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Abstract

This dissertation determines the numbers of supersymmetries preserved by the most
general warped flux AdS and flat backgrounds in ITA, T1IB, and heterotic supergravities. A
local analysis determines that AdS, X. M'~" backgrounds preserve N = ol ]k super-
symmetries for n <4 and N = ol3]+1g supersymmetries for 4 < n. Another local analysis
demonstrates that R"" ™" x,, M0~ backgrounds preserve N = ol g supersymmetries for
2<n<4, N= QL%HJk supersymmetries for 4 < n < 8, and Nolz] k for n =9, 10.

The global analyses show that, with appropriate restrictions, each AdS, X M*°~™ back-
ground satisfies a Lichnerowicz-type theorem, which generalizes the original Lichnerowicz
theorem and proves that the Killing spinors are exactly the zero modes of a Dirac-like
operator on M10~",

Finally, this dissertation includes a non-existence theorem for smooth AdSs backgrounds,
in 10- or 11-dimensional supergravities, with connected, compact without boundary trans-
verse spaces, that preserve exactly 24 supersymmetries. Any such IIB backgrounds which
preserve at least 24 supersymmetries are shown to be locally isometric to AdSs x S°, and

any such backgrounds in ITA or 11-dimensional supergravity are shown not to exist.
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Chapter 1

Introduction

Supersymmetry has long been of interest as one way that the Poincaré algebra can be extended,
bypassing the Coleman-Mandula theorem. This theorem states that, under certain assump-
tions, all internal symmetries must commute with the translation and Lorentz symmetries. A
supersymmetry algebra, or superalgebra, violates those assumptions by including fermionic sym-
metries, which are related to bosonic symmetries by anti-commutation relations [1]. On its own,
supersymmetry is promising as a possible extension to the Standard Model, and it is possible
that experiments at the Large Hadron Collider will discover superpartners to Standard Model
particles in the next few years. For string theory, supersymmetry is a critical component, as
superstring theory allows for the fermionic states that bosonic string theory lacks [2].

Theories with both supersymmetry and gravity, in the form of general relativity, are particu-
larly interesting. Because general relativity involves gauged Poincaré symmetry and supersymme-
try interacts with Poincaré symmetry non-trivially, the combination implies that supersymmetry
must be gauged as well. Because supersymmetry transformations are generated by spinors, the
gauge field for supersymmetry is spin—%, and is part of the same supermultiplet as the spin-2
graviton. This particle is called the ”gravitino”. In fact, any theory of gauged supersymmetry is
necessarily a supergravity theory for the same reason, if supersymmetry is gauged, the Poincaré
symmetry must be gauged as well, which implies gravity.

Supergravity also naturally arises as the low-energy limit of string theory. In particular, the
spectrum of string modes can be shown to include a massless spin-2 particle, a graviton, and so
the low energy limit of string theory includes gravity. If the string theory is supersymmetric, then
the resulting field theory is as well, leading to supergravity. It can be shown that a superstring
theory must be exactly 10-dimensional to be quantum-mechanically consistent, as only in 10
dimensions do the anomalies cancel out. There are five 10-dimensional string theories, type I,
types ITA and IIB, and heterotic SO(32) and Eg x Eg, and each of these yields a different 10-
dimensional supergravity. If these theories are accurate, then our 4-dimensional physics must be

the result of Kaluza-Klein dimensional reduction on some compact space. Anti-de Sitter (AdS)



spaces have been used in this context for many years [3, 4].

11-dimensional supergravity, on the other hand, is something of a special case. From a su-
persymmetry perspective, any space larger than 11 dimensions results in every supermultiplet
containing a particle of spin-g or greater. Moreover, there is exactly one 11-dimensional super-
gravity theory [5]. It even turns out that this theory is closely related to string theory, despite
all superstring theories being 10-dimensional. It was discovered that all of the string theories
and supergravities are related to one another by a variety of dualities, and that ITA supergravity
in particular is precisely the Kaluza-Klein dimensional reduction of 11-dimensional supergravity
with all higher-order modes omitted. This leads to the idea of 11-dimensional M-theory, which
unifies all of these. Like string theory, M-theory involves extended objects, but these objects are
only M2-branes and M5-branes, with no fundamental strings. 11-dimensional supergravity turns
out to be precisely the low energy limit of M-theory.

In addition to dimensional reduction, AdS supergravity backgrounds have more recently
been of interest because of the AdS/CFT correspondence, which relates each AdS background
to a dual conformal field theory (CFT) of one less dimension. The maximally supersymmetric
AdSs x M? background in IIB supergravity, for example, is dual to maximally supersymmetric
four-dimensional conformal field theory [6, 7]. In general, the SO(2,n — 1) isometry group of
AdS,, corresponds exactly to the conformal group of an (n—1)-dimensional conformal field theory,
and the supersymmetries of an AdS,, background similarly correspond to the supersymmetries
of the dual conformal field theory.

Although many supersymmetric AdS backgrounds have been investigated since then, most
efforts focus on specific backgrounds or classes of backgrounds, without attempting to understand
AdS backgrounds more generally. In fact, it is not known what superalgebras many of these back-
grounds preserve. The work in this dissertation puts such configurations in a broader context,
giving information about the numbers of supersymmetries certain backgrounds can preserve, as
well as new results regarding the forms of the Killing spinors.

There are some previous results which investigate questions similar to those in this dissertation
for other types of backgrounds. It has been proven that near-horizon backgrounds preserve an
even number of supersymmetries, and Lichnerowicz-type theorems have been proven for ITA
horizons [8, 9], IIB horizons [10, 11], and 11-dimensional horizons [12]. Additionally, similar
supersymmetry counting results and Lichnerowicz-type theorems have been found and proven
for M-theory AdS backgrounds [13].

1.1 Main Results

This dissertation is based on work which has been published in several papers. [14] examines the
allowed supersymmetry fractions of IIB backgrounds, and proves a Lichnerowicz-type theorem
for each AdS background. [15] uses similar methods to examine ITA backgrounds, and [16]

examines heterotic backgrounds, with and without a closed three-form field strength. Finally,



[17] specifically examines AdS; backgrounds which preserve at least 24 supersymmetries, showing
that those that exist are locally isometric to maximally supersymmetric backgrounds.

Chapters 5, 4, and 3 focus on heterotic backgrounds, ITA backgrounds, and IIB backgrounds,
respectively. For each of these backgrounds, a local analysis has been performed which demon-
strates supersymmetry enhancement, as well as a Lichnerowicz-type theorem which proves that
the Killing spinors of these backgrounds are exactly the zero-modes of a Dirac-like operator.

Each of these analyses depends crucially on the fact that each background is assumed to
be invariant under all of the AdS isometries. This severely restricts the forms that the bosonic
fields can take, and simplifies the Killing spinor equations. In fact, the AdS-direction gravitino
Killing spinor equations are found to be completely integrable in all cases, aside from a single
integrability condition, which behaves like an additional algebraic Killing spinor equation on the
transverse space. With the problem reduced to the transverse space, supersymmetry enhance-
ment is discovered by finding Clifford-algebra operators which commute with the transverse
Killing spinor equations, such that the image of one Killing spinor under these operators is a
different, linearly-independent Killing spinor.

The Lichnerowicz-type theorems are proven by assuming that an arbitrary spinor, x, is a
zero-mode of a Dirac-like operator constructed from the transverse Killing spinor equations.
Through significant Clifford algebra computations, we can determine that the Laplacian of the
length of y, V2||x||?, is equal to a positive-definite combination of the Killing spinor equations.
With the additional assumption that the transverse space is compact, or at least that it satisfies
the conditions of the Hopf maximum principle, we can then conclude that the length of y is
constant and the x is Killing.

Finally, in chapter 6, a proof is presented demonstrating that AdSs x,, MP~5 backgrounds
cannot preserve exactly N = 24 supersymmetries if MP~5 is compact. For 11-dimensional and
ITA backgrounds, this proves that such spaces cannot be more than %—BPS. For IIB backgrounds,
it proves that any such space which is more than %—BPS is in fact maximally supersymmetric,
and is locally isomorphic to AdSs x S°.



Chapter 2

AdS Backgrounds

2.1 AdS Geometry

An anti-de Sitter space, AdS,,, is a maximally symmetric spacetime with constant negative
curvature. The spaces which are studied in this dissertation not only include an AdS space, but
also preserve these symmetries. It is important, therefore, to understand the AdS geometry fully.
Much as a sphere, S™, a maximally symmetric space with constant positive curvature, can be
constructed as a subspace of a Euclidean space, R"+1, an anti-de Sitter space can be constructed

n—1

as a subspace of a Minkowski space with two time dimensions, R? . Specifically, the sphere
S™ can be constructed as the locus of points in R™ " which are a constant distance-squared from
the origin, ¢2 = Y (z,)?. Similarly a hyperbolic space, H", a maximally symmetric space with
constant negative curvature, can be constructed as a subspace of a Minkowski spacetime, RY™,
If the metric signature of the Minkowski space is taken to be (—, +,+,...), then H" is the locus
of points with constant time-like distance squared, —¢2 = —t2 + 3" (x,)? < 0. The constructions
of de Sitter space (maximally symmetric spacetime with constant positive curvature) and anti-de
Sitter space are analogous. A de Sitter space, dS,,, can be constructed as the locus of points in
R"™ with constant space-like distance squared, /2 = —t2 4+ 3 (z,)2 > 0, and an anti-de Sitter

,n—1

space, AdS,,, can be constructed as the locus of points in R? with constant time-like distance

squared, —% = —(t1)? — (t2)? + Y (z4)? < 0.

Space | Signature | Curvature | Subspace of defined by

s™ | (++,...) | R>0 R™H 2 =3 (24)2>0

H" | (+,+,...)| R<0 RY" 2= 124+ 3 (24)? <0

s, | (=, +,...)| R>0 RY" 2= 43 (2,)> >0
AdS, | (= +,...)| R<0 R>" —2 = —(11)? — (t2)? + 3 (2a)? < 0

Table 2.1: Properties of the four sphere-like spaces.

10



An AdS,, space can equivalently be identified with the coset space SO(2,n —1)/SO(1,n—1).

To see this, we notice that an SO(1,n — 1) matrix,

leaves the top row of any SO(2,n — 1) matrix unchanged. We can therefore identify an element
of the coset space with the point in R*>" ! corresponding to its the top row of each matrix,
(t1,t2,21,...,2pn—1). Then, because the matrix is orthogonal, these points must satisfy the
condition

t1+15—S(2,)* =1,
which defines an AdS space of radius £ = 1. We can identify this with an AdS space of arbitrary

2,n—

radius by scaling the map into R ! appropriately.
We can determine the AdS metric from the R*™ ™' metric by expressing it in spherical
coordinates,
ds® = —dt] — dt3 + dp® + p*dQ2_, .

We can define the embedding by

t1 = 0\/1r2 + 1cost
ty = 0+v/r2 + 1sint

p=1Lr,
from which we find the metric

(2.1.1)

n—1

1
ds® = 2| —(r® + 1)dt* + ———dr® + r*dS);
ré 41

This spherically symmetric metric is particularly useful because it covers all of AdS space
in one coordinate patch, but the Poincaré patch metric will be more useful for the work in this

dissertation. We can derive this metric from the embedding in RQ’"%,

1 naa

th = 5(62 + 22 4 Sapd 2 — %)
it

t2 = ; )
/

xa:;jjaa a=1, =2,
1 naa

Tpo1 = Z(—W + 22 4 §pi2a? —t2) ,

from which we find the metric,

2_82

ds® = —(—dt? + dz° + Spdada’)
z

11



This is analogous to the Poincaré half-plane model of hyperbolic space, which has metric ds? =
2 (da® + dy?).

To understand the causal structure of an anti-de Sitter space, we want to construct a Penrose
diagram for it. To do so, we will start with the global coordinates metric, (2.1.1), using a new

radial coordinate, z = tan~'(r),

ds® = (% sec®(z) [—dt® + dz® + sin®(2)dQ2_,] .

n—1

Then, since x has finite extent, while ¢ has infinite extent, the Penrose diagram is an infinite
cylinder [18].

t =00
[ ]
[ ]
[ ]
N\ 7/
A 7/
AN . =
N
N I
><
7 N 8
, N
e N\
e N
4 N
[ ]
[ ]
[ ]
t=—0o0

Figure 2.1: A cross-section of the Penrose diagram of AdS,, including the
boundary at r = oo (thick) and two lightlike geodesics (dashed). Note that
the future lightcone of any point reaches r = oo after finite time, and so

t = 00 cannot be shown at finite distance.

2.2 Warped Product Spaces

The anti-de Sitter backgrounds I'll be discussing in this dissertation are warped product spaces,
AdS,, X, MP~" which preserve the SO(2,n — 1) isometry group of AdS,,, where D = 10 or 11
is the dimension of the supergravity, and M~ is a transverse space, which is not necessarily
compact. Topologically, one of these spaces is an ordinary product space, AdS, x MP~" but
the metric is modified by a warp factor, A, which is a function of the transverse space, MP~".

The warped product metric is
ds? = A%ds*(AdS,,) + ds*(MP~") . (2.2.1)

We wish to find coordinates for such a warped product space which fit the near-horizon space
of a black hole, because we expect, based on previous results [19, 20, 21, 10, 11, 8, 9, 22, 12], that

12



near-horizon coordinates will be well-suited to studying the supersymmetry properties of these

backgrounds. The near-horizon metric is
1
ds?® = 2du(dr + rh — §r2Adu) +ds*(MP~2) | (2.2.2)

where MP~2 is an arbitrary space which will include n — 2 of the AdS dimensions, and h and A
are a 1-form and a scalar, respectively, on MP~2.

Starting with the Poincaré patch version of the warped product metric,

14

2
ds® = 1422—2(—61%2 +d3* + gpda®dat) + gijdy'dy’

z/l

we introduce a new z-coordinate, defined by Z = fe™*/° so that the metric becomes

ds? = A2/ (—dt? + Spda®da®) + A%d2? + gijdy'dy’ .

Then, if n > 3, we introduce lightcone coordinates 4 = %(xl +1) and 7 = %(xl —t), so that

ds? = A2**/*(2dudi + Sapdada®) + A%dz? + gijdy'dy’ .

Finally, we introduce rescaled lightcone coordinates, u = @ and r = A2e?*/!}, yielding the final

form of the metric,
ds? = Qdu(dr — 207 rdz — 2rdIn A) + A2dz? + A2e?#/ 05 dada® + gijdy'dy’ . (2.2.3)
Comparing this to (2.2.2), we see that it has the same form, with
h=-20"'dz—2dIn A ,

A=0,
ds*(MP=2) = A%dz* + A% dada® + gijdyidyj .

If we're considering an AdS, background, however, there is no z; coordinate. Instead, we

will define v and r as
w=2v20(t - z) ,
1
r=——0A%2""
2v2

so that the metric is
2 L 55,0 i g
ds® = 2du| dr — 2rdln A — Eé r*A™ du | + gi;dy'dy’ . (2.2.4)
Comparing this to (2.2.2), we see that it has the same form, with

h=-2dlnA ,
A=¢2472
ds*(MP~?) = gydy'dy’ .

13



We will also need vielbein forms for each of these spaces. The forms we will use for AdS,

spaces are
et =du,
1
e =dr—2rdlnA — §€_2r2A_2du ,

so that the AdSs metric, (2.2.4), is ds* = 2eTe™ + g;;4'y’. The forms we will use for AdS,

spaces, n > 3, are

et =du,
e =dr—20"'rdz —2rdIn A,
e® = Adz ,

e = Ae*/tdz®

so that the AdS,, metric, (2.2.3), is ds? = 2ete™ + (€%)? + €€’ + g;dy'dy’.

One of the primary advantages of these lightcone vielbein forms is that we can construct
projection operators from the corresponding Gamma matrices, I'y and I'_. Specifically, we can
write any spinor as a unique sum, € = €4 + €_, where I't e = 0.

It will be necessary, for the Lichnerowicz-type theorems, to assume that the transverse spaces
are compact, but this assumption will not be necessary for the other parts of this dissertation.

The fields of these backgrounds are also assumed to be invariant under the Killing vectors of
the AdS space. This restricts the form of each field. Most of the fields of M-theory and heterotic,
ITA, and IIB supergravities are differential forms. A k-form F which is invariant under the AdS
Killing vectors of AdS,, x.,, MP~" will have the form

F=XAdvol(AdS,)+Y , if k>n,
or

F=Y, if k<n,

where X is an (n — k)-form on MP~" and Y is a k-form on MP~".

2.3 AdS/CFT Correspondence

The major motivation for the work in this dissertation is the AdS/CFT correspondence, which
relates string theory on an n + 1-dimensional background to a conformal field theory on the
n-dimensional boundary of that space. The best understood example of this is the AdS5/CFT,
correspondence, which starts with the observation that a IIB supergravity solution consisting of

N D3-branes becomes AdSs x S° in the near-horizon limit.

14



2.3.1 D3 Branes

Consider a IIB supergravity solution consisting of N coincident D3-branes. The Dirac-Born-

Infeld action for these branes is found to be a generalization of the Yang-Mills action, with
coupling constant

g = 279s - (2.3.1)

The metric of this configuration, which preserves the Poincaré symmetry of the four dimen-

sions parallel to the branes and the SO(6) rotational symmetry of the transverse dimensions,

is
ds* = H(r)*%m“,dx“dx” + H(r)%(&jdyidyj , (2.3.2)
where z* are the parallel dimensions, y° are the transverse dimensions, and r is the radial
coordinate defined by r? = y;y'. H(r) is a harmonic function on the transverse coordinates,
4
H(r)=1+ L.
The constant L is determined by the self-dual five-form, given by

F=—H(r)">H'(r)(dz’ A dz' Ada® Ada® Adr + #10(da® A da' Ada® Ada® Adr)) .

By integrating this over a 5-sphere centered on the D3-brane we can determine the net D3-brane
charge, Q = —1—5 L*, and setting it equal to N, we find that

4mgsal?

L* = 47g,No'? . (2.3.3)

The D3-brane metric has two relevant limits, » >> L and r << L. When r >> L, H(r) ~ 1,
and we recover 10-dimensional Minkowski space, R". On the other hand, when r << L,
H(r) ~ f—: If we rewrite the transverse metric in spherical coordinates, d;;dy’dy’ = dr*+r?d§s?,

then the D3-brane metric becomes

o 17 v, L 2 2
ds® = ﬁnwdx“dx +T—2dr + L*dQs” .
Introducing z = LTQ, this finally becomes
L2
ds® = ?(nwdx“dx” +d2?) + L2dO3 (2.3.4)

which we recognize as AdSs x S°, with L as both the AdS radius and the S° radius.

2.3.2 Supergravity Limit

The specific relationship between the string theory on the AdS space and the dual SU(N) Yang-
Mills theory is summarized by the relations (2.3.1) and (2.3.3), which can be rewritten

L4
Gym = 2705 203N = o2 (2.3.5)

The corresponding supergravity background is the limit of this system in which the string

coupling, gs, is small, and the string length, /5 = v/ &’ is small compared to the AdS radius, L,

15



i.e. the limit in which gs — 0 and Z‘—; — 0. On the Yang-Mills side, this is equivalent to the
limit in which ¢2,; — 0, but g%\;N = X\ — co. The great value, then, in studying supergravity
AdS backgrounds in particular, is that they are dual to Yang-Mills theories with large 't Hooft

coupling, which are otherwise typically difficult to analyze.

2.3.3 Dual Fields

We can use Kaluza-Klein dimensional reduction to reduce IIB supergravity to the AdSs di-
rections. For each supergravity field ¢, suppressing the ten-dimensional spacetime indices,
we can write ¢ in terms of spherical harmonics on S°, Yy, 1(Qs5), which satisfy V%SYNE =
—L720(0 4+ 4)Yy 1, as

o0

Y= Z Z Pe,1, (xu’ Z)Yf,fz (Qs) :

(=0 I,
In general, the non-zero components of ¢, ;, with S5 are restricted by the supergravity field
equations, but they will still take this general form.

To understand the CFT duals of these components, we will consider the representations of

SO(6) formed by the spherical harmonics. If S® is embedded in R, then the spherical harmonics
can be written in terms of the R® coordinates as

_ I i1 g
Yoo =05 a0 at

.....

.1
where C;"°

the %-BPS CFT operators O of scaling dimension A = /.

is a traceless symmetric tensor. These form the same representation of SO(6) as

2.3.4 General Dimension

The arguments above cannot be replicated for a general AdS,, supergravity background, but it is
still possible to motivate an AdS,,/CFT,, — 1 correspondence. In specific cases, particularly the
AdS,; x S7 and AdS; x S* M-theory backgrounds, the arguments are similar. More generally,
if we notice that the isometry group of AdS,, is the same as the conformal group of CFT,,_q,
SO(2,n — 1), we can relate AdS fields to CFT operators by their transformations under these

symmetries.
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Chapter 3

IIB Backgrounds

IIB AdS backgrounds have been of particular interest since the original AdS/CFT duality relates
a IIB AdSs x S5 background to a super-Yang Mills theory [6]. Many backgrounds of this type
have been found in the years since [23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Even so, to date there
has been no general analysis of the numbers of supersymmetries these backgrounds preserve.

In this chapter, a local analysis is developed which demonstrates supersymmetry enhancement
for all IIB AdS backgrounds. AdS,, backgrounds are found to always have the same numbers
of supersymmetries as ITA AdS,, backgrounds, N = 2%k supersymmetries for 2 < n < 4 and
N = olzl+1 supersymmetries for 5 < n < 7, where k € Z.

Additionally, a Lichnerowicz-type theorem is proven for each AdS background discussed. The
original Lichnerowicz theorem tells us that, for any space with zero scalar curvature, all of the
zeroes of the Dirac operator are parallel spinors. Similarly, with these theorems we find that all
of the zeroes of a Dirac-like operator constructed from the Killing spinor equations are actually
Killing spinors. In this case, the scalar component of the Einstein equation plays the role of the

flatness condition.

3.1 AdS and near horizon geometries

3.1.1 Warped AdS and flat backgrounds

The warped AdS and flat backgrounds can be written universally as near horizon geometries
[19]. Let F, G and P be the 5-, 3- and 1-form field strengths of IIB supergravity. All AdS
backgrounds can be described in terms of the fields

ds* = 2ete” +ds*(S), F=re"AX+e Ne AY +x5Y ,
G = re"ANL+e"Ae  AD+H, P=¢, (3.1.1)

where we have introduced the frame

1 . ,
et = du, e =dr+rh— QrzAdu, e =eldy’ (3.1.2)
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and
ds*(S) = 6;je'e’ (3.1.3)

is the metric on the horizon spatial section & which is co-dimension 2 submanifold given by
the equations r = v = 0. In addition, the self-duality of F' requires that X = — xg X. The
dependence on the coordinates u and r is explicitly given. A, h, Y are 0-, 1- and 3-forms on S,
respectively, ®, L and H are A-twisted 1-, 2- and 3-forms on S, respectively, and ¢ is a A2-twisted
I-form on S, where ) arises from the pull back of the canonical bundle on the scalar manifold®
SU(1,1)/U(1) on S. Furthermore, the Bianchi identities imply that

X:th—%(CI)/\H'—CT)/\H), L=dy®—iAND+END . (3.1.4)

and so X and L are not independent fields.

Moreover, viewing the backgrounds AdS,, x.,, M9~ as a near horizon geometries, the spatial
horizon sections S are & = H" 2 x,, M'%~" ie warped products of hyperbolic (n-2)-dimensional
space with M'0~". This can be easily seen after the fields are stated explicitly for each case
below.

Although all AdS backgrounds are described by (3.1.1), the field dependence of individual

AdS cases differs. To address this, we shall separately state the fields in each case as follows.

AdSy X, M8
In this case M® = S and the fields become
ds* = 2du(dr +rh — %TQACI’U,) +ds* (M%), F=e"ANe AY +%Y ,
G = et hNe  AN®O+H, P=¢, (3.1.5)
where
h=-2A"'dA=A"1dA, X=L=0, (3.1.6)

Observe that dh = 0.

AdS3 Xw M7

The fields are

ds*> = 2du(dr +rh) 4+ A%dz? +ds*(M7), F=Ae" ANe  AdzAY —xY
G = Ae"ANe AdzAN®P+H, P=¢, (3.1.7)
where
2
h:fzdzszfldA, A=0, X=L=0, (3.1.8)

and ¢ is the radius of AdS.

IThe scalar manifold can also be taken as the fundamental domain of the modular group but we shall not
dwell on this.
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AdS4 Xw ]\46

The field are

ds®> = 2du(dr +rh) + A%(d2? + e*/dx?) + ds*(M7) , F = A%e*/Y et NeT Adz Adz AY + %Y
G = H, P=¢, (3.1.9)
where
h:—%dz—ZA‘ldA, A=0, X=L=0. (3.1.10)
AdS5 X, MP®
The fields are
ds?® = 2du(dr+rh) + A%(d2? + e**/*(dz® + dy?) + ds*(M®), G=H, P=¢,
F o= v[A%/ et ne” AdzAda A dy — dvol (M) ] (3.1.11)
where
h:f%dzfQAfldA, A=0, X=L=0. (3.1.12)
AdSg X M*
The fields are
3
ds® = 2du(dr +rh) + A%(dz + /1) (da®)?) +ds*(M*) , F =0,
G = H, P=¢, ! (3.1.13)
where
h:—%dz—2A*1dA, A=0, X=L=0. (3.1.14)

It should be noted that the warped backgrounds R" "1 %, M= are included in our analysis.
They arise in the limit that the AdS radius £ goes to infinity. This limit is smooth for all our field
configurations presented above. However, some statements that apply for AdS do not extend to
the flat backgrounds. Because of this some care must be taken when adapting the results we

obtain for AdS backgrounds to the limit of infinite radius.

3.1.2 Bianchi identities and field equations

It is clear from the expressions of the fields for the AdS backgrounds in the previous section that
L =X =0and dh =0. As a result, we have

th—é(@AH—@/\H):O, dp® —iAND+END =0 . (3.1.15)
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Furthermore, the remaining Bianchi identities for the backgrounds (3.1.1) are

dugY = éH/\H, dH =iANH —¢NH
d¢ 25ANE, dAN=—iENE,

where A is a U(1) connection of A, see [11] for more details.
The independent field equations of the AdS backgrounds (3.1.1) are

24
L1424
7}/2122ng 172t :07

Vid, —iNi®; — €10, + 3

21
+ = (x8Yije, 000, H25 — 6Y;5,0%)

V Hyij — iN Hyij — W Hyyy — € Hyij 3

1
Vig; — 2N — hig + ( 6%+ H?) =0,

3
th —A—7h2+3Y2—|—8tI>1<I> —|——||H|\2
and

- - 1 _
R¢j+v(ihj)f§hihj+4y + <I>(1 5y — 266&5) — HMWH bite

8 3

2
—‘y—éij( (I’Z(I)Z—Y2—|—||H|2>:O7

:O,

(3.1.16)

(3.1.17)

(3.1.18)

(3.1.19)

(3.1.20)

(3.1.21)

where R is the Ricci tensor of S. There is an additional field equation which is not independent

because they follow from those above. This is

1~ - 1 -,
§V2A — %hlle — §AV"hi + AR =0,

which we state because it is useful in the investigation of the KSEs.

3.1.3 Killing spinor equations

The gravitino and dilatino KSEs of IIB supergravity [33, 34] are

7 7
(VM - iQM + 48FM>6 9%

1
PC*E—Fﬂ@G—O

20
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(3.1.22)

(3.1.23)

(3.1.24)



respectively, where @ is a U(1) connection of A.
These KSEs can be solved for the fields (3.1.1) along the directions u,r. For this first de-
compose € = €4 + e_, where 'y e = 0. Then a direct substitution into the (3.1.23) and (3.1.24)

reveals that the Killing spinor can be expressed as
€+ =¢4, e-=0_+rI_ 0415 o =np +ul'yO_n_, ¢o_=n_, (3.1.25)
where 1 do not depend on both u and r coordinates and
1 i 1 3
=|\-h*t— —H+ — . 1.2
6. (4% 12}’) +(96H 16%)0* (3.1.26)

After some extensive computation using the field equations described in [11], one can show that
the independent KSEs for the backgrounds (3.1.1) are

Vi =0, A®ny =0, (3.1.27)
where
F — v, _EA. 1, 1 -:I:iF _
V’L - vl+< 2 1:F4h’1:|:4Y1 12 Y’L
+ iim iquirﬁ +3H C * (3.1.28)
16l ®i F 1%~ ggl i + 55 2. , 1.
and
1 1
A®) = <¢4¢>+24H> +{Cx . (3.1.29)

It turns out that (3.1.27) are the restriction of the (3.1.23) and (3.1.24) on the horizon section
S for € given in (3.1.25).

Furthermore, one can show that if 77_ is a solution to the KSEs, then

also solves the KSEs. This is the first indication that IIB horizons exhibit supersymmetry
enhancement. Indeed if S is compact and the fluxes do not vanish, one can show [11] that
Ker®_ = {0} and so 7 given in the above equation yields an additional supersymmetry.

Although the following integrability conditions
1 1

are implied from the above KSEs, it is convenient for the analysis that follows to include them.
As we shall see, they are instrumental in the solution of the KSEs along the AdS,, directions for
n > 2.
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3.1.4 Horizon Dirac equations

Before we complete this section, we shall summarize the results of [11] on the relation between
Killing spinors and zero modes of Dirac-like operators for IIB horizons. We have seen that the
gravitino KSE gives rise to two parallel transport equations on S associated with the covariant
derivatives V() (3.2.12). If S* are the complex chiral spin bundles over S, then V* : T'(S* ®
A2) = T(AY(S) ® S* ® A7), where (S ® A2) are the smooth sections of S* ® Az. In turn,

one can define the associated horizon Dirac operators
PE) =TivH) =17, + O | (3.1.32)
where
vE=Tie® = i ety (2l Lo
‘ 2 4 6 4 24
(3.1.33)

Clearly the V* parallel spinors are zero modes of D). For S compact, one can also prove
the converse, ie that all zero modes of the horizon Dirac equations D*) are Killing spinors.

Therefore, one can establish
Ve =0, AFp =0«=DHpy =0. (3.1.34)

The proof of the above statement for 7, spinors utilizes the Hopf maximum principle on || 1 ||?
while for n_ employs a partial integration formula. In the former case, one also finds that

| 7+ ||= const. Similar theorems have been proven for other theories in [22, 12].

3.2 AdSs: Local analysis
3.2.1 Fields, Bianchi identities and field equations
For AdS, backgrounds M® = S and the fields on S are
ds’(S)=ds*(M°), F3=Y, F'=xY, G'=¢&, G*=H, P=¢ (321)
Next, we set
A=(02A"2 (3.2.2)

which satisfies (3.1.22), where ¢ is the radius of AdSs. Using these, the Bianchi identities (3.1.15)

and (3.1.16) can now be written as

P A—2
i (PAH—-OANH)=0, dA?®)—iAPAND+A2AND=0. (3.23)

d(A7%Y) —

drgY = %H/\H’, dH =iANH —¢NH
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d¢ = 2ANE, dA=—iENE, (3.2.4)

respectively, where A is a U(1) connection of X restricted on S.

Similarly, the field equations read as

24

Vid, —iNi®; — 10, + 3

}/—415253]{@1@243 =0, (325)

27

V' Hyij — iN Hyij + 247 0" AHyy — € Hyij + 3

(%8 Yijer 0, H 2 — 6Y3500) =0, (3.2.6)

~ . . . 1
Vi — 2iN¢ + 24719 AL + ﬂ(—G@z +H*) =0, (3.2.7)
—1v2 —29t —2 A—2 2 2 3 (¥ 1 2
—ATIVPA - ATOAGA - AT 2V 4 200+ o || H |P=0, (3.2.8)

and

(8) —1¢ 2, 1 i 3 1 TNV
R —2A7'V,0;A+4Y + 5265 — 286&) — 7 HueaHy) ™"
2

| 1
Sii| — =@ — Y24+ —||H|? ) =0 3.2.9
riy (= geedt = e L H P ) =0, (3.29)

where R® is the Ricci tensor of S = M3.

The warped factor A is no-where vanishing

To see this, assume that A is not identically zero. Thus there is a point in M?® such that A # 0.
Multiplying (3.2.8) with A? evaluated as a point for which A # 0, one finds

—AVZA - 9AQA — 172 + §A2Y2 + %AQ@@ + %fﬁ | H|?>=0, (3.2.10)

Next taking a sequence that converges at a point where A vanishes, one finds an inconsistency
as the term involving the AdS radius ¢ cannot vanish. Therefore there are no smooth solutions
for which A vanishes at some point on the spacetime. A more detailed argument for this has
been presented in [13].

This property depends crucially on ¢ taking a finite value. In particular, it is not valid in
the limit that £ goes to infinity, and so on cannot conclude that A is no-where vanishing for flat

backgrounds.
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3.2.2 Killing spinor equations

The KSEs on S = M8 are

VvE L =0, A®p =0, (3.2.11)
where
® = v, _EA,ilAfl Axly 4 1y
vE = vz+( nxlaoazly oy,
+ iirqs 3¢-firﬁ +3H C * (3.2.12)
16 T 60 o i g ’ o
and
A = zpzsrwrﬁﬂ + 4C * . (3.2.13)

Furthermore, if n_ is a Killing spinor, then
Ny =I10_n_ (3.2.14)

is also a Killing spinor, where now
Oy = —lé?logAQ:I:iY + iH:I:gsﬁ C (3.2.15)
4 12 96 16 ' o

It is not apparent that 4y # 0 as n— may be in the Kernel of ©_. To establish under which
conditions 1, # 0, one has to impose additional restrictions on M®. However if n, # 0, then

the solutions exhibit supersymmetry enhancement.

3.2.3 Counting supersymmetries

The analysis so far is not sufficient to establish either the formulae regarding the number of
supersymmetries N preserved by the AdSs; backgrounds. For this, some additional restrictions

on M?® are required. We shall explore these in the next section.

3.3 AdS;: Global analysis

The main results of this section are to demonstrate that under certain assumptions, there is a
1-1 correspondence between Killing spinors and zero modes of Dirac operators on M8 coupled to
fluxes, and use this to count the supersymmetries N of AdSs; backgrounds. Given the gravitino
KSE in (3.2.11) and in particular the (super)covariant derivatives V(*) one can construct the

Dirac-like operators

PE = riv®) =17, 4+ oE (3.3.1)

24



on M8, where

4 . 1 7 1 1
Tt =7o® — _ X4 2Glos A2 + X + - 51
(3.3.2)

Clearly all parallel spinors 74, ie V&, = 0, are zero modes of DF) | ie DF)y, = 0. The task

is to prove the converse.

3.3.1 A Lichnerowicz theorem for D)

The proof of this converse is a Lichnerowicz type of theorem and the proof is similar as that given
in [11] for horizon Dirac operators. Because of this, we shall not give details of the proof. The
novelty of this theorem is that the converse implies that the zero modes of D(*) solve both the
gravitino and dilatino KSEs. In particular, assuming that D)y, = 0 and after some algebra

which involves the use of field equations, one can establish that

ViV Iy P +0"10g A2 Vi [y [P=2 | Ve |7 + | APy |12 (3.3.3)
It is then a consequence of the maximum principle that the only solution of the above equation
is | m4 ||= const and that 7, is a Killing spinor. In particular, this is the case provided M?® is
compact.

3.3.2 A Lichnerowicz theorem for D(-)

The proof the zero modes of the D(—) are Killing spinors is similar to that for the D) operator.

In particular, if D(-)5_ = 0, then one can show that

VIVl - P+ = 12 V0 - P=2 | VO P+ AT 2. (3.3.4)
Using h = dlog A, this can be rewritten as

VIVi(A - 17) =BV(A - |2 ) =248 | VO 2 +A | AT |2 (3.3.5)

The maximum principle again implies that the only solutions to this equation are those for which
A || n— ||= const and 7_ are Killing spinors. Again this is always the case if M® is compact.
It should be noted that unlike the case of general IIB horizons where this theorem has been
proven using a partial integration formula [11], here we have presented a different proof based
on the maximum principle. The latter has an advantage as it gives some additional information
regarding the length of the Killing spinor n_. Combining the results of this section with those

of the previous one, we have established that if M? is compact, then
Ve =0, AP =0« DHp. =0, (3.3.6)
and that

Il n4 ||=const , A n- ||= const . (3.3.7)
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3.3.3 Counting supersymmetries again
The number of supersymmetries of AdSs backgrounds is
N=N_+ N, (3.3.8)
where
Ni = dim Ker(VE), A®) | (3.3.9)

Using the correspondence between the Killing spinors and zero modes of the D) operators in
(3.3.6), we conclude that

N = dim KerD™) + dim KerD™*) . (3.3.10)

As for near horizon geometries [11], one can prove that dim Ker D)t = dim Ker D(=). This is
done by a direct observation upon comparing the adjoint of D) with D(=). As a result for M8

compact without boundary, we find that
N = Index(D™H)) 4 2dim KerD™) = 2(N_ 4 Index(D) (3.3.11)

where D is the Dirac operator twisted with A2. The index of D) is twice the index of D
because they have the same principal symbol and D) acts on two copies of the Majorana-Weyl
representation of M8. This establishes that N = 2k for AdSy backgrounds.

Furthermore, if M?® is compact without boundary with a n_ Killing spinor, one can explicitly
construct a 7, Killing spinor by setting n, = I' 1 ©_n_. This is because if M? is compact without
boundary and the fluxes do not vanish, then Ker©_ = {0}. The proof of this statement is similar
to that demonstrated in [11] for near horizon geometries and so it will not be repeated here.

We have shown that the number of supersymmetries preserved by AdSs backgrounds is even.
Apart from this, there are additional restrictions on N. In particular, it has been shown in
[35, 36] but if a IIB background preserves more than 28 supersymmetries, N > 28, then it is
maximally supersymmetric. Moreover, the maximal supersymmetric and the solutions preserving
28 supersymmetries have been classified in [37] and [38], respectively, and they do not include
AdS5 backgrounds. From these, one concludes that N < 26. One can also adapt the proof of [39]
to this case to demonstrate that all AdSs backgrounds preserving more than 16 supersymmetries
are homogeneous. This in particular implies that the IIB scalars are constant for all these

backgrounds.

3.4 AdS;3: Local analysis

3.4.1 Fields, Bianchi identities and field equations

The fields restricted on the spatial horizon section S = R x,, M7 are

ds?(S) = A2d224ds*(MT), F?=AdzAY, F'=—xY
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G!' = A®ddz, G*=H, P'=¢. (3.4.1)

Moreover, we have that h = —%dz —247'dAand A=X=L=0.
Substituting these into the Bianchi identities (3.1.15) and (3.1.16), we find that

4Y = ~3dlog ANY + L (BH — ¥H) (3.4.2)
d® = 30dlog A + i®Q — BE (3.4.3)
dsr Y = —éH/\ﬁ (3.4.4)
dH = iQNH — ¢ AT (3.4.5)
de = 2iQ N € (3.4.6)

dQ = —i¢ NE . (3.4.7)

In addition the field equations (3.1.17)-(3.1.21) give

ViHijp = —3A70' AHygp, + Q' Gijr, + P Hiji + 40V + = €inivinrene, Y 2 HOR (348
J J J J J 3 J 3

) ) ) 1 1
Vg = —3ATN0A + 2iQ°6 — o H — 07 (3.4.9)

3 1
ATIWEA =2Y? + sle 12 +g 1 12 —2072472 — 2(dlog A)? (3.4.10)
R =247V, VA +2Y%5;; — 8Y}2 (3.4.11)

Lo ke 1 2 1 2 3
+ ZH(i H e + 3 | @[ 6i5 — 18 | H 17 6ij + 286&5),

where R(7) is the Ricci tensor of M7. Contracting this, we find that

3 5 7

M = 2V2A+6Y2+ — | H|?+= || @ | +2/¢] 4.12

R GV ATEYT+ o LH |7 +2 127 +2[¢] (3.4.12)
6 1

= 7?214*2 —6(A7 A 12V 42| @ | +s I H 1242 €12%. (3.4.13)

3.4.2 The warped factor is no-where vanishing

One of the consequence of the field equations is that the warped factor A is no-where vanishing.
One can show that this follows from the field equation (3.4.10) using an argument similar to that

presented for the AdS; backgrounds.

3.4.3 Solution of Killing spinor equations

To integrate the KSEs along the AdS3 directions, it suffices to integrate the horizon KSEs (3.1.27)
along the z coordinate. For this consider first the gravitino KSE. Evaluating the expression along

the z-coordinate, we find

0.n+ = Z4m+ (3.4.14)

27



where

1 1 1 1 3

[1]

Observe that

1
E.=AT.0,, E_=tAl.0_. (3.4.16)
Next differentiating (3.4.14) and comparing the resulting expression with the integrability con-

ditions (3.1.31), one finds that

1
Dny + Zazni =0, (3.4.17)
which can be solved to give
ne =0y +eFiry, (3.4.18)
where
- - 1
Eror =0, Ex74= FyTE (3.4.19)

with both o4 and 74 z-independent spinors. The latter conditions are additional independent
algebraic KSEs.

Although, we have solved along the z direction, there are potentially additional conditions
that can arise from mixed integrability conditions along the z-direction and the remaining di-
rections in §. However, it can be shown after some computation that this is not the case. Fur-
thermore, the dilatino KSEs in (3.1.27) restrict on the o1 and 74 spinors in a straightforward
manner. This completes the integration of the KSEs along all AdS3 directions. The remaining

independent KSEs, which are localized on M7, are

VoL =0, v =0,

7

.A(:t)O'i =0 5 A(i)Ti =0 5

BHo, =0, ¢cHr =0, (3.4.20)
where
1 1
Vz(':t) =V;+ ‘I’Ei) , AW = :FZ(I)FZ + ﬂH +{Cx* ,
1
B =2,, ¢H==2,4+ 7 (3.4.21)
and
@ _ 1, i 4l Iy e
v = i2al log A ZQZ + 1 (TY) I F QYZF (3.4.22)
(), ¢ 2 F T ) O
96 i 327 16

Therefore, there are four sets of three independent KSEs on M7. Having found a solution to the
above equations, one can substitute in (3.4.18) and then in (3.1.25) to find the Killing spinors
for the AdSs x,, M background.
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3.4.4 Counting supersymmetries

It is straightforward to observe that if one has an either o_ or a 7_ solution, then
o, =A"T.T 0, 7, =A"'T.T,7_, (3.4.23)

are also solutions of the independent KSEs (3.4.20). Conversely, if either o or 71 are solutions,
then

o =Al',T_o,, 7_=Al.I_74, (3.4.24)

are also solutions to the KSEs (3.4.20). Therefore, we have that the number of Killing spinors
N of the AdS3 backgrounds are

N = 2(dimKer(V™), A B + dim Ker(V(D), A c()))
= 2(dimKer(VH), A®) BH)) 4 dimKer(VH, AH) cH))) (3.4.25)

Thus the AdS3 backgrounds preserve even number of supersymmetries. This proves the formula
for N for AdSs backgrounds.

The number of supersymmetries N of AdS3; backgrounds are further restricted. It follows
from the results of [35, 36, 38] that there are no supersymmetric AdSs backgrounds preserving
more than 28 supersymmetries. As a result, N < 26.

3.5 AdS;3;: Global analysis

The main task here is to show the formula for counting the number of supersymmetries of AdS;3
backgrounds. For this, we have to show that there is a 1-1 correspondence between Killing

spinors and zero modes of a Dirac-like operator on M”.

3.5.1 A Lichnerowicz theorem for 7, and o

To prove that the zero modes of a Dirac-like operator on M7 are Killing spinors, one has to
determine an appropriate Dirac-like operator on M7. The naive Dirac-like operator which one
can construct from contracting V(*) with a gamma matrix is not suitable. Instead, let us modify

the parallel transport operators of the gravitino KSE as

Vi = v 4,8
Vi = v 4 gr,,a7te™) (3.5.1)

on o4 and 74, respectively, where ¢ is a number which later will be set to 1/7. Tt is clear that
if either o or 71 are Killing spinors, they are also parallel with respect to the above covariant

derivatives.
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Since the analysis that follows is similar for o and 74, it is convenient to presented in a
unified way. For this write both (3.5.1) as

Dz(-+) _ VE” 4 qT A7IB) (3.5.2)
where
BH =< _1p dA+ fAY +(Ear 0+ 3 A0 )Cx (3.5.3)
200 2°° 4 96"~ 16
and ¢ = 1 when acting on o and ¢ = —1 when acting on 7, ie either B(t) = B(+) or B(+) = C(+)
respectively.

