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Abstract

The present work initially describes the gluonic excitations in meson-meson sys-
tems by ignoring the spin and flavour. This portion of the work is done by using the
qq potential in the quadratic potential for ground state mesons, and for hybrid mesons
we use an additional smeared 1 potential. For the parameters of this potential, we
use values chosen to 1) minimize the error resulting from our use of a quadratic po-
tential and 2) best fit the lattice data for difference of £, and II, configurations of
the gluonic field between a quark and an antiquark. We use a potential model matrix
in the extended ¢** basis which at quark level is known to provide a good fit to
numerical simulations of a ¢*§* system in pure gluonic theory for static quarks in a
selection of geometries. A combination of resonating group method formalism and
Born approximation is used to include the quark motion using wave functions of a ¢
potential within a cluster. At the quark level, including the gluonic excitation was
noted to partially replace the need for introducing many-body terms in a multi-quark
potential. We study how successful such a replacement is at the (dynamical) hadronic
level of relevance to actual hard experiments. Thus we study effects of both gluonic
excitations and many-body terms on mesonic transition amplitudes and the energy
shifts resulting from the second order perturbation theory (i.e. from the respective
hadron loops).

In second portion of thesis work, we go beyond the quadratic potential approx-
imation and use the realistic potential with including the spin and flavour and use
the exact wave functions (found by solving the Schrédinger equation numerically) to

study relevant characteristics like masses, root mean square radii, and radial wave



functions at the origin. We have done this more accurate and numerically more diffi-
cult work only for a ¢f system. The above mentioned characteristics are studied for
conventional charmonium mesons as well as for hybrids (with exotic quantum num-
ber states with J¢ = 0%~ 17 and 2t of charmonium hybrid mesons). We use
an extension (fitted to the lattice data) of the quark potential model to study the
characteristics of hybrids. We treat the ground and excited gluonic field between a
quark and an antiquark as in the Born-Oppenheimer expansion, and use the shooting
method to numerically solve the required Schrodinger equation for the radial wave
functions. From these we calculate the above mentioned quantities; for masses we also
check through a Crank Nichelson discretization. We also compare our results with
the experimentally observed masses and theoretically predicted results of the other
models. Our results have implications for scalar form factors, energy shifts, magnetic
polarizabilities, decay constants, decay widths and differential cross sections of con-
ventional and hybrid mesons; we accordingly include some results that can help in
experimentally recognizing hybrid mesons.
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Chapter 1

Introduction

After twelve years of Yukawa's meson hypothesis (1], Powell 2] discovered the first
# meson in cosmic rays to understand the nature of the strong force that bounds
together the nuclei. In 1960°s, a large number of new particles were discovered, and
it made sense that all these discovered particles could not be elementary particles.
After many years, physicists, Gell-Mann [3] and Zweig [4] introduced quark model
that suggested that all hadrons {mesons and baryons) are made of elementary particles
called quarks. Mesons with integer spin were modeled as a quark anti-quark pair and
baryons with half integer spin made up of three quarks. Now physicists accept that
quarks have six flavors; u,d, ¢, 5, ¢, b. u, ¢, and t, quarks have fractional electric charge
+2/3e, and d, s, and b have electric charge —1/3e. Another property of quarks was
troduced by Greenberg [5] in 1964 , and later by Han and Nambu [6] in 1965 that
quarks also have color charge. The colour charge is a conserved quantum number like
electric charge. All quarks have an antiparticle with opposite charge and color. An
important feature of the quark model is that quarks and antiquarks combine together
in such a way that their bound states (called hadrons) should have colour singlet and

have integer electric charge.



During 1970's, quark model [3, 4] was considered a complete model for hadron’s
description. Using this model, many hadron’s properties were explained phenomeno-
logically. The great achievement of this model was the prediction of 0~ (a particle
with three s—quarks). Quark model [3, 4] can explain meson’s properties with cer-
tain JFC€ quantum numbers. But it could not explain the phenomena related to gluon
dynamics, such as it could not explain the hybrids (hadrons having gluonic field in

the excited state), glue balls (bound states of gluons) [7] that are suggested by QCD.

1.1 Quantum Chromodynamics

Since 1970's, Quantum Chromodynamics (QCD) [8] is considered as the theory of
strong interactions. This theory describes interactions between quarks and gluons.
Gluons are massless, spin 1 colour charged particles capable of acting as a source
of gluonic field. QCD allows colour charge with three types called red, blue, and
green. Due to fact of three colours, QCD is an SU(3), theory. Quarks interact
between each other by exchanging the gluon between them. For the region of large
momenta, QCD is well established, where the perturbative methods based on the
Feynman diagrams [9] work due to asymptotic freedom [10]. Asymptotic freedom
was introduced in 1973 by Gross and Wilczek [10] and Politzer [11] to explain the
experiments of deep inelastic scattering (an electron proton scattering). At short
interquark distances (or at high energies or momenta), the effective coupling becomes
sufficiently small. Therefore higher orders in Feynman diagrams or non-perturbative
effects can be neglected as a first approximation, i.e. quarks and gluons interact very
weakly. This means that interaction between quarks within hadrons asymptotically

converge to zero at short distances.



However, for region of smaller momenta (at large distances, comparable to hadron
size (1 fm)), situation is different theoretically and experimentally. In this region,
effective coupling becomes large, therefore higher orders in Feynman diagrams cannot
be neglected and non-perturbative effects may exist i.e. the interaction between quark
and gluon is very strong resulting in quark confinement. Therefore infinite amount
of energy is required to separate quarks. In this region another approach is well-

established termed as lattice-gauge-theory.

1.2 Lattice-Gauge-Theory

Lattice-gauge-theory was proposed by Wilson [12], Polyakov [13], and Wegner [14].
It is the study of the gauge theories on space time that has been discretised on a
lattice. This theory is valid for the study of low energy QCD properties. But this
gives only numbers (or numerical results) for selected discrete configurations. These
numerical methods are expensive and require much computer time. Thus for an

understanding of properties of QCD, models are required.

1.3 QCD Models

The numbers generated by lattice simulations of quantum chromodynamics and con-
tinuum models of the hadronic systems can be used to improve models through con-
straints of getting a least chisquare difference with the numbers for the corresponding
discrete quarks and antiquarks configurations. Such lattice-improved models can
then be reasonably used for all spatial configurations to eventually give dynamical
predictions for experimentally measurable quantities like meson masses, meson-meson

bindings and cross-sections and phase shifts (polarization potentials [15]) to meson



masses arising through meson-meson loops, etc. To study the properties of medium
and low energy QCD, a large number of models have been developed such as QCD
based Potential Model, Flux Tube Model, Sum of two body Potential model, Four

body Potential model, ete.

1.3.1 QCD based Potential Model

The most significant model is the potential model in which the quark antiquark in-
teraction (with ground state gluonic field) is modeled by a potential which is given
by one gluon exchange mechanism, but is modified to incorporate the counfining po-
tential as the limit for large distances. This means that for small inter-guark distance
r, the potential is expected to be of the coulomb form (in analogy to the potential
between electrically charged particles separated by distance r), and for large inter-
quark distances, the quarks are subject to confining forces, and from the linearity of
the spin values versus (mass)? for hadrons, it is deduced that the potential at large r
is linear [16]. Thus a favoured QCD potential for ground state gluonic field consists
of coulomb plus linear form. |

QCD based potential model can be extended to incorporate the gluonic excita-
tions. In the extended QCD potential model an additional term (for excited state

potential) is added in the linear plus coulombic potential,

1.3.2 Flux Tube Model

Flux Tube Model [17] for hadrons is based on quarks and flux-tube degrees of freedom.
This model is extracted from the strong coupling Hamiltonian lattice formulation of

QCD, introduced by John Kogut and Leonard Susskind [18], in which Gauge-invariant



configuration space have a collection of strings with quarks at their ends. ’Il'he strings
are lines of non-abelian electric flux. In this lattice Hamiltonian approach in ref. [18],
the full QCD Hamiltonian can be considered as a sum of two pieces; one describes
the dynamics of the glue and includes the quark mass term, and other describes the
quark dynamics as well as the creation and annihilation of ¢ pair.

In Flux tube model, gluons re-arrange themselves into flux-tubes. In heavy quark
limit, these flux tubes adjust their configurations instantaneously in response to quark
motion. Thus quarks are constrained to move on adiabatic gluonic energy surfaces.
The lowest adiabatic surface corresponds to ground state potential (coulomb plus
linear) derivable from lattice gauge theory [19]. States with ground state potential
form conventional mesons of quark model, and states with excited state potential

correspond to hybrids. Flux tube model [17] is not valid at short inter quark distances.

1.3.3 Potential Models for Multiquark Systems

A successful model of hadrons (strongly interacting particles) should be able to de-
scribe possible multiple-quark systems as well [20]. Many models for the study of
properties of a multiple quark system properties are developed. The simplest way to
extend a two-particle potential model to a few-body is to use the potential for each
pair of particles in the few-body system and simply add up such two-body potentials.
This approach is used in refs. [21, 22, 23, 24] and is successful in atomic and nucleon
systems; the corresponding two-body interaction being described by Coulombic and
Yukawa potential, for example. For a hadron (or a system of hadrons) composed of
many quarks, antiquarks and the gluonic field, the lowest order perturbative Feynman

amplitudes are of this sum-of-pair-wise form. Though Feynman diagrams themselves



become impractical for typical hadronic energies because of larger couplings, models
have been tried which simply replace the two-body Coulombic potential (essentially
a Fourier transform of the Gluonic propagator) by more general Coulombic-plus-
linear form; see refs. [21] [22] [23] [24]. This approach is not free of problems; one
phenomenological problem with sum-of-two-body potentials model arises when it is
applied to multi-quark systems. It leads to inverse power van der Waals® potentials
between separated colour-singlet hadrons [25], which is in contradiction with experi-
mental data. In trying to correct the problems with sum-of-two-body model, in 1990’s
a four body potential model was proposed [20] [26]. This four body potential model
for multi-quark systems is defined by modifying overlap and potential matrices of
the weak coupling limit through multiplying their off-diagonal elements by a factor f
that depends on the position of all four quarks. f tends to 1 for short distances while
it tends to 0 for larger ones. For small distances, this model agrees with two-body
potential model results. For distances above 0.5 fermi, it agrees with the flux tube
model.

An application of this four-body potential model for meson-meson system (KK
system)to meson-meson scattering and binding, based on the resonating group method [27],
is presented in ref. [20] which includes both the spin and flavor degrees of freedom, ex-
tending the formalism presented already in the spin independent situation [26]. This
model [20] was applied to KK scattering (KK « 5y for isoscalars, and K K =
for isovectors). It is seen that due to four-body modeling of the the gluonic effects
in this multi-quark system, the KK-attraction resulting from the quark exchange
mechanism gets appreciably decreased compared to that emerging through the naive
two-body potential approach.



In 1990°s A. M. Green and P. Pennanen constructed a potential model [28] for a
selection of 6 (static) geometries of a ¢*7* system for fixed configuration of two quark
two antiquark system in SU(2). written in a six states basis with eight parameters

(kg, £2, f5. Kas Ky b, @0, €o). The parameters values proposed by this continunm gqgq

model were chosen to simply minimize
;| M@
R s o ] .

i=1

where N(G) is the number of data points for geometry G. q9q geometries [28] mu-
merically worked on were squares, rectangles, tetrahedra, ete. with quarks at the
corners. For each data point i , the lattice energy E; was extracted by solving the

ki ﬁ ' ‘H : ]

for A" that approaches to exp(—V;) as (Euclidean time) T' — oo, and then subtract-
ing the energy of two separated g clusters from the V; to get the lattice-generated
qq@q binding energy E; for the data point. The values of the }\ET}, and thus of E;,
depend only on the numerical values of the elements W, of the matrix of the Wilson
loops. The values of k and ! depend on the number of Wilson loops evaluated; for
the qqi§ system these were taken to be 1 and 2. Two of the corresponding Wilson
operators (whose vacuum expectation values are the Wilson loops W) are shown in
Fig.1.1 [29]. Knowing the Wilson loops, the procedure of getting V; can be found for
example in egs. 4, 11, 12 and 15 of ref. [30]. The arguments for the continuum limit
being achieved before extracting E; are given in ref. [31]. The M; in eq.(1.3.1) are

obtained by subtracting energy of two separated ¢ clusters from the eigenvalues of
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Figure 1.1: Four quark Wilson loops Wy, and Wiq

a matrix obtained through a model of the ggg§q system. For this, the model has to
give a basis and an operator V whose representation with respect to the basis gives a
potential matrix V. M; are obtained by setting the determinant of V — (M, + Vijy)N
equal to zero, with Vi, being the energy of two separated gq clusters and N being
the (overlap) matrix (of an identity operator) in the basis. In [28], the dimensionless
parameter ky is used in defining f in eqs.(2.3.1,2.3.2), and its value is mentioned
in paragraphs just below these equations and in a paragraph just below eq.(3.3.6).
£, f8, kq are in eq.(3.0.5), k, in eq.(3.0.4), by, ay, €, are parameters used in writing
the potential energy matrix elements. In ref. [28], f7 and b, are fixed at 0 and 1, and
& and a, are related.

To refine the model, both the basis and the operator can be improved. Ref. [28]

improve directly the matrix (representation) after writing down the underlying basis.



They do this in a number of ways. One model, termed model II, uses {|1),|2),3)}
basis but multiplies the off-diagonal elements of overlap and potential energy matrices
(that is, the representations of the identity and potential operators

Z'U{ng Fj

i<j
respectively) by a few-body gluonic field overlap factor f. Here vy; is the ground state
potential energy and F;.F, are defined in chapter 2 after eq.(2.1.1). This model II was
noted to much reduce, at the quark level, the chisquare of eq.(1.3.1). This model has
been worked out in [20, 26, 32] till meson-level transition amplitudes. The dynamical
calculations require a kinetic energy term as well. That is taken, apart from some
technical considerations of hermicity, proportional to the overlap matrix and hence
its off-diagonal elements are also multiplied by the overlap f factor. Thus f provides
one parametrization that connects QCD simulations with hard experiments.

But model 11 is not the best model of ref. [28]; the paper continues to then im-
prove the basis by including the gluonic excitations as well. That is, it extends the
{|1),]2),3)} basis by including the excited states of gluonic field [1*),2*),[3*). (The
excited states of gluonic field can, for example, be seen in the QCD numerical simu-
lations; see ref.[33, 19] and others). When the overlap, potential and kinetic energy
matrices are written in this extended basis, their order increases to 6 x 6 rather than
previous 3 x 3. If in addition, we introduce many body terms in this extended model.
new kind of gluonic field overlap factors (f*, f¢) appear in the off diagonal terms
resulting in what ref. [28] terms model 111 giving the least chisqure in ref. [28]; (see

eq.(3.3.3) below).



10

1.4 Brief Sketch of Thesis Work

The purpose of our thesis work is to study the gluonic excitations. In first portion of
thesis work, we study these excitations in meson-meson system by ignoring spin and
flavour, and using a quadratic qf potential. In second portion of thesis, we improve
the work by including spin and flavour with realistic potential, but for a quark an-
tiquark system. To study the gluonic excitations in meson-meson system, we work
out on the improved model 111 of ref. [28, 34] till the meson-meson scattering ampli-
tudes and energy shifts. As this improved model 111 includes the gluonic excitations,
it incorporates transitions from four quark ground state to the one having gluonic
excitations.

What we add to this series (models introduced in refs. [28, 34]) of works is

1) ourselves writing an analytical quadratic plus exponentially falling expression
for the excited state gluonic field potential between a quark and antiquark and fit its
parameters to the lattice data for the excited state gluonic field values available for
discrete quark antiquark separations in [19] . and

2) use models and fits of ref. [28] to extend the model to a system of diquark,
diantiquark and to its gluonic excitations. Precisely, we replace the mmnerically fitted
0.562 + 0.0696r — 2255 — 95 ground state quark antiquark potential used in ref. [28]
by a constant plus quadratic confining potential term and the additional =
potential for the ¢ gluonic excitation by one of the form Aexp(—Br®). We have to
do this, because we are doing a full meson level dynamical caleulations for transition
amplitudes from one set of quark-antiquark clusterings (mesons) to the other. From

these amplitudes we also calculate polarization potentials [15] for a meson-meson



11

system. Thus we incorporate quark motion (precisely, wave functions for different
qqiq spatial configurations) as well, whereas the model of ref. [28] specializes to a
fixed configuration of the two quarks and two antiquarks. We have to replace the
resulting potential formulas of ref. [28] by simpler ones that can be symbolically
integrated at a later stage, after necessary multiplications by wave functions of gggq
positions, to complete the adiabatic-approximation-based treatment of a gggq system.
In adiabatic approximation, in first step quarks and antiquarks are considered fixed
at definite points (or ignore the kinetic energy term), so that only gluonic part of
wave function is discussed. Then consider the slow motion as compared to gluonic
dynamics.

A worth-mentioning aspect we have studied is the hadron-level implications of
the differences of the gluonic-excitation-including model 11T and the sum-of-pair-wise
approach. The quark-level work in ref. [28] can be interpreted to mean that with
suitable extensions and modifications something like a sum-of-pairs approach can
be a good approximation for a tetraquark system as well. It writes " At the shortest
distances, upto about 0.2fm, perturbation theory is reasonable with the binding being
given mainly by the [1), |2), and |3) states inter-acting simply through the two-quark
potentials with little effect from four-quark potentials”. However, ref. [28] tells, " for
large inter-quark distance (greater than 0.5 fermi), quark-pair creation can no longer
be neglected. However, in the intermediate energy range, from about 0.2 to 0.5 fm,
the four-quark potentials act in such a way as to reduce the effect of the [1), |2), and
|3) states so that the binding is dominated by the |17}, [2%), and [3") states, which
now interact among themselves again simply through the two-quark potentials with

little effect from four-quark potentials.” This suggests that a model involving only
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two-quark potentials could be justified provided excited gluon states (such as [1*),
|2%), |3*)) are included on the same footing as the standard states |1), [2),[3). We
have checked if such features survive at the experimentally meaningful hadron level,
by comparing the dynamical implications of

(1) a model extended to the gluonic excitations but otherwise sharing many fea-
tures with the sum-of-pair-wise approach, with

(2) a model that includes explicit many-body terms but does not include gluonic
excitations.
Thus we report if after including the gluonic excitations a sum-of-two-body potential
model can replace to some extent many-body potential terms in a tetraquark sys-
tem even at a hadronic level. Specifically, we have calculated in both kind of models
meson-meson transition amplitudes T}, from (i) a ground state meson-meson cluster-
ing to (j) a different ground-state clustering and to a clustering of gluonic-excited
mesons. T, are elements of the meson-meson scattering theory T-matrix, can be
termed as phase shifts, transition potentials or meson-meson coupling, and their ab-
solute squares give meson-meson differential cross sections [23]. Moreover, using these
transition amplitudes in the second order perturbation theory we calculate shifts in
a ground state meson-meson energy due to coupling to a different ground-state clus-
tering and due to coupling to an excited state meson-meson system (i.e. to hybrid
loops). These energy shifts are what are also termed polarization potentials [15].

To reach the hadronic level, we have included quark motion through quark wave
functions. To solve for quark position wave functions, there are a number of methods
used such as variational method [21, 22|, Born-order diagrams [23], and resonating

group method [10]. Variational approach is used by Weinstein and Isgur [21, 22] to
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optimize a meson-meson wave function in a quadratic (and later coulomb plus linear)
potential and a hyperfine term combined with a sum-of-two-body approach. Then
they projected the meson-meson state onto free meson wave functions to estimate a
relative two meson wave function which gives the equivalent meson-meson potential
and obtained the meson-meson phase shifts. The similar results can be obtained by
using Born-order quark exchange diagrams (23] in a non-relativistic potential model
to describe low energy scattering of ¢ mesons. In the present paper, a formalism of
resonating group method is used as used in [26]. In resonating group method, depen-
dence on the internal co-ordinates of the system is specified before solving the problem
to integrate out the degrees of freedom corresponding to the internal coordinates of
clusters of the system. At a later stage, because of the complexity of the calculations
we also specify the dependence on the vectors connecting the centers of masses of our
mesonic clusters, something that is done in a Born approximation. Moreover, we have
not included in our basis an explicit diquark-diantiquark state. In the weak coupling
limit such a state is a linear combination of the meson-meson states and thus cannot
be included in a basis. Away from the weak coupling this can be included. But its
inclusion in the basis did not affect the lattice simulations that based the work in
ref. [28] and thus we have expanded our two-quark two antiquark wave function in a
basis that is limited to four meson-meson states: ground and excited states for each
of the two possible gggq clusterings shown in fig. 2.2.

In this work, we have taken all the constituent quark masses to be same as that
of a charm quark. Without incorporating flavor and spin dependence, the purpose

of this chapter is to study certain features of including the gluonic excitations in
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our basis. But the calculations may be relevant to properties of open charm meson-
meson systems in limit of mass of other quark approaching that of the charm guarks
and antiquark in the system. Or, without incorporating antisymunetrization of the
identical quarks and antiquarks, This chapter may indicate certain features of the
couplings of some suggested mesons like 1(4040), (4415),4(3770) and (4160) as
reported in ref. [35] [36]. These particles are suggested to have the flavor content of
(eceE).

In this thesis work, some characteristics {masses, root mean square radii and wave
functions at the origin) obtainable through the numerically generated solutions of non-
relativistic Schrodinger equation (also used in ref. [19]) for conventional and hybrid
mesons are studied by including the spin and flavour degrees of freedom. Reviews of
the spectrum of these excited states can be found in ref. [37] [38]. An advantage of

considering the charmonium mesons is indicated in ref. [39] as

“The best systems for a hybrid search may be ¢Z or bb where there is a large

gap between the lowest states and the DD and BB threshod respectively,”

To find the wave functions of conventional charmonium mesons, we use the realistic
columbic plus linear potential model to solve the Schrodinger equation numerically
by taking the corresponding quantum numbers of mesons. To study hybrids, we
repeat the numerical work with the columbic plus linear potential plus exponentially
falling potential. From the numerically found wave functions, we calculate the root
mean square radii. These radii can be used to find scalar form factors [40] for
charmonium mesons, along with energy shifts [41] and magnetic polarizabilities [41].

Thus we have reported some predictions about these quantities for conventional and
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hybrid charmonium mesons. We have also found the numerical value of radial wave
function square at the origin (|R(0)|?), which can be used to calculate the decay
constants [42], decay rates [42], and differential cross sections [43] for guarkoninm
states. The predictions about these quantities are also reported in chapter 5 for
conventional and hybrid charmonium mesons.

In Chapter 2, the potential models (sum of two body potential model and four
body potential model) in three gluonic basis is introduced for the static quarks. Ba-
sically, in this chapter we incorporate the quark motion through a resonating group
method formalism which means pre-specifying quark-antiquark wave functions within
qf clusters. The coupled integral equations for the remaining inter-cluster wave func-
tion xx(Rx) are also written in this chapter, and Ry is defined in eq.(2.3.5). In
Chapter 3, the potential model in six basis in the pure gluonic theory is introduced
for the static quarks, We tell where does the model of ref. [28] fits in our full scheme
that incorporates the quark motion through a resonating group method formalism
which means pre-specifying quark-antiquark wave functions within ¢ clusters. Then
coupled integral equations for inter-cluster wave functions x k(Ry) and x5 (Ry) are
derived, These integral equations are solved to calculate the transition amplitudes
and energy shifts. In previous chapters, Hamiltonians (matrix representation) are
written for multiquark system (without spin and flavour basis states) with quadratic
potential. But in Chapter 4, the Hamiltonians are written for realistic coulombic plus
linear potential and improved by incorporating spin and Havour degrees of freedom
but limited to a qg system for the conventional and hybrid mesons. Then shooting
method-based numerical procedure is described to find the solution of the Schridinger

equation for conventional charmonium mesons. The expressions used to find masses,
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root mean square radii, and square of radial wave functions at the origin (|R(0)[*) of
conventional and hybrid charmonium mesons are also written in this chapter. The
numerical results for meson-meson system transition amplitudes and energy shifts
with concluding remarks are given in chapter 5. The partial wave analysis for meson-
meson scattering results are also reported in chapter 5. Results (for ¢g or ¢g(g)) for
the masses, root mean square radii and |R(0)|? of conventional and hybrid mesons are
also reported in this chapter for systems composed of charm quarks and antiquarks.
Based on these results, some results related to experimentally measurable quantities
are also reported.



Chapter 2

The Potential Model for
Meson-Meson Systems in Three
Gluonic Basis (Ignoring Spin and
Flavour)

In this chapter the potential model for the meson-meson systems is described
as already introduced in refs. [26, 20]. For this the g*5° hamiltonian is written in
the gluonic basis using the quark antiquark potential model ignoring the spin and
flavour. Due to the neglect of spin, isospin, and flavour, spin and flavour basis are
not mentioned. Therefore hyperfine term in the potential is also neglected that leaves
s with only the gluonic basis and quark spatial dependent part of the wave function.
Introducing overlap, potential, and kinetic energy matrices in the gluonic basis, and
using the formalism of resonating group method [27], coupled integral equations are

derived in this chapter.

17
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2.1 Sum-of-Two-Body Potential Model for Meson-
Meson Systems

In sum-of-two-body potential model, potential part of the hamiltonian of the ¢*g* is
a sum of two-body potentials between each pair (i,j) of quarks antiquarks [20, 22].
Using the two-body potential model, the Hamiltonian [22] for meson-meson systems
in a sum-of-pair-wise interaction form, described as
= - i [my + —ﬁf—] + ijFi.F ; (2.1.1)
om i

i=1 y i<j

In the above equation, my is the mass and ﬁ is the momentum of the ith particle
(quark or anti-quark) and Vo= YicjviiFiF; is the potential energy operator. vy
is the quark-antiquark potential mentioned below in eqs.(2.3.17,2.3.18). Here F;
(operating on iy particle) has eight components. Each component is equal to 52*
where A; are the Gell-Mann matrices. For quarks F = 3, and for antiquarks =3~ [22].
The matrix elements of F.F; are written in Appendix with colour basis | 1}, 2,

and | 3). In four quark system, the basis corresponding to three different topologies

(shown in Fig.2.2 as in ref. [20]) are defined as
| 1)y = (mas) (@), |2)= (q144)(gags), and | 3), = (qra2)(q394)- (2.1.2)

In this basis, the overlap matrix N is written in ref. [26, 20] as

1 1/3  1/V3
N=g(k|lly=] 1/3 1 -1/v3 |, (2.1.3)
1/v3 —-1/V3 1

with k, [ = 1,2.3.
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Using the matrix elements of F.F; in basis | 1),| 2), and | 3) listed in Appendix,
the matrix elements of operator V (introduced above just after q.(2.1.1)) becomes
IVII Vm VLE

V=g (k| V= | Va Ve Vas |, (2.1.4)
V:il V:i:& Vi:’.

where
Vi = —3 (o + o)
Vip=Va = %(1112 + g = Vg3 — Ugg — Vig — U53)
Vig = Vi = i( = 2(vyy + vgg) + 17 + Vo3 — 2 — i)
3‘2‘@ (2.1.5)
Vag = Vo = E_JE (E{t‘;z + ty) + g + Vg — Vg — 'Um)
Via = —3 (0 + )
Vg = —%(E(vu + vgg) + vy + Vag + V43 +V53)
This sum-of-pair-wise interaction approach has many phenomenological successes, but
it is not free of problems; for example it leads to inverse power van der Waals' poten-
tials [25] between separated colour-singlet hadrons, which are in contradiction with
experimental data. Nevertheless this model has many phenomenological successes
and it is worthwhile inquiring if
1) it provides a basis and operator to generate a potential matrix, and
2) how good is the chisquare (defined in eq.(1.3.1)) if the eigenvalues (E;) of the
resulting matrix are used as M; in eq.(1.3.1), |
The answer provided by ref. [28] and earlier related works is that the model does gen-
erate a matrix of the required kind. But the resulting chisquare, defined by eq.(1.3.1),

is too bad; see Fig.2.1 (Fig.4 of ref.[44]).
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Figure 2.1: Ey; from Monte Carlo simulation and Ej,(f = 1) from the 2 x 2 model
as shown in Fig.4 of ref. [44].
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2.2 Modified Potential Model for Meson-Meson

Systems

In trying to correct the problems with the sum-of-two-body potential model, in 1990’

four body potential model named f-model was proposed [26] [20]. This four body

potential model for multiquark systems is defined by modifying the overlap and po-

tential matrices (in egs.(2.1.3,2.1.4)) of weak coupling limits through multiplying their

off-diagonal elements by a factor f. In this four body potential model [26, 20] overlap,

potential and kinetic energy matrices are defined as

where

and

1 f/3 fIV3
N=g(k|l)y= f/3 t =fiv3 |,
fIV3 =fIV3 1

Viim Viz Wa
Ve (kIV D= |V Ve Vs |-
Vi Via Vi
4
V= _'E{'ulﬂ + tigg)
4
Via= Vo = gf(l'm +vg — Vg — U] — Vg — ”23)

2
Vis= V5 = 3—\/5}'{--2{1:,3+t:3:,)+ulz+vﬁ-vu—”ﬁ}

2
Vag = Vo = Ef{ﬂ“;z + Ugg) + U1z + Ugg — Vg — “lﬁ)

4
Vi = -Ef[’uu‘ + vg3)

1
Vg = —gf(El:vu + vgg) + thg + vgg + Vig + Vg3)

A
e | 1
KE =, (k| KE | )= Niy(5- > Vi) Ny
i=1

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)
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2.3 The Gluon Field Overlap Factor

The best form of the gluonic field overlap factor, f, is suggested by ref. [28] as
I = exp[—bsk,S], (2.3.1)

with S being minimal surface area bounded by external lines obtained by joining the
position of quarks and anti-quarks, and b, is string tension [17]. ky is a dimension-
less parameter and in ref. [28] k; = 0.57 is obtained by a fit of simplest two state
area-based model (named as I,) to numerical results for a selection of meson-meson
geometries.

