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Abstract

This dissertation determines the numbers of supersymmetries preserved by the most

general warped flux AdS and flat backgrounds in IIA, IIB, and heterotic supergravities. A

local analysis determines that AdSn ×w M10−n backgrounds preserve N = 2b
n
2 ck super-

symmetries for n ≤ 4 and N = 2b
n
2 c+1k supersymmetries for 4 < n. Another local analysis

demonstrates that R1,n−1×wM10−n backgrounds preserve N = 2b
n
2 ck supersymmetries for

2 < n ≤ 4, N = 2b
n+1
2 ck supersymmetries for 4 < n ≤ 8, and N2b

n
2 ck for n = 9, 10.

The global analyses show that, with appropriate restrictions, each AdSn×wM10−n back-

ground satisfies a Lichnerowicz-type theorem, which generalizes the original Lichnerowicz

theorem and proves that the Killing spinors are exactly the zero modes of a Dirac-like

operator on M10−n.

Finally, this dissertation includes a non-existence theorem for smooth AdS5 backgrounds,

in 10- or 11-dimensional supergravities, with connected, compact without boundary trans-

verse spaces, that preserve exactly 24 supersymmetries. Any such IIB backgrounds which

preserve at least 24 supersymmetries are shown to be locally isometric to AdS5 × S5, and

any such backgrounds in IIA or 11-dimensional supergravity are shown not to exist.
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Chapter 1

Introduction

Supersymmetry has long been of interest as one way that the Poincaré algebra can be extended,

bypassing the Coleman-Mandula theorem. This theorem states that, under certain assump-

tions, all internal symmetries must commute with the translation and Lorentz symmetries. A

supersymmetry algebra, or superalgebra, violates those assumptions by including fermionic sym-

metries, which are related to bosonic symmetries by anti-commutation relations [1]. On its own,

supersymmetry is promising as a possible extension to the Standard Model, and it is possible

that experiments at the Large Hadron Collider will discover superpartners to Standard Model

particles in the next few years. For string theory, supersymmetry is a critical component, as

superstring theory allows for the fermionic states that bosonic string theory lacks [2].

Theories with both supersymmetry and gravity, in the form of general relativity, are particu-

larly interesting. Because general relativity involves gauged Poincaré symmetry and supersymme-

try interacts with Poincaré symmetry non-trivially, the combination implies that supersymmetry

must be gauged as well. Because supersymmetry transformations are generated by spinors, the

gauge field for supersymmetry is spin- 3
2 , and is part of the same supermultiplet as the spin-2

graviton. This particle is called the ”gravitino”. In fact, any theory of gauged supersymmetry is

necessarily a supergravity theory for the same reason, if supersymmetry is gauged, the Poincaré

symmetry must be gauged as well, which implies gravity.

Supergravity also naturally arises as the low-energy limit of string theory. In particular, the

spectrum of string modes can be shown to include a massless spin-2 particle, a graviton, and so

the low energy limit of string theory includes gravity. If the string theory is supersymmetric, then

the resulting field theory is as well, leading to supergravity. It can be shown that a superstring

theory must be exactly 10-dimensional to be quantum-mechanically consistent, as only in 10

dimensions do the anomalies cancel out. There are five 10-dimensional string theories, type I,

types IIA and IIB, and heterotic SO(32) and E8 × E8, and each of these yields a different 10-

dimensional supergravity. If these theories are accurate, then our 4-dimensional physics must be

the result of Kaluza-Klein dimensional reduction on some compact space. Anti-de Sitter (AdS)
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spaces have been used in this context for many years [3, 4].

11-dimensional supergravity, on the other hand, is something of a special case. From a su-

persymmetry perspective, any space larger than 11 dimensions results in every supermultiplet

containing a particle of spin-5
2 or greater. Moreover, there is exactly one 11-dimensional super-

gravity theory [5]. It even turns out that this theory is closely related to string theory, despite

all superstring theories being 10-dimensional. It was discovered that all of the string theories

and supergravities are related to one another by a variety of dualities, and that IIA supergravity

in particular is precisely the Kaluza-Klein dimensional reduction of 11-dimensional supergravity

with all higher-order modes omitted. This leads to the idea of 11-dimensional M-theory, which

unifies all of these. Like string theory, M-theory involves extended objects, but these objects are

only M2-branes and M5-branes, with no fundamental strings. 11-dimensional supergravity turns

out to be precisely the low energy limit of M-theory.

In addition to dimensional reduction, AdS supergravity backgrounds have more recently

been of interest because of the AdS/CFT correspondence, which relates each AdS background

to a dual conformal field theory (CFT) of one less dimension. The maximally supersymmetric

AdS5 ×M5 background in IIB supergravity, for example, is dual to maximally supersymmetric

four-dimensional conformal field theory [6, 7]. In general, the SO(2, n − 1) isometry group of

AdSn corresponds exactly to the conformal group of an (n−1)-dimensional conformal field theory,

and the supersymmetries of an AdSn background similarly correspond to the supersymmetries

of the dual conformal field theory.

Although many supersymmetric AdS backgrounds have been investigated since then, most

efforts focus on specific backgrounds or classes of backgrounds, without attempting to understand

AdS backgrounds more generally. In fact, it is not known what superalgebras many of these back-

grounds preserve. The work in this dissertation puts such configurations in a broader context,

giving information about the numbers of supersymmetries certain backgrounds can preserve, as

well as new results regarding the forms of the Killing spinors.

There are some previous results which investigate questions similar to those in this dissertation

for other types of backgrounds. It has been proven that near-horizon backgrounds preserve an

even number of supersymmetries, and Lichnerowicz-type theorems have been proven for IIA

horizons [8, 9], IIB horizons [10, 11], and 11-dimensional horizons [12]. Additionally, similar

supersymmetry counting results and Lichnerowicz-type theorems have been found and proven

for M-theory AdS backgrounds [13].

1.1 Main Results

This dissertation is based on work which has been published in several papers. [14] examines the

allowed supersymmetry fractions of IIB backgrounds, and proves a Lichnerowicz-type theorem

for each AdS background. [15] uses similar methods to examine IIA backgrounds, and [16]

examines heterotic backgrounds, with and without a closed three-form field strength. Finally,
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[17] specifically examines AdS5 backgrounds which preserve at least 24 supersymmetries, showing

that those that exist are locally isometric to maximally supersymmetric backgrounds.

Chapters 5, 4, and 3 focus on heterotic backgrounds, IIA backgrounds, and IIB backgrounds,

respectively. For each of these backgrounds, a local analysis has been performed which demon-

strates supersymmetry enhancement, as well as a Lichnerowicz-type theorem which proves that

the Killing spinors of these backgrounds are exactly the zero-modes of a Dirac-like operator.

Each of these analyses depends crucially on the fact that each background is assumed to

be invariant under all of the AdS isometries. This severely restricts the forms that the bosonic

fields can take, and simplifies the Killing spinor equations. In fact, the AdS-direction gravitino

Killing spinor equations are found to be completely integrable in all cases, aside from a single

integrability condition, which behaves like an additional algebraic Killing spinor equation on the

transverse space. With the problem reduced to the transverse space, supersymmetry enhance-

ment is discovered by finding Clifford-algebra operators which commute with the transverse

Killing spinor equations, such that the image of one Killing spinor under these operators is a

different, linearly-independent Killing spinor.

The Lichnerowicz-type theorems are proven by assuming that an arbitrary spinor, χ, is a

zero-mode of a Dirac-like operator constructed from the transverse Killing spinor equations.

Through significant Clifford algebra computations, we can determine that the Laplacian of the

length of χ, ∇2‖χ‖2, is equal to a positive-definite combination of the Killing spinor equations.

With the additional assumption that the transverse space is compact, or at least that it satisfies

the conditions of the Hopf maximum principle, we can then conclude that the length of χ is

constant and the χ is Killing.

Finally, in chapter 6, a proof is presented demonstrating that AdS5 ×w MD−5 backgrounds

cannot preserve exactly N = 24 supersymmetries if MD−5 is compact. For 11-dimensional and

IIA backgrounds, this proves that such spaces cannot be more than 1
2 -BPS. For IIB backgrounds,

it proves that any such space which is more than 1
2 -BPS is in fact maximally supersymmetric,

and is locally isomorphic to AdS5 × S5.
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Chapter 2

AdS Backgrounds

2.1 AdS Geometry

An anti-de Sitter space, AdSn, is a maximally symmetric spacetime with constant negative

curvature. The spaces which are studied in this dissertation not only include an AdS space, but

also preserve these symmetries. It is important, therefore, to understand the AdS geometry fully.

Much as a sphere, Sn, a maximally symmetric space with constant positive curvature, can be

constructed as a subspace of a Euclidean space, Rn+1
, an anti-de Sitter space can be constructed

as a subspace of a Minkowski space with two time dimensions, R2,n−1
. Specifically, the sphere

Sn can be constructed as the locus of points in Rn+1
which are a constant distance-squared from

the origin, `2 =
∑

(xa)2. Similarly a hyperbolic space, Hn, a maximally symmetric space with

constant negative curvature, can be constructed as a subspace of a Minkowski spacetime, R1,n
.

If the metric signature of the Minkowski space is taken to be (−,+,+, . . . ), then Hn is the locus

of points with constant time-like distance squared, −`2 = −t2 +
∑

(xa)2 < 0. The constructions

of de Sitter space (maximally symmetric spacetime with constant positive curvature) and anti-de

Sitter space are analogous. A de Sitter space, dSn, can be constructed as the locus of points in

R1,n
with constant space-like distance squared, `2 = −t2 +

∑
(xa)2 > 0, and an anti-de Sitter

space, AdSn, can be constructed as the locus of points in R2,n−1
with constant time-like distance

squared, −`2 = −(t1)2 − (t2)2 +
∑

(xa)2 < 0.

Space Signature Curvature Subspace of defined by

Sn (+,+, . . . ) R > 0 Rn+1
`2 =

∑
(xa)2 > 0

Hn (+,+, . . . ) R < 0 R1,n −`2 = −t2 +
∑

(xa)2 < 0

dSn (−,+, . . . ) R > 0 R1,n
`2 = −t2 +

∑
(xa)2 > 0

AdSn (−,+, . . . ) R < 0 R2,n−1 −`2 = −(t1)2 − (t2)2 +
∑

(xa)2 < 0

Table 2.1: Properties of the four sphere-like spaces.
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An AdSn space can equivalently be identified with the coset space SO(2, n− 1)/SO(1, n− 1).

To see this, we notice that an SO(1, n− 1) matrix,
1 0 . . . 0

0
... Λ

0

 ,

leaves the top row of any SO(2, n− 1) matrix unchanged. We can therefore identify an element

of the coset space with the point in R2,n−1
corresponding to its the top row of each matrix,

(t1, t2, x1, . . . , xn−1). Then, because the matrix is orthogonal, these points must satisfy the

condition

t21 + t22 − Σ(xa)2 = 1 ,

which defines an AdS space of radius ` = 1. We can identify this with an AdS space of arbitrary

radius by scaling the map into R2,n−1
appropriately.

We can determine the AdS metric from the R2,n−1
metric by expressing it in spherical

coordinates,

ds2 = −dt21 − dt22 + dρ2 + ρ2dΩ2
n−2 .

We can define the embedding by

t1 = `
√
r2 + 1 cos t

t2 = `
√
r2 + 1 sin t

ρ = `r ,

from which we find the metric

ds2 = `2
[
−(r2 + 1)dt2 +

1

r2 + 1
dr2 + r2dΩ2

n−1

]
. (2.1.1)

This spherically symmetric metric is particularly useful because it covers all of AdS space

in one coordinate patch, but the Poincaré patch metric will be more useful for the work in this

dissertation. We can derive this metric from the embedding in R2,n−1
,

t1 =
1

2z

(
`2 + z2 + δabx̂

ax̂b − t2
)
,

t2 =
`t

z
,

xa =
`

z
x̂a , a = 1, . . . , n− 2 ,

xn−1 =
1

2z

(
−`2 + z2 + δabx̂

ax̂b − t2
)
,

from which we find the metric,

ds2 =
`2

ẑ2
(−dt2 + dẑ2 + δabdx

adxb) ,
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This is analogous to the Poincaré half-plane model of hyperbolic space, which has metric ds2 =
1
y2 (dx2 + dy2).

To understand the causal structure of an anti-de Sitter space, we want to construct a Penrose

diagram for it. To do so, we will start with the global coordinates metric, (2.1.1), using a new

radial coordinate, x = tan−1(r),

ds2 = `2 sec2(x)
[
−dt2 + dx2 + sin2(x)dΩ2

n−1

]
.

Then, since x has finite extent, while t has infinite extent, the Penrose diagram is an infinite

cylinder [18].

r
=
∞

t =∞

t = −∞

Figure 2.1: A cross-section of the Penrose diagram of AdSn, including the

boundary at r =∞ (thick) and two lightlike geodesics (dashed). Note that

the future lightcone of any point reaches r = ∞ after finite time, and so

t = ±∞ cannot be shown at finite distance.

2.2 Warped Product Spaces

The anti-de Sitter backgrounds I’ll be discussing in this dissertation are warped product spaces,

AdSn ×w MD−n, which preserve the SO(2,n− 1) isometry group of AdSn, where D = 10 or 11

is the dimension of the supergravity, and MD−n is a transverse space, which is not necessarily

compact. Topologically, one of these spaces is an ordinary product space, AdSn ×MD−n, but

the metric is modified by a warp factor, A, which is a function of the transverse space, MD−n.

The warped product metric is

ds2 = A2ds2(AdSn) + ds2(MD−n) . (2.2.1)

We wish to find coordinates for such a warped product space which fit the near-horizon space

of a black hole, because we expect, based on previous results [19, 20, 21, 10, 11, 8, 9, 22, 12], that
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near-horizon coordinates will be well-suited to studying the supersymmetry properties of these

backgrounds. The near-horizon metric is

ds2 = 2du(dr + rh− 1

2
r2∆du) + ds2(MD−2) , (2.2.2)

where MD−2 is an arbitrary space which will include n− 2 of the AdS dimensions, and h and ∆

are a 1-form and a scalar, respectively, on MD−2.

Starting with the Poincaré patch version of the warped product metric,

ds2 = A2 `
2

ẑ2
(−dt2 + dẑ2 + δstdx

sdxt) + gijdy
idyj

we introduce a new z-coordinate, defined by ẑ = `e−z/`, so that the metric becomes

ds2 = A2e2z/`(−dt2 + δabdx
adxb) +A2dz2 + gijdy

idyj .

Then, if n ≥ 3, we introduce lightcone coordinates û = 1√
2
(x1 + t) and r̂ = 1√

2
(x1 − t), so that

ds2 = A2e2z/`(2dûdr̂ + δabdx
adxb) +A2dz2 + gijdy

idyj .

Finally, we introduce rescaled lightcone coordinates, u = û and r = A2e2z/`r̂, yielding the final

form of the metric,

ds2 = 2du
(
dr − 2`−1rdz − 2rd lnA

)
+A2dz2 +A2e2z/`δabdx

adxb + gijdy
idyj . (2.2.3)

Comparing this to (2.2.2), we see that it has the same form, with

h = −2`−1dz − 2d lnA ,

∆ = 0 ,

ds2(MD−2) = A2dz2 +A2e2z/`δabdx
adxb + gijdy

idyj .

If we’re considering an AdS2 background, however, there is no x1 coordinate. Instead, we

will define u and r as

u = 2
√

2`(t− z) ,

r =
1

2
√

2
`A2z−1 ,

so that the metric is

ds2 = 2du

(
dr − 2rd lnA− 1

2
`−2r2A−2du

)
+ gijdy

idyj . (2.2.4)

Comparing this to (2.2.2), we see that it has the same form, with

h = −2d lnA ,

∆ = `−2A−2 ,

ds2(MD−2) = gijdy
idyj .
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We will also need vielbein forms for each of these spaces. The forms we will use for AdS2

spaces are

e+ = du ,

e− = dr − 2rd lnA− 1

2
`−2r2A−2du ,

so that the AdS2 metric, (2.2.4), is ds2 = 2e+e− + gijy
iyj . The forms we will use for AdSn

spaces, n ≥ 3, are

e+ = du ,

e− = dr − 2`−1rdz − 2rd lnA ,

ez = Adz ,

ea = Aez/`dxa ,

so that the AdSn metric, (2.2.3), is ds2 = 2e+e− + (ez)2 + δabe
aeb + gijdy

idyj .

One of the primary advantages of these lightcone vielbein forms is that we can construct

projection operators from the corresponding Gamma matrices, Γ+ and Γ−. Specifically, we can

write any spinor as a unique sum, ε = ε+ + ε−, where Γ±ε± = 0.

It will be necessary, for the Lichnerowicz-type theorems, to assume that the transverse spaces

are compact, but this assumption will not be necessary for the other parts of this dissertation.

The fields of these backgrounds are also assumed to be invariant under the Killing vectors of

the AdS space. This restricts the form of each field. Most of the fields of M-theory and heterotic,

IIA, and IIB supergravities are differential forms. A k-form F which is invariant under the AdS

Killing vectors of AdSn ×w MD−n will have the form

F = X ∧ dvol(AdSn) + Y , if k ≥ n ,

or

F = Y , if k < n ,

where X is an (n− k)-form on MD−n and Y is a k-form on MD−n.

2.3 AdS/CFT Correspondence

The major motivation for the work in this dissertation is the AdS/CFT correspondence, which

relates string theory on an n + 1-dimensional background to a conformal field theory on the

n-dimensional boundary of that space. The best understood example of this is the AdS5/CFT4

correspondence, which starts with the observation that a IIB supergravity solution consisting of

N D3-branes becomes AdS5 × S5 in the near-horizon limit.
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2.3.1 D3 Branes

Consider a IIB supergravity solution consisting of N coincident D3-branes. The Dirac-Born-

Infeld action for these branes is found to be a generalization of the Yang-Mills action, with

coupling constant

g2
YM = 2πgs . (2.3.1)

The metric of this configuration, which preserves the Poincaré symmetry of the four dimen-

sions parallel to the branes and the SO(6) rotational symmetry of the transverse dimensions,

is

ds2 = H(r)−
1
2 ηµνdx

µdxν +H(r)
1
2 δijdy

idyj , (2.3.2)

where xµ are the parallel dimensions, yi are the transverse dimensions, and r is the radial

coordinate defined by r2 = yiy
i. H(r) is a harmonic function on the transverse coordinates,

H(r) = 1 + L4

r4 .

The constant L is determined by the self-dual five-form, given by

F = −H(r)−2H ′(r)
(
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr + ∗10(dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr)

)
.

By integrating this over a 5-sphere centered on the D3-brane we can determine the net D3-brane

charge, Q = 1
4πgsα′2

L4, and setting it equal to N , we find that

L4 = 4πgsNα
′2 . (2.3.3)

The D3-brane metric has two relevant limits, r >> L and r << L. When r >> L, H(r) ∼ 1,

and we recover 10-dimensional Minkowski space, R1,9
. On the other hand, when r << L,

H(r) ∼ L4

r4 . If we rewrite the transverse metric in spherical coordinates, δijdy
idyj = dr2+r2dΩ5

2,

then the D3-brane metric becomes

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2dΩ5

2 .

Introducing z = L2

r , this finally becomes

ds2 =
L2

z2

(
ηµνdx

µdxν + dz2
)

+ L2dΩ2
5 , (2.3.4)

which we recognize as AdS5 × S5, with L as both the AdS radius and the S5 radius.

2.3.2 Supergravity Limit

The specific relationship between the string theory on the AdS space and the dual SU(N) Yang-

Mills theory is summarized by the relations (2.3.1) and (2.3.3), which can be rewritten

g2
YM = 2πgs , 2g2

YMN =
L4

α′2
. (2.3.5)

The corresponding supergravity background is the limit of this system in which the string

coupling, gs, is small, and the string length, `s =
√
α′ is small compared to the AdS radius, L,
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i.e. the limit in which gs → 0 and α′

L2 → 0. On the Yang-Mills side, this is equivalent to the

limit in which g2
YM → 0, but g2

YMN ≡ λ → ∞. The great value, then, in studying supergravity

AdS backgrounds in particular, is that they are dual to Yang-Mills theories with large ’t Hooft

coupling, which are otherwise typically difficult to analyze.

2.3.3 Dual Fields

We can use Kaluza-Klein dimensional reduction to reduce IIB supergravity to the AdS5 di-

rections. For each supergravity field ϕ, suppressing the ten-dimensional spacetime indices,

we can write ϕ in terms of spherical harmonics on S5, Y`,I(Ω5), which satisfy ∇2
S5Y`,I` =

−L−2`(`+ 4)Y`,I` , as

ϕ =

∞∑
`=0

∑
I`

ϕ`,I`(x
µ, z)Y`,I`(Ω

5) .

In general, the non-zero components of ϕ`,I` with S5 are restricted by the supergravity field

equations, but they will still take this general form.

To understand the CFT duals of these components, we will consider the representations of

SO(6) formed by the spherical harmonics. If S5 is embedded in R6
, then the spherical harmonics

can be written in terms of the R6
coordinates as

Y`,I = C`,I`i1,...,i`
xi1 · · ·xi` ,

where C`,I`i1,...,i`
is a traceless symmetric tensor. These form the same representation of SO(6) as

the 1
2 -BPS CFT operators O∆ of scaling dimension ∆ = `.

2.3.4 General Dimension

The arguments above cannot be replicated for a general AdSn supergravity background, but it is

still possible to motivate an AdSn/CFTn − 1 correspondence. In specific cases, particularly the

AdS4 × S7 and AdS7 × S4 M-theory backgrounds, the arguments are similar. More generally,

if we notice that the isometry group of AdSn is the same as the conformal group of CFTn−1,

SO(2,n − 1), we can relate AdS fields to CFT operators by their transformations under these

symmetries.
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Chapter 3

IIB Backgrounds

IIB AdS backgrounds have been of particular interest since the original AdS/CFT duality relates

a IIB AdS5 × S5 background to a super-Yang Mills theory [6]. Many backgrounds of this type

have been found in the years since [23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Even so, to date there

has been no general analysis of the numbers of supersymmetries these backgrounds preserve.

In this chapter, a local analysis is developed which demonstrates supersymmetry enhancement

for all IIB AdS backgrounds. AdSn backgrounds are found to always have the same numbers

of supersymmetries as IIA AdSn backgrounds, N = 2b
n
2 ck supersymmetries for 2 ≤ n ≤ 4 and

N = 2b
n
2 c+1k supersymmetries for 5 ≤ n ≤ 7, where k ∈ Z.

Additionally, a Lichnerowicz-type theorem is proven for each AdS background discussed. The

original Lichnerowicz theorem tells us that, for any space with zero scalar curvature, all of the

zeroes of the Dirac operator are parallel spinors. Similarly, with these theorems we find that all

of the zeroes of a Dirac-like operator constructed from the Killing spinor equations are actually

Killing spinors. In this case, the scalar component of the Einstein equation plays the role of the

flatness condition.

3.1 AdS and near horizon geometries

3.1.1 Warped AdS and flat backgrounds

The warped AdS and flat backgrounds can be written universally as near horizon geometries

[19]. Let F , G and P be the 5-, 3- and 1-form field strengths of IIB supergravity. All AdS

backgrounds can be described in terms of the fields

ds2 = 2e+e− + ds2(S) , F = re+ ∧X + e+ ∧ e− ∧ Y + ?8Y ,

G = re+ ∧ L+ e+ ∧ e− ∧ Φ +H , P = ξ , (3.1.1)

where we have introduced the frame

e+ = du, e− = dr + rh− 1

2
r2∆du, ei = eiIdy

I , (3.1.2)
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and

ds2(S) = δije
iej (3.1.3)

is the metric on the horizon spatial section S which is co-dimension 2 submanifold given by

the equations r = u = 0. In addition, the self-duality of F requires that X = − ?8 X. The

dependence on the coordinates u and r is explicitly given. ∆, h, Y are 0-, 1- and 3-forms on S,

respectively, Φ, L and H are λ-twisted 1-, 2- and 3-forms on S, respectively, and ξ is a λ2-twisted

1-form on S, where λ arises from the pull back of the canonical bundle on the scalar manifold1

SU(1, 1)/U(1) on S. Furthermore, the Bianchi identities imply that

X = dhY −
i

8
(Φ ∧ H̄ − Φ̄ ∧H) , L = dhΦ− iΛ ∧ Φ + ξ ∧ Φ̄ . (3.1.4)

and so X and L are not independent fields.

Moreover, viewing the backgrounds AdSn×wM10−n as a near horizon geometries, the spatial

horizon sections S are S = Hn−2×wM10−n, ie warped products of hyperbolic (n-2)-dimensional

space with M10−n. This can be easily seen after the fields are stated explicitly for each case

below.

Although all AdS backgrounds are described by (3.1.1), the field dependence of individual

AdS cases differs. To address this, we shall separately state the fields in each case as follows.

AdS2 ×w M8

In this case M8 = S and the fields become

ds2 = 2du(dr + rh− 1

2
r2∆du) + ds2(M9) , F = e+ ∧ e− ∧ Y + ?8Y ,

G = e+ ∧ e− ∧ Φ +H , P = ξ , (3.1.5)

where

h = −2A−1dA = ∆−1d∆ , X = L = 0 , (3.1.6)

Observe that dh = 0.

AdS3 ×w M7

The fields are

ds2 = 2du(dr + rh) +A2dz2 + ds2(M7) , F = Ae+ ∧ e− ∧ dz ∧ Y − ?7Y

G = Ae+ ∧ e− ∧ dz ∧ Φ +H , P = ξ , (3.1.7)

where

h = −2

`
dz − 2A−1dA, ∆ = 0 , X = L = 0 , (3.1.8)

and ` is the radius of AdS.
1The scalar manifold can also be taken as the fundamental domain of the modular group but we shall not

dwell on this.
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AdS4 ×w M6

The field are

ds2 = 2du(dr + rh) +A2(dz2 + e2z/`dx2) + ds2(M7) , F = A2ez/` e+ ∧ e− ∧ dz ∧ dx ∧ Y + ?6Y

G = H , P = ξ , (3.1.9)

where

h = −2

`
dz − 2A−1dA, ∆ = 0 , X = L = 0 . (3.1.10)

AdS5 ×w M5

The fields are

ds2 = 2du(dr + rh) +A2(dz2 + e2z/`(dx2 + dy2) + ds2(M5) , G = H , P = ξ ,

F = Y
[
A3e2z/`e+ ∧ e− ∧ dz ∧ dx ∧ dy − dvol

(
M5
)]
, (3.1.11)

where

h = −2

`
dz − 2A−1dA, ∆ = 0 , X = L = 0 . (3.1.12)

AdS6 ×w M4

The fields are

ds2 = 2du(dr + rh) +A2(dz2 + e2z/`(

3∑
a=1

(dxa)2) + ds2(M4) , F = 0,

G = H , P = ξ , (3.1.13)

where

h = −2

`
dz − 2A−1dA, ∆ = 0 , X = L = 0 . (3.1.14)

It should be noted that the warped backgrounds Rn−1,1×wM10−n are included in our analysis.

They arise in the limit that the AdS radius ` goes to infinity. This limit is smooth for all our field

configurations presented above. However, some statements that apply for AdS do not extend to

the flat backgrounds. Because of this some care must be taken when adapting the results we

obtain for AdS backgrounds to the limit of infinite radius.

3.1.2 Bianchi identities and field equations

It is clear from the expressions of the fields for the AdS backgrounds in the previous section that

L = X = 0 and dh = 0. As a result, we have

dhY −
i

8
(Φ ∧ H̄ − Φ̄ ∧H) = 0, dhΦ− iΛ ∧ Φ + ξ ∧ Φ̄ = 0 . (3.1.15)
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Furthermore, the remaining Bianchi identities for the backgrounds (3.1.1) are

d ?8 Y =
i

8
H ∧ H̄ , dH = iΛ ∧H − ξ ∧ H̄ ,

dξ = 2iΛ ∧ ξ , dΛ = −iξ ∧ ξ̄ , (3.1.16)

where Λ is a U(1) connection of λ, see [11] for more details.

The independent field equations of the AdS backgrounds (3.1.1) are

∇̃iΦi − iΛiΦi − ξiΦ̄i +
2i

3
Y`1`2`3H

`1`2`3 = 0 , (3.1.17)

∇̃`H`ij − iΛ`H`ij − h`H`ij − ξ`H̄`ij +
2i

3
(?8Yij`1`2`3H

`1`2`3 − 6Yij`Φ
`) = 0 , (3.1.18)

∇̃iξi − 2iΛiξi − hiξi +
1

24
(−6Φ2 +H2) = 0 , (3.1.19)

1

2
∇̃ihi −∆− 1

2
h2 +

2

3
Y 2 +

3

8
ΦiΦ̄i +

1

48
‖ H ‖2= 0 , (3.1.20)

and

R̃ij + ∇̃(ihj) −
1

2
hihj + 4Y 2

ij +
1

2
Φ(iΦ̄j) − 2ξ(iξ̄j) −

1

4
H`1`2(iH̄j)

`1`2

+δij

(
− 1

8
Φ`Φ̄

` − 2

3
Y 2 +

1

48
‖ H ‖2

)
= 0 , (3.1.21)

where R̃ is the Ricci tensor of S. There is an additional field equation which is not independent

because they follow from those above. This is

1

2
∇̃2∆− 3

2
hi∇̃i∆−

1

2
∆∇̃ihi + ∆h2 = 0 ,

(3.1.22)

which we state because it is useful in the investigation of the KSEs.

3.1.3 Killing spinor equations

The gravitino and dilatino KSEs of IIB supergravity [33, 34] are(
∇M −

i

2
QM +

i

48
/FM

)
ε− 1

96

(
Γ/GM − 9/GM

)
C ∗ ε = 0 , (3.1.23)

/PC ∗ ε+
1

24
/Gε = 0 , (3.1.24)
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respectively, where Q is a U(1) connection of λ.

These KSEs can be solved for the fields (3.1.1) along the directions u, r. For this first de-

compose ε = ε+ + ε−, where Γ±ε± = 0. Then a direct substitution into the (3.1.23) and (3.1.24)

reveals that the Killing spinor can be expressed as

ε+ = φ+, ε− = φ− + rΓ−Θ+φ+ ; φ+ = η+ + uΓ+Θ−η− , φ− = η− , (3.1.25)

where η± do not depend on both u and r coordinates and

Θ± =

(
1

4
/h± i

12
/Y

)
+

(
1

96
/H ± 3

16
/Φ

)
C ∗ . (3.1.26)

After some extensive computation using the field equations described in [11], one can show that

the independent KSEs for the backgrounds (3.1.1) are

∇(±)
i η± = 0 , A(±)η± = 0 , (3.1.27)

where

∇(±)
i ≡ ∇̃i +

(
− i

2
Λi ∓

1

4
hi ∓

i

4
/Y i ±

i

12
Γ /Y i

)
+

(
± 1

16
Γ/Φi ∓

3

16
Φi −

1

96
Γ /Hi +

3

32
/Hi

)
C ∗ , (3.1.28)

and

A(±) ≡
(
∓ 1

4
/Φ +

1

24
/H

)
+ /ξC ∗ . (3.1.29)

It turns out that (3.1.27) are the restriction of the (3.1.23) and (3.1.24) on the horizon section

S for ε given in (3.1.25).

Furthermore, one can show that if η− is a solution to the KSEs, then

η+ = Γ+Θ−η− (3.1.30)

also solves the KSEs. This is the first indication that IIB horizons exhibit supersymmetry

enhancement. Indeed if S is compact and the fluxes do not vanish, one can show [11] that

KerΘ− = {0} and so η+ given in the above equation yields an additional supersymmetry.

Although the following integrability conditions(1

2
∆ + 2Θ−Θ+

)
η+ = 0 ,

(1

2
∆ + 2Θ+Θ−

)
η− = 0 , (3.1.31)

are implied from the above KSEs, it is convenient for the analysis that follows to include them.