Next define the Dirac-like operators

) = FiD§+) — TV, + 5 (3.5.4)
where
o %A—lrz L1t 7qalogA2 B %'@Jr 3i —47quTZ
+(5 g67qH 7 _1621‘1@)0 % (3.5.5)

It turns that 2 is suitable to formulate a maximum principle on the length square of oy and
7,. In particular, suppose that y. is a zero mode for 2(t), ie 2ty = 0, where x4 = o
for ¢ = 1 while x4 = 74 for ¢ = —1. Then after some Clifford algebra, which is presented in
appendix B.12, which requires the use of field equations and for ¢ = 1/7, one can establish the
identity
2 2 a0 2 o |I?
Vsl + 34710 A0 I = 2D
16 2 2

A oo aoe ] 55

Assuming that M7 satisfies the requirements of the Hopf maximum principle, eg for M” compact,

the above equation implies that x4 is a Killing spinor and that the length || x4+ ||= const.

To summarize, we have shown that

v(*+)0-+ =0, BYo, =0, AMo, =0= 2Fo, =0; c=1

?

vl(_+)7_+ =0, C(+)T+ =0, A(+)7-+ =) << @(+)7+ =0;c=-1, (357)
and that

| o4 ||=const , || 7+ ||= const . (3.5.8)

3.5.2 A Lichnerowicz theorem for 7_ and o_

A similar theorem to that presented in the previous section can be presented for 7_ and o_

spinors. One can define the operators D(=) and 2(~) and repeat the analysis. Alternatively,
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one can observe that is y. is a zero mode of the 2(*) operator, then y_ = AT',_x is a zero
mode of the 2(~) operator, where x_ is either o_ or 7_. Since the same relation holds between
x+ and x— Killing spinors, one can establish a maximum principle for x_ spinor. The formula
is that given in (3.5.6) after setting x, = A~'TI',; x_. Therefore provided the requirements of

Hopf maximum principle are satisfied, one establishes

vie_ =0 , B =0, Ao =0<=2o_=0; c=

Vi =0, cOr_=0, AV =027 =0; c=-1, (3.5.9)
and that
| o_ ||?= A%const , || 7_ ||*= AZconst , (3.5.10)
where
20 =TV, + ) | (3.5.11)
and
(=) 7261£CA T 11761@1 e @ 7quT
( 7qH T 21q<1>)c . (3.5.12)

3.5.3 Counting supersymmetries again

The proof of the relation between Killing spinors and the zero modes of the Dirac-like operators
2 allows us to re-express the number of supersymmetries N in (3.4.25) preserved by AdSs

backgrounds as

N = 2(dimKer 2_) + dimKer 2._) )
(durnKer‘@(Jr —&—dlmKerQ(+ 1) (3.5.13)

which establishes that N = 2k for AdSs3.

3.6 AdS,: Local analysis
3.6.1 Fields, Bianchi identities and field equations
The field on S are

ds®(S = A%(d2? + €**/'da®) + ds*(MS) , F? = A%e*/%dz Ndz NY , F® =xgY
G3=H, P=¢, (3.6.1)

with h = —%dz —2A7'dA and A = X = L = 0. Substituting these into the Bianchi and field

equations on S in section 3.1.2 reduce on MY as follows. The Bianchi identities give
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d(A4Y) =0 5 @1)/1 = _2Z§€ili2isjlj2j3HiliziSFjlejB (362)
dH =iQNH —€NH (3.6.3)
=2iQ A 3.6.4

d§ = 2iQ N ¢
= —i{NE . 3.6.5

dQ ENE

Therefore the Binachi identities imply that A*Y is a closed 1-form and that H A H represents a
trivial cohomology class in M®.

The Einstein equation on S gives

3

2~ 3(A71dA)?, (3.6.6)

1
ATIWZA=4Y?+ — | H |?
v + g IH

and

RY —4A7IV, VA~ 4Y25; + 8Y3Y; (3.6.7)

Lo g 1 2
- ZH(i H jyie + = | H |7 ;5 — 2§:€5 =0,

where R is the Ricci tensor of M. The remaining field equations are
ViHijk = -39 10g A Hz’jk + iQiHijkl‘F fiﬁijk ,
Ve, = —30'log A& +2iQ'¢; — ﬂHQ. (3.6.8)

This concludes reduction of the Bianchi identities and field equations on M?S.

The warped factor is no-where vanishing

One consequence of the field equations and in particular of (3.6.6) is that the warp factor A is
no-where vanishing. The investigation for this is similar to that we have presented for AdS3 and

so we shall not repeat the argument here.

3.6.2 Solution of KSEs

The integration of the KSEs along the z-coordinate proceeds as in the AdSs. In particular

repeating the argument as in the AdSs case, one finds that

ne = s +em g (3.6.9)
where
— _ 1
Etp+ =0, Eixs= FoXE AF g =0, AFyi=0 (3.6.10)
and
Sy —r irgas LAr,Y + AT HC
=+ = :FQK 9 z 9 T 9% z 5
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A = iH +4C % . (3.6.11)

Observe that although A = A() as operators, they act on different spaces and so we shall
retain the distinct labeling.
Next we integrate the gravitino KSE along the = AdS coordinate to obtain

1 1
e =0y — yalalery + e, n_=o0_+ ez/e(fszzeo_ +7.), (3.6.12)
where
_ _ 1
Sx0x =0, Ei7s =F7x, (3.6.13)

and o4 and 74+ depend only on the coordinates of M®. This completes the integration of the
gravitino KSE along all AdSy directions. The dilatino KSE simply restricts on the spinors o4
and 74. There are no additional conditions arises from integrability conditions between AdSy
and M directions.

Therefore, remaining independent KSEs on M6 are

Vo =0, v =0,

?

A(i)Ui =0 5 A(i)Ti =0 5

BFor =0, cCHri=0, (3.6.14)
where
vE v, +0® | gE =z, =z, + % : (3.6.15)
and
U = ldlog A LQiF L(TF) Tus VL.
+ (—916 (TH), + 33257) C x. (3.6.16)

This concludes the reduction of the KSEs on M.

3.6.3 Counting supersymmetries

As for AdSs3 backgrounds there are Clifford algebra operators which interwind between the
different KSEs on M. In particular observe that if o4 is a solution to the KSEs, then

T+ = Fzrwai (3617)
is also a solution, and vice versa. Furthermore as for AdSs, if either o_ or 7_ is a solution, so is

o, =A'T,T,o_, 7, =A"'T,T.7_. (3.6.18)

33



Similarly, if either o4 or 74 is a solution, so is
o_=Al'_T,o,, 7_-=AT_T,7}. (3.6.19)
From the above relations one concludes that the AdS, x,, M® backgrounds preserve
N =4 dimKer(V®), A®) BH®)) = 4 dim Ker(VH), A ¢y | (3.6.20)

for either + or — choice of sign. This confirms N = 4k for the AdS, backgrounds.

The number of supersymmetries N of AdS, backgrounds are further restricted. It is a con-
sequence of [37, 35, 36, 38] that there are no AdSy backgrounds with N > 28 supersymmetries.
Therefore N < 24.

3.7 AdS,: Global analysis

3.7.1 A Lichnerowicz theorem for 7. and o

Next, we will demonstrate a Lichnerowicz type of theorem which states there is a 1-1 correspon-
dence between Killing spinors and the zero modes of Dirac-like of operators on MS coupled to
fluxes. The proof is similar to that we have presented for the AdSs backgrounds. However, the
operators involved in the AdS, case are different and so the proof is not a mere repetition.

We shall present the proof of the the Lichnerowicz type of theorem for o and 7 spinors.
The proof for the other pair o_ and 7_ follows as a consequence. It is also convenient to do
the computations simultaneously for both o, and 74 spinors which from now one we shall call
collectively x .

To begin let us define the operator

DY = v 4 g, A7 B (3.7.1)
where
1 ) 1
B = -5 DA — ZAYT, + — AT, 7.2
5 3 PA— S AY + 35 HCx (3.7.2)
and ¢ = 1 when acting on o and ¢ = —1 when acting on 7, ie either B(*) = B or B(H) = ¢(+),

respectively. It is clear from this that if x4 is a Killing spinor, then it is parallel with respect to
D.
Next define the Dirac-like operator

9+ = FZ-DEH —Tiv, + ) (3.7.3)
where
1 ' -
) = %A*lrz + —ZGq(}}log A% — %g@ + (20 — 3iq) YT, + 16qHC * (3.7.4)
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Next suppose that y is a zero mode of (1), ie 2(+)y, = 0. Then after some Clifford algebra
computation, which has been presented in appendix B.13, ¢ = 1/3, and the use of field equations,

one can establish the identity

. 2
Vsl + 44710 A0 I = 2D

16 2 2
Ao e ol 01

Assuming that requirements of the Hopf maximum principle are satisfied, eg for M% compact,
the above equation implies that x is a Killing spinor and that the length || x4 ||= const.

A similar formula to (3.7.5) can be established for o_ and 7_ spinors. However, it is not
necessary to do an independent commutation. We have seen that if o, and 74 solve the KSEs,
then o_ = AT'_,04 and 7 = AT'_,7} also solve the KSEs. Similarly if x4 is a zero mode of
P then x_ = AT_,x is a zero mode of 2(7), where

2(5) =Ty, + 20) | (3.7.6)

and

—1+6 ) 1-—
ATT, #mog A2 L@ - (20 3ig)Y s+ — THCx . (3T1)

_Bae

(=) =
> 20

To summarize, we have shown that

Vgi)ai =0, BHo, =0, AP0, =0= 9Fs,=0;c=1,
Vir =0, W =0, AW =09 =05 c=-1, (3.7.8)

2

and that

lowll = const, |7y |l= const,
A7 o | ||>= const . (3.7.9)

const , A2 | 71
This concludes the proof of the 1-1 correspondence between Killing spinors and zero modes of

Dirac-like operators on M.

3.7.2 Counting supersymmetries again

We are ready now to establish the formula for the number of preserved supersymmetries for AdSy
backgrounds. So provided that the data satisfy the requirements of Hopf maximum principle,

we have that
N =4 dimKer(V(), A5) B)) = 4 dimKer2'Z] | (3.7.10)

which applies to o_ spinors which confirms N = 4k. A similar formula is valid for the three

other choice of spinors.
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3.8 AdSs: Local analysis

3.8.1 Fields, Bianchi identities and field equations

The fields on the horizon section S are

ds*(S) = A2(d2? + 7 (da® + dy?) + ds>(MP), G=H, P=¢,

F* = eTAdzndendyY , F°=—dvol(M°)Y (3.8.1)

and h = —%dz—leogA and A=X=L=0.
Substituting the above fields into the Bianchi identities (3.1.15) and (3.1.16), we find

d(A%Y) = 0, dH=iQANH—-¢ANH
d¢ = 2iQANE, dQ = —ié NE. (3.8.2)

Clearly, Y is proportional to A~°. Similarly, the field equations (3.1.17)-(3.1.21) give

ViHijr = —59"logAHj +iQ" H;jx + & Hjy,
Vie, = —50'log A& + 2iQi — i 2.
AIN2A = 4y g % | H |2 —%A‘Q _ 4(dlog A)?,
RY = 5AT'V,V;A+4Y25;
+ iH(iMFj)kz - 4% | H (1?65 + 26:E ;- (3.8.3)

This concludes the analysis of Bianchi and field equations.

The warped factor is nowhere vanishing

As in the previous AdS backgrounds, one can show that the warped factor A is no-where van-

ishing. The argument is based on the third field equation in (3.8.3).

3.8.2 Solution of KSEs

Substituting the fields of the previous section into the KSEs of spatial horizon section (3.1.27)
and after a computation similar to that described for AdS, backgrounds, we find that the Killing
spinors can be expressed as

1
(- Z(xfm +yly)To- +7_) (3.8.4)

SN

1 z
Ny =04 — Z(scl“z +yly)lery e Ty, no=o0_+e

where o+ and 7+ dependent only on the coordinates of M®. The remaining independent KSEs

are

V=0, V=0, A¥o =0, AHr =0,

(3

BfoL =0, C*ra=0, (3.8.5)
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where

1
B® =gz,, ¢® =2+ 7 (3.8.6)
and
(£) 1 1 ) 1 3
v = i%&- 10fA - 5@@ 5riyrwi + (- %(FH)i + EHZ-)C*
1

2. = F— —-D.JA+ -AYT,, + —AT.HC % . 3.8.7
* Fop ~ gl ePAE gAY ey + QAT HC x (3:8.7)

This concludes the solution of the KSEs along the AdSs directions and the identification of

remaining independent KSEs.

3.8.3 Counting supersymmetries

To count the number of supersymmetries preserved by AdSs backgrounds, observe that if o4 are

Killing spinors, then
T+ = le‘wai 5 T+ = le‘yai . (388)

are also Killing spinors, and vice versa. As a result if oy are Killing spinors, then o/, =
I'yyo+ are also Killing spinors and similarly for 7. As a result dim Ker(V(i)7A(i), B(i)) and
dim Ker(V®#), AF) ¢#)) are even numbers.

Furthermore, as in the previous cases, if either o_ or 7_ is a solution, so is
oL =A""T\T,0_, 7, =A"T,T.7_, (3.8.9)
and similarly, if either o4 or 74 is a solution, so is
o_=A'_T,o,, 17-=AT_T,7}. (3.8.10)
From the above relations one concludes that the AdSs x,, M?® backgrounds preserve
N =4 dimKer(VH, A® BH)) = 4 dim Ker(VH), A®) cH)) = gk | (3.8.11)

for either + or — choice of sign and k € N (. This confirms N = 8k for the AdSs backgrounds.
Of course N < 32, and for N = 32 the solutions are locally isometric to AdSs x S°.

3.9 AdSs;: Global analysis

3.9.1 A Lichnerowicz theorem for 7. and o

To extend the formula for preserved supersymmetries to AdS5 backgrounds, we shall again prove

a Lichnerowicz type of theorem which relates the Killing spinors to the zero modes of Dirac-like
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of operators on M?® coupled to fluxes. The proof is similar to that we have presented in previous
case and so we shall be brief. It suffices to prove the relation for o and 7, spinors as the proof
for the other pair o_ and 7_ follows because of the relations (3.8.9) and (3.8.10) and the fact
that these isomorphisms commute with the relevant operators.

We shall present the proof of the the Lichnerowicz type of theorem for o and 74 spinors.
The proof for the other pair o_ and 7_ follows as a consequence. It is also convenient to do
the computations simultaneously for both o4 and 74 spinors which from now one we shall call
collectively x .

To begin the proof for the pair o, and 7, which from now one we shall call collectively x,

let us define

DZ(-+) _ vl(+) 4 gl A7IB) (3.9.1)
where
B =S _lpga_ fAYFW L ADHCx (3.9.2)
20 2 2 96
and ¢ = 1 when acting on o, and ¢ = —1 when acting on 7, ie either B(*) = B or B(+H) = ¢(+),

respectively. It is clear from this that if x is a Killing spinor, then it is parallel with respect to
D.

The Dirac-like operator on M?® is

7 =1DpP =Ty, + 2 (3.9.3)
where
5qc 1+ 5q i 5i—big 7 —5q
(+) — 29€ 41 2_ Lty 279 i
) 50 AT, + 1 dlog A 2@+ 5 YT .0y + % HC + . (3.9.4)

Next suppose that x. is a zero mode of (1), ie 2(+)y, = 0. Then after some Clifford algebra
computation, which has been presented in appendix B.14, ¢ = 3/5, and the use of field equations,

one can establish the identity

2 2 “1ni 2 O P
Vxel® + 5470 A% s = 2D |
48 2 2
+€A_2H]B§(+)X+H + HAH)X*H . (3.9.5)
Assuming that the Hopf maximum principle applies, eg for M?® compact, the solution of the

above equation reveals that x4 is a Killing spinor and that || x4 ||= const.

A similar formula to (3.9.5) can be established for o_ and 7_ spinors. In particular, we define
27 =TV, + 2 | (3.9.6)
and
dqc

- _ -1+ 5¢q i 5i — big 7 — bq
(=) = T2 gt e 2_‘p_ 2o I
b 2£A r,+ @log A 2@ 3 YTy + 96 HCx . (3.9.7)
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where ¢ = 1 for the o_ spinors while ¢ = —1 for 7_ spinors. Because of the relations (3.8.9) and
(3.8.10) between the o_,7_ and o4, 74 spinors and the commutation of these relations with the
KSEs and the associated Dirac-like operators, it is not necessary to prove the maximum principle

independently for o_,7_. To summarize, we have shown that

Vgi)ai:O, By =0, AHoy =0= 9Hop=0; c=1,

Vi =0, ¢®r=0, AF e =0e= 927, =0; c=-1, (3.9.8)
and that
|oy || = const, | 74 ||= const,
A2 ||o_||> = const, A2 | 7_ |*= const. (3.9.9)

3.9.2 Counting supersymmetries again

To determine the index of the Dirac-like operator for AdSs backgrounds, observe that the di-
mension of the Kernel of 2 operators is even. This is because if o4 or 71 are in the kernel,
then I'y o4 or I'yy74 are also in the kernel. Since I';,04 or I'y, 7+ are linearly independent of
oy and 74, the dimension of the Kernel of 2 is an even number.

Next provided that the data satisfy the requirements of Hopf maximum principle, we have
that

N =4 dimKer(V), A) B)) =4 dimKerz'Z] | (3.9.10)

which applies to o_ spinors. A similar formula is valid for the three other choices of spinors.

3.10 AdSs: Local analysis

3.10.1 Fields, Bianchi identities and field equations

For AdS,, p > 6, the only not vanishing fluxes are those of the magnetic components of the
various field strengths. Since F' is self-dual, F' = 0 for all such backgrounds. The fields on the

horizon section S for AdSg backgrounds are

3
ds?(8) = A%(d2? + 7 ) (da)? +ds*(M*), G=H, P=¢, (3.10.1)

a=1

and h = —2dz — 2dlog A and A = X = L =0, where ' = z,2? =y as for AdS; and z° = w.
Substituting the above fields into the Bianchi identities (3.1.15) and (3.1.16), we find

dH =iQNH —¢ENH , déE=2iQANE, dQ = —iE NE. (3.10.2)
Similarly, the field equations (3.1.17)-(3.1.21) give

ViHijk = —68ilogAHijk+iQiHijk+€iﬁijk
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V¢, = —60"log A&+ 2iQ°E; — ﬂHQ'
1 5
A7IW2A = — |H|*-5A"2-5(dlogA)?
v 48 I | 02 (dlog A)7,
RY = 647'V,V;A
1 — 1 _
+ iH(iMHj)M VT I H 1?65 + 28(:€5)- (3.10.3)

This concludes the analysis of Bianchi and field equations.

The warped factor is nowhere vanishing

As in the previous AdS backgrounds, one can show that the warped factor A is no-where van-

ishing. The argument is based on the third field equation in (3.10.3).

3.10.2 Solution of KSEs

The solution of the spatial horizon section S KSEs (3.1.27) reveals that
Ny =04 — 1(2: 2 T)ry +e iy, n_=o_+ef(— 1(2: 2°To)o- +7-) ,(3.10.4)
e a e a

where o+ and 74+ dependent only on the coordinates of M*. After taking into account all the

integrability conditions, the remaining independent KSEs are

Vo =0, ViPr=0, A®o =0, AHr =0,

?

Bfor =0, C*ri=0, (3.10.5)
where
) _ g Lg® gL
v, Vi+u A 1 24H+gc*
B ==,, ¢H==2,4+ 7 (3.10.6)
and
) _ 4 ly ooy~ Lom. 3 g
v = jz%allofA 2@#(1 o (TH)s + 55 H:) O
. = F— — -T.0,AT" + —AT ) .10.

This concludes the solution of the KSEs along the AdSg directions.

3.10.3 Counting supersymmetries

A direct inspection of the KSEs reveals that if o1 are Killing spinors, then

T+ = FzFaU:I: , (3108)
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are also Killing spinors, and vice versa. As a result if oy are Killing spinors, then o/, =
[0t are also Killing spinors and similarly for 7o.. Therefore dim Ker(V®), A®) B#)) and
dim Ker(V&#), A& ¢#)) are multiples of four.

Furthermore, as in the previous cases, if either o_ or 7_ is a solution, so is
o =A""T T, 0, 7, =A"T,T.7_, (3.10.9)
and similarly, if either o, or 7, is a solution, so is
o_=Al'_T,o04, 17-=AT_T,7}. (3.10.10)
From the above relations one concludes that the AdSs x,, M?® backgrounds preserve
N =4 dimKer(V®), A®) B®)) = 4 dim Ker(VH) |, A )y = 16k | (3.10.11)

for either + or — choice of sign and k € N< (. This confirms N = 16k for the AdSg backgrounds.
It turns out that there can be AdSg backgrounds for only N = 16 as there are no such backgrounds

preserving N = 32 supersymmetries [37].

3.11 AdSs: Global analysis

3.11.1 A Lichnerowicz theorem for 74 and o

As in previous cases, let us prove a Lichnerowicz type of theorem for o and 7, spinors. For

this denote o and 74 collectively by x4+ and define

DY = v 4 g1, A7 B (3.11.1)
where
B =~ _Lp garip Lar mes (3.11.2)
20 2 96
and ¢ = 1 when acting on o, and ¢ = —1 when acting on 7, ie either B(*) = B or B(+H) = ¢(+),

respectively. It is clear from this that if x is a Killing spinor, then it is parallel with respect to
D.

The Dirac-like operator on M? is

2 =DM =iy, + 5 | (3.11.3)
where
2 1+4 j —4
N = %A*rz + +4 L H10g A% — %@ ;8 o6 Tho s (3.11.4)

Next suppose that x4 is a zero mode of 2, ie 2(H)y, = 0. Then after some Clifford algebra
computation, which has been presented in appendix B.15, ¢ = 1, and the use of field equations,

one can establish the identity

2 2 A1 A0, 2 _92|IDM) ’
Vaxl© + 6 X+ l™ = X+
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2 2
+16A‘2HIB%(+)X+H + HA(+>X+H . (3.11.5)

Assuming that the Hopf maximum principle applies, eg for M* compact, the solution of the
above equation reveals that x4 is a Killing spinor and that || x4 ||= const.

A similar formula to (3.9.5) can be established for o_ and 7_ spinors. In particular, we define

2) =TV, + 2 | (3.11.6)
and
2 —1+4 ; —4
0 = 2 poap TP g g2 Lg B My, (3.11.7)
l 2 96
where ¢ = 1 for the o_ spinors while ¢ = —1 for 7_ spinors. Because of the relations (3.8.9) and

(3.8.10) between the o_,7_ and o4, 74 spinors and the commutation of these relations with the
KSEs and the associated Dirac-like operators, it is not necessary to prove the maximum principle

independently for o_,7_. To summarize, we have shown that

Vgi)oi =0, BHoy=0, AHo. =0+= 2o, =0;c=1,
Vi =0, ¢®r=0, AF e =0e= 927, =0; c=-1, (3.11.8)

and that

logl = const, |7y = const,
A2 o | const , A™? || 7_ ||*= const . (3.11.9)

3.11.2 Counting supersymmetries again

To determine the index of the Dirac-like operator for AdSs backgrounds, observe that the dimen-
sion of the Kernel of 2(*) operators is multiple of 4. This is because if o4 or 74 are in the kernel,
then I'ypox or I'yp7+ are also in the kernel. Since I'ypo4 or I'yp74 are linearly independent of
o4 and 74, the dimension of the Kernel of 2(F) is 4k.

Next provided that the data satisfy the requirements of Hopf maximum principle, we have
that

N =4 dimKer(V), A5) BH)) = 4 dimKer2'Z) = 16k , (3.11.10)

which applies to o_ spinors. A similar formula is valid for the three other choices of spinors.

3.12 AdS,, forn>7

For all AdS,,, n > 7, if the background preserves at least one supersymmetry, then the three-
form, H, is zero. For AdS,,, n > 8, this is automatically true. For AdS;, we can show this by

manipulating the algebraic Killing spinor equation,

(zc * +214H> o =0. (3.12.1)

42



AdS,, X, M0 N

n=2 2k, k < 14
n=23 2k, k <14
n=4 dk, k< 7
n=>5 8k, k<4
n==6 16
n>"7 —

Table 3.1: The number of supersymmetries N of AdS, X M'°~" back-
grounds are given. For AdSy x., M?®, one can show that these backgrounds
preserve even number of supersymmetries provided that they are smooth
and M8 is compact without boundary. For the rest, the counting of super-
symmetries does not rely on the compactness of M'°~". The bounds in k
arise from the non-existence of supersymmetric solutions with near maximal
and maximal supersymmetry. For the remaining fractions, it is not known
whether there always exist backgrounds preserving the prescribed number of

supersymmetries. Supersymmetric AdS,, n > 7, backgrounds do not exist.

We start by multiplying this by H to convert it to an eigenvalue equation,
1
{HC x oy = — 1 H oy (3.12.2)
and then we square the operator on the left hand side to eliminate C',
7 g 2 1 2
&l ow == €I1° +55 | H |7 |os. (3.12.3)
Finally, squaring this operator as well, we end up with a scalar equation
1 2
Ll =€ = (161 +55 1 5 1) | (3.12.)

from which we conclude that ¢2 = &;¢* and H are both zero.

Having shown that H = 0, the integrability condition, (3.1.31), reduces to

11
(442 - 4(dA)2) o =0, (3.12.5)

which has no solution. Therefore, there no supersymmetric AdS,, backgrounds, for n > 7.

3.13 Flat IIB backgrounds

Warped flat backgrounds R Xw M1~ are also included in our analysis. These arise in
the “flat limit”, ie the limit that the AdS,, radius £ is taken to infinity. This limit is smooth in
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all our computations. However, some of our results on AdS,, backgrounds do not extend to the
flat backgrounds. The investigation of the KSEs is also somewhat different from that of AdS
backgrounds.

To emphasize some of the differences between AdS, and R" ™" backgrounds, it is known
for sometime that there are no smooth warped flux compactification in the supergravity [40].
To alter this either additional sources have to be added to the supergravity equations, like
brane charges, and /or consider higher order curvature corrections which arise for example from
anomaly cancelation mechanisms or o’ corrections in strings or M-theory. In either case, the
new backgrounds can be constructed as corrections to supergravity solutions. Because there
are different sources that can be added and we do not have control over all higher curvature
corrections, we shall mostly focus here on the supergravity limit and explore the similarities and
differences between the AdS, and R™™ ! backgrounds.

3.13.1 Warped factor is not nowhere vanishing

We have seen that the warped factor in all AdS,, is no-where vanishing. This does not extend to
R" ! backgrounds because the finiteness of AdS,, radius has been essential in the proof of the
statement. In fact A must vanish somewhere for non-trivial R™ ' backgrounds with fluxes. This
follows from the results of [40] on the non-existence of smooth warped flux compactifications in
the context of supergravity. To see this, let us focus on the R case, as the argument is similar
in all the other cases. If A is no-where vanishing and M?® is compact, an application of the
maximum principle on the field equation for A (3.2.8) reveals that A is constant and the fluxes

F and G vanish. Furthermore using the formula
V2| € [P=2(V &) — 2iM ) (V) — 2007 +6(] € 1) (3.13.1)

established [11] and upon using again the maximum principle, one can show that £ = 0. As a
result all the form field strengths vanish which is a contradiction. From now on, we shall assume
that A is non-vanishing on some dense subset of M'°~" and carry out the analysis that follows

on that subset.

3.13.2 Counting supersymmetries

All the local computations we have done for AdS,, backgrounds extend to R backgrounds.
However the statements which rely on the smoothness of the fields as well as the non-vanishing
of the warped factor have to be re-examined. In particular, the solution of the KSEs can be
carried out as it has been described for AdS,,. Also the various maximum principle formulae
are valid away from points that A = 0, like eg (3.3.3), (3.3.5), (3.5.6) and others. However, the
Hopf maximum principle cannot be applied any longer even if M'°~™ is taken to be compact.
As a result there is not a straightforward relation between Killing spinors and zero modes on
Dirac-like operators on M'0~". Because of this, for the counting of supersymmetries we shall

rely on the local solution of the KSEs as presented for the AdS,, backgrounds.
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R backgrounds

The counting of supersymmetries for AdS, backgrounds relies on the global properties of M?
and the smoothness of the fields. As a result, the number of supersymmetries preserved by R
backgrounds cannot be concluded. In particular, it is not apparent that such backgrounds always
preserve even number of supersymmetries. Nevertheless, if n_ is a Killing spinor, so is ' 1 ©_n_
on M8, Now if Ker©_ = {0}, it is clear that there will be a doubling of supersymmetries. In
such case, the number of Killing spinors for such backgrounds is N > 2N_, where N_ is the

number of n_ Killing spinors.

R*' backgrounds

Let us re-examine the solution of the KSEs. In the limit ¢ — oo, the integrability conditions
(3.1.31) become

01041+ =0. (3.13.2)
In the same limit, the solution of the KSEs (3.4.14) along the z-direction is
Ne =04 +25471, Zi(ox—71)=0, (3.13.3)

where 23 = AT',0©4. The integrability conditions are automatically satisfied because of (3.13.2).

The remaining independent KSEs are

Vo =0, v =0,

7

Aoy =0, AP =0, (3.13.4)

where V&) and A™) are given in (3.4.21). As 71 and o4 satisfy the same differential equations
are not linearly independent. As a result, it suffices to consider only the o4 spinors and set
7+ = o4. Therefore the number of supersymmetries preserved by R*! backgrounds is N =
dimKer(VH), AH)) 4+ dimKer(V(), A)).

Next, it is straightforward to observe that if o_ solution of (3.4.20) in the limit £ = co, then

o, =AT.T 0, (3.13.5)
is also a solution. Conversely, if o is a solution, then
o_=Al'T'_o4 (3.13.6)

is also a solution. Therefore, dimKer(V(+), A)) = dimKer(V(~), A()), and so the R%*! back-
grounds preserve even number of supersymmetries.
Observe that in general the Killing spinors can depend non-trivially on the z coordinate. This

is possible only if o1 ¢ Ker 21 even though it is required that o4 € Ker =% because of (3.13.2).
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R*' backgrounds

The counting of supersymmetries of R*! backgrounds is similar to R*! solutions. In particular

integrating the KSEs along the z and z directions we find that
Ny =04+ AT, +20,)017+, Oi(ox—74£)=0, (3.13.7)

with o1 and 74 both in the kernel of (V*), A®*)) given in (3.6.15) and = = AT,0.. Therefore
as in the R*" case these spinors are not linearly independent and so suffices to consider o+ and
set 7+ = o4. In addition if o4 is a solution, so is I',;0. This together with the fact that if o
is a solution so is o = AT, I'_o, and vice versa if o_ is a solution so is 04 = A7™'T',T'yo_, one
concludes that R*! backgrounds preserve N = 4k supersymmetries.

Note again that the Killing spinors are allowed to depend linearly on the coordinates of R,
This is the case only if 7+ ¢ KerZ. even though it is required that 7o € KerZ% because of
(3.13.2).

R" "', n > 4, backgrounds

As in the previous cases, one can prove that

Ny =04+ + A(Z 2'T,)047y, Oi(or —74) =0, (3.13.8)
1
in the limit ¢ = oo, and that the only linearly independent Killing spinors are o4, where x* are
all the coordinates of R" ™! apart from the lighcone ones u, r. Moreover, it suffices to count the
linearly independent o spinors as the o_ spinors can be constructed as o = AI',T'_oy from
the o ones, and vice versa because of the relation o, = A7, T, o_.

Next given a o Killing spinor, one can see by direct inspection of the KSEs on M °~" that
Tupoy, a < b, are also Killing spinors, where I', are the gamma matrices in directions orthogonal
to +,—. It turns out that for n = 5, these are all linearly independent and therefore these
backgrounds preserve N = 8k supersymmetries.

For n = 6, apart from I'ypo1, a < b, observe that also 'y, a,450,0+, 01 < a2 < a3 < a4 also
solve the KSEs on M*. However, there is a unique Clifford algebra elementl'y, aya5a,, @1 < a2 <
a3 < ag4, in this case and has eigenvalues £1, and commutes with all the KSEs. Now if o is
in one of the two eigenspaces, only four of the 7 Killing spinors {o,[gpo|a < b} are linearly
independent. Therefore the R>! backgrounds preserve N = 8k supersymmetries.

Suppose now that n = 7. Given a Killing spinor o4, then I'ypo+ and 'y, as05a0,0+, 1 <
az < az < ay4, are also Killing spinors. There are five 'y q5az5aq, @1 < a2 < a3 < a4 Clifford
algebra operations in this case. Choose one say I'yj. As in the previous case o4 can be in one
of the eigenspaces of I'ly). In such a case, only 8 of the previous 16 Killing spinors are linearly
independent. Therefore, the R%! backgrounds preserve N = 16k supersymmetries. Of course

as a consequence of [37] the non-trivial R%" backgrounds preserve strictly 16 supersymmetries.
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—-1,1 —
R" ™M x,, M10-" N

n=2 N <16
n=3 2k, k <8
n=4 4k, k <4
n=2>5 8,16
n==6 8,16
n="17 16
n=3~8 16
n=2~8 —

Table 3.2:  The number of supersymmetries N of R"" x,, M~ is not a
priori an even number. The corresponding statement for AdS2 backgrounds
is proven using global considerations which are not available in this case.
For the rest, the counting of supersymmetries follows from the properties of

KSEs. All backgrounds with N > 16 supersymmetries are locally isometric
to R™".

Furthermore adapting the analysis of section 13 in the limit of infinite AdS radius, one finds that
A must be constant, H = 0 and &£ = 0.

Next take n = 8. Given a Killing spinor o, then I'ppoy, T'ojaga5a.0+, a1 < a2 < az < ag,
and I'g,. 0,0+, a1 < -+ < ag are also Killing spinors. All fifteen 'y, 40504, 01 < G2 < a3 < ay,
Clifford algebra operators commute with the KSEs and have eigenvalues +1. Taking a commuting
pair of such operators, say I'ly) and FE4J’ and choosing o to lie in a common eigenspace of
both these operators, only eight of the 32 spinors mentioned above are linearly independent.
As a result, R™ backgrounds preserve N = 16k supersymmetries. In fact non-trivial R™
backgrounds backgrounds, like the D7-brane, preserve strictly 16 supersymmetries. Again for
this backgrounds A is constant and &;¢° = 0. Furthermore, it can be easily seen from the
results of section 13 and after taking the AdS radius to infinity that there are no non-trivial R®'

supersymmetric backgrounds.

3.14 On the factorization of Killing spinors

In many of the investigations of AdS, x M~ backgrounds in IIB and other theories, it is

assumed that the Killing spinors of the spacetime factorize into a product
E=1YRx, (3.14.1)
where 9 is a Killing spinor on the AdS spaces satisfying the equation

Vb + Ayt =0, (3.14.2)
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and where V and v, are the spin connection and gamma matrices on AdS,,, respectively. Since,
we have solved the KSEs on the whole spacetime, we can now test this hypothesis. To do
this observe that if the hypothesis is correct, then e also solves the (3.14.2). So it suffices to
substitute our Killing spinors into (3.14.2) to see whether they are automatically satisfy it. This
computation is similar that that we have done for M-theory in [13]. It turns out that the Killing
spinors e solve (3.14.2) iff

I,e=+e. (3.14.3)

However our Killing spinors do not satisfy this equation. As a result the original hypothesis is
not valid in general.

To illustrate that (3.14.3) is restrictive, we shall test it against the supersymmetry counting
for the AdSs x S® background. It is known that this background preserves all 32 supersymmetries.
It can be easily seen that to solve the algebraic KSEs for this background in (3.8.5) for the 74

spinor, one has to impose
FwyT+ == :l:l"T+ . (3144)

After choosing one of the signs, it is clear that the dimension of the space of solutions is 8
counted over the reals. The gravitino KSE is then solved without any additional constraints on
74. Next using the relation between 7, 7_, o4 and o_ solutions to the KSEs, we conclude that
the number of Killing spinors of this background is 4 x 8 = 32 as expected. However if one also
imposes the condition (3.14.3) on 7, one will arrive at the incorrect conclusion that AdSs x S®
preserves only 16 supersymmetries.

We have seen that the spinor factorization assumption in (3.14.1) leads to the incorrect count-
ing of supersymmetries for AdS backgrounds. It is also likely that it puts additional restrictions
on the geometry of the transverse spaces M1°~". We shall investigate this in another publication.

To continue, let us examine the factorization of the Killing spinors as in (3.14.1) for flat
backgrounds to see whether a similar issue arises as for the AdS. A direct inspection of the
Killing spinors we have found in section 3.13.2 reveals that the Killing spinors do not solve the
KSEs on R" """ whenever they have an explicit dependence on the coordinates of R" M As
we have already stressed, this dependence appears whenever o4 are not in the kernel of ©4.
However it is required as a consequence of the KSEs, field equations and Bianchi identities that
©+01:01 = 0. Thus assuming that the Killing spinor factorize as in (3.14.1) with ¢ to be a
constant spinor on Rn_l’l, we find that this imposes the additional condition ®104+ = 0 on the
Killing spinors. It is not apparent that this condition always holds for flat backgrounds. On the
other hand we are not aware of examples that it does not and so the question will be investigated

further elsewhere.
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3.15 Summary

In this chapter, the Killing spinor equations of AdS, X, M9~ and R*™' x,, M9-" IIB
backgrounds have been solved. As a result, it was possible to determine the supersymmetry
fractions preserved by these spaces. AdS,, backgrounds preserve N = 2L%sz supersymmetries
forn < 4and N = olsl+1p supersymmetries for 4 < n < 6. It has also been proven that
there are no supersymmetric IIB AdS,, backgrounds for n > 7. Rb™! backgrounds preserve
N =2l supersymmetries for 2 <n <4 and N = ol supersymmetries for 4 < n < 8.

Often, when supersymmetric AdS backgrounds are discussed, it is assumed that the Killing
spinors factorize into an AdS Killing spinor and a transverse Killing spinor[27, 28, 30, 41]. How-
ever, when this assumption is applied as an ansatz in addition to these results, the allowed
supersymmetry fractions are further restricted. This indicates that the Killing spinors do not
factorize in general, but only in special cases.

Additionally, for each AdS,, background, a Lichnerowicz-type theorem has been proven.
These theorems assume that the transverse space satisfies the requirements of the Hopf maximum
principle, which I use to prove that the o,- and 7;-type Killing spinors are of constant length.
Simultaneously, they prove that the Killing spinors are exactly the zero modes of a Dirac-like

operator on the transverse space.
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Chapter 4

ITA Backgrounds

ITA AdS backgrounds have also been of significant interest, both on their own and in relation
to dual IIB and M-theory backgrounds [42, 30, 43, 44, 45, 46, 32]. Although they are similar
to IIB backgrounds in many ways, the analysis in this chapter has some important differences
from chapter 3. In particular, it is known that there are no maximally supersymmetric ITA AdS
backgrounds.

The local analysis that is covered in this chapter demonstrates supersymmetry enhancement
for all AdS backgrounds. AdS,, backgrounds are found to always have N = 2LZ)k supersymme-
tries for 2 <m < 4 and N = 2Ll5]+1k supersymmetries for 5 < n < 7, where k € Z. Note that for
AdS3 backgrounds, this means that supersymmetric backgrounds preserve 2k supersymmetries.
In the next chapter, the same result will be demonstrated for heterotic backgrounds.

Additionally, I prove a Lichnerowicz-type theorem for each AdS background discussed, using
methods similar to those in chapter 3. It’s worth noting that there are some important differences
between the algebra of these proofs and the IIB proofs. In particular, it is now necessary to

include the dilatino Killing spinor equation in the Dirac-like operator.

4.1 AdSy x,, M8

4.1.1 Fields, Bianchi identities and Field Equations
Fields

As has already been mentioned, all AdS backgrounds are included in the near horizon geometries.
To describe the fields of AdSs x,, M? it suffices to impose the isometries of the AdS, space on

all the fields of the near horizon geometries of [8, 9]. In such a case, the fields! can be written as

ds* = 2ete” +ds*(M®),

IThe choice of the fields of AdS2 x., M8 backgrounds here is different from that of near horizon geometries in
[8]. In particular all R-R fields have been multiplied by e®. For more details see [47] and [48].
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G = e"hNe " AX+Y, H=e"Ne AW+ Z,
F = ethe N+P, S=S, &=90. (4.1.1)

where X and P are 2-forms on M8, Y is a 4-form on M®, Z is a 3-form on M8, and N and

(]

the dilaton ® are functions on M8. S = e®m, where m is the mass parameter of massive IIA

supergravity. For the standard ITA supergravity m = 0 and so S = 0. Furthermore,

et = du, e =(dr+rh- %T2Adu) ,
h 247 'dA=AT1dA, A=0%A77 (4.1.2)

where the dependence on the coordinates w,r is explicit, A is the warp factor which depends
only on the coordinates of M® and ¢ is the radius of AdSs.

Bianchi identities and Field equations

The Bianchi identities of (massive) IIA supergravity reduce to differential identities on the com-

ponents of the fields localized on M. In particular a direct computation reveals that

d(A*W) 0, d(A*X)—A%ddNX - A*WAP—-A’NZ=0,
dZ = 0, d(A’N)— A’Nd® - SA*W =0,
dY —d®ANY = ZAP, dP—-d®AP=S7. (4.1.3)

Similarly, the field equations of the (massive) ITA supergravity decomposed as

. . ) ) 1 .
VI Pj; + (207 log A — &7 ®) Py — WI Xy + EZJ“YJ-M =0,
. 1, 1
*IV (e TTWL) = SN — SPY X + 2w Vi,
1
62(I)Vk(€72q>2kij) — SP” + 28’“ log AZkij + NXZJ - ipklyk”j

Yil...i4 =0 ,

1
- iXkZ *Yi* =0,

) ) 1
VIXi = 00X i + YiMheks Zy ks =0,

) ) ) 1
VYijke + (20" log A — 0'®)Yijne — = Xmyms * Zjre™™?

2
— %Y Wn =0,
, , 1 1
V20 + 247 19° 40,8 = 20'P0; D + 5W2 — EZ2 — Zz\ﬂ
3 1 1 5
+ gP2 - §X2 + %W + 152 : (4.1.4)

and in particular the Einstein equation decomposes as

. . 1
Vi;ilog A+ A+ 2(dlog A)? = 20" log A 0;® + §W2
1 1 1 1 1
7N2 *XQ 7P2_7y2_782
* 4 * 8 + 8 96 477 1 1 1
R =2V,0; log A + 20;log A9, log A — 2V;0;® — SWiWi + L 25 + 5 P
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1 1 1 1 1 1
— X2+ Y240, (-N* -8 - P> —X? - _Y? 4.1.
gttt T J(4 45 g T8 ) (4.1.5)

where V is the Levi-Civita connection on M® and the Latin indices 3,4, k,... are frame M?

indices.

4.1.2 Local aspects: Solutions of KSEs
Solution of KSEs along AdS,

The solution of the KSEs for AdSy x,, M8 backgrounds is a special case of that presented for ITA
horizons in [8]. In particular, the solution of the KSEs along the AdSs directions can be written

as

€=¢€4y te_,
e =np+ul1O_n_, e =n_+rT_O (ny +ul+O_n_), (4.1.6)

where ' ey =0,

__b
8- 4!

and 7+ depend only on the coordinates of M8. This summarizes the solution of the KSEs along

the AdSs directions.

CHE —%A*aA FOaW - %Fn(ﬂ:?N +P) (F12X +Y) - éS ) (4.1.7)

Independent KSEs on M8

Having solved the KSEs along the AdSy directions, it remains to identify the remaining inde-
pendent KSEs. This is not straightforward. After substituting (4.1.6) back into the KSEs of
(massive) ITA supergravity and expanding in the u and r coordinates, one finds a large number
of conditions. These can be interpreted as integrability conditions along the AdS; and mixed
AdS, and M?8 directions. However after an extensive analysis which involves the use of Bianchi

identities and field equations, one finds that the remaining independent KSEs are

Vi =0, A®n =0, (4.1.8)
where
vE v, 0 (4.1.9)
and
@ _ ylacigactyr o b oyrn o lop
v = 454 81A:EI6XF£+8_%!YF1+§SF1
r “W;+ =%, £ -NI'; — —PT;) , 4.1.10
+ 11(:F4 +8Z 3 16P ) ( )
and
1 1 5
) _ : L 2
A <§9<I>+(q:8X+4_4!Y+4S)
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1 1 3 3
+F11(i5WfEZ¢ZN+§P) : (4.1.11)
Furthermore, one can show that if n_ is a Killing spinor, ie satisfies (4.1.8), then
77+ = F+@,77, ; (4112)

is also a Killing spinor.

