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Abstract
The winding number is a concept in complex analysis which has, in the presence
of chiral symmetry, a physics interpretation as the topological index belonging
to gapped phases of fermions. We study statistical properties of this topologi-
cal quantity. To this end, we set up a random matrix model for a chiral unitary
system with a parametric dependence. We analytically calculate the discrete
probability distribution of the winding numbers, as well as the parametric corre-
lations functions of the winding number density. Moreover, we address aspects
of universality for the two-point function of the winding number density by
identifying a proper unfolding procedure. We conjecture the unfolded two-point
function to be universal.

Keywords: random matrix theory, topological condensed matter, chiral
symmetry, winding number
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1. Introduction

Chiral orthogonal, unitary, and symplectic symmetry classes comprise three of the ten symme-
try classes of disordered fermions [1–5], also known as the tenfold way. They were initially
discovered in works on quantum chromodynamics (QCD) and statistical properties of lattice
gauge calculations [6]. The chiral symmetry of the Dirac operator is broken spontaneously as
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well as explicitly by the quark masses. The spectral properties of the Dirac operator are con-
nected to the chiral condensate, the order parameter of the phase transition that occurs at a
high temperature and that restores chiral symmetry. To the present knowledge, simultaneously
the confinement–deconfinement transition takes place which frees the quarks by opening the
hadronic particles. The study of the spectral statistics of lattice gauge models with chiral sym-
metry naturally establishes a link to random matrix theory [7, 8] and the theory of disordered
systems. The so emerging chiral random matrix theory turned out to be a fruitful approach in
low temperature QCD [9–15]. It is worth mentioning that topological aspects play an impor-
tant role in QCD, one object of particular interest is the topological charge, a comparison of
its various definitions was recently given in reference [16]. These topological quantities do not
seem to be directly related to the ones we study in the present contribution; nevertheless, the
random matrix theory studied here could be relevant in cases where a QCD system depends
periodically on a parameter. Here, it is important that chiral random matrix theory, although
being ‘zero-dimensional’ in the terminology of condensed matter physics, successfully cap-
tures statistical properties of fully fledged lattice QCD [9]. Thus our parametric extension does
not seem to be too far away from QCD applications.

In the context of condensed matter physics, however, chiral symmetry may appear either as
sublattice symmetry or as a combination of time reversal and particle-hole symmetry [17]. In
an early work [18] localization in systems with such a sublattice symmetry was observed. Here,
the energy-level statistics at half filling is different from the bulk statistics. While the latter is
described by the random matrix theory of the classical Wigner–Dyson ensembles, the former
can be captured with chiral unitary, orthogonal, or symplectic random matrices, depending on
the additional presence of time-reversal and spin-rotation symmetries or the lack thereof [19].

Translationally invariant one-dimensional chiral systems that are gapped at the center of the
spectrum are also characterized by the winding number, an integer topological index associated
with the bundle of negative-energy bands. Systems with a nonzero winding number W are
topologically nontrivial, and therefore have |W| modes localized at each boundary [20–22]. An
intriguing example is the time-reversal invariant Majorana chain, which belongs to the chiral
orthogonal class BDI, and whose edge modes have resilient quantum information properties
[23].

When (discrete) translation invariance is broken by disorder obeying chiral symmetry, lat-
tice momentum is no longer a good quantum number. Nevertheless, it is possible to express
W in position representation, and then calculate the winding number of a periodic system;
it is then found in weakly disordered one-dimensional systems that the winding number is
self-averaging and robust in the thermodynamic limit [24, 25].

On the other hand, if disorder is strong, then the winding number becomes random, depend-
ing on the disorder realization, and may no longer be calculated by spatial averaging. Instead,
one can assume that the disorder is itself periodic with a large period, so that the disordered
system remains periodic with a large disordered unit cell; with this assumption, the winding
number can defined, as a random variable, in the usual way using Bloch momenta, eventually
taking the limit of large disorder period.

Periodic arrays of coupled chaotic systems, such as ballistic quantum dots, make another
class of Hamiltonians that could belong the universality class of the parametric chiral ran-
dom matrix studied here. As in [26, 27], the parameter can equally well take the role of an
Aharonov–Bohm flux.

The probability distribution of W in periodic systems with a disordered unit cell depends
on that of the disorder, but like the statistics of energy levels, it may turn out that the winding
number statistics becomes universal when the unit cell becomes large, and moreover that the
universal distribution can be reproduced by random matrix models.
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This question has not yet been addressed in the chiral classes, but there are precursors in
the unitary class A, where energy bands in two dimensions are topologically classified by the
(first) Chern number. Random matrix models defined on compact two-dimensional parameter
spaces were studied in [28, 29], showing that the Chern number distribution is Gaussian with
a universal covariance.

