
corollary 3.3, with the result that the associated green product is not a x-algebra with the same

14
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x as H, and likewise the red coproduct does not skew-commute with x. We will resolve this by
introducing a new green x-operation + making this into a flip-Hopf *-algebra. First note that
the first of (3) says that [ h = [ 6(h). Hence

e(h.h’):G(hl)/(ShQ)h’:G(hl)/e(Shg)e(h’):9(h)1f(59(h)2)0(h’) — 0(h)e0 ().

Next, the second of (3) implies that

gh = M) @A =S @A =SA @AY
= S(SA); ® (SA), = SN, ®@ SA; = (S ® S)flip(g)

which is equivalent to (f ® 0)(g) = g. Consequently,

(0©0)Ah = (0©0)(gh) = gd(h) = AO(h).

Thus, 6 is also a bialgebra and hence Hopf algebra automorphism on H, 50 80 = 6S. We now
see that + :=S~'0 is an antilinear anti-algebra and anti-coalgebra map and commutes with S.
Hence

2 =87105710 =657 = 5257 =id
if and only if §? = S2. Under this additional hypothesis, we see that + makes the associated
Hopf algebra into a flip-Hopf *-algebra. |

In this case, we say that we have a general F-Hopf x-algebra, where we have a green -
operation for the green product, not necessarily the same as the initial one for the initial (red)
product. The notion of a Frobenius *-algebra also gets modified. We saw that now the natural
property is that (6 ® 0)(g.) = g and one similarly has

(h,h’).=fhh’zf&(h)&(h’)z(&(h),@(h’)).

under our assumptions. The same on the green side, noting that our definition of = is such that
the green # automorphism is the same as the initial one on H. This therefore departs from the
more natural setting from the Frobenius *-algebra point of view in the preceding section.

Example 3.7 We make H = u,(sl) in example 2.11 for ¢ a primitive nth root of unity into
a flip-Hopf x-algebra [24] with

K'=K' E'=F, F=E R =R

The right integral on H and left integral in H obey the conditions (3) (in fact, one has that
A" = A = SAis unimodular, but not f ). These are straightforward calculations which we omit,
focusing on the additional condition in proposition 3.6. In lieu of a formal proof, we do a
detailed calculation to illustrate the method. Thus, from corollary 2.9,

Sh= A, / Ao = Z (id ® / ) (AKK'F'E"H(1 @ h))

J

15
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which on a monomial element 4 picks out one term of the coproduct such that the powers of
F, E in the right hand factor add up with the powers in / to n — 1 (else the integral will kill the
term). For example, 7 = K“F means the only relevant terms are

AE" "= (EQK+1@E)" '=1@FE" ' +...

AP ' =(F@l+K'oF)" "= +n—1]FK "2 @F 72 +...

on expanding in powers of E, F in the right factors and using the commutation relations of
uy(sl) to collect terms (an instance of the g-binomial formula [24]). Hence,

S(KF) = Z (id ® / ) ((Kf ® K)([n— 11, FK "2 @ F*?)

J

¥ (1® E”"K“F))

= Z [n— 1], K'FK* / K'F'2E""'KF
j

_ Z [n _ 1]q—1q072K2+jF/Ka+an71En71

J

= In=1l,1g" K> F8y ;= [n— 1],14" K> F
J

— _qa—1K3—aF.

We commuted E, F inside the integral as their commutator has lower degree in E, F. Hence
S2(KF) = ¢~ 1T6G-0-1g3-G-aF — 4KeF Meanwhile, S(K‘F) = —KFK* = —¢°K'~“F so
that S>(K“F) = ¢*+1-aK'~(1-9 — 4K9F also, so §2 = S2 on these elements. The proof for the
general case is rather more complicated, but follows the same method using the g-binomial for-
mula and extracting the relevant terms for the coproduct. Thus, the conditions of proposition
3.6 apply and we have a general F-Hopf x-algebra. The associated Hopf algebra in this
example is presumably isomorphic to a reduced version of the flip-Hopf x-algebra C,[S U{ l] in
[6, example 2.113].

3.3. Phases

Another important ingredient for ZX calculus is the notion of phases. These are defined in
[8, 12] as maps A — A on a Frobenius algebra A such that applied to either leg of the product
gives the same result as applying the map after the product. It is shown in the commutative
setting that these take the form of left multiplication by elements of A. This map can also be
applied to coproducts leading to the decoration of any spider by this operation applied to any
leg.

In our setting with A a possibly noncommutative Frobenius *-algebra, we let Z(A) be the
centre of A and

PA) ={a€ZA) | a=aa" =1}

16
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i.e. the set of invertible elements such that o* = o~ '. This forms an Abelian group (the ‘group
of phases’). The corresponding operationis L,(a) = aa as before, which clearly can be applied
to any leg of a composite product.

Lemma 3.8. If A is an F-x-algebra then the action of a € P(A) can be taken through the
coproduct to either leg.

Proof. This is immediate using the relevant form of the coproduct. For example,
(id ® Lo)Aa = g' ® ag’a = g' ® g%aa = A(L,a) and (Ly ® id)Aa = ag' ® g’a =
g' ® g*aa = A(L,a) using centrality of g (or using the other form Aa = ag). O

It follows, as in [8, 12], that we get the same result applying L, to any leg of a spider, and
hence that we can denote such an « in a neutral way inside the node of the spider. When com-
bining spiders, it is also clear that phases multiply using the group structure of P(A) inherited
from the product of A. In [8, 12], there is also a discussion of group-like (‘set-like’) elements
and classical values which we omit.

