


Thimble regularization of Quantum Field Theory
as a solution to the sign problem

Giovanni Eruzzi

“It is dangerous business, Frodo, going out of your door.
You step into the road and if you don’t keep your feet,
there is no knowing where you might be swept off to.”

(Bilbo Baggins)
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1 Agenda and motivations

In the last years much effort has been put into studying non-perturbative properties of strongly coupled
quantum field theories. In this context, a fundamental role has been played by Monte Carlo techniques,
which rely on a Markov chain to compute expectation values of observables [1]. Despite being such a
powerful tool, Monte Carlo has failed to work for a large class of important models, namely those featuring
a complex action. This situation is referred to as the sign problem and has so far prevented an accurate
solution of e.g. real-time quantum field theories [2], systems of electrons occurring in low-energy physics such
as the Hubbard model [3, 4], models for nuclear physics [5], the Yang-Mills theory in presence of a θ-term
[6, 7] and finite density QCD [8, 9]. In particular, a complete knowledge of the QCD phase diagram is still
missing (especially in the high density region) because of the sign problem, even though many techniques
have been put at work to a success in some regions of parameters. These approaches include reweighting [10],
Taylor expansion [11], analytical continuation to imaginary chemical potential [12, 13], complex Langevin
[14, 15, 16, 17], the fermion bag algorithm [18], effective 3d theories [19], the histogram method [20], density
of states approach [21, 22], fugacity expansion [23], dimensional reduction [24] and large Nc limit [25]. To this
day, there is not a single approach which is both rigorously justified and applicable to every part of the QCD
phase diagram. As a consequence, a new approach was recently proposed [26], that is thimble regularization
of a quantum field theory. This method is promising as it is based on a quite general mathematical framework
and thus is expected to work in principle for any model in any regime. Being the approach both quite young
and promising, yet challenging from a theoretical as well as a numerical point of view, it is worth a detailed
study. In this respect, the present work covers the foundations of the method as well as its first applications,
starting from simple toy models and then moving towards gauge theories. For a recent review on the subject,
refer to [27].

The work is laid out as follows: in Section 2 we review the general formalism regarding the introduction
of temperature and chemical potential in a quantum field theory, both in the continuum and on the lattice;
in particular, we focus on the rise of the sign problem for free fermions. In Section 3 we discuss the
general framework of Morse theory and Lefschetz thimble decomposition. We will make use of a language
the theoretical physicist is expected to be familiar with, leaving the (involved) mathematical details to
the references. In Section 4 we set up the basics of thimble regularization for theories involving gauge
symmetry. In Section 5 we discuss the issue of performing actual Monte Carlo simulations on thimbles; a new
parametrization is introduced, along with a Monte Carlo algorithm. In Section 6 a simple one-dimensional
model will be discussed in detail within the framework of Morse theory. Although quite simple, this model
provides valuable insights to become familiar with the formalism, while at the same time addressing the issue
of the relevance of more than one thimble. In Section 7 a chiral random matrix model is solved by thimble
decomposition in a region of parameters which was shown to be affected by a severe sign problem. In Section
8 the simplest examples of gauge theories are studied, that is SU(N) one-link models. Despite their obvious
simplicity, these models provide a non trivial setting to test the thimble formalism for gauge theories. In
Section 9 QCD in 0+1 dimensions is studied at various numbers of quark flavours. This theory is interesting
because the origin of its sign problem lies in the presence of a quark chemical potential, as in real QCD. The
model can be solved analytically, thus providing exact results to compare with. Numerical simulations of
thimble regularization for the theory are performed and their results compared with exact ones. The issue
of the relevance of multiple thimbles is discussed as well. In Section 10 we set up the basic formalism to
tackle Yang-Mills theory in 2 dimensions with the thimble formalism. Exact results are available for this
model, in which the sign problem is put in by hand by means of a complex coupling. Although in some
sense “unphysical”, this model is useful to study issues which are there also in more realistic situations (such
as Yang-Mills with a θ-term or QCD). One of this issue is the presence of toronic modes. There is also
the problem of numerically integrating on a gauge-symmetric thimble. These issues are discussed in detail,
although actual numerical computations for this model are left for future study.
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2 Genesis of the sign problem

The study of quantum field theories such as QCD at zero density, that is in vacuum, has made it possible to
compute many cross-sections in particle scattering experiments with increasingly higher precision. However,
in extreme conditions, such as the collisions between heavy ions, it becomes necessary to explicitly introduce
temperature and matter density in the theory. A similar situation occurs in models for the extremely dense
matter in neutron stars or in the study of the interactions between quarks and gluons just after the Big-Bang.
From the point of view of statistical mechanics (which a quantum field theory resembles in its Euclidean
formulation) the introduction of temperature corresponds to going from the microcanonical ensemble to the
canonical one, while the introduction of a chemical potential corresponds to the grandcanonical ensemble.
In the next paragraphs, we shall refer to [28, 29, 30, 31].

2.1 The introduction of temperature and density

Let us consider the canonical partition function of a quantum mechanical system whose dynamics is governed
by the Hamiltonian Ĥ in a heat bath at temperature T

Z(T ) = Tr
[
e−βĤ

]
(2.1)

with β = 1/(kBT ), where kB is Boltzmann constant and we shall put kB = 1. It is easy to derive a
relation with the quantum field theory described by Ĥ in its Euclidean path-integral formulation. Let us
consider a generic field theory consisting in a collection of fields Φ(x) on a D-dimensional spacetime. The
trace in (2.1) forces periodic boundary conditions on bosonic fields and antiperiodic boundary conditions on
fermionic fields. Then the path-integral expression for the partition function becomes

Z(T ) =

ˆ
DΦ e−SE [Φ]

DΦ =
∏
x

dΦ(x)

The path-integral is understood with the appropriate boundary conditions for the fields and SE [Φ] is
the Euclidean action of the theory resulting from an integration of the Lagrangian density LE on the whole
(D − 1)-dimensional space and on a finite time interval with extent β

SE [Φ] =

β̂

0

dt

ˆ

RD−1

dD−1xLE [Φ(t, ~x), ∂µΦ(t, ~x)]

Here t = 0 and t = β are understood to be identified, thus going from an Euclidean spacetime RD to
S1 × RD−1. When discretizing the field theory on a lattice, we will consider a spatial extension Na along
each axis, where a is the lattice spacing and N is the number of spatial lattice sites. For the time direction,
instead, we will have

β =
1

T
= NTa

where NT is the number of temporal lattice sites. This lattice field theory is a system of finite spatial
volume (Na)D−1 at finite temperature T . The limit β → ∞, that is NT → ∞ with fixed a corresponds
to the system at zero temperature. The continuum limit corresponds to taking a → 0 while keeping Na
and NTa fixed. To keep finite size effects under control, one should in principle ensure that N/NT is large
enough.
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In vacuum, the net number of particles is zero; conversely, in matter it is often necessary to consider a non-
vanishing number density and thus a chemical potential is introduced in the theory [32]. The grandcanonical
partition function takes the form

Z(T, µ) = Tr
[
e−β(Ĥ−µN̂)

]
where N̂ is the particle number operator and µ is the chemical potential. The particle number density

can be readily computed by

n =
1

V
〈N̂〉 =

T

V

∂

∂µ
lnZ(T, µ)

where V is the spacetime volume. Let us now consider the continuum Euclidean action for free Dirac
fermions in 4 dimensions1

SE [ψ, ψ̄] =

β̂

0

dt

ˆ

R3

d3x

[
1

2
ψ̄(x)γµ

↔
∂ µψ(x) +mψ̄(x)ψ(x)

]
(2.2)

Invariance under global U(1) transformations

ψ → eiαψ

ψ̄ → e−iαψ̄

(with α a real, constant parameter) yields, by Noether’s theorem, charge conservation: the particle
number operator is given by the space integral of the temporal component of the conserved vector current,
that is

∂µJµ = 0 ⇔ d

dt

ˆ

R3

d3xJ0(t, ~x) = 0

Here Jµ = ψ̄γµψ and so, in the Euclidean formulation, the conserved charge (particle number) is

ˆ

R3

ψ̄(t, ~x)γ4ψ(t, ~x)

This is precisely the quantity that should be coupled to the chemical potential in the action, which then
becomes

SE [ψ, ψ̄] =

β̂

0

dt

ˆ

R3

d3x

[
1

2
ψ̄(x)γµ

↔
∂ µψ(x) +mψ̄(x)ψ(x) + µψ̄(x)γ4ψ(x)

]
(2.3)

We now want to compute the energy density
1A more usual form for the fermion kinetic term is ψ̄(x)γµ∂µψ(x) = ψ̄(x)/∂ψ(x), which can be recovered from (2.2) after

an integration by parts. The reader will also notice that, for the sake of simplicity, we have considered only a single fermion
flavour.
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ε(µ) =
1

V3
〈Ĥ〉 = − 1

V3

∂

∂β
lnZ(T, µ)

where V3 is the spatial volume. To this purpose, we start by rewriting the partition function (ψ̄ = ψ†γ4)

Z(T, µ) =

ˆ
DψDψ† e−

´
dt d3xψ†(x)[γ4(/∂+m+µγ4)]ψ(x) = det

[
γ4(/∂ +m+ µγ4)

]
with ψ(β, ~x) = −ψ(0, ~x) and ψ†(β, ~x) = −ψ†(0, ~x). We will follow the treatment given in [30]. Using

{γµ, γν} = 2δµν , and αi ≡ γ4γi, we have

det
[
γ4(/∂ +m+ µγ4)

]
= det

[
∂4 + µ+ ~α · ~∇+ γ4m

]
(2.4)

The sought-after determinant is better computed in momentum space; we therefore introduce the Fourier
representation

ψ(t, ~x) =
1√
V3

∑
n∈Z

∑
~p

ei(ωnt+~p·~x)ψ̃n(~p)

where ωn = (2n+1)π
β = (2n + 1)πT are the fermionic Matsubara frequencies. For simplicity of notation,

we have omitted spinor indices and employed a discrete sum for the momenta. This choice of normalization
for ψ ensures that ψ̃n(~p) is dimensionless. Before computing the determinant (2.4) we write

S[ψ,ψ†] =

β̂

0

dt

ˆ

R3

d3xψ†(x)
[
∂4 + µ+ ~α · ~∇+ γ4m

]
ψ(x)

=
1

V3

∑
n,m

∑
~p,~q

β̂

0

dt ei(ωm−ωn)t

ˆ

R3

d3x ei(~q−~p)·~x ψ̃†n(~p) [i ωm + µ+ i ~α · ~q + γ4m] ψ̃m(~q)

=
∑
n∈Z

∑
~p

ψ̃†n(~p) [β(i ωn + µ+ i ~α · ~p+ γ4m)] ψ̃n(~p)

where the temporal extent β comes from

1

β

β̂

0

dt ei(ωm−ωn)t = δm,n

The operator whose determinant we want to compute is diagonal in momentum space, therefore all that
is left is a determinant in Dirac space. Using the so called chiral representation for the gamma matrices,
that is

γi =

(
0 −i σi
i σi 0

)
i = 1, 2, 3

γ4 =

(
0 1
1 0

)
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(where σi are the Pauli matrices), we have

Z(T, µ) = det [β(i ωn + µ+ i ~α · ~p+ γ4m)] =
∏
n∈Z

∏
~p

det

[
β

(
i ωn + µ− ~σ · ~p m

m iωn + µ+ ~σ · ~p

)]

=
∏
n∈Z

∏
~p

β4 det
[
(i ωn + µ− ~σ · ~p)(i ωn + µ+ ~σ · ~p)−m212×2

]
=
∏
n∈Z

∏
~p

β4 det
[
(i ωn + µ)2 − (~σ · ~p)2 −m212×2

]
=
∏
n∈Z

∏
~p

β4 det
[
(−(ωn − i µ)2 − ~p2 −m2)12×2

]
=
∏
n∈Z

∏
~p

[
β2
(
(ωn − i µ)2 + E(~p)2

)]2

where we have used (~σ · ~p)2 = ~p 2 and E(~p) =

√
~p 2 +m2. Since we are interested in the logarithm of the

partition function, we have

lnZ(T, µ) = 2
∑
n∈Z

∑
~p

ln
[
β2
(
(ωn − i µ)2 + E(~p)2

)]
Now we compute the energy density

ε(µ, T ) = − 1

V3

∂

∂β
lnZ(T, µ)

∣∣
βµ fixed

= − 2

V3

∑
n∈Z

∑
~p

2β
(
(ωn − i µ)2 + E(~p)2

)
+ 2β2(ωn − i µ) ∂

∂β (ωn − i µ)

β2 ((ωn − i µ)2 + E(~p)2)

∣∣∣∣
βµ fixed

= −4
1

β

∑
n∈Z

1

V3

∑
~p

(ωn − i µ)2 + E(~p)2 − (ωn − i µ)2

(ωn − i µ)2 + E(~p)2

= −4
1

β

∑
n∈Z

1

V3

∑
~p

~p 2 +m2

(ωn − i µ)2 + ~p 2 +m2

where we have used

∂ωn
∂β

=
∂

∂β

(2n+ 1)π

β
= − 1

β2
(2n+ 1)π = −ωn

β

∂µ

∂β
=

1

β

(
∂

∂β
(βµ)− µ

)
= −µ

β

So far we have considered a system of fermions inside a box of spatial volume V3. Going to the thermo-
dynamic limit means making the substitution
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1

V3

∑
~p

→
ˆ

R3

d3p

(2π)3

and we are interested in the energy density at zero temperature, that is ε(µ) ≡ ε(µ, T = 0), which means
taking the limit β →∞ with the substitution

1

β

∑
n∈Z

f(ωn)→
+∞ˆ

−∞

dp4

2π
f(p4)

so that we have

ε(µ) = − 4

(2π)4

ˆ

R4

d4p
~p 2 +m2

(p4 − i µ)2 + ~p 2 +m2

which is manifestly divergent, as it includes the (vacuum) energy density at µ = 0, which should be

subtracted. Let us perform the integral in the p4 complex plane: there are two poles at p±4 = i(µ±
√
~p 2 +m2)

(see Figure 2.1).

<p4

=p4

p+
4

p−4

C

(a) µ > 0

<p4

=p4

i
√
~p 2+m2

−i
√
~p 2+m2

C

(b) µ = 0

Figure 2.1: f(p4, µ) pole structure in the complex p4 plane for different values of µ.

Let us set

f(p4, µ) ≡ 1

(p4 − p+
4 )(p4 − p−4 )

In this notation what we are looking for is

ε(µ) = − 4

(2π)4

ˆ

R3

d3p (~p 2 +m2)

˛
C

dp4 f(p4, µ)−
˛

C

dp4 f(p4, 0)


where C is the contour depicted in Figure 2.1 (being f(p4, µ) ∼ 1/p2

4 for |p4| → ∞, the contribution from

the semicircle vanishes). In Figure 2.1b we see that the only pole inside C for µ = 0 is i
√
~p 2 +m2. From

Figure 2.1a, instead, we see that, for µ > 0, only p+
4 is inside C unless µ >

√
~p 2 +m2, in which case p−4 is

inside C as well. Collecting all these considerations, we have
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˛

C

dp4 f(p4, µ)−
˛

C

dp4 f(p4, 0)

= 2πi

[
Res

(
f, p+

4

)
+ θ

(
µ−

√
~p 2 +m2

)
Res

(
f, p−4

)
− Res

(
f
∣∣
µ=0

, i

√
~p 2 +m2

)]

= 2πi

 1

p+
4 − p

−
4

+ θ

(
µ−

√
~p 2 +m2

)
1

p−4 − p
+
4

− 1

i

√
~p 2 +m2 − (−i

√
~p 2 +m2)



= 2πi

 1

2i

√
~p 2 +m2

− θ
(
µ−

√
~p 2 +m2

)
1

2i

√
~p 2 +m2

− 1

2i

√
~p 2 +m2


= − π√

~p 2 +m2

θ

(
µ−

√
~p 2 +m2

)

so that

ε(µ) =
1

4π3

ˆ

R3

d3p θ

(
µ−

√
~p 2 +m2

)√
~p 2 +m2

For massless fermions, we can obtain the final result in closed form

ε(µ)
∣∣
m=0

=
1

π2

∞̂

0

dl l2θ(µ− l)l =
1

π2

µ̂

0

dl l3 =
1

4π2
µ4

and this is the correct (finite) result.

2.2 Finite density on the lattice

We have discussed the introduction of finite temperature as well as chemical potential in the continuum
formulation of a free field theory of Dirac fermions. Let us now introduce a spacetime lattice Λ on which we
discretize the action (2.3). We will follow [28] and see that the so called naive discretization for the chemical
potential leads to divergences in the continuum limit. The action for free fermions becomes

S[ψ, ψ̄] = a3aT
∑

n,m∈Λ

ψ̄(n)D(n|m)ψ(m)

D(n|m) =
1

2a

3∑
j=1

(
δn+ĵ,m − δn−ĵ,m

)
γj +

1

2aT

(
δn+4̂,m − δn−4̂,m

)
γ4 +mδm,n1 + µδm,nγ4 (2.5)

where spinor indices have been implied and for simplicity we have considered a single fermion of mass
m. We have also introduced a different lattice spacing aT for the temporal direction. After defining the
(inverse) lattice Fourier transform2

2With this choice of normalization, ψ̃(p) holds the same dimensionality as ψ(n).
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ψ(n) =
1√
|Λ|

∑
p∈Λ̃

ei(~p·~na+p4n4aT )ψ̃(p)

with |Λ| = N3NT (N = N1N2N3) the total number of lattice points, we rewrite the action in momentum
space

S[ψ, ψ̄] = a3aT
∑

n,m∈Λ

ψ̄(n)D(n|m)ψ(m) = a3aT
∑
p,q∈Λ̃

˜̄ψ(p)D̃(p|q)ψ̃(q)

with

D̃(p|q) =
1

|Λ|
∑

n,m∈Λ

e−i(~p·~na+p4n4aT )D(n|m)ei(~q·~ma+q4m4aT )

=
1

|Λ|
∑

n,m∈Λ

e−i(~p·~na+p4n4aT )

[
1

2a

3∑
j=1

(
δn+ĵ,m − δn−ĵ,m

)
γj

+
1

2aT

(
δn+4̂,m − δn−4̂,m

)
γ4 +mδm,n1 + µδm,nγ4

]
ei(~q·~ma+q4m4aT )

=
1

|Λ|
∑
n∈Λ

e−i(~p·~na+p4n4aT )

[
1

2a

3∑
j=1

(
ei[~q·(~n+ĵ)a+q4n4aT ] − ei[~q·(~n−ĵ)a+q4n4aT ]

)
γj

+
1

2aT

(
ei[~q·~na+q4(n4+1)aT ] − ei[~q·~na+q4(n4−1)aT ]

)
γ4 + (m1 + µγ4) ei(~q·~na+q4n4aT )

]

=
1

|Λ|
∑
n∈Λ

ei[(~q−~p)·~na+(q4−p4)n4aT ]

[
1

2a

3∑
j=1

(
ei~q·ĵa − e−i~q·ĵa

)
γj

+
1

2aT

(
eiq4aT − e−iq4aT

)
γ4 +m1 + µγ4

]
= δp,qD̃(p)

where we have used the shortcut notation (~n± ĵ)i = ni ± δij and

D̃(p) =
1

aT

aT
a
i

3∑
j=1

sin(pja)γj + i sin(p4aT )γ4 + aTm1 + aTµγ4

 (2.6)

The partition function is

Z(T, µ) =

ˆ
DψDψ̄ e−S[ψ,ψ̄] = det D̃ =

∏
p∈Λ̃

detDD̃(p)

where the subscript D means that the determinant (or the trace) is to be taken in Dirac space. Now we
want to compute the energy density (remember that β = NTaT )

ε(µ, T ) = − 1

V3

∂

∂β
lnZ(T, µ)

∣∣
µaT fixed

= − 1

(Na)3NT

∂

∂aT

∑
p∈Λ̃

TrD ln D̃(p)
∣∣
µaT fixed

12



Using the useful relation3

(
i

4∑
µ=1

cµγµ + c11

)−1

=

−i
4∑

µ=1
cµγµ + c11

4∑
µ=1

c2µ + c21

(2.7)

which holds for generic, real coefficients c1 and cµ. In our derivative we have

∂

∂aT

∑
p∈Λ̃

TrD ln D̃(p)
∣∣
µaT fixed

=
∑
p∈Λ̃

TrD

(
D̃−1(p)

∂

∂aT
D̃(p)

∣∣
µaT fixed

)

= − 1

aT

∑
p∈Λ̃

TrD1 +
∑
p∈Λ̃

TrD

(aT D̃(p)
)−1 ∂

∂aT

aT
a
i

3∑
j=1

sin(pja)γj + i sin(p4aT )γ4 + aTm1 + aTµγ4

∣∣∣∣∣∣
µaT fixed



= −4|Λ|
aT

+
∑
p∈Λ̃

TrD


i 3∑

j=1

(aT
a

sin(pja)
)
γj + i (sin(p4aT )− iaTµ) γ4 + aTm1

−1 i

a

3∑
j=1

sin(pja)γj +m1




= −4N3NT
aT

+
∑
p∈Λ̃

TrD



−i

3∑
j=1

(
aT
a sin(pja)

)
γj − i (sin(p4aT )− iaTµ) γ4 + aTm1

3∑
j=1

(
aT
a sin(pja)

)2
+ (sin(p4aT )− iaTµ)

2
+ (aTm)2


 i

a

3∑
j=1

sin(pja)γj +m1




= −4N3NT
aT

+ 4
∑
p∈Λ̃


aT
a2

3∑
j=1

sin2(pja) + aTm
2

3∑
j=1

(
aT
a sin(pja)

)2
+ (sin(p4aT )− iaTµ)

2
+ (aTm)2


Now we set aT = a and get

ε(µ, T ) =
4

a4
− 4

N3NTa4

∑
p∈Λ̃


3∑
j=1

sin2(pja) + (am)2

(sin(p4a)− iaµ)
2

+
3∑
j=1

sin2(pja) + (am)2


As before, we are interested in the thermodynamic limit as well as the zero temperature case, that is we

substitute

1

N3NTa4

∑
p∈Λ̃

→

+π
aˆ

−πa

d4p

(2π)4
=

1

a4

+πˆ

−π

d4(pa)

(2π)4

from which it follows
3Actually (2.7) still holds for c4 ∈ C.
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ε(µ) = − 1

4π4a4

+πˆ

−π

d4q

3∑
j=1

sin2 qj + (am)2

(sin q4 − iaµ)
2

+
3∑
j=1

sin2 qj + (am)2

− (µ = 0)

where, as before, we have subtracted the µ = 0 contribution. Besides the naive introduction of the
chemical potential on the lattice, in (2.5) we have also used naive fermions, which are subject to doubling
[29, 28]. It turns out that this is not a source of problems and merely contributes a factor of 16 to ε(µ) (which
can be removed by using e.g. Wilson fermions). In order to perform the continuum limit, it is convenient to
separate the contribution from the center of the Brillouin zone to that from its corners: for each momentum
component we have

+πˆ

−π

dpµ f (sin pµ) =

−π2ˆ

−π

dpµ f (sin pµ) +

+π
2ˆ

−π2

dpµ f (sin pµ) +

+πˆ

+π
2

dpµ f (sin pµ)

=

+π
2ˆ

−π2

dpµ f (sin pµ) +

+π
2ˆ

0

dpµ f (sin(pµ + π)) +

0ˆ

−π2

dpµ f (sin(pµ − π))

=

+π
2ˆ

−π2

dpµ f (sin pµ) +

+π
2ˆ

−π2

dpµ f (− sin pµ)

which is also true if we have pµ → pµ + α for some α. In our case, for the spatial components we have
a function of sin2 pj , which is even in sin pj , whereas for the temporal component we have a function of
(sin p4 − iaµ)

2, which is even in sin p4 modulo a change of sign in µ. The conclusion is that we can make the
substitution

+πˆ

−π

d4q → 16

+π/2ˆ

−π/2

d3q

1

2

+π/2ˆ

−π/2

dq4 +
1

2

+π/2ˆ

−π/2

dq4 (µ→ −µ)


After setting

˜̃p ≡

√√√√ 3∑
j=1

sin2(pja) + (am)2

we have

ε(µ) = − 4

π4

+ π
2aˆ

− π
2a

d3p ˜̃p2

1

2

˛

C

dp4 g(p4, µ) +
1

2

˛

C

dp4 g(p4,−µ)−
˛

C

dp4 g(p4, 0)


with

g(p4, µ) ≡ 1

(sin(p4a)− iaµ)
2

+ ˜̃p2
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C is the same contour of Figure 2.1 extending from − π
2a to + π

2a on the real p4 axis (we are already
thinking of taking the continuum limit a→ 0 and the semicircle gives no contribution, since g(p4, µ) ∼ e−|p4|

for p4 → +i∞). Following the same reasoning of the continuum case, the conclusion is that

˛

C

dp4 g(p4, µ) +

˛

C

dp4 g(p4,−µ)−
˛

C

dp4 g(p4, 0)

= 2πi

[
1

2
Res

(
g, p+

4

)
+

1

2
θ
(
=p−4

)
Res

(
g, p−4

)
+

1

2
θ
(
=p+

4

∣∣
−µ

)
Res

(
g
∣∣
−µ, p

+
4

∣∣
−µ

)
− Res

(
g
∣∣
µ=0

, p+
4

∣∣
µ=0

)]

The poles are given by

sin(p±4 a) = i(aµ± ˜̃p)

and the residues

Res
(
g, p±4

)
= ± 1

2i ˜̃pa

√
1 +

(
aµ± ˜̃p

)2
Now we see the main difference with respect to the continuum case: Res

(
g, p+

4

)
is now µ-dependent and

therefore cannot be cancelled by Res
(
g
∣∣
µ=0

, p+
4

∣∣
µ=0

)
, so it gives rise to a µ-dependent divergence. We are

left with the integral

ε(µ) = − 4

π3

1

a

+ π
2aˆ

− π
2a

d3p ˜̃p

1

2

1√
1 +

(
aµ+ ˜̃p

)2 − 1

2

θ
(
aµ− ˜̃p

)√
1 +

(
aµ− ˜̃p

)2 +
1

2

θ
(
−aµ+ ˜̃p

)√
1 +

(
−aµ+ ˜̃p

)2 − 1√
1 + ˜̃p2



= − 4

π3

1

a

+ π
2aˆ

− π
2a

d3p ˜̃p

1

2

1√
1 +

(
˜̃p+ aµ

)2 − 1

2

θ
(
aµ− ˜̃p

)√
1 +

(
˜̃p− aµ

)2 +
1

2

1− θ
(
aµ− ˜̃p

)√
1 +

(
˜̃p− aµ

)2 − 1√
1 + ˜̃p2



= − 4

π3

1

a

+ π
2aˆ

− π
2a

d3p ˜̃p

1

2

1√
1 +

(
˜̃p+ aµ

)2 +
1

2

1√
1 +

(
˜̃p− aµ

)2 − 1√
1 + ˜̃p2

−
θ
(
aµ− ˜̃p

)√
1 +

(
˜̃p− aµ

)2


Being each integral performed in half of the Brillouin zone, we can easily set ˜̃p ∼
a→0

a

√
~p 2 +m2, so that

ε(µ)
∣∣
m=0

= −16

π2

∞̂

0

dl l3

1

2

1√
1 + a2 (l + µ)

2
+

1

2

1√
1 + a2 (l − µ)

2
− 1√

1 + a2l2
− θ (aµ− al)√

1 + a2 (l − µ)
2


While the last integral is convergent thanks to the θ function, the first three terms give a divergence. Let

us extract the leading term for a→ 0
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ε(µ)
∣∣
m=0

∼ −
∞̂

0

dl l3
[

1

2

(
1− 1

2
a2 (l + µ)

2
+ 1− 1

2
a2 (l − µ)

2

)
−
(

1− 1

2
a2l2

)
+O

(
a4
)]

+O (1)

∼ −
∞̂

0

dl l3
(
−1

2
µ2a2 +O

(
a4
))

+O (1) ∼
(

1

2
µ2a2 +O

(
a4
)) ∞̂

0

dl l3 +O (1)

∼
(

1

2
µ2a2 +O

(
a4
)) 1

a4
+O (1) ∼ µ2

a2
+O (1)

where we have made use of the fact that l goes to infinity as ∼ 1/a.

We have seen that the naive introduction of the chemical potential on the lattice gives rise to quadratic
divergences in the continuum limit even for free fermions. One possible way out is to introduce non covariant
terms in the action (2.5). Even though this is possible (for µ 6= 0 the Euclidean symmetry is already broken),
there is a better prescription which is more aware of what happens in the continuum formulation. The reason
why the problem is not present in the continuum is that, in the Euclidean formulation, the chemical potential,
being coupled to the temporal component of the conserved vector current, enters the action as the fourth
component of an imaginary, constant gauge field, that is it plays the role of iA4. Let us consider QED in the
continuum. The chemical potential is introduced like a photon field: the consequence is that, in computing
Feynman graphs, the n-th power of an expansion in µ is equivalent to the insertion of n external photon
legs with zero momentum. It can be shown that renormalizability of Γ(n+l,m) (the graph with n+ l external
photon legs and m external fermionic legs) implies the finiteness of the contribution ∼ µl to Γ(n,m) (see
Figure 2.2 for a graphical representation). The effect of µ is to substitute l factors of electric charge e (or,
equivalently, the electromagnetic coupling constant α) with µ and to make l wave function renormalization
factors disappear. As a consequence of gauge invariance, then, the missing factors “cancel” each other. See
[32] and references therein for further details.

n

m

n

m

l

Figure 2.2: On the left, Γ(n,m), whose ∼ µl contribution is equivalent to Γ(n+l,m) (on the right), where l zero
momentum external photon legs have been inserted.

Going back to the lattice case, the problem lies in (2.5), where the chemical potential does not appear
as the fourth component of a gauge field on the lattice, thus violating gauge invariance. Recall that in the
lattice formulation of a gauge theory, the role of the gauge field is played by link variables Uµ̂(n) that belong
to the gauge group and are related to the continuum gauge field A(x) (which belongs to the algebra of the
gauge group) by

Uµ̂(n) = eiaAµ(na)
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This suggests that, in order for the chemical potential to act as the fourth component of a gauge field, it
should be introduced in the fermionic action as an exponent, at the very same position of the temporal link
variables in the action of the interacting theory (see [28, 29, 32] for details). The right prescription for the
(naive) Dirac operator is thus

D(n|m) =
1

2a

3∑
j=1

(
δn+ĵ,m − δn−ĵ,m

)
γj +

1

2aT

(
eaTµδn+4̂,m − e

−aTµδn−4̂,m

)
γ4 +mδm,n1

and we immediately see that all the steps leading to (2.6) can be repeated in the very same way, but
with the substitution p4 → p4 − iµ, which gives

ε(µ) = − 1

4π4a4

+πˆ

−π

d4q

3∑
j=1

sin2 qj + (am)2

sin2(q4 − iaµ) +
3∑
j=1

sin2 qj + (am)2

− (µ = 0)

As sin2(q4 − iaµ ± π) = sin2(q4 − iaµ), there is no need for a change of sign in µ like in the previous
computations: the multiplicity due to the doublers (high momentum excitations on the corners of the
Brillouin zone) simply yields a factor of 16 when integrating over half the Brillouin zone. The steps leading
to the final result are pretty much the same, with a few differences. The function to integrate over C is

g(p4, µ) ≡ 1

sin2(p4a− iaµ) + ˜̃p2

whose poles are given by

sin(p±4 a− iaµ) = ±i ˜̃p

from which it follows =(p±4 a−iaµ) = sinh−1(± ˜̃p), or equivalently =
(
p±4 a

)
= aµ±sinh−1(˜̃p). The residues

are

Res
(
g, p±4

)
= ± 1

2i ˜̃pa
√

1 + ˜̃p2

which are independent of µ and so ensure the cancellation of the diverging terms. Being

˛

C

dp4 g(p4, µ)−
˛

C

dp4 g(p4, 0) = 2πi
[
Res

(
g, p+

4

)
+ θ

(
=p−4

)
Res

(
g, p−4

)
− Res

(
g
∣∣
µ=0

, p+
4

∣∣
µ=0

)]

= 2πi

[
1

2i ˜̃pa
√

1 + ˜̃p2
−
θ
(
aµ− sinh−1(˜̃p)

)
2i ˜̃pa

√
1 + ˜̃p2

− 1

2i ˜̃pa
√

1 + ˜̃p2

]
= −

π θ
(
aµ− log

(
˜̃p+

√
1 + ˜̃p2

))
˜̃pa
√

1 + ˜̃p2

= −
π θ
(
eaµ − ˜̃p−

√
1 + ˜̃p2

)
˜̃pa
√

1 + ˜̃p2

we have
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ε(µ) = − 4

π4

+ π
2aˆ

− π
2a

d3p ˜̃p2

˛
C

dp4 g(p4, µ)−
˛

C

dp4 g(p4, 0)

 =
4

π3

1

a

+ π
2aˆ

− π
2a

d3p θ

(
eaµ − ˜̃p−

√
1 + ˜̃p2

) ˜̃p√
1 + ˜̃p2

In the continuum limit eaµ ∼ 1 + aµ,
√

1 + a2l2 ∼ 1 + 1
2a

2l2 and ˜̃p ∼ a |~p| for massless fermions, so that
our final result is

ε(µ)
∣∣
m=0

=
16

π2

∞̂

0

dl
l3√

1 + a2l2
θ
(

1 + aµ− al −
√

1 + a2l2
)
∼ 16

π2

∞̂

0

dl
l3√

1 + a2l2
θ

(
aµ− al − 1

2
a2l2

)

∼ 16

π2

∞̂

0

dl l3
(

1− 1

2
a2l2

)
θ (aµ− al) ∼ 16

π2

µ̂

0

dl l3 =
4

π2
µ4

which is precisely 16 times the continuum result (this factor of 16 may be removed by working e.g. with
Wilson fermions [29]).