Counting supersymmetries

The investigation so far is not sufficient to prove that the number of supersymmetries preserved by
AdS, x, M8 backgrounds is even. To prove this, some additional restrictions on the backgrounds

are necessary which will be described in the next section.

4.1.3 Global aspects: Lichnerowicz type theorems
The non-vanishing of warp factor A

To proceed, we shall show that if A and the fields are smooth, then A does not vanish on M?8.
The argument which proves this is similar to that used in [13] and [14] to demonstrate the
analogous statements for D=11 and IIB AdS backgrounds, and where a more detailed analysis
is presented. Here we present a brief description of the proof which relies on the field equation
of A. Assuming that A does not vanish everywhere on M, we multiply that field equation of A
with A? at a value for which A? # 0 to find

, . , 1 1
—AV'Q,A— 7% — 0" A9; A = —2A0" A9, ® — §A?W2 - ZA?J\f?
1 1 1 1
— CAPX? - S APP? - —APY? - —A%S7 4.1.13

8 8 96 4 ( )
Then taking a sequence that converges to a point in M?® that A vanishes, we find that if such a
point exists it is inconsistent with the above field equation as ¢ is the radius of AdSs which is
finite. As a result for smooth solutions, A cannot vanish anywhere on M8.

Lichnerowicz type theorems for 7.

The Killing spinors n4 can be identified with the zero modes of a suitable Dirac-like operator on

M?3. In particular, let us define
9® — ¢® _ &) (4.1.14)
where &) = ¥ + U(F) | ¥ is the Dirac operator on M3, and
. 1 1 1 1 1
v =g = S ATIPAF X+ S+ T (W - SZFN+P). (4.1.15)

It turns out that if the fields and M?® satisfy the requirements for the maximum principle to

apply, eg M?® is compact without boundary and all the fields are smooth, then

V=0, A®n=0e= 9, =0. (4.1.16)
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It is clear that the proof of this in the forward direction is straightforward. To establish the
opposite direction for the 7, spinors, let us assume that 2(t)n, = 0. Then after some extensive

algebra using the Bianchi identities and the field equations, one finds [8] that

V2 [y 7 —2(0'@ — A1 AV |y |1P=
2| Vg | —(4k + 1657) | ATy |2, (4.1.17)
where

VO — v® L A® | (4.1.18)

Applying the maximum principle for x € (—i, 0), one concludes that the solutions of the above

equation are Killing spinors and that
Il n+ ||= const . (4.1.19)
Similarly assuming that 2(~)n_ = 0, one can establish the identity

V(A - [P ) —200'0 ~ A AVI(A | |?) =
A7 | VI |2 —(dk + 1652 A7 | A |2 . (4.1.20)

Again the application of the maximum principle for x € (—i, 0) gives that 7_ is a Killing spinor
and that

A1 || n_ ||= const . (4.1.21)

The proof for this for near horizon geometries [8] is based on a partial integration argument

instead.

4.1.4 Counting of supersymmetries

The counting of supersymmetries for AdSs x., M® backgrounds under the assumptions made
in the previous section is a special case of the proof of [8] that ITA horizons always preserve
an even number of supersymmetries. Here, we shall briefly repeat the argument. If Np =
dim Ker (Vgi), A(i)), then the number of supersymmetries preserved by the background is N =

Ny + N_. On the other hand from the Lichnerowicz type theorems of the previous section

Ny = dimKer 2F) (4.1.22)
Furthermore, it turns out that (e?®I'_) (.@H))T = 27 (e**I'_) and so

N_ = dimKer 21 (4.1.23)

On the other hand the index of (1) is the same as the index of the Dirac operator Y acting
on the Majorana representation of Spin(8). The latter vanishes and so N = N_. Thus we
conclude that AdSy x., M8 solutions preserve

N=N,+N_=2N_, (4.1.24)

supersymmetries confirming that N = 2k.
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4.2 AdS; x, M7

4.2.1 Fields, Bianchi identities and field equations

The fields of AdS3 backgrounds which are compatible with the AdS3 symmetries are

ds* = 2ete” + A%d2? +ds*(M7)
G = Ae"he ANdzAX+Y, F=F,
H = AWetAe Adz+Z, §=S, =90, (4.2.1)
where
et = du, e =(dr+rh), A=0
2
h = —Zdz—2A_1dA, (4.2.2)

A is the warp factor which depends only on the coordinates of M7, (r,u, z) are the coordinates
of AdS3, X is a 1-form, S, ®, W are functions, F'is a 2-form, Z is a 3-form and Y is a 4-form on
M7, respectively.

The Bianchi identities of (massive) ITA supergravity can now be rewritten as differential

relations of the fields on M7 as

dZ = 0, dAW)=0, dS=Sdd,
dFF = dPANF+SZ+ASWet Ae” ANdz, dY =dPAY +ZAF
dX = -3A'AANX+d®PAX - WF. (4.2.3)

The Bianchi identity involving dF' is consistent if either S = 0, or W = 0. Therefore there are
two distinct AdS3 backgrounds to consider. One is a standard ITA supergravity background with
a non-vanishing component for H on AdSs or a massive IIA supergravity background with H
that has components only along M.

Decomposing the field equations of (massive) ITA supergravity for the fields (5.1.1), one finds
that

, 1 1 5 3 1 1
2 —1 v 2 2 2 2 2 2 2
d = —347'9,A0D +2dD)? — —Z>+-W?4+ 82+ F24 —y?_ X%,
Vv +2(d®) 12 1+2 17T T 4
VFH = —3A7'0FAHj; +20"®H,j, + §YijngM + SF; ,
. . . 1 .
VJFij = —3A_18JAF1‘J‘ + 8]<I>Fij -WX,; — 6 ijngjké ,
ViX; = 0;0X'—x:(ZAY),
Ve = —3A7'0"AYijne + 0'Yijpe +57(Z AN X = WY )i (4.2.4)

and that the Einstein equation separates into an AdS component,

VinA = —%A*Q - %A*?(dA)2 +2A4710,A0'® + %WQ + %SQ + éFZ + %YQ + ix“‘ (4.2.5)
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and a transverse component,

1 1 1

R =3V,V,;In A+ 34720,A0,A + Y~ XX, - Y2y (4.2.6)
1 1 1 1 1

+ ZXZ&‘]' - 1525713' + ZZEJ + iFZQJ - §F251vj —2V,;V;2,

where V and Rg—) are the Levi-Civita connection and the Ricci tensor of M7, respectively. The

latter contracts to

1 7 3 1 5
(€0 — 2 -2 222 Loz _2Op2, L y2, 2%2  9y2p
! 3V6 AT ST S T T e 5+4 1 N
= —E—QA*2 — 6A72(dA)* + 124710, A0'® — 4(d2)* + 5 Z* + W
7 2 3 2 1 2 5 9
—-S§2 - CFrp —y?4Tx? 4.2.7
27 T TR T3 (4.2.7)

This form of the Ricci scalar is essential to establish the maximum principle formulae necessary

for identifying the Killing spinors with the zero modes of Dirac-like operators.
4.2.2 Local aspects: solution of KSEs

Solution of KSEs along AdS;

The gravitino KSE along the AdS3 directions gives

Ouer + AT, (671 — E_)e:F =
Orex — AT _Z ex
Oser —Zqex +2r0TATIT _Eier = 0 (4.2.8)

where
1

1 1 1 1 1 1
—@AT, + —AWT 1, — —AST, — —AFT.T'1; — —AYT, ¥ -AX. 4.2.9
%4—2@ 2 E 7 WT'4 3 S 6 Fr.T; 192 Y :Fg X ( )

Ei=F

As in the AdSs case, we integrate these equations along r and u, and then along z. First observe
that

0, =A"T,2,, 6. =A"T,(E_-¢1, (4.2.10)

and that
Eqly +1.4Ex =0, (4.2.11)
Eul, +T,_E+=0. (4.2.12)

Integrating along the r and u coordinates, one finds that the Killing spinor can be expressed as
in (4.1.6). To integrate along z first note that the only AdS-AdS integrability condition is

(B2 £ 020 )er =0. (4.2.13)
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Using this, one finds that the integration along z yields
ne =oy +et* iy (4.2.14)

where
=104 =0 EiTy = :Fg_lTi , (4.2.15)
and 04,74+ are 16-component spinors counted over the reals, 1oy = ' 71 = 0, that depend
only on the coordinates of M7.
Combining all the above results together, one finds that the solution of the KSEs along AdS3

can be written as

€ = €4 +e_ =U+—|—e_%7'+—|—a,+e%7;
WA o — AT e T Ty (4.2.16)

where the dependence of € on the AdSs coordinates (u,r, z) is given explicitly while the depen-

dence on the coordinates y of M7 is via that of o1, 74 spinors.

Remaining independent KSEs

As we have seen the KSEs of (massive) ITA supergravity have been solved provided that one
imposes the additional conditions (4.2.15). It is convenient to interpret these as new additional
KSEs on M. In order to describe simultaneously the conditions on both the o+ and 7+ spinors,

we write x4+ = 04,7+ and introduce

1 1 1
BE — 5 4 CPAT, + —AWT,, — —AST.,
?21€+2<? 41VV11 818
where ¢ = 1 when x+ = o4 and ¢ = —1 when x4+ = 7.
Using this, the remaining independent KSEs are
Vz(-i)Xi =0, A®yyi=0, BHFy, =0, (4.2.18)
where
v~ v pue®
(3 K 7 9
1 1
A® = o+ EZFH FoWII'n
5 3 1 1
- —FT —Y £ -XT,, 4.2.1
S+ T+ o6V £ X (4.2.19)
and where
v® — 1 a4 a4 tori+ Lprrn £ Sy + LxT., (4.2.20)
i 2 7 8 i+ 11 8 7 16 7111 192 1 8 F2 A L

It is clear that the first two equations in (4.2.18) are the restrictions imposed on x4 from gravitino
and dilatino KSEs of (massive) ITA supergravity on M, while the last equation has arisen from
the integration of the supergravity KSEs on AdSs. All the other integrability conditions that

arise in the analysis follow from (4.2.18), the Bianchi identities and the field equations.
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Counting supersymmetries

The number of supersymmetries preserved by AdSs x,, M7 backgrounds is the number of solutions
of the KSEs (4.2.18). Thus

N=Ny+N_=(No, +N-.)+(Ny_ +N-_), (4.2.21)

where N,, and N,, denote the number of o+ and 7+ Killing spinors, respectively. To prove that

AdS3 backgrounds preserve an even number of supersymmetries observe that if xy_, for y_ = o_
or x_— = 7_, is a Killing spinor, ie it solves all the three equations in (4.2.18), then
X+ =A"T X, (4.2.22)

also solves the KSEs (4.2.18). Vice versa if x4 solves the KSEs in (4.2.18), then
X— =AT_.x+ , (4.2.23)

also solves the KSEs. Therefore Ny = N_ and so N = 2N_. Observe also that if N, , N, #0
or No_,N, #0,then N =2(N,_+ N,_).

4.2.3 Global aspects

Here we shall demonstrate that the Killing spinors can be identified with the zero modes of
a suitable Dirac-like operator on M7. We shall demonstrate this using the Hopf maximum
principle as for the case of AdSy x,, M® backgrounds. As we have already mentioned the Bianchi
identity for F' in (B.5.6) implies that there are two different AdS3 x,, M” backgrounds to consider
depending on whether the mass term vanishes and H is allowed to have a component along AdSs,
or the mass term does not vanish and H has components only along M*. Unlike the local analysis
we have presented so far, the proof below of the Lichnerowicz type theorems is sensitive to the
two different cases and they will be investigated separately. However, the end result is the same
including coefficients in some key formulae. Because of this and to save space, we shall present
them together in the summary of the proof described below.

Furthermore, an argument similar to the one we have presented for AdS, backgrounds implies
that for smooth solutions A does not vanish at any point on M. This is based on the investigation
of the field equation for A.

Lichnerowicz type theorems for o1 and 7+
To begin let us introduce the modified parallel transport operator
o v Ly g p A (4.2.24)
? (3 7 1z 7 K3 ] VN
and the associated Dirac-like operator

9 =y _4-1p B — A (4.2.25)
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It is clear that if x4 is a Killing spinor, for x4 = o4 or x4+ = 74, ie satisfies the conditions
(4.2.18), then 2*)x, = 0. To prove the converse suppose that 2(t)x, = 0, then after some
computation which utilizes the field equations, Bianchi identities (and has been presented in

appendix B.5), one can establish the identity

_ i B 16 _
v? | x+ ||2 + (34 10, A — 20i2)V" || x+ ||2:|| V(+)X+ ||2 +7 | A 111z]B(+)X+ ||2
4, 2
+§<A B X, A x ) + - A X |1? . (4.2.26)

First observe that the right-hand-side of the above expression is positive semi-definite. Applying
the maximum principle on || x4 ||?, one concludes that V() y, = By, = AH)y, =0 and
that

Il x+ ||= const. (4.2.27)

Therefore x is a Killing spinor. Thus provided that the fields and M7 satisfy the conditions for

the maximum principle to apply, we have established that
Vi =0, BHyx,=0, APy, =0 9y, =0. (4.2.28)

It is remarkable that the zero modes of 2(*) satisfy all three KSEs.

Although we have presented Lichnerowicz type theorems for oy and 74 spinors, there is
another similar theorem for o_ and 7_ spinors. This can be established either by a direct
computation or by using (4.2.23) which relates the x4 with the y_ spinors. For this observe
that in addition to the KSEs, the Clifford algebra operation AI'_, intertwines between the
corresponding Dirac-like operators 2(*) and 2(-).

Counting supersymmetries again

A consequence of the theorems of the previous section is that the number of supersymmetries of
AdS;3 x, M7 backgrounds can be counted in terms of the zero modes of the Dirac-like operators

2F) . In particular, one has that
N = 2(dim Ker @(_)|c:1 + dim Ker @(_)|c:,1) . (4.2.29)

It is likely that the dimension of these kernels, as the dimension of the Kernel of the standard

Dirac operator, depend on the geometry of M7, ie they are not topological.

4.3 AdS, x, M6

4.3.1 Fields, Bianchi identities and field equations

The fields of AdS, x,, M® backgrounds are

ds?> = 2ete + A%(d2® + e**/*da?) + ds*(MO) |
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G = A%t Ne  AdzANdzX +Y
H = H, F=F, =9, S=5, (4.3.1)

where A, X, ® and S are functions, Y is a 4-form, H is a 3-form and F is a 2-form on M9,
respectively, and

2
et =du, e =dr+rh, h:—zdz—QA_ldA, A=0. (4.3.2)

A is the warp factor. The dependence of the fields on the AdSs coordinates (u,r, z,z) is given
explicitly, while the dependence of the fields of the coordinates y of M9 is suppressed.
The Bianchi identities of (massive) ITA supergravity impose the following conditions on the

various components of the fields.

dH = 0, dS=8dd, dF=d®AF+SH,
dY = d®AY+HAF, d(A*X)= A% . (4.3.3)

Similarly, the field equations of the fluxes of (massive) ITA supergravity give

; 5 3 1 1 1
2 -1 2 2 2 2 2 2
® = —4AT0"A0;D+2(dP = ~F*— —H*+ Y- -X*
v 88+()+4S+8112 * 5% 1
VkHijk = —4A718kAHijk + 28’“<I>Hijk + SFij + ierGijkg ,
, 4 ' 1
ViF; = —4AA'OAF,; + 0 ®F;; — EFMGW :
Ve = —4AT'0AYijne + 0" Y00 (4.3.4)
and the Einstein equation separates into an AdS component,
; 1
VZinA = —302A72% —4A7%(dA)* +24710;A0'® + %YZ
1 1 1
—X?4 -5+ - F? 4.3.5
+ X0 S g (4.3.5)
and a component on M6,
(6) -2 Lo 1o Lo
Rij = 4ViVj InA+4A 81A8]A + E)/Zj - %Y 6ij + ZX 51’]’
1 1 1 1
- 1525@- + ZHfj + 5Ffj - §F2aij —2V,V,;® , (4.3.6)
where RE?) is the Ricci tensor of M®. The latter contracts to
RO = 4VZInA+4A72(dA)? + Ly2i 352 3 I lp yog
48 ) 2 2 4 5 4
= 12072472 1247 %(dA)? + ﬂyz’ +3X%-35%+ EH2
1 .
—§F2 + 164710, A0'® — 4(d®)?. (4.3.7)

This expression for the Ricci scalar is used in the proof of the Lichnerowicz type theorems for

these backgrounds.
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4.3.2 Local aspects: Solution of KSEs
Solution of KSEs on AdS,

The KSEs of (massive) ITA supergravity along the AdS, directions give

Oyer + AT, (671 — E_)ejF 0
Or€x — A_lf,ZE+63F =0
Oser —Zaper + 200 TATIT _Eier = 0,
Opey +e*'T 806 = 0
0

Ope_ +e*'T,, (E_ — 6_1)6_ , (4.3.8)
where
By = Ta + 1&MF 1ASF iAFF r iAYF 1AXF (4.3.9)
Hi—:’:2€ 9 z 3 z 16 z1 11 192 Z:FS z- -9
Using
Eql 4 +T.08 = 0, Exl,_+T.,_EL =0,
Einw + szEi = ?f_ll—‘zwy (4310)
one finds that there is only one integrability condition along all AdS, directions,
(B2 020 )er =0 (4.3.11)

Thus, we can easily integrate the KSEs along AdS,. In particular, the integration along r,u
and z proceeds as for the AdS; backgrounds. Then integrating along =, we find that the Killing

spinors can be expressed as

€ = e4t+e =0 L alry+e i o Fel(r. —0 2l 0 )
WA o — T r AT e T Ty (4.3.12)
where
=4r04 =0 STy = :Ff_lTi , (4.3.13)

and o+ and 7+ depend only on the coordinates of M®. Observe that o4 and 74 are again
16-component spinors counted over the reals.
Remaining independent KSEs

Having integrated the KSEs of (massive) ITA supergravity along the AdSy, it remains to identify
the remaining independent KSEs. For this, let us collectively denote (o, 74 ) with x4. It is also
convenient to view (4.3.13) as additional KSEs on MS. Investigating the various integrability

conditions that arise, one finds that the remaining independent KSEs are

Vi =0, A®xi=0, BHy.=0, (4.3.14)
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where

v = v e
A® = goy Lpr, 425y 2pr, v Ly 3 lxr,
121 41 8 ) 96 4 ’
BE) = £ 4 SgAT, — ~AST, — — AFT.T
Tt 2? 8 f 16 AFT-I'n
— gAY F GAXT, (4.3.15)
and where
1 1 1 1 1 1
O — 4~ 9 A+ P Ty + =STy 4+ — T 4+ — YT F =X - 4.3.16
i 24 +8H1 11+8 +16F 11+192Y :FS ( )
The constant ¢ in B(*) is chosen such that ¢ = 1 for x4+ = o4 and ¢ = —1 for y4+ = 74. Clearly,

the first two equations in (4.3.14) arise from the gravitino and dilatino KSEs of (massive) ITA
supergravity as adapted on the spinors x4, respectively. The last equation in (4.3.14) implements
(4.3.13) on the spinors.

Counting of supersymmetries
The number of Killing spinors of AdS, backgrounds is

N=Ny+N_=(No, +N-.)+(Ny_ +N-_), (4.3.17)

where N,, and N,, denote the number of o+ and 74 Killing spinors, respectively.

As for AdS3 backgrounds one can verify by a direct computation that if x_ is a Killing spinor,
ie solves (4.3.14), then y, = A7, ,x_ is also a Killing spinor, and vice-versa if y, is a Killing
spinor, then y_ = AI'_,x is also a Killing spinor. Furthermore, one can also verify that if 7

is a Killing spinor, then

or =TTy, (4.3.18)
is also a Killing spinor, and vice versa if o4 is a Killing spinor, then

T+ =p04 (4.3.19)
is a Killing spinor. As a result of this analysis, N,, = N, = N,_ = N._ and so

N =4N,_ . (4.3.20)

4.3.3 Global aspects

As in all previous cases, one can demonstrate that if the fields are smooth, then A does not
vanish at any point of M°. The argument is similar to that presented in the previous two cases

and so it will not be repeated here.
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Lichnerowicz type theorems for o4 and 74

The Killing spinors o4+ and 74 of AdS; backgrounds can be identified with the zero modes of a

Dirac-like operator on M9, To determine this Dirac-like operator first define

ﬁfﬁztdifféA”er&>férwﬂi>. (4.3.21)
and the associated Dirac-like operator
9@ =9 Zg® _os-ippE _ 4@ | (4.3.22)
Then one can establish that
vl(i)xi =0, BHEyy =0, AFy, =0 9Fy,=0. (4.3.23)

It is apparent that if x4+ = (0, 7+) are Killing spinors, then they are zero modes of 2(*). The
task is to demonstrate the converse. We shall do this first for x4 spinors. In particular let us
assume that 2(t)y, = 0. Then after some extensive Clifford algebra calculus which is presented
in appendix B.13 and after using the Bianchi identities and the field equations, like (4.3.7), one

can show that

vl X*1§2 +(4A A - 281'@4“ I x I1P=1 Vx4 |12
+ 3 | A7, BH) xy |2 +§<A71Fz3(+)x+w4(+)x+>

1
T3 A Xy |1 (4.3.24)

First observe that the right-hand-side of the above expression is positive semi-definite. Assuming
that M® and the fields satisfy the requirements for the application of the maximum principle to
apply, eg M% compact without boundary and fields smooth, one concludes that y is a Killing

spinor and in addition
Il X+ ||= const . (4.3.25)

This proves (4.3.23) for the x4 spinors.

To prove (4.3.23) for the x_ spinors, one can either perform a similar computation to that of
the x4 spinors or simply use the relation y_ = AT'_, x4 between x4 and x_ spinors and observe
that the Clifford algebra operation AI'_, intertwines between the Killing spinor equations and
the Dirac-like operators. In particular, the analogous maximum principle relation to (4.3.24) for

X_ spinors can be constructed from (4.3.24) by simply setting y, = AT, .y _.

Counting supersymmetries again

A consequence of the theorems of the previous section is that one can count the number of
supersymmetries of AdSy X, M6 backgrounds in terms of the dimension of the Kernel of 2(+)

operators. In particular, one has that

N = 4dim Ker 27—, . (4.3.26)
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As dimKer 2(7)|.—; = dimKer 2(7)|.—_; = dimKer 2(Y)|._; = dimKer 2(*)|.__;, one can

use equivalently in the above formula the dimension of the Kernels of any of these operators.

4.4 AdS, x, MO n>5

4.4.1 Fields, Bianchi identities and field equations

For all AdS,, x, M'°~" n > 5, backgrounds, the form fluxes have non-vanishing components
only along M'°~". In particular, the fields can be expressed as

n—3

ds*> = 2ete” + A*(d2”+ e/t Z(dw“)Q) +ds* (MO
G - G, H=H, F=F. -0, §—5, (4.4.1)
where A, ® and S are functions, G is a 4-form, H is a 3-form and F is a 2-form on M9, respectively,
and
et =du, e =dr+rh, h:f%dzﬂA*ldA, A=0. (4.4.2)

A is the warp factor and ¢ is the radius of AdS,. The dependence of the fields on the AdSy
coordinates (u,r, z,2%) is given explicitly, while the dependence of the fields of the coordinates
y of M19~" is suppressed. Clearly additional fluxes will vanish for large enough n, eg AdS;
backgrounds cannot have 4-form fluxes, G = 0.

The Bianchi identities of the (massive) ITA supergravity give

dH = 0, dS=Sd®, dF =d®AF+SH,
dG = dPNG+HAF. (4.4.3)

Furthermore, the field equations of (massive) IIA supergravity give

. 5 3 1 1
2d — . A—laign 2, 2q2 , 92 Lo 1o
V0 = —nA 9" A0;® + 2(dD) +4S + 8F 12H + 96G , (4.4.4)
krr . o A—lak Arr. k17 SR
v Hz;k =-—nA""0 A];I”]€ + 20 (I)szk + SF” + 2F ngk[ R (445)
, , , 1 .
VIiF,; = —nA" 0 AF;; + 0 ®F;; — EFJ“GZ-W : (4.4.6)
ViGijre = —nAT O AG jre + 0 ®Gijie (4.4.7)

and the Einstein equation separates into an AdS component,

VZinA=—(n—1)02A"2 —nA %(dA)? +24710,A0'® + %GQ + 352 + éFQ, (4.4.8)

and M9~ component,

—n _ 1 1
RG"™ = nV,V;In A+ nA~20,A0;A + 1365 — 55670 (4.4.9)
1 1 1 1
- 1525” + ZHEj +3 2 gF?éij —2V,V,;® |
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where jol-ofn) is the Ricci tensor of M10~"_ The latter contracts to

-2 10 — 1
RIO=™  — pV2In A+ nA2(dA)? + ”96 G? - 04 Te2 ZH2
n=0p oy
-2
= —nln— 102472 —p(n— 1)A2(dA)? + ”48 G2
00-n_ 5 _o n—06_,
o9+ 12{{ +=F
+4nAT19; A0'D — 4(dD)* . (4.4.10)

The expression for the Ricci scalar is essential for the proof of the Lichnerowicz type theorems

below.

4.4.2 Local aspects: Solution of KSEs
Solution of KSEs along AdS,,

The gravitino KSE of (massive) ITA supergravity along the AdS,, directions gives

Quer + AT (0T =2 )er 0
Or€x — A_ll—‘,z5+e:': = 0
0,64 —Zieql + 2T€71A711—‘,ZE+53F = 0,
Oa€q + ez/ZanE+e+ = 0
0

Qe + e/ To0(E- —0ee = 0, (4.4.11)
where
= = +1aAr Last 1AFFF ! AGET (4.4.12)
SET g TP e gl T g n T gy A -
Using the identities,
Eily +T.024=0, (4.4.13)
Bl 4+ T,Ex =0, (4.4.14)
E:i:]-—‘za + anE:I: - q:g_ll—‘za7 (4415)
ones finds that all these equations can be solved provided the integrability condition
(E2£0'2)er =0, (4.4.16)
is satisfied. In particular, one finds that the Killing spinor can be expressed as
n—3 n—3
€ = e te =0 -1 Z Taori +e iry +0_ +ei(r. —07! Z 2T .0-)
a=1 a=1
WA o — 0 r AT eI Ty (4.4.17)
where
=404+ =0 STy = ¥f_17‘i , (4.4.18)
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and o4 and 74 are 16-component spinors depending only on the coordinates of M'9~". The
dependence of the Killing spinors on the AdS,, coordinates is given explicitly while that of the

coordinates y of M'°~" is via the o4 and 74 spinors.

Remaining independent KSEs

Having solved the gravitino KSE along AdS,,, n > 4, to count the number of supersymmetries
preserved by these backgrounds, one has to identify the remaining independent KSEs. There
are several integrability conditions which have to be considered. However after using the field

equations and the Bianchi identities, one finds that the remaining independent KSEs are

VE =0, A®y, =0, B®y,=0, (4.4.19)
where
vid = V:+ NS
' i\ 5
A(i) = a¢+ﬁﬂr11+45+ FF11+ @)
1 1 1 1
B®) = AT, — A T AFT-T 1 — 7o AGT. 4.4.2
$2£+2&9 - gAST. F 1 109 ¢r. , (4.4.20)
and where 1 1 1 1 1
0@ 1 L9 A+ ST, + SST, + — FTTy + —— @, . 4.4.21
i QAa +8H’ 11+85 +16F 11+192$ ( )
We have also set x+ = (04,7+), and ¢ = 1 whenever xy+ = o+ and ¢ = —1 whenever x4+ = 7.

The first two KSEs in (4.4.19) arise from gravitino and dilatino KSEs of (massive) ITA super-
gravity as they are implemented on ., respectively. The last equation in (4.4.19) is the condition
(4.4.18) which is now interpreted as additional algebraic KSE. All the remaining integrability
conditions are implied from (4.4.19), the Bianchi identities and the field equations.

Counting supersymmetries

As in previous cases, the number of supersymmetries N of AdS,, backgrounds is
N=Ny+N_=(No, +Nr.)+(Ns_ +N:_), (4.4.22)

where N,, and N,, denote the number of o+ and 74 Killing spinors, respectively.

A direct inspection of the remaining independent KSEs (4.4.19) reveals that if x_ is a solution,
then so is x; = A7, .x_, and vice-versa if x, is a Killing spinor, then y_ = AI'_,x, is also
a Killing spinor. Therefore Ny = N_. Moreover to count the number of supersymmetries it
suffices to count the number of x_ spinors.

Furthermore if 7_ is a Killing spinor, then o_ = T'y,7_ is also a Killing spinor, and vice
versa if o_ is a Killing spinor, then 7— = I'j,0_ is a Killing spinor. Thus N,_ = N,_ and so

N = 4N, _. Therefore, it remains to count the number of o_ Killing spinors.
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For this observe that if o_ is a Killing spinor, then
o =Two_, a<b, (4.4.23)

is also a Killing spinor. To find N,_, one has to count the number of linearly independent
(0,Tap0—),a < b spinors. This depends on n. For n = 5, a,b = 1,2 and (0,T'120) are linearly
independent. Thus AdSs backgrounds preserve N = 8k supersymmetries. Next for n = 6,
a,b = 1,2,3 and (0,'190,T'130,T'230) are linearly independent. Thus AdSg backgrounds pre-
serve N = 16k supersymmetries. To continue for n = 7, a,b = 1,2,3,4. It turns out that in
this case the Clifford algebra operation I'1234 commutes with all KSEs and therefore one can
impose consistently [iogao® = :I:Uf, ie one can restrict o_ to lie in one of the eigenspaces of
T'1234. In such a case, there are only 4 linearly independent spinors (o_,Tgp0_), a < b. Thus
AdS; backgrounds again preserve 16k supersymmetries. These results confirm the counting of
supersymmetries as stated above.

There are no AdS,,, n > 7 backgrounds. This can be seen as follows. If the counting of
supersymmetries proceeds in the same way one can show that all such backgrounds preserve 32
supersymmetries. The maximally supersymmetric backgrounds of (massive) ITA supergravity
have been classified in [37] and they do not include AdS,, x,, M°~" spaces. The same result

can be used to rule out the existence of AdS7 backgrounds that preserve 32 supersymmetries.

4.4.3 Global aspects
Lichnerowicz type theorems for o4 and 74

As in all previous cases, the Killing spinors x4+ of the AdS,,, n > 4, backgrounds can be identified

with the zero modes of a suitable Dirac-like operator. To prove this first define

S _ g =2 ap pe L poe 4.4.24
V'L V'L 107’” 1z 107’” 7,A 3 (,_ )
and
@) — ¢F _g@® Sp ) _ A
9B =y =9 _(n-2)A"'1,BE — 4@ (4.4.25)
Then one can show that
V(i)xi =0, A(i)xi =0, B(i)xi =0« @(i)xi =0. (4.4.26)

Clearly the proof of this statement in the forward direction is straightforward. The main task is
to prove the converse. It suffices to show this for x spinors. This is because the Clifford algebra
operations x; = A7, ,x_ and y_ = Al'_,x, which relate these spinors intertwine between
the corresponding KSEs and the Dirac-like operators.

Next suppose that x is a zero mode of the 2(1) operator, 2(*)x, = 0. Then after some

computation which is presented in appendix B.7 which involves the use of the field equations
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and Bianchi identities, one finds that

R N 2
V2o P + (47104 = 20:0) Tl P = Vs
16(n — 2) 1 (Jr) 2 4(’n — 2) 1 (Jr) (+)
10-p HA B 2X+H BT <A TB x4, A X+>
(+) H . 4.4.2
+10—nH“4 X+ ( 7

To proceed one has to solve the above differential equations. For this observe that if the fields are
smooth A does not vanish at any point of M'°~". The proof of this is similar to that presented
in the previous cases. Furthermore, the right-hand-side of (4.4.27) is positive semi-definite. Thus
if M10~" and the fields satisfy the conditions for the application of the maximum principle, eg
M1~ compact without boundary and the fields smooth, then the only solution of this is that
X+ is a Killing spinor and that

x4 lI* = const . (4.4.28)

This completes the proof of the theorem.

Counting supersymmetries again

A consequence of the results of the previous section is that the number of supersymmetries of
AdS,, x,, M'~" backgrounds can be expressed in terms of the dimension of the Kernel of 2(+)

operators. In particular, one has that
N =4dimKer 27| —; . (4.4.29)

Equivalently, NV can be expressed in terms of dim Ker @(_)|c:_1, dim Ker 2(+) l|e=1 and
dim Ker 2(H) |c=—1 as all these numbers are equal. Furthermore dim Ker 2= |c=1 has multiplicity
2[2]-1. This can be seen by an analysis similar to that we have done for the counting the

supersymmetries of these backgrounds in section 4.4.2.

4.5 Flux rR" 1! x,, M9~ backgrounds

In the limit of large AdS radius ¢, AdS, X, M~ become warped flux R" """ x,, M10—n
backgrounds. Furthermore all the local computations we have performed for AdS,, x, M10—"
backgrounds are still valid after taking / — oo and so they can be used to investigate the
R Xw M109™™ backgrounds. These include the expressions for the fields, Bianchi identi-
ties, field equations as well as the local solutions to the KSEs, and the determination of the
independent KSEs on M10—",

However, there are some differences as well. First the counting of supersymmetries is dif-
ferent. This is because the criteria for the linear independence of the solutions of the KSEs on
MO for AdS,, X, M0~ backgrounds are different from those of R" ™" x,, M0~ back-
grounds. Secondly, the global properties of the KSEs for AdS,, X, M~ and R b, M10-n
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AdS,, X, M0 N

n=2 2k, k <15
n=3 2k, k <15
n=4 4k k<7
n=>5 8k, k<3
n==6,7 16
n>7 —

Table 4.1:  The number of supersymmetries N of AdS, X M'°~" back-
grounds are given. For AdSy x., M?®, one can show that these backgrounds
preserve an even number of supersymmetries provided that M® and the fields
satisfy the maximum principle. For the counting of supersymmetries of the
rest of the backgrounds such an assumption is not necessary. The bounds
on k arise from the non-existence of supersymmetric solutions with maximal
supersymmetry. For the remaining fractions, it is not known whether there
always exist backgrounds preserving the prescribed number of supersymme-

tries. Supersymmetric AdS,, n > 7, backgrounds do not exist.

backgrounds are different, which originates in differences between the regularity properties of
AdS,, X, MO~ and R Xw M0~ backgrounds. It is well known for example that there
are no smooth flux compactifications of supergravity theories to R™ M with a compact? internal

space M 10—,

4.5.1 Non-existence of flux R" ! x,, M'°~" backgrounds and maximum

principle

One of the main properties of AdS backgrounds is that the warp factor A can be no-where
vanishing even if M19~™ is compact. This is essential for the regularity. As we have seen, this
property relies on the radius ¢ of AdS and it is no longer valid in the limit £ — oo.

In fact one can show that the only R" ™" x,, M19=" backgrounds of (massive) ITA super-
gravity for which the fields and M'°~™ are chosen such that the maximum principle applies are
those for which all fluxes vanish, and the dilaton and warp factor are constant. To see this,
observe that the field equation of the warp factor A in all cases can be rewritten as a differential

inequality
VZInA+ b9, lnA=%>0, (4.5.1)

for some b which depends on A and the dilaton and ¥ which depends again on the fields. Therefore
it is in a form that the maximum principle can apply. Assuming that the maximum principle

applies, the only solution of this equation is that A is constant and ¥ = 0. The latter condition

2We shall demonstrate below that the same conclusion applies under a weaker hypothesis.
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in turn gives that all the fluxes must vanish apart from the component of H on M'~" and the
dilaton which are not restricted. However the vanishing of the rest of the fields turns the field
equation for the dilaton into a maximum principle form. Applying the maximum principle again
for this, one finds that the dilaton is constant and the component of H on M0~ vanishes as well.
Therefore there are no warped flux R b, M10-n backgrounds which satisfy the maximum
principle. Observe that this result applies irrespective on whether the solution is supersymmetric
or not.

In the context of flux compactifications based on R" b %, M10-7 this no-go theorem may be
circumvented in various ways. One way is to take M'°~" to be non-compact. Another way is to
no longer assume that various fields satisfy the properties required for the maximum principle to
hold, by weakening the assumption of smoothness. One can also add brane charges which modify
the Bianchi identities and the field equations, and/or add higher order corrections. However here
we shall focus on the properties of supergravity and we shall simply assume that the fields and

MU0~ do not satisfy the requirements for maximum principle to apply.

4.5.2 Supersymmetry of flux R" 1! x,, M'~" backgrounds
R x,, M8

The proof that AdS, x,, M?® backgrounds preserve an even number of supersymmetries relies
on the maximum principle which is not applicable to R™! Xw M8 supergravity backgrounds.
Because of this, we cannot establish in generality that flux R %, M8 backgrounds preserve an
even number of supersymmetries. Nevertheless some supersymmetry enhancement is expected.
In particular, we have seen that it is a property of (massive) IIA supergravity that if n_ is a
Killing spinor then ny =I';©_n_ is also a Killing spinor. Supersymmetry enhancement takes
place whenever n_ ¢ Ker ©_ and so 74 # 0. However there is no general argument which leads
to 14+ # 0 and so this has to be established on a case by case basis.

The general form of the Killing spinor is
e=ny+n_+ul' O _n_+rI_O.n, (4.5.2)

for a general choice of 4. To establish the above expression from that in (4.1.6) for AdS,
backgrounds, we have taken the limit ¢ — co and we have used the integrability conditions of
the KSEs stated in [8] which read

F;GiFi@:Fn; =0. (453)

These are automatically satisfied as a consequence of the independent KSEs on M?® (4.1.8), the
Bianchi identities and the field equations. Note that the Killing spinor € is at most linear in the
coordinates (u,r) of R"'. This conclusion arises from the general analysis we have done and it
is contrary to the expectation that the Killing spinors of flux R X M8 backgrounds do not
depend on the coordinates of R*!. Notice also that € does not depend on (u,r) whenever ny are

in the Kernel of ©. We shall further comment on these below.
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R*! x, M7
The solution of the KSEs (4.2.8) in the limit £ — oo is
e=ocr+to_+uly ,E o +rT_Eiop+2(E404 +2_0_), (4.5.4)
provided that the integrability conditions
(E1)%04 =0, (4.5.5)

are satisfied, where o4 depend only on the coordinates of M7. Moreover necessary and sufficient
conditions for € to be a Killing spinor are that o4 must satisfy the KSEs (4.2.18) on M".

Comparing the above result with that for AdS3 x,, M” backgrounds, one notices that the 7
spinors do not arise. This is because the 7+ spinors are not linearly independent from the o+ ones
for R*" x,, M7 backgrounds. The same applies for the rest of R" ™" x,, M19=" backgrounds
and so the explanation will not be repeated below.

To count the number NV of supersymmetries preserved by the R*! Xw M7 backgrounds, first
observe that N = N, + N,_, where N, and N,_ is the number of o and o_ Killing spinors,
respectively. Then notice that if o_ is a Killing spinor, then o, = A7'TI'; ,o_ is also a Killing
spinor, and vice versa if o4 is a Killing spinor then o = AI'_,0, is also a Killing spinor.
Therefore Ny, = N,_,and so N = 2N, _, ie the R*! Xw M7 solutions preserve an even number

of supersymmetries confirming the general formula.
R x,, MS
The solution of the KSEs (4.3.8) in the limit £ — oo is
e=or+to_+ul'y,E_o_ +1T_Eiop + (2 +2T4.)Eror +E_0_) (4.5.6)
provided that the integrability conditions
(Ex)?04 =0, (4.5.7)

are satisfied, where o4 depend only on the coordinates of M®. Moreover necessary and sufficient
conditions for € to be a Killing spinor are that o1 must satisfy the KSEs (4.3.14) on M?®.

The number of supersymmetries preserved by the R3*! X w M6 backgrounds is N = N, + N
where Ny, and N,_ is the number of o and o_ Killing spinors, respectively. Furthermore as in
the R*! x,, M7 case above N,, = N,_. In addition, if o4 is a Killing spinor so is 0y =T".,04.

As aresult N, are even numbers. Thus R3*! X w M® backgrounds preserve 4k supersymmetries.

R x, MO for n > 5

The solution of the KSEs (4.4.11) in the limit £ — oo is

n—3
e=oyto_+ul.Z o +1T_Eiop+(z+ Y 2'Te.) (4o +E o), (4.5.8)

a=1
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provided that the integrability conditions
(Ex)?0: =0, (4.5.9)

are satisfied, where o4 depend only on the coordinates of M!'9~". Moreover necessary and
sufficient conditions for € to be a Killing spinor are that o must satisfy the KSEs (4.4.19) on
MO,

To count the number of supersymmetries preserved by these backgrounds observe that N =
Ny, + Ny_ and that N,, = N,_ as in previous cases. Therefore it suffices to count the mul-
tiplicity of o_ Killing spinors. For this notice that for R b %, M10-n backgrounds, the z
coordinate can be treated in the same way as the z® coordinates. As a result let us denote with
2 = (z,2%) all the coordinates of R™ ! transverse to the lightcone. Furthermore observe that
if o_ is a Killing spinor so is Typro_ for a’ < b'. Therefore it suffices to count the linearly
independent (o_,Typo_), a’ < V' spinors in each case. For the analysis that follows, we shall
choose directions for convenience and therefore the analysis is not fully covariant. However, it
can be made covariant as that presented in [13].

For R*!'x wM? a direct computation reveals that there are 4 linearly independent (o, Tyrpro_),
a <UV,a,b =1,2,3, spinors leading to the conclusion that such backgrounds preserve N = 8k
supersymmetries.

For R*! x,, M4, one can impose the projection Tyog40™ = +0+ as /| = 1,2, 3,4 and since
T'1934 commutes with all KSEs. If o_ is chosen to be in one of the two eigenspaces of I'1234, then
only 4 of the (6_,Typro_), a’ <V, spinors are linearly independent. As a result, R x,, M*
backgrounds preserve N = 8k supersymmetries as well.

A similar argument implies to the counting of supersymmetries for R %, M3 backgrounds.
Imposing that o_ lies in one of the eigenspaces of I'1234, only 8 of the spinors (o_,Typo_),
a <UV,a,b =1,23,4,5 are linearly independent. Therefore these backgrounds preserve 16k
supersymmetries.

For R™! X M? backgrounds, o_ can be chosen to lie in an eigenspace of two Clifford
algebra operators, say I'1234 and T'ia56. In such a case only 8 of the spinors (o_,Tgpo_),
a <V,ad,b =1,2,3,4,56 are linearly independent and so such backgrounds also preserve 16k
supersymmetries.

Next consider the R®' x,, M? backgrounds which include the D8-brane solution. In this
case o_ can be chosen to lie in an eigenspace of I'1234, ['1256 and I'1357. For such a choice, there
are only 8 of the spinors (o_,Tppo_), a’ <¥, a’,b' =1,2,3,4,5,6,7 are linearly independent.
Therefore such backgrounds also preserve N = 16k supersymmetries.

It should also pointed out that massive ITA supergravity does not have a maximally supersym-
metric solution while all the maximally supersymmetric solutions of standard ITA supergravity
are locally isometric to R with vanishing fluxes and constant dilaton [37]. This in particular

implies that N is further restricted. The results have been summarized in table 2.
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Rn—l,l X MlO—n N

n=2 N <31
n=3 2k, k <15
n=4 4k, k <15
n=>5 8,16,24
n==06 8,16,24
n=71,8,9 16

n =10 32

Table 4.2:

The number of supersymmetries N of RY! x,, M1°~" is not a priori an even number. The
corresponding statement for AdS> backgrounds is proven using global considerations which are not
applicable in this case. For the rest, the counting of supersymmetries follows from the properties of
KSEs and the classification results of [37, 49]. Furthermore, if the Killing spinors do not depend on
R" 51 coordinates, then all backgrounds with N > 16 are locally isometric to R’ with zero fluxes

and constant dilaton as a consequence of the homogeneity conjecture [39].