3.4. Hadamard gates and self-duality

Another ingredient of ZX calculus is the Hadamard gate, which for the standard 1 qubit real-
isation using CZ, in the introduction, is clearly just the Fourier transform. This observation
was used in [13] to propose Fourier theory on internal groups in their categorical setting of ZX
calculus. Here we give a different take on the role of this gate in our algebraic setting.

Note first that Fourier transform works canonically on any finite-dimensional Hopf algebra
[6, 24]. If H is a Hopf algebra with right-invariant integral as in (1) then the Hopf algebra
Fourier transform is an invertible linear map

F:H—H, Fhy=>» f (/eah>, (4)

where {¢,} is a basis of H and { f“} a dual basis. We have seen that in the F-Hopf algebra case,
the associated (green product, red coproduct) Hopf algebra is isomorphic to H* as a vector
space and indeed if we use the metric ge to refer F back to a map H — H then it is just the
identity map. Thus, the canonical Fourier transform itself is not the content of the Hadamard
gate.

Rather, we propose to think of h : H — H in examples such as H = CZ,, as a composite of
the canonical Fourier transform and the Hopf algebra self-duality H* =2 H or a variant of this.
Another point of view is that h should be characterised as a map that connects green spiders to
red spiders in an interacting pair, i.e. a map of Frobenius algebras. We start with the latter.

Definition 3.9. A type | Hadamard form on an F-bialgebra H is a non-degenerate bilinear
form © on H such that (a) and (b) of

@ (lf)@:rl\’ 0° =] (b)(h)(a:l'J’ e =T ®:=

hold for adjunction with respect to ©. © is called quasi-Hadamard if these hold up to constant
scale factors.

We also show the definition of a corresponding ‘Hadamard gate’ b : H — H, which we will
use throughout the section (also for the other types below). In the case where (, )o = [ opta,

b () = 0" (0% ). =0" [ &% 5)
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Figure 4. Definition (a) and (b) of a Hadamard form on a Hopf algebra and equivalent
properties of b.

is the Hopf algebra Fourier transform (4) with the associated ‘metric’ ©' ® ©%* € H® H in
the role of ‘exponential’ used to map H* — H by evaluation against its second leg (i.e., used
to provide the required duality).

Lemma 3.10. Let H be an F-bialgebra or F-Hopf algebra and © a bilinear form on H. The
following are equivalent.

(1) © is a type 1 Hadamard form.
(2) b is an isomorphism from the green F-algebra to the red F-algebra,

po=hlop,o(heh), A.=(h"e®h)oA,oh, 1l.=h'(l), e =eob.

Proof. The content of the Hadamard form assumption is shown explicitly in figure 4. The
proof is then straightforward but necessary to be sure that all relevant conventions match up,
as shown in parts (a) and (b) of the figure. In (a) we cover the adjunction of the red algebra
to obtain the green coalgebra, and in (b) the same for the algebra. In each case, we start with
the adjunction as a ‘rotation” using the bilinear form © and its inverse ©' ® ©* € H ® H. We
then eliminate the latter to give the conditions for a Hadamard form on H. We then write our
conditions in terms of h by inserting the red Frobenius form as needed and then recognise the
dualisation of the red product and coproduct from figure 1. ([

Example 3.11. H = CZ, as an example of example 2.10 has a quasi-Hadamard form as
follows. We write the group X = Z, additively and to avoid confusion we let |i) explicitly
denote the basis vector of CX spanned by i € Z, (a standard notation in the computer science
literature). We let g = e bea primitive nth root of unity and define

o, j) = q”

extended as a bilinear form on H. This is invertible and provides a Hadamard form.
For example, on the part (a) side, O(i+ j, k) = O(i,k) O(j,k) as required since
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A.(k)) = |k) ® |k). On the part (b) side, we have using A,,

> O0(s,7)0(r,k) = 3¢ g™ = 3" ¥ = nb; g7 = nO(i, jok)

r+s=1 T

where we see the factor n which makes this only true up to a constant factor. This is related to
the fact that the red Frobenius algebra is quasi-special, not special. The associated Hadamard
gate is

b(li)) = 9.0(92,11)) = 3 17)a ™"

which is the usual Z, (inverse) Fourier transform. Note for general n that h>(|i)) = n| — i), so b
can be normalised to be order 4. For n = 2 only, one can normalise by 1/ V2toobtainh = h~!,
with both (a) and (b) conditions sharing the scale factor discrepancy.

Although this works better from the point of view of mapping red spiders to green spiders,
it is not very natural from a Hopf algebra point of view to map both the algebra and coalgebra
in the same direction. This suggests two natural variants.

Definition 3.12. Let H be an F-Hopf algebra with antipode of the form in proposition 2.8
and © a nondegenerate bilinear form on H. We call it a type 2 (resp. type 3) Hadamard form
if it obeys (a) in definition 3.9 and (b') (resp. (b”)), where

®) (r'\)e) =Y %=1 @ (h)é = ‘T’ (e =1

and © = O o (S @ id).

Recall that when making a Hopf algebra H into an F-Hopf algebra, we take it as the red
product/green coproduct one and refer to the green product/red coproduct one as the associated
Hopf algebra H.

Lemma 3.13. Let H be a Hopf algebra extended to an F-Hopf algebra by proposition 2.8
and 0 : H® H — k. The following are equivalent

(1) ©isatype 2 (resp type 3) Hadamard form.
(2) h— O(h,) is an isomorphism H = H* (resp. H = H*°P) of Hopf algebras.
(3) b is an isomorphism H = H°P (resp. H = H) of Hopf algebras, i.e.