2.3 The sign problem

We have gone a long way to show all the calculations leading to the lattice implementation of the chemical
potential. Now we will show in which sense such implementation gives rise to the sign problem. Let us
consider the Dirac operator of an SU(N) lattice gauge theory

D(n|m) =
1

2a

 3∑
j=1

(
Uĵ(n)δn+ĵ,m − U−ĵ(n)δn−ĵ,m

)
γj +

(
eaµU4̂(n)δn+4̂,m − e

−aµU−4̂(n)δn−4̂,m

)
γ4

+mδm,n1

(2.8)

where Uµ̂(n) are gauge link variables, belonging to the gauge group, with U†µ̂(n) = U−1
µ̂ (n) = U−µ̂(n).

By a suitable change of spacetime indices and using γ†µ = γµ as well as {γ5, γµ} = 0, it is easy to show that
the following relation holds

γ5D(µ) γ5 = D†(−µ) (2.9)

That is, with the introduction of the chemical potential, the Dirac operator is no more γ5-Hermitian.
While the naive Dirac operator in (2.8) is actually not very useful, as it yields doublers in the continuum
limit, it is easy to show that (2.9) holds also for doubler-free fermion regularizations such as Wilson.

Being (det γ5)
2

= 1, one immediate consequence of (2.9) is that

detD(µ) = detD(−µ)

so that the determinant of the Dirac operator is not real in presence of a chemical potential. Let us
consider the action of an interacting lattice gauge theory such as QED or QCD

S[U,ψ, ψ̄] = SG[U ] + SF [U,ψ, ψ̄]
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where SG is the pure gauge action, dependent only on the link variables and the fermionic action is,
analogously to (2.5), SF = ψ̄D(U)ψ. The partition function is

Z =

ˆ
DUDψDψ̄ e−S[U,ψ,ψ̄] =

ˆ
DU e−SG[U ]

ˆ
DψDψ̄ e−ψ̄D(U)ψ =

ˆ
DU e−SG[U ] detD[U ] =

ˆ
DU e−Seff [U ]

Seff [U ] = SG[U ]− ln detD[U ]

The probability measure that Monte Carlo processes are expected to sample for non-perturbative evalu-
ation of observables is

P [U ] =
1

Z
e−Seff [U ]

which gets complex in presence of a chemical potential. This is the so called sign problem4, which plagues
many lattice field theories, namely those referred to in Section 1. As already said, despite many attempts
to tackle the sign problem with various approaches, a conclusive and general solution seems still far from
being found. This is the reason why Lefschetz thimble regularization, which will be discussed in subsequent
sections, was proposed.

4The problem is actually a problem of complex terms in the action. The word “sign” comes from some models which lack a
positive definite fermionic determinant in favour of one with an alternating sign, while still being real.
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3 Morse theory and Lefschetz thimbles

In this section we give a lightweight mathematical introduction to Picard-Lefschetz theory, that is complex
Morse theory. This presentation is by no means complete: for a more thorough treatment of the subject,
the reader may refer to [33, 34, 35]. Algorithmic details as well as examples will be postponed to subsequent
sections. The purpose of all the machinery that will be presented here is to rewrite the partition function
of a generic lattice field theory with a complex action in such a way so that Monte Carlo sampling becomes
feasible. We will follow the work of Witten [34] and the first two works [26, 36] which proposed this approach
as a method for tackling the sign problem. Theoretical studies of different models with this method can be
found in [37, 38, 39, 40, 41, 42].

3.1 One-dimensional integrals

As an invitation to the topic, let us first consider a simple one-dimensional integral (which can be regarded
as a zero-dimensional field theory)

I(µ, λ) =

+∞ˆ

−∞

dx e−µx
2−λx4

with µ ∈ C and λ ∈ R+. In order to study the analytic properties of this integral, we go to the complex
plane, that is x → z ∈ C. Any sensible integration contour on which evaluate I must end up as |z| → ∞
in those regions of the complex z plane where <(µz2 + λz4) → +∞, thus ensuring convergence. If we set
z = |z|eiϕ, we see that the “good” regions are given by cos(4ϕ) > 0. In Figure 3.1 we see the contours Ci
connecting “good” regions at infinity: they are elements of the relative homology H1(C,CT ; Z), with T ∈ R
large, so that their ends at infinity lie in CT =

{
z ∈ C | <(µz2 + λz4) > T

}
. However, the Ci are not all

independent: being the integrand a holomorphic function, the sum of all the contours can be deformed to
zero, so that we can write

∑
i Ci = 0. As the original integration cycle C = R connects two good regions, it is

an element of the relative homology H1(C,CT ; Z) itself and therefore can be written as a linear combination
of Ci.

C1C2

C3 C4

Figure 3.1: “Good” regions on which <(µz2 +λz4)→ +∞ for |z| → ∞. Their union makes up CT . The four
contours {Ci} connect the “good” regions.

An interesting point of view is that of Schwinger-Dyson equations for an integral analogous to I(µ, λ)
[43, 44, 45, 46]. Being the Schwinger-Dyson equation of third order, the number of linearly independent
solutions is 3. Each independent solution in that context is an integral on a contour in the complex plane
connecting two of the four disjoint regions making up CT . A one-dimensional integral similar to I(µ, λ)
will be subject of a thorough study in Section 6 within a more general framework, so that the previous,
qualitative considerations should suffice.
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Now let us come back to the problem of doing Monte Carlo sampling with the complex action S(z) = µz2+λz4.
In elementary analysis, one technique that is often used is that of saddle point approximation, which consists
of two steps. First, one deforms the integration contour to a curve in the complex plane which follows the
direction of steepest descent of <(S) around a stationary point. Holomorphicity ensures that, along this
path, =(S) is constant, hence the name stationary phase. The second step consists of a Taylor expansion of
<(S) around the stationary point, which provides an easy way of computing an approximation to I. While
we are interested in non-perturbative computations (and thus we do not want to Taylor expand), the first
step is appealing: being =(S) is constant, it can be factored out of the integrals and Monte Carlo sampling
may then be performed with e−<(S) as a weight. In the next section we will discuss this approach in detail
within the framework of Morse theory.

3.2 Decomposition in terms of thimbles

Let us consider a real n-dimensional manifold Y with a volume form dV. Let S : Y → C be a complex
function over Y. We want to compute

I =

ˆ

Y

dV e−S

which may well be the partition function of an Euclidean lattice field theory whose dynamics is governed
by the action S (the following considerations also hold if we are to compute the expectation value of an
observable, provided that the original integral is convergent). Now let us assume that Y has a complexification
X with an involution operator ·̄ leaving Y fixed, so that y = ȳ ∀y ∈ Y ⊂ X . Let z = (z1, · · · , zn) be a set
of local holomorphic coordinates on X (with n = dimCX ). In the following we shall assume that S(z) is
holomorphic5 and thus satisfies Cauchy-Riemann relations

{
∂S
∂z̄i = 0
∂S̄
∂zi = 0

⇔

{
∂SR
∂xi = ∂SI

∂yi

∂SR
∂yi = −∂SI∂xi

(3.1)

where we have set zi = xi + i yi, SR = <(S), SI = =(S). Let us consider the function SR(x, y). First,
we notice that the set of critical points of SR coincides with the set of critical points of S thanks to (3.1),
that is

∇(xi,yi)SR = 0 ⇔ ∂ziS = 0

We label Σ = {pσ} ⊂ X the set of critical points of S, assuming that there are finitely many of them
and they are all non degenerate6, that is the matrix of the second derivatives (the Hessian) of S at pσ has
non-zero determinant. If this holds, SR is said to be a Morse function. Let us call H(S; pσ) the Hessian of
S at the critical point pσ with coordinates zσ = (z1

σ, · · · , znσ )

[H(S; pσ)]ij ≡
∂2S

∂zi∂zj

∣∣∣∣
zσ

H(S; pσ) is a complex symmetric n×n matrix. From (3.1), it follows that the 2n× 2n Hessian matrix of
SR at pσ has the structure (we set (x, y) = (x1, · · · , xn, y1, · · · , yn) as variables on which SR depends)

H(SR; pσ) =

(
< (H(S; pσ)) −= (H(S; pσ))
−= (H(S; pσ)) −< (H(S; pσ))

)
(3.2)

5Actually, all subsequent statements hold also if S contains some logarithms, which is crucial for applications to theories
with a term ∼ log detD coming from a fermionic Dirac operator D.

6This assumption will be released when we take symmetries into account.
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H(SR; pσ) has therefore n positive eigenvalues and n with opposite sign, so that the Morse index of pσ
is n for each critical point; SR is said to be a perfect Morse function. As a consequence, SR can be used to
determine a basis of the relative homology group which the integration cycle we are interested in belongs
to7. Define

XT ≡
{
z ∈ X

∣∣SR(z) ≥ T
}
⊂ X R+ 3 T � 1

that is XT is the union of those regions in X in which SR takes on arbitrarily large values. The relative
homology group we are interested in is H+

n ≡ Hn(X ,XT ; Z) and we can find a basis of H+
n using the set Σ

of critical points of S. Let us see how this is accomplished. After introducing a Kähler metric on X

ds2 =
1

2
gij̄
(
dzi ⊗ dz̄j + dz̄j ⊗ dzi

)
we write the steepest ascent (SA) equations8 for S

dzi

dt
= gij̄∂j̄S̄ (3.3)

where ∂j̄ ≡ ∂
∂z̄j . The name “steepest ascent” comes from the fact that, along the flow z(t) solution to

(3.3), SR is never decreasing

dSR
dt

=

(
dzj

dt
∂j +

dz̄j

dt
∂j̄

)
1

2

(
S + S̄

)
=

1

2

(
dzj

dt
∂jS +

dz̄j

dt
∂j̄S̄

)

=
1

2

(
gjk̄∂k̄S̄ ∂jS + gj̄k∂kS ∂j̄S̄

)
= gjk̄∂jS ∂k̄S̄ = gjk̄ (∂jS)

(
∂kS

)
≥ 0

where (3.1) has been used as well as (3.3) and the hermiticity of the metric. Given a critical point pσ, the
moduli space9 of solutions to (3.3) with the boundary condition that the flow approaches pσ for t → −∞,
that is

Jσ ≡
{
z(0) ∈ X

∣∣ żi = gij̄∂j̄S̄, lim
t→−∞

z(t) = zσ

}
⊂ X

is a manifold of real dimension n. This can be seen from the fact that there are n independent directions
along which one can leave pσ with increasing SR (the number of positive eigenvalues of H(SR; pσ) is n). Jσ
is called a Lefschetz thimble and can be seen as the union of all the SA curves starting from pσ at t→ −∞.
It is important to notice that, apart from the trivial flow z(t) = zσ ∀ t ∈ R, every flow belonging to Jσ has
SR → +∞ for t → +∞, hence Jσ is an element of the relative homology H+

n . This statement can fail if
there is a flow connecting two distinct critical points, that is z(t) → zτ for t → +∞ and pτ 6= pσ. In such
a case, we say that we are in presence of the Stokes phenomenon and Jσ is no more an element of H+

n . In
the following we shall assume that parameters on which S is dependent are sufficiently generic so that the
Stokes phenomenon does not occur, postponing a more detailed discussion of it. We have seen that each
Jσ is an element of the relative homology H+

n ; moreover, it can be shown that the thimbles generate the
relative homology H+

n with integer coefficients. So any integration cycle C ∈ H+
n can be decomposed as

C =
∑
σ nσ Jσ with nσ ∈ Z. In our case, this translates into

7We are assuming that the original integration cycle that we want to deform is a legitimate integration cycle connecting
regions of convergence for the sought integral, in the spirit of the previous section.

8In references and in common literature on the subject, the reader will most likely be confronted with steepest descent
equations (the sign in (3.3) is reversed) for −S; this is of course the same.

9Being (3.3) of first order in the flow time t, a solution is uniquely determined by giving the value of z at some t, say t = 0.
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I =

ˆ

Y

dV e−S =
∑
σ∈Σ

nσ

ˆ

Jσ

dV e−S

The fundamental feature of Jσ, which is the very reason why this formalism was proposed to tackle the
sign problem, is that SI is constant on Jσ. In fact, thanks to the SA equations (3.3)

dSI
dt

=

(
dzj

dt
∂j +

dz̄j

dt
∂j̄

)
1

2i

(
S − S̄

)
=

1

2i

(
dzj

dt
∂jS −

dz̄j

dt
∂j̄S̄

)
=

1

2i
gjk̄
(
∂k̄S̄ ∂jS − ∂jS ∂k̄S̄

)
= 0

Thus SI takes on the value at pσ on the whole thimble, eliminating the sign problem10 when one integrates
on Jσ, so that

I =
∑
σ∈Σ

nσ e
−iSI(zσ)

ˆ

Jσ

dV e−SR =
∑
σ∈Σ

nσ e
−S(zσ)

ˆ

Jσ

dV e−(SR−SR(zσ)) (3.4)

A more formal way of seeing the property of conservation of SI is to regard the Kähler form Ω = i
2gij̄ dzi∧dz̄j

of X as a symplectic structure on X ; then the equations (3.3), along with (3.1) are the same as an Hamil-
tonian flow with SI as Hamiltonian, which is then conserved [38]. Formula (3.4) suggests that one could
perform Monte Carlo simulations using e−SR as a probability weight.

3.3 The coefficients nσ

Now let us come to the issue of determining the coefficient nσ. Consider the union of those regions in X in
which SR takes on arbitrarily small values

X−T ≡
{
z ∈ X

∣∣SR(z) ≤ −T
}
⊂ X R+ 3 T � 1

and the relative homology H−n ≡ Hn(X ,X−T ; Z). We now seek a basis of H−n . To each critical point pσ
we attach a dual thimble11 Kσ defined by12

Kσ ≡
{
z(0) ∈ X

∣∣ żi = −gij̄∂j̄S̄, lim
t→−∞

z(t) = zσ

}
⊂ X

that is the union of all the steepest descent (SD) curves starting at pσ for t→ −∞. Just as the Jσ form
a basis of H+

n , the Kσ form a basis of H−n . We introduce the bilinear form

〈 , 〉 : H+
n ⊗H−n → Z

which gives the (oriented) intersection number between a cycle of H+
n and one of H−n . Since we are in

the hypothesis of absence of the Stokes phenomenon, there are no flows connecting distinct critical points,
so that 〈Jσ,Kτ 〉 = 0 for pσ 6= pτ . The only intersection between H+

n and H−n is the trivial flow z(t) = zσ ∀ t
so that, with a suitable choice of orientations, we have

〈Jσ,Kτ 〉 = δστ

10There is actually a potential residual sign problem due to the complex volume element dV appearing in the integrals over
Jσ . This issue will be discussed later.

11The dual thimble is often called unstable thimble, whereas Jσ is called stable thimble. This terminology comes from the
fact that stable (unstable) thimbles connect regions of convergence (divergence) of the integral I.

12A completely analogous definition of Kσ uses steepest ascent equations with z(+∞) = zσ as boundary condition.
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When applied to the decomposition of a cycle C ∈ H+
n , this gives

〈C,Kτ 〉 =
∑
σ∈Σ

nσ〈Jσ,Kτ 〉 =
∑
σ∈Σ

nσ δστ = nτ

so nσ = 〈C,Kσ〉 is the oriented intersection number between the original integration cycle C and the dual
thimble Kσ attached to pσ. In our case nσ = 〈Y,Kσ〉.

3.4 The set of critical points

In the previous sections we have generically referred to Σ as the whole set of critical points of S. As for a
realistic field theory a complete enumeration of its classical solutions (i.e. the critical points of the action)
is likely to be unfeasible, it is of great importance to understand which critical points actually contribute to
the expansion (3.4). Let us set

Smin ≡ min
z∈C

SR(z)

that is the absolute minimum of SR on the original manifold of integration C. The set of critical points
Σ = {pσ} can be decomposed as the disjoint union of three sets

Σ = Σ0 ∪ Σ≤ ∪ Σ>

With the following definitions

Σ0 ≡
{
pσ ∈ Σ

∣∣ pσ ∈ C}
Σ≤ ≡

{
pσ ∈ Σ

∣∣ pσ /∈ C, SR(zσ) ≤ Smin

}
Σ> ≡

{
pσ ∈ Σ

∣∣ pσ /∈ C, SR(zσ) > Smin

}
All critical points belonging to Σ≤ give no contribution to (3.4); an explanation of this is as follows.

Consider the unstable thimble Kσ associated to pσ ∈ Σ≤: on Kσ SR can only decrease, starting from a value
SR(zσ) that is already smaller than the smallest value of SR on C. The consequence is that any flow which
is part of Kσ can never intersect C, thus giving nσ = 0. Now consider a critical point pσ ∈ Σ>, which can in
principle (but does not necessarily have to) contribute to the decomposition in thimbles. The contribution of
such a critical point is suppressed by a factor of e−(SR(zσ)−Smin) with respect to the thimble attached to the
global minimum of SR in C. Any critical point pσ ∈ Σ0 automatically has nσ = 1 (with a suitable choice of
orientation) because Kσ intersects C just once, precisely at pσ. The contribution of the latter class of critical
points is exponentially suppressed for the same reasons given for Σ>. It is expected that these suppressions
become stronger in the thermodynamic limit. However, more complicated situations (such as an accumulation
of critical points in a neighbourhood of the absolute minimum of SR in C) cannot be in principle excluded.
In [26] an interacting scalar field theory at finite chemical potential is discussed. Let us call J0 the thimble
attached to the global minimum of the action on the original domain of integration C. It is shown that,
considering only the integral over J0, one gets a field theory with the same degrees of freedom, symmetries,
symmetry representations, perturbation theory and continuum limit as the original theory formulated on C.
Moreover, this is shown to hold at any value of µ. One is thus tempted to regard an integration over only J0

as a legitimate regularization of the original field theory. Of course, universality is not a theorem13 and these
statements are definitely not the last word on the matter; in particular, considerations from the subject
of resurgence [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58] may shed some light on the relation between
perturbative and non-perturbative physics also in the framework of Morse theory and Lefschetz thimbles.

13Moreover, this argument is supposed to hold in the thermodynamic limit.
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3.5 The Stokes phenomenon

In order to ensure convergence of the integrals in (3.4), one requires that SR → +∞ for t→ +∞ along any
given solution to (3.3) on Jσ. However, if there is a flow such that z(t) → zτ for t → +∞, with pτ 6= pσ,
this requirement cannot be met and the decomposition in thimbles does not hold any more. This is the
so-called Stokes phenomenon. Let us consider the space of parameters14 on which the action S is dependent.
To be more specific, let κ be a parameter on which S depends continuously. In general, there will be some
curves (called Stokes curves) in the κ complex plane such that, when κ lies on one of them, the Stokes
phenomenon occurs. Identifying the Stokes curves for a generic field theory can be highly non trivial and
may require ad-hoc considerations. There is, however, a necessary (although not sufficient) condition for the
Stokes phenomenon to occur. As SI is conserved by any flow of SA or SD, for a flow to connect two distinct
critical points pσ and pτ , one must have SI(zσ) = SI(zτ )15. Therefore, if for a given value of κ and for each
couple of critical points (pσ, pτ ) one has SI(zσ) 6= SI(zτ ), there cannot be any Stokes phenomenon. When
κ goes through a Stokes curve, the coefficients nσ may jump. These discontinuities compensate the jump
in shape of some thimbles (which in turn cause a sharp change in the integrals over the thimbles). This
compensation occurs because the original integral I is continuous in κ, so the result of the decomposition
(3.4) cannot undergo a discontinuity. In general, provided that Stokes curves are correctly identified, it is
simple to compute the values of the nσ after a jump: one just imposes the continuity of the integral I before
and after the jump. An example of this procedure will be given in Section 6.

3.6 Tangent space at a critical point

In the previous sections we have been rather generic; now let us consider a more concrete setting: we set
Y = Rn (and therefore X = Cn) along with the standard Euclidean metric. We also consider a scalar field
theory with n real degrees of freedom {xi}. The partition function is

Z =

ˆ

Rn

dnx e−S(x)

We complexify the fields by taking xi → zi = xi + i yi. Let us concentrate on a single critical point pσ
with coordinates zσ. We introduce the vector notation

Z =

z
1

...
zn

 ∈ Cn V =



x1

...
xn

y1

...
yn


∈ R2n

and expand the action to second order around zσ

S(z) ≈ S(zσ) +
1

2
ZTH(S; pσ)Z (3.5)

where we have assumed zσ = 0 for the sake of simplicity. Takagi’s factorization theorem states that, given
the complex symmetric matrixH(S; pσ), there exists a unitary n×nmatrixW such thatWTH(S; pσ)W = Λ,
with Λ = diag (λ1, · · · , λn) and the λi (called Takagi values) are all real and non-negative. We assume that
they are all positive (just as before we assumed H(S; pσ) to be invertible). The columns of W are n
normalized Takagi vectors v(i), that is

14The parameters are assumed to be complex in general.
15For a flow to connect pσ and pτ , one must also have SR(zσ) 6= SR(zτ ), as any non-trivial flow cannot have constant SR.
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n∑
k=1

v
(i)
k v̄

(j)
k = δij

so that we can rephrase Takagi’s theorem as

H(S; pσ)v(i) = λiv̄
(i)

or, equivalently,

H(S; pσ)W = WΛ

Given the complex projector P = (1n×n i1n×n) ∈ Cn×2n, it is straightforward to show that, if v+ ∈ R2n

is a normalized eigenvector of H(SR; pσ) with (positive) eigenvalue λ, then Pv+ ∈ Cn is a Takagi vector of
H(S; pσ) with Takagi value λ. At the same time, if v− ∈ R2n is a normalized eigenvector of H(SR; pσ) with
eigenvalue −λ, then Pv− ∈ Cn is a Takagi vector of H(S; pσ) with −λ as Takagi value; this last statement
holds for iPv+ as well. All this is discussed in Appendix A. The tangent space to Jσ at the critical point
is spanned by the n complex vectors v(i), while the tangent space to Kσ at pσ is spanned by the n complex
vectors iv(i). Linear combinations of Takagi vectors are to be taken with real coefficients, to preserve the
right dimensionality. These considerations are more transparent if one changes variables. We set Z = Wζ
(or, equivalently, ζ = W †Z). In general ζi = ηi + i ξi ∈ C; however, looking at the second order expansion of
the action we have

S(z) ≈ S(zσ) +
1

2
(Wζ)

T
H(S; pσ) (Wζ) = S(zσ) +

1

2
ζT
(
WTH(S; pσ)W

)
ζ = S(zσ) +

1

2
ζTΛζ

= S(zσ) +
1

2

n∑
i=1

λiζ
2
i = S(zσ) +

1

2

n∑
i=1

λi (ηi + i ξi)
2

so that

SR(z) ≈ SR(zσ) +
1

2

n∑
i=1

λiη
2
i −

1

2

n∑
i=1

λiξ
2
i

SI(z) ≈ SI(zσ) +

n∑
i=1

λiηiξi

This makes it manifest that, by taking ξi = 0, we stay on the stable thimble Jσ (where SR increases),
while by taking ηi = 0, we stay on the unstable thimble Kσ (where SR decreases). This shows that linear
combinations of Takagi vectors v(i) with real coefficients span Jσ at pσ, whilst purely imaginary linear
combinations of v(i) (that is real combinations of iv(i)) span Kσ at pσ. It is worth noting that the change
of variables one needs to use to integrate on Jσ close to the critical point is Z = Wη (with real η), and the
integration measure dnz = detWdnη, with detW = ei ωσ , being W unitary.

3.7 Tangent space at a generic point

We have discussed the tangent space to Jσ at the critical point pσ in detail. Unfortunately, we lack a local
description for the tangent space at a generic point z ∈ Jσ. Let us see how far we can go with respect to
the characterization of TzJσ. Consider the integral of a generic function over the thimble
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ˆ

Jσ

dnz f(z) (3.6)

where dnz = dz1 ∧ · · · ∧ dzn is the right form to integrate on the thimble16, which is a manifold of real
dimension n embedded in Cn (it can be thought as embedded in R2n as well). Now, at a generic point
z ∈ Jσ, the form dnz and the tangent space TzJσ are not parallel in general [59]. In order to express an
integral over Jσ as an ordinary integral on Rn, we have to change coordinates from the canonical basis of
Cn (dual to the forms dzi) to a basis of TzJσ. Let {U (i)} be a (local) basis of TzJσ which is orthonormal
with respect to the standard Hermitian metric of Cn; the matrix U ∈ Cn×n whose columns are the U (i) is
therefore unitary. Consider a neighbourhood Γz ⊂ Jσ of z ∈ Jσ: on Γz, any point can be reached by a
displacement δz =

∑
i δyi U

(i) with respect to z, where the δyi are n real local coordinates in TzJσ.17 From
the unitarity of U , it follows that |δz|2 = δy2. Now, let us introduce a local chart ϕ : Γz ⊂ Jσ → Rn defined
by

ϕ

(
z +

n∑
i=1

δyi U
(i)

)
= δy +O

(
δy2
)
∈ Rn (3.7)

Using ϕ, we can rewrite the integral (3.6) in the following way18

ˆ

Γz

dnz f(z) =

ˆ

ϕ(Γz)

dnδy f
(
ϕ−1 (δy)

)
detU

(
ϕ−1 (δy)

)
(3.8)

where detU = ei ω because U is unitary. ei ω is what is often termed residual phase. The residual
phase takes into account the (local) orientation of the thimble with respect to Cn. Being complex, the
residual phase has to be taken into account by reweighting observables when integrating over Jσ. This can
in principle give rise to a “residual sign problem”. This residual sign problem is expected to be rather mild
(with respect to the original one), nevertheless it is an issue which should be carefully checked for each theory
one wants to study with the thimble approach. So far results have been quite encouraging in this respect
[59, 60, 36, 61, 62]. We have traded the complex measure dnz for dnδy, which is real, with the introduction
of detU as a consequence. We now come to the problem of determining a local basis of TzJσ, given the
only tangent space to the thimble we know, the one at the critical point, i.e. TpσJσ. First, consider the SA
equations for an action S

dzi
dt

=
∂S̄

∂z̄i

dz̄i
dt

=
∂S

∂zi

(3.9)

Given the coordinates of Cn, that is zi and z̄i, any vector field V can be seen as a directional derivative
operator acting on complex functions over Cn. This yields the decomposition

V = V i∂i + V̄ i∂ī

16We note that dnz is different from the standard volume form of Cn, which is dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n. dnz has precisely
the right dimension to integrate on Jσ with dimRJσ = n.

17As a consequence, we can change variables from δz to δy and we get the Jacobian detU , that is (thinking of z as fixed)
dnz = dnδz = det

(
∂δz
∂δy

)
dnδy = detUdnδy, because

(
∂δz
∂δy

)
ij

= ∂δzi
∂δyj

= U
(j)
i = Uij .

18Here we are concentrating on Γz (all these statements hold in a neighbourhood of a given point z on the thimble). Any
algorithm for numerical integration over Jσ should be able to integrate seamlessly over the whole thimble.
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where V i and V̄ i are functions of z and z̄. As partial derivatives commute,19 we have

0 = [W,V ]j =
[
W i∂i + W̄ i∂ī , V

i∂i + V̄ i∂ī
]
j

=
(
W i∂i + W̄ i∂ī

)
Vj −

(
V i∂i + V̄ i∂ī

)
Wj

Now we set Wi = ∂īS̄, that is the flow of steepest ascent and compute

0 =
(
∂īS̄ ∂i + ∂iS ∂ī

)
Vj −

(
V i∂i + V̄ i∂ī

)
∂j̄S̄ =

(
dzi
dt
∂i +

dz̄i
dt
∂ī

)
Vj − V i∂i∂j̄S̄ − V̄ i∂ī∂j̄S̄ =

dVj
dt
− V̄ i∂ī∂j̄S̄

where we have used the holomorphicity of the action, the chain rule and equations (3.9). We end up with
the parallel transport (PT) equation20

dVj
dt

=

n∑
i=1

V̄i

(
∂2S

∂zi∂zj

)
(3.10)

which holds in particular for any tangent basis vector U (i). Thus, by solving (3.10) for each U (i)(t) along
the flow given by (3.9), one gets the whole basis of TzJσ, where z = z(t) is a solution to SA equations with
the appropriate boundary condition defining Jσ. The right initial condition to solve the PT equations for
the tangent vectors U (i) is that U (i)(t0) ∼ v(i) at a time t0 sufficiently small so that z(t0) is close to zσ, at
which the tangent basis consists of the set of Takagi vectors v(i). The matrix of second derivatives of S is the
Hessian of the action computed along the flow at z(t).21 A numerical solution of (3.10) is by far the most
computationally demanding task when integrating over Jσ. It is instructive to look at another, “variational”
derivation of (3.10). We can linearize (3.9) by considering an infinitesimal displacement δz. Making use of

δ =

n∑
i=1

(
δzi

∂

∂zi
+ δzi

∂

∂z̄i

)

we work out a flow equation for δz

d

dt
(δzj) = δ

(
dzj
dt

)
=

n∑
i=1

(
δzi

∂

∂zi
+ δzi

∂

∂z̄i

)
∂S̄

∂z̄j
=

n∑
i=1

δzi

(
∂2S

∂zi∂zj

)

in which δz may well be a tangent space vector, e.g. V (i).

19This will no longer be true when we consider Lie groups: in that case we will have to take into account the algebra of Lie
derivatives.

20The name “parallel transport” comes from the fact that [ ∂S, V ] = L∂S V , so equation (3.10) is a statement of parallel
transporting the vector V along the flow given by ∂S by imposing that the Lie derivative of V along the flow ∂S be 0.

21It is important to understand that the eigenvectors of the Hessian at a generic configuration do not span the tangent space
to the thimble at that configuration.
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4 Gauge theories

In the previous section we have discussed the fundamentals of thimble decomposition for a scalar field theory.
In this section we introduce the thimble formalism in the context of gauge theories. We will immediately
see that new issues arise due to the Lie group structure. As a prototype for a gauge theory, the reader may
think of one-link models with complex coupling, lattice Yang-Mills theory with complex gauge coupling or
with a θ-term or full QCD with a sign problem due to finite chemical potential. In order to be sufficiently
general with the formalism, in this section we will consider a theory ruled by an action S(U) where {Uk}
is a collection of gauge variables (k is a generic multi-index, which may be in place of, e.g. link position
and direction (n, µ̂)), belonging to a certain compact Lie group, which we shall set to SU(N). An abridged
version of these notions can be found in [63].

4.1 Complexification and Lie derivatives

Complexification of the fields boils down to complexifying the Lie algebra of su(N), which then becomes
sl(N,C). Thus, for gauge variables U

SU(N) 3 U = eixaT
a

→ eizaT
a

= ei(xa+iya)Ta ∈ SL(N,C)

where sum is understood over colour indices a = 1 · · ·N2 − 1. Notice that, after complexification,the
gauge group is no more compact22. The Hermitian and traceless generators T a of SU(N) (which are taken
to be in the fundamental representation) satisfy the commutation relations

[
T a, T b

]
= ifabc T c

and are normalized so that

Tr
(
T aT b

)
=

1

2
δab

In going from SU(N) to SL(N,C), we have

SU(N) 3 U† = e−ixaT
a

→ e−izaT
a

= e−i(xa+iya)Ta = U−1 ∈ SL(N,C)

which tells us that, whenever we wish to complexify a theory with an action that is function of U and
U† (as it usually happens), we have to replace U† with U−1. As conjugate field (which correspond to z̄,
conjugate to z of a scalar field theory) we take Ū ≡

(
U†
)−1. This conjugation operation corresponds to

SL(N,C) 3 U 7→ Ū ≡
[(
eizaT

a
)†]−1

=
(
e−iz̄aT

a
)−1

= eiz̄aT
a

which means z → z̄.23 Notice that SU(N) ⊂ SL(N,C) is left invariant by this conjugation, as it should.
We now introduce the Lie derivatives ∇a, ∇̄a

22Even though the gauge group is not compact, expectation values of observables are expected to remain finite, as convergence
of these integrals is ensured by the thimble regularization.

23It is important to keep in mind that Ū refers to taking the complex conjugate in the algebra; one never takes the conjugate
of Ta.
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∇af(U) ≡ ∂

∂α
f
(
eiαT

a

U
)∣∣∣∣
α=0

∇af(Ū) ≡ 0

∇̄af(Ū) ≡ ∂

∂α
f
(
eiαT

a

Ū
)∣∣∣∣
α=0

∇̄af(U) ≡ 0

acting on functions of U or Ū (we will be concerned with holomorphic actions, which depend only on U).
We define the derivative operator ∇k

∇kf({Ul}) ≡ T a∇akf({Ul}) = T a
∂

∂α
f
(
eiαT

a

Uk, {Ul 6=k}
)∣∣∣∣
α=0

and analogously for ∇̄k ≡ T a∇̄ak. It is also convenient to introduce two “real” derivatives, ∇a< and ∇a=,
defined by

∇a< ≡ ∇a + ∇̄a

∇a= ≡ i
(
∇a − ∇̄a

)
or, equivalently

∇a =
1

2
(∇a< − i∇a=)

∇̄a =
1

2
(∇a< + i∇a=)

It is straightforward to show that these derivatives satisfy the Cauchy-Riemann equations (analogous to
(3.1)) for any function S(U) = SR(U) + i SI(U)

{
∇̄aS(U) = 0

∇aS̄(Ū) = 0
⇔

{
∇a<SR = ∇a=SI
∇a=SR = −∇a<SI

From these relations it follows

∇akS = ∇a<,kSR − i∇a=,kSR

∇̄akS̄ = ∇a<,kSR + i∇a=,kSR

and

∇a<,kSR =
1

2

(
∇akS + ∇̄akS̄

)
∇a=,kSR = − 1

2i

(
∇akS − ∇̄akS̄

)
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as well as

∇a<,k∇
a′

<,k′S
R =

1

2

(
∇ak∇a

′

k′S + ∇̄ak∇̄a
′

k′ S̄
)

∇a<,k∇
a′

=,k′S
R = − 1

2i

(
∇ak∇a

′

k′S − ∇̄ak∇̄a
′

k′ S̄
)

∇a=,k∇
a′

<,k′S
R = − 1

2i

(
∇ak∇a

′

k′S − ∇̄ak∇̄a
′

k′ S̄
)

∇a=,k∇
a′

=,k′S
R = −1

2

(
∇ak∇a

′

k′S + ∇̄ak∇̄a
′

k′ S̄
)

The previous relations, along with ∇̄akS̄ = ∇akS 24, ensure that the Hessian H(SR;Uσ) at a critical point
Uσ (for which ∇akS(Uσ) = 0) has the same structure as (3.2). One should keep in mind that these derivatives
do not commute in general, but they obey the su(N) Lie algebra. In particular

[
∇a,∇b

]
f(U) = ∇a∇bf(U)−∇b∇af(U) =

∂

∂α

∂

∂β
f
(
eiαT

a

eiβT
b

U
) ∣∣∣∣

α=β=0

− ∂

∂β

∂

∂α
f
(
eiβT

b

eiαT
a

U
) ∣∣∣∣

α=β=0

=
∂2

∂α∂β

[
f
(
eiαT

a+iβT b− 1
2αβ[Ta,T b]U

)
− f

(
eiαT

a+iβT b− 1
2αβ[T b,Ta]U

)] ∣∣∣∣
α=β=0

=
∂2

∂α∂β

[
−1

2
αβfabc∇cf(U) +

1

2
αβf bac∇cf(U)

] ∣∣∣∣
α=β=0

= −fabc∇cf(U)

where the vanishing terms have been neglected and Taylor expansion as well as Baker-Campbell-Hausdorff
formula has been used. The commutator for ∇̄ gives the very same result. Being U and Ū independent
variables, we have

[
∇a, ∇̄b

]
= 0, so that the complete algebra of Lie derivatives is the following

[
∇ak ,∇bk′

]
= −δk,k′fabc∇ck[

∇̄ak , ∇̄bk′
]

= −δk,k′fabc ∇̄ck[
∇ak , ∇̄bk′

]
= 0

(4.1)

An important consideration is due: although Lie derivatives do not commute in general, the Hessian
matrix of S is still symmetric at any critical point Uσ, because ∇akS(Uσ) = 0, so the commutators (4.1)
vanish at Uσ.

