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Abstract
In many leading architectures for quantum computing, it remains to be understood if we can
equate single-qubit coherence times measured in isolation, to that of coherence times measured in
multi-qubit devices. On a multi-qubit superconducting circuit platform we show an increase in the
dephasing rate of a control qubit due to the spontaneous relaxation of spectator qubits coupled to
the control qubit. We attribute this increased dephasing to random in time Z-phase kicks on the
control qubit due to the interplay between spectator relaxation and the control-spectator ZZ-
interaction. We measure the magnitude of this extra dephasing using Ramsey decay experiments,
show how it can be corrected via dynamical decoupling pulse sequences, and demonstrate that
randomized benchmarking is insensitive to the effect. Our experimental results are supported by a
robust theoretical model that captures an arbitrary number of spectator qubits, and gives a simple,
intuitive picture for the mechanism behind the enhanced dephasing.

1. Introduction

The physical architectures behind quantum computing platforms have shown tremendous improvement in
recent years, such that qubit coherence times in leading platforms are not the only driver of performance for
small systems. However, with growing system size and circuit complexity, it is important to understand if
coherence times measured for single qubits in isolation faithfully represent the coherence times during
multi-qubit circuits. This will be particularly important for developments towards quantum error
correction [1–10] and quantum memories [11, 12], where some qubits are likely to experience long idle
times in an unknown quantum state.

In this work, on a superconducting qubit platform we experimentally demonstrate an enhancement in
the effective dephasing rate of a control qubit due to the energy relaxation of excited spectator qubits that
couple to the control qubit via a longitudinal (ZZ) interaction. The origin of this enhanced dephasing is the
random phase-kicks on the control qubit associated with the random (in time) relaxation of the spectators,
which in the ensemble average manifests as dephasing. We refer to this effect as spectator-decay-induced
dephasing (SDID). As the error is coherent phase evolution on a shot-by-shot basis, it can be corrected
using spin-echo sequences on the control qubit, which we also demonstrate.

The SDID mechanism is analogous to models for dephasing in superconducting qubits due to thermal
two-level systems [13, 14], and the decoherence induced by spin–spin interaction with spontaneous
emission/absorption observed in trapped ion arrays [15, 16]. The distinction is that unlike these models, the
state of the spectator qubits does not fluctuate, but exhibits at most one decay event for each qubit.
Dephasing due to the SDID mechanism was also previously reported in nuclear magnetic resonance
experiments [17, 18], and the impact of SDID was recently observed in superconducting qubits [19, 20]. In
the context of previous work, this manuscript represents a thorough experimental and theoretical
exploration of the effect, including the derivation of an accurate theoretical model for an arbitrary number
of spectator qubits. We note that during preparation of this manuscript we became aware of reference [21],
which presents general analytical solutions for the dissipative Ising model. This includes the SDID model we
present in this work, and our theoretical solutions are in full agreement with those of reference [21].
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This manuscript is organized as follows. In section 2 we qualitatively explain the mechanism that leads
to the SDID effect. In sections 3–5 we present our experimental and theoretical results of studying SDID
during Ramsey decay, composite pulse sequences, and randomized benchmarking (RB). Finally, in section 6
we make our concluding remarks.

2. Spectator-decay-induced dephasing

To understand the origin of the effect we refer to as SDID, we consider a single qubit (the control) coupled
to one or more other qubits (the spectators) via a longitudinal or ZZ-interaction, as described by the
Ising-model Hamiltonian

Ĥ =

N∑
j=1

νjẐ0 ⊗ Ẑj. (1)

Here ν j is the ZZ-coupling strength between control qubit 0 and spectator qubit j, we consider N spectator
qubits, and we use Ẑj as shorthand for the (N + 1)-qubit operator with Ẑ on qubit j and identity on all
others.

For spectator qubits in a static state, the control qubit simply evolves under the Hamiltonian Ĥ0 = νsẐ0,
with νs =

∑N
j (−1)sj+1νj where s j = 0, 1 denotes the state of the j’th spectator qubit. After some time t, this

evolution imparts a Z-phase on the control qubit given by φt = νst. If at this point in time an initially
excited spectator qubit relaxes to the ground state, sj = 1 → 0, then the magnitude of the Z-phase evolution
of the control qubit will also change νs → ν ′s. Thus, for a total evolution time t′, the total accumulated phase
will be φτ = νst + ν ′s(t′ − t). The dynamics are completely coherent for any single run (or shot) of an
experiment sensitive to this control-qubit phase evolution. However, since the time of spectator relaxation is
a random variable, so too is the total phase accumulated. In the ensemble average of many such shots, this
shot-by-shot random phase accumulation manifests as an effective dephasing of the control qubit state.

3. Ramsey decay

One of the dominant methods to measure phase accumulation is a Ramsey experiment [22]. Here, we
implement a Ramsey sequence with a Hahn-echo in the middle of the sequence on qubits from an IBM
Quantum Falcon R5 device, see figure 1(a) inset. As we will explain later, a single Hahn-echo does not
reduced sensitivity to the SDID effect, but it does entirely suppress unwanted frequency beating due to
charge noise [23] and frequency miscalibrations, which would otherwise convolute the analysis. In figure 1
we compare the dephasing rate of a control qubit, Q0, coupled by a ZZ-interaction of strength 4ν ≈ 45 kHz
to a spectator qubit Q1, with the spectator qubit prepared in either the |0〉-state (blue) or in the |1〉-state
(red). The SDID-unaffected control qubit T(0)

2 = 127μs is measured (blue dots) and fit with a single
exponential decay (solid blue line). The spectator qubit T(1)

1 = 107μs is determined with a separate
experiment. After the spectator qubit is prepared in the excited state we see a significant reduction in the
dephasing time of the control qubit (red dots).

A theory model solely based on ZZ-coupling strength, control qubit dephasing rate and spectator
relaxation rate, see equation (9), accurately predicts the effect of SDID (solid red line). The only fitting
parameter in our model is a simple multiplicative rescaling parameter to adjust for state-preparation and
measurement (SPAM) error, whereby we multiply the theory prediction by the value of the initial (τ = 0)
experimental data point. Heuristically, we find that the SDID-enhanced dephasing is well approximated by
an exponential with a rate proportional to 1/T(0)

2 + 1/T(1)
1 . This is shown in figure 1(a), where the black

dashed line is a single exponential decay curve with the enhanced dephasing rate and the overall scaling to
adjust for SPAM. As we will discuss later, this simple heuristic only holds in the case of ν � 1/T(1)

1 .
However, for our particular case ν ≈ 1/T(1)

1 , which explains the oscillations observed in the curves for the
full theoretical model in figure 1.