In ref. [45] the gluonic field overlap factor f is used in Gaussian form as
f = expl—ksb, Y _rEl, (2.3.2)
i<j

employed in SU(3). for interpreting results in terms of the potential for the corre-
sponding heavy-light meson. In ref. [45], the simulations are fitted by using f when
the gluonic field is in the ground state i.c. overlap matrix is a 2 x 2 matrix. For a par-
ticular geometry, the above mentioned forms of f are related. Therefore parameter
ks in eq.(2.3.1) and corresponding k; in eq.(2.3.2) can be compared for a particular
geometry. It is noted that, after corrections for a ratio of 8 between sum of square
of distance (including two diagonals) and area for square geometry, the relative dif-
ference is just 5%; ky = 0.6 [45] for the sum of square of distances in eq.(2.3.2) and
ky = 0,57 [28] in case of minimal area in eq.(2.3.1). We used ky multiplying sum of
area form of f (written in eq.(2.3.2)) with k; = 0.6 (as used in [45]) for numerical

convenience.
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2.3.1 The Quark Motion and Overlap, Potential Energy, Ki-
netic Energy Matrices
In the adiabatic approximation the quarks antiquarks are considered fixed at definite
points in first stage, so that only gluonic part of the wave function is discussed, then
considered the slower motion as well. Using this approximation, the total state vector
of a system containing two quarks, two anti-quarks and gluonic field between them can
be written as sum of product of quark position dependence function ¢y (ry, rg, ry, ry)
and gluonic field states | k),. (The gluonic state | k), is defined as a state approaching
to colour state | k). in the limit of quark anti-quark separation approaching to zero.)

The function ¢g(ry, ry, rg, ry) can be written as
dk(ry, T2, 75, 17) = Ou(Re, Rk, Y. 2k)s

with k, K = 1,2, 3. R, is overall center of mass co-ordinate of the whole system. Here
two different symbols k and K are used just for convenience in using these equations
in the next chapter in which the similar work is done in extended basis (ground and
excited state gluonic basis). In chapter 3, k = 1,2,3,1%, 2%, 3" but K values remains
unchanged.

With notation of Fig.2.2, the relative co-ordinates Ry, Ry, and Ry are defined as

1

R, = E(rl +rg—rp—T7), Y1 =N I 2 =T — I3 (2.3.3)
1

Re=gm+rg—n-n) y2=n-rpB=n-r (2.3.4)
1

Ra= ﬁ{ri +ro—Trg— l'a').. ¥Y;=0I;— I Z3 =T — Iy, y {235]

R, is vector joining centers of masses of mesonic clusters (1,3) and (2,4); similarly

about R, and R;. Now using the formalism of resonating group method [27], the
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Figure 2.2: Three different topologies of diquark and diantiquark systems

quark position dependence function can be written as a product of known dependence

¥ on Ry 2, and unknown dependence x on Rg. i.e.

ok (Re, Ric, ¥ 2ic) = Ve(Re)xe(Ri )k (¥ 2K ). (2.3.6)
Thus, the total state vector of the ¢*F” system can be written as

| Wa1g20500)) = D | K)owe(Re)Xu(Rac )y (Y ir 25 ), (2.3.7)
k

where yx(Ry) being treated as variational functions to be determined by solving the
approximate coupled Schrodinger equations in the relative coordinates Ry and Ry
(In the beginning Ry also enters into the formalism, but later it is integrated out.
Then the remaining coupled equations depend only on Ry and Ry). ¥g(yy. 2x) is a

product of two functions & (y ) and & (zx ) corresponding to the two mesonic clusters
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of the channel £, i.e,
Ur(¥ier 2ic) = &y i )€ (2, (2.3.8)

Eu(yx) and E(zx) being the normalized solutions of the Schridinger equation for
quadratic confining potential (written in eq.(2.3.18)) for a pair of quark-anti-quark

within a cluster. We take

1 Ui
Exlyy) = exp(— =),
(2nd2)i 42
. L (_2% (2.3.9)
Exlzk -—(mgﬁzw el

as in ref.[26]. Here d is the size of meson (detail is written after eq.(2.3.18)) and m
being the constituent quark mass. In our case, m is the mass of c-quark and equal to
1.4794 GeV as used in [46].

In above, the potential and wave function was for a pair of quarks. Now we
write the Schrodinger equation for the meson-meson system, starting from noting
that the overlap of (H — E.) | ¥) with an arbitrary variation | 4¥) of state vector
| W) vanishes where | W) is the state vector of whole diquark-diantiquark system
written in eq.(2.3.7). In | 6¥), we consider only variation in y;, as in resonating

group method [27]. Thus we write
6% | H~ B[ 9) = 3 [ @Rt Rued e et (R (Ric)&e v e sl
kel
(k| H = E, | Dove(Re)xa(Rp )&y )&lze) = 0,

(2.3.10)

forK, L. k.l = 1.2,3. The arbitrary variations dxx(Ry)'s for different values of Ry

are linearly independent and hence their co-efficient in eq.(2.3.10) should be zero.



With the trivial R, integration performed to give a finite result, this leads to

Z]da!.fxd'*:x&{}'xifkileg{k | H - E. | Doxa(Re )&y )&(ze) =0, (23.11)
I

where
p(k[Hv—Ec|£}9=E{JGIKE+V+4m—E,,|I}H.

For K = L, in ¢q.(2.3.11), xi(Ry) is independent of y and zy therefore can be
taken out of integrations. After integration, the result is an Ry dependent co-efficient
of xi(Rg). For K # L, yx and zg are replaced by their linear combinations with
one of them as identical to Ry and other one independent of it. The jacobian of
transformation from y. zx to Ry is equal to 8. Only the latter (independent R)
can be integrated out because of, yet, unknown functional dependence of y; on Ry.

After integration w.r.t R (independent of x;, we get

3 I
> fdaRL [(Ef}k.:(RmRLHVh.:(Rm RL}-(E.:—Z'fft-.-)Nk.:(RJ.-.R:]] xi(Ry) = 0.
=1 i=1

(2.3.12)
the N, V, and K€ matrices [26] with basis | 1)y, | 2),, | 3)¢ are written as
1 LE(R\R) RE(RyRy) :
N=| LE(R:Ry) 1 —5E(Ry, Ry) |- (2.3.13)
L E(Ry, By) — 5 B(Ry, Ba) 1
where E(R,y, Ry) = F(R.)F(R) with
1 A (1+ 8kd?) ]
” LATHONE Jpal 2.3.14
BE) [mp(l n 41‘-;1'1:.] m[ | K2

and KE is the kinetic energy matrix. As we considered that all quarks have same
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mass, n, so integration gives the following result,

dw— 5=V ;9E(R,, Ro)P(Ry, Ra) ﬁg%E{RhRSJP(RhRu]

KE = | L2E(R,, R)P(Ry, Ry) 2~ 3V ~va B (R, o)
J2E(Rs, Ry) — e B(Rs, Ry) = VR
(2.3.15)

where w = 1/ md?, and

P(R., Ry) = (1 + 4kd®) % - l_;ffm: + R}) (2.3.16)

In the potential models, the confining potential for QQ system in the the ground

state gluonic field is mostly used in the form of

_4{1’

b it
W + br + ¢, (2.3.17)

Uij =

with inter-quark distance r. Here a, is quark-gluon coupling constant, b is string
tension, ¢ is constant, and —4/3 is due to the color factor F.F (see eq. (5.1.5)).
As already mentioned in introduction that linear term arises from confinement and
Coulomb term describes quark interaction due to the one gluon exchange. This term
is dominant at short inter-quark distance. When we used the potential with the colour
structure of one gluon exchange in the form mentioned above, it becomes impossible
for us to solve the integral equations appearing below in eq.(2.4.1-2.4.3). Therefore

we use the parametrization of the static two quark potential as
vy =Cri+C, with 1,j=1,2341 (2.3.18)

This was also used in quark deseription of NN scattering [47, 48], and in pseudo scalar
meson-meson scattering [49]. The potential in quadratic form has also been used in

ref. [50, 26] and recently used in ref. [32] to explain the dynamics of meson-meson
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system. In this simple harmonic potential, the parameters C' and w are related to
size (d) of wave function (&) through the relations w = L and C = —Emw?, and
for consistency of the diagonal term of the integral eq.(3.4.3) C = (4m + 3w — 2M)
GeV [26] with M being the mass of a meson. In ref. [26], the above expression for C is
obtained for light quark-antiquark system, but we used it for heavy quark-antiquark
system (charmonium meson system) with M = 2m = 2.9588GeV. The parameter d
is chosen in such a way to reduce the error resulting from a use of this quadratic
potential instead of the realistic one. The error may be both in the wave functions of
the distance between a quark and antiquark within cluster (Y4 (¥, z) of eq.(2.3.7))
and x of eq.(2.3.7) of the vector joining the centers of masses of two clusters. As for
the first dependence, we found that the maximum overlap integral of each of the wave
functions &x(y ) and €x(2s) of the quadratic potential and that of a more realistic
coulombic plus linear potential is 99% at d = 1.16GeV™". (For the parameters of the
realistic potential we used values a, = 0.5461GeV [46] and b, = 0.1425GeV [46] for
mesons composed of charmn quarks). This overlap is shown in Fig.2.3. A similar work
was done in ref. [51] for lighter quarks. They found that the overlap wave function
of SHO (quadratic potential) and that of coulombic plus linear can be made as large
as 99.4% with the suitable adjustment of parameters. Now using the potential in the

quadratic form, the V matrix becomes

A4Cod®  8GCLE(Ry, Ro) BECoE(Ry, Ry)H
V=| 8GCE(Ry, Ry AUC, P 2LECE(Ry, R)H |, (23.19)
2ECoE(Ry, R)H 2BCoB(Rs, Ry)H  D(Rs) + 18Cod®

as in ref. [26]. For the convenience in writing, we define

H = (2} +9G), G = &*/(1 + 4F), Co = ~3C = 1/16ma",
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radial wave function (Fe{%7)

F

10 15 20

Figure 2.3: Overlap of the (ground state) wave function of the realistic linear plus
Coulombic potential and that of the quadratic potential. The solid line represents
linear plus coulombic potential wave function and the dashed line represents quadratic
potential wave function.
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and
D(Ry) = 4CoR; + gﬂﬂ‘?(—ﬁﬂ%}[(l + 4kd?) ™ — (1 + 8Kd®) ~exp(—4EkR3)]
2.4 Coupled Integral Equations

Using these A, V, and K€ matrices in eq.(2.3.11), we obtained the following three

coupled equations (as in ref. [26]

(—E, — 8Cd® — gﬁ E;-a 3 gw + 4m)xa (R1)+
1 : ~(1 + 8k)(R? + R,}) E. _ sCd
(r:F{1+-tLa?}) fdan‘ﬂp( 2d? =3 3(1 +4§d'-']+
dm 8~ 1+ 4kd? 1 + 4kd®
-0 T (3 - R R bt
1 1 i _(~(1+8kP) (R} +RYY, . 6Cd
'ﬁ(wdﬂ{lmﬁm) /dza“”"'( 22 )[ b= s ik
T ')
+am - 3T+ 1;;;;“2 ( D R+ RY s )]xamﬂ,
(2.4.1)
v‘i
(-E. - 8Cd* — %?f — 2:: + gw + 4m)xz(Ra)+

1 i —(1+ 8E®)(R} + R'f}) _E. sod
(:rd’[l +4Edﬂ]) f daR‘“‘"( 28 =3 v ad
im 8 1+4M(3—(R’ Rﬂ]{1+ 4kd* )]x1{R1]+

1 1 i ~(1 + 8kd®)(R3 + Rﬁ}) . 6od
V3 (mﬂ{l +4‘Ed2}) f 4 Raezp ( 2d° =Ee (1+ 4kd?)

3 9 o Grnd
8 1+4kd 1 + dkd*
+4m — EG Sl (E — (R} + R3)( })]I’L’:&(Rﬂ*

(2.4.2)
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and

8~ Wﬂa 3
(—E. — 8Cd* — EC Ty + Ew + 4'”1}){3{“—3}'}-

i, 1 £ f —(1 + SEd®)(R? + R‘j}) . 6ad
v"ﬁ(wrd?(l +4Ed“]) fd R‘m’( 202 =B~ G akd)
1 + 4kd® 1+ 4kd?

8 15
wam =50+ LA (B e )T )

) %(mﬁ{l :-41&52})%[&%@(_“ +8£fi’m§+ﬂg})[_& : {T%

8_— 1+ 4kd? (15

T rld
+dm— 0+ —— E—[R3+R—§}(1—+;il)]xﬂm}

(2.4.3)

These three coupled integral equations are solved in ref. [26] to find the transition
matrix elements. These equations are derived when the gluonic field is in the ground
state. In the next chapter we will derive the integral equations in the modified basis

with the incorporation of excited state gluonic field.



Chapter 3

Potential Model in Extended Basis

In the previous chapter, we introduced the sum of two body potential model and
modified it to include QCD effects through multiplying the off-diagonal elements of
overlap, potential and kinetic energy matrices in the basis [1)g, [2),,|3),(defined in
eq.(2.1.2)) of weak coupling limit by the gluon field overlap factor f . In this chapter,
we further modify this potential model by extending the basis into six states by
including those corresponding to the excited state gluonic field. These new excited

state basis are defined as

|1*) = (q193) (9294 ) - [2*) = (ﬂlﬂd}y{?ﬁﬂgr and [3") = (qi@)el@s@a)y-  (3.0.1)

Here (gygs), denotes a state where gluonic field is in lowest excited state. (Excited
states of gluonic field can, for example, be seen in the QCD numerical simulations;
see ref.[19] and others.)

By extending the basis to six states, the N, V, and K'E matrices becomes 6 x
6 matrices with gluonic field overlap factors f® and f° in addition to the above

mentioned f. These factors are parametrized in ref. [28] so as to agree the SU(2).
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simulations reported in this work. In SU(3).., these overlap factors have the following
definitions:
rj) = (@) = @) = L, (3.0.2)

and

(1°12) = (1*]3) = (2*|3") = oo = =, (3.0.3)

According to ref. [28] f¢ is defined in ref. 28] in a form similar to f as
f¢ = exp(—bk.S), (3.0.4)

and

£ = (f + b, f3 Sexp(—bsk.S), (3.0:6)

with f& = 0 [28]. It is also mentioned in ref. [28] that (1]17) = (2]2*) = (313*) =0
because of the orthogonality of gluonic excited state with ground state.
In the six basis (or the extended basis) with f = f* = f° =1, the Hamiltonian
have the following form
. B2
H=- ; [ + Ex] + E{uﬁ + eAvj))Fi.F;, (3.0.6)
where vy is the potential energy of a ¢ pair tj for ground state gluonic field and Ay
is the difference between ground and excited state gluonic field potential for that pair.
We take the kinetic energy in the non-relativistic limits. This limit is also used in a
recent work by Vijande ref. [50] that deals with multiquark system (two quarks and
two antiquarks) to study the spectrum using a string model for the potential. In
ref. [28], potential energy matrix elements are written so that the potential energy

for each pair ij is equal to v,; for the matrix elements of the Hamiltonian between



gluonic ground states, and it is equal to vy + Avj; for the matrix elements between
the gluonic-excited states. We have modeled these two forms by taking ¢ = 0 for
the ground state matrix elements and € = 1 for the elements between gluonic-excited
states. For the elements between ground and excited state gluonic field, the € value
that results from the parameter ay of ref, [28] being fitted to 4 (in their Table 1)
is surprisingly 2 and not any value between 0 and 1. A possibility is that this is a
result of them taking the area S, we mentioned in chapter 2 in eq.(2.3.2), in the form
of average of the sum of triangle areas instead of a theoretically motivated minimal
surface area. Thus we have somewhat explored ¢ = § between 0 and 1 and € = 1 in
addition to e = 2 which we have mainly studied.

F; (operating on iy, particle) is already defined after eq.(2.1.1). m is mass of quark
(or anti-quark). We are considering that all the four quarks have same mass, m which
is equal to the mass of c-quark and thus m = 1.4794 GeV as used in ref. [46]. The
matrix elements of F,.F; are written in Appendix between the ground state gluonic

field basis | 1)4, | 2)4: | 3)4, and excited state gluonic field basis | 1*), and | 2%).

3.1 Overlap of Linear plus Columbic plus Gluonic
Excited Potential and Quadratic plus Gluonic
Excited Potential Functions

For the additional term in the g§ potential for the gluonic excitation, the usual flux
tube (/7 [17]) or string based analytical expressions become impractical for us. Thus

for that we tried an ansatz of the form of

Avyy = Ae™P", © (3.1.1)
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as mentioned in the introduction. This gaussian gluonic potential is a smeared form

of tenstant g written in appendix of ref. [22]. From the Fig.3.1 (Fig.3 of [19]), we get

the potential energy difference £; between ground and excited states for different r

values (r;). We choose A and B for which x* becomes minimum. y* is defined as

¥ =Y (e = Aexp[-Brj))’, (3.1.2)

with n being the number of data points. This gives

A = 18139 GeV, B = 0.0657 GeV?.

For finding the wave function corresponding to our total potential Crfj +C+Ae~ P,
we used the variational method with an ansitz wave function
k(¥ i) = nygexp(—pyi)- (3.1.3)

The normalization of this £ (yx) w.r.t yx gives
n = (428p%)(15%x1).

This leaves us with one variational parameter p chosen to minimize the expectation
value of the two body Hamiltonian for ¢ pair in the excited state gluonic field wave
function. This gave p = 0.048GeV?. For this value of p, the overlap of wave function
of the quadratic potential plus Avj; and that of coulombic plus linear plus Avj; within
a hybrid cluster became 99.9%. Both wave functions (of ground plus excited state
potential) are shown in in Fig.3.2. The wave functions of the ground state potential
are shown in Fig.2.3. Having much reduced the errors in the in-cluster factors 1y of the
total wave function (of eq.(2.3.7)), the question remains how much the inter-cluster

factors i of the (terms of the) total state vector are affected by our use of convenient



O 0.5 1 1.0
r (fm)

Figure 3.1: Ground and excited state potential.
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r = radial wave function (Fel'?)

0 5 10 12 14

r (GeV)

I~
.

Figure 3.2: Excited state wave functions of realistic linear plus columbic plus
Aexp(—Br?) and quadratic plus A exp(—Br?) potential. Solid line represent lin-
ear plus columbic plus A exp(—Br?) potential and dashed line represent quadratic
plus A exp(—Br?) potential wave function.



38

but not realistic ¢§ potentials. For the inter-cluster wave functions, eventually we
use below in eq. (3.5.11) plane wave forms which get their justifications from the
validity of Born approximation for our problem regardless of potential expressions
we use. This plane wave forin has only one usual parameter (the wave number)
and eq.(3.5.10) below relates its value for the ground as well as excited state inter-
cluster wave functions to the very good values of d and p that almost give realistic
ground state and excited state wave functions within g¢ clusters. But the relations
between the inter-cluster wave mumbers and the d and p do assume a quadratic
confinement. This may affect our numerical results, but hopefully not at least the
qualitative features we are pointing out. Perhaps it is worth mentioning here that
properties of ¢°7" systems were calculated using quadratic confinement in ref. [21],
and then with the realistic potential in ref. [22] and both the works favoured the
existence of meson-meson molecules. That is, their results for ¢°g" systems were not

much different.

3.2 The Approximations Used

Now all the necessary ingredients have been discussed to write the multi-channel
Schridinger equation in our extended basis. Before generalizing the Schrodinger
equation of eq.(2.3.11) to the extended basis, all necessary approximations are written
in this section that are used in the thesis work, for the simplicity and numerical
convenience of the work. Most of them have already been mentioned above. Here
all of them are collected that are mentioned above or used at a later stage in the
solution of integral equations resulting from resonating group method and Schraodinger

equation.



39

1-Quadratic Confinement

In the Hamiltonian of the meson-meson system (written in eq.(3.0.6)), the space
dependent coefficient of Fy.F; operator represents the quark confinement. This co-
efficient is taken in the quadratic form instead of the theoretically better motivated
coulombic plus linear form. This approximation is already discussed in the paragraph

after eq.(2.3.18).

Non-Relativistic Kinetic Energy

The kinetic energy is also considered in the non-relativistic limits. This is valid for
heavy quarks. The non-relativistic limits are also used in ref. [50] that deals with
multiquark system (two quarks and two antiquarks) to study the spectrum using a

string model for the potential.

The Cluster Wave Function Pre-specified

Because of large number of quark coordinates, it becomes difficult to solve them
exactly. Rather the dependence is specified on the vectors joining particles inside a
mesonic cluster before solving the Schrodinger equation, which is solved just for the

dependence on the vectors joining the centers of mass of the mesonic clusters.

Neglect of the Third Gluonic Channel

This two level approximation is not mentioned in the above text. This approximation
is related to the neglect of the third gluonic channel (that is involve explicitly diquark
and diantiquark mesonic channels), Justification of this approximation is given below

after eq.(3.3.2).
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Born Approximation

Born Approximation is also used below in solving the integral equations. This ap-

proximation is valid if interaction (T-matrix elements or phase shifts) are small [55].

3.3 Setting up the Coupled Integral Equations

Now we re-write the Schrddinger equation (already written in eq.(2.3.10)) in the six
basis states (| 1),] 2),] 3),] 2%),,| 3*)) by combining the Hamiltonian (defined in

eq.(3.0.6)) and all the wave functions mentioned above. Thus we wrote

(0¥ |H—E. | ¥) =) fdaRcffﬁRxdﬂyxd“zxwufﬂc}JX::(RH]E&-(}"H}Ek{zf{}g
kl
(k| H = E. | Dgte(Re)xa(Re)&(y,, )6 (ze) = 0

(3.3.1)
fork,l = 1,2,3,1%, 2", 3xand K, L = 1,2, 3. The difference between this eq.(3.3.1) and
the eq.2.3.10 (written in previous chapter) is that eq. (3.3.1) is written in six basis but
q.2.3.10 is written in three basis states. The arbitrary variations dy(Rx)'s for
different values of Ry are linearly independent as before and hence their co-efficient
in eq.(3.3.1) should be zero similar to eq.(2.3.11). With the trivial R, integration

performed to give a finite result, this leads to
Zfduyﬁdaiﬁfk(:fﬁ}’fk{zﬁ}y(k | H - E. | hoxi(Re)&(y)&(ze) =0, (33.2)
1
where
ok | H=E, | )=, (k | KE+V +4m— E,. | [},

Elements of enlarged V and KE matrices (similar to eqs.(2.2.1-2.2.4)) are defined

below in eq.(3.3.5) and eq.(3.3.6). In ref. [28] it is stated that,



41

“In some of our earlier work this was interpreted to mean that it .was
unnecessary to include all three states and so the symmetry was broken
by keeping the two states with the lowest energy, let us say A and B. A
similar thing also occurred in the lattice simulations. There it was found
that the energy of the lowest state was always the same in both a 2 x 2
and 3 x 3 description, providing A or B had the lowest energy. In addition

the energy of the second state was, in most cases, more or less the same.”

This two level approximation is also used in the model of a later work [52] for the
tetraquark system. Considering this, we include only two tupolugies(l,?]! meaning
four states(| 1), | 2),| 1*),| 2*)). According to the model of ref. [28] the overlap matrix

N in this truncated 4-basis is given by

1 /3 0 —f/3]
I3 b =P8 1. (3.3.3)
0 —f/3 1 —f/3
U

N(f) =q (k|l)g=

For potential matrix V(f) the matrix elements are

Vii Vi2 V- Vi i
Vor Va2 Ve Vo
Vier Viex Vier Voo
Ve Var Ve Vo |

V() =y (k| V|1)y= (3.3.4)
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Here,

4
Vi = -5(1’13 + tg3)
4
Via=Vy = §f{”12+”§{“”1§ — Vg — Vj3 — Y53)
4
Vg = -5(1*1: + vg3)

Ve = Voo = -%(ﬁ{ﬂiﬁ + U;ﬁ} - %(ﬂ;‘{ + ﬂ;ﬁ] ot ﬁ(_v;ﬂ - Uiﬂ)

Vieg = Vige = —-{—; ( V2(vi; +vi) - lTﬁz[u,'g +vf) — V2(—vi; - uﬂ)) (3.3.5)

l - -
Visge = E{t—'ﬂ + ﬂﬁ}
1 & L] Ll
Vl‘i‘ = Vﬂ‘ 1 = ._Ef‘:( a (ﬂ;'j + U;E + 'u;;i -+ 'I'.J'ﬁ:] + 1{]{‘”” e ?ﬁﬁ})

Varge = é[”{a + U33)
Viep = Vipe = Vg = Voo = 0,

with o, = vy + eAv];, ¢ being defined above (after eq.(3.0.6)). The coefficients of

vij and v};, resulting from the F.F operator, are given in the Appendix. The kinetic

energy matrix of the two quarks two anti-quarks is taken to be

KE =, (k| KE |0, = Nk (- 3 V)N (ks (3:3.6)

i=1

The kinetic energy in the same form is also used in ref. [26]. When we are observing
dynamical effects for ground state, our overlap, potential and kinetic energy matrices
are 2 x 2 matrices and we use f with k; = 0.6 as used in rel. [30](detail is already
written in chapter 2 after eq.(2.3.2)). But when we incorporate the excited state
gluonic field states, our overlap, potential and kinetic energy matrices become 4 x 4
matrices. In the upper left 2 x 2 block of these matrices, the form of f remains the

same but the value of ky is changed to 1.51 according to a conclusion of ref. [28]. In
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the other blocks f¢, f¢ [28] [53] are also used. If we take f* as a function of area as
defined in [28], it becomes unmanageable to solve the integral equations (3.4.3-3.4.6)
helow and hence we have taken f* to be a constant. But we have tried a variety
of its values to explore how much our conclusions depend on its value. As for f©,
the fit in refs. [53] (28] of the model of these worksto the lattice data favours k. = 0
(introduced above in eq.(3.0.4)) which implies that f°= 1 i.e. excited configurations
interact amongst themselves in the way expected from perturbation theory. Thus we

have used f=1.