4.2 Steepest ascent and parallel transport equations

We seek a way of writing steepest ascent equations (3.9) with Lie derivatives. The natural way of doing this
is [64, 65]

d

dt
Uk(t) =

(
i T a∇̄akS [U(t)]

)
Uk(t) (4.2)

where the infinitesimal “displacement” of Uk is dt ∇̄akS̄ T a ∈ sl(N,C) (dUU−1 lies in sl(N,C) [29]). This
flow equation automatically keeps U(t) in SL(N,C), which can be readily seen by considering the expression

24This holds for all the actions we will consider in this work, thanks to their gauge-invariant trace of products of U .

31



Uk(t+ dt) = ei dt Ta∇̄akS̄Uk(t) (4.3)

whose first order expansion in dt coincides with (4.2)25. The chain rule along steepest ascent curves takes
the form

d

dt
= ∇̄akS̄∇ak +∇akS ∇̄ak

where summation over both k and a is understood. Along the SA curve U(t) solution to (4.2), SR = <(S)
is always non-decreasing, while SI = =(S) is conserved

dSR
dt

=
1

2

d

dt

(
S + S̄

)
=

1

2

(
∇̄akS̄∇akS +∇akS ∇̄akS̄

)
=
∑
k,a

|∇akS|
2

= ‖∇S‖2 ≥ 0

dSI
dt

=
1

2i

d

dt

(
S − S̄

)
=

1

2i

(
∇̄akS̄∇akS −∇akS ∇̄akS̄

)
= 0

which is why we call (4.2) a “steepest ascent” equation. We will now derive a generalization of paral-
lel transport equations (3.10) for gauge theories. In the present case, vectors can be seen as directional
derivatives which inherit the commutation relations of su(N). The decomposition

V = Vk,a∇ak + V̄k,a∇̄ak

allows us to write

[V, V ′] =
[
Vk,a∇ak + V̄k,a∇̄ak , V ′k′,b∇bk′ + V̄ ′k′,b∇̄bk′

]
= Vk,aV

′
k′,b

[
∇ak ,∇bk′

]
+ Vk,aV̄

′
k′,b

[
∇ak , ∇̄bk′

]
+ V̄k,aV

′
k′,b

[
∇̄ak ,∇bk′

]
+ V̄k,aV̄

′
k′,b

[
∇̄ak , ∇̄bk′

]
= −fabc Vk,aV ′k′,b∇ck δk,k′ − fabc V̄k,aV̄ ′k′,b∇̄ck δk,k′

=
(
−fabc Vk,aV ′k,b

)
∇ck +

(
−fabc Vk,aV ′k,b

)
∇̄ck

which reads (in components)

[V, V ′]k,c = −fabc Vk,aV ′k,b

As before, we pick V ′k,c = ∇̄ckS̄ in the commutator

− fabc Vk,a∇̄bkS̄ =
[
V, ∇̄S̄

]
k,c

=
(
Vk′,a∇ak′ + V̄k′,a∇̄ak′

)
∇̄ckS̄ −

(
∇̄ak′ S̄∇ak′ +∇ak′S ∇̄ak′

)
Vk,c

= Vk′,a∇ak′∇̄ckS̄ + V̄k′,a∇̄ak′∇̄ckS̄ −
dVk,c

dt

which, using the holomorphicity of the action (∇ak′ S̄ = 0), becomes (explicit summation is restored for
the sake of clarity)

25Actually, an iteration of (4.3) gives a solution to (4.2) which is of first order in dt. This is the Euler integration scheme.

32



d

dt
Vk,c(t) =

∑
k′,a

V̄k′,a(t) ∇̄ak′∇̄ckS [U(t)] +
∑
a,b

fabc Vk,a(t) ∇̄bkS [U(t)] (4.4)

The first term is the usual one with the Hessian of S computed at U(t)26 and the second term comes from
the non abelian nature of the (complexified) group. As for the case of a scalar theory, we can also derive
(4.4) in a “variational” way. In order to do this, we proceed with the same spirit of Section 3.7, remembering
that, within gauge theories, an infinitesimal displacement δz takes place in the algebra of the gauge group,
that is

Uk → U ′k = ei δzk,aT
a

Uk

so that we can write

δ =
∑
k,a

(
δzk,a∇ak + δzk,a∇̄ak

)
We seek an evolution equation for δzk,c in the following way

(
d

dt
δUk

)
U−1
k =

(
δ

d

dt
Uk

)
U−1
k

⇒

 d

dt

∑
k′,c

(
δzk′,c∇ck′ + δzk′,c∇̄ck′

)
Uk

U−1
k =

∑
k′,a

(
δzk′,a∇ak′ + δzk′,a ∇̄ak′

)(
i
∑
c

T c∇̄ckS̄ Uk

)U−1
k

⇒

[
d

dt

(∑
c

δzk,ci T
cUk

)]
U−1
k = i

∑
c

T c

∑
a

δzk,a∇̄ckS̄ i T a Uk +
∑
k′,a

δzk′,a ∇̄ak′∇̄ckS̄ Uk

U−1
k

⇒
∑
c

T c
[

d

dt
(δzk,cUk)

]
U−1
k =

∑
c

T c

∑
a

δzk,a∇̄ckS̄ i T a +
∑
k′,a

δzk′,a ∇̄ak′∇̄ckS̄


⇒

∑
c

T c
[

d

dt
(δzk,c) + δzk,c

(
dUk
dt

U−1
k

)]
= i
∑
a

δzk,a
∑
b

∇̄bkS̄ T bT a +
∑
c

T c
∑
k′,a

δzk′,a ∇̄ak′∇̄ckS̄

⇒
∑
c

T c
d

dt
(δzk,c) + i

∑
a

δzk,a
∑
b

T aT b∇̄bkS̄ = i
∑
a

δzk,a
∑
b

∇̄bkS̄ T bT a +
∑
c

T c
∑
k′,a

δzk′,a ∇̄ak′∇̄ckS̄

⇒
∑
c

T c
d

dt
(δzk,c) =

∑
c

T c
∑
k′,a

δzk′,a ∇̄ak′∇̄ckS̄ + i
∑
a

δzk,a
∑
b

∇̄bkS̄ T bT a − i
∑
a

δzk,a
∑
b

T aT b∇̄bkS̄

⇒
∑
c

T c
d

dt
(δzk,c) =

∑
c

T c
∑
k′,a

δzk′,a ∇̄ak′∇̄ckS̄ − i
∑
a

δzk,a
∑
b

∇̄bkS̄
[
T a, T b

]

⇒
∑
c

T c
d

dt
(δzk,c) =

∑
c

T c
∑
k′,a

δzk′,a ∇̄ak′∇̄ckS̄ +
∑
c

T cfabc
∑
a,b

δzk,a∇̄bkS̄

26The Hessian at a generic configuration is not symmetric because of (4.1).
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so that we get

d

dt
(δzk,c) =

∑
k′,a

δzk′,a ∇̄ak′∇̄ckS̄ +
∑
a,b

fabc δzk,a∇̄bkS̄

which is the very same as (4.4), with δzk,c being the components of some tangent space basis vector.

4.3 Morse theory and gauge symmetry

In the last section we have introduced the thimble formalism for gauge theories. We now address the problem
of gauge symmetry within the framework of Morse theory. We try to be as general as possible, deferring a
more detailed discussion to the study of Yang-Mills theory in Section 10. We consider a set of fields {Uk}
on a manifold Y over which we wish to integrate, with dimRY = n and a suitable complexification X , with
dimRX = 2n. Let S : X → C be a holomorphic function that is invariant under transformations of a gauge
group G, which is the complexification of a compact gauge group H. We call g the Lie algebra of G and h
the Lie algebra of H, with dimRh = nG and dimRg = 2nG. We assume that a critical point Uσ ∈ X of S
changes non-trivially under transformations of G, that is Uσ → UGσ 6= Uσ. As a consequence, Uσ belongs to
a manifold of critical points continuously connected by transformations G ∈ G. We call such manifoldMσ

Mσ ≡
{
U ∈ X

∣∣∃G ∈ G : UGσ = U
}
⊂ X

which has dimRMσ = 2nG. On Mσ the action S takes on the same value S(Uσ); thus, considering
SR = <(S), the Hessian H(SR;U) for U ∈Mσ is degenerate.27 In particular, the Hessian of SR is a 2n×2n
real, symmetric matrix with 2nG zero eigenvalues (corresponding to directions of gauge invariance of SR),
n − nG positive eigenvalues and n − nG eigenvalues which are opposite in sign. We say that Mσ is a non
degenerate critical submanifold of X for SR : X → R if dSR = 0 alongMσ and the Hessian H(SR;U) (for
U ∈ Mσ) is non degenerate on the normal bundle ν(Mσ). The normal bundle of Mσ is subject to the
decomposition

ν(Mσ) = ν+(Mσ)⊕ ν−(Mσ)

with

ν±(Mσ) =
⊔

U∈Mσ

N±UMσ

and dimRN
±Mσ = n − nG. N+Mσ is the (normal) space at U ∈ Mσ spanned by eigenvectors of

H(SR;U) with positive eigenvalues, while N−Mσ is the normal space at U spanned by eigenvectors of
H(SR;U) with negative eigenvalues. We now construct an n-cycle Jσ attached to Uσ. Morse theory [66, 34,
26] tells us28 that such an n-cycle is constructed by considering all the SA curves (that is, those making up
a stable thimble) attached to a middle dimensional manifold Nσ ⊂ Mσ (dimRNσ = nG, hence the name).
The most natural choice for Nσ is

Nσ ≡
{
U ∈ X

∣∣ ∃H ∈ H : UHσ = U
}
⊂Mσ

27We are generically referring to “gauge symmetry”, but the reader should keep in mind that symmetries can also arise in
scalar field theories; see [39] for a discussion of O(N) symmetry and [36]. Moreover, we will see that factors other than symmetry
may lead to a degenerate Hessian (for example, torons in pure Yang-Mills theory); this case will be worth of a detailed discussion
in Section 10.

28Actually, things are much more involved, but, for the cases of our interest, our brief discussion suffices. See [34] for a
detailed treating of symmetries and Morse theory.
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Nσ is the gauge orbit of all those points which can be reached starting from Uσ by gauge transformations
belonging to the original gauge group H (before complexification), which is a subgroup of G. Thus the stable
thimble Jσ attached to Uσ is defined by

Jσ ≡
{
U(0) ∈ X

∣∣ U̇ = i ∇̄S̄U, lim
t→−∞

U(t) ∈ Nσ
}

that is the union of all the SA curves U(t) starting from anywhere on Nσ at t→ −∞. This is the so called
generalized Lefschetz thimble and it is indeed an n-cycle, having the proper dimension dimRJσ = n−nG+nG = n.
All the previous statements hold analogously for Kσ. More details on how one should build the thimble at-
tached to Uσ will be given in the context of Yang-Mills theory in Section 10. We now show that the choice
of Nσ as a middle dimensional cycle in Mσ is consistent with the invariance of the thimble Jσ only un-
der transformations of the H subgroup of G, even though S is invariant under transformations of the full
complexified group G. Consider an infinitesimal transformation G ∈ G such that U → UG. Recall that SA
equations can be seen as an Hamilton system with Hamiltonian SI = =(S) after regarding the Kähler form
Ω = i

2gij̄ dzi ∧ dz̄j as a symplectic structure on X . As a consequence, a symmetry of the thimble (i.e. a
symmetry of the Hamilton system) must leave Ω invariant. We want to compute the change δGΩ = ΩG −Ω
of Ω under G ∈ G infinitesimal. For the sake of simplicity, we start assuming that U consists of a collection
{Uk} of variables, each transforming in the following way: Uk → UGk = GkUkG

′
k for Gk, G′k ∈ Gk. This is

very close to the case of Yang-Mills theory and corresponds to taking G = ⊗kGk (and H = ⊗kHk as well),
where gk is the Lie algebra of Gk, the complexification of hk with {T a} as generators (in the fundamental
representation). Consider the tangent space to Jσ at a point U ; any point U ′ ∈ ΓU (where ΓU is a neigh-
bourhood of U) can be reached by an infinitesimal displacement in the Lie algebra, that is U ′k = eidzk,aT

a

Uk,
with dzk,a ∈ C. We now seek which displacement dzGk,a, when acted on UGk , reaches U ′Gk . We thus impose

U ′Gk = eidz
G
k,aT

a

UGk

⇒ GkU
′
kG
′
k = eidz

G
k,aT

a

GkUkG
′
k

⇒ Gke
idzk,aT

a

Uk = eidz
G
k,aT

a

GkUk

that is

eidz
G
k,aT

a

= Gke
idzk,aT

a

G−1
k (4.5)

We now make use of the following lemma (which is proved in Appendix B)

eigaT
a

eixbT
b

e−igaT
a

= eiMabxbT
a

with

Mab =
(
eigct

c
)
ab

and (tc)ab = −if cab are the generators of hk in the adjoint representation29. Applying the lemma to (4.5)
means setting Gk = eiδgk,aT

a

, with δgk,a ∈ C in general,30 so that

dzGk,a = Mabdzk,b (4.6)

29Notice that there are no assumptions on the form of Ta, just the commutation relations of hk, that is
[
Ta, T b

]
= i fabcT c.

30When considering an SU(N) gauge theory, one should also leave open the possibility of a more general infinitesimal gauge
transformation: Gk = eiδgk,aT

a
gk, with gk ∈ Z(Hk), the center of Hk. Because, by definition, gk commutes with eiδgk,aT

a
, it

is canceled by g−1
k in our application of the lemma.
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After expanding to first order in δg, we get

dzGk,a = dzk,a + iδgk,c (tc)ab dzk,b +O
(
δg2
)

dz̄Gk,a = dz̄k,a + iδgk,c (tc)ab dz̄k,b +O
(
δg2
)

where we used
(
tc
)
ab

= − (tc)ab. The Kähler form changes accordingly (using (tc)ab = − (tc)ba)

ΩG =
i

2
dzGk,a ∧ dz̄Gk,a =

i

2
[dzk,a + iδgk,c (tc)ab dzk,b] ∧

[
dz̄k,a + iδgk,c (tc)ab dz̄k,b

]
=
i

2
dzk,a ∧ dz̄k,a +

i

2

[
iδgk,c (tc)ab dzk,b ∧ dz̄k,a + iδgk,c (tc)ab dzk,a ∧ dz̄k,b

]
= Ω− 1

2

[
−δgk,c (tc)ba dzk,b ∧ dz̄k,a + δgk,c (tc)ab dzk,a ∧ dz̄k,b

]
= Ω +

1

2

(
δgk,c − δgk,c

)
(tc)ab dzk,a ∧ dz̄k,b

so that

δGΩ = i= (δgk,c) (tc)ab dzk,a ∧ dz̄k,b = = (δgk,c) f
cab dzk,a ∧ dz̄k,b

We thus see that Ω is left invariant only by taking δgk,c ∈ R, that is Gk ∈ Hk: the thimble is symmetric
only under transformations of the H subgroup of G, that is the original gauge group. This procedure, which
is similar to that followed in [39], is consistent with the result discussed in [26].
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5 Integration on thimbles

Having delved into the basics of Morse theory, both in the case of a scalar and a gauge field theory, the
time has come to be more concrete. So far many numerical solutions have been implemented to sample
configurations on thimbles [26, 60, 67, 68, 36, 61, 69, 70, 62, 71]. Here we shall discuss an approach which
was introduced by us in [72] and [73, 74]. In Section 3 we showed that the expectation value of an observable
O[z] (where z generically represents a collection of n complexified scalar fields) can be decomposed as

〈O〉 =
1

Z

∑
σ∈Σ

nσ e
−iSI(zσ)

ˆ

Jσ

dnz O(z)e−SR(z) =
1

Z

∑
σ∈Σ

nσ e
−iSI(zσ)

ˆ

Jσ

dnδy O e−SR ei ω

with the partition function

Z =
∑
σ∈Σ

nσ e
−iSI(zσ)

ˆ

Jσ

dnz e−SR(z) =
∑
σ∈Σ

nσ e
−iSI(zσ)

ˆ

Jσ

dnδy e−SR ei ω

where we have made the change of variables {zi} → {δyi} with δyi the infinitesimal displacements in a
neighbourhood of z ∈ Jσ (see (3.7) and (3.8)). We can take the residual phase ei ω into account by means
of reweighting, that is writing

〈O〉 =
1

Z

∑
σ∈Σ

nσ e
−iSI(zσ)Zσ 〈〈O ei ω〉〉σ (5.1)

with

Z =
∑
σ∈Σ

nσ e
−iSI(zσ)Zσ 〈〈ei ω〉〉σ (5.2)

where we have introduced the expectation values on single thimbles

〈〈•〉〉σ ≡
1

Zσ

ˆ

Jσ

dnδy • e−SR (5.3)

Zσ =

ˆ

Jσ

dnδy e−SR (5.4)

Such expectation values can be computed via Monte Carlo with e−SR as probability weight. Single thimble
partition functions Zσ cannot be evaluated explicitly; nevertheless, 〈O〉 in (5.1) may still be computed. See
[73] for a sketch of this procedure. For the rest of the section, for the sake of simplicity, we shall consider
only one thimble as relevant (so that an explicit calculation of Zσ is not needed) and drop the double 〈 〉 as
well. Thus our goal is to compute

〈O〉 → 〈O e
i ω〉

〈ei ω〉
(5.5)

with

〈•〉 =

´
Jσ

dnδy • e−SR
´
Jσ

dnδy e−SR
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and this last expectation value can be computed by any Monte Carlo which keeps field configurations
on the thimble and samples them with weight e−SR . As pointed out before, reweighting the residual phase
works only if it does not oscillate wildly between different field configurations on the thimble. It is expected
that this residual sign problem be much milder than the original one. At the moment there is evidence that
ei ω varies very smoothly on the thimble [59, 60, 36, 61, 62].

5.1 Integration in terms of steepest ascent curves

Integration on the whole thimble Jσ can be thought as an integration on a single steepest ascent curve
from the critical point pσ up to infinity31 followed by an integration over all possible SA curves starting at
pσ. Integration of only steepest ascent equations is desirable, as integration of steepest descent equations
is problematic because of unstable directions in the vicinity of the critical point [26, 60]. Therefore, any
algorithm employing only integration of SA equations is expected to be numerically robust in staying on the
thimble. We follow a notation very similar to that used in [73]. One single SA curve can be identified by
the “direction” n̂ in TpσJσ along which one leaves the critical point, that is

n∑
i=1

niv
(i)

With this notation we mean the set {ni}i=1···n with the normalization condition

n∑
i=1

n2
i = R

with R arbitrary32 and {v(i)} the Takagi vectors of H(S; pσ) with (positive) Takagi values {λi}. A point
z on the thimble can be singled out by giving the SA curve it lies on (identified by n̂) and the time t at
which one reaches z while integrating SA equations. Thus we have the map

Jσ 3 z ↔ (n̂, t) ∈ Sn−1
R × R

with Sn−1
R the (n− 1)-sphere of radius

√
R. Now we employ a Faddeev-Popov-like trick [75], that is we

rewrite 1 as

1 = ∆n̂(t)

ˆ n∏
k=1

dnk δ
(
|~n|2 −R

)ˆ
dt

n∏
i=1

δ (δyi − δyi(n̂, t)) (5.6)

where {δyi(n̂, t)} are the components of the field displacement (in the spirit of (3.7)) on the local basis33

{V (i)
n̂ (t)}, parallel-transported along the SA curved identified by n̂ until time t. The partition function can

be rewritten in terms of partial partition functions along each possible SA curve
31Strictly speaking, this is true only for purely bosonic systems. In presence of a fermionic determinant, solutions to SA

equations may flow towards zeroes of the fermionic determinant in a finite amount of integration time t [40, 37, 62]. Such
configurations have infinite SR, so that “infinity” is meant with regards to the action.

32Different values of R are theoretically equivalent, but can affect the efficiency of the numerical algorithm for sampling on
the thimble, so it requires some “experimental” tuning. In [73] R = 1 was used. In [36] the authors set R = n. In all the
simulations of this work, R = 1 was used.

33The basis {V (i)} does not need to be unitary: if it is not, in the integrals detV = ei ω must be replaced by |detV | ei ω . We
shall discuss the choice of basis later on.
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Z =

ˆ n∏
i=1

dδyi e
−SR =

ˆ n∏
i=1

dδyi e
−SR∆n̂(t)

ˆ n∏
k=1

dnk δ
(
|~n|2 −R

)ˆ
dt

n∏
i=1

δ (δyi − δyi(n̂, t))

=

ˆ n∏
k=1

dnk δ
(
|~n|2 −R

)ˆ
dt

ˆ n∏
i=1

dδyi δ (δyi − δyi(n̂, t)) ∆n̂(t)e−SR

=

ˆ n∏
k=1

dnk δ
(
|~n|2 −R

)ˆ
dt∆n̂(t)e−SR(n̂,t)

Thus we can rephrase the expression for the partition function as

Z =

ˆ
Dn̂ Zn̂ (5.7)

with the measure over Sn−1
R

Dn̂ ≡
n∏
k=1

dnkδ
(
|~n|2 −R

)
and the partial partition function

Zn̂ =

+∞ˆ

−∞

dt∆n̂(t) e−SR(n̂,t) (5.8)

The integral (5.8) is one-dimensional and can be easily computed numerically while integrating SA (and
PT) equations. Algorithmic issues about an efficient sampling of n̂-space will be discussed in Section 5.3.
For the moment, let us focus on finding an expression for ∆n̂(t). Recall our Faddeev-Popov-like trick in
(5.6). In the integral, the only external variables are the {δyi} and there are (n + 1) integrations, which
matches precisely the number of δ conditions. We linearize the δ conditions around their solutions (n̂, t) and
solve (5.6) for ∆n̂(t)

1 = ∆n̂(t)

ˆ n∏
k=1

dn′k δ
(
|~n′|2 −R

) ˆ
dt′

n∏
i=1

δ (δyi − δyi(n̂′, t′))

= ∆n̂(t)

ˆ n∏
k=1

dn′i

n∏
i=1

δ (n′i − ni)
ˆ

dt′ δ (t′ − t)

∣∣∣∣∣∣
∂
(
|~n′|2 −R, δyi − δyi(n̂′, t′)

)
∂ (t′, n̂′)

∣∣∣∣∣∣
−1

= ∆n̂(t)

∣∣∣∣∣∣
∂
(
|~n|2 −R, δyi − δyi(n̂, t)

)
∂ (t, n̂)

∣∣∣∣∣∣
−1

which we can write more explicitly as
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∆n̂(t) =

∣∣∣∣∣∣∣∣∣∣∣
det


∂(|~n|2−R)

∂t

∂(|~n|2−R)
∂n1

· · · ∂(|~n|2−R)
∂nn

∂(δy1−δy1(n̂,t))
∂t

∂(δy1−δy1(n̂,t))
∂n1

· · · ∂(δy1−δy1(n̂,t))
∂nn

...
...

. . .
...

∂(δyn−δyn(n̂,t))
∂t

∂(δyn−δyn(n̂,t))
∂n1

· · · ∂(δyn−δyn(n̂,t))
∂nn



∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
det


0 2n1 · · · 2nn

∂δy1(n̂,t)
∂t

∂δy1(n̂,t)
∂n1

· · · ∂δy1(n̂,t))
∂nn

...
...

. . .
...

∂δyn(n̂,t)
∂t

∂δyn(n̂,t)
∂n1

· · · ∂δyn(n̂,t)
∂nn


∣∣∣∣∣∣∣∣∣∣

This expression for ∆n̂(t) needs to be manipulated in order to be expressed as a function of known
quantities. Recall what was discussed in Section 3.6, in particular the second order expansion of the action
around the critical point pσ (3.5) as well as the change of variables Z = Wη with η ∈ Rn andWij = v

(j)
i (v(j)

i

being the j-th Takagi vector of H(S; pσ) with Takagi value λj > 0). This change of variables automatically
keeps one on the stable thimble in the vicinity of the critical point. The action in the η variables becomes

S(η) = S(zσ) +
1

2

n∑
i=1

λiη
2
i + · · · (5.9)

Close enough to pσ, this second order approximation holds reasonably well for the original theory. How-
ever, we could as well consider the quadratic action (5.9) as being valid everywhere in Rn: this is a different,
Gaussian theory, whose thimble associated to pσ is flat and everywhere spanned by {v(i)}, its (constant)
residual phase being detW = ei ωσ . SA and PT equations for the Gaussian theory take the form

dηi
dt

=
∂S

∂ηi
= λiηi

dV
(i)
j

dt
=

n∑
k=1

V̄
(i)
k Hkj(S; pσ)

These equations, with the initial condition

ηi(0) = ni

V (i)(0) = v(i)

have the solution34

ηi(t) = ni e
λit

V (i)(t) = v(i) eλit
(5.10)

which implies

34For the Gaussian theory V (i)
n̂ (t) = V (i)(t): the tangent basis vectors are independent on n̂
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zj(t) = zσ,j +

n∑
k=1

Wjkηk(t) = zσ,j +

n∑
k=1

nk e
λkt v

(k)
j

as well as

S(t) = S(zσ) +
1

2

n∑
i=1

λin
2
i e

2λit

At a reference time t0 � 0 (ideally, one would take t0 → −∞), the Gaussian theory and the exact one
(the original theory with action S) can be identified, so that (5.10) computed at t = t0 yield a valid initial
condition for SA and PT equations of the exact theory. Let us now come back to the original theory and
consider an infinitesimal displacement δz(n̂, t) around a point z ∈ Jσ reached by flowing along the SA curve
identified by n̂ until a time t. δz(n̂, t) belongs to TzJσ and thus satisfies PT equations (which are linear)
just as any V (i)

n̂ (t) [73, 36]; therefore δz(n̂, t) can be written as a linear combination of tangent basis vectors
with constant coefficients {δyi}, that is

δz(n̂, t) =

n∑
i=1

δyi V
(i)
n̂ (t)

The coefficients δyi can be easily worked out for the exact theory using the expression for z(t) and V (i)
n̂ (t)

at t→ −∞, which are those of the Gaussian theory. We have

δz(n̂, t→ −∞) = δ

(
zσ +

n∑
i=1

v(i) eλit ni

)
=

n∑
i=1

v(i)

 n∑
j=1

δnj
∂

∂nj
+ δt

∂

∂t

(eλit ni)

=

n∑
i=1

v(i) eλit (δni + λiniδt) =

n∑
i=1

V (i)(t) (δni + λiniδt)

from which it follows

δyi = δni + λiniδt (5.11)

In the very same way, we can easily derive a useful consistency relation for the gradient of the action, as
it also belongs to the tangent space [36]. Let us write the decomposition

∇̄zS̄ =

n∑
i=1

gi V
(i)
n̂ (t)

The coefficients gi can be found with the aid of the Gaussian form of the action for t→ −∞, that is

∇̄zS̄ = ∇z
(
S(zσ) +

1

2
ZTH(S; pσ)Z

)
= H(S; pσ)Z(t) = HWη(t) = WΛη(t) = WΛη(t)

=

n∑
i=1

v(i)λiηi(t) =

n∑
i=1

v(i)λini e
λit =

n∑
i=1

V (i)(t)λini
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so that gi = niλi. Thus, during the integration of SA and PT equations, we can keep checked the norm

κ ≡

∥∥∥∥∥∇̄zS̄ −
n∑
i=1

niλiV
(i)
n̂ (t)

∥∥∥∥∥ (5.12)

and make sure that it is small with respect to the scale of the system. Now we have all is needed in order
to compute ∆n̂(t) explicitly: from (5.11) it follows

∆n̂(t) = ∆n̂ =

∣∣∣∣∣∣∣∣∣det


0 2n1 · · · 2nn

λ1n1 1 · · · 0
...

...
. . .

...
λnnn 0 · · · 1


∣∣∣∣∣∣∣∣∣ = 2

n∑
i=1

λin
2
i (5.13)

which turns out to be time independent. All the computations carried out so far involved displacements
δyi with respect to local tangent basis vectors V (i) which are solutions of PT equations at a generic time t.
This basis is not unitary in general, so that, in our integrals, we have

dnz = dnδy detV = dnδy |detV | ei ω

where ei ω is the same residual phase we would have ended up with if we had used a unitary basis.35
Thus expression (5.8) for the partial partition function becomes

Zn̂ = 2

n∑
i=1

λin
2
i

+∞ˆ

−∞

dt e−Seff (n̂,t) (5.14)

with

Seff(n̂, t) = SR(n̂, t)− log |detVn̂(t)| (5.15)

We have computed ∆n̂(t) for the exact theory; of course the Gaussian one has the same expression for
∆n̂, but in that case we can compute detVn̂(t) analytically as well. Being V (i)

n̂ (t) = v(i) eλit, we have

detV (t) = det
(
eλ1t v(1) · · · eλnt v(n)

)
=

n∏
i=1

eλit det
(
v(1) · · · v(n)

)
= e

(
n∑
i=1

λi

)
t
detW = eΛ t+i ωσ

where Λ ≡
n∑
i=1

λi and ei ωσ is the residual phase at the critical point. Therefore the expression for Zn̂ of

the Gaussian theory is
35In [73] a unitary basis {U(i)} was used, yielding detU = ei ω and a time-dependent expression ∆̃n̂(t), which encoded the

stretching of basis vectors (that is the change in volume of an infinitesimal parallelepiped generated by the V (i)) along the SA
flow). Here we have chosen to work with the non-unitary base {V (i)}. Had we worked with a unitary one, say {U(i)}, we
would have ended up with the same residual phase ei ω . This can be readily seen by using QR decomposition (e.g. by means
of Gram-Schmidt process, like in [36]) on the matrix V defined by Vij ≡ V

(j)
i . QR decomposition yields V = UE with U

unitary, so that detV = detU detE = ei ω detE. Now, being all the V (i) linearly independent, detV 6= 0 and thus there is
a (unique) factorization with all the diagonal elements of the upper triangular matrix E real and positive. The conclusion is
that detE > 0, so that |detV | = detE and the residual phase ei ω of the present work is the same as the one in [73]. It is also
easy to check that ∆̃n̂(t)=∆n̂(t) detE = ∆n̂ |detV | (where ∆n̂ is given by (5.13)), so that the two choices of basis are perfectly
equivalent.
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Zn̂ = 2

n∑
i=1

λin
2
i

+∞ˆ

−∞

dt e
Λ t− 1

2

n∑
i=1

λin
2
i e

2λit

(5.16)

As a final note for this section, we consider the case of a gauge theory. All the previous statements
apply, keeping in mind that infinitesimal displacements are in the algebra of the gauge group, that is a
neighbourhood ΓU of U ∈ Jσ is explored by means of {dzk,a} such that U ′ ∈ ΓU is

U ′k = ei dzk,aT
a

Uk (5.17)

with dzk,a =
∑
i δyiV

(i)
k,a ({V (i)} being a local basis of TUJσ). All the integrals we are interested in are

of the type

ˆ
DU =

ˆ ∏
k

dUk

dUk being the invariant measure of the gauge group. As in (3.8), we want to rewrite such integrals in
terms of δy, that is

∏
k

dUk =
√

det g dnδy

with the metric g given by

ds2 =
∑
k

ds2
∣∣
k

=
∑
k

[
−Tr

(
U−1
k dUkU

−1
k dUk

)]
=
∑
i,j

gijδyiδyj

The invariant measure ds2
∣∣
k
of the gauge group can be computed as follows

ds2
∣∣
k

= −Tr
(
U−1
k dUkU

−1
k dUk

)
= −Tr

[
U−1
k

(
ei dzk,aT

a

− 1
)
UkU

−1
k

(
ei dzk,bT

b

− 1
)
Uk

]
= −Tr

[(
i dzk,aT

a +O
(
dz2
)) (

i dzk,bT
b +O

(
dz2
))]

= Tr
(
T aT b

)
dzk,adzk,b =

1

2
δabdzk,adzk,b ∼

∑
a

dz2
k,a

In the last step the factor 1/2 has been neglected, being a constant which is dependent only on the
normalization of T a (it is cancelled out in ratios of integrals anyway). It follows that

ds2 =
∑
k,a

dz2
k,a =

∑
k,a

∑
i

δyiV
(i)
k,a

∑
j

δyjV
(j)
k,a =

∑
i,j

∑
k,a

V
(i)
k,aV

(j)
k,a

 δyiδyj

so that we can read out the components of the metric

gij =
∑
k,a

V
(i)
k,aV

(j)
k,a =

(
V TV

)
ij

From this, we have the determinant

√
det g =

√
det (V TV ) = detV
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which is the one we already know. It is this determinant that will give rise to the gauge group (complex-
ified) Haar measure: in fact, the basis {V (i)} is parallel-transported under equations (4.4), which know of
the non-abelian nature of the gauge group.

