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“It is dangerous business, Frodo, going out of your door.
You step into the road and if you don’t keep your feet,
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1 Agenda and motivations

In the last years much effort has been put into studying non-perturbative properties of strongly coupled
quantum field theories. In this context, a fundamental role has been played by Monte Carlo techniques,
which rely on a Markov chain to compute expectation values of observables [I]. Despite being such a
powerful tool, Monte Carlo has failed to work for a large class of important models, namely those featuring
a complex action. This situation is referred to as the sign problem and has so far prevented an accurate
solution of e.g. real-time quantum field theories [2], systems of electrons occurring in low-energy physics such
as the Hubbard model [3] [4], models for nuclear physics [5], the Yang-Mills theory in presence of a #-term
[6, [7] and finite density QCD [8,[@]. In particular, a complete knowledge of the QCD phase diagram is still
missing (especially in the high density region) because of the sign problem, even though many techniques
have been put at work to a success in some regions of parameters. These approaches include reweighting [10],
Taylor expansion [I1], analytical continuation to imaginary chemical potential |12} [13], complex Langevin
[14} [15] 16} [17], the fermion bag algorithm [I8], effective 3d theories [I9], the histogram method [20], density
of states approach [211 22], fugacity expansion [23], dimensional reduction [24] and large N, limit [25]. To this
day, there is not a single approach which is both rigorously justified and applicable to every part of the QCD
phase diagram. As a consequence, a new approach was recently proposed [26], that is thimble regularization
of a quantum field theory. This method is promising as it is based on a quite general mathematical framework
and thus is expected to work in principle for any model in any regime. Being the approach both quite young
and promising, yet challenging from a theoretical as well as a numerical point of view, it is worth a detailed
study. In this respect, the present work covers the foundations of the method as well as its first applications,
starting from simple toy models and then moving towards gauge theories. For a recent review on the subject,
refer to [27].

The work is laid out as follows: in Section [2| we review the general formalism regarding the introduction
of temperature and chemical potential in a quantum field theory, both in the continuum and on the lattice;
in particular, we focus on the rise of the sign problem for free fermions. In Section [3] we discuss the
general framework of Morse theory and Lefschetz thimble decomposition. We will make use of a language
the theoretical physicist is expected to be familiar with, leaving the (involved) mathematical details to
the references. In Section [] we set up the basics of thimble regularization for theories involving gauge
symmetry. In Section 5] we discuss the issue of performing actual Monte Carlo simulations on thimbles; a new
parametrization is introduced, along with a Monte Carlo algorithm. In Section [f] a simple one-dimensional
model will be discussed in detail within the framework of Morse theory. Although quite simple, this model
provides valuable insights to become familiar with the formalism, while at the same time addressing the issue
of the relevance of more than one thimble. In Section [7] a chiral random matrix model is solved by thimble
decomposition in a region of parameters which was shown to be affected by a severe sign problem. In Section
the simplest examples of gauge theories are studied, that is SU(NN) one-link models. Despite their obvious
simplicity, these models provide a non trivial setting to test the thimble formalism for gauge theories. In
Section[0]QCD in 0+ 1 dimensions is studied at various numbers of quark flavours. This theory is interesting
because the origin of its sign problem lies in the presence of a quark chemical potential, as in real QCD. The
model can be solved analytically, thus providing exact results to compare with. Numerical simulations of
thimble regularization for the theory are performed and their results compared with exact ones. The issue
of the relevance of multiple thimbles is discussed as well. In Section [I0] we set up the basic formalism to
tackle Yang-Mills theory in 2 dimensions with the thimble formalism. Exact results are available for this
model, in which the sign problem is put in by hand by means of a complex coupling. Although in some
sense “unphysical”, this model is useful to study issues which are there also in more realistic situations (such
as Yang-Mills with a f-term or QCD). One of this issue is the presence of toronic modes. There is also
the problem of numerically integrating on a gauge-symmetric thimble. These issues are discussed in detail,
although actual numerical computations for this model are left for future study.



2 Genesis of the sign problem

The study of quantum field theories such as QCD at zero density, that is in vacuum, has made it possible to
compute many cross-sections in particle scattering experiments with increasingly higher precision. However,
in extreme conditions, such as the collisions between heavy ions, it becomes necessary to explicitly introduce
temperature and matter density in the theory. A similar situation occurs in models for the extremely dense
matter in neutron stars or in the study of the interactions between quarks and gluons just after the Big-Bang.
From the point of view of statistical mechanics (which a quantum field theory resembles in its Euclidean
formulation) the introduction of temperature corresponds to going from the microcanonical ensemble to the
canonical one, while the introduction of a chemical potential corresponds to the grandcanonical ensemble.
In the next paragraphs, we shall refer to [28] 29] 30, [31].

2.1 The introduction of temperature and density

Let us consider the canonical partition function of a quantum mechanical system whose dynamics is governed
by the Hamiltonian H in a heat bath at temperature T’

Z(T) = Tr {e—ﬁﬂ} (2.1)

with 8 = 1/(kpT), where kp is Boltzmann constant and we shall put kg = 1. It is easy to derive a
relation with the quantum field theory described by H in its Euclidean path-integral formulation. Let us
consider a generic field theory consisting in a collection of fields ®(z) on a D-dimensional spacetime. The
trace in forces periodic boundary conditions on bosonic fields and antiperiodic boundary conditions on
fermionic fields. Then the path-integral expression for the partition function becomes

Z(T) = /D(I) e~ 5el®]

Do =[] do(x)

The path-integral is understood with the appropriate boundary conditions for the fields and Sg[®] is
the Euclidean action of the theory resulting from an integration of the Lagrangian density Lg on the whole
(D — 1)-dimensional space and on a finite time interval with extent [

Sg[®]

/B dt / AP e L [B(t, 7), 0, D(t, 7))

RD-1

Here t = 0 and t = $ are understood to be identified, thus going from an Euclidean spacetime R” to
S1 x RP~1. When discretizing the field theory on a lattice, we will consider a spatial extension Na along
each axis, where a is the lattice spacing and N is the number of spatial lattice sites. For the time direction,
instead, we will have

1
BZT:NT(Z

where Np is the number of temporal lattice sites. This lattice field theory is a system of finite spatial
volume (Na)P~! at finite temperature 7. The limit 3 — oo, that is Ny — oo with fixed a corresponds
to the system at zero temperature. The continuum limit corresponds to taking a — 0 while keeping Na
and Nrpa fixed. To keep finite size effects under control, one should in principle ensure that N/Ny is large
enough.



In vacuum, the net number of particles is zero; conversely, in matter it is often necessary to consider a non-
vanishing number density and thus a chemical potential is introduced in the theory [32]. The grandcanonical
partition function takes the form

Z(T,p) = Tr [efﬁmwm]

where N is the particle number operator and g is the chemical potential. The particle number density
can be readily computed by

1, T 0
n=—(N)= V@IHZ(TM)

where V is the spacetime volume. Let us now consider the continuum Euclidean action for free Dirac
fermions in 4 dimensiondl

B
_ . T1 - TN _
el il = [at [ @ | 350*8,000) + miyuia) (2.2
0 R3S
Invariance under global U(1) transformations
U — e
Y — e %)

(with « a real, constant parameter) yields, by Noether’s theorem, charge conservation: the particle
number operator is given by the space integral of the temporal component of the conserved vector current,
that is

d
o+, =0 & a/cl?’xJo(t,gz'):0

R3

Here J, = 1EVM¢ and so, in the Euclidean formulation, the conserved charge (particle number) is
[ ot o)
R3

This is precisely the quantity that should be coupled to the chemical potential in the action, which then
becomes

A d _ —

B
Selod] = [ at [ @2 [5001#B,000) + mie)ite) + pio 2.3)
0 R3

We now want to compute the energy density

LA more usual form for the fermion kinetic term is ¥(z)y*0,%(z) = ¥ (x)Pb(x), which can be recovered from (2.2)) after
an integration by parts. The reader will also notice that, for the sake of simplicity, we have considered only a single fermion
flavour.



— G H) =~ W 2T )

where V3 is the spatial volume. To this purpose, we start by rewriting the partition function (1) = ¢y)

Z(T, p) = /prz/ﬁ e Jdt Pzt (@) (@+mtpya)lv(@) _ qet [74@ +m+ /W4)]

with ¢(3,Z) = —¢(0,%) and ¥1(3,7) = —¢7(0,Z). We will follow the treatment given in [30]. Using
{Vus W} = 20,0, and a; = y47;, we have

det [y4(@ + m + pya)] = det {34 +p+a-v+ %m} (2.4)

The sought-after determinant is better computed in momentum space; we therefore introduce the Fourier
representation

Z) i wnt+pT)
Wbt f DD e Un ()

nezZ p

where w,, = (2"21)” = (2n + 1)7T are the fermionic Matsubara frequencies. For simplicity of notation,

we have omitted spinor indices and employed a discrete sum for the momenta. This choice of normalization
for 1) ensures that 1,,(p) is dimensionless. Before computing the determinant |j we write

B
St 0! = [ dt [ davl@) [o0+ ot @9+ am] v
0

R3

fZZ/dte”m‘“””/d%e"f DF 0 (B) i + 1+ 06 - G+ 7am] P ()

n’mpq 0

= SN ) [Bliwn + p+ i@ - 5+ 7am)] ()

neZ p

where the temporal extent 8 comes from

1 B
= [ dtellwmmen)t =5,
7/ 7

The operator whose determinant we want to compute is diagonal in momentum space, therefore all that
is left is a determinant in Dirac space. Using the so called chiral representation for the gamma matrices,
that is



(where o; are the Pauli matrices), we have

twyp+pu—0-p m
Z(T,pu) =det [B(iwy, +p+1a - F+ yam)] HHdt[ ( J qu p iwn+ﬂ+5—'.ﬁ):|

neZ p

= HHﬁ4dCt [(Zw"+ﬂ_6ﬁ)(lwn‘FM‘F&ﬁ)—m212X2]

neZ p
= [T T 5" det [(iwn +1)?* = (& 9)* — m*Laxa] = [[ [ 8" det [(—(wn — i p)* = 5* — m?)1ax2]
nezZ g nezZ p
) 2
= [T IT 7% ((@n —iw)?* + EG)?)]
neZ p
where we have used (- p)% = > and E(p) = \/§> + m?2. Since we are interested in the logarithm of the

partition function, we have

mZ(T, ) =23 Y I [B2 ((wn —ip)? + E@)?)]

neZ p
Now we compute the energy density
1 0
6(N7T):_7%IDZ Hu’)|BNﬁxed
TLEZ 7 62 ((wn —Z,LL)2 +E(m2) Bu fixed
—m )2+ BG)? = (wa — i)
= —4—
DIEIPE T e

:_4ﬁz Z ﬁ2+m2

2
=~ (Wp —ip)2+p°+m?

where we have used

W:%T:_?

So far we have considered a system of fermions inside a box of spatial volume V3. Going to the thermo-
dynamic limit means making the substitution



1 d3p
%Z%/mﬁ
p R3

and we are interested in the energy density at zero temperature, that is () = e(u, T = 0), which means
taking the limit 5 — oo with the substitution

+oo
1 d
EDINCOEN IEEN{N
nez oo

so that we have

: / 4 P +m?
e(p) = — d'p , -
(k) (27)4R4 (pa — i p)2 + 7> + m?2

which is manifestly divergent, as it includes the (vacuum) energy density at u = 0, which should be

subtracted. Let us perform the integral in the p4 complex plane: there are two poles at 104i =i(pEtr\/p 2y m?)

(see Figure 2.1)).

~SP4 ~SP4
pi \¢
®i\/52+1712
CYN Rpa ] Rpa
@4\/52“"2
(a) p>0 (b) p=0

Figure 2.1: f(pq4, pt) pole structure in the complex p4 plane for different values of p.

Let us set

1
(pa — 1) (pa — )

f(p4aM) =

In this notation what we are looking for is

sw)(ﬁﬁfﬁmﬁ+mﬂ ¢@u@%mf¢@u@%m
C

R3 C

where C is the contour depicted in Figure (being f(pa, ) ~ 1/p3 for |ps| — oo, the contribution from
the semicircle vanishes). In Figure [2.1b| we see that the only pole inside C for u = 0 is i\/ﬁQ +m?2. From

Figure [2.1a} instead, we see that, for p > 0, only pzf is inside C unless p > \/52 + m?2, in which case p; is
inside C as well. Collecting all these considerations, we have

10



ygdpal f(pa, ) — yfdp4 f(p4,0)
C C
= 273 -Res (f,pi) + 0 <M 4 /15'2 + m2) Res (f,pl) — Res (f“zo,m /ﬁQ + m2>}

1 1
Dy — Py Py — Py i 52

= 2mi —9<u— ﬁ2+m2>
| 2i\/p% + m? 21\/ +m?2 2i\/}5’2+m2

so that

e(p) = 413/d3p0( \/p +m2)\/ +m?

R3

For massless fermions, we can obtain the final result in closed form

1
2

€(M)|'m:0 = T

"
1 1
2 _ 3 _ 4
il O(u—l)lfp/dll = 3k
0

and this is the correct (finite) result.

2.2 Finite density on the lattice

We have discussed the introduction of finite temperature as well as chemical potential in the continuum
formulation of a free field theory of Dirac fermions. Let us now introduce a spacetime lattice A on which we
discretize the action (2.3). We will follow [28] and see that the so called naive discretization for the chemical
potential leads to divergences in the continuum limit. The action for free fermions becomes

S, 9] = a®ar Yy P(n)D(nm)i(m)

3
1 1
n|m % Z ( n+j,m n—j,m) Vi + ﬁ <6n+21,m - 571721,777,) V4 + mdm,nl + Ném,n’y4 (25)
Jj=1 T

where spinor indices have been implied and for simplicity we have considered a single fermion of mass
m. We have also introduced a different lattice spacing ar for the temporal direction. After defining the
(inverse) lattice Fourier transfornﬂ

2With this choice of normalization, ¢(p) holds the same dimensionality as 1(n).

11



Y(n) = z i(p- na+p4n4aT)w( )

v pEA

with |A| = N3Np (N = N;N2N3) the total number of lattice points, we rewrite the action in momentum
space

S 0] = a’ar Y ) Dlnlm)v(m) = a*ar Y- D) Dlpla)d(a)
n,meAN pgek
with
- 1 o o
D(p|q) = m Z 6*1(P‘HG+P4n4aT)D(n‘m)ez(q~ma+q4m4aq~)
n,meA

1 g 1
_ —i(p-Ra+panaar) | = 7 N )
A Y et [QGZ( ntjm ~ On— j,m) Vi

n,meN j=1
1 1 i(g-ma+qamaar)
e (Bt = Butn) 20+ MO+ i
1< 3
|A‘ Z —i(p-at+panaar) {QCL Z ( n+j)a+q4n4a:r] B ei[é‘-(ﬁfj)a+lI4n4aT]) v

neA j=1

* % (ei[dﬁﬁaﬂl&(nﬁl)aﬂ B ei[&ﬁa+q4(n4_l)aﬂ> Y4 + (M1 + pys) ei(€~ﬁa+q4n4aT)]
T

3
1 Lon .
|A\ § ¢il(@—P)-fila+(qa—pa)naar] [2a E (ezma _ e—wm) i

neA 7j=1

1 .
+ Sar (e““aT — 67“74‘”) Y4+ ml 4+ pyy
T

—
[=%)
2
o:
—~
3
~

where we have used the shortcut notation (7 + j)l =n; +6;; and

3
~ 1 a
D(p) = o ?Ti E sin(pja)y; + isin(paar)ys + arml + arpya (2.6)
T .
Jj=1

The partition function is

Z(T, ) /mme S0l = det D = [ detpD(p)
peEA

where the subscript D means that the determinant (or the trace) is to be taken in Dirac space. Now we
want to compute the energy density (remember that 8 = Nrar)

1 0 ~
par fixed = (NG,)BNT aaT Z TrD In D(p) ‘,U«U«T fixed
PEA

1 0
g(M’T) = _E%IHZ(TMU’”

12



Using the useful relatiorﬁ

4
4 -1 =iy ey tal
<i Z CuYu + cll> - "11 (2.7)

=1 2 2
H Z C,u + Cl
p=1

which holds for generic, real coefficients c1 and c,. In our derivative we have

0 =~
8aT ZTrD h’lD( )‘HG«T fixed Z’I‘I‘D (D 1( )TD(p)‘#aT ﬁxed)

peA peA

3
= Z Trpl+ Z Trp (aTD )) Par C%Tz' Z sin(pja)y; + isin(paar)ys + arml + arpys
pEA peEA J=1 par fixed
-1
4|A\ ar i
_ T | [ (7 . ) L . 1 IS sinlnals - ml
+ YX Z; —sin(pja) ) 75 +i (sin(paar) — iarp) 14 + arm - ;sm(p;a)% +m
pe = =

|
e

(“z sin(p;a)) v; — i (sin(psar) — iarp) v4 + arml

AN3N — i3
= — r —|—ZTrD ]31 stin(pja)’yj +ml
ar = ar . 2 . . 9 ) a —
ped > (% sin(pja))” + (sin(psar) —iarp)” + (arm) i=
=1
5., ,
& sin”(p;ja) + arm
_ 4AN3Np s o j; (pja) +ar
- @ <[ & . 2 ) )
! per | Y (“Zsin(pja))” + (sin(psar) — iarp)® + (apm)?
i=1

Now we set ar = a and get

i:l sin? (pja) + (am)?

4 4
e(u,T) = a*  N3Npa* Z 9 3
peh | (sin(psa) —iap)” + > sin®(pja) + (am)?
j=1

As before, we are interested in the thermodynamic limit as well as the zero temperature case, that is we
substitute

from which it follows

3Actually (2.7) still holds for c4 € C.




3
+ Z sin® g; + (am)?

S (sinqs — iap)® + Z sin” g; + (am)?
j=1

where, as before, we have subtracted the 4 = 0 contribution. Besides the naive introduction of the
chemical potential on the lattice, in we have also used maive fermions, which are subject to doubling
[29, 28]. It turns out that this is not a source of problems and merely contributes a factor of 16 to (u) (which
can be removed by using e.g. Wilson fermions). In order to perform the continuum limit, it is convenient to
separate the contribution from the center of the Brillouin zone to that from its corners: for each momentum

component we have

T

+7
/ dp,. f (sinp,) = / dp, f (sinpy) + [ dp, f (sinp) + [ dp, f (sinp,)

[NE]
+
[NE]
+

|
[NE]

+
[NE]

+

[NE]

dpu f (Sin(pu - 77))

\ao

dpy f (sinpy) + [ dp, f (sin(p, + 7)) +

o\l$

[NE]

.
2

+

[NE]
+
[NE]

dp, f (sinp,) + | dp, f (—sinp,)

T
2

|
[SE]

which is also true if we have p, — p, + o for some a. In our case, for the spatial components we have
a function of sin® pj, which is even in sinp;, whereas for the temporal component we have a function of

(sinpy — ia,u)Z, which is even in sin p, modulo a change of sign in g. The conclusion is that we can make the

substitution
4 +m/2 +m/2 +m/2
1 1
/d4q—>16 / d’q 3 / dgs + 3 / dgs (p — —p)
-7 —/2 —7/2 —m/2

After setting

3
F= | D sin(pa) + (am)?
j=1

we have
i
4 s = [1 1
5(#)=—g dpp” | 5 dps g(pa, 1) + 3 dpa g(pa, —p) — O dpa g(p4, 0)
- c c c
with
1
9(pa, ) =

(sin(psa) — iau)2 + §2

14



C is the same contour of Figure extending from —g- to +5- on the real p, axis (we are already
thinking of taking the continuum limit a — 0 and the semicircle gives no contribution, since g(py, p) ~ e~ P4l
for py — +i00). Following the same reasoning of the continuum case, the conclusion is that

§l§dp4 9(pa, 1) + ygdpz; 9(pa, =) — fdm 9(ps,0)

c c c
1 1 _ 1
=27 I:QReS (9,p]) + 59 (Spy ) Res (9,p5) + 59 (%p‘ﬂfu) Res ( | 2 ‘ ) — Res (g‘#_o,pﬂ#_o)}

The poles are given by

sin(pya) = i(ap £ p)
and the residues
1

2i;5a\/ 1+ (a,u :I:ﬁ)2

Now we see the main difference with respect to the continuum case: Res (g, pi) is now pu-dependent and

Res (g,p7) = +

therefore cannot be cancelled by Res (g’ﬂzo, p;f ’uzo)’ so it gives rise to a u-dependent divergence. We are
left with the integral

e
41 -1 1 0 (ap — p) L1 0 (—ap+p) 1
e =—=~ [ Ipp |5 =
i afi 2\/1 (Cl,u-f—p \/1+ au p \/1 au—i—p \/1+p2
o : 3
__41/2d3p5 1 1 1 Op-p)  11-0fp-p) 1
S = i
O, 2\/1+(ﬁ+au)2 \/1+ p—ap)’ \/1+ ap)’ V1P
+35a .
_ 41 FENE 1 1 1 0 (ap — p)
T Ta PP e \/ VS Jit Gy
S +(p+au 1+ (p —a,u 1+ (p—ap)

Being each integral performed in half of the Brillouin zone, we can easily set p ~, ay/p% +m?2, so that
a—

16

1 1 1 —
ad 0 (ap — al)

e(w),,_o = — _ N
5 2\/1+a2l+,u 2\/1+a2 ) VIt al \/1+a2(l—,u)2

While the last integral is convergent thanks to the 6 function, the first three terms give a divergence. Let
us extract the leading term for a — 0

15



e(w)]. _, ~ —7dl g B (1 _ %a2 U+ )P +1— %aQ (- u)2> _ (1 _ ;a212> +0 (aﬂ +0)
)

~— Zdz 3 <—;p2a2 +0 (a4)) +0(1)~ <;u2a2 +0 (a4)> 07odl P+0(1)

~ 1;ﬁaz+(9(a4) i+O(1) ~ “—2+O(1)
2 at a?

where we have made use of the fact that [ goes to infinity as ~ 1/a.

We have seen that the naive introduction of the chemical potential on the lattice gives rise to quadratic
divergences in the continuum limit even for free fermions. One possible way out is to introduce non covariant
terms in the action . Even though this is possible (for x4 # 0 the Euclidean symmetry is already broken),
there is a better prescription which is more aware of what happens in the continuum formulation. The reason
why the problem is not present in the continuum is that, in the Euclidean formulation, the chemical potential,
being coupled to the temporal component of the conserved vector current, enters the action as the fourth
component of an imaginary, constant gauge field, that is it plays the role of iA4. Let us consider QED in the
continuum. The chemical potential is introduced like a photon field: the consequence is that, in computing
Feynman graphs, the n-th power of an expansion in p is equivalent to the insertion of n external photon
legs with zero momentum. It can be shown that renormalizability of T'("+tm) (the graph with n + 1 external
photon legs and m external fermionic legs) implies the finiteness of the contribution ~ u! to T(™™) (see
Figure for a graphical representation). The effect of u is to substitute I factors of electric charge e (or,
equivalently, the electromagnetic coupling constant «) with 1 and to make ! wave function renormalization
factors disappear. As a consequence of gauge invariance, then, the missing factors “cancel” each other. See
[32] and references therein for further details.

n n
\m
/m/ i
|
Figure 2.2: On the left, I'(™™) whose ~ ! contribution is equivalent to I'®*5™) (on the right), where [ zero
momentum external photon legs have been inserted.

Going back to the lattice case, the problem lies in , where the chemical potential does not appear
as the fourth component of a gauge field on the lattice, thus violating gauge invariance. Recall that in the
lattice formulation of a gauge theory, the role of the gauge field is played by link variables U, (n) that belong
to the gauge group and are related to the continuum gauge field A(z) (which belongs to the algebra of the

gauge group) by

Uﬂ(n) — eiaAH(na)
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This suggests that, in order for the chemical potential to act as the fourth component of a gauge field, it
should be introduced in the fermionic action as an exponent, at the very same position of the temporal link

variables in the action of the interacting theory (see [28], 29] [32] for details). The right prescription for the
(naive) Dirac operator is thus

1 1 _
n|m % Z ( n+j,m n j,m) Vit g (eaTu(SnJrzl,m —¢€ aTﬂ(snffl,m) Y4t m(sm»”l
Jj=1 T

and we immediately see that all the steps leading to (2.6) can be repeated in the very same way, but
with the substitution py — p4 — iu, which gives

3

) + Z sin® g; + (am)?
5(“):7444/(14‘1 - —(n=0)
mta o . . )

Zn sin®(qq — tap) + Z sin® g; + (am)
j=1

As sin?(qq — iap £ 7) = sin?(qs — iapu), there is no need for a change of sign in y like in the previous
computations: the multiplicity due to the doublers (high momentum excitations on the corners of the
Brillouin zone) simply yields a factor of 16 when integrating over half the Brillouin zone. The steps leading
to the final result are pretty much the same, with a few differences. The function to integrate over C is

1
sin?(pya — iap) + p2

9(pa, ) =

whose poles are given by

sin(pya — iap) = +ip

from which it follows %(pjfa—ia,u) = sinh™!(&£p), or equivalently & (pffa) = ap+sinh™*(p). The residues
are

1

2ipar/1 + p2

which are independent of p and so ensure the cancellation of the diverging terms. Being

Res (g,pff) =+

ggdm 9(pa, ) — ygdm 9(p4,0) = 2ri [Res (9:p7) + 0 (Spy) Res (g9,p5) — Res (9|N:0,p2f|“:0)}

c c
ori 1 0 (ap — sinh ™' (p)) 1 ﬁ9(au*10g (15+ \/1+52))
=2mi | — — — = = - — —| = = =
2ipay/1 + p? 2ipay/1 + p? 2ipay/1 + p? pay/1+ p?

779(6“"—15— 1+52)

pav/1+p2

we have
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4 3, %2 41 3 ap _ 3 = p
e(p)=—-—= [ d&°pp ?gdmg(m,u)*yédmg(mﬁ) =—- [ d°pd (e“p 1+p2> =
Y ™ a =2
“z ¢ ¢ “z vi+p

2a

In the continuum limit e ~ 1+ ap, V14 a?1? ~ 1 + 3a*1? and p ~ a|p| for massless fermions, so that
our final result is

b _ 22 ~ —_al — 2272
e(1)],,—o - /dl\/izpé(l—kau al — 1+al /dlmﬁ(au al 2al)
0 0

o0 I
16 1 16 4
NWQ/dZZS( 2a212) G(au—al)wﬁ/dllgzﬁ/ﬁ
0 0

which is precisely 16 times the continuum result (this factor of 16 may be removed by working e.g. with
Wilson fermions [29]).

e

2.3 The sign problem

We have gone a long way to show all the calculations leading to the lattice implementation of the chemical
potential. Now we will show in which sense such implementation gives rise to the sign problem. Let us
consider the Dirac operator of an SU(N) lattice gauge theory

3
1 , _
D(nfm) = 5~ | > ( Dt jm — Ufg-(n)%f;,m) v+ (6'“ Ua(n)0, 14, — € a”U_z;(n)%_a,m) Ya | +mbpmnl
j=1

(2.8)

where Uy (n) are gauge link variables, belonging to the gauge group, with Ul(n) = Ugl(n) = U_u(n).
By a suitable change of spacetime indices and using 'y); =y, as well as {v5,7,} =0, it is easy to show that
the following relation holds

%5 D(11) 5 = DY (—p) (2.9)

That is, with the introduction of the chemical potential, the Dirac operator is no more ys-Hermitian.
While the naive Dirac operator in (2.8 is actually not very useful, as it yields doublers in the continuum
limit, it is easy to show that (2.9)) holds also for doubler-free fermion regularizations such as Wilson.