In [29] the Chern number covariance was calculated as an integral of the correlation function
of the adiabatic curvature, which is universal as well. The two-point correlation function of the
adiabatic curvature follows a scaling form, with a scale parameter equal to the density of states
multiplied by the correlation length of the elements of the random matrices in parameter space,
and a universal scaling function. Universal scaling behaviour of this kind has been known for a
long time in parametric correlations of spectral properties of random matrices, like the density
and current of energy states [30]. Furthermore, the universal properties of parametric spectral
correlations of random matrices agree with those of disordered systems [26, 27], motivating the
universality hypothesis for the correlations of the adiabatic curvature and its chiral class analog,
the winding number density, and a fortiori the probability distributions of Chern numbers and
winding numbers.

We have the following goals: we first propose a minimal parametric random-matrix model
in the chiral unitary class and conjecture that it captures universal properties of the winding
number and its density. We next aim to calculate the discrete probability distribution of the
winding numbers as well as its first two moments, showing that the width of the winding
number distribution grows as the fourth root of the matrix size. We also wish to compute the
parametric correlation functions for the winding number densities. Furthermore, we discuss
aspects of universality for the two-point function by identifying an unfolding procedure.

The paper is organized as follows: in section 2 we introduce chiral symmetry and the wind-
ing number. Furthermore we set up the random matrix model and define the goals of this
paper. In section 3 we present the main idea of our calculations and our results. More involved
derivations are relegated to section 4. We conclude in section 5.

2. Posing the problem

We consider the chiral unitary symmetry class, labeled AIII in the tenfold way [1, 3–5, 31].
We refer to the matrices in this class as Hamiltonians H, even though they may represent Dirac
operators in the context of QCD. Using the anticommutator {, }, chiral symmetry can formally
be expressed as

{C, H} = 0 (1)

with the chiral operator C. In our case, the matrices H are complex Hermitean with dimension
2N × 2N, and the matrix representation of the chiral operator reads in diagonal form

C =

[
11N 0
0 −11N

]
. (2)

In the same basis a Hamiltonian obeying (1) takes the block off-diagonal form

H =

[
0 K

K† 0

]
, (3)
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where the N × N complex matrix K has no symmetries. The chiral Gaussian unitary ensemble
(chGUE) consists of all these matrices with entries drawn from a Gaussian probability distri-
bution invariant under unitary rotations. Put differently, the matrices K form a complex Ginibre
ensemble [32].

Topological properties can be explored by giving these random matrices a parametric depen-
dence K = K(p) and thus H = H(p), where the real variable p lies on a circle, i.e. p parame-
terizes the one-dimensional manifold S1. The topological invariant associated with this class
of Hamiltonians is the winding number [33, 34]

W =
1

2πi

∫ 2π

0
dp w(p), (4)

where

w(p) =
d

dp
ln det K(p) =

1
det K(p)

d
dp

det K(p) (5)

is the winding number density. It is a standard result in complex analysis that the winding
number is an integer, W ∈ Z, whenever det K is a nonzero analytic function of p.

Tight-binding models with a sublattice symmetry are a widely studied family of Hamilto-
nians, that belongs to class AIII when time-reversal symmetry is broken. If the tight-binding
model is periodic in one dimension, then its Bloch Hamiltonian H is chiral with dimension
equal to the number of lattice sites per unit cell, and it depends periodically on the Bloch
momentum p. Arguably, when the unit cell is complex, the winding number and winding num-
ber density can be expected to appear random, with universal statistical properties. Although
such behaviour has not yet been demonstrated in the chiral symmetry classes, analogous results
have been derived in the unitary (A) class [26, 27, 30]. Working under the universality hypoth-
esis, our present aim is to define a parametric random matrix model that captures the universal
statistics of w and W.

To set up a concrete random matrix model for the chiral Hamiltonians, we note that in a
general basis, the scale of change of the matrix elements of K as a function of p should be of
order one. However, when N is large the level spacing is of O(N−1/2), and energy levels lose
correlations after a perturbation comparable to the level spacing, so that we expect that the
spectral correlation length is also of O(N−1/2); this estimate is expected to hold in particular
for the gap between the smallest positive and largest negative energy levels of H, and therefore
for w.