5.2 Semiclassical expansion around thimbles

In this section we show how a semiclassical expansion may be performed in the context of Lefschetz thimbles.
Semiclassical (leading order) approximation means expanding the action S of the theory to second order
around each critical point pσ (that is classical solutions of the quantum theory) and performing Gaussian
integrals analytically. We employ the same notation of the previous section. Consider the quadratic expansion
of the action around the critical point pσ in (5.9). After setting Z = Wη, so that dnz = detWdnη = ei ωσdnη,
the partition function becomes

Z ≈
∑
σ∈Σ

nσ e
−S(zσ) ei ωσ

ˆ

Rn

dnη e
− 1

2

n∑
i=1

λiη
2
i

= (2π)
n
2

∑
σ∈Σ

nσ
e−S(zσ)

√
det Λσ

ei ωσ (5.18)

where the Gaussian integral

+∞ˆ

−∞

dηi e
− 1

2λiη
2
i =

√
2π

λi

has been computed and it has been assumed that all λi are positive (det Λσ =
∏
i λi). From the last

expression for Z, it is clear that the critical point with the smallest value of SR is dominant in the expansion.
Now we want to compute the expectation value of an observable O. We expand O(z) around pσ

O(z) ≈ O(zσ) +∇TZOZ +
1

2
ZTHO

σ Z

with

∇TZO ≡

(
∂O

∂z1

∣∣∣∣
zσ

, · · · , ∂O
∂zn

∣∣∣∣
zσ

)

and

(
HO
σ

)
ij
≡ ∂2O

∂zi∂zj

∣∣∣∣
zσ

It is obvious that, in general, [H(S; pσ), HO
σ ] 6= 0 and therefore we cannot expectW to “diagonalize” both

H(S; pσ) and HO
σ . The expectation value of the observable is given by

〈O〉 ≈ 1

Z

∑
σ∈Σ

nσ e
−S(zσ) ei ωσ

ˆ

Rn

dnη

(
O(zσ) +∇TZOWη +

1

2
ηTCOσ η

)
e
− 1

2

n∑
i=1

λiη
2
i

with COσ ≡WTHO
σ W . The first term in the expansion of O comes out of the integral, giving the partition

function itself (actually, the contribution of the thimble Jσ). The second term is linear in ηi and therefore
gives no contribution to the Gaussian integral. For the same reason, the third term contributes only with
terms which are quadratic in ηi, that is when
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ηTCOσ η =

n∑
i=1

n∑
j=1

(
COσ
)
ij
ηiηj →

n∑
i=1

(
COσ
)
ii
η2
i

Therefore we need to compute only the diagonal terms of COσ and, after performing the Gaussian integral

+∞ˆ

−∞

dηi η
2
i e
− 1

2λiη
2
i =

1

λi

√
2π

λi

we arrive at

〈O〉 ≈ 1

Z
(2π)

n
2

∑
σ∈Σ

nσ
e−S(zσ)

√
det Λσ

ei ωσ

(
O(zσ) +

1

2

n∑
i=1

(
COσ
)
ii

λi

)
(5.19)

We can work out a more useful expression for
(
COσ
)
ii
in terms of Takagi vectors

(
COσ
)
ii

=

n∑
j=1

n∑
k=1

(
HO
σ

)
jk
WjiWki =

n∑
j=1

n∑
k=1

(
HO
σ

)
jk
v

(i)
j v

(i)
k

It is nice to see that, if we take the action S itself as observable, then HO
σ ≡ H(S; pσ) and, being

H(S; pσ)v(i) = λiv̄
(i) and

∑
j v

(i)
j v̄

(i′)
j = δii′ , we have

(
COσ
)
ii

=

n∑
j=1

v
(i)
j λiv̄

(i)
j = λi

yielding the contribution

S(zσ) +
n

2

which is nothing but the equipartition theorem.

5.3 Numerical algorithms to sample on a thimble

We have seen how a thimble can be decomposed in terms of n̂ and t. Now it is time to devise an algorithm
to perform Monte Carlo sampling on the thimble taking advantage of this parametrization. Recall that we
want to compute the expectation value of some observable O through (5.1), (5.2), (5.3), (5.4), making use
of the parametrization of the partition function in terms of partial partition functions in (5.7), (5.14) and
(5.15). To summarize, what we wish to compute is

〈O〉 =
1

Z

∑
σ∈Σ

nσ e
−i SI(zσ) Zσ

 1

Zσ

ˆ

Jσ

dnδy O ei ω e−SR

 (5.20)

Z =
1

Z

∑
σ∈Σ

nσ e
−i SI(zσ) Zσ

 1

Zσ

ˆ

Jσ

dnδy ei ω e−SR

 (5.21)
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with

1

Zσ

ˆ

Jσ

dnδy f e−SR =
1

Zσ

ˆ
Dn̂ fn̂ =

ˆ
Dn̂ Zn̂

Zσ

fn̂
Zn̂

(5.22)

in which

fn̂ = 2

n∑
i=1

λin
2
i

+∞ˆ

−∞

dt f(n̂, t) e−Seff (n̂,t)

Zn̂ = 2

n∑
i=1

λin
2
i

+∞ˆ

−∞

dt e−Seff (n̂,t)

where it is understood Zσ =
´
Dn̂ Zn̂. Let us focus on a single thimble Jσ. From (5.22) we see that what

we should do in principle is extract a sequence (a Markov chain)
{
n̂(j)

}
j=1···N according to the (correctly

normalized) probability P (n̂) = Zn̂/Zσ; then the expectation value of f (being either O ei ω or ei ω) on Jσ
would be simply given by

lim
N→∞

1

N

N∑
j=1

fn̂(j)

Zn̂(j)

As a first proposal to sample the n̂-space, we consider the simplest one: doing no importance sampling
at all. The static, crude Monte Carlo consists of a Markov chain of n̂ which are uniformly distributed on
Sn−1
R .36 Then one is able to directly compute the ratio

〈O〉 =

∑
σ∈Σ

nσ e
−i SI(zσ)

´
Dn̂

(
O ei ω

)
n̂∑

σ∈Σ

nσ e−i SI(zσ)
´
Dn̂ (ei ω)n̂

(5.23)

This method is expected to be rather inefficient for systems whose Zn̂ vary a lot as functions of n̂. This
is in fact the cause of the larger error bars at lower values of m̃ in Figure 7.3. Nevertheless, this method
was used in [73] and was successful in recovering correct results for the Chiral Random Matrix model, as
discussed in Section 7. From (5.23), we also see that this method enables us to automatically take into
account the contribution of more than one thimble. The static, crude Monte Carlo was also used for SU(N)
one-link models and 0 + 1-dimensional QCD, where more than one thimble is relevant; see Sections 9 and 8
for details.

Let us now discuss a more sophisticated way to sample n̂ according to the probability P (n̂) = Zn̂/Zσ.
The problem one immediately faces is that the computation of Zn̂ for a given n̂ needs integration of an
entire SA curve, which requires solving SA and PT equations for a long enough time for the integral in dt
to converge. Therefore a Von Neumann-like procedure to extract n̂ according to P (n̂) is unfeasible. One
possible way around this is the flat Metropolis algorithm: given n̂(j) at the j-th step of the Markov chain,
one extracts n̂′ uniformly on Sn−1

R and accepts it with probability

Pacc

(
n̂′
∣∣n̂) = min

{
1,
Zn̂′

Zn̂

}
(5.24)

36Extracting n̂ ∈ Sn−1
R uniformly is easy [76]: one extracts n independent Gaussian numbers, that is nj ∈ N (0, 1) and then

normalizes the resulting vector with norm
√
R. Extracting n̂ uniformly on Sn−1

R gives a volume factor Vol(Sn−1
R ) in front of

each
´
Dn̂ (the normalized probability density being δ(|~n|2−R)/Vol(Sn−1

R )). As we are interested only in ratios, we shall omit
the factor Vol(Sn−1

R ) from now on.
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where Zσ has disappeared in the ratio. The drawback of this approach is that the acceptance rate can
become very small in case of Zn̂ varying by orders of magnitude as a function of n̂. A far better approach
consists of proposing the new configuration n̂′ according to a probability distribution which is expected to
have a far greater overlap with P (n̂) than the uniform one. The best candidate is the probability for the
Gaussian theory, that is PG(n̂) = ZGn̂/Z

G
σ with ZGn̂ given by (5.16). This distribution has far better chances

of yielding a higher acceptance rate compared to a uniform extraction of n̂. Thus we generate a Markov
chain

{
n̂(j)

}
j=1···N ; at the j-th step, we propose n̂′ with probability PG(n̂′) and accept it with probability

Pacc

(
n̂′
∣∣n̂) = min

{
1,
Zn̂′

Zn̂

ZGn̂
ZGn̂′

}
(5.25)

where ZGσ drops as well as Zσ and Vol(Sn−1
R ). The only remaining task is to devise a procedure to extract

n̂ according to PG(n̂). To this purpose, we shall discuss an heat-bath algorithm in n̂ space for the Gaussian
theory. Consider a given n̂ ∈ Sn−1

R ; we want to extract n̂′ with probability PG(n̂′) ∝ ZGn̂′ . Let us pick two
random, different components of n̂, say (ni, nj) with i 6= j. We define C by

C ≡ n2
i + n2

j = R−
∑
k 6=i,j

n2
k

which is fixed by the normalization |~n| =
√
R and the values of all {nk}k 6=i,j . We can therefore parametrize

the “subspace” (ni, nj) by

ni =
√
C cosφ

nj =
√
C sinφ

(5.26)

with φ ∈ [0, 2π). We will now describe a procedure to extract φ′ ∈ [0, 2π) such that

n′k =


√
C cosφ′ if k = i√
C sinφ′ if k = j

nk if k 6= i, j

(5.27)

is distributed according to PG(n̂′) = PG(n̂′(φ′)) ∝ ZGn̂′(φ′). As the only correction for the proposal
probability appearing in (5.25) is ZGn̂′(φ′), we have to check that the choice of a random pair (i, j) and the
parametrization (5.26) is uniform on Sn−1

R . This can be readily seen by changing variables from Cartesian
to polar on the (n− 1)-sphere

n1 =
√
R cosφ1

n2 =
√
R sinφ1 cosφ2

n3 =
√
R sinφ1 sinφ2 cosφ3

...

nn−1 =
√
R sinφ1 · · · sinφn−2 cosφn−1

nn =
√
R sinφ1 · · · sinφn−2 sinφn−1

(5.28)
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with area element

dSn−1V = sinn−2 φ1 sinn−3 φ2 · · · sinφn−2 dφ1dφ2 · · · dφn−1 (5.29)

For any choice of (ni, nj) with i 6= j, one can choose a system of coordinates in which ni and nj play the
role of nn−1 and nn in (5.28) respectively, with the identification

√
C ↔

√
R

n−2∏
k=1

sinφk

φ ↔ φn−1

Then any choice of φ ∈ [0, 2π) is equally probable on the (n− 1)-sphere because the area element (5.29)
dSn−1V ∼ dφ is flat in φ. Our remaining task is to show how to extract φ′ with probability PG(n̂′(φ′)). Let
us turn to (5.16) and plug in (5.27)

ZGn̂′(φ′) = 2

∑
k 6=i,j

λkn
2
k + C

(
λi cos2 φ′ + λj sin2 φ′

) +∞ˆ

−∞

dt e
Λt− 1

2

[ ∑
k 6=i,j

λkn
2
ke

2λkt+C(λi cos2 φ′e2λit+λj sin2 φ′e2λjt)

]

(5.30)

The reader should keep in mind that this expression is dependent on {nk}k 6=i,j . Consider now the
cumulative distribution function defined by

FGn̂′(φ
′) ≡

φ′´
0

dϕZGn̂′(ϕ)

2π́

0

dϕZGn̂′(ϕ)

By extracting ξ ∈ [0, 1] uniformly distributed and computing φ′ = FG−1
n̂′ (ξ)37, we have that φ′ is dis-

tributed according to P (φ′) ∝ Zn̂′(φ′). Then we use (5.27) to get n̂′ and all is ready to perform the Metropolis
acceptance test (5.25) (Zn̂′(φ′) is readily available once φ′ is known). We call this procedure a heat-bath-based
(HBB) Metropolis.

An interesting observation can be made out of (5.30): if (i, j) is such that λi = λj , then ZGn̂′(φ′) is
effectively independent on φ′; thus all that is needed is the extraction of φ′ uniformly distributed in [0, 2π)
and the use of (5.27). Moreover, if all the λi are equal, then ZGn̂′ = ZGn̂ ∀ n̂, n̂′ and this Gaussian heat-bath-
based Metropolis does not perform any better than the flat Metropolis in (5.24). In such cases (for example
one-link SU(N) models and 0 + 1-dimensional QCD) we even made use of the static, crude Monte Carlo.
Another important observation is that, although in some sense trivial with respect to the actual theory, its
Gaussian counterpart is still highly non-trivial when reformulated in terms of n̂. The use of importance
sampling for the Chiral Random Matrix theory described in Section 7 provided the same, correct results
of the static, crude Monte Carlo with far less statistics and smaller error bars; it also made it possible to
explore a region in parameter space (namely, small rescaled masses) in which the static, crude Monte Carlo
was unable to reach correct estimates [77, 78]. The main problem with this kind of importance sampling is
that one extracts observables according to the right distribution on a given thimble Jσ, but without knowing
Zσ itself (see formulae (5.20) and (5.21)). As a consequence, taking into account more than one thimble can
be tricky. For a sketch of a procedure for doing this, the reader can refer to [73].

37FG
n̂′ (φ

′), being the integral of a manifestly positive function, is monotonically increasing and can be easily inverted numer-
ically.
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As a final remark, we notice that the parametrization (5.26) leaves space for other possible algorithmic
solutions. For example, one could extract δφ uniformly distributed in [−ε, ε]38 and propose φ′ = φ + δφ
(modulo 2π), accepting n̂′ with probability (5.24). By tuning ε, one could look for a reasonable compromise
between acceptance rate and correlations: small values of ε will yield an n̂′ which is highly correlated to n̂,
whilst large values of ε will be likely to kill the acceptance rate if Zn̂ is highly dependent on n̂. Numerical
results for the application of this last prescription to the Chiral Random Matrix model, as well as results for
the HBB Metropolis algorithm, are presented in Section 7.

38Such choice of interval ensures that the proposal be symmetric.
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6 Zero-dimensional φ4 model

After studying Morse theory in general and laying out an algorithm to perform integration on thimbles, let
us go back to the simple case of a one-dimensional integral. This model will be a useful tool to familiarize
with the basics of Morse theory and at the same time to discuss the relevance of more than one critical
point within the thimble decomposition. We consider the zero-dimensional φ4 model, whose only degree of
freedom consists of a real field φ. The partition function is

Z(σ, λ) =

+∞ˆ

−∞

dφ e−S(φ) (6.1)

S(φ) =
1

2
σφ2 +

1

4
λφ4 (6.2)

with λ ∈ R+ and σ = σR + i σI ∈ C. The sign problem is due to σI , which plays the role of a “chemical
potential”. This model was first introduced about thirty years ago in [79] as a toy model for one of the first
tests of complex Langevin [80]. The model, although seemingly simple, proved to be quite hard for complex
Langevin; in particular, for some values of the parameters σ and λ, it was difficult to keep simulations under
control. Another problem the complex Langevin faced was the divergence of the expectation value of high-
order momenta, that is 〈φn〉 with n ≥ 6. This behaviour was later shown to be due to a power-law decay of
the equilibrium probability distribution for the (complexified) field, solution to the associated Fokker-Planck
equation [81, 82, 83, 84]. Recently, this model has also been studied within the framework of Morse theory
in [85, 73] (and also in [86], though in a slightly different representation). Despite being so simple, this toy
model proves to be quite valuable for understanding the relevance of more than one thimble depending on
the value of a parameter in the action (in this case σR). Being the model one-dimensional, it is easier and
more transparent to work in terms of the two real components (x, y) of the (complexified) field φ = x + i y
and of the eigenvectors of H(SR; pσ) instead of referring to the Takagi vectors of H(S; pσ). From (6.2) we
have

SR(x, y) =
1

2

[
σR(x2 − y2)− 2σIxy

]
+

1

4
λ
(
x4 + y4 − 6x2y2

)
SI(x, y) =

1

2

[
σI(x

2 − y2) + 2σRxy
]

+ λxy(x2 − y2)

In order to find the critical points, we impose

dS(φ)

dφ
= σφ+ λφ3 = φ(σ + λφ2) = 0 (6.3)

so that there are three critical points: the classical vacuum φ0 = 0 and two Higgs vacua39

φ± = ±i
√
σ

λ
= x± ± i y±

The drift is given by
39To get a flavour of the physical meaning of these critical points, it is useful to consider the action (6.2) on the original

domain of integration only (that is φ ∈ R). We have already stated that the complex nature of S comes from the “chemical
potential” σI . Now let us consider the zero-dimensional φ4 theory at zero density, so that S(φ) = 1

2
σRφ

2 + 1
4
λφ4. The critical

points are given by φ(σR + λφ2) = 0. For σR > 0 there is just one critical point φ0 = 0, which is a minimum of the action. On
the contrary, for σR < 0, there are three critical points: φ0 = 0, which is now a maximum of the action, and φ± = ±

√
−σR/λ,

which are minima of the action. Therefore the sign of σR parametrizes a spontaneous symmetry breaking (SSB). From these
considerations, we can foresee that the sign of σR will play a crucial role in the thimble analysis of the φ4 model.
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∂SR(x, y)

∂x
= σRx− σIy + λx3 − 3λxy2

∂SR(x, y)

∂y
= −σRy − σIx+ λy3 − 3λx2y

while the Hessian is

H(SR;x, y) =

(
σR + 3λ(x2 − y2) −σI − 6λxy
−σI − 6λxy −σR − 3λ(x2 − y2)

)
(6.4)

It is now useful to rewrite the defining relation for φ±, that is

φ2
± = (x± + i y±)2 = (x2

± − y2
±) + 2i x±y± = −σ

λ
= −σR

λ
+ i
(
−σI
λ

)
implying that

x2
± − y2

± = −σR
λ

x±y± = −σI
2λ

(6.5)

These relations are useful to evaluate SI at the critical points

SI(φ0) = SI(0, 0) = 0

SI(φ±) = SI(x±, y±) =
1

2

[
σI

(
−σR
λ

)
+ 2σR

(
−σI

2λ

)]
+ λ

(
−σI

2λ

)(
−σR
λ

)
= −σRσI

2λ

We immediately notice that SI(φ+) = SI(φ−) = SI(φ0) whenever σR = 0 or σI = 0 (in this work we
always take σI > 0), so that the imaginary axis in the complex σ-plane is a candidate for a Stokes line (so
that a Stokes phenomenon may occur at σR = 0 - see Section 3.5). We will later see that this is indeed the
case. The Hessian at φ0 is

H(SR;φ0) =

(
σR −σI
−σI −σR

)

with eigenvalues λ(±)
0 = ±

√
σ2
R + σ2

I = ± |σ| and eigenvectors, respectively

v
(±)
0 =

1√
2
(

1 +
σ2
R

σ2
I
± |σ| σR

σ2
I

) (−−σR±|σ|σI
1

)

where the upper ± marks the stable/unstable direction at φ0. Plugging (6.5) into (6.4) gives the Hessian
at φ±

H(SR;φ±) = 2

(
−σR σI
σI σR

)
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with eigenvalues λ(±)
± = ±2 |σ| and eigenvectors

v
(±)
± =

1√
2
(

1 +
σ2
R

σ2
I
∓ |σ| σR

σ2
I

) (−−σR∓|σ|σI
1

)

Notice that φ+ and φ− share the same tangent space, which is orthogonal to the respective stable/unstable
tangent space of φ0.

Now we have all the ingredients we need in order to perform the thimble analysis of the model. We are
interested in the partition function (6.1), with Z(σ, λ) a (complex) continuous function of σ and λ, which
will guide us while searching for the correct set of nσ in going through the Stokes phenomenon (see Section
3.5 for details). The integral in (6.1) is convergent thanks to λ ∈ R+. For σR > 0, we can evaluate Z in
closed form

Z(σ, λ) =

√
4ξ

σ
eξK− 1

4
(ξ)

with ξ ≡ σ2

8λ and Kν(ξ) the modified Bessel function of the second kind. The thimble decomposition
provides an analytical continuation for negative values of σR (see [34] for a thorough discussion on Morse
theory and analytical continuation of the Airy function). We also look for the correlators of the field

〈
φ2n
〉

=
1

Z

+∞ˆ

−∞

dφφ2n e−
1
2σφ

2− 1
4λφ

4

=
(−2)n

Z(σ, λ)

∂n

∂σn
Z(σ, λ) (6.6)

where all odd correlators vanish as S(φ) is even in φ. On Lefschetz thimbles, all these integrals are
convergent, so that n > 2 shall not pose any problem in this approach. In order to compute the decomposition

Z = n0

ˆ

J0

dφ e−S(φ) + n1

ˆ

J1

dφ e−S(φ) + n2

ˆ

J2

dφ e−S(φ) (6.7)

we have to start at each critical point, make an infinitesimal displacement along the stable direction and
then start to integrate the SA equations for a sufficiently long time so that integrals converge. Notice that,
in one dimension, to get the whole thimble Jσ attached to a critical point pσ, one has to consider the two
possible directions at pσ given by ±v(+)

σ where v(+)
σ is the stable eigenvector of H(SR; pσ). In the notation

of Section 5.3 this corresponds to n = ±
√
R (as long as one is aware of this double possible choice of sign,

there is no need for the (n̂, t) notation in one dimension, being the thimble simply parametrized by the SA
flow time t). In Figure 6.2 all the stable and unstable thimbles are plotted for both positive and negative
σR. In Figure 6.2a (referring to σR > 0), we see that the unstable thimbles K± attached to the Higgs vacua
φ± do not intersect the original domain of integration (the real axis), so that n+ = n− = 0. In this region
of the complex σ-plane, only J0 is relevant for the decomposition (6.7). Correct results are indeed obtained
for n = (n0, n+, n−) = (1, 0, 0). The case σR < 0, illustrated in Figure 6.2b, is quite different. When going
from σR ∼ 0+ to σR ∼ 0−, the thimble J0 undergoes a radical change of shape, so that integrals along J0

feature a sudden jump. In order to keep the integrals (such as (6.1) or (6.6)) continuous in σ, the jump in´
J0

must be compensated by a jump in the coefficients {nσ}. In fact, correct results at σR < 0 are recovered
by taking n = (−1, 1, 1).40 Actually, it is not surprising that n± 6= 0 for σR < 0: in Figure 6.2b we see that
the unstable thimbles K± do intersect the real axis, thus indicating a contribution to (6.7) from J±. This
is a manifestation of the aforementioned Stokes phenomenon. In this case the Stokes curve in the complex
σ-plane is the imaginary axis. In Figure 6.1 we see the structure of the thimbles at purely imaginary σ. The
thimble J0 is ill-defined, in the sense that, by integrating the SA equation starting close to φ0, one flows into
φ± at t → +∞. The two green segments forming J0 coincide with half of the unstable thimbles attached

40The actual sign of each nσ depends on the choice of orientation for Jσ .
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to the Higgs vacua, that is K+ and K−. When such phenomenon occurs, the decomposition in (6.7) does
not hold, as J0 does not connect regions of convergence at infinity.41 As already mentioned, this is not a
problem, as the coefficients nσ for σR → 0− can be figured out by imposing continuity in, say Z or 〈φn〉
while knowing the nσ for σR → 0+. The zero-dimensional φ4 model was used as a benchmark for different
algorithms devised to do importance sampling on Lefschetz thimbles [85]. In particular, successful results
were obtained by using the Metropolis-like algorithm introduced in [67], which proved to be of great use even
in the case where more than one thimble were relevant, showing no sign of instabilities in the computation
of high-order momenta.
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― Stable thimble

-- Unstable thimble

― Stable/unstable thimble

Critical point
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�
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Figure 6.1: The figure shows the Stokes phenomenon appearing in the zero-dimensional φ4 model at σ = 0.75 i
and λ = 2. Stable and unstable thimbles associated to the three critical points are plotted. The ill-defined
thimble J0 is depicted in green.

41To be more precise, thimbles do not necessarily connect regions in which the fields tend to infinity. In order to ensure
convergence of the integrals, the thimble has to connect regions in which SR → +∞ (in the present case, this fails precisely
at σR = 0, as J0 flows into φ±, where SR is finite). In fermionic systems [40, 62, 37, 86] there are thimbles connecting
configurations which are finite (in field space), but on which SR is infinite.
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(a) Stable and unstable thimbles for σ = 0.5 + 0.75 i and λ = 2.
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(b) Stable and unstable thimbles for σ = −0.5 + 0.75 i and λ = 2.

Figure 6.2: In the two figures, stable (in blue, solid lines) as well and unstable (in red, dashed lines) thimbles
associated to φ0 and φ± are plotted. The vector field is ∇SR(x, y), making it clear that thimbles single out
directions of steepest ascent/descent. The first picture is taken at σR > 0, while the second depicts the case
σR < 0.
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7 Chiral Random Matrix theory

In this section we put all the machinery introduced in Section 5 at work for a multi-dimensional model. In
particular, we study a Chiral Random Matrix (CRM) model. This model was first introduced thanks to
the many features it has in common with QCD [87, 88, 89]: they have the same flavour symmetries and
explicit symmetry breaking and they share the presence of the determinant of a Dirac operator (which is
the source of a sign problem for both theories). In the microscopic limit (which we shall describe more in
detail later) both theories are related to chiral perturbation theory at leading order in the ε domain as a low-
energy theory. This made it possible to gain some insights into QCD by studying the matrix model, which
is treatable analytically. In this work we shall not go into detail studying the physics of the CRM model;
instead, we shall tackle it with the thimble formalism and treat it as a valuable setting to test the approach
in a case which is much more involved than zero-dimensional models. Our interest in this particular model
lies in the fact that complex Langevin was used to tackle its sign problem [90, 91], giving correct results in a
particular formulation [91], while converging to wrong results in another [90]. We shall consider the original
formulation of the model, which was a failure for complex Langevin and use the same notation as [90].

7.1 General setup

The partition function for the CRM model for Nf quark flavours of degenerate mass m is

ZN =

ˆ
dΦdΨ e−N Tr(Φ†Φ+Ψ†Ψ) detNf (D(µ) +m)

The degrees of freedom of the model are the two N ×N complex matrices Φ = a+ i b and Ψ = α+ i β,
so that the total number of degrees of freedom is n = 4N2. The integration measure is dΦdΨ = da dbdα dβ.
The chemical potential enters the Dirac operator

D(µ) +m =

(
m i coshµΦ + sinhµΨ

i coshµΦ† + sinhµΨ† m

)
(7.1)

The aforementioned microscopic limit consists in taking N →∞ while keeping m̃ = Nm and µ̃ =
√
Nµ

constant. In the present work we shall keep µ̃ = 2 fixed and Nf = 2 fixed as well (to be consistent with
[90]), while studying the behaviour of the chiral condensate Σ ≡ 1

N 〈η̄η〉 = 1
N

∂
∂m logZ at different values of

m̃. We will also consider increasing values of N starting from N = 1. The sign problem comes from the
chemical potential in (7.1) and can be a severe one, especially at lower values of m̃. To see this, we define a
phase-quenched partition function

Zpq
N =

ˆ
dΦdΨ e−N Tr(Φ†Φ+Ψ†Ψ)

∣∣∣detNf (D(µ) +m)
∣∣∣

from which we can compute a phase-quenched chiral condensate. We recall the analytical form of the
expectation value of the chiral condensate in the full theory and in the phase-quenched one [89, 92], that is,
being x ≡ −Nm2,

Σ = 2m
L0
N (x)L2

N−1(x)− L0
N+1(x)L2

N−2(x)

L0
N (x)L1

N (x)− L0
N+1(x)L1

N−1(x)

Σpq = 4m

N∑
k=0

(cosh(2µ))
−2k

L0
k(x)L1

k−1(x)

N∑
k=0

(cosh(2µ))
−2k

(L0
k(x))

2
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where Lji (x) are generalized Laguerre polynomials.42 The chiral condensate is real: in all subsequent
plots, we will show only the real part of the condensate, having verified the imaginary part to be zero within
errors. By comparing phase-quenched results with exact ones (Figure 7.1), we can see in which region of
parameter space the phase of the determinant of the Dirac operator plays a crucial role: at low (rescaled)
masses, the sign problem is expected to be harder. This is indeed the case and complex Langevin happened
to converge to incorrect results in this region [90].
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Figure 7.1: The chiral condensate for the full theory is depicted in solid lines for different values of N as a
function of m̃. The chiral condensate for the phase-quenched theory is depicted in dashed lines. We can see
that, at low masses, the two become more and more apart, which comes with a stronger sign problem.

We now complexify the entries of the 4 matrix fields a, b, α, β and put the determinant of the Dirac
operator in the effective action43 (using log detA = Tr logA)

S(a, b, α, β) = N

N∑
i=1

N∑
j=1

(
a2
ij + b2ij + α2

ij + β2
ij

)
−NfTr log

(
m2 1N×N −XY

)
(7.2)

with the (complex) N ×N matrices X and Y defined by

Xij ≡ i coshµ (aij + ibij) + sinhµ (αij + iβij)

Yij ≡ i coshµ (aji − ibji) + sinhµ (αji − iβji)

After defining the inverse of the Dirac operator

42It is understood that Lji (x) ≡ 0 when i < 0.
43In [90] it was argued that the origin of problems with complex Langevin simulations of the model could lie in

det
(
m2 1N×N −XY

)
, whose logarithm appears in the effective action (7.2), crossing the negative real axis (for further discus-

sions about complex Langevin with logarithms in the action, refer to [93, 94]). In the thimble approach, this cannot happen
for the following reason: integration of SA equation gives a smooth flow along which SI = =(S) is conserved. If the argument
of the logarithm crossed the negative real axis, then there would be a discontinuous jump of magnitude 2πNf in SI . In order
for the flow to keep SI constant, this jump would have to be compensated for by an opposite jump in the Gaussian (quadratic)
part of the action; but the Gaussian part of the action is a smooth polynomial in the fields, which are continuous functions of
the flow time and thus cannot have jumps. As expected, none of this jumps were found in our thimble simulations of the CRM
model.
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G ≡
(
m2 1N×N −XY

)−1

we see that the chiral condensate can be computed by

Σ =
1

N

∂

∂m
logZ =

1

N

1

Z

∂

∂m

ˆ
da dbdα dβ e−S(a,b,α,β)

=
Nf
N

1

Z

ˆ
dadbdα dβ

[
∂

∂m
Tr log

(
m2 1N×N −XY

)]
e−S(a,b,α,β)

=
Nf
N

1

Z

ˆ
dadbdα dβ Tr

[(
m2 1N×N −XY

)−1
2m
]
e−S(a,b,α,β) =

2mNf
N

〈TrG〉

Keeping in mind the complexification of a, b, α, β, we compute the drifts, whose conjugates we need in
order to integrate SA equations

∂S

∂amn
= 2Namn + iNf coshµ (Rmn + Tmn)

∂S

∂bmn
= 2Nbmn −Nf coshµ (Rmn − Tmn)

∂S

∂αmn
= 2Nαmn +Nf sinhµ (Rmn + Tmn)

∂S

∂βmn
= 2Nβmn + iNf sinhµ (Rmn − Tmn)

(7.3)

where

Rmn ≡
N∑
k=1

GkmYnk

Tmn ≡
N∑
k=1

GmkXkn

From these equations, we immediately see that the classical vacuum a = b = α = β = 0 is a critical point,
being all the derivatives zero. Thus we shall consider the thimble associated to it, which we label J0

44 and
perform integration over it. One question now arises: is there any other (non-trivial) critical point which
is relevant for the thimble decomposition? In particular, we are interested in the “thermodynamic” limit
N → ∞: does J0 become the only relevant thimble in this limit? These issues will be discussed later on.
The formulas for the Hessian are quite lengthy: they can be found in Appendix C. Here we just recall one
remarkable result of the computation of the Hessian at the classical vacuum. The Hessian features only two
different Takagi values (λ+ and λ−), so that T0J0 consists of two 2N2-dimensional subspaces with complete
Takagi value degeneracy. Moreover, at large (rescaled) quark masses m̃, the two Takagi values become less
and less apart, so that in the large-mass limit, not only the theory becomes Gaussian (which can be seen
from (7.2) by direct inspection), but it also becomes completely isotropic (see Figure 7.2). This is expected
to make simulations at high m̃ quite easy. This, as we shall see, is indeed recovered in the simulations.

44J0, as expected, is a manifold of real dimension 4N2 which can be thought as embedded in R8N2
.
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Figure 7.2: The picture shows how λ+−λ− changes as a function of m̃ for various values of N . We see that
the two Takagi values become closer at large masses. Thus we expect numerical simulations to be quite easy
in this region.

7.2 Numerical results

In Figure 7.3 we show the results of our numerical simulations of the CRM model (we computed the expec-
tation value of the chiral condensate - see formula (5.5)). We have integrated only on J0 and employed the
static, crude Monte Carlo method described in Section 5.3. Actually, the static, crude Monte Carlo proved
to be pretty inefficient for this model, especially in the low mass region at high N . As mentioned before, in
this region, the Takagi values of the Hessian at the critical point get more and more apart from each other,
so that tiny differences in the choice of n̂ may lead to Zn̂ varying by orders of magnitude. For this reason,
the error bars are bigger in the low mass region, especially at high N , where the algorithm has to sample
a larger space. Furthermore, in the low mass region, we have that the action departs more and more from
its Gaussian counterpart45, so that the curvature of the thimble becomes more relevant. In Figure 7.4 we
plot the residual-phase-quenched results from the same simulations, that is we have neglected ei ω in (5.5).
It is clear that in those regions in which the curvature of the thimble is greater, the residual phase must be
taken into account to recover correct results; this is more evident at lower values of N . The residual phase,
though not negligible, could well be taken into account by reweighting and posed no residual sign problem
at all. We also applied to the CRM model the HBB Metropolis algorithm discussed in Section 5.3. This
was successful and correct results could be achieved with far less statistics (and smaller error bars) than
using the static, crude Monte Carlo. It also made it possible to compute Σ at some masses which had been
unfeasible with the static, crude Monte Carlo [78]. See Figure 7.5 and Table 7.1 for a comparison of results
between the two algorithmic solutions. Remarkably, we were able to get correct results by integrating only
on J0, even at low values of N . As we shall see in Section 7.3, this could have been predicted thanks to the
structure of critical points for this model.