Type 2: u"p:f)ou.o(ffl@h*l); Type 3: pu :hou_o(h’lg)h’l)
for the two cases and
Ac=(@h ) oA 0h, 1.=h(L), e =cob.

Proof. For type 2, part (b') in figure 5 shows the modified adjunction condition and converts
it to a condition on ©. This version of conditions (a) and (b’) explicitly is

Ol h") = O(h, )OH , HY),  O(h,W'i") = O(ha, KO (hy, h"),

aswellas O(1,h) = e(h) = ©(h, 1), forallh, i, h" € H.This s the 2nd statement. In the figure,
we then replace O by h) and recognise the antipode S of the associated Hopf algebra H. We
then use the (braided) anti-algebra homomorphism property of antipodes to obtain the variant

19



J. Phys. A: Math. Theor. 55 (2022) 254007 S Majid

Figure 5. Variants (b’) and (b”) of a Hadamard form as Hopf algebra self-duality and
anti-self-duality.

in the 3rd statement. Similarly, for type 3, part (b") of figure 5 shows the modified adjunction
condition and converts it to a condition on ©. Then the (a) and (b”) conditions on the bilinear
form say respectively that

OK 1"y = O(h, k)0, Kh)), OM K" = O(hy, K )O(hy, i),

aswellas O(1, h) = e(h) = ©(h, 1), forall h, /', " € H.Thisis the 2nd statement. In the figure,
we then insert the assumed specific form of S and recognise the green-dual of the green product
of H as needed for the 3rd statement. (]

Note that H* = H* as Hopf algebras (via the antipode), so type 2 is equivalent to saying that
H is self-dual in the usual sense, while type 3 is equivalent to saying that H is anti-self-dual.

Example 3.14. H = CZ, is a self-dual (or anti-self dual) Hopf algebra as the underlying
finite Abelian group is self-dual. Here the condition (a) for O(i, j) = ¢ is as in example 3.11
but instead of condition (b), we now have (b’) which holds for the same reason as (a), given
that the form is symmetric. Thus © is an exact (not quasi) type 2 Hadamard form leading more
conventionally to b as Fourier transform. The actual n = 2 Hadamard gate still changes the
normalisation to have h = b~ 1.

Example 3.15. Let H = u,(b) be the Taft algebra with ¢ a primitive nth root of unity. This
was presented as an F-Hopf algebra in [9], and u,(b.) is, moreover, known to be self-dual,
see [24, example 7.2.9] at least for generic g. In our conventions, it is the sub-Hopf algebra of
uy(sh) in example 2.11 generated by K, F' (say) and has

/K"Ff =8i06n-1;y A =AgF""
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We compute this for n = 3. Then A = (1 + K + K*)F? and

Ge=F’®1+¢@*K*FOKF + K ® K*F?
+KF?@K*>+FF +qK*® KF?

+K’F?’@K +qKF®K*F +1® F?

(WF(KF) = 5o )" | (D Fm
- q

treated as O unless m + k > 2. Here i, j are mod 3 and [i — j] denotes the value in the range
0, 1, 2, and the g-binomials are defined using g-integers. We used the g-binomial formula to
compute A(K'F™) and pick off the term with the right power of F for the integral to not vanish.
We let

t=0+gK+ ¢ KHF?*, x=(1+K+K>F
then we find
tetet = A, xot=(1+qK +¢*K?)F, tex=quet, zexexr =0,

where A =1,. The red coproduct is given by multiplication by ge but this is central, so we can
conveniently compute it as

A.(KiFj) = Kig.Fj; At =t®t, A=zt '+Aer.
Thus, H is isomorphic to the opposite of the associated Hopf algebra by K ++ ¢! and F

tex, so we have a type 2 Hadamard form. We can now read off some of the values of ) and
deduce the rest from the algebra homomorphism property. Thus, on the vector space of H,

h(K') = 0_iF*, BHK'F)=qé_iF, HK'F)=26_,

where we define
5= gk,
J

We see some similarities to the Z,, Fourier transform.

Example 3.16. Let H = u_(sly) as studied in example 2.11. This is both self dual and anti-
self dual as a Hopf algebra. Here, we already gave an isomorphism from H to the associated
Hopf algebra by specifying it on the generators, and deduce the rest now as

h(1) =1+ KEF, bK)=(K—-1DEF, hE)=0+KE, bF)=10-KF
WEKE) = (1 — K)E, B(KF)=—(1+KF, HFE)=1-K, HKFE)=1+K

as the corresponding type 3 Hadamard gate.

The last example here, as well as CZ,, are flip-Hopf *-algebras, so it is reasonable to ask that
O and h be compatible with the x-algebra structure when they exist. We do not have a general
analysis for this, but for CZ, we have O(i, j) = ¢/ as a matrix is unitary up to a constant factor
n in our orthonormal basis defined from the *-structure. It is not, however, the case in this
example that b as an operator is a x-algebra map, but that is the case in the u_(sl) example.
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To close this section, we note that for a more categorical view on Frobenius x-algebras
and F-Hopf *-algebras, one cannot work in the category of vector spaces alone since * is
not a morphism of vector spaces. An approach that is useful in noncommutative geometry
is the notion of a bar-category [5] [6, chapter 2.8], in which a monoidal category is equipped
with a functor ‘bar’ that conjugates objects. Here, every complex vector space V has a conju-
gate V which is the same Abelian group but z € C acts by its conjugate. Then for a *-algebra
A, % : A — A is a linear map. There are related notions in the computer science literature.

4. Braided interacting Hopf algebras

Braided ZX calculus was considered in [3], where it was shown that the bialgebra rewrite rules
as proposed there force the category to be symmetric. Here we revisit this from a different
angle, namely the notion of a braided interacting pair of Hopf algebras as key to what braided
ZX calculus should be. We show that there is a canonical extension of a braided Hopf algebra
with suitable integrals to such a pair.