Being (detvs)? = 1, one immediate consequence of (2.9) is that

det D(u) = det D(—p)

so that the determinant of the Dirac operator is not real in presence of a chemical potential. Let us
consider the action of an interacting lattice gauge theory such as QED or QCD

S[U, 4, 9] = Sa[U] + Sr[U, %, ¢]
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where S is the pure gauge action, dependent only on the link variables and the fermionic action is,
analogously to (2.5)), S =¥ D(U)v. The partition function is

Z = /DUDwW e Sl — /DUe—SG[Ul /wa e VP — /DUe—SG[Ul det D[U] = /DUe—Seffm
SCH[U] = Sg[U} — Indet D[U]

The probability measure that Monte Carlo processes are expected to sample for non-perturbative evalu-
ation of observables is

1
PIU] = oSt

which gets complex in presence of a chemical potential. This is the so called sign problemﬂ which plagues
many lattice field theories, namely those referred to in Section [I] As already said, despite many attempts
to tackle the sign problem with various approaches, a conclusive and general solution seems still far from
being found. This is the reason why Lefschetz thimble regularization, which will be discussed in subsequent
sections, was proposed.

4The problem is actually a problem of complez terms in the action. The word “sign” comes from some models which lack a
positive definite fermionic determinant in favour of one with an alternating sign, while still being real.
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3 Morse theory and Lefschetz thimbles

In this section we give a lightweight mathematical introduction to Picard-Lefschetz theory, that is complex
Morse theory. This presentation is by no means complete: for a more thorough treatment of the subject,
the reader may refer to [33] [34] [35]. Algorithmic details as well as examples will be postponed to subsequent
sections. The purpose of all the machinery that will be presented here is to rewrite the partition function
of a generic lattice field theory with a complex action in such a way so that Monte Carlo sampling becomes
feasible. We will follow the work of Witten [34] and the first two works [26], [36] which proposed this approach
as a method for tackling the sign problem. Theoretical studies of different models with this method can be
found in 37, 38, 39, 40}, 4T, 42].

3.1 One-dimensional integrals

As an invitation to the topic, let us first consider a simple one-dimensional integral (which can be regarded
as a zero-dimensional field theory)

—+o0
L) = [ dremen

— 00

with ¢ € C and A € R*. In order to study the analytic properties of this integral, we go to the complex
plane, that is  — 2z € C. Any sensible integration contour on which evaluate Z must end up as |z| — oo
in those regions of the complex z plane where R(uz? + A\2*) — +o00, thus ensuring convergence. If we set
z = |z|e?¥, we see that the “good” regions are given by cos(4¢) > 0. In Figure we see the contours C;
connecting “good” regions at infinity: they are elements of the relative homology Hy(C,Cr;Z), with T € R
large, so that their ends at infinity lie in Cr = {z € C|R(uz? + \z*) > T'}. However, the C; are not all
independent: being the integrand a holomorphic function, the sum of all the contours can be deformed to
zero, so that we can write ) . C; = 0. As the original integration cycle C = R connects two good regions, it is
an element of the relative homology H1(C, Cyp;Z) itself and therefore can be written as a linear combination
of Ci .

Figure 3.1: “Good” regions on which $(u2% 4+ A2%) — +oc0o for |z| — co. Their union makes up Cz. The four
contours {C;} connect the “good” regions.

An interesting point of view is that of Schwinger-Dyson equations for an integral analogous to Z(u, \)
[43] [44, [45] [46]. Being the Schwinger-Dyson equation of third order, the number of linearly independent
solutions is 3. Each independent solution in that context is an integral on a contour in the complex plane
connecting two of the four disjoint regions making up Cr. A one-dimensional integral similar to Z(u, A)
will be subject of a thorough study in Section [6] within a more general framework, so that the previous,
qualitative considerations should suffice.
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Now let us come back to the problem of doing Monte Carlo sampling with the complex action S(z) = pz?+Az%.

In elementary analysis, one technique that is often used is that of saddle point approximation, which consists
of two steps. First, one deforms the integration contour to a curve in the complex plane which follows the
direction of steepest descent of R(S) around a stationary point. Holomorphicity ensures that, along this
path, $(5) is constant, hence the name stationary phase. The second step consists of a Taylor expansion of
R(S) around the stationary point, which provides an easy way of computing an approximation to Z. While
we are interested in non-perturbative computations (and thus we do not want to Taylor expand), the first
step is appealing: being §(.5) is constant, it can be factored out of the integrals and Monte Carlo sampling
may then be performed with e=®(%) as a weight. In the next section we will discuss this approach in detail
within the framework of Morse theory.

3.2 Decomposition in terms of thimbles

Let us consider a real n-dimensional manifold ) with a volume form dV. Let S : Y — C be a complex
function over ). We want to compute
7= / dye

y

which may well be the partition function of an Euclidean lattice field theory whose dynamics is governed
by the action S (the following considerations also hold if we are to compute the expectation value of an
observable, provided that the original integral is convergent). Now let us assume that ) has a complexification
X with an involution operator - leaving ) fixed, so that y =4 Vy € Y C X. Let z = (z,--- ,2") be a set
of local holomorphic coordinates on X (with n = dimcA’). In the following we shall assume that S(z) is
holomorphi(ﬂ and thus satisfies Cauchy-Riemann relations

25 _ %SR = gs!

ozt o Tt Yy

aS _ 0 9Sr __ _ 9Sr (31)
02+ oyt ox?

where we have set 2* = 2! +iy’, Sgp = R(S), St = S(S5). Let us consider the function Sg(x,y). First,
we notice that the set of critical points of S coincides with the set of critical points of S thanks to (3.1)),
that is

V(wi’yi)SR:() = 82;1:5:0

We label ¥ = {p,} C X the set of critical points of S, assuming that there are finitely many of them
and they are all non degenerateﬂ that is the matrix of the second derivatives (the Hessian) of S at p, has
non-zero determinant. If this holds, Sg is said to be a Morse function. Let us call H(S;p,) the Hessian of

S at the critical point p, with coordinates z, = (21,---,27)
9?8
[H(Sapo)}ij = 921927 .

H(S;py) is a complex symmetric n X n matrix. From (3.1)), it follows that the 2n x 2n Hessian matrix of
Sg at p, has the structure (we set (z,y) = (z', -, 2", y',--- ,y") as variables on which S depends)

R(H(S;ps)) =S (H(S;p5))

H(Sripa) = (—s<H<s;pa>> —%(H(S;pg>>> (3:2)

5 Actually, all subsequent statements hold also if S contains some logarithms, which is crucial for applications to theories
with a term ~ logdet D coming from a fermionic Dirac operator D.
6This assumption will be released when we take symmetries into account.
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H(SR;po) has therefore n positive eigenvalues and n with opposite sign, so that the Morse index of p,
is n for each critical point; Sg is said to be a perfect Morse function. As a consequence, Sg can be used to
determine a basis of the relative homology group which the integration cycle we are interested in belongs
td’l Define

Xr={z€X|Sp(z) >T}CX RFaT>1

that is Xp is the union of those regions in X in which Si takes on arbitrarily large values. The relative
homology group we are interested in is H,” = H,, (X, Xr;Z) and we can find a basis of H, using the set X
of critical points of S. Let us see how this is accomplished. After introducing a Kéhler metric on X

1 X . ) )
ds® = 5% (dz' ® dz’ + dz’ @ dz")

we write the steepest ascent (SA) equationsﬁ for S

dz*

= = g0, (3.3)

where 0; = %. The name “steepest ascent” comes from the fact that, along the flow z(t) solution to
(3.3), Sg is never decreasing

dSgp [ d dz7
dt

1 o 1 (dd dz
TR dtaj) 3 (5+5) = 3 <dtajs + dt@-S)

(67055 8,8 + 77008 0;5) = 0,8 S = ¢ (9;9) (3S) = 0

| =

where (3.1) has been used as well as (3.3) and the hermiticity of the metric. Given a critical point p,, the
moduli spaced]’| of solutions to (3.3) with the boundary condition that the flow approaches p, for t — —oo,
that is

= S 25 —._ 1 =
To = {Z(O) ceX|i=y @S,t_l}r_nooz(t) ZU} cX

is a manifold of real dimension n. This can be seen from the fact that there are n independent directions
along which one can leave p, with increasing Sr (the number of positive eigenvalues of H(Sg;ps) is n). J»
is called a Lefschetz thimble and can be seen as the union of all the SA curves starting from p, at ¢t — —oo.
It is important to notice that, apart from the trivial flow z(t) = z, Vt € R, every flow belonging to J, has
Sk — +oo for t — +o0, hence 7, is an element of the relative homology H, . This statement can fail if
there is a flow connecting two distinct critical points, that is z(¢) — z, for t — +oo and p, # p,. In such
a case, we say that we are in presence of the Stokes phenomenon and J, is no more an element of H,". In
the following we shall assume that parameters on which S is dependent are sufficiently generic so that the
Stokes phenomenon does not occur, postponing a more detailed discussion of it. We have seen that each
J, is an element of the relative homology H, ; moreover, it can be shown that the thimbles generate the
relative homology H,I with integer coefficients. So any integration cycle C € H," can be decomposed as
C =3 ,n,Js withn, € Z. In our case, this translates into

"We are assuming that the original integration cycle that we want to deform is a legitimate integration cycle connecting
regions of convergence for the sought integral, in the spirit of the previous section.

8In references and in common literature on the subject, the reader will most likely be confronted with steepest descent
equations (the sign in is reversed) for —S; this is of course the same.

9Being of first order in the flow time ¢, a solution is uniquely determined by giving the value of z at some ¢, say t = 0.
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The fundamental feature of 7, which is the very reason why this formalism was proposed to tackle the
sign problem, is that S is constant on J,. In fact, thanks to the SA equations (3.3))

dsp (e AP N T g (s A N L e s g) -
5 _<dtag+dt83> 5 (S S)—2i<dtajs dtajs)_%g (0,5 0;8 —9;S8;5) =0

Thus Sy takes on the value at p, on the whole thimble, eliminating the sign problenﬂ when one integrates
on J, so that

T = Z n, e~ i51(20) /dV e~ SR — Z N, e~ 5(0) /dV e~ (Sr—Sr(25)) (3.4)
T To

ocx ceX

A more formal way of seeing the property of conservation of St is to regard the Kéhler form 2 = % 9ij dzindz’
of X as a symplectic structure on &’; then the equations , along with (3.1]) are the same as an Hamil-
tonian flow with S; as Hamiltonian, which is then conserved [3§]. Forrnul suggests that one could
perform Monte Carlo simulations using e % as a probability weight.

3.3 The coefficients n,

Now let us come to the issue of determining the coefficient n,. Consider the union of those regions in X in
which Sk takes on arbitrarily small values

X T={zeX|Sp(z) <-T}CcXx R'a3T>1

and the relative homology H, (X, X~T;Z). We now seek a basis of H,,. To each critical point p,

n =

we attach a dual thimbl@ Ko defined byFE|

Ko = {z(o) € X |2 =—¢"0;5, lim z(t) = za} cx

that is the union of all the steepest descent (SD) curves starting at p, for t — —oo. Just as the 7, form
a basis of H,I, the I, form a basis of H, . We introduce the bilinear form

(,):Hf®H, »Z

which gives the (oriented) intersection number between a cycle of H," and one of H, . Since we are in
the hypothesis of absence of the Stokes phenomenon, there are no flows connecting distinct critical points,
so that (J,,K;) =0 for p, # p.. The only intersection between H, and H,, is the trivial flow z(¢) = z, V't
so that, with a suitable choice of orientations, we have

(Jo, Kr) = 0or

10There is actually a potential residual sign problem due to the complex volume element dV appearing in the integrals over
Jo. This issue will be discussed later.

11 The dual thimble is often called unstable thimble, whereas 7, is called stable thimble. This terminology comes from the
fact that stable (unstable) thimbles connect regions of convergence (divergence) of the integral Z.

12\ completely analogous definition of K, uses steepest ascent equations with z(4+00) = z, as boundary condition.
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When applied to the decomposition of a cycle C € H;, this gives

(C. L) = 15(Tp.Kr) =D 06657 =1,

cEX gED

so n, = (C,K,) is the oriented intersection number between the original integration cycle C and the dual
thimble K, attached to p,. In our case n, = (¥, K,).

3.4 The set of critical points

In the previous sections we have generically referred to X as the whole set of critical points of S. As for a
realistic field theory a complete enumeration of its classical solutions (i.e. the critical points of the action)
is likely to be unfeasible, it is of great importance to understand which critical points actually contribute to
the expansion (3.4). Let us set

Sin = miy Sr(z)

that is the absolute minimum of Sgi on the original manifold of integration C. The set of critical points
Y = {p,} can be decomposed as the disjoint union of three sets

T=%UScUSs

With the following definitions

o= {ps €X|p, €C}

E< = {pg €eX |p0' ¢ CvsR(Zo') S Smin}

E> = {pa cx |pa ¢ CaSR(ZJ) > Smin}

All critical points belonging to ¥< give no contribution to ; an explanation of this is as follows.
Consider the unstable thimble K, associated to p, € ¥<: on K, Sg can only decrease, starting from a value
Skr(z,) that is already smaller than the smallest value of S on C. The consequence is that any flow which
is part of IC, can never intersect C, thus giving n, = 0. Now consider a critical point p, € ¥+, which can in
principle (but does not necessarily have to) contribute to the decomposition in thimbles. The contribution of
such a critical point is suppressed by a factor of e~ (Sr(20)=Smin) with respect to the thimble attached to the
global minimum of Sg in C. Any critical point p, € X automatically has n, = 1 (with a suitable choice of
orientation) because I, intersects C just once, precisely at p,. The contribution of the latter class of critical
points is exponentially suppressed for the same reasons given for X<. It is expected that these suppressions
become stronger in the thermodynamic limit. However, more complicated situations (such as an accumulation
of critical points in a neighbourhood of the absolute minimum of Sg in C) cannot be in principle excluded.
In [20] an interacting scalar field theory at finite chemical potential is discussed. Let us call Jp the thimble
attached to the global minimum of the action on the original domain of integration C. It is shown that,
considering only the integral over Jj, one gets a field theory with the same degrees of freedom, symmetries,
symmetry representations, perturbation theory and continuum limit as the original theory formulated on C.
Moreover, this is shown to hold at any value of u. One is thus tempted to regard an integration over only Jj
as a legitimate regularization of the original field theory. Of course, universality is not a theorenﬂ and these
statements are definitely not the last word on the matter; in particular, considerations from the subject
of resurgence [47, [48], 49, B0, H1, (2L (3], B4, 5, B6lL (7, B8] may shed some light on the relation between
perturbative and non-perturbative physics also in the framework of Morse theory and Lefschetz thimbles.

13Moreover, this argument is supposed to hold in the thermodynamic limit.
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3.5 The Stokes phenomenon

In order to ensure convergence of the integrals in , one requires that Sgp — 400 for t — +o00 along any
given solution to on J,. However, if there is a flow such that z(t) — z, for t — 400, with p, # p,,
this requirement cannot be met and the decomposition in thimbles does not hold any more. This is the
so-called Stokes phenomenon. Let us consider the space of parameterﬁ on which the action S is dependent.
To be more specific, let kK be a parameter on which S depends continuously. In general, there will be some
curves (called Stokes curves) in the k complex plane such that, when x lies on one of them, the Stokes
phenomenon occurs. Identifying the Stokes curves for a generic field theory can be highly non trivial and
may require ad-hoc considerations. There is, however, a necessary (although not sufficient) condition for the
Stokes phenomenon to occur. As St is conserved by any flow of SA or SD, for a flow to connect two distinct
critical points p, and p,, one must have S;(z,) = S [(zT)E Therefore, if for a given value of x and for each
couple of critical points (ps,p,) one has Sr(z,) # Sr(z;), there cannot be any Stokes phenomenon. When
K goes through a Stokes curve, the coefficients n, may jump. These discontinuities compensate the jump
in shape of some thimbles (which in turn cause a sharp change in the integrals over the thimbles). This
compensation occurs because the original integral Z is continuous in k, so the result of the decomposition
cannot undergo a discontinuity. In general, provided that Stokes curves are correctly identified, it is
simple to compute the values of the n, after a jump: one just imposes the continuity of the integral Z before
and after the jump. An example of this procedure will be given in Section [f]

3.6 Tangent space at a critical point

In the previous sections we have been rather generic; now let us consider a more concrete setting: we set
Y = R" (and therefore X = C") along with the standard Euclidean metric. We also consider a scalar field
theory with n real degrees of freedom {z’}. The partition function is

Z:/d”xe_s(x)
R7L

We complexify the fields by taking 2 — 2 = z* 4+ iy’. Let us concentrate on a single critical point p,
with coordinates z,. We introduce the vector notation

x
. f
z=|:]ecn v=|"|er®
y’ﬂ
and expand the action to second order around z,
1
S(z) ~ S(20) + §ZTH(S;pg)Z (3.5)

where we have assumed z, = 0 for the sake of simplicity. Takagi’s factorization theorem states that, given
the complex symmetric matrix H(S;p, ), there exists a unitary nxn matrix W such that WT H(S; p, )W = A,
with A = diag (A1, -+, A\n) and the \; (called Takagi values) are all real and non-negative. We assume that
they are all positive (just as before we assumed H(S;p,) to be invertible). The columns of W are n
normalized Takagi vectors v, that is

14The parameters are assumed to be complex in general.
5For a flow to connect p, and pr, one must also have Sr(zo) # Sgr(zr), as any non-trivial flow cannot have constant Sg.
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n

S0 = g

k=1

so that we can rephrase Takagi’s theorem as

H(S; po)v = N5

or, equivalently,

H(S;p, )W = WA

Given the complex projector P = (L,xyn i Llyxn) € C**27 it is straightforward to show that, if v, € R?"
is a normalized eigenvector of H(Sg;p,) with (positive) eigenvalue A, then Puv; € C™" is a Takagi vector of
H(S;p,) with Takagi value \. At the same time, if v_ € R?" is a normalized eigenvector of H(Sg;p,) with
eigenvalue —\, then Pv_ € C™ is a Takagi vector of H(S;p,) with —\ as Takagi value; this last statement
holds for iPv, as well. All this is discussed in Appendix @ The tangent space to J, at the critical point
is spanned by the n complex vectors v(¥), while the tangent space to K, at p, is spanned by the n complex
vectors iv("). Linear combinations of Takagi vectors are to be taken with real coefficients, to preserve the
right dimensionality. These considerations are more transparent if one changes variables. We set Z = W(
(or, equivalently, ¢ = WTZ). In general (; = n; +1i&; € C; however, looking at the second order expansion of
the action we have

S(2) = Sa) 5 (WO H(S5,) (W) = 8(z4) + 3¢ (W H(S:p,)W) ¢ = 8(z0) + 5¢7AC
= 5(s0) + 5 D NG = 8(z0) + 3 D N+ 60)°
=1 =1

so that

~ 1 & , 1L )
Sr(2) = Sr(2,) + 5 ;Aim 3 ;Aifi

S1(2) % Sr(z0) + ) Ainiki

i=1

This makes it manifest that, by taking & = 0, we stay on the stable thimble J, (where Sg increases),
while by taking 7; = 0, we stay on the unstable thimble K, (where Sr decreases). This shows that linear
combinations of Takagi vectors v(?) with real coefficients span J, at p,, whilst purely imaginary linear
combinations of v(*) (that is real combinations of iv(*)) span K, at p,. It is worth noting that the change
of variables one needs to use to integrate on J, close to the critical point is Z = W (with real 1), and the
integration measure d"z = det Wd"n, with det W = e¢!“~ being W unitary.

3.7 Tangent space at a generic point

We have discussed the tangent space to J, at the critical point p, in detail. Unfortunately, we lack a local
description for the tangent space at a generic point z € J,. Let us see how far we can go with respect to
the characterization of T, 7,. Consider the integral of a generic function over the thimble
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/ d"z f(2) (3.6)

JO'

where d”z = dz* A --- A dz" is the right form to integrate on the thimbld™] which is a manifold of real
dimension n embedded in C" (it can be thought as embedded in R?" as well). Now, at a generic point
z € Jy, the form d"z and the tangent space 7.7, are not parallel in general [59]. In order to express an
integral over [, as an ordinary integral on R™, we have to change coordinates from the canonical basis of
C" (dual to the forms dz*) to a basis of T, J,. Let {U"} be a (local) basis of 7,7, which is orthonormal
with respect to the standard Hermitian metric of C"; the matrix U € C™*" whose columns are the U® is
therefore unitary. Consider a neighbourhood I', C J, of z € J,: on I',, any point can be reached by a
displacement 0z = ), 6y; U (1) with respect to z, where the dy; are n real local coordinates in szg From
the unitarity of U, it follows that |§z|*> = dy?. Now, let us introduce a local chart ¢ : I', C J, — R™ defined
by

) <z+25yi U(i)> =6y + O (6y*) €R" (3.7)

i=1

Using ¢, we can rewrite the integral (3.6) in the following way[™|

/ &z f(z) = / 06y f (o7 (6y)) det U (07" (5)) (3.8)

r. »(T2)

where det U = e'* because U is unitary. e'“ is what is often termed residual phase. The residual
phase takes into account the (local) orientation of the thimble with respect to C™. Being complex, the
residual phase has to be taken into account by reweighting observables when integrating over 7,. This can
in principle give rise to a “residual sign problem”. This residual sign problem is expected to be rather mild
(with respect to the original one), nevertheless it is an issue which should be carefully checked for each theory
one wants to study with the thimble approach. So far results have been quite encouraging in this respect
[59, 60, [36], 611 [62]. We have traded the complex measure d"z for d"dy, which is real, with the introduction
of det U as a consequence. We now come to the problem of determining a local basis of T,7,, given the
only tangent space to the thimble we know, the one at the critical point, i.e. T}, J,. First, consider the SA
equations for an action S

dZi o 85’
dt 0z
: (3.9)
dz; . oS
dt 92

Given the coordinates of C*, that is z* and Z*, any vector field V' can be seen as a directional derivative
operator acting on complex functions over C™. This yields the decomposition

V=V, + V'

16We note that d™z is different from the standard volume form of C™, which is dz! Adz! A---Adz™ Adz™. d™z has precisely
the right dimension to integrate on J, with dimrJs = n.
17As a consequence, we can change variables from §z to dy and we get the Jacobian det U, that is (thinking of z as fixed)

d"z = d"§z = det (%) d"dy = det Ud™dy, because (%)U = —gg;; = Ui(J) = Usj.
18Here we are concentrating on I', (all these statements hold in a neighbourhood of a given point z on the thimble). Any

algorithm for numerical integration over 7, should be able to integrate seamlessly over the whole thimble.
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where V¥ and V? are functions of z and z. As partial derivatives commute[™| we have

0=[W, V], = W0, + W'0;, V'O, + VO] = (W' + W'0;) Vs — (V' + V'0;) W

J

Now we set W; = 0;S, that is the flow of steepest ascent and compute

dzia' + lef}j) Vi — Vi&-a;S — Vlﬁﬁ);g =

dz; avi
de ' dt

a V095

0= (0:50; + 08 0;) V; = (V'0; + V'0;) 0;S = (

where we have used the holomorphicity of the action, the chain rule and equations (3.9). We end up with
the parallel transport (PT) equatioﬂ

AV, o [ 028
@ =27 <aa> (3.10)

which holds in particular for any tangent basis vector U®). Thus, by solving for each U (t) along
the flow given by , one gets the whole basis of T..7,, where z = z(t) is a solution to SA equations with
the appropriate boundary condition defining 7,. The right initial condition to solve the PT equations for
the tangent vectors U® is that U® (ty) ~ v(?) at a time t( sufficiently small so that z(t) is close to z,, at
which the tangent basis consists of the set of Takagi vectors v(*). The matrix of second derivatives of S is the
Hessian of the action computed along the flow at z(t)ﬂ A numerical solution of is by far the most
computationally demanding task when integrating over J,. It is instructive to look at another, “variational”
derivation of . We can linearize by considering an infinitesimal displacement §z. Making use of

- g — 0

i=1

we work out a flow equation for dz

d (dz) |« 9  —0\0S ~—[ 05
a (0z) =6 (dt) -2 (53 +5Z”8zi) 5z~ 205 (ayay)

in which §z may well be a tangent space vector, e.g. V().

19This will no longer be true when we consider Lie groups: in that case we will have to take into account the algebra of Lie
derivatives.

20The name “parallel transport” comes from the fact that [%,V} = Lz5V, so equation is a statement of parallel
transporting the vector V along the flow given by 8S by imposing that the Lie derivative of V along the flow 95 be 0.

211t is important to understand that the eigenvectors of the Hessian at a generic configuration do not span the tangent space
to the thimble at that configuration.
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4 Gauge theories

In the previous section we have discussed the fundamentals of thimble decomposition for a scalar field theory.
In this section we introduce the thimble formalism in the context of gauge theories. We will immediately
see that new issues arise due to the Lie group structure. As a prototype for a gauge theory, the reader may
think of one-link models with complex coupling, lattice Yang-Mills theory with complex gauge coupling or
with a 6-term or full QCD with a sign problem due to finite chemical potential. In order to be sufficiently
general with the formalism, in this section we will consider a theory ruled by an action S(U) where {Uy}
is a collection of gauge variables (k is a generic multi-index, which may be in place of, e.g. link position
and direction (n, ji)), belonging to a certain compact Lie group, which we shall set to SU(XN). An abridged
version of these notions can be found in [63].