7.3 Other critical points

As already stated, correct results have been obtained (in the region of parameter space that was examined)
by integrating only over J0, even at small N . This result is somehow surprising, therefore we return to the
issue of the existence of other critical points. We initially searched for other critical points numerically [73]:
the critical point condition ∇S = 0 was solved via the Newton-Raphson method, checking the results against

45This can be readily seen in (7.2) by noting that, at high m2 = (m̃/N)2, the logarithm approaches a constant.
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Figure 7.3: We show the results of our numerical simulations of the CRM model on J0 with the static, crude
Monte Carlo. Solid lines depict exact results, while dashed lines depict phase-quenched results. The black
points represent numerical results. Larger error bars are encountered in the low mass region, especially at
larger N .

a minimization of ‖∇S‖2 with the Nelder-Mead symplex method. A few classes of critical points pσ were
found (all outside the original domain of integration, which is a, b, α, β ∈ RN×N ), but all of them had SR(pσ)
less than its absolute minimum on the original domain of integration; so, by the argument in Section 3.4,
they are irrelevant in the thimble decomposition. Actually, much insight can be gained analytically about
other critical points, and this is precisely the aim of this section. Recall that critical points are configurations
on which every component of the drift is zero, that is all the derivatives appearing in (7.3) are 0. In matrix
form, this reads

− 2Na = +iNf coshµ(R+ T )

− 2Nb = −Nf coshµ(R− T )

− 2Nα = Nf sinhµ(R+ T )

− 2Nβ = iNf sinhµ(R− T )

(7.4)

By combining the first equation with the third and the second with the fourth, we get

α = −i tanhµa

β = −i tanhµ b
(7.5)

These are relations that have to be satisfied by any critical point. By employing (7.5), we can reduce the
action to an expression which is dependent only on a and b. To do this, we compute
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Figure 7.4: We show the residual-phase-quenched results of our numerical simulations of the CRM model
on J0 with the static, crude Monte Carlo. Solid lines depict exact results, while dashed lines depict phase-
quenched results. The black points represent numerical results obtained by completely neglecting the residual
phase. The results which are more departing from the exact ones are those at low masses and low values of
N .

X = i coshµ(a+ ib) + sinhµ(α+ iβ) = i(coshµ− sinhµ tanhµ)(a+ ib) =
i

coshµ
(a+ ib)

Y = i coshµ(a− ib)T + sinhµ(α− iβ)T = i(coshµ− sinhµ tanhµ)(a− ib)T =
i

coshµ
(a− ib)T

so that

G−1 = m2 1−XY = m2 1 +
1

cosh2 µ
M

having definedM ≡ (a+ ib)(a− ib)T .46 Consider now the Gaussian part of the action: for the trace part,
we have

a2
ij + b2ij + α2

ij + β2
ij = a2

ij + b2ij − tanh2 µa2
ij − tanh2 µ b2ij =

(
1− tanh2 µ

)
(a2
ij + b2ij)

from which it follows

N∑
i=1

N∑
j=1

(
a2
ij + b2ij + α2

ij + β2
ij

)
=

1

cosh2 µ
TrM

Thus the action (7.2) at a critical point becomes
46It is important to realize that M 6= M† for complex a and b.
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N m̃ Σexact 〈Σ〉static MC 〈Σ〉HBB Metropolis # of n̂ (static) # of n̂ (Metropolis)
4 7 1.7794 - 1.7918(97) - 216720
4 8 1.6340 1.6480(310) 1.6266(72) 122567 99969

2 5 1.3817 1.3580(440) 1.3870(82) 792360 336726
1.4020(130) 277596

1 4 0.9379 0.9359(220) 0.9360(280) 285930 67787

Table 7.1: Comparison of simulation results for the chiral condensate: data from the static, crude Monte
Carlo and from the HBB Metropolis algorithm. The number of n̂ in the Markov chain (that is the number
of SA curves that have been integrated) is also displayed. Static, crude Monte Carlo data for N = 4, m̃ = 7
was not stable enough to provide a definite result. The second line at N = 2, m̃ = 5 refers to the Metropolis
algorithm discussed at the end of Section 5.3.

S0(a, b) =
N

cosh2 µ
TrM −Nf log det

(
m2 1 +

1

cosh2 µ
M

)
= N Tr

(
G−1

)
−Nf log det

(
G−1

)
−N2m2 (7.6)

We immediately notice that the value of the action at any critical point is determined only by the
spectrum of G (or, equivalently, the spectrum of M). Thus a classification of critical points boils down to
the classification of the eigenvalues of M (or of G). We use the first two equations in (7.4) to get

a+ ib = −iNf
N

coshµT

a− ib = −iNf
N

coshµR

and we also have

T = GX =
i

coshµ
G(a+ ib)

R = (Y G)T =
i

coshµ

(
(a− ib)TG

)T
=

i

coshµ
GT (a− ib)

which leads to

a+ ib =
Nf
N
G(a+ ib)

a− ib =
Nf
N
GT (a− ib)

(7.7)

By multiplying the first with the transpose of the second, we get
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Figure 7.5: We compare results for the CRM model using the static, crude Monte Carlo and the HBB
Metropolis algorithm of Section 5.3. Black dots represent analytical results for the chiral condensate. Red
bars depict estimates obtained with the static, crude Monte Carlo (same data of Figure 7.3). Green bars
represent results of the HBB Metropolis algorithm. The blue bar at N = 2, m̃ = 5 depicts an estimate
obtained using the Metropolis algorithm discussed at the very end of Section 5.3 (with ε = 0.15).

M =

(
Nf
N

)2

GMG

⇒ G−1MG−1 =

(
Nf
N

)2

M

⇒
(
m2 1 +

1

cosh2 µ
M

)
M

(
m2 1 +

1

cosh2 µ
M

)
=

(
Nf
N

)2

M

⇒ m4M +
2m2

cosh2 µ
M2 +

1

cosh4 µ
M3 −

(
Nf
N

)2

M = 0

⇒ M

[
M2 + 2m2 cosh2 µM + cosh4 µ

(
m4 −

(
Nf
N

)2
)]

= 0

It is known from linear algebra [95] that any polynomial P (M) such that P (M) = 0 must be a (polyno-
mial) multiple of µM , the minimal polynomial ofM , whose zeros are the eigenvalues ofM . As a consequence,
the eigenvalues of M we seek are solutions to

λ

[
λ2 + 2m2 cosh2 µλ+ cosh4 µ

(
m4 −

(
Nf
N

)2
)]

= 0

which gives either λ = 0 or λ = cosh2 µ
(
Nf
N −m

2
)
. Equivalently, for G−1, we have either λ = m2 or
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λ =
Nf
N . 47 We can consider two possible scenarios, depending on the determinant of M : if det M 6= 0, then

det(a+ ib) 6= 0 and det(a− ib) 6= 0 as well, so that we can multiply each equation in (7.7) by the inverse of
the first member, which gives

G =
N

Nf
1 ⇔ M = cosh2 µ

(
Nf
N
−m2

)
1

So that this critical point is actually a manifold defined by

(a+ ib)(a− ib)T = cosh2 µ

(
Nf
N
−m2

)
1

with action (using (7.6))

S0 = NNf

[
1− log

(
Nf
N

)]
−N2m2

However, this does not cover the whole set of possible critical points. If detM = 0, we can label the
critical points by the degeneracy r of the zero eigenvalue of M . Let us set r = N − rank(M), then the
characteristic polynomial χG−1 of G−1 is

χG−1(λ) =
(
λ−m2

)r (
λ− Nf

N

)N−r

so that Tr(G−1) = rm2 + (N − r)NfN and log det(G−1) = r logm2 + (N − r) log
(
Nf
N

)
. By plugging this

into (7.6), we get an expression for the action computed at any critical point labelled by r

S
(r)
0 = N

[
rm2 + (N − r)Nf

N

]
−Nf

[
r logm2 + (N − r) log

(
Nf
N

)]
−N2m2

= (N − r)Nf
[
1− log

(
Nf
N

)]
+ r

(
Nm2 −Nf logm2

)
−N2m2 (7.8)

in which we immediately notice that putting r = 0 recovers the case detM 6= 0. The action S
(r)
0

is manifestly real. There are N different classes of critical points, as r = 0 · · ·N − 1 (the case r = N

corresponds to the classical vacuum, having action S(N)
0 = −NNf logm2). It is worth noting that all these

critical points lie outside of the original domain of integration, consisting of real a, b, α, β; this is due to
(7.5), which forces e.g. α and β to be imaginary if a and b are real. It is easy to check from (7.8) that S(r)

0

is lower than any value SR can assume on the original domain of integration in all the region of parameter
space we have explored. Therefore, as already stated, by the argument of Section 3.4, all these critical points
are expected not to contribute to the thimble decomposition; so, it does not come as a surprise that correct
results could be achieved by integrating only on J0.

47We ignore −Nf
N

, being its logarithm ill-defined.
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8 SU(N) one-link models

In Section 4 we have discussed thimble decomposition for gauge theories from a general point of view. Now
we consider the simplest examples of “gauge” theories: SU(N) one-link models. These models, although
somehow “artificial” and lacking a real (local) gauge symmetry, provide an excellent environment to test
thimble integration in the formalism which is suitable for gauge theories. Moreover, as we shall see, these
models involve multiple thimbles, all necessary to reconstruct the expected results.

An SU(N) one-link model consists of a single matrix U ∈ SU(N) in the fundamental representation. The
sign problem is introduced by hand by means of a complex coupling β ∈ C. Thus complexification means
taking U ∈ SL(N,C). The action is

S(U) = − β
N

TrU

and the partition function is48

Z(β) =

ˆ

SU(N)

dU e
β
N TrU =

∞∑
n=0

2! · · · (N − 1)!

n! · · · (n+N − 1)!

(
β

N

)Nn

As an observable, we take TrU , that is

〈TrU〉 =
1

Z

ˆ

SU(N)

dU TrU e
β
N TrU = N

∂

∂β
lnZ(β)

In order to write SA equations, we need the gradient, that is

∇aS(U) = − iβ
N

Tr (T aU)

while, for PT equations, we need the Hessian

∇b∇aS(U) =
β

N
Tr
(
T bT aU

)
In general, for SU(N), there are N critical points {Uk}k=0···N−1, given by Uk = e2πik/N1, that is all the

elements of Z(N), the center of SU(N). As all these critical points belong to SU(N) (the original domain
of integration), we expect that nk 6= 0 for all k. For the hessian at the critical points, after expressing
β = |β| eiϕ, we have

∇a∇bS(U)
∣∣
Uk

=
|β|
2N

ei(ϕ+2πk/N)δab

which follows from the choice of normalization Tr(T aT b) = 1
2δ
ab for the generators of su(N) in the

fundamental representation. We immediately see that the N2 − 1 Takagi values are all equal and λ = |β|
2N

for each critical point. The corresponding Takagi vectors at Uk are v(i)
j = e−i(ϕ+2πk/N)/2δij . It is immediate

to check that such vectors satisfy Takagi’s factorization theorem

v(i)
a ∇a∇bS(U)

∣∣
Uk
v

(j)
b = λ δij

and are orthonormal.
48For a thorough analytical computation of Z(β) at generic N , see [96] and references therein.
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8.1 SU(2)

As a first example of one-link model49 we will consider the case N = 2. Analytical computation of the
partition function yields

Z(β) =
2I1(β)

β

where I1 is the modified Bessel function of the first kind and the observable

〈TrU〉 = 2

(
I ′1(β)

I1(β)
− 1

β

)
The are two critical points: U = 1 and U = −1. This model can be reformulated in terms of the

only eigenvalue of U , that is eiφ (with φ that gets complexified in taking su(2) → sl(2,C)); then the action
becomes S(φ) = −β cosφ and the model effectively becomes one-dimensional

Z(β) =

ˆ

SU(2)

dU e
β
2 TrU =

1

π

+πˆ

−π

dφ sin2 φ eβ cosφ

where 1
π sin2 φ is the (normalized) reduced Haar measure of SU(2). This formulation has been employed

in [97]. Because of the effectively one-dimensional nature of the model, it is to be expected that any choice
of n̂ within the framework of Section 5.1 is irrelevant for the measure of 〈TrU〉 = 2〈cosφ〉 and there is
effectively only one steepest ascent curve for each critical point. We can see this explicitly in the following
way: first note that TrU = Tr(GUG−1) for any matrix G50 (in particular, for G ∈ SU(2)). Then all we
have to show is that a different choice n̂′ with respect to a reference n̂ can be traded for an appropriate
gauge transformation G on the initial condition for SA equation integration.51 Consider an initial condition
U(n̂, t0) at a reference time t0 → −∞ in a neighbourhood of Uk and U(n̂′, t0) with |n̂| = |n̂′| =

√
R. We

seek G = eigaT
a ∈ SU(2) such that

GU(n̂, t0)G−1 = U(n̂′, t0)

Using the lemma in Appendix B and the fact that, being Uk ∈ Z(2), Uk commutes with every element
of SU(2), we have

eigaT
a

e
i

3∑
j=1

nje
λt0v(j)

a Ta

Uk e
−igaTa = e

i
3∑
j=1

n′je
λt0v(j)

a Ta

Uk

⇒ eigaT
a

e
i

3∑
j=1

nje
λt0v(j)

a Ta

e−igaT
a

Uk = e
i

3∑
j=1

n′je
λt0v(j)

a Ta

Uk

⇒ e
i

3∑
j=1

nje
λt0Mabv

(j)
b Ta

= e
i

3∑
j=1

n′je
λt0v(j)

a Ta

⇒
3∑
j=1

n′jv
(j)
a =

3∑
j=1

nj

(
Mabv

(j)
b

)
49Actually, the simplest one-link model one can study is the (abelian) U(1) model. We shall not consider this, as its solution

by means of thimble integration has already been discussed in [67].
50This is the “global gauge symmetry” exhibited by one-link models.
51What one should actually show is that all the t-integrals one computes when starting at U(n̂, t0) are the same as those

computed starting fromGU(n̂, t0)G−1. While this is manifest for the action, there is also the basis determinant detV . Invariance
of this determinant can be easily shown by an argument which is given in Section 10.2 in the more general context of Yang-Mills
theory.
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which, using v(j)
a = e−i(ϕ+πk)/2δja, becomes

n′a = Mabnb =
(
eigct

c
)
ab
nb

where {ta} are the generators of su(2) in the adjoint representation, which are also generators of so(3) in
the fundamental representation. The consequence is thatMab is just a rotation in the 3-dimensional n-space,
which is norm-preserving. Another way of viewing this is that different choices of n̂ ∈ S2

R are equivalent to
gauge transformations on the field U(t0). The conclusion is that one single SA curve is enough to reconstruct
the expectation value 〈TrU〉. This is indeed recovered numerically.

8.2 SU(3)

The case of SU(3) is more involved, being effectively multi-dimensional. The partition function is

Z(β) = 2

∞∑
n=0

1

n!(n+ 1)!(n+ 2)!

(
β

3

)3n

and the observable

〈TrU〉 =
6

Z

∞∑
n=1

1

(n− 1)!(n+ 1)!(n+ 2)!

(
β

3

)3n−1

The action takes on different values at the critical points (labelled by k = 0, 1, 2):

S(Uk) = −β
3

TrUk = −βe2πik/3

and therefore it is to be expected that the relevance of the three thimbles {Jk} is affected by the value
of β = |β|eiϕ. By considering the semiclassical decomposition (see formula (5.18))

Z ≈ Z0 + Z1 + Z2

We can give a (semiclassical) estimate for the relative weight of J1 and J2 with respect to J0 in the
thimble decomposition. We introduce the quantity rk0 with k either 1 or 2

rk0 ≡
|Zk|
|Z0|

= e−(SR(Uk)−SR(U0)) = e|β|(cos(ϕ+2πk/3)−cosϕ) = e−2|β| sin(πk/3) sin(ϕ+πk/3)

where the factors
√

det Λk disappear due to λ being the same for all critical points. In Figure 8.1 rk0 is
depicted as a function of ϕ. We see that, at the semiclassical level, J1 is almost irrelevant in the range of
ϕ we have studied. This estimate is actually true for the exact theory as well: irrelevance of J1 is indeed
recovered in numerical simulations of the model. Figure 8.1 also predicts J2 to become more and more
important at higher values of ϕ (eventually, at purely imaginary β, it becomes the dominant thimble). In
Figure 8.2 we show numerical results which take into account only J0 in the decomposition: discrepancies
arise at higher values of ϕ. By taking into account J2 as well, we recover correct results for any value of
ϕ ∈

[
0, π2

]
(at fixed |β| = 5), as showed in Figure 8.3. All the simulations were performed using the static,

crude Monte Carlo described in Section 5.3.
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Figure 8.1: Semiclassical estimate for the relative weight of J1 and J2 with respect to J0 as a function of ϕ
at |β| = 5.
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Figure 8.2: Thimble simulations of the one-link SU(3) model at β = 5 eiϕ integrating only on J0. Numerical
results for TrU as a function of ϕ are displayed.
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Figure 8.3: Thimble simulations of the one-link SU(3) model at β = 5 eiϕ. Numerical results for TrU as a
function of ϕ are displayed.
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9 QCD in 0+1 dimensions

In this section we shall study Quantum Chromodynamics on the lattice in 0 + 1 dimensions. Despite being
much simpler than its 4-dimensional counterpart, this model provides an excellent setting to test the thimble
formalism in the case of gauge theories. Moreover, the sign problem in QCD is due to the presence of a
(quark) chemical potential, which is far more interesting to study than one-link models, in which the sign
problem is introduced by hand with a complex coupling. For 0 + 1 QCD, analytical results are readily
available [98, 99, 100, 101]; the sign problem has also been solved by means of the so called subset method
[101]. We shall now focus on Nc = 3 lattice QCD with staggered fermions on a one-dimensional lattice with
(even) Nt sites in the temporal direction. The lattice extent is related to the temperature by aNt = 1/T ,
where a is the lattice spacing. The partition function of the theory for Nf degenerate quark flavours of mass
m is

ZNf =

ˆ Nt∏
i=1

dUi detNf (aD)

where no Yang-Mills action is present due to the absence of a “plaquette” in one dimension only52 and
D is the lattice staggered Dirac operator

(aD)ii′ = amδii′ +
1

2

(
eaµUiδ̃i′,i+1 − e−aµU†i−1δ̃i′,i−1

)
where δ̃ii′ is the anti-periodic Kronecker delta, i.e.

aD =


am eaµU1/2 0 · · · 0 e−aµU†Nt/2

−e−aµU†1/2 am eaµU2/2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · am eaµUNt−1/2

−eaµUNt/2 0 0 · · · −e−aµU†Nt−1/2 am


All the links {Ui} except one can be set to 1 by an appropriate gauge transformation: the only remaining

link is simply the Polyakov loop U ≡ UNt , making the model effectively similar to one-link SU(3). Now we
have

det(aD) = det


am eaµ/2 0 · · · 0 e−aµU†/2

−e−aµ/2 am eaµ/2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · am eaµ/2

−eaµU/2 0 0 · · · −e−aµ/2 am


We make use of the following formula [37, 102]

52Even in the continuum, Faµν is antisymmetric, so that, if there is only a temporal direction, Fa00 = 0 is the only term.
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det



a1 b1 0 · · · 0 c0
c1 a2 b2 · · · 0 0
0 c2 a3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · aL−1 bL−1

bL 0 0 · · · cL−1 aL


= − (bL · · · b1 + cL−1 · · · c0) + Tr

[(
aL −bL−1cL−1

1 0

)
· · ·
(
a2 −b1c1
1 0

)(
a1 −bLc0
1 0

)]
In our case L = Nt and the entries are 3× 3 matrices, in particular

aj = am 1 j = 1 · · ·Nt

bj =

{
eaµ/2 1 j = 1 · · ·Nt − 1

−eaµ U/2 j = Nt

cj =

{
−e−aµ/2 1 j = 1 · · ·Nt − 1

e−aµ U†/2 j = 0

so that

det(aD) = det3×3

{
−

[(
eaµ

2

)Nt−1(
−e

aµ U

2

)
+

(
−e
−aµ

2

)Nt−1(
e−aµ U†

2

)]
+ Tr

[(
am 1/4
1 0

)Nt−1(
am 1/4
1 0

)]}

= det3×3

{
1

2Nt

(
eaNtµU + e−aNtµU†

)
+ Tr

[(
am 1/4
1 0

)Nt]}

= det3×3

 1

2Nt

(
eµ/TU + e−µ/TU†

)
+

(
am+

√
(am)2 + 1

2

)Nt
+

(
am−

√
(am)2 + 1

2

)Nt
=

1

23Nt
det3×3

{
eµ/TU + e−µ/TU† +

(
am+

√
(am)2 + 1

)Nt
+
(
am−

√
(am)2 + 1

)Nt}

=
1

23Nt
det3×3

{
eµ/TU + e−µ/TU† + eNt sinh−1(am) + (−1)NteNt sinh−1(−am)

}
=

1

23Nt
det3×3

{
eµ/TU + e−µ/TU† + esinh−1(am)/(aT ) + e− sinh−1(am)/(aT )

}
=

1

23Nt
det3×3

(
A13×3 + eµ/TU + e−µ/TU†

)
with A = 2 cosh(µc/T ) and aµc = sinh−1(am). We will set a = 1 in all the following calculations. The

partition function we have to compute is (the coefficient in front of the integral can be neglected)

ZNf =

ˆ

SU(3)

dU detNf
(
A 13×3 + eµ/TU + e−µ/TU†

)
(9.1)
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9.1 Analytical computation of the partition function

Now we make use of the relation 6 detM = (TrM)3 − 3 TrM TrM2 + 2 TrM3, which holds for a generic
3× 3 matrix and we also apply it to the matrix U ∈ SU(3), which gives (TrU)3− 3 TrU TrU2 + 2 TrU3 = 6;
by making use of TrU2 = (TrU)2 − 2 TrU† for U ∈ SU(3) as well, the integrand in (9.1) becomes

[(
(A2 − 2)TrU + (TrU†)2

)
eµ/T +

(
(A2 − 2)TrU† + (TrU)2

)
e−µ/T

ATrU†e2µ/T +ATrUe−2µ/T + e3µ/T + e−3µ/T +A3 − 3A+ATrU TrU†
]Nf

When this expression is expanded for a given value of Nf , the generic term of the resulting sum is
proportional to (TrU)a(TrU†)b and

ˆ
dU (TrU)a(TrU†)b =

ˆ
dU χR(U)

with χR(U) the character of U in the representation R defined by the group direct product of the
fundamental and anti-fundamental representations of SU(3)

R =

a⊗
3⊗

b⊗
3̄ =

⊕
i

niRi

The second equality states the decomposition of R into a direct sum of irreducible representations {Ri},
whose multiplicities are {ni}. The group integral now selects only the trivial representation 1, being

ˆ
dU χR(U) = δR,1

and therefore

ˆ
dU (TrU)a(TrU†)b =

∑
i

ni

ˆ
dU χRi(U) = n1

For example, we have

3⊗ 3̄ = 8⊕ 1 ⇒
ˆ

dU TrU TrU† = 1

and it turns out that n1 6= 0 only if ((a− b) mod 3) = 0. For all the irreducible representation de-
compositions involved, the Mathematica package LieART [103] was used.53 The computation of 〈TrU〉 and

53There is another method which can be used to carry out the previous calculations: the eigenvalue representation of
the Polyakov loop. We can diagonalize U with a unitary matrix S with U = SΛS† and Λ = diag

(
eiϕ1 , eiϕ2 , e−iϕ1−iϕ2

)
,

ϕ1, ϕ2 ∈ [0, 2π]. Using the (normalized) Haar measure of this parametrization, we can write

dU =
8

3π2
sin2

(
ϕ1 − ϕ2

2

)
sin2

(
2ϕ1 + ϕ2

2

)
sin2

(
ϕ1 + 2ϕ2

2

)
dϕ1dϕ2

And the Dirac determinant is

detD =

3∏
k=1

(
A 13×3 + eµ/T+iϕk + e−µ/T−iϕk

)
where it is understood ϕ3 = −ϕ1 − ϕ2. The integrals are now easy to compute for any value of Nf .
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〈TrU†〉 can be carried out in the very same way. Appendix D gathers analytical results for the computation
of Z and 〈TrU〉 for different values of Nf .

9.2 Simulating the theory

For numerical simulations, we turn the quark determinant into an effective action

ZNf =

ˆ

SU(3)

dU e−S(U)

with

S(U) = −NfTr logM(U)

and M(U) = A13×3 + eµ/TU + e−µ/TU−1.

There are three main observables we are interested in. The first is the chiral condensate

Σ ≡ T ∂

∂m
logZ = T

〈
NfTr

(
M−1 ∂M

∂m

)〉
= Nf

√
A2 − 4

m2 + 1

〈
Tr
(
M−1

)〉
while the other two are the Polyakov loop 〈TrU〉 and the anti-Polyakov loop 〈TrU†〉 = 〈TrU〉µ→−µ.

The latter two can be related to the quark number density n ≡ T ∂
∂µ logZ by a relation which takes quite

different forms for different values of Nf [101]. The drift of the action is given by

∇aS(U) = −iNfTr
[
M−1(U)

(
eµ/TT aU − e−µ/TU−1T a

)]
while the Hessian is

∇b∇aS(U) = NfTr

[
M−1(U)

[(
eµ/TT aT bU + e−µ/TU−1T bT a

)
−
(
eµ/TT bU − e−µ/TU−1T b

)
M−1(U)

(
eµ/TT aU − e−µ/TU−1T a

)]]

There are three critical points {Uk = e2πik/31} with k = 0, 1, 2. After defining

Bk ≡ 2

[
cosh

(µc
T

)
+ cosh

(
µ

T
+

2πik

3

)]

we have S(Uk) = −3Nf logBk and ∇b∇aS(U)
∣∣
Uk

= λke
i ϕkδab, with

λke
i ϕk ≡ Nf

[
B−1
k

(
cosh

(
µ

T
+

2πik

3

)
− 2B−1

k sinh2

(
µ

T
+

2πik

3

))]

The only Takagi value is thus λk, while the 8 Takagi vectors are given by v[k](i)
j = e−i ϕk/2δij .

We will now show that the action of 0+1 QCD fulfills a reflection symmetry described in [42] and discussed
in detail in Appendix E: S(A) = S(−Ā) with U = eiA. This ensures the reality of the partition function (and
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of the expectation value of the Polyakov loop as well). This symmetry of the theory is manifestly fulfilled
by the decomposition in thimbles [42] and holds at every order in perturbation theory as well, so we shall
recover it in the semiclassical expansion. Consider the QCD partition function

ZNf (µ) =

ˆ
DψDψ̄DU e−Nf ψ̄D(U,µ)ψ =

ˆ
DU detNf (D(U, µ))

The action (whose only component, in our case, is the Dirac determinant) is invariant under charge
conjugation C defined by [28]

C


ψ → C−1ψ̄T

ψ̄ → −ψTC
Uν̂(n)→ Ūν̂(n)

(
Aν̂(n)→ −ATν̂ (n) = −Ā

)
µ→ −µ

with the matrix C satisfying CγµC−1 = −γTµ .54 Thus, we can employ charge conjugation to substitute
detD(U, µ)→ detD(Ū ,−µ) leaving the action invariant. We also recall the generalization of γ5-hermiticity
at finite chemical potential [29, 28]

detD(U,−µ) = detD(U, µ)

This implies that

S(A) ∼ detD(U, µ)
γ5-herm.

= detD(U,−µ)
C-inv.

= detD(Ū , µ) ∼ S(−Ā)

We have shown that the aforementioned reflection symmetry is fulfilled and thus we expect thimbles to
appear in conjugate pairs. This is indeed the case: consider the three critical points {Uk}. U0 = 1 is real and
therefore self-conjugate; the consequence of this is that computations on the associated thimble yield real
results. As for the other two critical points, being e4πi/3 = e−2πi/3, we immediately see that U2 = U1. This
implies that U1 and U2 form a conjugate pair of critical points and results of integration on U2 should be the
complex conjugate of those on U1, yielding an overall real contribution to the partition function (and also
to the expectation value of observables). This is recovered in numerical simulations. As a final remark, we
state that these results hold not only for the partition function, but also for the Polyakov loop (it is obvious,
since TrU = Tr Ū) and anti-Polyakov loop.55

9.3 Semiclassical expansion

In this section we will compute semiclassical expansions around thimbles in 0 + 1 QCD. Consider the semi-
classical expression for the thimble decomposition of the partition function which is given in (5.18). In our
case, we have det Λk = λ8

k and ei ωk =
(
e−i ϕk/2

)8
, so that

Z ≈ (2π)4
∑

k=0,1,2

nk e
3Nf logBkλ−4

k e−4i ϕk

The expectation value of the Polyakov loop can be computed in the following way, starting from expression
(5.19)

54A caveat is in order as for notation Ū : this is not to be intended as in Section 4.1, but as the ordinary complex conjugate.
55The chiral condensate and the quark number density automatically respect this symmetry, being derivatives of the partition

function.
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〈TrU〉 ≈ 1

Z
(2π)4

∑
k=0,1,2

nk e
3Nf logBkλ−4

k e−4i ϕk

(
TrUk +

1

2

1

λk

8∑
i=1

(
CTrU
k

)
ii

)

where

(
CTrU
k

)
ii

=

8∑
j=1

8∑
l=1

(
HTrU
k

)
jl
v

(i)
j v

(i)
l = e−i ϕk

(
HTrU
k

)
ii

= e−i ϕk∇i∇iTrU
∣∣
Uk

= −e−i ϕke2πik/3Tr
(
T iT i 1

)
= −1

2
e−i ϕke2πik/3

Being TrUk = e2πik/3 Tr 1 = 3 e2πik/3, it follows that

TrUk +
1

2

1

λk

8∑
i=1

(
CTrU
k

)
ii

= e2πik/3

(
3− 2

λk
e−i ϕk

)

and finally

〈TrU〉 ≈ 1

Z
(2π)4

∑
k=0,1,2

nk e
3Nf logBkλ−4

k e−4i ϕk+2πik/3

(
3− 2

λk
e−i ϕk

)

From the previous considerations on the reflection symmetry featured by 0 + 1 QCD, we can see that
reality of Z and 〈TrU〉 is achieved by setting n1 = n2. This is so since the contribution of J2 to Z and 〈TrU〉
is the complex conjugate of the contribution of J1. This is manifest in the semiclassical expansion thanks to
S(U2) = S(U1), B2 = B̄1, λ2 = λ1, ei ϕ2 = ei ϕ1 = e−i ϕ1 , all following from e4πi/3 = e−2πi/3 = e2πi/3. Thus
we can rephrase Z as

Z ≈ Z0 + Z1 + Z2

with Z0 ∈ R and Z2 = Z̄1 (so that |Z1| = |Z2|). The semiclassical expansion on thimbles also provides
an easy way to compute an estimate for the relevance of J1,2 with respect to J0 in the computation of e.g.
the partition function. We define the relative weight r1,2

0

r1,2
0 ≡ |Z1,2|

|Z0|
=

∣∣e3Nf logB1,2
∣∣λ−4

1,2

|e3Nf logB0 |λ−4
0

=

(
λ1,2

λ0

)−4 ∣∣∣∣B1,2

B0

∣∣∣∣3Nf (9.2)

and study it at different values of µ
T and m. This, as we shall see, provides a reliable estimate which can

be compared with the results of numerical simulations. We note that, being B0 = A+ 2 cosh(µ/T ) ∈ R and
B1 = A− cosh(µ/T ) + i

√
3 sinh(µ/T )

|B1,2|2 = A2 + cosh2
(µ
T

)
− 2A cosh

(µ
T

)
+ 3 sinh2

(µ
T

)
= A2 + 4 cosh2

(µ
T

)
− 2A cosh

(µ
T

)
− 3 < A2 + 4 cosh2

(µ
T

)
+ 4A cosh

(µ
T

)
= |B0|2

so that
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r1,2
0 −→

Nf→∞
0

for any value of µ
T and m (the ratio λ1,2/λ0 is independent on Nf ). As a consequence, we expect that

integrating only over J0 will give more accurate results at high number of quark flavours.56

9.4 Numerical results

Numerical results of thimble simulations for the chiral condensate and the Polyakov loop are displayed in
Figures 9.1 to 9.7. As all the three critical points belong to the original domain of integration (SU(3)), we
expect all of them to be relevant in the thimble decomposition. However, a deeper insight with regards to
their actual weight in such decomposition can be gained from the semiclassical arguments of the previous
section. Figures from 9.8 to 9.11 depict r1,2

0 (defined in (9.2)) as a function of µ
T and m; by studying this

quantity one can predict for which values of the parameters ( µT ,m) integration only over J0 is expected
to capture substantially correct results. In Figures 9.12 and 9.13 numerical results obtained by integrating
only on J0 are shown for m = 1, Nf = 2 and m = 0.1, Nf = 6 respectively. In the regions in which
Figures 9.8b and 9.10b predict J1 and J2 to be relevant, results computed by taking only J0 into account
are clearly wrong, while taking into account J1 and J2 as well provides correct results, as shown in Figures
9.2c, 9.2d and 9.6a, 9.6b. In this model, all Takagi values are equal, so that the HBB Metropolis algorithm
of Section 5.3 is inapplicable. Therefore one could either use the static, crude Monte Carlo or the Metropolis
algorithm at the end of Section 5.3. All the numerical results presented here were obtained with the static,
crude Monte Carlo. As a consequence of the total degeneracy of the Hessian eigenvalues, we expect the
dependence of Zn̂ on n̂ be due to purely non-Gaussian effects. The reader will notice that Figures 9.1 to 9.7
do not show simulation results beyond certain values of µ/T which are dependent on m and Nf . At higher
values of Nf , all µ/T were simulated to a success. This is consistent with the observation that semiclassical
estimates (which rely on the isotropy of the Hessian spectrum) become exact in the limit Nf → ∞, thus
rendering the model easier to simulate at high Nf . The regions of parameters which are difficult to simulate
(namely, high µ/T ) are those which make integration of SA and PT equations difficult.57 This difficulty is
due to the “curvature” of the thimble becoming increasingly higher, which requires more care in carrying
out numerical integrations.58 It turns out that these problems are much more severe for J1 and J2 than
they are for J0. This is a problem which is specific to this model and a solution to it is currently under
investigation. This technical difficulty in integrating on J1 and J2 is the reason why for low values of Nf we
could not simulate the model in the high µ/T region, especially at lower masses. This is again in accordance
with semiclassical estimates of Figures 9.8 to 9.11, which predicts J1 and J2 to be more relevant in those
regions of parameters. Anyway, the aforementioned reflection symmetry helps in knowing what to expect
from simulations on J1 and J2. All in all, despite some serious technical problems still to be solved, a quite
clear scenario for thimble-regularized 0 + 1 QCD at finite density emerges.