3.4 Coupled Integral Equations

Using "N V" and " KE" elements in eq.(3.3.2), we got four integral equations for
four different values of k or I Then we do the yx and zy integrations. Most of
the integrations in the above equation are in the Gaussian form. For K = L = 1,2,
in eq.(3.3.2), x(Ry) is independent of yj and zx and, thus, can be taken out of

integrations. After the integration, the result is Ry dependent co-efficient of yu(Ry).
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Few integration formula's used are:
2
f exp(=M? + Ju)dy = (§)exp {i

[@esp-x + a3y = 5 Ty (1)

f yPexp(—=Ay* + Jy)dy = ('I)”“[ :; - 53 eXP (
; 7 J’2 .Ji'2
[vtexs-xt + 29y = (55 A,,(a + 3ren(iy (34,1

J“!
1 L _ 1/2 A
[y exp(—Ay* + Jy)dy { ) (w T ]exp{ J
lﬂJs 15J ur'2
1 2 ST
_/y exp(—Ay* + Jy)dy = Sy Sy { 21}5 TIU BP}EKP(MJ
15J* 452 15 J*
I.j'i FF =

)-

For K # L, y; and zy are replaced by their linear combinations with one of them as
identical to R and other one independent of it as R3. The jacobian of transformation

from y,zx to Ry is equal to 8. Then we integrate the equation w.r.t Rg. Few
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integration formula’s used are:

/ exp(—AR* + JR)dR = [f}ﬂf’exp[‘f
A 4

f Rexp(—-AR? + JR)d°R = (%]m(% + %}exp{gl

T J 5J¢° 15 JE

/ Rlexp(—AR® + JR)d’R = (1}”2{ it t w]exp(ﬁ}
Jo > Tx3J‘*+1ﬁ5ﬁ+7x5x3
26)\6 25)\5 1674 8A3

] e 74
fﬁ:“exp(-AR* +JR)d'R = {;)““(;H - 32?;: PLiEL. K;Tﬁ"' 1eJ
(7 x 5 x 3)(105 x 1i]P+9x7x5x3) (Jz

325 16A¢

f Ry Ryexp(—AR] + aJ Rg)d'R; = (E}*‘”“{a!?«}ﬂ?expigﬁ

2
[ (R Ra)exp(-ARS + I Ra)d'Rs = {}}m(ﬁm 4 %)exp[%

f Roexp(=AR? + JR)PR = (}}“ﬂ( }expigl

[ B R )exp(-NFS + 03 Ro)i*Re = (57 (@A) 450/ B ) Bexo(35)

4
fR:{Rl-RﬂuﬂX]}(“Afg + 2bR, Ry)d’Rs = (E}Sﬂ{ﬁiﬂi.ﬂﬂzﬂg + ‘;‘E(Rfm

. B . ) .
+ 18R§(R-1-R4)“) + 37(63(Ra.Ro)” + 1ARTRG + 2123 + yivi + 2123)

3 . g2
+Wﬂf}ﬂxpiﬁl-

(3.4.2)
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Integration, as described above, leaves the following four equations:

3 ¥ T 2 2
a,{R.}x.(R.H(m) fdﬂnqm-p( “*“iﬁﬂﬁﬁal)[_%_

8Cd’ dm 8 1+ dkd® 4 1+ 4;::1" |
3{1_._4@2) t _3- “EC'-I— Gred? ( 2 {R Rﬂ]{ })lXE(Rﬂ

&f'n* -R}
N lBﬁ[Erxd’]i[ Rﬂﬂp[ }E’m( 2R} mﬂa % )2F(Ry, Ry)

= 2AE(Ry, Ry)|x3(R2) = 0,

(3.4.3)

';' o ¥ ) 2 2
Ag(Ra)xa(Ra) + (—1_—) [ ff’nm( (1 +8M§j§fh +R1}) [ &

md?(1 + 4kd?)
8Cd dm 8 1+ 4kd? - 1+ dkd* )]
S0+ 4ka) 8 oC o dz (2 (R} +Ro)(——) | [ xi(Ry)
8fn?

[ Rl espt-20RE (VR R

1sf (27 d?)3
- 2AE(Ra, R))]xj(Ry) =0,
(3.4.4)
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* ang i .]E 2 } =
Fy(Rq)xi(Ry) + m[fﬁzﬂxpf Jexp(=2pR3)[(——~ -|—2 )2 F3(Ry, Ra)

ZAE(R2, Ry)]x2(Ra) %

i — 2pR) {d—pﬂ(ﬁfﬁ,(m.w
+ Fg(Ry, Ry)) + 2A[exp(—BR3){D(Ry, Rz) D1 (R2) + R{R3 + 2(R] + RiRJ)
Da(Ry) + 2(R? + R2)Dy(Ry) + Dy(Ra) — 4REDs(Ry, Ry) — 4D4(Ry, Ry)—
smﬂ.[nl,m) 4RI Dy(R,) — 4Dy(R3) — 8REDyo(Ry) + 16Dy (Ry, Ry)}
expl 3 ]21:'*]1 + exp(~BR2){D(Ry, Ra) D1 (Ry) + RIRS + 2(R + RIR?)
Ds(Ry) + 2(R? + R3)Da(R,) + Dy(Ry) = 4RI Ds(Rs, Ry) — 4Dg(Ry, Ry )—

SR{D7(Ra, Ry) — 4R{Dy(R,) — 4Dg(R,) — 8R3D10(R,) + 16Dy (Re, Ry) )

in?
(4] + 3 ) DR, Ra) |G (Ra) =
(3.4.5)
and
i 8/'n’ -R}
Fa(Rﬂ}XﬂRa}*’mf Riexp(5 7 Jexp(— -2R)[(—— v ]'i‘Fa{Rm Ry)-

2AE(Ry, Ro)]x1(Ry) + —— ﬁ d’Ryexp(—2pR3 — 2;0R$}[ E}E (EeFs(Ra, Ry)
+ Fy(Ry, Ry)) + 24 [apr—ﬂm}{ﬂ{m, Ri)D;(Ry) + RIR{ + 2(RS + R{R7)
Ds(Ryz) + 2(R3 + R3)Ds(R,) + Dy(Ry) — 4R} D5(Ra, Ry) — 4D4(R2. R, ) —

8R{D7(Ry, Ry) — 4R3D4(R,y) — 4Dy(R;) — SRID10(R, ) + 16Dy (Ra. Ry))
Uiy (2B)*R}
SPA(B+ 1)

Da(R;) + 2(R3 + R}) Ds(R;) + Dy(Rz) — 4R3Ds(Ry, Ry) — 4Ds(R;. Ra) -

————2.) + exp(— BR3){ D(Rs, R;) Di(R;) + RIR] + 2(R} + RIR?)

8R3D¢(R,.Ry) — ‘1Rgﬂs{ R;) — 4Dg(Ry) — 8R{D;o(Ry) + 16D5,(Ry, Ry)}
((2BPR} v

4(134-41? ”[B +41.J Em.{iip} Dya(Ra, Ry) | x1(Ry) = 0.

(3.4.6)
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8~ Vi 38
&f(R,-]l=—EL.—SCd?—§§——2§1"—+§m+4m,
Fi(R;,R)) = (R} + . + R/ WE. — 240 — 28CR - 28C— >
aeliani g +20?  sm+2 " 2 23z +2p)
4
+ 24exp(~BR? — BR?) + 2Aexp(~BR? + BR?)} — %C{—fﬂ*—'zﬁ
105 5R? 4 _— 3 _‘-’-'
3(#4_2;,]3 2{?+2p]g { 24R] — a6pR; + 16p°R; — Iﬁ[ +
1 — 2 a3
TFTQ_}[TE 112pR; + 80p° H,,\+_d! 2y (100P°Ry — 840p)+
1680p° }
8(zp + 20"
Ao _pR? B’R}
E(R;) = exp( BR‘}W{—WHB]’
— 10B°R] 2B'R] 15
4B'RiR; 2(R) 8B*(R,.R;)*

(zz +20+ B)* " (g +2p+B) (gz+2p+B)¥
BE(R,R;) = ( %—ﬁmﬁ{mﬂm}mmnﬂ + 2E(R)Fy(Ry. R}

15 RF 3
Fi(Ri, R R} + W E. — 24C - 28CR? —_— =
H{R‘! j} [ 4{@ 4 :-JPF { CI{-. 2‘802{# + 2}’}
3R}
+ 2Aexp(—BR{ — BR]) + 2Aexp( *BR? + BR;)} - 28C(5—L—+
2(z7 +2p)
105 5R?  — 4, 1p2me_ OR;  RIR]
— ! _ 44pR} + 16 s |
S + 20 | 2y + 2p)F) T 3m (20K — HpRy +16p°R; - =5 + —
3 , . 12R? 2RIR? fc; 15
4 . - Rl W 2 "‘ . 4 e
- mﬂ{ﬁy+2p]f2 56pR; + 32p°R] o - i J 4{5131'*‘2?}2

6 R’ 2R} 1 35x3
z' dt Pt ]+;ﬁ{#+ﬂp}3
24 4R} R} 20R?

& d }2(7:+2p1 d*{ghr-wp}i}‘

(—12p + lﬁpzﬂj +(112p

ERJ



49

- W 225, 7 2254 225¢  1575¢
Fal) = dm+ o roy 5p) — (m{zp+ B ) T 160 | 32{2p)“)
i(ﬂ_ﬁmﬂ_ﬂ_@‘k_&_ 685 _ 30690 . 21m9a+@_@§)
2m\ (8p)* 2 64p*16p 8p266p*  8p° (8p)" = p*  (8p)°
{1}3 4 % 22573
dp 2m 16384p7 "

Fy(Ri,R;) = RIR! + (gﬁq [ F{lﬁR., +15R? — 36R?R? — 32(R;.R,)?)+

1
gp RSB + 2RIRS) + wff% +R))

Fy(Ry, R;) = (—10Aexp(—BR; + R; ) — 10Aexp(—BR, — R; n{(s ],ER‘ + R}

, 6 210 045 RJR]
+4R{R?) + R{R] + gﬁ{lﬂ +R{R?) + W{Rf +RY) + Gy~ ;p

_MOR}  RIRY R{R; 140R] | B2ARRy)* 16R*R2}
G T 2% (8 (8p)? (8p)?




D(R;,R;) = R} + R} + 4R}R,

DR, = 102BR,)  (2BR,)’ 15
1(Ry) = (2B +8p)* ' (2B +8p)* (2B +8p)*’
_ (2BR,)? 3
Dy(Ry) = (2B +8p)? ' (2B +8p)'
DR — (2BR)® | 21(2BR,)’ 105 105(2BR,)*
SR = B8y T BB ey T EBA &P | 2B+
iR < (2BR)®  362BR.)° 37T8(2BR.)'  1260(2BR.)° 945
M) = B e T @B e T @B &) T @BTEP | @B+
ny_ (2BPF(R.R)? 3R]
Ds(ReBy) = o rap?  + @B+ 8p)
(2B)°(R.Ry)’R;}  (2B)* 2 2, popty . _ (2B)
PouRe) = B rape T @B+ app RO R) R + e
,, R
(63(R.R;)* + MRIR] + xia] + yiy] + 2727) + @B 1 8p)"
P (2B)* (2B)? 2 5R}
Dr(Ry, R;) = @B + 87 R(R.R,)’ W{T(&-Rﬂ +R{Rj) + (2B + 8p)°’
_ (2B)°R] R}
Dy(Ry) = @B +8) 2B +8p'
_ 3R? (2B)° ps_ 192B) .o T77(2B)°
DolRy) = (2B + t;p]:’ "EBispe T 2B 18 p)* (2B +8p)t
v (2B} o (B ., 5 _,
PlR) = Gp ey T BEA g T @B+ 8
2B)* 2B)?
Du(Ry,Ry) = {—EL—LP RIRR + e (BRI RUR, ) + RIRY)
m(mm-w +R{Rj), and
Dis(Ry, Ry) = ot ﬁ{ — 9975 + 32708p°RIR! (R + R2) + A0p(28TR? + 31R2)+

4096p"(2R{ R} — 43R} R} + 2R} R}) + 512p°(R} + R))(15R] — MR*R?
+ 15R] + 16(2(R..R;)* + R{R?)) — 64p° (2371{‘ — TT12R} R+

287R] + 672(2(R.R;)* + R{R]) — 1024(7RIR? + 14(R..R, }‘*)) }



We have eventually replaced ry, ry, ry, rq by Ry, Ra, Ry, and R.. With trivial integra-
tion on R., we have eq.(3.3.2) that is independent of R.. Now, after the integration
on Ry, the above four integral equations (3.4.3-3.4.6) depend only on R, and R,. So
every quantity which we want to calculate depends on R, and Ra. In eq.(3.4.3-3.4.4),
the first two terms containing x1(R,) and x2(R») in each equation are for the ground
state. It is noted that in these terms, there is no dot product of vectors Ry and Ra.
So the results from these terms should not depend on the angle between Ry and Ra,
that we call 8. The third term in each of eqs.(3.4.3-3.4.4) is due to the gluonic ground
and excited states. In these terms dot product of two vectors (R, and Ry) appear,

s0 the results from these terms depend on 6.

3.5 Solving the Integral Equations

Now taking the three dimensional Fourier transform of eq.(3.4.3.3.4.5) with respect

to Ry and eq.(3.4.4,3.4.6) with respect to Ry, the integral equations become

Cro N . )* &
(~Be~ 80 — 50+ 7+ 5w+ ampa(P) + o3 e f R,

 (—(1+8kd®)(R}+R3)\[ _E: _ 8Cd” im
c.-:‘R:EKP(szRl)E:.np( 5 1 ) S~ A 3
8 1+ 4kd? 15_ . - 1+ 4kd? )] 1 |
§€+ 6md? ('2‘ (R} + R3)( pE ) ) | xa(Ra2) + TRE fd“Rlci“‘R.-

, —-Hg Sfﬂﬂ " %
expt:P:,RI}exp(W}em(—%Rﬂ 5/5(2n ﬁ;z}g[‘ 3 +2p} F(Ry,Ry)

- ME(Rth)]xa{H»a) ~0,
(3.5.1)
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(=B~ 804"~ 30+ g0 + gu+4mhxa(Pa) + 7 3 (:rrd"-{l T mn) f#m

s - 2 2 X d: 1
d*Ryexp(iP2. Ry Jexp( (1 +8"";£R1 .2 R'ﬂ) [_573. - __3{1854&3] 4 am_
8 1 = ‘”Cﬂ: 1 + ‘HEGP 1

—R* 2 ;
Exp{tpi-ﬂz]ﬁxpi‘%)ﬂpf—zﬂﬂg}18 «;J:sz Al PR -

2AE(R2, Ry)|xj(Ry) = 0,

(3.5.2)
(4m+n4{223E{113_1r_3( 225A L _2%6e_ 1676 ) . 8105
(4p)* "2p 16(2p + B)3(2p)%  16(2p)" * 32(2p)*) * 2m (8p)®

31 15299 3 685 39690 10395 315 6615, 7., 8P

3 647 16p | Bp256p & iy’ By "t P 13 } 2m

%57 _R?
1538:7}) 1{P1) + (2:1}% 13\;i lez-d? f PRad Raexp(iPuu Ra)exp(575°)

exp(=2pR3)|..... Jxa(Ra) + E_lﬁﬁfl f &Ry d*Raexp(iP 11 Ry Jexp(~2pR?)

exp(—2pR3)[.... ]x3(Ra) = 0, and
(3.5.3)

(4m+n"{225£ L 71'“( 2254 N 225¢ . 1575¢ ) " 8 ( 105
| (4p)t Ep 3 \16(2p+ B)3(2p)F  16(2p)"  32(2p)*/) * 2m (8p)®
31 15 299 3 685 39690 10395 315 bﬁla T SP*
2 Gdp? 16p + 8p256p2  8p 32 (8p)s  p* ]{ }

R‘ﬂ

9257 ) 1 gfn?
R,
16384;?7} xa(Pas) + (2r)} 18v2(2nd)} fﬂﬁﬂ-lﬂamﬂphf'm

exp(—2pR3)[.....]xa (Ry) + {2;; S‘? ] d*Ryd*Roexp(iP . Ry )exp(—2pR]

— 2pR3)[-... X1 (Ry) = 0.
(3.5.4)



In above y;(P;) is the fourier transform of x;(Ry), and x;(P;s) is the fourier transform
of x{(R;). The linear momentas P;, P, are conjugate to Ry, Ry for ground state
gluonic field and P,,, P;, are conjugate to R, R, for excited state gluonic field. The
off-diagonal terms of eqgs.(3.5.3) and (3.5.4) are too lengthy and not used for results,
so dots are used to reduce the length of our equations. The above eqs.(3.5.1-3.5.4)

have formal solutions as [26]

-
x1(Py) = 8(P, — Py(1))/PA(1) = — ( 1_-—) [eraam,

AP (20)8 \ wd?(1 + 4kd?)

exp(iPy R, }e:rp( =L+ ﬁfjiﬂf + 1) ) [-%— = “Bf—fxﬁ + ‘? . gm
LB (5 - oy + my LR, Jhes(Ra) - 50 ﬂfﬂl[m
exp(eP).Ry) e:q:[:z—ﬁ":) exp(—2pRy}) = ;f; rrz}i[{ T iR (R, Ry)
~ 2AB(Ry, Ry)[x3(Ra),

(3.5.5)

lP) =8Py~ PAOVBHD ~ gy (m)gf s

exp{%PmRz}E-'ﬂp(-(] : Skfiiﬂf ux Rﬂj){—f - WLE:JE?} .. g@r
Lo ( R T )lmmJ AT (w / PRy R,
PP Re) exp( ) o2 () AR Ry

- 2AE(Ry, Ry)lxi(Ry),
(3.5.6)
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1 1 8fn? .
Xi(Pu) = 6(Pis — PO/ P21s) = ooy e oy [ € Ry

1 8fn' 1
exp(iPys. Rz}ﬂx}”[ }MP{ ~2pR3).- Ixa(Re) = LBy (Pr) j;n (2r)3

[ @R Raexp (1P Ra)exp( -2 ex(~2p R [ (R
(35.7)

and

8fn? L
\3(Pas) = 6(Pa, — Pu(28))/P*(25) - aﬂ{lﬁg] [2:7}3 — ﬁ‘:; i / R, R,
8fnt 1

2
exp(1Pae Ra)exp( 5=~ 2;“}3;;:( 2R ]XI(RI}‘QQ{:%_,} 3 (2r)}

(3.5.8)
Here
P? 3
AV(P) = (—E. scdﬂ—-c' + 5+ Sw+dm) — e,
2255 T 7 2254 9955 1575¢

Da(Pi) = dm +n? —-—-( i ) )

2(Pis) = dm + n {3 ~ T\ Tep+ BYI s | 106G T 323p)

i_:r_ﬂ( 2254 L 2% +15T&)(1ﬂag_£@+}_

m 16(2p+ B)i(2p)F ~ 16(2p)" ~ 32(2p)*/ \(8p)* 2 64p%16p 8p

685 39690 32ﬁ10395+315 615 7 o 8Py 260

%607 8 ¥ @p ' 2 (8p)°)'%p 2m  16384p"

(3.5.9)

and

F.-[E] = F::“] = \/ETH{E —dm - i . -C]
mud®

- _ . L1667C  13.682p7/2
P.(25) = Py(1s) = \/Em{Ec ~ 4m) — (066670 + ~—— + rraeer ) m

(3.5.10)

- B4p.

Because of the coupling to the gluonic excitations, it become difficult to solve above

integral equations for non trivial solutions for x1(Py), x2(Pa), x{(P1.), and x5(Pa,)



analytically as done in [26, 20]. In [26], the meson wave functions, including gluonic
field overlap factor, is separable in R, R, and hence the integral equations can be
solved analytically by replacing x; and y» with solutions obtained by Born Approxi-
mation. But in our present work, the meson-meson wave functions are not separable
in Ry, Ry. So we use the Born approximation as used in [23] to solve the integral
equations for meson-meson scattering) to solve the integral equations. Qur results
given below also justify our use of the Born Approximation. For using this approx-
imation, we first find the solutions (x;(R;), x{(R:)) of eqs.(3.4.3-3.4.6) in absence of

mteractions (meaning f = f* = f°= 0). These are

x1(Ry) = \/gﬂxp{ﬂpt-ﬂllf
xz2(Rg) = \/gexp[in.jo,

: (3.5.11)
XI{RI} = \/;exp(zP 1a -Rl }!

2
and xa(Rs) = \/;Exp(tPg,.H.g}.

Here the coefficient of exp(:P;.R,) is chosen so that it makes y,(R,) with i = 1,2 as

§F-FPl

Fourier transform of pay - Similarly the coefficient of exp(1Py.. R, ) is chosen, Us-

ing this approximation, the integrations on R, and R in eq.(3.5.5) can be performed
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to give
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Now from this eq.(3.5.12), the elements of transition matrix (T) can be found. As in

ref. [28], each of the states with the gluonic excitations are orthogonal to each of the




ground states i.e.
(L[1) =" 1) =(2]|2)=(2"|2) =0
This gives
Tige = Tiey = Tapr = Taea = 0.

Thus the possible transitions are T}y, Tyz, To, Taz, Tha- and Tzy.. As the eq.(3.5.5)
and (3.5.6) are similar (interchanging R, and R, in eq.(3.5.5), it becomes equal to
eq.(3.5.6)). so

Ty = Ty,
(3.5.13)
T2 =Ty,
and
T]:- T Tgl- . {3.5.14}

Ty can be caleulated (as in ref. [26]) by using the coefficient of m containing the
x1(R,;) from eq.(3.5.12). As in this equation, there is no coefficient having x;(Ry),
so0 it gives Ty = 0. Tys can be calculated by considering the coefficient of i)

containing the y2(Ry) from eq.(3.5.12) in the following eq.

1

51(Py) containing  xa(R2)l, (3.5.15)

Tis = M7 Pilcoef. of

with M being the mass of ¢¢ meson. Similarly T2+ can be calculated by substituting
the coefficient of a—.fm containing the y3(Rz) from eq.(3.5.12) in the following eq.

T 1 o - =
Tm-:&fEPl,[cﬂﬁf. afm containing x3(Rz)]. (3.5.16)
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The relation between T-matrix and S-matrix is written as
§=1-9T, (3.5.17)
and the relation between S-matrix and phase shifts is given in ref. [54] and written as
S = exp(2A), (3.5.18)

combining the above two eqs.(3.5.17,3.5.18), off-diagonal phase shifts can be calcu-

lated by using the following relation
[ — AT = exp(2tA), (3.5.19)

where S, T', I,and A represent 4 x 4 scattering, transition, identity, and phase shift
matrices respectively. As our phase shifts are small, therefore neglecting the higher

powers of A in the expansion of exp(2:4), the eq.(3.5.19) can be written as
Sy = 8 — 2Ty =045 + 2eij. (3.5.20)

for i, j = 1,2,1*,2*. From this eq.(3.5.20), we obtained that the phase shifts are equal
to negatve of the transition amplitude, e.g. for i = 1, =2 Ap= JJ = —T3.

With the use of transition matrix element, we can also calculate another quantity,
energy shift. The energy shift of meson-meson system (ectE) can be calculated by
using the stationary state perturbation theory, i.e.

2
=B +Tu+ ) fm 1T-;I dPJ, (3.5.21)

i)

with the initial state i and intermediate state j. We have considered initial states
where the gluonic field should be only in ground state, so i = 1,2, but intermediate

gluonic field may be in ground or excited state, i.e. j=1,2,1*,2". Here Ty; = (i |T),



|T51* = |(§|T)é)|*. Ef is the energy of a ground state (1 or 2) of meson-meson systemn,
and Ej may be the energy of the other state (meson-meson ground state or an gluonic-
excited meson-meson state).

With the use of Born approximation, transition matrix elements (T}, and Tys) are
zero as explained above before eq.(3.5.15). But when we use the unitarity condition
(St = I), we got non-zero value of Tyy or Tha. This means that Born approximation
violates the unitarity condition as written in ref. [55]. To find Ty, we can be written

T11 as
Ty = RGTH + -!-ITRT“

To observe the change in the transition probability Ty, due to the incorporation of
excited gluonic field, we used the unitary condition (SS! = I). For this, the S, st I
matrices can be written as

[ l— itTu —2!-T;2 —2£T11- —ELTmt
g 2T 1 —UTxn —2T- — 2T ‘ (3.5.22)
Ty ~2Tiey 1= 2T =202

'—EI-TQ- 1 "ELTT 9 '_EI-TE- 1* 1= EI-I:,I-T

] ]
i 1+ 217, T35 2Ty T3 -l
e ATy 1+2Tp  2Thg  2T3a | (3.5.23)
UTy.  —2T3. 14200,  —2T5.
21? ;2' _2‘._‘];2‘ —2]__::{?_2. l +2ﬁT;;2- |
and - 1
1000
00
ro |91 (3.5.24)
0010
0001
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(As usual, the symbol # is used for complex conjugate.) The 1 % 2 element of SST = |

gives the following relation
2T Ty, + 2115 Ty = —u(T3) — Tha). (3.5.25)

Our results for Ty (in chapter 5) show that Tz is real, so 17, = Tia. Using this
equality and egs.(3.5.13,3.5.14), the eq.(3.5.25) gives

ReTy,(2T2) = 0. (3.5.26)
We know that T3, 3‘- 0, therefore
}?ET“ = (). {35‘2'?]

Hence

Th= l'.fﬂ'lT”. [35.28]

Now to calculate the imaginary part of Ty, the 1 x 1 element of SS7 = I is used.

The 1 x 1 elemet gives the following relation
—(eTyy — oIy + 20, T7,) = 2T Ty, + 2T T, (3.5.29)
Using eq.(3.5.28) in €q.3.5.20, we get
(ImTy)? — ImTyy + Ty + Ti2e Ty = 0. (3.5.30)

Solving this equation for I'mT};, we have

:
2

ImTy = -+ %\/1 — 4T 17y — 4112 Thye (3.5.31)
Now phase shifts can be calculated by using relation (3.5.20). For i = j =1, we have

Ap =-Tn (3.5.32)



Since T = Taa, so we have

Ay = —Tx (3.5.33)



Chapter 4

Quark Dynamics and Gluonic
Excitations in Mesons

In previous chapters, work is done for meson-meson systems including gluonic
excitations without spin and flavour basis with ¢ potential in quadratic form. Now,
to include the spin, favour, and realistic coulombic plus linear potential, we study
the simpler system of one quark and one anti-quark. For such a simpler system,
we study some relevant characteristics like masses, root mean square radii and wave
functions at the origin of the conventional and hybrid charmonium mesons through
the numerically generated solutions of non-relativistic Schridinger equation (also used
in ref. [19]),

In the quark model, mesons have only certain JF¢ quantum numbers. Here J is
the total angular momentum and is equal to the sum of orbital angular momentum

and spin angular momentum, i.e.
J=LeS=|L-8|..|L+8|

The symbol L is used for orbital angular momentum and § is used for spin angular

momentum of the quark-antiquark pair. P is the parity of the meson and C is used
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for charge conjugation. The parity (P) and charge conjugation (C) are given by

P = (=1)~, (4.0.1)

and
= (=15, (4.0.2)

For § =01 and L =0,1,2, . . ., respectively, the possible JPC statesare0~+,177, 1%,
0+ 1++ 2++ ... The states with JP€ = 0*—,07,1"+,2%, 37+ 4%, ... are forbid-
den in the quark model and are known as exotics (hybrid, glue ball, etc.). Quantum
Chromodynamics (QCD), describing the interaction between the quarks and gluonic
field, predicts the existence of hybrid mesons which contain the excited gluonic fields.