In figure 1(b) we show that SDID is an additive effect (in terms of the dephasing rate) when additional
spectators are involved. Here, we have a central control qubit coupled to three spectator qubits, Q1,2,3, with

ZZ-coupling strengths 4ν j = {47 kHz, 47 kHz, 41 kHz}, spectator lifetimes T(j)
1 = {172μs, 156μs, 142μs}

and control qubit T(0)
2 = 305μs. One can clearly see that with every additional spectator qubit being

prepared in the |1〉-state, starting from spectator Q1, the dephasing rate of the control qubit increases. Our
multi-qubit theory model, see equation (10), accurately captures the control qubit dephasing for an
increasing number of spectators (colored solid lines). As in figure 1(a), to account for SPAM we rescale each
theory curve by the value of the first data point of the corresponding experimental data. In appendix B we
show that the SDID-unaffected dephasing can be recovered by post-selecting the experimental outcomes
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Figure 1. (a) Ramsey spectroscopy on a control qubit with one ZZ-coupled spectator qubit. (Inset) Ramsey echo sequence used
to measure SDID. Blue dots: experimental data with spectator prepared in |0〉. Red dots: experimental data with spectator
prepared in |1〉. Solid blue line: exponential fit to dephasing data extracting T(0)

2 = 127μs. Red solid line: theory prediction based
on equation (9). Black dashed line: exponential decay based on a heuristically adjusted decay rate given by 1/T(0)

2 + 1/T(1)
1 .

(b) SDID measured on a control qubit with three ZZ-coupled spectators. Dots are experimental data, red solid line is a
exponential fit to extract the non-SDID dephasing rate and the remaining solid lines are theory curves. Red: all three spectators
are prepared in the |0〉-state. Blue: one spectator is prepared in |1〉 while the others remain in |0〉. Yellow: two spectators are
prepared in |1〉 and black: all three spectators are prepared in |1〉.

based on state of the spectator qubits, i.e. we only retain data points where the spectator qubits did not
decay from their initial excited-state.

The starting point of our theoretical analysis of SDID is the master equation describing the evolution of
a ZZ-coupled array of qubits with relaxation and dephasing

ρ̇ = −i
[
Ĥ, ρ

]
+

N∑
j=0

(
γjD

[
σ̂−

j

]
ρ+ γφ

j D
[

Ẑj

]
ρ
)

, (2)

Ĥ =

N∑
j=1

νjẐ0 ⊗ Ẑj, (3)

where D[x̂]ρ = x̂ρx̂† −
{

x̂†x̂, ρ
}
/2. Note that Ĥ is in the rotating frame with respect to the qubits’

self-Hamiltonian Ĥself =
∑

j(ωj/2)Ẑj. γj = 1/T(j)
1 and γφ

j are the relaxation and pure dephasing rates of
qubit j, and ν j is the ZZ-coupling strength between spectator qubit j and control qubit 0. For analysis of the
dynamics of the control qubit we can neglect ZZ-coupling between the spectators.

In appendix C we discuss the microscopic derivation of equation (2), but here we focus on obtaining a
model for the evolution of the coherence of the reduced state of the control qubit. To that end, we can
express ρ(t) as

ρ(t) = |0〉〈0| ⊗ ρ00(t) + |1〉〈1| ⊗ ρ11(t) + |0〉〈1| ⊗ ρ01(t) + |1〉〈0| ⊗ ρ10(t), (4)

where the spectator qubit operators ρjk(t) contain all time-dependence of ρ(t). Note that while ρ00 and ρ11

are valid density matrices, ρ01 is not required to be, but we have that ρ10 = ρ†01. Similar to how
measurement-induced dephasing is analysed in circuit QED [24], the trace of ρ01(t) captures the evolution
of the coherence of the control-qubit reduced state.

The operator ρ01 evolves under the equation

ρ̇01 =
(
〈0| ⊗ Î

)
ρ̇
(
|1〉 ⊗ Î

)
= −γ̃0ρ01 + i

N∑
j=1

νj

{
Ẑj, ρ01

}
+

N∑
j=1

(
γjD

[
σ̂−

j

]
ρ01 + γφ

j D
[

Ẑj

]
ρ01

)
, (5)

where γ̃0 = γφ
0 + γ0/2 = 1/T(0)

2 characterizes the dephasing of the control qubit due to its intrinsic
decoherence. We can immediately remove the dynamics due to γ̃0 by defining η = eγ̃0tρ01, which evolves as

η̇ =

N∑
j=1

(
iνj

{
Ẑj, η

}
+ γjD

[
σ̂−

j

]
η + γφ

j D
[

Ẑj

]
η
)
. (6)

As the structure of this equation shows, the part of η corresponding to each spectator evolves independently
of the others, so that if the system starts in a tensor product structure it will remain in one, i.e.
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η(t) = ⊗N
j=1ηj(t). Thus, solving for one spectator, we can simply iterate and combine by tensor product to

solve for all spectators.
To calculate the trace of η, we need only solve for its diagonal elements. For each spectator, we find that

[ηj(t)]00 = [ηj(0)]00 e−2iνj t (7)

[ηj(t)]11 =
[ηj(0)]11

4iνj − γ1

(
4iνj e(2iνj−γ1)t − γ1 e−2iνj t

)
(8)

where [ηj(t)]kk is the diagonal element corresponding to the spectator in state |k〉〈k|. Using this, for a single
spectator (N = 1, ν ≡ ν1) we can obtain the analytical expression for the trace of ρ01(t)

Tr[ρ01(t)] = [ρ01(0)]00 e−(2iν+γ̃0)t + [ρ01(0)]11
e−γ̃0t

4iν − γ1

(
4iν e(2iν−γ1)t − γ1 e−2iνt

)
, (9)

which has a clear interpretation. If the spectator is in the ground state initially, then the control qubit
evolution is given by the first line of equation (9), which is just the usual coherent evolution driven by the
ZZ-coupling and the control-qubit intrinsic dephasing. For an excited spectator, the decay envelope is given
by the second line of equation (9). While more complicated, in the limit ν � 1/T(1)

1 the absolute value of
this simplifies to exponential decay at the enhanced rate 1/T(0)

2 + 1/T(1)
1 .