4.1 Complexification and Lie derivatives

Complexification of the fields boils down to complexifying the Lie algebra of su(N), which then becomes
s[(N, C). Thus, for gauge variables U

SU(N) 3 U = ei®aT" 5 ¢izaT" = pil@ativa)T” c QT(N, C)

where sum is understood over colour indices a = 1--- N? — 1. Notice that, after complexification,the
gauge group is no more Compac@ The Hermitian and traceless generators 7% of SU(NN) (which are taken
to be in the fundamental representation) satisfy the commutation relations

[Ta’ Tb] _ Z-fabc e

and are normalized so that

Tr (T°T") = %5“

In going from SU(N) to SL(N,C), we have
SU(N) 3 Ut = e7iwal” _ g7i2aT" — gmilzativa)T® — 71 ¢ SI,(N, C)
which tells us that, whenever we wish to complexify a theory with an action that is function of U and
Ut (as it usually happens), we have to replace Ut with U~'. As conjugate field (which correspond to Z,

conjugate to z of a scalar field theory) we take U = (UT)_I. This conjugation operation corresponds to

SL(N,C)2U — U = {(eiz“w)q - = (e—iiaT“)_l — iz T"

which means z — 2@ Notice that SU(N) C SL(N,C) is left invariant by this conjugation, as it should.
We now introduce the Lie derivatives V%, V®

22Even though the gauge group is not compact, expectation values of observables are expected to remain finite, as convergence
of these integrals is ensured by the thimble regularization.

231t is important to keep in mind that U refers to taking the complex conjugate in the algebra; one never takes the conjugate
of T®.
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V() = a% f(eom0) .
VeHU) =0
VeF(U) = %f (ew‘TaU) B

acting on functions of U or U (we will be concerned with holomorphic actions, which depend only on U).
We define the derivative operator Vi

V(U = TUVE(0D) = T 5= (7 U, (U

a=0

a
R

and analogously for V, = T%V¢. It is also convenient to introduce two “real” derivatives, V% and V
defined by

V4 =Ve+ Ve
V& =i (VP -V

or, equivalently

1
Vo= (V4 —iV3)
7 a 1 a B vt
\% 25( R+ 1Vg)

It is straightforward to show that these derivatives satisfy the Cauchy-Riemann equations (analogous to
(3-1)) for any function S(U) = Sgr(U) +1.S(U)

{ 45p = Vs,
From these relations it follows

VZS == Va%7kSR - 'LV%J«S’R
v%g == V%’kSR +ng\\y7kSR

and

G r9™ =< (VES+ VLS)

N | =

1 o
VE ST = — 5. (Vi = ViS)
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as well as

N | =

Vi Vi ST = ( a giS+vgvgi§)
1

Vi k5 ST =~ (vgvg,s - vms)

/ 1 ’ I
V4 (Vi ST = — (ViVES - Vivis)
a a’ R 1 aw—a’ —aa &
v%‘kv%‘,kys - —5 (Vk k/S + Vk k/S)

The previous relations, along with ng =ViS ensure that the Hessian H(Sg; U, ) at a critical point
U, (for which V{S(U,) = 0) has the same structure as (3.2). One should keep in mind that these derivatives
do not commute in general, but they obey the su(NN) Lie algebra. In particular

0 0 T BT
[V, V'] F(0) = VAV (0) = V'V () = s f (77T D)

a=3=0 86 %

_ 9?2 [f <eiaT0r+iﬂTb*%aﬁ[Tﬂr’Tb]U) —f (eiaTaJriﬁTb*%ocﬁ[Tb,T“]U)]

60&66 a=£3=0
— 82 _ 1 BfavaCf(U> 4 1 beacvcf U) _ _fachch(U)
~ a0 | 2° 2 ( weimo

where the vanishing terms have been neglected and Taylor expansion as well as Baker-Campbell-Hausdorff
formula has been used. The commutator for V gives the very same result. Being U and U independent
variables, we have [Va, Vb] = 0, so that the complete algebra of Lie derivatives is the following

[V, V] = =8k f2 V5,

[V, V] = =8k f2° V5, (4.1)

An important consideration is due: although Lie derivatives do not commute in general, the Hessian
matrix of S is still symmetric at any critical point U,, because V¢S(U,) = 0, so the commutators (4.1)
vanish at U,.

4.2 Steepest ascent and parallel transport equations

We seek a way of writing steepest ascent equations (3.9) with Lie derivatives. The natural way of doing this
is [64), [65]

%Uk(t) - (z VAV [U(t)]) Us(t) (4.2)

where the infinitesimal “displacement” of Uy is dt V{S T € sl(N,C) (dUU ! lies in sI(N,C) [29]). This
flow equation automatically keeps U(t) in SL(N, C), which can be readily seen by considering the expression

24This holds for all the actions we will consider in this work, thanks to their gauge-invariant trace of products of U.
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Ur(t + dt) = T VS, (1) (4.3)
whose first order expansion in d¢ coincides with (4.2))*°l The chain rule along steepest ascent curves takes
the form
d /a4 Q \7a a 7 a

where summation over both k and a is understood. Along the SA curve U(t) solution to (4.2)), Sg = R(S5)
is always non-decreasing, while S; = () is conserved

dSR 1d a 1 —a Q va agQgvwaqd) agQ|2 __ 2
o zia(S+S):g(VkSVkS+VkSVkS)—Eka:|vk5| =IVs|© =0
ds 1d 5 l =i wa agvwad
dtI =5 (9= 9) = 5; (Vi Vs = ViS Vi) =0

which is why we call (4.2]) a “steepest ascent” equation. We will now derive a generalization of paral-
lel transport equations (3.10) for gauge theories. In the present case, vectors can be seen as directional
derivatives which inherit the commutation relations of su(N). The decomposition

V =VioVi+ Vi o Ve

allows us to write

[‘/, Vl] = [Vk’avz + V]@’a 7% 3 Vk/;/’bvz/ + Vk:/’bvl]z;/] = Vk’avk/;/’b [ % ,Vz/} + Vk,a‘?k/’,b [ z ,vi/]

+ ‘V_/k;’aVk:/’b I:_z ,vz/] + Vk,a‘_/kf’,b I:_% 5 ?b/] - _fabc Vk’aVk//’bvz 6k’k/ - fabc Vk’a‘_/k//’bvi 6k’k/

= (™ VieaVia) Vi + (= ViV, ) Vi
which reads (in components)

[Va V/]k7c = *fabc Vk,avkl,b

As before, we pick V| A = V¢S in the commutator

— [ VieaViS = [V.VS], = (Vi Vi + Vi aVib) ViS = (VS Vi + VS Vi) Vi

dVi.e
dt

Vi WV VS 4 Vi VTS —

which, using the holomorphicity of the action (VS = 0), becomes (explicit summation is restored for
the sake of clarity)

25Actually, an iteration of |i gives a solution to 1} which is of first order in dt¢. This is the Fuler integration scheme.
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Vk c Z Vira(t) VEVESTUD] + Y f* Via(t) VS [U(?)] (4.4)
a,b

The first term is the usual one with the Hessian of S' computed at U(tﬁ and the second term comes from
the non abelian nature of the (complexified) group. As for the case of a scalar theory, we can also derive
in a “variational” way. In order to do this, we proceed with the same spirit of Section remembering
that, within gauge theories, an infinitesimal displacement 0z takes place in the algebra of the gauge group,
that is

Uy, — Uj, = e %=1

so that we can write
0= (02kaVi+020,aV§)
k,a

We seek an evolution equation for §z . in the following way

1 _
(o0 ) vt = (o550 ) o

d S - — : cyre Q —
= a Z (5Zk:’,cv2/ + 5Zk/7cvz/) U Uk = Z ((521« Vk/ -+ 5Zk/ Vk/ (Z ;T VkS Uk> Uk 1

k',c k',a

d .
= |fit (; 5Zk7cZT Uk>

Ut =i) T Y 02aViSiT  Up + Y 02r.a VEVES U | UL

k’,a
= ZTC Li (62.Us) } U,;lzzC:TC Za:(szk,ﬁgsﬁa+§52k/,ﬁz,v;§
= S| d (6 5 dU’“ b VS ThT TS 0z 0 VEVES
Z G (0zk,c) + 0zpc | =1 —ZZ zkaz +2C: Z Zha Vi
= Z TC% (6z.c) + i Z 02k.a ;T“Tb?’,gg = 2; 0zh.a Zb: VeSTPT + Z T* kz 621 o VL VES
= ;Tcddt (62p.c) = EC:TC ;} 0zp o VL VES +i;52k7a gb:v’,;g T — i Z,;M’a zb:TaTvaS
= Z:Tc(i(ézh ZC:TCZ‘W o Vi V5, S—zZézkaZV S [T, 1"
= ZTC% (0z1,c) = ZTC Z 52k a VI VLS + ZTCfabc Zézk,a?f;g
c c k' a c a,b

26The Hessian at a generic configuration is not symmetric because of lj
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so that we get

d - L
— (Ozke) =D 02w VR VES + ) f™62:,a VS

dt
k' a a,b

which is the very same as (4.4]), with 0z . being the components of some tangent space basis vector.

4.3 Morse theory and gauge symmetry

In the last section we have introduced the thimble formalism for gauge theories. We now address the problem
of gauge symmetry within the framework of Morse theory. We try to be as general as possible, deferring a
more detailed discussion to the study of Yang-Mills theory in Section We consider a set of fields {Uy}
on a manifold Y over which we wish to integrate, with dimgr)’ = n and a suitable complexification X', with
dimgX = 2n. Let S : X — C be a holomorphic function that is invariant under transformations of a gauge
group G, which is the complexification of a compact gauge group H. We call g the Lie algebra of G and b
the Lie algebra of H, with dimgrh = ng and dimgg = 2ng. We assume that a critical point U, € X of S
changes non-trivially under transformations of G, that is U, — US # U,. As a consequence, U, belongs to
a manifold of critical points continuously connected by transformations G € G. We call such manifold M,

M,={UeX|3Geg:US=U}CXx

which has dimgM, = 2ng. On M, the action S takes on the same value S(U,); thus, considering
Sr = R(9), the Hessian H(Sg;U) for U € M, is degeneratem In particular, the Hessian of Sg is a 2n x 2n
real, symmetric matrix with 2ng zero eigenvalues (corresponding to directions of gauge invariance of Sg),
n — ng positive eigenvalues and n — ng eigenvalues which are opposite in sign. We say that M, is a non
degenerate critical submanifold of X for Sg : X — R if dSg = 0 along M, and the Hessian H(Sg;U) (for
U € M,) is non degenerate on the normal bundle v(M,). The normal bundle of M, is subject to the
decomposition

V(M) = V+(MU) ®v (M)

with

M= || NEM,

UveM,

and dimgN*M, = n — ng. Nt M, is the (normal) space at U € M, spanned by eigenvectors of
H(Sg;U) with positive eigenvalues, while N~ M, is the normal space at U spanned by eigenvectors of
H(Sg; U) with negative eigenvalues. We now construct an n-cycle 7, attached to U,. Morse theory [66), [34]
20] tells uslﬂ that such an n-cycle is constructed by considering all the SA curves (that is, those making up
a stable thimble) attached to a middle dimensional manifold N, C M, (dimgN, = ng, hence the name).
The most natural choice for N, is

No={UeX|3HeH U =U} Cc M,

2TWe are generically referring to “gauge symmetry”, but the reader should keep in mind that symmetries can also arise in
scalar field theories; see [39] for a discussion of O(N) symmetry and [36]. Moreover, we will see that factors other than symmetry
may lead to a degenerate Hessian (for example, torons in pure Yang-Mills theory); this case will be worth of a detailed discussion
in Section

28 Actually, things are much more involved, but, for the cases of our interest, our brief discussion suffices. See [34] for a
detailed treating of symmetries and Morse theory.
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N, is the gauge orbit of all those points which can be reached starting from U, by gauge transformations
belonging to the original gauge group H (before complexification), which is a subgroup of G. Thus the stable
thimble 7, attached to U, is defined by

Ts = {U(O) €EX|U= i?§U7t_lir_rl U(t) e/\ﬂ,}

that is the union of all the SA curves U (t) starting from anywhere on N, at ¢ — —oo. This is the so called
generalized Lefschetz thimble and it is indeed an n-cycle, having the proper dimension dimg.J, = n—ng+ng = n.
All the previous statements hold analogously for /. More details on how one should build the thimble at-
tached to U, will be given in the context of Yang-Mills theory in Section [I0] We now show that the choice
of N, as a middle dimensional cycle in M, is consistent with the invariance of the thimble 7, only un-
der transformations of the H subgroup of G, even though S is invariant under transformations of the full
complexified group G. Consider an infinitesimal transformation G' € G such that U — U%. Recall that SA
equations can be seen as an Hamilton system with Hamiltonian S; = $(S) after regarding the Kéhler form
Q = £g,;;dz" Ad# as a symplectic structure on X. As a consequence, a symmetry of the thimble (i.e. a
symmetry of the Hamilton system) must leave 2 invariant. We want to compute the change 65Q = Q¢ —Q
of Q under G € G infinitesimal. For the sake of simplicity, we start assuming that U consists of a collection
{Uy} of variables, each transforming in the following way: U, — UkG = GyUrG), for Gy, G}, € Gi. This is
very close to the case of Yang-Mills theory and corresponds to taking G = @Gy, (and H = @ Hy, as well),
where gy, is the Lie algebra of Gy, the complexification of b, with {T%} as generators (in the fundamental
representation). Consider the tangent space to J, at a point U; any point U’ € T'y (where I'yy is a neigh-
bourhood of U) can be reached by an infinitesimal displacement in the Lie algebra, that is U}, = ez T
with dzy , € C. We now seek which displacement dzga, when acted on U, kG , reaches U ,’CG. We thus impose

UG — idz TG
k k
1,C Ta
= GkU]/CG;c = ¢!d=T GkUkG;c
. a -1 G a
= erzdzkﬂT Uk: — ezdzk,aT GkUk

that is

eidz,ﬁaT‘l _ eride,aTa Glzl (45)
We now make use of the following lemma (which is proved in Appendix

igaT® ibebe—igaT“ — oiMapap T

€ e

with

Moy = (e1")
ab

and (&%), = —1 feab are the generators of b, in the adjoint representatiorﬁ Applying the lemma to (4.5)
means setting G, = €*%9%T"  with 0gk,q € C in general>”| so that

dzﬁa = Mabdzk,b (46)

29Notice that there are no assumptions on the form of 7%, just the commutation relations of b, that is [T“, Tb] = fabere,

30When considering an SU(N) gauge theory, one should also leave open the possibility of a more general infinitesimal gauge
transformation: Gy, = e09k,aT* gk, with g € Z(Hy), the center of Hy. Because, by definition, g commutes with ei‘;gkvaTa, it
is canceled by g,zl in our application of the lemma.
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After expanding to first order in dg, we get

dz,?,a = dzg,q + 909k, (t9) 4 A2y + O (592)

diga =dZy,q + i5gk’c (tc)ab dzp, + O ((592)

where we used (#¢) , = — (t°),,. The Kihler form changes accordingly (using (¢),, = — (t°),,)

ab

7 7 . _ _— _
0% = idzga A dfga =3 [d2k,a + 10gk,c (t9) 4 d2rp] A [dzkﬁa + 100Gk, (1) 4 de,b}

— %dzk@ AdZq + % [16Gk,c (t°) g A2k A dZia + 10gk,c (1) 4 2i,a A dZip)

1 _
=0 — 3 [—59;,@’0 (tc)ba dzpp A dzg,q + 5gk,c (tc)ab dzg.q A dik’b]

1 .
=0+ 3 (5gk’c - 5gk7c) (tc)ab dz;w A dzy
so that

5GQ =i (6916,(:) (tc)ab dzk,a A dzk,b =9 (6916,0) fcab dzk,a A dzk,b

We thus see that € is left invariant only by taking dgx . € R, that is G, € Hy: the thimble is symmetric
only under transformations of the H subgroup of G, that is the original gauge group. This procedure, which
is similar to that followed in [39], is consistent with the result discussed in [26].
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5 Integration on thimbles

Having delved into the basics of Morse theory, both in the case of a scalar and a gauge field theory, the
time has come to be more concrete. So far many numerical solutions have been implemented to sample
configurations on thimbles [26] [60, 67, 68, [36, 61, 69, [70, [62], [71]. Here we shall discuss an approach which
was introduced by us in [72] and [73} [74]. In Section [3] we showed that the expectation value of an observable
O[z] (where z generically represents a collection of n complexified scalar fields) can be decomposed as

1 : 1 : ;
<O> _ 7 Z n, e~ iS1(20) /d"zO(z)e*SR(z) _ 7 Z n, e 181(20) /d”éyOe*SR eiw
ceD 7, gEX T
with the partition function
7 Z n, e—i51(z0) /dnzest(z) _ Z n, e—iS1(z0) /dn(;y o= 5n giw
oeX T oD T
where we have made the change of variables {z;} — {dy;} with dy; the infinitesimal displacements in a

neighbourhood of z € 7, (see (3.7) and (3.8))). We can take the residual phase e’“ into account by means
of reweighting, that is writing

1 —1S1(20 iw
(0) = Ezn"’e 1( )Za <<O€ >>U (5.1)
oey
with
Z = nye )z ('), (5.2)
oey

where we have introduced the expectation values on single thimbles

((o)o = ZL /d"éy o 5n (5.3)
s
Zy= | d"oye or (5.4)
/

Such expectation values can be computed via Monte Carlo with e~ as probability weight. Single thimble
partition functions Z, cannot be evaluated explicitly; nevertheless, (O) in may still be computed. See
[73] for a sketch of this procedure. For the rest of the section, for the sake of simplicity, we shall consider
only one thimble as relevant (so that an explicit calculation of Z, is not needed) and drop the double () as
well. Thus our goal is to compute

(Oe™)

<O> - <eiw>

(5.5)

with

[ d"éy e e=5r

O —
[ dréye—Sr
To
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and this last expectation value can be computed by any Monte Carlo which keeps field configurations
on the thimble and samples them with weight e=5%. As pointed out before, reweighting the residual phase
works only if it does not oscillate wildly between different field configurations on the thimble. It is expected
that this residual sign problem be much milder than the original one. At the moment there is evidence that
e varies very smoothly on the thimble [59, 60, 36, 61 [62].

5.1 Integration in terms of steepest ascent curves

Integration on the whole thimble 7, can be thought as an integration on a single steepest ascent curve
from the critical point p, up to inﬁnityﬂ followed by an integration over all possible SA curves starting at
po. Integration of only steepest ascent equations is desirable, as integration of steepest descent equations
is problematic because of unstable directions in the vicinity of the critical point [26, [60]. Therefore, any
algorithm employing only integration of SA equations is expected to be numerically robust in staying on the
thimble. We follow a notation very similar to that used in [73]. One single SA curve can be identified by
the “direction” 7 in T}, J, along which one leaves the critical point, that is

i nzv(l)
i=1

With this notation we mean the set {n;};—1..., with the normalization condition

n
E 2 _

n; =
i=1

with R arbitraryf’?|and {v(?} the Takagi vectors of H(S;p,) with (positive) Takagi values {)\;}. A point
z on the thimble can be singled out by giving the SA curve it lies on (identified by 7) and the time ¢ at
which one reaches z while integrating SA equations. Thus we have the map

J» 224 (1) € Sp7! xR

with S7~" the (n — 1)-sphere of radius v/R. Now we employ a Faddeev-Popov-like trick [75], that is we
rewrite 1 as

1= /Hdnké 7 — /dt H5 Syi — Oyi(R,t)) (5.6)

where {dy;(7,t)} are the components of the field displacement (in the spirit of (3.7)) on the local basiﬂ

{Vfgz)(t)}, parallel-transported along the SA curved identified by 7 until time ¢. The partition function can
be rewritten in terms of partial partition functions along each possible SA curve

31Strictly speaking, this is true only for purely bosonic systems. In presence of a fermionic determinant, solutions to SA
equations may flow towards zeroes of the fermionic determinant in a finite amount of integration time ¢ [40l [37), [62]. Such
configurations have infinite Sg, so that “infinity” is meant with regards to the action.

32Different values of R are theoretically equivalent, but can affect the efficiency of the numerical algorithm for sampling on
the thimble, so it requires some “experimental” tuning. In [73] R = 1 was used. In [36] the authors set R = n. In all the
simulations of this work, R = 1 was used.

33The basis {V (9} does not need to be unitary: if it is not, in the integrals det V = e must be replaced by |det V| e!«. We
shall discuss the choice of basis later on.
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Thus we can rephrase the expression for the partition function as

Z = /Dﬁ Zi (5.7)

with the measure over 57”3_1

L = 2
Dh = kl;lldnké (\n| R)

and the partial partition function

+oo
Z = /dmﬁ(t) e~ Sr(t) (5.8)

— 00

The integral is one-dimensional and can be easily computed numerically while integrating SA (and
PT) equations. Algorithmic issues about an efficient sampling of f-space will be discussed in Section
For the moment, let us focus on finding an expression for A;(¢). Recall our Faddeev-Popov-like trick in
(5-6). In the integral, the only external variables are the {6y;} and there are (n + 1) integrations, which
matches precisely the number of ¢ conditions. We linearize the ¢ conditions around their solutions (7, t) and

solve (5.6)) for Ay (t)

n

1=An(t) / I ani.s (|ﬁ’|2 — R) /dt’ ﬁ(5 (Oyi — dyi (R, 1))
k=1

=200 [

-1

n n d (|@)* = R, oy — dy; (7, ¥/
HdnéHé(n;—ni)/dtW(ﬂ—t) (|n| Y y(n ))

! 5/
k=1 i=1 8(t’n)

which we can write more explicitly as
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ot ony onp
000y1—dy1 (,t))  O(dy1—dyi(n,t)) . 9(dy1—dyi(R,t))
Aﬁ (t) — |det ot ony Onn,
a(éyn_(syn(ﬁ;t)) 8(6yn_6yn(ﬁ7t)) . 3(5yn—5yn(ﬁ7t))
ot ony Ong
0 2nq s 21,
O6y1(f,t)  Odyi(Rst) . 9dyi(Rnt))
ot ony Onn
= |det i . .
Odyn (,t)  dyn(it) . Odyn(Rt)
ot ony ong,

This expression for Az(t) needs to be manipulated in order to be expressed as a function of known
quantities. Recall what was discussed in Section [3.6] in particular the second order expansion of the action
around the critical point p, as well as the change of variables Z = Wn with n € R” and W;; = UIQ ) (vl(j )
being the j-th Takagi vector of H(S;p,) with Takagi value A; > 0). This change of variables automatically

keeps one on the stable thimble in the vicinity of the critical point. The action in the n variables becomes

S(n) = S(z0) +%ZM? +- (5.9)

Close enough to p,, this second order approximation holds reasonably well for the original theory. How-
ever, we could as well consider the quadratic action as being valid everywhere in R™: this is a different,
Gaussian theory, whose thimble associated to p, is flat and everywhere spanned by {v(i)}, its (constant)
residual phase being det W = e?“~. SA and PT equations for the Gaussian theory take the form

d’l]i _W_)\‘ ‘
dt _8771' = Ailli

dV»(i) no —
Tjt = ka( )ij(s;pg)
k=1

These equations, with the initial condition

have the solutiorBd

(5.10)

which implies

34For the Gaussian theory Véi)(t) = V(@ (¢): the tangent basis vectors are independent on 7
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k

2(t) = 2oy + Y Winnk(t) = 205+ Y np e o)
k=1 k=1

as well as

_ 1~ 2 oa
S(t) —S(z0)+2i=21)\mie

At a reference time to < 0 (ideally, one would take tg — —o0), the Gaussian theory and the exact one
(the original theory with action S) can be identified, so that computed at t =ty yield a valid initial
condition for SA and PT equations of the exact theory. Let us now come back to the original theory and
consider an infinitesimal displacement dz(7,t) around a point z € J,, reached by flowing along the SA curve
identified by 7 until a time t. dz(n,t) belongs to 1.7, and thus satisfies PT equations (which are linear)

just as any Vﬁ(i)(t) [73, B6]; therefore dz(7,t) can be written as a linear combination of tangent basis vectors
with constant coefficients {dy; }, that is

dz(it) =Y oy VP (1)
i=1

The coeflicients dy; can be easily worked out for the exact theory using the expression for z(t) and Vfgi) (t)
at t — —oo, which are those of the Gaussian theory. We have

0z(f,t = —00) =6 (zg + Zv(i) ehit nl> = Zv(i) Z 5nj% + 5t% (e)‘it ni)
i=1 i=1 j=1 J

i=1 1=1

from which it follows

5% = on; + A\jn;ot (511)

In the very same way, we can easily derive a useful consistency relation for the gradient of the action, as
it also belongs to the tangent space [30]. Let us write the decomposition

V.5=3 g Vi)
=1

The coefficients g; can be found with the aid of the Gaussian form of the action for ¢ — —oo, that is

V.5 = V. (S(:0) + 2T H(Sip0)2 ) = H(S: )20 = HVH(0 = AR = Wn()

= Z ’U(i))\im(t) = Z U(i)AZ"I’Li 6/\'it = Z V(Z) (t))\mi
i=1 i=1

i=1
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so that g; = n;A;. Thus, during the integration of SA and PT equations, we can keep checked the norm
k= (V.8 - na Vi (t) (5.12)
i=1

and make sure that it is small with respect to the scale of the system. Now we have all is needed in order
to compute Ay, (t) explicitly: from (5.11)) it follows

0 2ny .-+ 2n,
Alnl 1 e 0 n
Ap(t) = Aj = |det | . 1 =2) nd (5.13)
: : C p
Aty 0 oo 1

which turns out to be time independent. All the computations carried out so far involved displacements
8y; with respect to local tangent basis vectors V(¥ which are solutions of PT equations at a generic time t.
This basis is not unitary in general, so that, in our integrals, we have

d"z =d"0y det V =d"dy |det V|e'®

where €’“ is the same residual phase we would have ended up with if we had used a unitary basisﬁ
Thus expression (5.8) for the partial partition function becomes

n +oo
h=2) Ain? / dt e Serr (1) (5.14)
i=1 s
with
Sett (R, t) = Sg(N,t) — log |det Vi ()| (5.15)

We have computed A (t) for the exact theory; of course the Gaussian one has the same expression for
Ay, but in that case we can compute det V;(t) analytically as well. Being V,Ffz)(t) =0 At we have

det V(t) = det (6’\1t v ent U(")) = H et det (U(l) e U(")) = 6(1’; /\i)t det W = eMttiws

n .
where A = > A; and €'“7 is the residual phase at the critical point. Therefore the expression for Z; of
i=1
the Gaussian theory is

35In [73] a unitary basis {U("} was used, yielding det U = e?“ and a time-dependent expression A (t), which encoded the
stretching of basis vectors (that is the change in volume of an infinitesimal parallelepiped generated by the V() along the SA
flow). Here we have chosen to work with the non-unitary base {V(®}. Had we worked with a unitary one, say {U®}, we
would have ended up with the same residual phase e*“. This can be readily seen by using QR decomposition (e.g. by means

of Gram-Schmidt process, like in [36]) on the matrix V defined by V;; = Vi(j). QR decomposition yields V' = UE with U

unitary, so that det V = det U det E = e'“ det E. Now, being all the V() linearly independent, detV # 0 and thus there is
a (unique) factorization with all the diagonal elements of the upper triangular matrix E real and positive. The conclusion is
that det E > 0, so that |det V| = det E and the residual phase e** of the present work is the same as the one in [73]. It is also
easy to check that Ap(t)=A4x(t) det E = Ay |det V| (where Ay is given by ), so that the two choices of basis are perfectly
equivalent.
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+oo n
n At—1 5 An2eit
Zn=2) \in; / dte = (5.16)
1=1

—0o0

As a final note for this section, we consider the case of a gauge theory. All the previous statements
apply, keeping in mind that infinitesimal displacements are in the algebra of the gauge group, that is a
neighbourhood 'y of U € J, is explored by means of {dzy .} such that U’ € Ty is

Ul = et dzraT 5.17
k

with dzge = >, 5yin(2 ({V®} being a local basis of Ty J,). All the integrals we are interested in are

of the type
/ DU = / [ dvx
k

dUy being the invariant measure of the gauge group. As in (3.8)), we want to rewrite such integrals in
terms of dy, that is

[Tdvx = VVdet gd"sy
k

with the metric g given by

ds? =Y ds?|, = Y [T (U AU AU) ] = D giidyidy;
k

k ]

The invariant measure d82| ., of the gauge group can be computed as follows

a

ds?[, = ~Tr (U a0 auy) = =T [0 (957" = 1) 00t (1950 — 1) U

= —Tr[(idey,oT" + O (dz?)) (i dzppT° + O (d2?))] = Tr (T*T") dzy, odziy = %5abdzk7adzk,b ~> dag,
a

In the last step the factor 1/2 has been neglected, being a constant which is dependent only on the
normalization of T* (it is cancelled out in ratios of integrals anyway). It follows that

ds? =3z, =Y ey v oy v =3 vV syisy;
k,a k,a 1 7 i, k,a

so that we can read out the components of the metric

Gij = ka(zgvk(j) = (VTV>ij
k,a

From this, we have the determinant

Vdetg=4/det (VIV) =detV
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which is the one we already know. It is this determinant that will give rise to the gauge group (complex-
ified) Haar measure: in fact, the basis {V ()} is parallel-transported under equations (4.4), which know of
the non-abelian nature of the gauge group.