This arguments, that justifies the universality hypothesis in the random matrix setting,
implies that we can study the winding number (density) universal distribution using the sim-
plest generic models. We therefore choose the parametric dependence in the explicit form4

K(p) = K1 cos p+ K2 sin p, (6)

where now the matrices K1 and K2 are N × N dimensional complex matrices with indepen-
dently Gaussian distributed elements, just like K in (3). Hence, the sets of matrices K1 and
K2 form independent Ginibre ensembles. We denote an average over this combined ensemble

4 Note that our random matrix model may be viewed as chiral version of the model proposed in [28] to study statistics
of Chern numbers in the unitary class, and justified in a similar manner.
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with angular brackets. The associated Hamiltonians

H(p) = H1 cos p+ H2 sin p with Hm =

[
0 Km

K†
m 0

]
, m = 1, 2, (7)

may thus be viewed as a defining a parametric combination of two chGUE’s. We also refer to
H = H(p) as a random matrix field.

We calculate the k-point correlation function of winding number densities as a random
matrix ensemble average,

Ck(p1, . . . , pk) = 〈w(p1) . . . w(pk)〉 . (8)

The precise meaning of the angular brackets indicating the ensemble average will be given
in the sequel. The arguments pi, i = 1, . . . , k with pi ∈ [0, 2π) are the different points on the
parameter manifold. Furthermore, we compute the distribution of winding numbers P(W ). An
exact expression for its moments

〈
Wk
〉
=
∑
W∈Z

WkP(W) =
1

(2πi)k

∫ 2π

0
dp1 . . .

∫ 2π

0
dpk Ck(p1, . . . , pk) (9)

is given in terms of the k-point correlation function.

3. Concepts and results

In section 3.1 we sketch the strategy for our calculation of the k-point correlation function, the
details of the derivations are collected in section 4. Quite remarkably, we arrive at closed-form
results for arbitrary k and particularly simple expressions for k = 1 and k = 2. In section 3.2, we
discuss aspects of universality and unfold the parametric dependence of the two-point function.
We conjecture the resulting limit to be universal. The winding number distribution and its
moments are addressed in section 3.3.

3.1. Expressions and results for the k-point correlation function

For the specific form of our random matrix field (6), noting that det K1 �= 0 with probability 1,
we can evaluate the logarithm appearing in equation (5) as

ln det K(p) = ln det K1 + N ln sin p+ ln det
(
cot p+ K−1

1 K2
)

= ln det K1 + N ln sin p+
N∑

n=1

ln (cot p+ zn) , (10)

where zn, n = 1, . . . , N are the complex eigenvalues of the matrix K−1
1 K2, we also use

z = (z1, . . . , zN). Taking the derivative yields the (unaveraged) winding number density

w(p) = N cot p− 1

sin2 p

N∑
n=1

1
cot p+ zn

. (11)
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Here and below, intermediate singularities at p = 0, π cancel to yield analytic correlations func-
tions for all values of p. The matrices K−1

1 K2 form a so-called spherical ensemble [35]. The
corresponding joint eigenvalue density is known,

G(z) = G(z1, . . . , zN) =
1

cNπN
|ΔN(z)|2

N∏
n=1

1

(1 + |zn|2)N+1

cN = N!

N∏
n=1

B(n, N − n + 1), (12)

where B(n, m) is the Euler beta function [36] and

ΔN(z) =
∏

1�n<m�N

(zn − zm) = det
[
zm−1

n

]
n,m=1,...,N

, (13)

is the Vandermonde determinant. With the volume element over the combined N complex
planes

d[z] =
N∏

i=1

d[zn] where d[zn] = dRe zn dIm zn, (14)

we eventually arrive at a precise definition for the ensemble average of a function
F(z) = F(z1, . . . , zN) as

〈F(z)〉 =
∫

d[z]G(z)F(z)

=

∫
d[z1] . . .

∫
d[zN] G(z1, . . . , zN) F(z1, . . . , zN). (15)

In particular, for equation (8), we find that

Ck(p1, . . . , pk) =
∫

d[z] G(z)w(p1) . . . w(pk) (16)

is the integral we have to compute. For convenience, we suppress the z dependence in the
argument of the function w(p).

To proceed with the calculation of the integral (16), we observe that the winding number
density w(p) according to equation (11) features a term independent of the eigenvalues zn. We
subtract this term by defining

y(p) = w(p) − Nq = − 1
sin2 p

N∑
n=1

1
q + zn

(17)

q = cot p.

and calculate the correlation functions

〈y(p1) . . . y(pk)〉 = (−1)k∏k
i=1 sin2 pi

〈
k∏

i=1

N∑
n=1

1
qi + zn

〉
(18)
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from which the correlation functions (8) can always be reconstructed. Expanding the k fold
product over the w(pi) = y(pi) + Nqi, we arrive at

Ck (p1, . . . , pk) =
k∑

i=0

∑
ω∈Sk

Nk−i

i!(k − i)!