Thus for understanding of QCD, we need finding experimentally testable predic-
tions of the theory for situations in which the gluonic field between a quark and
antiquark is in an excited state. Thus hybrids are an important source of information
related to confining properties of QCD, and checking for existence of hybrid mesons
is very important objective of particle physics. Reviews of the spectrum of excited
gluonic states can be found in refs, [37) [38]. Recently, a resonance is observed at
COMPASS [56] with JPC = 1-*. Some other groups like VES [57], E852 [58], and
the Crystal Barrel collaboration [59] also observed these states. Physicists are working
in search of hybrid mesons at PEP2 (BABAR) [60], KEKB (BELLE) [61], Jefferson
Lab [62], CLEO-c detector [63], and BES-1II detector [64, 63].

Theoretically, hybrid mesons masses have been predicted using different models
such as Flux Tube model [17], the lattice gauge theory [66], MIT Bag model [67, 68],
the quark model with constituent gluon [69, 70}, and QCD sum rules [71].

Using the Born-Oppenheimer expansion, the work of finding implication of QCD
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for a meson can be split into first using the numerical lattice simulations of QCD
to write down a quark antiquark potential and then using this potential to calculate
dynamical implications of the potential. Even a numerically defined potential can be
used in this scheme; this is what ref. [19] does. But we write an analytical coulombic
plus linear plus exponentially falling expression for the excited state gluonic field
potential between a quark and antiquark and fit its parameters to the lattice data for
the excited state gluonic field energy values available in ref. [19] for discrete quark
antiquark separations.

In this chapter, in section 4.1 below, we write the Hamiltonian for the conventional
mesons. Then we describe the shooting method-based numerical procedure to find
the solution of the Schridinger equation for conventional charmoninm mesons. The
expressions we used to find masses, root mean square radii, and square of radial wave
functions at the origin (|R(0)]?) of conventional charmonium mesons are also written
in this section. In section 4.2, the Hamiltonian is written for hybrid mesons, and then

we redo all the numerical work as done in section 4.1 for hybrids now.

4.1 Characteristics of Conventional Charmonium
Mesons

The Potential Model for Conventional Charmonium Mesons

In the potential models, the confining potential for ¢ system in the ground state
gluonic field is mostly used in the form of linear plus coulombic potential written in
eq.(2.3.17) in chapter 2. It is also mentioned in chapter 2 after eq.(2.3.17) that the
coulombic term is due to one gluon exchange and the linear term is linear confining

potential [16]. This potential form provides a good fit to the lattice simulations of
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refs. [72, 73]. By including the Gaussian-smeared hyperfine interaction [17] [46] and
orbital angular momentum (or centrifugal) term, the potential of the ¢7 system in

the ground state gluonic field have following form

- 32'1'(1. 3, —glyd L{L +1)
Vir)= J_} 5.5+ __2111*2 . (4.1.1)
where
SeiB: = E[S‘{S +1) = S(S.+1) — S S+ 1]],

2

S, and Sz being the spin quantum munbers of charm quark and anti-quark. § is the

total spin quantum number defined as
S = S: + S{T-
As quarks are spin 1 particles, so S, = Sz = 1. This results in

S8 +1) =SS+ 1) =3

Therefore

S(S+1) 3
3“"‘3’:{—2!‘&‘

In eq.(4.1.1), p is the reduced mass of quark-antiquark, and is defined as

il (4.1.2)

i = .
} Mg + Ma

In our case m, + ms = m, where m is the mass of charm quark. Therefore,
m
= —.
=73

For the ¢& mesons, the parameters a,, b, o, and m are taken to be 0.5461, 0.1425GeV?,
1.0946 GeV, and 1.4796 GeV as used in ref. [46]. The quantum numbers (L and 5)

for some conventional charmonium mesons are reported in Table 4.1.
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Table 4.1: Quantum Numbers of some charmonium mesons

Meson | L | S
e 0{0
Jiy [0]1
he 110
Xe 1]1

Characteristics of Conventional Charmonium Mesons

A conventional meson can be described by the wave function of the bound quark-
antiquark state which satisfies the Schrdinger equation with potential of eq.(4.1.1).
Radial Schrédinger equation with wave function U(r) = rR(r) is written (in natural

units) as

V2U(r) + 2u(E — V(r))U(r) = 0. (4.1.3)

Here R is the radial wave function and r is the interquark distance, E is the sum
of kinetic and potential of quark-anti-quark system, and V(r) is defined in eq.(4.1.1)
and p is defined in eq.(4.1.2).

In quark-antiquark bound state, the wave function must satisfy the boundary
conditions U(0) = 0 and U(oc) = 0. For the numerical solution of the Schrodinger
equation for U(r) with the potential of eq.(4.1.1)), we repeated generated energy E
from -2 to 2 GeV in steps of 0.1 GeV. For each such trial initial energy, we used the
Newton method [74] to select, if any, the energy for which the numerical solution
of Schridinger equation for U(r) became zero at infinity. To obtain these numerical
solutions, we used the RK method [75] with using any arbitrary integer value of

U’(0). For different values of U”(0), normalized solutions of the Schrodinger equation,
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obtained by multiplying the solution with the normalization constant (m]
remain the same. These energy eigenvalues plus constituent quark masses are taken to
be the ¢ mesons masses (in natural units). We found that our results for conventional
charmonium meson agree with the Table 1 of ref. [46] which supports the reliability
of our method. We also checked the consistency of our method

1) by getting a 100% overlap of HU and EU where H is the Hamiltonian for ¢7
system, and

2) by calculating the masses of the conventional mesons listed in Table 4.1 with
corresponding quantum numbers by the Crank Nichelson Discritization and finding
that masses obtained by both of the methods are identical.

The Figs.(4.1-4.4) show the dependence of n, J/1, he, and x. normalized radial
wave functions on the radial separation r between the quark and antiguark. These
graphs show that the radial wave functions of n, hie, Xe, and J/v mesons have the same
properties as that of hydrogen atom radial wave function, i.e. they behave as r* for
small inter quark distances and decrease exponentially at large inter quark distances.
Figs.(4.1-4.2) are for L = 0, so these graphs are similar to rPexp(—r). Figs.(4.3-4.4)
are for L = 1, so these graphs are similar to r'ezp(—r). As L increases, the wave
function’s peak goes away from the origin. This means that centrifugal term has
more effects on wave function than that of the hyperfine term. One possible reason
is that we are dealing with heavy quarks so the 1 Jm? factor (shown in eq.(4.1.1)) of
the hyperfine term becomes very small.

The normalized wave function U(r) is used in the further calculations for root

mean square radii and radial wave functions at origin. To find the root mean square
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Figure 4.3: The radial part of h. meson wave function with respect to r.
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radii of the ¢ mesons, we used the following relation:

(r?) = 1;'-/ U*riUdr. (4.1.4)

These radii can be used to find scalar form factors [40] for charmonium mesons, along
with energy shifts [41] and magnetic polarizabilities [41].

In ref. [76], for normalized wave function
U'(0) = R(0) = Vaxy(0) (4.1.5)

is used. Thus the derivative of U(r) at r = 0 is calculated initially for conventional
charmonium mesons to find |[R(0)]* and that is described in this section. |R(0)[?
is used in many applications of high energy physics such as to calculate the decay
constants [42], decay rates [42], and differential cross sections [43] for quarkonium

states.

4.2 Characteristics of Hybrid Charmonium Mesons
The Potential Model for Hybrid Charmonium Mesons

The centrifugal term for the hybrid mesons replacing the last term of eq.(4.1.1)
is written in refs. [77, 33 as

LL+1)-2A%+< J; >
2pr?

. (4.2.1)

where A is the projection of the total angular momentum .J, of the gluonic field.
The states with A = 0,1,2, 3, , .... are usually represented by the capital greek letters
LI A, @, ... respectively. We are interested in finding the masses and root mean

square radii of the hybrid states 07,17, and 2*~. In lattice simulations, these
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Table 4.2: The quantum numbers of ¢z hybrid mesons with 07, 17F and 2+~ JP¢
states.

= i LIS|A|<JI;>
|| 3ae® g Ao i O B 5 2
A 13112 2

states can be generated from the I1, potential. For the II, potential, < Jg >= 2 and
A =1 [33]. Therefore —2A? + (J2) = 0, so centrifugal factor for the hybrid mesons
is LLL+1)/2ur®. Inref. [33] J =L@ 8, P =¢e(—1) and € = en(—1)L+A+8
with €, = £1. Therefore with same quantum numbers (L.S), different J7C states
are possible. L and S for these hybrid J”C states are shown in Table 4.2 (as given in
ref. [78]). For the excited part of quark antiquark potential 7 /r is used in the flux tube
model [17]. Iu this chapter, we also use the chapter 3, ansitz of the form Aexp=5"
for the excited part of the quark antiquark potential; this ansatz is a smeared form
of <. Detailed description is already given in chapter 3 after eq.(3.1.1), along
with the value

A = 1.8139266GeV, and B =0.0657212GeV>,

fitted to the lattice data mentioned there. We calculated y*(as defined in eq.(3.1.2))
for Aexp~?" and x/r, and found that the x* for Ae=5" is lesser than that for xfr.
This means that excited state potential in form of Aexp(—Br?) have a good agreement
with QCD simulations [19] as compared to «/r. This new potential form is already

used in a more complicated work reported in chapter 3. and ref. [79]. Using this, we



can write the quark antiquark potential in excited state gluonic field as

V(r)= % T br + o {ﬁ} e " 5.5+ 2ur? :‘ |
4.2.2

Characteristics of Hybrid Charmonium Mesons

Using the excited state potential of eq.(4.2.2) along with the above mentioned val-
ues (after eq.(4.2.1)) of A and < J? >, the energy eigen-values and the corresponding
wave functions are found by using the same technique as employed for conventional
mesons (mentioned in section 4.1). These eigenvalues plus the constituent quark an-
tiquark masses are taken to be the masses of the hybrid mesons corresponding of
Table 4.2 hybrid mesons. Then we normalized the solution of Schrédinger equation
and found the root mean square radii of the hybrid mesons by using eq.(4.1.4). The
normalized solutions for charmonium hybrid mesons are graphically represented in
Fig.4.54.64.7, and 4.8, In fig.4.5 and 4.7, the wave function is plotted by using the
excited state potential in the form of Aexp(—Br?) used by us. The Fig.4.6 and 4.8
are drawn by using the excited state potential in the form of x/r of the flux tube
model.

These figures show the wave function dependence on L and S. Therefore the
mass and root mean square radii of 0=, 1+ and 2+~ J”C states also depend on the

quantum numbers L and S. We also found |R(0)|* for hybrid mesons using eq.(4.1.5).
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Figure 4.5: Hybrid charmonium meson radial wave function for 0=, 17" and 2%~ J Fe
states with L=1, S=1 and excited gluonic field potential in the form of Aexp(—Br?).
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Figure 4.6: Hybrid charmonium meson radial wave function for 0+,1~+ and 2+
JPC states with L=1, S=1 and excited gluonic field potential in the form of x/r.



1.2 S~
)/" 5
1'0 r'r \lu
f \
___-ﬂ.ﬂ ‘Hlll \'.
- / LY
E06 / \
[ ,-" \
04 / A
/ \
0.2 /
: ' \a
L . . e
05 10 15 2.0 25 3.0
rifm)

Figure 4.7: Hybrid charmonium meson radial wave function for 0+~ 1-* and 2+-
JPE states with L = 2 , § = 1 and excited gluonic field potential in the form of
Aexp(—Br?).
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Figure 4.8: Hybrid charmonium meson radial wave function for 0=, 1~% and 2%~
JPC states with L=2, $=1 and excited gluonic field potential in the form of = /r.



Chapter 5

Results and Conclusions

In this chapter, results are reported in three sections. In the first section, transition
amplitudes, phase shifts, and energy shifts (defined above in eqs(3.5.15,3.5.16.3.5.19,3.5.21))
are reported for the meson-meson system (ignoring the spin) in six basis (three for
ground state gluonic field and three for excited state gluonic field) by considering
the four static quarks. Magnitudes of phase shifts of eq.(3.5.19) and energy shifts
of eq.(3.5.20) averaged over the 0 GeV to 2 GeV center of mass energy range are
also reported for the ground state and excited state gluonic field. The comparisons
of ground state results (average phase shift and energy shift) with excited state re-
sults are also included in this section. As mentioned in chapter 3 after eq.(3.4.6),
for ground state gluonic field, the results are independent of f(the angle between R,
and Ry) so partial wave analysis are not possible for ground state gluonic field. At
the end of this first section partial wave analysis is reported for meson-meson systen
phase shifts (or negative of transition amplitude) when the gluonic field is in the

excited state. As mentioned above in chapter 3, all these quantities are calculated
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using the Born Approximation, resulting in Ty = T2 = 0. The Born approximation
violates the unitarity condition and if we use the unitarity condition, we got relations
reported in eqs.(3.5.27,3.5.31) between off-diagonal and diagonal matrix elements.
In section 2. the results for non-zero Ty, are reported. In section 3, the results for
masses, root mean square radii, and | R(0) [* of conventional and hybrid charmonium
mesons are reported by including the spin and the quark dynamics along with gluon
dynamics. Based on these results, we also include some predictions for Expsrﬁmentnlly

measurable quantities.

1-Results for Meson-Meson Systems in Four Basis

for Static Quarks

1- The parameters values used in the numerical work are written in Table 5.1.
Here d is the size of meson, w and C related to d as defined above in chapter 2 in
paragraph after eq.(2.3.18). The parameters d. w, C, and C are discussed in the
paragraph after eq.(2.3.18). The parameters A, B, n, p are related to gluonic excited
states discussed after eq.(3.1.1) and eq.(3.1.3).

2_The transition amplitude Tyz, from one meson-meson ground state to other,
are calculated by using eq.(3.5.15) with ky = 0.6 [45](without the incorporation of
gluonic excited states). Its dependence on the center of mass kinetic energy is shown
in Fig.5.1 below. As it is noted that ~Ty; = phase shift is less than 1, so these
results shows the validity of the Born approximation that we have used in chapter 3.
In result 4 we compare the phase shifts (in radians) of this many body ground state

gluonic field model at ky = 0.6 with the phase shifts obtained from a model that is
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Table 5.1: The parameter values used in this work

The parameter | Parameter’s used value
1.16 GeV ™"
1.4794 GeV
0.048GeV*

0.0036 GeV™/?
0.5023 GeV

-0.0700 GeV*®
0.5651 GeV

1
0.6 or 1.51
0.18
1.8139 GeV
0.0657 GeV?
0.5461
0.1425GeV*
1.0946 GeV

Qs pafFfiITqQaQEe==3Ia

extended to gluonic excitations along with changing ky = 1.51.

3- The transition matrix element T)y., for transition from ground state to excited
state gluonic field with kf = 1.51, depend on the parameters ¢ of eq.(3.0.6), and f* of
eq.(3.0.3). Ti2- also depends on # (the angle that P; makes with P; and P, makes
with Pg,). We take parameter f* as a constant as discussed earlier in chapter 3.
For € = 2, we take different values of f® to see the effects of f* on Tys.. Figs.5.2
to 5.6 show the dependence of T3 on f* at angle # = 0, 30, 60, 75 and 90 degrees
respectively. For € = 1/2, the dependence of T}, on f* at # = 90° is shown in Fig.5.7.
And for € = 1, the dependence of T}, on f* at # = 90° is shown in Fig.5.8. These
graphs show that the phase shift (equal to —T13.) is increasing with the increase of
f. |
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Figure 5.1: A graph between energy and Tj for ground state at ky = 0.6.
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Figure 5.2: A graph between energy and Tya» at 6 = 0° with ¢ = 2 for different values
of fo. The curve with dots is for f* = 0.015, with lines plus points is for f* = 0.05,
with lines is for f* = 0.08, with points is for f¢ = 0.1, and with steps is for f* = 0.15.
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Figure 5.3: The same graph as Fig.5 but with 8 = 30°
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Figure 5.4: The same graph as Fig.5 but with @ = 60°
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Figure 5.5: The same graph as Fig.5 but with § = 75°
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The same graph as Fig.5 but with 8 = 90°
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Figure 5.7: A graph between energy and Thy. at § = 90° degrees with € = 1/2 for
different values of fo. The curve with dots for f* = 0.015, with lines plus points is
for f* = 0.05, with lines is for f* = 0.08, with points is for f* = 0.1, and with steps
is for [* =0.15
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Figure 5.8: The same graph as Fig.10 but with € = 1
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4- For the center of mass kinetic energy range 0 to 2 GeV, the average of the
modulus of phase shifts (excluding excited states) is equal to —0.0369 radians at k; =
0.6. But if we change the value of k; from 0.6 to 1.51 and also include the excited state
gluonic field, this average meson-meson phase shift again becomes (—0.0218 —0.0152)
radians = -0.0370 radians by choosing f* = 0,03 and @ = 90° with ¢ = 2. This
means that a sum-of-two-body potential model can replace to some extent many-
body potential terms in a tetraquark system by including the gluonic excitations.
(An exact sum of two body terms would required f, = 1, though.) In above, —0.0218
radians is the phase shift due to ground state gluonic field at ky = 1.51, and —0.0152
radians is the phase shift due to gluonic excited states.

We have also explored the results with e = 1/2 and € = 1. As € is proportional to
the potential matrix elements taken between ground and gluonic excited states, when
we replace e = 2withe =1/2 or 1.1t has no effect on T2 and average phase shift.
But for ¢ = § with inclusion of gluonic excitations, now the values f* = 0.08 and
f = 75° almost restore the average phase shifts for ky = 1.51 to (—0.0218 — 0.0149)
radians = -0.0367 radians. (The significance of the first and second term is as before).
For ¢ = 1, at ¢ = 0.055 and 6 = 90°, the average phase shifts for k; = 1.51 becomes
(—0.0218—0.0150) radians = _0.0368 radians. This almost restoration again indicates
that perhaps we can always choose parameters of the model so that with an inclusion
of the gluonic excitations the stm-of-two-body potential model can effectively replace
many-body potential terms in a tetraquark system.

5 The effects of meson-meson interaction are also observed through energy shift
by using eq.(3.5.21). Here Tq = 0 with i = 1,2. In [ Jﬂ':de, we have chosen

E? = 5.9176 GeV, the value of energy for which center of mass kinetic energy becomes




zero. The intermediate energy state EY depends on the state of gluonic field ( [2), |2*)
are only possible states that couple to |1)) For the gluonic ground state ([2)), E} =
5.9176+ 0.3380P2 (calculated using eq.(3.5.10) with P?(1) = P?); and for the excited
state gluonic field (2°)), E] = 5.4638 + 0.3380Pf, (calculated using (3.5.10) with
P?(1s) = PL). At ky = 0.6 and E, = 5.9176 (i.e. at the threshold), the shift to the
ground state meson-meson energy is found to be E; = E —0.7268 GeV excluding the
gluonic excitations. If with increasing ky to 1.51 as usual and including the coupling
to the gluonic-excited meson-meson state, we want to restore the same energy shifts

we can get to (with same origin of the first and second correction terms)
E; = E? + (—0.0950 — 0.6371)GeV = E? — 0.7321GeV

if f* = 0.14 is used. This shows that gluonic excitations can effectively replace the
many terms for energy shifts as well. We note that the energy shift is independent of
f, the angle between R, and Ry or Py and Py or Py, and Pa.. The energy shifts we
have reported here can be compared with the hadron-loops-generated mass shifts to
charmonium states reported in Table III of ref. [80]. It is difficult, though, to conclude
anything from this comparison as in ref. [80] the integrand contains squares of the
matrix elements of the *F, meson decay amplitudes whereas in our integrands in
eq.(3.5.21) contain squares of meson-meson couplings. Thus though the intermediate
states in both works arve respective hadron loops qdqq, the initial and final states in
ref. [80] are ¢ but in our work initial and final states are also gggg. Only the glounic-
exited intermediate ggqq state (i.e. the hybrid hadronic loops) is common in the two
works, In result 4, it is noted that the average phase shift obtained (for ¢ = 2) by

a model that does not include the gluonic excitations is equal to the average phase
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shift obtained by including gluonic excitations for f* = 0.03, but the energy shift
obtained by both models becomes comparable at f* = 0.14. One possible reason of
this difference in the values of f* could be that the average phase shift is calculated
for the center of mass kinetic energy range in between 0 GeV to 2 GeV, but energy
shift is calculated at threshold center of mass kinetic energy.

6- For the ground state gluonic field, transition matrix elements are 6 independent.
But for transition elements to the gluonic-excited meson-meson state depends on #.
We projected this angle dependence on spherical harmonics Yiy,. The results of this
partial wave analysis are also reported in Figs.(5.9-5.11) for m = 0 and f* = 0.03 (this
value is used above in result 4). The reason for truncating the spherical expansion to
m = 0 harmonics is that that we have have no dependence on ¢, the azimuthal angle.
This analysis shows that partial wave amplitudes are decreasing as we go from the
coefficient of Yy to that of Yz coefficient i.e. from S-wave to H-wave. Figs.5.9 and
5.10 are for the even wave (D,@,...) ratios with S—wave. S/D ratios are also used
in ref, [81, 51], Our graphs shows that the S/G ratio is too much large as compared
to the S/D ratio. It means that S—wave is dominant over G—wave. In Fig.5.11,
ratios of odd waves with S—wave are shown. We noted that 5§/H is too much large
as compared to S/P. This shows that H, J, ... waves can be neglected as compared
to S—wave. The partial wave analysis indicates the presence of P, D, F, G, H waves
only when we include the gluonic excitations in combination with essentially sum-
of-pair-wise approach. It means that, in the presence of gluonic excitations, an £ =
0,1,2,3, ... ground state meson-meson system may couple to £ = 0,1,2,3. ... hybrid

hybrid systems as a intermediate states or as final states.
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Figure 5.11: A graph between T, and S/P, §/F, S/H ratios. Dashed line is for S/ P,
thin solid line is for S/F, and thick solid line is for S/H. S§/P and 5/F are so small
as compared to S/H that the curves for S/P and S/F are lie along horizontal axis.
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2- Diagonal elements (7}, or Ty) and unitarity con-
dition

As Ty; = Ta. so the results related to imaginary part of T}, are reported here. The
same results will be for Ta.

1- The real part of T}, = 0 as given above in chapter 3 in eq.(3.5.27)). To calculate
the imaginary part of 113, eq.(3.5.31) is used. For the gluonic field in ground state,
the basis states are | 1), | 2). so Ty is zero (as | 2*) not exist for ground state gluonic

field). Therefore, eq.(3.5.31) reduces to

p—

1
ImT“ = E + E | e 4T;2T£2. (5']1]

Hence for ground state gluonic field 7y, depends only on Tyg. Tia is calculated by using
eq.(3.5.15) with k; = 0.6 [45](without the incorporation of gluonic excited states).
Substituting the results for T}, in above eq.(5.0.1), we calculated T1y. Eq.(5.0.1) shows
that for each value of center of mass kinetic energy (77.), ImTy, has two different
results; obtained by using the eq.(5.0.1) in the form of

i)

1
Imly, ==+ %\,;‘1 — 4T\a T3, (5.0.2)

]

1 1
ImTy; = E = E'\f 1- 4T12??-3. {5.['3]

Fig.5.12 shows the dependence of imaginary part of Tj; on center of mass kinetic

energy with using the relation given in eq.(5.0.2) and Fig.5.13 shows the dependence
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Figure 5.12: a graph between energy and imaginary part of Ty, for ground state

obtained by using the relation given in eq.(5.0.2)



97

0,05/ {\

l_:u.u::-
‘6
t
& 0,03t
e
o
|c I
gum[
0.01 \
e
o
% o H“'--—-a el |
0.5 1.0 15 T 2.0
T. (GeV)

Figure 5.13: The same graph as Fig.5.12 but obtained by using the relation given in
eq.(5.0.3)
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of imaginary part of T}, on center of mass kinetic energy by using the relation given
in eq.(5.0.3) for ground state gluonic field.
2- With the incorporation of excited state gluonic field, £y changes from 0.6 to

1.51, as discussed in section 1 of this chapter. Now using eq.(3.5.31) in the form of

fan — % + -2];1';"1 - ‘lT]_-zTﬁ = 4T12-TF3-. [5[14]

imaginary part of T, is calculated. Fig.5.14 shows the relation between center of
mass kinetic energy and this imaginary part of T}, by including the excited state

gluonic field. Fig.5.15 shows the relation between center of mass kinetic energy and

imaginary part of T}; with

DTy = 5~ 5/T= Ty = i Ty (5.0.5)

.
2
3- The phase shift is calculated for the diagonal element of the transition matrix, T},
by using the relations written in eqs.(3.5.32,3.5.33). For the center of mass kinetic
energy range ) to 2 GeV, the average of the modulus of phase shifts (excluding excited
states) is equal to —0.0068: radians at ky = 0.6. But if we change the value of ky from
0.6 to 1.51 and also include the excited state gluonic field, the average meson-meson
phase shift again becomes —0.0068¢ radians by choosing f* = 0.0258 and 6 = 90°
with € = 2. This means that a sum-of-two-body potential model can replace to some
extent many-body potential terms in a tetraquark system by including the gluonic

excitations even if we not .
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Figure 5.14: a graph between energy and imaginary part of 7y, for excited state
gluonic field obtained by eq.(5.0.4)
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3- Properties of charmonium Hybrid mesons

In all above results effects of gluonic excitations are studied for meson-meson systemns
for static quarks with c-flavour by neglecting the spin. Now following results are
obtained by incorporating the spin and quarks dynamics in a meson system composed
of quark anti-quark having c-flavour,

1- Our calculated masses and root mean square radii for conventional charmo-
nium mesons obtained by solving the eq.(4.1.3) with potential written in eq.(4.1.1)
are reported in Table 5.2 and 5.3 along with the experimental and theoretical pre-
dictions of the other works. We observed that our results are in good agreement
with the experimental and existing theoretically predicted values, which shows the
validity of our method. Quantum mechanically, when L increases, centrifugal barrier
increases so particles become less bound implying increased root mean square radii.
Our calculated root mean square radii are in agreement with this expectation.

9- With the parameters (given in Table 5.4) for the 0%, 17" and 27~ JFe
states, masses and root mean square radii are calculated for the charmonium hy-
brid mesons., In Table 5.4, masses of charmonium hybrid meson are calculated for
JPC states 07,1~ and 2*~ using the excited state gluonic field potential in the
form of A exp(—Br?) and =/r. In Table 5.5, root mean square radii are calculated
by taking the excited state potential in the form of A exp(—Br?) and 7 /r. For com-
parison with earlier works, masses of ¢ hybrid mesons with 0=, 17+ and 2+= JF¢
states are reported in Table 5.6.