5.2 Semiclassical expansion around thimbles

In this section we show how a semiclassical expansion may be performed in the context of Lefschetz thimbles.
Semiclassical (leading order) approximation means expanding the action S of the theory to second order
around each critical point p, (that is classical solutions of the quantum theory) and performing Gaussian
integrals analytically. We employ the same notation of the previous section. Consider the quadratic expansion
of the action around the critical point p, in . After setting Z = W), so that d"z = det Wd"n = e*“=d™n,
the partition function becomes

. -3 3 )\in n ZG) ;
7 =~ ng e 3(%0) giws /d” e =TT = Ny —— ' 5.18
> : e 519
ag R
where the Gaussian integral
+oo 5
1 2 iy
di —5/\i77i — -
/ e Ai
— 00

has been computed and it has been assumed that all A; are positive (det A, = []; ;). From the last
expression for 7, it is clear that the critical point with the smallest value of Sg is dominant in the expansion.
Now we want to compute the expectation value of an observable O. We expand O(z) around p,

1
O(2) = O(z,) + VEOZ + §ZTHC?Z

with
00 00
TO e et
v 821 207 ’8Zn 20
and
920
HO _
( ) 8zlazj .Y

It is obvious that, in general, [H(S; p,), HY] # 0 and therefore we cannot expect W to “diagonalize” both
H(S;p,) and HY. The expectation value of the observable is given by

1 \:n?
Zna —S(z0) uug/dn ( Zo —|—VTOW77+ 77T00> 21’;1 n

UGZ

with C9 = WTHOW . The first term in the expansion of O comes out of the integral, giving the partition
function itself (actually, the contribution of the thimble 7). The second term is linear in 7; and therefore
gives no contribution to the Gaussian integral. For the same reason, the third term contributes only with
terms which are quadratic in 7;, that is when
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i=1 j=1 i=1

Therefore we need to compute only the diagonal terms of C9 and, after performing the Gaussian integral

“+oo
1 /27
dn; 2 —1xn? S el
/ nn; e 2 NV
we arrive at
1 n e*S(za) 3 ]_ n (CO) ..
~ — 2 2 o — ' o a = ]‘
(0) Z(w)zaezzn N <0(z )+2i:1 Ai (5.19)

We can work out a more useful expression for (Cg) )ii in terms of Takagi vectors

= DT (HD) W = 305 (D)

j=1k=1 j=1k=1

It is nice to see that, if we take the action S itself as observable, then HY = H(S;p,) and, being
H(S;py)v® = N0 and ) v() (l = 6y, we have

Jj=1

yielding the contribution
n
S(ze) + =

which is nothing but the equipartition theorem.

5.3 Numerical algorithms to sample on a thimble

We have seen how a thimble can be decomposed in terms of 72 and ¢. Now it is time to devise an algorithm
to perform Monte Carlo sampling on the thimble taking advantage of this parametrization Recall that we
want to compute the expectation value of some observable O through (5.1] , , , l , makmg use
of the parametrization of the partition function in terms of partial partltlon functlons in (5.7)), (5.14) and
(5.15)). To summarize, what we wish to compute is

1 , 1 .
== Z ng e 191z 7 7z /d”5y06“" e SR (5.20)
oex UJU
1 —1S1(20) 1 n tw ,—Sg
ZEZnoe )7y A d"oye'“e (5.21)
oex .2
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with

1 [ sy 1 [ Zafa
Zg/d oy fe —ZU/ann—/’DnZJZﬁ (5.22)
NE

in which

—+oo

fa=2> Am} / dt f (i, t) e~ Serr(t)
i=1 o
n +OO
Zn=2) \in} / dt e~ Serr ()
i=1 oo

where it is understood Z, = f Dn Z;. Let us focus on a single thimble 7,. From |i we see that what
we should do in principle is extract a sequence (a Markov chain) {ﬁ(j )} ...y according to the (correctly

normalized) probability P(?) = Z;/Z,; then the expectation value of f (being either O e!“ or €!“) on J,
would be simply given by

As a first proposal to sample the n-space, we consider the simplest one: doing no importance sampling
at all. The static, crude Monte Carlo consists of a Markov chain of  which are uniformly distributed on
5'7’?1 Then one is able to directly compute the ratio

> nge 91 [ D (Oetv)

_ o€X
O S e D (e, (:23)
o€

This method is expected to be rather inefficient for systems whose Z; vary a lot as functions of n. This
is in fact the cause of the larger error bars at lower values of m in Figure Nevertheless, this method
was used in [73] and was successful in recovering correct results for the Chiral Random Matrix model, as
discussed in Section From , we also see that this method enables us to automatically take into
account the contribution of more than one thimble. The static, crude Monte Carlo was also used for SU(N)
one-link models and 0 + 1-dimensional QCD, where more than one thimble is relevant; see Sections [9] and
for details.

Let us now discuss a more sophisticated way to sample 7 according to the probability P(n) = Z,/Z,.
The problem one immediately faces is that the computation of Z; for a given n needs integration of an
entire SA curve, which requires solving SA and PT equations for a long enough time for the integral in dt¢
to converge. Therefore a Von Neumann-like procedure to extract 7 according to P(7) is unfeasible. One
possible way around this is the flat Metropolis algorithm: given 7(9) at the j-th step of the Markov chain,
one extracts 1/ uniformly on S%_l and accepts it with probability

P, (ﬁ’|ﬁ) = min {1, an} (5.24)

36Extracting 7 € S%_l uniformly is easy [76]: one extracts n independent Gaussian numbers, that is n; € A(0,1) and then
normalizes the resulting vector with norm v/R. Extracting # uniformly on S%_l gives a volume factor Vol(S%_l) in front of
each [ D (the normalized probability density being §(|7|* — R)/Vol(S%ﬁl)). As we are interested only in ratios, we shall omit
the factor Vol(Sf,{l) from now on.
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where Z, has disappeared in the ratio. The drawback of this approach is that the acceptance rate can
become very small in case of Z; varying by orders of magnitude as a function of n. A far better approach
consists of proposing the new configuration 7’ according to a probability distribution which is expected to
have a far greater overlap with P(7) than the uniform one. The best candidate is the probability for the
Gaussian theory, that is P9() = Z¢ /Z¢ with Z¢ given by . This distribution has far better chances
of yielding a higher acceptance rate compared to a uniform extraction of n. Thus we generate a Markov

chain {ﬁ(j)}jzlmN; at the j-th step, we propose 7’ with probability PY(7/) and accept it with probability
1 L Za 2
P (n’|n) = min {1, ZZL Zg,} (5.25)

where Z¢ drops as well as Z, and Vol(S;’{l). The only remaining task is to devise a procedure to extract
i according to PY(n). To this purpose, we shall discuss an heat-bath algorithm in 7 space for the Gaussian
theory. Consider a given n € S%_l; we want to extract 7/ with probability PY(n’) o Zg,. Let us pick two
random, different components of i, say (n;,n;) with ¢ # j. We define C by

CETL?—FTZ?:R— Zni
k#i,j

which is fixed by the normalization |7i| = v/R and the values of all {n), }1.; ;. We can therefore parametrize
the “subspace” (n;,n;) by

n; =V<C cos ¢
(5.26)
n; = Ve sin ¢
with ¢ € [0,27). We will now describe a procedure to extract ¢’ € [0, 27) such that
VC cos¢/ if k=1
n, =< +vCsing if k=j (5.27)

i, if k£,

is distributed according to PY(?/) = PY(?/(¢')) o Zg,( ). As the only correction for the proposal
probability appearing in 1] is Zg, (o) We have to check that the choice of a random pair (7, ) and the

parametrization (5.26) is uniform on S7”{1. This can be readily seen by changing variables from Cartesian
to polar on the (n — 1)-sphere

ny = VR cos b1
Ng = VR sin @1 COS P2

ng = V'R sin ¢1 Sin @2 cos @3
(5.28)

Np_1 = VRsing; ---sin ¢, _o cos ¢, _1

Ny = VRsSingy - -sin¢,_o sin¢,_1
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with area element

dgn-1V =sin" 2 ¢y sin™ 2 ¢y sin 2 dp1des - - - dpr—1 (5.29)

For any choice of (n;,n;) with ¢ # j, one can choose a system of coordinates in which n; and n; play the
role of n,,_1 and n, in (5.28)) respectively, with the identification

n—2

VG & \/ﬁnsinqbk
k=1
d) <~ ¢n—1

Then any choice of ¢ € [0,27) is equally probable on the (n — 1)-sphere because the area element ([5.29))
dgn-1V ~ d¢ is flat in ¢. Our remaining task is to show how to extract ¢’ with probability PY(7’(¢')). Let

us turn to (5.16) and plug in (5.27)

+oo 1 2 2\t . 2 7 2Nt w2 g7 2Nt
Zgw) =2 Z Aknj 4 C (X cos® ¢ + A sin® ¢) /dteAt ZLEJ-“W KON cos? @e? M4, sin? @)
n/ /
ki, .
(5.30)

The reader should keep in mind that this expression is dependent on {nj}rx; ;. Consider now the
cumulative distribution function defined by

¢/
g
G (4 ({dQO Zﬁ/(w
R ="
g
Of de 27, ()

By extracting ¢ € [0,1] uniformly distributed and computing ¢’ = Fg,_l(f) we have that ¢’ is dis-
tributed according to P(¢') oc Zj/ (4. Then we use (5.27) to get 2’ and all is ready to perform the Metropolis
acceptance test @) (Z/ () is readily available once ¢” is known). We call this procedure a heat-bath-based
(HBB) Metropolis.

An interesting observation can be made out of : if (¢,7) is such that A\; = X;, then Zg,(¢,) is
effectively independent on ¢'; thus all that is needed is the extraction of ¢’ uniformly distributed in [0, 27)
and the use of . Moreover, if all the \; are equal, then Zg, = Zg V#,n and this Gaussian heat-bath-
based Metropolis does not perform any better than the flat Metropolis in . In such cases (for example
one-link SU(N) models and 0 + 1-dimensional QCD) we even made use of the static, crude Monte Carlo.
Another important observation is that, although in some sense trivial with respect to the actual theory, its
Gaussian counterpart is still highly non-trivial when reformulated in terms of 7. The use of importance
sampling for the Chiral Random Matrix theory described in Section [7] provided the same, correct results
of the static, crude Monte Carlo with far less statistics and smaller error bars; it also made it possible to
explore a region in parameter space (namely, small rescaled masses) in which the static, crude Monte Carlo
was unable to reach correct estimates [77, [78]. The main problem with this kind of importance sampling is
that one extracts observables according to the right distribution on a given thimble 7, but without knowing
Zy itself (see formulae and ) As a consequence, taking into account more than one thimble can
be tricky. For a sketch of a procedure for doing this, the reader can refer to [73].

37F§/ (¢"), being the integral of a manifestly positive function, is monotonically increasing and can be easily inverted numer-
ically.
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As a final remark, we notice that the parametrization leaves space for other possible algorithmic
solutions. For example, one could extract d¢ uniformly distributed in [—5,5]@ and propose ¢’ = ¢ + d¢
(modulo 27), accepting 7’ with probability . By tuning ¢, one could look for a reasonable compromise
between acceptance rate and correlations: small values of ¢ will yield an 7’ which is highly correlated to 7,
whilst large values of € will be likely to kill the acceptance rate if Z; is highly dependent on 7. Numerical
results for the application of this last prescription to the Chiral Random Matrix model, as well as results for
the HBB Metropolis algorithm, are presented in Section [7}

38Such choice of interval ensures that the proposal be symmetric.
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6 Zero-dimensional ¢* model

After studying Morse theory in general and laying out an algorithm to perform integration on thimbles, let
us go back to the simple case of a one-dimensional integral. This model will be a useful tool to familiarize
with the basics of Morse theory and at the same time to discuss the relevance of more than one critical
point within the thimble decomposition. We consider the zero-dimensional ¢* model, whose only degree of
freedom consists of a real field ¢. The partition function is

+oo

Z(o,\) = /d¢e‘s(¢) (6.1)
L oo 1 4

5(9) = 506" + 129 (6.2)

with A € RT and 0 = o + 407 € C. The sign problem is due to oy, which plays the role of a “chemical
potential”. This model was first introduced about thirty years ago in [79] as a toy model for one of the first
tests of complex Langevin [80]. The model, although seemingly simple, proved to be quite hard for complex
Langevin; in particular, for some values of the parameters o and ), it was difficult to keep simulations under
control. Another problem the complex Langevin faced was the divergence of the expectation value of high-
order momenta, that is (¢™) with n > 6. This behaviour was later shown to be due to a power-law decay of
the equilibrium probability distribution for the (complexified) field, solution to the associated Fokker-Planck
equation [8T] [82] B3], [84]. Recently, this model has also been studied within the framework of Morse theory
in [85], [73] (and also in [86], though in a slightly different representation). Despite being so simple, this toy
model proves to be quite valuable for understanding the relevance of more than one thimble depending on
the value of a parameter in the action (in this case or). Being the model one-dimensional, it is easier and
more transparent to work in terms of the two real components (z,y) of the (complexified) field ¢ =z + iy
and of the eigenvectors of H(Sg;p,) instead of referring to the Takagi vectors of H(S;p,). From we
have

1 1
Sr(z,y) = 3 [O’R($2 — y2) — 201:17:(/] + Z)\ (x4 + y4 — 6:02y2)
1
Si(z,y) = 5 [o1(2* = y*) + 20R2y] + Awy(a® — y?)

In order to find the critical points, we impose

dS(¢)

3 = 0h+ A = ¢(o + Ap?) =0 (6.3)

so that there are three critical points: the classical vacuum ¢g = 0 and two Higgs vacua@

 [o .
¢+ =i X:x:tiZy:I:

39To get a flavour of the physical meaning of these critical points, it is useful to consider the action (6.2) on the original
domain of integration only (that is ¢ € R). We have already stated that the complex nature of S comes from the “chemical
potential” o7. Now let us consider the zero-dimensional ¢* theory at zero density, so that S(¢) = %URQSQ + i)\qﬁ‘l. The critical

The drift is given by

points are given by ¢(or + )\d)2) = 0. For or > 0 there is just one critical point ¢g = 0, which is a minimum of the action. On
the contrary, for or < 0, there are three critical points: ¢o = 0, which is now a mazimum of the action, and ¢+ = +v/—0or /A,
which are minima of the action. Therefore the sign of or parametrizes a spontaneous symmetry breaking (SSB). From these
considerations, we can foresee that the sign of o g will play a crucial role in the thimble analysis of the ¢* model.
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M = ORT 70’]y+)\$3 73)\zy2

ox
95r(z,y) = —oRry — oz + A\y® — 3\2’y
dy
while the Hessian is
. _ (or + 3)\(3)2 — y2) —01 — GAJ?y
H(Sgp;z,y) = ( —o7 — 6Ty —OR — 3/\(x2 _ y2) (6.4)

It is now useful to rewrite the defining relation for ¢, that is
; . g OR or
¢2i:(xi+lyi)2:(zi—yi)+2zxiyi:—f:_7+z< )
A A A
implying that
or
x =——
+Y+ I\

These relations are useful to evaluate Sy at the critical points

Si(¢o) = S1(0,0)=0

s =)= (- 2) 0200 ()] 1 (-5) () - %2

We immediately notice that Sr(¢4) = Sr(¢—) = Si(¢o) whenever og = 0 or oy = 0 (in this work we
always take o; > 0), so that the imaginary axis in the complex o-plane is a candidate for a Stokes line (so

that a Stokes phenomenon may occur at or = 0 - see Section [3.5). We will later see that this is indeed the

case. The Hessian at ¢ is
) _(or —oOr
H(Sr; ¢0) = (_UI —JR>
with eigenvalues /\éi) = :I:«/cr}?% + 07 = £ 0| and eigenvectors, respectively

1 _ —ogr¥|g|
’U(()i) = ( or >
o2 1
\/2<1+0’§i|a|‘;§)
I I
where the upper 4+ marks the stable/unstable direction at ¢g. Plugging (6.5)) into (6.4) gives the Hessian

at o+

H(swos) =2 (7" 1)
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with eigenvalues )\(f) = +2|o| and eigenvectors

or

" 1 _ —orTFlo]
o) = . (T
)

Notice that ¢4 and ¢_ share the same tangent space, which is orthogonal to the respective stable/unstable
tangent space of ¢g.

Now we have all the ingredients we need in order to perform the thimble analysis of the model. We are
interested in the partition function , with Z(o,\) a (complex) continuous function of o and A, which
will guide us while searching for the correct set of n, in going through the Stokes phenomenon (see Section
for details). The integral in is convergent thanks to A € RT. For or > 0, we can evaluate Z in

closed form
Z(o,\) = ,/g et K_1(8)
o 4

with £ = g—i and K, (£) the modified Bessel function of the second kind. The thimble decomposition

provides an analytical continuation for negative values of og (see [34] for a thorough discussion on Morse
theory and analytical continuation of the Airy function). We also look for the correlators of the field

+oo
any _ 1 o —log*-tagt _ (Z2)" 0"
(6"") =7 / dg g™ e = 7o 5o 20N (6.6)

where all odd correlators vanish as S(¢) is even in ¢. On Lefschetz thimbles, all these integrals are
convergent, so that n > 2 shall not pose any problem in this approach. In order to compute the decomposition

7 = no/d¢e—5<¢> +n1/d¢e—5<¢> +n2/d¢e—s<¢> (6.7)
Jo J1 T2

we have to start at each critical point, make an infinitesimal displacement along the stable direction and
then start to integrate the SA equations for a sufficiently long time so that integrals converge. Notice that,
in one dimension, to get the whole thimble 7, attached to a critical point p,, one has to consider the two
possible directions at p, given by :I:véﬂ where "ut(,+) is the stable eigenvector of H(Sg;p,). In the notation
of Section this corresponds to n = £vR (as long as one is aware of this double possible choice of sign,
there is no need for the (7, t) notation in one dimension, being the thimble simply parametrized by the SA
flow time t). In Figure all the stable and unstable thimbles are plotted for both positive and negative
og. In Figure (referring to o > 0), we see that the unstable thimbles K1 attached to the Higgs vacua
¢+ do not intersect the original domain of integration (the real axis), so that n,. = n_ = 0. In this region
of the complex o-plane, only 7 is relevant for the decomposition . Correct results are indeed obtained
for n = (ng,ny,n_) = (1,0,0). The case or < 0, illustrated in Figure is quite different. When going
from og ~ 07 to og ~ 07, the thimble Jy undergoes a radical change of shape, so that integrals along J
feature a sudden jump. In order to keep the integrals (such as or (6.6)) continuous in o, the jump in
f 7, must be compensated by a jump in the coefficients {n, }. In fact, correct results at o < 0 are recovered
by taking n = (-1, 1, 1)@ Actually, it is not surprising that ni # 0 for og < 0: in Figure we see that
the unstable thimbles K4 do intersect the real axis, thus indicating a contribution to (6.7) from Jr. This
is a manifestation of the aforementioned Stokes phenomenon. In this case the Stokes curve in the complex
o-plane is the imaginary axis. In Figure[6.1] we see the structure of the thimbles at purely imaginary . The
thimble 7 is ill-defined, in the sense that, by integrating the SA equation starting close to ¢g, one flows into
¢+ at t — +o0o. The two green segments forming Jy coincide with half of the unstable thimbles attached

40The actual sign of each n, depends on the choice of orientation for Jo.
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to the Higgs vacua, that is Ky and K_. When such phenomenon occurs, the decomposition in does
not hold, as Jy does not connect regions of convergence at inﬁnityEl As already mentioned, this is not a
problem, as the coefficients n, for og — 0~ can be figured out by imposing continuity in, say Z or (¢™)
while knowing the n, for o — 0%. The zero-dimensional ¢* model was used as a benchmark for different
algorithms devised to do importance sampling on Lefschetz thimbles [85]. In particular, successful results
were obtained by using the Metropolis-like algorithm introduced in [67], which proved to be of great use even
in the case where more than one thimble were relevant, showing no sign of instabilities in the computation

NSNS [

) )\)\1\\\§E/ﬁ =l
220

. ~ \\

| )

Yz

> ()=.\ ~—
\
N

38}

\

X
N L

oS
-\:\\\\\\ ”
'x — Stable thimble
-- Unstable thimble

— Stable/unstable thimble

® Critical point

SN T 77—~ SNV
-2 -1 0 | 2

X

Figure 6.1: The figure shows the Stokes phenomenon appearing in the zero-dimensional ¢* model at ¢ = 0.754
and A = 2. Stable and unstable thimbles associated to the three critical points are plotted. The ill-defined
thimble Jj is depicted in green.

41T be more precise, thimbles do not necessarily connect regions in which the fields tend to infinity. In order to ensure
convergence of the integrals, the thimble has to connect regions in which Sgp — 400 (in the present case, this fails precisely
at ogp = 0, as Jo flows into ¢+, where Sg is finite). In fermionic systems [40} 62] 37, [86] there are thimbles connecting
configurations which are finite (in field space), but on which Sg is infinite.
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(b) Stable and unstable thimbles for 0 = —0.5 + 0.75¢ and A = 2.

Figure 6.2: In the two figures, stable (in blue, solid lines) as well and unstable (in red, dashed lines) thimbles
associated to ¢g and ¢+ are plotted. The vector field is VSg(z,y), making it clear that thimbles single out
directions of steepest ascent/descent. The first picture is taken at o > 0, while the second depicts the case
or <0.
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7 Chiral Random Matrix theory

In this section we put all the machinery introduced in Section [5| at work for a multi-dimensional model. In
particular, we study a Chiral Random Matriz (CRM) model. This model was first introduced thanks to
the many features it has in common with QCD [87, [88] [89]: they have the same flavour symmetries and
explicit symmetry breaking and they share the presence of the determinant of a Dirac operator (which is
the source of a sign problem for both theories). In the microscopic limit (which we shall describe more in
detail later) both theories are related to chiral perturbation theory at leading order in the & domain as a low-
energy theory. This made it possible to gain some insights into QCD by studying the matrix model, which
is treatable analytically. In this work we shall not go into detail studying the physics of the CRM model;
instead, we shall tackle it with the thimble formalism and treat it as a valuable setting to test the approach
in a case which is much more involved than zero-dimensional models. Our interest in this particular model
lies in the fact that complex Langevin was used to tackle its sign problem [90] [91], giving correct results in a
particular formulation [91], while converging to wrong results in another [90]. We shall consider the original
formulation of the model, which was a failure for complex Langevin and use the same notation as [90].

7.1 General setup

The partition function for the CRM model for N; quark flavours of degenerate mass m is

Iy = / d@dW e~ N T(®TOHY) 4ot Ns (D (1) 4+ m)

The degrees of freedom of the model are the two N x N complex matrices ® =a+1iband ¥ = o +ij,
so that the total number of degrees of freedom is n = 4N2. The integration measure is d®d¥ = da dbda dp.
The chemical potential enters the Dirac operator

D(p) +m =

< m i cosh u ® +smhu\I/> (7.1)

i cosh pu ®F + sinh p W1 m

The aforementioned microscopic limit consists in taking N — oo while keeping m = Nm and i = vV Npu
constant. In the present work we shall keep fi = 2 fixed and Ny = 2 fixed as well (to be consistent with
[90]), while studying the behaviour of the chiral condensate £ = + (fn) = + 2 log Z at different values of
m. We will also consider increasing values of N starting from N = 1. The sign problem comes from the
chemical potential in and can be a severe one, especially at lower values of m. To see this, we define a
phase-quenched partition function

7R = / Addw e~ N (212 ) | 4ot Ns (D (1) + m)

from which we can compute a phase-quenched chiral condensate. We recall the analytical form of the
expectation value of the chiral condensate in the full theory and in the phase-quenched one [89, [92], that is,
being © = —Nm?,

L(I)V (x)L?V—l (z) — L?\H—l (x)L?\/'—Q(x)

Y =2m L% (@) LK (@) — L%, (0) LL_, (@)

N =2k 1o 1
3 (cosh(210)* LR ()L} ()
YP9 = 4m ==

> (cosh(2p)) 7" (LY (2))”
k=0

95



where L{ () are generalized Laguerre polynomials The chiral condensate is real: in all subsequent
plots, we will show only the real part of the condensate, having verified the imaginary part to be zero within
errors. By comparing phase-quenched results with exact ones (Figure , we can see in which region of
parameter space the phase of the determinant of the Dirac operator plays a crucial role: at low (rescaled)
masses, the sign problem is expected to be harder. This is indeed the case and complex Langevin happened
to converge to incorrect results in this region [90].