56This is of course a semiclassical estimate. The reliability of this prediction will be checked against numerical simulations.
57For example, at high µ/T , it was difficult to keep the consistency check (5.12) under control using the Euler integration

scheme.
58This problem is related to the chaoticity of the system. In fact, the factor detV appearing in our integrals is closely related

to the Lyapunov spectrum of the system. This is so, as |detV | measures the stretch of an infinitesimal parallelepiped spanned
by {V (i)

n̂ (t)} from the critical point to the point U(t) along the steepest ascent curve.

74



Analytical

Simulation

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

μ/T

ℜ
(Σ
)

(a) Chiral condensate at T = 0.5, Nf = 1, m = 0.1.
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(b) Polyakov loop at T = 0.5, Nf = 1, m = 0.1.
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(c) Chiral condensate at T = 0.5, Nf = 1, m = 1.
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(d) Polyakov loop at T = 0.5, Nf = 1, m = 1.

Figure 9.1: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Nf = 1. Other
parameters are T = 0.5 and m = 0.1, 1.
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(a) Chiral condensate at T = 0.5, Nf = 2, m = 0.1.
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(b) Polyakov loop at T = 0.5, Nf = 2, m = 0.1.
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(c) Chiral condensate at T = 0.5, Nf = 2, m = 1.
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(d) Polyakov loop at T = 0.5, Nf = 2, m = 1.

Figure 9.2: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Nf = 2. Other
parameters are T = 0.5 and m = 0.1, 1.
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(a) Chiral condensate at T = 0.5, Nf = 3, m = 0.1.
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(b) Polyakov loop at T = 0.5, Nf = 3, m = 0.1.
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(c) Chiral condensate at T = 0.5, Nf = 3, m = 1.
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(d) Polyakov loop at T = 0.5, Nf = 3, m = 1.

Figure 9.3: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Nf = 3. Other
parameters are T = 0.5 and m = 0.1, 1.
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(a) Chiral condensate at T = 0.5, Nf = 4, m = 0.1.
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(b) Polyakov loop at T = 0.5, Nf = 4, m = 0.1.
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(c) Chiral condensate at T = 0.5, Nf = 4, m = 1.
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(d) Polyakov loop at T = 0.5, Nf = 4, m = 1.

Figure 9.4: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Nf = 4. Other
parameters are T = 0.5 and m = 0.1, 1.
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(a) Chiral condensate at T = 0.5, Nf = 5, m = 0.1.
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(b) Polyakov loop at T = 0.5, Nf = 5, m = 0.1.
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(c) Chiral condensate at T = 0.5, Nf = 5, m = 0.5.
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(d) Polyakov loop at T = 0.5, Nf = 5, m = 0.5.
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(e) Chiral condensate at T = 0.5, Nf = 5, m = 1.
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(f) Polyakov loop at T = 0.5, Nf = 5, m = 1.

Figure 9.5: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Nf = 5. Other
parameters are T = 0.5 and m = 0.1, 0.5, 1.
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(a) Chiral condensate at T = 0.5, Nf = 6, m = 0.1.
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(b) Polyakov loop at T = 0.5, Nf = 6, m = 0.1.
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(c) Chiral condensate at T = 0.5, Nf = 6, m = 1.
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(d) Polyakov loop at T = 0.5, Nf = 6, m = 1.

Figure 9.6: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Nf = 6. Other
parameters are T = 0.5 and m = 0.1, 1.
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(a) Chiral condensate at T = 0.5, Nf = 12, m = 0.1.
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(b) Polyakov loop at T = 0.5, Nf = 12, m = 0.1.

Analytical

Simulation

0.0 0.5 1.0 1.5 2.0 2.5 3.0

5

10

15

20

μ/T

ℜ
(Σ
)

(c) Chiral condensate at T = 0.5, Nf = 12, m = 1.
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(d) Polyakov loop at T = 0.5, Nf = 12, m = 1.

Figure 9.7: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Nf = 12. Other
parameters are T = 0.5 and m = 0.1, 1.
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(a) r1,20 at T = 0.5, Nf = 1.
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(b) r1,20 at T = 0.5, Nf = 2.

Figure 9.8: The plots represent r1,2
0 for 0+1 QCD at T = 0.5 and Nf = 1, 2 as a function of µ/T and m.
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(a) r1,20 at T = 0.5, Nf = 3.
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(b) r1,20 at T = 0.5, Nf = 4.

Figure 9.9: The plots represent r1,2
0 for 0+1 QCD at T = 0.5 and Nf = 3, 4 as a function of µ/T and m.

79



10-8

10-6

10-4

10-2

100

(a) r1,20 at T = 0.5, Nf = 5.
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(b) r1,20 at T = 0.5, Nf = 6.

Figure 9.10: The plots represent r1,2
0 for 0+1 QCD at T = 0.5 and Nf = 5, 6 as a function of µ/T and m.
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Figure 9.11: The plot represents r1,2
0 for 0+1 QCD at T = 0.5 and Nf = 12 as a function of µ/T and m.
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(a) Chiral condensate at T = 0.5, Nf = 2, m = 1
(integrating only on J0).
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(b) Polyakov loop at T = 0.5, Nf = 2, m = 1
(integrating only on J0).

Figure 9.12: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Nf = 2. Other
parameters are T = 0.5 and m = 1. These results are obtained by integrating only over J0.
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(a) Chiral condensate at T = 0.5, Nf = 6, m = 0.1
(integrating only on J0).
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(b) Polyakov loop at T = 0.5, Nf = 6, m = 0.1
(integrating only on J0).

Figure 9.13: Chiral condensate and Polyakov loop expectation value for 0+1 QCD at Nf = 6. Other
parameters are T = 0.5 and m = 0.1. These results are obtained by integrating only over J0.

81



10 Complex SU(N) Yang-Mills theory in 2 dimensions

After studying the models of the previous sections, the time has come to tackle a real gauge theory with the
thimble approach. In this section we study the (compact) lattice SU(N) Yang-Mills theory in 2 dimensions
with complex coupling as a source of sign problem. Even though we will not perform numerical computations,
many issues concerning this model will be discussed in detail. In particular, we will describe the general
structure of the theory, the problem of constructing a vacuum configuration which is suitable for thimble
regularization in presence of periodic boundary conditions and the issue of performing integration on a gauge-
symmetric thimble. After these discussions, all will be ready to perform actual simulations of the model;
moreover, many of the issues described in this section also apply to more realistic models (such as QCD in 4
dimensions or Yang-Mills in presence of a θ-term). For Yang-Mills theory in 2 dimensions, analytical results
are available: see Appendix F for the computation of the partition function.

Consider the SU(N) Wilson action on a lattice Λ with periodic boundary conditions [29, 28, 104, 105].
Recall the (inverse) coupling β ∈ C; in order to complexify the fields (the gauge links for each spacetime
direction at each point of the lattice), we make the substitution U† → U−1. The action is

S[U ] = β
∑
m∈Λ

∑
ρ̂<ν̂

[
1− 1

2N
Tr
(
Uρ̂ν̂(m) + U−1

ρ̂ν̂ (m)
)]

(10.1)

with

Uρ̂ν̂(m) ≡ Uρ̂(m)Uν̂(m+ ρ̂)U−1
ρ̂ (m+ ν̂)U−1

ν̂ (m)

the elementary plaquette attached to the point m lying in the ρ̂ν̂-plane. β is related to the (bare) coupling
constant g0 by

β =
2N

g2
0

The Wilson action (10.1) is manifestly holomorphic, as it depends only on U and not on Ū ≡
(
U†
)−1.

From the definition of Lie derivative, it follows that

∇aU = i T aU

∇aU−1 = −i U−1T a

In order to compute ∇an,µ̂S[U ], let us consider only those terms in the action involving Uµ̂(n)
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∇an,µ̂S[U ] = − β

2N

∑
ν̂ 6=µ̂

Tr∇an,µ̂



Un,µ̂

U
−1
n,µ̂

n
+

U
−1
n,µ̂

Un,µ̂

n



= − β

2N

∑
ν̂ 6=µ̂

Tr∇an,µ̂

Uµ̂(n)

 +

+

 +

U−1
µ̂


= − i β

2N

∑
ν̂ 6=µ̂

Tr
{
T a
[
Uµ̂ν̂(n) + Uµ̂ν̂(n)− U−1

µ̂ν̂ (n)− U−1
µ̂ν̂ (n)

]}

with

Uµ̂ν̂(n) ≡ Uµ̂(n)Uν̂(n+ µ̂)U−1
µ̂ (n+ ν̂)U−1

ν̂ (n)

Uµ̂ν̂(n) ≡ Uµ̂(n)U−1
ν̂ (n+ µ̂− ν̂)U−1

µ̂ (n− ν̂)Uν̂(n− ν̂)

The computation of the Hessian is more involved. Making use of

∑
ν̂ 6=µ̂

=
∑
ν̂

(1− δν̂,µ̂)

we have
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∇bm,ρ̂∇an,µ̂S[U ]

=− i β
2N

∑̂
ν

(1−δν̂,µ̂)Tr
{
Ta
[
(i T bUµ̂(n))Uν̂(n+µ̂)U−1

µ̂ (n+ν̂)U−1
ν̂ (n)δn,mδµ̂,ρ̂+Uµ̂(n)(i T bUν̂(n+µ̂))U−1

µ̂ (n+ν̂)U−1
ν̂ (n)δn+µ̂,mδν̂,ρ̂

+Uµ̂(n)Uν̂(n+µ̂)(−i U−1
µ̂ (n+ν̂)T b)U−1

ν̂ (n)δn+ν̂,mδµ̂,ρ̂+Uµ̂(n)Uν̂(n+µ̂)U−1
µ̂ (n+ν̂)(−i U−1

ν̂ (n)T b)δn,mδν̂,ρ̂

+(i T bUµ̂(n))U−1
ν̂ (n+µ̂−ν̂)U−1

µ̂ (n−ν̂)Uν̂(n−ν̂)δn,mδµ̂,ρ̂+Uµ̂(n)(−i U−1
ν̂ (n+µ̂−ν̂)T b)U−1

µ̂ (n−ν̂)Uν̂(n−ν̂)δn+µ̂−ν̂,mδν̂,ρ̂

+Uµ̂(n)U−1
ν̂ (n+µ̂−ν̂)(−i U−1

µ̂ (n−ν̂)T b)Uν̂(n−ν̂)δn−ν̂,mδµ̂,ρ̂+Uµ̂(n)U−1
ν̂ (n+µ̂−ν̂)U−1

µ̂ (n−ν̂)(i T bUν̂(n−ν̂))δn−ν̂,mδν̂,ρ̂

−(i T bUν̂(n))Uµ̂(n+ν̂)U−1
ν̂ (n+µ̂)U−1

µ̂ (n)δn,mδν̂,ρ̂−Uν̂(n)(i T bUµ̂(n+ν̂))U−1
ν̂ (n+µ̂)U−1

µ̂ (n)δn+ν̂,mδµ̂,ρ̂

−Uν̂(n)Uµ̂(n+ν̂)(−i U−1
ν̂ (n+µ̂)T b)U−1

µ̂ (n)δn+µ̂,mδν̂,ρ̂−Uν̂(n)Uµ̂(n+ν̂)U−1
ν̂ (n+µ̂)(−i U−1

µ̂ (n)T b)δn,mδµ̂,ρ̂

−(−i U−1
ν̂ (n−ν̂)T b)Uµ̂(n−ν̂)Uν̂(n+µ̂−ν̂)U−1

µ̂ (n)δn−ν̂,mδν̂,ρ̂−U−1
ν̂ (n−ν̂)(i T bUµ̂(n−ν̂))Uν̂(n+µ̂−ν̂)U−1

µ̂ (n)δn−ν̂,mδµ̂,ρ̂

−U−1
ν̂ (n−ν̂)Uµ̂(n−ν̂)(i T bUν̂(n+µ̂−ν̂))U−1

µ̂ (n)δn+µ̂−ν̂,mδν̂,ρ̂−U−1
ν̂ (n−ν̂)Uµ̂(n−ν̂)Uν̂(n+µ̂−ν̂)(−i U−1

µ̂ (n)T b)δn,mδµ̂,ρ̂

]}
=

β

2N

∑
ν̂

(1− δν̂,µ̂)

{
δµ̂,ρ̂

[
δn,mTr

[
T aT b (Uµ̂ν̂(n) + Uµ̂ν̂(n)) + T bT a

(
U−1
µ̂ν̂ (n) + U−1

µ̂ν̂ (n)
)]

− δn+ν̂,mTr
[
T a
(
Uµ̂(n)Uν̂(n+ µ̂)U−1

µ̂ (n+ ν̂)T bU−1
ν̂ (n) + Uν̂(n)T bUµ̂(n+ ν̂)U−1

ν̂ (n+ µ̂)U−1
µ̂ (n)

)]
− δn−ν̂,mTr

[
T a
(
Uµ̂(n)U−1

ν̂ (n+ µ̂− ν̂)U−1
µ̂ (n− ν̂)T bUν̂(n− ν̂) + U−1

ν̂ (n− ν̂)T bUµ̂(n− ν̂)Uν̂(n+ µ̂− ν̂)U−1
µ̂ (n)

)]]

+ δν̂,ρ̂

[
−δn,mTr

[
T aT bU−1

µ̂ν̂ (n) + T bT aUµ̂ν̂(n)
]

+ δn+µ̂,mTr
[
T a
(
Uµ̂(n)T bUν̂(n+ µ̂)U−1

µ̂ (n+ ν̂)U−1
ν̂ (n) + Uν̂(n)Uµ̂(n+ ν̂)U−1

ν̂ (n+ µ̂)T bU−1
µ̂ (n)

)]
+ δn−ν̂,mTr

[
T a
(
Uµ̂(n)U−1

ν̂ (n+ µ̂− ν̂)U−1
µ̂ (n− ν̂)T bUν̂(n− ν̂) + U−1

ν̂ (n− ν̂)T bUµ̂(n− ν̂)Uν̂(n+ µ̂− ν̂)U−1
µ̂ (n)

)]
− δn+µ̂−ν̂,mTr

[
T a
(
Uµ̂(n)U−1

ν̂ (n+ µ̂− ν̂)T bU−1
µ̂ (n− ν̂)Uν̂(n− ν̂) + U−1

ν̂ (n− ν̂)Uµ̂(n− ν̂)T bUν̂(n+ µ̂− ν̂)U−1
µ̂ (n)

)]]}

This formula is needed in order to solve parallel transport equations for the tangent space basis. Actually,
for computer simulations, it is more convenient to work with a matrix notation: computations for the drift
and the Hessian in matrix form are available in Appendix G.

10.1 Vacuum structure

The first step in the thimble approach is to choose a critical point of the action. For Yang-Mills theory, the
most natural choice is the classical vacuum U1 ≡ {Uµ̂(n) = 1} (that is Aµ̂(n) = 0 in the algebra). Let us
compute the Hessian at the critical point U1

84



∇bm,ρ̂∇an,µ̂S[U ]
∣∣
U1

=
β

2N

∑
ν̂

(1− δν̂,µ̂)
{
δµ̂,ρ̂

[
δn,mTr

[
2T aT b + 2T bT a

]
− δn+ν̂,mTr

[
T a
(
T b + T b

)]
− δn−ν̂,mTr

[
T a
(
T b + T b

)]]
+ δν̂,ρ̂

[
−δn,mTr

[
T aT b + T bT a

]
+ δn+µ̂,mTr

[
T a
(
T b + T b

)]
+ δn−ν̂,mTr

[
T a
(
T b + T b

)]
− δn+µ̂−ν̂,mTr

[
T a
(
T b + T b

)]]}
=

β

2N

∑
ν̂

(1− δν̂,µ̂) {δµ̂,ρ̂ [2δn,m − δn+ν̂,m − δn−ν̂,m] + δν̂,ρ̂ [−δn,m + δn+µ̂,m + δn−ν̂,m − δn+µ̂−ν̂,m]}δab

=
β

2N
δab
{∑

ν̂

δµ̂,ρ̂ [2δn,m − δn+ν̂,m − δn−ν̂,m] +
∑
ν̂

δν̂,ρ̂ [−δn,m + δn+µ̂,m + δn−ν̂,m − δn+µ̂−ν̂,m]

−
∑
ν̂

δν̂,µ̂δµ̂,ρ̂ [2δn,m − δn+ν̂,m − δn−ν̂,m]−
∑
ν̂

δν̂,µ̂δν̂,ρ̂ [−δn,m + δn+µ̂,m + δn−ν̂,m − δn+µ̂−ν̂,m]
}

=
β

2N
δab
{

2d δn,mδµ̂,ρ̂ − δµ̂,ρ̂
∑
ν̂

(δn+ν̂,m + δn−ν̂,m)− δn,m + δn+µ̂,m + δn−ρ̂,m − δn+µ̂−ρ̂,m

− 2δµ̂,ρ̂δn,m + δµ̂,ρ̂δn+µ̂,m + δµ̂,ρ̂δn−µ̂,m + δµ̂,ρ̂δn,m − δµ̂,ρ̂δn+µ̂,m − δµ̂,ρ̂δn−µ̂,m + δµ̂,ρ̂δn,m
}

=
β

2N
δab

[
2d δn,mδµ̂,ρ̂ − δn,m + δn+µ̂,m + δn−ρ̂,m − δn+µ̂−ρ̂,m − δµ̂,ρ̂

∑
ν̂

(δn+ν̂,m + δn−ν̂,m)

]
(10.2)

where we have used Tr
(
T aT b

)
= 1

2δ
ab and d is the number of spacetime dimensions. Notice that the

last expression is symmetric under (n, µ̂, a)↔ (m, ρ̂, b), as it should be. As we have discussed in Section 4.3,
gauge degrees of freedom show up as zero-modes of the Hessian at any critical point. Consider the Hessian
at U1 computed above: it easy to check that vectors defined by

V aµ̂ (n) = Λa(n+ µ̂)− Λa(n)

(where Λ(n) is a generic function of the lattice point) are eigenvectors of the Hessian (10.2) with eigenvalue
0. These are precisely the discretized version of infinitesimal gauge transformations δAaµ(x) = ∂µΛa(x) at
Aµ(x) = 0. The number of these zero-modes equals the number of elements in a basis over which to
decompose all possible functions Λa(n) one can have on a lattice of volume V respecting periodic boundary
conditions. This can be easily viewed in Fourier space, that is, using plane waves as a function basis: the
number of different plane waves is the number of momenta that are allowed in a periodic lattice, V (N2− 1).
However, the momentum k = 0 should be discarded, as it corresponds to a constant function Λa, which
gives a null eigenvector (constant gauge transformations leave U1 unchanged). The conclusion is that the
number of gauge-originated zero-modes of the Hessian (10.2) is (V −1)(N2−1). Later on we will argue that
gauge-originated zero-modes pose no problems, as far as only computation of gauge-invariant observables
is concerned. However, there is another subtlety with regards to this Hessian. Any vector of the form V aµ̂
(that is, constant in spacetime) is an eigenvector with eigenvalue 0. These d(N2 − 1) zero-modes are due
to torons, that is a non-trivial zero-action manifold for the pure gauge action.59 [106, 107, 108, 109, 110].
Torons pose a serious problem, as they cannot be simply ignored, due to the action (as well as observables)
not being invariant under changes of such degrees of freedom.60 One should note, however, that they are
expected to become less and less relevant when going to larger lattice volumes. One possible way out for
the toron problem at finite V is to introduce twisted boundary conditions [111, 108, 112], that is every time
a link crosses the lattice boundaries, it transforms with an appropriate set of twist matrices

59Toronic modes disappear when fermions are introduced in the theory.
60For the case of Wilson action around U1, the d(N2 − 1) zero-modes are directions along which the action varies by terms

of order > 2 [109, 110].
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Uν̂(n+ Lµ̂µ̂) = Ωµ̂Uν̂(n)Ω†µ̂

where Lµ̂ is the lattice size along the µ̂-th direction and the (constant) twist matrices Ωµ̂ ∈ SU(N) obey
the twist algebra

Ων̂Ωµ̂ = e2πiηµν/NΩµ̂Ων̂

with ηµν the (antisymmetric) twist tensor, which has integer components. The gauge group is given by
all fields G(n) ∈ SU(N) satisfying

G(n+ Lµ̂µ̂) = Ωµ̂G(n)Ω†µ̂

It can be shown [111] that this formulation is equivalent to keeping the usual periodic boundary conditions,
while substituting the twisted action in place of the Wilson one

S(t)[U ] =
∑
P

f
(t)
P (UP )

with the action density at each plaquette P [112]

f
(t)
P (UP ) =

{
fP (zµ̂ν̂UP ) P ∈ Rµ̂ν̂
fP (UP ) P /∈ Rµ̂ν̂

where fP (UP ) is the ordinary Wilson action density

f(UP ) = β

[
1− 1

2N
Tr
(
UP + U−1

P

)]

and zµ̂ν̂ = z−1
ν̂µ̂ = z̄ν̂µ̂ is

zµ̂ν̂ = e2πinµ̂ν̂/N ∈ Z(N)

in which nµ̂ν̂ is the anti symmetric twist tensor given by a collection of d(d− 1)/2 integers and Z(N) is
the center of SU(N). Rµ̂ν̂ consists of a particular set of plaquettes (one for each µ̂ν̂-torus). From now on
we will specialize to the case d = 2, in which there is only one such plaquette, which we shall name P0. In 2
dimensions the twist is determined by a single integer k = 1 · · ·N − 1, that is z = e2πik/N and it is present
only at P0. Now we shall address the problem of torons by explicitly constructing all the configurations which
have S = 0, that is global minima of the (twisted) action. We will follow [112]. The first step is to build
the so called gauge tree, that is we fix the axial gauge and gauge-transform as many links as possible to 1.
Figure 10.1a highlights such links. What we have done so far is feasible for any generic lattice configuration.
Now we notice that (for real β) S ≥ 0 and S = 0 if and only if f (t)

P = 0 for every plaquette and thus we
try to look for the most general lattice configuration featuring this: in Figure 10.1b we highlight in bold the
links that must be set to 1 in order to ensure that the action density reaches its minimum. In general, the
remaining links need not to be set to 1, but any constant value (one for each direction) suffices. This gives
rise to two ladders of constant Uµ̂(n) = Gµ̂ and we call them Lµ̂ and Lν̂ (in Figure 10.1b they are depicted
with dotted lines). Now the only plaquette whose action density is not automatically 0 is P0. It is immediate
to see that f (t)

P (P0) = 0 can be achieved through the twisted commutation relation

Gν̂Gµ̂ = zµ̂ν̂ Gµ̂Gν̂
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It is this relation that compensates the zµ̂ν̂ in the twisted action, giving 0. For this reason such configura-
tions are often referred to as twist eaters. It is thus obvious that, apart from the usual (local) gauge freedom,
one has the ability to choose any set of d matrices Gµ̂ ∈ SU(N) respecting the twisted commutation relation
to form a zero-action configuration. In fact, it can be shown that, calling N0 the zero-action configuration
manifold, it is diffeomorphic to ⊗V−1SU(N)⊗M0(zµ̂ν̂), whereM0(zµ̂ν̂) is the (twist-dependent) manifold
defined by

M0(zµ̂ν̂) =
{

(G1, · · · , Gd)
∣∣Gµ̂ ∈ SU(N), Gν̂Gµ̂ = zµ̂ν̂ Gµ̂Gν̂

}
It is obvious that the dimension of the zero-action manifold is

dimN0 = (V − 1)(N2 − 1) + dimM0(zµ̂ν̂)

It can be shown [112] that, for the usual (untwisted) Wilson action

dimM0 = (N − 1)(N + d)

The toron manifold in this case is highly non-trivial: for example, we have both regular torons as well
as singular torons [109, 108, 110]. The configuration U1 belongs to the second type. For this kind of
configuration, the d(N2 − 1) eigenvectors with 0 eigenvalue correspond to directions along which the action
has a quartic growth. Now let us consider the twisted action. In 2 dimensions, the general result concerning
twist eaters is the following [112]: given a (simple) twist zµ̂ν̂ = z = e2πik/N 6= 1 with k coprime with N , we
have

dimM0 = N2 − 1

and any configuration inM0 is equivalent to any other by a global gauge transformation. This is precisely
the sought after result, as we have got rid of toronic degrees of freedom completely. It is thus to be expected
that the Hessian of the twisted action, computed at a twist eater configuration, exhibits only V (N2−1) null
eigenvalues, all corresponding to (local and global61) gauge transformations. Now let us construct a twist
eating configuration for SU(N) in 2 dimensions [112]. First, choose a phase factor c such that

cN = (−1)N−1

then choose a set of N orthonormal vectors {|vj〉}j=0···N−1. G1 and G2 are defined by

G1|vj〉 = cz−j |vj〉

G2|vj〉 = c|vj+1〉

for j = 0 · · ·N − 1 and |vN 〉 = |v0〉. It can be shown that the choice of c is irrelevant. For SU(2) (where
z = −1 is the only possible twist) a possible choice is

G1 = i σ1 =

(
0 i
i 0

)

G2 = i σ2 =

(
0 1
−1 0

)
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P0

n0

(a) Gauge tree.

P0

n0

Lµ̂

Lν̂

(b) Zero-action configuration.

Figure 10.1: Gauge tree and zero-action configurations for Yang-Mills theory in 2 dimensions with twisted
action.

where σi is the i-th Pauli matrix.

We have already provided an expression for the twisted action, but we still have to compute the twisted
drift as well as the twisted Hessian. Denoting n0 the lattice site on which the twisted plaquette P0 lies, we
have

∇an,µ̂S(t)[U ] = − β

2N

∑
ν̂ 6=µ̂

Tr∇an,µ̂

cU + cU + c−1
U + c−1

U


= − iβ

2N

∑
ν̂ 6=µ̂

Tr
[
T a
(
cUUµ̂ν̂(n) + cUUµ̂ν̂(n)− c−1

U U−1
µ̂ν̂ (n)− c−1

U U
−1
µ̂ν̂ (n)

)]

where the c coefficients are defined by (the marked point is n0)

cU =


z

z−1

1

= 1 + δn,n0δµ̂,1̂(z − 1) + δn,n0δµ̂,2̂(z−1 − 1)

cU =


z

z−1

1

= 1 + δn,n0+1̂δµ̂,2̂(z − 1) + δn,n0+2̂δµ̂,1̂(z−1 − 1)

The twisted Hessian is
61Twist eating configurations are not invariant under global gauge transformations, unlike U1.
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∇bm,ρ̂∇an,µ̂S(t)[U ]

=− i β
2N

∑̂
ν

(1−δν̂,µ̂)Tr
{
Ta
[
cU(i T bUµ̂(n))Uν̂(n+µ̂)U−1

µ̂ (n+ν̂)U−1
ν̂ (n)δn,mδµ̂,ρ̂+cUUµ̂(n)(i T bUν̂(n+µ̂))U−1

µ̂ (n+ν̂)U−1
ν̂ (n)δn+µ̂,mδν̂,ρ̂

+cUUµ̂(n)Uν̂(n+µ̂)(−i U−1
µ̂ (n+ν̂)T b)U−1

ν̂ (n)δn+ν̂,mδµ̂,ρ̂+cUUµ̂(n)Uν̂(n+µ̂)U−1
µ̂ (n+ν̂)(−i U−1

ν̂ (n)T b)δn,mδν̂,ρ̂

+cU(i T bUµ̂(n))U−1
ν̂ (n+µ̂−ν̂)U−1

µ̂ (n−ν̂)Uν̂(n−ν̂)δn,mδµ̂,ρ̂+cUUµ̂(n)(−i U−1
ν̂ (n+µ̂−ν̂)T b)U−1

µ̂ (n−ν̂)Uν̂(n−ν̂)δn+µ̂−ν̂,mδν̂,ρ̂

+cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)(−i U−1

µ̂ (n−ν̂)T b)Uν̂(n−ν̂)δn−ν̂,mδµ̂,ρ̂+cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)U−1

µ̂ (n−ν̂)(i T bUν̂(n−ν̂))δn−ν̂,mδν̂,ρ̂

−c−1
U (i T bUν̂(n))Uµ̂(n+ν̂)U−1

ν̂ (n+µ̂)U−1
µ̂ (n)δn,mδν̂,ρ̂−c−1

U Uν̂(n)(i T bUµ̂(n+ν̂))U−1
ν̂ (n+µ̂)U−1

µ̂ (n)δn+ν̂,mδµ̂,ρ̂

−c−1
U Uν̂(n)Uµ̂(n+ν̂)(−i U−1

ν̂ (n+µ̂)T b)U−1
µ̂ (n)δn+µ̂,mδν̂,ρ̂−c−1

U Uν̂(n)Uµ̂(n+ν̂)U−1
ν̂ (n+µ̂)(−i U−1

µ̂ (n)T b)δn,mδµ̂,ρ̂

−c−1
U (−i U−1

ν̂ (n−ν̂)T b)Uµ̂(n−ν̂)Uν̂(n+µ̂−ν̂)U−1
µ̂ (n)δn−ν̂,mδν̂,ρ̂−c−1

U U−1
ν̂ (n−ν̂)(i T bUµ̂(n−ν̂))Uν̂(n+µ̂−ν̂)U−1

µ̂ (n)δn−ν̂,mδµ̂,ρ̂

−c−1
U U−1

ν̂ (n−ν̂)Uµ̂(n−ν̂)(i T bUν̂(n+µ̂−ν̂))U−1
µ̂ (n)δn+µ̂−ν̂,mδν̂,ρ̂−c−1

U U−1
ν̂ (n−ν̂)Uµ̂(n−ν̂)Uν̂(n+µ̂−ν̂)(−i U−1

µ̂ (n)T b)δn,mδµ̂,ρ̂
]}

= β
2N

∑̂
ν

(1−δν̂,µ̂)
{
δµ̂,ρ̂

[
δn,mTr[TaT b(cUUµ̂ν̂(n)+cUUµ̂ν̂(n))+T bTa(c−1

U U−1
µ̂ν̂ (n)+c−1

U U
−1
µ̂ν̂ (n))]

−δn+ν̂,mTr[Ta(cUUµ̂(n)Uν̂(n+µ̂)U−1
µ̂ (n+ν̂)T bU−1

ν̂ (n)+c−1
U Uν̂(n)T bUµ̂(n+ν̂)U−1

ν̂ (n+µ̂)U−1
µ̂ (n))]

−δn−ν̂,mTr[Ta(cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)U−1

µ̂ (n−ν̂)T bUν̂(n−ν̂)+c−1
U U−1

ν̂ (n−ν̂)T bUµ̂(n−ν̂)Uν̂(n+µ̂−ν̂)U−1
µ̂ (n))]

]
+δν̂,ρ̂

[
−δn,mTr[TaT bc−1

U U−1
µ̂ν̂ (n)+T bTacUUµ̂ν̂(n)]

+δn+µ̂,mTr[Ta(cUUµ̂(n)T bUν̂(n+µ̂)U−1
µ̂ (n+ν̂)U−1

ν̂ (n)+c−1
U Uν̂(n)Uµ̂(n+ν̂)U−1

ν̂ (n+µ̂)T bU−1
µ̂ (n))]

+δn−ν̂,mTr[Ta(cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)U−1

µ̂ (n−ν̂)T bUν̂(n−ν̂)+c−1
U U−1

ν̂ (n−ν̂)T bUµ̂(n−ν̂)Uν̂(n+µ̂−ν̂)U−1
µ̂ (n))]

−δn+µ̂−ν̂,mTr[Ta(cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)T bU−1

µ̂ (n−ν̂)Uν̂(n−ν̂)+c−1
U U−1

ν̂ (n−ν̂)Uµ̂(n−ν̂)T bUν̂(n+µ̂−ν̂)U−1
µ̂ (n))]

]}
10.2 Integration on a gauge-symmetric thimble

We have set up a zero-action configuration (that is, the twist eater) which is unique up to gauge transforma-
tions. We call this configuration U0 and attach to it the (stable) thimble J0. Being U0 part of the original
domain of integration ⊗n,µ̂SU(N), it has n0 = 1. In this section we consider the problem of integrating
over J0. Let us begin discussing the preparation of the initial condition near U0 for the integration of SA
equations. As discussed is Section 4.3, U0 belongs to a critical manifoldM0 of gauge-transformed copies of
U0, that is

M0 ≡
{{

UG0 µ̂(n)
} ∣∣∃ {G(n)} ∈ ⊗

n
SU(N) : UG0 µ̂(n) = G(n)U0 µ̂(n)G†(n+ µ̂) ∀n, µ̂

}
Suppose now that we start in the vicinity of U0 (at t0 → −∞) and integrate SA equations until a

time t, calling the final configuration U(t). Let us now consider a gauge-transformed starting configuration
UG0 ∈ M0 (so that UG0 µ̂(n) = G(n)U0 µ̂(n)G†(n + µ̂) for some G); we can integrate SA equations starting
near UG0 as well, provided that we know the tangent space TUG0 J0 to the thimble at UG0 . Let us call UG(t)
the evolved configuration at time t. Being the gauge transformation G rigid, that is time independent, it
“rotates” the whole thimble [26], so that we have UGµ̂ (n; t) = G(n)Uµ̂(n; t)G†(n + µ̂), that is UG(t) is the
same as U(t) after the gauge transformation. This procedure is depicted in Figure 10.2.