3-For conventional mesons, |R(0)[? is reported in Table5.7. |R(0)* of ¢ hybrid

mesons for 0%=. 1+ and 2% JPC states is equal to zero by our calculation and
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Table 5.2: The experimental and theoretical masses of some charmonium meson.
The experimental mass is the average PDG  [46] and rounded to 0.0001 GeV. Our

calculated ar to 0.0001 GeV,
Meson | L | S | Our calculated | Theor. mass [46] Exp. mass
nass with NR potential
model
GeV GeV GeV
e 010 2.9816 2.982 2.09792 £ 0.0013 [46]
Jiy |0]1 3.0900 3.000 3.00687 £ 0.00004 [46]
he |[1]0 35156 3.516 3.525 + 0.00055 [46]
X 1|3 3.5246 3.556 3.50618 £ 0.00013 [82]

Table 5.3: The theoretical root mean square radii of charmonium meson rounded to

0.001 fm.

Meson | L | S Theor. {r*) (83|
{r?) with

potential model
fermi fermi
e 010 ] 0365 0.388
T/ |0 1]0414 0.404
he 1(0]0674 0.602
Xe 1]1]0685 0.606

I LISTA[<Ji>] Masswith Mass with
excited potential | excited potential
as A X exp(—Br?) as /r
GeV GeV
1 - [T |11 2 10610 13571
v ar= 21111 2 4.1433 4.4632

Table 5.4: Our calculated masses of ¢ hybrid meson 0*~, 17" and 2t JPC states
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Table 5.5: Our calculated root mean square radii of ¢& hybrid meson 0¥=,17* and

'?.LE‘;,M _
T fi LIS|A

<Ji> (r?) with [r?) with
excited potential as | excited potential as
A x exp(—Br?) w/r
fmm fm
gr= %2711 2 2 1.2458 1.1061
g L 3 IE T 2 1.3203 1.2280

Table 5.6: The mass predictions of 1-*,0% ", and 2*~ states

Predicted masses (GeV) models
=* 0+ 2T
=~ 3.9 (85 bag model
4.2-4.5 |86 flux tube model
4.19 £ sys.error [87] [66] | = 4.5 [88] =~ 4 (88 heavy quark LGT
4.7 (89 4.58 [89]
4.1-4.5 (QCD sum rules
1360 — 4.420 [90, 01, 97] | 4.714(52) [02] | 4.895(38) [93] | quenched lattice QCD

this result agrees with ref. [84] which writes "models of hybrids typically expect the

wave function at the origin to vanish”. We noted that hybrid mesons’s masses are

greater and radii are lesser when the excited potential is in the form of 7 /r instead of

A exp(—Br®). We also noted that the masses and root mean square radii of the hybrid

mesons are greater than ordinary mesons of same flavour and quantum numbers. Since

0*=,1-%, 2% states are not possible with quark model quantum numbers, so we can

not compare these J7 states with conventional mesons,

5.1 Conclusions

In this thesis the gluonic excitations are studied

1) by neglecting the spin and using the quadratic potential approximation for
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Table 5.7: |R(0)]? of ¢& meson

Meson | L | S | our predicted normalized [R(0)[ |
(f)~*
7 010 1.9767
Jfp [0]1 1.10865
fie 110 = 1
i I K < 104

meson-meson systein, and

2) by introducing spin and using the realistic coulombic plus linear potential for
mesons.

The understanding of gluonic excitations is necessary to solve the mysteries of
hadron spectroscopy. To understand the quark exchange effects in meson-meson sys-
tems (or multi-quark systems), we have used a QCD based potential model. We used
a potential model matrix in four basis which at quark level is known to provide a good
fit to numerical simulations of a ¢*§* system in pure gluonic theory for static quarks
in a selection of geometries. Then we have used a formalism of resonating group
method and Born approximation to study the interactions of meson-meson systems
having dynamics resulting through quark exchange effects using wave functions of a
i potential within a cluster. The approximations used in chapter 3 are mentioned
in section 3.2. The parameters used in this work are mentioned in Table 5.1.

As mentioned above in results 4 & 5 in section 1, we compare our meson-meson
transition amplitudes and polarization potentials (in the respective center of mass
energy ranges) in an extended almost sum-of-pair-wise approach and a many-body-

term based one. Apparently this comparison has even a qualitative difference in case
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of the transition amplitudes (7}, and T};) which have a dependance on the scattering
angle (meaning coupling to P and higher orbital excitations in the final channel) if
we use gluonic excitation in combination with essentially sum-of-pair-wise approach
(can see Figs.(5.2-5.6)) but we get the same transition amplitude for all the scattering
angles if we use a many-body potential linking ground-state clusters only. But a
recent work [32] indicates that the absence of angle dependence is an artifact of the
unjustified overly simple form of the gluonic overlap factor f (defined in eq.(2.3.2));
using a proper lattice-gauge theory-based form of f (defined in eq.(2.3.1)) also results
in this angle dependence and the resulting coupling to higher orbital excitations.

The results showed that for ground state basis, the average phase shift and aver-
age energy shift are decreasing with the increase of parameter ky. But if we include
the excited states basis, then, by the proper adjustment of parameter f°, we com-
pensated the decrease in average phase shift and average energy shift. This means
that at k; = 1.51, the interaction between ground states decreased aud this decrease
is compensated by the incorporation of excited states.

The meson-meson to hybrid-hybrid coupling worked out in this thesis may affect
properties of any system that is presently understood to be a purely ground-state
meson-meson system. This means, in addition to the energy shift of the meson-meson
molecules due to coupling to hybrid-hybrid systems, pointing out the possibility of
a hybrid-hybrid component in the wave functions of mesons like X(3872), X(3940),
Y'(4260), and Z(4433) which are considered to have ¢°§® components. And in the
above paragraph, we indicate that this coupling may also include coupling to orbital
excitations. Thus we hope to point out a new dimension in discussions about the

structure of scalar mesons as well.
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When we concentrated on a ¢ pair but with spin, flavour, and realistic quark
anti-quark potential in chapter 4, we concluded that spin angular angular momentum
have very little effects on the mass and size of meson as compared to orbital angular
momentum. It is also concluded that with the increase of orbital angular momentum,
the size and mass of the meson increases. We also noted that hybrid mesons’s masses
are greater and radii are lesser when the excited potential is in the form of m/r
instead of Aexp(—Br?). We also noted that the masses and root mean square radii
of the hybrid mesons are greater than ordinary mesons of same flavour and quantum
numbers.

As scalar form factors [40] and energy shifts [41] are proportional to square of root
mean square radii and magnetic polarizabilities [41] are proportional to negative of
square of root mean square radii, we predict that magnitude of these quantities for
hybrids are greater than those for conventional mesons of the same quantum numbers.
We also noted that [R(0)]*=0 in case of hybrid mesons. Using this result, we can
predict that decay constants [42], decay rates [42], and differential cross sections [43]

of hybrid mesons are zero as these quantities are proportional to |R(0).



APPENDIX

In this thesis we use the colour basis given through egs.(2.1.2,3.0.1). In the
notation of Appendix C of ref. [22], the diquark-diantiquark system have colour basis
312351), |61205;) and meson-meson system have colour basis (|1,515), |B3827)) or
(11;5125), |8,38.3)). Here [3;235;) represents that quarks 1 and 2 are in antisymmetric
representation 3 of SU(3), and antiquarks 3 and 4 are in antisymmetric representation
3 of SU(3). We use the meson-like base states (1312337). |1;3120) 1813837) [B13823) -

These are written in terms of the orthonormal diquark-diantiquark basis in Appendix

C of ref. [22] as
8,3847) = —\/gﬁm?oﬁ} + \/_%-Iﬁmﬁu}, (5.1.1)
Lygla) = \glﬁmﬁﬂ} + ﬁiﬁmﬁﬁl (5.1.2)
813843) = \/g!lmlz:i} = @Iﬁzagﬂ}- (5.1.3)
Li3la) = ﬁi‘im]ﬂ} % \/glﬁmﬂgz}- (5.1.4)

To calculate the matrix elements of the F;. F; operators (introduced above in eq.(3.0.6)),
for different values of indices ¢ and j, the results given in the Appendix C of ref. [22]

are used along with the above eqgs.(5.1.1-5.1.4) and following group theory results
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given in [55]

2
1117les) = —\Elglﬁm} - \/;'51233'&}?

1
(81381 /Fi.F[81585) = ¢

and

The matrix elements of the F.Fj operators are

F\.F,
Fy.Fy
F\.Fy
Fy. Fy
F,.Fy
Fy. Fy

-

=oowe O O e O

Il}t =

|

103

(5.1.5)

As written in chapte 2 that the gluonic state | k), is a state approaching to colour

state | k). in the limit of quark anti-quark separation approaching to zero.

F\.F;
F.F;
Fy.Fy
E Fy
Fy.Fy
| F3.Fy

(1]

F.Fy |
F,.F
Fy.F,
Fy. Fy
Fy.F,

etd]

Fy.Fy |

!2}1: =, (2|

F.F;
F\.Fs
F\.F,
Fy.Fy
Fa.Fy
Fy.Fy

F.F
Fy.Fs
Fy.F,
Fy. Fy
Fy.F,
Fy.Fy

¥

Wi Ele Sid Olda D)k Ol

|

o &= Ko gl g &

[

i

(5.1.6)

(5.1.7)



(2|

(2|

F.F,
Fy.Fy
F\.F}
Fy.Fy
Fy. Fy
Fy.Fy

o(1]

(2l

F\.F,
Fy.Fy
Fy.Fy
Fy. Fy
Fa. Fy
F3.F;

Is}c =a {3'

o 5
F\.F
F,.F,
Fo.F
F;. Fy
| F3.F, |

[ FL.E
Fy.Fy
F,.Fy
Fy.Fy
Fy. Fy
| Fy.Fy

[2)e =

FF
F\.Fy
F\.F}
Fy.Fy
F>.Fy
Fy.Fy

12%)e

11)e =

|2) =
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(5.1.8)

(5.1.9)

(5.1.10)

(5.1.11)



[ F\.Fy
Fi.Fs
F,.FE.
e i (it N %
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F . F

| F.F,

[ F.F
F.Fy
F.Fy
Fy.Fy
Fy.Fy
|y Fy

F\.Fs
F\.F;s
o
21| B . =
Fa.F;
Fs. Fy

g F,qu ] |_

I

A1 1)

(I
&~ %2

|

Iz Zl= 5= gl

=

et i Ol G

|

L -

| SO .
)= =3 @i=1 A=) Sl=1 |
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(5.1.12)

(5.1.13)

(5.1.14)

The gluonic state | k), is defined as a state approaching to colour state | k) in the

limit of quark anti-quark separation approaching to zero.
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Abstract

We study meson meson interactions using an extended g7 (g) basis that allows calculating cou-
pling of an ordinary meson-meson system to a hybrid-hybrid one. We use a potential model matrix
in this extended basis which at quark level is known to provide a good fit to numerical sitrulations of
a ¢°§* system in pure gluonic theory for static quarks in o selection of geometries. We use a combi-
nation of resonating group method formalism and Born approximation to include the quark motion
using wave functions of & ¢f potential within & cluster. This potential is taken to be quadratic T
ground states and has an additional smeared 1 (Gaussian) for the matrix elements botwoen hybrid
mesons. For the parameters of this potential, we use values chosen to 1) minimize the error resulting
from one s of o quadratic potential and 2) best fit the lattice data for difference of ¥, and 11,
conligurations of the ghionic field between o quark and o antiguark. At the quark (static) level,
including the gluonic excitation was noted to partinlly replace the need for introducing many-body
terms In n multi-quark potential. We study how successful such a replacement is at the {dynamical)
hadronic level of relevance to actual hard experiments, Thus we study effects of both glwonic exci-
tations and many-body terms on mesonic transition amplitudes and the energy shifts resulting (rom
the second order perturbation theory (ie. from the respective hadron loops). The study suggests
introducing both energy and orbital excitations in wave functions of scalar mesons that are modeled
a5 meson-meson molecules or are supposed to have & meson-meson component in their wave functions.

1. INTRODUCTION

Given the availability of both the numbers generated by lattice simulations of quantum chromodynum-
ics and continuum models of the hadronic systems, an effective use of the numbers could be Lo improve the
models through constraints of getting a least chisquare difference with the numbers for the ecorrespond-
ing discrete quarks and antiquarks configurations, Such lattice-improved models can then be reasonably
used for all spatial configurations to eventually give dynamical predictions for experimentally moeasurable
quantities like meson masses, meson-meson bindings and cross-sections and shifts (polarization poten-
tials} to meson masses arising through meson-meson loops, ete. For one pair of quark and antiquark, &
well established such use of lattice results is substituting in a Schrisdinger equation a Coulombic-plus-
linear quark-antiquark potential supported by lattice QCD caleulations (see ref. [1, 2] and others) for
the ground state of the ghuonic field between a quark and antiquark. Now that lattice results for excited
state of the gluonic field are also available for years, even some dynamical uses of excited state gluonic
field potentinls have been worked out [3). So far such uses are either limited to numerical calculations
without an explicitly written excited state gluonic field potential or the potential used ariginate from flux
tube [4] or string models [3]. Each of these approaches hns its usefulness. What we add, through the
present paper, to this series of works is

1) ourselves writing an analytical quadratic plus exponentially falling expression for the excited state
gluonie field potential between a quark and antiquark and fit its parameters to the lavtice deti for the
excited state gluonie field values available for discrete quark antiquark separations in [6] , and

2) use models and fits of ref. [7] to extend the model to a system of two quarks and two antiquarks
and to its gluonic excitations. Precisely, we replace the numerically fitted 0.562 + 0.0696r ~ e
ground state quark sntiquark potential used in ref. [7] by & constant plus guadratic confining potential

*o mail: poshinakbar@ynhoo com
e mail: bilalmasud Gchep.puedu.pk




term and the additional T — 431 4+ 388 potential for the ¢f gluonic excitation by one of the form
Aexp(—=Br?). We have to do this, because we are doing a full meson level dynamical calculations for
transition amplitudes from one set of quark-antiquark clusterings (mesons) to the other. From these
amplitudes we also calculate polarization potentials for a meson-meson system. Thus we incorporate
quark motion (precisely, wave functions for different qqqq spatial confignrations) as well, whereas the
model of ref. [7] specializes to a fixed configuration of the two quarks and two antiquarks. We have to
repluce the resulting potentinl formulas of ref. [7] by simpler ones that can be symbolically integrated a
later stuge, after necessary multiplications by wave functions of gg¢g positions, to complete the adiabatic-
approximation-based treatment of a ggqq system.

Being not limited by such demands of later integrations, the form and then parameters values of the
continuum gggg model proposed in ref. [7] were chosen to simply minimize

1 NG}
oS- s, ®

=]

=

where N(G) is the number of data points for geometry G. The ggqq geometries ref. [7] numerically
worked on were (quarks at the corners of) squares, rectangles, tetrahedra and some other less symimetrie
geometries @, N, P and L (linear). For each data point ¢ , the lattice energy E, wns extracted by solving
the following eigenvalue equation

whial = AW ag (2)

for J..fﬁ that approaches to exp(—V;) as (Euclidean time) T —+ oo, and then subtracting the energy of
two separated g clusters from the Vi to get the lattice-generated qqq binding energy E; for the data
point, The values of the J.E”. and thus of E;, depend only on the numerical values of the elements Wil
of the mutrix of the Wilson loops, The values of k and ! depend on the number of Wilson loops evaluated;
for the qqgi system these were taken to be 1 and 2. Two of the corresponding Wilson operators (whose
vacunm expectation values are the Wilson loops W) are shown for example in Fig. 1.5 of [8]. Knowing
the Wilson loops, the procedure of getting V; can be found for example in egs. 4, 11, 12 and 15 of ref. [a].
The arguments for continuum limits being achieved before extracting E, are given in ref. [10].

The M, in eq.(1) are obtained by subtracting the energy of two separated ¢ clusters from the cigen-
values of a matrix obtained through a model of the qqiq system. For this, the model has to give a basis
and an operator ¥V whose representation with respect to the basis gives a potential matric V. M; are
obtained by setting the determinant of V — (M, + Viy)N equal to zero, with Vi being the energy of
two separated gg clusters and N the (overlap) matrix of an identity operator in the basis. Searching
for the model, the simplest way to extend a two-particle potential model to a few-body is to use the
potentinl for each pair of particles in the few-body system and simply add up such two-body potentials,
This approach has been successful in atomic and many-nucleon systems; the corresponding two-body
interaction being described by Coulombic and Yukawa potential, for example. For a hadron (or a system
of hadrons) composed of many quarks, antiquarks and the gloonic field, the lowest order perturbative
Feynman amplitudes are of this sum-of-pair-wise form. Though Feynman dingrams themselves become
impractical for typical hadronic energies because of larger couplings, models have been tried which simply
replace the two-body Coulombie potential (essentially o Fourier transform of the Gluonic propagatar) by
more general Coulombic-plus-linear form; see ref. [11]. This approach is not free of problems; for exumple
it leads to inverse power van der Waals' patentinls [12] between separated color-singlet hadrons which
are in contradiction with experimental data. But this model has many phenomenological successes and
it is worthwhile inquiring if

1} it provides a basis and operator to generate a potential matrix, and

2) how good is the chisquare if the eigemvalues of the resulting matrix are used as Af, in eq.(1).

The answer provided by ref. [7] and earlier related works is that the model does generate a matrix of the
required kind. But the resulting chisquare, defined by eq.(1), is too bad; see Fig.4 of ref.[13]. To refine
the model we can improve the basis beyond the {|1),]2),|3)} defined as |7, 14]

1) = (qras)lg2ge).  [2) = (qrqa)lgaqs), and |3} = (qrg2)(qum), ()
and the operator bevond
- P
H:—E[ﬂh-‘- ﬁl +;I!.jFi_Fj. (1)
L



with v, being is the potential energy of a g pair with the gluonic field between them in the ground
state. Or both the basis and the operator can be improved. What ref. 7] does is to improve directly the
matrix (representation) after writing down the underlying basis. They do this in a number of ways. One
model, termed model 11, uses the same {[1),]2),13)} busis but multiplies the off-diagonal elements of the
overlap and potential energy matrices (that is, the representations of the identity and potentinl opurators

Z'I.'.”F;-FJ

i<y

respectively) by a few-body gluonie field overlap factor [ = exp(—byksS) with b, as the tension of the
string connecting a quark with an antiquark, § the area of a surface bounded by external four lines
connecting two quarks and two antiquark and k; = 0.5 approximately; theoretical arguments suggest §
should be the area of the corresponding minimal surface, though in ref. [7] half of a sum of four triangles
was used instead for nmumerical convenience. This model 11 was noted to much reduce, at the quark
level the chisquare of eq.(1). This model has been worked out in [15, 16, 17] till meson-level transition
amplitudes. The dynamical calculations require a kinetic energy term as well. As that is taken, apart
from some technical considerations of hermicity, proportional to the overlap matrix and hence its off-
diagonal elements are also multiplied by the overlap f factor. Thus f provides one parametrization that
conneet QCD simulations with hard experiments.

But model 11 is not the best model of ref. [7); the paper continues to then improve the basis by
including the gluonic excitations as well. That is, it extends the (|1),12),|3}} basis by including the
states

11%) = {q1qa)g(gegade:  12°) = (maa)y(g2as)g, and |3} = (9192)4(0aga)5- (5)

Here (qiga)y denotes a state where the gluon feld is excited to the lowest state. (The excited states of
gluonic field can, for example, be seen in the QCD munerical simulations; see ref.[18, 6] and others). When
the overlap, potential and kinetic energy matrices are written in this extended basis, their order increasces
to 6 x 6 rather than previous 3 x 3. Ifin addition, we introduce many body terms in this extended model,
new kind of gluonic ficld overlap factors (f*, f©) appear in the off diagonal terms resulting in what ref. [7]
terms model 111 giving the least chisqure in ref. [7]; (see eq.(15) below); our truncation to 4 x 4 matrices
is explained before this equation. As mentioned above, the purpose of our present paper is to work out
this improved model 111 of ref. [7] till the meson-meson scattering amplitudes and energy shifts. As this
improved model 111 includes the gluonie excitations, it consider transitions from four ground state quark
states to the one having gluonic excitations. And by ndding to it the quark motion {wave functions) to
reach the hadron level, we are now able to study transitions from ground state meson-meson systems to
hybrid-hybrid systems,

A worth-mentioning aspect we have studied is the hudron-level implications af the dilferences of the
ghionic-excitation-ineluding model 111 and the sumn-of-pair-wise approach. The quark-level work in ref, [7]
can be interpreted to mean that with suitable extensions and modifications something like a sum-of-pairs
approach can be a good approximation for a tetragquark system as well, It writes At the shortest
distances, upto about 0.2fn, perturbation theory is reasonable with the binding being given mainly by
the |1}, |2), and |3) states inter-acting simply through the two-quark potentials with little effect frun
four-quark potentials”. However, ref. [7] tells, "for large inter-quark distance (greater than 0.5 fermi},
quark-pair creation can no longer be neglected. However, in the intermediate energy range, from about
0.2 to 0.5 fm, the four-quark potentials act in such a way as to reduce the effect of the |1}, |2}, and
|3) states so that the binding is dominated by the [1%), [2*), and |3*} states, which now interact among
themselves again simply through the two-quark potentials with little effect from four-gquark potontiale.”™
This suggests that models involving only two-quark potentials could be justified provided excited gluon
states (such as |1*), |2*), |3*}) are included on the same footing s the standard states |1}, [2),/3). We
have checked if such features survive at the experimentally meaningful hadron level, by comparing the
dynamical implications of

(1) n model extended to the gluonic excitations but otherwise sharing many features with the su-
of-palr-wise approach, with

(2) n model that includes explicit many-body terms but doos not include ghiomic excitations,

Thus we report if after including the ghionic excitations a sum-of-two-body potential model can replace
to some extent many-body potential terms in a tetraguark system even of a hadronic level. Specifically,
we hve calenlated in both kind of models meson-meson transition aiplitudes Ti; from (i) & ground stute



meson-mesen clustering to (j) a different ground-state clustering and to a clustering of ghionic-excited
mesons. Ty are elements of the meson-meson scattering theory T-matrix, can be termed as phase shifts,
transition potentials or meson-meson coupling, and their absolute squares give meson-meson differential
cross sections [11]. Moreover, using these transition amplitudes in the second order perturbation theory
we caleulate shifts in a ground state meson-meson encrgy due to coupling to a different ground-state
clustering and to an excited state meson-meson system (i.e. to hybrid loops). These energy shifts are
what are also termed polarization potentinls [19].

To reach the hadronic level, we have included the quark motion through quark wave functions. To solve
for quark position wave functions, there are a number of methods used such as variational method [20, 21},
Born-order diagrams [11], and resonating group method [22]. Variational approach is used by Weinstein
and Isgur [20, 21] to optimize a meson meson wave function in a quadratic (and later coulomb plus lincar)
potential and a hyperfine term combined with o sum-of-two-body approsch. Then they projected the
meson meson state onto free meson wave functions to estimate o relative two meson wave function which
gives the equivalent meson meson potentinl and obtained the meson meson phase shifts. The similar
results can be obtained by using Born-order quark exchange diagrams [11] in a non-relativistic potential
model ta describe low energy scattering of ¢ mesons, In the present paper, we have used a formalism of
the resonating method as used in [15]. In the resonating group method, the dependence on the internal
co-ardinates of the system is specified before solving the problem to integrate out the degrees of freedom
corresponding to the internal coordinates of clusters of the system. At a later stage, because. of the
complexity of the caleulations we also spucify the dependence on the vectors connecting the centers of
masses of our mesonic clusters, something that is done in a Born approximation. Moreover, we have not
included in our basis an explicit diquark-dinntiquark state. In the weak coupling limit such a state is a
linear combination of the meson-meson states and thus cannot be included in a basis. Away from the
weak coupling this can be included. But its inclusion in the basis did not affect the lattice simulations
reported in ref. (7] and thus we have expanded our two-quark two antiquark wave function in a basis
that is limited to four meson-meson states: ground and excited states for each of the two possible qqqq
clusterings.

In this exploratory work, we have taken all the constituent quark masses to be same as that of
a charm quark and we have taken all the spin overlaps to be 1 without calculating them. Without
incorporating favor and spin depondence, we basically want to study certain features of including the
gluonic excitations in our basis. In section 2, the potential model in the extended basis in the pure
gluonic theory is introduced for the static quarks. Basically, in this section we tell where does the model
of ref.[7] fits in our full scheme that incorporates the quark motion through a resonating group method
formalism which means pre-specifying quark-antiquark wave functions within g clusters. The coupled
integral equations for the remaining inter-cluster wave function ¥x{Ry) are written in section 3. In
section 4, these integral equations are solved to calculate the transition amplitudes and energy shifis.
The numerical results for meson meson system transition amplitudes and energy shifts with concluding
remarks are given in section 5. The partial wave analysis results are also reported in section 5.

2. ¢’ POTENTIAL MODEL (IN THE EXTENDED BASIS)

Using the adiabatic approximation, the total state vector of a system containing two quarks, two
anti-quarks and the gluonic field between them ean be written as sum of product of quark position
dependence function g (ry, ra, ry, ry) and the gluonic field state | k). ("The gluonic state | k), is defined
as a state approaching to color state | k), in the limit of quark anti-quark separation approaching to gero.
Here k=1,2,3,1*,2*,3*.) The function gy (ry, ra, ry,ry) can be written as

¢K{r1|ri1r§1l‘{} - ¢Ku‘#1RK1IK1H‘HL

with K = 1,2,3. R, is the overall center of mass co-ordinate of the whole system.
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Figure 1: Three different topologies of diguark and diantiquark

With the notation of Fig.1, the relative co-ordinates Ry, Ry, and Ry are defined as
1
Ry=5{ntrg-ra—rghy, =h - Tp@ ==
|
Ry = E{r1+l‘1-l‘z—l‘§}+ =T} —TpBa=r2— T3
1
Ry = ﬁir: 4T3 —ry—Tg) ¥y =T —r2,% = Iy — Iy
R; being the vector joining the centers of mass of the mesonic clusters (1,3) and (2,9); similarly about
R; and Rs. Now using the resonating group method, the quark position dependence function can be
written as a product of function of known dependence on R..¥j 2k and of unknown dependence on Ry

i

b (Res Ric, ¥, 5) = Vel Ra)xie (B ) (Y, 26 (6)
Thus, the two quarks two antiquarks state vector can be writicn as
| (qqagsan)) = Y | Kbgve(Re) xR )u (Y 2K ), (1)
k

where

Ol ¥ i B ) = Ealy i JExlZK),s

gx(yy) and £(2x) being the normalized solutions of the Schridinger equation for quadratic confining
potential (written in eq.(10)) for a pair of quark-anti-quark within a cluster. We take

1 5 -3,.!2
elyn) = g exp(= ) "
|
Exclmnc) = {iw;“}imp{_%}'
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Here d is the size of meson (detail is written after eq.(10)) and m being the constitute quark mass. In
our case, m is the mass of e-quark and equal to 1.4794 GeV as used in [23].

After writing the form of the wave vector, we describe our Hamiltonian, starting with the limit when
viuch gluonie feld overlap factor f = f* = f° = 1. In this limit, the Hamiltonian whose representation
matrices in the basis {|1),]2),]3), [1*},]2*),[3*)} would become those in ref. [7] is

H=- Zl: [m; + _Eiii] 4+ Zl:w,- + el )P Fy, (9)
i= i

where v;; is the potential energy of meson for the ground state gluonic field and Avj; is the difference
between ground state and excited state gluonie field potential. We take the kinetic energy in the non-
relativistic limits. This limit is also used in a recent work by Vijande ref. [24] that deals with multiquark
system (two quarks and two antiquarks) to study the spectrum using a string model for the potential.
In ref. [7], potential energy matrix elements are written so that the potential energy for each pair 47 is
equal to vy for the matrix clements of the Hamiltonian between gluonic ground states, and it is equal to
vy + Luf; for the matrix elements between the glionic-excited states, We have modeled these two forms
by taking ¢ = 0 for the ground state matrix elements and ¢ = 1 for the elements between gluonic-excited
states. For the elements between ground and excited state gluonie field, the ¢ value that results from
their parameter ag being fitted to 4 (in their Table 1) is surprisingly 2 and not any value between 0 and
1. A possibility is that this is a result of them taking the area S, we mentioned above in our introduction,
in the form of average of the sum of triangle areas instead of the theoretically motivated minimal surface
orea. Thus we have somewhat explored ¢ = § between 0 and 1 and ¢ = 1 in addition to ¢ = 2 which we
have mainly studied.