2.5

2.0

10

T T T T T T T T T T T T T T T T

0.5

Figure 7.1: The chiral condensate for the full theory is depicted in solid lines for different values of N as a
function of m. The chiral condensate for the phase-quenched theory is depicted in dashed lines. We can see
that, at low masses, the two become more and more apart, which comes with a stronger sign problem.

We now complexify the entries of the 4 matrix fields a,b,a, S and put the determinant of the Dirac
operator in the effective actiorEl (using logdet A = Tr log A)

N N
S(a,b,0,8) = N> > (af; + b3 + af; + B5) — NyTr log (m® 1ywn — XY) (7.2)

i=1 j=1

with the (complex) N x N matrices X and Y defined by

X;j =icoshp(a;j + ib;;) + sinh p (a5 + i3;5)

Y;; = icoshp(a;; —ibj;) + sinh p (ovj; — i555)

After defining the inverse of the Dirac operator

421t is understood that Lg (z) =0 when ¢ < 0.

43In [90] it was argued that the origin of problems with complex Langevin simulations of the model could lie in
det (m2 Inxn — X Y), whose logarithm appears in the effective action rossing the negative real axis (for further discus-
sions about complex Langevin with logarithms in the action, refer to [93,[94]). In the thimble approach, this cannot happen
for the following reason: integration of SA equation gives a smooth flow along which S; = (.S) is conserved. If the argument
of the logarithm crossed the negative real axis, then there would be a discontinuous jump of magnitude 2w Ny in S7. In order
for the flow to keep Sy constant, this jump would have to be compensated for by an opposite jump in the Gaussian (quadratic)
part of the action; but the Gaussian part of the action is a smooth polynomial in the fields, which are continuous functions of
the flow time and thus cannot have jumps. As expected, none of this jumps were found in our thimble simulations of the CRM
model.
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G=(m*lyxy — XY) '

we see that the chiral condensate can be computed by

11
0 119 dadbdadf e S(@bap)

Z:—il =
Nom 87~ NZom

Nf]. o 2 —S(a,b,a
- WE/dadbdadﬁ {%Tr log (m 1N><NXY)} e S(@bes)
N1 ) 1 —S(a,b,a 2mNy
— WZ/dadbdadﬁ"_[‘r [(m 1N><N_XY) 2m} e Slaba) = N (&)

Keeping in mind the complexification of a,b, a, 8, we compute the drifts, whose conjugates we need in
order to integrate SA equations

oS
Amn
8275 = 2Nbyn — Ny cosh o (Rimn — Tinn)
mn (7.3)
oS .
5a =2Namn +Nf smh,u(Rmn +Tmn)
oS
33 = 2N B + iNgsinh g (Rpn — Tonn)

where

N
k=1

N
k=1

From these equations, we immediately see that the classical vacuum a = b =« = f = 0 is a critical point,
being all the derivatives zero. Thus we shall consider the thimble associated to it, which we label (70@ and
perform integration over it. One question now arises: is there any other (non-trivial) critical point which
is relevant for the thimble decomposition? In particular, we are interested in the “thermodynamic” limit
N — oo: does Jy become the only relevant thimble in this limit? These issues will be discussed later on.
The formulas for the Hessian are quite lengthy: they can be found in Appendix [C] Here we just recall one
remarkable result of the computation of the Hessian at the classical vacuum. The Hessian features only two
different Takagi values (A and A_), so that TpJy consists of two 2/N2-dimensional subspaces with complete
Takagi value degeneracy. Moreover, at large (rescaled) quark masses m, the two Takagi values become less
and less apart, so that in the large-mass limit, not only the theory becomes Gaussian (which can be seen
from by direct inspection), but it also becomes completely isotropic (see Figure . This is expected
to make simulations at high m quite easy. This, as we shall see, is indeed recovered in the simulations.

44 70, as expected, is a manifold of real dimension 4N? which can be thought as embedded in R8N,

o7



Ay — A

0 4

m

Figure 7.2: The picture shows how A, — A_ changes as a function of m for various values of N. We see that
the two Takagi values become closer at large masses. Thus we expect numerical simulations to be quite easy
in this region.

7.2 Numerical results

In Figure we show the results of our numerical simulations of the CRM model (we computed the expec-
tation value of the chiral condensate - see formula ) We have integrated only on Jy and employed the
static, crude Monte Carlo method described in Section Actually, the static, crude Monte Carlo proved
to be pretty inefficient for this model, especially in the low mass region at high N. As mentioned before, in
this region, the Takagi values of the Hessian at the critical point get more and more apart from each other,
so that tiny differences in the choice of n may lead to Z; varying by orders of magnitude. For this reason,
the error bars are bigger in the low mass region, especially at high N, where the algorithm has to sample
a larger space. Furthermore, in the low mass region, we have that the action departs more and more from
its Gaussian counterparf™} so that the curvature of the thimble becomes more relevant. In Figure we
plot the residual-phase-quenched results from the same simulations, that is we have neglected e?“ in (/5.5)).
It is clear that in those regions in which the curvature of the thimble is greater, the residual phase must be
taken into account to recover correct results; this is more evident at lower values of N. The residual phase,
though not negligible, could well be taken into account by reweighting and posed no residual sign problem
at all. We also applied to the CRM model the HBB Metropolis algorithm discussed in Section [5.3} This
was successful and correct results could be achieved with far less statistics (and smaller error bars) than
using the static, crude Monte Carlo. It also made it possible to compute ¥ at some masses which had been
unfeasible with the static, crude Monte Carlo [78]. See Figure and Table for a comparison of results
between the two algorithmic solutions. Remarkably, we were able to get correct results by integrating only
on Jo, even at low values of N. As we shall see in Section [7.3] this could have been predicted thanks to the
structure of critical points for this model.

7.3 Other critical points

As already stated, correct results have been obtained (in the region of parameter space that was examined)
by integrating only over [Jp, even at small V. This result is somehow surprising, therefore we return to the
issue of the existence of other critical points. We initially searched for other critical points numerically [73]:
the critical point condition VS = 0 was solved via the Newton-Raphson method, checking the results against

45This can be readily seen in 1) by noting that, at high m? = (ﬁ"L/N)Q, the logarithm approaches a constant.
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Figure 7.3: We show the results of our numerical simulations of the CRM model on Jy with the static, crude
Monte Carlo. Solid lines depict exact results, while dashed lines depict phase-quenched results. The black
points represent numerical results. Larger error bars are encountered in the low mass region, especially at
larger N.

a minimization of |[VS||> with the Nelder-Mead symplex method. A few classes of critical points p, were
found (all outside the original domain of integration, which is a, b, o, 8 € RY*N) but all of them had Sg(ps)
less than its absolute minimum on the original domain of integration; so, by the argument in Section
they are irrelevant in the thimble decomposition. Actually, much insight can be gained analytically about
other critical points, and this is precisely the aim of this section. Recall that critical points are configurations
on which every component of the drift is zero, that is all the derivatives appearing in are 0. In matrix
form, this reads

—2Na =+iNycoshu(R+T)

—2Nb= —Nycoshu(R—1T)

(7.4)
—2Na = Nysinhp(R+T)
—2Nf = iNgsinhu(R—T)
By combining the first equation with the third and the second with the fourth, we get
a=—t tanhpua
(7.5)
B = —i tanh ub

These are relations that have to be satisfied by any critical point. By employing (7.5]), we can reduce the
action to an expression which is dependent only on a and b. To do this, we compute
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Figure 7.4: We show the residual-phase-quenched results of our numerical simulations of the CRM model
on Jy with the static, crude Monte Carlo. Solid lines depict exact results, while dashed lines depict phase-
quenched results. The black points represent numerical results obtained by completely neglecting the residual
phase. The results which are more departing from the exact ones are those at low masses and low values of
N.

X = icoshp(a+ ib) + sinh p(a + i8) = i(cosh p — sinh p tanh p)(a + ib) =

10
cos M(a—}-z )

Y = icosh pu(a — ib)" 4 sinh pu(a — i8)" = i(cosh u — sinh p tanh p)(a — ib)T = coslh (a —ib)”
o

so that

1

Gl=m’1-XY=m’14+——
cosh” p

M

having defined M = (a+ib)(a— ib)TF_El Consider now the Gaussian part of the action: for the trace part,
we have

afj + b?j + a?j + ﬁfj = a?j + b?j — tanh? I a?j — tanh? 1 b?j = (1 — tanh? ,u) (a?j + b?j)

from which it follows

N N 1
DD (af +b ol +57) = — 5Tt M

2
P cosh” u

Thus the action (7.2]) at a critical point becomes

461t is important to realize that M # MT for complex a and b.
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N m Eexact <E>static MC <E>HBB Metropolis # of (Static) # of (Mctropolis)

4 7 1.7794 - 1.7918(97) - 216720

4 8 1.6340 1.6480(310) 1.6266(72) 122567 99969
1.3870(82) 336726

2 | 5 | 1.3817 | 1.3580(440) T 1090(130) 792360 oG

1 4 0.9379 0.9359(220) 0.9360(280) 285930 67787

Table 7.1: Comparison of simulation results for the chiral condensate: data from the static, crude Monte
Carlo and from the HBB Metropolis algorithm. The number of 7 in the Markov chain (that is the number
of SA curves that have been integrated) is also displayed. Static, crude Monte Carlo data for N =4, m =7
was not stable enough to provide a definite result. The second line at N = 2, m = 5 refers to the Metropolis
algorithm discussed at the end of Section

N 1
So(a,b) = ——5—Tr M — Ny log det (m2 1+ — M) =NTr(G™') — Nylogdet (G™') — N*m* (7.6)
cosh” cosh”

We immediately notice that the value of the action at any critical point is determined only by the
spectrum of G (or, equivalently, the spectrum of M). Thus a classification of critical points boils down to
the classification of the eigenvalues of M (or of G). We use the first two equations in (7.4)) to get

N

a+ib= —iFf coshuT
N

a—1ib= —iﬁfcosh,uR

and we also have

1
G cosh,uG(a +1ib)

R=(YG)" = — ((a—ib)'G)" =

T —ib
cosh G a—ib)

cosh p

which leads to

a+ib= %G(a + ib)
a—1ib= %GT(G —ib)

By multiplying the first with the transpose of the second, we get
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Figure 7.5: We compare results for the CRM model using the static, crude Monte Carlo and the HBB
Metropolis algorithm of Section [5.3] Black dots represent analytical results for the chiral condensate. Red
bars depict estimates obtained with the static, crude Monte Carlo (same data of Figure . Green bars
represent results of the HBB Metropolis algorithm. The blue bar at N = 2, m» = 5 depicts an estimate

obtained using the Metropolis algorithm discussed at the very end of Section (with e = 0.15).

2
M = <Nf> GMG

N

N2
-1 -1 _ f
= G MG <N M

1

= <m21+ 5 M>M<m21+ 5
cosh” cosh” p

2m? 1 N
= miM 4 M2 —— M3<f
cosh” u cosh™ i N

= M

o

>2M

N\ 2
M? + 2m? cosh? uwM + cosh? U <m4 _ <f) )

It is known from linear algebra [95] that any polynomial P(M) such that P(M) = 0 must be a (polyno-
mial) multiple of pps, the minimal polynomial of M, whose zeros are the eigenvalues of M. As a consequence,
the eigenvalues of M we seek are solutions to

which gives either A\ = 0 or A\ = cosh® s1 (W

A

N\ 2
A2 + 2m?2 cosh? A+ cosh* U <m4 — (]\f) )

Ny
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A= % We can consider two possible scenarios, depending on the determinant of M: if det M # 0, then
det(a + tb) # 0 and det(a — ib) # 0 as well, so that we can multiply each equation in ([7.7) by the inverse of
the first member, which gives

N N
G:Ffl & MZCOShQM(]\}f—m2>1

So that this critical point is actually a manifold defined by
N
(a+ib)(a —ib)T = cosh? (f - m2> 1

with action (using ((7.6]))

N
SO = NNf |:1 —IOg <f>:| —N2m2
N
However, this does not cover the whole set of possible critical points. If det M = 0, we can label the
critical points by the degeneracy r of the zero eigenvalue of M. Let us set + = N — rank(M), then the
characteristic polynomial yg-1 of G™1 is

Xa-1(A) = (A =m?)" ()\_ ]X]f>Nr

so that Tr(G~1!) = rm? + (N — T)% and logdet(G~1) = rlogm? + (N —r)log (%) By plugging this

into ([7.6)), we get an expression for the action computed at any critical point labelled by r

N N
S(gr) =N [rm2—|—(N—7’)Nf} — Ny {rlong—F(N—T)lOg <]\/f>} - N*m?

= (N —r)Ny; {1 — log @g)] + 7 (Nm? — Nylogm?) — N*m? (7.8)

in which we immediately notice that putting r = 0 recovers the case det M # 0. The action S(()T)
is manifestly real. There are N different classes of critical points, as r = 0--- N — 1 (the case r = N
corresponds to the classical vacuum, having action SSN) = —NNyslogm?). It is worth noting that all these
critical points lie outside of the original domain of integration, consisting of real a,b, a,3; this is due to
7 which forces e.g. o and 3 to be imaginary if a and b are real. It is easy to check from that Sér)
is lower than any value Si can assume on the original domain of integration in all the region of parameter
space we have explored. Therefore, as already stated, by the argument of Section all these critical points
are expected not to contribute to the thimble decomposition; so, it does not come as a surprise that correct
results could be achieved by integrating only on Jp.

4TWe ignore — L, being its logarithm ill-defined.
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8 SU(N) one-link models

In Section [d] we have discussed thimble decomposition for gauge theories from a general point of view. Now
we consider the simplest examples of “gauge” theories: SU(N) one-link models. These models, although
somehow “artificial” and lacking a real (local) gauge symmetry, provide an excellent environment to test
thimble integration in the formalism which is suitable for gauge theories. Moreover, as we shall see, these
models involve multiple thimbles, all necessary to reconstruct the expected results.

An SU(N) one-link model consists of a single matrix U € SU(N) in the fundamental representation. The
sign problem is introduced by hand by means of a complex coupling 5 € C. Thus complexification means
taking U € SL(N, C). The action is

and the partition function iﬁ

220 (N = 1) (5)“
N

Z(B) = / dUe%Tw:an...(njLN_n!

SU(N) n=0

As an observable, we take Tr U, that is

_l %TrU_ ﬁ
(Th0) = / dUTUe = Nz Z(9)

SU(N)

In order to write SA equations, we need the gradient, that is

Ves(U) = —%Tr (T°U)

while, for PT equations, we need the Hessian

byya _ﬁ ba
VIVIS(U) = T (1°7°0)

In general, for SU(N), there are N critical points {Up Yr—o...n—1, given by Uy = €*™*/N1, that is all the
elements of Z(N), the center of SU(N). As all these critical points belong to SU(N) (the original domain
of integration), we expect that ny # 0 for all k. For the hessian at the critical points, after expressing
B =8| €'?, we have

ay7b _ |ﬁ‘ i(p+27k/N) sab

which follows from the choice of normalization Tr(T*T?) = 1§ for the generators of su(N) in the
fundamental representation. We immediately see that the N2 — 1 Takagi values are all equal and \ = %

for each critical point. The corresponding Takagi vectors at Uy are vﬁi) = e~ Het2mk/N)/ 25ij. It is immediate
to check that such vectors satisfy Takagi’s factorization theorem

vIVVES(U)|, vy = A6

and are orthonormal.

48For a thorough analytical computation of Z(8) at generic N, see [96] and references therein.

64



8.1 SU(2)

As a first example of one-link mode]@ we will consider the case N = 2. Analytical computation of the
partition function yields

_ 21,(B)
B

where I; is the modified Bessel function of the first kind and the observable

Z(B)

o) =2(35)

The are two critical points: U = 1 and U = —1. This model can be reformulated in terms of the
only eigenvalue of U, that is e!® (with ¢ that gets complexified in taking su(2) — s[(2,C)); then the action
becomes S(¢) = —f cos ¢ and the model effectively becomes one-dimensional

—+
1
Z(8) = / AU ™Y = —/d¢ sin? ¢ ¢ 03¢
m

SU(2)

where 1 sin® ¢ is the (normalized) reduced Haar measure of SU(2). This formulation has been employed
in [97]. Because of the effectively one-dimensional nature of the model, it is to be expected that any choice
of f within the framework of Section is irrelevant for the measure of (TrU) = 2(cos¢) and there is
effectively only one steepest ascent curve for each critical point. We can see this explicitly in the following
way: first note that TrU = Tr(GUG™!) for any matrix G{ﬂ (in particular, for G € SU(2)). Then all we
have to show is that a different choice n/ with respect to a reference 7 can be traded for an appropriate
gauge transformation G on the initial condition for SA equation integrationﬂ Consider an initial condition
U(#,to) at a reference time ¢y — —oo in a neighbourhood of Uy, and U(#/,ty) with |n| = |#/| = VR. We
seek G = 927" € SU(2) such that

GU(n,tg) G~ = U/, to)

Using the lemma in Appendix [B| and the fact that, being Uy € Z(2), Uy commutes with every element
of SU(2), we have

3 . 3 .
. 7 n, e oyl e . D) n’ertoy) e
igaT® =1 7 @ —igoT® =17 @
e'dat e =1 Upe ot =g =t Uy,
3 . 3 .
igu T i Zl njeMOvéJ)T“ CiguTe U i Zl n;eﬂovfj)T“U
= 'Yt g i= e e L=e = &
< A () 2 A j
N z‘j; nje o Mapv, ' T z’j; nlertoy@re
e = =e =
3 3
E 1) — E , (7)
= n;vg’ = n; (Mabvb
j=1 j=1

49 Actually, the simplest one-link model one can study is the (abelian) U(1) model. We shall not consider this, as its solution
by means of thimble integration has already been discussed in [67].

50This is the “global gauge symmetry” exhibited by one-link models.

51What one should actually show is that all the t-integrals one computes when starting at U(#,to) are the same as those
computed starting from GU (#,t9)G~'. While this is manifest for the action, there is also the basis determinant det V. Invariance
of this determinant can be easily shown by an argument which is given in Section[I0.2]in the more general context of Yang-Mills
theory.

65



which, using o) = e*i(“””k)/z(;ja, becomes
: c
nl, = Mypny = (e’gct ) ,
a

where {t,} are the generators of su(2) in the adjoint representation, which are also generators of s0(3) in
the fundamental representation. The consequence is that M, is just a rotation in the 3-dimensional n-space,
which is norm-preserving. Another way of viewing this is that different choices of 7 € S% are equivalent to
gauge transformations on the field U(tg). The conclusion is that one single SA curve is enough to reconstruct
the expectation value (Tr U). This is indeed recovered numerically.

8.2 SU(3)

The case of SU(3) is more involved, being effectively multi-dimensional. The partition function is

oo

1 5 3n
ZB)=2) n!(n +1)!(n+2)! (3>

n=0

and the observable

6 - 1 ﬁ 3n—1
() = 57; (n =1 (n+1)!(n +2)! (3)

The action takes on different values at the critical points (labelled by k = 0, 1, 2):

S(Uy) = —ng" Uy = —Be*™+/3

and therefore it is to be expected that the relevance of the three thimbles {J} is affected by the value
of B = |Ble’?. By considering the semiclassical decomposition (see formula (5.18))

Z%ZO+Z1+ZQ

We can give a (semiclassical) estimate for the relative weight of J; and J> with respect to Jy in the
thimble decomposition. We introduce the quantity r’g with £ either 1 or 2

7"]5 = |Zk| _ e—(SR(UIc)—SR(UO)) — e\ﬁ\(cos(tp-&—Q‘n‘k/S)—cosgp) — e—2|ﬁ\sin(‘n'k/?))sin(ap-l—ﬂ'k/l})
| Zo

where the factors v/det Ay disappear due to A being the same for all critical points. In Figure rk is
depicted as a function of ¢. We see that, at the semiclassical level, [J; is almost irrelevant in the range of
¢ we have studied. This estimate is actually true for the exact theory as well: irrelevance of J; is indeed
recovered in numerical simulations of the model. Figure @ also predicts J> to become more and more
important at higher values of ¢ (eventually, at purely imaginary 3, it becomes the dominant thimble). In
Figure [8.2] we show numerical results which take into account only [Jj in the decomposition: discrepancies
arise at higher values of . By taking into account J5 as well, we recover correct results for any value of
pE [O, g] (at fixed |8] = 5), as showed in Figure All the simulations were performed using the static,
crude Monte Carlo described in Section
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Figure 8.1: Semiclassical estimate for the relative weight of [J; and J5 with respect to Jy as a function of ¢
at |B| = 5.
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(a) Expectation value of TrU: real part. (b) Expectation value of Tr U: imaginary part.

Figure 8.2: Thimble simulations of the one-link SU(3) model at 8 = 5 ¢’ integrating only on Jy. Numerical
results for Tr U as a function of ¢ are displayed.
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Figure 8.3: Thimble simulations of the one-link SU(3) model at 8 = 5¢%. Numerical results for TrU as a
function of ¢ are displayed.
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9 QCD in 0+1 dimensions

In this section we shall study Quantum Chromodynamics on the lattice in 0 + 1 dimensions. Despite being
much simpler than its 4-dimensional counterpart, this model provides an excellent setting to test the thimble
formalism in the case of gauge theories. Moreover, the sign problem in QCD is due to the presence of a
(quark) chemical potential, which is far more interesting to study than one-link models, in which the sign
problem is introduced by hand with a complex coupling. For 0 + 1 QCD, analytical results are readily
available [98] [99] 100} [101]; the sign problem has also been solved by means of the so called subset method
[10I]. We shall now focus on N, = 3 lattice QCD with staggered fermions on a one-dimensional lattice with
(even) Ny sites in the temporal direction. The lattice extent is related to the temperature by aN; = 1/T,
where a is the lattice spacing. The partition function of the theory for Ny degenerate quark flavours of mass
m is

N
ZNf = /HdUz deth(aD)
i=1

where no Yang-Mills action is present due to the absence of a “plaquette” in one dimension onl and
D is the lattice staggered Dirac operator

1 ~ -
(aD)ir = amdiir + 3 (ea#Ui(Si’,Hl - €7G”Uit15i',i—1>

where SW is the anti-periodic Kronecker delta, i.e.

am e U, /2 0 0 e’“”U;(,t/Z
—e U2 am e™Uy/2 - 0 0
aD = - :
0 0 0 am e Un,—1/2
—e Uy, /2 0 0 —e‘““U}:,Fl/2 am

All the links {U;} except one can be set to 1 by an appropriate gauge transformation: the only remaining
link is simply the Polyakov loop U = Ul,, making the model effectively similar to one-link SU(3). Now we
have

am e /2 0 e 0 e~ myt/2
—e /2 am  e™/2 ... 0 0
det(aD) = det : : : . : :
0 0 0 e am e /2
—emy/2 0 0 - —e /2 am

We make use of the following formula [37] 102]

52Even in the continuum, F}}, is antisymmetric, so that, if there is only a temporal direction, F§y = 0 is the only term.
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aiq bl 0 s 0 Co

C1 as b2 0 0

0 ¢ az -+ 0 0
det .

0 0 0 ar,—1 bL—l

bp 0 0 -+ cp_1 ar

= — (bL .. 'bl +cr_1- ..CO) +Tr |:<G1L _bL(}CL1> e ((]iQ

In our case L = N; and the entries are 3 x 3 matrices, in particular

a; =aml j=1---N,
b e*/21 j=1---N;—1
T e U2 j=N

eM/21 j=1---N,—1

so that

(5) ()

det(aD) = detsxs {—

1
= detsy3 {gm (e®NerU + e oNerUT) + Ty )

)
()

j=0

e—am UT)

—b101
0

) <a1

1

+ Tr

)]

am 1/4
1 0

1
= detgx3 W

N, Ny
(eM/TU+e—u/TUT) n (am+ (am)? + 1) n (am— (am)® + 1)
2 2

N; Ny
53, detaxs MU 4 eIyt 4 (am + v/ (am)? + 1) + (am —+/(am)? + 1) }

53w, detaxs {GH/TU + e Tyt 4 eNesinh™ (am) | (_1)Ne Ny sinh’l(—am)}

det3><3 eu/TU+e—u/TUT+ sinh ™ (am)/(aT)+ —sinh™ (am)/(aT)}

1
= Wdetgxg (A 1343+ e“/TU + G_H/TUT)

with A = 2cosh(u./T) and ap, = sinh™*(a

)

partition function we have to compute is (the coefficient in front of the integral can be neglected)

Zn, = / dU det™s (A Laxz +eTU + e—“/TUT)

SU(3)
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am 1/4
1 0

m). We will set a = 1 in all the following calculations. The

(9.1)
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9.1 Analytical computation of the partition function

Now we make use of the relation 6 det M = (Tr M)3 — 3 Tr M Tr M? + 2 Tr M3, which holds for a generic
3 x 3 matrix and we also apply it to the matrix U € SU(3), which gives (TrU)? —3Tr U Tr U2 +2Tr U? = 6;
by making use of TrU? = (TrU)? — 2Tr Ut for U € SU(3) as well, the integrand in (9.1)) becomes

(A2 =2)Te U + (Tr UT)?) e"/T + (A2 = 2)Te UT + (Tr U)?) e /7

Ny
ATrU 2T 4+ ATrUe 24/ 7T 4 3/ T 4 e730/T 1 A3 _3A 4+ ATrU T UT

When this expression is expanded for a given value of N, the generic term of the resulting sum is
proportional to (TrU)*(TrUT)” and

/dU (TrU)*(Tr UT)® /dUXR

with x%(U) the character of U in the representation R defined by the group direct product of the
fundamental and anti-fundamental representations of SU(3)

a b
R=Q)32Q)3=PnR:

The second equality states the decomposition of R into a direct sum of irreducible representations {R;},
whose multiplicities are {n;}. The group integral now selects only the trivial representation 1, being

/ AU xr(U) = br1

and therefore

/dU (Tr U)*(Tr UT)® an/dUXRl

For example, we have

33=801 = /dUTrUTrUTzl

and it turns out that ny # 0 only if ((a —b) mod 3) = 0. For all the irreducible representation de-
compositions involved, the Mathematica package LieART [103] was usedﬂ The computation of (Tr U) and

53There is another method which can be used to carry out the previous calculations: the eigenvalue representation of
the Polyakov loop. We can diagonalize U with a unitary matrix S with U = SAST and A = diag (e“’l,ewz,e*“m*“”?),
»1, 92 € [0,27]. Using the (normalized) Haar measure of this parametrization, we can write

8 — 2 2
4 = o sin? (w) sin? (W) sin? (%) dprdeps

And the Dirac determinant is

3
det D = H (A lgys + et/ THien 4 ef“/Tﬂ‘Wv‘)
k=1
where it is understood @3 = —p1 — 2. The integrals are now easy to compute for any value of N.
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(Tr U') can be carried out in the very same way. Appendix@ gathers analytical results for the computation
of Z and (TrU) for different values of Ny.