(
k−i∏
l=1

qω(l)

)〈
k∏

l=k−i+1

y
(

pω(l)
)〉

. (19)

The second sum runs over all elements ω(l) in the permutation group Sk of k objects. It enters
the formula, because the correlation functions (18) appear in all orders i up to k, comprising
different subsets of {p1, . . . , pk} with cardinality i. Thus, the k-point correlation function Ck

can be determined from all lower order correlation functions (18).
Performing the product, the average (18) becomes a complicated sum of terms. In some

of them, only one of the eigenvalues zn appears, these are the disconnected parts of the aver-
age to be performed. All other terms contain at least two different eigenvalues and may thus
be referred to as connected. However, in section 4 we will rewrite the ensemble average in
equation (18) in such a way that all terms can be obtained from the average of the N-point
completely connected average

〈
N∏

n=1

1
qn + zn

〉
, (20)

which is, due to its very definition as an average, invariant under all permutations of the N
arguments qn, n = 1, . . . , N. Our correlation functions, however, only depend on k of those
arguments qn, i = 1, . . . , k where we assume k � N. We find the proper k-point connected
average by taking the limit

〈
k∏

n=1

1
qn + zn

〉
= lim

qk+1,...,qN→∞

(
N∏

m=k+1

qm

)〈
N∏

n=1

1
qn + zn

〉
, (21)

over the N − k excess variables qi, i = (k + 1), . . . , N. For this N-point connected average (20)
we derive in section 4 the result〈

N∏
n=1

1
qn + zn

〉
=

1
cNπN

∑
ω∈SN

det
[
Lnmω(n)(qω(n))

]
n,m=1,...,N

(22)

with the function

Lnml(ql) =
(−1)m−n π

qm−n+1
l

B(m, N − m + 1)

{
um(N, q2

l ) m � n

−vm(N, q2
l ) m < n

. (23)

The functions um(N, q2
l ) and vm(N, q2

l ) are given by

um(N, q2
l ) =

2
B(m, N − m + 1)

∫ ql

0
dρ

ρ2m−1

(1 + ρ2)N+1

vm(N, q2
l ) =

2
B(m, N − m + 1)

∫ ∞

ql

dρ
ρ2m−1

(1 + ρ2)N+1
(24)
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and may be viewed as normalized incomplete beta functions with the property

um(N, q2
l ) + vm(N, q2

l ) = 1. (25)

We will come across these functions also in the distribution of the winding number to be dis-
cussed in section 3.3. Taking the limit (21), the result (22) yields the k-point connected average,

〈
k∏

n=1

1
qn + zn

〉
=

1
cNπk

∑
ω∈SN

(
N∏

l=k+1

B(ω(l), N − ω(l) + 1)

)

× det
[
Lω(m)ω(n)n(qn)

]
n,m=1,...,k

(26)

which is a k × k determinant, as derived in section 4.
From the general formulae (19) and (26), we obtain in section 4 for the first two correlation

functions

C1(p1) = 0

C2(p1, p2) = −1 − cos2N (p1 − p2)
1 − cos2 (p1 − p2)

. (27)

We notice that the two-point function depends only on the distance between the points p1 and p2
on the parameter manifold, which is a consequence of the translation invariance of our random
matrix field (6). It turns out that for all k one of the parameters can be set to zero (or any other
arbitrary point) without losing any information.

3.2. Universality aspects and unfolding of the two-point function

The power of random matrix theory lies in the universality of its statistical predictions in the
limit where the matrix dimensions tend to infinity. When spectral properties of a single matrix
are studied, the universal statistics emerge when energy levels are measured on the the local
scale of the mean level spacingΔ for all probability densities of the random matrices that do not
have scales competing with the mean level spacing [7, 8]. The required rescaling procedure is
referred to as unfolding. When parameter-dependent matrix ensembles are studied universality
is obtained if energies are still unfolded on the scale of Δ, and the parameter(s) are unfolded
using the typical scale in parameter space [30]

s =
Δ√〈∑

i

(
∂Em(pi)/∂pi

)2
〉 (28)

Inspired by these results, we search for universal regimes in our correlation functions. To
this end, we rescale the parameters pi appearing as arguments in the correlation functions Ck

with a positive power of N according to

ψi = Nαpi. (29)

We consider positive powers because we want to zoom into the parametric dependence to
observe it on a proper local scale in the limit N →∞. Naturally, all physics systems that we
want to compare with our random matrix theory should be considered on the same scale.