4.6 On the factorization of Killing spinors

4.6.1 AdS backgrounds

Having solved the KSEs of AdS,, x,, M'°~" backgrounds without any assumptions on the form
of the Killing spinors, one can address the question of whether the Killing spinors of these spaces
factorize as € = ¥ ® & where 1 is a Killing spinor on AdS,, and ¢ is a Killing spinor on M0~
In particular, v is assumed to satisfy a KSE of the type

v,u'@[] + M,ﬂb =0, (4.6.1)

where V is the spin connection of AdS,, and A is a constant related to the radius of AdS,,. This
is an assumption which has been extensively used in the literature.

This issue has already been addressed in [13] and [14] for the AdS,, backgrounds of D=11
and IIB supergravities. In particular, it has been found that such a factorization does not occur.
In addition if one insists on such a factorization, then one gets the incorrect counting for the
supersymmetries of well-known backgrounds like AdSs x S® and AdS; x S*. The same applies
for the backgrounds of (massive) ITA supergravity we have investigated here. After an analysis
similar to the one which has been performed in [13] and [14], one finds that the Killing spinors

we have found do not factorize into Killing spinors on AdS,, and Killing spinors on M0~

4.6.2 Flat backgrounds

The issue of factorization of Killing spinors for R" b %, M1O-n backgrounds is closely related

to whether the Killing spinors € we have found exhibit a linear dependence on the R co-
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ordinates. This is because if the Killing spinors factorize, then they should not depend on the
coordinates of R" ™" for the chosen coordinate system. As o4 must lie in the Kernel of (24)?

1 .
' coordinate

as a consequence of integrability conditions, the Killing spinors € exhibit a R"!
dependence, iff o1 ¢ KerZ.. In many examples we have investigated, o € Ker (Z+)? implies
that o4 € Ker=Zy and so the Killing spinors € do not depend on the coordinates of R
However, we have not been able to prove this in general.

Suppose that all Killing spinors do not depend on the coordinates of R N> 16, the
homogeneity conjecture [39] applied on the KSEs on M'9~" implies that M1°~" is homogenous
space and all the fields are invariant. In particular, A and ® are constant. Then the field
equations of A and ® imply that for all such backgrounds the fluxes vanish. As a consequence
all such backgrounds with N > 16 are locally isometric to R with zero fluxes and constant

dilaton.

4.7 Summary

In this chapter, the Killing spinor equations of AdS, X, M©°™™ and R %, M10-n 1A
backgrounds are solved. As a result, it was possible to determine the supersymmetry fractions
preserved by these spaces. AdS,, backgrounds preserve N = oLzl supersymmetries for n < 4
and N = 23]+ supersymmetries for 4 < n < 7. It was also proven that there are no
supersymmetric ITA AdS,, backgrounds for n > 8. RY"! backgrounds preserve N = olslg
supersymmetries for 2 <n <4 and N = ol |k supersymmetries for 4 < n < 8.

Much like discussions of IIB backgrounds, it is often assumed that the Killing spinors of ITA
AdS backgrounds factorize into an AdS Killing spinor and a transverse Killing spinor[42, 30, 50,
29]. Again, however, when this assumption is applied as an ansatz in addition to these results, the
allowed supersymmetry fractions are further restricted. This indicates that the Killing spinors
do no factorize in general, but only in special cases.

Additionally, for each AdS,, background, a Lichnerowicz-type theorem has been proven.
These theorems assume that the transverse space satisfies the requirements of the Hopf maximum
principle, which I use to prove that the o,- and 74 -type Killing spinors are of constant length.
Simultaneously, they prove that the Killing spinors are exactly the zero modes of a Dirac-like
operator on the transverse space.

Similar results have been found for M-theory backgrounds as well. In [13], it was proven that
AdS,, X, M~" backgrounds preserve N = oLzl supersymmetries for n < 4 and N = ols]+1g
supersymmetries for 4 < n < 7, and Lichnerowicz-type theorems like those in this dissertation
have been proven for these backgrounds. Similarly, it was provent that Rb1 backgrounds
preserve N = olslg supersymmetries for 2 < n < 4 and N = ol =5k supersymmetries for
4<n<T.

M-theory backgrounds, like IIB backgrounds, have been of particular interest in studying
the AdS/CFT correspondence [51, 52, 53, 31], because explicit dualities have been found for
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AdS, x ST and AdS; x S* backgrounds. IIA and M-theory backgrounds are closely related,
as ITA supergravity is the Kaluza-Klein dimensional reduction of 11-dimensional supergravity
[54, 55].

(0]



Chapter 5

Heterotic Backgrounds

Among the AdS and flat backgrounds that have been discussed in this disseration, there are
several important differences that make heterotic backgrounds unique. First, it is found that
heterotic AdS,, backgrounds cannot exist unless n = 3. The additional fields of ITA, IIB, and
M-theory backgrounds allow for a broader variety of backgrounds than the dilaton and NS-
NS 3-form alone can support. It is also known that there are no heterotic AdS, backgrounds,
supersymmetric or not, with smooth fields and a compact transverse space [56, 57]. Second,
the integrability condition of the gravitino KSE takes an especially simple form for heterotic
backgrounds, restricting the fields, rather than the Killing spinors. As a result, a given heterotic
background can only support spinors corresponding to one of the two chiral spinor representations
of SO(2,2).

An analysis of heterotic backgrounds at first order in o, or equivalently heterotic supergravity
truncated to two loops [58], has also been included. These backgrounds are characterized by a
three-form field strength which is not closed, as well as an o’ correction to the Riemann curvature,
but are otherwise still quite tractable. They are related to the study of hyper-Kéahler manifolds
with torsion [59, 60]. There are some qualitative differences between the theory at zeroth order
in o’ and the theory truncated to two loops [61, 62]. By treating o’ as a constant, rather than a
perturbative parameter, we avoid imposing the restrictions of string compactifications on these
backgrounds artificially. There has also been interest in these backgrounds as they relate to
solutions to the Strominger system [63, 64, 65, 66, 67].

5.1 AdS;3; backgrounds with dH =0

The investigation of AdS3 backgrounds will be separated into two cases depending on whether
dH vanishes or not. For the common sector of type Il supergravities as well as that for the
heterotic string with the standard embedding which leads to the vanishing of the anomaly, one

has dH = 0. Furthermore dH = 0 at zeroth order in the o expansion in the sigma model
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approach to the heterotic string. However, in the latter case dH # 0 to one and higher loops.
For applications to the common sector, it is understood that we consider only one of the two
chiral copies of the KSEs.

5.1.1 Fields, Field Equations and Bianchi Identities

The most general metric and NS-NS 3-form flux of warped AdS3 backgrounds which are invariant
under the action of the sl(2,R) & s((2,R) symmetry algebra of AdS; are

ds*> = 2ete” + A%dz? +ds*(M7),
H = AXet ANe Adz+G, (5.1.1)

where we have introduced the frame

2
et = du e =dr— %dz —2rdln A, (5.1.2)

u,v, and z are the AdSs coordinates, ¢ is the AdS radius, and A is the warp factor. For more
details on this parametrization of AdS3 backgrounds see [19]. Furthermore, one finds that the
dilaton, ®, and the warp factor, A, and G depend only on the M” coordinates. In addition X
and A, and G are functions, and a 3-form on M7, respectively.

The heterotic theory has in addition a 2-form gauge field F' with gauge group a subgroup
of Eg x Eg or SO(32)/Z, that is associated with the gauge sector. One way to impose the
symmetries of AdS3 on F is to take F to be the curvature of a connection on M7 that depends
only on the coordinates of M7. Alternatively, the gaugino' KSE for the backgrounds that
we shall be considering implies that F' vanishes along the AdS3 directions and that the Lie
derivative of F' along the isometries of AdS3 vanishes as well up to gauge transformations. These
in particular imply that the associated Pontryagin forms vanish along AdSs and depend only on
the coordinates of M7. Either results are sufficient for the analysis that will follow.

So far, we have not imposed the Bianchi identity on H and (5.1.1) applies equally to back-
grounds regardless on whether dH vanishes or not. However imposing now the Bianchi identity,
dH = 0, one finds

d(A*X)=0, dG=0. (5.1.3)

The field equations for the dilatino and 2-form gauge potential can be expressed as

_ 1 1
Ve = —3A71'0;A0'® 4 2(d®)? — EGQ + 5X2 ,
VkGijk = —3A718kAGijk + 28’“<I>Gijk R (5.1.4)
where i, j,k = 1,...,7. Moreover, the AdS component of the Einstein equation reads
2 , 1
VZnA = —ﬁA*2 —3A72(dA)* + 24710, A0'® + 5X“’, (5.1.5)

1From now on we assume that the gaugino KSE has the same Killing spinors as the gravitino KSE, see [68]

for a justification.
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and the M7 components are
1
R =3V;V;In A+ 34729;A9;A + ;GG —2V,V,;9, (5.1.6)

)

where V is the Levi-Civita connection on M7 and RE; is its Riccl tensor. The Ricei scalar

curvature of M7 can be expressed
1
R = 3VZInA+347%(dA)? + ZG2 —2V2®
1 ,
= —%A‘Q —6A72(dA)? + %GQ + §X2 + 124719, A0'® — 4(d®)?.  (5.1.7)

This formula for A constant will be used later in the proof of a Lichnerowicz type theorem.
5.1.2 Solution of KSEs along AdS;
The heterotic gravitino and dilatino KSEs are

VME — éH]\/jﬁ =0 + O(Oél2) 5 (aq) - 1712H)€ =0 + O(O/Q) . (518)

Therefore, the form of the two KSEs remains the same up to two and possibly higher loops. The
gaugino KSE does not contribute in the investigation of backgrounds with dH = 0 and so it not
included.

First let us focus on the gravitino KSE. The gravitino KSE along the AdSs directions reads

Quer + AT T (0T =2 )ex = 0,
Ore+ — A_lf‘,ZEJre:F = 0,
2
O.es — Epes + %A—lr_zae; - 0, (5.1.9)
where
B = F— + 1aAF Lax (5.1.10)
Ex = Fg, + 50AL F AX, 1.

and 'yt e = 0. Furthermore, using the relations
Bl + 1,08 =0, E4,_4+T,_E+=0, (5.1.11)

we find that there is only one independent integrability condition

1 1 1 1 1
= 24 = (- _ = 2 - = T A2y 2 —
(Hi + Eui>€i ( e 4(dA) F 4AX¢AFZ + 16A X )Qt 0. (5.1.12)

As the Clifford algebra operator @AT'. does not have real eigenvalues, the above integrability
condition for ¢ < oo can be satisfied provided that
dA=0, —ijLiA%(2 =0. (5.1.13)
402 16
Thus the warp factor A is constant. The second equation above also implies that the component
X of H along AdSj is constant. Furthermore, one can write

1+Cl
20

EL=7F (5.1.14)
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where ¢; = §AX = £1 as implied by (B.2.1).
The KSEs (5.1.9) can be integrated to find

e=e +e =0, +e ity +o_+eir. — L WA T oo — 0 AT e IT L7y, (5.1.15)

provided that

— — 1
Eior =0 EiTy = $Z7'i . (5.1.16)

It is understood that the dependence of € on the AdS3 coordinates is given explicitly while 74
and o4 depend only on the coordinates of M.
It is clear from (5.1.16) that there are two solutions to the above conditions. If ¢; = 1,

(5.1.16) implies that ox = 0. In turn the Killing spinor is
e=epte_=e it et — LA eTIT Ty . (5.1.17)
Alternatively if ¢; = —1, (5.1.16) gives 7+ = 0 and the Killing spinor is
e=e, +e =0, +o_ — L wATT o . (5.1.18)

Therefore depending on the sign of AX, which coincides in the sign of the contribution volume
form of AdS3 in H, there are two distinct cases to consider.

In order to interpret the two cases that arise, note that AdSs can be identified, up to a discrete
identification, with the group manifold SL(2,R). Assuch it is parallelizable with respect to either
left or right actions of SL(2,R). The two associated connections differ by the sign of their torsion
term which in turn is given by the structure constants of the s[(2,R). Of course the associated
3-form coincides with the bi-invariant volume form of AdSs.

To treat both cases symmetrically, we introduce B(*) which is equal to Z+ when it acts on
o+ and equal to 24 + % when it acts on 7. The integrability conditions are then succinctly

expressed as B& x4 =0, x4 = o4, 74, where

+ co

BE — T2 5.1.19
T (5.1.19)

with ¢ = 1 when y+ = o4+ and with ¢co = —1 when x4+ = 7.

The remaining KSEs on M” can now be expressed as
Vgi)Xi =0, AFys =0, BHx. =0, (5.1.20)
where
1

Vl(»i) =V;+ ‘I’Ei) ; ‘I’Ei) = *g@Z . (5.1.21)

is a metric connection with skew-symmetric torsion G associated with the gravitino KSE, and

1
A® = g+ S AT, - — @, (5.1.22)
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is associated with the dilatino KSE, and B(®) should be thought as a projector which restricts
the first two equations on either o4 or 74 spinors.

For the investigation of the geometry of these backgrounds it suffices to consider only the
74 or the oy spinors. This is because, if xy_ is a solution to the above KSEs, then x4 =
AT, ,x_ is also a solution, and vice versa, if y; is a solution, then y_ = AI'_,x, is also
a solution. Incidentally, this also implies that the number of supersymmetries preserved by
AdS3 backgrounds is always even. Furthermore, it suffices to investigate the geometry of these
backgrounds as described by the o spinors. As we have mentioned, the 7, spinors arise on

choosing the other parallelization for AdS3 and it can be treated symmetrically, see also appendix
D.

5.1.3 Geometry

If the solution of the KSEs is determined by the o4 spinors, the investigation of the geometry
of M" can be done as a special case of that of heterotic horizons in [20] which utilized the
classification results of [68]. To see this first note that h = —%dz and so the constant k£ which

enters in the description of geometry for the heterotic horizons is
k* =h*=4A"%"2 . (5.1.23)
Next observe that as o4 and o_ are linearly independent, there are two Killing spinors given by
=0y, E=0_—0uATT o_. (5.1.24)

Setting now o_ = AI'_, 0 and after rescalling the second spinor with the non-vanishing constant

—2071 A2, we find that the two spinors can be rewritten as
=0, €=—kuoy+T_lo, . (5.1.25)

These are precisely the spinors that appear in the context of heterotic horizons, see [20] for a
detailed description of the geometry of M7 including the emergence of the (left) s[(2, R) symmetry
of AdS3; backgrounds as generated by the 1-form Killing spinor bi-linears. Briefly, M7 admits
a (G5 structure compatible with a metric connection V with skew-symmetric torsion, VX7 =
VX7 + 1G9, X*. Furthermore all field equations and KSEs are implied provided [20] that

d(e**x70) =0, dG=0, (5.1.26)
where
G =ko+e®® xrd(e %), (5.1.27)

and ¢ is the fundamental form of the G structure. The first condition in (5.1.26) is required for
the existence of a G structure on M7 compatible with a metric connection with skew-symmetric
torsion [69] and the second condition is the Bianchi identity (5.1.3). The dilatino KSE implies
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two conditions, one of which is that the G structure on M7’ must be conformally balanced,
0, = 2d®, both of which have been incorporated in the expression for G, where 6, is the Lee
form of ¢. The conditions (5.1.26) are simpler than those that have appeared for heterotic
horizons, because for AdS3 backgrounds dh = 0.

5.1.4 Geometry of AdS; backgrounds with extended supersymmetry

We have shown that AdSs backgrounds always preserve an even number of supersymmetries.
Furthermore, from the counting of supersymmetries for heterotic horizons [20], one concludes
that AdS3 backgrounds preserve 2, 4, 6 and 8 supersymmetries. In addition, AdSs backgrounds
that preserve 8 supersymmetries and for which M7 is compact are locally isometric to either
AdS3 x S§% x T* or to AdS3 x S% x K3. Again we shall not give the details of the proof for these
results. However, we shall state the key formulae that arise in the investigation of the geometry

for each case as they have some differences from those of the heterotic horizons.

Four supersymmetries

Let us first consider the AdS3 backgrounds with 4 supersymmetries. The two additional spinors

can be written as

& =07, et = —k*uo? +T_fo? | (5.1.28)
where 0% is linearly independent from ¢} = o4 in (5.1.25). In fact it can be shown that the
normal form for these spinors up to the action of Spin(7) can be chosen as 0'_1,'_ =1+ ej034
and 02 = i(1 — e1234). The isotropy group of all four spinors is SU(3). Therefore M7 is a
Riemannian manifold equipped with metric d8%7) and a 3-form G. Furthermore, the metric
connection V with skew-symmetric torsion G is compatible with an SU(3) structure. The KSEs
restrict this structure on M7 further. In particular, the SU(3) structure on M7 is associated

with 1-form £, 2-form w, and (3,0)-form y spinor bilinears such that
tew=0, Lew=0, igx=0, Lex=1ikx, (5.1.29)

where w and x are the fundamental forms of an SU(3) structure in the directions transverse to
&. All these forms are @—parallel, @f = Vw = @x = 0. In particular @f = 0 implies that & is
Killing and that i¢G = k~'dw, where w(¢) = k. As G is closed LG = 0. The dilaton ® is also
invariant under £. The full set of conditions on &, w and x can be found in [20].

The solution of these conditions? implies that M7 can be locally constructed as a circle

fibration on a conformally balanced?, ,, = 2d®, KT manifold B® with Hermitian form w, where

2In fact with the data provided M7 admits a normal almost contact structure which however is further

restricted.
30, is the Lee form of BS.
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the tangent space of the circle fibre is spanned by £. The canonical bundle of B® admits a

connection? A\ = k~ 1w, such that
dw®0 =0, dwyw’ = —2k? (5.1.30)

i,7 = 1,2,...,6, i.e. the canonical bundle is holomorphic and the connection satisfies the

Hermitian-Einstein instanton condition, and in addition

/3(6) =dw , E=2dw A dw + dG(G) =0, (5.1.31)
where
1 4
P = GROi ™ (5.1.32)
is the curvature of the canonical bundle induced from the connection with torsion Gy = —iydw

on BS, and I is the complex structure of BS. The first condition is required for M7 to admit an
SU(3) structure compatible with the connection with skew-symmetric torsion G and the second
condition is required by the Bianchi identity (5.1.3). Note that B has a U(3) rather than an
SU(3) structure compatible with a connection with skew-symmetric torsion. This is because the
(3,0)-form x is not invariant under the action of £ (5.1.29).

The metric and torsion on M are given from those of B® as
ds*(M7) = k™*w® +ds*(B%), G=k2wAdw+ G . (5.1.33)

This summarizes the geometry for the AdS3 backgrounds preserving four supersymmetries. So-
lutions can be constructed using the techniques developed in [20] to find solutions for heterotic

horizons.

Six supersymmetries

Next let us turn to AdSs backgrounds preserving 6 supersymmetries. For these M7 admits an
SU(2) structure compatible with V. Furthermore, M7 can be constructed locally as a SU(2) =
53 fibration over a 4-dimensional manifold B* whose self-dual part of the Weyl tensor vanishes.
SU(2) twists over B* with respect to a (principal bundle) connection A which has curvature F"’

such that the self-dual part satisfies

r o k N

(F5d) T (5.1.34)

where w" are the almost Hermitian forms of a quaternionic Kihler structure on B*. The anti-self
dual part of F, 724, is not restricted by the KSEs. The dilaton depends only on the coordinates
of B*. The metric and G on M are given by

ds®>(M7) = 6,09 A" X+ e22d?(BY), G =CS(\) — %de®® (5.1.35)

4There some differences in the notation of this paper with that of [20]. For example w is denoted in [20] with
£. We have made this change because here we have denoted by ¢ the radius of AdS.
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where C'S is the Chern-Simons® form of A. The only condition that remains to be solved to find
solutions is

. 1 3
V228 _ _i(fad)2 + §k2e4‘1> , (5.1.36)

where the inner products are taken with respect to the d$? metric. For more details on the

geometry of such backgrounds see [20].

Eight supersymmetries

Next let us turn to the AdSs backgrounds preserving 8 supersymmetries. The description of
the geometry is as that of the backgrounds above preserving 6 supersymmetries. The only
differences are that B* must be a hyper-Kéhler manifold with respect to the d§?(B*) metric,
and that 754 = 0. The metric and 3-form G of M7 are given as in (5.1.35) but now we have that

. 1,
U220 _ _i(fdd)Q 7 (5.1.37)

instead of (5.1.36). If B* is compact, a partial integration argument reveals tha 72! = 0 and so
the only regular solutions, up to discrete identifications, are AdSs x S3 x K3 and AdSs x S3 x T4.

If B* is not compact, there are many smooth solutions, see [70].

5.1.5 Lichnerowicz type theorem on o, 7,

The Killing spinors of AdS; backgrounds (5.1.20) can be identified with the zero modes of a
suitable Dirac-like operator coupled to fluxes on M”, and vice versa. This provides a new example
of a Lichnerowicz type theorem for connections whose holonomy is not in a Spin group. This result
is analogous to others that have been established for AdS backgrounds in 11-dimensional and
type II supergravities [13, 14, 15]. However, there are some differences. One is that the spinor
representation in the heterotic case is different from that of the previous mentioned theories.
There are also some subtle issues associated with the modification of the Lichnerowicz type of
theorem in the presence of o’ corrections, which we shall consider in further detail in the next
section.

To begin, let us first suppress the o’ corrections, and take dH = 0. The Lichnerowicz type of
theorem with o’ corrections will be investigated later. We define the modified gravitino Killing

spinor operator,
vitea) - gt g p ) (5.1.38)

on the x4 spinors, where

A©.92) = _ g A7IT B 4 o A (5.1.39)

5Note that if F = 0, CS()) is proportional to the volume of S3.
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for some q1,qo € R. Observe that for ¢, g2 # 0, the holonomy of V(a2 is not in Spin(7).
Next define the modified Dirac-like operator

90 =iyt iy, 4 Tigt) 4 opathae) (5.1.40)

It is clear that if y, is a Killing spinor, ie satisfies (5.1.20), then it is a zero mode of 2*). Here
we that prove the converse. In particular, we shall show that there is a choice of g1, g2 such that

all the zero modes of 2(*) are Killing spinors. Thus we shall establish
Ve =0, AByy =0, BHyp=0e= My, =0. (5.1.41)

The proof relies on global properties of M7, which we assume to be smooth, and compact without
boundary.

To prove the theorem, let us assume that 2(t)y, = 0 and consider the identity
2 2
VXl = 2V 7 + 2(x+, Vx4 ) - (5.1.42)

The first term on the right hand side can be further rewritten in terms of the differential operator

V(+a.a2) by completing the square as

2
2[| Vx|l

2H@(+,q1,qz)X+H2 _ 4<X+7 (\p(-%)if + A(+’q1’QQ)TFi)ViX+>
_2<X+7 (\I;(Hif + A(+,q17qz)TFi> (\I,§+) + FiA(+,q1,qz))X+>
~ 2 .
2“V(+7q1792)x+" _ 4<X+7 ‘I’(+)ZTV2‘X+>
_2<X+7 (\I;(+)i”f _ A(+,(117(I2)TFZ’) (\I’z('ﬂ + FiA(+’q1’q2))X+>a (5.1.43)

while the second term can be rewritten using the identity W2 =VZi- iRm, and M)y, =0, as
i . 1
20x+: Vixy) = 204+, T'Vi(IVV;x4)) + 53(7)||X+||2

1 c )
SEOINI? = 2(x, Vi (M0 4 7riathane )y )
,2<X+’ (rirﬂ'\y;*) n 7PiA(+’QI*QZ))ViX+>. (5.1.44)

Combining these, V2||x4||* can be rewritten as,

Vil = 2Tt | L RO
+<><+7 [—4\11<+>“ — 0TI 14g, ATDFRO) — 14q2FiA(+)} ViX+>
+<X+7 —2(\11(‘*‘)” _ A(+,q1,q2)1‘pi) (‘I’EH + FiA(+’q1’q2))X+>
+(x, Vi [20TI0Y — 14g ATITEBO) — 140, A () (5.1.45)

where

1 + 1
U =g, B = S A = go 4 DAL + (5.1.46)
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Of the terms on the right hand side of (B.8.6), the first term is proportional to the gravitino
Killing spinor equation squared, and so we expect that the remaining terms will be equal to some
combination of the algebraic KSEs. The third term includes a derivative of x4, however, and so

we will attempt to write it in the form
@' Vil I + (e FTVix ) = o' Vslxa |2 — <X+,f(riqf§+) + 7A(+’QI"12))X+> . (5.1.47)

for some vector oo and Clifford algebra element F that depend on the fields. In terms of the
fields, the third term in the right hand side of (B.8.6) can be rewritten as

<><+7 [—4x1:<+>if — T 149, ATITHB) — 14q2Fi,4(+)} vix+> (5.1.48)
= (x4, [FATIT# (qre1 + quea + 2q201) — 14goT PP
+ 1+}l4qz $Z + 3+11£1q2 F¢vlj| viX+>-

Thus, we find that it can be separated as outlined above if and only if ¢, = —%. We will use this

value of g from here on. Then we find that
(xe, [T =20 TIB(T) — 14g, ATITTB 4270 A] Vi)
- <X+7 [%A‘lf‘”wacl +7qico — 2¢1) + 2T @D
—1gt %m;l} viX+>7 (5.1.49)
and so, factoring out a I'* on the right,

1

1
F = ZA_ll"Z(7qlcl + Tqrca — 2¢1) — 200 — 3

¢, (5.1.50)

and a; = 29;P.
The F term part of the third term of (B.8.6) can be combined with the fourth term of (B.8.6)

to give
(x4, —2(TDH 4 g ATIBEOITZ 4 LA 4 LFT)

(\IIEH + AT B) — %FiA(+))X+>
= <X+a -2

= <X+7

The last term on the right hand side of (B.8.6) is the only term involving derivatives of the

—

%(3%01 + 3qi1c2 — 6%)A71in - %éM)Fi + §$l + %F%ﬂ}

(neftes — YA, — TP — ¢ + T x+)

— 3 (Tqier + Tqrea — 2¢1)° A2 — 12(d)? — L9,0T¢"

— 7 (Tqrca + Tqrer — 201) ATYET, — L G — LG? x4 ). (5.1.51)

s

fields other than ® and the second derivative of ®. However, we can use the Bianchi identity

and the ® field equation to rewrite this term as,
<><+7 v, [fQFiFj Pt~ 2A-1HB) 4 QF"A} X+>
= (X, [2V2@ + gdG]x+)
= (X4, [A72 + 4(d®)? — 1G?]x4), (5.1.52)

85



and we can use the scalar part of the Einstein equation to rewrite the second term on the right
hand side of (B.8.6) as

1 2 5
ROl = <><+, [ng 2 o) + MG?]><+>. (5.1.53)

Now we write the sum of (B.7.40), (B.7.42), and (B.7.43), as a linear combination of ||B)y Hz,
(DB, Ay, ), and ||A(+)X+H2« In particular, the sum of (B.7.40), (B.7.42), and (B.7.43)

is given by

<X+, [%2(% —42¢1%2 + 12q1 + 12¢icic0 — 42q120102)A*2 + %(d@)2 — %&CI)F@’Z

— 57 (Tqrca + Tqrer — 201) AT ET . — =L G x4 ), (5.1.54)
whereas
2 14 cico 2
+ _
HB( )X+H = 2€2|>1<+|| ; 1
<FZB(+)X+,A(+)X+> = <X+, |:2€2(1 + 01C2)A71 — m(cl + 02)$F2:| X+> )
A 2 o 1,0 1. S R
X+ = (x4 [(d®) +£3A —681<I>I‘$ +@A (4
1
- . 1.
L e (5.1.59
It follows that
, . 2 2
Vbl = 200 | = [V [ 2800 - 30%) A7 B |
_ 2
+ 4 AT (LB, A ) + 2 A | (5.1.56)

This expression is suitable to apply the Hopf maximum principle on the scalar function ||x ||?
on M7 asfor 0 < q; < % the right hand side of this equation is positive definite. Assuming that
the conditions required for the maximum principle on the fields and M7 apply, e.g. the fields
are smooth and M7 is compact without boundary, the only solutions to the above equation are

that ||x+|” is constant, and that,
VEx: =0, A®yp=0, BHxL=0. (5.1.57)

Thus x4 is a Killing spinor which establishes the theorem.

5.2 AdS; backgrounds with dH # 0

We now consider first order o/ corrections to the equations of heterotic supergravity, including
dH. Tt is not a trivial matter to extend the above results to include these o’ terms, however it is

tractable, and we will find that supersymmetry enhancement and Lichnerowicz-type results still
hold.
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5.2.1 Bianchi identities, field equations and KSEs

Let us first consider the modifications that occur in the Bianchi identity, field equations and
KSEs of heterotic theory up to two loops in sigma model perturbation theory®. The anomaly
cancelation mechanism requires the modification of the Bianchi identity for H as

!/

dH = —az [tr(ziz AR) — tr(F A F)] +0(?), (5.2.1)

where R is the curvature of a connection on the spacetime M which will not be specified at
this stage, F' is the curvature of the gauge sector connection of the heterotic theory and o/ is
the string tension which also has the role of the loop parameter. Thus dH is expressed as the
difference of two Pontryagin forms, one is that of the tangent space of space-time and the other
is that of the gauge sector bundle. Furthermore, global anomaly cancelation requires in addition
that the form on the right-hand-side of the anomalous Binachi identity represents the trivial
cohomology class in H*(M). This statement is modified upon the addition of NS5-brane sources
but this will not be considered here.

In addition to the modification of the Bianchi identity, the field equations also get modified.
In particular up to two loops in sigma model perturbation theory [72], the dilaton, 2-form gauge

potential, and gauge sector connection field equations read

1
2o = 2(d®)? - —H?
!
+%6 Barngr RMNST _ FMNabFMNab} +O(a?),
VRHMNR = 26R<I>HMNR + (9(0/2)7

1

VNFun + [AY, Fyn] = 20VN®Fyn + 5HMNQFNQ +0(d) (5.2.2)
and the Einstein equation is
1 o = .

Ryn = ZH]2\4N —2VyVN® - 7T [RMLSTRNLST — FrypanFn"™ | + O(a”) . (5.2.3)

Furthermore, the KSEs [73] are

1
VM6_§HM6 = 0+0(?),

((,‘M) — 1—121/4)6 = 0+0(?),
0+ 0 . (5.2.4)

€

In particular observe that the KSEs have the same form up to two loops in sigma model pertur-
bation theory as that at the zeroth order. It is not known how these equations are modified at
higher orders. The gauge indices of F' have been suppressed.

Before we proceed with the investigation of AdSs backgrounds, let us specify R. In pertur-

bative heterotic theory, the choice of R is renormalization scheme dependent. In other words,

6We use the conventions and normalization of the field equations, Bianchi identities and KSEs of [71].
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one can choose as R the curvature of any connection on M. However in most applications R
is chosen to be the curvature R of the V =V — %H connection on the spacetime. It is known
that this choice has some key advantages. In particular it is required for the cancelation of world
sheet supersymmetry anomaly [74] and also for the consistency of the anomalous Bianchi identity
with the modified Einstein equations for supersymmetric backgrounds. This has been used in
the calculations of [75, 71] and recently emphasized [76]. The property of R which is used to
establish these is that R satisfies instanton-like conditions, i.e. it satisfies the same conditions, to

zeroth order in o/, as those implied on F by the gaugino KSE. To see this, consider the identity
. . 1
Run,rs = Rrsun — 5dHuNRs - (5.2.5)

The integrability condition of the gravitino KSE gives RM N, rsI'"%e = 0. As the right-hand-side
of the anomalous Bianchi identity is of order o/, it follows from (5.2.5) that, to zeroth order in
o, Ryrn.rsT™MNe = 0 or equivalently }E?e = 0 after suppressing the SO(9, 1) gauge indices. This
is the same condition as that satisfied by the curvature of the gauge sector F in (5.2.4).

To find solutions in the perturbative case, it is understood that the fields and Killing spinors

are expanded in o’ schematically as
g=g"+dg" +0(?), e= +ad'e +0(?), (5.2.6)

and similarly for the 3-form field strength, gauge potential and dilaton. Then the field equations
and KSEs are solved order by order in o’ to find the correction to the zeroth order fields.

Next consider the case that the corrections to the heterotic theory are taken to be exact up
to and including two loops. In such a case, o’ is not an expansion parameter. The anomalous
Bianchi identity (5.2.1), field equations, (5.2.2) (5.2.3), and KSEs (5.2.4) do not receive further
corrections from the ones that have been explicitly stated. However consistency of the anomalous
Bianchi identity with the field equations requires that R satisfies the same conditions as those
implied by the KSEs on the curvature F' of the gauge connection, ie ]7%6 = 0 after suppressing
the gauge indices. It is not apparent that such a connection always exists but there are existence
theorems in many cases of interest. Notice also the difference from the perturbation theory as
R cannot be identified with R. This is because dH does not vanish in the right-hand-side of
(5.2.5).

5.2.2 AdS; backgrounds in perturbation theory

Suppose that the symmetries of AdS3 remain symmetries of the background after the o’ correc-
tions are taken into account. In such a case, the fields up to two loops in perturbation theory

will decompose as

ds*> = 2ete + A% +ds* (M) + O(a?) ,
H = AXet Ae  Adz+G+0(?). (5.2.7)
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This assumption is justified later. Furthermore, the field equations (5.2.2) and (5.2.3) read

V2d = —3A7'0;A0'® + 2(d®)* — %cﬂ + %XQ
O Ry e B Fyop 9] £ 0(0)
VEGijr = —3AT'0MAG ik +2070G i + O(a'?) (5.2.8)
and the AdS component of the Einstein equation is unchanged,
VinA = —%A*Q —3A7%(dA)? +2A710;A0'® + %XQ +0(?), (5.2.9)

while component on M7 is now,

Rg) = 3ViVj InA+ 3A7281A83A + %Gikle ij1k2 — 2VZV]<I>
— % [Rip st Ri™ — Firay Fj*9] + O(a'?), (5.2.10)
where i, §,k, £ = 1,2,...,7 and we have assumed that R and F do not have components along

the AdS3 directions. As we shall see, this will follow from the KSEs.
In addition, one finds that

R = 3V2InA+3A7%(dA)? + iGQ —2V2%0
—az/ [Rij e R — Fijap F7%] + O(0?)
= _E%A—2 —6A2(dA)? + %GQ + %XQ + 124719, A0'® — 4(d®)*
_3%/ [Rijue RIKEE — Fyjop F9%] 4+ O(a™) . (5.2.11)

Similarly, the anomalous Bianchi identity of H reads
dG = -2 [tr(RAR) —tr(F AF)] + O(a”?) . (5.2.12)

As we shall see imposing the requirement that spacetime supersymmetry is preserved by the

higher order corrections simplifies the above equations further.

5.2.3 Geometry of M’ for backgrounds with two supersymmetries

In the perturbative approach to the heterotic string, one of the questions that arises is whether the
higher order corrections preserve the spacetime supersymmetry of the zeroth order background.
In other words, whether there is a renormalization scheme which preserves the spacetime super-
symmetry order by order in perturbation theory. Here we shall not investigate the existence of
such a scheme. Instead, we shall derive the conditions for such a scheme to exist.

We have shown that for AdSs backgrounds admitting two spacetime supersymmetries at zero
order in o, M7 has a Gy structure compatible with a connection with skew-symmetric torsion.
In particular at this order dH = 0, and A and X are constant and ¢; = %AX = +1. The

geometry of M7 at this order is described in section 5.1.3.
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The contribution in the terms proportional to o’ in the field equations, Bianchi identities and
KSEs comes from the fields at zeroth order in o’. These depend on R and F. At zeroth order,
the spacetime factorizes into a product AdSs x M7. Furthermore the choice of torsion on AdSs is
such that §| AdSs and v| AdSs are either the left or right invariant parallelizing connection; AdSs
is a group manifold. In either case, 1:3|Ad53 = R| Ads; = 0. Therefore the contribution in the o/
terms of field equations, Bianchi identities and KSEs comes only from the R(") curvature of M7.
Furthermore, the KSEs imply that the gauge curvature F' does not have components along AdS3
and is invariant under the isometries of AdS3 up to gauge transformations. As a result all gauge
invariant tensors constructed from F' are tensors on M7 which do not depend on the coordinates
of AdSs. These justify the choice of R and F made in the previous section.

As the form of the gravitino KSE remains the same up to order o2, this implies that A and
X are constant up to that order and that again ¢; = %AX = +1. Furthermore the metric and
torsion of AdSs does not receive corrections at one loop, the form of the fields remains as in
(5.2.7) up to order O(a’?). The background remains factorized as AdS3 x M7 up to that order
as well. Imposing all the above conditions on the fields, one finds that the anomalous Bianchi
identity and field equations are simplified as in appendix B.

Next focusing on the geometry of M7, M" admits a Gy structure compatible with a connection
V with skew-symmetric torsion G. As a consequence of the gravitino and dilatino KSEs, G is

2

as given in (5.1.27) up to order o/*. Moreover all the KSEs and field equations are satisfied

provided that
/
d(e® 57 ) =0+ 0(a?) , dG = —az [u(Rm A R<7>) —te(FAF)| +0?) . (5.2.13)

The first condition is required for the existence of a connection with skew-symmetric torsion
which is compatible with the G structure on M7 while the second condition arises from the
anomalous Bianchi identity. We have also assumed as in the dH = 0 case that all solutions € of
the gravitino KSEs are also solutions of the gaugino KSE, F'e = 0. In this case, this implies that

F is a G5 instanton on M7, and so it satisfies

1
Fij = 5 *7 @i Fim + O(a) (5.2.14)

where we have suppressed the gauge indices. This summarizes the geometry of M7 up to order

a’?.

5.2.4 Extended supersymmetry

Next let us investigate the geometry of AdSs backgrounds preserving 4, 6 and 8 supersymmetries
up to order a2, The geometry of the associated zeroth order backgrounds for which dH = 0 has

already been described in section 5.1.4.

90



Four supersymmetries

These backgrounds are a special case of those we have described in the previous section that
preserve two supersymmetries. As a result up to order o/, the geometry is a product AdSs x M.
The presence of two more supersymmetries restricts further the geometry of M”. As the form of
the gravitino and dilatino KSEs remain the same as that of the zeroth order fields, the geometric
restrictions on the geometry of M7 are similar to those in section 5.1.4. The only difference here
is that dH # 0. In particular, M” has an SU(3) structure compatible with a connection with

skew-symmetric torsion. So it admits a Killing vector field £ such that
iceG =k ldw+0(?), iF=0+0(), (5.2.15)

where w(¢) = k. Moreover, M7 can be locally described as a circle fibration of a conformally
balanced, 6, = 2d®, KT manifold B® with Hermitian form w whose canonical bundle admits a

connection k~'w, such that
dw®? =0+ 0(a?),  dwjjw’ = -2k +0(?) , (5.2.16)

i.e. the canonical bundle is holomorphic and the connection satisfies the Hermitian-Einstein

instanton condition, and in addition

!
Py = dw+ O(’?) | k~2dw A dw + dGg) = —% [tr (R<7> A R<7>) —tr(F A F)] + 00,

(5.2.17)

where
Py = %R(ﬁ)ijkmfmk +0(a”) (5.2.18)
is the curvature of the canonical bundle induced from the connection with torsion Gy = —isdw

on BY and I is the complex structure of B®. The first condition is required for M7 to admit an
SU(3) structure compatible with the connection with skew-symmetric torsion G and the second
condition is required by the anomalous Bianchi identity (5.2.13), where now 4, j, k,m =1,2,...,6.
It is understood that the expression in the right-hand-side of the second equation in (5.2.17) is
evaluated at the zeroth order fields. The metric and torsion on M7 are given from those of B®
as in (5.1.33) but now of course the fields on BS obey the equations (5.2.17) above.

Six supersymmetries

The presence of additional supersymmetries restricts the geometry of M7 further. In particular,
the spacetime is still a product AdS3 x M7 up to order a’?>. The geometry of the zeroth order
configuration has already been described in section 5.1.4 and so M” is locally a S? fibration over
a 4-dimensional manifold B*. As the gravitino and dilatino KSEs have the same form up to

order o'? as the zeroth order equations, it is expected that M’ admits three @—parallel vector
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bilinears &, ' = 1,2,3. Thus &, are isometries of the metric on M7 and ie, H = E~'dw,, up
to order o’2, where w,(£s) = k7. As the geometry of the spacetime is a product up to a'2,
these commute with the isometries of AdS;. However, the gravitino and dilatino KSEs do not
determine the Lie bracket algebra of &,/’s.

To determine [/, &y ], first note that the commutator of two isometries is an isometry. Then

using @fw = 0, we can establish the identities
kM wie e =g, i, H e, e H =k dwye , ¢ ) + e, de, dH . (5.2.19)

Next note that i¢ ,ie ,dH = 0+ O(a'?). This follows from the fact that both R and F contribute
in dH via the zeroth order fields and so as a consequence of the gravitino and gaugino KSEs,
igr,R = ig, " = 0. In fact I has to be a anti-self-dual instanton in the directions transverse
to AdS; and &,. As a consequence, the commutator [§,, ] is V-parallel up to order o/2. If
[/, €4 is not expressed in terms of &, the holonomy of V is reduced to {1} implying that the
zeroth order backgrounds are group manifolds. Such backgrounds preserve 8 supersymmetries
and will be investigated below. Thus [£,/,&s] must close on & . Furthermore, one can use the

Bianchi identity
R 1. 1
Ry, pq) = *gVMHNPQ + 8dHMNPQ ; (5.2.20)

to show that dw" restricted on the directions transverse to AdSs; and & is @-parallel. Then
an analysis similar to that we have done for heterotic horizons [20] reveals that & close to a
su(2) algebra. As a result, M7 is locally a S fibration over a 4-dimensional manifold B*. The
geometry can be described exactly as in the zeroth order case but the various formulae are now
valid up to order a’2. The only modification occurs in the equation for the dilaton which now

reads
V2 2@__1 Fady2 §k2 40 a—/R(‘l)Z—FQ O(a' 5991
6—2( )+8e+8( )+ 0(a?), (5.2.21)

where the inner products are taken with respect to the d$2 metric. The additional o/ contribution

is due to the anomalous Bianchi identity of H.

Eight supersymmetries

The backgrounds with 8 supersymmeries can be investigated in a way similar to those with 6
supersymmetries described in the previous section. However there are some differences. As we
have already mentioned at zeroth order in o, section 5.1.4, B* is a hyper-Kéahler manifold and
F34 = 0. Up to order o2, the spacetime remains a product AdSs x M”. The investigation of the
closure properties of the three @—parallel vector field &, on M7 is not necessary. This is because
it is a consequence of the gravitino and dilatino KSEs that these vector fields close to a su(2)
algebra [68]. The metric and torsion are given as in (5.1.35) but now the formulae are valid up

to order 2. The only modification from the zeroth order equations is that the dilaton equation
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now reads
o 1 .
V228 _ _5(]:ad)2 + Oé (R(4)2 _ F2) + (’)(0/2) , (5.2.22)

where the metric d§(B*) is the zeroth order hyper-Kihler metric and the inner products have
been taken with respect to it.

For compact B*, at zeroth order 24 = 0, and in this case M7 = S% x B* up to discrete
identifications. As a consequence, the worldsheet action of the string factorizes into a sum of a
WZW model on S? and a sigma model on the hyper-Kihler manifold B*. The latter has (4,0)
worldsheet supersymmetry and as a result is ultraviolet finite [77]. However, in the presence of
an anomaly, the couplings are corrected order by order in o’ as a consequence of maintaining

manifest (4,0) supersymmetry in perturbation theory [75].

5.2.5 Truncation to two loops

Suppose now that the theory up to two loops is exact. In such a case, the geometry of the solutions
has to be re-examined as several arguments that have been applied in previous cases have been
based on the closure of H either to all orders or at the zeroth order in perturbation theory.
Moreover o has been treated as an arbitrary parameter. None of these two assumptions are
valid any longer. Nevertheless, there is a simplifying assumption. This is that the backgrounds
have the symmetries of AdS;. In particular, the fields can be written as (5.1.1). The KSEs are

Ve — éHMe —0, (Jo- %H)e —0, Fe=0. (5.2.23)

We also assume that the gaugino KSE has as many Killing spinors as the gravitino KSE.