These considerations teach us that, in order to cover the whole thimble, we have to start at every possible
configuration in M0 and integrate the SA equations. Thus we need to compute the tangent space to the
thimble at the configuration UG0 . We know that, at U0, TU0

J0 = TU0
M0⊕N+

U0
M0, with TU0

M0 spanned by
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U0

U Ht L

U0
G

U GHt L G

M0

Figure 10.2: Integration of SA curves (in red) starting from U0 as well as from a gauge-transformed config-
uration UG0 , both belonging to the critical manifold M0 (in black). The thimble is pictorially represented
with a bowl emanating fromM0. The gauge transformation G connecting U(t) and UG(t) is shown in green.
The same gauge transformation connects U0 and UG0 in the critical manifoldM0.

the nG Takagi vectors of H(S;U0) with zero Takagi value62 and N+
U0
M0 spanned by the n+ Takagi vectors

of H(S;U0) with positive Takagi value. The number of such vectors is n+ = n− nG, with n = V d(N2 − 1)
the total number of degrees of freedom and nG = V (N2− 1) the number of gauge degrees of freedom, which
means that n+ = V (d − 1)(N2 − 1). We can easily compute the Takagi vectors {vG(i)} spanning TUG0 J0

given the Takagi vectors {v(i)} spanning TU0J0. Consider a couple of configurations U(t0) and UG(t0) with
|ci| � 1, so that they are close toM0, that is63

Uµ̂(n; t0) = e
i
∑
i
civ

(i)
nµ̂,aT

a

U0 µ̂(n)

UGµ̂ (n; t0) = e
i
∑
i
civ

G(i)
nµ̂,aT

a

UG0 µ̂(n)

Let us set

G(n) = ei gn,aT
a

The previous considerations lead to setting UGµ̂ (n; t0) = G(n)Uµ̂(n; t0)G†(n+ µ̂), which imply

62Directions tangent toM0 at U0 represent infinitesimal gauge transformations around U0.
63We generically take |ci| � 1 in order not to leave TUJ0 while leaving the critical point U . This condition is automatically

ensured for directions corresponding to λi > 0: for these directions ci = nie
λit0 with t0 → −∞, so that we can safely take

ni = O(1). For directions corresponding to λi = 0, however, the coefficients ci have to be taken small explicitly.
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e
i
∑
i
civ

G(i)
nµ̂,aT

a

UG0 µ̂(n) = G(n)e
i
∑
i
civ

(i)
nµ̂,aT

a

U0 µ̂(n)G†(n+ µ̂)

⇒ e
i
∑
i
civ

G(i)
nµ̂,aT

a

G(n)U0 µ̂(n)G†(n+ µ̂) = G(n)e
i
∑
i
civ

(i)
nµ̂,aT

a

U0 µ̂(n)G†(n+ µ̂)

⇒ G(n)e
i
∑
i
civ

(i)
nµ̂,aT

a

G−1(n) = e
i
∑
i
civ

G(i)
nµ̂,aT

a

⇒ ei gn,aT
a

e
i
∑
i
civ

(i)
nµ̂,aT

a

e−i gn,aT
a

= e
i
∑
i
civ

G(i)
nµ̂,aT

a

Now we can make use of the lemma in Appendix B, setting ga → gn,a and xb →
∑
i civ

(i)
nµ̂,b. The

conclusion is

v
G(i)
nµ̂,a = M

(n)
ab v

(i)
nµ̂,b (10.3)

with

M
(n)
ab =

(
ei gn,ct

c
)
ab

where {tc} are the generators of su(N) in the adjoint representation. Notice that the “rotation” of v(i)

does not mix different vectors; it also only affects color components. We have now a recipe to compute the
tangent space to J0 at any configuration U ∈ M0. It is worth noting that the transformation law (10.3)
holds for all vectors of TUG0 J0: those spanning N+

UG0
M0 as well as those spanning TUG0 M0. It is manifest

that the previous proof extends beyond the vicinity of the critical point U0: with a reasoning similar to that
in Section 4.3, we can set

U ′µ̂(n) = e
i
∑
i
δyiV

(i)
nµ̂,a(t)Ta

Uµ̂(n)

U ′Gµ̂ (n) = e
i
∑
i
δyiV

G(i)
nµ̂,a(t)Ta

UGµ̂ (n)

where {V (i)(t)} is a local basis for TUJ0 and U ′ belongs to a neighbourhood of U ∈ J0. As we know
from (5.11), δyi ∈ R is only dependent on the choice of n̂. The very same proof of (10.3) now leads to the
transformation

V
G(i)
nµ̂,a =Mnµ̂a,mν̂bV

(i)
mν̂,b (10.4)

for the local tangent space basis at any point on J0 (we have setMnµ̂a,mν̂b ≡ δn,mδµ̂,ν̂M (n)
ab ). Equation

(10.4) does not come as a surprise, given (10.3) and the linearity of PT equations. A consideration is now
due: because gauge transformations rigidly rotate the whole thimble as described above, integrations of all
the SA curves starting from every configuration in M0 is redundant, if we are concerned only with gauge-
invariant observables (for example the action density). We can choose any configuration, say U0, inM0 and
integrate the SA equations starting only along the n+ directions of N+

U0
M0, as the other nG directions of

TU0M0 correspond to infinitesimal gauge transformations around U0.64

64Neglecting all gauge copies of U0 inM0 (along with infinitesimal ones corresponding to directions in TU0
M0) is effectively

a gauge fixing (although an unusual one) and, where the action S(U) as well as any other gauge-invariant observable O(U)
are manifestly unaffected by this, one could be concerned with the effect on detV (t). It is immediate to show that this is
gauge-invariant as well. Consider (10.4) and the definition of the matrix V (t)
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10.3 Tangent space at a twist-eating configuration

We have shown that for the computation of expectation values of gauge-invariant observables it is enough
to fix a single critical point U0 ∈M0 (namely, the twist eater) and start integrating SA equation only along
directions of N+

U0
M0, neglecting all the directions of TU0M0. Still, we have to parallel transport a whole

n-dimensional basis of TUJ0 along the flow of SA equations. To this purpose, we compute Takagi vectors
of N+

U0
M0 by numerically diagonalizing H(SR;U0) and making use of the relation between eigenvectors of

H(SR;U0) and Takagi vectors of H(S;U0), as described in Section 3.6 and Appendix A. Vectors of TU0
M0

have zero eigenvalue, so it is not trivial to extract the nG eigenvectors of H(SR;U0) corresponding to gauge
transformations in SU(N) from the (degenerate) set of 2nG eigenvectors with zero eigenvalue.65 Fortunately,
we can easily compute such “gauge vectors” analytically. As described in Section 10.1, a basis of gauge vectors
{v(i)} corresponds to a basis of functions {δg(i)} on the lattice respecting periodic boundary conditions.
Considering local as well as global gauge transformations, we have a basis of V (N2 − 1) functions. Let v
be a Takagi vector of H(S;U0) with zero Takagi value corresponding to the function δg parametrizing an
infinitesimal gauge transformation around U0. An infinitesimal displacement around U0 along the direction
of v realizes such gauge transformation, that is

eiεvnµ̂,aT
a

U0 µ̂(n) = eiδga(n)TaU0 µ̂(n)e−iδga(n+µ̂)Ta

with ε� 1. This, after setting

U0 µ̂ = eiφ
a
0 µ̂(n)Ta (10.5)

as well as

Mab(n, µ̂) =
(
eiφ

c
0 µ̂(n)tc

)
ab

becomes (using again the lemma in Appendix B)

eiεvnµ̂,aT
a

= eiδga(n)TaU0 µ̂(n)e−iδga(n+µ̂)TaU−1
0 µ̂ (n) = eiδga(n)Taeiφ

a
0 µ̂(n)Tae−iδga(n+µ̂)Tae−iφ

a
0 µ̂(n)Ta

= eiδga(n)Tae−iMabδgb(n+µ̂)Ta = ei[δga(n)−Mab(n,µ̂)δgb(n+µ̂)+O(δg2)]Ta

Thus we have an expression for v

ε vnµ̂,a = δga(n)−
(
eiφ

c
0 µ̂(n)tc

)
ab
δgb(n+ µ̂)

Let us now consider a 2-dimensional L × L lattice and a twist-eating configuration U0 (such as that
introduced in Section 10.1). Then φa0,µ̂(n) (related to U0,µ̂(n) by (10.5)) is given by

φa0,µ̂(n) =

{
Γaµ̂ if nµ̂ = L

0 otherwise
= δ(n1 − L)δµ̂,1̂Γa

1̂
+ δ(n2 − L)δµ̂,2̂Γa

2̂

V Gij = V
G(j)
i =MikV

(j)
k =MikVkj = (MV )ij

where we have made use of the multi-index i = (n, µ̂, a) and k = (m, ν̂, b). As a consequence, detV G = detM detV = detV ,
because

detM =
∏
n

∏
µ̂

detM(n) = 1

where detM(n) = 1 thanks to tc being traceless.
65The 2ng eigenvectors of H(SR;U0) correspond to all the possibile gauge transformations in SL(N,C).
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with n = (n1, n2) and Gµ̂ = eiΓ
a
µ̂T

a

the (constant) links on the two ladders. For v it follows

ε vnµ̂,a =

{
δga(n)−

(
eiΓ

c
µ̂t
c
)
ab
δgb(n+ µ̂) if nµ̂ = L

δga(n)− δga(n+ µ̂) otherwise
(10.6)

where we immediately recover the usual expression for infinitesimal gauge transformations around 1 for
the links in the bulk. In order to generate a set {v(i)

nµ̂a} of gauge vectors, we simply have to choose a basis

of functions {δg(i)
a (n)}. We can work in Fourier space and choose a basis of plane waves; then there is a

single vector representing constant gauge transformations (corresponding to k = 0). However, it is simpler
to work in configuration space and choose the canonical basis δg(m,b)

a (n) ∼ δn,mδa,b, where we have split
the index i = 1 · · ·nG = V (N2 − 1) into a spacetime and a colour component (with respect to this basis,
constant gauge transformations correspond to linear combinations of all basis vectors). So far we have put ε
in front of v to be consistent with δg being infinitesimal. What one actually does is computing v accordingly
to (10.6) in the canonical basis {δg(i)

a (n)} in configuration space and then normalizing the vector.

Consider the case of SU(2). For our choice of twist matrices, that is Gµ̂ = i σµ̂ with µ̂ = 1, 2, we have
Γaµ̂ = πδµ̂,a. This can be easily checked by writing

Gµ̂ = eiΓ
a
µ̂T

a

= eiΓ
a
µ̂σ

a/2 = eiθµ̂(n̂µ̂·~σ)

which holds after setting 2θµ̂n̂
a
µ̂ = Γaµ̂ (n̂µ̂ is a 3-dimensional unit vector and θµ̂ ∈ [0, 2π]). We now make

use of the well-known relation for Pauli matrices

eiθ(n̂·~σ) = cos θ 12×2 + i sin θ (n̂ · ~σ)

In our case this leads to

eiθµ̂(n̂µ̂·~σ) = cos θµ̂ 12×2 + i sin θµ̂ (n̂µ̂ · ~σ) = Gµ̂ = i σµ̂

which implies θµ̂ = π/2 and n̂aµ̂ = δµ̂,a. We now compute eiΓ
c
µ̂t
c

= eiπt
µ̂

using the adjoint representation
of su(2), that is (tc)ab = −i f cab = −i εcab. The explicit expression for the generators is

t1 = −i

0 0 0
0 0 1
0 −1 0

 t2 = −i

0 0 −1
0 0 0
1 0 0

 t3 = −i

 0 1 0
−1 0 0
0 0 0


which leads to

eiπt
1

=

1 0 0
0 −1 0
0 0 −1



eiπt
2

=

−1 0 0
0 1 0
0 0 −1


Thus we can set

(
eiΓ

c
µ̂t
c
)
ab

= τaµ̂δab
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with

τaµ̂ =
(
δµ̂,1̂ − δµ̂,2̂

)
δa1 +

(
−δµ̂,1̂ + δµ̂,2̂

)
δa2 +

(
−δµ̂,1̂ − δµ̂,2̂

)
δa3

The conclusion is that we can write, for SU(2) on a L× L lattice

ε vnµ̂,a =

{
δga(n)− τaµ̂δga(n+ µ̂) if nµ̂ = L

δga(n)− δga(n+ µ̂) otherwise

which holds in a neighbourhood of the twist eater. If we choose the aforementioned canonical basis for
δg in configuration space, then it is manifest that such vectors are not orthonormal. A set of orthonormal
gauge vectors spanning the same space can be obtained e.g. by means of Gram-Schmidt procedure.
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11 Conclusions and outlook

Thimble regularization is still young enough to make us confront open problems. There are theoretical issues,
among which the enumeration of critical points and the fundamental related question of how many of them
do contribute to the solution. There are computational issues as well: since we lack a local characterization
of these (non-trivial) manifolds, devising algorithms which efficiently sample them is a challenging task (even
not leaving the manifold can be at some point an issue). In view of this, we do need extensive tests in models
which are less and less trivial. In this spirit, we have in this work studied several models. Even the simpler
ones (e.g. the φ4 zero-dimensional model, SU(N) one-link models and 0 + 1 QCD) proved to be a very
interesting setting for the discussion of the above mentioned non-trivial issues. We did encounter examples
of the relevance of more than one critical point. We also had the chance to test new algorithmic solutions
such as those discussed in Section 5.3. The Chiral Random Matrix model provided an example in which
the dimensionality of the problem could be tuned explicitly. In this case, in the range of parameters we
explored we found just one critical point to be relevant. While numerical simulations are not yet available,
we also addressed thimble regularization of Yang-Mills theories, where a general framework for handling
gauge symmetry has been pinned down.

The possible relevance of different critical points was discussed in Section 3.4, where universality as
well as thermodynamic arguments were given in support of a scenario in which a single thimble could be
dominant. This issue is of utmost importance when one faces realistic theories such as QCD, where an
explicit enumeration of all critical points (in complexified space) is a very hard task [113]. On one hand,
more and more results are becoming available from which it is clear that in many cases more than one
thimble do contribute to the solution of the problem. On the other hand, we still lack a realistic model
in which a real thermodynamic limit is in place; it is in this limit that one can expect the single thimble
dominance scenario to hold.

As for algorithmic issues, in any case the most demanding task is solving parallel transport equations for
the tangent space basis. Since the total number of basis vector components grows quadratically with the
number of degrees of freedom of the system, it will be eventually mandatory to rely on heavy parallelization.
More efficient ways to compute detV appearing in (5.15) that do not require parallel transport of the whole
tangent space basis are under investigation [59, 114].

All in all, thimble regularization is a very powerful and general framework for the study of quantum field
theories. Being based on first principles, its applications could in principle go far beyond a treating of the sign
problem (any theory in any region of its parameter space can be regularized on thimbles). A great advantage
of this method is its close connection to classical physics: it retains an immediate link with semiclassical
expansion and perturbation theory around vacua which may well be non-trivial. Numerical computations on
thimbles may also provide a valuable tool to relate perturbative and non-perturbative physics in the context
of resurgence [53]. Besides being itself a very powerful tool to tackle the sign problem, the thimble approach
may also shed some light on other approaches to the latter (e.g. an insight on the reasons behind occasional
bad convergence of complex Langevin may come from an analysis in terms of thimbles [115, 116, 117, 86]).
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A Relation between eigenvectors and Takagi vectors

Let us introduce the vector notation

v =

(
vR
vI

)
∈ R2n×1

from which it follows that Pv = (1n×n i 1n×n) v = vR + i vI ∈ Cn×1. Suppose that v is an eigenvector of
H(SR; pσ) with eigenvalue ±λ. In vector notation this reads (we set H ≡ H(S; pσ) = <(H)+i=(H) ∈ Cn×n)

(
<(H) −=(H)
−=(H) −<(H)

)(
vR
vI

)
= ±λ

(
vR
vI

)
which implies

{
<(H)vR −=(H)vI = ±λvR
−=(H)vR −<(H)vI = ±λvI

Suppose that v is normalized so that
∑
i v

2
i = vTRvR+vTI vI = 1. Now we show that Pv is a Takagi vector

of H with Takagi value ±λ, that is (Pv)TH(Pv) = ±λ

(
Pv)TH(Pv

)
= (vR + i vI)

T
(<(H) + i=(H)) (vR + i vI)

=
(
vTR + i vTI

)
[(<(H)vR −=(H)vI)− i (−=(H)vR −<(H)vI)]

=
(
vTR + i vTI

)
[(±λ)vR − i(±λ)vI ] = ±λ

(
vTRvR + vTI vI + i vTI vR − i vTRvI

)
= ±λ

It is now immediate to see that, if (Pv)TH(Pv) = λ > 0, then (iPv)TH(iPv) = −λ.
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B An useful lemma for gauge theories

We want to prove the relation

eigaT
a

eixbT
b

e−igaT
a

= eiMabxbT
a

where T a are the generators of a Lie algebra g in the fundamental representation. The matrix M is given
by

Mab =
(
eigct

c
)
ab

and (tc)ab = −if cab are the generators of g in the adjoint representation. In general ga, xa ∈ C. Making
use of the Baker-Campbell-Hausdorff formula in the form

eXeY = eY+[X,Y ]+ 1
2! [X,[X,Y ]]+ 1

3! [X,[X,[X,Y ]]]+···eX

and the relations

[
T a1 , T b

]
= ifa1baT a[

T a2 ,
[
T a1 , T b

]]
= i2fa1bc1fa2c1aT a[

T a3 ,
[
T a2 ,

[
T a1 , T b

]]]
= i3fa1bc1fa2c1c2fa3c2aT a[

T aj ,
[
T aj−1 , · · · ,

[
T a1 , T b

]]]
= ijfa1bc1fa2c1c2fa3c2c3 · · · fajcj−1aT a

we have

eigaT
a

eixbT
b

e−igaT
a

= eixaT
a+[iga1

Ta1 ,ixbT
b]+ 1

2! [iga2T
a2 ,[iga1T

a1 ,ixbT
b]]+···

= eixaT
a+(ixb)(iga1

)[Ta1 ,T b]+ 1
2! (ixb)(iga1

)(iga2
)[Ta2 ,[Ta1 ,T b]]+···

= e
ixaT

a+(ixb)
∞∑
j=1

1
j! (iga1 )···(igaj )ifa1bc1 ifa2c1c2 ···ifajcj−1aTa

= e
i

{
δab+

∞∑
j=1

1
j! (−iga1

ta1)
bc1

(−iga2
ta2)

c1c2
···(−igaj t

aj )
cj−1a

}
xbT

a

= e
i

{
δab+

∞∑
j=1

1
j! [(−igct

c)j]
ba

}
xbT

a

= e
i

{
∞∑
j=0

1
j! [(igct

c)j]
ab

}
xbT

a

which is what we were to prove, as

∞∑
j=0

1

j!
(igct

c)
j

= eigct
c
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C Hessian of the CRM model

Recall the notation introduced in Section 7. By deriving the drift (7.3), we obtain the entries of the Hessian
at a generic configuration

∂2S

∂amn∂aij
= 2Nδmiδnj + iNf coshµ

(
∂Rmn
∂aij

+
∂Tmn
∂aij

)
∂2S

∂bmn∂bij
= 2Nδmiδnj −Nf coshµ

(
∂Rmn
∂bij

− ∂Tmn
∂bij

)
∂2S

∂αmn∂αij
= 2Nδmiδnj +Nf sinhµ

(
∂Rmn
∂αij

+
∂Tmn
∂αij

)
∂2S

∂βmn∂βij
= 2Nδmiδnj + iNf sinhµ

(
∂Rmn
∂βij

− ∂Tmn
∂βij

)
∂2S

∂amn∂bij
= iNf coshµ

(
∂Rmn
∂bij

+
∂Tmn
∂bij

)
∂2S

∂amn∂αij
= iNf coshµ

(
∂Rmn
∂αij

+
∂Tmn
∂αij

)
∂2S

∂amn∂βij
= iNf coshµ

(
∂Rmn
∂βij

+
∂Tmn
∂βij

)
∂2S

∂bmn∂αij
= −Nf coshµ

(
∂Rmn
∂αij

− ∂Tmn
∂αij

)
∂2S

∂bmn∂βij
= −Nf coshµ

(
∂Rmn
∂βij

− ∂Tmn
∂βij

)
∂2S

∂αmn∂βij
= Nf sinhµ

(
∂Rmn
∂βij

+
∂Tmn
∂βij

)

with

∂Rmn
∂aij

= i coshµ

[
N∑
k=1

(GkiRmj + TkjGim)Ynk +Gimδnj

]

∂Rmn
∂bij

= − coshµ

[
N∑
k=1

(GkiRmj − TkjGim)Ynk −Gimδnj

]

∂Rmn
∂αij

= sinhµ

[
N∑
k=1

(GkiRmj + TkjGim)Ynk +Gimδnj

]

∂Rmn
∂βij

= i sinhµ

[
N∑
k=1

(GkiRmj − TkjGim)Ynk −Gimδnj

]

and
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∂Tmn
∂aij

= i coshµ

[
N∑
k=1

(GmiRkj + TmjGik)Xkn +Gmiδjn

]

∂Tmn
∂bij

= − coshµ

[
N∑
k=1

(GmiRkj − TmjGik)Xkn +Gmiδjn

]

∂Tmn
∂αij

= sinhµ

[
N∑
k=1

(GmiRkj + TmjGik)Xkn +Gmiδjn

]

∂Tmn
∂βij

= i sinhµ

[
N∑
k=1

(GmiRkj − TmjGik)Xkn +Gmiδjn

]

The Hessian computed at the classical vacuum (given by a = b = α = β = 0) has the entries

∂2S

∂amn∂aij

∣∣∣∣
0

= 2

(
N −Nf

cosh2 µ

m2

)
δmiδnj

∂2S

∂bmn∂bij

∣∣∣∣
0

= 2

(
N −Nf

cosh2 µ

m2

)
δmiδnj

∂2S

∂αmn∂αij

∣∣∣∣
0

= 2

(
N +Nf

sinh2 µ

m2

)
δmiδnj

∂2S

∂βmn∂βij

∣∣∣∣
0

= 2

(
N +Nf

sinh2 µ

m2

)
δmiδnj

∂2S

∂amn∂bij

∣∣∣∣
0

= 0

∂2S

∂amn∂αij

∣∣∣∣
0

= 2iNf
coshµ sinhµ

m2
δmiδnj

∂2S

∂amn∂βij

∣∣∣∣
0

= 0

∂2S

∂bmn∂αij

∣∣∣∣
0

= 0

∂2S

∂bmn∂βij

∣∣∣∣
0

= 2iNf
coshµ sinhµ

m2
δmiδnj

∂2S

∂αmn∂βij

∣∣∣∣
0

= 0

The Hessian at this critical point, that is H0, is diagonal with respect to the indices i, j,m, n and therefore
it is block-diagonal (the fields being ordered a, b, α, β at fixed index (i, j))

H0 =

N2⊕
H0 (C.1)

with
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H0 =


a− 0 i b 0
0 a− 0 i b
i b 0 a+ 0
0 i b 0 a+


and the coefficients are

a− = 2

(
N −Nf

cosh2 µ

m2

)

a+ = 2

(
N +Nf

sinh2 µ

m2

)

b = 2Nf
coshµ sinhµ

m2

H0 has only two distinct (positive) Takagi values66

λ± =
1

2

[√
(a+ + a−)2 + 4b2 ± (a+ − a−)

]
=
Nf
m2

√(2N

Nf
m2 − 1

)2

+ sinh2(2µ)± cosh(2µ)


with othonormal Takagi vectors

v
(1)
+ =

1√
c2 + 1


i
0
c
0

 v
(2)
+ =

1√
c2 + 1


0
i
0
c



v
(1)
− =

1√
c2 + 1


c
0
i
0

 v
(2)
− =

1√
c2 + 1


0
c
0
i


(C.2)

having defined

c ≡ −
√

(a+ + a−)2 + 4b2 + a+ + a−
2b

Now, thanks to the structure of H0 given by (C.1), we can construct its Takagi vectors given those of
H0. The generic Takagi vector takes the form

66Actually, things are a bit more involved. At low masses, λ− changes sign, so it does not correspond to a stable direction
on J0 anymore. The solution is quite simple: in this regime, the second Takagi value (other that λ+, which is always positive)
is −λ− > 0 and its two Takagi vectors are

v
(1)
− =

1
√
c̃2 + 1


i
0
c̃
0

 v
(2)
− =

1
√
c̃2 + 1


0
i
0
c̃


with c̃ ≡

√
(a++a2

−)2+4b2−a+−a−
2b

(orthogonality with v
(1,2)
+ follows from cc̃ = −1). It is straightforward to show that this

happens for m̃ <
√
NNf , regardless of the value of µ.
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v(i) =



04×1

...
v

(1,2)
±
...

04×1


with v(1,2)

± each of the 4 vectors appearing in (C.2). The whole set of Takagi vectors consists of the 4N2

vectors {v(i)}, each of which has the only non-zero 4 × 1 block at position j = 1 · · ·N2. Such vectors are
automatically orthonormal. From this structure we can easily build the matrix W whose columns are the
Takagi vectors of H0. A suitable arrangement of the vectors {v(i)} (which amounts to a factor of ±1 in
detW ) gives

W =

N2⊕
W

with

detW =
1

(c2 + 1)
2 det


i 0 c 0
0 i 0 c
c 0 i 0
0 c 0 i

 = 1

so that detW = (detW)N
2

= 1. In conclusion, a suitable arrangement of the Takagi vectors, gives a
residual phase at the classical vacuum ei ω0 = 1.67

67The same considerations hold in the case m̃ <
√
NNf as well. In this case we have (using cc̃ = −1)

detW =
1

(c2 + 1) (c̃2 + 1)
det


i 0 i 0
0 i 0 i
c 0 c̃ 0
0 c 0 c̃

 = −
(c− c̃)2

(c2 + 1) (c̃2 + 1)
= −1
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D Analytical results for 0+1 QCD

In this section we present analytical results for the partition function of 0 + 1-dimensional QCD and for the
expectation value of the Polyakov loop at different values of Nf . The chiral condensate can be obtained by
Σ = T ∂

∂m logZ and the quark number density by n = T ∂
∂µ logZ. We recall that A = 2 cosh(µc/T ) and

µc = sinh−1(m). We also have the anti-Polyakov loop from the Polyakov loop using 〈TrU†〉 = 〈TrU〉µ→−µ.

D.1 1 quark flavour

Z1 = A3 − 2A+ 2 cosh

(
3µ

T

)

〈TrU〉1 =
1

Z1

[
e−

µ
T

(
A
(
A+ e

3µ
T

)
− 1

)]

D.2 2 quark flavours

Z2 = A6 − 2A4 + 4
(
2A2 − 3

)
A cosh

(
3µ

T

)
+ 3A2 + 2 cosh

(
6µ

T

)
+ 6

〈TrU〉2 =
1

Z2

[
e−

4µ
T

(
3
(
A4 − 1

)
e

6µ
T + 3A2 + 2

(
A4 −A2 + 3

)
Ae

3µ
T + 2Ae

9µ
T − 2

)]

D.3 3 quark flavours

Z3 = A9 + 9A5 + 36A3 + 4
(
5A2 − 6

)
A cosh

(
6µ

T

)
+
(
20A6 − 30A4 + 36A2 + 36

)
cosh

(
3µ

T

)
− 54A+ 2 cosh

(
9µ

T

)

〈TrU〉3 =
1

Z3

[
3e−

7µ
T

(
2A2 +

(
5A4 − 4A2 + 6

)
Ae

3µ
T +

(
5A4 − 2A2 − 2

)
e

12µ
T +

(
A8 +A6 + 11A4 − 6

)
e

6µ
T

+ 2
(
A6 + 2A4 −A2 + 6

)
Ae

9µ
T +Ae

15µ
T − 1

)]

D.4 4 quark flavours

Z4 = 40A
(
A2 − 1

)
cosh

(
9µ

T

)
+ 8A

(
5A8 + 24A4 + 40A2 − 60

)
cosh

(
3µ

T

)
+ 20

(
5A6 − 6A4 + 6A2 + 4

)
cosh

(
6µ

T

)

+
(
A4 + 6A2 + 2

) (
A8 − 2A6 + 40A4 − 60A2 + 60

)
+ 2 cosh

(
12µ

T

)
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〈TrU〉4 =
1

Z4

[
e−

10µ
T

(
10A2 + 12

(
5A6 + 3A4 + 10

)
Ae

15µ
T + 20

(
3A4 − 2A2 + 2

)
Ae

3µ
T + 5

(
9A4 − 4A2 − 2

)
e

18µ
T

+ 3
(
15A8 + 8A6 + 60A4 − 20

)
e

6µ
T + 10

(
A4 + 6A2 + 2

) (
A6 + 6A2 − 4

)
e

12µ
T

+ 4
(
A10 + 5A8 + 36A6 + 44A4 − 20A2 + 60

)
Ae

9µ
T + 4Ae

21µ
T − 4

)]

D.5 5 quark flavours

Z5 = 10A
(
7A2 − 6

)
cosh

(
12µ

T

)
+ 50A

(
7A8 + 21A4 + 20A2 − 30

)
cosh

(
6µ

T

)

+ 10
(((

7A2
(
A6 + 3A4 + 15A2 + 40

)
− 300

)
A2 + 300

)
A2 + 100

)
cosh

(
3µ

T

)
+ 50

(
7A6 − 7A4 + 6A2 + 3

)
cosh

(
9µ

T

)

+A
(
A4 + 10A2 + 10

) (
A10 + 80A6 − 100A4 + 300A2 − 200

)
+ 2 cosh

(
15µ

T

)

〈TrU〉5 =
1

Z5

[
5e−

13µ
T

(
3A2 + 5

(
7A4 − 4A2 + 3

)
Ae

3µ
T + 5

(
A2
(
A2
(
7
(
A4 + 3A2 + 4

)
A2 + 65

)
− 30

)
− 10

)
e

18µ
T

+ 3
(
7A4 − 3A2 − 1

)
e

24µ
T + 3

(
21A8 + 7A6 + 45A4 − 10

)
e

6µ
T +

(
63A6 + 14A4 + 10A2 + 60

)
Ae

21µ
T

+ 3
((
A8 + 12A6 + 45A4 + 160A2 + 60

)
A4 + 100

)
Ae

15µ
T +

(
21A10 + 70A8 + 280A6 + 240A4 − 100A2 + 200

)
Ae

9µ
T

+
(
A14 + 11A12 + 102A10 + 325A8 + 260A6 + 600A4 − 200A2 − 100

)
e

12µ
T +Ae

27µ
T − 1

)]

D.6 6 quark flavours

Z6 = 28A
(
4A2 − 3

)
cosh

(
15µ

T

)
+ 28A

(
70A8 + 144A4 + 90A2 − 135

)
cosh

(
9µ

T

)

+ 4A
(
A2
((

2
(
7
(
2A6 + 15A4 + 90A2 + 350

)
A2 + 450

)
A2 + 7875

)
A2 + 1750

)
− 5250

)
cosh

(
3µ

T

)

+ 14
(
70A6 − 60A4 + 45A2 + 18

)
cosh

(
12µ

T

)

+ 14
(
70A12 + 168A10 + 630A8 + 1040A6 − 975A4 + 900A2 + 225

)
cosh

(
6µ

T

)

+
(
A6 + 15A4 + 30A2 + 5

) (
A12 + 3A10 + 150A8 − 35A6 + 1050A4 − 1050A2 + 700

)
+ 2 cosh

(
18µ

T

)
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〈TrU〉6 =
1

Z6

[
3e−

16µ
T

(
7A2 + 14

(
10A4 − 5A2 + 3

)
Ae

3µ
T + 7

(
10A4 − 4A2 − 1

)
e

30µ
T + 7

(
70A8 + 16A6 + 95A4 − 15

)
e

6µ
T

+ 14
(
28A6 + 2A4 + 5A2 + 15

)
Ae

27µ
T + 14

(
28A10 + 70A8 + 200A6 + 130A4 − 50A2 + 75

)
Ae

9µ
T

+ 7
(
A6 + 15A4 + 30A2 + 5

) (
A10 + 5A8 + 35A6 + 50A2 − 25

)
e

18µ
T

+ 7
(
70A10 + 140A8 + 176A6 + 280A4 − 135A2 − 30

)
e

24µ
T

+ 2
((
A12 + 19A10 + 245A8 + 1400A6 + 3200A4 + 6075A2 + 1575

)
A4 + 1750

)
Ae

15µ
T

+ 2
(
70A12 + 476A10 + 1400A8 + 3240A6 + 455A4 + 350A2 + 1050

)
Ae

21µ
T

+
(
70A14 + 532A12 + 2828A10 + 6120A8 + 3465A6 + 5950A4 − 1750A2 − 700

)
e

12µ
T + 2Ae

33µ
T − 2

)]
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D.7 12 quark flavours

Z12 = A36 + 108A34 + 6138A32 + 243936A30 + 5741010A28 + 86631336A26 + 876297708A24 + 5899484448A22

+ 27113316516A20 + 84986169840A18 + 178513767432A16 + 255813313536A14 + 234466082136A12 + 132619604832A10

+ 59537546640A8 + 1255782528A6 − 941836896A4 +
(
728A3 − 312A

)
cosh

(
33µ

T

)
+ 3767347584A2

+
(
1145144A9 + 576576A5 + 82368A3 − 123552A

)
cosh

(
27µ

T

)
+
(
52052A6 − 24024A4 + 10296A2 + 1872

)
cosh

(
30µ

T

)