In the above equation, F; (operating on iy, particle) has eight components. Each component is equal
to 4 , where A, are the Gell-Mann matrices. We used the potential with the color structure of one
ghion exchange in the form given in ref. (7). With the use of ground state potential v,y in the realistic
coulombic plus linear form, it becomes impossible for us to solve the integral equations appearing below
in eqs.(21-24). Therefore we used the parametrization of the static pairwise two quark potential as

!.I'i; = CTEJ -+ E, I"lt-h 'l,j = ],215.1_ “_0}

I this simple harmonie potential, the parameters ' and w are related to size (d) of wavefunction (£i)
through the relations w = -y and €' = ~ fimw?, and for consistency of the diagonal term of the integral
eq.(21) T = §(Am + & — 2M) GeV [15] with M = 2m = 2.9588GeV being the muss of a charmonium
meson. The parameter d is chosen in such a way to reduce the error resulting from n use of this quadratic
potential instead of the realistic one. The error may be both in the wave functions of the distance between
a quark and antiquark within cluster and those of the vector joining the centers of masses of the two
clusters. As for the first dependence, we found that the maximum overlap integral of each of the wave
functions £x(yy) and £x(#x) of the quadratic potential and that of a mare realistic coulombic plus
linear potential is 99% at d = 1.16GeV . (For the purameters of the realistic potential we used values
ay = (,5461CeV [23] and b, = 0.1425GeV [23] for mesons composed of charm quarks.) This overlap is
shown in Fig.2. A similar work was done in ref. [25] for lighter quarks. They found that the overlap wave
function of SHO (quadratic potential) and that of coulombic plus linear can be made as large as 99.4%
with the suitable adjustment of parameters.

For the additional term in the g potential for the glhonic excitation, the usunl flux tube (/v [4])
or string based analytical expressions become impractical for us, as mentioned in the introduction. Thus
for that we tried an ansatz of the form of

Avg; = A~ (11)
This gaussian gluonic potential (Aexp(—HBrd)) is a smeared form of genstant yg written in appendix of
ref. [21]. From the Fig.3 of [6], we get the potential energy difference =; between ground and excited
states for different rvalues (r;). We choose A and B for which x* becomes minimum. x* is defined as

K = 3 (e — Aexp[-Bri;),

wmf
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Figure 2: Overlap of the (ground state) wave function of the realistic linear plus Coulombic potential and
that of the quadratic potential. The solid line represents linear plus coulombic potential wave function
and the dashed line represents quadratic potential wave function.

with n being the number of data points. This gives
A=18139GeV, B =00657GeV?.

For finding the wave function corresponding to our total potential Cri; + T + Ae™ 7%, we used the
varintional method with an ansiitz wave function

€k (¥ ) = nyiexpl-puik)- (12)
The normalization of this £ (yx) w.r.t yx gives
n = (121ph)15t=1).

This leaves us with one varintional parameter p chosen to minimize the expectation value of the two body
Hamiltonian in the excited state gluonic field wave function. This gave p = 0.048GeV?. For this value
of p, the overlap of wave function of the quadratic potential plus Avj; and that of coulombic phus linear
plus Av?; within a hybrid cluster became 99.9%. Both wave functions are shown in in Fig.3. Having
much reduced the errors in the in-cluster factors of the total wave function, the question remains how
much the inter-cluster factors of the (terms of the) total state vector are alfected by our use of convenient
but not realistic g§ potentials. For the inter-cluster wave functions, eventually we use below in eq. {25)
plane wave forms which get their justifications from the validity of Born approximation for our problem
regardless of potential expressions we use. This plane wave form has only one usual parameter (the wave
number) and eq.(C10) below relates its value for the ground as well as excited state inter-cluster waves to
the very good values of d and p that almost give realistic ground state and excited state wave functions
within g¢ clusters. But the relations between the inter-cluster wave numbers and the d and p do assume o
quadratic confinement and this may affect our numerical results but hopefully not at lesst the qualitative
features we are pointing out. Perhaps it is worth mentioning here that propertics of 7" systems were
calculated using quadratic confinement in ref. [20], and then with the realistic potential in ref. [21] and
both the works favored the existence of meson-meson molecules.

T
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Figure 3: Owverlap of the {excited state) wave function of the realistic Coulembnic plus linear plus
Aexp(—Br?) potential and that of the quadratic plus Aexp(—Br?) potential. The solid line represents
linear plus coulombic plus Aexp{ - Br?) potential wave function and the dashed line represents quadratic
plus Aexp(—Br?) potential wave function.

Now we combined our Hamiltonian and all the wave functions we have mentioned in the Schradingoer
equation for the meson-meson system, which means that the overlap of (H - £.) | W) with an arbitrary
variation | 80} of state vector | W) vanishes where | ¥) is the state vector of the whole ¢*7* system. In
| 6}, we considered only the variation in x, (see eq(7)), as in the resonating group method. Thus we
wrote

(6 |H-E |9)=3" f & Rod® Ry dyicd® s1cve(Re)xu (R u (¥ a2 )g -
kel

(k| H-E_| Dt(Ro)xa(Re)alyp )alze) =0

fork,l =1,2,3,1" 2" 3« and K, L = 1,2, 3. The arbitrary varintions dyy(Ry)'s for different values of
Ry are inearly independent and henee their co-efficient in eq.(13) should be zero. With the trivial R,
integration performed to give o Anite result, this leads to

Zjﬂ“uxd‘*:x{k{y;g}&{zx},{k | H = E; | Qoxa(Re)&(yp)lze) =0, (14)
T

where
a6 | H=—E [ Dy=g (k| KE+V +4m — E. | 1),.

Elements of V and KE matrices are defined below in eq.(17) and eq.(18). Tn vef. [7] it is stated that,
in the lattice QCD simulations, it was found that the energy of the lowest state wos always the same in
both 0 2 % 2 and 3 x 3 deserviption, provided | 1) or | 2) had the lowest energy. In addition the energy
of the seeond state was, in most cases,;more or less the smne. Two level approximation is also used ina
lnter work [26] of the tetragquark system. Considering this, we include only two topologies(1.2), meaning
four states(| 1}, 2),| 1*).] 2*}). According to the model of rel. [7] the overlap matrix N in this truncated



4-basis is
et I fi3 0 -J°/3
3 1 -/ I}
N =g (k| i}l = Ifﬂ ~1%/3 / III? -r¢/3 | (15)
-I°/3 0 -sof3 1
And the potential matrix V{f) is
Viir Viz Vi Vige
Vg Ve Vi Ve (16)
Vieg Wiea Wiepe Wiepe |
Viey Vaea Voope Vg

V=g (k| V|l),=

Here,
!
Vii= —5{”;3 + Uyg)
4
Viz = Vo = o f(ma + vgg = vz — vyg — vig — v3)
4
Vag = —2{vi3 +van)
Varr = Vo =~ (VB3 + 03) - 5 0ty + 55) = V(01 - 5
= =g (viy + vgg) = EE“]‘] + Ug3) = V2(—ujy - vgg)
" - - 15 - - - -
Vira=Vi = —{—B (#ﬁ{wlz +v3) - -ﬁ[”ﬂ +u3) — V2{—uiy - Dﬁ}) (7)
1
Viege = 55 +vag)
1
Vitui = %.1- = —ﬁf:( - {U;i + U;I + u;z + u;‘g} + 1“(“]-2 + 1"51})
1 - -
Vauge = Eh’n‘ + gy )
Viey = Vige = Vg = Vop. =0,
with o = vy + eAuf;, € being defined above (after eq,(9)). The coefficients of vy and vy, resulting from

the F.F operator, axe given in Table 1 in the Appendix A. The kinetic energy matrix of the two quarks
two anti-quarks is taken to be

4
KE =, (k| KE |, = NiJb, (= 3 V2N JA,. (1)

=]

The kinetic energy in the same form is also used in ref. [15].
The gluonic field overlap factor, f, as written in Introduction, is suggested by ref. [7] as

/= expl-bykyS], (19)
with by = 0.18GeV? [4]. In ref. [27] the gluonic field overlap fuctor f is used in the Gaussian form as
f=expl-keb, ) 1}, (20)
i<y

employed in SU(3). for interpreting the results in terms of the potential for the corresponding single
heavy-light meson. In ref. [27], the simulations that are fitted by using f are for the confignrations when
the gluonic field is in the ground state i.e. overlap matrix is a 2 x 2 matrix. In ref, [7], simulations are
reported with 2-color approximation. But in ref. [27], lattice simulations done for SU(3), are reported.
Our overlap, potential and kinetic energy matrices are also written in SU(3),, so we use the ky multiplying
sum of area form of [ (written in eq.(20)) with k; = 0.6 (as used in [27]) for numerical convenience and
not used the minimal ares form. When we are observing the dynamical effects for the gronnd state, our
overlap, potential and kinetic energy matrices are 2 x 2 matrices and we use [ with ks = 0.6. But when



we incorporaie the excited state gluonic field our overlap, potential and kinetic energy matrices become
4 » 4 matrices, in the upper left 2 x 2 block of these matrices, the form of f remains the same but the
vilue of ky is changed to 1.51 according to the conclusion of ref. [7]. In the other blocks f2, f° [T} [14]
are also used. If we take f® as a function of area as defined in [7], it becomnes unmanageable to solve the
integral equations {21-24) and hence we have taken f* to be a constant but have tried a variety of its
values to explore how much our conclusions depend on it value. As for f©, the fit in ref. [14] [7] of the
model to the lattice data favors &, = D which implies that f©= 1 l.e. the excited configurations interact
amongst themselves in the way expected from perturbation theory, Thus we have uged [© = 1.

3. COUPLED INTEGRAL EQUATIONS

Using " N"," V" and " KE™ elements in eq.{14), we got four integral equations for four different values
of kor L Then we do yy and zp integrations. All the integrations required are in the Gaussian form
or modified Gaussian form (with a polynomial in the integrand multiplying the Gaussian exponential)
and we integrate analytically. For K = L = 1,2, in eq.(14), xi(Rz) is independent of ¥y and 2y and,
thus, can be taken out of integrations. After the integration, the result is Ry dependent, co-efliciont, of
xe(Ry). For K # L, yy and zg are replaced by their linear combinations with one of them as identical
to Ry and other one independent of it as Ry. The jacobian of transformation is equal to 8. Then we
integrate the equation w.rt Ra. Integration leaves the following four equations:

21(Ry)xi (Ry) + (—‘—._)’ / .-ﬂaﬂm( “51+EI‘*’}*R?+“_3J)E_E _sed | &

md2(1 + 4kd?) 242 3 31+ 4ka?)
8 1+4kd (15 s o 1 4R 8f'n? -Rj

uutni‘rﬂ?}{iﬁﬂi Fi(Ry, Ra) — 2AE(Ry, Ry)Jx3(Ry) = 0
(21)

BalRa)xa(Re) + (»—'—-)g [ Riexn( 1 + 84 (R] +R§})|_ E__sod  am

wd? (1 + 4kd?) 24° 3 3(1+4kd?) 3
B L4 dRd? (15 1+ dkd? 8f'n? ~R{
a* W(E"mf*}n’gl[ 7 1)ix1{Rl}+ Wfdaﬂ:ﬂpi'—ﬂii
axm—zpaim;”@ﬁm (Rz, Ry) — 24E(Ra, Ry JJ} (Ry) = 0
(22)
Fu(Ru)y: (R 8w & ~Ri 2y T
a(Ra)xi( 1]‘+m[ Ha“xP{ﬁI“IPE—EPRz}HmJ Fy(Ry,Rz) - 2AE(Ry, R, )]

ll-‘ . "
i) + YL [ PRaea(-m} —ﬂpﬂé}[fﬁi’[fi}ﬁ{ﬂz.ﬂa] + Fo(Ry, Ry)) + 24
[exp(~BRI){ D(Ry, R) Dy (Rz) + RIRE + 2(RS + RIRZ)Da(R;) + 2(RZ + R2) Dy(Ra) 4
Di(Rz) ~ 4R3D5(Ry, Rg) ~ 4D6(Ry, Ry) - SRID;(Ry, Ra) — AR Dg(Ry) — 404(Ry) — SR?

DiofRa) + 16Dy (R (BYR;,  pR? ik
10{Ra) + 160 ( hﬂﬂlem{dw_l_dw}-m[ BRy){ D[Ry, Ra) Dy (Ry) + RIR3+

2(R + R{R3) Da(Ry) + 2(RY + R3) Dy(Ry) + Dy(Ry) — AR Ds(Ra, Ry) — 4D4(Ra, Ry )~

i ) —aR D i (2BPR? |
SR Dr(Ry, Ry) — AR Dg(Ry) - AD4(Ry) - :Dwmlj+JEDJI':R2,R;”HP{WL
1
+ g (35) DialRs, Ra) X3 (Ra) =0
(23)
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b ] _nR?
Fu(Ra)xi(Ra) + ﬁg—m—; / fﬂ:“ﬁ%‘hpi*zﬂﬂ[[%:%;}!FHI*“'?*RI} - 2AE(R:, Ry)

xi(Ry) + 3-";—“4 fd“ﬂ;e:m[ -2pR3 — 2pR}) %}i (EFs(Ra, Ry) + Fs(Bz,Ry)) + 24

[exp( - BRE){ D(Ra, Ry ) Dy (Ry) + RERY + 2(RS + RIRT) Da(Ry) + 2(R3 + RY) Dy(Ry )+
Dy(Ry) — 4R} Ds(Ra, Ry) — 4Dg(Ra. Ry) - 8RIDy(Ry, Ry) — 4R D4(Ry) — 4D9(R,) - 8R]

(2B8)°R] 2 iR}
Dio(Ry) + 16D (Ra, R)exp(3r"—2s5) + exp(~ BRE){ D(Ra, Ry) Dy (Ry) + RIR]
+2(RS + RIRE) Da(Ry) + 2R + R Ds(Ra) + Da(Ra) — ARG D5(Ry, Ry) — ADg(Rs, Ra)
In?
~ SR3D7(Ry, Ra) — AR} Ds(Rg) — 4Dy(R2) — 8RY Dyg(Rz) + lﬁ-’hltﬂhﬂal}mi;f—{z'%ﬂ

v .

{m}i + ﬁ[@ll Dia(Ra, Ry )| x7(Ry) = 0.

(24)
The symbols are defined in the uppendix B. We have eventually replaced ri,ra, vy, ry by Ry, Rg, Ry, and
R.. With trivial integration on R, we have eq.(14) that is independent of R.. Now, after the integration
on Ry, the above four integral equations (21-24) depend only on Ry and Ra. So every quantity which we
wanit to caleulate depends on Iy and Ry, In eq.(21-22), the first two terms in oach equation containing
x1{R;) and x3(R3) are for the ground state. It is noted that in these terms, there is no dot product of
vectors Ry and Ra. So the results from these terms should not depend on the angle between R; and Ra,
called #. The third term of eq.(21-22) is due to the gluonic ground and excited states. In these terms dat
product of two vectors (R; and Rz) appear, so the results from these terms depend on 0,

4. SOLVING THE INTEGRAL EQUATIONS

Now taking the three dimensional Fourier transform of eq.(21,23) with respect to R and eq.(22-24)
with respect to Ry, we get formal solutions x1(Py), x2(P2), ¥}(P1.), and 37(Py,) as shown in appendix
C. Because of the coupling to the gluonic excitations, it become difficult to solve the integral equations
for non trivial solutions for x1(P1), xa(P2), x7(P1,), and x3(P32,) analytically as done in [15, 16]. In
[15], the meson wave functions, including the gluonic field overlap factor, is Ry, Ra separable. So there
the integral equations can be solved analytically by replacing x; and yz. But in our present work, the
meson meson wave functions are not separable in Ry Ra. So we use the Born appraximation (as used in
[11] for meson meson seattering) to solve the integral equations. Our results given below also justify our
use of the Born Approximation. For using this approximation, we use the solutions (x;(R), x$(R.)) of
¢qs.(21-24) in absence of mteractions (meaning = f* = fF=0)

XilRy) = E exp(iPiR, ),

5 (23)

and xRy = J; exp(tPi,. Ry)
for i = 1,2. Here the coefficient of exp(«P?;.R;) is chosen so that it makes x(R;) as Fourier transform of
it ;“:“ =L, Similarly the coefficient of exp(iP;,.R,) is chosen. Using this approximation, the integration
on Ry and Ry can be performed to get x(P;) (written in eq.(C11)).

Tiy can be caleulated {as in rel. [15]) by considering the coeflicient of -ﬁ_nh'ﬂ containing the y;(R;)
from eq.(C11). As in this equation, there is no coefficient having x;(Ry), so it gives T}y = 0. Ty can be
caleulated by considering the coefficient of ﬂ_l%'.'-"ﬁ containing the ya(Rs) from eq.{CL1) in the following
e,

Tia=M %ﬁ [coof, of containing  yz(Ra)], (26)

I
ﬁifﬁ]
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with M being the mass of ¢ meson, Similarly T3 can be calculaied by considering the coefficient of
Zipry containing the y3(Ra) from eq.(C11)

1 o .
Ty =M %PL.[m-nf. ufm containing  x3(Ra)|. (27)
Off-diagonal phase shift can be calculated by using the following relation given in ref. [28]
§=I— AT = exp(2A), (28)

where S, T, l,and A represent 4 x 4 scattering, transition, identity, and phase shift matrices respectively.
By neglecting the higher powers of A in the expansion of exp(2eA), the ©q.(28) can be written as

Sfj = Iiu; = it.nj = Jjj + 21&1,. {29}

for s, j =1,2,1%,2%. From this eq.(29), we obtained that the phaso shifts are equal to -ve of the transition
amplitude, eg. fori =1, j =2 App = %lil = ~Tia. Using the transition matrix elements, the energy
shift of meson meson system (ec22) can be caleulated by using the stationary state perturbation theory,

Le
E.-sE‘-’+T—-+Ef ﬁm": dP (30)
i i  Jy 1'-!.-_ == 3 g

L)

with the initial state i and intermediate state j, We have considered initial states where the gluonic
field should is in ground state, 50 i = 1,2, but intermediate j = 1,2,1*,2*. Here Ty = (ilT}i), |Tisi? =
IGITT)*, EY is the energy of a ground state (1 or 2) of meson meson system, and E] may be the energy
of the other meson meson ground state or that of an ghionic-excited meson meson state,

5. RESULTS AND CONCLUSIONS

1-The transition amplitude Tiz, from one meson-meson ground state to other, are calculated by
using eq.(26) with k; = 0.6 [27](without the incorparation of gluonic excited states). Its dependence on
the center of mass kinetic energy is shown in Fig.4 below. As it is noted that —Tiz = phase shift is
less than 1, so these results shows the validity of Born approximation. In result 3 we compare the phase
shifts (in radians) of this many body ground state gluonic field model at ks = 0.6 with the phase shifts
obtained from o model that is extended to gluonic excitations along with changing &y = 1.51.

2- The transition matrix element Tia., for transition from ground state to excited state gluonic fleld
with ky = 151, depend on the parameters ¢, and f*. Ti3. also depends on @ (the angle that P, makes
with 'y and Py, makes with Pg,). We take parnmeter [ as a constant as discussed earlier in section
2. For ¢ = 2, we take different values of f* to see the effects of f* on Tyz-. Figs.5.6,7.8 and 9 show the
dependence of Tip: on f* at angles 0, 30, 60, 75 and 90 respectively. For ¢ = 1/2, the dependence of T},
on [* at @ = 90 is shown in Fig.10. And for ¢ = 1, the dependence of Tiy on f* at § = 90 is shown in
Fig.11. These graphs show that the phase shift (equal to —Ti3. ) s incrensing with the increase of f*.

3- For the conter of mass kinetic energy range 0 to 2 GeV, the average of the modulus of phase shifts
{excluding excited states) is equal to —0.0369 radians at ky = 0.6. But if we change the value of k; from
0.6 to 1.51 and also include the excited state gluonic field, the average meson-meson phase shift again
becomes (—0.0218 — 0.0152) radians = -0.0370 radians by choosing [* = 0.03 and # = 90 with ¢ = 2. This
means that a sum-of-two-body potential model can replace to some extent many-body potential terms
in a tetraquark system by including the gluonic excitations. (An exact sum of two body terms would
required f; = 1 though). In above, —0.0218 radians is the phase shift due to ground state gluonic field
at ky = 1.51, and —0.0152 radians is the phase shift due to gluonic excited states.

We have nlso explored the results with ¢ = 1/2and e = 1. As ¢ is proportional to the potential matrix
clements taken between ground and gluonic excited states, when we replace ¢ = 2 with ¢ = 1/2 or 1,it
has no effect on Ty and average phase shift, But for ¢ = } with inclusion of gluonic excitations, now the
values [ = 0.08 and 0 = 75 almost restore the average phinse shifts for k; = 1.51 to (~0.0218 — 0.0148)
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radians = -0.0367 radians. (The significance of the first and second term is us before). For e = 1, at
S = 0.055 and @ = 90, the average phase shifts for k; = 1.51 becomes (—0.0218 — 0.0150) radians =
-0.0368 radians. This almost restoration again indicates that perhaps we can always choose parameters
ete, 5o that with an inclusion of the gluonic excitations the sum-of-two-body potentinl model can replace
many-body potential terms in a tetraguark system.

4- The effects of interaction are also observed through energy shift by using eq.(30). Here T = 0
with i = 12 In [, ff4eedP, we have chosen EY = 59176 GeV, the value of energy for which

center of mass kinetic energy becomes zero. The intermediate energy state Ej depends on the state of
gluonic field ( |2),|2"} are only possible states that couple to |1}). For the gluonic ground state (|2)),
Ef = 59176 + 0.3380P] (calculated using eq.(C10) with P2(1) = PP); and for the excited state ghionic
eld (|2')), EY = 5.4638 + 0338077, (calculated using eq.(C10) with P2(1s) = PZ). At ky = 0.6 and
E. = 59176 (i.e. at the threshold), the shift to the ground state meson-meson energy is found to be
E, = E{ - 07268 GeV excluding the gluonic excitations. If with increasing &; to 1.51 as usual and
including the coupling to the gluonic-excited meson meson state, we want to restore the same energy
shifts we can get to (wilh same arigin of the first and second correction terms)

By = B + (~0.0950 - 0.6371)GeV = E? — 0.7321GeV

if f*=0.14 is used. This shows that gluonic excitations can replace the many terms for energy shifts as
well. We note that the energy shift is independent of 8, the angle between R; and Ry, The energy shifts
we have reported here can be compared with the hadron-loops-generated mass shifts to charmonium
states reported in Table 111 of ref. It is difficult, though, to conclude anything from this comparison as in
ref, [20] the integrand contains squares of the matrix elements of the * % meson decay nmplitudes whereas
in our integrands in eq.(30) contain squares of meson-meson couplings. Thus though the intermediate
states in both works are respective hadron loops gijyq, the initial and final states in ref, [29] are qq but
in our work initial and linal states are also gfgg. Only we include the glounic-exited intermediate qgag
state {i.e. the hybrid hadronic loops) for our problem. In result 3, it is noted that the average phiase
shift obtained (for ¢ = 2) by & model that does not include the ghionic excitations is equal to the average
phase shift obtained by including glionic excitations for f* = 0,03, but the energy shift obtained by both
models becomes comparable at f® = 0.14. One possible reason of this dilference in the values of f* could
be that the average phase shift is caleulated for the center of mass kinetic encrgy range in between ) GeV
to 2 GeV, but energy shift is calculated at threshold center of mass kinetic energy.

i For the ground state gluonic field, transition matrix clements ave § independent, But for transition
elements to the gluonic-excited meson-meson state depends on 4. We projected this angle dependence
on spherical harmonics ¥j,,. The results of this partial wave analysis are also reported in Figs. (12-14)
for m = 0 and f* = 0,03 (this value is used above in result 3). The reason for truncating the spherical
expansion to m = () harmonics is that that we have have no dependence on &, the azimuthal. These
analysis shows that partial wave amplitudes are deereasing as we go from Yy the coefficient to the ¥y
coeflicient i.e. from S-wave to H-wave. Figs. 12 and 13 are for the even wave (1, ...} ratios with
S-wave. §/D ratios are also used in ref. [30, 25|, These graphs shows that the S/G ratio is too much
large as compared to the S/D ratio. It means that S—wave is dominant over G—wmve, In Fig.l4,
ratios of odd waves with S—wave are shown. We noted that S/H is too much large as compared to
S/ P. This shows that H, J, ... waves can be neglected as compared to S—wave, The partial wave analysis
indicates the presence of P, [, F, (7, H waves only when we include the gluonie exeitations in combination
with essentially sum-of-pair-wise approach. It means that, in the presence of gluonic excitations, an
£=10,1,2,3,.. ground state meson meson system may couple to £ = 0,1,2,3, .. hybrid hiybrid systems
as i Intermediate states or as final states.

As mentioned above in result 3,4, we compare our meson-meson transition amplitudes and polariza-
tion potentials (in the respective center of mass energy ranges) in an extended almost sun-of-pair-wise
approach and a many-body-term based one. Apparently this comparison has cven o qualitative differ-
ence in case of the transition amplitudes (Ti2 and T7,) which have a dependance on the scattering nngle
{meaning coupling to P and higher orbital excitations in the final channel) il we use gluonic excitation in
combination with essentially sum-of-pair-wise approach (can see fig.(5-9)) but we get the same transition
amplitude for all the scattering angles If we use o many-body potential linking ground-state clusters only.
But a recent work [17] indicates that the absence of angle dependence is an artifact of the unjustified
overly situple form of the gluonic overlap factor [ (defined in eq.(20)); using a proper lattice-gange theory-
based form of f (defined in eq.{19)) also results in this angle dependence and the resulting coupling to
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Table 1: The matrix elements of the F;_F; operators

<= <lL2>[<RB>[<llj@> [ <2 *>[<Pl.2° > | <I'L.j1"> | <2°].J2°
Fi.F> 0 : 0 -5 O 1 -1
Fi.Fs _% _i 0 ? _I_Lﬂ é _i
REN o | -3 | - . -% - i
Fi.Fy 0 -3 -g = _# _% %
RE| -4 | 4 | o ; - % i -}
Fy.Fy 0 i 0 -2 - —3 -1

higher orbital excitations,

The meson-meson to hybrid coupling worked out in this paper may affect properties of any system
that is presently understood to be a purely ground-state meson-meson system. This means, in addition
to the energy shift of the meson-meson molecules due to coupling to hybrid-hybrid systems, pointing out
the possibility of a hybrid-hybrid component in the wave functions of mesons like X(3872), X(3940),
V' (4260), and Z(4433) which are considered to have ¢*5* components. And in the above paragraph, we
indicate that this coupling may also inchude coupling to orbital excitations. Thus we hope to point out
a new dimension in discussions about the structure of scalar mesons as well.
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APPENDIX A

Table 1 is used for the matrix elements of the F,.F; operators (introduced above in eq.(9]), for
different values of indices i and j. In this table ground state clements (with out star) are taken from [15]
and excited state elements (with star) are caleulsted by using the following group theory results:

[B5853 >= - ‘/glﬁmasq > +\éiﬁuﬁu >

1 2
gl >= \/;mml'-ﬁ > +\/;lf-imﬁ§a e
8 1
|8,38,3 >= \/;“1‘3123 > '\/;“315321 >
1 8 !
Liglyg >= \/;Ichslzz > +\/;|B:nﬁza >
| 2
= - iigu:.’taz >+ §|'5125=ﬁ >

1
< B383/F Fy 8,585 >= 5.