Two supersymmetries

The G case is rather straightforward. As the form of the gravitino and dilatino KSEs in (5.2.23)
is the same as that for dH = 0 backgrounds and the fields are invariant under the symmetries
of AdSs, one finds that the gravitino KSE implies that A, X are constant and ¢; = %AX =+1.
As a result, the geometry locally decomposes as AdSs x M”. The geometry of M” can now be
described as in the perturbative case with the only difference that now the equations are exact. In
particular, M7 admits a G4 structure compatible with a connection with skew-symmetric torsion.
This G9 structure is further restricted by the KSEs, Bianchi identities and field equations as

/

A(e*® %7 ) =0, dG = Z [tr(f;:(?) A R<7>) —tr(FAR) (5.2.24)

where ¢ is the fundamental Gy 3-form, G = ko+e?*®x7d(e 2%¢), and R and F are Gy instantons,

1e

1
Fij = = %7 9i*™ Fim, - (5.2.25)

RO L D -

ij,pq 9 km,pgq
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The condition on F follows from the gaugino KSE. Observe that R, which is no longer a G
instanton because of (5.2.5) and dH # 0, has now been replaced with R, Moreover o in

(5.2.24) is a constant rather than a parameter.

Four supersymmetries

The geometry of these backgrounds also factorizes as AdSs x M”. Moreover, M" admits a
SU(3) structure compatible with a connection V with skew-symmetric torsion. There are 4
vector spinor bilinears and there is a basis such that 3 of them generate an sl(2, R) symmetry of
AdSs. As these 4 vector bilinears are V-parallel, their commutator is [£,, &) = ie,te, H. Since
the geometry factorizes as AdSs x M7, it turns out that the commutator of the generators of
5[(2,R) with the fourth vector bilinear vanishes, and so the symmetry algebra of the spacetime
is sl(2,R) & u(1).

The rest of the analysis is similar to that we have described for the perturbative case. In
particular, the equations (5.2.15), (5.2.16), (5.2.17) and (5.2.18) are still valid but now exactly.

The only modification is in the second equation in (5.2.17) which now reads

/

k™2dw A dw + dGg) = _QZ [tr(R(G) A R(6)) —tr(F A F)} , (5.2.26)

where R(®) is a su(3) instanton on B, ie R is a (1,1)-form and w-traceless. This condition is

also satisfied by F' because of the gaugino KSE.

Six supersymmetries

The geometry factorizes as AdSs x M” and M7 admits an SU(2) structure compatible with
a connection with skew-symmetric torsion V. The spacetime admits 6 vector Killing spinor
bilinears. Three of these span an sl[(2,R) symmetry of AdSs, and the other three & are V-
parallel on M7 and commute with those generating the sl(2,R). We shall argue that for non-
trivial backgrounds the commutator of these three vector field must close in the set. To see
this, consider the identities in (5.2.19). As & are Killing, their commutator is also Killing.
Furthermore, the term i¢ ,i¢ ,dH in the second equation in (5.2.19) vanishes. This is because
we have assumed that the connections that contribute in the anomalous Bianchi identity are
those that satisfy the gaugino KSE. For all these i¢ , F' = ifr,é = 0. As a result, if & and &
are @—parallel, so is the commutator [§,/,&s]. If the commutator does not close in the set &/,
the holonomy of V will reduce to {1}. As a result the curvature of V vanishes. If this is the
case, the contribution to the anomalous Bianchi identity must vanish as well as the connections
that contribute to it have zero curvature. This is implied by our assumption that all solutions
to the gravitino KSE are also solutions of the gaugino one. For such backgrounds backgrounds
dH = 0 and so the spacetime is a group manifold which preserves 8 supersymmetries. Thus for
backgrounds with strictly six supersymmetries, we shall take that [£,/,£s] closes in the set £, .
Then it can be shown using (5.2.20) that the symmetry group of the spacetime generated by the
vector spinor bilinears is s[(2, R) @ su(2).

94



The rest of the investigation of the geometry is similar to that we have done in the perturbative

case. The only difference is that now
292 2% 1 a2 | 3,240, @ H(4)2 2
Vi = =S (FY) 4 gk + g(R - F?), (5.2.27)

where R® and F are anti-self-dual instantons on B* and the inner products are taken with
respect to the d$? metric. B?* is a 4-manifold with vanishing self-dual Weyl tensor and metric
ds(B%).

Eight supersymmetries

The investigation of the geometry of these backgrounds is simpler than that described in the
previous section for backgrounds preserving 6 supersymmetries. First the geometry factorizes
as AdSs x M7 and M” admits a connection with skew-symmetric torsion compatible with a
SU(2) structure. As in the previous case, M” admits 3 @—parallel Killing spinor bilinears &,
which commute with another three which span an s[(2, R) symmetry of AdS;. Furthermore the
gravitino and dilatino KSEs imply that the symmetry algebra of these backgrounds is s[(2,R) &
su(2). The analysis of the geometry proceeds as in the perturbative case. In particular, M7 is
an S? fibration over a hyper-Kihler manifold B* with metric d§(B*). The only difference from

the perturbative case is that now
52 20 L aaye @ H(4)2 2
Vi = —S (P + g (R = F7) (5.2.28)

where R and F are anti-self-dual instantons on B%.

5.2.6 Lichnerowicz type Theorem on o, 7,

The Lichnerowicz type theorem has to be re-examined in the presence of o’ corrections and in
the case that the theory is truncated to two loops. Again, we shall focus on M7, and define the
modified Dirac-like operator as in (5.1.40) but now dG # 0. Furthermore, we assume the Bianchi
identities and field equations of appendix B but now we shall include the o/ terms, replacing the
R terms with R, and replacing F with F where R and F' are arbitrary curvatures of TM7 and
the gauge sector bundle respectively. In particular R and F are not restricted by the KSEs. For
the truncated theory at two loops, we take the equations in appendix B as exact but again with
R and F replaced with Rand F.
The derivation of (B.7.40) is unaffected, but (B.7.42) becomes

(x4, Vi [-20 D00 — 2471 DB 42074y, )
= (x4, [2V2@ + 55dG] x4 )
- <><+, [%A*Q +A(dD)? - LG+ o [Rij,keéiw - Fijabﬁijab}

+% [RiliZ,iji3i4,jk - Filizabﬁ‘iamab} Filizim} X+>, (5.2.29)
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and (B.7.43) also picks up an o’ term;
1 2 _
S B el = (x4 [~ 2 AT - 2(d2)? + 5 G?
3 [ Ris e R — By 97| 1), (5.2.30)
On combining these expressions we obtain
I Uy |12 S+ana)y | 2y 4-2|B )y |
V2 xal? — 200V s = [V | 428 (g - 30:%) A2 B x4 |

_ 2 o
+ 4 AT (DB A )+ 2 I+ 55 P P

/

a5 ®, mn .
- §<Rélez,mnrélz2><+a Ry, TP X4 ) (5.2.31)
where we have suppressed the gauge index contraction in the || Fx [|? term, and go = -1
We shall first consider the case of perturbation theory, and set R = R™. We begin by
systematically analysing the conditions imposed by (5.2.31) order by order in /. 7
To zeroth order in ', one obtains (provided that 0 < g1 < %), the conditions
Vi, =040@), APy, =04+0('), BFx,=04+0@"). (5232)
The condition V() x| = 04 O(/) implies the integrability condition
RD , , Thly, =0+0() . (5.2.33)
This in turn implies that
Ry o TH2x5 =04 0(a) . (5.2.34)

It follows that the final term in (5.2.31) is in fact at least of order /3, and so can be ignored.
It remains to show that (5.2.31) implies the KSEs to linear order in . For this consider the

perturbative expansion in the fields as in (5.2.6). One can show that if one assumes that the

zeroth order KSEs are imposed, (5.2.31) does not have an o’ correction apart from the gaugino

term, which leads to the condition
Fx, =0+0() . (5.2.35)

So we cannot conclude that the KSEs, apart from the gaugino, are implied from (5.2.31) to order
o'. For this some control over the a? terms is required which is not available. Observe that the
above theorem also implies that all solutions of the gravitino and dilatino KSEs are also solutions
of the gaugino one. This is because the modified Dirac-like operator 2(*) is constructed from
only the gravitino and dilatino KSEs but nevertheless the above theorem implies that the gaugino

KSE is implied as well.

7We remark that in perturbation theory, the RHS of (5.2.31) is explicitly determined only up to first order in
o'. The o’ terms are not known, as one would require the corresponding a/? corrections to the Dirac operator,
as well as dG and R(7) and V2®, in order to fix the a2 terms.
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In the truncated theory, one can again formulate a Lichnerowicz type of theorem provided

that one imposes by hand the condition
Royty mn D231 = 0. (5.2.36)

This condition (taking 0 < g1 < 2) is sufficient to ensure that the RHS of (5.2.31) can be written

as a sum of positive definite terms, which must all vanish.

5.3 A no-go theorem for AdS,, n > 4 and n = 2 back-

grounds

There are no AdS,,, n > 4 backgrounds in heterotic theory with or without o’ corrections up
to two loops in sigma model perturbation theory. This includes the case for which the theory is
treated as exact up to and including two loops.

The proof of this relies on the solution of the KSEs. Suppose that the fields are invariant
under the symmetries of AdS,,. Then we take a basis for the spacetime as {e* = Ae*, e} where
e is a basis for AdS,,, and e’ is a basis for the internal space M0~". We take H to be a 3-form
on M'°~". The components of H, and the conformal factor A, depend only on the co-ordinates
of M0,

To proceed, consider the gravitino KSE along the AdS,, frame directions, see also appendix

E. This has no contribution from the 3-form H, and can be rewritten as
_ 1 )
v,\é - il“A&,-AF’e = 0 . (531)

where V denotes the Levi-Civita connection on AdS,,. The integrability condition of this equation

implies that
<F’\RM +(1— n)(dA)QI‘#>e =0. (5.3.2)

where R;w is the Ricci tensor of V. However, for AdS,, R;w = Kgu, where g is the metric on

AdS,,, and k is a negative constant. The integrability condition (5.3.2) is then equivalent to

(n +(1— n)(dA)2)e =0 (5.3.3)

which admits no solution as k < 0 and n > 4.

The above argument clearly applies for all backgrounds with dH = 0, and so excludes the
existence of AdS,,, n > 3, backgrounds for the common sector and the heterotic theory for which
there is not an anomalous correction to the Bianchi identity. This result is also valid for the
AdS,,, n > 3 solutions of the truncated theory as well. It remains to investigate the existence
of AdS,,, n > 3, backgrounds in perturbative heterotic theory with an anomalous contribution

to the Bianchi identity, dH # 0. In this case, the argument above implies that at zeroth order
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in o, there are no such solutions. Furthermore, it also excludes the existence of AdS,,, n > 3,
solutions up and including two loops in sigma model perturbation theory that preserve all the
symmetries of AdS,,. However such solutions cannot completely be excluded in higher orders as
it is not known how the KSEs and field equations are corrected. There is the possibility that one
can start from another background which is allowed at zeroth order which then gets corrected in
perturbation theory to an AdS,,, n > 3 solution. Although this cannot be excluded, it may be a
rather remote possibility. We conclude therefore that up to order O(a’?) in perturbation theory
there are no AdS,,, n > 3, solutions to heterotic theory.

It remains to investigate the existence of AdSs solutions. It is a consequence of the investiga-
tion of near horizon geometries in [20] that if dH = 0, there are no AdSs solutions. This result
extends up to order o’? in perturbation theory as it is unlikely that one can start from a different
zeroth order background and correct it at one-loop approximation to an AdS, background-though
we do not have a proof for this. The existence of AdSs solutions for the truncated theories will

be examined elsewhere.

5.4 Summary

In this chapter, it has been proven that there are no heterotic Ads,, x,, M'°~" backgrounds with
n # 3, at either zeroth-order or first-order in o’. For these AdS3 backgrounds, it has additionally
been proven that the warp factor, A, is constant, so that they are in fact product spaces of
the form AdS; x M7, as a consequence of the AdS integrability condition of the Killing spinor
equations.

A Lichnerowicz-type theorem for AdSs heterotic backgrounds has been proven by the author,
both at zeroth-order and at first-order in o', which proves that the Killing spinors of these
backgrounds correspond to zero modes of a Dirac-like operator. Additionally, it has been proven
that the geometry of the spaces depends on the number of supersymmetries preserved. If N = 2
supersyminetries are preserved, the transverse space supports a Go structure, if N = 4 it supports
an SU(3) structure, and if N =6 or N = 8 it supports an SU(2) structure.
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Chapter 6

AdS; Backgrounds with 24

Supersymmetries

Among the various AdS backgrounds which have been discussed, AdS5 backgrounds are of partic-
ular interest because of their duality to four-dimensional conformal field theories. This includes
Maldacena’s maximally supersymmetric AdSs x S® background in IIB supergravity, which is dual
to a similarly maximally supersymmetric four-dimensional superconformal field theory. Because
of this interest, many specific AdSs backgrounds have been found, [24, 27, 28, 29, 78, 79, 80,
81, 82, 83, 84, 50|, which satisfy simplifying assumptions. For example, many are assumed to
satisfy the requirement that the Killing spinors are of the factorizable form € = ¢ ® £, where &

is a Killing spinor on the transverse space M?®, and 1 satisfies

Vb + Ay, (6.0.1)

for some constant A. In light of recent interest in four dimensional N' = 3 CFTs [85, 86, 87,
88], the author was interested in investigating the backgrounds which are expected to be their
gravitational duals, i.e., AdS5 backgrounds which preserve exactly N = 24 supersymmetries.

In chapters 4 and 3, it has been shown that AdSs5 backgrounds in ITA and IIB supergravities
preserve N = 8k supersymmetries, 0 < k < 4, k an integer. This result has also been shown for
11-dimensional supergravity backgrounds [13]. All maximally supersymmetric backgrounds have
been classified [37], and it has been shown that no such backgrounds exist in either 11-dimensional
supergravity or ITA supergravity, even with a non-zero Romans mass. However, there is no such
classification of AdS5 backgrounds preserving less than N = 32 supersymmetries.

In this chapter, the non-existence of AdSs backgrounds which preserve N = 24 supersymme-
tries in 11-dimensional and ITA supergravities are proven, in sections 6.1 and 6.2, respectively.
Additionally, it is proven that AdSs; backgrounds in IIB supergravity are locally isometric to the
maximally supersymmetric AdSs; x M® background, in section 6.3. The only assumptions used

in these proofs are that the fields are smooth, that the transverse space, M% or M?°, is path
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connected and compact, with no boundary, and that the fields are invariant under the so0(2,4)

symmetry of AdSs.

6.1 AdS; x, M® Solutions in D=11

We begin by briefly summarizing the general structure of warp AdS5 solutions in 11-dimensional
supergravity, as determined in [13], whose conventions we shall follow throughout this section.
Then we shall present the proof that there are no such solutions preserving 24 supersymmetries.
The metric and 4-form are given by
2
ds®> = 2du(dr+ rh) + A%(dz* + €2*/* Z(daza)g) + ds*(M®) ,

a=1

F = X, (6.1.1)
where we have written the solution as a near-horizon geometry [19], with
2 —1
h=-Gdz—2471dA, (6.1.2)

(u,7, 2,21, 2%) are the coordinates of the AdSs space, A is the warp factor that is function on
M® and X is a closed 4-form on M®. A and X depend only on the coordinates of M, ¢ is the
radius of AdSs.

The 11-dimensional Einstein equation implies that

4 1
D*9plog A = —g—zA*2 —50%1log Ady log A + mXQ ; (6.1.3)

where D is the Levi-Civita connection on M%. The remaining components of the Einstein and
gauge field equations are listed in [13], however we shall only require (6.1.3) for the analysis of
the N = 24 solutions. In particular, (6.1.3) implies that A is everywhere non-vanishing on M9,
on assuming that M9 is path-connected and all fields are smooth.

We adopt the following frame conventions; e’ is an orthonormal frame for M¢, and
et =du, e =dr+rh, e’ = Adz et = Ae*/tdz® . (6.1.4)
We use this frame in the investigation of KSEs below.

6.1.1 The Killing spinors

The Killing spinors of AdSs backgrounds are given by

2 2
e = op—071 Z 2Ta,my + 67%7'4, +o_te? (- — ! Z 2T y.0-)
a=1 a=1
WA T o — AT T IT Ty (6.1.5)
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where we have used the light-cone projections
FiO':t =0 5 FiT:t =0 5 (616)

and o4+ and 74 are 16-component spinors that depend only on the coordinates of M%. We do
not assume that the Killing spinors factorize as Killing spinors on AdSs and Killing spinors on
MS.

The remaining independent Killing spinor equations (KSEs) are:

DHo =0, DHFr=0, (6.1.7)
and
EFe, =0, EFr=0, (6.1.8)
where
1 1 1
D = Dili 5@,» InA-— @%F}(i + %1)( :
23 = —5T-I"0ilog A ¥ 274—1 + @rzx . (6.1.9)

In particular algebraic KSEs (6.1.8) imply that o4 and 7, cannot be linearly dependent. For

our Clifford algebra conventions see also appendix A.

6.1.2 Counting the Killing Spinors

In order to count the number of supersymmetries, note that if o is a solution of the o4 KSEs,
then so is I'1904. Furthermore, 7 = I',T'yo4 and 74 = I',I's0 are solutions to the 7, KSEs.
The spinors 04,1204, I'.I'104, ', I's0 are linearly independent. The positive chirality spinors
also generate negative chirality spinors o_, 7— which satisfy the appropriate KSEs. This is

because if o4, 74 is a solution, then so is
o-=Al_T,o4, 7-=Al_T.7}, (6.1.10)
and also conversely, if o_,7_ is a solution, then so is
o, =AT,T,0, 7, =A"'T,T.7_. (6.1.11)

So for a generic AdSs x,, M® solution, all of the Killing spinors are generated by the o spinors,
each of which gives rise to 8 linearly independent spinors via the mechanism described here. The

solutions therefore preserve 8k supersymmetries, where k is equal to the number of o spinors.

6.1.3 Non-existence of N = 24 AdS5 solutions in D=11

To consider the AdS5 solutions preserving 24 supersymmetries, we begin by setting

A:U++T+ (6112)
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and defining
W; = A(A, T,12TGA) . (6.1.13)
Then (6.1.7) implies that
DWj =0 (6.1.14)

so W is an isometry of M®. In addition, the algebraic conditions (6.1.8) imply that
1

288

Also, (6.1.7) implies that

1
(A, TK,A) — 3 | A2 A DA~ 0P A T\ T0,) =0 (6.1.15)

1
Di||A|P=—||A|P A D;A + m(A,F}QA) . (6.1.16)
Combining (6.1.15), and (6.1.16) we have
Di | A|? =207 A Y, TiT.o0) =0 . (6.1.17)

In addition (6.1.7) implies that
D' <A<T+,rirza+>> =0. (6.1.18)
Hence, on taking the divergence of (6.1.17), we find
D'D; || A||? +2A7'DIAD; | A |>= 0. (6.1.19)

A maximum principle argument then implies that || A ||? is constant. Substituting these condi-
tions back into (6.1.16), we find the condition

iwH =6 A|?dA, (6.1.20)
where
H=%X , (6.1.21)

and ¢ denotes the Hodge dual on M?S.
To prove a non-existence theorem for N = 24 solutions, we consider spinors of the type

A=oy, +74 . (6.1.22)

For a N = 24 solution, there are 12 linearly independent spinors of this type, because of the
algebraic conditions (6.1.8). Next, consider the condition (6.1.20). This implies that

iwdA =0, (6.1.23)
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where W is the isometry generated by A as defined in (6.1.13).

A straightforward modification of the reasoning used in [39], which we describe in Appendix
B, implies that for N = 24 solutions, the vector fields dual to the 1-form bilinears W generated
by the A spinors span the tangent space of M%. Then the condition iy dA = 0 implies that A is
constant, and furthermore, (6.1.20) implies that iy H = 0, which also implies that H = 0, and
so X =0.

However, the Einstein equation (6.1.3) admits no AdSs solutions for which dA = 0 and X = 0,
so there can be no N = 24 AdSs solutions.

We should remark that the two assumptions we have made on the fields to derive this result
are essential. This is because any AdSy1 background can locally be written as a warped product
ds?(AdSqy1) = dy* + A%(y)ds*(AdS,) for some function A which has been determined in [89)].
For d = 2, this has previously been established in [90]. As a result the maximally supersymmetric
AdS7 x S* solution of 11-dimensional supergravity can be seen as a warped AdSs background.
This appears to be a contradiction to our result. However, the transverse space M® in this case

is non-compact and so it does not satisfy the two assumptions we have made.

6.2 AdSs x, M® solutions in (massive) ITA supergravity

As in the 11-dimensional supergravity investigated in the previous sections, there are no N = 24
AdS5 backgrounds in (massive) ITA supergravity. We shall use the formalism and follow the
conventions of [15] in the analysis that follows. Imposing invariance of the background under
the symmetries of AdS5 all the fluxes are magnetic, ie their components along AdSs vanish. In
particular the most general AdS5 background is

2

ds® = 2du(dr + rh) + A*(dz* + e/ Z(dxa)Z) +ds*(M°) ,

a=1

G=G, H=H, F=F, =&, §=85, h:—%dz—M*ldA, (6.2.1)

where we have denoted the 10-dimensional fluxes and their components along M® with the same
symbol, A is the warp factor, ® is the dilaton and S is the cosmological constant dressed with the
dilaton. A, S and ® are functions of M®, while G , H and F are the 4-form, 3-form and a 2-form
fluxes, respectively, which have support only on M5. The coordinates of AdSs are (u,r,z,2%)
and we introduce the frame (e™,e™,e*,e%) as in (6.1.4).

The fields satisfy a number of field equations and Bianchi identities which can be found in
[15]. Those relevant for the analysis that follows are the field equation for the dilaton and the
field equation for G

» 5 3 1 1
D?® = —547'0°A0,® + 2(d®)2 + =S?+ ZF? - —H?>+ —G? 2.2
5 9" A9;® + 2( )+4S+8 5 +96G, (6.2.2)

ViGijre = —5AT I AG jre + 0 ®Gijne (6.2.3)
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respectively, and the Einstein equations both along AdSs and M?®

, 1 1 1
D?InA= 402472 —5A7%(dA)? + 247 19;A0'® + %cﬂ + ZS2 + gF2, (6.2.4)
1 1
RY =5V,V;In A+ 54729, A0;A + 1505~ 55C°0 (6.2.5)
1 2 1 2 1 2 1 2
— ZS 51']' + ZHij + iF” — gF 51‘]‘ - QViVj‘I) ,

respectively, where D is the Levi-Civita connection of M?® and RE?) is the Ricci tensor of M®.

The former is seen as the field equation for the warp factor A.

6.2.1 Killing spinor equations

The killing spinors of ITA AdS5 backgrounds are given as in (6.1.5) where now oy and 74 are
16-component spinors that depend only on the coordinates of M®. The remaining independent

conditions are the gravitino KSEs

Ve, = 0, V=0, (6.2.6)
the dilatino KSEs
AFg. = 0, AF =0, (6.2.7)
and the algebraic KSEs
Ziop = 0, Eary = F4 7y, (6.2.8)
where
+
A® = a¢1+ T%HF11+%S+ gFF111+%$, 1
2 = Fop t+ iaArz - §ASFZ - I—GAFFZFH - @AGFZ , (6.2.9)
and where D is the spin connection on M®° and
W = £ L DAY LD+ LST 4 FTT o+ oo 0T (6.2.10)

see appendix A for our Clifford algebra conventions. The counting of supersymmetries is exactly

the same as in the D=11 supergravity described in the previous sections.

6.2.2 N =24 AdSs solutions in (massive) ITA supergravity

Before we proceed with the analysis, the homogeneity conjecture! [39] together with the results

[48, 91] on the classification of (massive) ITA backgrounds imply that both ® and S are constant

IStrictly speaking the homogeneity conjecture has not been proven for massive IIA supergravity but it is
expected to hold.
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functions over the whole spacetime which we shall assume from now on. Next let us set

A=oy+14, (6.2.11)
and define
Wi = AN, Ty TuA) (6.2.12)
Then (6.2.6) implies that
DW; =0, (6.2.13)

so W is an isometry of M®.

After some straightforward computation using the gravitino KSEs, one finds
Dy AJP= —AT0A AP —3S(0TuA) — S TETLA) — (A TBA) (6214
On the other hand (6.2.8) gives
(JAT, — %ASFZ — %AJ}‘TZFH — 9—16A¢TZ)A = 4oy (6.2.15)
Using this, (6.2.14) can be written as
Di || A|P=207 A 7y TiT L0y ) . (6.2.16)
Furthermore using (6.2.6), one can show that
D'(A(ry,T\T",o0)) =0 . (6.2.17)
Taking the covariant derivative of (6.2.16) and using the above equation, one finds that
D'D; | A|? +2A7'D'AD; | A|?=0. (6.2.18)

This in turn implies after using the maximum principle that || A ||? is constant.
Using the constancy of || A ||2, (6.2.14) and (6.2.16) imply that

_AT9A A | _ism,rim _ %(A,FFZ-FHM - %m,rgim —0, (6.2.19)
and
(4, IiToy) =0 (6.2.20)
Next taking the difference of the two identities below
(T4,2404) =0, (o4, (B4 +01'1) =0, (6.2.21)
and upon using (6.2.20), we find

(T4,04) =0, (6.2.22)
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ie 74 and o4 are orthogonal.
To continue, multiply 24 A = —¢~ 17, with I';,, and using the fact I';, 7 is again a type 7

Killing spinor, and the equation above, one obtains that
Wig;A=0. (6.2.23)

As straightforward modification of the argument used in [39] to prove the homogeneity conjecture,
see also appendix B, one can show that the vector fields W span the tangent spaces of M?. As
a result, the above equation implies that A is constant.

Next using the dilatino KSE (6.2.7) to eliminate the G-dependent term in (6.2.19) and that

A = const, one finds
1

In what follows, we shall investigate the standard and massive ITA supergravities separately.

Standard ITA supergravity S =0
In the case for which S = 0, the dilatino KSEs (6.2.7) imply that
(A, @T11A) =0, (6.2.25)

or equivalently, W A G = 0. As the W span the tangent space of M?, it follows that G = 0.
Then, using the dilatino KSE (6.2.7) to eliminate the F' terms from (6.2.24), we obtain

(A, TH,T11A) =0, (6.2.26)
which implies that W A H = 0. As the W span the tangent space of M?, it follows that H = 0
also. The dilaton field equation (6.2.3) then implies that ' = 0 as well. However, for S = 0,
G =0, H =0 and F = 0, the the warp factor field equation (6.2.4) becomes inconsistent, and
so there are no AdSj5 solutions in standard ITA supergravity that preserve 24 supersymmetries.
Massive ITA supergravity S # 0
On writing G = %5 X, where X is a 1-form on M?, the condition
5 1
ZS(A,IMA) + %<A, GT11A) =0, (6.2.27)
which is derived from the dilatino KSE (6.2.7), can be rewritten as
5 1
ZS<A, [A) — ZA—lz'WX =0. (6.2.28)

Furthermore, the G field equation implies that dX = 0, and we assume? that LG = 0 which
implies Ly X = 0. This condition, together with dX = 0, gives that iy X is constant. Then it
follows from (6.2.28) that (A,I'1;A) is also constant.

2The invariance of G' under the vector fields constructed as Killing spinor bilinears has not been proven for

massive ITA in complete generality but it is expected to hold.
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On differentiating the condition (A,T'1;A) = const using the gravitino KSEs, we obtain the

condition

1 , 1
—ZFij<A,FJA> + ﬂ<A,F11$iA> =0, (6.2.29)
and hence

X'F (A, TIA) =0 . (6.2.30)

However, using an argument directly analogous to that used to show that the vector fields W
span the tangent space of M®, it follows that the vectors (A,IVA)d; also span the tangent space
of M?, see appendix B. Therefore,

ixF=0. (6.2.31)

Next, act on the right-hand-side of the dilatino equation (6.2.7) with XT';; and take the inner
product with A. On making use of ix F' = 0, we find the condition

(A, Xg, Hyyp,p, T35 A) =0 (6.2.32)
and hence
(A, T11 Ty Ty AYe?r2t5ta Xy Hy 00 =0 . (6.2.33)

Again, as the vectors (A, T'11,,,IVA)d; span the tangent space of M5, this condition implies
that

XANH=0. (6.2.34)
Another useful condition is to note that Ly X = 0 implies that
Lw(D'X;) =0, (6.2.35)

and as the W span the tangent space of M?®, it follows that D’X; must be constant. However
the integral of D?X; over M® vanishes, and hence it follows that

D'X; =0, (6.2.36)

ie X is co-closed. As it is also closed, X and so G are harmonic. This condition, together with

dX = 0, imply that one can write
D*X? = 2D'X9D;X; + 2X’(D;D; — D;D;)X" = 2D'X7D;X; + 2X'X'R\? . (6.2.37)

On using the Einstein equation (6.2.5), together with the conditions ixF =0, X A H = 0, we
find

. 1 1, 1 1
DPX? =2D'XID;X; + X* (= 0GP = 8% = 1 F? 4 L 1) (6.2.38)
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which can be written as
o 3
D*X? =2D'X'D; X; + X*(258% + §F2) , (6.2.39)

on using the dilaton equation (6.2.3) to eliminate the G* term. As the right-hand-side of this
expression is a sum of non-negative terms, an application of the maximum principle implies that

X? is constant® and
X?$%=0. (6.2.40)
As S # 0, it follows that X2 = 0, and hence G = 0. Then (6.2.27) implies that
(A, T11A) =0, (6.2.41)

for all Killing spinors A. However, this is a contradiction.
To see this, let the 12-dimensional vector space spanned by the Killing spinors A be denoted

by K. Then the above condition implies that
(A1, T11A2) =0, (6.2.42)
for all A1, As € K. Denoting
'iK={TmA:Ae K}, (6.2.43)
the condition (6.2.42) implies that I';; K C K=, where
K+ ={U:(U,A)=0forall Ac K} . (6.2.44)

The dimension of space of all Majorana Spin(9, 1) spinors ¢ satisfying the lightcone projection
I'y¢ = 0is 16. As K has dimension 12, K+ has dimension 4. As I';; K is 12-dimensional it
cannot be included in K+ as required by the assumption (6.2.41). Therefore there are no AdSs
solutions in massive ITA supergravity which preserve 24 supersymmetries.

We would like to remark that the proof of this result is considerable simpler if M?® is simply
connected. As it has already been proven G is harmonic. On a simply connected M?, G vanishes.
In such a case, (6.2.27) again implies (6.2.41). Then the non-existence of such AdSs backgrounds
follows from the argument produced above that (6.2.41) cannot hold for all Killing spinors.

6.3 AdSs x, M° solutions in IIB supergravity

The active fields of AdSs x,, M3 1IB backgrounds as well as the relevant field and KSEs have
been determined in [14]. In particular, in the the conventions [14], the metric and other form
field strengths are

2
ds® = 2du(dr + rh) + A*(d2* + e**/* Y "(dz®)?) + ds* (M)

a=1

3The condition X2 = const also follows from Ly X2 = 0 together with homogeneity.
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G=H, P=¢ F=Y (A%ZZ du A (dr 4+ rh) Adz A dx A dy — dvol(MS)), (6.3.1)
where again we have written the background as a near-horizon geometry [19], with

h = —%dz —2471dA (6.3.2)

A is the warp factor which is a smooth function on M°, G is the complex 3-form, P encodes the
(complexified) axion/dilaton gradients, F' is the real self-dual 5-form and Y is a real scalar. The
AdS5 coordinates are (u,r,z,x%) and we introduce the frame (et,e™, e, e%) as in (6.1.4).

For the analysis that follows, we shall use the Bianchi identities
d(A%Y)=0, dH=iQANH—-¢(¢NH (6.3.3)

and the 10-dimensional Einstein equation along AdSs which gives the field equation

4

z A72 —4A72(dA)* (6.3.4)

AWPA—4y? 4 L | H ||?
48
for the warp factor A. The remaining Bianchi identities and bosonic field equations, which are
not necessary for the investigation of N = 24 solutions, can be found in [14]. We also assume
the same regularity assumptions as for the eleven dimensional solutions, and remark that (6.3.4)
implies that A is nowhere vanishing on M?3.

6.3.1 The Killing spinors

Solving the KSEs of IIB supergravity for AdSs x,, M® backgrounds along AdSs, one finds that the
Killing spinors can be written as in (6.1.5), where now oy and 74 are Weyl Spin(9, 1) spinors
which depend only on the coordinates of M?° that obey in addition the lightcone projections
I'pop =Ty =0.

The remaining independent KSEs are the gravitino parallel transport equations
pHo. =0, DHri=0, (6.3.5)
where
D) —D-:I:lé)-lo A—EQ-:I:EYI‘-I‘ + —iFH +3H Cx (6.3.6)
i T HiEgaesam okt iteys 96 ¢ 32T >
together with the dilatino KSEs
Lpgos Yoo =0, (Lo )r=0 (6:3.7)
24 == 24 e e

and some additional algebraic conditions which arise from the integration of the KSEs along the
AdS5 subspace

E®gy =0, <E<i> + £1>Ti =0, (6.3.8)
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where

=) = ]Fi - %anA + %AYFW + %AFZHC* , (6.3.9)
and C is the charge conjugation matrix. Again, we have not made any assumptions on the form
of the Killing spinors.

The counting of the Killing spinors, and the way in which one can construct the oy, 7+
spinors from each other proceeds in exactly in the same way as for the D = 11 AdSs solutions.
So, again, for a generic AdSs x,, M® solution, all of the Killing spinors are generated by the
o4+ spinors, each of which gives rise to 8 linearly independent spinors. The solutions therefore

preserve 8k supersymmetries, where k is equal to the number of o spinors.

6.3.2 N =24 AdSs solutions in IIB

To proceed with the analysis first note that as a consequence of the homogeneity conjecture

proven in [39] is that the solutions with 24 supersymmetries must be locally homogeneous, with

£=0. (6.3.10)
Then, we set
A=oy+714, (6.3.11)
and define
W; = A(A,T.pyTiA) (6.3.12)
Then (6.3.5) implies that
DWj =0, (6.3.13)

so W is an isometry of M®. Next, using (6.3.5), we find
DillAP=— || A2 A'D,A + %Re(A,FHiC L A) . (6.3.14)
Furthermore, the algebraic condition (6.3.8) implies that
%HC * A= (AT'TYD;A = iYTy )N+ 0" AT T (0 — 74) - (6.3.15)
On substituting this condition back into (6.3.14) we find
D || A =207 A" Re(ry, T\ .oy . (6.3.16)
However, (6.3.5) also implies that

D’ (AR6<T+,F1-FZU+>> =0. (6.3.17)
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So combining this condition with (6.3.16), we find
D'D; | A|? +2A7'D'AD; | A |*=0. (6.3.18)

A maximum principle argument then implies that || A ||? is constant. Then (6.3.14) and (6.3.16)
imply

1
—|A > A7IDA + 4—8Re<A,FHiC *A) =0, (6.3.19)
or, equivalently
Re<7'+, FiFZO'+> =0. (6320)

Next, we shall show that the spinors o, 7 are orthogonal with respect to the inner product
Re <, >. To see this, note that (6.3.8) implies that

<T+, E(+)O'+> = 0, <0'+7 (E(+) + Z_l)T+> =0. (6321)

On expanding out, and subtracting these two identities, one finds that the real and imaginary

parts of the resulting expression imply

(7'Re(ry,0.) + Re(ry, . T"D; Ao, ) =0, (6.3.22)
and
1
YRe<T+,ny0'+> + @Imﬁ_;,_, FZHC * O'+> =0 , (6323)

respectively. On substituting (6.3.20) into (6.3.22), we find that
Re{ry,04) =0. (6.3.24)

For N = 24 solutions there are 6 linearly independent o spinors, and 6 linearly independent 7.
spinors, hence the spinors of the type A = o, + 71 span a 12 dimensional vector space over R,
which we shall denote by K.

It is also particularly useful to note that the algebraic condition (6.3.8) implies

2%(1\,%,(7+ —oy)) — %(A,mezFiDiAM
- %AY 1A +%<A,szHC FA) =0 (6.3.25)
On taking the real part of this expression, one finds
WiD,A=0, (6.3.26)

where we have used the identity (A, Dyl C * Ay =0.
The condition (6.3.26) implies that

dA=0. (6.3.27)
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This is because, by a straightforward adaptation of the analysis in [39], it follows that the
isometries W generated by the spinors A € K span the tangent space of M?®, see also appendix
B. So A is constant, and the condition (6.3.19) implies that

Re(A, TH,C xA) =0 . (6.3.28)

To proceed further, take the divergence of this expression. On making use of the Bianchi identity
for H given in (6.3.3), together with the KSE (6.3.5), we find the following condition:

3

Re(A, <9H5142iHZ344iF€1£2€3£4 1

_ 1 _
3 Hflmngmnrll& + 4H€1€2£3H€152€3)A> =0, (6329)

where H is the complex conjugate of H. Furthermore, the algebraic condition (6.3.7) implies
that

Re(A, %ﬁiﬁm) =0. (6.3.30)
On expanding this expression out, and adding it to (6.3.29), one obtains the condition
Re(A, Hy, gy Hy,o, TO254A) =0 (6.3.31)
or equivalently
Wie 2t g, o iHypd =0 (6.3.32)
Again, as the W isometries span the tangent space of M?®, one obtains
Higy oo Hegey)' =0 (6.3.33)
Furthermore, on substituting this condition back into
(Cx N, HTHA) =0, (6.3.34)
which follows from (6.3.7), we find
(CxA A || H|?*=0. (6.3.35)

So either H =0, or (C % A,A) =0 for all A € K. We shall prove that (C * A, A) = 0 cannot be
satisfied for all A.

Indeed, suppose that (C'x A, A) =0 for all A € K. We remark that (C'* Ay, As) is symmetric
in Ay, As, and so (C'x A, A) =0 for all A € K implies that

<C * Al,A2> =0 s (6336)
for all A1, Ay € K. If we define

K={CxA:AcK}, K"={VU:Re(¥,A)=0forallAcK}, (6.3.37)
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then the condition (6.3.36) implies that K C K*. However, this is not possible, because K is 12
dimensional, whereas K+ is 4-dimensional. So, one cannot have (C x A, A) = 0 for all A € K.
It follows that

H=0 (6.3.38)
and hence the spinors A satisfy
DA = (;Ql - ;YPimeZ)A , (6.3.39)
for constant Y, Y # 0, with
.= 62% , (6.3.40)

as a consequence of (6.3.4). The integrability condition of (6.3.39) implies that
<Rijmn — Y2 (8imbjn — 5m5jm)>rm”A =0, (6.3.41)
where we have used the Bianchi identity d@ = 0. Then (6.3.41) gives that
Re(A, Ty <Rijmn — Y2 (8imbjn — 5m5jm)) I"A) =0, (6.3.42)
or equivalently
wn (Rijmn — Y ?(6im0jn — 0ind; )) =0. (6.3.43)
As the isometries W span the tangent space of M?, it follows that
Rijmn = Y*(8im0jn — 0indjm) (6.3.44)

and hence M? is locally isometric to the round S°.

It follows that all (sufficiently regular) AdSs solutions with N = 24 supersymmetries are
locally isometric to AdSs x S°, with constant axion and dilaton, and G = 0. This establishes
that there are no distinct local geometries for IIB AdS5 x M® backgrounds that preserve strictly

24 supersymmetries.

6.4 Summary

In this chapter, the author has been proven that 10- and 11-dimensional AdSs backgrounds
with compact transverse spaces cannot preserve exactly 24 supersymmetries. For ITA and 11-
dimensional backgrounds, it is known that there are no maximally supersymmetric AdSg X,
MP~% backgrounds, and so this proves that AdSs backgrounds preserve at most 16 supersym-
metries. For IIB backgrounds, the author has proven that any AdSs background which preserves

24 supersymmetries is in fact maximally supersymmetric, and is locally isomorphic to AdSs x S°.
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Chapter 7

Conclusion

In this dissertation, the author has integrated the AdS Killing spinor equations for all type IT and
heterotic AdS,, X4 M0~ and R*™ ! x,, M19=" backgrounds. As a consequence their allowed

supersymmetry fractions have been determined, summarized in the tables below. Note that

Table 7.1: SUSY Fraction of AdS,, Backgrounds

| AdS,, | SUSY fraction, N

AdS, N =2k
AdS; N =2k
AdS, N = 4k
AdSs N =8k
AdSe N = 16k
AdS, N = 16k

Table 7.2: SUSY Fraction of R"" ™! Backgrounds

RYE SUSY fraction, N
R N =k
R2 N =2k
RS N = 4k
R RY? N =8k
RYC RV R N = 16k
R N =32

these are restrictions on the allowed supersymmetry fractions, and not all of these backgrounds
necessarily exist. Supersymmetric heterotic AdS backgrounds, for example, must be AdSs3. ITA

and 11-dimensional AdS,, backgrounds are at most n < 7, while IIB backgrounds are at most
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n < 6. Furthermore, the maximally supersymmetric backgrounds of each supergravity have been
classified [37], which means that AdS backgrounds of other AdS dimensions cannot be maximally
supersymmetric. There will likely be more similar theorems to find, as well as additional theorems
akin to those presented in chapter 6, proving that certain non-maximal supersymmetry fractions
cannot exist either.

Additionally, the author has proven a Lichnerowicz-type theorem for each type II and each
heterotic AdS,, x,, M'%~" background, with the additional condition that the transverse spaces
are compact. These theorems prove that the Killing spinors of each background are exactly the
zeroes of a Dirac-like operator on the transverse space, and simultaneously prove that the e
Killing spinors have constant length, a condition which is closely connected to the superalgebra
properties of each background.

Even with these results, there are a number of questions related to this work that remain to
be answered. For example, how many other backgrounds do similar Lichnerowicz-type theorems
apply to? In general, while all Killing spinors of an arbitrary supergravity background are
necessarily zeroes of any Dirac-like operator constructed from the KSEs, the converse is not
necessarily true. However, given how many such theorems have now been proven, it seems likely
that similar results could be found for a wide variety of supergravities. If necessary and sufficient
conditions for such a correspondence to exist could be determined, then their broader context in
the study of supergravities could be better understood.

Having solved the Killing spinor equations on the anti-de Sitter space of each of these back-
grounds, another natural question is if this gives us any additional information about the super-
algebras these backgrounds preserve. Of course, we know a priori that the AdS Killing vectors
form an so(2,n — 1) algebra, but knowing the exact forms of the Killing spinors gives additional
information about how they are related to Killing vectors, and how the isometries act on the
supersymmetries. Together with the super-Jacobi identity, this information will allow the super-
algebras of many of the backgrounds discussed in this dissertation to be completely determined.
For most of these backgrounds, it will even determine some of the isometries of the transverse
spaces.

Finally, the results in this dissertation, particularly those regarding allowed supersymmetry
fractions, lay the groundwork for a complete classification of all AdS supergravity backgrounds.
Restricting the search to those backgrounds with appropriate numbers of Killing spinors makes
even stronger statements possible, such as the proof that all AdSs backgrounds which are more
than 1/2-BPS are maximally supersymmetric, in chapter 6. More directly, what can be learned
from the superalgebra information mentioned above will significantly restrict the possible geome-
tries of the transverse spaces.

These results are also related to the identification of the geometries of the transverse spaces.
Although the author has completely identified the supersymmetries preserved by these back-
grounds, the geometric implications of these results have not been fully analyzed. It is possible

that many different geometries will appear, and their identification is a problem for the future.

115



Appendix A

Form and Spinor Conventions

Our form conventions are as follows. Let w be a k-form, then

1

W= ywil...ikdl'il A Ada (A.0.1)
and
1 i i

d(JJ = Hailwi}nikﬁ»ldx A A dfll' k+1 5 (AOQ)

leading to
(dw)i1-~'ik+1 = (k + 1)8[i1wi2...ik+l] . (A03)

Furthermore, we write

w2 = wamw“”" s wiiz = (.L)iljl.__jk_ilwzéjlmjk’_l . (A04)

Given a volume form dvol = 1 €iy. i, dx®' A --- Adx', the Hodge dual of w is defined as

nl

*w A x = (x,w) dvol (A.0.5)
where
1 Q1.4
(w) = oy X i tete (A.0.6)
So
1 J1---Jk
*w’il-nin—k = Heilw-in—k‘ wjljk . (AO?)

It is well-known that for every form w, one can define a Clifford algebra element ¢ given by

= wiy. i T (A.0.8)

116



where I'!, 4 = 1,...n, are the Dirac gamma matrices. In addition we introduce the notation

‘701‘1 = wiliz---ikrhmik ) F‘/)Z‘l = Fi1i2mik+1wi2. (A.0.9)

Skl )

as it is helpful in many of the expressions we have presented.
Additional spinor conventions used in this dissertation can be found in [92], particularly

including the constructions of the I'-matrices in terms of forms.
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Appendix B

Notes and Computations

These are some of my notes from the work done for this dissertation, including the Clifford

algebra computations involved in proving the Lichnerowicz-type theorems.