We recall that a braided category is first of all a monoidal category, so there is a functor ®, a
unit object 1 and associated maps including a natural equivalence (®)® — ®(®) (the associa-
tor). The Mac Lane coherence theorem for monoidal categories says that we can ignore brackets
and insert the associator as needed. In addition, there is a natural equivalence ¥ : ® — ®°
(the braiding). The coherence theorem for braided categories was in [15], replacing the sym-
metric group by the braid group in Mac Lane’s coherence theorem for symmetric monoidal
categories. This underlies the diagrammatic notation for working in braided categories,
with ¥ = X\ a braid crossing, which in turn underlies the theory of braided-Hopf algebras
[19, 21-23]. The axioms for these are as in section 2.2, but now caring about over- and under-
crossings. The most important thing we need from the theory of braided-Hopf algebras is a
result [23, 25] that

TT% :%Q Tf% =@% (6)

where we have inserted the factor for an unnormalised Hopf algebra to match with the computer
science literature. Here S denotes the antipode of a braided Hopf algebra H with red product
and green coproduct, not necessarily of any special form. We proceed in the normalised case
of a usual braided Hopf algebra. We already used this braided anti-homomorphism property
in the proofs in the preceding section, with the braided theory of the present section in mind.

The definition of an F-Hopf algebra still makes sense declaring H to be braided, but we saw
in the proof of proposition 2.8 one spot where we needed a wrong braid crossing. Thus, what
we actually proved in parts (a) and (b) of figure 3 was the following.

Corollary 4.1. Let H be a Hopf algebra in a braided category C with red algebra and green
coalgebra Frobenius and with antipode of the form in proposition 2.8. Then the associated
green algebra and red coalgebra form a Hopf algebra H in the braided category with reversed
braid crossings (or a reverse-braided Hopf algebra in C).

In fact, the opposite algebra to a Hopf algebra with reversed braiding is a braided Hopf
algebra in the original category [25]. Equivalently, the categorical dual H* of H remains in C
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[23, 25] and part (c) of figure 3 says that if we compute this using the red duality then we
indeed land on the opposite product. Hence, we also proved the following.

Corollary 4.2. Ifa braided Hopf algebra H is Frobenius as an algebra and coalgebra and
its antipode S has the special form in proposition 2.8 then

H= 1AL 9= A= 0 LY

are a pair of braided Hopf algebras on the same object H while the red and green maps are a
pair of F-algebras. The second braided Hopf algebra is isomorphic to H*.

Either point of view gives a canonical braided F-Hopf algebra amplified under our assump-
tions from a single braided Hopf algebra. Note that, as with ordinary F-Hopf algebras, it is
not clear that there are many examples beyond these, so this is more of a construction rather
than a general concept of interacting Hopf algebras. We let 1 be the unit object of the braided
category.

Corollary 4.3. Let H be a braided-Hopf algebra with invertible antipode equipped with
a morphism A : 1 — H which is a left integral and a morphism [ :H — 1 which is a right
integral, such that [ A is the identity on 1. Then corollary 4.2 applies in the braided category
and we have a braided F-Hopf algebra.

Proof. We follow the definitions and steps in the proof of corollary 2.9 but now as a
morphism in a braided category. Thus, we set

(. ),:fou., go=(d®S)AA; (). =(,)e(S®id), g =(d®S " )q..

The proof for the red Frobenius form is then shown in figure 6. Part (a) uses the braided-
antimultiplicativity property for the 3rd equality and the integral property of [ for the 6th. At
the end, we need that A or | are morphisms to obtain the identity map. Part (b) uses braided-
antimultiplicativity for the 1st equality, the morphism and integral property of A for the 6th
and the morphism and integral property of [ for the 8th. These results together imply in (c)
that [ SA is the identity on 1 under either morphism assumption. It is immediate that we have
the duality properties for the green form and that this makes the coalgebra Frobenius, and that
S then has the form required in corollary 4.2. (|

In fact, integrals on braided-Hopf algebras are not typically bosonic (i.e. of trivial braiding),
so this involves a certain complication already familiar in the literature on braided Fourier
transform [7]. This remark already applies to the braided line C[x]/(x") with degree |x| = —1
in the category of Z,-graded spaces with primitive coalgebra and antipode

m(m—1)

m
Ax" = Z |:m:| X" ® xm—r’ Sx™ = q (_x)m’ ex™ = 5m0
r=0 rlq ’

extended with braiding ¥(x’ ® x/) = ¢"x/ ® x. This has an integral which we can view as
a morphism f :H — k[—1], where k[—1] denotes k regarded as a one-dimensional object of
grade —1. This is given by f X" = 0,—1,, and there is also an integral element A = X1 of
grade —1. As a result, the corollary does not apply on this simplest example, i.e.

n—1

(xavxb)- = 5n71,a+b7 Ge = Zxa ®xn—1—a7 ﬂ'(gi) =nx
a
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Figure 6. Construction of Frobenius form from integrals A, [ on a braided Hopf algebra.

where ge provides the inverse to (, ), but is not of the expected form (id ® S)Ax"~!. Likewise,

On- -1
(xa“%,b). _ nn_lia+b’ g. = A.’L‘n_l _ Z [ . ] 7% ®xn—1—a
[ a ]q a=0 q

where ( , ). provides the correct inverse to ge, but is not of the expected form (S( ), ).. As
a result, S is not of the required form for the braided reading of corollary 4.2.