For multiple spectators that each start in a Pauli-Z eigenstate, the trace of ρ01(t) is given by

Tr[ρ01(t)] = e−γ̃0t
N∏

sj=0

e−2iνj t
N∏

sj=1

(
4iνj e(2iνj−γj)t − γj e−2iνj t

)
4iνj − γj

, (10)

where as before sj labels the initial state of the j’th spectator qubit. As was the case for a single qubit, in the

limit νj � 1/T(j)
1 the control qubit coherence envelope simplifies to exponential decay at the enhanced rate

1/T(0)
2 +

∑
j,sj=11/T(j)

1 , which agrees with what we observe in experiment.

The theory model we have so far considered does not include the Hahn-echo applied in our
experimental protocol. However, as we will explain in more detail in section 4, when echo sequences are
applied the important consideration is the maximum possible phase-accumulation of the control-qubit due
to its interaction with the spectator qubits in the |1〉-state. For Ramsey decay with no echo, for a total
evolution time of τ the accumulated phase is contained within [0, 2ντ], with the lower bound when the
spectator relaxes exactly at t = τ/2, and the upper bound when the spectator does not relax. For Ramsey
decay with a single echo, the accumulated phase is also contained within [0, 2ντ], but with the lower bound
for no spectator relaxation, and the upper bound when the spectator relaxes at t = τ/2. Thus, the model for
Ramsey without echo accurately describes the situation of Ramsey with echo, as evidenced by the excellent
agreement between theory and experiment in figure 1.

4. Composite pulse sequences

The nature of the SDID effect can be intuitively understood as a single phase-kick due to the ZZ-coupling
when an excited spectator qubit relaxes. The control qubit’s frequency depends on the spectator qubit’s state
with a frequency difference of 4ν j, and the control qubit frequency for all the experiments presented here is
calibrated while the spectator(s) are in the ground state. The single Hahn-echo previously described cancels
any static frequency shift due to the spectator(s) being in the excited state as long as they stay in this state.
While a single spectator relaxation results in a coherent phase evolution for each quantum trajectory, the
random nature of T1-relaxation leads to dephasing in the ensemble average.

If one could predict the exact moment when a T1 event occurs, SDID could be fully reversible. Since this
is impossible, the closest we can do is to implement a decoupling sequence such as CPMG [25, 26]. With
increasing order, this can refocus more of the SDID-related phase kicks. In figure 2 we measure the
dephasing rate of the control qubit with a Ramsey experiment as a function of increasing CPMGn pulse
sequence order, where n + 1Y/X-pulses are inserted with temporal symmetry and equidistant spacing
between the two Ramsey pulses, see inset figure 2. Here, we take the same set of four qubits as presented in
figure 1(b). Without any CPMG pulses the control T(0)

2 ≈ 280μs drops to T(0)
2 ≈ 30μs when all three

spectators are in state |1〉. The data presented in figure 2 shows a clear revival of T(0)
2 as we increase the

CPMGn-order, with a full revival at n ≈ 160.
To model reduction of the SDID effect due to CPMGn, the relevant quantities are the lower and upper

bounds on the amount of phase that the control qubit can accumulate due to the ZZ-interaction with the
spectator qubits. As shown in the inset of figure 2, we can divide the total time T of a CPMGn experiment
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Figure 2. Dephasing time T2 is measured for a control qubit as a function of increasing CPMG-sequence order. The control is
ZZ-coupled to three spectator qubits, and all spectators are prepared in the |0〉-state (blue) or in the |1〉-state (red). (Inset)
Experimental sequence with CPMG pulses of nth-order inserted between the Ramsey pulses dashed lines are guides for the eyes.

into periods of length τ = T/(n + 1), where each period has an X- or Y-pulse in the middle. If the sign of
the ZZ-interaction remains constant during a τ -period, the total phase accumulation will be zero due to the
echoing effect of the X/Y-pulse. Thus, to understand the total random phase accumulation during the full
time evolution, we need only consider the τ -periods when a spectator relaxation occurs.

For a single spectator, there is only one such period, and the phase accumulation is lower bounded by 0
(spectator relaxation at the start or end of the τ -period), and upper bounded by 2ντ = 2νT/(n + 1)
(spectator relaxation in the middle of the τ-period). For n = 0, the sequence is equivalent to the Hahn-echo
sequence of figure 1, and we obtain that the accumulated phase is contained within [0, 2νT], exactly as
would be the case if there were no Hahn-echo. This explains why the theoretical model with no Hahn-echo
accurately predicts the results of the sequence with Hahn-echo. For any CPMGn we can define an effective
ν ′ = ν/(n + 1), and use ν ′ instead of ν in our theory model for Ramsey decay. The generalization to
multi-spectators is straightforward, as the phase evolution due to each spectator can be considered
independently, and ν ′j replaces ν j in equation (10).

5. Randomized benchmarking

To understand the impact of SDID on RB we calculate the quantum channels describing the evolution of
the control qubit conditioned on the initial and final state of the spectator qubit. To start, we consider the
full two-qubit channel generated by equation (2) for a single spectator and no control-qubit dissipation.
This is most easily expressed in vectorized form as

|ρ(t)〉〉 = eLt|ρ(0)〉〉, (11)

where |ρ〉〉 is a vector formed by column-stacking the density matrix ρ, and eLt is the superoperator
description of the two-qubit channel, with L the associated Liouvillian superoperator of equation (2). To
define the conditional control-qubit channels Λ̂ij for the spectator initial state |i〉 and final state |j〉, we start
in the initial state ρi = ρc ⊗ |i〉〈i|, and project onto the final spectator state |j〉〈j| via the operation

Λ̂ij|ρc〉〉 =
1

Nij

(
Î⊗ 〈j| ⊗ Î⊗ 〈j|

)
eLt|ρi〉〉. (12)

Here Nij is a normalization factor given by the trace of Λ̂ij|ρc〉〉, i.e. the probability that the spectator starts
in state |i〉 and ends in state |j〉, which in vectorized notation is defined as

Nij =

1∑
n=0

(
Î⊗ 〈n| ⊗ Î⊗ 〈n|

)
Λ̂i|ρc〉〉. (13)