B.1 AdS Geometry

B.1.1 Metric and Frame Forms

The metric for AdS,, x.,, M~ in lightcone coordinates is
2 o
ds® = 2du (dr — %dz —2rdln A) + A2d2? + A2/, dadab + gijdx'da’ (B.1.1)

from which we derive the frame forms

et =du (B.1.2)
_ 2r
e =dr— de —2rdln A (B.1.3)
e® = Adz (B.1.4)
e = Ae*/tdx® (B.1.5)
defined such that
ds? = 2ete™ + (€)° + dape’el. (B.1.6)
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B.1.2 Spin Connection

The derivatives of the frame forms are

det =0 (B.1.7)
de” = —%dr/\dz—er/\dlnA (B.1.8)

= —%A‘le_ Ae* —2e” Adln A (B.1.9)
de* = —%ez AdlnA (B.1.10)
de® = —e® ANdIn A — %A‘lea/\ez. (B.1.11)

Solving de™ + QM y A eN = 0, the non-zero components of the spin connection are

Q= f%A*Iez —dlnA (B.1.12)
Oy, = %A*lﬁ (B.1.13)
Qoo = —%A‘lea (B.1.14)
Qui = A0, Ae,,. (B.1.15)

B.1.3 Curvature

The Riemann curvature is defined by pMV = dQMN + QM - A QKN

(1 y
P =—A"2 (gz + (dA)Q) et Ne (B.1.16)
Pt =—AT'V,;Videt Nel = —(V;V' InA+0;In A0 In A)et A el (B.1.17)
The Ricci curvature is
R;,w = pa;,a,o-y + piu7iu (B118)
1
= —(n—1)A"2 (42 + (dA)2>mw — (V?In A+ A% (dA)*)nu (B.1.19)
n—1 _ n o _
= < 7z A2 - ZQA 2(dA)? — V2 lnA)nW (B.1.20)
Rij = poi; + Pki,f (B.1.21)
=R —nV;V;In A — nA~29,A9,A (B.1.22)
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B.2 Heterotic AdS;

B.2.1 Fields, Field Equations and Bianchi Identities
Warped AdS3 backgrounds are described the metric
ds?> = 2ete™ 4+ A?%dz? + ds? (M7),
e=du e_:dr—%dz—QrdlnA

where u,v, and z are the AdS3 coordinates, ¢ is the AdS radius, and A is the warp factor.
The fields of heterotic supergravity are compatible with the AdS symmetries if and only if the
scalar field, ®, and the warp factor, A, depend only on the M” coordinates, the two-form, F, is
restricted to M7 and has no coordinate dependence on AdSs, and the three-form, H, is of the
form

H=AXet ANe™ Adz + G,

where X is a scalar and G is a three-form restricted to M7, and neither have any coordinate
dependence on AdS3. With the fields expressed in this way, the field equations and Bianchi
identity can be decomposed in terms of these components. The Bianchi identities for the gauge

field strength and three form separate into three equations,

d(A*X) =0
dG =0
dF =0,

while, from the field equations, we find that
V20 = —3A710;,A0'® + 2(d®)? — %cﬂ + %XQ
VFGijn = —3A710P AG 1, + 207 ®G 1,
ViF;; = —3A 07 AF;; + 20'®F;; — %Giijj’“
and the Einstein equation separates into an AdS component,
VZlnA = —%A*Q —3A72(dA)* + 24710, A0'® + %XQ,
and a transverse component,
R =3V;V;In A+ 3A729;A9;A + iGikleGj’ﬂkZ —2V,V,9®,

)

where V is the Levi-Civita connection on M7’ and Rg is its curvature. Contracting the free

indices of the transverse component of the Einstein equation, we can express the scalar curvature
of M7 as

R =3V2In A+ 3A7%(dA)? + iGQ PAVAL

- *(%A* —6A7%(dA)? + %GZ + %XQ +124710,A0'® — 4(d®)*.
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B.2.2 Killing Spinor Equations

The heterotic gravitino Killing spinor equation is

1
VM6—§HM6:O.

Using the components of H defined above and the geometry of the warped product, we find that

the gravitino equation restricted to the AdSs directions is equivalent to
0=0uex + AT (07 =2 )ex
0=0rex — AT _,Ziex
2r
0=0,e4 —=4e4 + 7A_1F,ZE+6;F
where, for AdSs,
1 n 1
20 2

Furthermore, we can use these relations on =4,

1
=L =7 PAT, F ZAX'

240, +T1..5: =0

2.0, +T, E. =0,

to simplify the integrability conditions in these directions. We find that there is only one inde-

pendent condition,

1
0= (EiQ + fEi> €4

11 | 1
= —— — —(dA)? F ~AXJAT, + —A%2X?
( gz ~ 1A F gAXPAT: + =

which, if £ < oo, can only be satisfied if dA = 0 and

—ﬁ + %6142)(2 =0, (B.2.1)

in which case

_ 1+c¢

Y,
where ¢; = gAX is either 1 or -1, as guaranteed by (B.2.1). We can easily integrate over z,
finding

e+ (0,0, z, yL) =04 (y’) + T, (yi),
where
Zro01 =0 =Ty = :F%Ti.

For convenience, we introduce B(®), which represents =4 when it acts on o4 and 24 + % when it
acts on 74. The integrability condition is then succinctly expressed as B x4 =0, x4+ = o4, 7.

Specifically,
+ co
BE — 4
+ o0
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where co = 1 when x4+ = o4 and ¢c3 = —1 when y4+ = 7.
Using, again, the components of H defined above, the gravitino Killing spinor restricted to
M7is V®e = Vixg + 01F)

i

X+ = 0, where
1
\I’Ei) = _§$i’
Additionally, we find that dilatino Killing spinor equation reduces to Ay, = 0, where

A® — g+ LA, 1 ¢.

‘ 12
The independent Killing spinor equations are thus

V(i)xi =0, A(i)xi =0, and B(i)xi =0.

B.2.3 Lichnerowicz-type Theorem on o, 7,

We begin by introducing a modified version of the gravitino equation operator,
@§+,q1,qz) _ V§+) + @ ATT,BM) 4 gl A,

with the intention to demonstrate that, for an appropriately chosen value of ¢; and ¢, if
Fi@iXJr = 0, then x; satisfies the gravitino and dilatino Killing spinor equations. For conve-
nience, we also introduce an operator representing a general linear combination of the algebraic

conditions,
Alaa2) — —C]1A71FZB(+) + QQA(+),

so that V{™4%) = ¢ 4 1 A(+a142) and the modified Dirac-like condition is
Fi@§+7q11q2)x+ — (szz 4 FZ\IJE‘H + 7A(+,q1#}2))x+ =0.

We expect to find that an equation of the form V2| x4 > = Q(x+, x4 ), where the right-hand
side, Q(x+,x+) is a positive-definite quadratic function in yi. With this in mind, we now

expand the Laplacian, V2HX+||2, into two terms,

2 2
VIl = 2V 17 + 2(x+, Vx4 )-

The first term can be further rewritten in terms of the differential operator V by completing the

square,
~ 2 ) .
20V l? = 2 Ty |7 - ax, (W 4 AaaiTd )y, )
- 2<X+, (\p(+)z‘T + A(+,q1,q2)frz‘> (\I,EJr) n FiA(+’Q1’q2))X+>
~ 2 ]
= QHV(Jr,qqu)X_i_H _ 4<X+’ \I/(+)z’rvix+>

_ 2<X+’ (\I!("")“ _ A(“ﬁQlaQZ)TFi) (\Ilgﬂ + FiA(+’q1’q2))X+>7
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while the second term can be rewritten using the property I'"'V,[VV ;¢ = V21 + %le/), and

the Dirac-like condition,
2, Vx4) = 2000 TV (T Vx4)) + 5 RO
= %R(”HXHZ = 2(x4, Vi (D700 4+ Trialt e )y )
= 2(xe, (DO 4 T A ) ) vy ),
Combining these, V2||x4||* can be rewritten as,
V2l = 2 e |4 SR
+ <><+, {—4@“”‘* — a0 I — 14g, ATITHR) — 14q2FiA(+)} vix+>

+ <X+’ _2(\1/(+)i1‘ _ A(+>41,Q2)T> (‘I’Z('H + FiA(+’q1’q2)>X+>

+ <><+, v, [—2r"rj\p§*> 14 ATIDFRE) - 14q2FiA<+>}X+> (B.2.2)
where

+Ht _ 1
\IJE " = §$z
gt — Lt

20
1

1t — gp o LA-1P. 4+ —

A P + 7 2+ 12$.

Of the terms on the right hand side of (B.8.6), the first term is proportional to the gravitino
equation squared, and so we expect that the remaining terms will be equal to some combination
of the algebraic KSEs. The third term includes a derivative of chiy, however, and so we will

attempt to write it in the form
o' Vil l? + (s, FT'Vixs ) = @' Vil x4 || = <X+77<Fi\1’§+) + 7A(+"“’q2)>X+>.
In terms of the fields, the third term can be rewritten as

<x+, [-4@“” —r I 140, AT TFBO) - 14q2ri,4<+>} ViX+>

1

1+ 14 i 3+14 i
+ 1 q2$ + 12 QQF$}ViX+>~

[ 2% i
= <X+7 [A T (qier + qiea + 2gact) — 14goI" P

Thus, we find that it can be separated as outlined above if and only if g, = —%. We will use this

value of ¢o from here on. We therefore find that

<><+7 [—4\1/<+>” — 0TI — 14 AT TFBO) 4+ 2r64} vix+>
1 } ,
= <X_;'_7 [EAlI‘“(?qlcl + 7(]102 - 261) + QFl@(I)

1 . 1 i
—1$1 + EF$ }V1X+>7
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and so, factoring out a I' on the right,
1 1
F = ZA_1FZ(7q101 + 7(]102 — 201) — 2&‘1) — E$

and a; = 20;9P.
Now that the third term of (B.8.6) has been expressed as a term quadratic in the fields, it
can readily be combined with the fourth term of (B.8.6),

) 1 o1
<x+, —2 <\IJ(+>” + @ ATIBOIT= §A<+>TFZ + 2J—Tl)
1
X (wﬁ” + @ AT B) — 7FiA(+)> X+>

1 6cq
= <X+> —2 {g <3Q101 + 3q1c0 — ;)A e~ 3‘1’1—‘1 + @' + —r¢* ]

168
Liqian+qe o\, qn 140 5 1
X [ ] ( 2 7 )A Fei = gTide 56@ + 84F$i X+
12 1 ;
= <X+, |: 7£2 (7(]161 + 7(]162 - 201) A” 2_ 7((1@)2 - f@Z@FGZ
1
426(7(1162 + 7Q1C1 - 2C1) 1$F — ﬁ$$ - — :|X+> (B23)

The last term on the right hand side of (B.8.6) is the only term involving derivatives of the
fields other than ® and the second derivative of ®. However, we can use the Bianchi identity

and the ® field equation to rewrite this term,
<><+7 v, [ 0TI 24T 4 2r%4} >
= <X+, [QVQ‘I) + dC] x+>
1
= (o |+ atan? - fe ), (B2.4)

and we can use the scalar part of the Einstein equation to rewrite the second term on the right
hand side of (B.8.6)

2 )
SEODGI = (i [ 572 - 2000 + 267w ) (B.25)

Now that we’ve expressed the all but the first term on the right hand side of (??) as terms
quadratic in the fields, we expect their sum, i.e., the sum of (B.7.40), (B.7.42), and (B.7.43), to
be a linear combination of |‘IBS(+)X+||2, (T.BH) x4, AP\, ), and ||.A(+)X+H2. Indeed, comparing
this sum,

d®)* — o L oorg’

1/2
<X+a {52 (7 —42q,% 4+ 121 + 12q1¢c109 — 42q3 0102)A + 7(

1 1
10 —(Tqica + Tqrer — 2¢1)ATHET, — 504$$] >7
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to

2 1+ C1C2
B H _1Ttac
H X+ 202

1 _ 1
<FzB(+)X+’A(+)X+> = <X+a {_262(1 +eie) AT - @(Cl + C2)¢7Tz] X+>

2
I+

a9 = (e |@2)? + 5a= — o0’ + S amgr
’ 02 6 " 60 *
1
—mo:cz:} X+>

we find that

2 i 2
Vx4 1" = 202V | x4 ||

= 2 2\ 4 —2||m(+) 2 -1 (+) 2 2
=HV><+H +28(q1 — 3¢:1%) A HB X+H +4q A <FZIB% X+,Ax+>+;H«4X+II~

The right side of this equation is positive definite if 0 < ¢q; < % In those cases, the Hopf

maximum principle tells us that |x4 | is constant, and that,
Ve =0,  APyi=0, and BHyy=0,

i.e., x4 is Killing.

B.2.4 <& First Order Corrections

Most of the above analysis is entirely unaltered when we consider terms of first order in o’. The
primary differences are the Bianchi identity,

!

dH — _% [tr(R A R) — tr(F A F)],

the V2@ field equation,

/

1 . .
V20 = 2(d®)* — EHQ + % [Rarnst RMNST — Fapyap FMN,

and the Einstein equation,
!/

1 «
Ryn = ~Hin — 2V VND — T

1 [Rarrst RNTT — Fyrsr Fn™5T].

In these equations, R is the curvature of the connection V — %H and F' is the two-form gauge field.
Using the components of H defined above, without any assumptions about their dependence on

o', the Bianchi identity separates into two equations,
d(A*X) =0

/

dG = —O‘Z [tr (Rm A R(7)) —tr(F A F)} .
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The field equations can also be expressed in terms of these components,

V20 = —3A719,A0'® + 2(d®)? — %Gz - %XQ

i % [RZ(;,)IMRU)M,M  FyjgFiiab
VG = —3A7 TR AG 1 + 208 0G4,
and the AdS component of the Einstein equation is unchanged,
VZnA = —%A* —3A7%(dA)? + 24710, A0'® + %X2,
while the transverse component is now,

1
R =3V,V;In A +3A729,A0;A + Gt G — 29,V @

o 7~ .
vy REZ?stR§7)k’St - Fl‘kaijkab]v

from which we find that

RO = 392 A + 3472 (dA)* + 1 G —2V2@ — & [RO) ROV — By i
) _
- *%Aﬂ —GAT(dA)* + %GZ + 5 X2+ 124710,A0'0 — 4(d2)’
3 / . o .. ]

Aside from the corrections to the fields, there are no other first order corrections to the Killing

spinor equations. The derivation of (B.7.40) is therefore unaffected, but (B.7.42) becomes

<X+7 % {—QFiFj\Ifgﬂ —2A-IPEB(H) 4 QI‘iA(H] X+>
1

- <X+, [;;A—z +4(dD)? — éGz + %/[Rz(;’)MRW)ij,M _ FijabFijab]
o
52
and (B.7.43) becomes

1 2 )
= (M 2: Y 2 o2
RO = (s [~ A7 - 200+ G

3o/ 7~ Py -
- [Rg,)sz(7)”’M - FijabFljabHX+>-

. (7 (7 s L
[R51227ij1(324,jk - Filizfleiguab} F111213Z4:| X+>7

16

Thus, the same theorem hold if the condition
o T o) A(Dij ija
<X+7 {_16 |:R»Ej7)k-[R(7) PE — Fijan PV b}

a/
+

372 |:R1(171)2,]kR(7) Jk - FiligabFi3i4ab:| Fi1i2i3i4:| X+> = 0

1314,

is satisfied.
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B.3 Heterotic AdS,,, n >4

B.3.1 Field equations and Bianchi Identities

For AdS,,, n > 4, all fields are purely magnetic. The Bianchi identity is
dH =0,
the field equations are
V20 = —nA"10'A0;® + 2(dD)* — 1—12H2
V¥H,j = —nA 108 AH ), + 20" ® H,jy,

and the Einstein equation separates into an AdS component,

n—1

2
VilnA=— 7

A2 — nA~2(dA)? + 24710,A0'D,

and a transverse component,
—n 1
R =nV,V;In A+ nA=20,A9;A + G Hin M = 2V:V;0,
which contracts to

RUO"M) — V210 A 4 nA—2(dA)? + iHQ _ oV
n(n—1)

=——— A2 nn-1)A2(dA)? + 15—2H2 +4nAT10; A0 D — 4(dD).

62
B.3.2 Killing Spinor Equations

The AdS-direction parallel transport equations are

0= 0u€e+ + A_1F+z (é_l - E,)ejF
0=0rex — AT _,E s

0=0,64+ —Eqeq + 2rA71F_ZE+ejF
0=046; + AT, E ey

0=04_ + A ' T.0(B- — 07 ")ee

where, for AdS;, k > 5,
1 1
=L =F— + -@ATL,.
+ 45% + 2(?9
Because

Eirz+ + FZ+E:F - O
Eil,_+T,_E+=0
E:trza + anE:I: = ¢€71ana
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we find that there is only one AdS-AdS integrability condition,

1
(Ei2 + ZEi)ei =0. (B.3.17)
However,
. 1 1 11
2.2 = |F— + —JAT — + ZJAT B.3.1
2? = [7gp + 59T | [F gy + 59T (B.3.15)
11 1
= — F —JAT, — = (dA)? B.3.1
1 T AT — (4 (B-3.19)
= Qilz ——i—}(dA)Q (B.3.20)
TETYTET a2y ’ "

so the integrability condition cannot be satisfied for ¢ < oo or dA # 0.

B.4 Heterotic R x p10—n

RY"~1 spaces are very similar to AdS,, spaces. Again, the fields are purely magnetic, and the

Bianchi identity is

dH =0 (B.4.1)
while the field equations are
V20 = 2(dd)* - %Iﬂ (B.4.2)
V*Hiji, = 20°®H,jy,, (B.4.3)
and the Einstein equation includes only a transverse component,
R = % kg HiF192 — 2V, V@, (B.4.4)
which contracts to
R10-m) — ng —2V%® (B.4.5)
= %fﬂ — 4(d®)?. (B.4.6)

B.4.1 Killing Spinor Equations

The R~ !-direction parallel transport equation is

Oue =0, (B.4.7)
so the Killing spinors have no dependence on these coordinates.

The parallel transport equations in the transverse directions are V&e = V;e + \I/z(-i)e =0,

where )
vH = AT, (B.4.8)

and the algebraic equation is AFey = 0, where

1

AF) = §o 4 EHFH. (B.4.9)
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B.4.2 Maximum Condition on ¢,

We introduce a new operator,
VI = v g, A (B.4.10)

with the intention to demonstrate that, for an appropriately chosen value of g, if Fi@§+)€+ =0,

then e satisfies the Killing spinor equations. The modified Dirac condition is
vte, = (F’Vi +To) 4 (10 — n)qA<+>)e+ ~0. (B.4.11)
The Laplacian expands into two terms,
V2ler|® =2 Ve |* + 2(ey, V2ey). (B.4.12)
The first term is then
2| Vey|® = 2”@“@“2 - 4<e+, (qJWT + qA(+)TFi)Vie+>
_ 2<€+7 (\I,(+m + qA(+)TFi) (‘1’1(-” i quA<+))€+>
= 2”@“”@“2 - 4<e+, \I/(+)iTVie+>
_ 2<€+7 (\I;(+)iT _ qA(+)TFi> (\p§+) + quA(+))€+>’
while the second term is
2(e;, Ve ) = 2(e; , T'V,;(T9V ¢4 )) + %RUO*")HqH2 (B.4.13)
R0=m)||¢[|? — 2<e+, v (rirﬂ'\pg*) +q(10 — n)riA<+>)e+>
= 2(es, (TP 4 (10 = )TAD) ) Ve ).
Thus, the full expansion is

N 2 1
V2|le, |1 = 2Hv<+>e+ ‘ + 5RO e | (B.4.14)

+ (e, {—4x1/(+)” 20— 2(10 - n)gl A] Ve, )
+ <e+, —z(xp . qAH)T) (fo + T, A +>)e+>

+ (o0, Vi [20 0D — 210 — n)gl Al e, )
where

1
vt = —gHitn (B.4.15)

1
AT = §@ 4+ — Ty, (B.4.16)
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We would like to write the third term in the form oV, ||ey||* + <e+,]-Ti@ie+>. Expanded,
this term is

<e+, {—4\1/(+>” —orri ) 2010 - n)qF"A] Vie+> (B.4.17)
- <€+, {_2(10 — n)ql g — wwh - WFHTH} Vie+>.
This fixes ¢ = —ﬁ, so term is
<e+, [—4\1/(+>“ — 0w — 2(n — 2) A TFB) 4 2F%4} Vie+> (B.4.18)

1 1 )
= <€+7 |:2Fi@(b - E(FH)J‘M + 4Hirl1] vl€+>v
which means )
F =200 — EHPU (B.4.19)

and o; = 20°®.
Combining this with the fourth term in (B.8.6), we find

) 1 ] . 1
_ (+)it (GN8N Mty =4 U +) _ A
<€+, 2<\IJ + 10_n./4 T +2JT'.F>(\I/,L 1O_nF1A )€+>

9—n . 1 i 8—n
= (e, —2|- i —— P, - — "
<€+’ [ 0—n? 4(10 — n)H 12410 —n)

1 8—n 1
X [ — T30+ —— < H,I'11 — FH:'FH] 6+>

FHTH]

10—n 8(10 — n) 12(10 — n)
2(9 —n) 5 i 1 L.
= , | ————=(d® —O0;OTH Ty — —— - —H B.4.20
<6+ [ 10—n %) t300-n) W 72(1O—n)HH sat | ) | )
Using the field equations and Bianchi identities, the last term is
o ) 1
<e+, 2 PQFTJ\I/;H + QI”A} e+> - <e+, {w?cb - 48d/HF11] e+> (B.4.21)
1
= <e+, |:4(d‘I))2 — 6H2]e+> (B.4.22)
while the curvature term is
1 5
§R(10_")||e+||2 = <e+, {—2(6@)2 + MHQ} e+>. (B.4.23)
The sum of (B.7.40), (B.7.42), and (B.7.43), i.e. the second through fifth terms of (B.8.6), is
€ 2 (do)? + #a@rﬂirn - - HH e
l10-n 310 —n) " 72(10 — n) A

Comparing this to

e = ev. (@) + o0 (o) T - ] e.)

we find that 9

IOan

2 2 ; 2 - 2 2
V2|ex|? — 20i0V e | =2Hv<+>e+H + A(+)6+H. (B.4.24)
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B.5 IIA AdS;

B.5.1 Fields
For AdS3; backgrounds, the four-form field, G, and the three-form field, H, have electric compo-
nents,
G=Aet Ne  ANdzAX+Y (B.5.1)
H=AWe" Ne” Adz+ Z. (B.5.2)

The remaining fields are purely magnetic.

B.5.2 Field equations and Bianchi Identities

The Bianchi identities are

dZ =0 (B.5.3)
d(A3W) =0 (B.5.4)
dS = Sd® (B.5.5)
dF =d®ANF + SZ + ASWet Ae™ Adz (B.5.6)
dY =d®A\Y + ZAF (B.5.7)
dX = —3A7'dAANX +d®P AN X — WF. (B.5.8)

From the magnetic part of (B.5.6), we see that either S =0, or W = 0. The field equations are
3 1 1

: 1 1 5
29 = —3A7'9,40'® +2(dD)? — —Z2 + - W2+ ES2 4+ SF? 4+ —v2 X% (B
\ BATI0AD® +2(dP)° — 27+ GWE 4 1857+ FT o o 1 (B.5.9)
1

VkHijk = *3A718kAH7;jk + 23k<I>Hijk + §YijngM + SF;; (B.5.10)

. . . 1 .
VIF; = -3A7'0'F; + 0'®F;; — WX, — 5 ke 2R (B.5.11)
ViX;=0,0X" +%:(ZNY) (B.5.12)
VeGijkg = —3A_18£AGU*M + 8Z(I)Gijkg + *7(WY —Z A X)ijk (B513)

and the Einstein equation separates into an AdS component,

2 3 , 1 1 1 1 1
mA=—-2A2- A 3dA)?+247 10,400+ W+ -S* + ~F?+ —Y? 4+ -X? (B.5.14
VZIn 7 7 (dA)* + HoWiH S+ o F YV 4 ( )
and a transverse component, which contracts to
(7) 2 -2 2, 1o Too 3.5 1.5 5.9 2
R =3V Iln A+ 34A7%(dA)* + ZZ — ES — §F + %Y + ZX —2V*O (B.5.15)
- 1
= —E%A*Q —6A72(dA)* + 124710, A0"® — 4(d®)* + %22 + 5W2
1
T 3y Lye Dy (B.5.16)

2 4 48 2
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B.5.3 Killing Spinor Equations

The AdS-direction parallel transport equations are

0=0uer + AT (0T =2 )ex (B.5.17)

0=0rex — AT _Z er (B.5.18)
2

0=0d.es —Speq + %A*lr_zaq (B.5.19)

where, for AdSs,

1 1 1 1 1 1 1
By =F—+ @A, + ~AWT; — —AST, — —AFT.T';; — —AYT -AX. B.5.2
+ :F%+2(3 z 4 w 11 S S z 16 F z111 192 Y Z:FS X ( 5 O)

Note that for larger AdS dimensions, some of these fields will be identically zero.

Because

Ei].—‘z+ + I‘Z+E1 - 0 (B521)
E.T. 4T, E:=0 (B.5.22)

we find that there is only one AdS-AdS integrability condition,
(B2 £ 020 )er = 0. (B.5.23)
Thus, we can easily integrate over z, finding
€+ (0, 0, 2,0, yl) =04 (yz) + T, (yl), (B.5.24)

where

Ei04 =0 EiTe = F0 (B.5.25)

For convenience, we introduce B(*), which represents =, when it acts on o and 24 + 1 when it

acts on 4. The integrability condition is then succinctly expressed as B x4 =0, x4+ = o4, 7.

Specifically,
1 1 1 1 1 1
B® — 75 4 ZGAT, + ~AWTy, — ~AST, — — AFT.Ty, — — AYT, T -A B.5.26
:F2£+2<? 1 n-g 16F 11 192Y :FS X, ( )
where ¢ = 1 when xy+ = 04 and ¢ = —1 when y4+ = 7.
The parallel transport equations in the transverse directions are V(&e = V,e + \Ifl(»i)e =0,
where
1 1 1 1 1 1
O = 247194+ — Ty + —ST; + —FI,Ty + — YT + - XT, B.5.27
i 2 +8Zz 11+8 z+16F 7 11+192Y [ SX Z1 ( )
and the algebraic equation is Aey = 0, where
AFE) = g + iZFu F 1VVFzFu + §S + §17:'1111 + iY =+ EXFZ. (B.5.28)
12 2 4 8 96 4

Each of these applies to o4 and 7+ individually.
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B.5.4 Maximum Condition on o, 7., when S =0

We introduce a new operator,
vitane) - g 4 g 47T B 4 g A, (B.5.29)

with the intention to demonstrate that, for an appropriately chosen value of g; and ¢, if
Fi@iXJr = 0, then x4 satisfies the Killing spinor equations. For convenience, we also intro-

duce an operator representing a general linear combination of the algebraic conditions,
Ahana) — g A7 B 4 go 4D (B.5.30)
so that V(™49 — (") 4 P A(Ha92) and the modified Dirac condition is
pivitaes)y (F’Vi +Tipl) 4 7A<+»qhqz>)x+ ~0. (B.5.31)
The Laplacian expands into two terms,
V2lIx1* = 2V I + 2¢x+ V2x4)- (B.5.32)
The first term is then
2V = 2 Fermay, |- a(xy, (B 4 ACme T vy, )
_ 2<X+’ (\I;(+)1'T + A(-&-,ql,qz)Tpi) (\I'EJF) + FiA(+7qlqu’))X+>
= ZH@”"“"”)XJFHQ - 4<X+7 ‘1/(+)”Vix+>
_ 2<X+, (q;(-i-)iT _ A(+7Q1,Q2)Tri> (\I,§+> I I"Z_A(+7Q17<I2)>X+>7
while the second term is
20 V2s) = 200 DT (0900)) + SR e P (B.5.33)
= %R(”HXHQ - 2<x+, Vi (rirﬂ'\pﬁ + 7riA<+’qhq2>)X+>
— 2<><+, (rirﬂ' vl 7FiA(+’q1’Q2)>VZ-X+>.
Thus, the full expansion is
V2l = 2 e 4 SR (B.5.34)
+ <><+, {—4\1/“)“ — 20T — 14g, A TTHB) — 14q2FiA(+)} vix+>
+ <X+, _2<\I;(+)i1‘ _ A(-hql,Qz)T) (‘1’5“ n FZ-A(+’Q1’Q2)>X+>

+ <x+, v [—2Firﬂ'\p§+) — 14, A" TFB) — 14q2FiA(+)} x+>
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where

1 1 1 1 1
\11(.”*:714—18%—7 T+ =TTy + —T,Y — =T, XT B.5.
i Z; 11-1-16 F 11—5—192 Y 3 iXT. (B.5.35)
1 1
]B('HT = aAF —+ AWFll — AFF Fll AYPZ — *AX (B536)
2€ 192 8
D = @& + — 2011 + =Wy — SFTh + —Y — —XT.. B.5.
A ? +12Z 11+2W 11 8F 11+96Y 4X P (B.5.37)

We would like to write the third term in the form o/ V;||x4||* + <X+» fFi@iX+>. Expanded,
this term is
<x+, {74\11<+>” — o0 — 14, A7 TFB) — 14q2FiA(+)} vix+> (B.5.38)
- <><+, rql}cAlrzi — B4+ T@]AT A~ [1+ Tq] A (TPA)’
— 14" P — HTM%Z ' — #
~ Tq1+ 4o WTT,, — 5+ Tq1 +42¢go

2 8

—1—-T7Tq;1 — 14 .
+ZEQ2Fzy} V1X+>~

rZ'Ty

Py

This fixes ¢o = and gq; = =. The term is thus

_1
7
< [ 4Dt _ o) — oA~ PH R 4 QFiA] vix+> (B.5.39)
= (x4 [FAT'T. —44719,4 - 2471 (D9A), + 2T, 00
1 1 1 ) )
—E(F/Z)irn + ZZirll + QWF”FM] VZX+>7

SO
1 1
F= %A‘ll“z 1247 1PA — 250 — 34T — WLy, (B.5.40)

and a; = —3A719° A + 20'®
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Combining this with the fourth term in (B.5.34), we find
1
<><+ -2 (w QIS A IpHip= 4 A i 4 ]—T ) <\If§+> + ?Aflrm-ma(ﬂ - 7r A(+)>X+>
3c 13 ; S 5 ;
= —2| —ATIT A“ - ZATT 1Af7<pruf Ty - —-TZT
<X+» {7[ + 0'A 14 7 d ZTn 163 Z7Tnh
+ —WF“TH +5 FF Ti+ 5 F T+ 12 Y +5 Y

2 X T, —X T ]
x [_WA T, + 7A 19;A +1 A 'Tg,A - D(ﬂ‘b + %Zirll - S%FZIM
28WF21F11 + 6FF¢F11 - ﬁFiFn + iFY'L - 41*2}/71
+ﬂFXin - ;8Xirz:| X+> (B.5.41)
_ <><+, {_7342‘4_2 - 177,4-2(@4)2 + 276,4—1&4@@ - 172(61@)2 + AT
- iA—laiArZ"ru + ia@rziru ZZ - ﬂ - ﬁA Wy,
+ 84WZF Iy — %WQ + 2—%,4 1Fr Ti+ 5 A 19, ATF'T
—aicbrﬂr m” - —M — = Hc%A—erz
+ EA 42 96 zllsFYT”
168 Y’Y - —Y?*+ mA X — —4 *XﬂAFZ + —Xiahbrz
+%XiZ’FzF11 — %XiFFZFzFH + 6 — X, Y'T. - 28X2]X+> (B.5.42)

Using the field equations and Bianchi identities, the last term is
(x, Vi[ -2 (") — 247 1T=BH) 4 oriA] )
={ x4, |—2V?In A +2V3® — idZF + iszr + idy _lgxir % (B.5.43)
+ 48T T T I T o PR -
. 1 1 i
- <X+, LzA +6A7%(dA)? — 10A7 10" A0;® + 4(d®)? — 622 + Z@(I)I‘F %)
v lzp- Ll ie g Loery
24 ) 48

1 1, i 1.,
+@ZYT11 - ZSZlY I EX 0;9I", — XQ} X+> (B.5.44)
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while the curvature term is

1 ,
§R(10‘")le+|\2 - <X+, [_;A—Q —3A7%(dA)? + 64719 A0;® — 2(dP)*

5 1 3 1 5
+ﬂz2 + 1W2 - gF2 + %YQ + 4X2} X+>. (B.5.45)

The sum of (B.5.42), (B.5.44), and (B.5.45), i.e. the second through fifth terms of (B.5.34), is

Ao a2 2 A9 A0d - 2 (dp)? + St
<X+, {7€2A +ZAT(dA) — ZATIOADD + Z(dD) + [ AT LT

1 i 1 i 1 3¢ 4
- EA 0, ATZ Ty + ﬁal‘I)FZ Iy — ﬁZZ - ﬁA WTI'n

c

28¢

5 ; 5 1 c ., 1, ;
+ ;881@1“1}‘" I+ %ZF ?SFFJr 112£A YT, + EA O, ATY
1

i 1 1 1
+ %@@I‘Y + 1296 QGZYTH - mFYI‘u + 163 96YY

5 5 . 3
+ ¢ ATIXOUAL + XG0T,

1 1 1 i
+ 8—4WZ1“21“11 + $W2 + — AP + 2—8A’18iA1“F I

—1 v
14£A X 14
3

i 1 i 1 i 1,
+%XZZ I'.I'iy — %XZFF I'.I'11 + @le I, + ﬂX :|X+> (B.5.46)
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Comparing this to

2 1
e - L@ e L e

6 16€
256 19% AaiAFYi
~16. %FYTH + 1922A2YY + AX - *AXZ@ AL,
+64A2X TFT.Tq, + @A%{ YT, + 64A2X2] X+> (B.5.47)

1., c 1 i c
(+) — — 29" 4. i —_ 9 v W
<FZE X+ AX+> <X+, |: 28 A82<I> + 24€ZF2F11 2482AFZ Fll + Y] Fll

1 1., 3 3 ;
- @AWZFZ - gAW - EFFZFH - f(:)ZAFF Pll

1 i A
- —A@@FF I @ZF 128 AFF — 192£Y
1
1923 AFY — A@iq)FY ~ 21 96AZYF11
1 1.,
Jr@ AFYTq — 96 192 YYJr@X*gX 0; AT,

Laxi , 0T, —AXZ- r.T
+3 0, t 33 Z'T.I'y
1 i 1
[ 40| = (e [(@@)? + o0z, — 22+ Swar. LW
+ +> 6 7 11 144 12 z 4

3 i 1 9 1 i
+ Zai‘I’FF I+ *ZF - *FF + *@@FY

1
—7YT r X ', T,
+ 576ZY 11— 128FY 1+ 962YY+
1 i 3 i
X, 72’0, T — —X,TF'T.T X I, X2 B.5.4
+8 2T, 6 FT.Ty— 13 Y +16 }X+> (B.5.49)
we find that
V2 |® + (347104 — 20,9) V'[|x 4 ||° (B.5.50)

.2 16 2 4 2
= HVX+H + A 2HB(+)X+H + A 1<FZIB(+)X+,AX+>+;IIAX+||2~

B.5.5 Maximum Condition on o, 7., when W =0

We introduce a new operator,
vitae) - gt g A B 4 g, A, (B.5.51)

with the intention to demonstrate that, for an appropriately chosen value of ¢; and g¢o, if

Fi@im = 0, then x4 satisfies the Killing spinor equations. For convenience, we also intro-
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duce an operator representing a general linear combination of the algebraic conditions,
AChae) = g A7 B 4 gy A (B.5.52)
so that @l&’ql’qz) = VE” + I';A(H4192) “and the modified Dirac condition is
vty - (rivl- + T 4 6A<+’q1’q2)) Y+ =0. (B.5.53)
The Laplacian expands into two terms,
V2xal? = 209X 1 + 20x+, Vx4 )- (B.5.54)
The first term is then
~ 2 ) )
2‘|VX+H2 — 2”v(+,q1,qz)X+H _ 4<X+, (\p(Jr)ZT + A(+,q1,q2)Tpl) V1X+>
_ 2<X+, (q/(+)i1‘ + A(+7q17q2)1‘pi> (‘I’Eﬂ + FiA(+’q1’q2)>X+>
~ 2 )
- 2”V(+’q1’qg)x+ H _ 4<X+’ \1,(+)1TVZ,X+>
_ 2<X+; (\Ij(-i-)iT _ A(+7q11q2)TFi> (\IJEJF) + FiA(+7q17q2))X+>7
while the second term is
. , 1
2054 Vxe) = 2 DV ) + 2RO e (B.5.5)
1 o ,
= SR = 2(xr, Vo (DT 4 7rialrae) )y )
= 2(xe, (DO 4 T A ) ) i),
Thus, the full expansion is
2y, |I2 (hana)y ||° 4 L pmy 12
V2l | = 2V m [T RO x| (B.5.56)
+ <X+, [—4\1/(”” — oY) — 14, AT TFBO) — 14q2FiA(+)} v,»x+>
+ <X+’ _2(\1;(4-)1”( _ A(-hquqz)T) (q;l(ﬂ + FiA(+7QI’q2))X+>

+ <><+, 2 [—QFirj\I/g*) — 14g, ATITHRO) — 14q2FiA(+)} X+>

where

1 1 1 1 1 1
\Il(.Jr)]L = 7A_1aiA ——z7. -ST; + —I';,FT —IY — cILXT, B.5.57
; 5 SZZ 11-|-8 +16 F 11-&-192 Y A X ( )

1 1 1 1 1
BHT — S _ ZGAT, — ZAST, — — AFT.Ty, — — AYT, — A B.5.58
20 2‘3 8 16 FL:T'n 192 Y 8 X ( )

1 5 3 1 1

OV =@gd+ — 2T + -85 — 2Ty + —Y — - XT.. B.5.59
A 7/ +12Z 11—|—4 8F 11+96Y 4X 2 ( )
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We would like to write the third term in the form aivi||X+H2 + <X+» ]—'Fi@iX+>. Expanded,
this term is

(xos |40 =200 14 ATITHE) - 14g T AD | Vi) (B.5.60)

10 — , 4 i
= <X+, [(O;)QICA*F“ — B4 T@]ATO A~ 1+ T A7 (TPA)
s 1414gs 34 gy i

— Ugl'de - ——L2'ry - —Lr7'Ty,

9+ 7 70 ;54T 42 ;
9+ Q14+ 42 gpi _ 2+ Q18+ L pipp,,

—1—-Tq; — 14 )
+ggq2rlY} Vz‘X+>~

This fixes go = —= and ¢, = % The term is thus

1
7
<><+> [—4\11<+>“ —oriIgl) — 24~ B 4 2Fi,4} vix+> (B.5.61)

— <x+, [%A’lei —4A7'9;A — 2471 (DPA), + 21,

1 1 s
—E(F/Z)irn + 4Zirl1]v X+>a

SO
c

F=3

1
ATIT, + 247 10A — 20D — EZPH (B.5.62)

and oy = —3A710'A + 20'®.
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Combining this with the fourth term in (B.5.56), we find
<><+ 5 <q,<+>if L gipe o L g 1].“Fi> (q,(+> e 1F‘A(+)>X+>
’ 7 7 2 ! 7 = [

3c .10 , 13 ; 6 1 5 ;
= 2| AT AT A - CATITF A - —POTt — — 2Ty — —TZ'T
<X+» {76 + 7 11 7 7@ 28Z 11~ 763 ZTn
2 . 3 i 1 1 i 1
28T+ ~TF'T —F'T —T —
+7 +28F 11+28F 11+168Y+56Y
5 i 1 i
“ogl K T - X Pz]

c 4 1 1 5 1
—— AT+ ATV A+ AT A - TP+ — 72T — —TZ.T
X[ +7 0 +14 ?; 7 @ +56Z7, n- o Z:Tn

140
1 1 3 1 1
— %Sri + %FFiFH — ﬁFiPu + @PYi — EYZ
1 5
3 17 26 . 12 c
= — A2 ATHdA + AT A0, — S (dD)E + — ATIZT.T
<X+,[7€2 Taraay + Baoane - Zaepy Samizr,
~ L a9 ArsTy, + Loergy, - gz L2 a-igr
42 ‘ o™ Y 24 14¢ z
1, 1 5 1., ¢
14A S@A+7S<§?<I> 16SSZF11+7S +28€A Fr.T

1 i 1 i 3 1 i i 1 1 5
+ 27814 @AFF ' — ﬁalq)FF 'y — EZF‘i’ gZ F — %FF - gF
_c
112/
+ iZ‘YiFn + iSY’ - iFYTM +

487" 168 448
£ 3
144 56

1 i 1 i 5 o
-——X,TFT.T —X,YT,—-—=X B.5.64
XD+ XY T - 2 ) (B.5.64)

Using the field equations and Bianchi identities, the last term is

1 i 1 i 1
b ATYTL 4 o ATOATY - oaTy - B ayry

4296
1 1,
168-96YY_%Y

5 ) 5 . i
+— A X - ﬂA_lXZB’AFZ + ?XZQ’(I)FZ + =X, Z'T.T1

<><+7 Vi [—2rirj LR e B L 2FiA} ><+>

1 1 1 1 1 .
= —9V2In A 4+ 2V2%® — —dir = —dFT —d¥ — =V, X'T
<X+a|: ViInA+2V 48dZ 11—|—2(35-&-12df7 11+240d/3/ 2Vz Z:|X+>

(B.5.65)
4 —2 —2 2 —191 2 1 2 1
+ Logry 1282 4 toerETy + 2k - L',
12 47" 24 8 g
1, 1 i1
1 i 1.
g4 Tu— ;X020 - Xﬂ X+> (B.5.66)
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while the curvature term is

1 3 ,
51~z<10—">||x+|\2 = <x+7 [—EQA‘Q —3A7%(dA)? + 64719 A0;® — 2(dP)*
5 9 T 30 1o 5.9
+24Z 45 8F + 96Y + 4X X+ )- (B.5.67)
The sum of (B.5.64), (B.5.66), and (B.5.67), i.e. the second through fifth terms of (B.5.56), is

A e a2 2 A9 408+ 2 (dm)? + St
<><+, {WA +ZATHAA? — AT AO® + Z(dD)’ + [ AT T

1 i 1 i 1 c
— EA 0;ATZ Ty + ﬁaz(PFZ 'y — @ZZ - @A ST,
aiggas Dsgo+ Seary + s Soatpr.r
14 14 56 1T o8 28¢ S

1 i 5 i 5 1
+ %A 0, ATF T + %81(1)1—‘]:1 '+ %ZF - %FF

iyt L agary s Loyt
+ 1igpA YT+ AT GALY + 55500V + e 2V T

1 1 1 5¢ 5 .
R _ T - T p-1 Y, B S VgAY T

+ 168SY 448FY 11+ 168-96YY+ ¥Thh X 1 XAl
3 3

i i 1 i 1 i 1 _,
+ﬂX1~a oI, + %Xlz I.I'y; — 278X1FF r.,I'y; + @le I, + ﬁX ]X+> (B.5.68)
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Comparing this to

2 1 1 c 1 1 c
(+) _ 41 2, € i 1202 C
HIB% X+H <X+, [4@2 + 4(dA) + 8€ASFZ + 8AS$A+ 64A S“ + IGKAFFZFH

1 i 1 1 i
+ TGAGADF' — - APFF + S AYT, + o5 AGATY

256 192¢
1 1 1 c
— A28Y — —— YT A? )
* 763 Y 16~96FY 1+ 7992 YY+8€ X
Livia L ooy g L ey i L1 oy
(B.5.69)

1, c 1 i 5c
r.B) = ——0'A0;® + — ZT. Ty — — QAT Z'T; — —ST
< z X+5AX+> <X+7|: 28 82 + 24€Z z1 11 2482 Z 11 865 z

5 1 1 5 3c
— ZSPdA - ZASPD — — ASZT — —AS? — —FI.T
853 S Sq 9 SZT1 3348 16£F 211

3 i 1 i A 3
— EaiAFF T EA@'(I’FF ' — @ZF +—AFF

128
c 1 i 1 i 1
yr OATY — — A9;dTY — —— AZYT11

19207 7 192 192 24 .96

1 1 1 c
B TzsASY + @AFYT“ "~ 96 192AYY + @X

1
8

1 i 1 9
—3—2AX1-FF I'.T'1 + 3—2AX }X+> (B.5.70)

) 1 . 1 i
X'0; AT, + éAXl(Q)ﬁI)FZ + @AX,Z I'.I'

HA(HX HQ: X (d®)2+184<I>FZiF 2z 2sg 4+ Dspry, + B
+ + 6 " VY 2 247" T 16

3 i 1 9 1 i
+ Zaz“I)FF Iy + 17621:‘ - @FF + 4—88i<I)FY

1 5 1 1 1.
— ZYTi 4+ —SY — — FYTyy + — ZX9,0T,
+576ZY 11+ 192SY 128FY 11+962YY+2 7
1 i 3 i 1 i 1
+§Xz‘Z r.ry - EX@‘FF r.r'y; - @Xiy r.+ 16X2} X+> (B.5.71)
we find that
V2| x4l” + (34710, A — 20,0) V' || x4 | (B.5.72)

- 2 16 ,_ 2 4 2
9|+ 2 A2 B |+ A (TBDx A ) + 2 Ax

B.6 IIA AdS,

B.6.1 Fields

For AdS,4 backgrounds, the four-form field, G, has an electric component, corresponding to a

scalar field on the transverse space,

G=A%"Ne ANdzAdzX +Y. (B.6.1)
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The remaining fields are purely magnetic.