As we shall see, they are instrumental in the solution of the KSEs along the AdSn directions for

n > 2.
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3.1.4 Horizon Dirac equations

Before we complete this section, we shall summarize the results of [11] on the relation between

Killing spinors and zero modes of Dirac-like operators for IIB horizons. We have seen that the

gravitino KSE gives rise to two parallel transport equations on S associated with the covariant

derivatives ∇(±) (3.2.12). If S± are the complex chiral spin bundles over S, then ∇± : Γ(S± ⊗
λ

1
2 ) → Γ(Λ1(S) ⊗ S± ⊗ λ 1

2 ), where Γ(S± ⊗ λ 1
2 ) are the smooth sections of S± ⊗ λ 1

2 . In turn,

one can define the associated horizon Dirac operators

D(±) ≡ Γi∇(±)
i = Γi∇̃i + Ψ± , (3.1.32)

where

Ψ± ≡ ΓiΨ
(±)
i = − i

2
/Λ∓ 1

4
/h± i

6
/Y +

(
± 1

4
/Φ +

1

24
/H
)
C ∗

(3.1.33)

Clearly the ∇± parallel spinors are zero modes of D(±). For S compact, one can also prove

the converse, ie that all zero modes of the horizon Dirac equations D(±) are Killing spinors.

Therefore, one can establish

∇(±)η± = 0 , A(±)η± = 0⇐⇒ D(±)η± = 0 . (3.1.34)

The proof of the above statement for η+ spinors utilizes the Hopf maximum principle on ‖ η+ ‖2

while for η− employs a partial integration formula. In the former case, one also finds that

‖ η+ ‖= const. Similar theorems have been proven for other theories in [22, 12].

3.2 AdS2: Local analysis

3.2.1 Fields, Bianchi identities and field equations

For AdS2 backgrounds M8 = S and the fields on S are

ds2(S) = ds2(M9) , F̃ 3 = Y , F̃ 5 = ?8Y , G̃1 = Φ , G̃3 = H , P̃ = ξ (3.2.1)

Next, we set

∆ = `−2A−2 , (3.2.2)

which satisfies (3.1.22), where ` is the radius of AdS2. Using these, the Bianchi identities (3.1.15)

and (3.1.16) can now be written as

d(A−2Y )− iA−2

8
(Φ ∧ H̄ − Φ̄ ∧H) = 0, d(A−2Φ)− iA−2Λ ∧ Φ +A−2ξ ∧ Φ̄ = 0 . (3.2.3)

d ?8 Y =
i

8
H ∧ H̄ , dH = iΛ ∧H − ξ ∧ H̄ ,
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dξ = 2iΛ ∧ ξ , dΛ = −iξ ∧ ξ̄ , (3.2.4)

respectively, where Λ is a U(1) connection of λ restricted on S.

Similarly, the field equations read as

∇̃iΦi − iΛiΦi − ξiΦ̄i +
2i

3
Y`1`2`3H

`1`2`3 = 0 , (3.2.5)

∇̃`H`ij − iΛ`H`ij + 2A−1∂`AH`ij − ξ`H̄`ij +
2i

3
(?8Yij`1`2`3H

`1`2`3 − 6Yij`Φ
`) = 0 , (3.2.6)

∇̃iξi − 2iΛiξi + 2A−1∂iAξi +
1

24
(−6Φ2 +H2) = 0 , (3.2.7)

−A−1∇̃2A−A−2∂iA∂iA− `−2A−2 +
2

3
Y 2 +

3

8
ΦiΦ̄i +

1

48
‖ H ‖2= 0 , (3.2.8)

and

R
(8)
ij − 2A−1∇̃i∂jA+ 4Y 2

ij +
1

2
Φ(iΦ̄j) − 2ξ(iξ̄j) −

1

4
H`1`2(iH̄j)

`1`2

+δij

(
− 1

8
Φ`Φ̄

` − 2

3
Y 2 +

1

48
‖ H ‖2

)
= 0 , (3.2.9)

where R(8) is the Ricci tensor of S = M8.

The warped factor A is no-where vanishing

To see this, assume that A is not identically zero. Thus there is a point in M8 such that A 6= 0.

Multiplying (3.2.8) with A2 evaluated as a point for which A 6= 0, one finds

−A∇̃2A− ∂iA∂iA− `−2 +
2

3
A2Y 2 +

3

8
A2ΦiΦ̄i +

1

48
A2 ‖ H ‖2= 0 , (3.2.10)

Next taking a sequence that converges at a point where A vanishes, one finds an inconsistency

as the term involving the AdS radius ` cannot vanish. Therefore there are no smooth solutions

for which A vanishes at some point on the spacetime. A more detailed argument for this has

been presented in [13].

This property depends crucially on ` taking a finite value. In particular, it is not valid in

the limit that ` goes to infinity, and so on cannot conclude that A is no-where vanishing for flat

backgrounds.
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3.2.2 Killing spinor equations

The KSEs on S =M8 are

∇(±)
i η± = 0 , A(±)η± = 0 , (3.2.11)

where

∇(±)
i ≡ ∇̃i +

(
− i

2
Λi ±

1

2
A−1∂iA∓

i

4
/Y i ±

i

12
Γ /Y i

)
+

(
± 1

16
Γ/Φi ∓

3

16
Φi −

1

96
Γ /Hi +

3

32
/Hi

)
C ∗ , (3.2.12)

and

A(±) ≡
(
∓ 1

4
/Φ +

1

24
/H

)
+ /ξC ∗ . (3.2.13)

Furthermore, if η− is a Killing spinor, then

η+ = Γ+Θ−η− (3.2.14)

is also a Killing spinor, where now

Θ± =

(
− 1

4
/∂ logA2 ± i

12
/Y

)
+

(
1

96
/H ± 3

16
/Φ

)
C ∗ . (3.2.15)

It is not apparent that η+ 6= 0 as η− may be in the Kernel of Θ−. To establish under which

conditions η+ 6= 0, one has to impose additional restrictions on M8. However if η+ 6= 0, then

the solutions exhibit supersymmetry enhancement.

3.2.3 Counting supersymmetries

The analysis so far is not sufficient to establish either the formulae regarding the number of

supersymmetries N preserved by the AdS2 backgrounds. For this, some additional restrictions

on M8 are required. We shall explore these in the next section.

3.3 AdS2: Global analysis

The main results of this section are to demonstrate that under certain assumptions, there is a

1-1 correspondence between Killing spinors and zero modes of Dirac operators on M8 coupled to

fluxes, and use this to count the supersymmetries N of AdS2 backgrounds. Given the gravitino

KSE in (3.2.11) and in particular the (super)covariant derivatives ∇(±), one can construct the

Dirac-like operators

D(±) ≡ Γi∇(±)
i = Γi∇̃i + Ψ± , (3.3.1)
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on M8, where

Ψ± ≡ ΓiΨ
(±)
i = − i

2
/Λ± 1

4
/∂ logA2 ± i

6
/Y +

(
± 1

4
/Φ +

1

24
/H
)
C ∗

(3.3.2)

Clearly all parallel spinors η±, ie ∇(±)η± = 0, are zero modes of D(±), ie D(±)η± = 0. The task

is to prove the converse.

3.3.1 A Lichnerowicz theorem for D(+)

The proof of this converse is a Lichnerowicz type of theorem and the proof is similar as that given

in [11] for horizon Dirac operators. Because of this, we shall not give details of the proof. The

novelty of this theorem is that the converse implies that the zero modes of D(+) solve both the

gravitino and dilatino KSEs. In particular, assuming that D(+)η+ = 0 and after some algebra

which involves the use of field equations, one can establish that

∇̃i∇̃i ‖ η+ ‖2 +∂i logA2 ∇̃i ‖ η+ ‖2= 2 ‖ ∇(+)η+ ‖2 + ‖ A(+)η+ ‖2 . (3.3.3)

It is then a consequence of the maximum principle that the only solution of the above equation

is ‖ η+ ‖= const and that η+ is a Killing spinor. In particular, this is the case provided M8 is

compact.

3.3.2 A Lichnerowicz theorem for D(−)

The proof the zero modes of the D(−) are Killing spinors is similar to that for the D(+) operator.

In particular, if D(−)η− = 0, then one can show that

∇̃i∇̃i ‖ η− ‖2 +hi∇̃i ‖ η− ‖2 +∇̃ihi ‖ η− ‖2= 2 ‖ ∇(−)η− ‖2 + ‖ A(−)η− ‖2 . (3.3.4)

Using h = d log ∆, this can be rewritten as

∇̃i∇̃i
(
∆ ‖ η− ‖2

)
− hi∇̃i

(
∆ ‖ η− ‖2

)
= 2∆ ‖ ∇(−)η− ‖2 +∆ ‖ A(−)η− ‖2 . (3.3.5)

The maximum principle again implies that the only solutions to this equation are those for which

∆ ‖ η− ‖= const and η− are Killing spinors. Again this is always the case if M8 is compact.

It should be noted that unlike the case of general IIB horizons where this theorem has been

proven using a partial integration formula [11], here we have presented a different proof based

on the maximum principle. The latter has an advantage as it gives some additional information

regarding the length of the Killing spinor η−. Combining the results of this section with those

of the previous one, we have established that if M8 is compact, then

∇(±)η± = 0 , A(±)η± = 0⇐⇒ D(±)η± = 0 , (3.3.6)

and that

‖ η+ ‖= const , ∆ ‖ η− ‖= const . (3.3.7)
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3.3.3 Counting supersymmetries again

The number of supersymmetries of AdS2 backgrounds is

N = N− +N+ (3.3.8)

where

N± = dim Ker(∇(±),A(±)) . (3.3.9)

Using the correspondence between the Killing spinors and zero modes of the D(±) operators in

(3.3.6), we conclude that

N = dim KerD(−) + dim KerD(+) . (3.3.10)

As for near horizon geometries [11], one can prove that dim KerD(+)† = dim KerD(−). This is

done by a direct observation upon comparing the adjoint of D(+) with D(−). As a result for M8

compact without boundary, we find that

N = Index(D(+)) + 2dim KerD(+) = 2(N− + Index(D) (3.3.11)

where D is the Dirac operator twisted with λ
1
2 . The index of D(+) is twice the index of D

because they have the same principal symbol and D(+) acts on two copies of the Majorana-Weyl

representation of M8. This establishes that N = 2k for AdS2 backgrounds.

Furthermore, if M8 is compact without boundary with a η− Killing spinor, one can explicitly

construct a η+ Killing spinor by setting η+ = Γ+Θ−η−. This is because if M8 is compact without

boundary and the fluxes do not vanish, then KerΘ− = {0}. The proof of this statement is similar

to that demonstrated in [11] for near horizon geometries and so it will not be repeated here.

We have shown that the number of supersymmetries preserved by AdS2 backgrounds is even.

Apart from this, there are additional restrictions on N . In particular, it has been shown in

[35, 36] but if a IIB background preserves more than 28 supersymmetries, N > 28, then it is

maximally supersymmetric. Moreover, the maximal supersymmetric and the solutions preserving

28 supersymmetries have been classified in [37] and [38], respectively, and they do not include

AdS2 backgrounds. From these, one concludes that N ≤ 26. One can also adapt the proof of [39]

to this case to demonstrate that all AdS2 backgrounds preserving more than 16 supersymmetries

are homogeneous. This in particular implies that the IIB scalars are constant for all these

backgrounds.

3.4 AdS3: Local analysis

3.4.1 Fields, Bianchi identities and field equations

The fields restricted on the spatial horizon section S = R×w M7 are

ds2(S) = A2dz2 + ds2(M7) , F̃ 3 = Adz ∧ Y , F̃ 5 = − ?7 Y
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G̃1 = AΦdz , G̃3 = H , P̃ 1 = ξ . (3.4.1)

Moreover, we have that h = − 2
`dz − 2A−1dA and ∆ = X = L = 0.

Substituting these into the Bianchi identities (3.1.15) and (3.1.16), we find that

dY = −3d logA ∧ Y +
i

8

(
ΦH − ΦH

)
(3.4.2)

dΦ = 3Φd logA+ iΦQ− Φξ (3.4.3)

d ∗7 Y = − i
8
H ∧H (3.4.4)

dH = iQ ∧H − ξ ∧H (3.4.5)

dξ = 2iQ ∧ ξ (3.4.6)

dQ = −iξ ∧ ξ . (3.4.7)

In addition the field equations (3.1.17)-(3.1.21) give

∇iHijk = −3A−1∂iAHijk + iQiGijk + P iHijk + 4iΦYjk +
i

3
εjki1i2`1`2`3Y

i1i2H`1`2`3 (3.4.8)

∇iξi = −3A−1∂iAξi + 2iQiξi −
1

24
H2 − 1

4
Φ2 (3.4.9)

A−1∇2A = 2Y 2 +
3

8
‖ Φ ‖2 +

1

48
‖ H ‖2 −2`−2A−2 − 2(d logA)2 (3.4.10)

R
(7)
ij = 2A−1∇i∇jA+ 2Y 2δij − 8Y 2

ij (3.4.11)

+
1

4
H(i

k`Hj)k` +
1

8
‖ Φ ‖2 δij −

1

48
‖ H ‖2 δij + 2ξ(iξ̄j),

where R(7) is the Ricci tensor of M7. Contracting this, we find that

R(7) =
3

A
∇2A+ 6Y 2 +

5

48
‖ H ‖2 +

7

8
‖ Φ ‖2 +2|ξ|2 (3.4.12)

= − 6

`2
A−2 − 6(A−1dA)2 + 12Y 2 + 2 ‖ Φ ‖2 +

1

6
‖ H ‖2 +2 ‖ ξ ‖2 . (3.4.13)

3.4.2 The warped factor is no-where vanishing

One of the consequence of the field equations is that the warped factor A is no-where vanishing.

One can show that this follows from the field equation (3.4.10) using an argument similar to that

presented for the AdS2 backgrounds.

3.4.3 Solution of Killing spinor equations

To integrate the KSEs along the AdS3 directions, it suffices to integrate the horizon KSEs (3.1.27)

along the z coordinate. For this consider first the gravitino KSE. Evaluating the expression along

the z-coordinate, we find

∂zη± = Ξ±η± (3.4.14)
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where

Ξ± = ∓ 1

2`
− 1

2
Γz /∂A±

i

4
A/Y +

(
1

96
AΓz /H ±

3

16
AΦ

)
C ∗ . (3.4.15)

Observe that

Ξ+ = AΓzΘ+ , Ξ− =
1

`
+AΓzΘ− . (3.4.16)

Next differentiating (3.4.14) and comparing the resulting expression with the integrability con-

ditions (3.1.31), one finds that

∂2
zη± ±

1

`
∂zη± = 0 , (3.4.17)

which can be solved to give

η± = σ± + e∓
z
` τ± , (3.4.18)

where

Ξ±σ± = 0 , Ξ±τ± = ∓1

`
τ± , (3.4.19)

with both σ± and τ± z-independent spinors. The latter conditions are additional independent

algebraic KSEs.

Although, we have solved along the z direction, there are potentially additional conditions

that can arise from mixed integrability conditions along the z-direction and the remaining di-

rections in S. However, it can be shown after some computation that this is not the case. Fur-

thermore, the dilatino KSEs in (3.1.27) restrict on the σ± and τ± spinors in a straightforward

manner. This completes the integration of the KSEs along all AdS3 directions. The remaining

independent KSEs, which are localized on M7, are

∇(±)
i σ± = 0 , ∇(±)

i τ± = 0 ,

A(±)σ± = 0 , A(±)τ± = 0 ,

B(±)σ± = 0 , C(±)τ± = 0 , (3.4.20)

where

∇(±)
i = ∇i + Ψ

(±)
i , A(±) = ∓1

4
ΦΓz +

1

24
/H + /ξC ∗ ,

B(±) = Ξ± , C(±) = Ξ± ±
1

`
(3.4.21)

and

Ψ
(±)
i = ±1

2
∂i logA− i

2
Qi ±

i

4

(
/ΓY
)
i
Γz ∓

i

2
/Y iΓ

z (3.4.22)

+

(
− 1

96

(
/ΓH
)
i
+

3

32
/Hi ∓

1

16
ΦΓzi

)
C ∗ .

Therefore, there are four sets of three independent KSEs on M7. Having found a solution to the

above equations, one can substitute in (3.4.18) and then in (3.1.25) to find the Killing spinors

for the AdS3 ×w M7 background.
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3.4.4 Counting supersymmetries

It is straightforward to observe that if one has an either σ− or a τ− solution, then

σ+ = A−1ΓzΓ+σ− , τ+ = A−1ΓzΓ+τ− , (3.4.23)

are also solutions of the independent KSEs (3.4.20). Conversely, if either σ+ or τ+ are solutions,

then

σ− = AΓzΓ−σ+ , τ− = AΓzΓ−τ+ , (3.4.24)

are also solutions to the KSEs (3.4.20). Therefore, we have that the number of Killing spinors

N of the AdS3 backgrounds are

N = 2
(
dim Ker(∇(−),A(−),B(−)) + dim Ker(∇(−),A(−), C(−))

)
= 2

(
dim Ker(∇(+),A(+),B(+)) + dim Ker(∇(+),A(+), C(+))

)
(3.4.25)

Thus the AdS3 backgrounds preserve even number of supersymmetries. This proves the formula

for N for AdS3 backgrounds.

The number of supersymmetries N of AdS3 backgrounds are further restricted. It follows

from the results of [35, 36, 38] that there are no supersymmetric AdS3 backgrounds preserving

more than 28 supersymmetries. As a result, N ≤ 26.

3.5 AdS3: Global analysis

The main task here is to show the formula for counting the number of supersymmetries of AdS3

backgrounds. For this, we have to show that there is a 1-1 correspondence between Killing

spinors and zero modes of a Dirac-like operator on M7.

3.5.1 A Lichnerowicz theorem for τ+ and σ+

To prove that the zero modes of a Dirac-like operator on M7 are Killing spinors, one has to

determine an appropriate Dirac-like operator on M7. The naive Dirac-like operator which one

can construct from contracting ∇(±) with a gamma matrix is not suitable. Instead, let us modify

the parallel transport operators of the gravitino KSE as

∇̌(+)
i = ∇(+)

i + qΓziA
−1B(+) ,

∇̂(+)
i = ∇(+)

i + qΓziA
−1C(+) , (3.5.1)

on σ+ and τ+, respectively, where q is a number which later will be set to 1/7. It is clear that

if either σ+ or τ+ are Killing spinors, they are also parallel with respect to the above covariant

derivatives.
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Since the analysis that follows is similar for σ+ and τ+, it is convenient to presented in a

unified way. For this write both (3.5.1) as

D(+)
i = ∇(+)

i + qΓziA
−1B(+) (3.5.2)

where

B(+) = − c

2`
− 1

2
Γz /∂A+

i

4
A/Y +

(
1

96
AΓz /H +

3

16
AΦ

)
C∗ (3.5.3)

and c = 1 when acting on σ+ and c = −1 when acting on τ+, ie either B(+) = B(+) or B(+) = C(+),

respectively.

Next define the Dirac-like operators

D (+) ≡ ΓiD(+)
i = Γi∇i + Σ(+) . (3.5.4)

where

Σ(+) =
7qc

2`
A−1Γz +

1 + 7q

4
/∂ logA2 − i

2
/Q+

3i− 7iq

4
/Y Γz

+
(5− 7q

96
/H +

7− 21q

16
Φ
)
C ∗ . (3.5.5)

It turns that D (+) is suitable to formulate a maximum principle on the length square of σ+ and

τ+. In particular, suppose that χ+ is a zero mode for D (+), ie D (+)χ+ = 0, where χ+ = σ+

for c = 1 while χ+ = τ+ for c = −1. Then after some Clifford algebra, which is presented in

appendix B.12, which requires the use of field equations and for q = 1/7, one can establish the

identity

∇2‖χ+‖2 + 3A−1∂iA∂i‖χ+‖2 = 2
∥∥∥D(+)χ+

∥∥∥2

+
16

7
A−2

∥∥∥B(+)χ+

∥∥∥2

+
∥∥∥A(+)χ+

∥∥∥2

. (3.5.6)

Assuming that M7 satisfies the requirements of the Hopf maximum principle, eg for M7 compact,

the above equation implies that χ+ is a Killing spinor and that the length ‖ χ+ ‖= const.

To summarize, we have shown that

∇(+)
i σ+ = 0 , B(+)σ+ = 0 , A(+)σ+ = 0⇐⇒ D (+)σ+ = 0 ; c = 1

∇(+)
i τ+ = 0 , C(+)τ+ = 0 , A(+)τ+ = 0⇐⇒ D (+)τ+ = 0 ; c = −1 , (3.5.7)

and that

‖ σ+ ‖= const , ‖ τ+ ‖= const . (3.5.8)

3.5.2 A Lichnerowicz theorem for τ− and σ−

A similar theorem to that presented in the previous section can be presented for τ− and σ−

spinors. One can define the operators D(−) and D (−) and repeat the analysis. Alternatively,
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one can observe that is χ+ is a zero mode of the D (+) operator, then χ− = AΓz−χ+ is a zero

mode of the D (−) operator, where χ− is either σ− or τ−. Since the same relation holds between

χ+ and χ− Killing spinors, one can establish a maximum principle for χ− spinor. The formula

is that given in (3.5.6) after setting χ+ = A−1Γz+χ−. Therefore provided the requirements of

Hopf maximum principle are satisfied, one establishes

∇(−)
i σ− = 0 , B(−)σ− = 0 , A(−)σ− = 0⇐⇒ D (−)σ− = 0 ; c = 1

∇(−)
i τ− = 0 , C(−)τ− = 0 , A(−)τ− = 0⇐⇒ D (−)τ− = 0 ; c = −1 , (3.5.9)

and that

‖ σ− ‖2= A2const , ‖ τ− ‖2= A2const , (3.5.10)

where

D (−) = Γi∇i + Σ(−) , (3.5.11)

and

Σ(−) = −7qc

2`
A−1Γz +

−1 + 7q

4
/∂ logA2 − i

2
/Q− 3i− 7iq

4
/Y Γz

+
(5− 7q

96
/H − 7− 21q

16
Φ
)
C ∗ . (3.5.12)

3.5.3 Counting supersymmetries again

The proof of the relation between Killing spinors and the zero modes of the Dirac-like operators

D (±) allows us to re-express the number of supersymmetries N in (3.4.25) preserved by AdS3

backgrounds as

N = 2
(
dim Ker D

(−)
c=1 + dim Ker D

(−)
c=−1

)
= 2

(
dim Ker D

(+)
c=1 + dim Ker D

(+)
c=−1

)
, (3.5.13)

which establishes that N = 2k for AdS3.

3.6 AdS4: Local analysis

3.6.1 Fields, Bianchi identities and field equations

The field on S are

ds2(S = A2(dz2 + e2z/`dx2) + ds2(M6) , F̃ 3 = A2ez/`dz ∧ dx ∧ Y , F̃ 5 = ?6Y

G̃3 = H , P = ξ , (3.6.1)

with h = − 2
`dz − 2A−1dA and ∆ = X = L = 0. Substituting these into the Bianchi and field

equations on S in section 3.1.2 reduce on M6 as follows. The Bianchi identities give
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d(A4Y ) = 0 , ∇̃iYi = − i

288
εi1i2i3j1j2j3Hi1i2i3Hj1j2j3 (3.6.2)

dH = iQ ∧H − ξ ∧H (3.6.3)

dξ = 2iQ ∧ ξ (3.6.4)

dQ = −iξ ∧ ξ . (3.6.5)

Therefore the Binachi identities imply that A4Y is a closed 1-form and that H ∧H represents a

trivial cohomology class in M6.

The Einstein equation on S gives

A−1∇2A = 4Y 2 +
1

48
‖ H ‖2 − 3

A2
− 3(A−1dA)2, (3.6.6)

and

R
(6)
ij − 4A−1∇i∇jA− 4Y 2δij + 8YiYj (3.6.7)

− 1

4
H(i

k`Hj)k` +
1

48
‖ H ‖2 δij − 2ξ(iξj) = 0 ,

where R(6) is the Ricci tensor of M6. The remaining field equations are

∇iHijk = −3∂i logAHijk + iQiHijk + ξiHijk ,

∇iξi = −3∂i logAξi + 2iQiξi −
1

24
H2. (3.6.8)

This concludes reduction of the Bianchi identities and field equations on M6.

The warped factor is no-where vanishing

One consequence of the field equations and in particular of (3.6.6) is that the warp factor A is

no-where vanishing. The investigation for this is similar to that we have presented for AdS3 and

so we shall not repeat the argument here.

3.6.2 Solution of KSEs

The integration of the KSEs along the z-coordinate proceeds as in the AdS3. In particular

repeating the argument as in the AdS3 case, one finds that

η± = φ± + e∓z/`χ± (3.6.9)

where

Ξ±φ± = 0 , Ξ±χ± = ∓1

`
χ± , A(±)φ± = 0 , A(±)χ± = 0 (3.6.10)

and

Ξ± = ∓ 1

2`
− 1

2
Γz /∂A±

i

2
AΓx /Y +

1

96
AΓz /HC ∗ ,
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A(±) =
1

24
/H + /ξC ∗ . (3.6.11)

Observe that although A(+) = A(−) as operators, they act on different spaces and so we shall

retain the distinct labeling.

Next we integrate the gravitino KSE along the x AdS coordinate to obtain

η+ = σ+ −
1

`
xΓxΓzτ+ + e−z/`τ+ , η− = σ− + ez/`(−1

`
xΓxΓzσ− + τ−) , (3.6.12)

where

Ξ±σ± = 0 , Ξ±τ± = ∓1

`
τ± , (3.6.13)

and σ± and τ± depend only on the coordinates of M6. This completes the integration of the

gravitino KSE along all AdS4 directions. The dilatino KSE simply restricts on the spinors σ±

and τ±. There are no additional conditions arises from integrability conditions between AdS4

and M6 directions.

Therefore, remaining independent KSEs on M6 are

∇(±)
i σ± = 0 , ∇(±)

i τ± = 0 ,

A(±)σ± = 0 , A(±)τ± = 0 ,

B(±)σ± = 0 , C(±)τ± = 0 , (3.6.14)

where

∇(±)
i = ∇i + Ψ

(±)
i , B(±) = Ξ± , C(±) = Ξ± ±

1

`
, (3.6.15)

and

Ψ
(±)
i = ±1

2
∂i logA− i

2
Qi ∓

i

2

(
/ΓY
)
i
Γxz ±

i

2
YiΓxz

+

(
− 1

96

(
/ΓH
)
i
+

3

32
/Hi

)
C ∗ . (3.6.16)

This concludes the reduction of the KSEs on M6.

3.6.3 Counting supersymmetries

As for AdS3 backgrounds there are Clifford algebra operators which interwind between the

different KSEs on M6. In particular observe that if σ± is a solution to the KSEs, then

τ± = ΓzΓxσ± (3.6.17)

is also a solution, and vice versa. Furthermore as for AdS3, if either σ− or τ− is a solution, so is

σ+ = A−1Γ+Γzσ− , τ+ = A−1Γ+Γzτ− . (3.6.18)
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Similarly, if either σ+ or τ+ is a solution, so is

σ− = AΓ−Γzσ+ , τ− = AΓ−Γzτ+ . (3.6.19)

From the above relations one concludes that the AdS4 ×w M6 backgrounds preserve

N = 4 dim Ker(∇(±),A(±),B(±)) = 4 dim Ker(∇(±),A(±), C(±)) , (3.6.20)

for either + or − choice of sign. This confirms N = 4k for the AdS4 backgrounds.

The number of supersymmetries N of AdS4 backgrounds are further restricted. It is a con-

sequence of [37, 35, 36, 38] that there are no AdS4 backgrounds with N ≥ 28 supersymmetries.

Therefore N ≤ 24.

3.7 AdS4: Global analysis

3.7.1 A Lichnerowicz theorem for τ± and σ±

Next, we will demonstrate a Lichnerowicz type of theorem which states there is a 1-1 correspon-

dence between Killing spinors and the zero modes of Dirac-like of operators on M6 coupled to

fluxes. The proof is similar to that we have presented for the AdS3 backgrounds. However, the

operators involved in the AdS4 case are different and so the proof is not a mere repetition.

We shall present the proof of the the Lichnerowicz type of theorem for σ+ and τ+ spinors.

The proof for the other pair σ− and τ− follows as a consequence. It is also convenient to do

the computations simultaneously for both σ+ and τ+ spinors which from now one we shall call

collectively χ+.

To begin let us define the operator

D(+)
i = ∇(+)

i + qΓziA
−1B(+) (3.7.1)

where

B(+) = − c

2`
− 1

2
Γz /∂A−

i

2
A/Y Γx +

1

96
AΓz /HC∗ (3.7.2)

and c = 1 when acting on σ+ and c = −1 when acting on τ+, ie either B(+) = B(+) or B(+) = C(+),

respectively. It is clear from this that if χ+ is a Killing spinor, then it is parallel with respect to

D.

Next define the Dirac-like operator

D (+) ≡ ΓiD(+)
i = Γi∇i + Σ(+) . (3.7.3)

where

Σ(+) =
3qc

2
A−1Γz +

1 + 6q

4
/∂ logA2 − i

2
/Q+ (2i− 3iq) /Y Γzx +

1− q
16

/HC ∗ . (3.7.4)
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Next suppose that χ+ is a zero mode of D (+), ie D (+)χ+ = 0. Then after some Clifford algebra

computation, which has been presented in appendix B.13, q = 1/3, and the use of field equations,

one can establish the identity

∇2‖χ+‖2 + 4A−1∂iA∂i‖χ+‖2 = 2
∥∥∥D(+)χ+

∥∥∥2

+
16

3
A−2

∥∥∥B(+)χ+

∥∥∥2

+
∥∥∥A(+)χ+

∥∥∥2

. (3.7.5)

Assuming that requirements of the Hopf maximum principle are satisfied, eg for M6 compact,

the above equation implies that χ+ is a Killing spinor and that the length ‖ χ+ ‖= const.

A similar formula to (3.7.5) can be established for σ− and τ− spinors. However, it is not

necessary to do an independent commutation. We have seen that if σ+ and τ+ solve the KSEs,

then σ− = AΓ−zσ+ and τ− = AΓ−zτ+ also solve the KSEs. Similarly if χ+ is a zero mode of

D (+), then χ− = AΓ−zχ+ is a zero mode of D (−), where

D (−) = Γi∇i + Σ(−) , (3.7.6)

and

Σ(−) = −3qc

2`
A−1Γz +

−1 + 6q

4
/∂ logA2 − i

2
/Q− (2i− 3iq) /Y Γzx +

1− q
16

/HC ∗ . (3.7.7)

To summarize, we have shown that

∇(±)
i σ± = 0 , B(±)σ± = 0 , A(±)σ± = 0⇐⇒ D (±)σ± = 0 ; c = 1 ,

∇(+)
i τ± = 0 , C(±)τ± = 0 , A(±)τ± = 0⇐⇒ D (±)τ± = 0 ; c = −1 , (3.7.8)

and that

‖ σ+ ‖ = const , ‖ τ+ ‖= const ,

A−2 ‖ σ− ‖2 = const , A−2 ‖ τ− ‖2= const . (3.7.9)

This concludes the proof of the 1-1 correspondence between Killing spinors and zero modes of

Dirac-like operators on M6.

3.7.2 Counting supersymmetries again

We are ready now to establish the formula for the number of preserved supersymmetries for AdS4

backgrounds. So provided that the data satisfy the requirements of Hopf maximum principle,

we have that

N = 4 dim Ker(∇(−),A(−),B(−)) = 4 dim KerD
(−)
c=1 , (3.7.10)

which applies to σ− spinors which confirms N = 4k. A similar formula is valid for the three

other choice of spinors.
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3.8 AdS5: Local analysis

3.8.1 Fields, Bianchi identities and field equations

The fields on the horizon section S are

ds2(S) = A2(dz2 + e
2z
` (dx2 + dy2) + ds2(M5) , G = H , P = ξ ,

F̃ 3 = e
2z
` A3dz ∧ dx ∧ dy Y , F̃ 5 = −dvol(M5)Y (3.8.1)

and h = − 2
`dz − 2d logA and ∆ = X = L = 0.

Substituting the above fields into the Bianchi identities (3.1.15) and (3.1.16), we find

d(A5Y ) = 0 , dH = iQ ∧H − ξ ∧H
dξ = 2iQ ∧ ξ , dQ = −iξ ∧ ξ. (3.8.2)

Clearly, Y is proportional to A−5. Similarly, the field equations (3.1.17)-(3.1.21) give

∇iHijk = −5∂i logAHijk + iQiHijk + ξiHijk

∇iξi = −5∂i logAξi + 2iQiξi −
1

24
H2.

A−1∇2A = 4Y 2 +
1

48
‖ H ‖2 − 4

`2
A−2 − 4(d logA)2,

R
(5)
ij = 5A−1∇i∇jA+ 4Y 2δij

+
1

4
H(i

k`Hj)k` −
1

48
‖ H ‖2 δij + 2ξ(iξj). (3.8.3)

This concludes the analysis of Bianchi and field equations.