Since the spectator qubit cannot be excited by the dynamics we consider, the process described by Λ̂01

cannot occur, and so it is the all zero matrix. The other Λ̂ij are diagonal matrices with structure

diag[Λ̂ij] =
(
1,λij,λ

∗
ij, 1

)
. (14)
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Figure 3. Single qubit RB on a control qubit coupled to three spectator qubits. Dots are experimental data and solid lines are
exponential fits to data. From the fitting we get an error per Clifford of 9.47(14) × 10−4 with all spectators in |0〉 (blue),
10.1(1) × 10−4 with spectators in |+〉 (yellow) and 9.44(9) × 10−4 with spectators in |1〉 (red).

where λ∗ is the complex conjugate of λ. In detail, we have that

λ00 = λ∗
11 = ei2νt , (15)

λ10 =
γ1

(
ei2νt − e−(γ1+i2ν)t

)
(γ1 + i4ν)(1 − e−γ1t)

. (16)

Without SPAM, a single-qubit RB curve has the form pn + (1 − pn)/2 after n gates, and the RB decay
constant, p, for a single-qubit error process Λ is related to the trace of its superoperator via the
expression [27]

p =
Tr[Λ̂] − 1

3
. (17)

Thus, we have for each of our conditional processes that

pij =
1 + 2 Re[λij]

3
, (18)

if the error process Λ̂ij were to happen for every gate in the RB sequence. For Λ̂00 and Λ̂11 this is possible, as
repeated action of these error processes represents, respectively, the evolution with a ground state spectator,
and when the excited-state spectator does not relax. In both cases we find the same RB decay constant

p00 = p11 =
1

3
(1 + 2 cos(2νt)). (19)

This means that RB is insensitive to the sign of the ZZ-interaction, which is a consequence of the twirling of
the error channel implemented by the random Clifford gates.

For the situation when the spectator does relax, the evaluation is not so simple, as the spectator can only
relax once. Assuming that the relaxation occurs during the mth gate, then the first m − 1 gates experience
the error channel Λ̂11, and the last n − m the error channel Λ̂00 as the spectator now starts in the ground
state. Only the mth gate experiences the channel Λ̂10. As Λ̂11 and Λ̂00 lead to the same RB decay constant, a
single action of Λ̂10 will have an inconsequential impact on the RB decay curve.

The coherent error induced by the ZZ-interaction found in Λ̂11 and Λ̂00 plays a dominant role, and as
RB is insensitive to the sign of this interaction, the spectator relaxation cannot refocus any of this coherent
error except during the gate when the relaxation occurs. In the limit of long RB sequences, this causes only a
small deviation from the exponential decay predicted with no spectator relaxation. As such, RB is effectively
insensitive to the effects of SDID.

The above expressions for RB decay assume that the single-qubit Clifford gates on the control qubit are
calibrated with a drive frequency corresponding to the ‘bare’ control qubit frequency. For such a calibration,
in the frame rotating at the drive frequency there is an equal magnitude and opposite sign ZZ-interaction
for both spectator qubit states. In our experiments, the gates are calibrated with the spectator qubits in the
ground state, and the drive frequency corresponds to the bare control qubit frequency shifted by the
ZZ-interaction for ground-state spectators.

6
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A simple modification of our RB theory model is required to account for the experimental calibration.
For a ground-state spectator, the control qubit experiences no net shift due to the ZZ-interaction, while for
an excited-state spectator it experiences twice the ZZ-interaction of the bare frequency calibration. Thus, it
is straightforward to see that the RB decay constants for the experimental calibration are

pexp
00 = 1, pexp

11 =
1

3
(1 + 2 cos(4νt)). (20)

Nevertheless, RB remains insensitive to the effects of spectator relaxation.
In figure 3 we show experimental RB curves for the three spectator qubits initially all prepared in the |0〉,

|1〉, or |+〉 ∝ |0〉+ |1〉 state. The state of the spectator is not monitored or reset after each Clifford gate
applied to the control qubit, but left to evolve freely as in the Ramsey experiments. The decay curves are
nearly indistinguishable, and the error per Clifford (EPC) estimated from each differs at the 10−5 level. As
expected, to this level of estimation accuracy we see no impact of SDID on RB. While our Ramsey
experiments strikingly demonstrated the impact of SDID, no such behavior is observed for the RB decay.

However, given our theory model, for the experimental calibration we would expect |0〉 to have a smaller
EPC than the other states, as it should have no coherent error due to the ZZ-interaction, while the |1〉 and
|+〉 states should. Quantitatively, for the device parameters of our system, the upper bound on the EPC due
to the ZZ-interaction (if all ν i add constructively) is on the order of 10−4. Thus, it is likely that the RB decay
is also strongly impacted by some other source of error not contained in our model.

6. Conclusion

In this manuscript we have experimentally investigated the effective dephasing induced on a qubit due to
the spontaneous decay of spectator qubits coupled via a ZZ-interaction. Our experimental results are
supported by a robust theoretical model, and we find excellent agreement between theory and experiment
with only a single fit parameter to account for SPAM error. We have shown that the SDID mechanism can
be the dominate source of decay in a Ramsey experiment, but owing to the shot-by-shot coherent nature of
the noise, it can be corrected for using dynamical decoupling sequences such as CPMG. Furthermore, we
have found both in theory and experiment that RB is insensitive to SDID.

The quantitative impact of SDID on specific quantum information protocols remains an open question
for future study. The SDID error mechanism is intrinsically correlated, as a decay event on one qubit
induces ensemble average dephasing on another. This may be particularly damaging to applications known
or expected to be sensitive to correlated errors, such as quantum error correction, entanglement generation,
or quantum metrology. Moreover, protocols with long qubit idle times, such as quantum memories, are
likely susceptible to the impact of SDID. On the other hand, we have shown that SDID can be mitigated
using high-order dynamical decoupling, and random circuits seem to have some degree of intrinsic
insensitivity to SDID, as evidenced by our results for RB.

SDID is one example of an error that emerges due to the multi-qubit interplay of single-qubit error
mechanisms, where the effect is ‘worse than the sum of its parts’. With quantum information protocols
continuing to grow in size, duration, and complexity, we expect more of these emergent errors to appear.
This highlights the importance of continued experimental and theoretical research into the impact of
simultaneous error mechanisms in combination, not in isolation.
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Table 1. Summary of the relevant parameters of the qubits from the
IBM Quantum Falcon R5 device used in this manuscript. Control T2

and spectator T1 were measured during our experiment, while
ZZ-coupling strength was taken from independent device
calibration. Control T1 and spectator T2 were not measured as they
are not needed.