B.6.2 Field equations and Bianchi Identities

The Bianchi identities are

dH =0

dS = Sd®

dF =d® ANF + SH

dY =d®AY + HAF
d(A*X) = A*d®,

the field equations are

3

V20 = —4A710"A0;® + 2(d®)? + ZSQ 43l Ly

8 12
1
VFH,j = —4AT 0  AH,j, + 20" ®H,jp, + SE;; + §F’”Gijk5

. . , 1.
VJFZ*J* = —4A_181AFZ‘J‘ + 8J<I>Fij — éFJkéGijk(
Vijke = —4AT 0  AYjpe + 0° Y

and the Einstein equation separates into an AdS component,

VImA = Y4 SX2 4 352 e e

96 4 8

and a transverse component, which contracts to

3 3 1
*XQ—* 2 *H2
2 QS +4

)

1
= 12072472 — 12472(dA)* + 5 Y +3X7 3874 o

R©® =4V%In A 4+ 4A7%(dA)? + %W +

1 .
— 5F2 +8AT10;A0'® — 4(dD)?.

B.6.3 Killing Spinor Equations

The AdS-direction parallel transport equations are

0=0uer + AT T (7" =2 )ex
0=0rex — AT _,Z ex

2r
[
0= ax€+ + ez/éfzx5+e+

0=0pe_ + e/ Too(2- —)e-

—_ -1 —_
0=0,e4 —=4e4 + A F,Z:.JFG;F
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1

~yv2
96 4X
Q(dA)Q,
1 2 2
_ZF —2V<®
H2

(B.6.7)
(B.6.8)

(B.6.9)

(B.6.10)

(B.6.11)

(B.6.12)

(B.6.13)



where, for AdSy,

1 1 1 1 1 1
Z=L =F— + @A, — —AST, — —AFT.T'1; — —AYT —AXT,. B.6.1
+ :F2£+2<3 z 852 16Fz11 192YZ:F8 T ( 69)
Because
Eirz+ + Fz+EZF = 0 (B620)
240, +T, E: =0 (B.6.21)
Eirzx + szEi = :nglrzx, (B622)

we find that there is only one AdS-AdS integrability condition,
(B2 £0 120 )er = 0. (B.6.23)
Thus, we can easily integrate over z, finding
e+ (0,0, 2,0, yl) =04 (yl) + ey (yl), (B.6.24)

where

=404 =0 STy = :Ff_lTi. (B.6.25)

For convenience, we introduce B(*), which represents =4 when it acts on o and 24 + 1 when it

acts on 4. The integrability condition is then succinctly expressed as B x4 =0, x4+ = o4, 7.

Specifically,
B®) = HF£ + 1(?Al"z — lASFZ — iAFFZFH — LA)/’l"z F 1AXF$ (B.6.26)
20 2 8 16 192 8 ’
where ¢ = 1 when x4+ = 0+ and ¢ = —1 when y4+ = 7.
The parallel transport equations in the transverse directions are V(&e = Ve + \Ilgi)e =0,
where
1 1 1 1 1 1
U = 4 =9, A+ —H,Tyy + =ST; + —FIiTyy + — YT F = XT. B.6.27
i 240 A+ gl + ST g F T + 7V F g X, (B.6.27)
and the algebraic equation is Aey = 0, where
A—@<I>+iHF +§S+§FF +iY Ixr (B.6.28)
- 12 11 4 S 11 96 + 4 zZT- -0.
Each of these applies to o4 and 7+ individually.
B.6.4 Maximum Condition on o, 74
We introduce a new operator,
@g-‘mth,fh) _ V§+) + qlAflrzi]Bg(Jr) + gl A, (B.6.29)
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with the intention to demonstrate that, for an appropriately chosen value of ¢; and ¢, if
I‘i@i)@r = 0, then x4 satisfies the Killing spinor equations. For convenience, we also intro-

duce an operator representing a general linear combination of the algebraic conditions,
Alhane) — g A7 BOH 4 g A, (B.6.30)
so that @ﬁ’ql’q{") = VE” + I';A(Ha1:92) “and the modified Dirac condition is
pivitae)y (F’Vi +Tipl) 4 6A<+»‘thz>)x+ ~0. (B.6.31)
The Laplacian expands into two terms,
V2lIx+1* = 2 VX [I* + 2(x+ V2x4)- (B.6.32)
The first term is then
2/[Vx+ ) = 2“@(+’Q1’QQ)X+H2 - 4<X+, (‘I’(+)sz + A(+’QI’Q2)TF1>ViX+>
= 2(xs, (WO 4 AlTaaird) (w(t) o paCree) )y )
_ 2”@(+,ql,qz)X+H2 _ 4<X+’ \1,(+)iTviX+>
_ 2<X+, (\I;(Jr)iT _ A(%ql,qz)Tpi) (\IIEH + FiA(+’q1’q2)>X+>,
while the second term is
2, Vx4) = 2000 TV (Vx4)) + 5 RO (B.6.33)
= SROI? — 2 xs, Vi (PTG 4 6riatrana )y )
—2(xe, (DTIWEY 46T at ) ) vy ),

Thus, the full expansion is

V2 x| = 2| vy, H2 + 1R(6)||X+H2 (B.6.34)
+ <X+, [ 4 aTiri gt 199, AR - 12q2rn4] vix+>
+ <X+’ 9 (qj(+ A(%fhm)’r) (q,EJr) + FiA(+’Q1’q2))X+>
+ <><+, vl[ 0TI — 12, AT B — 12q2FiA} ><+>
where

Pt = %A‘laiA - éﬂirn + ésn + %FZFFH + 11 LY + ;er (B.6.35)
Bt = —i - %aAFz - éASFZ - %AFI‘ZFH - F12AyTz ;Axrx (B.6.36)
= JB 4 0S4 BT~ SFTu b oY 4 (KT (B.6.37)
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We would like to write the third term in the form aivi||X+H2 + <X+» ]—'Fi@iX+>. Expanded,

this term is

<X+, [—4x1/<+>” —ori i) 126, AT ITFB) — 12q2FiA} vix+>

6qic
Y4
_ 8 4+ 6¢q1 + 60q2

— <X+, {A‘ll“” —[B4+6¢1]ATT0°A—[14+6¢]A! (F&A)i — 12¢2I" @D

) 1+12 i 1+4 i
ST — MH 'y - +4 Q2FH '

4 4
2+43q1 + 18¢2 @+ 29, 2 —3q1 + 642
1 I"Fry 6 'y + 5
This fixes ¢o = f% and q; = % The term is thus

<><+, [—4\If<+>” —ariI gl — A B 4 2ri,4} vix+>

P
— <x+7 {;A—lrzi —5A719;A — 3A7'T@,A + 2T, 3®

1 1 ,
D) (Fﬂ)iru + 4Hir11] V1X+>»

SO
F= %A‘lfz +3ATTPA - 200 — 1*125”11

and a; = —4A"19 A + 20'D.

B.7 TIA AdS,, n>5

B.7.1 Field equations and Bianchi Identities

For AdS,,, n > 5, all fields are purely magnetic. The Bianchi identities are

dH =0
dS = Sdd

dF = d® A F + SH
dG =dd NG+ HAF,

the field equations are

3 1
By A
8 12

1
VkHijk = —nA_lakAHij}g + 2ak(I)H¢jk + SFZ‘J‘ + §FMG¢J‘M

V20 = —nA"10'A0;® + 2(d®)? + 252 +

. . . 1.
ViF; = —nA 0 AF;; + 0'®F;; — EFWGW

VzGijM = —nAflaeAGiW + 8Z‘I)Gijkg
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1
H?>+ —G?
* 96

(B.6.38)

sz“} \Z X+>.

(B.6.39)

(B.6.40)

B.7.1
B.7.2
B.7.3
B.74

/_\A,_\,_\
—_— — ~— ~—

(B.7.5)
(B.7.6)

(B.7.7)
(B.7.8)



and the Einstein equation separates into an AdS component,

V2InA=—(n—1)0"2A72 —nA"2(dA)* + 24710, A0'® + %GZ + 352 + %F{ (B.7.9)

and a transverse component, which contracts to

—2 10 — 1 -
R0 = nv21n A + nA~2(dA)? + ”96 G2 - 04 D2y JH ”T6F2 —2v23 (B.7.10)
—2
= —n(n— 1072472 —n(n — 1)A"2(dA)* + ”48 G2 (B.7.11)
10 — — _
- 02 Doz %HQ + "Tﬁfﬂ +4nAT 0, A0'® — 4(dD)?.

B.7.2 Killing Spinor Equations

The AdS-direction parallel transport equations are

0=0uer + AT (0T =2 )ex (B.7.12)
0=0rex — AT _,Z ex (B.7.13)
2
0=d,ep — Epey + %A—lr,zaq (B.7.14)
0= 8(16_;,_ + ez/éfza5+€+ (B715)
0= e + e/ To(Z- — 07 )e_ (B.7.16)
where, for AdSg, k > 5,
1 1 A A A
Er=F—+ @A, — =ST", — —FT.T'1; — —GET,. B.7.17
+ :F2£+2<? z S 16F z1 11 192$ z ( )
Note that for larger AdS dimensions, some of these fields will be identically zero.
Because
Eily + 1452 =0 (B.7.18)
Eql,_+T,_ B+ =0 (B.7.19)
Eirza + anEi = :Fz_lrza, (B720)
we find that there is only one AdS-AdS integrability condition,
(E2£01'2)er = 0. (B.7.21)
Thus, we can easily integrate over z, finding
ei(0,0,z,O,yi’) = ai(yi) +e¢z/e7'i(yi), (B.7.22)
where
=4r04 =0 STy = $€_1Ti. (B.7.23)
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For convenience, we introduce B(*), which represents =4 when it acts on o4 and Z4 + 1 when it

acts on 7. The integrability condition is then succinctly expressed as B& yy =0, x4 = 04, 7.
Specifically,
1 1 1 1
B = - 4 “@AT, — —AST, — —AFT.Ty; — — AGT B.7.24
¥2g+2@ z ] z 16 F z4 11 192 $ k2 ( )
where ¢ = 1 when x4+ = 0+ and ¢ = —1 when y4+ = 7.
The parallel transport equations in the transverse directions are V(&e = Ve + \Ilgi)e =0,
where ) ) ) ) )
UF = £ — 9, A+ BTy + ST, + —FT,Ty; + — @ B.7.25
i 547 +8H7, 11+8 z+16F111+192$ is ( )
and the algebraic equation is Aeyx = 0, where
A® =+ BTy + 25+ 2P+~ (B.7.26)
12 4 8 96
Each of these applies to o4 and 7+ individually.
B.7.3 Maximum Condition on o, 74
We introduce a new operator,
ViR = g 4 g ATITLBMY + ol (B.7.27)

with the intention to demonstrate that, for an appropriately chosen value of ¢; and ¢, if
I‘i@i)@_ = 0, then x4 satisfies the Killing spinor equations. For convenience, we also intro-

duce an operator representing a general linear combination of the algebraic conditions,
Aae) — g A7 B 4 o A, (B.7.28)
so that V(") = ¢(*) 4 1 A(+91.42) and the modified Dirac condition is
riv(tae), - (Fivi + T 4 (10 - n)A(+”I1"I2))X+ = 0. (B.7.29)
The Laplacian expands into two terms,
VA l® = 20V + 200+, V2 )- (B.7.30)
The first term is then

o 2 . .
2HVX+H2 _ 2”v(+,q1,qz)X+H _ 4<X+’ (\I,(-i-)ﬁ + A(+7q1aq2)TF1) viX+>

_ 2<X+’ (\I;(Jr)iT + A(+,q1,q2)TFz‘) (\IJE‘-H + FiA(+’ql’q2)>X+>
= 2”@(+,ql,qz)x+H2 - 4<X+a \Il(+)iTViX+>

_ 2<><+, (\1,<+m _ A(+,Q1,Q2)Tri) (‘1’§+) I FiA<+,q1,q2>>X+>7
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while the second term is
2, Vxe) = 2000 TV (T V4)) + 5 RO x4 2 (B.7.31)
= S ROV~ 2(x, Vi (T 4 (10 - iAo )y )
- 2<><+, (rirﬂ'\pg*) +(10 - n)riAH’qhqz))v,-XQ.
Thus, the full expansion is

. 2 1 .
V2lxl* = 2HV(+"“’“)X+H + 5RO x| (B.7.32)
+ <><+, [—4@““ — 20T — 2(10 — n)g A THBH
—2(10 — n)g2I" A] Vix 1)
+ <X+7 -9 (\IJ(Jr)iT _ A(+7q17q2)T> (\I;§+) + FiA(+’q1’q2))X+>
+ (x4, Vi [ 2200 — 2(10 — ) A7 DB

—2(10 — n)g2I" A x4 )

where

(Dt _ 119 4 Lo lep 10 1 -

it = 2,4 0; A 8H’F11 + SSFZ+ 16F2F1“11 + 192F1$ (B.7.33)
@t__c_1 _1 _ 1 _ b

B 57 2(?AFZ SASFZ 16AFI‘ZF11 192A$Fz (B.7.34)

5 1 3 1
T f— —_ — —_

Al = ¢ + 4S+ 12Hru SFF11+—96$ (B.7.35)

We would like to write the third term in the form o/V;||x4||* + <X+» .FFi@iX+>. Expanded,

this term is

<X+, {—4\1/(““ — 0TI — 2(10 — n)g AT TFB) — 2(10 - n)qui.A} vix+> (B.7.36)

- <X+, {(10 _én)qch—lrzi ~ 3+ (10 = )] A"' 0 A — [1 + (10 — n)gu] A~} (TFA)’
12 —n+ (10 —n)g; + 10(10 — n)
1

2(10 — i
342(10 n)qQFHF11

—2(10 — n)go I — 2 gpi
14+2(10 —n)q2 i

et S VA /A R

4 H 11 192
_ 10 — 10 — .

~ (8=n)+ (10 —n)q1 +6(10 n)QQFlFFn

8
® F%‘] viX+>-

(n—4) — (10 —n)g —2(10 —n)
96

+
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This fixes ¢ = —ﬁ and ¢ = ﬁ. The term is thus

<><+7 [-4@““ — I —9(n — 2) A7 TFB 4 2riA] vix+>

%

_ <><+, [W - 2 41D, — (n+ 1D)A19,A — (n— 1)A~) (T4)

1 1 .
+2T;9® — E(FH)ZI‘H + 4HiP11:| V1X+>a
S0
(n—2)c
14
and a; = —nA~19 A + 20'D.

F = ATIT, + (n— 1A TPA — 290 — %HFU
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Combining this with the fourth term in (B.8.6), we find

-2 , 1 1 )
Yo, —2( it — Z AIBHIpE .~ ATt ZFT
0 10—n 2

1 -n
! FiA)X+>
-n

_ _ ) 2 _ 2 _ ;
— <X+a2|:(9 (TL)(TL Q)CAfll-wzz o n gn 2 162 MAflra A

\I/(+) A 1 71 Jr) _
10—n 1

2(10 — n)! 2M0—n) 2(10 — n)
190 " gort + %SW - mwru ﬁrﬂ Ty
*go—m P T+ T T i - >$i]
X {_MA*PML 104_ A—laiA+2(1”07__2) ~1pg,A — o Lo
<1olf 5T+ gt g 0 ~ o =y AT
+8(10 - )FFz ne %Fﬁu + 32(101— n) L& - 24(710_fn) $”]X+>
(B.7.39)
B <X+’ {_ (92z17(§)(nn;£§)2 s 121(7112“718)” ATy
- —2(”21_01?:1* %) 4190 Ay — 21(3 - Z) (d®)? — m A7LST,
_ 2(1”07*_2) TPAS + oS0 + (1110:2) 2 627110_27)5 AT,
- %A—laﬁxrﬁ’ru + ﬁa@rﬂiru ﬁsﬁru
- mﬂﬁ— 1 4810 )‘; SUFDLD, + 4(107’_2) A 9ATFT,
- i PO T = g B+ G F S FE
éﬁ + 1é80—)6) ATIGT + (10—2 ) AT, Arg!
h ﬁ&«bmﬁ% 96(710— n) 5¢ - 576(1 64 )H$F11
o= PO+ e 60— o6 ) (B.7.40)
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Using the field equations and Bianchi identities, the last term is
<x+, Vi { 20T — 2(n — 2) A THB) + QFiA} x+>

1 1 1 1
_ _ _ 2 2 - = . -
- <X+, [ (n—1)V?InA+2V°® + 2@5 48dHF11 + 12dJ~T11 + 240d0] x+> (B.7.41)

—1)2 .
- <x+, [(” pl) A2 4 (n—1)nA"23(dA)? —2(2n — 1) A0 A0;® + 4(dD)?

1 11 1 1 1 i
+ 550 + ”52 + g ST — (H + {0,8TF Ty,
+7 a ,OT " } > (B.7.42)
while the curvature term is
%R(m’”)|\><+\|2 = <><+, [("2;21)%2 - @A*(dm? +2nAT19 A9, ® — 2(dD)?
W0—ngy 5 n—6p n-2
— —H F . B.74

The sum of (B.7.40), (B.7.42), and (B.7.43), i.e. the second through fifth terms of (B.8.6), is

<X ((())ng_Q + 41(3:3) AT?(dA)? — 21(877?14 191 AD,® + O% —(d®)?
2%7110 7)1) ATI8T, — 2(17107__271)1471(3145 + %S&?@ + %52
GE?O - )) ATUHT.T %A‘@AFHTH ; m@.qn" HTy,

+ ﬁsﬁru - ﬁﬁﬁ + EH__Q)C)[AH}*FZFH

+ mnoiiszrlai/xrwrn i %a OTFTy, + %Hﬁ“

_ 321&07_2) FF+ 6((7”_10 )c) g WQ) 4-19 AT

- Wﬁl)a"@mz + ot ~ o T
64(10 — )F$ 1t 4896()$$} X+> (B.7.44)
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Comparing this to

2 1 1
HB<+>X+H _ <><+, [452 1(dA)? + iASFZ + SAPAS + —A%S?

c Y
+ 16€AFF ' + A@ A(F/F) 256A rr

A AT —AQ
1924 OATE! * 768 5¢

——F¢T + AZ(Z}@} X+> (B.7.45)

16 96 1922
5c

5 1
8€ g(?AS — gAS(ﬂ@

<FzE(+)X+7AX+> = <X+7 |:_28ZA62(I) + HF Fll
- 3A52 - iaiA(r/H)’ru - %ASHFH
i 1 i
WFF NP a.A(r/F) T = 15400 (DF) Ty

1 i
192HF+— FE T g

128 192€ 192
*@Aa oT g’ *ﬁs ASG— 5 AHGT
+@ F@' 11 — 96 - 192 @@] X+> (B~7-46)

2 _ 2,1y ip, L 5 S
[Ax+[I” = <X+’ [(d‘b) + 681‘5(17{) IS 144HH+ 25(?‘1‘ + 245HF11
25 3 i 1 9
+ *52 + *(91“1)(FF) I+ EHF - GZFF
1 1
FOOTE + 18 + T HGT — L FGT + 60 v )

192
(B.7.47)
we find that
V2 X1 |” + (nAT19,A — 20,8) V7| x4 || (B.7.48)
= H A B A (B )
T 0= nHAX+” :
B.8 Common Sector AdS,, n >4
We introduce a new operator,
@E-&-,quth) _ Vz(‘+) + AT LB + ol A, (B.8.1)

with the intention to demonstrate that, for an appropriately chosen value of ¢; and ¢, if

I‘i@iXJr = 0, then x4 satisfies the Killing spinor equations. For convenience, we also intro-
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duce an operator representing a general linear combination of the algebraic conditions,
Alhanar) — o ov® A1 B 4 g0 A (B.8.2)
so that V(T4 — ¢ 4 P AGHae®) | and the modified Dirac condition is
v, o (Fivi + T 4 (10 - n)A(+"I1’q2="‘)>X+ = 0. (B.8.3)
The Laplacian expands into two terms,
V2xal? = 209X 1 + 20x+, V2x4)- (B.8.4)
The first term is then
2 4<X+’ (\Ij(+)iT + A(+,Q1,q2,%)TFi)viX+>

_ 2<X+7 (\I;(Jr)i’r + A(+~,q17¢Z2,N)TFi) (\I;§+) + FiA(+7q1,qz,~)>X+>

2 Vx4l = QH@(Jr,ql,qz,n)XJr‘

= 2“@(""#1,(127&)X+‘ 2

—4( X+ ‘I’(+)iTViX+>

_ 2<X+7 (\I/(Jr)if A(Jr,ql,qz,N)TFi) (\IJE‘H + FiA(+’q1’q2’“))X+>,
while the second term is

% ] 1 —n
2(x+, Vox+) = 2(x+, TV (T7Vx4) ) + §R(10 Nx+11? (B.8.5)
1 - A
= SROI® = 2(xr, Vi (TTI0EH 4 (10 = )P A G )y )
—2(xs, (DO 4+ (10 = P A D29 ) Wiy ),

Thus, the full expansion is

. 21 .
V2| = 2| Ve | S ROO (B£.6)

+ <><+, [74\1/“)“ — 20 I — 2(10 — n)g " AT TR — 2(10 — n)qui.A} vix+>
+ <X+7 _2<¢(+)i’r _ A(Jﬁth,qmﬁ)T) (q/z('*‘) + FiA(+’q1’q2’K)>X+>
+ <><+, v {—2rirf\1/§.+> — 2010 — n)qe"® AT ITHB) — 2(10 — n)qzl—‘iA} ><+>

The field equations and Bianchi identity are

dH =0 (B.8.7)

: 1
V0 = —nAT10"A0,® + 2(dD)* — S H (B.8.8)
VFH,ji = —nA 0  AH ), + 20" ® H, (B.8.9)

and the Einstein equation separates into an AdS component,

VZInA=—(n—1){2A"%2 —nA"%(dA)?, (B.8.10)
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and a transverse component, which contracts to

RUO™™ = nV2In A + nA~2(dA)? + %HQ —2V?0 (B.8.11)
_ _w/pz —n(n—1)A"2(dA)? + %HQ +2nAT10;A0'® — 4(dD)?.  (B.8.12)
+ _ 1, 1
¥ = Lastoas iy, (B.8.13)
w__c 1
B 5 T 5PAL- (B.8.14)
1
A= 3o+ EHFH (B.8.15)
+t _ Ly 1
1
Bt = € _ Zgar B.8.1
5; ~ 3 AT (B.8.17)
1
Al = o + EHFH (B.8.18)

<><+7 [—4@“)“ — 20 I — 2(10 — n)ge" AT TFB) — 2(10 — n)qQFiA} vix+>

10 — . .
= <X+7 [(O;)qlce”@A_lFZ’ — [3+ (10 — n)qre™®]A710°A (B.8.19)
— [14 (10— n)gre"®]A™" (F&A)i —2(10 — n) g P®
14+2(10—-n i 3+2(10 —n i
—HH ' — %FH Fn} Vz’X+>~
This fixes ¢ = —ﬁ.
_ (10-n)qic g 41 k®] g—1 1
F=imp AT [1+ (10 — n)q1e"®| A~ JA — 20 — EHFH (B.8.20)
o' = —[24 (10 = n)qe"*| AT 0" A + 20'® (B.8.21)
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. , 1 ;1
U g en® A BT 4 TATI” + 5].Tl (B.8.22)

—-n

_ (9 B n)qlcench—ll—\zi + 2+ (9 - n)qlemI> A—laiA _ 1+ (9 - n)qlen(b A_IFaZA
20 2 2
9—n ) 1 i 8—n i
- ori—- —— BTy ———— THT
0 n? 4(10—n)H U 2410 — n) H T
1
U 4 e AT, B — ;A (B.8.23)
v 10—n
AQC 41 1+ QIqu) -1 ql kd 4—1 1
= Aerbg-tp 4 —TIE 419 A+ et AT A — —— T30
20 © T 9id+ e ? T
8—n 1
* 8(10—n)H’ 12010 — n) il

. . 1 A
<x+, -2 <\IJ(+)” + e ATIBHIPE 4 TATF’ + 2]—"1“)

—-—n

1
g K@ g-1p_ B T;
X ( . Faqe o—n A x+

_ <X+7 |:_ (10 — n)ég — n)Ql €2K,<I>A—2 <€12 + (dA)2> _ [1 + (10 _ n)qlené]A—Q(dA)Q

. 2(9 —
+2[1+ (9 — n)gre"®] A19,A0'® — 20=n) (g2 4 B 41y
10— n 60
1 xd 4—1 i 1 i 1 1,
e A Y AT T + ———— 0 OTH' Ty — ——— W — —H B.8.24
6° O:ATH N TGT UREE 72(10—n)$$ 24 }X+>( 8.24)

(x4, Vi [-20 TV 0D = 2(10 - n)gr e AT DB 420 A, )

, 1
= <X+7 [— [14 (10 = n)q1 "] V?In A — (10 — n)rqie"® A9, A0'® + 2V>® — 48dHF11] X+>
(B.8.25)

= <X+, [(n —)[1+ (10 — n)g1e"*] A2 <€12 + (dA)2> + [14 (10 — n)g1e"*] A72(dA)?

—[2n+ (10 — n)kqre"®| A1 0, A" ® + 4(dD)? — éHQ} x+> (B.8.26)

1 -1 1 p 5
§R(10_n)”X+H2 — <X+’ |:_('I’L2)’I'7/A_2 <£2 + (dA)2> +nA_18LA6l<I> _ 2(d¢)2 + 24H2:|X+>

The sum is
1 kP —2 12 2 kP kP —1 7 2 2
X+ —ip(n, q1e"*)A 7 + (dA)? ) + [(2=n) +2(9 — n)q1e™ + (10 — n)rq1e"*| A~ 0, A0'® + 10— n(dfb)
+M€K@A_1HFZF11 — q*le&A_laiAFHiFn + _t O, OTH'Ty, — __ HH|xy
6¢ 6 3(10 — n) 72(10 — n)

(B.8.27)
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where

p(n, qe®) = [(n —1)— (10— n)qle"(b]2 - [(n —1)+ (10— n)q1262“‘b] (B.8.28)

HB(+)X+H2 = <X+7 i (612 + (dA)2)]X+>

1, c 1 i
<FZB(+)X+,AX+> = <X+’ _—58 Aa,(b + mHFZI‘H - ﬂazA(Fﬁ) F11:| X+>

[ 1 ; 1
vl = (x| (@27 + Go0(0h) T - ] )
V2| x4 + ([2+ (10 — n)q1e"®] A710' A — 20'®) V7| x4 |? (B.8.29)
~ 2 2
= VX+H — 2p(n, qle”’@)A_QHB(“xJFH - 4(]1€H<DA_1<F2B(+)X+7-AX+>
2 2
+ = A |
only if
(2—n) +2(9 — n)qre™® + (10 — n)rg e"® = —2¢ e~ (B.8.30)
rearranged, this is
qe™® = _n=2 (B.8.31)
(k+2)(10 —n) e
which, if we choose k = —1, implies that ¢;e*® = 1’67_2n and that the right side of the equation

is positive definite.
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B.9 IIB AdS-direction KSEs

B.9.1 Equations

The Killing spinor equations are

(VM — §QM + 48FMN1N2N3N4FN1N2N3N4>€

1
_%(FMN1N2N3GN1N2N3 - gGI\/IN1N2FN1N2)O *xe=0 (Bgl)

and )
PyTMC e+ ﬂGNI]\,2]\,SFN1N2N3€ =0, (B.9.2)

where C' = I'6"® and x is the complex conjugation operator. The metric is given by

ds® = A%ds*(AdSy) + ds?(S) (B.9.3)
A? S
== (Nuvdatda” + d2*) + (9s)i;dy"dy’ (B.9.4)
and the frame forms are

el = édﬂv:" (B.9.5)

z

A
£ = —dz (B.9.6)

z
el = e (B.9.7)

where indices are underlined to indicate that they are frame indices. The non-zero components

of the spin connection are thus

Qe = —%n,w (B.9.8)
Qupi = ému@A (B.9.9)
Qezi = 28114 (B.9.10)
Qi jr = (s); - (B.9.11)

B.9.2 k>8

For £ > 8, FF =0 and G = 0, as the transverse space is not large enough to support either of
these fields. The first Killing spinor equation, (B.9.1), in the u =0, ...,k — 2 directions reduces
to

1 z 1 i
Oue — %FM e+ Z@A I','e =0, (B.9.12)

where we have used the spin connection from equations (B.9.8)—(B.9.11). This system of partial

differential equations only if the integrability condition, 0,0,€ = 0,0,€ is met. This condition
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can be rewritten as

[Fu, Fole=0 (B.9.13)
1

because J' . has no =¥ dependence.

Using the Clifford algebra commutators, we can write

[F/LZ7FVZ] = 721—‘/1.1/ (B915)
[Fuiarvj] = _277;”/]-—‘” - 25ijF;w (B916)
[Fuz7rui] = _277;“/1121' = _[Fp,i,ruz] (B917)

with which we can simplify equation (B.9.13) to

1 .
—5a (1 +8AGA)e=0. (B.9.18)

We know that 1+ 0;4 8°A # 0 because (gg)ij is positive definite, and that T'*”e = 0 because T'*”

has a trivial kernel. There are therefore no supersymmetric solutions for k£ > 8.

B93 k=7

For k = 7, the transverse space supports a three-form field, Gij&ei A el A ek, Equation (B.9.1)

therefore reduces to

I 1 i A ijk
8ME — Zru €+ szalAF# € — @GQEF# J C xe=10 (Bglg)
in the p =0,...,k — 1 directions. In the transverse directions, G is dual to a scalar field,
1 ..
X = ée”ngE (B.9.20)
Gijk = €ijrX. (B.9.21)

Noting that T%*C = €7*T equation (B.9.19) simplifies to

1 z 1 7 A 6
8He — gl“u €+ Z@AFM €+ ].672X * FH e=0 (B922)

The integrability condition, equation (B.9.13), still applies, except that now

1

1 ; A
Fu - ZFMZ B ZaiAFMz T IRA FMG' (B.9.23)

16z

Using the Clifford algebra commutators, we can write the integrability condition as

0=[F..F, e (B.9.24)
1

2
=53 [(1 + 0;A9A — 214|X2> 1- ?aiAX « T D€ (B.9.25)
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Note that the commutators of the I' matrices are not identical for the £ = 6 and k = 7 cases,
however they differ only by terms proportional to 7,,. All terms symmetric in ¢ and v cancel,
and so we derive the same expression for either case.

As in section B.9.2, we note that I',, is invertible. Thus, in this case, the integrability

condition is satisfied when the operator
. A2 A .
(1 + 0;A9'A — 64X2>]l - g@Ax*rlﬁ (B.9.26)

either vanishes or annihilates e. The second case amounts to finding eigenvectors of 9; 4 X * I,
We can use a rotation in the transverse dimensions to fix 9gsA = 9yA = 0, without loss of
generality, so that

DAX +T =97 AXTO . (B.9.27)

If an antilinear operator, such as I'7x, has any eigenvalues, then it must have real eigenvalues.
I'%7x can be shown to have no real eigenvalues, and it therefore has no eigenvectors.

We are left, then, with the former case, that the operator (B.9.26) vanishes, i.e.

) A2
1+0,A0A — a\xﬁ =0 (B.9.28)
A
gazAX =0. (B.9.29)

If X is zero then the situation is the same as the k > 8 case, and there is no solution, so from
equation (B.9.29) we can conclude that 9;A = 0 and that A is therefore constant. Then, from

equation (B.9.28) we find that

X = %e‘pi. (B.9.30)

Applying the second Killing spinor equation, equation (B.9.2), we find that
PI'C e+ iG@Fij’“e =0. (B.9.31)
Putting this equation in terms of X and substituting using equation (B.9.30), it simplifies to
(PZ-F“ % +Zewl)e =0. (B.9.32)
Using a rotation in the transverse dimensions, we can fix Py = 0, so that
(PO 4 PyI%®) e = %e%. (B.9.33)

Because the operator on the left hand side is antilinear, the eigenvalue associated with an eigen-

vector is dependent on that vector’s phase. Defining € = e%'e, we find that,

(PiTS7 4 PsT%®) & = = 5% (P57 4 PyT%) % e (B.9.34)
92
= efglze‘“e (B.9.35)
2 (B.9.36)
= —€ BV
A
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By squaring the operator on the left-hand side and rearranging, we find
—P; Py — PsPg + (P7Ps — P Ps)I'™%¢ = %g. (B.9.37)
The eigenvalues of I'’8 are +i, so all eigenvalues of the squared operator take the form
—P;P; — P3Py +i(P¢Ps — PrPg) = —(P; FiPs) (P7r £ iPg) (B.9.38)
= — (P, FiPs) (P, FiP3)". (B.9.39)

Hence, all of these eigenvalues must be negative real numbers, however equation (B.9.37) re-
quires that the eigenvalue associated with € be positive. Therefore, there are no supersymmetric

solutions when k£ = 7.

B.94 k=6

For the k = 6 case, it will be most convenient to work in the lightcone coordinates of appendix
??. In these coordinates, spinors will decompose as € = €4 + e_, where 't ex = 0. It will also
be useful to introduce the one-form dual to G,
1 ,ké
X; = geijszi* (B.9.40)
Giji = —eijne X5, (B.9.41)

and to define Azt =0 A% %Xi*'
In these terms, the first Killing spinor equation, (B.9.1), in the AdS directions, reduces to

1 z — 7 r K13 _

Oret oo (r+ — AT+ ZOAT )e —0 (B.9.42)
1 z — 7 _

O_c+ 57 (F_ — AT )e —0 (B.9.43)

B +i(r FATE - DgAr ) =0 (B.9.44)

36 2A +— 4 A i — € = ..

1 z + 7 o

Oue + 57 (Fa + AT, )e ~0. (B.9.45)

A simple linear transformation expresses these in terms of spacetime derivatives,

1 z — [ r zi _
Bue + ﬂ(m —A[T4 + ZOAT )e ~0 (B.9.46)
1 z - i _
Ore+ 5 (F_ — AT )e ~0 (B.9.47)
1 +przi T o A T A
e + 5(P+_ + AT — ZOAT_ )e . (F_ AT )e =0 (B.9.48)
e + %(F + A;rai)e ~0. (B.9.49)
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Integrability Condition
There is only one integrability condition for the k = 6 case,
(1 + AjAj—Firﬂ')e =0 (B.9.50)

It will be useful to introduce the operator © = Fz—&-A;Fi, defined such that the above integrability
condition is
0% = 0. (B.9.51)

Integration in u, r, and =

Expressing equations (B.9.46) through (B.9.49) as 8, — F,e = 0, we see that
1

=—— .9.52
1
r=——1_0 B.9.53
Fa = _%Fa@- (B954)
Thus, the solution in the u-, r-, and z-directions is

e(u, T, z,x“,yi) = e“llﬁ“’”}b”””aFae(O,O7 Z, O,yi) (B.9.55)
(2 Trl e, )e|e(0,0,2,0,47) (B.9.56)

= 24 + 24~ 2 T Llg €\v, U, 2,0,y ). o

Integration in z

Expressing equation (B.9.48) as e — FLe =0, F, is

¥, = —%(m_ T AZT”) . %r_@. (B.9.57)

Restricting this equation to the r = 0 hyperplane, we can reduce ¥, to
¥, = —% <F+_ T A;F“‘). (B.9.58)

I'; _ has the property that I'y ey = 4e4, so the action of F, on e is
Foey = f%FZ®e+ (B.9.59)
Foe = f%(FZG —2)e_. (B.9.60)

When we square ['*0O, we get

*0r+0c = (14 AT ) (1+ 47T )e (B.9.61)
= (1428 T = AFATT'TY ) (B.9.62)
- 2(1 + Ajr“’)e (B.9.63)
=2I*0 (B.9.64)
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We can therefore simplify the solution in the z-direction,

€(0,0,2,0,y") = eZan(yi), (B.9.65)
by evaluating Fey,
1 n
an€+ = <—2Fz@> €4+ (B966)
1"
= %I‘ZGQ (B.9.67)
1 n
Pl = [—2(rze - 2)] € (B.9.68)
1
= —5(1“26) —2)e_ (B.9.69)
€+ is therefore
. % _1 .
€+(0,0,2,0,y") = (1 4 & 5 FZ®> n+(y') (B.9.70)
while e_ is
. z_1q .
€-(0,0,2,0,y") = (ez _¢ I‘Z@> n-(y"). (B.9.71)
Together, these can be expressed as
. %1 .
€(0,0,2,0,y") = (1 4 FZ@)ePZn(yl). (B.9.72)

Composition

To find the full solution for €, we will need to combine the results of the two previous sections.
It will help to note that

¢, (0,0,2,0,y") = <@ n 67'22_ 1@?@) e (B.9.73)
_eon, (B.9.74)
and
Oe_(0,0,2,0,y") = <ez@ — ezz_ 1@I‘26> n_ (B.9.75)
— 9. (B.9.76)

Thus, the full solutions for €, and e_ are

€1 (u,r,z,xa,yi) = (1 — ezxafa@) €y (0,0,z,O,yi) — ilﬂr@e, (0,0,Z,O,yi) (B.9.77)

2 2A
e —1_, ¢ U
= <]. -+ 5 T @)77+ — 7Fa@77+ — ﬂF+®n_ (B978)
e -1, z° Uu
= {1 + ( 5 I* - 2Fa> @} Nty — ﬂF+@n_ (B.9.79)
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and

€— (’LL, Tz, xa’ yl) = |:1 - e;xar‘a@] €— (Oa 07 2, 01 yl) - iF*GE%* (Oa 07 2, 0; yl) (B980)

—z

e

, e-—=1_ e* .
= <e -3 r @)n_ -5 r,en_ — 5 A r[_©On, (B.9.81)
. e -1, =z e *
=e [1 + < 5 r=— 2ra> @] - 57 rI_On,. (B.9.82)

Algebraic Condition

Multiplying equation (B.9.2) by C, we can write the algebraic Killing spinor equation in terms
of X,

_ 1 .
0=PTl+ QGQEF”’CC % €
_ 1— .
= PiI‘Ze —+ inF’ * €. (B983)

S

applying this to the result from section B.9.4, we find two algebraic conditions on n(yi),

— . 1— .

0=Pl'y+ [ XiT'xn (B.9.84)
— . 1— .

0=Pil'on+  X,I" «on. (B.9.85)

Transverse Dimensions

In the transverse dimensions, the covariant derivative includes two AdS-direction components,

Vie = (€10 + Qu I + QT )e (B.9.86)
- L2 1
= (es10; + Qi T% + S 0,40, + — AT, _ |e (B.9.87)
i bik A% 24%
- T 1
= VL'G — € ﬁaéA 1—‘796 + ﬂaiA F+,€, (B988)

where V; is the covariant derivative on S considered as a submanifold of the full space. The first
Killing spinor equation, (B.9.1), is therefore
1 3

~ . T 1 7
(vi_ e 50+ ﬂ@AF+, - Qz>6 + <_16X2* +16

v 5 X;r *>e =0. (B.9.89)

Computations in the transverse directions will be done at the AdS origin, * = 0, so we will
define Fz as

1 1 1 3 ;
so equation (B.9.89) can be written as
Vie— Fie — e*Z%r,@e =0. (B.9.91)
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Applying this to equations (B.9.79) and (B.9.82), we find the differential Killing spinors
restricted to the transverse space,

Vin—Fm =0, (B.9.92)

as well as several additional integrability conditions. By setting u = r = 2z = 0, the first

integrability condition is found to be

Vi(©n) - Fi(en) = 0, (B.9.93)
or, equivalently,
S 1- A~
O = vileF] — éviAXlFJ * — V X F
iA A
<8Q X5 T « —kaAX * +64X( X I*
3= 34

—5 VA X,;07% — o1 XuXy > (B.9.94)

Similarly, we can set r =z =2 =0 or u = z = 2% = 0 to find that

- /1 1
V1<AF+@U—) - Fi<AF+®n_> =0 (B.9.95)
and
- (1
respectively. The I'" matrices commute with the covariant derivative, so the latter conditions
reduce to
1 1
1 1 2
AT On; + 7, 4T~ |On = 5T-Ony. (B.9.98)

From the form of Fl' , these conditions are automatically satisfied. The only independent mixed
integrability condition is therefore equation (B.9.94).

We can derive the purely-transverse integrability conditions by expanding the commutator
[@b @j}n with equation (B.9.92),

(Vi V|0 = ViV, = V,Vim (B.9.99)
=V Fj?) —V;(#in) (B.9.100)
4RSJ kel = 2V [F;, Fi|n. (B.9.101)
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The right hand side expands to

~ 1 1 3 ~ -

i Si
+ 3 — X, X 3 Xk F
1og VXl — g Nt
Y v vk Y v ok
+ 1og X6 X" — 5 X Xp T
9 5 ke
— X X" B.9.102
Bosonic Field Equations and Bianchi Identities
The Einstein equation,
1 — 1 =K1 KoK —=
}@wa@MM&Gmm&+Z§QMM¢¥123 N — 2P Py)y =0 (B.9.103)
simplifies, in the AdS-directions, to
) A A2 1 52 4 1 9 _
s (1H10AR) + 1A — 924 ] + L X P =0 (B.9.104)
which tells us that 90 g
X = -5 (1 +|dA| ) 2|dA\2 - VA (B.9.105)
In the S-directions, using G@ng)M = 2|X|25Zj 2X(1 j)» the Einstein equation instead
reduces to
- 6 ~ 1
Rsij + 8 A0;A— 1 Vi ViV;A— 7|X| 0ij + X(Z g+ 2P(Z ) = 0. (B.9.106)

Expressed in terms of X, the remaining field equations and Bianchi identities are

0=V, X' —iQ; X' + P X' (B.9.107)

0=dP—2iQAP (B.9.108)

0=dQ+iPAP (B.9.109)

0:dX+%dAAX—z‘QAX—PAY (B.9.110)
- 6. , 1

0=V'P+ - 0'AP; - 2iQ'Pi + Z|X|2 (B.9.111)
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Reduction to S

We can apply these equations to the purely transverse integrability condition in section B.9.4 by

multiplying the condition by I'V. The derivative is thus

Ay ¢ 1 3. .
IVF) = 5(dQ)TY — 5(dX) 4TV % + 2V, X T
3 3
X)L ¢ VX Tix, (B.9.112)

3. o T
9

N . 3 . 3 .
— 5 VAKX « +ZZQ1XEF,;]’“ *+ TP X L
3

3% ; —j 3~ .

while the commutator is

3 . 3t
ZX,Q TR — =
16 L@t
3
64

+ %X@Y@F’“, (B.9.114)

1 [FD Fl} - équﬂrﬂ' * f%@x&r’“ 5 — X;QITx

7T = i 92 < 1k
T+ XX = X - 2 X R

and the curvature term becomes

3

1~ . 3 = ~ . ~ o~ . 3 9 1 — . — .
iRSZiFJ = _EVIAVJAFJ + VLVlAF] + T6|X| Ir; — EX@XZ)F] — P(ZPQ)FJ

S

The integrability condition is therefore
0= (PP 4+ 2T AX T« — L, A XD % — P XL
=\ T A VA AL x T VAR R o P A )L

3i 15 , 3 i 3 "
— gQiXEF’“ - +1—6QZXEFZJ’“ * —EPijri * +ZPZXEFZ-J"*

3e v . T ooy, 3ivpe 3w
—= ZXF] - Xsz —|X Fz - —X: X Fi] ’
3 = ~ 3~ - .