9.2 Simulating the theory

For numerical simulations, we turn the quark determinant into an effective action

ZN; = / dU =5

SU(3)
with
S(U) = —N;Trlog M(U)

and M (U) = Alsyxs + e/ TU + e #/TU—L,

There are three main observables we are interested in. The first is the chiral condensate

0 L OM Az —4 _

while the other two are the Polyakov loop (TrU) and the anti-Polyakov loop (TrUT) = (TrU),——_,.
The latter two can be related to the quark number density n = Té% log Z by a relation which takes quite

different forms for different values of Ny [I01]. The drift of the action is given by
VeS(U) = —i NyTr [M*l(U) (e”/TT“U - e’“/TU’lT“)]
while the Hessian is
VbVeS(U) = NyTr {Ml(U) [(e"TT°T"U + e~/ TU—1TPT?)
— (e"TTU — e M TUITY) MU (e T TOU e“/TUlT“)]}

There are three critical points {Uj, = e2™**/31} with k = 0,1, 2. After defining

¢ 2mik
Bk?{COSh(/;w>+Cosh(;+ 7;1 ﬂ

we have S(Uy) = —3Nylog By, and V'V*S(U) |, = Ape’#+3°, with

on _ wo 2mik 1. o 2mk
Ae' Pt = Ny {Bkl (cosh (T+ 3 )—2Bklsmh (T+ 3

The only Takagi value is thus Az, while the 8 Takagi vectors are given by vj[»k](i) = e ten/25,;.

We will now show that the action of 0+1 QCD fulfills a reflection symmetry described in [42] and discussed
in detail in Appendix S(A) = S(—A) with U = e*A. This ensures the reality of the partition function (and
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of the expectation value of the Polyakov loop as well). This symmetry of the theory is manifestly fulfilled
by the decomposition in thimbles [42] and holds at every order in perturbation theory as well, so we shall
recover it in the semiclassical expansion. Consider the QCD partition function

Zy, (1) = [ DuDEDU e NP C — [ DU det (DU, )

The action (whose only component, in our case, is the Dirac determinant) is invariant under charge
conjugation C defined by [28]

¢ — C YT

¢ — —yTC

Uy (n) — Up(n) (Ap(’ll) — ng(n) = ffl)
p— —p

with the matrix C satisfying Cv,C~! = ffyf Thus, we can employ charge conjugation to substitute
det D(U, ) — det D(U, —u) leaving the action invariant. We also recall the generalization of vs-hermiticity
at finite chemical potential [29] 28]

det D(U, —p) = det D(U, p)

This implies that

-herm.
) s ne

S(A) ~ det D(U, det D(U, —p) "2 det D(U, ) ~ S(—A)

We have shown that the aforementioned reflection symmetry is fulfilled and thus we expect thimbles to
appear in conjugate pairs. This is indeed the case: consider the three critical points {Uy}. Uy = 1 is real and
therefore self-conjugate; the consequence of this is that computations on the associated thimble yield real
results. As for the other two critical points, being €*™/3 = ¢=27/3 we immediately see that U, = U,. This
implies that U; and Us form a conjugate pair of critical points and results of integration on Us should be the
complex conjugate of those on Uy, yielding an overall real contribution to the partition function (and also
to the expectation value of observables). This is recovered in numerical simulations. As a final remark, we

state that these results hold not only for the partition function, but also for the Polyakov loop (it is obvious,
since TrU = TrU) and anti-Polyakov loop

9.3 Semiclassical expansion

In this section we will compute semiclassical expansions around thimbles in 0 + 1 QCD. Consider the semi-
classical expression for the thimble decomposition of the partition function which is given in (5.18)). In our

) ) )
case, we have det Ay, = A} and e'“* = (e7*%*/2)" so that

Z ~ (27T)4 E nk eSNf lOg By, A]:Zl 6—41, Pk
k=0,1,2

The expectation value of the Polyakov loop can be computed in the following way, starting from expression
(15.19)

54 A caveat is in order as for notation U: this is not to be intended as in Section but as the ordinary complex conjugate.
55The chiral condensate and the quark number density automatically respect this symmetry, being derivatives of the partition
function.
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N |

(Tr Uy = — 27r Z ANslog Bi \ -4 o =i o (Tr Ui +
=0,1,2

1 8
Ly e,)
1=1

where

8 8
CTI‘U ZZ HTrU ) () 7lgpk (HTrU) — ef’i(pkviviTrU U
Jj=11=1

— _e—i Ok e?ﬂ‘ik/3Tr (TlTZ l) — _%e—’i ¢k62ﬂik/3

Being Tr Uy, = e2™*/3 Tr 1 = 32™*/3 it follows that

11 2

Tr U, - CTI’ . 27TZk/3 3 - = —i

K+ 5N ; )\ke
and finally
1 4 3Ny log By y—4 —4i pp+2mik/3 2
(TrU) ~ E(Qﬂ) L 3 — e w
k

k=0,1,2

From the previous considerations on the reflection symmetry featured by 0 + 1 QCD, we can see that
reality of Z and (Tr U) is achieved by setting n; = ny. This is so since the contribution of 7> to Z and (Tr U)
is the complex conjugate of the contribution of J;. This is manifest in the semiclassical expansion thanks to
S(Us) = S(Uy), Bo = By, Ay = Ay, €92 = ¢iv1 = ¢1%1 all following from e*™"/3 = ¢=27%/3 = ¢27i/3 Thus
we can rephrase Z as

Z%ZO+Zl+Z2

with Zy € R and Zy = Z; (so that |Z;| = |Z»|). The semiclassical expansion on thimbles also provides
an easy way to compute an estimate for the relevance of J; o with respect to Jp in the computation of e.g.
the partition function. We define the relative weight 7‘(1)’2

3N/ log B 4 —4 3N
B }e 108 1’2})‘1,2 B ()\1,2) By

= = 9.2
0 | Z| |e3Ns log Bo | )‘64 o By (9.2)

and study it at different values of & and m. This, as we shall see, provides a reliable estimate which can
be compared with the results of numerical simulations. We note that, being By = A + 2 cosh(u/T) € R and
By = A — cosh(u/T) +i+/3sinh(u/T)

By 2|* = A? + cosh? (%) — 2Acosh (%) + 3sinh? (%)
= A% 4 4cosh® (%) — 2Acosh (%) 3 < A% 4 4cosh® (T> +4Acosh( ) _ |Bo|2

so that
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for any value of & and m (the ratio A\; 2/ is independent on Ny). As a consequence, we expect that
integrating only over Jp will give more accurate results at high number of quark ﬂavoursm

9.4 Numerical results

Numerical results of thimble simulations for the chiral condensate and the Polyakov loop are displayed in
Figures to As all the three critical points belong to the original domain of integration (SU(3)), we
expect all of them to be relevant in the thimble decomposition. However, a deeper insight with regards to
their actual weight in such decomposition can be gained from the semiclassical arguments of the previous
section. Figures from to depict ré’2 (defined in ) as a function of % and m; by studying this
quantity one can predict for which values of the parameters (4,m) integration only over Jy is expected
to capture substantially correct results. In Figures[9.12] and [9.:13 numerical results obtained by integrating
only on Jy are shown for m = 1, Ny = 2 and m = 0.1, Ny = 6 respectively. In the regions in which
Figures and predict J; and J> to be relevant, results computed by taking only J; into account
are clearly wrong, while taking into account [J; and /> as well provides correct results, as shown in Figures
[9-2d 0.2d] and [0.62] [0.6b] In this model, all Takagi values are equal, so that the HBB Metropolis algorithm
of Section [5.3]is inapplicable. Therefore one could either use the static, crude Monte Carlo or the Metropolis
algorithm at the end of Section [5.3] All the numerical results presented here were obtained with the static,
crude Monte Carlo. As a consequence of the total degeneracy of the Hessian eigenvalues, we expect the
dependence of Z; on 7 be due to purely non-Gaussian effects. The reader will notice that Figures to
do not show simulation results beyond certain values of ;/T" which are dependent on m and Ny. At higher
values of Ny, all u/T were simulated to a success. This is consistent with the observation that semiclassical
estimates (which rely on the isotropy of the Hessian spectrum) become exact in the limit Ny — oo, thus
rendering the model easier to simulate at high N¢. The regions of parameters which are difficult to simulate
(namely, high p/T) are those which make integration of SA and PT equations difﬁcultm This difficulty is
due to the “curvature” of the thimble becoming increasingly higher, which requires more care in carrying
out numerical integrations@ It turns out that these problems are much more severe for J; and J> than
they are for Jy. This is a problem which is specific to this model and a solution to it is currently under
investigation. This technical difficulty in integrating on J; and J> is the reason why for low values of Ny we
could not simulate the model in the high ©/T region, especially at lower masses. This is again in accordance
with semiclassical estimates of Figures to which predicts J; and J5 to be more relevant in those
regions of parameters. Anyway, the aforementioned reflection symmetry helps in knowing what to expect
from simulations on J; and [J5. All in all, despite some serious technical problems still to be solved, a quite
clear scenario for thimble-regularized 0 + 1 QCD at finite density emerges.

56This is of course a semiclassical estimate. The reliability of this prediction will be checked against numerical simulations.

57For example, at high /T, it was difficult to keep the consistency check under control using the Euler integration
scheme.

58This problem is related to the chaoticity of the system. In fact, the factor det V appearing in our integrals is closely related
to the Lyapunov spectrum of the system. This is so, as |det V| measures the stretch of an infinitesimal parallelepiped spanned

by {Véi) (t)} from the critical point to the point U(t) along the steepest ascent curve.
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(a) Chiral condensate at T'= 0.5, Ny =1, m = 0.1.

(b) Polyakov loop at T'= 0.5, Ny = 1, m = 0.1.
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(c) Chiral condensate at T = 0.5, Ny =1, m = 1.

Figure 9.1: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Ny

parameters are T'= 0.5 and m = 0.1, 1.
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(a) Chiral condensate at T'= 0.5, Ny =2, m = 0.1.

ul : : : : : m 09r ‘ -
® Simulation ® Simulation
— Analytical 0.8~ Analytical ]
3l ]
o7l ]
@ ol 12
& £
« o6l ]
r ) 05f 1
o ] 04l ]
00 05 1.0 15 20 25 30 0.0 05 1.0 15 2.0 25 3.0
HIT ulT
(c) Chiral condensate at T'= 0.5, Ny =2, m = 1. (d) Polyakov loop at T'= 0.5, Ny = 2, m = 1.
Figure 9.2: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Ny = 2.

b) Polyakov loop at T'= 0.5, Ny =2, m = 0.1.
y f

parameters are 7' = 0.5 and m = 0.1, 1.
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(a) Chiral condensate at T'= 0.5, Ny =3, m = 0.1. (b) Polyakov loop at T'= 0.5, Ny = 3, m = 0.1.
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Figure 9.3: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Ny = 3. Other
parameters are T'= 0.5 and m = 0.1, 1.
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(a) Chiral condensate at T' = 0.5, Ny =4, m = 0.1. (b) Polyakov loop at T'= 0.5, Ny = 4, m = 0.1.
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(c) Chiral condensate at T = 0.5, Ny =4, m = 1. (d) Polyakov loop at T'= 0.5, Ny =4, m = 1.

Figure 9.4: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Ny = 4. Other
parameters are 7' = 0.5 and m = 0.1, 1.
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(a) Chiral condensate at T'= 0.5, Ny =5, m = 0.1. (b) Polyakov loop at T'= 0.5, Ny = 5, m = 0.1.
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(c) Chiral condensate at T'= 0.5, Ny = 5, m = 0.5. (d) Polyakov loop at T'= 0.5, Ny = 5, m = 0.5.
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Figure 9.5: Chiral condensate and Polyakov loop expectation value for 041 QCD at Ny = 5. Other
parameters are 7' = 0.5 and m = 0.1,0.5, 1.
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Figure 9.6: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Ny = 6. Other
parameters are T'= 0.5 and m = 0.1, 1.
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Figure 9.7: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Ny = 12. Other

parameters are 7' = 0.5 and m = 0.1, 1.
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Figure 9.8: The plots represent ré’Q for 0+1 QCD at T'= 0.5 and Ny = 1,2 as a function of x/T and m.

100 100

1072 1072

107 E 1074

1076 1076

1078 1078
(a) g% at T = 0.5, Ny = 3. (b) ro* at T = 0.5, Ny = 4.

Figure 9.9: The plots represent r(l)’2 for 0+1 QCD at T'= 0.5 and Ny = 3,4 as a function of u/T and m.
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Figure 9.10: The plots represent ré’Q for 041 QCD at T'= 0.5 and Ny = 5,6 as a function of u/T" and m.
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Figure 9.11: The plot represents Té’2 for 0+1 QCD at T'= 0.5 and Ny = 12 as a function of /T and m.
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Figure 9.12: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Ny = 2. Other
parameters are 7' = 0.5 and m = 1. These results are obtained by integrating only over Jy.
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Figure 9.13: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Ny = 6. Other
parameters are 7' = 0.5 and m = 0.1. These results are obtained by integrating only over Jj.
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10 Complex SU(N) Yang-Mills theory in 2 dimensions

After studying the models of the previous sections, the time has come to tackle a real gauge theory with the
thimble approach. In this section we study the (compact) lattice SU(N) Yang-Mills theory in 2 dimensions
with complex coupling as a source of sign problem. Even though we will not perform numerical computations,
many issues concerning this model will be discussed in detail. In particular, we will describe the general
structure of the theory, the problem of constructing a vacuum configuration which is suitable for thimble
regularization in presence of periodic boundary conditions and the issue of performing integration on a gauge-
symmetric thimble. After these discussions, all will be ready to perform actual simulations of the model;
moreover, many of the issues described in this section also apply to more realistic models (such as QCD in 4
dimensions or Yang-Mills in presence of a 6-term). For Yang-Mills theory in 2 dimensions, analytical results
are available: see Appendix [F] for the computation of the partition function.

Consider the SU(N) Wilson action on a lattice A with periodic boundary conditions [29) 28| [104], [105].
Recall the (inverse) coupling 8 € C; in order to complexify the fields (the gauge links for each spacetime
direction at each point of the lattice), we make the substitution UT — U~'. The action is

S[Ul=p Z Z {1 - %Tr (U[;ﬁ(m) + Uﬁ_ﬁl(m)ﬂ (10.1)

meAN p<i

with

Ups(m) = Up(m)Us(m + p)U; " (m + 0)U; " (m)

the elementary plaquette attached to the point m lying in the p-plane. 5 is related to the (bare) coupling
constant gg by

2N

9%

8=

The Wilson action 1] is manifestly holomorphic, as it depends only on U and not on U = (U T)fl.
From the definition of Lie derivative, it follows that

VU =¢TU

ViUt = —iv're

In order to compute V; - S[U], let us consider only those terms in the action involving Uy (n)
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with

The computation of the Hessian is more involved. Making use of

Y= (16,

D o

we have
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V5V, iSIU)

= B (16, )T { T [ TP U () Us (n4 @)U (n2) U, ()80, o+ U (n) (6 TP U (n2)) U (nt2) U ()80 85,

+Ua(n)Us (n+i2) (=i Uy (n+2) TP U, (0)0n g o,m 07,5+ Un (n)Us (n+ @)U, (nd2) (=i Uy H(0)T)50,m 80,5

+E T U (n) U, (nta—2) U (n=)Us (n=0)8,m 0, p+Ua (n) (=i U, (nta—2) T UL (n=2)Us (n—0)8 45— 5,m 05,5
FUa (U, (ntp=0) (=i Uy H (n=0)T*)Up (n=2)8n—5,m8p,p+Us (m)U; H (nt+a=2)U,  (n=0) (i T*Up (n=0))6n—5,m 5.5
=T U (n))Us (n+2) U5 (k@)U (0)8n,m85,5=Us (n) (i T U (n+0) U5 (nt ) U (0)dnto.m 05 o

~Us (MU (n+0) (=i Uy (n+ @) TV, ()64, 65, —Us (n)Up (n+2) U, (nt ) (=i Uy H(n)T)bn,m 8.

—(=iU; (=) T*)Up(n=0)Us (ntia—2) U5 ()6 —5,m 80,5 =U; H (n=0) (i T°Ug (n—))Up (n+ =) U5 (1)0n—5,m 85,5

Uy (YU (n0) (5 T U (e i) U™ ()00 5,80, ~ Uy, (=) Up (m—9)Us (k=) (—i U ()Y, m 5,5 }
= DS b {& ; {5 Te [TT" (U (n) + Uso (m) + TT* (Ut (n) + Uzt (m)) |
IN 2 1} i, | On,m 7 D A A

— S Tr [Ta
~ G T [ T
+ 00 [—5,17,”% [T“TbUﬂ_l,l (n) + T*TUps (n)

+ On T [T (U ()T Us (0 + @)U (0 + 9)U5 (n) + Up()Us(n + )05 (n + ) T*U; ()]
4 6 TE {T@ (Uﬂ(n)Uljl(n + = U (= YO Uy (n — ) + U3 (0 — 0)T U (n — 0)Up(n + fi — ﬁ)Uil(n))}

— ST [Ta (Uﬂ(n)Ufl(n + i — D)TPU (0 — ) Up(n — ) + Uy (0 — 0)Up(n — 0)T*Up(n + i — f/)Uﬂ_l(n))H }

v

This formula is needed in order to solve parallel transport equations for the tangent space basis. Actually,
for computer simulations, it is more convenient to work with a matrix notation: computations for the drift
and the Hessian in matrix form are available in Appendix [G]

10.1 Vacuum structure

The first step in the thimble approach is to choose a critical point of the action. For Yang-Mills theory, the
most natural choice is the classical vacuum Uy = {U;(n) = 1} (that is A;(n) = 0 in the algebra). Let us
compute the Hessian at the critical point U
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Vo ViaSIU ) 5,= e 3 (1= ) i G T [27°T° + 2797

— ST [T (T° + T%)] = S T [T (T° + T°)]] + 65,5 [— O Tx [TT" + T°T°]

+ SnpimTr [T (TP + T + 6ne i Tr [T (T° + T°) | = S Tr [T (T° + T%)]] }
p a
= ﬁ Z (1 - 5[/,/1) {5[1,,[7 [25n,m - 5n+f/,m — (Sn—ﬁ,m] + 5ﬁ,ﬁ [_5n,m + 5n+/l,7n + 6n—13,m — 6n+ﬂ_ﬁ7m]}5 b

B

= ﬁéab{z 5/1,,6 [25n,m - 5n+f/,m - 5n719,m] + Z 517,ﬁ [_5n,m + 5n+ﬂ,m + 5n717,m - §n+ﬂ719,m]

- Z 5&,;}5/1,/3 [25n,m - 5n+ﬂ,m - 5n—f/,m] - Z 59,;16ﬁ,/3 [_én,m + 5n+ﬂ,m + 5n—f/,m - 5n+ﬂ—9,m}}

B

= ﬁéab{Qd 6n,m6ﬂ,ﬁ - 5[1,,[7 Z (5n+f/,m + 5n713,m) - 5n,m + 5n+ﬂ,m + 6nfﬁ,m - 5n+ﬂfﬁ,m

~ 207,60n,m + 0p,50n+p,m + 0p,p0n—pm + 0pp0nm — 04,p0n+a,m — 0p,p0n—p,m + 0p,p0nm }

B

= ﬁ(sab Qd(sn,m(s/),,ﬁ - 5n,m + 5n+'ﬁ,7m + 5n—ﬁ,m - 5n+/l—ﬁ,m - 5;1,ﬁ Z (5n+ﬁ,m + 6n—ﬁ,m)

(10.2)

where we have used Tr (T“Tb) = %(Wb and d is the number of spacetime dimensions. Notice that the
last expression is symmetric under (n, fi,a) +> (m, p,b), as it should be. As we have discussed in Section
gauge degrees of freedom show up as zero-modes of the Hessian at any critical point. Consider the Hessian
at Uy computed above: it easy to check that vectors defined by

Vii(n) = A%(n+ 1) = A%(n)

(where A(n) is a generic function of the lattice point) are eigenvectors of the Hessian with eigenvalue
0. These are precisely the discretized version of infinitesimal gauge transformations 0 Af,(z) = J,A%(x) at
A,(xz) = 0. The number of these zero-modes equals the number of elements in a basis over which to
decompose all possible functions A%(n) one can have on a lattice of volume V respecting periodic boundary
conditions. This can be easily viewed in Fourier space, that is, using plane waves as a function basis: the
number of different plane waves is the number of momenta that are allowed in a periodic lattice, V(N2 —1).
However, the momentum k& = 0 should be discarded, as it corresponds to a constant function A%, which
gives a null eigenvector (constant gauge transformations leave U; unchanged). The conclusion is that the
number of gauge-originated zero-modes of the Hessian is (V —1)(N? —1). Later on we will argue that
gauge-originated zero-modes pose no problems, as far as only computation of gauge-invariant observables
is concerned. However, there is another subtlety with regards to this Hessian. Any vector of the form Vi
(that is, constant in spacetime) is an eigenvector with eigenvalue 0. These d(N? — 1) zero-modes are due
to torons, that is a non-trivial zero-action manifold for the pure gauge actionﬂ [106, 107, 108, 109, 110].
Torons pose a serious problem, as they cannot be simply ignored, due to the action (as well as observables)
not being invariant under changes of such degrees of freedom@ One should note, however, that they are
expected to become less and less relevant when going to larger lattice volumes. One possible way out for
the toron problem at finite V' is to introduce twisted boundary conditions [111], 108, [112], that is every time
a link crosses the lattice boundaries, it transforms with an appropriate set of twist matrices

59Toronic modes disappear when fermions are introduced in the theory.
60For the case of Wilson action around Uy, the d(N? — 1) zero-modes are directions along which the action varies by terms
of order > 2 [109] [110].
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Usp(n + Laft) = QuUs ()2

where L, is the lattice size along the fi-th direction and the (constant) twist matrices Q; € SU(NN) obey
the twist algebra

Qf,Qﬂ = 627‘-“]‘“'/1\[91199

with 7, the (antisymmetric) twist tensor, which has integer components. The gauge group is given by
all fields G(n) € SU(N) satisfying

G(n+ Lyft) = 2:G(n)Q,

It can be shown [ITT] that this formulation is equivalent to keeping the usual periodic boundary conditions,
while substituting the twisted action in place of the Wilson one

SO =" £ Ur)
P
with the action density at each plaquette P [112]

® (Up) = fp(zuUp) P € Ry
r fr(Up) P ¢ Ry

where fp(Up) is the ordinary Wilson action density

FUP) = 5|1~ 3T U+ U5)

. N
and Zao = Zg, = Zpp I8

Zpp = eQm’nﬂ,;/N S Z(N)

in which ng; is the anti symmetric twist tensor given by a collection of d(d — 1)/2 integers and Z(N) is
the center of SU(N). Rj; consists of a particular set of plaquettes (one for each jir-torus). From now on
we will specialize to the case d = 2, in which there is only one such plaquette, which we shall name Fy. In 2
dimensions the twist is determined by a single integer k = 1--- N — 1, that is z = e*™*/N and it is present
only at Py. Now we shall address the problem of torons by explicitly constructing all the configurations which
have S = 0, that is global minima of the (twisted) action. We will follow [I12]. The first step is to build
the so called gauge tree, that is we fix the axial gauge and gauge-transform as many links as possible to 1.
Figure highlights such links. What we have done so far is feasible for any generic lattice configuration.
Now we notice that (for real 8) S > 0 and S = 0 if and only if f ](Dt ) = 0 for every plaquette and thus we
try to look for the most general lattice configuration featuring this: in Figure [I0.15] we highlight in bold the
links that must be set to 1 in order to ensure that the action density reaches its minimum. In general, the
remaining links need not to be set to 1, but any constant value (one for each direction) suffices. This gives
rise to two ladders of constant Uy (n) = G and we call them Lj and Ly (in Figure they are depicted
with dotted lines). Now the only plaquette whose action density is not automatically 0 is Pp. It is immediate

to see that f J(Dt ) (Py) = 0 can be achieved through the twisted commutation relation
Gl)Gﬂ = Zpp GﬂG,}
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It is this relation that compensates the z;; in the twisted action, giving 0. For this reason such configura-
tions are often referred to as twist eaters. It is thus obvious that, apart from the usual (local) gauge freedom,
one has the ability to choose any set of d matrices G;, € SU(NV) respecting the twisted commutation relation
to form a zero-action configuration. In fact, it can be shown that, calling Ny the zero-action configuration
manifold, it is diffeomorphic to @V ~1SU(N) ® M(z5), where Mo(z;5) is the (twist-dependent) manifold
defined by

Mo(Z[“;) = {(Gl, s ,Gd) ’ Gﬂ S SU(N), G,;G,l = Zup GIQLGZQ}

It is obvious that the dimension of the zero-action manifold is

dim Ny = (V — 1)(N? — 1) + dim Mo (240)

It can be shown [I12] that, for the usual (untwisted) Wilson action

dim Mo = (N = 1)(N +d)

The toron manifold in this case is highly non-trivial: for example, we have both regular torons as well
as singular torons [I09 108, TTI0]. The configuration Uy belongs to the second type. For this kind of
configuration, the d(N? — 1) eigenvectors with 0 eigenvalue correspond to directions along which the action
has a quartic growth. Now let us consider the twisted action. In 2 dimensions, the general result concerning
twist eaters is the following [112]: given a (simple) twist z;; = 2z = e?™k/N —£ 1 with k coprime with N, we
have

dimMy=N?—-1

and any configuration in My is equivalent to any other by a global gauge transformation. This is precisely
the sought after result, as we have got rid of toronic degrees of freedom completely. It is thus to be expected
that the Hessian of the twisted action, computed at a twist eater configuration, exhibits only V(N2 —1) null
eigenvalues, all corresponding to (local and globa@ gauge transformations. Now let us construct a twist
eating configuration for SU(N) in 2 dimensions [I12]. First, choose a phase factor ¢ such that

then choose a set of N orthonormal vectors {|v;)};—¢..n—1. G1 and G are defined by

Gilvy) = ez |vy)

Galvj) = clvjia)

for j=0---N —1 and |vy) = |vg). It can be shown that the choice of ¢ is irrelevant. For SU(2) (where
z = —1 is the only possible twist) a possible choice is

. 0 =4
Glzol(i (Z)>

. 0 1
GQZ’LO'2:<_1 0)
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(a) Gauge tree. (b) Zero-action configuration.

Figure 10.1: Gauge tree and zero-action configurations for Yang-Mills theory in 2 dimensions with twisted
action.

where o; is the ¢-th Pauli matrix.