The warped factor is nowhere vanishing

As in the previous AdS backgrounds, one can show that the warped factor A is no-where van-

ishing. The argument is based on the third field equation in (3.8.3).

3.8.2 Solution of KSEs

Substituting the fields of the previous section into the KSEs of spatial horizon section (3.1.27)

and after a computation similar to that described for AdS4 backgrounds, we find that the Killing

spinors can be expressed as

η+ = σ+ −
1

`
(xΓx + yΓy)Γzτ+ + e−

z
` τ+ , η− = σ− + e

z
`

(
− 1

`
(xΓx + yΓy)Γzσ− + τ−

)
,(3.8.4)

where σ± and τ± dependent only on the coordinates of M5. The remaining independent KSEs

are

∇(±)
i σ± = 0 , ∇(±)

i τ± = 0 , A(±)σ± = 0 , A(±)τ± = 0 ,

B±σ± = 0 , C±τ± = 0 , (3.8.5)
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where

∇(±)
i = ∇i + Ψ

(±)
i , A(±) =

1

24
/H + /ξC∗

B(±) = Ξ± , C(±) = Ξ± ±
1

`
, (3.8.6)

and

Ψ
(±)
i = ±1

2
∂i logA− i

2
Qi ±

i

2
ΓiY Γxyz +

(
− 1

96
(Γ /H)i +

3

32
/Hi

)
C∗

Ξ± = ∓ 1

2`
− 1

2
Γz /∂A±

i

2
AY Γxy +

1

96
AΓz /HC ∗ . (3.8.7)

This concludes the solution of the KSEs along the AdS5 directions and the identification of

remaining independent KSEs.

3.8.3 Counting supersymmetries

To count the number of supersymmetries preserved by AdS5 backgrounds, observe that if σ± are

Killing spinors, then

τ± = ΓzΓxσ± , τ± = ΓzΓyσ± . (3.8.8)

are also Killing spinors, and vice versa. As a result if σ± are Killing spinors, then σ′± =

Γxyσ± are also Killing spinors and similarly for τ±. As a result dim Ker(∇(±),A(±),B(±)) and

dim Ker(∇(±),A(±), C(±)) are even numbers.

Furthermore, as in the previous cases, if either σ− or τ− is a solution, so is

σ+ = A−1Γ+Γzσ− , τ+ = A−1Γ+Γzτ− , (3.8.9)

and similarly, if either σ+ or τ+ is a solution, so is

σ− = AΓ−Γzσ+ , τ− = AΓ−Γzτ+ . (3.8.10)

From the above relations one concludes that the AdS5 ×w M5 backgrounds preserve

N = 4 dim Ker(∇(±),A(±),B(±)) = 4 dim Ker(∇(±),A(±), C(±)) = 8k , (3.8.11)

for either + or − choice of sign and k ∈ N>0. This confirms N = 8k for the AdS5 backgrounds.

Of course N ≤ 32, and for N = 32 the solutions are locally isometric to AdS5 × S5.

3.9 AdS5: Global analysis

3.9.1 A Lichnerowicz theorem for τ± and σ±

To extend the formula for preserved supersymmetries to AdS5 backgrounds, we shall again prove

a Lichnerowicz type of theorem which relates the Killing spinors to the zero modes of Dirac-like
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of operators on M5 coupled to fluxes. The proof is similar to that we have presented in previous

case and so we shall be brief. It suffices to prove the relation for σ+ and τ+ spinors as the proof

for the other pair σ− and τ− follows because of the relations (3.8.9) and (3.8.10) and the fact

that these isomorphisms commute with the relevant operators.

We shall present the proof of the the Lichnerowicz type of theorem for σ+ and τ+ spinors.

The proof for the other pair σ− and τ− follows as a consequence. It is also convenient to do

the computations simultaneously for both σ+ and τ+ spinors which from now one we shall call

collectively χ+.

To begin the proof for the pair σ+ and τ+, which from now one we shall call collectively χ+,

let us define

D(+)
i = ∇(+)

i + qΓziA
−1B(+) (3.9.1)

where

B(+) = − c

2`
− 1

2
Γz /∂A−

i

2
AY Γyx +

1

96
AΓz /HC∗ (3.9.2)

and c = 1 when acting on σ+ and c = −1 when acting on τ+, ie either B(+) = B(+) or B(+) = C(+),

respectively. It is clear from this that if χ+ is a Killing spinor, then it is parallel with respect to

D.

The Dirac-like operator on M5 is

D (+) ≡ ΓiD(+)
i = Γi∇i + Σ(+) . (3.9.3)

where

Σ(+) =
5qc

2`
A−1Γz +

1 + 5q

4
/∂ logA2 − i

2
/Q+

5i− 5iq

2
Y Γzxy +

7− 5q

96
/HC ∗ . (3.9.4)

Next suppose that χ+ is a zero mode of D (+), ie D (+)χ+ = 0. Then after some Clifford algebra

computation, which has been presented in appendix B.14, q = 3/5, and the use of field equations,

one can establish the identity

∇2‖χ+‖2 + 5A−1∂iA∂i‖χ+‖2 = 2
∥∥∥D(+)χ+

∥∥∥2

+
48

5
A−2

∥∥∥B(+)χ+

∥∥∥2

+
∥∥∥A(+)χ+

∥∥∥2

. (3.9.5)

Assuming that the Hopf maximum principle applies, eg for M5 compact, the solution of the

above equation reveals that χ+ is a Killing spinor and that ‖ χ+ ‖= const.

A similar formula to (3.9.5) can be established for σ− and τ− spinors. In particular, we define

D (−) = Γi∇i + Σ(−) , (3.9.6)

and

Σ(−) = −5qc

2`
A−1Γz +

−1 + 5q

4
/∂ logA2 − i

2
/Q− 5i− 5iq

2
Y Γzxy +

7− 5q

96
/HC ∗ . (3.9.7)
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where c = 1 for the σ− spinors while c = −1 for τ− spinors. Because of the relations (3.8.9) and

(3.8.10) between the σ−, τ− and σ+, τ+ spinors and the commutation of these relations with the

KSEs and the associated Dirac-like operators, it is not necessary to prove the maximum principle

independently for σ−, τ−. To summarize, we have shown that

∇(±)
i σ± = 0 , B(±)σ± = 0 , A(±)σ± = 0⇐⇒ D (±)σ± = 0 ; c = 1 ,

∇(+)
i τ± = 0 , C(±)τ± = 0 , A(±)τ± = 0⇐⇒ D (±)τ± = 0 ; c = −1 , (3.9.8)

and that

‖ σ+ ‖ = const , ‖ τ+ ‖= const ,

A−2 ‖ σ− ‖2 = const , A−2 ‖ τ− ‖2= const . (3.9.9)

3.9.2 Counting supersymmetries again

To determine the index of the Dirac-like operator for AdS5 backgrounds, observe that the di-

mension of the Kernel of D (±) operators is even. This is because if σ± or τ± are in the kernel,

then Γxyσ± or Γxyτ± are also in the kernel. Since Γxyσ± or Γxyτ± are linearly independent of

σ± and τ±, the dimension of the Kernel of D (±) is an even number.

Next provided that the data satisfy the requirements of Hopf maximum principle, we have

that

N = 4 dim Ker(∇(−),A(−),B(−)) = 4 dim KerD
(−)
c=1 , (3.9.10)

which applies to σ− spinors. A similar formula is valid for the three other choices of spinors.

3.10 AdS6: Local analysis

3.10.1 Fields, Bianchi identities and field equations

For AdSp, p ≥ 6, the only not vanishing fluxes are those of the magnetic components of the

various field strengths. Since F is self-dual, F = 0 for all such backgrounds. The fields on the

horizon section S for AdS6 backgrounds are

ds2(S) = A2(dz2 + e
2z
`

3∑
a=1

(dxa)2 + ds2(M4) , G = H , P = ξ , (3.10.1)

and h = − 2
`dz − 2d logA and ∆ = X = L = 0, where x1 = x, x2 = y as for AdS5 and x3 = w.

Substituting the above fields into the Bianchi identities (3.1.15) and (3.1.16), we find

dH = iQ ∧H − ξ ∧H , dξ = 2iQ ∧ ξ , dQ = −iξ ∧ ξ. (3.10.2)

Similarly, the field equations (3.1.17)-(3.1.21) give

∇iHijk = −6∂i logAHijk + iQiHijk + ξiHijk
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∇iξi = −6∂i logAξi + 2iQiξi −
1

24
H2.

A−1∇2A =
1

48
‖ H ‖2 − 5

`2
A−2 − 5(d logA)2,

R
(4)
ij = 6A−1∇i∇jA

+
1

4
H(i

k`Hj)k` −
1

48
‖ H ‖2 δij + 2ξ(iξj). (3.10.3)

This concludes the analysis of Bianchi and field equations.

The warped factor is nowhere vanishing

As in the previous AdS backgrounds, one can show that the warped factor A is no-where van-

ishing. The argument is based on the third field equation in (3.10.3).

3.10.2 Solution of KSEs

The solution of the spatial horizon section S KSEs (3.1.27) reveals that

η+ = σ+ −
1

`
(
∑
a

xaΓa)Γzτ+ + e−
z
` τ+ , η− = σ− + e

z
`

(
− 1

`
(
∑
a

xaΓa)Γzσ− + τ−
)
, (3.10.4)

where σ± and τ± dependent only on the coordinates of M4. After taking into account all the

integrability conditions, the remaining independent KSEs are

∇(±)
i σ± = 0 , ∇(±)

i τ± = 0 , A(±)σ± = 0 , A(±)τ± = 0 ,

B±σ± = 0 , C±τ± = 0 , (3.10.5)

where

∇(±)
i = ∇i + Ψ

(±)
i , A(±) =

1

24
/H + /ξC∗

B(±) = Ξ± , C(±) = Ξ± ±
1

`
, (3.10.6)

and

Ψ
(±)
i = ±1

2
∂i logA− i

2
Qi +

(
− 1

96
(Γ /H)i +

3

32
/Hi

)
C∗

Ξ± = ∓ 1

2`
− 1

2
Γz∂iAΓi +

1

96
AΓz /HC ∗ . (3.10.7)

This concludes the solution of the KSEs along the AdS6 directions.

3.10.3 Counting supersymmetries

A direct inspection of the KSEs reveals that if σ± are Killing spinors, then

τ± = ΓzΓaσ± , (3.10.8)
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are also Killing spinors, and vice versa. As a result if σ± are Killing spinors, then σ′± =

Γabσ± are also Killing spinors and similarly for τ±. Therefore dim Ker(∇(±),A(±),B(±)) and

dim Ker(∇(±),A(±), C(±)) are multiples of four.

Furthermore, as in the previous cases, if either σ− or τ− is a solution, so is

σ+ = A−1Γ+Γzσ− , τ+ = A−1Γ+Γzτ− , (3.10.9)

and similarly, if either σ+ or τ+ is a solution, so is

σ− = AΓ−Γzσ+ , τ− = AΓ−Γzτ+ . (3.10.10)

From the above relations one concludes that the AdS5 ×w M5 backgrounds preserve

N = 4 dim Ker(∇(±),A(±),B(±)) = 4 dim Ker(∇(±),A(±), C(±)) = 16k , (3.10.11)

for either + or − choice of sign and k ∈ N>0. This confirms N = 16k for the AdS6 backgrounds.

It turns out that there can beAdS6 backgrounds for onlyN = 16 as there are no such backgrounds

preserving N = 32 supersymmetries [37].

3.11 AdS6: Global analysis

3.11.1 A Lichnerowicz theorem for τ± and σ±

As in previous cases, let us prove a Lichnerowicz type of theorem for σ+ and τ+ spinors. For

this denote σ+ and τ+ collectively by χ+ and define

D(+)
i = ∇(+)

i + qΓziA
−1B(+) (3.11.1)

where

B(+) = − c

2`
− 1

2
Γz /∂AΓi +

1

96
AΓz /HC∗ (3.11.2)

and c = 1 when acting on σ+ and c = −1 when acting on τ+, ie either B(+) = B(+) or B(+) = C(+),

respectively. It is clear from this that if χ+ is a Killing spinor, then it is parallel with respect to

D.

The Dirac-like operator on M4 is

D (+) ≡ ΓiD(+)
i = Γi∇i + Σ(+) . (3.11.3)

where

Σ(+) =
2qc

`
A−1Γz +

1 + 4q

4
/∂ logA2 − i

2
/Q+

8− 4q

96
/HC ∗ . (3.11.4)

Next suppose that χ+ is a zero mode of D (+), ie D (+)χ+ = 0. Then after some Clifford algebra

computation, which has been presented in appendix B.15, q = 1, and the use of field equations,

one can establish the identity

∇2‖χ+‖2 + 6A−1∂iA∂i‖χ+‖2 = 2
∥∥∥D(+)χ+

∥∥∥2
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+16A−2
∥∥∥B(+)χ+

∥∥∥2

+
∥∥∥A(+)χ+

∥∥∥2

. (3.11.5)

Assuming that the Hopf maximum principle applies, eg for M4 compact, the solution of the

above equation reveals that χ+ is a Killing spinor and that ‖ χ+ ‖= const.

A similar formula to (3.9.5) can be established for σ− and τ− spinors. In particular, we define

D (−) = Γi∇i + Σ(−) , (3.11.6)

and

Σ(−) = −2qc

`
A−1Γz +

−1 + 4q

4
/∂ logA2 − i

2
/Q+

8− 4q

96
/HC ∗ . (3.11.7)

where c = 1 for the σ− spinors while c = −1 for τ− spinors. Because of the relations (3.8.9) and

(3.8.10) between the σ−, τ− and σ+, τ+ spinors and the commutation of these relations with the

KSEs and the associated Dirac-like operators, it is not necessary to prove the maximum principle

independently for σ−, τ−. To summarize, we have shown that

∇(±)
i σ± = 0 , B(±)σ± = 0 , A(±)σ± = 0⇐⇒ D (±)σ± = 0 ; c = 1 ,

∇(+)
i τ± = 0 , C(±)τ± = 0 , A(±)τ± = 0⇐⇒ D (±)τ± = 0 ; c = −1 , (3.11.8)

and that

‖ σ+ ‖ = const , ‖ τ+ ‖= const ,

A−2 ‖ σ− ‖2 = const , A−2 ‖ τ− ‖2= const . (3.11.9)

3.11.2 Counting supersymmetries again

To determine the index of the Dirac-like operator for AdS5 backgrounds, observe that the dimen-

sion of the Kernel of D (±) operators is multiple of 4. This is because if σ± or τ± are in the kernel,

then Γabσ± or Γabτ± are also in the kernel. Since Γabσ± or Γabτ± are linearly independent of

σ± and τ±, the dimension of the Kernel of D (±) is 4k.

Next provided that the data satisfy the requirements of Hopf maximum principle, we have

that

N = 4 dim Ker(∇(−),A(−),B(−)) = 4 dim KerD
(−)
c=1 = 16k , (3.11.10)

which applies to σ− spinors. A similar formula is valid for the three other choices of spinors.

3.12 AdSn, for n ≥ 7

For all AdSn, n ≥ 7, if the background preserves at least one supersymmetry, then the three-

form, H, is zero. For AdSn, n ≥ 8, this is automatically true. For AdS7, we can show this by

manipulating the algebraic Killing spinor equation,(
/ξC ∗+

1

24
/H

)
σ+ = 0. (3.12.1)
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AdSn ×w M10−n N

n = 2 2k, k < 14

n = 3 2k, k < 14

n = 4 4k, k < 7

n = 5 8k, k ≤ 4

n = 6 16

n ≥ 7 −

Table 3.1: The number of supersymmetries N of AdSn ×w M10−n back-

grounds are given. For AdS2 ×w M8, one can show that these backgrounds

preserve even number of supersymmetries provided that they are smooth

and M8 is compact without boundary. For the rest, the counting of super-

symmetries does not rely on the compactness of M10−n. The bounds in k

arise from the non-existence of supersymmetric solutions with near maximal

and maximal supersymmetry. For the remaining fractions, it is not known

whether there always exist backgrounds preserving the prescribed number of

supersymmetries. Supersymmetric AdSn, n ≥ 7, backgrounds do not exist.

We start by multiplying this by /H to convert it to an eigenvalue equation,

/ξ /HC ∗ σ+ = −1

4
‖ H ‖2 σ+, (3.12.2)

and then we square the operator on the left hand side to eliminate C∗,

ξiξjΓ
ijσ+ = −

(
‖ ξ ‖2 +

1

96
‖ H ‖2

)
σ+. (3.12.3)

Finally, squaring this operator as well, we end up with a scalar equation

‖ ξ ‖4 − ‖ ξ2 ‖2=

(
‖ ξ ‖2 +

1

96
‖ H ‖2

)2

, (3.12.4)

from which we conclude that ξ2 = ξiξ
i and H are both zero.

Having shown that H = 0, the integrability condition, (3.1.31), reduces to(
1

4`2
+

1

4
(dA)2

)
σ+ = 0, (3.12.5)

which has no solution. Therefore, there no supersymmetric AdSn backgrounds, for n ≥ 7.

3.13 Flat IIB backgrounds

Warped flat backgrounds Rn−1,1 ×w M10−n are also included in our analysis. These arise in

the “flat limit”, ie the limit that the AdSn radius ` is taken to infinity. This limit is smooth in
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all our computations. However, some of our results on AdSn backgrounds do not extend to the

flat backgrounds. The investigation of the KSEs is also somewhat different from that of AdS

backgrounds.

To emphasize some of the differences between AdSn and Rn−1,1
backgrounds, it is known

for sometime that there are no smooth warped flux compactification in the supergravity [40].

To alter this either additional sources have to be added to the supergravity equations, like

brane charges, and /or consider higher order curvature corrections which arise for example from

anomaly cancelation mechanisms or α′ corrections in strings or M-theory. In either case, the

new backgrounds can be constructed as corrections to supergravity solutions. Because there

are different sources that can be added and we do not have control over all higher curvature

corrections, we shall mostly focus here on the supergravity limit and explore the similarities and

differences between the AdSn and Rn−1,1
backgrounds.

3.13.1 Warped factor is not nowhere vanishing

We have seen that the warped factor in all AdSn is no-where vanishing. This does not extend to

Rn−1,1
backgrounds because the finiteness of AdSn radius has been essential in the proof of the

statement. In fact A must vanish somewhere for non-trivial Rn−1,1
backgrounds with fluxes. This

follows from the results of [40] on the non-existence of smooth warped flux compactifications in

the context of supergravity. To see this, let us focus on the R1,1
case, as the argument is similar

in all the other cases. If A is no-where vanishing and M8 is compact, an application of the

maximum principle on the field equation for A (3.2.8) reveals that A is constant and the fluxes

F and G vanish. Furthermore using the formula

∇2 ‖ ξ ‖2= 2(∇(iξj) − 2iΛ(iξj))(∇(iξj) − 2iΛ(iξj)) + 6(‖ ξ ‖2)2 (3.13.1)

established [11] and upon using again the maximum principle, one can show that ξ = 0. As a

result all the form field strengths vanish which is a contradiction. From now on, we shall assume

that A is non-vanishing on some dense subset of M10−n and carry out the analysis that follows

on that subset.

3.13.2 Counting supersymmetries

All the local computations we have done for AdSn backgrounds extend to Rn−1,1
backgrounds.

However the statements which rely on the smoothness of the fields as well as the non-vanishing

of the warped factor have to be re-examined. In particular, the solution of the KSEs can be

carried out as it has been described for AdSn. Also the various maximum principle formulae

are valid away from points that A = 0, like eg (3.3.3), (3.3.5), (3.5.6) and others. However, the

Hopf maximum principle cannot be applied any longer even if M10−n is taken to be compact.

As a result there is not a straightforward relation between Killing spinors and zero modes on

Dirac-like operators on M10−n. Because of this, for the counting of supersymmetries we shall

rely on the local solution of the KSEs as presented for the AdSn backgrounds.
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R1,1
backgrounds

The counting of supersymmetries for AdS2 backgrounds relies on the global properties of M8

and the smoothness of the fields. As a result, the number of supersymmetries preserved by R1,1

backgrounds cannot be concluded. In particular, it is not apparent that such backgrounds always

preserve even number of supersymmetries. Nevertheless, if η− is a Killing spinor, so is Γ+Θ−η−

on M8. Now if KerΘ− = {0}, it is clear that there will be a doubling of supersymmetries. In

such case, the number of Killing spinors for such backgrounds is N ≥ 2N−, where N− is the

number of η− Killing spinors.

R2,1
backgrounds

Let us re-examine the solution of the KSEs. In the limit ` → ∞, the integrability conditions

(3.1.31) become

Θ∓Θ±η± = 0 . (3.13.2)

In the same limit, the solution of the KSEs (3.4.14) along the z-direction is

η± = σ± + zΞ±τ± , Ξ±(σ± − τ±) = 0 , (3.13.3)

where Ξ± = AΓzΘ±. The integrability conditions are automatically satisfied because of (3.13.2).

The remaining independent KSEs are

∇(±)
i σ± = 0 , ∇(±)

i τ± = 0 ,

A(±)σ± = 0 , A(±)τ± = 0 , (3.13.4)

where ∇(±) and A(±) are given in (3.4.21). As τ± and σ± satisfy the same differential equations

are not linearly independent. As a result, it suffices to consider only the σ± spinors and set

τ± = σ±. Therefore the number of supersymmetries preserved by R2,1
backgrounds is N =

dimKer(∇(+),A(+)) + dimKer(∇(−),A(−)).

Next, it is straightforward to observe that if σ− solution of (3.4.20) in the limit ` =∞, then

σ+ = A−1ΓzΓ+σ− , (3.13.5)

is also a solution. Conversely, if σ+ is a solution, then

σ− = AΓzΓ−σ+ , (3.13.6)

is also a solution. Therefore, dimKer(∇(+),A(+)) = dimKer(∇(−),A(−)), and so the R2,1
back-

grounds preserve even number of supersymmetries.

Observe that in general the Killing spinors can depend non-trivially on the z coordinate. This

is possible only if σ± /∈ Ker Ξ± even though it is required that σ± ∈ Ker Ξ2
± because of (3.13.2).
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R3,1
backgrounds

The counting of supersymmetries of R3,1
backgrounds is similar to R2,1

solutions. In particular

integrating the KSEs along the z and x directions we find that

η± = σ± +A(zΓz + xΓx)Θ±τ± , Θ±(σ± − τ±) = 0 , (3.13.7)

with σ± and τ± both in the kernel of (∇(±),A(±)) given in (3.6.15) and Ξ± = AΓzΘ±. Therefore

as in the R2,1
case these spinors are not linearly independent and so suffices to consider σ± and

set τ± = σ±. In addition if σ+ is a solution, so is Γzxσ+. This together with the fact that if σ+

is a solution so is σ− = AΓzΓ−σ+, and vice versa if σ− is a solution so is σ+ = A−1ΓzΓ+σ−, one

concludes that R3,1
backgrounds preserve N = 4k supersymmetries.

Note again that the Killing spinors are allowed to depend linearly on the coordinates of R3,1
.

This is the case only if τ± /∈ Ker Ξ± even though it is required that τ± ∈ Ker Ξ2
± because of

(3.13.2).

Rn−1,1
, n > 4, backgrounds

As in the previous cases, one can prove that

η± = σ± +A(
∑
µ

xµΓµ)Θ±τ± , Θ±(σ± − τ±) = 0 , (3.13.8)

in the limit ` =∞, and that the only linearly independent Killing spinors are σ±, where xµ are

all the coordinates of Rn−1,1
apart from the lighcone ones u, r. Moreover, it suffices to count the

linearly independent σ+ spinors as the σ− spinors can be constructed as σ− = AΓzΓ−σ+ from

the σ+ ones, and vice versa because of the relation σ+ = A−1ΓzΓ+σ−.

Next given a σ+ Killing spinor, one can see by direct inspection of the KSEs on M10−n that

Γabσ+, a < b, are also Killing spinors, where Γa are the gamma matrices in directions orthogonal

to +,−. It turns out that for n = 5, these are all linearly independent and therefore these

backgrounds preserve N = 8k supersymmetries.

For n = 6, apart from Γabσ+, a < b, observe that also Γa1a2a3a4σ+, a1 < a2 < a3 < a4 also

solve the KSEs on M4. However, there is a unique Clifford algebra elementΓa1a2a3a4 , a1 < a2 <

a3 < a4, in this case and has eigenvalues ±1, and commutes with all the KSEs. Now if σ+ is

in one of the two eigenspaces, only four of the 7 Killing spinors {σ+,Γabσ+|a < b} are linearly

independent. Therefore the R5,1
backgrounds preserve N = 8k supersymmetries.

Suppose now that n = 7. Given a Killing spinor σ+, then Γabσ+ and Γa1a2a3a4σ+, a1 <

a2 < a3 < a4, are also Killing spinors. There are five Γa1a2a3a4 , a1 < a2 < a3 < a4 Clifford

algebra operations in this case. Choose one say Γ[4]. As in the previous case σ+ can be in one

of the eigenspaces of Γ[4]. In such a case, only 8 of the previous 16 Killing spinors are linearly

independent. Therefore, the R6,1
backgrounds preserve N = 16k supersymmetries. Of course

as a consequence of [37] the non-trivial R6,1
backgrounds preserve strictly 16 supersymmetries.
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Rn−1,1 ×w M10−n N

n = 2 N ≤ 16

n = 3 2k, k ≤ 8

n = 4 4k, k ≤ 4

n = 5 8, 16

n = 6 8, 16

n = 7 16

n = 8 16

n = 8 −

Table 3.2: The number of supersymmetries N of R1,1 ×w M10−n is not a

priori an even number. The corresponding statement for AdS2 backgrounds

is proven using global considerations which are not available in this case.

For the rest, the counting of supersymmetries follows from the properties of

KSEs. All backgrounds with N > 16 supersymmetries are locally isometric

to R9,1
.

Furthermore adapting the analysis of section 13 in the limit of infinite AdS radius, one finds that

A must be constant, H = 0 and ξiξ
i = 0.

Next take n = 8. Given a Killing spinor σ+, then Γabσ+, Γa1a2a3a4σ+, a1 < a2 < a3 < a4,

and Γa1...a6σ+, a1 < · · · < a6 are also Killing spinors. All fifteen Γa1a2a3a4 , a1 < a2 < a3 < a4,

Clifford algebra operators commute with the KSEs and have eigenvalues±1. Taking a commuting

pair of such operators, say Γ[4] and Γ′[4], and choosing σ+ to lie in a common eigenspace of

both these operators, only eight of the 32 spinors mentioned above are linearly independent.

As a result, R7,1
backgrounds preserve N = 16k supersymmetries. In fact non-trivial R7,1

backgrounds backgrounds, like the D7-brane, preserve strictly 16 supersymmetries. Again for

this backgrounds A is constant and ξiξ
i = 0. Furthermore, it can be easily seen from the

results of section 13 and after taking the AdS radius to infinity that there are no non-trivial R8,1

supersymmetric backgrounds.

3.14 On the factorization of Killing spinors

In many of the investigations of AdSn ×M10−n backgrounds in IIB and other theories, it is

assumed that the Killing spinors of the spacetime factorize into a product

ε = ψ ⊗ χ , (3.14.1)

where ψ is a Killing spinor on the AdS spaces satisfying the equation

∇µψ + λγµψ = 0 , (3.14.2)
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and where ∇ and γµ are the spin connection and gamma matrices on AdSn, respectively. Since,

we have solved the KSEs on the whole spacetime, we can now test this hypothesis. To do

this observe that if the hypothesis is correct, then ε also solves the (3.14.2). So it suffices to

substitute our Killing spinors into (3.14.2) to see whether they are automatically satisfy it. This

computation is similar that that we have done for M-theory in [13]. It turns out that the Killing

spinors ε solve (3.14.2) iff

Γzε = ±ε . (3.14.3)

However our Killing spinors do not satisfy this equation. As a result the original hypothesis is

not valid in general.

To illustrate that (3.14.3) is restrictive, we shall test it against the supersymmetry counting

for the AdS5×S5 background. It is known that this background preserves all 32 supersymmetries.

It can be easily seen that to solve the algebraic KSEs for this background in (3.8.5) for the τ+

spinor, one has to impose

Γxyτ+ = ±iτ+ . (3.14.4)

After choosing one of the signs, it is clear that the dimension of the space of solutions is 8

counted over the reals. The gravitino KSE is then solved without any additional constraints on

τ+. Next using the relation between τ+, τ−, σ+ and σ− solutions to the KSEs, we conclude that

the number of Killing spinors of this background is 4× 8 = 32 as expected. However if one also

imposes the condition (3.14.3) on τ+, one will arrive at the incorrect conclusion that AdS5 × S5

preserves only 16 supersymmetries.

We have seen that the spinor factorization assumption in (3.14.1) leads to the incorrect count-

ing of supersymmetries for AdS backgrounds. It is also likely that it puts additional restrictions

on the geometry of the transverse spaces M10−n. We shall investigate this in another publication.

To continue, let us examine the factorization of the Killing spinors as in (3.14.1) for flat

backgrounds to see whether a similar issue arises as for the AdS. A direct inspection of the

Killing spinors we have found in section 3.13.2 reveals that the Killing spinors do not solve the

KSEs on Rn−1,1
whenever they have an explicit dependence on the coordinates of Rn−1,1

. As

we have already stressed, this dependence appears whenever σ± are not in the kernel of Θ±.

However it is required as a consequence of the KSEs, field equations and Bianchi identities that

Θ∓Θ±σ± = 0. Thus assuming that the Killing spinor factorize as in (3.14.1) with ψ to be a

constant spinor on Rn−1,1
, we find that this imposes the additional condition Θ±σ± = 0 on the

Killing spinors. It is not apparent that this condition always holds for flat backgrounds. On the

other hand we are not aware of examples that it does not and so the question will be investigated

further elsewhere.
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3.15 Summary

In this chapter, the Killing spinor equations of AdSn ×w M10−n and R1,n−1 ×w M10−n IIB

backgrounds have been solved. As a result, it was possible to determine the supersymmetry

fractions preserved by these spaces. AdSn backgrounds preserve N = 2b
n
2 ck supersymmetries

for n ≤ 4 and N = 2b
n
2 c+1k supersymmetries for 4 < n ≤ 6. It has also been proven that

there are no supersymmetric IIB AdSn backgrounds for n ≥ 7. R1,n−1
backgrounds preserve

N = 2b
n
2 ck supersymmetries for 2 < n ≤ 4 and N = 2b

n+1
2 ck supersymmetries for 4 < n ≤ 8.

Often, when supersymmetric AdS backgrounds are discussed, it is assumed that the Killing

spinors factorize into an AdS Killing spinor and a transverse Killing spinor[27, 28, 30, 41]. How-

ever, when this assumption is applied as an ansatz in addition to these results, the allowed

supersymmetry fractions are further restricted. This indicates that the Killing spinors do not

factorize in general, but only in special cases.

Additionally, for each AdSn background, a Lichnerowicz-type theorem has been proven.

These theorems assume that the transverse space satisfies the requirements of the Hopf maximum

principle, which I use to prove that the σ+- and τ+-type Killing spinors are of constant length.

Simultaneously, they prove that the Killing spinors are exactly the zero modes of a Dirac-like

operator on the transverse space.
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Chapter 4

IIA Backgrounds

IIA AdS backgrounds have also been of significant interest, both on their own and in relation

to dual IIB and M-theory backgrounds [42, 30, 43, 44, 45, 46, 32]. Although they are similar

to IIB backgrounds in many ways, the analysis in this chapter has some important differences

from chapter 3. In particular, it is known that there are no maximally supersymmetric IIA AdS

backgrounds.

The local analysis that is covered in this chapter demonstrates supersymmetry enhancement

for all AdS backgrounds. AdSn backgrounds are found to always have N = 2b
n
2 ck supersymme-

tries for 2 ≤ n ≤ 4 and N = 2b
n
2 c+1k supersymmetries for 5 ≤ n ≤ 7, where k ∈ Z. Note that for

AdS3 backgrounds, this means that supersymmetric backgrounds preserve 2k supersymmetries.