4.1. Self-dual braided interacting pairs by transmutation

On the other hand, all factorisable quasitriangular Hopf algebras, such as u,(sl,), have a self-
dual braided Hopf algebra version via a process of transmutation [19, 21, 24, 25]. We show
that these provide examples for the braided theory. They also underly TQFT invariants and
hence should be relevant to fault tolerant TQFT based quantum computing.

Let (H,R) be an ordinary quasitriangular Hopf algebra [11, 24]. Its transmutation H has
the same algebra and counit but a different coproduct and antipode [19, 21]

Ah=mSR*Q@R'>hy, Sh=TR>S(R'>h) (7)
forming a braided-Hopf algebra in the category of H-modules as an object by the adjoint action
h>h = hih'Sh,. @)

Throughout this section, we will use underlines to separate the braided Hopf algebra structures
from the original ordinary ones. We will also be interested in the factorisable case which, by
definition, means that the quantum Killing form Q :="R,|R is invertible when viewed as a
linear map
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Q:H"—H, Q)= (a®id)(RaR). €)

Also note that if SA = A then h > A = e(h)A, so we can regard it as a morphism from the
trivial object to H. The following is a reworking of arguments in [17].

Proposition 4.4. Let H be a factorisable quasitriangular Hopf algebra with SA = A. Then
corollary 4.3 applies to H and provides a braided F-Hopf algebra in the braided category of
H-modules.

Proof. We already have A which we can view as a morphism 1 — H under our assumption.
Next, H* is coquasitriangular and a dual transmutation construction keeps the same coalgebra
but modifies the algebra, making it into a braided-Hopf algebra H*, which can be viewed in
the same braided category by the quantum coadjoint action

h>a = (h,(Say)as)a,

forall h € H,a € H*. A key result from transmutation theory is that Q : H* — H is a homo-
morphism of braided Hopf algebras. We do not need the details of the algebra structure of H*
nor of the proof, which can found in detail in [24, proposition 7.4.3] (it uses the properties of
R and that it obeys the braid relations). Hence, if [ is a right-invariant integral on H* and we
define [ : H — 1 in the factorisable case by [ Q(a) = [ aforall a € H*, then

( 1 Q(a)1> Qla), = ( Z Qmo) Olar) = ( / a1> o)
- (/a) o) = QQ(a))l

where the underlined suffices indicated the braided coproduct A. Hence, we have a right-
invariant integral on H. We show explicitly that it is a morphism:

/hb Q(a) = (h, (Sal)azz>/Q(azl) = (h, (Sai)a) /021

= <h,Sa1>/a2 = (h,Sl)/az e(h)/a: 6(h)/Q(a),

where the first step is that O is a morphism for the stated actions [24, proposition 2.1.14]. For
the last step, A € H corresponds to a left-invariant integral on H* and is assumed equal to SA,
which corresponds to a right-invariant integral and hence to [ up to scale. Hence the latter is
also a left integral. Therefore, we meet the conditions of corollary 4.3. |

Example 4.5. Letg be a primitive nth root of unity with n odd and H = u,(sl,) as in example

. ntl . . L
2.11. In this case g has a square root ¢ 2 and u,(sl,) in our conventions (which is denoted
uy(sl) in [1]) is isomorphic to u 1 (sl>) in usual conventions as shown there. Likewise for

our conventions for the reduced cqq[SLz] as its Hopf algebra dual. The braided Hopf algebra
H = b,(sl) has the same algebra as u,(sl») and hence A = §o(K)F"E" there is also a left inte-
gral in H, where we use the notation §; := > ; g"K’/. We have SA = A, so this is invariant under
the adjoint action, which is equivalent to A € Z(H). The latter can also be checked from the
commutation relations. The coalgebra of b,(sl,) is obtained from that of u,(sl») via (7) using
the adjoint action and the quasitriangular structure.

Also when 7 is odd, u,(sl,) is factorisable and we have a self-duality braided-Hopf algebra
isomorphism b, (sl,) = b,[SL,], where b,[SL,] is obtained by a dual transmutation construction
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of ¢,[SL,]. It is built on the same coalgebra, and denoting the matrix of generators of ¢,[SL;]
when viewed in b,[SL,] by «, 3,7, 6, these have the relations, coproduct and antipode

a"=1, B'=+"=0; Ba=gqgaB, ya=gq 'ay, da=ad ad—qgyf=1

B.y1=0—-g Had —a), [v.0l=0-qg Hya, [0,81=1-q Hap,

(=926 D) 56 )= )
- v 0 v o) T\y 9 —q7 @

and e(a) = €(6) = 1, e(B) = e(y) = 0. We replaced ¢° in [24] by ¢ to match our conventions.
The braiding ¥ on the matrix of generators is given explicitly in [24, example 10.3.3], upon
making the same change from ¢ to ¢. Here

Vaa)=a@a+(1—-q@pRy ¥ apB)=FRa V(ay)=7a+1—-q¢0—a)Ry
VB =a®B+(1-Bx @ —a), VBH) =g¢8 M,
VBeRN=qg'v@B8+U+(1l-g")VBoy—(1-¢"-a)® @ —a)

Vy@a)=a®y, YR =q¢'8cy, VY7 =q¢707

with the braiding on products determined by iterated ¥ as the algebra product is a morphism
and hence passes through braid crossings. For example, ¥(7 ® §) = d ® v and V(6 ® ) =
B ® 6 can be deduced.