- VAV AT + SVV,4 rﬂ)n (B.9.115)

Lichnerowicz Theorem(s)

We wish to prove that, on the transverse manifold, S, the Dirac equation is equivalent to the

Killing spinor equations. As such, we will assume that the Dirac equations,

0=DHy, (B.9.116)
_ Fi@wi _ FiFf)n (B.9.117)
hold, where
) 1 i 1 3 :
P ¢2A37 +2Q7 TR RaT R (B.9.118)
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and prove that the Killing spinor equations must hold as well.

To this end, we begin by computing the following Laplacian in the transverse dimensions,
V2 (ne,ms) = 2R€<77¢7 @2ni> + 2<@Mi7 @ini>- (B.9.119)

We expand the first term using

. - . 1 -
ViVins = FZV§<FJV17H:) + R (B.9.120)
_ i (1ip®) iri (B _iv
r vi(r S )Uﬁ: + D9 FSIV g 2A2|dA| ne — 5 V2AD

1 1

— 71X Pns + 5 |PPns, (B.9.121)
which, along with
rps = ¢i0u4 I+ iQ»Fi +lxri (B.9.122)
i 247% gt Tt o

implies that
R€<ni7@27’li> (2A2dA| —ﬂv2 ><77i777i>+<77i, (dQ) szni>
+Re<77ia< (dX),;I + V! i)*n:t>
i ; ) . 1 . -
+ RE<77:N:7]:‘Z (:FQAajAl_‘J + EQlFJ + Xj]:‘J*> vi77:|:>
3 1aal? — 324
~ gzl 77v **‘X‘ Jr*|P| (N, 1+) (B.9.123)
1~ o Z_
= (1, 3PPy ns ) + Re(ns, (iQiX" = PiX") )

1 . ; 1 O\ ~
+ Re<7’]j:, (¥A6]AI‘J + EQlF] + 2XJF]*> Vﬁ?i>

3F1 3:F1
- (S5 taar - ST JXP 4 GIPE ) (rens) (B0

noting that
(N4, T7 5 ma) = 0. (B.9.125)
For the second term, we can expand it by completing the square,
= =i = + =i +)i + +)i
<Vﬂ7i,v 77ﬂ:> = <Vi77¢ — Py, Viny - p 77:t> - <F£ I, B 7H:>

—2Re<ni,< —0; A+ Qz+ X *+16X1“]*)V1ni> (B.9.126)

16
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B.10 IIB AdS Directly From Horizon

B.10.1 Maximality Condition on 7,

We know that, if D§+)ng+ =0, then

iTsillmee I” — hFsilines P = 205 mss |+ [Ams | (B.10.1)

where
DY =1 v + rav(“ + D) (B.10.2)
@g@&¢::£§@ﬁ _ a4@¢+-3 0.0+ V26 (B.10.3)
h=—2dz — %dA (B.10.4)
hiVsip = —%a£¢ —~ %6%4 Dih (B.10.5)
Vil =04 + irz(w (B.10.6)
VD = 0uy + iraew (B.10.7)
AF) =PI+ izm (B.10.8)

and
N4 = €4 (0707 z,m‘ﬁyi),

= [1 + <62_1F - ‘T;Fa) @] n+(y'). (B.10.9)

If we assume that e, satisfies the pure-AdS integrability condition, ©%¢, = 0, as well as a
weaker form of the mixed AdS-transverse integrability condition, D(*)e,, then D§+)ng+ =Dy
is the Dirac operator on the transverse space,

2

-z _1 a
Hvé*%m - vam + ("’ T, - ‘;r) v (On) (B.10.10)
O P e — 12 4 122] [ ?
- Hv ”*H + [ =1+ }Hv (®n+)H (B.10.11)
-z _ 1 a )
+ 2Re<V£—“m, (62F - ZF) v<+”(@n+>>,
and
2 7@ 2
HA“’?MH = H/ﬂ”m — < 5T )A(”@m (B.10.12)
2
= HA(+ "*H [ —1)% 4 |af ]HAH 6n+H (B.10.13)

—2Re<.A n+,< lr —?I‘ )A(+)@n+>,
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On the left hand side,

1, _, 2
Ins? = sl + 7 [ (7% = 1)* + lal?] lOn- | (B.10.14)

-z _1 a
+ 2Re<77+7 (62Fz + J;Fa) @77+>,

ViVsillnssl® = b Vsilnst |

SO

(B.10.15)

6 . 5 =
+ 28A8i||n8+H2 + ﬁaanEH”Q + V2 g4 |12

1

—z —z e”
= e (B —4)||@77+H2 o Reln;. . T.0n,)

4
A?
36’2 5
+t o lOn. )+ aAallmll

3 —Zz 7
+ﬂ[(e —1)% 4 |af }aAaill@mn?

+ %8% diRe(ny, [(e7# = 1)T, + 2T, Ony)
- 1 -
+ V2P 4 5[ (7 = 1) + [ | 2 Om |
+ V2Re(ny, [(e7* = )T, + 2T, ]On, ) (B.10.16)

Equation (B.10.1) thus separates into components proportional to the linearly independent

—z —2z

. 2 2
functions, 1, e7%, e~ 2*, %, and |z|”. The |z|” component,

1~ 3 ; 2
TV2On | + 500 e | = 5[V ©n.) H Ao [ (B.10.17)

o il

by the Hopf maximum principle, tells us that if S is compact then ||G)17+||2 must be constant.

This also means tha
vi(en.) =0 (B.10.18)
and

AP en, =o, (B.10.19)

which are precisely the mixed AdS-transverse integrability conditions.
Furthermore, we can apply these to simplify the remaining components. The right hand side

reduces to two terms,

. P .| @, |2 ), |°
T Y PO N O S
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and the left hand side reduces to

ViVsilnsill* = h' Vil |” (B.10.21)
2e*
=z (||@77+||2 - 2Re<n+,Fz@n+>) (B.10.22)

6 . -
+ 040 | + V2 s
+ G040 Re(my, [(F ~ L. +2°T]Ony)
+ V2 Re(ny, [(e7% = )T, + 2°T,]Ony ).

Note that this eliminates the e~2* component as well.
The 1 component is then

2

V) + 2040, ny) = 2 VO |+ A, | (B.10.23)

where
Fng) = IInsl* = Re(ny, T.Ony). (B.10.24)

Once again applying the Hopf maximum principle, we find that the Killing spinor equations are
satisfied on the transverse space, S. Together with equations (B.10.18) and (B.10.19) and the
assumption of integrability on the AdS space, this implies that e is a Killing spinor on the entire

space AdSg X Ss.

B.10.2 Lichnerowicz Theorem on 7_

For 8 compact dimensions, we know that

_ 2 _ 2 1 2 _
/ [P || = / [v s | +5 / [am "+ [ re(BnDOn). B.1025)
Sg Sg SB 38

When not all 8 dimensions are compact, however, there are additional surface terms in this

equation which are non-zero. In this case, the condition on the integrands is (?7?),

_ 2 _ 2 1 _ 2 -
[P [ =[98 [+ g A | = e B2 )

+ Vg Re(ns—, Fins— ), (B.10.26)
where
Lo 8 trtats 3¢ i L l1tats
and
i L. _ 1. . 3 .
]:§:F”V]E ) + (4h1+ lel%rﬁ@) (B.10.28)

17, 11 it
(2@~ Hypg,e, T2 ) O
(16 96 a2t ¢
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For the AdSg case specifically, we will express the 8-dimensional quantities in terms of their

AdS and transverse components as

Dy =17V + 10V, + D) (B.10.29)
h= —%eé - %dA (B.10.30)
Vv = 0.0+ i(l“z@ —2)¢ (B.10.31)
Vi = 00+ 51Ty (B.10.32)
A =PI + ixﬁ* (B.10.33)

and

Tg— = €— (Oa 0, Z,l‘a, yi)a

-z _1 a )
— ¢ {1 n (e ;T - ”;ra>@} - (y'). (B.10.34)
The norm-squared of ng_ is
2 o, I 2 2 2
Ins—11* = e lln-11* + - | (72 = 1) + [« | ©n-| (B.10.35)

-z _ 1 a
+ 2¢% Re<n, <62FZ — a;)@n>.

If we assume that D(-)e_ = D(-)(Qe_) = O%_ = 0, we see immediately that V(;)ng_ =

Vé;)’ﬂs_ = 0, so that Déf)ng_ = D)y = 0. The other terms in equation (B.10.26) can be
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expanded as

2

_ 2 -z _1 a
va >778_H _ v<>77_+<6 > rz:;ra)vﬂ(en_) (B.10.36)
2oy 1P 4 € (o2 - 1) 4 1] [0 ’
= v n,H + e =)+ Jal }Hv (©n-) (B.10.37)
+ 262 Re<v§‘)n_, <e — Ir gra)v<>i(®n_)>
e [P = o22]| 40 e T (- i
HA ng,H = || Ay - k Fo— 5T )A (B.10.38)
2
— A(‘)n,H + S [( —1)% 4 |z ]HA< o H (B.10.39)
22Re<A( ( 5 “Ip, —”;PG>A<—>677>
Vi Re<77877 ]:5%7787>
z 11 21
zazRe<n8_,<F <>+ﬂ o5 Gkl Jko*>n8_> (B.10.40)
+6aRe<7787(FaD( )——G raw’fc*>n8 >
+ 61R€<778,,.7:£7787> + Z@A Re<7737, ]:17787>
3 111 y
+ ARe<77g7 (I‘ZD( )+ o4~ 96Gy-kI‘z”kC*)778>
2A25 Ims—|1* +2A2llns 1> + Vi Re(ns_, Fins_) (B.10.41)

- 282 Re<778, %XJ‘” * 778> + %8114 Re(ns_, Fins_)

_ :aa Re<778_, %XJ‘“' % ,78_> _ % Re<778—7 %de “ 778—>
= 2ol P+ (e~ DO~ Sipe Re(y To0n ) (B.10.42)
+ @iRe<ng_,fing_> — % Re<778_, é—éXiF“' * 778_>

where we’ve used the fact that ©%n_ = 0 to find that

11 1 —22
Ro(e- g X x e ) = e (I 17+ 3 [1= e+ faffon 1

+2 Re<n, (e_z_lfz — g;l}) @n>>

11 .
~194°¢ *Re(n_,I*On_) (B.10.43)

11 . 11
Re<778_, %XE'FGIZ * ’[]8_> = mez (2”@7]”2 - Re<77_, Fa@n_>> (B].O44)
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B.11 Homogeneity implies constant warp factor

The computations for flat backgrounds are the same as those for AdS backgrounds, except that

{ =00, ie. + =0. Specifically, the R" b x,, M0=" metric is

ds* = 2du(dr +rh) + A? <§(dw“)2> +ds* (M), (B.11.1)
a=2
h=-2A"1dA . (B.11.2)
Using the obvious frame,
et =du, e” =dr—2rA 1 dA, e* = Adz®, €' =¢ély, (B.11.3)
the frame-indexed derivatives are
Op =0y, O_=0p, 0y=A 900, 0= (ens)! (9 +2rA70,,A0,) , (B.11.4)
and the spin connection is
QL =+A471A, Q= ATI9A e, QY = Quy (B.11.5)

Using this spin connection in the flat components of the gravitino KSE, they can all be

expressed as

Oue+ +1,04e4 =0, (B.11.6)
where © for R" ! is the same as O4 for AdS,, with % = 0. The integrability condition is then
O104eq =0, or, defining 4 =204, Zler =0.

The homogeneity conjecture tells us that the Killing vectors derived from the Killing spinors,
KM = <6,FM6>, span the tangent space at each point. Using the flat-flat part of the Killing
vector condition,

0=V.K,=0.K, — %KiaiA N (B.11.7)
because 9, K, = 0,(0,T',0) =0, Lk A = 0 for each of these Killing vectors. Then, because they
span the tangent space, we find that A must be constant over the entire space, and, in particular,

over the transverse space.

B.12 IIB AdS;

B.12.1 Chirality

For any IIB spinors, v,

Lo123456780% = 1). (B.12.1)
For ¢4 defined such that 't = 0, this means that
Tasa56789 Y+ = £, (B.12.2)
and
Paa56780 Y = £l99s. (B.12.3)
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B.12.2 Electric and Magnetic Components of Fields

For k < 5, the fields will have AdS components, and so we must consider how they break down
into AdS and transverse components. For k = 3, Q and P are purely transverse, while G and F
have both AdS and transverse components. G can be expressed in terms of a scalar, ®, and a

transverse three-form, H,
G = ®dvol(AdS3) + H, (B.12.4)

while F' can be expressed in terms of a two-form, Y,

F = dvol(AdSs) AY — Y. (B.12.5)
In index notation these are
Gi .= (B.12.6)
Gy = Hign (B.12.7)
Fimsii =Yy (B.12.5
Flykokskaks = —%Gijklkzkgkmﬁﬁj- (B.12.9)

B.12.3 Field Equations and Bianchi Identities

The Einstein equation has an AdS component,

1~ 9 . 32 1 2 2 2 2
—V A =2Y —|® — - — — —|dA B.12.10
and a transverse component
~ 3~ ~
0= Rij — ZV1V7A — 2Y2(5ij + SEkY}k (B.12.11)

1 — 1 1
— ZHGH e — =|®%6:; + —|H|?6;; — 2|P)*.
4 (@ J)ke 8‘ | 61] + 48| | 62] | |

Contracting this, we find that

~ 3 =9 2 5 2 7 2 2
= —V*A Y —|H —|P 2|P B.12.12
R= 2924462+ L |HP + (|0 +2/P| (B.12.12)
6 6 2 2 2 1 2 2
=—— — —|dA 12Y 2| —|H 2|P|”. B.12.1
s — 1A + 122 + 200 + 2| HP + 2/ P (B.12.13)
The Bianchi identities reduce to
dy = —%dA/\Y+ é(@H-@H) (B.12.14)
d+7 Y = —%H NE (B.12.15)
dd = %(I)dA +i®dQ — BP (B.12.16)
dH=iQNH—-PANH (B.12.17)
dP = 2iQ A P (B.12.18)
dQ = —iP AP, (B.12.19)
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while the field equations reduce to

B.12.4 Parallel Transport Equations

In the AdS directions the parallel transport equations are

1
Oue + ﬂf‘+@_e =0

1
8T€ -+ ﬂF_@_._e =0
0,64 —E4ex =0

where

96 96

) A 2A .. 6A
@i = FZ + 0'A F, F %Y”Fm‘j + (H”kl“ijk + SQFZ)O*

1 1
=, =--I,0,, = =1--T,0_.
+ 9 2ot 2

The AdS integrability condition is ©+O0+e+ = 0, which implies that
€4 (O7 0, 2,0, yl) =04 (y’) +eftiry (y’)

Introducing

[1]x

96

the conditions on o4 and 74 are

[1]2

+x+ =0

where ¢ = 1 when x4+ = o4 and ¢ = —1 when y4+ = 7.

The parallel transport equations in the transverse dimensions are

0=vHe

?

= @ie + \Pgi)éi

where

1 i i i
O = £ = 9,4 -Qi+ - (TF).I. F-Y,I*
i 2404 = Q% (V)L F 5

1 9 6
(o (T, + gy gyt ).

B.12.5 Maximality Condition on o, and 7,

We introduce a new operator,

@SH = V£+) + %iné-‘r»

c 1 1A A 184
+ $2+2(3 2 4Y+( 96H F— >C*,

(B.12.20)

(B.12.21)

(B.12.22)

(B.12.23)

(B.12.24)

(B.12.25)

(B.12.26)

(B.12.27)

(B.12.28)
(B.12.29)

(B.12.30)

(B.12.31)

with the intention to demonstrate that, for an appropriately chosen value of ¢, if F"@E—H X+ =0,

then y; satisfies the Killing spinor equations.

176



As before, we find that
52y 112 = 2Ty I+ LRl 2
V2l = 2 V|| + S Rl
+ Re<X+, [—4@‘“" — 2D _oriip(H)

—14%?@4 @:X+>

[1]:

(T T2 ) () 4 Ir, 2L
Re<X+,[ 2(\1/ +4ET (\1/ +IT.Es

—2viul”) oV, - 149, (4R ) v ),
where

T Loario L iy

1 9 6
~(TH). — 2, + —ar,,
+( o6 (VH); — g6+ 5 )C*

(12

c 1 iA A 184
- S Zgar, + 2 ) i ) Yoo
+="57 57 +4Y+< o6 96 ) *
Expanding the third term, we find that

Re<x+, [—@(”i — 2w (i oy 14% “’i] ﬁz—x+>

_ Re<X+, V’Cr 3 T4 1T gy

A A A

i —2414q i, —1+7q.
—iQ (T + 1Y T* + —Li(IF)'T

—6 414 i  6+42¢ i 604 252 ; ~
+<q(F,H)Z+ s+ q@F“)C*]ViX+>-

96 9 96

We would like to write this in the form
& AVl P+ Re(xs FT'Vix ),
which is only possible if ¢ = %, in which case o = —%,

c

F=1

z 2 - ]' z
r +Z(3Aﬂ@+ (24H+<I>I‘ )C*,
and

Re(x+, [—4@”” — 2w (i _opig(h) _ 12%F“’é+}mx+>

4 . - e

=~ 0 AV P+ R FT'Vixs )

= *£81A6”X+”2 — Re X+ .FFZ \I/(Jr) —+ LI‘ 'é_‘_ X+ .
A [ ’ i 7A 21

177

(B.12.32)

(B.12.33)

(B.12.34)

(B.12.35)

(B.12.36)

(B.12.37)

(B.12.38)

(B.12.39)



Combining this with the second term and the bilinear part of the fourth term in (B.14.32), we
find that

—(4)i 1 = 1 -
Re<X+,—2<\IJ(+) —E T+ ff)( <+>+ﬁr = )X+>

= Re<X+, E’Zr“ + —8’A - m(F&M) (1“/;2)" - %Yirz (B.12.40)
fg(r/y)irz " <7?‘;6(m)i S cbr“)c*}
x {—MCAFZi + o 0A+ m(F&M) ;Q - %y’irz
o) e+ (—f%(rﬂ)i e 0 556q>rzi)0*] )
- Re<X+, {—722 — =0 T A2 — 2y - 7y’ - 4“}/’ - f|<1>| + ﬁcﬁfr
- LuT,

+<12Qi(I‘[—[) + oM. - 41 A(TH)' @)C*}X+> (B.12.41)

We can use the field equations and Bianci identities to rewrite the last line of (B.14.32),

~ . . ~ 4 .
Re<X+, [—2VZ\IJE+) P AV AR v (AF“E+)] X+>

2 2~ ) -~ 1

4
— Re<X+, [2 + %|dA|2 —4y? — |<I>| + O T, + PP;

168
i 1 _4j 2
i 1 =
+(12Qi(rﬂ) + 123-(1“[{)’)0*} X+>- (B.12.42)
The second, third, and fourth terms on the right side of equation (B.14.32) thus sum to
4 4 5 4zc 2 1
B T et VN q> — T B.12.4

+|P]* + P,P,;T%

i Loy | ——
779659% 7Hﬁi_*H ﬁij+7|H‘

(42AHFZ_42AaA(F’H) e )c*]x+>
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Noting that

£ 2 = =
H:+X+H = <X+’:+:+X+> (B.12.44)
1 1, 5 iA_; iAc A2 o
A2 942 ., A?
_ 2 Lo+ ST,
962HﬁjjL 256| | Jr256 i
Ac A i 1A? i 3Ac
ZCmr — 29, A(T Ly HT. - s
+(96H o6 ATH) + 55 Yl 16 )C*]X+>
2 — 1 1
HA(HX*H —Re( x, ||P? + PP,;TY + — HH + —|| (B.12.46)
576 16
1 JR—
+@¢?Hfrz + EPi(DH) c*} x>
we can now write equation (B.14.32) as
=2 12, Yaiac 2 s | 16 o e 2
V2 + S0 AVl = 2| VDX + 5l + A (B.12.47)
B.13 1IIB AdS,
B.13.1 Chirality
For any IIB spinors, 1,
Lo123456780% = . (B.13.1)
For ¢4 defined such that I' 191 = 0, this means that
Posaserso Yo = £, (B.13.2)
and
Paserso v = Flagths. (B.13.3)

B.13.2 Electric and Magnetic Components of Fields

For k < 5, the fields will have AdS components, and so we must consider how they break down
into AdS and transverse components. For k = 4, Q, P, and G are all purely transverse, but F,
the self-dual five form, includes both components, and can be expressed in terms of a one form,
Y

)

F = dvol(AdS,) AY + Y, (B.13.4)

or, in index notation,

1
Flimzsi = = 1 €ijajaggads FH22H8E = Vi (B.13.5)
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B.13.3 Field Equations and Bianchi Identities

The Einstein equation has an AdS component,

3

lew, o, 1l o 3
VA=A 6P -

3 2
A _E‘dfu y

and a transverse COHlpOIlth,
- 4 - -
Rij — 5 ViV;A — 4Y%6; +8YY

Contracting this, we find that the scalar curvature of the transverse space is

.4 1
R=—VEA+16Y% + g|G|2 +2|P)?
12 12, o 5. 2 2
=—— — " |dA 2Y? + —|G|* +2|P
A2 A2| " +3 +24| " +2|P|

The Bianchi identities reduce to

4
dy = _ZdA/\Y

iy, = _%Ehizisjljzji&Gmam
dG =iQNG—-PAG
dP =2iQ AP
dQ = —iP AP,

while the field equations reduce to
@iszk = iQiGijk + Piéijk
. . 1
‘P =2iQ'P;, — —G*.
v 1Q 24G
B.13.4 Parallel Transport Equations
In the AdS directions, the parallel transport Killing spinor equations are
Oue + iF O_e=0
LY
1
Ore+ ﬂF_@+e =0
1
8z€+ + §FZ@+€+ =0

1
O,e_ + (QFZ@_ - 1) e_=0

Oa€+ + %Fa@iei =0
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(B.13.6)

(B.13.7)

(B.13.8)

(B.13.9)

(B.13.10)

B.13.11

B.13.12
B.13.13
B.13.14

~ o~ o~
—_— — ~— ~—

(B.13.15)

(B.13.16)

(B.13.17)
(B.13.18)
(B.13.19)

(B.13.20)

(B.13.21)



(B.13.22)

A
Or =T, +PAFiAYT.3 — @GC*,

where
and, for the z-direction equations, we’re considering r = 0. The integrability condition for these
(B.13.23)

directions is
@;@iei = 0,
and we can conclude from this that the solutions to the z-direction equations are
€+(0,0,2,0,y") = ox (v') + ¥ (v'), (B.13.24)
where, defining =, = —%FZ@+ and 2_ =1— %FZG)_,
210+ =0 (B.13.25)
EiT:t = F7+. (B.13.26)
We can write these conditions succinctly as
Sixe =0 (B.13.27)
where x4 is either o4 or 74,
~ c 1 1A A
Er=F-+ QAT F —YT35— —GT*Cx, B.13.2
+=Fg+ ;PAT. F VT — oG Cx (B.13.28)
and cis 1 when y+ = o4, -1 when x4+ = 74.
In the transverse directions, the parallel transport equation is
0=vHe, (B.13.29)
= Vier + U ey, (B.13.30)
where
v — oA L0 s Lyt L) Tt (2 (6), + 2 )Cx. (B.1331)
‘ 2477 27T 2Tt g 96 96" o
We can see that this applies independently to o1+ and 74, so that in general Vgi) x+ =0.
B.13.5 Maximality Condition on o, and 7,
We introduce a new operator,
Vit =vit %iné+, (B.13.32)

with the intention to demonstrate that, for an appropriately chosen value of ¢, if Fi@ﬁ))@r =0,

then y, satisfies the Killing spinor equations.

181



As before, we find that

. . 2 1.
V2P =2 Vx| + 5 Rl P (B.13.33)
+ Re<X+, [—4@‘“" — 2D _oriip(H)
qd i |
1241 24| Vixs )
Re<X+, [—2(@(“2 + %EJ“’) (\115” n %ini)

—oviwlt) —ori v, ult) - 12%(2 sig )]x+>
where

TP Loarlio iy, _ L 1 e

(112

c 1 1A A
=—— @ AT, — —YT's — —GT* . B.13.
+=-3 2(3 : 2Y’ 3 96$ C « (B.13.35)

Expanding the third term, we find that

Re<X+, [—4@‘“" — 20D o gl _ 12;11 SiE }v X+> (B.13.36)

6gc 3+6q 1+6 i i
_Re<x+, [ j - S Toipg - 1 (rga)’ —iQ' +i(TR)

+i(=2+69)Y'T +i(—2 + 6) (TF) T
+( 8; 124 (T6)" + 66q$i> C*} ?z—x+>«

We would like to write this in the form

a0 AVl I + Re{xo, F¥ ), (B.13.37)
which is only possible if ¢ = %, in which case a = —%,
2c
—I*+ —9A— B.13.
F=7 (? 1@4—24@'0* (B.13.38)

and
Re<X+, {_4¢(+)¢ _opH)i _ 2Fij\1,§+) _ 12%11“@4 @¢X+>
= SO AT+ Re(x, FT Vi) (5.13.39)
= _%M Villx+ll” - Re<><+,fri [wf-*) + ;rzia] X+>- (B.13.40)

Combining this with the second term and the bilinear part of the fourth term in (B.14.32), we
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find that

ofgi, 1z 1 g L Ly =
zi il = 1 i E 7
—Re<X+7 [GAF + 6Aa ‘A (F&A) 5 (TR) VT
21

(B.13.41)
2oy e (—(m)i - ¢:Z’) C*}
X |: c

—— 1T A
oA + 3 +

[1]\x

(F(?A) 2Qi - %Yirﬁ
: 1
L), L+ ( ), + 15 )0 )
- Re<X+7 [—315@ — g pldAl - fyza AT .5 + 8wy’r3 - %W (B.13.42)
i .1
#(fQ06) + por -

184 15204 (16) )C*} X+>

We can use the field equations and Bianci identities to rewrite the last line of (B.14.32)
~ . . ~ 4 .
Re<X+, {—QV’\IJEJF) — Qrwvi\pgﬂr) -y, (AFzz: )]X+>
Re ildAF - EWAJrfdQ—QN Yl
= X+ A2 A 5 23

- 1
9 12 1
= RQ<X+, |:142 + P|dA|2 — 12Y2 —

E|G|2 + PP,
1 _
+ 144Glezz3G]l]zjg1—‘212213hj2j3

+(—12Qi (T6)" + EPZ- (P/G)i) c*} X+>. (B.13.43)
The second, third, and fourth terms on the right side of equation (B.14.32) thus sum to

4
R6<X+, |:3A2 3A2 |dA| - 7Y16 Arz3 + SZCYFB + Y2

3

(B.13.44)
1 _
‘G| + ‘P‘ + PinF” + mGiliﬂSthhrluzmh]w%
1 )
T (—

o 1@“) (0. + %)
(g - g (0 + T o))
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Noting that

= 2 = =
H:+X+H = <X+ E = X+> (B.13.45)
1 i Ac A%,
={ x4, |dA| + 1 Y 8AF23+ 5 —YTs+ - (B.13.46)
T C@rz a-A r6) + Ayigre)c
" 96? 96 71"~ gg 2 ) T3 "X
Ay |2 = Re<X, [|p|2 + PP - %m; + = PTG c*} > (B.13.47)

we can now write equation (B.14.32) as

N 4 . - R
20012 + L5 AT 1412 = 2]l =
VA + GO AT = 2 V| S lEex® + I Ax? (B.13.48)
B.14 IIB AdS;
B.14.1 Chirality
For any IIB spinors, 1,
Lo123456780% = 9. (B.14.1)
For 11 defined such that I' ;14 = 0, this means that
To3a56789 Y+ = £, (B.14.2)
and
56789 Y+ = Flasaths. (B.14.3)

B.14.2 Electric and Magnetic Components of Fields

For k <5, the fields will have AdS components, and so me must consider how they break down
into AdS and transverse components. For k = 5, Q, P, and G are all purely transverse, but F,

the self-dual five form, includes both components, and can be expressed in terms of a scalar, Y,
F =Y[dvol(AdS5) 4+ dvol(M5)], (B.14.4)

or, in index notation,

Fi 234 = —Fse189 =Y. (B.14.5)

B.14.3 Field Equations and Bianchi Identities

The Einstein equation has an AdS component,

4

4
2 2, = _ = 2
V A=4Y + |G| -3 2\dA| ; (B.14.6)
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and a transverse component,
- 5 . -
Rij — ZvivjA —4Y%5;; (B.14.7)
1, ws 1 2 —

Contracting this, we find that the scalar curvature of the transverse space is

. 5. 7
R=—2V2A+20Y% + 4—8|G|2+2|P|2 (B.14.8)
20 20 2 1 2 2
="~ pldAl +40Y? + |G” +2/P| (B.14.9)

The Bianchi identities reduce to

5

dy = _ZYdA (B.14.10)
dG=iQNG—-PAG (B.14.11)
dP =2iQ NP (B.14.12)
dQ = —iP AP, (B.14.13)
while the field equations reduce to
- 5 . , __
VZGijk = —26% Gijr + inGijk + PlGijk (B.14.14)
.. 5 . . 1
‘Pp=——0'AP; +2iQ'P, — —G*. B.14.1
ViP, = S OAP +2Q'P; - 3G (B.14.15)
B.14.4 Parallel Transport Equations
In the AdS directions, the parallel transport Killing spinor equations are
1
1
—TI_ = B.14.1
Ore + 54 O©,e=0 ( 7)
1
826+ + §Fz6+€+ =0 (B1418)
1
06— + (21"29 — 1) e~ =0 (B.14.19)
Og€+ + %Fa@iei =0 (B.14.20)
where 4
G)j: = Fz + ('ﬂAI’Z- + iAYFz34 — @@ C*, (B1421)

and, for the z-direction equations, we’re considering r = 0. The integrability condition for these
directions is
O:041er =0, (B.14.22)
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and we can conclude from this that the solutions to the z-direction equations are
€£(0,0,2,0,y") = ox (v') + ¥ (v'),
where, defining =, = —%Fz(%r and 2_ =1-— %FZG,,

=404 =0
E4iTy = Fr.

We can write these conditions succinctly as

[1]2
H
=<
H

I

o

where x4 is either o4 or 74,

1, 1A A
— AT, £ —YT3y — —(@T>
26 21 2 34 96$ C*a

[1]2

_ S
+ = ¥2
and cis 1 when x4+ = o4, -1 when x4 = 7.

In the transverse directions, the parallel transport equation is

= @iei + \Ifgi)ei,

where

) . .
U =+ 94 3Q1¢ %er34i + (

9
i 24 %% B (I‘G)i—l-%G,-)C’*.

1
96

(B.14.23)

(B.14.24)
(B.14.25)

(B.14.26)

(B.14.27)

(B.14.28)
(B.14.29)

(B.14.30)

We can see that this applies independently to o and 74, so that in general Vgi) x+ =0.

B.14.5 Maximality Condition on o, and 7,

We introduce a new operator,

@£+) = V;H + %iné+7

(B.14.31)

with the intention to demonstrate that, for an appropriately chosen value of g, if I‘i@l&))@r =0,

then x4 satisfies the Killing spinor equations.
As before, we find that

PP =2 T Ox |+ 5 Rl
+ Re<X+, [—4@”” — 2w _orip(H)
~10414Z, | Vi)
Re<X+, [-2(@”1 v %ir“’) (‘I’y) n %ini)
—oviglt) _oriv, el - 10%(%iné+>]x+>,
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where

L
96

9
96

@(4“) (F/G)Z _

|

1 7 1
= ﬂaiA + §Qi + ¥ Teaai + ( Q;'Z) Cx

c 1, 1A A
= —— 4+ —QAT,; + —YT'3y — —@T* .
+ 5 + 23 + 5 34 9% C x

[1]]2

Expanding the third term, we find that

Re{xp, [40 = 2001 —oriw(® — 104r=2, |V, )

g 3+5¢.. . 145 )
_ Re<X+, [jfr” _ J;l Toia — ‘;1 99,AT

—iQ +iQ, T +i(3 — 5q)YT=3%

—10 + 10q i —6+30q . =

We would like to write this in the form
if e 2 i
@ AV x4 + Re(xs, FI'Vixs ).

which is only possible if ¢ = % in which case

3¢, 4 . 1
and o = —%. We can then further expand the expression as

Re(xy, [—40" - 201 —orig (D) 104072, | Vixs )

9 o i
= —28*A||X+||2 + Re<X+7]‘T v1X+>

5 . : 3 _
= -0t P - Re( e 7 [0+ Zraz i),
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(B.14.33)

(B.14.34)

(B.14.35)

(B.14.36)

(B.14.37)

(B.14.38)

(B.14.39)



Combining this with the bilinear part of the fourth term of equation (B.14.32), we find that

(+)i 3 = 21 i 3 -
Re<X+, —2<\Ij . + 5714l—4+].—‘ + ]:F > (\I/H—) + MFZZ:+> X+>
6 11 41
= Re<X+, —2 [5ZF“ + o0 10A6‘ ATY 4 2 il (B.14.40)

o Q]F”+< o @)i—af’)c**]

x [ S aA+ 2 PAT — Y T.ay

104 5A A 5
)
_in"‘ ( (FG) + @ )C*] X+>
18 24ic

1 i1 =AY 3
- 2(—(m) - ot ) (-5 + 35)
] i
+<10A¢T Loame) + o) )c*}x+>.
We can use the field equations and Bianci identities to rewrite the last line of (B.14.32),

Re<X+, {2@’\1/5*) D) KAV A v (jrzié+)]x+>

4 4 - ) 1
1 2 -
= Re<X+, [Ag Ag |dA|” — 16Y2 — o |G|2 + PP,T% (B.14.43)

+ (—fQQi (06" + 12P(m)) C*} X+>-

The second, third, and fourth terms on the right side of equation (B.14.32) thus sum to

12 12 24ic Z
Re<X+» |:5A2 5A2|dA| + 5Y2 5A YF34+|P| +PP I‘J
o 1
G]1]2G1k1k2rjljzklk2 - G“szljzkrjk 60 ‘G|2
(10A$F (F/G) +1 P (TG)! )C*} x+> (B.14.44)
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Noting that

= 2 = =
H:JFUJFH = <X+ ELE X+> (B.14.45)
1 A A2
- <><+, [ |dA| + 1 Y AT 5 — QYFM + Y (B.14.46)
A2 7 ral j27 A 019
- @G j2j3Gik2k3FJ2J3k2k3 + 2 162G v G1112kr
Ac » i
e = Re<x, [|P|2 + PPV fG;mémrﬂ'm’“’” (B.14.47)
Lo gt Lep Lema)ics|x
32 I 96 12
we can now write equation (B.14.32) as
S22 1 D A A (|2 2+ |2
VA + S AT = 2V + g 1B + A (B.14.48)

B.15 IIB AdS;

B.15.1 Bianchi Identities and Field Equations

We will need to express the field equations and Bianchi identities in terms of the AdS and

transverse dimensions. The Einstein equation has both an AdS component and a transverse

component,
> A 24 L op
Ry = |——73 — fld = fV M = =15 |G M (B.15.1)
- 6 ~ - _
Rij - Zv V A+ G(z G])ke 8|G|251] + QP(in), (B152)
from which we find that
1o I 2 O 5 2
VA= —|G]" = —5 — -5|dA B.15.
AV 48 | A2 Az‘d | (B.15.3)
. - 1
= %vu + 6|G|2 +2|P)? (B.15.4)
30 30 o T o 9
=—— ——|dA — 2|P B.15.
B~ pldAl + LG 2P (B.15.5)
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The remaining equations, for k = 6, are purely transverse,
dP =2iQ NP
dQ = —iPAP
dG=iQNG+PAG
- 6 . ) 1
P =——0"AP; +2iQ'P; + —G*
v A8 + 2iQ"P; + 24G

~ 6 _
VEGijk = =3 0" A Gijk +1Q" Giji + P Giji

B.15.2 Differential and Algebraic Killing Spinor Equations on X

The z-direction Killing spinor equations are

1
aze_,_ = —§FZ@€+

1
8267 = (1 — 2F26> €_

where © = I'* + 9; AT"? — %Gijkfiﬂ“C*. Defining =, = —%I‘ZQ and E_ =

1 1 A
— ¥ SJATE - @O
+ ¢2+2&9 96$ C *

[1]

we can write this more succinctly as

azfi = Eiei-

It can be shown that the solutions to these equations take the form
e+(2,y) = 0x +eT 7y,

where o4 and 74 satisfy

= @Z(-i)Ei + \I/(i)ei
—Fies + (—e =L oAT 0+ 94— Lq,
= V€4 € A2 i — 24 i 2 i | €L

N <_916(m)i+§2¢:i>0*ei,
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(B.15.11)

(B.15.12)
1- %F297 so that,

(B.15.13)

(B.15.14)

(B.15.15)

(B.15.16)
(B.15.17)
(B.15.18)

(B.15.19)
(B.15.20)

(B.15.21)



which apply to o+ and 7+ independently,

~ 1 ) 1 3
~ 1 i 1 3
Virs + (iM@A - 2@) et (—%(F/G)Z— + 32@)0 K7 =0, (B.15.23)

noting that for r = 0,

1 1 1 9
oE) = (£—9,4 - -0, ——(TG). + — ¢, B.15.24
9= (5504 - 5 + (-5 06, + gt ) (B.15.24)
and the algebraic Killing spinor equation,
1

Pe, + Q@C xep =0, (B.15.25)

which also applies to o4 and 7+ independently. Defining A = P;I'" + 5;G;;, "% Cx, this gives
Aoy =0 (B.15.26)
Ary = 0. (B.15.27)

Together, equations (B.15.16), (B.15.18), (B.15.22), (B.15.23), (B.15.26), and (B.15.27) are the
Killing spinor equations on the transverse space, X.
B.15.3 Basic Lichnerowicz Theorem
Let ¢ be any spinor. Then we can expand @2||gz5||2 as
V2[6)? = 2Re @i<¢, @i¢> (B.15.28)
- 2<ﬁi¢, 6¢¢> + 2Re<¢>, @i@i@. (B.15.29)

Using the Bianchi identities on the Riemannian curvature tensor, R;; ¢, we can further expand
@i@ﬂb as

ViVip = 69V, V¢ (B.15.30)
= (I'TY =T")V;V;¢ (B.15.31)
=TV (17V;0) - ifzij,kgrijr% (B.15.32)
v (rﬂﬁp) + i%’ (B.15.33)
so that )
V2ol = 2(V'6, Vo) +2Re( 6, TV (TVV0) ) = 5 (6, 0). (B.15.34)
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B.15.4 Maximality Condition on o, and 7,

We introduce a new operator, @j defined by

Vi = vy + Ir.2x, (B.15.35)

A
where x is either o4 or 74 and ¢ = 1 when x = 04, —1 when x = 7.. We wish to show that, for

an appropriately chosen value of ¢, if
0=TvMy (B.15.36)
= T'Viy + [Fi\yg“ - 4%FZEC} X (B.15.37)

then o satisfies the Killing spinor equations, (B.15.22), (B.15.16), and (B.15.26). To this end

we compute

@2\\x||2 = 2<@ix, @ix> + 2Re<x,I‘i@i (I‘j@jx)> R{x,X). (B.15.38)

The first term expands to
2<@ix, @ix> =2[|[VH)y ° 4Re<(\11(+)i + %F”Ec)x, @ix>

. q . 2
=2 (w0 Gree)x]
+A X

2

—9|[¥H)y —4Re<X, (@(”i %Hcr“)v,@ (B.15.39)
- 2Re<x, (W”“ = FZ’) (\D“ + Fuuc) >
— oo - 4Re<x,\p(+” x> (B.15.40)
_ 2Re< ( CARRA q = r“) (\If“ n rm_c) >
where
v = iaiA + %Q + (916(1“,6‘)i - £?6$i> '+ (B.15.41)
=, = —g + %@A r# _ %arzo* (B.15.42)

The second term expands to
2Re<x, iy, (rﬂ'@jx)>
— 9 Re<x, v, [Fj‘lf§+)x - %ancx} > (B.15.43)
_ 9 Re<x,ri [Fiqf§+> —4%FZEC} Vix (B.15.44)
+ [rirjﬁiq@*) - 4(%@,;/11““56 - %F“’@ﬁc)}@.
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Combining these, we can rewrite equation (B.15.38) as

o o LIRS SR

V2 = 2| Vx| + SRl (B.15.45)
n Re<x, [f@(“i — 2w gl 8%F“Ec] @ix>

ot | 4= zi) + , 9+ = )
+Re(x, [-2(F1" + 4207) (w17 + Lr.z,
R AVAR 2 AR RA VAR SR (%r“’acﬂ x>-
Using the fact that Re(¢, I'"/¢) = Re(¢,I'"/C * ¢) = 0, we can expand the third term,

Re<x, [—@(*” — 29 _orig(h) _ 8%FMEC] @ix>

deq_ . A 1+4 T y
- Re<x, {qu“ - 32 Loig— J;l 19, AT —iQ' +iQ,T" (B.15.46)
124 8¢, i —12424q -
I e PAY
(o) - e o v)

We want to choose ¢ such that this can be written as
ad AV, ||x|® + Re<x, ]-Ti@ix>, (B.15.47)
which is only possible if ¢ = 1. Thus,

Re<x, [—4@”” — 20 gt 821““'56} ﬁix>

A
=Re depsi - Toig_ D ari— Q" +iQ, T (B.15.48)
= X 2 1 2% 7 1Q); 15,
(- @)+ Lat)os|v,
24 8 X
6, = 2 4c 5 ; . ; 1 —
= ——0'AV; S 4 S9AT — QT + — I'v; B.15.4
Aa Villxl +Re<x, [A + Aaj 1Q,;I7 + 24$C*} sz> (B.15.49)
6 . - ) 4
= —ZaZAvZ—HXHQ - Re<x7}'[1'”\1!§+) - AFZEC} x> (B.15.50)
L ) 1
- 7%alAVi||XH2 - Re<x,]-'1” {\115“ + Arziac} x> (B.15.51)
where A 5 )
C o 9 i L
F=S"+ AaA iQ + 24$C*. (B.15.52)
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Re<x, —

Combining this with the bilinear part of the fourth term in (B.15.45), we find that

(\II(+)Z A:Cl—\zz + ]_‘Fl) <\II§+) + Fzzh‘c
3¢ .
= Re<x, {

Ir =
A X

1) z ) i i 6 i
ﬂr +—8 aAFJ+QjFJ+<—(FG) % ) }
S I P SIS 2@+ 2

2A z1 A K3 2A 1] K3

6 11

o[-

96
2 2 i
A2|dA| _z(_%(r/a)

(160 ¢re

e)el) o
)2 52)

1 i
5 0.406) + - au () )c} x>
fourth term on the right side of equation (B.15.45)

96A
We can also use the Bianchi identities and field equations to expand the derivatives in the

(B.15.54)
Re<x, {—2@1\112(-

30
e

(B.15.55)
(-1

(B.15.56)
Q:(T6) + 1 P (T6) ) } >
The second, third, and fourth terms on the right side of equation (B.15.45) thus sum to
[

—oriv,ut —8V< r“:c)]x>
A
_ Soga? %2y by L
Re<x, [AQdA| TVPA+ Sd 48dGC’*} >
2
:Re<x,[ o 3

|dA)? — —\G|2 + PP,TY

1
2
—z\dA| +

<IGl +|P* + P,P,;I%
16¢

—ar? —
(96A$
Noting that

IEex|l* = Re(x §Ec><>

[

(B.15.57)
BA(TE) + 112PZ-(FG)”> C*] x>

(B.15.58)
Haap + 2 e A e
( @T* — %&A (FG)l) c*] ><> (B.15.59)
[ AXII” = Re(x, AAx)
= Re<x, [|P|2 + PP,TY — 2 GGy T
we can now write equation (B.15.45)

(B.15.60)
1 _—
rel +12Pi(F/G)%C*]X> (B.15.61)
- “ 2
Vx| + S0 AVilIxl® = 2 VOx|| + Il + AP

(B.15.62)
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