8
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We turn to the two-point function (27). In the limit of large N the rescaled argumentsψi/Nα

become small, allowing us to expand the cosines. We find

lim
N→∞

C2

(
ψ1

Nα
,
ψ2

Nα

)
dψ1

Nα

dψ2

Nα
= f (α)

2 (ψ1,ψ2)dψ1dψ2 (30)

with the function

f (α)
2 (ψ1,ψ2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− 1

(ψ1 − ψ2)2 α <
1
2

−1 − exp(−(ψ1 − ψ2)2)

(ψ1 − ψ2)2 α =
1
2

0 α >
1
2

. (31)

The case p1 = p2 or ψ1 = ψ2, respectively, is subject to interpretation. As obvious from
equation (27), we have C2(p1, p1) = −1. Hence, we must assume that the arguments are not
equal, ψ1 �= ψ2, when taking the limit for arbitrary α.

We observe different regimes in the result (31). Since
(
∂Em(pi)/∂pi

)2
= 1 in our model,

as can be shown following [30], the regime with α = 1/2 amounts to an unfolding p with the
typical parameter scale s discovered in the works on parametric level correlations [26, 27]. In
figure 3.2 we display our result for two choices of α and various values of N. As seen, the
unfolded two-point function approaches the limit (31) when N increases. We conjecture that
the function f (α)

2 (ψ1,ψ2) is universal (figure 1).

3.3. Winding number distribution

For the discussion to follow, it is useful to cast the random matrix field (6) into an equivalent,
but different form. Introducing s = eip as complex variable on the unit circle, we have

K(s) =
s
2

(K1 − iK2) +
1
2s

(K1 + iK2). (32)

For the determinant we have

det K(s) =
1

(2s)N
det(K1 + iK2 + s2(K1 − iK2))

=
det(K1 − iK2)

(2s)N

N∏
n=1

(
s2 + z′n

)
, (33)

where the z′n are the solution of the generalized eigenvalue problem

(K1 + iK2)vn = z′n (K1 − iK2) vn (34)

9
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Figure 1. Unfolded two-point function after the rescaling (29) for different values of
N (blue). In (a) we used N = 5, 10, 20, 50, 100, 150, 200, 300, 1000 and α = 1/6, in
(b) N = 2, 5, 7, 10, 15, 20, 50, 100 and α = 1/2. For comparison the limit (30) (red).

with eigenvectors vn. The matrices K1 ± iK2 are again Ginibre matrices, implying that the
probability distribution of the z′n is the one of the spherical ensemble (12). In the sequel, we
thus always write zn. The winding number in terms of equation (32) is

W =
1

2πi

∮
|s|=1

ds
1

det K(s)
d
ds

det K(s) =
1

2πi

∮
|s|=1

ds
d
ds

ln det K(s). (35)

Obviously, det(K1 − iK2) drops out in the integrand. The contour integral yields the difference
of zeros and poles of det K(s) inside the unit circle. From equation (33) we infer that it has a
pole of order N at zero and that its zeros come in pairs, making their number even. Let m be
the number of solutions of equation (34) that lie inside the unit circle, then

W = 2m − N (36)

is the winding number. The number m takes values from 0 to N, thus the winding number
lies between −N and N. The probability that m eigenvalues are inside the unit circle and the

10
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Figure 2. Examples for paths on a 3 × 4 lattice. Paths a and b both have the multiindex
(2, 1, 0, 0) and are thus equivalent up to permutations in i. Path c = (1, 1, 1, 0) is the
completely connected path along the angle bisector of the lattice. Path d = (0, 0, 2, 1) is
equal to path b as the integration variables zn are permutation invariant.

remaining ones outside is

r(m) =
∫

|z1|<1

d[z1] . . .
∫

|zm|<1

d[zm]
∫

|zm+1|>1

d[zm+1] . . .
∫

|zN |>1

d[zN] G(z). (37)

In section 4 we show that

r(m) =
1

N!

∑
ω∈SN

(
m∏

i=1

uω(i)(N, 1)

)(
N∏

i=m+1

vω(i)(N, 1)

)
, (38)

where the expressions ui(N, 1) and vi(N, 1) follow from the functions equation (24). Taking
into account the permutation invariance of the eigenvalues inside, respectively outside, the
unit circle and using equation (36) we find the discrete probability distribution

P(W) = r

(
W + N

2

)(
N

(W + N)/2

)
(39)

on the integers W between −N and N as the winding number distribution for arbitrary, finite
matrix dimension N.

Let us now turn to the moments (9) of this distribution. Since the one-point function (27)
vanishes, the mean winding number is zero

〈W〉 = 0. (40)

To arrive at a closed form for k = 2 we calculate, instead of directly applying the definition (9),
the difference in the winding number variance of systems with (N + 1) × (N + 1) and N × N
dimensional chiral subblocks. The second moment is given by

〈
W2
〉∣∣

N
= − 1

4π2

∫ 2π

0
dp1dp2 C2(p1, p2) =

1
2π

∫ 2π

0
dϕ

1 − cos2N ϕ

1 − cos2 ϕ
, (41)

11
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where we indicate the N dependence. For the difference we find

〈
W2
〉∣∣

(N+1)
−
〈
W2
〉∣∣

N
=

1
2π

∫ 2π

0
dϕ cos2N ϕ

=
(2N − 1)!!