In the next chapter, the same result will be demonstrated for heterotic backgrounds.

Additionally, I prove a Lichnerowicz-type theorem for each AdS background discussed, using

methods similar to those in chapter 3. It’s worth noting that there are some important differences

between the algebra of these proofs and the IIB proofs. In particular, it is now necessary to

include the dilatino Killing spinor equation in the Dirac-like operator.

4.1 AdS2 ×w M 8

4.1.1 Fields, Bianchi identities and Field Equations

Fields

As has already been mentioned, all AdS backgrounds are included in the near horizon geometries.

To describe the fields of AdS2 ×w M8 it suffices to impose the isometries of the AdS2 space on

all the fields of the near horizon geometries of [8, 9]. In such a case, the fields1 can be written as

ds2 = 2e+e− + ds2(M8) ,

1The choice of the fields of AdS2 ×w M8 backgrounds here is different from that of near horizon geometries in

[8]. In particular all R-R fields have been multiplied by eΦ. For more details see [47] and [48].
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G = e+ ∧ e− ∧X + Y , H = e+ ∧ e− ∧W + Z ,

F = e+ ∧ e−N + P , S = S , Φ = Φ . (4.1.1)

where X and P are 2-forms on M8, Y is a 4-form on M8, Z is a 3-form on M8, and N and

the dilaton Φ are functions on M8. S = eΦm, where m is the mass parameter of massive IIA

supergravity. For the standard IIA supergravity m = 0 and so S = 0. Furthermore,

e+ = du , e− = (dr + rh− 1

2
r2∆du) ,

h = −2A−1dA = ∆−1d∆ , ∆ = `−2A−2 , (4.1.2)

where the dependence on the coordinates u, r is explicit, A is the warp factor which depends

only on the coordinates of M8 and ` is the radius of AdS2.

Bianchi identities and Field equations

The Bianchi identities of (massive) IIA supergravity reduce to differential identities on the com-

ponents of the fields localized on M8. In particular a direct computation reveals that

d(A2W ) = 0 , d(A2X)−A2dΦ ∧X −A2W ∧ P −A2NZ = 0 ,

dZ = 0 , d(A2N)−A2NdΦ− SA2W = 0 ,

dY − dΦ ∧ Y = Z ∧ P , dP − dΦ ∧ P = SZ . (4.1.3)

Similarly, the field equations of the (massive) IIA supergravity decomposed as

∇jPji + (2∂j logA− ∂jΦ)Pji −W jXji +
1

6
Zjk`Yjk`i = 0 ,

e2Φ∇i(e−2ΦWi)− SN −
1

2
P ijXij +

1

48
∗ Yi1...i4Y i1...i4 = 0 ,

e2Φ∇k(e−2ΦZkij)− SPij + 2∂k logAZkij +NXij −
1

2
P klYklij

− 1

2
Xk` ∗ Yijk` = 0 ,

∇jXji − ∂jΦXji +
1

6
∗ Yik1k2k3Zk1k2k3 = 0 ,

∇iYijk` + (2∂i logA− ∂iΦ)Yijk` −
1

2
Xm1m2

∗ Zjk`m1m2

− ∗Yjk`nWn = 0 ,

∇2Φ + 2A−1∂iA∂iΦ = 2∂iΦ∂iΦ +
1

2
W 2 − 1

12
Z2 − 3

4
N2

+
3

8
P 2 − 1

8
X2 +

1

96
Y 2 +

5

4
S2 , (4.1.4)

and in particular the Einstein equation decomposes as

∇i∂i logA+ ∆ + 2(d logA)2 = 2∂i logA∂iΦ +
1

2
W 2

+
1

4
N2 +

1

8
X2 +

1

8
P 2 − 1

96
Y 2 − 1

4
S2 ,

R
(8)
ij = 2∇i∂j logA+ 2∂i logA∂j logA− 2∇i∂jΦ−

1

2
WiWj +

1

4
Z2
ij +

1

2
P 2
ij
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−1

2
X2
ij +

1

12
Y 2
ij + δij

(1

4
N2 − 1

4
S2 − 1

8
P 2 +

1

8
X2 − 1

96
Y 2
)
, (4.1.5)

where ∇ is the Levi-Civita connection on M8 and the Latin indices i, j, k, . . . are frame M8

indices.

4.1.2 Local aspects: Solutions of KSEs

Solution of KSEs along AdS2

The solution of the KSEs for AdS2×wM8 backgrounds is a special case of that presented for IIA

horizons in [8]. In particular, the solution of the KSEs along the AdS2 directions can be written

as

ε = ε+ + ε− ,

ε+ = η+ + uΓ+Θ−η− , ε− = η− + rΓ−Θ+

(
η+ + uΓ+Θ−η−

)
, (4.1.6)

where Γ±ε± = 0,

Θ± = −1

2
A−1 /∂A∓ Γ11 /W −

1

16
Γ11(±2N + /P )− 1

8 · 4!
(±12 /X + /Y )− 1

8
S , (4.1.7)

and η± depend only on the coordinates of M8. This summarizes the solution of the KSEs along

the AdS2 directions.

Independent KSEs on M8

Having solved the KSEs along the AdS2 directions, it remains to identify the remaining inde-

pendent KSEs. This is not straightforward. After substituting (4.1.6) back into the KSEs of

(massive) IIA supergravity and expanding in the u and r coordinates, one finds a large number

of conditions. These can be interpreted as integrability conditions along the AdS2 and mixed

AdS2 and M8 directions. However after an extensive analysis which involves the use of Bianchi

identities and field equations, one finds that the remaining independent KSEs are

∇(±)
i η± = 0 , A(±)η± = 0 , (4.1.8)

where

∇(±)
i = ∇i + Ψ

(±)
i , (4.1.9)

and

Ψ
(±)
i = ±1

2
A−1∂iA∓

1

16
/XΓi +

1

8 · 4!
/Y Γi +

1

8
SΓi

+ Γ11

(
∓ 1

4
Wi +

1

8
/Zi ±

1

8
NΓi −

1

16
/PΓi

)
, (4.1.10)

and

A(±) = /∂Φ +
(
∓ 1

8
/X +

1

4 · 4!
/Y +

5

4
S
)
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+ Γ11

(
± 1

2
/W − 1

12
/Z ∓ 3

4
N +

3

8
/P
)
. (4.1.11)

Furthermore, one can show that if η− is a Killing spinor, ie satisfies (4.1.8), then

η+ = Γ+Θ−η− , (4.1.12)

is also a Killing spinor.

Counting supersymmetries

The investigation so far is not sufficient to prove that the number of supersymmetries preserved by

AdS2×wM8 backgrounds is even. To prove this, some additional restrictions on the backgrounds

are necessary which will be described in the next section.

4.1.3 Global aspects: Lichnerowicz type theorems

The non-vanishing of warp factor A

To proceed, we shall show that if A and the fields are smooth, then A does not vanish on M8.

The argument which proves this is similar to that used in [13] and [14] to demonstrate the

analogous statements for D=11 and IIB AdS backgrounds, and where a more detailed analysis

is presented. Here we present a brief description of the proof which relies on the field equation

of A. Assuming that A does not vanish everywhere on M , we multiply that field equation of A

with A2 at a value for which A2 6= 0 to find

−A∇i∂iA− `−2 − ∂iA∂iA = −2A∂iA∂iΦ−
1

2
A2W 2 − 1

4
A2N2

− 1

8
A2X2 − 1

8
A2P 2 − 1

96
A2Y 2 − 1

4
A2S2 . (4.1.13)

Then taking a sequence that converges to a point in M8 that A vanishes, we find that if such a

point exists it is inconsistent with the above field equation as ` is the radius of AdS2 which is

finite. As a result for smooth solutions, A cannot vanish anywhere on M8.

Lichnerowicz type theorems for η±

The Killing spinors η± can be identified with the zero modes of a suitable Dirac-like operator on

M8. In particular, let us define

D (±) = /∇(±) −A(±) , (4.1.14)

where /∇(±)
= /∇+ Ψ(±), /∇ is the Dirac operator on M8, and

Ψ(±) ≡ ΓiΨ
(±)
i = ±1

2
A−1 /∂A∓ 1

4
/X + S + Γ11

(
± 1

4
/W − 1

8
/Z ∓N +

1

4
/P
)
. (4.1.15)

It turns out that if the fields and M8 satisfy the requirements for the maximum principle to

apply, eg M8 is compact without boundary and all the fields are smooth, then

∇(±)
i η± = 0 , A(±)η± = 0⇐⇒ D (±)η± = 0 . (4.1.16)
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It is clear that the proof of this in the forward direction is straightforward. To establish the

opposite direction for the η+ spinors, let us assume that D (+)η+ = 0. Then after some extensive

algebra using the Bianchi identities and the field equations, one finds [8] that

∇2 ‖ η+ ‖2 −2(∂iΦ−A−1∂iA)∇i ‖ η+ ‖2=

2 ‖ ∇̂(+)η+ ‖2 −(4κ+ 16κ2) ‖ A(+)η+ ‖2 , (4.1.17)

where

∇̂(±)
i = ∇(±)

i + κΓiA(±) . (4.1.18)

Applying the maximum principle for κ ∈ (− 1
4 , 0), one concludes that the solutions of the above

equation are Killing spinors and that

‖ η+ ‖= const . (4.1.19)

Similarly assuming that D (−)η− = 0, one can establish the identity

∇2
(
A−2 ‖ η− ‖2

)
− 2(∂iΦ−A−1∂iA)∇i(A−2 ‖ η− ‖2) =

2A−2 ‖ ∇̂(−)η− ‖2 −(4κ+ 16κ2)A−2 ‖ A(−)η− ‖2 . (4.1.20)

Again the application of the maximum principle for κ ∈ (− 1
4 , 0) gives that η− is a Killing spinor

and that

A−1 ‖ η− ‖= const . (4.1.21)

The proof for this for near horizon geometries [8] is based on a partial integration argument

instead.

4.1.4 Counting of supersymmetries

The counting of supersymmetries for AdS2 ×w M8 backgrounds under the assumptions made

in the previous section is a special case of the proof of [8] that IIA horizons always preserve

an even number of supersymmetries. Here, we shall briefly repeat the argument. If N± =

dim Ker (∇(±)
i ,A(±)), then the number of supersymmetries preserved by the background is N =

N+ +N−. On the other hand from the Lichnerowicz type theorems of the previous section

N± = dim Ker D (±) . (4.1.22)

Furthermore, it turns out that
(
e2ΦΓ−

)(
D (+)

)†
= D (−)

(
e2ΦΓ−

)
and so

N− = dim Ker D (+)† . (4.1.23)

On the other hand the index of D (+) is the same as the index of the Dirac operator /∇ acting

on the Majorana representation of Spin(8). The latter vanishes and so N+ = N−. Thus we

conclude that AdS2 ×w M8 solutions preserve

N = N+ +N− = 2N− , (4.1.24)

supersymmetries confirming that N = 2k.
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4.2 AdS3 ×w M 7

4.2.1 Fields, Bianchi identities and field equations

The fields of AdS3 backgrounds which are compatible with the AdS3 symmetries are

ds2 = 2e+e− +A2dz2 + ds2(M7) ,

G = Ae+ ∧ e− ∧ dz ∧X + Y , F = F ,

H = AWe+ ∧ e− ∧ dz + Z , S = S , Φ = Φ , (4.2.1)

where

e+ = du , e− = (dr + rh) , ∆ = 0

h = −2

`
dz − 2A−1dA , (4.2.2)

A is the warp factor which depends only on the coordinates of M7, (r, u, z) are the coordinates

of AdS3, X is a 1-form, S,Φ,W are functions, F is a 2-form, Z is a 3-form and Y is a 4-form on

M7, respectively.

The Bianchi identities of (massive) IIA supergravity can now be rewritten as differential

relations of the fields on M7 as

dZ = 0 , d(A3W ) = 0 , dS = SdΦ ,

dF = dΦ ∧ F + SZ +ASWe+ ∧ e− ∧ dz , dY = dΦ ∧ Y + Z ∧ F ,

dX = −3A−1dA ∧X + dΦ ∧X −WF. (4.2.3)

The Bianchi identity involving dF is consistent if either S = 0, or W = 0. Therefore there are

two distinct AdS3 backgrounds to consider. One is a standard IIA supergravity background with

a non-vanishing component for H on AdS3 or a massive IIA supergravity background with H

that has components only along M7.

Decomposing the field equations of (massive) IIA supergravity for the fields (5.1.1), one finds

that

∇2Φ = −3A−1∂iA∂
iΦ + 2(dΦ)2 − 1

12
Z2 +

1

2
W 2 +

5

4
S2 +

3

8
F 2 +

1

96
Y 2 − 1

4
X2 ,

∇kHijk = −3A−1∂kAHijk + 2∂kΦHijk +
1

2
Yijk`F

k` + SFij ,

∇jFij = −3A−1∂jAFij + ∂jΦFij −WXi −
1

6
Yijk`Z

jk` ,

∇iXi = ∂iΦX
i − ∗7(Z ∧ Y ) ,

∇`Yijk` = −3A−1∂`AYijk` + ∂`ΦYijk` + ∗7(Z ∧X −WY )ijk , (4.2.4)

and that the Einstein equation separates into an AdS component,

∇2 lnA = − 2

`2
A−2 − 3

`2
A−2(dA)2 + 2A−1∂iA∂

iΦ +
1

2
W 2 +

1

4
S2 +

1

8
F 2 +

1

96
Y 2 +

1

4
X2 (4.2.5)
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and a transverse component,

R
(7)
ij = 3∇i∇j lnA+ 3A−2∂iA∂jA+

1

12
Y 2
ij −

1

2
XiXj −

1

96
Y 2δij (4.2.6)

+
1

4
X2δij −

1

4
S2δij +

1

4
Z2
ij +

1

2
F 2
ij −

1

8
F 2δij − 2∇i∇jΦ ,

where ∇ and R
(7)
ij are the Levi-Civita connection and the Ricci tensor of M7, respectively. The

latter contracts to

R(7) = 3∇2 lnA+ 3A−2(dA)2 +
1

4
Z2 − 7

4
S2 − 3

8
F 2 +

1

96
Y 2 +

5

4
X2 − 2∇2Φ

= − 6

`2
A−2 − 6A−2(dA)2 + 12A−1∂iA∂

iΦ− 4(dΦ)2 +
5

12
Z2 +

1

2
W 2

−7

2
S2 − 3

4
F 2 +

1

48
Y 2 +

5

2
X2 . (4.2.7)

This form of the Ricci scalar is essential to establish the maximum principle formulae necessary

for identifying the Killing spinors with the zero modes of Dirac-like operators.

4.2.2 Local aspects: solution of KSEs

Solution of KSEs along AdS3

The gravitino KSE along the AdS3 directions gives

∂uε± +A−1Γ+z

(
`−1 − Ξ−

)
ε∓ = 0

∂rε± −A−1Γ−zΞ+ε∓ = 0

∂zε± − Ξ±ε± + 2r`−1A−1Γ−zΞ+ε∓ = 0 (4.2.8)

where

Ξ± = ∓ 1

2`
+

1

2
/∂AΓz ±

1

4
AWΓ11 −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/Y Γz ∓

1

8
A /X. (4.2.9)

As in the AdS2 case, we integrate these equations along r and u, and then along z. First observe

that

Θ+ = A−1ΓzΞ+ , Θ− = A−1Γz(Ξ− − `−1) , (4.2.10)

and that

Ξ±Γz+ + Γz+Ξ∓ = 0 , (4.2.11)

Ξ±Γz− + Γz−Ξ∓ = 0 . (4.2.12)

Integrating along the r and u coordinates, one finds that the Killing spinor can be expressed as

in (4.1.6). To integrate along z first note that the only AdS-AdS integrability condition is(
Ξ±

2 ± `−1Ξ±
)
ε± = 0. (4.2.13)
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Using this, one finds that the integration along z yields

η± = σ± + e∓z/`τ± , (4.2.14)

where

Ξ±σ± = 0 Ξ±τ± = ∓`−1τ± , (4.2.15)

and σ±, τ± are 16-component spinors counted over the reals, Γ±σ± = Γ±τ± = 0, that depend

only on the coordinates of M7.

Combining all the above results together, one finds that the solution of the KSEs along AdS3

can be written as

ε = ε+ + ε− = σ+ + e−
z
` τ+ + σ− + e

z
` τ−

−`−1uA−1Γ+zσ− − `−1rA−1e−
z
` Γ−zτ+ , (4.2.16)

where the dependence of ε on the AdS3 coordinates (u, r, z) is given explicitly while the depen-

dence on the coordinates y of M7 is via that of σ±, τ± spinors.

Remaining independent KSEs

As we have seen the KSEs of (massive) IIA supergravity have been solved provided that one

imposes the additional conditions (4.2.15). It is convenient to interpret these as new additional

KSEs on M7. In order to describe simultaneously the conditions on both the σ± and τ± spinors,

we write χ± = σ±, τ± and introduce

B(±) = ∓ c

2`
+

1

2
/∂AΓz ±

1

4
AWΓ11 −

1

8
ASΓz

− 1

16
A/FΓzΓ11 −

1

192
A/Y Γz ∓

1

8
A /X, (4.2.17)

where c = 1 when χ± = σ± and c = −1 when χ± = τ±.

Using this, the remaining independent KSEs are

∇(±)
i χ± = 0 , A(±)χ± = 0 , B(±)χ± = 0 , (4.2.18)

where

∇(±)
i = ∇i + Ψ

(±)
i ,

A(±) = /∂Φ +
1

12
/ZΓ11 ∓

1

2
WΓzΓ11

+
5

4
S +

3

8
/FΓ11 +

1

96
/Y ± 1

4
/XΓz , (4.2.19)

and where

Ψ
(±)
i = ±1

2
A−1∂iA+

1

8
/ZiΓ11 +

1

8
SΓi +

1

16
/FΓiΓ11 +

1

192
/Y Γi ±

1

8
/XΓzi . (4.2.20)

It is clear that the first two equations in (4.2.18) are the restrictions imposed on χ± from gravitino

and dilatino KSEs of (massive) IIA supergravity on M7, while the last equation has arisen from

the integration of the supergravity KSEs on AdS3. All the other integrability conditions that

arise in the analysis follow from (4.2.18), the Bianchi identities and the field equations.
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Counting supersymmetries

The number of supersymmetries preserved by AdS3×wM7 backgrounds is the number of solutions

of the KSEs (4.2.18). Thus

N = N+ +N− = (Nσ+
+Nτ+) + (Nσ− +Nτ−) , (4.2.21)

where Nσ± and Nτ± denote the number of σ± and τ± Killing spinors, respectively. To prove that

AdS3 backgrounds preserve an even number of supersymmetries observe that if χ−, for χ− = σ−

or χ− = τ−, is a Killing spinor, ie it solves all the three equations in (4.2.18), then

χ+ = A−1Γ+zχ− , (4.2.22)

also solves the KSEs (4.2.18). Vice versa if χ+ solves the KSEs in (4.2.18), then

χ− = AΓ−zχ+ , (4.2.23)

also solves the KSEs. Therefore N+ = N− and so N = 2N−. Observe also that if Nσ+
, Nτ+ 6= 0

or Nσ− , Nτ− 6= 0, then N = 2(Nσ− +Nτ−).

4.2.3 Global aspects

Here we shall demonstrate that the Killing spinors can be identified with the zero modes of

a suitable Dirac-like operator on M7. We shall demonstrate this using the Hopf maximum

principle as for the case of AdS2×wM8 backgrounds. As we have already mentioned the Bianchi

identity for F in (B.5.6) implies that there are two different AdS3×wM7 backgrounds to consider

depending on whether the mass term vanishes and H is allowed to have a component along AdS3,

or the mass term does not vanish and H has components only along M7. Unlike the local analysis

we have presented so far, the proof below of the Lichnerowicz type theorems is sensitive to the

two different cases and they will be investigated separately. However, the end result is the same

including coefficients in some key formulae. Because of this and to save space, we shall present

them together in the summary of the proof described below.

Furthermore, an argument similar to the one we have presented for AdS2 backgrounds implies

that for smooth solutions A does not vanish at any point onM7. This is based on the investigation

of the field equation for A.

Lichnerowicz type theorems for σ± and τ±

To begin let us introduce the modified parallel transport operator

∇̂(+)
i = ∇(+)

i − 1

7
A−1ΓizB(+) − 1

7
ΓiA(+), (4.2.24)

and the associated Dirac-like operator

D (+) = /∇(+) −A−1ΓzB(+) −A(+) . (4.2.25)
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It is clear that if χ+ is a Killing spinor, for χ+ = σ+ or χ+ = τ+, ie satisfies the conditions

(4.2.18), then D (+)χ+ = 0. To prove the converse suppose that D (+)χ+ = 0, then after some

computation which utilizes the field equations, Bianchi identities (and has been presented in

appendix B.5), one can establish the identity

∇2 ‖ χ+ ‖2 + (3A−1∂iA− 2∂iΦ)∇i ‖ χ+ ‖2=‖ ∇̂(+)χ+ ‖2 +
16

7
‖ A−1ΓzB(+)χ+ ‖2

+
4

7
〈A−1ΓzB(+)χ+,A(+)χ+〉+

2

7
‖ A(+)χ+ ‖2 . (4.2.26)

First observe that the right-hand-side of the above expression is positive semi-definite. Applying

the maximum principle on ‖ χ+ ‖2, one concludes that ∇(+)χ+ = B(+)χ+ = A(+)χ+ = 0 and

that

‖ χ+ ‖= const. (4.2.27)

Therefore χ+ is a Killing spinor. Thus provided that the fields and M7 satisfy the conditions for

the maximum principle to apply, we have established that

∇(+)
i χ+ = 0 , B(+)χ+ = 0 , A(+)χ+ = 0⇐⇒ D (+)χ+ = 0 . (4.2.28)

It is remarkable that the zero modes of D (+) satisfy all three KSEs.

Although we have presented Lichnerowicz type theorems for σ+ and τ+ spinors, there is

another similar theorem for σ− and τ− spinors. This can be established either by a direct

computation or by using (4.2.23) which relates the χ+ with the χ− spinors. For this observe

that in addition to the KSEs, the Clifford algebra operation AΓ−z intertwines between the

corresponding Dirac-like operators D (+) and D (−).

Counting supersymmetries again

A consequence of the theorems of the previous section is that the number of supersymmetries of

AdS3×wM7 backgrounds can be counted in terms of the zero modes of the Dirac-like operators

D (±). In particular, one has that

N = 2
(
dim Ker D (−)|c=1 + dim Ker D (−)|c=−1

)
. (4.2.29)

It is likely that the dimension of these kernels, as the dimension of the Kernel of the standard

Dirac operator, depend on the geometry of M7, ie they are not topological.

4.3 AdS4 ×wM6

4.3.1 Fields, Bianchi identities and field equations

The fields of AdS4 ×w M6 backgrounds are

ds2 = 2e+e− +A2(dz2 + e2z/`dx2) + ds2(M6) ,
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G = A2ez/`e+ ∧ e− ∧ dz ∧ dxX + Y ,

H = H , F = F , Φ = Φ , S = S , (4.3.1)

where A,X,Φ and S are functions, Y is a 4-form, H is a 3-form and F is a 2-form on M6,

respectively, and

e+ = du , e− = dr + rh , h = −2

`
dz − 2A−1dA, ∆ = 0 . (4.3.2)

A is the warp factor. The dependence of the fields on the AdS4 coordinates (u, r, z, x) is given

explicitly, while the dependence of the fields of the coordinates y of M6 is suppressed.

The Bianchi identities of (massive) IIA supergravity impose the following conditions on the

various components of the fields.

dH = 0 , dS = SdΦ , dF = dΦ ∧ F + SH ,

dY = dΦ ∧ Y +H ∧ F , d(A4X) = A4dΦ . (4.3.3)

Similarly, the field equations of the fluxes of (massive) IIA supergravity give

∇2Φ = −4A−1∂iA∂iΦ + 2(dΦ)2 +
5

4
S2 +

3

8
F 2 − 1

12
H2 +

1

96
Y 2 − 1

4
X2 ,

∇kHijk = −4A−1∂kAHijk + 2∂kΦHijk + SFij +
1

2
F k`Gijk` ,

∇jFij = −4A−1∂jAFij + ∂jΦFij −
1

6
F jk`Gijk` ,

∇`Yijk` = −4A−1∂`AYijk` + ∂`ΦYijk` , (4.3.4)

and the Einstein equation separates into an AdS component,

∇2 lnA = −3`−2A−2 − 4A−2(dA)2 + 2A−1∂iA∂
iΦ +

1

96
Y 2

+
1

4
X2 +

1

4
S2 +

1

8
F 2, (4.3.5)

and a component on M6,

R
(6)
ij = 4∇i∇j lnA+ 4A−2∂iA∂jA+

1

12
Y 2
ij −

1

96
Y 2δij +

1

4
X2δij

− 1

4
S2δij +

1

4
H2
ij +

1

2
F 2
ij −

1

8
F 2δij − 2∇i∇jΦ , (4.3.6)

where R
(6)
ij is the Ricci tensor of M6. The latter contracts to

R(6) = 4∇2 lnA+ 4A−2(dA)2 +
1

48
Y 2 +

3

2
X2 − 3

2
S2 +

1

4
H2 − 1

4
F 2 − 2∇2Φ

= −12`−2A−2 − 12A−2(dA)
2

+
1

24
Y 2 + 3X2 − 3S2 +

5

12
H2

−1

2
F 2 + 16A−1∂iA∂

iΦ− 4(dΦ)2. (4.3.7)

This expression for the Ricci scalar is used in the proof of the Lichnerowicz type theorems for

these backgrounds.
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4.3.2 Local aspects: Solution of KSEs

Solution of KSEs on AdS4

The KSEs of (massive) IIA supergravity along the AdS4 directions give

∂uε± +A−1Γ+z

(
`−1 − Ξ−

)
ε∓ = 0 ,

∂rε± −A−1Γ−zΞ+ε∓ = 0 ,

∂zε± − Ξ±ε± + 2r`−1A−1Γ−zΞ+ε∓ = 0 ,

∂xε+ + ez/`ΓzxΞ+ε+ = 0 ,

∂xε− + ez/`Γzx
(
Ξ− − `−1

)
ε− = 0 , (4.3.8)

where

Ξ± = ∓ 1

2`
+

1

2
/∂AΓz −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/Y Γz ∓

1

8
AXΓx. (4.3.9)

Using

Ξ±Γz+ + Γz+Ξ∓ = 0 , Ξ±Γz− + Γz−Ξ∓ = 0 ,

Ξ±Γzx + ΓzxΞ± = ∓`−1Γzx, (4.3.10)

one finds that there is only one integrability condition along all AdS4 directions,(
Ξ±

2 ± `−1Ξ±
)
ε± = 0 . (4.3.11)

Thus, we can easily integrate the KSEs along AdS4. In particular, the integration along r, u

and z proceeds as for the AdS3 backgrounds. Then integrating along x, we find that the Killing

spinors can be expressed as

ε = ε+ + ε− = σ+ − `−1xΓxzτ+ + e−
z
` τ+ + σ− + e

z
` (τ− − `−1xΓxzσ−)

−`−1uA−1Γ+zσ− − `−1rA−1e−
z
` Γ−zτ+ , (4.3.12)

where

Ξ±σ± = 0 Ξ±τ± = ∓`−1τ± , (4.3.13)

and σ± and τ± depend only on the coordinates of M6. Observe that σ± and τ± are again

16-component spinors counted over the reals.

Remaining independent KSEs

Having integrated the KSEs of (massive) IIA supergravity along the AdS4, it remains to identify

the remaining independent KSEs. For this, let us collectively denote (σ±, τ±) with χ±. It is also

convenient to view (4.3.13) as additional KSEs on M6. Investigating the various integrability

conditions that arise, one finds that the remaining independent KSEs are

∇(±)
i χ± = 0 , A(±)χ± = 0 , B(±)χ± = 0 , (4.3.14)
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where

∇(±)
i = ∇i + Ψ

(±)
i ,

A(±) = /∂Φ +
1

12
/HΓ11 +

5

4
S +

3

8
/FΓ11 +

1

96
/Y ∓ 1

4
XΓzx ,

B(±) = ∓ c

2`
+

1

2
/∂AΓz −

1

8
ASΓz −

1

16
A/FΓzΓ11

− 1

192
A/Y Γz ∓

1

8
AXΓx , (4.3.15)

and where

Ψ
(±)
i = ± 1

2A
∂iA+

1

8
/HiΓ11 +

1

8
SΓi +

1

16
/FΓiΓ11 +

1

192
/Y Γi ∓

1

8
XΓzxi . (4.3.16)

The constant c in B(±) is chosen such that c = 1 for χ± = σ± and c = −1 for χ± = τ±. Clearly,

the first two equations in (4.3.14) arise from the gravitino and dilatino KSEs of (massive) IIA

supergravity as adapted on the spinors χ±, respectively. The last equation in (4.3.14) implements

(4.3.13) on the spinors.

Counting of supersymmetries

The number of Killing spinors of AdS4 backgrounds is

N = N+ +N− = (Nσ+
+Nτ+) + (Nσ− +Nτ−) , (4.3.17)

where Nσ± and Nτ± denote the number of σ± and τ± Killing spinors, respectively.

As for AdS3 backgrounds one can verify by a direct computation that if χ− is a Killing spinor,

ie solves (4.3.14), then χ+ = A−1Γ+zχ− is also a Killing spinor, and vice-versa if χ+ is a Killing

spinor, then χ− = AΓ−zχ+ is also a Killing spinor. Furthermore, one can also verify that if τ±

is a Killing spinor, then

σ± = Γxzτ± , (4.3.18)

is also a Killing spinor, and vice versa if σ± is a Killing spinor, then

τ± = Γxzσ± , (4.3.19)

is a Killing spinor. As a result of this analysis, Nσ+
= Nτ+ = Nσ− = Nτ− and so

N = 4Nσ− . (4.3.20)

4.3.3 Global aspects

As in all previous cases, one can demonstrate that if the fields are smooth, then A does not

vanish at any point of M6. The argument is similar to that presented in the previous two cases

and so it will not be repeated here.
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Lichnerowicz type theorems for σ± and τ±

The Killing spinors σ± and τ± of AdS4 backgrounds can be identified with the zero modes of a

Dirac-like operator on M6. To determine this Dirac-like operator first define

∇̂(±)
i = ∇(±)

i − 1

3
A−1ΓizB(±) − 1

6
ΓiA(±) . (4.3.21)

and the associated Dirac-like operator

D (±) ≡ /̂∇
(±)

= /∇(±) − 2A−1ΓzB(±) −A(±) . (4.3.22)

Then one can establish that

∇(±)
i χ± = 0 , B(±)χ± = 0 , A(±)χ± = 0⇐⇒ D (±)χ± = 0 . (4.3.23)

It is apparent that if χ± = (σ±, τ±) are Killing spinors, then they are zero modes of D (±). The

task is to demonstrate the converse. We shall do this first for χ+ spinors. In particular let us

assume that D (+)χ+ = 0. Then after some extensive Clifford algebra calculus which is presented

in appendix B.13 and after using the Bianchi identities and the field equations, like (4.3.7), one

can show that

∇2 ‖ χ+ ‖2 +(4A−1∂iA− 2∂iΦ)∇i ‖ χ+ ‖2=‖ ∇̂(+)χ+ ‖2

+
16

3
‖ A−1ΓzB(+)χ+ ‖2 +

4

3
〈A−1ΓzB(+)χ+,A(+)χ+〉

+
1

3
‖ A(+)χ+ ‖2 . (4.3.24)

First observe that the right-hand-side of the above expression is positive semi-definite. Assuming

that M6 and the fields satisfy the requirements for the application of the maximum principle to

apply, eg M6 compact without boundary and fields smooth, one concludes that χ+ is a Killing

spinor and in addition

‖ χ+ ‖= const . (4.3.25)

This proves (4.3.23) for the χ+ spinors.

To prove (4.3.23) for the χ− spinors, one can either perform a similar computation to that of

the χ+ spinors or simply use the relation χ− = AΓ−zχ+ between χ+ and χ− spinors and observe

that the Clifford algebra operation AΓ−z intertwines between the Killing spinor equations and

the Dirac-like operators. In particular, the analogous maximum principle relation to (4.3.24) for

χ− spinors can be constructed from (4.3.24) by simply setting χ+ = A−1Γ+zχ−.