Qubit T1 (μs) T2 (μs) 4ν j (kHz)

Figure 1(a)

Control Q0 — 127 —
Ancilla Q1 107 — 45

Figures 1(b), 2, and 3

Control Q0 — 305 —
Ancilla Q1 172 — 47
Ancilla Q2 156 — 47
Ancilla Q3 142 — 41

Figure 4. Reanalysis of data from figure 1(b) with post-selection comparing the initial and final states of spectator qubits for (a)
one, (b) two, and (c) all three spectators initially excited. Red: unperturbed dephasing with all spectators in state |000〉 acting as a
lower bound on the dephasing rate; blue: original SDID curve for the given initial spectator states; green: post-selected SDID
curve where experimental outcomes are only kept if the initial and final spectator state agree. Error bars are estimated from
projection noise based on Jeffreys interval.

Appendix A. Device parameters

See table 1.

Appendix B. Post-selection on non-decayed spectators

To further corroborate our theory, i.e. the increase in dephasing is caused by spectator qubit decays, we
can reanalyze the data presented in figure 1(b) by post-selecting the experimental outcomes based on
the spectator states. In an ideal setting, if we discard all data where we measure an initially excited-state
spectator to be in the ground state at the end of the experiment, i.e. the spectator decayed, then the original
dephasing rate should be recovered. Figure 4 compares the unperturbed decay curve for spectators in the
ground state |000〉, with the original SDID curve and the post-selected SDID curve for all three cases of one,
two, or all three spectators being excited. As can be seen, post-selecting almost fully recovers the
unperturbed decay rate.

The remaining discrepancy can be explained by SPAM errors. The unperturbed curve is a lower bound
on the dephasing rate, hence any post-selection based on comparing the spectator initial and final states has
to be strictly bounded above by the unperturbed decay curve. Any mislabeling of spectator qubit state |0〉
with |1〉 due to measurement error will lead to a wrong post-selection which adds to the dephasing rate.
The error bars are calculated from projection noise using Jeffreys interval.

Appendix C. Derivation of the Lindblad-form master equation

In this appendix, we will microscopically derive the Lindblad-form master equation of equation (2), and
justify its use as the starting point for our theoretical model. To understand why this is necessary, notice that
the Lindbladian evolution term
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ρ̇ = L[ρ] =
N∑

j=0

(
γjD[σ̂−

j ]ρ+ γφ
j D

[
Ẑj

]
ρ
)

, (C1)

has a time-dependent terms in the interaction frame defined by the system Hamiltonian

Ĥ =
N∑

j=0

ωj

2
Ẑj +

N∑
j=1

νjẐ0Ẑj, (C2)

due to the ZZ-coupling. Thus, L cannot be microscopically derived using the standard Born–Markov
rotating-wave-approximation (BMRWA) approach [28, 29] which precludes a time-dependent Lindbladian,
as the strong secular approximation made in the BMRWA removes all interference between decay pathways
that have non-degenerate Bohr frequencies (energy differences between the eigenstates of Ĥ).

Without a clear microscopic derivation, we must treat equation (2) as a phenomenological model.
Beyond justifying its use as the starting point of our analysis, microscopic derivation enables us to clarify
the regime of validity of equation (2), and check for missing elements of the model that may be physically
relevant. Given the excellent agreement we see with experimental results, we do not expect equation (2) to
be missing anything in the parameter regime of our experiments. As we will soon see, this is indeed the
case, but we will also comment on what would happen outside this regime, such as with stronger
ZZ-coupling.

The starting point of our analysis is the lab-frame description of an array of transversely coupled
superconducting qubits

Ĥ0 =

N∑
j=0

ωj

2
Ẑj +

N∑
k>j

gjkX̂jX̂k. (C3)

We assume that each of these qubits couple to independent electromagnetic baths via the system-bath
interaction Hamiltonian

ĤSB,0 =

N∑
j=0

ξ̃jX̂j ⊗
(

B̂j + B̂†
j

)
, (C4)

where B̂j is the SB-coupling operator for the bath of qubit j, with ξ̃ the interaction strength. The
assumption of independent baths is not necessary for this derivation, but simplifies the analysis. Note that
given our choice of ĤSB,0 we are focusing solely on the derivation of the energy relaxation part of
equation (C1), as this is the part that does not commute with the Hamiltonian of equation (C2) and leads
to a time-dependent Lindbladian.

Equation (C3) defines a Hamiltonian Ĥ0 composed of what are usually referred to as the physical qubits.
Diagonalization of Ĥ0 results in a Hamiltonian of the form [30]

ĤL =

N∑
j=0

ωj

2
ẐL

j +

N∑
k>j

νjkẐL
j ẐL

k +

N∑
n>k>j

μjknẐL
j ẐL

k ẐL
n + · · · (C5)

that describes an array of logical qubits coupled by diagonal interactions consisting of many-body Z-terms.
The logical qubits incorporate the hybridization of the physical qubits due to their transverse coupling, and
Ĥ of equation (C2) is the truncation of the above expression to two-body interactions. This truncation is
accurate for weak enough transverse coupling [30], and is the first approximation in deriving equation (2).

The system-bath interaction transformed to the basis of logical qubits is generally complicated. The
physical qubit operator X̂j is transformed to a logical qubit operator whose dominant component is X̂L

j , but
includes small corrections due to the qubit hybridization. To simply the analysis, we focus on the situation
described by equation (C2), where there is no ZZ-coupling between the spectator qubits.