(2N)!!
=

(2N + 1)!!
(2N)!!

− (2N − 1)!!
(2N − 2)!!

, (42)

and with
〈
W2
〉
|1 = 1 we obtain

〈
W2
〉
=

(2N − 1)!!
(2N − 2)!!


 2

√
N
π
. (43)

The last expression holds for large N. Hence, the second moment grows with
√

N not with N.
The results (40) and (43) suggests to look at the distribution of P(W ) as a function of W2/

√
N

for large N. Numerically, we find that it is well described by

P(W)
P(0)

= exp

(
−1

4

√
π

N
W2

)
, (44)

i.e. by a Gaussian distribution. Together with (43) it follows that winding number distribution
for large N can be modeled as the sum of

√
N independent random variables.

4. Derivations

In section 4.1 we reformulate the quantity to be ensemble averaged in the k-point correla-
tion function (18). We calculate the N-point and the k-point connected ensemble averages in
sections 4.2 and 4.3, respectively. The explicit expressions for the one and two-point functions
are worked out in section 4.4. In section 4.5 we compute the probability (37) appearing in the
discrete winding number distribution (39).

4.1. Reformulation of the key expression to be ensemble averaged

To perform the calculation of the correlation function (18), it is helpful to rewrite the expression
to be ensemble averaged, namely〈

k∏
i=1

N∑
n=1

1
qi + zn

〉
, (45)

by pulling out, pictorially speaking, the sums from the angular brackets, i.e. to cast the average
(45) into a sum of terms containing only products to be averaged. This requires some work.
We use the permutation invariance of the distribution (12) and think of the product of sums as
a k × N lattice. Let the rows be labelled by i = 1, . . . , k and the columns by n = 1, . . . , N. As
depicted in figure 2 for some examples, each term in the product is a path through the lattice,
obeying the following rules:

• Each row is visited once and only once. This amounts to each qi appearing only once in
each of the terms.

• Two paths are considered equal if they visit the same lattice points, irrespective of the
order. The points on the lattice are coupled via multiplication, which is commutative.

12
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To each path we assign a multiindex l = (l1, . . . , lN) ∈ NN
0 of length |l| =

∑N
n=1 ln = k. It

describes how many times ln the path has visited the nth column and therefore how many
factors including zn appear in the associated term. However, this mapping is not unique. There
are in total (

k
l

)
=

k!
l1! . . . lN!

(46)

paths sharing the same l. In the matrix average these terms are equal up to permutations in the
qi. We take care of this by setting qi → qω(i) and summing over all permutations

〈
k∏

i=1

N∑
n=1

1
qi + zn

〉
=

1
k!

∑
ω∈Sk

∑
|l|=k

〈
k∏

i=1

1
qω(i) + zgl(i)

〉
. (47)

Here, we introduce the step function

gl(i) = 1 +

N∑
n=1

Θ

⎛
⎝i −

n∑
j=1

l j

⎞
⎠ , with Θ(0) = 0, (48)

employing the Heaviside unit step function Θ, to select the correct variables zn for the inte-
gration of the corresponding product. We distinguish between different types of paths. In the
disconnected paths only one zn appears, which amounts to ln = k for one n and ln = 0 for
all other n. We refer to all other paths as connected. Out of the connected paths the ones
with ln ∈ {0, 1}, where each zn may appear only once, stand out. To these paths we refer as
completely connected and their contributions may be evaluated via equation (21).

Next we consider the permutation invariance of the zn. Let hl(i) be the function that tallies
up the number of integers i appearing in l. There are

N!∏k
i=1 hl(i)!

(49)

possible ways to permute the zn without changing the ensemble average. We choose the ordered
multiindex l with l1 � . . . � lN as a representative for all of these paths. On the k × N lattice,
this amounts to paths below the angle bisector. We thus finally arrive at

〈
k∏

i=1

N∑
n=1

1
qi + zn

〉
=

1
k!

∑
ω∈Sk

∑
l1�...�lN
|l|=k

(
k
l

)
N!∏k

i=1 hl(i)!

〈
k∏

i=1

1
qω(i) + zgl(i)

〉
.

(50)

Indeed, this is a sum over ensemble averages of products only. Generally, any zn may appear l
times. To handle this, we use the partial fraction expansion

l∏
i=1

1
qi + zn

=

l∑
i=1

1∏
j�=i (q j − qi)

1
qi + zn

, (51)

which reduces the corresponding averages to a sum of completely connected averages. Thus,
the resulting expression can again be treated with equation (21).