We have already provided an expression for the twisted action, but we still have to compute the twisted
drift as well as the twisted Hessian. Denoting ng the lattice site on which the twisted plaquette Py lies, we
have

V) 3
N L4
Y 1T 1T Y
v SO0 = -2 S mve — + T e —
’I’L,ﬂ — 2N ’I’L,/l Cy 7 Cy 7 Cu A) CU A)
I);ﬁﬂ 1T~ L4 W i~
& AN
< 7

"o 2 e [T ool + uldpo(m) — Ui () = i )

where the ¢ coefficients are defined by (the marked point is ng)

CU: z

cy = z

The twisted Hessian is

61Twist eating configurations are not invariant under global gauge transformations, unlike Ut .
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Vb, Ve SO

is 2(1—%,‘1)%{7“ [cU(iTbUﬂ(n))UD(n+g)U;1(n+a)U;1(n)an,méﬂ,ﬁcUUﬂ(n)(iTbUﬁ(n+ﬂ))U;1(n+ﬂ)U;1(n)anw,maﬁ,ﬁ

+evUpn(n)Us (nt) (=i U, (n+2) T ) Uy (0)8nt0,m8p,pFcv Un (m)Us (n+ @)U, (n40) (=i Uy H ()T )61, 6,

+eu (i T Ua(n) ) U (nt o= ) UL M (n=0)Up (=)0, m g, pF+cuUs (n) (=i U H (ntp—2) TP YU (n=2)Us (n—0)0n 45— 5,m 00,5
+euUn (MU, (n+p—2) (=i U H (n=0)T" ) U (n=2)8n—5,m 05, p+cuUa (MU (ntp—0) UL (n=2) (i TUs (n—5) ) 8n—5,m 65,5
—cg (iTPUs (0) ) Up (n42) Uyt (ki) U 5y H (10)8n,m 85,5 —cpp  Up (n) (i TP Up (n+2) ) U, (n+ @)U ()0 40,m 07,5
—cg Up(m)Up (n42) (=i U (k) T YU (0)dn 1m0, p—c U (MU (nA- ) U (i) (=i Uy (0)T) 0 m 6,5
e (=iUS N (n=0) T ) Up (n=0)Up (n4p=2)U . (0)0n—5,m 85, 5= Uy (n=9) (i T U (n—2) ) Up (n =) U ()6 —0,m s 5
—e Uy (n=2) U (n=0) (i TUp (n+ o= ) YU, ()8t 0, 65, p— 37 Uy (n=0) U (n=0) U (n+o=2) (=1 U5 ()T ), m 5,5 ] }
=35 g(lfép,g){éﬂ,ﬁ (810,00 T[T T (0 U (m)+ctallo (m)+TPT* (g Ut (m) e U 2 ()]

—=Sptom Te[T (cu Un () Us (n+@) U, (n42)TPU S (n)+eg Up ()T Ug (n42) U, () UL (n))]
—5n,ﬁ,mTr[Ta(cuUﬂ(n)Ugl(n+ﬂ—9)U,;1(n—ﬁ)T"Uﬁ(n—f/Hc;lU;l(n—ﬂ)TbU@(n—ﬁ)Up(nJrﬂ—ﬁ)U};l(n))}]

80,5 [0 m Tr [T T e UL ()4 T T et U (n)]

+6n4i,m Te [T (e Un (M) TP Up (n+- @)U, (n42) U, (n) 4 Us (MU (nd ) U (b ) TU () )]

+0n—p,m Tr[T* (cUp (n)U H (ntia—2) U, (n=0)T Uy (n—i)+ey Uy H (n=2) T U (n—)Us (n+—2) U, (n))]

_5n+ﬁ,9,mTr[Ta(cuUﬂ(n)Ugl(nJrﬂ—a)TbUgl(n—;})U,;(n—fz)+oI;1U;l(n—a)Uﬁ(n—ﬁ)TbUﬁ(n+g—z>)U;1(n))}] }

10.2 Integration on a gauge-symmetric thimble

We have set up a zero-action configuration (that is, the twist eater) which is unique up to gauge transforma-
tions. We call this configuration Uy and attach to it the (stable) thimble Jy. Being Uy part of the original
domain of integration ®, ;SU(N), it has ng = 1. In this section we consider the problem of integrating
over Jo. Let us begin discussing the preparation of the initial condition near Uy for the integration of SA
equations. As discussed is Section [£.3] Uy belongs to a critical manifold My of gauge-transformed copies of
Uy, that is

Mo = {{U&(n)} |3 {G(n)} € @SUN) : USy(n) = Gn)Uo ()G (n + i) Vn,,&}

Suppose now that we start in the vicinity of Uy (at tg — —oo) and integrate SA equations until a
time ¢, calling the final configuration U(t). Let us now consider a gauge-transformed starting configuration
U§ € My (so that Ugﬂ(n) = G(n)Uo4(n)GT(n + fa) for some G); we can integrate SA equations starting
near UOG as well, provided that we know the tangent space TU(? Jo to the thimble at UOG . Let us call U%(¢)
the evolved configuration at time t. Being the gauge transformation G rigid, that is time independent, it
“rotates” the whole thimble [26], so that we have Ug(n;t) = G(n)Uu(n;t)GT(n + f1), that is UY(t) is the
same as U(t) after the gauge transformation. This procedure is depicted in Figure

These considerations teach us that, in order to cover the whole thimble, we have to start at every possible
configuration in My and integrate the SA equations. Thus we need to compute the tangent space to the
thimble at the configuration UOG . We know that, at Uy, Ty, Jo = Tv, Mo EBN,jOMO, with Ty, Mo spanned by
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Figure 10.2: Integration of SA curves (in red) starting from Uy as well as from a gauge-transformed config-
uration UOG , both belonging to the critical manifold Mg (in black). The thimble is pictorially represented
with a bowl emanating from My. The gauge transformation G connecting U (t) and U%(t) is shown in green.
The same gauge transformation connects Uy and U§' in the critical manifold M.

the ng Takagi vectors of H(S;Up) with zero Takagi valuﬂ and N{}'OMO spanned by the n Takagi vectors
of H(S;Uy) with positive Takagi value. The number of such vectors is ny = n — ng, with n = Vd(N? — 1)
the total number of degrees of freedom and ng = V/(N? — 1) the number of gauge degrees of freedom, which
means that n, = V(d — 1)(N? —1). We can easily compute the Takagi vectors {v¢(")} spanning TyeJo
given the Takagi vectors {v(Y)} spanning Ty, Jo. Consider a couple of configurations U (ty) and U (tg) with
lei] < 1, so that they are close to My, that iﬂ

iZcivs‘%)aT“

Up(nitg) =€ 7 Up p(n)
iEc,-vSéflT“
Uf(n;to) =e i UOGﬂ(n)

Let us set

G(n) = el 9n.aT”

The previous considerations lead to setting U, f (n;to) = G(n)Uu(n;t0)GT(n + f1), which imply

62Djrections tangent to Mg at Uy represent infinitesimal gauge transformations around Up.

63We generically take |c;| < 1 in order not to leave Ty Jo while leaving the critical point U. This condition is automatically
ensured for directions corresponding to A; > 0: for these directions ¢; = n;e*i?0 with tg — —o0, so that we can safely take
n; = O(1). For directions corresponding to A; = 0, however, the coefficients ¢; have to be taken small explicitly.
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iZcivSSi;T“ IZLL’US) T .
T UG() = Gn)e T Upp(n)GH(n+ )

e 0ft

ichG(i) T iZciv:}haT“
i 7

= e " Qn)Up p(n)GH(n 4 1) = G(n)e

iy civ%‘aT“ i3 Ci”f;i%l,Ta

= G(n)e G l(n)=e

. (4) a .
i civng T i3 civy,
i B

e_i gn,aTa —

) a
= elInaTp e

Now we can make use of the lemma in Appendix setting g, — gn,o and zp — >, civsg ,- The
conclusion is

LG _ ), ()

n,a ab “nfp,b

(10.3)

with

M — (e" gn,ct“)
ab ab

where {t°} are the generators of su(N) in the adjoint representation. Notice that the “rotation” of v(¥)
does not mix different vectors; it also only affects color components. We have now a recipe to compute the
tangent space to Jp at any configuration U € M. It is worth noting that the transformation law
holds for all vectors of TUOG Jo: those spanning NJ(?MO as well as those spanning TUOGMO- It is manifest

that the previous proof extends beyond the vicinity of the critical point Uy: with a reasoning similar to that
in Section we can set

iy oy V) (T

An)=e 7 Ua(n)
iy 6y VED ()T
UCm)=e 7 U (n)

where {V® ()} is a local basis for Ty Jy and U’ belongs to a neighbourhood of U € Jy. As we know
from (5.11)), dy; € R is only dependent on the choice of 7. The very same proof of (10.3) now leads to the
transformation

VG(i) = Mnﬂa,mﬁbv(i)

np,a mv,b

(10.4)

for the local tangent space basis at any point on Jy (we have set Mg mip = (5nﬁm6ﬂ,9Mé?)). Equation
does not come as a surprise, given and the linearity of PT equations. A consideration is now
due: because gauge transformations rigidly rotate the whole thimble as described above, integrations of all
the SA curves starting from every configuration in M is redundant, if we are concerned only with gauge-
invariant observables (for example the action density). We can choose any configuration, say Up, in M and
integrate the SA equations starting only along the n, directions of NJOMO, as the other ng directions of
Ty, Mo correspond to infinitesimal gauge transformations around UOE

64Neglecting all gauge copies of Up in Mg (along with infinitesimal ones corresponding to directions in Ty, Mo) is effectively
a gauge fizing (although an unusual one) and, where the action S(U) as well as any other gauge-invariant observable O(U)
are manifestly unaffected by this, one could be concerned with the effect on det V(¢). It is immediate to show that this is
gauge-invariant as well. Consider and the definition of the matrix V(¢)
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10.3 Tangent space at a twist-eating configuration

We have shown that for the computation of expectation values of gauge-invariant observables it is enough
to fix a single critical point Uy € My (namely, the twist eater) and start integrating SA equation only along
directions of N(}"OMO, neglecting all the directions of Ty, M. Still, we have to parallel transport a whole
n-dimensional basis of Ty Jy along the flow of SA equations. To this purpose, we compute Takagi vectors
of NJOMO by numerically diagonalizing H (Sg;Up) and making use of the relation between eigenvectors of
H(Sg;Uy) and Takagi vectors of H(S;Up), as described in Section and Appendix [A] Vectors of Ty, M,
have zero eigenvalue, so it is not trivial to extract the ng eigenvectors of H(Sg;Up) corresponding to gauge
transformations in SU(N) from the (degenerate) set of 2ng eigenvectors with zero eigenvalueﬂ Fortunately,
we can easily compute such “gauge vectors” analytically. As described in Section[I0.1] a basis of gauge vectors
{v(i)} corresponds to a basis of functions {5g(i)} on the lattice respecting periodic boundary conditions.
Considering local as well as global gauge transformations, we have a basis of V(N? — 1) functions. Let v
be a Takagi vector of H(S;Uy) with zero Takagi value corresponding to the function dg parametrizing an
infinitesimal gauge transformation around Up. An infinitesimal displacement around Uy along the direction
of v realizes such gauge transformation, that is

eisvnﬂ,aT" Uoﬂ(n) — ei&ga(n)T“ Uoﬂ(n)e—iéga(n+ﬂ)T“
with € < 1. This, after setting

U = ei48a(0T" (10.5)

as well as

Mas(n. ) = (40a(00°)

becomes (using again the lemma in Appendix

6i5vﬂ,,q,yaT"’ _ eiéga (n)T® UO i (n)efiéga(n+ﬂ)T“ U()_gl (n) _ e756ga(n)T"’ ei(ﬁg’ﬂ(n)T“ efiéga(n+ﬂ)T“€7i¢g’ﬂ (n)T*
1690 ()T ,—=iMapbgy (n+A)T* _ i[6ga(n)—Map(n,2)8gs (n+)+0(69%)] T

=€

Thus we have an expression for v

€ Vnji,a = 5911(71) _ (eMJSu(n)tc)ab 5gb(n + ﬂ)

Let us now consider a 2-dimensional L x L lattice and a twist-eating configuration Uy (such as that
introduced in Section [10.1). Then ¢§ ,(n) (related to Up,a(n) by (10.5)) is given by

a e if n,l =L a a
RS {0“ otherwise 6(n1 — L)6, ;1Y +0(n2 — L)d, 515

VS = VED = My VD = My Vi = (MV),;

where we have made use of the multi-index i = (n, {1, a) and k = (m, #,b). As a consequence, det VG = det M det V = det V,
because

det M :HHdetM(”) =1
n o Q

where det M (") = 1 thanks to t¢ being traceless.
65The 2ng eigenvectors of H(Sg;Up) correspond to all the possibile gauge transformations in SL(N,C).

92



with n = (n1,n9) and G, = eTiT" the (constant) links on the two ladders. For v it follows

(10.6)

5ga(n> _ (eirﬁtc) 5gb(n + ﬂ) if ny = L
EVnjp,a = ab
0ga(n) — 0ga(n + f1) otherwise
where we immediately recover the usual expression for infinitesimal gauge transformations around 1 for
the links in the bulk. In order to generate a set {v(z)

N ﬂa} of gauge vectors, we simply have to choose a basis

of functions {Jgt(li) (n)}. We can work in Fourier space and choose a basis of plane waves; then there is a
single vector representing constant gauge transformations (corresponding to k = 0). However, it is simpler

to work in configuration space and choose the canonical basis 5ggm’b) (n) ~ Op,mba,p, Where we have split
the index i = 1---ng = V(N? — 1) into a spacetime and a colour component (with respect to this basis,
constant gauge transformations correspond to linear combinations of all basis vectors). So far we have put ¢
in front of v to be consistent with dg being infinitesimal. What one actually does is computing v accordingly

to 1' in the canonical basis {5géi)(n)} in configuration space and then normalizing the vector.

Consider the case of SU(2). For our choice of twist matrices, that is G, = i0; with 4 = 1,2, we have
It = m0p,q- This can be easily checked by writing

Gp = eTiT" = Tho"/2 = (i ()

which holds after setting 26,75 = I'f (72, is a 3-dimensional unit vector and 0 € [0,27]). We now make
use of the well-known relation for Pauli matrices

(i0(2-3)

=cosfloxo +isind (i - )

In our case this leads to

0, (Ry-3) - Ny .
eWn(®) = cos O Lywo +isingy (- 6) = Gu=iop

which implies 0; = 7/2 and ng = 0,a- We now compute eTht" = gimt” using the adjoint representation
of su(2), that is (t¢),, = —i f°®® = —ie“®®. The explicit expression for the generators is
0 0 0 0 0 —1 0 1 0
th=—i|0 0 1 t?=—i|0 0 0 th=—i[-1 0 0
0 -1 0 1 0 O 0 0 0
which leads to
. 1 0 0
el 0 -1 0
0o 0 -1
» -1 0 0
et 0 1 0
0 0 -1

Thus we can set



with

Th = (%,1 - %,@) da1 + (_%,i + %?) daz + (_%vi N %’2) a3

The conclusion is that we can write, for SU(2) on a L x L lattice

co 6ga(n) — 75094 (n+ ) ifny =1L
e 0ga(n) — 0ga(n + i) otherwise

which holds in a neighbourhood of the twist eater. If we choose the aforementioned canonical basis for
d¢g in configuration space, then it is manifest that such vectors are not orthonormal. A set of orthonormal
gauge vectors spanning the same space can be obtained e.g. by means of Gram-Schmidt procedure.
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11 Conclusions and outlook

Thimble regularization is still young enough to make us confront open problems. There are theoretical issues,
among which the enumeration of critical points and the fundamental related question of how many of them
do contribute to the solution. There are computational issues as well: since we lack a local characterization
of these (non-trivial) manifolds, devising algorithms which efficiently sample them is a challenging task (even
not leaving the manifold can be at some point an issue). In view of this, we do need extensive tests in models
which are less and less trivial. In this spirit, we have in this work studied several models. Even the simpler
ones (e.g. the ¢* zero-dimensional model, SU(N) one-link models and 0 + 1 QCD) proved to be a very
interesting setting for the discussion of the above mentioned non-trivial issues. We did encounter examples
of the relevance of more than one critical point. We also had the chance to test new algorithmic solutions
such as those discussed in Section [5.3] The Chiral Random Matrix model provided an example in which
the dimensionality of the problem could be tuned explicitly. In this case, in the range of parameters we
explored we found just one critical point to be relevant. While numerical simulations are not yet available,
we also addressed thimble regularization of Yang-Mills theories, where a general framework for handling
gauge symmetry has been pinned down.

The possible relevance of different critical points was discussed in Section [3:4] where universality as
well as thermodynamic arguments were given in support of a scenario in which a single thimble could be
dominant. This issue is of utmost importance when one faces realistic theories such as QCD, where an
explicit enumeration of all critical points (in complexified space) is a very hard task [II3]. On one hand,
more and more results are becoming available from which it is clear that in many cases more than one
thimble do contribute to the solution of the problem. On the other hand, we still lack a realistic model
in which a real thermodynamic limit is in place; it is in this limit that one can expect the single thimble
dominance scenario to hold.

As for algorithmic issues, in any case the most demanding task is solving parallel transport equations for
the tangent space basis. Since the total number of basis vector components grows quadratically with the
number of degrees of freedom of the system, it will be eventually mandatory to rely on heavy parallelization.
More efficient ways to compute det V' appearing in @ that do not require parallel transport of the whole
tangent space basis are under investigation [59] [1T4].

All in all, thimble regularization is a very powerful and general framework for the study of quantum field
theories. Being based on first principles, its applications could in principle go far beyond a treating of the sign
problem (any theory in any region of its parameter space can be regularized on thimbles). A great advantage
of this method is its close connection to classical physics: it retains an immediate link with semiclassical
expansion and perturbation theory around vacua which may well be non-trivial. Numerical computations on
thimbles may also provide a valuable tool to relate perturbative and non-perturbative physics in the context
of resurgence [53|. Besides being itself a very powerful tool to tackle the sign problem, the thimble approach
may also shed some light on other approaches to the latter (e.g. an insight on the reasons behind occasional
bad convergence of complex Langevin may come from an analysis in terms of thimbles [1T5], [TT6] 117, 86]).
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A Relation between eigenvectors and Takagi vectors

Let us introduce the vector notation

v = (UR) c R2'n><1
vr

from which it follows that Pv = (1,xn @ lnxn)v = vg +ivy € C"*1. Suppose that v is an eigenvector of
H(Sg;pos) with eigenvalue +A. In vector notation this reads (we set H = H(S;p,) = R(H)+iS(H) € C"*™)

(56 —aim) (o)== ()
which implies

%(H)UR - %(H)U[ = :|:/\UR
7%(H)1}R - §R(H)’U] = :|:>\’U]

Suppose that v is normalized so that Y, v? = vhvg +v] vy = 1. Now we show that Pv is a Takagi vector
of H with Takagi value ), that is (Pv)T H(Pv) = £

(Po)TH(Pv) = (vg +ivr)" (R(H) +iS(H)) (v +ivr)
= (W + i) [(R(H)vg — S(H)vr) — i (~S(H)vg — R(H)v)]

= (vk +iv]) [(EN)vr — i(EX)v;] = £A (vEvR +v] vr +iv] vg —ivgvr) = £A

It is now immediate to see that, if (Pv)T H(Pv) = A > 0, then (i Pv)T H(i Pv) = —\.
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B An useful lemma for gauge theories

We want to prove the relation

i9aT" eibebefigaT“ — iMapz, T

where T are the generators of a Lie algebra g in the fundamental representation. The matrix M is given
by

My, = (eigctc)
ab

and (t°),, = —if°® are the generators of g in the adjoint representation. In general g,,z, € C. Making

use of the Baker-Campbell-Hausdorff formula in the form

XY — oY YT gp (XX YN+ 3 (XXX Y ] o X

and the relations

[Tal ; Tb] _ ifalbaTa
[Tag7 [Tal,TbH — i2falbcl f(lgclaTa
[T¢l37 [Ttlz7 [Tal , Tb]” — Z-Bfalbq fa2C1C2 fa3c2aTa

I:Taj, [Taj717 e [TG,l?Tb}]:I — Z'jfalbclfG,zCng fa30203 . fajc]',laTa

we have

ig9aT? pizyT" ,~igaT* _ jizaT+ligay TV iwy T+ gy [igay T2 [igay TV yiay T*)) 4

e e

— oima T+ (i) (igay ) [T TP+ gy (i) (igay ) (igay ) (T2, [T T )|+

oo
,L-zaTaJr(m/,b) Z %(igal)“'(igaj)ifalbclif“261°2"~7ifajcj*1aT“
j=1

iy

. ab o0 . c . a . . c j a
e plcnan, for {8 dlonaon], for
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C Hessian of the CRM model

Recall the notation introduced in Section lﬂ By deriving the drift ([7.3]), we obtain the entries of the Hessian
at a generic configuration

&Izj‘g% = 2NG,i0,j + iNj cosh (aa}Z;” + 867;:;)
%Ti’igbw = 2N 305 — Ny cosh py (a;;’zj." B aéa?)
aaiig% = 2N3ynibn; + Ny sinh g (857;” * %ﬁ::)
Miigﬁij = 2N0yidnj +iNy sinhp (83}%5? - 88T57;-n>

825 aRmn aTmfn
—F— =iN h -
(“)amn@bij W eosip < 8[)2] 8[)2] )

7825 = Nt cosh OB + OTomn
(’)amnaaij o f H 8aij 8aij
9?8 (aRmn 8Tmn)
———— — N cosh +
damndBy T opy T oy
9%S ORpmpn 0T
2 __N h _
8bmn8aij 1eos M( 6()(ij 60(1']‘ )
028 (8Rmn BTmn)
————— = —N¢cosh —
0bp,n 005 ! a 0pi; 0Bi;
928 (8Rmn 6Tmn>
————— = N¢sinh +
00n00i; ! H 0Bij 0Bij
with
OR al
aamn — iCOSh,LL Z (Gkiij + Tijim) Yor + Giménj]
i k=1
N
6;2mn = —cosh Z (GriRmj — TrjGim) Yok — Giménj]
i k=1
OR a
Ta’"z_” =sinh Z (GriRmj + T1jGim) Yor + Giménj‘|
K k=1
N
aRmn = isinhu Z (Gkiij - Tijim) Y'n,k: - Gim(snj
96,5 2
and
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aT, al
Wm" = jcosh Z (GmiRij + TmjGik) Xien + Gmléjn]
ij k=1
aT, al
mn h szR - Tm ’Gi X n szén
s cosh kZ:l kj iGik) Xin + j 1
T, N
4802”" = sinh 1% Z (GmiRkj + T’mj Gik) an + Gml(sJ”]
ij k=1
aT, al
aﬁmn = ¢sinh p [Z (GmiRrj — TrmjGir) Xin + Gmiéjn]
ij k=1

The Hessian computed at the classical vacuum (given by a = b = a = 8 = 0) has the entries

028

8amn 8aij

0928

Dby b

028

8amn6aij

%S

%S
8amn8bij

9?8

3amn3aij

9%S
Otmn 8613

0?8
abmnaaij

0%S

028

8amna/8ij

The Hessian at this critical point, that is Hy, is diagonal with respect to the indices i, j, m, n and therefore

0

h2
(N NfcoS )577”5
0
h2
(N meb )5,7“5
2
2<N Nfsmh )5,,”5
0
h?
(N NfSln “) Smiln;
0
0
0
h pusinh
_ iy Coshsinp o
0 m
=0
0
=0
0
h yusinh
— 2N, T 6
0 m
0
0

it is block-diagonal (the fields being ordered a, b, o, 8 at fixed index (%, 5))

with

N2
Hy = @'Ho
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and the coefficients are

sh2
0 :2(N—NfCOb 2M>
m

sinh?
a+:2<N+Nf m2u>
cosh psinh

b= 2Ny -
m

Ho has only two distinct (positive) Takagi valueﬂ

2
Ay = [\/(a+ +a_)?+4b% £ (ay — a_)} = % \/(?\]fij — 1) + sinh?(2p) = cosh(2u)

DN | =

with othonormal Takagi vectors

7 0

(1) 1 0 ) 1 i
v = v =

2+l |c " Z+1|0

0 c

(C.2)

c 0

1}(_1) _ 1 0 ’U(_2) _ 1 c

2+11|¢ 2+11(0

0 )

having defined

Viag +a-)2 +402 +ay +a-
2b

C=—

Now, thanks to the structure of Hy given by (C.1)), we can construct its Takagi vectors given those of
Ho. The generic Takagi vector takes the form

66 Actually, things are a bit more involved. At low masses, A_ changes sign, so it does not correspond to a stable direction
on Jo anymore. The solution is quite simple: in this regime, the second Takagi value (other that Ay, which is always positive)
is —A_ > 0 and its two Takagi vectors are

A 0

(1) 1 0 ) 1 i
v = ~ v =

NS G NZESE A

0 c

v/ (a +a27)2+4b27a —a_
with ¢ = + ha ¢

o (orthogonality with v +1 ) follows from c& = —1). It is straightforward to show that this
happens for m < /NNy, regardless of the value of p.
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O4x1

o = | 12

O4x1

with vg 2 each of the 4 vectors appearing in |j The whole set of Takagi vectors consists of the 4N?
vectors {v(i)}, each of which has the only non-zero 4 x 1 block at position j = 1--- N2, Such vectors are
automatically orthonormal. From this structure we can easily build the matrix W whose columns are the

Takagi vectors of Hy. A suitable arrangement of the vectors {v(¥} (which amounts to a factor of %1 in
det W) gives

N2
W =pw
with

det W = # det

(2 +1)°

O 0 O =
o O = O
O =. OO0
<. O 0 O

so that det W = (det W)V ‘=1 In conclusion, a suitable arrangement of the Takagi vectors, gives a
residual phase at the classical vacuum e’“° = 1@

57The same considerations hold in the case m < /NNy as well. In this case we have (using ¢ = —1)

1
detW=-——————det

@+D@+1)

BT

@ +1) (@ +1)

oS0 O =
0 O = O
S M O =
M O = O
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D Analytical results for 0+1 QCD

In this section we present analytical results for the partition function of 0 + 1-dimensional QCD and for the
expectation value of the Polyakov loop at different values of N;. The chiral condensate can be obtained by
Y= T% log Z and the quark number density by n = T% log Z. We recall that A = 2cosh(u./T) and

fte = sinh™!(m). We also have the anti-Polyakov loop from the Polyakov loop using (Tr Ut) = (TrU),,—, ..