The self-duality isomorphism to b,(sl>) is likewise given in our conventions by

a B\, K (1 —q HE

v S (@*—DKF K '+(—-q(—qgHFE)"
Moreover, as by[SL,] has the same coalgebra, it gets the right-invariant integral of ¢,[SL,].
Hence under the isomorphism, b,(sl,) gets a right-invariant integral | at least for odd n. Also

note that the element ¢ defined as the image under the isomorphism of a + ¢d (a multiple of
the g-trace), namely

c=K+qgK '+ —-q(q—q FE

is central and hence invariant. Thus, 1, ¢, ¢?, A are bosonic (they have trivial braiding with
everything) and we also necessarily have S¢ = Sc¢ = ¢ and SA = SA = A using the general
formula for S.

Finally, we start with f on ¢,[SL,] as in [1], which when converted to the matrix generators
a, b, ¢ (the fourth matrix generator d is determined in the root of unity case) amounts to

ik
/a’b’c = 6i706n_1,j6,,_1,k.

We take this on b,[SL,] also as it has the same vector space and map it over to b,(sl>) under
the isomorphism of braided Hopf algebras. Corollary 4.3 then applies and we have Frobenius
structures for the algebra and coalgebra to give a braided F-Hopf algebra.

In what follows, we focus on n = 3, so ¢ is a primitive cube root of unity and 1 + g +
¢* = 0. Using the transmutation formulae [24, equation (7.37)] extended to degree 4 gives
c2b? = gc o ¢ o b @ b = g+ 3% where the modified product is denoted e and we then view the
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elements in b,[SL,]. Thus, the braided integral is zero except on 72 62 in the monomial basis
for 7, 8, .. Normalised so that [ A = 1, we have after the isomorphism with b,(sl),

/ K'F/E! = 6,05 1021

as the braided integral. It is easy to see that this is invariant in a Hopf algebra sense under
the quantum adjoint action and hence a morphism. Also note that this is not the same as the
integral on u,(sl>) as the coproduct is different, but similar.

We will now do some checks of the construction. From the matrix form of braided coproduct
of by[SL;] and the stated isomorphism, we can read off some coproducts and antipodes

AK=K®K+q '(g—1)’E®KF, SK=c—qKk,
AE=E®q '(c—K)+K®E, SE = —qE,
A(KF) =KF @K +q '(c = K)® KF, S(KF) = —qKF

where § maps under the isomorphism to g~!(c — K). The second of these is relatively easy to
compute directly using the first four of

K>K =K, Kbv(KF)=qKF,
F>K=(q'—1DKF, Fvo(KF)=0, F>K>=(q— DK*F

and R from example 2.11, as higher order terms of R do not contribute. One can also check
that the algebras are isomorphic. Some examples of the braiding can likewise be read off as

VWKQE) =E®QK, WE®E)=qE®E, WKF®K)=K®KF,
U(KF ® E) = q 'EQ KF, U(KF ® KF) = gKF ® KF,
VE®K)=K®QE+ (1 —QE®(q 'c+qgkK),
V(K @ KF)=KF @K + (1 — q)(q 'c + gK) ® KF
VKK =K®K—q '(9g—1°E®KF,
VE®KF)=q 'KFQE — (q— 1)’E®KF
— ﬁ(q*c +4K) ® (q"'c + gK)
which allows us to compute more coproducts and antipodes using the braided-homomorphism
and anti-homomorphism properties respectively. For example,
S(E?) = -W((—qE) ® (—qE)) = E’
S(K*F?) = q - U((—qgKF) ® (—gKF)) = gKFKF = K*F*
S(KE) = -¥((c — gK) ® (—qE)) = qE(gK — ¢) = (K — q0)E
S(K*) = -¥((c — gK) @ (¢ — gK))
=+ K+ =gl —q g > - 1)EKF) — 2qcK
=4+ cK+K*+q(g—1)=1s(c,K)
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S(K*F) = gS(KF)K) = q - ¥((—¢KF) @ (¢ — gK))
= —¢*(c — gK)KF = (K — ¢*c)KF
S(KE?) = -¥((c — qK) ® E?) = EX(c — ¢K) = (¢ — K)E?
S(F?) = S(KFKF)K) = -U(KFKF @ (¢ — qK))
= (c — gK)KFKF = (¢ 'cK* — 1)F?

SF =q 'S(KFK*) = ¢~ - W((—gKF) @ s(c, K)) = —s(c, K)KF
S(KFE) = S(KF)E) = -U((—gKF) ® (—qE)) = qEKF = ¢’KEF
S(F’E?) = ¢’S(K*F*KE?) = (KFKF & (c — K)E?)

= ¢ '(c — K)E?’KFKF = (cK* — 1)E*F*
S(K’E) = -W(s(c,K) ® (—qE)) = —qEs(c, K)
S(K’E*) = -U(s(c,K) ® E*) = E*s(c, K)
S(FE?) = ¢~ 'S(KF(K’E?)) = — - W(KF ® E’s(c, K))
= —q 2E’s(c, K)KF
S(KF’E) = q"'S(KFKF(K*E)) = — - W(KFKF ® Es(c, K))
= —q *Es(c, K)KFKF
= —Es(c, K)K*F*.

We now let ( , )e = [ e and go = (id ® S)AA. By construction, these will be inverse to

each other and as a spot check (to make sure there was no confusion in our conventions) we
demonstrate this on a sample element, F, say, i.e. we check that (F, gl),g2 = F. The same
method will apply on other elements similarly. We start with the unbraided coproduct

AM=(Q1+KK+K QK)NF°21+K®F*—¢*K’FQF)
x (1®E*>+ E*® K* — ¢°E @ KE)
=(1®1+K@K+K @K (FPQE + FPE*®K* — ¢’F’FE® KE
+ K ® F’E* + ¢°KE* ® K*F*> — KE ® KF’E
— ¢'K°F @ FE* — K°FE* ® K°F + K°FE © KFE)

and we now compute

( / FAISR2> S(R'> A»)

A — A\
_ (lz H)[ic]]—'cl)q‘“bFAlS(E"K”)> S((F'K*) > Ay)
a,b,r '

- 71 r rir
- (Z (q[r]iqn)FAleq’ (?”E’> S(F" > o)
!
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= ( / F(—FEZ)K2> SF+q g—qg™hH ( / F(FE)KZE) SF > (K*FE)

(g—q Vg
1+g7!
S (—F + q(1 — ¢)F > (K*FE) + (1 — q)°F* > (KFE?))