13



J. Phys. A: Math. Theor. 55 (2022) 224011 P Braun et al

4.2. Calculation of the N-point connected ensemble average

As already pointed out in section 3.1, all connected k-point ensemble averages can be, via
proper limits, obtained from the connected N-point average〈

N∏
n=1

1
qn + zn

〉
=

∫
d[z] G(z)

N∏
n=1

1
qn + zn

, (52)

where G(z) is the joint probability density (12) of the spherical ensemble. We use

|ΔN(z)|2 = ΔN(z)Δ∗
N(z) = ΔN(z)ΔN(z∗) (53)

and expand the Vandermonde determinant ΔN(z) in the Laplace form. This yields〈
N∏

n=1

1
qn + zn

〉
=

1
cNπN

∑
ω∈SN

sgn ω

∫
d[z]ΔN(z∗)

N∏
n=1

zω(n)−1
n(

1 + |zn|2
)N+1

(qn + zn)

=
1

cNπN

∑
ω∈SN

∫
d[z]ΔN(z∗)

N∏
n=1

zn−1
n(

1 + |zn|2
)N+1 (

qω(n) + zn

) ,

(54)

where the second equation follows from renaming the integration variables zn → zω(n) for
each permutation ω ∈ SN . The sign sgnω of the permutation ω is canceled by the same
sign appearing inΔN(z∗) when changing the integration variables. Inserting the remaining Van-
dermonde determinant and integrating row by row we obtain equation (22) with the function

Lnml(q) =
∫

d[zn]

(
z∗n
)m−1

zn−1
n(

1 + |zn|2
)N+1

(ql + zn)

=

∫ ∞

0
dρn

ρm+n−1
n

(1 + ρ2
n)N+1

∫ 2π

0
dϑn

ei(n−m)ϑn

ql + ρneiϑn
, (55)

where we employ polar coordinates zn = ρneiϑn in the second equation. The angular integral
yields, by virtue of the residue theorem,

∫ 2π

0
dϑn

ei(n−m)ϑn

ql + ρneiϑn
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2π
ql

(
−ρn

ql

)m−n

m � n, ρn < ql

2π
ρn

(
−ρn

ql

)m−n+1

m < n, ρn > ql

0 else

. (56)

Thus we arrive at equation (23).

4.3. Reduction to the k-point connected ensemble average

To take the limit (21) we need as an intermediate result a proper limit involving the function
Lnml(ql). As the limit ql →∞ of the incomplete beta functions (24) gives either unity or zero,

14
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the total limit is only non-vanishing if m = n,

lim
ql→∞

qlLnml(ql) =

{
πB(m, N − m + 1) m = n

0 m �= n
. (57)

We apply this result to reduce the k-point connected average, which is, according to
equations (21) and (22), a limit of an N × N determinant. The limit makes all elements in
the ω−1(n)th row vanish except the diagonal element, which is πB(ω−1(n), N − ω−1(n) + 1).
We expand the determinant in these elements

〈
k∏

n=1

1
qn + zn

〉
=

1
cNπk

∑
ω∈SN

(
N∏

l=k+1

B(ω−1(l), N − ω−1(l) + 1)

)

× det
[
Lnmω(n)(qω(n))

]n,m�=ω−1(l),l=k+1,...,N

n,m=1,...,N
. (58)

Interchanging row n with row ω−1(n) and column m with column ω−1(m) yields for the right-
hand side

1
cNπk

∑
ω∈SN

(
N∏

l=k+1

B(ω−1(l), N − ω−1(l) + 1)

)
det
[
Lω−1(n)ω−1(m)n(qn)

]
n,m=1,...,k

=
1

cNπk

∑
ω∈SN

(
N∏

l=k+1

B(ω(l), N − ω(l) + 1)

)

× det
[
Lω(n)ω(m)n(qn)

]
n,m=1,...,k

. (59)

We also used that the order in the sum over the permutations ω is invariant due to the group
property of SN . Thus, we arrive at the result (26).