+
(
9447438A12 + 10306296A10 + 15459444A8 + 6694688A6 − 3586440A4 + 2265120A2 + 226512

)
cosh

(
24µ

T

)
+
(
32391216A15 + 97173648A13 + 194347296A11 + 188948760A9 + 29899584A7 + 59799168A5 − 5536960A3

−8305440A) cosh

(
21µ

T

)
+
(
48586824A18 + 291520944A16 + 947443068A14 + 1700538840A12 + 1360431072A10

+1046485440A8 + 152612460A6 − 93436200A4 + 93436200A2 + 6921200
)

cosh

(
18µ

T

)
+
(
32391216A21 + 340107768A19 + 1797712488A17 + 5484912576A15 + 9069540480A13 + 10203233040A11

+5862256400A9 + 1245816000A7 + 1308106800A5 − 259545000A3 − 155727000A
)

cosh

(
15µ

T

)
+
(
9447438A24 + 161956080A22 + 1360431072A20 + 6751769024A18 + 19625027994A16 + 37120333536A14

+42891368520A12 + 28010926944A10 + 15571142730A8 + 959278320A6 − 654053400A4 + 1121234400A2

+70077150) cosh

(
12µ

T

)
+
(
1145144A27 + 30918888A25 + 406362528A23 + 3212619696A21 + 15459444000A19

+48604491936A17 + 99081785088A15 + 126520089696A13 + 110373295032A11 + 50698482120A9 + 11705687136A7

+8947450512A5 − 2354592240A3 − 1009110960A
)

cosh

(
9µ

T

)
+
(
52052A30 + 2186184A28 + 44972928A26

+567515520A24 + 4442883588A22 + 22910896008A20 + 78767584896A18 + 177598092672A16 + 270716949360A14

+261358153056A12 + 153018596016A10 + 72252344736A8 + 2145295152A6 − 1569728160A4 + 4709184480A2

+269096256) cosh

(
6µ

T

)
+
(
728A33 + 48048A31 + 1585584A29 + 33153120A27 + 430640496A25 + 3684814848A23

+21267362688A21 + 82107881856A19 + 216479783520A17 + 381992554944A15 + 438076368576A13 + 343774544256A11

+144185760576A9 + 34085525760A7 + 22604085504A5 − 6697506816A3 − 2511565056A
)

cosh

(
3µ

T

)

+ 2 cosh

(
36µ

T

)
+ 209297088
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〈TrU〉12 =
1

Z12

[
3e−

34µ
T

(
26A2+52(77A4−22A2+6)e

3µ
T A+6292((A2(7(39(A4+A2)+44)A2+76)−20)A2+12)e

9µ
T A

+69212(3(((13(6A6+33A4+93A2+136)A2+1240)A2+675)A2+45)A4+50)e
15µ
T A+69212((((((13(6A10+96A8+728A6+3135A4+7932A2+12642)A2

+155316)A2+86790)A2+32670)A2+630)A2+900)A2+675)e
21µ
T A+572(((((((13(7A14+280A12+5328A10+59346A8+408771A6+1831368A4

+5377680A2+10348272)A2+170236836)A2+133737516)A2+66076164)A2+20255400)A2+91476)A2+914760)A2+392040)e
27µ
T A

+4(((A28+109A26+6248A24+208890A22+4192518A20+54236754A18+463103784A16+2647132488A14+10274489940A12+26914665492A10

+47368816704A8+55424254248A6+40840226856A4+19366209720A2+5396874912)A4+313945632)A2+104648544)e
33µ
T A

+44(((A2((((13((((((7(A4+59A2+1544)A2+166896)A2+1606365)A2+10030185)A2+41725992)A2+115304112)A2+212326884)A2+3350946060)A2

+2541052800)A2+1249610076)A2+348092316)−1189188)A2+23783760)A2+7135128)e
39µ
T A+6292(((A2(((13(21A12+474A10+4848A8+28840A6

+103188A4+233220A2+335538)A2+3760428)A2+2098965)A2+648450)−6930)A2+49500)A2+14850)e
45µ
T A+69212(((A2+1)(A2(13(18A8+132A6

+450A4+831A2+625)A2+5595)−135)A2+450)A2+150)e
51µ
T A+6292(((3A2(286A6+611A4+767A2+540)−76)A2+140)A2+60)e

57µ
T A

+572(91A6−7A4+8A2+6)e
63µ
T A+4e

69µ
T A+143(1001A8+56A6+292A4−12)e

6µ
T +3146(A2(A2(3(858A8+2340A6+3887A4+2826A2+576)A2+1360)

−220)−40)e
12µ
T +17303(A2(A2((((39(21A8+204A6+958A4+2480A2+3542)A2+125048)A2+55020)A2+13440)A2+5175)−1500)−150)e

18µ
T

+3146(A2(A2(((((13(21A12+534A10+6414A8+44548A6+188020A4+508728A2+873468)A2+12280464)A2+8489613)A2+3030390)A2+772002)A2

+180180)−80190)−5940)e
24µ
T +11(A2(A2((((((13((((((7(A4+64A2+1992)A2+255888)A2+2910555)A2+21642312)A2+106933596)A2+353433696)A2

+786585492)A2+15000511680)A2+14366956032)A2+8800444224)A2+2877325308)A2+751566816)A2+118918800)−76108032)−4756752)e
30µ
T

+26(A12+66A10+990A8+4620A6+6930A4+2772A2+132)(A2((A16+44A14+1100A12+12408A10+81840A8+281424A6+585156A4+566280A2

+396396)A4+60984)−17424)e
36µ
T +1573(A2(A2(((((13(7A14+252A12+4086A10+38880A8+228144A6+861168A4+2131848A2+3393792)A2

+45612315)A2+29497644)A2+10021374)A2+3027024)A2+353430)−320760)−17820)e
42µ
T +34606(A2(A2((((39(6A10+84A8+537A6+1974A4

+4160A2+5432)A2+167398)A2+64020)A2+22890)A2+3300)−2625)−150)e
48µ
T +17303(A2(3A2(((13(21A6+96A4+216A2+272)A2+1665)A2+792)A2

+180)−320)−20)e
54µ
T +286(3003A10+2002A8+1624A6+800A4−324A2−24)e

60µ
T +13(77A4−20A2−2)e

66µ
T −4

)]
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E Reflection symmetry in thimble decomposition

In this section we go into detail describing the reflection symmetry discussed in [42]. Consider the partition
function of a generic field theory consisting of n real (scalar, for the sake of simplicity) degrees of freedom
{xi} on a domain C

Z =

ˆ

C

dnx e−S(x)

Before complexifying the degrees of freedom, we note that, in order for Z to be the partition function of
a physical system, it must be real even when S(x) is complex. A sufficient condition for this to hold is the
existence of a “reflection” symmetry L, which is a real operator on the fields so that L = LT , L2 = 1 and L
satisfies

S(x) = S(Lx)

This ensures the reality of Z, as

Z̄ =

ˆ

C

dnx e−S(x) =

ˆ

C

dnx e−S(x) =

ˆ

C

dn
(
L−1Lx

)
e−S(Lx) =

ˆ

C

dnx e−S(x) = Z

We now turn to the decomposition of Z in terms of thimbles, that is

Z =
∑
σ∈Σ

nσ

ˆ

Jσ

dnz e−S(z) (E.1)

In order for Z to be real, integrals over {Jσ} must either be real or appear in complex conjugate pairs.
We shall see that this is ensured by the reflection symmetry. When the fields are complexified (x→ z), L is
extended to an antilinear map K : z 7→ L z̄ satisfying

S(z) = S(L z̄)

We now show covariance of the steepest ascent flow under the action of K, that is, if the flow z(t) is a
solution to

dzi(t)

dt
=
∂S(z)

∂z̄i

then z′(t) ≡ K(z(t)) = L z̄(t) solves the SA equations as well

dz′i
dt

=

n∑
j=1

Lij
dz̄j(t)

dt
=

n∑
j=1

Lij
∂S(z)

∂zj
=

n∑
j=1

Lij
∂S(L z̄)

∂zj
=

n∑
j=1

Lij

n∑
k=1

(
∂z′k
∂zj

∂

∂z′k
+
∂z̄′k
∂zj

∂

∂z̄′k

)
S(z′)

=

n∑
j=1

Lij

n∑
k=1

Lkj
∂S(z′)

∂z̄′k
=

n∑
k=1

n∑
j=1

LijLjk
∂S(z′)

∂z̄′k
=

n∑
k=1

δik
∂S(z′)

∂z̄′k
=
∂S(z′)

∂z̄′i

As a consequence, if zσ is a critical point of S, so is K(zσ) and the thimble associated to K(zσ) is
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JKσ ≡ JK(zσ) =
{
K(z)

∣∣ z ∈ Jσ}
(up to a choice of orientation). We also note that covariance of the SA flow under K ensures that

nKσ = 〈C,JKσ 〉 = 〈C,Jσ〉 = nσ up to a change of orientation. The most useful property of two conjugated
thimbles, Jσ and JKσ , is the following

ˆ

JKσ

dnz e−S(z) =

ˆ

JKσ

dnz e−S(L z̄) =

ˆ

JKσ

dn (L−1Lz̄) e−S(L z̄) = ±
ˆ

Jσ

dnz e−S(z)

where the sign depends on whether K changes the orientation of the thimbles. As a consequence, complex
conjugate pairs of critical points appearing in the decomposition (E.1) either yield an overall real contribution
to Z or a purely imaginary contribution, in which case they have nσ = 0. We also note that self-conjugate
critical points (those for which K(zσ) = zσ) give a contribution which is purely real or imaginary (in the
latter case, they cannot contribute to Z). The reflection symmetry we have described holds also at every
order in perturbation theory, in particular it is to be recovered in a semiclassical expansion around thimbles.
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F The partition function of Yang-Mills theory in 2 dimensions

In this section we compute the partition function for the action (10.1) in 2 dimensions, following [29] and
[118]. Here fields need not to be complexified, as we integrate over the original (compact) group ⊗n,µ̂SU(N)
and eventually continue Z(β) to complex values of the coupling. Neglecting the additive constant βV in the
action, we compute the partition function

Z(β) =

ˆ
DU e−S[U ] =

ˆ
DU e

β
∑
�

1
2N Tr(U�+U†

�
)

=

ˆ
DU

∏
�

eβf(U�)

where � labels different plaquettes (they are products of U that we label U�) and the group invariant
measure is

DU =
∏
n,µ̂

dUµ̂(n)

As f(U�) is obviously a (real valued) gauge-invariant function of the plaquette variables, we have that
eβf(U�) is a class function on SU(N) and therefore it can be expanded in terms of irreducible characters of
U�

eβf(U�) =
∑
r

drλr(β)χr(U�)

where r labels the r-th irreducible representation of SU(N) (dr being its dimension) and χr is the character
of U� in the r-th representation. Now, for U , U1, U2 in SU(N), we have the following relations for group
integrals of the characters [96]

ˆ
dU χr(U)χr′(U

†) = δrr′

ˆ
dU χr(U1U)χr′(U

†U2) =
1

dr
δrr′χr(U1U2)

ˆ
dU χr(UU1U

†U2) =
1

dr
χr(U1)χr(U2)

By integrating the character expansion after multiplying it with χr(U†), we extract the coefficients {λr}

λr =
1

dr

ˆ
dU χr(U

†) eβf(U)

Now let us consider the partition function, where a given link U appears only in two plaquettes U�1
= V1U

and U�2
= U†V2 ,where V1 and V2 are the (path-ordered) staples corresponding to the link U . The integration

with respect to U is therefore

ˆ
dU eβf(U�1

)eβf(U�2
) =

∑
r

∑
r′

drdr′λr(β)λr′(β)

ˆ
dU χr(V1U)χr′(U

†V2)

=
∑
r

∑
r′

drdr′λr(β)λr′(β)
1

dr
δrr′χr(V1V2) =

∑
r

dr [λr(β)]
2
χr(V1V2)
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We have glued the two plaquettes sharing the link U together to form a new “double plaquette”, whose
(path-ordered) boundary V1V2 we call U�12

; the power of 2 of λr(β) matches the number of plaquettes that
have been glued together. The generalization of this procedure is straightforward: if we now glue another
plaquette (sharing one link with U�12

), thus forming U�123
, we pick another factor of λr(β) (the additional

dr cancels out during integration in the new common link variable). In general, if we pick a closed, non self-
intersecting contour Γ enclosing NΓ plaquettes of a two-dimensional lattice, by integrating over the internal
link variables, we get a functional Z(Γ) of the (path-ordered) product of link variables on the boundary,
which we call UΓ

Z(UΓ) =
∑
r

dr [λr(β)]
NΓ χr(UΓ)

We now consider the particular case in which the contour Γ consists of only the links on the lattice
boundaries, that is U ∈ ∂Λ (all the internal links have already been integrated out)

Z(β) =

ˆ
DU Z(U∂Λ) =

ˆ
dU1dU2dU3dU4 Z(U1U2U3U4) (F.1)

where, thanks to the invariance of the group measure and its normalization
´

dU = 1, we have expressed
the remaining integrations over boundary links as only 4 integrations over link products on the four bound-
aries, that is U∂Λ = U1U2U3U4. We now impose periodic boundary conditions, thus making the identifications
U3 ≡ U†1 and U4 ≡ U†2 and then integrating over U1 and U2 (V is the total number of plaquettes, that is the
total lattice area measured in lattice units)

Z(pbc)(β) =

ˆ
dU1dU2 Z(U1U2U

†
1U
†
2 ) =

ˆ
dU2

∑
r

dr [λr(β)]
V
ˆ

dU1 χr(U1U2U
†
1U
†
2 )

=

ˆ
dU2

∑
r

dr [λr(β)]
V 1

dr
χr(U2)χr(U

†
2 ) =

∑
r

[λr(β)]
V
ˆ

dU2 χr(U2)χr(U
†
2 ) =

∑
r

[λr(β)]
V

If we consider free boundary conditions instead, we have

Z(fbc)(β) =

ˆ
dU1dU2dU3dU4 Z(U1U2U3U4) =

∑
r

dr [λr(β)]
V
ˆ

dU1dU2dU3

ˆ
dU4 χr(U1U2U3U4)

=
∑
r

dr [λr(β)]
V
ˆ

dU1dU2dU3 δr,0 = [λ0(β)]
V

where r = 0 labels the trivial representation of the group, with dimension d0 = 1 and we have used the
character integral relations as well as the normalization of the group measure.

We now perform the explicit computation of Z(β) for U(1) and SU(2). First, remember that f(U�) =
1

2NTr(U� + U†�), where the trace is understood in the fundamental representation of the gauge group. For
U(1) we have the parametrization U = eiθ and dU = dθ/2π, therefore f(U�) = 1

2 (eiθ + e−iθ) = cos θ.
The irreducible representations are labelled by the integer ν ∈ Z, with χν(U�) = eiνθ and they are all
1-dimensional, that is dν = 1. Thus the coefficients {λr} are

λν(β) =
1

dν

ˆ
dU χν(U†)eβf(U) =

1

2π

2πˆ

0

dθ e−iνθeβ cos θ =
1

π

π̂

0

dθ eβ cos θ cos(νθ)− i

2π

2πˆ

0

dθ eβ cos θ sin(νθ) = Iν(β)
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where Iν(β) is the modified Bessel function of the first kind. To summarize (restoring the additive
constant βV in the action)

Z
(fbc)
U(1) (β) = e−βV [I0(β)]

V

Z
(pbc)
U(1) (β) = e−βV

+∞∑
ν=−∞

[Iν(β)]
V

For SU(2) in the fundamental representation, we employ the parametrization

U = cos

(
ψ

2

)
1 + i sin

(
ψ

2

)
n̂ · ~σ

where {σi} are the three Pauli matrices, |n̂| = 1 and ψ ∈ [0, 4π). The Haar measure is given by

dU =
1

8π2
sin2

(
ψ

2

)
dψ dΩ

with dΩ = sin θ dθ dφ and θ ∈ [0, π], φ ∈ [0, 2π). Each irreducible representation is labelled by its spin j,
which takes integer or half-integer values: j = 0, 1

2 , 1,
3
2 , 2, · · · and its dimension dj = 2j + 1. The character

in the j-th representation is given by [119]

χj(U) =
sin
[
(2j + 1) ψ2

]
sin
(
ψ
2

)
From the parametrization of U , it follows

f(U�) =
1

2N
Tr
(
U� + U†�

)
=

1

4

[
2 cos

(
ψ

2

)]
Tr 1 = cos

(
ψ

2

)

Being f(U) a real class function, the weights of conjugate representations are the same (λj = λj̄);
moreover, irreducible representations of SU(2) are real (so that χj(U) = χj̄(U)), so we simply sum over j.
We are ready to compute the coefficients {λj}

λj(β) =
1

dj

ˆ
dU χj(U

†)eβf(U) =
1

2j + 1

1

8π2

ˆ

Ω

dΩ

4πˆ

0

dψ sin2

(
ψ

2

) sin
[
(2j + 1) ψ2

]
sin
(
ψ
2

) eβ cos(ψ2 )

=
1

2j + 1

1

π

2πˆ

0

dψ eβ cosψ sinψ sin [(2j + 1)ψ] =
1

2j + 1

 1

π

π̂

0

dψ eβ cosψ cos [(2j)ψ]− 1

π

π̂

0

dψ eβ cosψ cos [(2j + 2)ψ]


=

1

2j + 1
[I2j(β)− I2j+2(β)] =

1

2j + 1

[
2(2j + 1)

β
I2j+1(β)

]
=

2

β
I2j+1(β)

Thus, to summarize, we have
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Z
(fbc)
SU(2)(β) = e−βV

[
2

β
I1(β)

]V

Z
(pbc)
SU(2)(β) = e−βV

∞∑
n=1

[
2

β
In(β)

]V

F.1 The twisted case

We now compute the partition function of 2-dimensional Yang-Mills theory in the twisted case. The compu-
tational scheme is the same as before, but we must keep in mind that there is a single twisted plaquette (P0)
in the lattice, whose action density −f(U�) undergoes a multiplication by a center element of SU(N), that
is f(U�) → f(zU�) with z = ζk 1 = e2πik/N 1. This plaquette is the only one whose character expansion
differs from the one which has already been computed, in particular we call its coefficients λ(t)

r (β). The
obvious result for the partition function is thus

Z(pbc,t)(β) =
∑
r

[λr(β)]
V−1

λ(t)
r (β)

So all is left is the computation of the twisted coefficients

λ(t)
r =

1

dr

ˆ
dU χr(U

†)eβf(zU) =
1

dr

ˆ
d(zU)χr

(
U†z†z

)
eβf(zU) = ζk

1

dr

ˆ
d(zU)χr

(
(zU)†

)
eβf(zU) = ζkλr(β)

where we have used the invariance of the group measure d(zU) = dU . Thus, for the partition function,
we have

Z(pbc,t)(β) = ζk Z
(pbc)(β)

As stated in Section 10.1, twisting the action is equivalent to simply considering twisted periodic boundary
conditions along with an untwisted action. We will check this explicitly for the 2-dimensional case. Twisted
periodic boundary conditions correspond to taking U3 = Ω1U

†
1 Ω†1 and U4 = Ω2U

†
2 Ω†2 in (F.1). Then, using

the previously given expressions for group integrals of characters as well as the twisted commutation relation
Ω2Ω1 = zΩ1Ω2 and dr = χr(1)

Z(pbc,t)(β) =

ˆ
DU Z(U∂Λ) =

ˆ
dU1dU2 Z(U1U2Ω1U

†
1 Ω†1Ω2U

†
2 Ω†2)

=

ˆ
dU2

∑
r

dr [λr(β)]
V
ˆ

dU1 χr(U1U2Ω1U
†
1 Ω†1Ω2U

†
2 Ω†2) =

ˆ
dU2

∑
r

dr [λr(β)]
V 1

dr
χr(U2Ω1)χr(Ω

†
1Ω2U

†
2 Ω†2)

=
∑
r

[λr(β)]
V
ˆ

dU2 χr(Ω1U2)χr(U
†
2 Ω†2Ω†1Ω2) =

∑
r

[λr(β)]
V 1

dr
χr(Ω1Ω†2Ω†1Ω2) =

∑
r

[λr(β)]
V 1

dr
χr(Ω2Ω1Ω†2Ω†1)

=
∑
r

[λr(β)]
V 1

dr
χr(zΩ1Ω2Ω†2Ω†1)) = ζk

∑
r

[λr(β)]
V 1

dr
χr(1) = ζk

∑
r

[λr(β)]
V

= ζk Z
(pbc)(β)

which agrees with the previous result.
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G Matrix form of complex Yang-Mills theory equations

In this section we compute SA equations as well as PT equations for complex SU(N) Yang-Mills theory in
2 dimensions in matrix form, that is getting rid of colour indices completely. This form is more suitable for
computer simulations. Recall the definitions of Section 10 and consider the action for the (twisted) theory:
the number of distinct plaquettes is given by V d(d− 1)/2 = V , where V is the lattice volume, so that

S[U ] = β

V − 1

2N

∑
n

∑
µ̂<ν̂

Tr
(
Z(n)Uµ̂ν̂(n) + Z−1(n)U−1

µ̂ν̂ (n)
)

with Z(n) ≡ 1 + δn,n0
(z − 1) (z being the twist). We now make use of the following fact: any matrix

A ∈ SL(N,C) can be decomposed as A = a11 + abT
b. From this decomposition, it follows

T aTr (T aA) = T aTr
(
T a
(
a11 + abT

b
))

= a1T
aTr(T a) + abT

aTr
(
T aT b

)
=

1

2
abT

b

where we have used Tr(T a) = 0 and Tr(T aT b) = 1
2δ
ab. The decomposition of A can be used to compute

a1

Tr(A) = Tr
(
a11 + abT

b
)

= a1Tr 1 + abTr(T b) = Na1

so that

T aTr (T aA) =
1

2
(A− a11) =

1

2

(
A− 1

N
Tr(A) 1

)
=

1

2
[A]T

with [A]T ≡ A− 1
NTr(A) 1.

Our SA equations read

d

dt
Uµ̂(n; t) = i ∇̄n,µ̂S[U(t)]Uµ̂(n; t)

with ∇̄n,µ̂S̄ ≡ T a∇̄an,µ̂S̄. Thus, after defining

Dµ̂ν̂(n) ≡ cUUµ̂ν̂(n) + cUUµ̂ν̂(n)− c−1
U U−1

µ̂ν̂ (n)− c−1
U U

−1
µ̂ν̂ (n)

we can write (recall that β ∈ C)

∇̄an,µ̂S[U ] = ∇an,µ̂S[U ] = − iβ

2N

∑
ν̂ 6=µ̂

Tr [T aDµ̂ν̂(n)] =
iβ̄

2N

∑
ν̂ 6=µ̂

Tr
[
T aD†µ̂ν̂(n)

]

which yields

∇̄n,µ̂S[U ] =
iβ̄

4N

∑
ν̂ 6=µ̂

[
D†µ̂ν̂(n)

]
T

Now let us come to PT equations. We immediately see that we can rewrite the Hessian as
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∇̄bm,ρ̂∇̄an,µ̂S[U ] = ∇bm,ρ̂∇an,µ̂S[U ] = Tr
(
T aM b †

(m,ρ̂),(n,µ̂)

)
with

M b
(m,ρ̂),(n,µ̂) ≡ β

2N

∑̂
ν

(1−δν̂,µ̂)
{
δµ̂,ρ̂

[
δn,m[T b(cUUµ̂ν̂(n)+cUUµ̂ν̂(n))+(c−1

U U−1
µ̂ν̂ (n)+c−1

U U
−1
µ̂ν̂ (n))T b]

−δn+ν̂,m[cUUµ̂(n)Uν̂(n+µ̂)U−1
µ̂ (n+ν̂)T bU−1

ν̂ (n)+c−1
U Uν̂(n)T bUµ̂(n+ν̂)U−1

ν̂ (n+µ̂)U−1
µ̂ (n)]

−δn−ν̂,m[cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)U−1

µ̂ (n−ν̂)T bUν̂(n−ν̂)+c−1
U U−1

ν̂ (n−ν̂)T bUµ̂(n−ν̂)Uν̂(n+µ̂−ν̂)U−1
µ̂ (n)]

]
+δν̂,ρ̂

[
−δn,m[T bc−1

U U−1
µ̂ν̂ (n)+cUUµ̂ν̂(n)T b]

+δn+µ̂,m[cUUµ̂(n)T bUν̂(n+µ̂)U−1
µ̂ (n+ν̂)U−1

ν̂ (n)+c−1
U Uν̂(n)Uµ̂(n+ν̂)U−1

ν̂ (n+µ̂)T bU−1
µ̂ (n)]

+δn−ν̂,m[cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)U−1

µ̂ (n−ν̂)T bUν̂(n−ν̂)+c−1
U U−1

ν̂ (n−ν̂)T bUµ̂(n−ν̂)Uν̂(n+µ̂−ν̂)U−1
µ̂ (n)]

−δn+µ̂−ν̂,m[cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)T bU−1

µ̂ (n−ν̂)Uν̂(n−ν̂)+c−1
U U−1

ν̂ (n−ν̂)Uµ̂(n−ν̂)T bUν̂(n+µ̂−ν̂)U−1
µ̂ (n)]

]}
which enables us to write

T a∇̄bm,ρ̂∇̄an,µ̂S[U ] = ∇̄bm,ρ̂∇̄n,µ̂S[U ] = T aTr
(
T aM b †

(m,ρ̂),(n,µ̂)

)
=

1

2

[
M b †

(m,ρ̂),(n,µ̂)

]
T

Next, we write the components of tangent basis vectors as matrices, that is Vn,µ̂ ≡ Vnµ̂,aT
a (along with

V̄n,µ̂ ≡ V̄nµ̂,aT a). Consider our PT equations

d

dt
Vnµ̂,a(t) =

∑
m,ρ̂,b

V̄mρ̂,b(t) ∇̄bm,ρ̂∇̄an,µ̂S [U(t)] +
∑
b,c

f cba Vnµ̂,c(t) ∇̄bn,µ̂S [U(t)]

We can multiply both sides by T a and sum over a

d

dt
Vnµ̂,aT

a =
∑
m,ρ̂,b

V̄mρ̂,b T
a∇̄bm,ρ̂∇̄an,µ̂S [U ] +

∑
b,c

f cbaT a Vnµ̂,c ∇̄bn,µ̂S [U ]

⇒ d

dt
Vn,µ̂ = ∇̄V ∇̄n,µ̂S[U ]− i

∑
b,c

[
T c, T b

]
Vnµ̂,c ∇̄bn,µ̂S [U ]

⇒ d

dt
Vn,µ̂ = ∇̄V ∇̄n,µ̂S[U ]− i

[
Vn,µ̂ , ∇̄n,µ̂S [U ]

]
where we have introduced the directional derivative with respect to V

∇̄V ≡
∑
m,ρ̂,b

V̄mρ̂,b∇̄bm,ρ̂

We have reached an expression which is quite general. However, we are interested in complex Yang-Mills
theory: when one contracts ∇̄bm,ρ̂∇̄an,µ̂S [U ] with V̄mρ̂,b, the effect of summing over b is that each T b in the
Hessian is substituted with Vm,ρ̂. Thus we can rephrase PT equations as
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d

dt
Vn,µ̂(t) =

β̄

4N

∑
ν̂ 6=µ̂

{[
M†µ̂ν̂(n)

]
T

+
[
Vn,µ̂(t) ,

[
D†µ̂ν̂(n)

]
T

]}

having defined

Mµ̂ν̂(n) ≡∑
m,ρ̂

{
δµ̂,ρ̂

[
δn,m[Vm,ρ̂(t)(cUUµ̂ν̂(n)+cUUµ̂ν̂(n))+(c−1

U U−1
µ̂ν̂ (n)+c−1

U U
−1
µ̂ν̂ (n))Vm,ρ̂(t)]

−δn+ν̂,m[cUUµ̂(n)Uν̂(n+µ̂)U−1
µ̂ (n+ν̂)Vm,ρ̂(t)U−1

ν̂ (n)+c−1
U Uν̂(n)Vm,ρ̂(t)Uµ̂(n+ν̂)U−1

ν̂ (n+µ̂)U−1
µ̂ (n)]

−δn−ν̂,m[cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)U−1

µ̂ (n−ν̂)Vm,ρ̂(t)Uν̂(n−ν̂)+c−1
U U−1

ν̂ (n−ν̂)Vm,ρ̂(t)Uµ̂(n−ν̂)Uν̂(n+µ̂−ν̂)U−1
µ̂ (n)]

]
+δν̂,ρ̂

[
−δn,m[Vm,ρ̂(t)c−1

U U−1
µ̂ν̂ (n)+cUUµ̂ν̂(n)Vm,ρ̂(t)]

+δn+µ̂,m[cUUµ̂(n)Vm,ρ̂(t)Uν̂(n+µ̂)U−1
µ̂ (n+ν̂)U−1

ν̂ (n)+c−1
U Uν̂(n)Uµ̂(n+ν̂)U−1

ν̂ (n+µ̂)Vm,ρ̂(t)U−1
µ̂ (n)]

+δn−ν̂,m[cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)U−1

µ̂ (n−ν̂)Vm,ρ̂(t)Uν̂(n−ν̂)+c−1
U U−1

ν̂ (n−ν̂)Vm,ρ̂(t)Uµ̂(n−ν̂)Uν̂(n+µ̂−ν̂)U−1
µ̂ (n)]

−δn+µ̂−ν̂,m[cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)Vm,ρ̂(t)U−1

µ̂ (n−ν̂)Uν̂(n−ν̂)+c−1
U U−1

ν̂ (n−ν̂)Uµ̂(n−ν̂)Vm,ρ̂(t)Uν̂(n+µ̂−ν̂)U−1
µ̂ (n)]

]}
=
∑̂
ρ

{
δµ̂,ρ̂

[
Vn,ρ̂(t)(cUUµ̂ν̂(n)+cUUµ̂ν̂(n))+(c−1

U U−1
µ̂ν̂ (n)+c−1

U U
−1
µ̂ν̂ (n))Vn,ρ̂(t)

−cUUµ̂(n)Uν̂(n+µ̂)U−1
µ̂ (n+ν̂)Vn+ν̂,ρ̂(t)U−1

ν̂ (n)−c−1
U Uν̂(n)Vn+ν̂,ρ̂(t)Uµ̂(n+ν̂)U−1

ν̂ (n+µ̂)U−1
µ̂ (n)

−cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)U−1

µ̂ (n−ν̂)Vn−ν̂,ρ̂(t)Uν̂(n−ν̂)−c−1
U U−1

ν̂ (n−ν̂)Vn−ν̂,ρ̂(t)Uµ̂(n−ν̂)Uν̂(n+µ̂−ν̂)U−1
µ̂ (n)

]
+δν̂,ρ̂

[
−Vn,ρ̂(t)c−1

U U−1
µ̂ν̂ (n)−cUUµ̂ν̂(n)Vn,ρ̂(t)

+cUUµ̂(n)Vn+µ̂,ρ̂(t)Uν̂(n+µ̂)U−1
µ̂ (n+ν̂)U−1

ν̂ (n)+c−1
U Uν̂(n)Uµ̂(n+ν̂)U−1

ν̂ (n+µ̂)Vn+µ̂,ρ̂(t)U−1
µ̂ (n)

+cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)U−1

µ̂ (n−ν̂)Vn−ν̂,ρ̂(t)Uν̂(n−ν̂)+c−1
U U−1

ν̂ (n−ν̂)Vn−ν̂,ρ̂(t)Uµ̂(n−ν̂)Uν̂(n+µ̂−ν̂)U−1
µ̂ (n)

−cUUµ̂(n)U−1
ν̂ (n+µ̂−ν̂)Vn+µ̂−ν̂,ρ̂(t)U−1

µ̂ (n−ν̂)Uν̂(n−ν̂)−c−1
U U−1

ν̂ (n−ν̂)Uµ̂(n−ν̂)Vn+µ̂−ν̂,ρ̂(t)Uν̂(n+µ̂−ν̂)U−1
µ̂ (n)

]}
= Vn,µ̂(t) (cUUµ̂ν̂(n) + cUUµ̂ν̂(n)) +

(
c−1
U U−1

µ̂ν̂ (n) + c−1
U U

−1
µ̂ν̂ (n)

)
Vn,µ̂(t)

− cUUµ̂(n)Uν̂(n+ µ̂)U−1
µ̂ (n+ ν̂)Vn+ν̂,µ̂(t)U−1

ν̂ (n)− c−1
U Uν̂(n)Vn+ν̂,µ̂(t)Uµ̂(n+ ν̂)U−1

ν̂ (n+ µ̂)U−1
µ̂ (n)

− cUUµ̂(n)U−1
ν̂ (n+ µ̂− ν̂)U−1

µ̂ (n− ν̂)Vn−ν̂,µ̂(t)Uν̂(n− ν̂)− c−1
U U−1

ν̂ (n− ν̂)Vn−ν̂,µ̂(t)Uµ̂(n− ν̂)Uν̂(n+ µ̂− ν̂)U−1
µ̂ (n)

− Vn,ν̂(t)c−1
U U−1

µ̂ν̂ (n)− cUUµ̂ν̂(n)Vn,ν̂(t)

+ cUUµ̂(n)Vn+µ̂,ν̂(t)Uν̂(n+ µ̂)U−1
µ̂ (n+ ν̂)U−1

ν̂ (n) + c−1
U Uν̂(n)Uµ̂(n+ ν̂)U−1

ν̂ (n+ µ̂)Vn+µ̂,ν̂(t)U−1
µ̂ (n)

+ cUUµ̂(n)U−1
ν̂ (n+ µ̂− ν̂)U−1

µ̂ (n− ν̂)Vn−ν̂,ν̂(t)Uν̂(n− ν̂) + c−1
U U−1

ν̂ (n− ν̂)Vn−ν̂,ν̂(t)Uµ̂(n− ν̂)Uν̂(n+ µ̂− ν̂)U−1
µ̂ (n)

− cUUµ̂(n)U−1
ν̂ (n+ µ̂− ν̂)Vn+µ̂−ν̂,ν̂(t)U−1

µ̂ (n− ν̂)Uν̂(n− ν̂)− c−1
U U−1

ν̂ (n− ν̂)Uµ̂(n− ν̂)Vn+µ̂−ν̂,ν̂(t)Uν̂(n+ µ̂− ν̂)U−1
µ̂ (n)
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