APPENDIX B
The terms used in eqs.(21-24) are defined as

AR = ~E~808 - 30— T 4 3 4 gm,

F(R,Ry) = (R} + i + R ) E. - 24T - 28CRj — 28C s +24

o Agp +20° g t+2p gy +29)
IR} 105

exp(~BR - BRY) + 2Acxp(~BR} + BR})) - m{i{ﬂ.ﬂp] a:ﬂ”ap}*

+2{T*:hi”+ L {24R? - 56pR; + 165°RS - m'r;,as =) —rﬂpm
llzpﬂf+wlﬂj+w“ﬂoﬁa?-m}+wh

BR?
E(R,) = exp(-BR{ Jexp( e )
iy 10B°R} 2B°R;] 15 1ERR}
Fa(Ry, R;) = 2Ry + (g +2p+ B)* {ﬂq +2p+ B)Y 2{;}:+2p+ B)? [ﬁr +2p+ B)?
2R})  BBYR.Ry)?

T+t B) (gptopsBR
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_BR? - BR? T ORI, . 103 5R?
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1 o §-28
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D(R,,R;) = R} + R} + 4R{R}

_W@BR,)F  @BR) . 15
DI{RE} = {EH +S;}3 EQB-I'E]J:]* + {BB-Q-E;)F
_ (2BR.)? 3
DRI = Bp v ape * @B+ )
L] 4 5
Dy(R,) = 2BR)"_ 21(ABR,) 105 105(2BR,)
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Dyg(R;) =

Du (R, R;) =

APPENDIX C

Solving the Integral Equation

By taking the three dimensional Fourler transform of eqs.(21,23) with respect to R and eqs.(22,24)
with respect to Ry, these integral equations become

y it B PP 8 1 1 i
(~Ee~8Cd - 50+ 2 4 Ju +am)xa(Py) + {m%(mm ) [ AR RaepP Ry

(-1 +8k)RI+RI)\, B, 8Cd  4m 8 1+4kL (15
e S BN B - i T 90 o (7 -+ R

| + 4kd® el —R} 2, 8fn?
(55 ) aRa) + e [ #RuRaenpP Ry exp( G epl—2RE) L o

[(-r————)¥ By (R, Ry) — 2AF(Ry, Ra)|x4(Ra) = 0,
Eu"i‘ﬂp
(c1)



I ;
2 (Eﬂli(rd’{l+-iﬁ.;r¢}) f @*Ryd’Raexp(iP2 Ra)
(-{Hmﬂm““g])[ E.__8cd _ 4m 85 1+4Edn(

28 ~3 Ta+dkd) 3 8 bmd

8. P 3
(B~ 8Cd" - 3C + 3 + Sw + Am)xa(P) + :

Do mi+r)

&fn?
18/2{2rd?)3

1+ 4k _n?
+d‘:' dz})]xlfﬂ-ﬂ + {Ef;}i-fn’aﬂ-ad“Rnexptin-Re]uxp{%-‘—}uxp{dpﬂg}

=

“g&aﬂp

(

)EFi(Ra, Ry) — 2AE(Rp, By)]xi (Ry) =0,
(C2)
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(C4)

where x(P) is the fourier transform of x(R). Py.P; are conjugate to iy, iy for ground state gluonic field
and Py, Pa, are conjugate to Ry, Ay for excited state gluonic field. The off-diagonal terms of eq.(C3)
and (C4) are too lengthy and not used for results, so dots are used to reduce the length of equations.
The above egs.(C1-C4) have formal solutions as [15]
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1.1667C 13.682p7/2
(0.0657 + 2p)7/2

Using the Born approximation, the integration on R; and R; in eq.(C5) can be performed to give
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Now from thts eq.(C11) the elements of transition matrix {T) can be found. As shown in refl. [14], the
gluonic excitations are orthogonal to the ground states i.e.

(1= = 212 =(2"12) =0
This gives
T]_]_- = T!."l = Tnz; = Tﬂ."'ﬂ =1.

Thus the only possible transition amplitudes are Tiy, Tha, Tar, Taz, Tiz and Tie. As the eq.(CH) and
(C6) are similar (imterchanging R; and Rg in eq.(CH) gives eq.(C6)), s0

Tu = T:-z.
Ty = Tn,
nued
T = Tars-
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Abstract

We use an extension (ftted to the lattice datn) of the quark potential model to hybrids for the
purpese of caleulating the masses, root mean square rudii and radial wave functions at the origin of the
conventional and bybrid charmonium mesons. W treat the ground and excited gluonic field between
a quark and an antiquark as in the Born-Oppenheimer expansion, and use the shooting method
to numerically solve the required Schradinger equation for the radial wave functions. From these
we calculate the above mentioned quantitios: for masss we also check through a Crank Nichelson
discretization. For hybrid charmonium mesons, we consider the exotic quantum number states with
JPC = g*=,1-* and 2. We also compare our rosults with the experimentally observed masses
and thearetically predicted resultz of the other models. Our results have implications for scalar form
factors, energy shifts, magnetic polarizabilities, decay constants, decay widtls snd diffuremtial cross
sections of conventionnl and hybrid mesons; we accordingly include some results that can help in
experimentally recognizing the hybrid mesons,

I. Introduction

A mumber of hadron properties are well described by the quark model where mesons have quantum
mumbers J = L@ 8§, P = (—1)!, and C = (=1)**5, L and § being the quantum mumbers for orbital
angular momentum and spin angular momentum respectively. The states with JFC = 0%~ 17+,2%~
{for the lowest lying hybrids in the flux tube model) can not be formed from a ¢ pair and hence are
not allowed in the quark model. These states are signals for a exotic mesons (hybrids, glueballs, etc).
Quantum Chromodynamies (QCD), describing the interaction between the quarks wnd gluonic field,
predicts the existence of hybrid mesons which contain the excited gluonic fields. Thus for understanding
of QCD, we need finding experimentally testable predictions of the theory for situations in which the
ghionic field between n quark and antiquark is in an excited state. Thus hybrids are an important source
of information related to confining properties of QCD, and checking for existence of hybrid mesons is very
important objective of particle physics. Reviews of the spectrum of excited gluonic states can be found
in refs. [1] [2]. Recently, a resonance is observed at COMPASS (3] with J7¢ = 1°*. Some other groups
like VES [4], E$52 (5], and the Crystal Barrel collaboration [6] also observed these states. Using the
Born-Oppenheimer expansion, the work of finding implication of QCD for a meson can be split into first
using the numerical lattice simulations of QCD to write down a quark antiquark potentisl and then using
this potential to calculate its dynamical implications. Even a numerically defined potential can be used in
this scheme; this is what ref. [7] does. But we write an analytical coulombic plus Linear plus exponentially
falling expression for the excited state ghionic field potential between a quark and antiquark and fit jts
parameters to the lattice data for the excited state gluonic field energy values available in ref. {7l for
discrete quark antiguark separations.

In the present paper, some characteristics (masses, root mean square radii and wave functions at the
origin) obtainable through the numerically generated solutions of non-relativistic Schriicinger equation
(also used in ref. [7]) for conventional and hybrid mesons are studied. An advantage of considering the
charmonium mesons is indicated in ref. [8] as

= The best systems for o hybrid search may be ¢ or bb where there is a large gap between
the lowest states und the DD and BB threshod respectively.”
*e mail: noshinakbar@yahoo.com
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To find the wave functions of conventional charmonium mesons, we use the realistic colutbic plus
linear potential model to solve the Schriidinger equation mumerically by taking the corresponding quantum
numbers of mesons. To study hybrids, we repeat the numerical work with the above mentioned columbic
plus linear potentinl plus exponentinlly falling potential. From the numerically found wave functions,
we calenlate the rool mean square radii. These radii can be nsed to find scalar form factors - [9] for
charmonium mesons, along with energy shifts [10] and magnetic polarizabilitics [10]. Thus we have
reported some predictions about these quantities for conventional and lybrid charmonium mesons. We
have also found the numerical value of radial wave function at the origin (|R(0)[?), which can be used
to calculate the decay constants [11], decay rates [11], and differential cross sections [12] for quarkomnium
states. The predictions about these quantities are also reported for conventional and hybrid charmonium
meson,

In the section 11 below, we write the Hamiltonian for the conventional mesons. Then we describe
the shooting method-based numerical procedure to find the solution of the Schrédinger equation for
conventional charmomium mesons. The expressions we used to find masses, root mean sgquare radii, and
sqquare of radial wave functions at the origin (| R{0)]*) of conventional charmonium mesons are also written
in this section. In section IT1, the Hamiltonian is written for hybrid mesons, and then we redo all the
numerical work as done in section Il for hybrids now. Results for the masses, root mean square radii
and |R(0)|* of conventional and hybrid mesons are reported in section 1V for systems composed of charm
guarks and antiquarks. Based on these results, we also include some results related to exporimentally
measurable gquantities.

11. Characteristics of Conventional charmonium mesons

The Potential Model for Conventional Charmonium Meson

In the potentinl models, the confining potential for Q) system in the the ground state gluonic field
is mostly used in the form of

0 i (1)
ar

with inter-quark distance r. Here, —4/3 is due to the color factor, a, is the quark-ghion coupling, b is the
string tension, and ¢ is a constant. In above equation, the fivst term is due to one glion exchange and the
second term is the linear confining potential [13]. This potential form provides a good fit to the lattice
simulations of refs. [14, 15|, By including the Gaussian-smeared lyperfine interaction [16] and orbital
angular momentum (or centrifugal) term, the potential of the Q@ system in the ground state gluonic
field have following form

—da, 3270, g L{L+1
Vir) = 3:‘ +br + gm': {;';;;ﬂe ¥ S Se+ {T“:]—:' (2)

where 5.5 = m — 2y is the reduced mass of the quark and antiquark, and m, is the mass of the
charm quark. For the of mesons, the parameters a,, b, #, and m, are taken to be 0.5461, 0.1425GeV?,
1.0946 GeV, and 1.4796 GeV as in ref. [16]. The quantum numbers for the conventional charmonium
mesons we choose for our study are reported below in Table 1.

Characteristics of conventional charmonium mesons

A comventional meson can be described by the wave function of the bound quark-antiguark state
which satisfies the Schridinger equation with potential of eq.(2). Radial Schirédinger equation with wave
function U(r) = rR(r) is written (in natural units) ns

V2 (r) + 2u(E - V(r))U(r) =0. (3)

R is the radial wave function and r is the interquark distance. Here F is the sum of kinetic and potential
of quark-anti-quark system, and V(r) and g are defined above just after eq.(2).

In quark-antiquark bound state, the wave function must satisfy the boundary conditions U(0) = 0 and
U/(oc) = 0. For the numerical solution of the Schrisdinger equation with the potential of eq.(2)), energy
E was repeatedly generated from -2 to 2 GeV in steps of 0.1 GeV. For each such trial initial energy, we



Figure 1! The radial part of n,J//1,he, and x. meson wave functions as functions of v. Thin solid line
represents the 5 wave function, dashed line represents the J/y wave function, thick solid line represents
the h, wave function, and points represent the y. wave function.

used the Newton method [17] to select, if any, the energy for which the numerical solution of Schridinger
equation became zero st infinity. To obtain these numerical solutions, we used the RK method [18] with
using any arbitrary integer value of U/(0). For different values of If (0}, normalized solutions of the
Sehridinger equation, by multiplying the solution with the normalization constant {Wﬁﬁw_r}' remnin

the same, These energy eigenvalues plus constituent quark masses are taken to be the ¢F mesons masses
(in nntural units). It is found that our results for conventional charmonium meson agree with the Table |
of ref. [16] which support the relinbility of our method. We also checked the consistency of our method by
getting o 100% overlap of HU and EU and by calculating the masses of conventional meson by the Crank
Nichelson Discritization and finding that masses obtained by both of the methods are identical. The Fig.1
shows the dependence of 1, J/¥, he, and x. normalized radial wave funetions on the radial separation
r. The quantum mumbers ([, and §) for these particles are given below in Table L. These graphs show
that the radial wave functions of 5, fie, xe, and J/y have the same properties as that of hydrogen atom
radial wave function, i.e. they behave as r® for small inter quark distances and decrease exponentially
at large inter quark distances. Thin solid and Dashed lines graphs ave for L = 0, so these graphs are
similar to r9%xp{—r). Thick solid and points are for L = 1, so these graphs are similar to r'ezp(—r). As
L increases, the wave function’s peak goes away from the origin. This means that centrifugal term has
more effects on wave function that that of the hyperfine term. One possible reason is that we are dealing
with heavy quarks so the 1/m? factor (shown in eq.(2)) of the hyperfine term becomes very small.

The normalized wave function is used in the further caleulations for root mean square radii and radial
wave functions at origin. To find the root mean square radii of the &2 mesons, we used the following

relation:
W 1! [”'r’ﬂdr. (4)

In ref. [19], for normalized wave function
U'(0) = R(0) = Vam{0) (5)

is used. Thus the derivative of U(r) at r = 0 is caleulated for conventional churmonium mesons to find
LR(0Y2. | R(0)|? is used in many applications of high energy physics as mentioned in section L



I1I. Characteristics of Hybrid Charmonium mesons

The Potential Model for Hybrid Charmonium Meson
The centrifugal factor for the hybrid mesons is written in rels, [20, 21] as

LIL+1)-2A%+ < )} >
2ur?

(6)

where A is the projection of the total angular momentum J; of the gluonic feld. The states with
A=10.1,23,,.... are usually represented by the capital greek letters X, 11, A, @, ... respectively. We are
interested in finding the masses and root mean square radii of the hybod states 077,17, and 27,
These states can be generated from the I1, potential, For the I, potential, < J? >=2and A =1 21},
Therefore —2A% + (J2) = 0, so centrifugal factor for the hybrid mesons is L(L + 1)/2mr?. In ref. [21]
J=L@8 P=e-1) and € = en(—1)5"M¥ with e,n = +£1. Therefore with same quantum
numbers (L,S), different J"C states are possible. 1 and § for these hybrid JP© states are shown in Table
2 (as given in ref. [22]).

For the excited part of quark antiquark potential 7 /r is used in the flux tube model [23]. In the present
work, an ansitz of the form Ae~2"" is also used for the excited part of the quark antiquark potentinl.
This gaussian gluonic potential is o smeared form of “088% a5 written in appendix of ref, [24]. From
the lattice simulation reported in Fig. 3 of ref. [7], we get the potential energy difference (£;) between
ground and excited states for different ry values. Using this data, we found A and B for which x* becomes
minimum. ¥* is defined as

xi = Z{E' = APW"[_B"?HE! (7)

b

with 1 =1,2,3, ... n being no.of dats points. This gives
A = 1.8139266CeV, B = 0,0657212G V2,

We calculated x2 for Ae~®" and x/r, and found that the y? for Ae= 7" is losser than that for = /r. This
new potential form is already used in & more complicated work in ref. [25]. Using this, we can write the
quark antiguark potential in excited state gluonic feld ns

" —day, Bmay, ¢ 3 33 LIL+1)-20M+ <> = g
V - —— el F e
[r} 3 + br + gmg {ﬁ} @ 8.5+ o + Ae {E:l

Characteristics of Hybrid Charmonium mesons

Using the excited state potentiol of eq.(8) along with the above mentioned values (nfter eq.(6)) of
A and < Jj >, the energy eigen-values and the corresponding wave functions are found by using the
sune technique as employed for conventional mesons (mentioned in section IT). These cigenvalues plus
constitutent quark antiquark masses are taken to be the masses of hybrid mesons. Then we normalized
the solutions and found the root mean square radil of hybrid mesons by using eq.(4). The normalized
solutions for charmonium hybrid mesons are graphically represented in Fig 2 and Fig.3.  These figures
show the wave function dependence on L and S. Therefore the mnss nnd root mean square radii of
0%, 1"*and 2+ JPC states also depend on the quantum numbers L and 8. |R(0)]? is found for hybrid
mesons using eq.(5).

IV. Results and Conclusions

1- Our calenlated masses and rool mean square radii are reported in Table 1 along with the ex-
perimental and theoretical predictions of the other works. We observed that our results are in good
agreement with the experimental and existing theoretically predicted values, which shows the validity of
our method. Quantuwm mechanieally, when L increases, centrifugal barrier increases so particles become
less bound tmplying increased root mean square raclii,. Our caleulated root mean square radii are in
agreement with this expectation,
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Table 1: The experimental and theoretical masses and theoretical root mean square radii of some charmo-
nium mesons, The experimental mass is the average PDG [16] and rounded to 0.001 GeV. Our calculated

masses are rounded to 0.0001 GeV, :

Meson [ L | § | Our calculated | Theor. mass [16] Exp. mass our caleulated | Theor. /(r?) [26]
mass with NR potential V() with
miode] potential mode]

GeV GeV GeV fermni fermi

. |00 29816 ~2.982 2.9792 + 0.0013 [16] 0,365 0.338
Jig 0|1 3.0800 3.090 3.00687 = 0.00004 [16! 0414 0.404
he 1[0 3.5156 3.516 3.525 £ 0.00055 [16] 0.674 0.602
Xe L1 3.52406 3.550 3.55618 = 0.00013 [27] (0.685 0.6006

Table 2: Our calculated masses and root mean square radii of ¢ hybrid meson 0%, 1-% and 2+~ JFC
states,

Jre LiISTAl< Jg> Mass with mearn Mass with
excited potential | square | excited potential | /{r%)
s A x exp(-Br?) | radii (r*) as x/r
GeV [T GeV fm
o =t =TT 1] 1 2 1.0619 1.2458 4.3571 1.1061
14,2 2lif1]| 2 1,1433 1.3203 4.4632 12280

2- With the parameters (given in Table 2) for the 0*=,17* and 2%~ JPC states, masses and root
mean square radii are caleulated for the charmonium bybrid mesons. In Column 6-7 of this Table, masses
and root mean square radii are caleulated using the excited state gluonie field potential in the form of
A exp(~Br*). But in column 8-9, masses and root mean square radii are caleulated by taking the excited
state potential in the form of m/r. For comparison with earlier works, masses of ¢& hybrid mesons with
0%, 1" * and 2+ JPC states are given in Table 3.

3-For conventional mesons [R(0)[* is reported in Table 4. Each of [R(0)[* of ¢& hybrid mesons for
07,17 and 2%~ JPC states is equal to zera by our caleulation and this result agrees with ref, (38]
which writes "models of hybrids typically expect the wave function at the origin to vanish”. We noted
that hybrid mesons's masses are greater and radii are lesser when the excited potential is in the form of
=/r instead of Aexp(—Br?), We also noted that the masses and root mean square radii of the hybrid
mesons wre greater than ordinary mesons of same flavour and quantum numbers. Sinee 0%, 1+, 2+
states are not possible with quark model quantum numbers, so we can not compare these JPC states
with conventional mesons,

As sealar form factors [9] and energy shifts [10] are proportional to square of root mean sequare radii
and magnetic polarizabilities [10] are proportional to negative of square of root mean square radii, we
predict that magnitude of these quantities for hybrids are greater than those for conventional mesons of
the same gquantum wumbers. We also noted that |R{0)|*=0 in case of hybrid mesons. Using this result,
we can predict that decay constants [11), decay rates [11), and differential cross sections [12] of hybrid
mesons are zero as these quantities are proportional to | R{0)[*.
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Table 3: The mass predictions of 1-%,0%", and 2% states

Predicted masses (GeV) models
=% = - L
= 3.9 [28] bag model
4.2-4.5 [29] flux tube model
119 syserror [30] [31] | =45 B2 =139 heavy quark LGT
4.7 [33] 4.58 [33]
4.1-4.5 QCD sum rules |
1,360 - 4.420 [31, 35, 86] | 4.714(52) [36] | 1.805(88) [37] | quenched lattice QCD

Table 4: |R(0)|? of & meson

Meson | L | § | our caleulated normalized |R(0)[*
(fin)—*
i [V L1 L8767
Ty (01 1.10865
he [ 110 <107
Xe 1]1 = 10-Y

References
[1] C. McNeile, Nucl. Phys. A 711, 303 (2002).
[2] C. Michael, arXive:hep-ph/0308293.

[3] ML Alekseev et al. [The COMPASS Collaboration], Phys. Rev. Lett. 104, 241803 (2010); B. Grube
et al. [The COMPASS Collaboration], arXiv:1002.1272 [hep-ex] (2010).

[4] Yu. P. Gouz et al [VES Collaboration.|, AIP Conf. Proe. 272, 572 (1883)Yu
A Khokholovetal.[VESCollaboration], Nucl. Plys. A 663, 596 (2000); A. Zaitsevetal. [VESCollab-
oration], Nucl. Phys. A 675, 155¢ (2000).

[5] | G. S. Adams et al. [E852 Collaboration], Phys. Rev. Lett. 81, 5760 (1998): S. U. Chung et al.
[E852 Collaboration], Phys. Rev. D65, 072001 (2002); E. L. Ivanovetal. [E852Collaboration], Plys.
Rev. Lett. 86, 3977 (2001); J. Kuhnetal [E852 Collaboration], Phys. Lett. B 595, 109 (2004); M.
Luetal. [E852 Collaboration], Phys. Rev. Lett. 94, 032002 (2005).

[6] C. A. Baker et al., Phys, Lett. B563, 140 (2003).
[7] K. J. Juge, J. Kuti and C. Morningstar, AIP Counf. Proc. 688, 193 (2003).
[8] S. Collins, C. T. H. Davies, G. Bali, Nucl. Phys. Proc. Suppl. 63, 335 (1998).

[8] B. Ananthanarayan, L. Caprini, G. Colangelo, J. Gasser and H. Leutwyler, Phys. Lett. B 602, 218
(2004),

[10] 5. 1. Kruglov, Phys. Rev, 1) GO, 116009 (1999).

[11] B. Patel and P. C. Vinodkumar, J. Phys. G 36, 035003 (2009).

[12] C. H. Chaug, C. F. Qiao, J. X. Wang, Phys. Rev. D) 57, 4035 (1998),

[13] D. H. Perkins, Introduction to High Energy Physics, Addison-Wesley (1987).

[14] Bali G 8 et al. , Phys. Rev D62, 054503 (2000),
Bali G S, Phys. Rep.343, 1 (2001).



[15] Alexandrou C, de Forcrand ' and John O, Nucl, Phys. B119, 667 (2003).
[16] T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D 72, 054026 (2003).

[17] €. F. Gerald and P. O. Wheatley, Applied Numerical Method, published by Dorling Kindrsley Pyt.
Ltd., (1999).

(18] Dr. V. N. Vedamurthy and Dr. N. Ch. Snivengar, Applied Numerical Methods, Published by Vikas
publishing House Pvt. Ltd., (1998).

[19] M. M. Feyli, World Academy of Science, Engineering and Technology 71, (2010).

[20] K. J. Juge, J. Kuti, and C. J. Morningstar, Phys. Rev. Lett., 82, 4400 (1999).

[21] K. J. Juge, J. Kuti and C. J. Morningstar, Nucl. Phys. Proc. Suppl. 63, 326 (1998),
[22] E. 5. Swanson, talk presented at JLAB/INT Workshop on Gluonic Excitations, (2008).
[23] N. Isgur and J, Paton, Phys. Rev. D 81 2910 (1985).

[24] J. Weinstein and N. lsgur, Phy. Rev. D 41, 2236 (1990).

[25] N. Akbar and B. Masud, arXive: 1102.1690 (2011).

[26] Cheuk-Yin Wong, E. 5. Swanson, and T. Barnes, Phys. Rev. C 65, 014903 (2002).

[27] K. K. Seth, Jour. Phys. Conf. Ser. 9, 32 (2005).

[28] P. Hasenfrate, R. R. Horgan, J. Kuti and J. M. Richard, Phys. Lett. B 95, 200 (1980).

[29] J. Merlin and J. Paton, J. Phys. G 11, 430 (1985);
N. Isgur and 1. Paton, Phys, Rev. D 81, 2010 (1985);
J. Merlin and J. Paton, Phys. Rev. D 35, 1668 (198T).

[30] L. A. Griffiths, C. Michsel, and P. E. L.. Rakow, Phys. Lett. B 129, 351 (1883);
S.Perantonis, C. Michael, Nuc. Phys. 3 347, 854 (1990).

[31] S. Perantonis and C. Michael Nucl. Phys. B 347, 854 (1990).
[32] €. J. Morningstar and M. Peardon, Phys. Rev. D 56, 4043 (1997),

[33] F. Iddir and L. Semlala, arxive hep-ph/0611165v2 (2006)

[34] T. Mankectal,, Phys. Rev. Lett.82, 4396 (1999).

[35] Z. H. MeiandX., Q. Luo, Int. J. Mod. Phys. A 18,5713 (2003).

[46] Y, Liu and X. Q: Luo, Phys. Rev. D 73, 054510 (2006).

[87] X. Liu. T. Manke, arXive:hep-lat/0210030

[38] 8, Godfrey, Flavor Pliysics and CP Violation Conforence, Vancouver, (2006).



"

——

T T B eapata

-



Eur. Phys. J. A (2001) 47: 124
DOT 10.1140/epja/i2i11-11124-2

THE EUROPEAN
PHYSICAL JOURNAL A

Wave-function—-based characteristics of hybrid mesons

Noshieen Akbar®, Bilal Masud®, and Saba Noor®

Centre For High Enengy Physics, University of the Punjab, Labore (54500), Pakistan

Roceived: 21 June 2011 / Revised: 6 September 2011

Published online: 21 October 2011 - © Societh Italisna di Fisica [ Springer-Verlag 2011

Communicated by H. Witting

Abstract. We propose some extensions of the quark potential model to hybrids, it them to the lattice dats
and use them for the purpose of caleulating the masses, oot mean square radii and wave functions at the
origin of the conventional and hybrid charmonium mesons, We treat the ground and excited gluenic field
between s quark and an antiquark as in the Born-Oppenheimor expansion, and use the shooting mathod to
numerically solve the required Schriidinger equation for the radial wave functions; from these wave funetions
wo ealeulate the mesonic properties. For mussos wo nlso check through o Crank Nichelson discretization,
For hybrid charmonium mesons, we consider the exotie quantum number states with J7¢ =077, 17" and
2+ W also compare our results with the experimentally observed masses and theoretically predictod
results of the other models. Our results have implications for scalar form factors, energy shifts, magnetic
polarizabilities, decay constants, decay widths and differential cross-sections of conventional and hybrid

INESOnS.

1 Introduction

A mumber of hadron properties are well described by
thtqumnddwimmmmmhawqgmmmbnn
J=L&§ P= (-1} and C = (-1)**5, L and S be-
ing the quantum mumbers for the guark-antiquark orbital
mg'ulnrnwmtmnndlheirnﬂaggmguhrm
tum, respectively. The states with J7¢ = 0%, 17%,2+"
(for the lowest lying hybrids in the flux tube model)
can not be formed from a g7 pair and hence are not al-
lowed in the quark model. These states are signals for
exotic mesons (hybrids, glueballs, ete), Quantum Chro-
modynamics (QCD), describing the interaction betweon
quarks and gluonic field, predicts the existence of hybrid
mesons containing the excited gluonic field. Thus for un-
derstanding QCD, we need to find experimentally testalilo
predictions of the theory for situations in which the glo-
onic field between a quark and an antiquark is in an ex-
cited state. Thus hybrids are an important source of in-
formation related to the confining properties of QUD, and
chocking for the existence of hybrid mesons is a very im-
portant objective of particle physics. Reviews of the spec-
trum of the excited gluonic states can be found in ref. [1].
Recently, a resonance is observed at COMPASS [2] with
JFPC = 1=*, Some other groups like VES [3-5|, E852 [6-
10}, and the Crystal Barrel Collaboration [11] also ob-
served these states.