Counting supersymmetries again

A consequence of the theorems of the previous section is that one can count the number of

supersymmetries of AdS4 ×w M6 backgrounds in terms of the dimension of the Kernel of D (±)

operators. In particular, one has that

N = 4 dim Ker D (−)|c=1 . (4.3.26)
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As dim Ker D (−)|c=1 = dim Ker D (−)|c=−1 = dim Ker D (+)|c=1 = dim Ker D (+)|c=−1, one can

use equivalently in the above formula the dimension of the Kernels of any of these operators.

4.4 AdSn ×w M 10−n, n ≥ 5

4.4.1 Fields, Bianchi identities and field equations

For all AdSn ×w M10−n, n ≥ 5, backgrounds, the form fluxes have non-vanishing components

only along M10−n. In particular, the fields can be expressed as

ds2 = 2e+e− +A2
(
dz2 + e2z/`

n−3∑
a=1

(dxa)2
)

+ ds2(M10−n) ,

G = G , H = H , F = F , Φ = Φ , S = S , (4.4.1)

where A,Φ and S are functions, G is a 4-form, H is a 3-form and F is a 2-form onM6, respectively,

and

e+ = du , e− = dr + rh , h = −2

`
dz − 2A−1dA, ∆ = 0 . (4.4.2)

A is the warp factor and ` is the radius of AdSn. The dependence of the fields on the AdS4

coordinates (u, r, z, xa) is given explicitly, while the dependence of the fields of the coordinates

y of M10−n is suppressed. Clearly additional fluxes will vanish for large enough n, eg AdS7

backgrounds cannot have 4-form fluxes, G = 0.

The Bianchi identities of the (massive) IIA supergravity give

dH = 0 , dS = SdΦ , dF = dΦ ∧ F + SH ,

dG = dΦ ∧G+H ∧ F . (4.4.3)

Furthermore, the field equations of (massive) IIA supergravity give

∇2Φ = −nA−1∂iA∂iΦ + 2(dΦ)2 +
5

4
S2 +

3

8
F 2 − 1

12
H2 +

1

96
G2 , (4.4.4)

∇kHijk = −nA−1∂kAHijk + 2∂kΦHijk + SFij +
1

2
F k`Gijk` , (4.4.5)

∇jFij = −nA−1∂jAFij + ∂jΦFij −
1

6
F jk`Gijk` , (4.4.6)

∇`Gijk` = −nA−1∂`AGijk` + ∂`ΦGijk` , (4.4.7)

and the Einstein equation separates into an AdS component,

∇2 lnA = −(n− 1)`−2A−2 − nA−2(dA)2 + 2A−1∂iA∂
iΦ +

1

96
G2 +

1

4
S2 +

1

8
F 2, (4.4.8)

and M10−n component,

R
(10−n)
ij = n∇i∇j lnA+ nA−2∂iA∂jA+

1

12
G2
ij −

1

96
G2δij (4.4.9)

− 1

4
S2δij +

1

4
H2
ij +

1

2
F 2
ij −

1

8
F 2δij − 2∇i∇jΦ ,
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where R
(10−n)
ij is the Ricci tensor of M10−n. The latter contracts to

R(10−n) = n∇2 lnA+ nA−2(dA)2 +
n− 2

96
G2 − 10− n

4
S2 +

1

4
H2

+
n− 6

8
F 2 − 2∇2Φ

= − n(n− 1)`−2A−2 − n(n− 1)A−2(dA)
2

+
n− 2

48
G2

−10− n
2

S2 +
5

12
H2 +

n− 6

4
F 2

+ 4nA−1∂iA∂
iΦ− 4(dΦ)2 . (4.4.10)

The expression for the Ricci scalar is essential for the proof of the Lichnerowicz type theorems

below.

4.4.2 Local aspects: Solution of KSEs

Solution of KSEs along AdSn

The gravitino KSE of (massive) IIA supergravity along the AdSn directions gives

∂uε± +A−1Γ+z

(
`−1 − Ξ−

)
ε∓ = 0 ,

∂rε± −A−1Γ−zΞ+ε∓ = 0 ,

∂zε± − Ξ±ε± + 2r`−1A−1Γ−zΞ+ε∓ = 0 ,

∂aε+ + ez/`ΓzaΞ+ε+ = 0 ,

∂aε− + ez/`Γza
(
Ξ− − `−1

)
ε− = 0 , (4.4.11)

where

Ξ± = ∓ 1

2`
+

1

2
/∂AΓz −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/GΓz . (4.4.12)

Using the identities,

Ξ±Γz+ + Γz+Ξ∓ = 0 , (4.4.13)

Ξ±Γz− + Γz−Ξ∓ = 0 , (4.4.14)

Ξ±Γza + ΓzaΞ± = ∓`−1Γza, (4.4.15)

ones finds that all these equations can be solved provided the integrability condition(
Ξ±

2 ± `−1Ξ±
)
ε± = 0 , (4.4.16)

is satisfied. In particular, one finds that the Killing spinor can be expressed as

ε = ε+ + ε− = σ+ − `−1
n−3∑
a=1

xaΓazτ+ + e−
z
` τ+ + σ− + e

z
` (τ− − `−1

n−3∑
a=1

xaΓazσ−)

−`−1uA−1Γ+zσ− − `−1rA−1e−
z
` Γ−zτ+ , (4.4.17)

where

Ξ±σ± = 0 Ξ±τ± = ∓`−1τ± , (4.4.18)
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and σ± and τ± are 16-component spinors depending only on the coordinates of M10−n. The

dependence of the Killing spinors on the AdSn coordinates is given explicitly while that of the

coordinates y of M10−n is via the σ± and τ± spinors.

Remaining independent KSEs

Having solved the gravitino KSE along AdSn, n > 4, to count the number of supersymmetries

preserved by these backgrounds, one has to identify the remaining independent KSEs. There

are several integrability conditions which have to be considered. However after using the field

equations and the Bianchi identities, one finds that the remaining independent KSEs are

∇(±)
i χ± = 0 , A(±)χ± = 0 , B(±)χ± = 0 , (4.4.19)

where

∇(±)
i = ∇i + Ψ

(±)
i ,

A(±) = /∂Φ +
1

12
/HΓ11 +

5

4
S +

3

8
/FΓ11 +

1

96
/G
)

B(±) = ∓ c

2`
+

1

2
/∂AΓz −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/GΓz , (4.4.20)

and where

Ψ
(±)
i = ± 1

2A
∂iA+

1

8
/HiΓ11 +

1

8
SΓi +

1

16
/FΓiΓ11 +

1

192
/GΓi . (4.4.21)

We have also set χ± = (σ±, τ±), and c = 1 whenever χ± = σ± and c = −1 whenever χ± = τ±.

The first two KSEs in (4.4.19) arise from gravitino and dilatino KSEs of (massive) IIA super-

gravity as they are implemented on χ±, respectively. The last equation in (4.4.19) is the condition

(4.4.18) which is now interpreted as additional algebraic KSE. All the remaining integrability

conditions are implied from (4.4.19), the Bianchi identities and the field equations.

Counting supersymmetries

As in previous cases, the number of supersymmetries N of AdSn backgrounds is

N = N+ +N− = (Nσ+
+Nτ+) + (Nσ− +Nτ−) , (4.4.22)

where Nσ± and Nτ± denote the number of σ± and τ± Killing spinors, respectively.

A direct inspection of the remaining independent KSEs (4.4.19) reveals that if χ− is a solution,

then so is χ+ = A−1Γ+zχ−, and vice-versa if χ+ is a Killing spinor, then χ− = AΓ−zχ+ is also

a Killing spinor. Therefore N+ = N−. Moreover to count the number of supersymmetries it

suffices to count the number of χ− spinors.

Furthermore if τ− is a Killing spinor, then σ− = Γazτ− is also a Killing spinor, and vice

versa if σ− is a Killing spinor, then τ− = Γazσ− is a Killing spinor. Thus Nσ− = Nτ− and so

N = 4Nσ− . Therefore, it remains to count the number of σ− Killing spinors.
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For this observe that if σ− is a Killing spinor, then

σ′− = Γabσ− , a < b , (4.4.23)

is also a Killing spinor. To find Nσ− , one has to count the number of linearly independent

(σ,Γabσ−), a < b spinors. This depends on n. For n = 5, a, b = 1, 2 and (σ,Γ12σ) are linearly

independent. Thus AdS5 backgrounds preserve N = 8k supersymmetries. Next for n = 6,

a, b = 1, 2, 3 and (σ,Γ12σ,Γ13σ,Γ23σ) are linearly independent. Thus AdS6 backgrounds pre-

serve N = 16k supersymmetries. To continue for n = 7, a, b = 1, 2, 3, 4. It turns out that in

this case the Clifford algebra operation Γ1234 commutes with all KSEs and therefore one can

impose consistently Γ1234σ
±
− = ±σ±− , ie one can restrict σ− to lie in one of the eigenspaces of

Γ1234. In such a case, there are only 4 linearly independent spinors (σ−,Γabσ−), a < b. Thus

AdS7 backgrounds again preserve 16k supersymmetries. These results confirm the counting of

supersymmetries as stated above.

There are no AdSn, n > 7 backgrounds. This can be seen as follows. If the counting of

supersymmetries proceeds in the same way one can show that all such backgrounds preserve 32

supersymmetries. The maximally supersymmetric backgrounds of (massive) IIA supergravity

have been classified in [37] and they do not include AdSn ×w M10−n spaces. The same result

can be used to rule out the existence of AdS7 backgrounds that preserve 32 supersymmetries.

4.4.3 Global aspects

Lichnerowicz type theorems for σ± and τ±

As in all previous cases, the Killing spinors χ± of the AdSn, n > 4, backgrounds can be identified

with the zero modes of a suitable Dirac-like operator. To prove this first define

∇̂(±)
i = ∇(±)

i − n− 2

10− n
A−1ΓizB(±) − 1

10− n
ΓiA(±) , (4.4.24)

and

D (±) ≡ /̂∇
(±)

= /∇(±) − (n− 2)A−1ΓzB(±) −A(±) . (4.4.25)

Then one can show that

∇(±)χ± = 0 , A(±)χ± = 0 , B(±)χ± = 0⇐⇒ D (±)χ± = 0 . (4.4.26)

Clearly the proof of this statement in the forward direction is straightforward. The main task is

to prove the converse. It suffices to show this for χ+ spinors. This is because the Clifford algebra

operations χ+ = A−1Γ+zχ− and χ− = AΓ−zχ+ which relate these spinors intertwine between

the corresponding KSEs and the Dirac-like operators.

Next suppose that χ+ is a zero mode of the D (+) operator, D (+)χ+ = 0. Then after some

computation which is presented in appendix B.7 which involves the use of the field equations
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and Bianchi identities, one finds that

∇2‖χ+‖2 +
(
nA−1∂iA− 2∂iΦ

)
∇i‖χ+‖2 =

∥∥∥∇̂χ+

∥∥∥2

+
16(n− 2)

10− n

∥∥∥A−1ΓzB(+)χ+

∥∥∥2

+
4(n− 2)

10− n

〈
A−1ΓzB(+)χ+,A(+)χ+

〉
+

2

10− n

∥∥∥A(+)χ+

∥∥∥2

. (4.4.27)

To proceed one has to solve the above differential equations. For this observe that if the fields are

smooth A does not vanish at any point of M10−n. The proof of this is similar to that presented

in the previous cases. Furthermore, the right-hand-side of (4.4.27) is positive semi-definite. Thus

if M10−n and the fields satisfy the conditions for the application of the maximum principle, eg

M10−n compact without boundary and the fields smooth, then the only solution of this is that

χ+ is a Killing spinor and that

‖χ+‖2 = const . (4.4.28)

This completes the proof of the theorem.

Counting supersymmetries again

A consequence of the results of the previous section is that the number of supersymmetries of

AdSn ×wM10−n backgrounds can be expressed in terms of the dimension of the Kernel of D (±)

operators. In particular, one has that

N = 4 dim Ker D (−)|c=1 . (4.4.29)

Equivalently, N can be expressed in terms of dim Ker D (−)|c=−1, dim Ker D (+)|c=1 and

dim Ker D (+)|c=−1 as all these numbers are equal. Furthermore dim Ker D (−)|c=1 has multiplicity

2[ n2 ]−1. This can be seen by an analysis similar to that we have done for the counting the

supersymmetries of these backgrounds in section 4.4.2.

4.5 Flux Rn−1,1 ×w M 10−n backgrounds

In the limit of large AdS radius `, AdSn ×w M10−n become warped flux Rn−1,1 ×w M10−n

backgrounds. Furthermore all the local computations we have performed for AdSn ×w M10−n

backgrounds are still valid after taking ` → ∞ and so they can be used to investigate the

Rn−1,1 ×w M10−n backgrounds. These include the expressions for the fields, Bianchi identi-

ties, field equations as well as the local solutions to the KSEs, and the determination of the

independent KSEs on M10−n.

However, there are some differences as well. First the counting of supersymmetries is dif-

ferent. This is because the criteria for the linear independence of the solutions of the KSEs on

M10−n for AdSn ×w M10−n backgrounds are different from those of Rn−1,1 ×w M10−n back-

grounds. Secondly, the global properties of the KSEs for AdSn×wM10−n and Rn−1,1×wM10−n
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AdSn ×w M10−n N

n = 2 2k, k ≤ 15

n = 3 2k, k ≤ 15

n = 4 4k, k ≤ 7

n = 5 8k, k ≤ 3

n = 6, 7 16

n > 7 −

Table 4.1: The number of supersymmetries N of AdSn ×w M10−n back-

grounds are given. For AdS2 ×w M8, one can show that these backgrounds

preserve an even number of supersymmetries provided that M8 and the fields

satisfy the maximum principle. For the counting of supersymmetries of the

rest of the backgrounds such an assumption is not necessary. The bounds

on k arise from the non-existence of supersymmetric solutions with maximal

supersymmetry. For the remaining fractions, it is not known whether there

always exist backgrounds preserving the prescribed number of supersymme-

tries. Supersymmetric AdSn, n > 7, backgrounds do not exist.

backgrounds are different, which originates in differences between the regularity properties of

AdSn ×w M10−n and Rn−1,1 ×w M10−n backgrounds. It is well known for example that there

are no smooth flux compactifications of supergravity theories to Rn−1,1
with a compact2 internal

space M10−n.

4.5.1 Non-existence of flux Rn−1,1×wM10−n backgrounds and maximum

principle

One of the main properties of AdS backgrounds is that the warp factor A can be no-where

vanishing even if M10−n is compact. This is essential for the regularity. As we have seen, this

property relies on the radius ` of AdS and it is no longer valid in the limit `→∞.

In fact one can show that the only Rn−1,1 ×w M10−n backgrounds of (massive) IIA super-

gravity for which the fields and M10−n are chosen such that the maximum principle applies are

those for which all fluxes vanish, and the dilaton and warp factor are constant. To see this,

observe that the field equation of the warp factor A in all cases can be rewritten as a differential

inequality

∇2 lnA+ bi∂i lnA = Σ ≥ 0 , (4.5.1)

for some b which depends onA and the dilaton and Σ which depends again on the fields. Therefore

it is in a form that the maximum principle can apply. Assuming that the maximum principle

applies, the only solution of this equation is that A is constant and Σ = 0. The latter condition

2We shall demonstrate below that the same conclusion applies under a weaker hypothesis.
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in turn gives that all the fluxes must vanish apart from the component of H on M10−n and the

dilaton which are not restricted. However the vanishing of the rest of the fields turns the field

equation for the dilaton into a maximum principle form. Applying the maximum principle again

for this, one finds that the dilaton is constant and the component of H on M10−n vanishes as well.

Therefore there are no warped flux Rn−1,1 ×w M10−n backgrounds which satisfy the maximum

principle. Observe that this result applies irrespective on whether the solution is supersymmetric

or not.

In the context of flux compactifications based on Rn−1,1×wM10−n this no-go theorem may be

circumvented in various ways. One way is to take M10−n to be non-compact. Another way is to

no longer assume that various fields satisfy the properties required for the maximum principle to

hold, by weakening the assumption of smoothness. One can also add brane charges which modify

the Bianchi identities and the field equations, and/or add higher order corrections. However here

we shall focus on the properties of supergravity and we shall simply assume that the fields and

M10−n do not satisfy the requirements for maximum principle to apply.

4.5.2 Supersymmetry of flux Rn−1,1 ×w M10−n backgrounds

R1,1 ×w M8

The proof that AdS2 ×w M8 backgrounds preserve an even number of supersymmetries relies

on the maximum principle which is not applicable to R1,1 ×w M8 supergravity backgrounds.

Because of this, we cannot establish in generality that flux R1,1×wM8 backgrounds preserve an

even number of supersymmetries. Nevertheless some supersymmetry enhancement is expected.

In particular, we have seen that it is a property of (massive) IIA supergravity that if η− is a

Killing spinor then η+ = Γ+Θ−η− is also a Killing spinor. Supersymmetry enhancement takes

place whenever η− /∈ Ker Θ− and so η+ 6= 0. However there is no general argument which leads

to η+ 6= 0 and so this has to be established on a case by case basis.

The general form of the Killing spinor is

ε = η+ + η− + uΓ+Θ−η− + rΓ−Θ+η+ , (4.5.2)

for a general choice of η±. To establish the above expression from that in (4.1.6) for AdS2

backgrounds, we have taken the limit ` → ∞ and we have used the integrability conditions of

the KSEs stated in [8] which read

Γ∓Θ±Γ±Θ∓η∓ = 0 . (4.5.3)

These are automatically satisfied as a consequence of the independent KSEs on M8 (4.1.8), the

Bianchi identities and the field equations. Note that the Killing spinor ε is at most linear in the

coordinates (u, r) of R1,1
. This conclusion arises from the general analysis we have done and it

is contrary to the expectation that the Killing spinors of flux R1,1 ×w M8 backgrounds do not

depend on the coordinates of R1,1
. Notice also that ε does not depend on (u, r) whenever η± are

in the Kernel of Θ±. We shall further comment on these below.
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R2,1 ×w M7

The solution of the KSEs (4.2.8) in the limit `→∞ is

ε = σ+ + σ− + uΓ+zΞ−σ− + rΓ−zΞ+σ+ + z(Ξ+σ+ + Ξ−σ−) , (4.5.4)

provided that the integrability conditions

(Ξ±)2σ± = 0 , (4.5.5)

are satisfied, where σ± depend only on the coordinates of M7. Moreover necessary and sufficient

conditions for ε to be a Killing spinor are that σ± must satisfy the KSEs (4.2.18) on M7.

Comparing the above result with that for AdS3×wM7 backgrounds, one notices that the τ±

spinors do not arise. This is because the τ± spinors are not linearly independent from the σ± ones

for R2,1 ×w M7 backgrounds. The same applies for the rest of Rn−1,1 ×w M10−n backgrounds

and so the explanation will not be repeated below.

To count the number N of supersymmetries preserved by the R2,1 ×wM7 backgrounds, first

observe that N = Nσ+
+Nσ− , where Nσ+

and Nσ− is the number of σ+ and σ− Killing spinors,

respectively. Then notice that if σ− is a Killing spinor, then σ+ = A−1Γ+zσ− is also a Killing

spinor, and vice versa if σ+ is a Killing spinor then σ− = AΓ−zσ+ is also a Killing spinor.

Therefore Nσ+
= Nσ− , and so N = 2Nσ− , ie the R2,1×wM7 solutions preserve an even number

of supersymmetries confirming the general formula.

R3,1 ×w M6

The solution of the KSEs (4.3.8) in the limit `→∞ is

ε = σ+ + σ− + uΓ+zΞ−σ− + rΓ−zΞ+σ+ + (z + xΓxz)(Ξ+σ+ + Ξ−σ−) , (4.5.6)

provided that the integrability conditions

(Ξ±)2σ± = 0 , (4.5.7)

are satisfied, where σ± depend only on the coordinates of M6. Moreover necessary and sufficient

conditions for ε to be a Killing spinor are that σ± must satisfy the KSEs (4.3.14) on M6.

The number of supersymmetries preserved by the R3,1×wM6 backgrounds is N = Nσ+
+Nσ−

where Nσ+
and Nσ− is the number of σ+ and σ− Killing spinors, respectively. Furthermore as in

the R2,1 ×wM7 case above Nσ+
= Nσ− . In addition, if σ± is a Killing spinor so is σ′± = Γzxσ±.

As a result Nσ± are even numbers. Thus R3,1×wM6 backgrounds preserve 4k supersymmetries.

Rn−1,1 ×w M10−n for n ≥ 5

The solution of the KSEs (4.4.11) in the limit `→∞ is

ε = σ+ + σ− + uΓ+zΞ−σ− + rΓ−zΞ+σ+ + (z +

n−3∑
a=1

xaΓaz)(Ξ+σ+ + Ξ−σ−) , (4.5.8)
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provided that the integrability conditions

(Ξ±)2σ± = 0 , (4.5.9)

are satisfied, where σ± depend only on the coordinates of M10−n. Moreover necessary and

sufficient conditions for ε to be a Killing spinor are that σ± must satisfy the KSEs (4.4.19) on

M10−n.

To count the number of supersymmetries preserved by these backgrounds observe that N =

Nσ+ + Nσ− and that Nσ+ = Nσ− as in previous cases. Therefore it suffices to count the mul-

tiplicity of σ− Killing spinors. For this notice that for Rn−1,1 ×w M10−n backgrounds, the z

coordinate can be treated in the same way as the xa coordinates. As a result let us denote with

xa
′

= (z, xa) all the coordinates of Rn−1,1
transverse to the lightcone. Furthermore observe that

if σ− is a Killing spinor so is Γa′b′σ− for a′ < b′. Therefore it suffices to count the linearly

independent (σ−,Γa′b′σ−), a′ < b′ spinors in each case. For the analysis that follows, we shall

choose directions for convenience and therefore the analysis is not fully covariant. However, it

can be made covariant as that presented in [13].

For R4,1×wM5 a direct computation reveals that there are 4 linearly independent (σ−,Γa′b′σ−),

a′ < b′, a′, b′ = 1, 2, 3, spinors leading to the conclusion that such backgrounds preserve N = 8k

supersymmetries.

For R5,1×wM4, one can impose the projection Γ1234σ
±
− = ±σ± as a′, b′ = 1, 2, 3, 4 and since

Γ1234 commutes with all KSEs. If σ− is chosen to be in one of the two eigenspaces of Γ1234, then

only 4 of the (σ−,Γa′b′σ−), a′ < b′, spinors are linearly independent. As a result, R5,1 ×w M4

backgrounds preserve N = 8k supersymmetries as well.

A similar argument implies to the counting of supersymmetries for R6,1×wM3 backgrounds.

Imposing that σ− lies in one of the eigenspaces of Γ1234, only 8 of the spinors (σ−,Γa′b′σ−),

a′ < b′, a′, b′ = 1, 2, 3, 4, 5 are linearly independent. Therefore these backgrounds preserve 16k

supersymmetries.

For R7,1 ×w M2 backgrounds, σ− can be chosen to lie in an eigenspace of two Clifford

algebra operators, say Γ1234 and Γ1256. In such a case only 8 of the spinors (σ−,Γa′b′σ−),

a′ < b′, a′, b′ = 1, 2, 3, 4, 5, 6 are linearly independent and so such backgrounds also preserve 16k

supersymmetries.

Next consider the R8,1 ×w M1 backgrounds which include the D8-brane solution. In this

case σ− can be chosen to lie in an eigenspace of Γ1234, Γ1256 and Γ1357. For such a choice, there

are only 8 of the spinors (σ−,Γa′b′σ−), a′ < b′, a′, b′ = 1, 2, 3, 4, 5, 6, 7 are linearly independent.

Therefore such backgrounds also preserve N = 16k supersymmetries.

It should also pointed out that massive IIA supergravity does not have a maximally supersym-

metric solution while all the maximally supersymmetric solutions of standard IIA supergravity

are locally isometric to R9,1
with vanishing fluxes and constant dilaton [37]. This in particular

implies that N is further restricted. The results have been summarized in table 2.
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Rn−1,1 ×w M10−n N

n = 2 N < 31

n = 3 2k, k ≤ 15

n = 4 4k, k ≤ 15

n = 5 8, 16, 24

n = 6 8, 16, 24

n = 7, 8, 9 16

n = 10 32

Table 4.2:

The number of supersymmetries N of R1,1 ×w M10−n is not a priori an even number. The

corresponding statement for AdS2 backgrounds is proven using global considerations which are not

applicable in this case. For the rest, the counting of supersymmetries follows from the properties of

KSEs and the classification results of [37, 49]. Furthermore, if the Killing spinors do not depend on

Rn−1,1 coordinates, then all backgrounds with N > 16 are locally isometric to R9,1
with zero fluxes

and constant dilaton as a consequence of the homogeneity conjecture [39].

4.6 On the factorization of Killing spinors

4.6.1 AdS backgrounds

Having solved the KSEs of AdSn ×wM10−n backgrounds without any assumptions on the form

of the Killing spinors, one can address the question of whether the Killing spinors of these spaces

factorize as ε = ψ ⊗ ξ where ψ is a Killing spinor on AdSn and ξ is a Killing spinor on M10−n.

In particular, ψ is assumed to satisfy a KSE of the type

∇µψ + λγµψ = 0 , (4.6.1)

where ∇ is the spin connection of AdSn and λ is a constant related to the radius of AdSn. This

is an assumption which has been extensively used in the literature.

This issue has already been addressed in [13] and [14] for the AdSn backgrounds of D=11

and IIB supergravities. In particular, it has been found that such a factorization does not occur.

In addition if one insists on such a factorization, then one gets the incorrect counting for the

supersymmetries of well-known backgrounds like AdS5 × S5 and AdS7 × S4. The same applies

for the backgrounds of (massive) IIA supergravity we have investigated here. After an analysis

similar to the one which has been performed in [13] and [14], one finds that the Killing spinors

we have found do not factorize into Killing spinors on AdSn and Killing spinors on M10−n.

4.6.2 Flat backgrounds

The issue of factorization of Killing spinors for Rn−1,1 ×wM10−n backgrounds is closely related

to whether the Killing spinors ε we have found exhibit a linear dependence on the Rn−1,1
co-

73



ordinates. This is because if the Killing spinors factorize, then they should not depend on the

coordinates of Rn−1,1
for the chosen coordinate system. As σ± must lie in the Kernel of (Ξ±)2

as a consequence of integrability conditions, the Killing spinors ε exhibit a Rn−1,1
coordinate

dependence, iff σ± /∈ Ker Ξ±. In many examples we have investigated, σ± ∈ Ker (Ξ±)2 implies

that σ± ∈ Ker Ξ± and so the Killing spinors ε do not depend on the coordinates of Rn−1,1
.

However, we have not been able to prove this in general.

Suppose that all Killing spinors do not depend on the coordinates of Rn−1,1
. If N > 16, the

homogeneity conjecture [39] applied on the KSEs on M10−n implies that M10−n is homogenous

space and all the fields are invariant. In particular, A and Φ are constant. Then the field

equations of A and Φ imply that for all such backgrounds the fluxes vanish. As a consequence

all such backgrounds with N > 16 are locally isometric to R9,1
with zero fluxes and constant

dilaton.

4.7 Summary

In this chapter, the Killing spinor equations of AdSn ×w M10−n and R1,n−1 ×w M10−n IIA

backgrounds are solved. As a result, it was possible to determine the supersymmetry fractions

preserved by these spaces. AdSn backgrounds preserve N = 2b
n
2 ck supersymmetries for n ≤ 4

and N = 2b
n
2 c+1k supersymmetries for 4 < n ≤ 7. It was also proven that there are no

supersymmetric IIA AdSn backgrounds for n ≥ 8. R1,n−1
backgrounds preserve N = 2b

n
2 ck

supersymmetries for 2 < n ≤ 4 and N = 2b
n+1
2 ck supersymmetries for 4 < n ≤ 8.

Much like discussions of IIB backgrounds, it is often assumed that the Killing spinors of IIA

AdS backgrounds factorize into an AdS Killing spinor and a transverse Killing spinor[42, 30, 50,

29]. Again, however, when this assumption is applied as an ansatz in addition to these results, the

allowed supersymmetry fractions are further restricted. This indicates that the Killing spinors

do no factorize in general, but only in special cases.

Additionally, for each AdSn background, a Lichnerowicz-type theorem has been proven.

These theorems assume that the transverse space satisfies the requirements of the Hopf maximum

principle, which I use to prove that the σ+- and τ+-type Killing spinors are of constant length.

Simultaneously, they prove that the Killing spinors are exactly the zero modes of a Dirac-like

operator on the transverse space.

Similar results have been found for M-theory backgrounds as well. In [13], it was proven that

AdSn×wM11−n backgrounds preserve N = 2b
n
2 ck supersymmetries for n ≤ 4 and N = 2b

n
2 c+1k

supersymmetries for 4 < n ≤ 7, and Lichnerowicz-type theorems like those in this dissertation

have been proven for these backgrounds. Similarly, it was provent that R1,n−1
backgrounds

preserve N = 2b
n
2 ck supersymmetries for 2 < n ≤ 4 and N = 2b

n+1
2 ck supersymmetries for

4 < n ≤ 7.

M-theory backgrounds, like IIB backgrounds, have been of particular interest in studying

the AdS/CFT correspondence [51, 52, 53, 31], because explicit dualities have been found for
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AdS4 × S7 and AdS7 × S4 backgrounds. IIA and M-theory backgrounds are closely related,

as IIA supergravity is the Kaluza-Klein dimensional reduction of 11-dimensional supergravity

[54, 55].
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Chapter 5

Heterotic Backgrounds

Among the AdS and flat backgrounds that have been discussed in this disseration, there are

several important differences that make heterotic backgrounds unique. First, it is found that

heterotic AdSn backgrounds cannot exist unless n = 3. The additional fields of IIA, IIB, and

M-theory backgrounds allow for a broader variety of backgrounds than the dilaton and NS-

NS 3-form alone can support. It is also known that there are no heterotic AdS4 backgrounds,

supersymmetric or not, with smooth fields and a compact transverse space [56, 57]. Second,

the integrability condition of the gravitino KSE takes an especially simple form for heterotic

backgrounds, restricting the fields, rather than the Killing spinors. As a result, a given heterotic

background can only support spinors corresponding to one of the two chiral spinor representations

of SO(2,2).

An analysis of heterotic backgrounds at first order in α′, or equivalently heterotic supergravity

truncated to two loops [58], has also been included. These backgrounds are characterized by a

three-form field strength which is not closed, as well as an α′ correction to the Riemann curvature,

but are otherwise still quite tractable. They are related to the study of hyper-Kähler manifolds

with torsion [59, 60]. There are some qualitative differences between the theory at zeroth order

in α′ and the theory truncated to two loops [61, 62]. By treating α′ as a constant, rather than a

perturbative parameter, we avoid imposing the restrictions of string compactifications on these

backgrounds artificially. There has also been interest in these backgrounds as they relate to

solutions to the Strominger system [63, 64, 65, 66, 67].

5.1 AdS3 backgrounds with dH = 0

The investigation of AdS3 backgrounds will be separated into two cases depending on whether

dH vanishes or not. For the common sector of type II supergravities as well as that for the

heterotic string with the standard embedding which leads to the vanishing of the anomaly, one

has dH = 0. Furthermore dH = 0 at zeroth order in the α′ expansion in the sigma model
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approach to the heterotic string. However, in the latter case dH 6= 0 to one and higher loops.

For applications to the common sector, it is understood that we consider only one of the two

chiral copies of the KSEs.

5.1.1 Fields, Field Equations and Bianchi Identities

The most general metric and NS-NS 3-form flux of warped AdS3 backgrounds which are invariant

under the action of the sl(2,R)⊕ sl(2,R) symmetry algebra of AdS3 are

ds2 = 2e+e− +A2dz2 + ds2
(
M7
)
,

H = AXe+ ∧ e− ∧ dz +G, (5.1.1)

where we have introduced the frame

e+ = du e− = dr − 2r

`
dz − 2rd lnA , (5.1.2)

u, v, and z are the AdS3 coordinates, ` is the AdS radius, and A is the warp factor. For more

details on this parametrization of AdS3 backgrounds see [19]. Furthermore, one finds that the

dilaton, Φ, and the warp factor, A, and G depend only on the M7 coordinates. In addition X

and A, and G are functions, and a 3-form on M7, respectively.