In this case, the system-bath Hamiltonian for the logical qubits including the lowest order correction is

ĤSB,L = ξ0

⎛
⎝X̂L

0 +

N∑
j=1

a0jẐ
L
0X̂L

j

⎞
⎠⊗

(
B̂0 + B̂†

0

)
+

N∑
j=1

ξj

(
X̂L

j + aj0X̂L
0 ẐL

j

)
⊗
(

B̂j + B̂†
j

)
, (C6)

where a0 j and aj0 are mixing coefficients describing the hybridization, and ξ j is a renormalized system-bath

interaction strength that makes the coefficient of the dominant X̂L
j term unity. We are typically in a

parameter regime where |a0j|, |aj0| � 1, and so have dropped terms O
(
|a0j|2

)
and higher that hybridize the

spectator qubits through an interaction mediated by the control qubit.
As can be seen, the dominate correction in the logical qubit basis is to introduce a decoherence channel

for qubit j through the control qubit’s bath, and vice versa. Using this system-bath interaction we will now
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attempt three microscopic derivations of equation (2): the first, following the BMRWA approach, will fail,
which will motivate us to consider a second, ultimately successful, approach using a partial secular
approximation (BMPSA) [31]. We will also employ a third approach, a cumulant expansion and time
coarse-graining (CETCG) [29] to understand the intermediate regime between our first two approaches.
From here onward we will suppress the superscript L, as all equations are in the logical qubit basis.

C.1. Born–Markov rotating-wave-approximation: a failed derivation
In the BMRWA approach, the derivation of the Lindbladian terms for each independent bath can be treated
separately. As such, for illustrative purposes we can consider a two-qubit system and derive the master
equation for the spectator’s interaction with its bath, as described by the full Hamiltonian

Ĥ2Q = ĤS + ĤB + ĤSB,

ĤS =
ω0

2
Ẑ0 +

ω1

2
Ẑ1 + νẐ0Ẑ1,

ĤSB = ξ
(

X̂1 + aX̂0Ẑ1

)
⊗
(

B̂j + B̂†
j

)
, (C7)

where ĤB is the bath Hamiltonian. As will become clear during the derivation, using the Linbladian we
obtain from equation (C7) we will be able to determine the full Linbladian for an arbitrary number of
spectator qubits, including the contribution due to the control qubits interaction with its bath.

The first step is to go to the interaction frame with respect to ĤS and ĤB, which results in the
Hamiltonian

Ĥ′
2Q = ξ

(
e−iω1t

[
e−i2νt |1〉〈1|+ ei2νt |0〉〈0|

]
⊗ σ̂− + a e−iω0tσ̂− ⊗

[
e−i2νt |1〉〈1| − ei2νt |0〉〈0|

]
+ h.c.

)

⊗
(

B̂1(t) + B̂†
1(t)

)
(C8)

where we have separated terms in the system operator by their oscillation frequency. The rest of the
derivation follows the standard procedure of the BMRWA approach, as outlined in many places, for
example references [28, 29]. Crucially, this approach makes a strict rotating-wave-approximation to drop all
explicitly time-dependent terms in the Lindbladian expressed in the interaction frame.

Equivalently, the RWA step can be thought of as writing the system operator of ĤSB in the eigenbasis of
ĤS, and separating the resulting terms into groups determined by their Bohr frequency, i.e. the eigenenergy
difference of the eigenstates connected by each term of ĤSB. Each Bohr frequency group then results in a
separate Lindblad operator in the (diagonal) Lindbladian. Explicitly, for a system operator X̂ in ĤSB, and
eigenvalues/eigenvectors λk/|λk〉 of ĤS, the BMRWA master equation is

ρ̇ =
∑
Ω

Γ[Ω]D[L̂Ω]ρ, (C9)

where Ω are the Bohr frequencies, with corresponding Lindblad operators

L̂Ω =
∑

λj−λk=Ω

〈λk|X̂|λj〉|λk〉
〈
λj

∣∣, (C10)

and the decay rate Γ(Ω) is a function of the bath and will be defined shortly.
For our system described by equation (C8) the eight Bohr frequencies are ±ω0 ± 2ν and ±ω1 ± 2ν,

which for ω0/1 � |ν| and well detuned qubits are all non-degenerate. The operators corresponding to each
of these Bohr frequencies (written in the eigenbasis of ĤS), are exactly the terms oscillating at the respective
Bohr frequency in equation (C8). Thus, we can write down the BMRWA master equation

ρ̇ = Γ(ω1 + 2ν)D
[
|1〉〈1| ⊗ σ̂−]ρ+ Γ(ω1 − 2ν)D

[
|0〉〈0| ⊗ σ̂−]ρ+ |a|2Γ(ω0 + 2ν)D

[
σ̂− ⊗ |1〉〈1|

]
ρ (C11)

+ |a|2Γ(ω0 − 2ν)D
[
σ̂− ⊗ |0〉〈0|

]
ρ,

where we have assumed a zero-temperature bosonic bath such that the terms corresponding to qubit
excitation vanish as the bath has no spectral weight at Bohr frequencies ≈ −ω0/1. The decay rate for each
Lindblad operator is a function of the Bohr frequency given by

Γ(Ω) = |ξ|2
∫ ∞

−∞
dt eiΩt

〈
B̂†

1(t)B̂1(0)
〉
ρB

. (C12)

where the expectation value is taken with respect to the stationary bath state ρB, which for a
zero-temperature bosonic environment is the multi-mode vacuum. Note that we have not explicitly
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included the Lamb-shift Hamiltonian term arising from the system-bath interaction, as it only amounts to a
weak renormalization of the existing system eigenenergies.

As we have previously dropped terms of O(|a|2) we do so again to arrive at the final BMWRA master
equation

ρ̇ = Γ+D
[
|1〉〈1| ⊗ σ̂−]ρ+ Γ−D

[
|0〉〈0| ⊗ σ̂−]ρ, (C13)

where we use Γ± = Γ(ω1 ± 2ν) as shorthand notation. Clearly, this is not the same as the relevant part of
equation (C1) that we are aiming for

ρ̇ = γ1D
[
Î⊗ σ̂−

]
ρ = γ1D

[(
|1〉〈1|+ |0〉〈0|

)
⊗ σ̂−]ρ, (C14)

where there is a single rate γ1, and the Lindblad operators |j〉〈j| ⊗ σ̂− add coherently, as opposed to
incoherently as they do in equation (C13). If we assume Γ+ ≈ Γ− ≡ Γ1, which is valid for a bath spectral
density that around ω1 varies little if the frequency changes by ν � ω1, then we can express
equation (C13) as

ρ̇ =
Γ1

2
D
[
Î⊗ σ̂−

]
ρ+

Γ1

2
D
[

Ẑ ⊗ σ̂−
]
ρ. (C15)

The first term on the right-hand-side of this master equation is exactly the uncorrelated decay of the
spectator qubit that we want. However, the second term, which has an equal magnitude decay rate, is a
multiplicative-correlated dephasing-decay process.