4.4. Explicit expressions for the one and two-point correlation functions

For k = 1 there are no connected terms. According to equations (19) and (50) the one-point
function is given by

C1(p1) = 〈y(p1)〉+ Nq1 = − N

sin2 p1

〈
1

q1 + z1

〉
+ Nq1. (60)

The average follows from equation (26),

〈
1

q1 + z1

〉
=

1
Nq1

N∑
n=1

un(N, q2
1). (61)

The incomplete beta functions (24) may be rewritten using integration by parts, we find

vm(N, q2
1) =

m−1∑
l=0

(
N − 1 − l
m − 1 − l

)
(q2

1)m−l−1

(1 + q2
1)N−l

. (62)
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Using the property (25) the sum in equation (61) can be evaluated by means of the binomial
theorem, implying

〈
1

q1 + z1

〉
=

1
q1

− 1
q1(1 + q2

1)
= sin p1 cos p1. (63)

In the last step we reinserted q1 = cot p1. Altogether we arrive at the first of the results (27).
For k = 2 we apply formulae (19) and (50) and use the vanishing of the one-point function

C2(p1, p2) = 〈y(p1)y(p2)〉 − N2q1q2

=
1

sin2 p1 sin2 p2

〈
2∏

i=1

N∑
n=1

1
qi + zn

〉
− N2q1q2. (64)

With equation (50) we find

〈
2∏

i=1

N∑
n=1

1
qi + zn

〉
= N

〈
1

q1 + z1

1
q2 + z1

〉
+ N(N − 1)

〈
1

q1 + z1

1
q2 + z2

〉
.

(65)

The connected average is given by (26) and reads

〈
1

q1 + z1

1
q2 + z2

〉
=

1
N(N − 1)

1
q1q2

⎛
⎜⎜⎝

N∑
n,m=1
n �=m

un(N, q2
1)um(N, q2

2)

+

N∑
n,m=1
n>m

(
q2

q1

)n−m

un(N, q2
1)vm(N, q2

2)

+

(
q1

q2

)n−m

vn(N, q2
1)um(N, q2

2)

⎞
⎟⎟⎠ (66)

This expression is readily simplified by using the translation invariance on the parameter
manifold. We set p2 = π/2 which amounts to q2 = 0 and find

〈
1

q1 + z1

1
z2

〉
=

1
N(N − 1)

1
q2

1

N∑
n=2

un(N, q2
1)

=
1

(N − 1)q2
1

(
1 − 1

1 + q2
1

+
1

N(1 + q2
1)N

− 1
N

)
. (67)
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For the disconnected average we employ the partial fraction expansion (51) and equation (63),〈
1

q1 + z1

1
z1

〉
= − 1

q1

(〈
1

q1 + z1

〉
−
〈

1
z1

〉)
= − 1

1 + q2
1

. (68)

Reinserting q1 = cot p1 yields

C2

(
p1,

π

2

)
= −1 − cos2N p1

1 − cos2 p1
(69)

or, equivalently, the second of the results (27).

4.5. Calculation of the probability r(m)

For the discrete winding number distribution (39) we need to compute the probability (37). The
calculation is similar to the one in section 4.2. Inserting the probability density (12), treating the
Vandermonde determinants as in section 4.2 and renaming the integration variables zn → zω(n),
we have

r(m) =
1

cNπN

∑
ω∈SN

sgn ω

∫
|zω(1)|<1

d[z1] . . .
∫

|zω(m)|<1

d[zm]

×
∫

|zω(m+1)|>1

d[zm+1] . . .
∫

|zω(N)|>1

d[zN]
N∏

n=1

zn−1
n (z∗n)ω(n)−1

(1 + |zn|2)N+1
. (70)

With polar coordinates zn = ρneiϑn we find Kronecker deltas for the angular integrals,∫ 2π

0
dϑnei(n−ω(n))ϑn = 2πδnω(n). (71)

Thus, only the unit permutation ω = 11 contributes. The radial integrals are given by the
functions (24) for ql = 1. Altogether we arrive at formula (38).

5. Conclusions

We studied the winding number in a model of parameter dependent chiral random matrices.
This seems to be the first time that statistical topology for a chiral symmetry class has been
studied in such a schematic model. Apart form the conceptual importance, the winding number
has concrete physics interpretations, for example, as the topological index belonging to gapped
phases of fermions. We found that the joint probability density of the complex eigenvalues
in our model coincides with that of the spherical ensemble which is known in the literature.
We used it to address the new questions of statistical topology, we analytically calculated the
discrete probability distribution of the winding numbers, as well as the parametric correla-
tions functions of the winding number density. We derived a closed formula for the former
and arrived for the latter at explicit determinant expressions for certain correlation functions
of arbitrary order which allow for a construction of the winding number density correlations
functions. We constructed the one and two-point functions. All our results involve incomplete
Beta functions which are fairly simple.

As random matrix theory is widely known to provide universal results for spectral statistics
and certain parametric statistics, we are confident that our results hold universal information
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as well. To reveal it, we carried out an unfolding procedure similar to the one in the above
contexts. Remarkably, we found different scaling limits. We expect our results for the unfolded
two-point correlation function to be universal.

Our results, namely the implied universality of the correlation function and the Gaussian
distribution of the topological index, are analogous to the ones obtained numerically in the
case of the adiabatic curvature and the Chern number [29].
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