The heterotic theory has in addition a 2-form gauge field F with gauge group a subgroup

of E8 × E8 or SO(32)/Z2 that is associated with the gauge sector. One way to impose the

symmetries of AdS3 on F is to take F to be the curvature of a connection on M7 that depends

only on the coordinates of M7. Alternatively, the gaugino1 KSE for the backgrounds that

we shall be considering implies that F vanishes along the AdS3 directions and that the Lie

derivative of F along the isometries of AdS3 vanishes as well up to gauge transformations. These

in particular imply that the associated Pontryagin forms vanish along AdS3 and depend only on

the coordinates of M7. Either results are sufficient for the analysis that will follow.

So far, we have not imposed the Bianchi identity on H and (5.1.1) applies equally to back-

grounds regardless on whether dH vanishes or not. However imposing now the Bianchi identity,

dH = 0, one finds

d(A3X) = 0 , dG = 0 . (5.1.3)

The field equations for the dilatino and 2-form gauge potential can be expressed as

∇2Φ = −3A−1∂iA∂
iΦ + 2(dΦ)2 − 1

12
G2 +

1

2
X2 ,

∇kGijk = −3A−1∂kAGijk + 2∂kΦGijk , (5.1.4)

where i, j, k = 1, . . . , 7. Moreover, the AdS component of the Einstein equation reads

∇2 lnA = − 2

`2
A−2 − 3A−2(dA)2 + 2A−1∂iA∂

iΦ +
1

2
X2, (5.1.5)

1From now on we assume that the gaugino KSE has the same Killing spinors as the gravitino KSE, see [68]

for a justification.

77



and the M7 components are

R
(7)
ij = 3∇i∇j lnA+ 3A−2∂iA∂jA+

1

4
Gik1k2Gj

k1k2 − 2∇i∇jΦ, (5.1.6)

where ∇ is the Levi-Civita connection on M7 and R
(7)
ij is its Ricci tensor. The Ricci scalar

curvature of M7 can be expressed

R(7) = 3∇2 lnA+ 3A−2(dA)2 +
1

4
G2 − 2∇2Φ

= − 6

`2
A−2 − 6A−2(dA)2 +

5

12
G2 +

1

2
X2 + 12A−1∂iA∂

iΦ− 4(dΦ)2. (5.1.7)

This formula for A constant will be used later in the proof of a Lichnerowicz type theorem.

5.1.2 Solution of KSEs along AdS3

The heterotic gravitino and dilatino KSEs are

∇M ε−
1

8
/HM ε = 0 +O(α′2) ,

(
/∂Φ− 1

12
/H
)
ε = 0 +O(α′2) . (5.1.8)

Therefore, the form of the two KSEs remains the same up to two and possibly higher loops. The

gaugino KSE does not contribute in the investigation of backgrounds with dH = 0 and so it not

included.

First let us focus on the gravitino KSE. The gravitino KSE along the AdS3 directions reads

∂uε± +A−1Γ+z

(
`−1 − Ξ−

)
ε∓ = 0 ,

∂rε± −A−1Γ−zΞ+ε∓ = 0 ,

∂zε± − Ξ±ε± +
2r

`
A−1Γ−zΞ+ε∓ = 0 , (5.1.9)

where

Ξ± = ∓ 1

2`
+

1

2
/∂AΓz ∓

1

4
AX, (5.1.10)

and Γ±ε± = 0. Furthermore, using the relations

Ξ±Γz+ + Γz+Ξ∓ = 0 , Ξ±Γz− + Γz−Ξ∓ = 0 , (5.1.11)

we find that there is only one independent integrability condition(
Ξ±

2 ± 1

`
Ξ±

)
ε± =

(
− 1

4`2
− 1

4
(dA)2 ∓ 1

4
AX/∂AΓz +

1

16
A2X2

)
ε± = 0 . (5.1.12)

As the Clifford algebra operator /∂AΓz does not have real eigenvalues, the above integrability

condition for ` <∞ can be satisfied provided that

dA = 0 , − 1

4`2
+

1

16
A2X2 = 0 . (5.1.13)

Thus the warp factor A is constant. The second equation above also implies that the component

X of H along AdS3 is constant. Furthermore, one can write

Ξ± = ∓1 + c1
2`

, (5.1.14)

78



where c1 = `
2AX = ±1 as implied by (B.2.1).

The KSEs (5.1.9) can be integrated to find

ε = ε+ + ε− = σ+ + e−
z
` τ+ + σ− + e

z
` τ− − `−1uA−1Γ+zσ− − `−1rA−1e−

z
` Γ−zτ+ , (5.1.15)

provided that

Ξ±σ± = 0 Ξ±τ± = ∓1

`
τ± . (5.1.16)

It is understood that the dependence of ε on the AdS3 coordinates is given explicitly while τ±

and σ± depend only on the coordinates of M7.

It is clear from (5.1.16) that there are two solutions to the above conditions. If c1 = 1,

(5.1.16) implies that σ± = 0. In turn the Killing spinor is

ε = ε+ + ε− = e−
z
` τ+ + e

z
` τ− − `−1rA−1e−

z
` Γ−zτ+ . (5.1.17)

Alternatively if c1 = −1, (5.1.16) gives τ± = 0 and the Killing spinor is

ε = ε+ + ε− = σ+ + σ− − `−1uA−1Γ+zσ− . (5.1.18)

Therefore depending on the sign of AX, which coincides in the sign of the contribution volume

form of AdS3 in H, there are two distinct cases to consider.

In order to interpret the two cases that arise, note that AdS3 can be identified, up to a discrete

identification, with the group manifold SL(2,R). As such it is parallelizable with respect to either

left or right actions of SL(2,R). The two associated connections differ by the sign of their torsion

term which in turn is given by the structure constants of the sl(2,R). Of course the associated

3-form coincides with the bi-invariant volume form of AdS3.

To treat both cases symmetrically, we introduce B(±) which is equal to Ξ± when it acts on

σ± and equal to Ξ± ± 1
` when it acts on τ±. The integrability conditions are then succinctly

expressed as B(±)χ± = 0, χ± = σ±, τ±, where

B(±) = ∓c1 + c2
2`

, (5.1.19)

with c2 = 1 when χ± = σ± and with c2 = −1 when χ± = τ±.

The remaining KSEs on M7 can now be expressed as

∇(±)
i χ± = 0, A(±)χ± = 0, B(±)χ± = 0 , (5.1.20)

where

∇(±)
i = ∇i + Ψ

(±)
i , Ψ

(±)
i = −1

8
/Gi , (5.1.21)

is a metric connection with skew-symmetric torsion G associated with the gravitino KSE, and

A(±) = /∂Φ± c1
`
A−1Γz −

1

12
/G , (5.1.22)
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is associated with the dilatino KSE, and B(±) should be thought as a projector which restricts

the first two equations on either σ± or τ± spinors.

For the investigation of the geometry of these backgrounds it suffices to consider only the

τ+ or the σ+ spinors. This is because, if χ− is a solution to the above KSEs, then χ+ =

A−1Γ+zχ− is also a solution, and vice versa, if χ+ is a solution, then χ− = AΓ−zχ+ is also

a solution. Incidentally, this also implies that the number of supersymmetries preserved by

AdS3 backgrounds is always even. Furthermore, it suffices to investigate the geometry of these

backgrounds as described by the σ+ spinors. As we have mentioned, the τ+ spinors arise on

choosing the other parallelization for AdS3 and it can be treated symmetrically, see also appendix

D.

5.1.3 Geometry

If the solution of the KSEs is determined by the σ± spinors, the investigation of the geometry

of M7 can be done as a special case of that of heterotic horizons in [20] which utilized the

classification results of [68]. To see this first note that h = − 2
`dz and so the constant k which

enters in the description of geometry for the heterotic horizons is

k2 = h2 = 4A−2`−2 . (5.1.23)

Next observe that as σ+ and σ− are linearly independent, there are two Killing spinors given by

ε1 = σ+ , ε2 = σ− − `−1uA−1Γ+zσ− . (5.1.24)

Setting now σ− = AΓ−zσ+ and after rescalling the second spinor with the non-vanishing constant

−2`−1A−2, we find that the two spinors can be rewritten as

ε1 = σ+ , ε2 = −k2uσ+ + Γ−/hσ+ . (5.1.25)

These are precisely the spinors that appear in the context of heterotic horizons, see [20] for a

detailed description of the geometry ofM7 including the emergence of the (left) sl(2,R) symmetry

of AdS3 backgrounds as generated by the 1-form Killing spinor bi-linears. Briefly, M7 admits

a G2 structure compatible with a metric connection ∇̂ with skew-symmetric torsion, ∇̂iXj =

∇iXj + 1
2G

j
ikX

k. Furthermore all field equations and KSEs are implied provided [20] that

d
(
e2Φ ?7 ϕ

)
= 0 , dG = 0 , (5.1.26)

where

G = kϕ+ e2Φ ?7 d(e−2Φϕ) , (5.1.27)

and ϕ is the fundamental form of the G2 structure. The first condition in (5.1.26) is required for

the existence of a G2 structure on M7 compatible with a metric connection with skew-symmetric

torsion [69] and the second condition is the Bianchi identity (5.1.3). The dilatino KSE implies
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two conditions, one of which is that the G2 structure on M7 must be conformally balanced,

θϕ = 2dΦ, both of which have been incorporated in the expression for G, where θϕ is the Lee

form of ϕ. The conditions (5.1.26) are simpler than those that have appeared for heterotic

horizons, because for AdS3 backgrounds dh = 0.

5.1.4 Geometry of AdS3 backgrounds with extended supersymmetry

We have shown that AdS3 backgrounds always preserve an even number of supersymmetries.

Furthermore, from the counting of supersymmetries for heterotic horizons [20], one concludes

that AdS3 backgrounds preserve 2, 4, 6 and 8 supersymmetries. In addition, AdS3 backgrounds

that preserve 8 supersymmetries and for which M7 is compact are locally isometric to either

AdS3×S3× T 4 or to AdS3×S3×K3. Again we shall not give the details of the proof for these

results. However, we shall state the key formulae that arise in the investigation of the geometry

for each case as they have some differences from those of the heterotic horizons.

Four supersymmetries

Let us first consider the AdS3 backgrounds with 4 supersymmetries. The two additional spinors

can be written as

ε3 = σ2
+ , ε4 = −k2uσ2

+ + Γ−/hσ
2
+ , (5.1.28)

where σ2
+ is linearly independent from σ1

+ = σ+ in (5.1.25). In fact it can be shown that the

normal form for these spinors up to the action of Spin(7) can be chosen as σ1
+ = 1 + e1234

and σ2
+ = i(1 − e1234). The isotropy group of all four spinors is SU(3). Therefore M7 is a

Riemannian manifold equipped with metric ds2
(7) and a 3-form G. Furthermore, the metric

connection ∇̂ with skew-symmetric torsion G is compatible with an SU(3) structure. The KSEs

restrict this structure on M7 further. In particular, the SU(3) structure on M7 is associated

with 1-form ξ, 2-form ω, and (3,0)-form χ spinor bilinears such that

iξω = 0 , Lξω = 0 , iξχ = 0 , Lξχ = ikχ , (5.1.29)

where ω and χ are the fundamental forms of an SU(3) structure in the directions transverse to

ξ. All these forms are ∇̂-parallel, ∇̂ξ = ∇̂ω = ∇̂χ = 0. In particular ∇̂ξ = 0 implies that ξ is

Killing and that iξG = k−1dw, where w(ξ) = k. As G is closed LξG = 0. The dilaton Φ is also

invariant under ξ. The full set of conditions on ξ, ω and χ can be found in [20].

The solution of these conditions2 implies that M7 can be locally constructed as a circle

fibration on a conformally balanced3, θω = 2dΦ, KT manifold B6 with Hermitian form ω, where

2In fact with the data provided M7 admits a normal almost contact structure which however is further

restricted.
3θω is the Lee form of B6.
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the tangent space of the circle fibre is spanned by ξ. The canonical bundle of B6 admits a

connection4 λ = k−1w, such that

dw(2,0) = 0 , dwijω
ij = −2k2 , (5.1.30)

i, j = 1, 2, . . . , 6, i.e. the canonical bundle is holomorphic and the connection satisfies the

Hermitian-Einstein instanton condition, and in addition

ρ̂(6) = dw , k−2dw ∧ dw + dG(6) = 0 , (5.1.31)

where

ρ̂
(6)
ij =

1

2
R̂(6)

ij
k
mI

m
k , (5.1.32)

is the curvature of the canonical bundle induced from the connection with torsion G(6) = −iIdω
on B6, and I is the complex structure of B6. The first condition is required for M7 to admit an

SU(3) structure compatible with the connection with skew-symmetric torsion G and the second

condition is required by the Bianchi identity (5.1.3). Note that B6 has a U(3) rather than an

SU(3) structure compatible with a connection with skew-symmetric torsion. This is because the

(3,0)-form χ is not invariant under the action of ξ (5.1.29).

The metric and torsion on M7 are given from those of B6 as

ds2(M7) = k−2w2 + ds2(B6) , G = k−2w ∧ dw +G(6) . (5.1.33)

This summarizes the geometry for the AdS3 backgrounds preserving four supersymmetries. So-

lutions can be constructed using the techniques developed in [20] to find solutions for heterotic

horizons.

Six supersymmetries

Next let us turn to AdS3 backgrounds preserving 6 supersymmetries. For these M7 admits an

SU(2) structure compatible with ∇̂. Furthermore, M7 can be constructed locally as a SU(2) =

S3 fibration over a 4-dimensional manifold B4 whose self-dual part of the Weyl tensor vanishes.

SU(2) twists over B4 with respect to a (principal bundle) connection λ which has curvature Fr′

such that the self-dual part satisfies

(F sd)r
′

=
k

4
ωr
′
, (5.1.34)

where ωr
′

are the almost Hermitian forms of a quaternionic Kähler structure on B4. The anti-self

dual part of F , Fad, is not restricted by the KSEs. The dilaton depends only on the coordinates

of B4. The metric and G on M7 are given by

ds2(M7) = δr′s′λ
r′λs

′
+ e2Φd̊s2(B4) , G = CS(λ)− ?̊de2Φ , (5.1.35)

4There some differences in the notation of this paper with that of [20]. For example w is denoted in [20] with

`. We have made this change because here we have denoted by ` the radius of AdS.
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where CS is the Chern-Simons5 form of λ. The only condition that remains to be solved to find

solutions is

∇̊2e2Φ = −1

2
(Fad)2 +

3

8
k2e4Φ , (5.1.36)

where the inner products are taken with respect to the d̊s2 metric. For more details on the

geometry of such backgrounds see [20].

Eight supersymmetries

Next let us turn to the AdS3 backgrounds preserving 8 supersymmetries. The description of

the geometry is as that of the backgrounds above preserving 6 supersymmetries. The only

differences are that B4 must be a hyper-Kähler manifold with respect to the d̊s2(B4) metric,

and that F sd = 0. The metric and 3-form G of M7 are given as in (5.1.35) but now we have that

∇̊2e2Φ = −1

2
(Fad)2 , (5.1.37)

instead of (5.1.36). If B4 is compact, a partial integration argument reveals tha Fad = 0 and so

the only regular solutions, up to discrete identifications, are AdS3×S3×K3 and AdS3×S3×T 4.

If B4 is not compact, there are many smooth solutions, see [70].

5.1.5 Lichnerowicz type theorem on σ+, τ+

The Killing spinors of AdS3 backgrounds (5.1.20) can be identified with the zero modes of a

suitable Dirac-like operator coupled to fluxes on M7, and vice versa. This provides a new example

of a Lichnerowicz type theorem for connections whose holonomy is not in a Spin group. This result

is analogous to others that have been established for AdS backgrounds in 11-dimensional and

type II supergravities [13, 14, 15]. However, there are some differences. One is that the spinor

representation in the heterotic case is different from that of the previous mentioned theories.

There are also some subtle issues associated with the modification of the Lichnerowicz type of

theorem in the presence of α′ corrections, which we shall consider in further detail in the next

section.

To begin, let us first suppress the α′ corrections, and take dH = 0. The Lichnerowicz type of

theorem with α′ corrections will be investigated later. We define the modified gravitino Killing

spinor operator,

∇̂(+,q1,q2)
i = ∇(+)

i + ΓiA(+,q1,q2) , (5.1.38)

on the χ+ spinors, where

A(+,q1,q2) = −q1A
−1ΓzB(+) + q2A(+), (5.1.39)

5Note that if F = 0, CS(λ) is proportional to the volume of S3.

83



for some q1, q2 ∈ R. Observe that for q1, q2 6= 0, the holonomy of ∇̂(+,q1,q2) is not in Spin(7).

Next define the modified Dirac-like operator

D (+) ≡ Γi∇̂(+,q1,q2)
i = Γi∇i + ΓiΨ

(+)
i + 7A(+,q1,q2) . (5.1.40)

It is clear that if χ+ is a Killing spinor, ie satisfies (5.1.20), then it is a zero mode of D (+). Here

we that prove the converse. In particular, we shall show that there is a choice of q1, q2 such that

all the zero modes of D (+) are Killing spinors. Thus we shall establish

∇(+)
i χ± = 0, A(+)χ± = 0, B(+)χ± = 0⇐⇒ D (+)χ+ = 0 . (5.1.41)

The proof relies on global properties of M7, which we assume to be smooth, and compact without

boundary.

To prove the theorem, let us assume that D (+)χ+ = 0 and consider the identity

∇2‖χ+‖2 = 2‖∇χ+‖2 + 2
〈
χ+,∇2χ+

〉
. (5.1.42)

The first term on the right hand side can be further rewritten in terms of the differential operator

∇̂(+,q1,q2) by completing the square as

2‖∇χ+‖2 = 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

− 4
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2)†Γi

)
∇iχ+

〉
−2
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
= 2

∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

− 4
〈
χ+,Ψ

(+)i†∇iχ+

〉
−2
〈
χ+,

(
Ψ(+)i† − A(+,q1,q2)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
, (5.1.43)

while the second term can be rewritten using the identity /∇2
= ∇2− 1

4R
(7), and D (+)χ+ = 0, as

2
〈
χ+,∇2χ+

〉
= 2

〈
χ+,Γ

i∇i
(
Γj∇jχ+

)〉
+

1

2
R(7)‖χ+‖2

=
1

2
R(7)‖χ‖2 − 2

〈
χ+,∇i

(
ΓiΓjΨ

(+)
j + 7ΓiA(+,q1,q2)

)
χ+

〉
−2
〈
χ+,

(
ΓiΓjΨ

(+)
j + 7ΓiA(+,q1,q2)

)
∇iχ+

〉
. (5.1.44)

Combining these, ∇2‖χ+‖2 can be rewritten as,

∇2‖χ+‖2 = 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

+
1

2
R(7)‖χ+‖2

+
〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) − 14q2ΓiA(+)
]
∇iχ+

〉
+
〈
χ+,−2

(
Ψ(+)i† − A(+,q1,q2)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
+
〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) − 14q2ΓiA(+)
]
χ+

〉
(5.1.45)

where

Ψ
(+)†
i =

1

8
/Gi , B(+)† = −c1 + c2

2`
, A(+)† = /∂Φ +

c1
`
A−1Γz +

1

12
/G . (5.1.46)
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Of the terms on the right hand side of (B.8.6), the first term is proportional to the gravitino

Killing spinor equation squared, and so we expect that the remaining terms will be equal to some

combination of the algebraic KSEs. The third term includes a derivative of χ+, however, and so

we will attempt to write it in the form

αi∇i‖χ+‖2 +
〈
χ+,FΓi∇iχ+

〉
= αi∇i‖χ+‖2 −

〈
χ+,F

(
ΓiΨ

(+)
i + 7A(+,q1,q2)

)
χ+

〉
, (5.1.47)

for some vector α and Clifford algebra element F that depend on the fields. In terms of the

fields, the third term in the right hand side of (B.8.6) can be rewritten as〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) − 14q2ΓiA(+)
]
∇iχ+

〉
(5.1.48)

=
〈
χ+,

[
7
`A
−1Γzi(q1c1 + q1c2 + 2q2c1)− 14q2Γi /∂Φ

+ 1+14q2
4

/G
i
+ 3+14q2

12 Γ/G
i
]
∇iχ+

〉
.

Thus, we find that it can be separated as outlined above if and only if q2 = − 1
7 . We will use this

value of q2 from here on. Then we find that〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) + 2ΓiA
]
∇iχ+

〉
=
〈
χ+,

[
1
`A
−1Γzi(7q1c1 + 7q1c2 − 2c1) + 2Γi /∂Φ

− 1
4
/G
i
+ 1

12Γ/G
i
]
∇iχ+

〉
, (5.1.49)

and so, factoring out a Γi on the right,

F =
1

`
A−1Γz(7q1c1 + 7q1c2 − 2c1)− 2/∂Φ− 1

12
/G , (5.1.50)

and αi = 2∂iΦ.

The F term part of the third term of (B.8.6) can be combined with the fourth term of (B.8.6)

to give 〈
χ+,−2

(
Ψ(+)i† + q1A

−1B(+)†Γzi + 1
7A

(+)†Γi + 1
2FΓi

)(
Ψ

(+)
i + q1A

−1ΓziB(+) − 1
7ΓiA(+)

)
χ+

〉
=
〈
χ+,−2

[
1
`

(
3q1c1 + 3q1c2 − 6c1

7

)
A−1Γzi − 6

7
/∂ΦΓi + 1

28
/G
i
+ 5

168Γ/G
i
]

[
− 1
`

(
q1c1+q1c2

2 − c1
7

)
A−1Γzi − 1

7Γi /∂Φ− 5
56
/Gi + 1

84Γ/Gi
]
χ+

〉
=
〈
χ+,

[
− 3

7`2 (7q1c1 + 7q1c2 − 2c1)
2
A−2 − 12

7 (dΦ)2 − 1
21∂iΦΓ/G

i

− 1
42` (7q1c2 + 7q1c1 − 2c1)A−1 /GΓz − 1

504
/G/G− 1

24G
2
]
χ+

〉
. (5.1.51)

The last term on the right hand side of (B.8.6) is the only term involving derivatives of the

fields other than Φ and the second derivative of Φ. However, we can use the Bianchi identity

and the Φ field equation to rewrite this term as,〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 2A−1ΓziB(+) + 2ΓiA

]
χ+

〉
=
〈
χ+,

[
2∇2Φ + 1

48
/dG
]
χ+

〉
=
〈
χ+,

[
4
`2A

−2 + 4(dΦ)2 − 1
6G

2
]
χ+

〉
, (5.1.52)
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and we can use the scalar part of the Einstein equation to rewrite the second term on the right

hand side of (B.8.6) as

1

2
R(7)‖χ+‖2 =

〈
χ+,

[
− 2

`2
A−2 − 2(dΦ)2 +

5

24
G2

]
χ+

〉
. (5.1.53)

Now we write the sum of (B.7.40), (B.7.42), and (B.7.43), as a linear combination of
∥∥B(+)χ+

∥∥2
,〈

ΓzB(+)χ+,A(+)χ+

〉
, and

∥∥A(+)χ+

∥∥2
. In particular, the sum of (B.7.40), (B.7.42), and (B.7.43)

is given by〈
χ+,

[
1
`2

(
2
7 − 42q1

2 + 12q1 + 12q1c1c2 − 42q1
2c1c2

)
A−2 + 2

7 (dΦ)2 − 1
21∂iΦΓ/G

i

− 1
42` (7q1c2 + 7q1c1 − 2c1)A−1 /GΓz − 1

504
/G/G
]
χ+

〉
, (5.1.54)

whereas ∥∥∥B(+)χ+

∥∥∥2

=
1 + c1c2

2`2
‖χ+‖2 ,〈

ΓzB(+)χ+,A(+)χ+

〉
=

〈
χ+,

[
− 1

2`2
(1 + c1c2)A−1 − 1

24`
(c1 + c2)/GΓz

]
χ+

〉
,∥∥∥A(+)χ+

∥∥∥2

= 〈χ+, [(dΦ)2 +
1

`2
A−2 − 1

6
∂iΦΓ/G

i
+
c1
6`
A−1 /GΓz

− 1

144
/G/G]χ+〉 . (5.1.55)

It follows that

∇2‖χ+‖2 − 2∂iΦ∇i‖χ+‖2 =
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

+ 28
(
q1 − 3q1

2
)
A−2

∥∥∥B(+)χ+

∥∥∥2

+ 4q1A
−1
〈

ΓzB(+)χ+,Aχ+

〉
+

2

7
‖Aχ+‖2. (5.1.56)

This expression is suitable to apply the Hopf maximum principle on the scalar function ‖χ+‖2

on M7 as for 0 < q1 <
2
7 the right hand side of this equation is positive definite. Assuming that

the conditions required for the maximum principle on the fields and M7 apply, e.g. the fields

are smooth and M7 is compact without boundary, the only solutions to the above equation are

that ‖χ+‖2 is constant, and that,

∇(±)χ± = 0 , A(±)χ± = 0 , B(±)χ± = 0 . (5.1.57)

Thus χ+ is a Killing spinor which establishes the theorem.

5.2 AdS3 backgrounds with dH 6= 0

We now consider first order α′ corrections to the equations of heterotic supergravity, including

dH. It is not a trivial matter to extend the above results to include these α′ terms, however it is

tractable, and we will find that supersymmetry enhancement and Lichnerowicz-type results still

hold.
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5.2.1 Bianchi identities, field equations and KSEs

Let us first consider the modifications that occur in the Bianchi identity, field equations and

KSEs of heterotic theory up to two loops in sigma model perturbation theory6. The anomaly

cancelation mechanism requires the modification of the Bianchi identity for H as

dH = −α
′

4

[
tr(R̃ ∧ R̃)− tr(F ∧ F )

]
+O(α′2) , (5.2.1)

where R̃ is the curvature of a connection on the spacetime M which will not be specified at

this stage, F is the curvature of the gauge sector connection of the heterotic theory and α′ is

the string tension which also has the role of the loop parameter. Thus dH is expressed as the

difference of two Pontryagin forms, one is that of the tangent space of space-time and the other

is that of the gauge sector bundle. Furthermore, global anomaly cancelation requires in addition

that the form on the right-hand-side of the anomalous Binachi identity represents the trivial

cohomology class in H4(M). This statement is modified upon the addition of NS5-brane sources

but this will not be considered here.

In addition to the modification of the Bianchi identity, the field equations also get modified.

In particular up to two loops in sigma model perturbation theory [72], the dilaton, 2-form gauge

potential, and gauge sector connection field equations read

∇2Φ = 2(dΦ)2 − 1

12
H2

+
α′

16

[
R̃MNST R̃

MNST − FMNabF
MNab

]
+O(α′2),

∇RHMNR = 2∂RΦHMNR +O(α′2),

∇NFMN + [AN , FMN ] = 2∂NΦFMN +
1

2
HMNQF

NQ +O(α′) , (5.2.2)

and the Einstein equation is

RMN =
1

4
H2
MN − 2∇M∇NΦ− α′

4

[
R̃MLST R̃N

LST − FMLabFN
Lab
]

+O(α′2) . (5.2.3)

Furthermore, the KSEs [73] are

∇M ε−
1

8
/HM ε = 0 +O(α′2) ,(

/∂Φ− 1

12
/H
)
ε = 0 +O(α′2) ,

/F ε = 0 +O(α′) . (5.2.4)

In particular observe that the KSEs have the same form up to two loops in sigma model pertur-

bation theory as that at the zeroth order. It is not known how these equations are modified at

higher orders. The gauge indices of F have been suppressed.

Before we proceed with the investigation of AdS3 backgrounds, let us specify R̃. In pertur-

bative heterotic theory, the choice of R̃ is renormalization scheme dependent. In other words,

6We use the conventions and normalization of the field equations, Bianchi identities and KSEs of [71].
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one can choose as R̃ the curvature of any connection on M . However in most applications R̃

is chosen to be the curvature Ř of the ∇̌ = ∇ − 1
2H connection on the spacetime. It is known

that this choice has some key advantages. In particular it is required for the cancelation of world

sheet supersymmetry anomaly [74] and also for the consistency of the anomalous Bianchi identity

with the modified Einstein equations for supersymmetric backgrounds. This has been used in

the calculations of [75, 71] and recently emphasized [76]. The property of Ř which is used to

establish these is that Ř satisfies instanton-like conditions, i.e. it satisfies the same conditions, to

zeroth order in α′, as those implied on F by the gaugino KSE. To see this, consider the identity

R̂MN,RS = ŘRS,MN −
1

2
dHMNRS . (5.2.5)

The integrability condition of the gravitino KSE gives R̂MN,RSΓRSε = 0. As the right-hand-side

of the anomalous Bianchi identity is of order α′, it follows from (5.2.5) that, to zeroth order in

α′, ŘMN,RSΓMN ε = 0 or equivalently /̌Rε = 0 after suppressing the SO(9, 1) gauge indices. This

is the same condition as that satisfied by the curvature of the gauge sector F in (5.2.4).

To find solutions in the perturbative case, it is understood that the fields and Killing spinors

are expanded in α′ schematically as

g = g0 + α′g1 +O(α′2) , ε = ε0 + α′ε1 +O(α′2) , (5.2.6)

and similarly for the 3-form field strength, gauge potential and dilaton. Then the field equations

and KSEs are solved order by order in α′ to find the correction to the zeroth order fields.

Next consider the case that the corrections to the heterotic theory are taken to be exact up

to and including two loops. In such a case, α′ is not an expansion parameter. The anomalous

Bianchi identity (5.2.1), field equations, (5.2.2) (5.2.3), and KSEs (5.2.4) do not receive further

corrections from the ones that have been explicitly stated. However consistency of the anomalous

Bianchi identity with the field equations requires that R̃ satisfies the same conditions as those

implied by the KSEs on the curvature F of the gauge connection, ie /̃Rε = 0 after suppressing

the gauge indices. It is not apparent that such a connection always exists but there are existence

theorems in many cases of interest. Notice also the difference from the perturbation theory as

R̃ cannot be identified with Ř. This is because dH does not vanish in the right-hand-side of

(5.2.5).

5.2.2 AdS3 backgrounds in perturbation theory

Suppose that the symmetries of AdS3 remain symmetries of the background after the α′ correc-

tions are taken into account. In such a case, the fields up to two loops in perturbation theory

will decompose as

ds2 = 2e+e− +A2dz2 + ds2
(
M7
)

+O(α′2) ,

H = AXe+ ∧ e− ∧ dz +G+O(α′2) . (5.2.7)
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This assumption is justified later. Furthermore, the field equations (5.2.2) and (5.2.3) read

∇2Φ = −3A−1∂iA∂
iΦ + 2(dΦ)2 − 1

12
G2 +

1

2
X2

+
α′

16

[
Řij,k`Ř

ij,k` − FijabF ijab
]

+O(α′2) ,

∇kGijk = −3A−1∂kAGijk + 2∂kΦGijk +O(α′2) , (5.2.8)

and the AdS component of the Einstein equation is unchanged,

∇2 lnA = − 2

`2
A−2 − 3A−2(dA)2 + 2A−1∂iA∂

iΦ +
1

2
X2 +O(α′2) , (5.2.9)

while component on M7 is now,

R
(7)
ij = 3∇i∇j lnA+ 3A−2∂iA∂jA+ 1

4Gik1k2Gj
k1k2 − 2∇i∇jΦ

−α
′

4

[
Řik,stŘj

k,st − FikabFjkab
]

+O(α′2), (5.2.10)

where i, j, k, ` = 1, 2, . . . , 7 and we have assumed that Ř and F do not have components along

the AdS3 directions. As we shall see, this will follow from the KSEs.

In addition, one finds that

R(7) = 3∇2 lnA+ 3A−2(dA)2 +
1

4
G2 − 2∇2Φ

−α
′

4

[
Řij,k`Ř

ij,k` − FijabF ijab
]

+O(α′2)

= − 6

`2
A−2 − 6A−2(dA)2 +

5

12
G2 +

1

2
X2 + 12A−1∂iA∂

iΦ− 4(dΦ)2

−3α′

8

[
Řij,k`Ř

ij,k` − FijabF ijab
]

+O(α′2) . (5.2.11)

Similarly, the anomalous Bianchi identity of H reads

dG = −α
′

4

[
tr
(
Ř ∧ Ř

)
− tr(F ∧ F )

]
+O(α′2) . (5.2.12)

As we shall see imposing the requirement that spacetime supersymmetry is preserved by the

higher order corrections simplifies the above equations further.