This truly incoherent process is distinct from the SDID that is the focus of this manuscript. As we have
discussed, the latter is a coherent but random phase kick on the control qubit that occurs when the
spectator relaxes, which only appears incoherent in the ensemble average. The intuition behind the second
term in equation (C15) is best understood from equation (C13), which consists of two decay channels that
perfectly measure the state of the control qubit, resulting in the correlated dephasing of equation (C15).

We see no evidence in our data that the system evolves according to equation (C15), and so we are left to
conclude that the BMRWA approach does not derive the correct model for the system. As we will see in the
next section, it is the strong secular approximation that is to blame. The strong secular approximation
captures the idea that the dissipation sets the slowest timescale of the system evolution, which is not
necessarily valid for small ZZ-interaction where 1/ν ∼ T1. Thus, the BMRWA approach requires
assumptions that do not hold for our system.

C.2. Partial secular approximation: a successful derivation
The BMPSA approach follows the same procedure as the BMRWA approach up until the Redfield equation,
where it makes a partial secular approximation instead of the strong secular approximation of the RWA.
The specific nature of this partial secular approximation, and the resulting master equation obtained, can
take several forms, see e.g. references [31, 32] and the references therein. However, the differences in form
between different PSAs are small, e.g. at what frequency is the bath spectral density evaluated to calculate
the decay rate. Here, we will follow the approach of reference [31].

The idea behind the partial secular approximation is to treat nearly degenerate Bohr frequencies as
degenerate, and separate the Bohr frequencies into clusters {Ωi, Ω j, . . .} that are contained within Ω̄± δΩ,
where Ω̄ is the average Bohr frequency and δΩ the spread of the cluster. Each cluster has a single Lindblad
operator associated with it

L̂Ω̄ =
∑

Ω̄−δΩ<λj−λk<Ω̄+δΩ

〈λk|X̂|λj〉|λk〉
〈
λj

∣∣, (C16)

and similar to the BMRWA, the master equation takes the form

ρ̇ =
∑
Ω̄

Γ[Ω̄]D[L̂Ω̄]ρ, (C17)

with the sum of dissipators now running over Bohr frequency clusters instead of individual Bohr
frequencies.

For our two-qubit system, as ν is the small energy scale we have four Bohr frequency clusters
{ω0 + 2ν,ω0 − 2ν}, {ω1 + 2ν ,ω1 − 2ν}, {−ω0 + 2ν,−ω0 − 2ν}, and {−ω1 + 2ν,−ω1 − 2ν}. The
resulting BMPSA master equation is
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ρ̇ = Γ(ω1)D
[
|1〉〈1| ⊗ σ̂− + |0〉〈0| ⊗ σ̂−]ρ

= Γ(ω1)D
[
Î⊗ σ̂−

]
ρ, (C18)

where as before we have dropped terms proportional to |a|2 or with negative average Bohr frequencies, and
Γ(ω1) is defined as in equation (C12). For the two-qubit example, this matches equation (C1) for
γ1 ≡ Γ(ω1).

Extending to multiple spectator qubits with independent baths, as in equation (C6), the master equation
for each bath can be derived independently, following the procedure outlined above. While the physical
qubit hybridization implies that a single bath may interact with multiple qubits, the interaction between
each qubit and a given bath belongs to a distinct Bohr frequency cluster provided the qubits are all
sufficiently detuned, such that

∣∣ωi − ωj

∣∣ > |νmax| ∀ i, j, where νmax is the largest collective ZZ-shift due to
the interaction with all other qubits. Thus, for the bath coupled to physical qubit j, by the PSA there will be

no terms of order O(
∣∣ajk

∣∣) in the master equation, and terms involving qubits k �= j will be order O(
∣∣ajk

∣∣2
).

Following these arguments, we arrive at a total master equation that has one term of the form of
equation (C18) for each qubit

ρ̇ =
N∑

j=0

Γj(ωj)D
[
σ̂−

j

]
ρ,

which for γ j ≡ Γ j(ω j) reproduces the relevant part of equation (C1). This establishes both the justification,
and appropriate assumptions required, for its use as the starting point of our theoretical modelling.

C.3. Cumulant expansion and time coarse-graining
While the BMPSA establishes the justification for our theoretical model, it does not offer a way of exploring
the regime between its validity and the validity of the BMRWA. This becomes particularly relevant for
multi-qubit systems. A Bohr frequency cluster centred around frequency ω j, corresponding to the decay of
qubit j, will contain elements that differ in frequency by as much as four times the sum of the
ZZ-interactions between qubits. Thus, the energy separation may approach the energy scale of the
dissipation, calling into question the validity of the PSA as opposed to the RWA.

To bridge these two regimes, we consider a master equation derivation using the CETCG approach [29].
We follow exactly the approach described in reference [29], and so we only outline the relevant points here.
We consider the exact system-evolution propagator, which we describe as a the exponential of a power series
in the system-bath coupling Hamiltonian known as its cumulant expansion. By a weak-coupling argument,
we truncate this expansion to second order, and the first order term can be shown to vanish.

We then define a timescale, τC, longer than the bath correlation timescale, τB, but shorter than the
relevant system timescales, τ S, i.e. τB � τC � τ S, and use this timescale to approximate the derivative of
the system density matrix

ρ̇ ≈ ρ(τC) − ρ(0)

τC
= LτCρ. (C19)

Working this out explicitly with the cumulant expansion we can define the differential map LτC , which can
be shown to be of Lindblad-form [29]. As in the other approaches we consider the CETCG derivation
results in a time-independent LτC , but introduces a ‘user-defined’ timescale τC into the form of LτC . In the
limit τC →∞ the CETCG master equation is equivalent to the BMRWA master equation.