D.1 1 quark flavour

7y = A3 — 2A + 2cosh (%ﬁ)

(TrU), = Zil {e—i (A (A+e%“) - 1)}

D.2 2 quark flavours

Zy =A% —2A% + 4 (2A% — 3) Acosh (‘3’;‘) +3A% 4 2cosh (%’;‘) +6

1 u i u u
(TrU)e = {e—“T (3 (A* = 1) eF 4342+ 2 (A* — A2+ 3) AeF +24eF — 2)}
2

D.3 3 quark flavours

Zy =A%+ 9A4° + 36A4° + 4 (54% — 6) Acosh @f‘) + (204° — 304" + 364 + 36) cosh (i’f) — 54A + 2 cosh (Zﬁ‘)

(TrU)s = Zi {36?“ <2A2 + (5A* — 442+ 6) AeT + (BA* — 242 —2) e T + (A% 4+ A° 4+ 114* —6) e T
3

+2(A% 4241 — A% £ 6) AeF 4 AeT — 1)}
D.4 4 quark flavours

Z4 = 40A (A* — 1) cosh (%‘f) +8A (5A% 4+ 24A" 4+ 40A* — 60) cosh (?) +20 (5A® — 6A* + 6A> + 4) cosh <6T“)

12
+ (A* 4 642 4 2) (A% — 245 4 40A4* — 60A2 + 60) + 2 cosh (T“)
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(TrU)s = Zi {eT (10A2 12 (5A° 4+ 34 +10) Ae 7 420 (3A% — 24% +2) Ae T +5 (941 —44% —2) 7"
4

3 (15A4°% +84° 4+ 604" — 20) €T 410 (A% +64% 4 2) (A% +64% —4) 1"

4 (AY 4 5A% 4 36A4° + 444" — 204% 4 60) Ae T +44eT" — 4)}

D.5 5 quark flavours

S

2u
Z5 = 10A (7A% - 6) cosh ( 7 ) + 504 (TA® 4 21A* 4 20A% — 30) cosh (

)

+10 (((7A4% (A° + 3A" + 154% + 40) — 300) A% + 300) A® + 100) cosh (?) +50 (7TA° — 7A* + 6A% + 3) cosh (9T >

+ A (A* +10A% +10) (A" + 80A4° — 100A* + 30042 — 200) + 2 cosh (T“)

13;L

(TrU)s = - {56 (3A2 +5(TA* — 442 4+ 3) Ae® +5 (A% (A2 (T (A* + 342 +4) A% 4+ 65) —30) — 10) e
5

3(TA* = 34% —1)e'T +3(214°% + 745 4 454 — 10) e + (6345 + 144% +104% 4 60) Ae T

+3 (A% 4 1245 4+ 454" + 1604% 4 60) A* + 100) Ae 7 + (214" + 704 + 28048 + 2404* — 1004% 4 200) Ae T

+ (AM 4114 1024 + 3254% 4 260A4° + 600A% — 20042 — 100) ¢ 7 + AT — 1)]
D.6 6 quark flavours
9
Zg = 28A (4A% — 3) cosh ( 7 ) + 284 (7T0A° 4 144A" 4+ 90A® — 135) cosh ( T )
3
+4A (A% ((2(7(24° + 15A* + 90A4% 4 350) A? + 450) A® + 7875) A® + 1750) — 5250) cosh (“)
6 4 2 12p
+ 14 (T0A° — 60A" +454% + 18) cosh { —-

6
+14 (T0A' 4 168A' + 630A° + 10404° — 975A* + 90042 + 225) cosh (;‘)

18
+ (A% +154% + 3042 + 5) (A2 4 341 +1504% — 3545 4 1050A4* — 105042 + 700) + 2 cosh (T”>
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1 . . . .
(TrU)s = - {36 # (7A2 +14 (104* = 5A% +3) AeF + 7 (104* — 442 — 1) e’T" + 7 (704 + 16 A% + 954% — 15) ¢ F
6

+ 14 (2845 + 247 4+ 54% 4 15) AT 4 14 (2840 4 T04% + 2004 + 1304 — 5042 + 75) Ae '

+7 (A% + 15A4% + 3042 4 5) (A0 + 5A4° 4+ 354° + 5042 — 25) ¢

+7 (704" 4 1404° + 176A° + 280A* — 13542 — 30) ¢ 7

+2 (A" + 194 + 2454° + 14004° + 32004* 4 607542 + 1575) A* + 1750) Ae'
(

+2 (T0A™ 4+ 476 A1 + 140043 4 32404° + 4554* 4 35042 + 1050) Ae' T

+ (T0A™ + 53242 4+ 2828410 + 6120 4% 4 3465A° + 59504% — 175042 — 700) € 7* + 24e 1" — 2)]
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D.7 12 quark flavours

Z1o = A% + 108A4%* + 61384°%2 + 243936 A°° + 5741010428 + 86631336 A6 + 876297708 A%* + 5899484448 A%?

+ 27113316516 A%° + 84986169840 A8 + 178513767432A6 4 2558133135364 + 234466082136 A2 + 132619604832A1°
+ 59537546640 A° + 1255782528 A° — 941836896 A* + (728A% — 312A) cosh (‘9’;“) + 3767347584 A%

27
+ (1145144 4° 4 576576 A° + 82368 A% — 1235524) cosh (T”> + (52052A°% — 24024 A* + 10296 A + 1872) cosh (3;“)

24
+ (9447438A" 4 10306296 A'? + 15459444 A% + 6694688 A° — 3586440A" + 2265120A° + 226512) cosh (T“>
+ (32391216 A" + 97173648 A" + 194347296 A"'! + 188948760A" + 29899584 A7 + 59799168 A% — 5536960 A°

21
—8305440A) cosh <T’“‘> + (48586824 A" + 291520944 A'° 4 947443068 A" + 1700538840A4"* + 13604310724

1
+1046485440 A% + 152612460A° — 934362004 + 934362004 + 6921200) cosh (;")
+ (32391216 A% + 340107768A' 4 1797712488A'" + 5484912576 A'® + 9069540480 A% + 10203233040 A"
1
+5862256400A7 + 124581600047 + 1308106800A4° — 259545000A° — 155727000A) cosh (;")

+ (9447438 A% 4 161956080 A% + 1360431072A4%° + 6751769024 A% + 19625027994 A'¢ + 37120333536 A"
+42891368520A2 4 28010926944 A0 + 15571142730 A% + 959278320A4° — 654053400A% + 112123440042

12
+70077150) cosh (T"L) + (1145144 A% + 30918888 A%° + 406362528 A%% + 3212619696 42! + 154594440004
+48604491936 A7 + 99081785088 A° + 126520089696 A% + 1103732950324 + 50698482120A4° + 11705687136A7

9
+8947450512A° — 2354592240A4° — 1009110960A) cosh (T“) + (52052A4%0 + 2186184 A%° + 44972928 4°

+567515520A4%% + 4442883588 422 + 22910896008 A2° + 78767584896 A8 + 177598092672 A6 + 2707169493604

1261358153056 A'2 + 153018596016 A0 4- 72252344736 A% + 214529515245 — 1569728160 A" + 470918448042
+269096256) cosh <6T"‘) + (728A% + 48048 4% + 1585584 A% + 33153120 A7 + 430640496 A% + 3684814848423
+21267362688A%! + 82107881856 A" + 216479783520A'7 + 381992554944 A + 438076368576 A + 343774544256 A"
+144185760576 A7 + 34085525760A" 4 22604085504A° — 6697506816 A% — 2511565056 A) cosh (?)

+ 2cosh (36TM> + 209297088
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1 34 3 9
(TrU)12 = 7 [3¢= 77" (2642 4+52(77A* ~ 2247 4:6)e T A+6202((A% (7(30(A* + A2)+44) A> 76) ~20) A> +12)e T A
12

15p
169212(3(((13(6A5+33A% 19342 1136) A2 +1240) A2 +-675) A2 +45) A% 150)e T A+69212((((((13(6A°+96A% 1 728 A% 1313544 1793242 +12642) A2

21
1155316) A% 186790) A2 +32670) A2+630) A2+900) A2 +675)e T A+572(((((((13(TAM +280A412 15328 4101 50346 A5 +408771.A% 11831368 A%

27
1537768042 +10348272) A2+ 170236836) A2+ 133737516) A2 +66076164) A2 +20255400) A2 +91476) A2+-914760) A2 +392040)e T A

+4(((A?84+109A%6 16248 A%* 1208890422 44192518 420 454236754 A18 4463103784 A6 12647132488 A1* 410274489940 A1 2 426914665492 A1°

33
147368816704 A% 55424254248 A + 40840226856 A% 1+ 1936620972042+ 5396874912) A4 +313945632) A2 +104648544)e T A

F44(((A2((((3((((((T(A*4+59A2%+1544) A2 4+166896) A2 4+1606365) AZ4+10030185) A% +41725992) A24+115304112) A% 4+212326884) A% +3350946060) A2

39
+2541052800) A2 +1249610076) A24348092316) — 1189188)A2+23783760)A2+7135128)e4TE A46292(((A2(((13(21 A2 4474 A0 44848 A8 428840 A°

15
110318841 +233220424+335538) A2 4+-3760428) A% +2098965) A% +648450) —6930) A2 +49500) A2+14850)e T A+69212(((A2+1)(A%(13(18A5+1324°

51p 57
+450A% +831 A% 4+625) A2+5595)— 135) A2 +450) A2 +150)e T A+6292(((3A2(286A5+611 A% +767A2+540)—76) A2 +140) A2+60)e T A

N 63 69 . 6 .
1572(91A% —7TAY 1 8A%46)e T Atde T A+143(1001A%+56A°420241 _12)e T +3146(A2 (A% (3(858 A5 +2340A4° 13887 A1 1282642 4576) A% +1360)

7220)740)e12T“+17303(A2(A2((((39(21A8+204A6+958A4+2480A2+3542)A2+125048)A2+55020)A2+13440)A2+5175) 1500)—150) o
— — e T

+3146(A2 (AZ(((((13(21A*2 4534 A0+ 6414 A% +44548 A5 4188020 A% +508728 A2 +873468) A% +12280464) A% +8489613) A24+3030390) A24+772002) A>
24
1+180180)—80190)—5940)e T +11(AZ(A2((((((13((((((T(A+64A%4+1092) A% 1+255888) A% +2910555) A2 +21642312) A2+106933596) A2 +353433696) A2

30
1786585492) A2 +15000511680) A2 +14366956032) A2 4+8800444224) A2 +-2877325308) A2+ 751566816) A2 4 118918800) — 76108032) —4756752)e T

+26(A2+66A1°4+990A8 +4620A° +6930A% +2772A4%4+132) (A2 ((A'6+44 A 1110042 +12408 A0 81840 A8 4281424 A%+ 585156 A% 4566280 A2

36u
1396396) A% 160984)—17424)e T +1573(A2(A2(((((13(TA 425241244086 A0 +38880A° +228144 A5+ 86116844 12131848 A2 +3393792) A2

42p
1+45612315) A% +29497644) A% +10021374) A% +3027024) A% +353430)—320760)—17820)e T+ +34606(A%(A2((((39(6A10+84A8 4537 A 4197441

48u

+4160A%+5432) A% +167398) A2 4-64020) A% +22890) A2+3300) —2625)—150)e T +17303(A%(3A%(((13(21A°4-96A4%44+216A%4272) A% +1665) A2 4792) A?

o

4 60 66
1+180)—320)—20)e T +286(3003A1°0+2002A4% 11624 A5 +800A% 32442 —24)e T +13(77TA*—20A2—2)e T 74)]
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E Reflection symmetry in thimble decomposition

In this section we go into detail describing the reflection symmetry discussed in [42]. Consider the partition
function of a generic field theory consisting of n real (scalar, for the sake of simplicity) degrees of freedom

{z;} on a domain C
Z:/d”xe_s(x)

C
Before complexifying the degrees of freedom, we note that, in order for Z to be the partition function of
a physical system, it must be real even when S(z) is complex. A sufficient condition for this to hold is the

existence of a “reflection” symmetry L, which is a real operator on the fields so that L = LT, L? =1 and L
satisfies

S(z) =S(Lx)

This ensures the reality of Z, as

/d"aje—s(“’) /d"me @ — [ q» (L7'Lz) e S(Lz) /d"xe_s(x =7
We now turn to the decomposition of Z in terms of thimbles, that is

Z = Zna/dnze_s(z) (E.1)

oEX

In order for Z to be real, integrals over {7, } must either be real or appear in complex conjugate pairs.
We shall see that this is ensured by the reflection symmetry. When the fields are complexified (z — z), L is
extended to an antilinear map K : z — L Z satisfying

S(z) = S(L%)

We now show covariance of the steepest ascent flow under the action of K, that is, if the flow z(¢) is a
solution to

dzi(t)  05(2)
dt 0z;

then 2/(t) = K(2(t)) = L Z(t) solves the SA equations as well

dzf =, dz() =, 05(2) <=, 0S(LZ) ~, N[0z, 0 0z 0 )
_;L” _ZL j _ZL” 4 L”Z 32J8zk+8z]8,zk SE)

— Z L Z Ly 85_/ Z Z Li; L 85_/ ) = Z dik &;Z/) = 8;;’)

j=1 k=1 k k=1 j=1 k=1

As a consequence, if z, is a critical point of S, so is K(z,) and the thimble associated to K(z,) is
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jijK(za) = {K(Z)|Z€jo’}

(up to a choice of orientation). We also note that covariance of the SA flow under K ensures that
nX = (C,75) = (C,J,) = n, up to a change of orientation. The most useful property of two conjugated
thimbles, 7, and JX, is the following

/d"z e %G = / drze S(F2) = / dn (L=1Lz) e 52 = i/ dnze—5(2)

T TJE NS T

where the sign depends on whether K changes the orientation of the thimbles. As a consequence, complex
conjugate pairs of critical points appearing in the decomposition either yield an overall real contribution
to Z or a purely imaginary contribution, in which case they have n, = 0. We also note that self-conjugate
critical points (those for which K(z,) = 2,) give a contribution which is purely real or imaginary (in the
latter case, they cannot contribute to Z). The reflection symmetry we have described holds also at every
order in perturbation theory, in particular it is to be recovered in a semiclassical expansion around thimbles.
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F The partition function of Yang-Mills theory in 2 dimensions

In this section we compute the partition function for the action in 2 dimensions, following [29] and
[118]. Here fields need not to be complexified, as we integrate over the original (compact) group ®y, ;SU(N)
and eventually continue Z () to complex values of the coupling. Neglecting the additive constant SV in the
action, we compute the partition function

1y t
Z(B) = /DUeiS /DU@ gzNT(UD+UD) :/DU Heﬁf(UD)
O

where [ labels different plaquettes (they are products of U that we label Ug) and the group invariant
measure is

DU = [ dUs(n)

n,f

As f(Up) is obviously a (real valued) gauge-invariant function of the plaquette variables, we have that
e#1Un) is a class function on SU(N) and therefore it can be expanded in terms of irreducible characters of
Un

PHUn) — Zd M(B)xr(Un)

where 7 labels the r-th irreducible representation of SU(N) (d, being its dimension) and ¥, is the character
of Uy in the r-th representation. Now, for U, U, Uy in SU(N), we have the following relations for group
integrals of the characters [96]

/dU XT(U)XT’(UT) = Opp
1
/dUXr(UlU)XT’(UTU2) = di(srr’Xr(UlUZ)
1
[0 @rivy) = L@ v2)

By integrating the character expansion after multiplying it with x,.(U"), we extract the coefficients {\,}

A = di /dUXT(UT)eﬂf(U)

Now let us consider the partition function, where a given link U appears only in two plaquettes Un, = VU
andUp, =U "V ;where Vi and V5 are the (path-ordered) staples corresponding to the link U. The integration
with respect to U is therefore

/dU Ao, 87 (Un,) — sz'rdr’)‘T(ﬁ)AT’(ﬁ)/dU XT(VIU)XT’(UTV2)
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We have glued the two plaquettes sharing the link U together to form a new “double plaquette”, whose
(path-ordered) boundary V1V, we call Un,,; the power of 2 of A,(3) matches the number of plaquettes that
have been glued together. The generalization of this procedure is straightforward: if we now glue another
plaquette (sharing one link with Up,,), thus forming U, ,,, we pick another factor of A.(3) (the additional
d,- cancels out during integration in the new common link variable). In general, if we pick a closed, non self-
intersecting contour I' enclosing Nt plaquettes of a two-dimensional lattice, by integrating over the internal
link variables, we get a functional Z(T") of the (path-ordered) product of link variables on the boundary,
which we call Up

Z(Ur) = 3 dr A (B X (Ur)

We now consider the particular case in which the contour I' consists of only the links on the lattice
boundaries, that is U € 9A (all the internal links have already been integrated out)

Z(8) = / DU Z(Upp) = / AU, dU»dUsdU, Z(UyUsUsUy) (F.1)

where, thanks to the invariance of the group measure and its normalization [ dU = 1, we have expressed
the remaining integrations over boundary links as only 4 integrations over link products on the four bound-
aries, that is Ugy = U1UsU3U4. We now impose periodic boundary conditions, thus making the identifications
Us = U{r and Uy = U;r and then integrating over U; and Us (V is the total number of plaquettes, that is the
total lattice area measured in lattice units)

Z®b)(3) = /dU1dU2 Z(UU,UT U = /dU2 > d, [/\T(ﬁ)]v/dUl X (UL UUTUY)

= / vz Y d, [\ (8))Y dirmUz)xT(UJ ) =>_ M8 / AUz X, (U2)x (US) = Y [A(8)]"

T T

If we consider free boundary conditions instead, we have

7)) = / AU dU»dU3dUy Z(UyUxUsUs) = > dy [Ae(8)]” / AU, dU,dU; / AUy X, (U1 U2U3Uy)

=Y d. M(B)] / dU1dU2dUs 6,0 = [Mo(B)]"

where 7 = 0 labels the trivial representation of the group, with dimension dy = 1 and we have used the
character integral relations as well as the normalization of the group measure.

We now perform the explicit computation of Z(3) for U(1) and SU(2). First, remember that f(Upg) =
ﬁTr(UD + Ué), where the trace is understood in the fundamental representation of the gauge group. For
U(1) we have the parametrization U = € and dU = df/2m, therefore f(Un) = 3(e? 4+ e~%) = cos®.
The irreducible representations are labelled by the integer v € Z, with x,(Ug) = ¢™*? and they are all
1-dimensional, that is d,, = 1. Thus the coefficients {\,.} are

2m ™ 2m
1 1 , 1 ) .
Au(B) = T /dUXV(UT)e’Bf(U) =5 /d9 e WOefcost — - /d9 eﬁCOSQCOS(UQ)—i /d@eﬂcowsin(ye) =T1,(8)
0 0 0
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where I,(8) is the modified Bessel function of the first kind. To summarize (restoring the additive
constant SV in the action)

2805 (8) = Y [1(8))"

—+oo
bc _
Z5 B = 3 1

V=—00

For SU(2) in the fundamental representation, we employ the parametrization

U:cos(qé})l—kisin(g})fr&'

where {0;} are the three Pauli matrices, |f2| = 1 and ¢ € [0,47). The Haar measure is given by

Lo oft
dU = ﬁ Sin <2) d'l/) dQ

with dQ2 =sinfdfd¢ and 0 € [0, 7], ¢ € [0,
which takes integer or half-integer values: j =
in the j-th representation is given by [1T9]

. Each irreducible representation is labelled by its spin 7,

,-+- and its dimension d; = 2j + 1. The character

[=a

From the parametrization of U, it follows

fUn) = %Tr (Ug + U&) = i {2005 <1§>} Tr1l = cos <12b>

Being f(U) a real class function, the weights of conjugate representations are the same (\; = A;);
moreover, irreducible representations of SU(2) are real (so that x;(U) = x;(U)), so we simply sum over j.
We are ready to compute the coefficients {\;}

66 cos(%)

2 (8) / AU x; (U1 O = L

1
d;

00

¢> sin [(2]' +1) %}

dlfi sin? < . (%>

2
11T L [1 7 .
— - Bcos s . . _ 1 B cos . 1 Beos '
2j+17r/dwe sin g sin (27 + 1) ¢] 2+ 1 ﬂ/dwe cos [(27)¢] 7r/dwe cos [(2j + 2) o]
0 0 J

2

2
B

! ! {2(2‘7 1) I2j11(B)

S [12;(B) — I2j+2(B)] = 2j + 1 B

5+ 1 I2j+1(5)] =

Thus, to summarize, we have
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F.1 The twisted case

We now compute the partition function of 2-dimensional Yang-Mills theory in the twisted case. The compu-
tational scheme is the same as before, but we must keep in mind that there is a single twisted plaquette (Fp)
in the lattice, whose action density —f(Ug) undergoes a multiplication by a center element of SU(NNV), that
is f(Ug) — f(2Un) with z = ¢4 1 = €2™*/N 1. This plaquette is the only one whose character expansion
differs from the one which has already been computed, in particular we call its coefficients ,\9)(5). The
obvious result for the partition function is thus

ZPret(8) =3 [ (8)] AL (B)

T

So all is left is the computation of the twisted coefficients

AL = /dUX (UHePIEY) = /d (2U) x» (UT2T2) PFED) =G /d (2U) xr ((zU)1) e#TED) = Gu0(B)

where we have used the invariance of the group measure d(zU) = dU. Thus, for the partition function,
we have

2P (8) = G 20 (B)

As stated in Section[[0.1] twisting the action is equivalent to simply considering twisted periodic boundary
conditions along with an untwisted action. We will check this explicitly for the 2-dimensional case. Twisted
periodic boundary conditions correspond to taking Us = )y UlTQ]; and Uy = QQU;Q; in . Then, using
the previously given expressions for group integrals of characters as well as the twisted commutation relation
QQQl = 29192 and dr = Xr(l)

Zbe) () — / DU Z(Upy) = / U1 dU2 Z(U1 U U Q] QuU5 Q1)

— /dU2 > dy (A (B) /olU1 Xr (UL U, US Q1 Q,U100) /olU2 Zd XT(UQQl)XT(Q ro,ulal)
= ZT: (8] /dUz X (Q1U2)x (U3 2501 0) = ZT: (8] dirxr(QlQEQI%) = ; A(8)]Y d%Xr(QzﬂlQQQD
= Z fxr<z91929*9 ) =G Y_M(B3)]” dixru) =G Y (B =G 209 (B)

which agrees with the previous result.
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G Matrix form of complex Yang-Mills theory equations

In this section we compute SA equations as well as PT equations for complex SU(N) Yang-Mills theory in
2 dimensions in matrix form, that is getting rid of colour indices completely. This form is more suitable for
computer simulations. Recall the definitions of Section 10| and consider the action for the (twisted) theory:
the number of distinct plaquettes is given by Vd(d — 1)/2 =V, where V is the lattice volume, so that

1

SWI =8|V = 55 20 3 T (Z0)Uas(m) + 27 (U5 ()

n a<o

with Z(n) = 14 6y,n,(2 — 1) (2 being the twist). We now make use of the following fact: any matrix
A € SL(N,C) can be decomposed as A = a11 + a,T°. From this decomposition, it follows

TTr (T*A) = T°Tr (T* (a2l + apT%)) = ar T*Te(T) + @, T*Tx (T°T") = %abTb

where we have used Tr(7) = 0 and Tr(7°T") = $5°*. The decomposition of A can be used to compute
a1

Tr(A) = Tr (all + abTb) =a1Trl+ a,Tr(T%) = Nag

so that

Ty (T° A) = % (A—arl) =

N~
Y
b
|

| —
=
=
N
I
| =
=
3

with [A]lr = A — +Tr(A) 1.

Our SA equations read

S Uans 1) = i 9, SO a1

with V,, ;S = T”?Z#S. Thus, after defining

Dys(n) = cuUpo (n) + cull o (n) — e Uyt (n) — e Ust (n)

[ §13%

we can write (recall that 3 € C)

Ve iS[U] = Ve S0 = — o 3 Tx[TeDjs(n)] = ;—B S Tr [TaD;ﬁ(n)}
which yields

S > (DL ]

Now let us come to PT equations. We immediately see that we can rewrite the Hessian as
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Vb, Ve L S[U] = Vb Ve S[U] = Tr (T‘IM(””: ) <n,ﬂ>)

m,p Y,

with
M(bm,ﬁ),(n,u E% XD:( V,;l){‘;;l,ﬁ [5,,,,7,,, [Tb(cUUﬂ,;(n)JrcuZ/[ﬁf,(n))Jr(c (n)+culu (n))Tb]
—bnto.m [cvUn(MUs (n+@)UL  (nd2)TPU () e Us ()T Up (n4-2)U;  (nt ) U, (n)]

B [cuUﬂ(n)U;l(n—o—ﬂ—ﬁ)U};l(n—f/)TbUg(n—f/)+cl;1U,;1(n—ﬁ)TbUﬁ(n—f/)Uf,(n+ﬂ—ﬁ)U};1(n)H

+5[,”5 I:ftsn,,n [TbcalUEﬁl (n)JchUﬂ,; (n)Tb]
Fonti,m [cuUn(MT Us (n+) U, (n4+2) U (n)+eg U () U (n40) U (nt ) TPU L (n)]
0 Uy (n=0)T U (n—2)Up (n+—0) U, (n)]

+0n—s,m [ Un(n)UL (=) U5 H (=) TP Up (n—i)+cy

—Snti—som [cuUn (MU (o= ) TP U (n=2)Up (n—) ¢ Uy (n=0)Up (n—0) T Uy (n+a—2)U; * (m)]] }

which enables us to write

I 1
axrb a _ b __ ma b
TV, Ve S[U] = V2, -V, 2S[U] = T°Tr (T M “)) = {M(myﬁ)v(w)h

Next, we write the components of tangent basis vectors as matrices, that is V,, ; = Vy,4,,T* (along with

Vi = VapaT®). Consider our PT equations

ian;l,a(t) = Z me),b(t) ?i)n’pva + Z bea np, c AS [U(t)]

n,ua

where we have introduced the directional derivative with respect to V'

?V = Z Vm@b?fmﬁ

m,p,b

We have reached an expression which is quite general. However, we are interested in complex Yang-Mills
theory: when one contracts V5, -V¢ .S [U] with V;,5, the effect of summing over b is that each T in the
Hessian is substituted with V;,, 5. Thus we can rephrase PT equations as
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having defined

Mgp(n) = ;ﬁ{éﬁ,ﬁ [8mm [Vim.(8) (et U () - euhn () + (e U (m) e U2 (1)) Vi 5 (0)]

—nto,m [cv Up(mUs (n4+ @)U, (n40) Vi 5 (U (n)+e ' Up (n) Vi () U (n+2) U (n4+ @)U, (n)]

—8n—im [cuUa (MU (e fi= YU (=) Vi (O U (n=0) ey Uy (=) Vi 5 () U (n=2)Up (n+ia—2) U, * ()]
+00,5 [~ Omm [Vin (1) U () +-c0 Up (n) Vi 5 (8)]

+8ntp,m [coUa(n) Vi, 5 (OUs (n4 @)U, (n40)U;  (n) 4 Us (n)Up (n+2) U (nt o) Vin 5 (DU ()]

+6n—s,m [cuUn (MU (nt =) U (n=2) Vi (D) Us (n—0)+eg, Uy (n=2) Vi (DU (n=2)Us (n+p—2) U, * (n)]
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