5.2.3 Geometry of M7 for backgrounds with two supersymmetries

In the perturbative approach to the heterotic string, one of the questions that arises is whether the

higher order corrections preserve the spacetime supersymmetry of the zeroth order background.

In other words, whether there is a renormalization scheme which preserves the spacetime super-

symmetry order by order in perturbation theory. Here we shall not investigate the existence of

such a scheme. Instead, we shall derive the conditions for such a scheme to exist.

We have shown that for AdS3 backgrounds admitting two spacetime supersymmetries at zero

order in α′, M7 has a G2 structure compatible with a connection with skew-symmetric torsion.

In particular at this order dH = 0, and A and X are constant and c1 = `
2AX = ±1. The

geometry of M7 at this order is described in section 5.1.3.
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The contribution in the terms proportional to α′ in the field equations, Bianchi identities and

KSEs comes from the fields at zeroth order in α′. These depend on Ř and F . At zeroth order,

the spacetime factorizes into a product AdS3×M7. Furthermore the choice of torsion on AdS3 is

such that ∇̂|AdS3 and ∇̌|AdS3 are either the left or right invariant parallelizing connection; AdS3

is a group manifold. In either case, R̂|AdS3 = Ř|AdS3 = 0. Therefore the contribution in the α′

terms of field equations, Bianchi identities and KSEs comes only from the Ř(7) curvature of M7.

Furthermore, the KSEs imply that the gauge curvature F does not have components along AdS3

and is invariant under the isometries of AdS3 up to gauge transformations. As a result all gauge

invariant tensors constructed from F are tensors on M7 which do not depend on the coordinates

of AdS3. These justify the choice of Ř and F made in the previous section.

As the form of the gravitino KSE remains the same up to order α′2, this implies that A and

X are constant up to that order and that again c1 = `
2AX = ±1. Furthermore the metric and

torsion of AdS3 does not receive corrections at one loop, the form of the fields remains as in

(5.2.7) up to order O(α′2). The background remains factorized as AdS3 ×M7 up to that order

as well. Imposing all the above conditions on the fields, one finds that the anomalous Bianchi

identity and field equations are simplified as in appendix B.

Next focusing on the geometry of M7, M7 admits a G2 structure compatible with a connection

∇̂ with skew-symmetric torsion G. As a consequence of the gravitino and dilatino KSEs, G is

as given in (5.1.27) up to order α′2. Moreover all the KSEs and field equations are satisfied

provided that

d
(
e2Φ ?7 ϕ

)
= 0 +O(α′2) , dG = −α

′

4

[
tr
(
Ř(7) ∧ Ř(7)

)
− tr(F ∧ F )

]
+O(α′2) . (5.2.13)

The first condition is required for the existence of a connection with skew-symmetric torsion

which is compatible with the G2 structure on M7 while the second condition arises from the

anomalous Bianchi identity. We have also assumed as in the dH = 0 case that all solutions ε of

the gravitino KSEs are also solutions of the gaugino KSE, /Fε = 0. In this case, this implies that

F is a G2 instanton on M7, and so it satisfies

Fij =
1

2
?7 ϕij

kmFkm +O(α′) , (5.2.14)

where we have suppressed the gauge indices. This summarizes the geometry of M7 up to order

α′2.

5.2.4 Extended supersymmetry

Next let us investigate the geometry of AdS3 backgrounds preserving 4, 6 and 8 supersymmetries

up to order α′2. The geometry of the associated zeroth order backgrounds for which dH = 0 has

already been described in section 5.1.4.
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Four supersymmetries

These backgrounds are a special case of those we have described in the previous section that

preserve two supersymmetries. As a result up to order α′2, the geometry is a product AdS3×M7.

The presence of two more supersymmetries restricts further the geometry of M7. As the form of

the gravitino and dilatino KSEs remain the same as that of the zeroth order fields, the geometric

restrictions on the geometry of M7 are similar to those in section 5.1.4. The only difference here

is that dH 6= 0. In particular, M7 has an SU(3) structure compatible with a connection with

skew-symmetric torsion. So it admits a Killing vector field ξ such that

iξG = k−1dw +O(α′2) , iξF = 0 +O(α′) , (5.2.15)

where w(ξ) = k. Moreover, M7 can be locally described as a circle fibration of a conformally

balanced, θω = 2dΦ, KT manifold B6 with Hermitian form ω whose canonical bundle admits a

connection k−1w, such that

dw(2,0) = 0 +O(α′2) , dwijω
ij = −2k2 +O(α′2) , (5.2.16)

i.e. the canonical bundle is holomorphic and the connection satisfies the Hermitian-Einstein

instanton condition, and in addition

ρ̂(6) = dw +O(α′2) , k−2dw ∧ dw + dG(6) = −α
′

4

[
tr
(
Ř(7) ∧ Ř(7)

)
− tr(F ∧ F )

]
+O(α′2) ,

(5.2.17)

where

ρ̂
(6)
ij =

1

2
R̂(6)

ij
k
mI

m
k +O(α′2) , (5.2.18)

is the curvature of the canonical bundle induced from the connection with torsion G(6) = −iIdω
on B6 and I is the complex structure of B6. The first condition is required for M7 to admit an

SU(3) structure compatible with the connection with skew-symmetric torsion G and the second

condition is required by the anomalous Bianchi identity (5.2.13), where now i, j, k,m = 1, 2, . . . , 6.

It is understood that the expression in the right-hand-side of the second equation in (5.2.17) is

evaluated at the zeroth order fields. The metric and torsion on M7 are given from those of B6

as in (5.1.33) but now of course the fields on B6 obey the equations (5.2.17) above.

Six supersymmetries

The presence of additional supersymmetries restricts the geometry of M7 further. In particular,

the spacetime is still a product AdS3 ×M7 up to order α′2. The geometry of the zeroth order

configuration has already been described in section 5.1.4 and so M7 is locally a S3 fibration over

a 4-dimensional manifold B4. As the gravitino and dilatino KSEs have the same form up to

order α′2 as the zeroth order equations, it is expected that M7 admits three ∇̂-parallel vector
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bilinears ξr′ , r
′ = 1, 2, 3. Thus ξr′ are isometries of the metric on M7 and iξr′H = k−1dwr′ up

to order α′2, where wr′(ξs′) = kδr′s′ . As the geometry of the spacetime is a product up to α′2,

these commute with the isometries of AdS3. However, the gravitino and dilatino KSEs do not

determine the Lie bracket algebra of ξr′ ’s.

To determine [ξr′ , ξs′ ], first note that the commutator of two isometries is an isometry. Then

using ∇̂ξr′ = 0, we can establish the identities

k−1w[ξr′ ,ξs′ ]
= iξr′ iξs′H , i[ξr′ ,ξs′ ]H = k−1dw[ξr′ ,ξs′ ]

+ iξr′ iξs′dH . (5.2.19)

Next note that iξr′ iξs′dH = 0+O(α′2). This follows from the fact that both Ř and F contribute

in dH via the zeroth order fields and so as a consequence of the gravitino and gaugino KSEs,

iξr′ Ř = iξr′F = 0. In fact F has to be a anti-self-dual instanton in the directions transverse

to AdS3 and ξr′ . As a consequence, the commutator [ξr′ , ξs′ ] is ∇̂-parallel up to order α′2. If

[ξr′ , ξs′ ] is not expressed in terms of ξr′ , the holonomy of ∇̂ is reduced to {1} implying that the

zeroth order backgrounds are group manifolds. Such backgrounds preserve 8 supersymmetries

and will be investigated below. Thus [ξr′ , ξs′ ] must close on ξt′ . Furthermore, one can use the

Bianchi identity

R̂M [N,PQ] = −1

3
∇̂MHNPQ +

1

6
dHMNPQ , (5.2.20)

to show that dwr
′

restricted on the directions transverse to AdS3 and ξr′ is ∇̂-parallel. Then

an analysis similar to that we have done for heterotic horizons [20] reveals that ξr′ close to a

su(2) algebra. As a result, M7 is locally a S3 fibration over a 4-dimensional manifold B4. The

geometry can be described exactly as in the zeroth order case but the various formulae are now

valid up to order α′2. The only modification occurs in the equation for the dilaton which now

reads

∇̊2e2Φ = −1

2
(Fad)2 +

3

8
k2e4Φ +

α′

8

(
R̃(4)2 − F 2

)
+O(α′2) , (5.2.21)

where the inner products are taken with respect to the d̊s2 metric. The additional α′ contribution

is due to the anomalous Bianchi identity of H.

Eight supersymmetries

The backgrounds with 8 supersymmeries can be investigated in a way similar to those with 6

supersymmetries described in the previous section. However there are some differences. As we

have already mentioned at zeroth order in α′, section 5.1.4, B4 is a hyper-Kähler manifold and

F sd = 0. Up to order α′2, the spacetime remains a product AdS3×M7. The investigation of the

closure properties of the three ∇̂-parallel vector field ξr′ on M7 is not necessary. This is because

it is a consequence of the gravitino and dilatino KSEs that these vector fields close to a su(2)

algebra [68]. The metric and torsion are given as in (5.1.35) but now the formulae are valid up

to order α′2. The only modification from the zeroth order equations is that the dilaton equation
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now reads

∇̊2e2Φ = −1

2
(Fad)2 +

α′

8

(
R̃(4)2 − F 2

)
+O(α′2) , (5.2.22)

where the metric d̊s(B4) is the zeroth order hyper-Kähler metric and the inner products have

been taken with respect to it.

For compact B4, at zeroth order Fad = 0, and in this case M7 = S3 × B4 up to discrete

identifications. As a consequence, the worldsheet action of the string factorizes into a sum of a

WZW model on S3 and a sigma model on the hyper-Kähler manifold B4. The latter has (4,0)

worldsheet supersymmetry and as a result is ultraviolet finite [77]. However, in the presence of

an anomaly, the couplings are corrected order by order in α′ as a consequence of maintaining

manifest (4,0) supersymmetry in perturbation theory [75].

5.2.5 Truncation to two loops

Suppose now that the theory up to two loops is exact. In such a case, the geometry of the solutions

has to be re-examined as several arguments that have been applied in previous cases have been

based on the closure of H either to all orders or at the zeroth order in perturbation theory.

Moreover α′ has been treated as an arbitrary parameter. None of these two assumptions are

valid any longer. Nevertheless, there is a simplifying assumption. This is that the backgrounds

have the symmetries of AdS3. In particular, the fields can be written as (5.1.1). The KSEs are

∇M ε−
1

8
/HM ε = 0 ,

(
/∂Φ− 1

12
/H
)
ε = 0 , /F ε = 0 . (5.2.23)

We also assume that the gaugino KSE has as many Killing spinors as the gravitino KSE.

Two supersymmetries

The G2 case is rather straightforward. As the form of the gravitino and dilatino KSEs in (5.2.23)

is the same as that for dH = 0 backgrounds and the fields are invariant under the symmetries

of AdS3, one finds that the gravitino KSE implies that A,X are constant and c1 = `
2AX = ±1.

As a result, the geometry locally decomposes as AdS3 ×M7. The geometry of M7 can now be

described as in the perturbative case with the only difference that now the equations are exact. In

particular, M7 admits a G2 structure compatible with a connection with skew-symmetric torsion.

This G2 structure is further restricted by the KSEs, Bianchi identities and field equations as

d
(
e2Φ ?7 ϕ

)
= 0 , dG = −α

′

4

[
tr
(
R̃(7) ∧ R̃(7)

)
− tr(F ∧ F )

]
, (5.2.24)

where ϕ is the fundamental G2 3-form, G = kϕ+e2Φ?7d(e−2Φϕ), and R̃ and F are G2 instantons,

ie

R̃
(7)
ij,pq =

1

2
?7 ϕij

kmR̃
(7)
km,pq , Fij =

1

2
?7 ϕij

kmFkm . (5.2.25)
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The condition on F follows from the gaugino KSE. Observe that Ř, which is no longer a G2

instanton because of (5.2.5) and dH 6= 0, has now been replaced with R̃(7). Moreover α′ in

(5.2.24) is a constant rather than a parameter.

Four supersymmetries

The geometry of these backgrounds also factorizes as AdS3 × M7. Moreover, M7 admits a

SU(3) structure compatible with a connection ∇̂ with skew-symmetric torsion. There are 4

vector spinor bilinears and there is a basis such that 3 of them generate an sl(2,R) symmetry of

AdS3. As these 4 vector bilinears are ∇̂-parallel, their commutator is [ξa, ξb] = iξaiξbH. Since

the geometry factorizes as AdS3 ×M7, it turns out that the commutator of the generators of

sl(2,R) with the fourth vector bilinear vanishes, and so the symmetry algebra of the spacetime

is sl(2,R)⊕ u(1).

The rest of the analysis is similar to that we have described for the perturbative case. In

particular, the equations (5.2.15), (5.2.16), (5.2.17) and (5.2.18) are still valid but now exactly.

The only modification is in the second equation in (5.2.17) which now reads

k−2dw ∧ dw + dG(6) = −α
′

4

[
tr
(
R̃(6) ∧ R̃(6)

)
− tr(F ∧ F )

]
, (5.2.26)

where R̃(6) is a su(3) instanton on B6, ie R̃(6) is a (1,1)-form and ω-traceless. This condition is

also satisfied by F because of the gaugino KSE.

Six supersymmetries

The geometry factorizes as AdS3 × M7 and M7 admits an SU(2) structure compatible with

a connection with skew-symmetric torsion ∇̂. The spacetime admits 6 vector Killing spinor

bilinears. Three of these span an sl(2,R) symmetry of AdS3, and the other three ξr′ are ∇̂-

parallel on M7 and commute with those generating the sl(2,R). We shall argue that for non-

trivial backgrounds the commutator of these three vector field must close in the set. To see

this, consider the identities in (5.2.19). As ξr′ are Killing, their commutator is also Killing.

Furthermore, the term iξr′ iξs′dH in the second equation in (5.2.19) vanishes. This is because

we have assumed that the connections that contribute in the anomalous Bianchi identity are

those that satisfy the gaugino KSE. For all these iξr′F = iξr′ R̃ = 0. As a result, if ξr′ and ξs′

are ∇̂-parallel, so is the commutator [ξr′ , ξs′ ]. If the commutator does not close in the set ξr′ ,

the holonomy of ∇̂ will reduce to {1}. As a result the curvature of ∇̂ vanishes. If this is the

case, the contribution to the anomalous Bianchi identity must vanish as well as the connections

that contribute to it have zero curvature. This is implied by our assumption that all solutions

to the gravitino KSE are also solutions of the gaugino one. For such backgrounds backgrounds

dH = 0 and so the spacetime is a group manifold which preserves 8 supersymmetries. Thus for

backgrounds with strictly six supersymmetries, we shall take that [ξr′ , ξs′ ] closes in the set ξr′ .

Then it can be shown using (5.2.20) that the symmetry group of the spacetime generated by the

vector spinor bilinears is sl(2,R)⊕ su(2).
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The rest of the investigation of the geometry is similar to that we have done in the perturbative

case. The only difference is that now

∇̊2e2Φ = −1

2
(Fad)2 +

3

8
k2e4Φ +

α′

8

(
R̃(4)2 − F 2

)
, (5.2.27)

where R̃(4) and F are anti-self-dual instantons on B4 and the inner products are taken with

respect to the d̊s2 metric. B4 is a 4-manifold with vanishing self-dual Weyl tensor and metric

d̊s(B4).

Eight supersymmetries

The investigation of the geometry of these backgrounds is simpler than that described in the

previous section for backgrounds preserving 6 supersymmetries. First the geometry factorizes

as AdS3 × M7 and M7 admits a connection with skew-symmetric torsion compatible with a

SU(2) structure. As in the previous case, M7 admits 3 ∇̂-parallel Killing spinor bilinears ξr′

which commute with another three which span an sl(2,R) symmetry of AdS3. Furthermore the

gravitino and dilatino KSEs imply that the symmetry algebra of these backgrounds is sl(2,R)⊕
su(2). The analysis of the geometry proceeds as in the perturbative case. In particular, M7 is

an S3 fibration over a hyper-Kähler manifold B4 with metric d̊s(B4). The only difference from

the perturbative case is that now

∇̊2e2Φ = −1

2
(Fad)2 +

α′

8

(
R̃(4)2 − F 2

)
, (5.2.28)

where R̃(4) and F are anti-self-dual instantons on B4.

5.2.6 Lichnerowicz type Theorem on σ+, τ+

The Lichnerowicz type theorem has to be re-examined in the presence of α′ corrections and in

the case that the theory is truncated to two loops. Again, we shall focus on M7, and define the

modified Dirac-like operator as in (5.1.40) but now dG 6= 0. Furthermore, we assume the Bianchi

identities and field equations of appendix B but now we shall include the α′ terms, replacing the

Ř(7) terms with R̃, and replacing F with F̃ where R̃ and F̃ are arbitrary curvatures of TM7 and

the gauge sector bundle respectively. In particular R̃ and F̃ are not restricted by the KSEs. For

the truncated theory at two loops, we take the equations in appendix B as exact but again with

Ř(7) and F replaced with R̃ and F̃ .

The derivation of (B.7.40) is unaffected, but (B.7.42) becomes〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 2A−1ΓziB(+) + 2ΓiA(+)

]
χ+

〉
=
〈
χ+,

[
2∇2Φ + 1

48
/dG
]
χ+

〉
=
〈
χ+,

[
4
`2A

−2 + 4(dΦ)2 − 1
6G

2 + α′

8

[
R̃ij,k`R̃

ij,k` − F̃ijabF̃ ijab
]

+α′

32

[
R̃i1i2,jkR̃i3i4,

jk − F̃i1i2abF̃i3i4ab
]
Γi1i2i3i4

]
χ+

〉
, (5.2.29)
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and (B.7.43) also picks up an α′ term;

1

2
R(7)‖χ+‖2 =

〈
χ+,

[
− 2
`2A

−2 − 2(dΦ)2 + 5
24G

2

− 3α′

16

[
R̃ij,k`R̃

ij,k` − F̃ijabF̃ ijab
]]
χ+

〉
. (5.2.30)

On combining these expressions we obtain

∇2‖χ+‖2 − 2∂iΦ∇i‖χ+‖2 =
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

+ 28
(
q1 − 3q1

2
)
A−2

∥∥∥B(+)χ+

∥∥∥2

+ 4q1A
−1
〈

ΓzB(+)χ+,Aχ+

〉
+

2

7
‖Aχ+‖2 +

α′

32
‖ /̃Fχ+ ‖2

− α′

32
〈R̃`1`2,mnΓ`1`2χ+, R̃p1p2,

mnΓp1p2χ+〉 , (5.2.31)

where we have suppressed the gauge index contraction in the ‖ /̃Fχ+ ‖2 term, and q2 = − 1
7 .

We shall first consider the case of perturbation theory, and set R̃ = Ř(7). We begin by

systematically analysing the conditions imposed by (5.2.31) order by order in α′. 7

To zeroth order in α′, one obtains (provided that 0 < q1 <
2
7 ), the conditions

∇(+)χ+ = 0 +O(α′) , A(+)χ+ = 0 +O(α′) , B(+)χ+ = 0 +O(α′) . (5.2.32)

The condition ∇(+)χ+ = 0 +O(α′) implies the integrability condition

R̂
(7)
mn,`1`2

Γ`1`2χ+ = 0 +O(α′) . (5.2.33)

This in turn implies that

Ř
(7)
`1`2,mn

Γ`1`2χ+ = 0 +O(α′) . (5.2.34)

It follows that the final term in (5.2.31) is in fact at least of order α′3, and so can be ignored.

It remains to show that (5.2.31) implies the KSEs to linear order in α′. For this consider the

perturbative expansion in the fields as in (5.2.6). One can show that if one assumes that the

zeroth order KSEs are imposed, (5.2.31) does not have an α′ correction apart from the gaugino

term, which leads to the condition

/̃Fχ+ = 0 +O(α′) . (5.2.35)

So we cannot conclude that the KSEs, apart from the gaugino, are implied from (5.2.31) to order

α′. For this some control over the α′2 terms is required which is not available. Observe that the

above theorem also implies that all solutions of the gravitino and dilatino KSEs are also solutions

of the gaugino one. This is because the modified Dirac-like operator D (+) is constructed from

only the gravitino and dilatino KSEs but nevertheless the above theorem implies that the gaugino

KSE is implied as well.

7We remark that in perturbation theory, the RHS of (5.2.31) is explicitly determined only up to first order in

α′. The α′2 terms are not known, as one would require the corresponding α′2 corrections to the Dirac operator,

as well as dG and R(7) and ∇2Φ, in order to fix the α′2 terms.
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In the truncated theory, one can again formulate a Lichnerowicz type of theorem provided

that one imposes by hand the condition

R̃`1`2,mnΓ`1`2χ+ = 0 . (5.2.36)

This condition (taking 0 < q1 <
2
7 ) is sufficient to ensure that the RHS of (5.2.31) can be written

as a sum of positive definite terms, which must all vanish.

5.3 A no-go theorem for AdSn, n ≥ 4 and n = 2 back-

grounds

There are no AdSn, n ≥ 4 backgrounds in heterotic theory with or without α′ corrections up

to two loops in sigma model perturbation theory. This includes the case for which the theory is

treated as exact up to and including two loops.

The proof of this relies on the solution of the KSEs. Suppose that the fields are invariant

under the symmetries of AdSn. Then we take a basis for the spacetime as {eλ = Aēλ, ei} where

ēλ is a basis for AdSn, and ei is a basis for the internal space M10−n. We take H to be a 3-form

on M10−n. The components of H, and the conformal factor A, depend only on the co-ordinates

of M10−n.

To proceed, consider the gravitino KSE along the AdSn frame directions, see also appendix

E. This has no contribution from the 3-form H, and can be rewritten as

∇̄λε−
1

2
Γλ∂iAΓiε = 0 . (5.3.1)

where ∇̄ denotes the Levi-Civita connection on AdSn. The integrability condition of this equation

implies that (
ΓλR̄µλ + (1− n)(dA)2Γµ

)
ε = 0 . (5.3.2)

where R̄µν is the Ricci tensor of ∇̄. However, for AdSn, R̄µν = κḡµν where ḡ is the metric on

AdSn, and κ is a negative constant. The integrability condition (5.3.2) is then equivalent to(
κ+ (1− n)(dA)2

)
ε = 0 (5.3.3)

which admits no solution as κ < 0 and n ≥ 4.

The above argument clearly applies for all backgrounds with dH = 0, and so excludes the

existence of AdSn, n > 3, backgrounds for the common sector and the heterotic theory for which

there is not an anomalous correction to the Bianchi identity. This result is also valid for the

AdSn, n > 3 solutions of the truncated theory as well. It remains to investigate the existence

of AdSn, n > 3, backgrounds in perturbative heterotic theory with an anomalous contribution

to the Bianchi identity, dH 6= 0. In this case, the argument above implies that at zeroth order
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in α′, there are no such solutions. Furthermore, it also excludes the existence of AdSn, n > 3,

solutions up and including two loops in sigma model perturbation theory that preserve all the

symmetries of AdSn. However such solutions cannot completely be excluded in higher orders as

it is not known how the KSEs and field equations are corrected. There is the possibility that one

can start from another background which is allowed at zeroth order which then gets corrected in

perturbation theory to an AdSn, n > 3 solution. Although this cannot be excluded, it may be a

rather remote possibility. We conclude therefore that up to order O(α′2) in perturbation theory

there are no AdSn, n > 3, solutions to heterotic theory.

It remains to investigate the existence of AdS2 solutions. It is a consequence of the investiga-

tion of near horizon geometries in [20] that if dH = 0, there are no AdS2 solutions. This result

extends up to order α′2 in perturbation theory as it is unlikely that one can start from a different

zeroth order background and correct it at one-loop approximation to an AdS2 background-though

we do not have a proof for this. The existence of AdS2 solutions for the truncated theories will

be examined elsewhere.

5.4 Summary

In this chapter, it has been proven that there are no heterotic Adsn×wM10−n backgrounds with

n 6= 3, at either zeroth-order or first-order in α′. For these AdS3 backgrounds, it has additionally

been proven that the warp factor, A, is constant, so that they are in fact product spaces of

the form AdS3 ×M7, as a consequence of the AdS integrability condition of the Killing spinor

equations.

A Lichnerowicz-type theorem for AdS3 heterotic backgrounds has been proven by the author,

both at zeroth-order and at first-order in α′, which proves that the Killing spinors of these

backgrounds correspond to zero modes of a Dirac-like operator. Additionally, it has been proven

that the geometry of the spaces depends on the number of supersymmetries preserved. If N = 2

supersymmetries are preserved, the transverse space supports a G2 structure, if N = 4 it supports

an SU(3) structure, and if N = 6 or N = 8 it supports an SU(2) structure.
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Chapter 6

AdS5 Backgrounds with 24

Supersymmetries

Among the various AdS backgrounds which have been discussed, AdS5 backgrounds are of partic-

ular interest because of their duality to four-dimensional conformal field theories. This includes

Maldacena’s maximally supersymmetric AdS5×S5 background in IIB supergravity, which is dual

to a similarly maximally supersymmetric four-dimensional superconformal field theory. Because

of this interest, many specific AdS5 backgrounds have been found, [24, 27, 28, 29, 78, 79, 80,

81, 82, 83, 84, 50], which satisfy simplifying assumptions. For example, many are assumed to

satisfy the requirement that the Killing spinors are of the factorizable form ε = ψ ⊗ ξ, where ξ

is a Killing spinor on the transverse space M5, and ψ satisfies

∇µψ + λγµψ , (6.0.1)

for some constant λ. In light of recent interest in four dimensional N = 3 CFTs [85, 86, 87,

88], the author was interested in investigating the backgrounds which are expected to be their

gravitational duals, i.e., AdS5 backgrounds which preserve exactly N = 24 supersymmetries.

In chapters 4 and 3, it has been shown that AdS5 backgrounds in IIA and IIB supergravities

preserve N = 8k supersymmetries, 0 ≤ k ≤ 4, k an integer. This result has also been shown for

11-dimensional supergravity backgrounds [13]. All maximally supersymmetric backgrounds have

been classified [37], and it has been shown that no such backgrounds exist in either 11-dimensional

supergravity or IIA supergravity, even with a non-zero Romans mass. However, there is no such

classification of AdS5 backgrounds preserving less than N = 32 supersymmetries.

In this chapter, the non-existence of AdS5 backgrounds which preserve N = 24 supersymme-

tries in 11-dimensional and IIA supergravities are proven, in sections 6.1 and 6.2, respectively.

Additionally, it is proven that AdS5 backgrounds in IIB supergravity are locally isometric to the

maximally supersymmetric AdS5 ×M5 background, in section 6.3. The only assumptions used

in these proofs are that the fields are smooth, that the transverse space, M6 or M5, is path
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connected and compact, with no boundary, and that the fields are invariant under the so(2, 4)

symmetry of AdS5.

6.1 AdS5 ×w M 6 Solutions in D=11

We begin by briefly summarizing the general structure of warp AdS5 solutions in 11-dimensional

supergravity, as determined in [13], whose conventions we shall follow throughout this section.

Then we shall present the proof that there are no such solutions preserving 24 supersymmetries.

The metric and 4-form are given by

ds2 = 2du(dr + rh) +A2(dz2 + e2z/`
2∑
a=1

(dxa)2) + ds2(M6) ,

F = X , (6.1.1)

where we have written the solution as a near-horizon geometry [19], with

h = −2

`
dz − 2A−1dA , (6.1.2)

(u, r, z, x1, x2) are the coordinates of the AdS5 space, A is the warp factor that is function on

M6 and X is a closed 4-form on M6. A and X depend only on the coordinates of M6, ` is the

radius of AdS5.

The 11-dimensional Einstein equation implies that

Dk∂k logA = − 4

`2
A−2 − 5∂k logA∂k logA+

1

144
X2 , (6.1.3)

where D is the Levi-Civita connection on M6. The remaining components of the Einstein and

gauge field equations are listed in [13], however we shall only require (6.1.3) for the analysis of

the N = 24 solutions. In particular, (6.1.3) implies that A is everywhere non-vanishing on M6,

on assuming that M6 is path-connected and all fields are smooth.

We adopt the following frame conventions; ei is an orthonormal frame for M6, and

e+ = du , e− = dr + rh , ez = Adz , ea = Aez/`dxa . (6.1.4)

We use this frame in the investigation of KSEs below.

6.1.1 The Killing spinors

The Killing spinors of AdS5 backgrounds are given by

ε = σ+ − `−1
2∑
a=1

xaΓazτ+ + e−
z
` τ+ + σ− + e

z
` (τ− − `−1

2∑
a=1

xaΓazσ−)

−`−1uA−1Γ+zσ− − `−1rA−1e−
z
` Γ−zτ+ , (6.1.5)
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where we have used the light-cone projections

Γ±σ± = 0 , Γ±τ± = 0 , (6.1.6)

and σ± and τ± are 16-component spinors that depend only on the coordinates of M6. We do

not assume that the Killing spinors factorize as Killing spinors on AdS5 and Killing spinors on

M6.

The remaining independent Killing spinor equations (KSEs) are:

D
(±)
i σ± = 0 , D

(±)
i τ± = 0 , (6.1.7)

and

Ξ(±)σ± = 0 , Ξ(∓)τ± = 0 , (6.1.8)

where

D
(±)
i = Di ±

1

2
∂i lnA− 1

288
/ΓXi +

1

36
/Xi ,

Ξ(±) = −1

2
ΓzΓ

i∂i logA∓ 1

2`
A−1 +

1

288
Γz /X . (6.1.9)

In particular algebraic KSEs (6.1.8) imply that σ+ and τ+ cannot be linearly dependent. For

our Clifford algebra conventions see also appendix A.

6.1.2 Counting the Killing Spinors

In order to count the number of supersymmetries, note that if σ+ is a solution of the σ+ KSEs,

then so is Γ12σ+. Furthermore, τ+ = ΓzΓ1σ+ and τ+ = ΓzΓ2σ+ are solutions to the τ+ KSEs.

The spinors σ+,Γ12σ+,ΓzΓ1σ+,ΓzΓ2σ+ are linearly independent. The positive chirality spinors

also generate negative chirality spinors σ−, τ− which satisfy the appropriate KSEs. This is

because if σ+, τ+ is a solution, then so is

σ− = AΓ−Γzσ+ , τ− = AΓ−Γzτ+ , (6.1.10)

and also conversely, if σ−, τ− is a solution, then so is

σ+ = A−1Γ+Γzσ− , τ+ = A−1Γ+Γzτ− . (6.1.11)

So for a generic AdS5×wM6 solution, all of the Killing spinors are generated by the σ+ spinors,

each of which gives rise to 8 linearly independent spinors via the mechanism described here. The

solutions therefore preserve 8k supersymmetries, where k is equal to the number of σ+ spinors.

6.1.3 Non-existence of N = 24 AdS5 solutions in D=11

To consider the AdS5 solutions preserving 24 supersymmetries, we begin by setting

Λ = σ+ + τ+ (6.1.12)
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and defining

Wi = A〈Λ,Γz12ΓiΛ〉 . (6.1.13)

Then (6.1.7) implies that

D(iWj) = 0 (6.1.14)

so W is an isometry of M6. In addition, the algebraic conditions (6.1.8) imply that

1

288
〈Λ, /ΓXiΛ〉 −

1

2
‖ Λ ‖2 A−1DiA− `−1A−1〈τ+,ΓiΓzσ+〉 = 0 . (6.1.15)

Also, (6.1.7) implies that

Di ‖ Λ ‖2= − ‖ Λ ‖2 A−1DiA+
1

144
〈Λ, /ΓXiΛ〉 . (6.1.16)

Combining (6.1.15), and (6.1.16) we have

Di ‖ Λ ‖2 −2`−1A−1〈τ+,ΓiΓzσ+〉 = 0 . (6.1.17)

In addition (6.1.7) implies that

Di

(
A〈τ+,ΓiΓzσ+〉

)
= 0 . (6.1.18)

Hence, on taking the divergence of (6.1.17), we find

DiDi ‖ Λ ‖2 +2A−1DiADi ‖ Λ ‖2= 0 . (6.1.19)

A maximum principle argument then implies that ‖ Λ ‖2 is constant. Substituting these condi-

tions back into (6.1.16), we find the condition

iWH = 6 ‖ Λ ‖2 dA , (6.1.20)

where

H = ?6X , (6.1.21)

and ?6 denotes the Hodge dual on M6.