Due to this additional timescale, the CETCG master equation has a more general structure than the
BMRWA or BMPSA equations, given by

ρ̇ =
∑
Ω,Ω′

Γ(Ω,Ω′)

(
L̂ΩρL̂†

Ω′ −
1

2

{
L̂†
Ω′ L̂Ω, ρ

})
, (C20)

where, as before, Ω are the Bohr frequencies, L̂Ω are defined as in equation (C10), and

Γ(Ω,Ω′) =
1

τC

∫ τC

0
ds

∫ τC

0
ds′ ei(Ω′s−Ωs′)〈B̂(s − s′)B̂(0)

〉
. (C21)

Crucially, equation (C20) is not a diagonal Lindblad equation, and allows for coherent interaction between
Lindblad operators of different Bohr frequencies. If Γ(Ω, Ω′) = 0∀ Ω �= Ω′, then we obtain a master
equation with the structure of the BMRWA derivation. If Γ(Ω, Ω′) = Γ(Ω, Ω) = Γ(Ω′, Ω′) within a Bohr
frequency cluster, then we recover the structure of the BMPSA.
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To more easily evaluate equation (C21), we rewrite it in terms of the coordinates u = s − s′ and
v = s + s′ as

Γ(Ω,Ω′) =
1

τC
ei Ω

′−Ω
2 τC

∫ τC

0
dv cos

(
Ω′ − Ω

2
(v − τC)

)∫ v

−v

du ei Ω
′+Ω
2 u

〈
B̂(u)B̂(0)

〉
. (C22)

We first consider the case of Ω = Ω′, which after integration by parts reduces to the expression

Γ(Ω,Ω) =

∫ τC

−τC

du eiΩu
〈

B̂(u)B̂(0)
〉
+O

(
τB

τC

)
, (C23)

where we have only kept the leading order term (see reference [29] for the full expression). The more
general case Ω �= Ω′ can be expressed as

Γ(Ω,Ω′) =
ei Ω

′−Ω
2 τC

(Ω′ − Ω)τC

∫ τC

−τC

du
〈

B̂(u)B̂(0)
〉
×
(

sin

(
Ω′ − Ω

2
τC

)(
eiΩu + eiΩ′u

)

− i sgn(u) cos

(
Ω′ − Ω

2
τC

)(
eiΩu − eiΩ′u

))
. (C24)

As we have assumed that τB � τC, we can safely assume that the bath correlation function decays over a
much shorter time scale than τC, such that we can set the upper limits of the integrals in the above
equations to ∞ (note that from here on we diverge from the analysis conducted in reference [29]). This
results in

Γ(Ω,Ω) ≈ Γ(Ω), (C25)

Γ(Ω,Ω′) =
ei Ω

′−Ω
2 τC

(Ω′ − Ω)τC

(
sin

(
Ω′ − Ω

2
τC

)[
Γ(Ω) + Γ(Ω′)

]
+ 2 cos

(
Ω′ − Ω

2
τC

)[
S(Ω) − S(Ω′)

])
, (C26)

where Γ(Ω) and S(Ω) are the decay rate (defined as in equation (C12)) and the Lamb shift (see references
[28, 29] for definition) obtained by the BMRWA derivation.

Notice that for (Ω′ − Ω)τC � 1 the overall factor in the denominator is such that Γ(Ω, Ω′) ≈ 0. For the
two-qubit system we consider, this would be the case for Bohr frequencies that do not belong to the same
cluster. In the opposite limit, assuming that the decay rate and Lamb shift do not vary significantly when
Ω′ − Ω is small, as is the case within a Bohr frequency cluster, we can further simplify the rate
expressions to

Γ(Ω,Ω) ≈ Γ(Ω) ≈ Γ(Ω̄), (C27)

Γ(Ω,Ω′) ≈ Γ(Ω̄)ei Ω
′−Ω
2 τC sinc

(
Ω′ − Ω

2
τC

)
. (C28)

We note that even though we have made an approximation by setting the limits of the integrals to infinity,
the form of the above rates preserves positivity of the dynamics.

Plugging the above expressions into equation (C20) for our two-qubit system results in the master
equation

ρ̇ =
Γ(ω1)

2

(
(1 + sinc(4ντC))D

[
Î⊗ σ̂−

]
ρ+ (1 − sinc(4ντC))D

[
Ẑ ⊗ σ̂−

]
ρ

+ sin(2ντC)sinc(2ντC)
(

îI⊗ σ̂−ρẐ ⊗ σ̂+ + h.c.
))

.

(C29)

In the limit ντC → 0 this reduces to the BMPSA master equation of equation (C18), and as previously
mentioned, in the limit ντC →∞ this becomes the BMRWA master equation of equation (C15). Thus, by
controlling the size of ντC we can interpolate between the two regimes of validity of our previous
derivations, but by the properties of the CETCG derivation are guaranteed a physical master equation.

Unfortunately, as τC is ‘user-defined’ and has no connection to physical observables we cannot use
equation (C29) to make quantitative predictions of experiments. However, we can make the qualitative
prediction that as ν increases we expect to see the onset of a weak multiplicative-correlated dephasing-decay
process, second line of equation (C29), and a corresponding reduction in the uncorrelated decay, first line
of equation (C29). We could not have made such a qualitative prediction from either the BMRWA master
equation, for which both rates are equal, or the BMPSA equation, for which there is no correlated
dissipation.

Extending to multiple qubits, from the CETCG derivation we learn that we should expect weak
multi-body correlated dissipation of the particular form that corresponds to dephasing on multiple qubits
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and decay on one, with Linblad operator ⊗k∈S Ẑk ⊗ σ̂−
j for S some subset of qubits. While we cannot

quantitatively predict the rate of this dissipative process we know that it should scale with the
spectator-qubit induced energy shift on the qubit that decays.

In effect, we have determined the form of a new master equation to which we can fit experimental data,
which is useful for two mains reasons. Firstly, identifying the likely form of dissipation is useful for
designing error correction or error mitigation schemes, and correlated dissipation is particular important in
this regard. Secondly, microscopic derivation can be used as a guide for ansatz building in tomography and
in the design of protocols meant to measure specific dissipative rates. While we see no evidence for
correlated dissipation in our current experiments, and thus no need to use the full equation (C29) for
modelling, the CETCG derivation gives us an immediate starting point were we to observe effects that could
not be modelled by equation (C18) alone.

Finally, we note that in deriving equation (C29) we have made the crucial assumption that
Γ(Ω) = Γ(Ω′) = Γ(Ω̄) within a Bohr frequency cluster. If this is not the case, i.e. the bath spectral density
changes appreciably over the frequency scale defined by ν, then this will also introduce a spatially correlated
dephasing-decay process of the same form as the second line of equation (C29). Due to the fact that logical
qubits are delocalized in space, temporal correlations in the noise (variations in bath spectral density) result
in spatially correlated decoherence in the qubit array, even when the bath interacts locally with only one
physical qubit.
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