( / F(—qu)K2E2> SF? 1> (KFE?)

S(—F+(1—¢q) 'Fr(cK*— 1 —gK)+ F* > ((¢°cK — ¢°K> — DE))
S(—F+(1—¢q) 'Fv(cK* — gK — qc°K + ¢°K))

S(—F+(q—1—-c*—cK)KF)=F

as required. Here, in order to have a nonzero integral, A; must involve FE*~", which means A,
has FE" and hence K¢ > A, = ¢! =" A,. We then do the sum over « which absorbs the 1/3 and
sets b = 1 — r, which is our second expression on using SE" = (—1)’q*wk’ ~"E". For the
example of F that we are testing on, the relevant terms in the 2nd displayed factor of AA are
one of —K?>FE?, K’FE, —¢?K*F according to r = 0, 1,2. In each case the contributing from
the prefactor in AA must be K ® K in order for the total power of K in the integrand to be 2.
This gives the 3rd expression. Evaluating the integrals gives the 4th expression and we then
replace FE in terms of ¢ for the 5th. Next,

Fo((cK—K?>—@E)=F(cK — K* — 9)E + K '(cK — K* — q)E(—KF)

= (cq ' — qgK*> — @)FE — q(cK — K* — q)EF

1

1@ 9K —ge—D)

which leads to the 6th expression when the further FI> is combined with the existing one. We
then compute F> noting that ¢ is invariant and F > K, F > K> were already given above. We
then compute S, noting that ¢ is unchanged and passes through it, and using SF, S(KF) and
S(K?F) already found above. In this way, we obtain F as expected.

Replacing F by a different monomial will pick off three different terms for Ay, etc, i.e. we
can proceed similarly. As in the proof of corollary 4.3, the green Frobenius structures follow
from the red ones via S and its inverse, to complete the construction. Moreover, our arguments
apply for general odd n.

Proposition 4.4 also applies in principle to other reduced ‘Lusztig kernel” quantum groups
uy(g), although the precise version of these needed and at which roots of unity is not fully
understood, see [1]. Returning to the general construction of H in the factorisable case, as
these are self-dual, we also have a type 2 Hadamard form in the sense of lemma 3.13.

Proposition 4.6. Let (H, R) be a factorisable quasitriangular Hopf algebra. Then there is
a type 2 Hadamard form H @ H — 1 according to the braided version of lemma 3.13, inverse
to the metric element

O=E®IidQecH®H.

Proof. This is a version of the self-duality isomorphism between the transmutation of H and
the transmutation of H*, which was used in the construction above. It is known [17, 24] that
(S ® id)Q is quantum ad-invariant and hence a morphism from 1. That this is invertible when
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viewed as a map H* — H is essentially the assumption of being factorisable. The diagrams
in figures 4(a) and 5 part (b") when written in terms of the metric element © (rather than the
bilinear form itself) amount to

(A ®id)O = 03013, (AR A)O =0130;, (MO =(®id)O =1
The counit parts are immediate from (¢ ® id)R = (id ® €)R = 1 while

(A ®id)© = S(R™R%,R"2) @ R S(R,R* R"1) @ R'R™
= S(RRZPR"™R") @ RMS(R'R*R") @ RMR'R*R™
= S(RR"RER") @ RVS(R*RVIR) @ R'R"R*R"™
= S(RMRPZR"™R") @ RMS(R*R'R') @ RI'R2R" R
=S(R"R")@ S(R*R") @ R'R?R"R" = 023013

where R = R! ® R? (summation understood) and the primed/roman superfixes denote inde-
pendent copies. We used (7) for A and properties of the antipode for the first equality, the qua-
sitriangularity properties (A ® id)R = R13R»3 and (id ® A)YR = R13R, for the 2nd, then
the braid relations for R for the 3rd and 4th. For the 5th we use (S ® id)R = R~ applied to
R and cancelled with R™. Similarly on the other side,

(d ® A)O = S(R*R'") @ R' R 1SR @ R (R R2,)SR™,
= SR*RRMR") @ R'R”S(RR™) @ RV R R"SR"!
= S(RPR™RMR") @ R'R*RZS(R™?) @ RV R"MR™ R
= S(RPR"™R'"R") @ R'RR2S(R") @ RV R"RIR™
= S(R*R'"R"™R") @ R'R2RS(R'?) @ RV RIR R
=S(R™R"S(R*R') @ R'R? @ R"R" = 01301,
where for the 3rd equality we used that (S ® S)(R) = R. The other steps are similar to the

previous case. (]

For the associated Hadamard gate we recover h~! = S the braided Fourier transform
H — H in [17], where it was shown in the case of a ribbon Hopf algebra, such as u,(sl,),
that S along with left multiplication 7 by the ribbon element, obey the modular identity