* gemiail: noshinakbar@yahoo.com
¥ comall: bilalmasud. chep@pu. edo.pk
" e-mall: sabancor8Togmail .com

Using the Born-Oppenbeimer approach, the work of
finding implications of QCD for & meson can be split into
first using the numerical lattice simulations of QCD to fit
parameters of a quark-antiquark potential and then us-
ing this potential to calculate its dynamical implications.
Even a mumerically defined potential can be used in this
schome, as in refs. [12,13]. These works use some poten-
tials to calculate hybrid masses and few radial probability
graphs (but presents no qf wave function expressions or
uses). What we add to this work is that now we suggest a
number of analytical expressions for the excited state glu-
onic field potential between a quark and antiquark and fit
their parameters to the lattice data for the ground and ex-
cited state gluonic field energy values available in ref. [12]
for diserote quark antiquark separations. For each case, we
report o dimensionless chisquare and other measures di-
rectly telling how much fractional error each model has in
fitting. We use this variety of potentials to indicate suit-
able ones for different applications, for example for ans-
Iytical calculations of expectation values in few-body wave
functions where a mumerical approach may have conver-
genee problems. Our full list of chisquare and other error
measures tells how much exira error is generated in prefer-
ring the flux tube model and other integrable forms over
the ones that can be only mumerically used but fit better.
After using these potentials to find the quark-anticquark
wive functions, we also calculate a mumber of conven-
tional and hybrid meson rms radii and square of radinl
wave functions at the origin. We continue till writing some
implications of these for scalar form factors, energy shifts,
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magnetic polarenbilities, decay constants, decay widths
and differential cross-sections of conventional and hybrid
mesons. All this is an addition to our own results for me-
son masses wivd radial probabilities that are in agreement
to those reported in ref. [12] for the height of the single
peak of the probability graph.

In the present paper, we apply our techniques to char-
monium mesons. An advantage of considering them is in-
dicated in ref. [14] as

“ The hest systems for a hybrid search may be ¢2 or b
where there is o large gap between the lowest states and
the DD and BB threshod respectively.”

To find the wave functions of conventional charmo-
nium mesons, we use the realistic Columbic plus lincar
potential model to solve the Schridinger equation numer-
ically by using the corresponding quantum numbers of
the mesons. To study hybrids, we repeat the numerical
work with the models of the gluonic excitation energy
mentioned [u seet. 3. From the pumerically found wave
Functions, we ealeulnte the root mean square radii. These
radii can be used to find sealar form factors [15] for chae-
monium mesons, nlong with energy shifts [16] and mag-
netic polarizabifities [16]. Thus wo have reported some
predictions about these quantities for cooventional and
hybrid charmonium mesons. We have also found the nu-
merical values of square of radinl wave functions at the
origin (|R(0)|*), which can be used to caleulate the de-
cay constants [17], decay rates 17, and differential cross-
sections [18] for quarkonium states. The predictions about
these quantities are also reported for conventional and hy-
brid charmonium mesons.

In sect. 2 below, we write the Hamiltonian for the con-
ventional mesons, Then we describe the shooting method-
based numerical procedure to find the solution of the ra-
dial Schrtdinger equation for conventional charmonium
mesons, The expressions to fnd masses, roob mean squaro
radii, snd squares of radial wave functions at the oi-
gin (| R(0)]*) of conventional charmonium mesons are also
written in this section. In sect. 3, the Hamiltonian is writ-
ten for hybeid mesons, and then we redo all the mumerical
work as done in sect. 2 for hybrids now. The x° and other
error measures for different forms of the potential differ-
ence hetwoen ground and excited state are also written in
sect, 3, Results for the masses, root mean square radii and
|R(0)]* of conventional and hybrid mesons are reported in
sect. 4 for systems composed of charm quarks and anti-
quarks. Bused on these results, we also include some re-
sults related to experimentally measurable quantities.

2 Characteristics of conventional charmonium
mesons

2.1 The potential model for conventional charmonium
mesons

In the potential models, the confining potential for QQ
system in the ground-state gluonic field is mostly used in
the form of

2 e br4e (1)

ar
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with inter-uark distance r. Here, —4/3 Is due to the
eolour factor, o, 5 the quark-glion coupling, b is the
string tension and ¢ I8 & constant, In the shove equation,
the first term is due to one-gluon exchange and the sec-
ond term is the linear confining potential [19]. This poten-
tial form provides a good fit to the lattice simulations of
refs. [20-22]. By including the Gaussian-smeared hyper-
fine interaction [23] and the orbital-angular-momentum
(or centrifugal) term, the potential of the Q@ system for
the ground-state glionic field has following form:

a
Vir) = _;:’ +br+ 3—;”“‘;' (_"‘JE) "8, &
LIL+1)
T @

where S, - 5S¢ = S8 _ %1 o 18 the reduced mass of the
gquark and antiquark, my I8 the mass of the charm quark,
and § is the total spin quantnm oumber of the meson. For
the ¢ mesons, the parameters oy, b, @, aod me are taken
to be 0.5461, 01425 GeV?, 1.0946 GeV and 1.4796 GeV,
respectively as in ref. [23]. The quantum numbers for the
conventional charmonium mesons we choose for our study
are reported below in table 5.

2.2 Wave functions and radii of conventional
charmonium mesons

A conventionnl meson can be described by the wave fune-
tion of the bound quark-antiquark state which satisfies the
Schridinger equation with the potential of eq. (2). The
radial Schrodinger equation with wave function U{r) =
rR(r) is written (in natural units) as

V2U(r) + 26(E = V(r))U(r) = 0. (3)

Here R{r) is the radinl wave function, r is the interquark
distance, E is the sim of the kinetic and potentinl energy
of the quark-antiquark system, and V(r) and p are defined
sbove through eq. (2).

In the quark-antiquark bound state, the wave func-
tion must satisfy the boundary conditions U(0) = 0 and
U{oo) = 0. For the numerical solution of the Schridinger
equation with the potential of eq. (2), we repeatedly gener-
ated the energy E from —2 to 2GeV in steps of 0.1 GeV
For each such trial initial energy, we used the Newton
method [24] to sclect, if any, the encrgy for which the
mumerical solution of the Schridinger equation became
zero at infinity. To obtain these mumerical solutions, we
used the RK mothod [25] with using any arbitrary inte-
ger value of U'(0). For different values of 7'(0), normal-
izod solutions of the Schridinger equation, obtained by
multiplying the solution with the normalization constant

(-’}.I—vﬁ-‘-:.r—};) remain the same. These energy eigenval-

ues plus constituent-quark masses are taken to be the &
mesons masses (in poatural umits). It is found that our
results for conventional charmonium mesons agree with
table 1 of ref. [23]. This supports the reliability of our
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R {7}

Fig. 1. The radial parts of 5, J/w, A, and x. meson wave
functions as functions of r. Thin solid line represents the n wave
function, dashed line represents the J/th wave function, thick
solid line roprosents the b, wave function and polnts represent
the ye wivve funetion,

method. We abo checked the consistency of our method
by 1) getting a 100% overlap of our HU and EU and 2)
by caleulsting the masses of the conventional mesons by
the Crank-Nichelson Discritization and finding that the
masses obtained by both the methods are identical. Fig-
ure 1 shows the dependence of i, J/v, h, and . normal-
ized radial wave functions on the radial separation r, The
quanttm munbers (L and 5) for these particles are given
below in table 5. These graphs show that the radial wave
functions of 5, b, x., and J/v have the same properties as
thase of the hydrogen atom radial wave functions, i.e. they
behave as r* for small interquark distances and decrease
exponentially at large interquark distances. Thin solid and
dashed lines graphs are for L = (), so these graphs are
similar to v exp(~r), Thick solid line and points are for
L = 1, so these graphs are similar to r'exp(—r). As L
increases, the wave function's peak goes away from the
origin. This means that the centrifugal term has more ef-
fect on the wave function than of the hyperfine term. One
possible reason is that we are dealing with heavy quarks
so the 1/m? factor (shown in eq. (2)) of the hyperfine term
becomes very small.

The normalized wave functions are used in the further
caleulations of root mean square radli and square of radial
wave functions at the origin. To find the root mean square
radii of the ¢& mesons, we used the following relation:

() =/ f UeriUdr.

In ref. |26, for normalized wave function
U'(0) = R(0) = Viim $(0) (5)

is used and we use this prescription. Thus the derivative of
Uir) st r = 0 is calculated to find |R(0)]%. |R(0) is used
in many applications of high-energy physics as mentioned
in sect. 1.

(4)
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3 Characteristics of hybrid charmonium
mesons

3.1 The potential model for hybrid charmonium

The eentrifugal factor for the hybrid mesons is written in
refs. [27,28] as

L(L+1) = 24% + (J2)
2urd : (6)

where A iz the projection of the total angular momen-
tum J, of the gluonic field. The states with A = 0,1.2,
3.. aremaltympmudhythccap:nl grock letters
E, ﬂ' A, F, ..., respectively, We are interested in finding
the mmandmmmmaqummdﬁuithe hybrid states
0t=,177, and 2+, These states can be generated from
the [T, potential. For the IT, potential, (J3) = 2 and
A =1 [28]. Therefore —=24% + I[J;‘:} =), 50 the centrifugal
factor for the hybrid mesons is L{L+1)/2m+?. In ref. [28]
J=Las P= ‘{_I}L-I-.'!-i-ll and O = tq{_”H‘HS
with ¢, = %1. Therefore with the same quantum num-
bers (L. S), dlﬁm-ut. JPC states are possible. L and S for
these hybrid JPC states are shown in table 6 (as given
in ref. [201). For the excited part of the quark-antiquark
potential m/r is used in the flux tube model [30]. This
form of excitation energy is only valid at large interquark
distances. In comparison, we suggest and evaluate the ex-
cited potential energy in forms which are valid for smaller
distances as well. For this purpose, we get the potential
energy differences (£;) between ground and excited states
for different r; values from the lartice simulation reported
in fig. 3 of ref. [12], and calculate x? with a variety (n/r,
A % exp(=Br?), A x exp(=Br®157) £ 4 A x exp({-Br?),

and £ + A x exp(—Br"¥7#)) of ansatz by fitting parame-
mnppmngmmhnmm Dimensionless ? is defined

v Yo (e = Vlra)?
2 P L S p[rn .
X L [7]
» sl
with i = 1,2,3,...,n being the number of data points.

Here Vy(r) is 8 model of the potential encrgy difference
botween the ground and excited state. We tried

Vylr) =m/r,
Vylr) = A x exp(=Br?),
Vp(r) = A x exp{—Br7),

Vylr) = £+ A x exp(—Br), and

Vylr) = £+ A x exp(=Br7).

The parameters A, B,¢, and -~ are found by fit-
ting these models (V(r)) with the potentiul d.lﬁﬂr&une
data of ref. [12], and reported in table 1. x* x*/D
and x are also reported in table 1 with x‘;"D =

¥? /{vumber of data points) and x = it.-t’frm

Itunmdthtﬁmx“irrfrmgmwmm
other potential difference forms. Figure 2, representing
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Table 1. Our calcalated 3 for the data of potential difference Lo our suggestod models (Vp(r)) with best fit parameter’s values.
Parameters
Ansatz X AD A B ¢ U
(GeV?) (GeV) (GeV)
ufr 0.2305 0.3268 05285 = —
A = exp{-Br") 00857 01215 02774 1.8139 0.0657 - 2
A % exp(—Br7) 0.0004 00,0005 (.0205 178325 2.5195 - (.18497
£ 4 A x exp{—Br") 0.0012 0.0017 0.0331 1.2448 01771 0.3583 1
£ 4+ A xexp{—Br’) 0.0003 0.0004 0.0132 34093 1.0110 01745 0.3723

Potential Energy Differance (GeV)

UI R (fm) T

Fig. 2. Graphs of potential energy differences between ground
and excitod state. Points represent the data taken from ref. (12,
thick solid line represents the potential difference model £, thin
nﬂidummprmuthupﬂmhlmpdl&umf+.!x
erpl{-—B:L.ﬁuhadlinumptmt.s the potentinl difference A %
excpl = Br ™7 and squared points ropresents the potentinl
enerigy difference A x exp(—Hr?).

the graphs for different forms of potential difference, also
shows the same behaviour. The x* of the gaussian glu-
onic potential (A x exp(—Br}) is less than X, but larger
than all other forms, A x exp(—Br?) is a smeared form of
constant | ps written in appendix of ref. [31]. The potential
difference in this form (A x exp(—Br?)) has an advantage
that it can be easily used in applications. For
example, the expectation value of this part of the poten-
tial energy in & Ganssian wave function of the quadratic
confining potential is given in terms of error function dif-
forences even if one uses antiderivatives to evaluate the
definite integrals in it. Or, for usual infinite limits it simply
multiplies in the integrand with already Gaussian meson
wave functions to keep the integrand as Gaussian, whose
well-known integral can be written by inspection. [The ex-
pression for the expectation value can he minimized with
respuct to the chosen parameters of the wave funetion lo
find the ground-state encrgy and wave function using the
variational method.) This calculational advantage may be
trivial for a two-body problem. But if one has to evaluate
an expectation value for few or many-body problem (or
for a minor variant used in the resonating group method

based treatment [32,33] of a system of two quark and two
antiquarks), we have to evaluate an integral of u high order
whase direct numerical evaluntion may have convergence
problems as in ref. [33] and » Gaunssian integration by in-
spection may well be the only practical option. The need
to keep the multi-dimensional integrals as Goussian, giv-
ing importance to the A x exp(—Br?) form, becomes even
more prominent when wave lunctions of the conventional
mesons are replaced for the respective problems by those
of the hybrids s in ref. [32},

The analytic Gaussian expectation value of A x
exp(—Br) term is similarly given in terms of error fune-
tion differences, {Or, its product in imtegrand with Gaus-
sinn wave functions can be converted to & new (Ginussian
integrand using & completing of square.) The x* for the
potential difference in form of £ + A x exp(=Br0¥7) is
mdihm.Thuftmmhﬂﬁn&rmmhcmdtnran-
:lytiminprmdmuiufu:pu.uumn}nmintheahmu—
mentioned Gaussian quark-antiquark wave functions of
quadratic potential, resulting in differences of the expo-
nential integral functions for the most analytical way of
finding the expectation values and imtegrals of resonating
group method [32,33]. But a similar fully analytical route
for Gaussian jon wvnlues and resonating group iote-
grals of the A x exp{—Br7), for 7 = non-integer number,
is mot available, and this can lead to convergence prob-
lems [33] when we integrate numerically integrals of high
dimensions.

In ref. [13,28] excited-state potential (not the differ-
ence) is used in the form of

co + Vo + byr + bar?. (8}

By fitting this potential with data of first excited potential
taken from fig. 3 of ref. [12], we calculated the parameters
bo, by, bz, co. We also caleulated ¥2, x and */D and
reported in table 2 along with the parameter values. The
ﬁtdﬂrdauﬂthtlﬁnexﬁmdmmepmmﬂn]ism
in our fig. E.Mﬁrthuanaiyﬁmlml:ulﬂium{[aﬁmﬁng
expectation values etc.), thise are also not possible with
this potential form and thus for many applications it has
to be replaced by others of higher chisquare.
F;gumduhnwutbnhﬂhwinurot'mingpntmﬂnl i34]

\j:r*r2+2m:r (N+g) + g

(@
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Table 2. Our caleulated ° for the Arst excited state data of rel. [12] to the model used in rof, [13] with best fit parameter’s

values.
Paramiters
Excited potential ¥ %D X ta In b =]
(GeV?) (GeV?) {GaV?) (GeV*) {GeV)
o+ 0,00096 £0.0030 0.0226 BR.0016 44806 » 10~ 0.2859 —6.1814
VT hr T RS
%A 3.2 Wave functions and radii of hybrid charmonium

)
[T

™

‘| Potential Energy [GeV]
I
L=}

08
r (fm)
Fig. 3. Graphsofthe exchtod-state potential energy in the form
of €5 + By + bur + bar® along with data of ref. [12]. Salid line
h&rrthapotantinlm+¢é+ﬁr+5?’mddnmm[utduu
of ref. [12].

1.0 12 1.4

-
m—T

15 .

|8

o
in

Potential Energy (GeV)
-
1=]

04 o0& 08 1o 1z 14
05 v i)
=10
Fig. 4. Graphs of potential energy in the form of

(/733 + 250(N + §) + 1,. The solid line is for N = 0 and
small points are for N = 0 dota of ref. [12]. Thick solid line
is for N = 1 and medium stz points are for ¥ = 1 data of
ref. [12]. Dashed line is for the N = 2 and large size points aro
for the N = 2 data of ref. [12).

with N = 0,1,2. In this figure, the points represent tho
data taken from ref. [12]. The parameter's values, x® and
other error measures of the string potential with the data
(of excited potential) of ref. [12] is reported in table 3.
The parameter's values are calculated by fitting the data
of excited potential with the string potential. The analyt-
ical calculations (for finding expectation values) are not
possible with this string potential form as well.

Now, we can write the quark-antiquark potential in ex-
cited state gluonic field as
_ —doy 3270 a —a
Vir) 3+b+9m¥(v’-)t S5
L{L+1) - 24% + (J3)
T 2‘."_‘

V,(r) is defined above after eq. (7).

Using this excited-state potential of eq. (10) along with
the above-mentioned values ﬁnﬂur eq. (6)) of A and (J7),
the energy Blgmvalues and the corresponding wave ﬁmc-
tions are found by using the same technique as employed
for conventional mesons [mentioned in sect. 2). As be-
fore, these eigenvalues plus constituent guark-antiquark
masses are taken to be the masses of hybrid mesons. Then
we normalized the wave functions and found the root
menn square radii of hybrid mesons by using en. (4). The
normalized radial wave functions for charmonium hybrid
mesons are graphically represented in fig. 5 and fig. 6.
The overlaps of our numerically caleulated radial wave
functions (7 = rR) for the excited states and a modified
Gaussian wave function ansatz

w = nr? oxp(=pr?)

multiplied by v3rr are written in table 4 in such a way
that U = rR = visry.
The normalization of the Gaussian wave function gives

n= (ﬂ!pi) (15tnt).

The munerical value of p is found by fitting this function
with the data of mumerically caleulated wave function, and
written in table 4.

Figures 5 and 6 show the wave function dependence
on L and S. Therefore the masses and root mean square
radii of 07—, 1=+ and 2% JPC states also depend on the
quantum mumbers L and 5. |R(0)]* is found for hybrid
mesons using eqg. (5). Figures 5 and 6 also show that the
peaks of the graphs for radial probability density are in

with the peak of the radial probability curve
drawn in ref. {12},

+ Wylr): (10}

(1)

(12)
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Table 3. Our caleulated 1 with best fit parameter's value.

Paramaters
Excited polential x /D X N Wy @
GV (GeV) - (GeV) (e
0.5536 0.6633 0.6932 0 50884 x 107" 0.0601
(ot 4 2na(N 4 3) + wy 0.0112 0.0348 0.0899 1 3.5044 x 10°7 0.1629
0.0190 0.0740 0.1259 2 1.0531 x 107° 01627

Fig. 5. Hybrid charmonium meson radial wave functions for 077,17 and 277 JPC states for L = 1 and § = 1. The wave
function with potemtial in the form of Coulombic plas lnear phus Aexp{—Br?) i represented by the solid line. The wave funetion
with (}'uu!ﬂmbitﬁm linear plus /7 potential is represented by square poiuts. The wave lunction with Coulombic plus linoar plus
A exp(—Br"¥*) potential in represented by dashed line. The wave funetion with Coulombic plus lnear plus £ +Axexp(—Br)
potential s ropresented by thin solid line. The wave function with Coulombic plus linear plus £+ A x exp{ ~ B "33 potential is
represented by thick dashed line, and the wave function with excited potential in the form of co + By F Iyt + Bar? is representesd
by polnts with lines.

¢ {fm)

Fig. 6, The same as fig. 4 but with L =2and §=1.
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Table 4, Our best fit pulnmar'aml:nMnmhpurmhﬂysdm“wﬁnnﬁmmmuwwmmmnhmmﬁm

in eq. (11).
L=1and §=1 L=2and §=1

Ansatz Parameters of the excited-state | Overlap | Parameters of the cxcited-state | Overlap

function written in eq. (11) function written in eq. (11)

T p n P

n/r 0.0047 0.0356 08097 | 0.0032 0.0451 0.9989
A % exp|—8r?) 0.0031 0.0430 00064 | 0.0025 00301 0.9905
A x cxp(—Br18T) 0.0093 0.0822 0.0903 | 00048 0.0565 0.9998
£ 4 A x axp(~Br) 0.0070 0.0698 0.0800 | 0.0036 0.0482 0.9999
£+ A wexp(—Br®Y) | 0.0087 0.0794 0.9903 | 0.0045 0.0547 0.9995
o+ vl +br +bar? | 0.0163 0.1135 0.9921 | 0.0090 0.0807 0.9999

Mhu.mmmmwmmwnmmmmmrmmmm
mesons. The experimental mass is the average PDG [23] and rounded to 0.001 GeV. Our calculsted masses are rounded to

(L0001 GeV
Meson | L | S | Our calculated | Theoretical mass [23] | Experimental mass | Our calculated | Theoretical /{r%) 135]
s with NR potential N with
maodel potential model

(GeV) (GeV) (GaV) (fm) {fm)

e | 0|0 20816 2,982 29792 + 0,0013 [23] 0.365 0,388
Jhy 101 J.06800 3.000 2.0BGST = 0.00004 [23] 0.414 0404
b 1|0 35166 3.516 3,525 + 0,00055 [23] 0.674 0.602

xe |1]1 3.5246 3.556 355618 + 0.00013 [36] 0.685 0.606

4 Results and conclusions

1) For conventional mesons, our calculated masses and
root mean square radii are reported in table 5 along with
the experimental and theoretical predictions of the other
works. We observed that our results are in good agreement
with the experimental and existing theoretically prodicted
values, which shows the validity of our method. Quantum
mechanically, when L increases, the centrifugal barrier in-
creases so particles become less bound implying increased
root mean square radil. Our calculated root mean square
radii are in agreement with this expectation.

2) With the parameters (given in table 6) for the 07—,
17* and 2= JPC states, masses and root mean square
radii are caleulated for the charmonium hybrid mesons.
In table 6, masses are calculated using the excited state
gluonic field potential in the above-mentioned forms. For
comparison with earlier works, masses of of hybrid mesons
with 07,1~ and 2+~ J¥C states are given in table 7.
In table 8, root mean square radii are caleulated by taking
the excitod-state potential in the coulomb plus linear plus
additional excited potential. In table 9, masses and root
mean square radii are reported for the excited potential
in the form of eg + By + Dy + bare.

3) For conventional mesons |R{0}]* is reported in ta-
bie 10, Each |R{0)]? of the & hybrid mesons for 0%, 17%
and 2%— JPC gtates is equal to zero by our calculation
and this result agrees with ref. [37] which writes “models

of hybrids typically expect the wave function at the origin
to vanish” . We also noted that the masses and root mean
square radii of the hybrid mesons are greater than ordi-
nary mesons with the same flavour and quantum numbers
(L and §). Since 0+, 17+, 2%~ states are not possible
with quark model quantum numbers, we cannot compare
these JPC states with conventional mesons.
In ref. [15}, the scalar form factor is written as

Falt) =1+ 545t + o).

In ref. [16], energy shift and magnetic polarizability are
written as

(13)

_ /.|’ & ¢ \Hirse'e| ,
.E.E..-(n ﬂﬂh+(4ﬁ+m+#: 32 “>
+I0 |{n'leH Eafﬂﬁiﬂ}l’_ (14)

E ~E
Here the symbals Ly, H, e, m are used for the angular
momentum, magnetic field, charge and mass of the quark,
ji = 4, 0 is the angle between H and relative coordinate
r, § = & — ez, and ¢ = ¢ + £2. In the above equation,
the term having (n| 225522 1n!) s related to the square
of root mean square radii:

- AfE.
b= 34(4#"+m (15)

2
—+ m)[r ).
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Table 6. Our calculated masses of o hybrid meson 07,17 and 2%~ J7C states,
¥ L|S{Al D Exeitod potential as Coulomble plus linear plus
air | Axexp(=Br®)| A xexp(—Br®**™7) | £ + Axexp(=Br)| &+ Ax axp(—Br?3)
(GeV) (GeV) (GeV) (GeV) (GeV)
g, 1"t a2t 1]1] 2 (43571 4.0619 4.2680 42733 4.2694
1+ |2{1]1] 2 |4.4832 4.1433 4.4632 44258 4.40796
Table 7. The mass predictions of 177,07 and 277 states of other works,
Prodicted masses (GeV) Models
1- + u.+— gi=
= 3.9 [38] bag model
4.2-4.5 [39-41] fiux tube model
4.19 + sys. error [42,43] = 4.5 [13] =4 [13] heavy quark LGT
4.7 [44] 4.58 4]
4.1-4.5 QCD sum rulis
4.369 — 4.420 [45-47] 4.714(52) [47] 4.895(88) [48] quenched lattice QUD

Table 8. Our calculated root mean square radii of ¢ hybrid meson 0,17 and 27 J"¢ states.

Je L|§|al (i ' {77} with excited potentinl ss Conlombic plus linear plus
wir | Axexp(—Br') | A x exp(—Br* ™) [ £ £ A % exp(—Br) | £ + A % exp(—Br®*™)
(fm) (fm) (fm) (frm) (fm)
ot et ]| 2 |11081 1.2458 o110 00881 0.9272
17t2v l2i1]1] 2 |12a80 13208 1.0984 11883 1.1160

Table 9. Qur caleulated masses and root mean square madii
with exelted potential oo+ /By + byr + bar® of ¢ hybrid mesan
with 07=, 17, 2+ JPC gtates,

e LS| Al | Masses | /T
(GeV) | (fm)

[ st bl o andl 16 NN I 0 I | 2 49503 | O.7TT48
Tl 211 1]1 2 | 5.1693 | 0.0186

In the above equations (13)-(15) the root mean square
radii s in the numerator, therefore we prediet that the
magnitudes of the scalar form factor [15], energy shift [16],
and magnetic polarizability [16] for hybrids are greater
than those for conventional mesons with the same quan-
tum numbers (L and S).

By parametrizing the excited-state wave function writ-
ten above in og, (11}, we get

1502 /x/2

12857 (16)

() = f«:“r’adr=

Here n s 8 function of p, as given by eq. (12). Substituting
the result of eq. {16) in egs. (13) and {15}, the scalar furm

Table 10. |R{0)]* of ¢& mesons.

Meson | L | & | Our caloulated normalized [R{0)]*
{Fm)
7 n 0 2.5810
ie o] 2.1780
he 1|0 <"
Ye 1|1 <

factor and magnetic polarizability become

z
T =1+ %%ﬂw‘— '”:fgua{t’}. (17)
__ (&, & \un'ap2
ﬁ_*ﬁ(“ﬁ"‘#ﬁm) 128p7/2 ° (18)

Numerieally caleulated values of noand p are written i
table 4 for different lorms of the excited-state potentials
for different L and 5.

As we mentioned above, |R(0)[ is equal to zero for
hybrid mesons, Using this result, we can predict that de-
eay constants [17], decay rates [17], and differential cross-
sections [18] of hybrid mesons are zero as these quantities
are proportional to [R(0)|* as written in these references.



T q.u.u.r"..qll._.._.ﬁiul..."!u.n..-lnﬂ..ﬂ.w...u-..l
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