(ST)? = \S? (10)

for some constant \. This is key to the construction of topological invariants from quantum
groups. One also has S> = §~! and hence

is the braided antipode. Finally, in the case where H is a quasitriangular flip-Hopf *-algebra
with Rt = R, which is the case for u,(sl) in example 2.11, the category of H-modules
becomes a braided bar category, see [5, proposition 3.7, theorem 3.6] for details. In the ribbon
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case, this is a strong one (meaning that the natural equivalence between applying the bar func-
tor twice and the identity respects tensor products). It is then proven [5, theorem 5.7] that H
becomes a braided %-Hopf algebra in the category with a modified operation

x:H—H, h =G RYNRw;, v=R'SR? (12)

where the element v € H implements S~2 by conjugation as part of Drinfeld theory [11] and
the output of x is viewed in the conjugate object built on the same vector space. Note that
in this bar category of H-modules, the natural equivalence Y : V@ W — W ® V is, like the
braiding, governed by R and is not the usual flip map as for vector spaces, hence * is not a
usual x-involution. We do however, have x o § = §’1 o %, see [5, proposition 5.2]. We limit
ourselves to one new observation.

Lemma 4.7. For H a quasitriangular flip-Hopf x-algebra with R" = R, we have
Sox =Sox%
i.e. the underlying antilinear automorphism 0 = Sox on H is unchanged by transmutation.

Proof. From the definitions,
S(h*) = R2S(RM(S*R"M*R"vSR,)
= R*R2S(RYSR"YW*R"2vSRM)
= R2(R2S*R(SvYR"™(SK)S(R'SR)
= R*R"(Sh")S(R'SR™") = Sh*
where R*S?R! = u~! in Drinfeld theory and u = Sv, see [24, proposition 2.1.8]. O

This suggests that a braided version of section 3 should be possible, even though signifi-
cantly more complicated due to working in a nontrivial bar category.

5. Concluding remarks

An open question at the algebra level is whether the notion of F-Hopf algebra or its braided
version go truly beyond those obtained by amplifying a single Hopf algebra as in proposition
2.8 and corollary 4.2. In principle, the red and green Frobenius structures need not be closely
related, with the result that the two Hopf algebras need not be op-dual to each other, but we are
not aware of examples even in the unbraided case. Interacting Hopf algebras over an integral
domain are also of interest from a categorical point of view [4].

We also saw that the simplest version of the x-algebra theory in section 3.1, where (, ) com-
bines with a *-structure to give a Hilbert space, does not apply to non-unimodular quantum
groups such as u,(sl>) with ¢ a primitive odd root of unity. This means that the natural sesquilin-
ear form defined by [ A"k’ does not make H into a Hilbert space since [ h*h' = [ S(h""h) is
not necessarily [#'*h. We saw at the end that these problems are even more pronounced in
the braided case where the natural transmuted * on H, while it makes the latter into a x-Hopf
algebra in the relevant braided bar category, is not a %-algebra structure in the usual sense. This
topic of *-structures merits further investigation, perhaps guided by its precise role in quantum
computing, which is currently unclear. In particular, we have not developed a general theory for
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when the ‘gates’ in question are unitary, which would be needed in applications. The situation
is rather better for a Drinfeld double H = D(G) of a finite group G, which is unimodular.

Another feature of the paper was an abstract notion of ‘Hadamard gate’. Its inverse appears
(5) as Hopf algebra Fourier transform evaluated against an element ©® € H ® H to give an
operator. We identified three types, with type 1 connecting red and green Frobenius structures,
which fits well with their usual role in ZX calculus, and type 2 (resp. type 3) corresponding
to Hopf algebra (anti) self duality of H, which fits better with the algebraic picture (where the
map on coproducts would naturally go the other way to the map on products related by duality).
The practicality of this in quantum computing would need to be looked at further. The theory
also applies in the braided case if we have integrals. Here, braided Fourier transform is also
of interest in the noncommutative geometry of quantum groups [26], but one has to deal with
the fact that the integral is often not a morphism to the trivial object, even on some very basic
examples such as the braided line. It would be interesting to adapt the approach to the braided
line in [26] so as to still obtain a braided F-Hopf algebra, which we saw did not work otherwise.
We saw that there is no problem, however, for the braided theory in the case of braided Hopf
algebras obtained by transmutation from a factorisable quantum group such as u,(sl,) at odd
roots of unity. It is also striking that the braided self-duality/type 2 Hadamard gate that applies
canonically in this case obeys [17] the modular identities in (10), making it central to one
approach to quantum group topological invariants.

Finally, while the present constructions are interesting from an algebraic point of view, it
remains to be seen how useful they are in quantum computing. The general idea is that while
standard ZX calculus is well adapted to conventional quantum computers, these suffer in prac-
tice from noise problems resulting in a current focus is on the development of ‘topologically
fault tolerant” methods. The prototype of these is the Kitaev model [18] for which the under-
lying algebraic structure is a Drinfeld double D(G). This can be generalised to the quantum
double of a finite-dimensional Hopf C*-algebra [2] and beyond [10]. As noted in [29], such
models are closer in spirit to the Turaev—Viro invariants of three-manifolds, which have under-
lying them the quantum double of u,(sl>), while the related Jones/Reshetkhin—Turaev knot
invariant come from u,(su>). The fact that modular identities (10) for the Turaev—Viro invari-
ant have a natural role as Hadamard gates loosely supports the possibility of a braided ZX
calculus approach to topological quantum computing. This could be explored further. Here,
Fibonnaci anyons of interest in fault tolerant quantum computing are related to u,(sl,) at a Sth
root of unity [33].

Another setting in which all of these ideas could potentially be explored concretely is ‘digital
quantum computing’ as proposed in [27]. This work classifies Hopf algebras over [, in low
dimension, including which of them are quasitriangular. One could then search for digital
Hadamard forms as well look at digital braided versions.
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