To prove a non-existence theorem for N = 24 solutions, we consider spinors of the type

Λ = σ+ + τ+ . (6.1.22)

For a N = 24 solution, there are 12 linearly independent spinors of this type, because of the

algebraic conditions (6.1.8). Next, consider the condition (6.1.20). This implies that

iW dA = 0 , (6.1.23)
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where W is the isometry generated by Λ as defined in (6.1.13).

A straightforward modification of the reasoning used in [39], which we describe in Appendix

B, implies that for N = 24 solutions, the vector fields dual to the 1-form bilinears W generated

by the Λ spinors span the tangent space of M6. Then the condition iW dA = 0 implies that A is

constant, and furthermore, (6.1.20) implies that iWH = 0, which also implies that H = 0, and

so X = 0.

However, the Einstein equation (6.1.3) admits no AdS5 solutions for which dA = 0 and X = 0,

so there can be no N = 24 AdS5 solutions.

We should remark that the two assumptions we have made on the fields to derive this result

are essential. This is because any AdSd+1 background can locally be written as a warped product

ds2(AdSd+1) = dy2 + A2(y)ds2(AdSd) for some function A which has been determined in [89].

For d = 2, this has previously been established in [90]. As a result the maximally supersymmetric

AdS7 × S4 solution of 11-dimensional supergravity can be seen as a warped AdS5 background.

This appears to be a contradiction to our result. However, the transverse space M6 in this case

is non-compact and so it does not satisfy the two assumptions we have made.

6.2 AdS5 ×w M 5 solutions in (massive) IIA supergravity

As in the 11-dimensional supergravity investigated in the previous sections, there are no N = 24

AdS5 backgrounds in (massive) IIA supergravity. We shall use the formalism and follow the

conventions of [15] in the analysis that follows. Imposing invariance of the background under

the symmetries of AdS5 all the fluxes are magnetic, ie their components along AdS5 vanish. In

particular the most general AdS5 background is

ds2 = 2du(dr + rh) +A2
(
dz2 + e2z/`

2∑
a=1

(dxa)2
)

+ ds2(M5) ,

G = G , H = H , F = F , Φ = Φ , S = S , h = −2

`
dz − 2A−1dA , (6.2.1)

where we have denoted the 10-dimensional fluxes and their components along M5 with the same

symbol, A is the warp factor, Φ is the dilaton and S is the cosmological constant dressed with the

dilaton. A, S and Φ are functions of M5, while G , H and F are the 4-form, 3-form and a 2-form

fluxes, respectively, which have support only on M5. The coordinates of AdS5 are (u, r, z, xa)

and we introduce the frame (e+, e−, ez, ea) as in (6.1.4).

The fields satisfy a number of field equations and Bianchi identities which can be found in

[15]. Those relevant for the analysis that follows are the field equation for the dilaton and the

field equation for G

D2Φ = −5A−1∂iA∂iΦ + 2(dΦ)2 +
5

4
S2 +

3

8
F 2 − 1

12
H2 +

1

96
G2 , (6.2.2)

∇`Gijk` = −5A−1∂`AGijk` + ∂`ΦGijk` , (6.2.3)
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respectively, and the Einstein equations both along AdS5 and M5

D2 lnA = −4`−2A−2 − 5A−2(dA)2 + 2A−1∂iA∂
iΦ +

1

96
G2 +

1

4
S2 +

1

8
F 2, (6.2.4)

R
(5)
ij = 5∇i∇j lnA+ 5A−2∂iA∂jA+

1

12
G2
ij −

1

96
G2δij (6.2.5)

− 1

4
S2δij +

1

4
H2
ij +

1

2
F 2
ij −

1

8
F 2δij − 2∇i∇jΦ ,

respectively, where D is the Levi-Civita connection of M5 and R
(5)
ij is the Ricci tensor of M5.

The former is seen as the field equation for the warp factor A.

6.2.1 Killing spinor equations

The killing spinors of IIA AdS5 backgrounds are given as in (6.1.5) where now σ± and τ± are

16-component spinors that depend only on the coordinates of M5. The remaining independent

conditions are the gravitino KSEs

∇(±)
i σ± = 0 , ∇(±)

i τ± = 0 , (6.2.6)

the dilatino KSEs

A(±)σ± = 0 , A(±)τ± = 0 , (6.2.7)

and the algebraic KSEs

Ξ±σ± = 0 , Ξ±τ± = ∓`−1τ± , (6.2.8)

where

∇(±)
i = Di + Ψ

(±)
i ,

A(±) = /∂Φ +
1

12
/HΓ11 +

5

4
S +

3

8
/FΓ11 +

1

96
/G ,

Ξ± = ∓ 1

2`
+

1

2
/∂AΓz −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/GΓz , (6.2.9)

and where D is the spin connection on M5 and

Ψ
(±)
i = ± 1

2A
∂iA+

1

8
/HiΓ11 +

1

8
SΓi +

1

16
/FΓiΓ11 +

1

192
/GΓi , (6.2.10)

see appendix A for our Clifford algebra conventions. The counting of supersymmetries is exactly

the same as in the D=11 supergravity described in the previous sections.

6.2.2 N = 24 AdS5 solutions in (massive) IIA supergravity

Before we proceed with the analysis, the homogeneity conjecture1 [39] together with the results

[48, 91] on the classification of (massive) IIA backgrounds imply that both Φ and S are constant

1Strictly speaking the homogeneity conjecture has not been proven for massive IIA supergravity but it is

expected to hold.

104



functions over the whole spacetime which we shall assume from now on. Next let us set

Λ = σ+ + τ+ , (6.2.11)

and define

Wi = A〈Λ,ΓzxyΓiΛ〉 . (6.2.12)

Then (6.2.6) implies that

D(iWj) = 0 , (6.2.13)

so W is an isometry of M5.

After some straightforward computation using the gravitino KSEs, one finds

Di ‖ Λ ‖2= −A−1∂iA ‖ Λ ‖2 −1

4
S〈Λ,ΓiΛ〉 −

1

8
〈Λ, /ΓF iΓ11Λ〉 − 1

96
〈Λ, /ΓGiΛ〉 (6.2.14)

On the other hand (6.2.8) gives

(/∂AΓz −
1

4
ASΓz −

1

8
A/FΓzΓ11 −

1

96
A/GΓz)Λ = −`−1τ+ + `−1σ+ . (6.2.15)

Using this, (6.2.14) can be written as

Di ‖ Λ ‖2= 2`−1A−1〈τ+,ΓiΓzσ+〉 . (6.2.16)

Furthermore using (6.2.6), one can show that

Di(A〈τ+,ΓiΓzσ+〉) = 0 . (6.2.17)

Taking the covariant derivative of (6.2.16) and using the above equation, one finds that

DiDi ‖ Λ ‖2 +2A−1DiADi ‖ Λ ‖2= 0 . (6.2.18)

This in turn implies after using the maximum principle that ‖ Λ ‖2 is constant.

Using the constancy of ‖ Λ ‖2, (6.2.14) and (6.2.16) imply that

−A−1∂iA ‖ Λ ‖2 −1

4
S〈Λ,ΓiΛ〉 −

1

8
〈Λ, /ΓF iΓ11Λ〉 − 1

96
〈Λ, /ΓGiΛ〉 = 0 , (6.2.19)

and

〈τ+,ΓiΓzσ+〉 = 0 . (6.2.20)

Next taking the difference of the two identities below

〈τ+,Ξ+σ+〉 = 0 , 〈σ+, (Ξ+ + `−1τ+〉 = 0 , (6.2.21)

and upon using (6.2.20), we find

〈τ+, σ+〉 = 0 , (6.2.22)
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ie τ+ and σ+ are orthogonal.

To continue, multiply Ξ+Λ = −`−1τ+ with Γxy, and using the fact Γxyτ+ is again a type τ+

Killing spinor, and the equation above, one obtains that

W i∂iA = 0 . (6.2.23)

As straightforward modification of the argument used in [39] to prove the homogeneity conjecture,

see also appendix B, one can show that the vector fields W span the tangent spaces of M5. As

a result, the above equation implies that A is constant.

Next using the dilatino KSE (6.2.7) to eliminate the G-dependent term in (6.2.19) and that

A = const, one finds

4S〈Λ,ΓiΛ〉+ 〈Λ, /ΓF iΓ11Λ〉+
1

3
〈Λ, /ΓHiΓ11Λ〉 = 0 . (6.2.24)

In what follows, we shall investigate the standard and massive IIA supergravities separately.

Standard IIA supergravity S = 0

In the case for which S = 0, the dilatino KSEs (6.2.7) imply that

〈Λ, /GΓ11Λ〉 = 0 , (6.2.25)

or equivalently, W ∧ G = 0. As the W span the tangent space of M5, it follows that G = 0.

Then, using the dilatino KSE (6.2.7) to eliminate the F terms from (6.2.24), we obtain

〈Λ, /ΓHiΓ11Λ〉 = 0 , (6.2.26)

which implies that W ∧H = 0. As the W span the tangent space of M5, it follows that H = 0

also. The dilaton field equation (6.2.3) then implies that F = 0 as well. However, for S = 0,

G = 0, H = 0 and F = 0, the the warp factor field equation (6.2.4) becomes inconsistent, and

so there are no AdS5 solutions in standard IIA supergravity that preserve 24 supersymmetries.

Massive IIA supergravity S 6= 0

On writing G = ?5X, where X is a 1-form on M5, the condition

5

4
S〈Λ,Γ11Λ〉+

1

96
〈Λ, /GΓ11Λ〉 = 0 , (6.2.27)

which is derived from the dilatino KSE (6.2.7), can be rewritten as

5

4
S〈Λ,Γ11Λ〉 − 1

4
A−1iWX = 0 . (6.2.28)

Furthermore, the G field equation implies that dX = 0, and we assume2 that LWG = 0 which

implies LWX = 0. This condition, together with dX = 0, gives that iWX is constant. Then it

follows from (6.2.28) that 〈Λ,Γ11Λ〉 is also constant.

2The invariance of G under the vector fields constructed as Killing spinor bilinears has not been proven for

massive IIA in complete generality but it is expected to hold.
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On differentiating the condition 〈Λ,Γ11Λ〉 = const using the gravitino KSEs, we obtain the

condition

−1

4
Fij〈Λ,ΓjΛ〉+

1

24
〈Λ,Γ11 /GiΛ〉 = 0 , (6.2.29)

and hence

XiFij〈Λ,ΓjΛ〉 = 0 . (6.2.30)

However, using an argument directly analogous to that used to show that the vector fields W

span the tangent space of M5, it follows that the vectors 〈Λ,ΓjΛ〉∂j also span the tangent space

of M5, see appendix B. Therefore,

iXF = 0 . (6.2.31)

Next, act on the right-hand-side of the dilatino equation (6.2.7) with /XΓ11 and take the inner

product with Λ. On making use of iXF = 0, we find the condition

〈Λ, X`1H`2`3`4Γ`1`2`3`4Λ〉 = 0 , (6.2.32)

and hence

〈Λ,Γ11ΓxyzΓqΛ〉εq`1`2`3`4X`1H`2`3`4 = 0 . (6.2.33)

Again, as the vectors 〈Λ,Γ11ΓxyzΓ
jΛ〉∂j span the tangent space of M5, this condition implies

that

X ∧H = 0 . (6.2.34)

Another useful condition is to note that LWX = 0 implies that

LW (DiXi) = 0 , (6.2.35)

and as the W span the tangent space of M5, it follows that DiXi must be constant. However

the integral of DiXi over M5 vanishes, and hence it follows that

DiXi = 0 , (6.2.36)

ie X is co-closed. As it is also closed, X and so G are harmonic. This condition, together with

dX = 0, imply that one can write

D2X2 = 2DiXjDiXj + 2Xj(DiDj −DjDi)X
i = 2DiXjDiXj + 2XiXjR

(5)
ij . (6.2.37)

On using the Einstein equation (6.2.5), together with the conditions iXF = 0, X ∧H = 0, we

find

D2X2 = 2DiXjDiXj +X2
(
− 1

48
G2 − 1

2
S2 − 1

4
F 2 +

1

6
H2
)
, (6.2.38)
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which can be written as

D2X2 = 2DiXjDiXj +X2
(
2S2 +

3

2
F 2
)
, (6.2.39)

on using the dilaton equation (6.2.3) to eliminate the G2 term. As the right-hand-side of this

expression is a sum of non-negative terms, an application of the maximum principle implies that

X2 is constant3 and

X2S2 = 0 . (6.2.40)

As S 6= 0, it follows that X2 = 0, and hence G = 0. Then (6.2.27) implies that

〈Λ,Γ11Λ〉 = 0 , (6.2.41)

for all Killing spinors Λ. However, this is a contradiction.

To see this, let the 12-dimensional vector space spanned by the Killing spinors Λ be denoted

by K. Then the above condition implies that

〈Λ1,Γ11Λ2〉 = 0 , (6.2.42)

for all Λ1,Λ2 ∈ K. Denoting

Γ11K = {Γ11Λ : Λ ∈ K} , (6.2.43)

the condition (6.2.42) implies that Γ11K ⊆ K⊥, where

K⊥ = {Ψ : 〈Ψ,Λ〉 = 0 for all Λ ∈ K} . (6.2.44)

The dimension of space of all Majorana Spin(9, 1) spinors ζ satisfying the lightcone projection

Γ+ζ = 0 is 16. As K has dimension 12, K⊥ has dimension 4. As Γ11K is 12-dimensional it

cannot be included in K⊥ as required by the assumption (6.2.41). Therefore there are no AdS5

solutions in massive IIA supergravity which preserve 24 supersymmetries.

We would like to remark that the proof of this result is considerable simpler if M5 is simply

connected. As it has already been proven G is harmonic. On a simply connected M5, G vanishes.

In such a case, (6.2.27) again implies (6.2.41). Then the non-existence of such AdS5 backgrounds

follows from the argument produced above that (6.2.41) cannot hold for all Killing spinors.

6.3 AdS5 ×w M 5 solutions in IIB supergravity

The active fields of AdS5 ×w M5 IIB backgrounds as well as the relevant field and KSEs have

been determined in [14]. In particular, in the the conventions [14], the metric and other form

field strengths are

ds2 = 2du(dr + rh) +A2(dz2 + e2z/`
2∑
a=1

(dxa)2) + ds2(M5) ,

3The condition X2 = const also follows from LWX2 = 0 together with homogeneity.
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G = H, P = ξ, F = Y

(
A3e

2z
` du ∧ (dr + rh) ∧ dz ∧ dx ∧ dy − dvol(M5)

)
, (6.3.1)

where again we have written the background as a near-horizon geometry [19], with

h = −2

`
dz − 2A−1dA , (6.3.2)

A is the warp factor which is a smooth function on M5, G is the complex 3-form, P encodes the

(complexified) axion/dilaton gradients, F is the real self-dual 5-form and Y is a real scalar. The

AdS5 coordinates are (u, r, z, xa) and we introduce the frame (e+, e−, ez, ea) as in (6.1.4).

For the analysis that follows, we shall use the Bianchi identities

d(A5Y ) = 0, dH = iQ ∧H − ξ ∧ H̄ (6.3.3)

and the 10-dimensional Einstein equation along AdS5 which gives the field equation

A−1∇2A = 4Y 2 +
1

48
‖ H ‖2 − 4

`2
A−2 − 4A−2(dA)2 , (6.3.4)

for the warp factor A. The remaining Bianchi identities and bosonic field equations, which are

not necessary for the investigation of N = 24 solutions, can be found in [14]. We also assume

the same regularity assumptions as for the eleven dimensional solutions, and remark that (6.3.4)

implies that A is nowhere vanishing on M5.

6.3.1 The Killing spinors

Solving the KSEs of IIB supergravity for AdS5×wM5 backgrounds along AdS5, one finds that the

Killing spinors can be written as in (6.1.5), where now σ± and τ± are Weyl Spin(9, 1) spinors

which depend only on the coordinates of M5 that obey in addition the lightcone projections

Γ±σ± = Γ±τ± = 0.

The remaining independent KSEs are the gravitino parallel transport equations

D
(±)
i σ± = 0, D

(±)
i τ± = 0 , (6.3.5)

where

D
(±)
i = Di ±

1

2
∂i logA− i

2
Qi ±

i

2
Y ΓiΓxyz +

(
− 1

96
/ΓHi +

3

32
/Hi

)
C∗ , (6.3.6)

together with the dilatino KSEs(
1

24
/H + /ξC ∗

)
σ± = 0,

(
1

24
/H + /ξC ∗

)
τ± = 0 , (6.3.7)

and some additional algebraic conditions which arise from the integration of the KSEs along the

AdS5 subspace

Ξ(±)σ± = 0,

(
Ξ(±) ± `−1

)
τ± = 0 , (6.3.8)
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where

Ξ(±) = ∓ 1

2`
− 1

2
Γz /∂A±

i

2
AY Γxy +

1

96
AΓz /HC∗ , (6.3.9)

and C is the charge conjugation matrix. Again, we have not made any assumptions on the form

of the Killing spinors.

The counting of the Killing spinors, and the way in which one can construct the σ±, τ±

spinors from each other proceeds in exactly in the same way as for the D = 11 AdS5 solutions.

So, again, for a generic AdS5 ×w M5 solution, all of the Killing spinors are generated by the

σ+ spinors, each of which gives rise to 8 linearly independent spinors. The solutions therefore

preserve 8k supersymmetries, where k is equal to the number of σ+ spinors.

6.3.2 N = 24 AdS5 solutions in IIB

To proceed with the analysis first note that as a consequence of the homogeneity conjecture

proven in [39] is that the solutions with 24 supersymmetries must be locally homogeneous, with

ξ = 0 . (6.3.10)

Then, we set

Λ = σ+ + τ+ , (6.3.11)

and define

Wi = A〈Λ,ΓzxyΓiΛ〉 . (6.3.12)

Then (6.3.5) implies that

D(iWj) = 0 , (6.3.13)

so W is an isometry of M5. Next, using (6.3.5), we find

Di ‖ Λ ‖2= − ‖ Λ ‖2 A−1DiA+
1

48
Re〈Λ, /ΓHiC ∗ Λ〉 . (6.3.14)

Furthermore, the algebraic condition (6.3.8) implies that

1

48
/HC ∗ Λ =

(
A−1ΓjDjA− iY Γxyz

)
Λ + `−1A−1Γz

(
σ+ − τ+

)
. (6.3.15)

On substituting this condition back into (6.3.14) we find

Di ‖ Λ ‖2= 2`−1A−1Re〈τ+,ΓiΓzσ+〉 . (6.3.16)

However, (6.3.5) also implies that

Di

(
ARe〈τ+,ΓiΓzσ+〉

)
= 0 . (6.3.17)
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So combining this condition with (6.3.16), we find

DiDi ‖ Λ ‖2 +2A−1DiADi ‖ Λ ‖2= 0 . (6.3.18)

A maximum principle argument then implies that ‖ Λ ‖2 is constant. Then (6.3.14) and (6.3.16)

imply

− ‖ Λ ‖2 A−1DiA+
1

48
Re〈Λ, /ΓHiC ∗ Λ〉 = 0 , (6.3.19)

or, equivalently

Re〈τ+,ΓiΓzσ+〉 = 0 . (6.3.20)

Next, we shall show that the spinors σ+, τ+ are orthogonal with respect to the inner product

Re <,>. To see this, note that (6.3.8) implies that

〈τ+,Ξ(+)σ+〉 = 0, 〈σ+,
(
Ξ(+) + `−1

)
τ+〉 = 0 . (6.3.21)

On expanding out, and subtracting these two identities, one finds that the real and imaginary

parts of the resulting expression imply

`−1Re〈τ+, σ+〉+ Re〈τ+,ΓzΓiDiAσ+〉 = 0 , (6.3.22)

and

Y Re〈τ+,Γxyσ+〉+
1

48
Im〈τ+,Γz /HC ∗ σ+〉 = 0 , (6.3.23)

respectively. On substituting (6.3.20) into (6.3.22), we find that

Re〈τ+, σ+〉 = 0 . (6.3.24)

For N = 24 solutions there are 6 linearly independent σ+ spinors, and 6 linearly independent τ+

spinors, hence the spinors of the type Λ = σ+ + τ+ span a 12 dimensional vector space over R,

which we shall denote by K.

It is also particularly useful to note that the algebraic condition (6.3.8) implies

1

2`
〈Λ,Γxy(τ+ − σ+)〉 − 1

2
〈Λ,ΓxyzΓiDiAΛ〉

− i

2
AY ‖ Λ ‖2 +

A

96
〈Λ,Γxyz /HC ∗ Λ〉 = 0 . (6.3.25)

On taking the real part of this expression, one finds

W iDiA = 0 , (6.3.26)

where we have used the identity 〈Λ,ΓxyzΓijkC ∗ Λ〉 = 0.

The condition (6.3.26) implies that

dA = 0 . (6.3.27)
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This is because, by a straightforward adaptation of the analysis in [39], it follows that the

isometries W generated by the spinors Λ ∈ K span the tangent space of M5, see also appendix

B. So A is constant, and the condition (6.3.19) implies that

Re〈Λ, /ΓHiC ∗ Λ〉 = 0 . (6.3.28)

To proceed further, take the divergence of this expression. On making use of the Bianchi identity

for H given in (6.3.3), together with the KSE (6.3.5), we find the following condition:

Re〈Λ,
(

9

8
H`1`2iH̄`3`4

iΓ`1`2`3`4 − 3

4
H`1mnH̄`2

mnΓ`1`2 +
1

4
H`1`2`3H̄

`1`2`3

)
Λ〉 = 0 , (6.3.29)

where H̄ is the complex conjugate of H. Furthermore, the algebraic condition (6.3.7) implies

that

Re〈Λ, 1

24
/̄H /HΛ〉 = 0 . (6.3.30)

On expanding this expression out, and adding it to (6.3.29), one obtains the condition

Re〈Λ, H`1`2iH̄`3`4
iΓ`1`2`3`4Λ〉 = 0 , (6.3.31)

or equivalently

W iεi
`1`2`3`4H`1`2jH̄`3`4

j = 0 . (6.3.32)

Again, as the W isometries span the tangent space of M5, one obtains

H[`1`2|i|H̄`3`4]
i = 0 . (6.3.33)

Furthermore, on substituting this condition back into

〈C ∗ Λ, /̄H /HΛ〉 = 0 , (6.3.34)

which follows from (6.3.7), we find

〈C ∗ Λ,Λ〉 ‖ H ‖2= 0 . (6.3.35)

So either H = 0, or 〈C ∗ Λ,Λ〉 = 0 for all Λ ∈ K. We shall prove that 〈C ∗ Λ,Λ〉 = 0 cannot be

satisfied for all Λ.

Indeed, suppose that 〈C ∗Λ,Λ〉 = 0 for all Λ ∈ K. We remark that 〈C ∗Λ1,Λ2〉 is symmetric

in Λ1,Λ2, and so 〈C ∗ Λ,Λ〉 = 0 for all Λ ∈ K implies that

〈C ∗ Λ1,Λ2〉 = 0 , (6.3.36)

for all Λ1,Λ2 ∈ K. If we define

K̄ = {C ∗ Λ : Λ ∈ K}, K⊥ = {Ψ : Re〈Ψ,Λ〉 = 0 for all Λ ∈ K} , (6.3.37)
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then the condition (6.3.36) implies that K̄ ⊂ K⊥. However, this is not possible, because K̄ is 12

dimensional, whereas K⊥ is 4-dimensional. So, one cannot have 〈C ∗ Λ,Λ〉 = 0 for all Λ ∈ K.

It follows that

H = 0 (6.3.38)

and hence the spinors Λ satisfy

DiΛ =

(
i

2
Qi −

i

2
Y ΓiΓxyz

)
Λ , (6.3.39)

for constant Y , Y 6= 0, with

Y 2 =
1

`2A2
, (6.3.40)

as a consequence of (6.3.4). The integrability condition of (6.3.39) implies that(
Rijmn − Y 2(δimδjn − δinδjm)

)
ΓmnΛ = 0 , (6.3.41)

where we have used the Bianchi identity dQ = 0. Then (6.3.41) gives that

Re〈Λ,Γxyz
(
Rijmn − Y 2(δimδjn − δinδjm)

)
ΓnΛ〉 = 0 , (6.3.42)

or equivalently

Wn

(
Rijmn − Y 2(δimδjn − δinδjm)

)
= 0 . (6.3.43)

As the isometries W span the tangent space of M5, it follows that

Rijmn = Y 2(δimδjn − δinδjm) , (6.3.44)

and hence M5 is locally isometric to the round S5.

It follows that all (sufficiently regular) AdS5 solutions with N = 24 supersymmetries are

locally isometric to AdS5 × S5, with constant axion and dilaton, and G = 0. This establishes

that there are no distinct local geometries for IIB AdS5×M5 backgrounds that preserve strictly

24 supersymmetries.

6.4 Summary

In this chapter, the author has been proven that 10- and 11-dimensional AdS5 backgrounds

with compact transverse spaces cannot preserve exactly 24 supersymmetries. For IIA and 11-

dimensional backgrounds, it is known that there are no maximally supersymmetric AdS5 ×w
MD−5 backgrounds, and so this proves that AdS5 backgrounds preserve at most 16 supersym-

metries. For IIB backgrounds, the author has proven that any AdS5 background which preserves

24 supersymmetries is in fact maximally supersymmetric, and is locally isomorphic to AdS5×S5.
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Chapter 7

Conclusion

In this dissertation, the author has integrated the AdS Killing spinor equations for all type II and

heterotic AdSn ×w M10−n and R1,n−1 ×w M10−n backgrounds. As a consequence their allowed

supersymmetry fractions have been determined, summarized in the tables below. Note that

Table 7.1: SUSY Fraction of AdSn Backgrounds

AdSn SUSY fraction, N

AdS2 N = 2k

AdS3 N = 2k

AdS4 N = 4k

AdS5 N = 8k

AdS6 N = 16k

AdS7 N = 16k

Table 7.2: SUSY Fraction of R1,n−1
Backgrounds

R1,n−1
SUSY fraction, N

R1,1
N = k

R1,2
N = 2k

R1,3
N = 4k

R1,4
, R1,5

N = 8k

R1,6
, R1,7

, R1,8
, N = 16k

R1,9
N = 32

these are restrictions on the allowed supersymmetry fractions, and not all of these backgrounds

necessarily exist. Supersymmetric heterotic AdS backgrounds, for example, must be AdS3. IIA

and 11-dimensional AdSn backgrounds are at most n ≤ 7, while IIB backgrounds are at most
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n ≤ 6. Furthermore, the maximally supersymmetric backgrounds of each supergravity have been

classified [37], which means that AdS backgrounds of other AdS dimensions cannot be maximally

supersymmetric. There will likely be more similar theorems to find, as well as additional theorems

akin to those presented in chapter 6, proving that certain non-maximal supersymmetry fractions

cannot exist either.

Additionally, the author has proven a Lichnerowicz-type theorem for each type II and each

heterotic AdSn ×wM10−n background, with the additional condition that the transverse spaces

are compact. These theorems prove that the Killing spinors of each background are exactly the

zeroes of a Dirac-like operator on the transverse space, and simultaneously prove that the ε+

Killing spinors have constant length, a condition which is closely connected to the superalgebra

properties of each background.

Even with these results, there are a number of questions related to this work that remain to

be answered. For example, how many other backgrounds do similar Lichnerowicz-type theorems

apply to? In general, while all Killing spinors of an arbitrary supergravity background are

necessarily zeroes of any Dirac-like operator constructed from the KSEs, the converse is not

necessarily true. However, given how many such theorems have now been proven, it seems likely

that similar results could be found for a wide variety of supergravities. If necessary and sufficient

conditions for such a correspondence to exist could be determined, then their broader context in

the study of supergravities could be better understood.

Having solved the Killing spinor equations on the anti-de Sitter space of each of these back-

grounds, another natural question is if this gives us any additional information about the super-

algebras these backgrounds preserve. Of course, we know a priori that the AdS Killing vectors

form an so(2, n− 1) algebra, but knowing the exact forms of the Killing spinors gives additional

information about how they are related to Killing vectors, and how the isometries act on the

supersymmetries. Together with the super-Jacobi identity, this information will allow the super-

algebras of many of the backgrounds discussed in this dissertation to be completely determined.

For most of these backgrounds, it will even determine some of the isometries of the transverse

spaces.

Finally, the results in this dissertation, particularly those regarding allowed supersymmetry

fractions, lay the groundwork for a complete classification of all AdS supergravity backgrounds.

Restricting the search to those backgrounds with appropriate numbers of Killing spinors makes

even stronger statements possible, such as the proof that all AdS5 backgrounds which are more

than 1/2-BPS are maximally supersymmetric, in chapter 6. More directly, what can be learned

from the superalgebra information mentioned above will significantly restrict the possible geome-

tries of the transverse spaces.

These results are also related to the identification of the geometries of the transverse spaces.

Although the author has completely identified the supersymmetries preserved by these back-

grounds, the geometric implications of these results have not been fully analyzed. It is possible

that many different geometries will appear, and their identification is a problem for the future.
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Appendix A

Form and Spinor Conventions

Our form conventions are as follows. Let ω be a k-form, then

ω =
1

k!
ωi1...ikdx

i1 ∧ · · · ∧ dxik , (A.0.1)

and

dω =
1

k!
∂i1ωi2...ik+1

dxi1 ∧ · · · ∧ dxik+1 , (A.0.2)

leading to

(dω)i1...ik+1
= (k + 1)∂[i1ωi2...ik+1] . (A.0.3)

Furthermore, we write

ω2 = ωi1...ikω
i1...ik , ω2

i1i2 = ωi1j1...jk−1
ωi2

j1...jk−1 . (A.0.4)

Given a volume form dvol = 1
n!εi1...indx

i1 ∧ · · · ∧ dxin , the Hodge dual of ω is defined as

∗ω ∧ χ = (χ, ω) dvol (A.0.5)

where

(χ, ω) =
1

k!
χi1...ikω

i1...ik . (A.0.6)

So

∗ωi1...in−k
=

1

k!
εi1...in−k

j1...jkωj1...jk . (A.0.7)

It is well-known that for every form ω, one can define a Clifford algebra element /ω given by

/ω = ωi1...ikΓi1...ik , (A.0.8)
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where Γi, i = 1, . . . n, are the Dirac gamma matrices. In addition we introduce the notation

/ωi1 = ωi1i2...ikΓi2...ik , Γ/ωi1 = Γi1
i2...ik+1ωi2...ik+1

, (A.0.9)

as it is helpful in many of the expressions we have presented.

Additional spinor conventions used in this dissertation can be found in [92], particularly

including the constructions of the Γ-matrices in terms of forms.
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Appendix B

Notes and Computations

These are some of my notes from the work done for this dissertation, including the Clifford

algebra computations involved in proving the Lichnerowicz-type theorems.

B.1 AdS Geometry

B.1.1 Metric and Frame Forms

The metric for AdSn ×w M10−n in lightcone coordinates is

ds2 = 2du

(
dr − 2r

`
dz − 2rd lnA

)
+A2dz2 +A2e2z/`δabdx

adxb + gijdx
idxj , (B.1.1)

from which we derive the frame forms

e+ = du (B.1.2)

e− = dr − 2r

`
dz − 2rd lnA (B.1.3)

ez = Adz (B.1.4)

ea = Aez/`dxa (B.1.5)

defined such that

ds2 = 2e+e− + (ez)
2

+ δabe
aeb. (B.1.6)
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B.1.2 Spin Connection

The derivatives of the frame forms are

de+ = 0 (B.1.7)

de− = −2

`
dr ∧ dz − 2dr ∧ d lnA (B.1.8)

= −2

`
A−1e− ∧ ez − 2e− ∧ d lnA (B.1.9)

dez = −1

`
ez ∧ d lnA (B.1.10)

dea = −ea ∧ d lnA− 1

`
A−1ea ∧ ez. (B.1.11)

Solving deM + ΩMN ∧ eN = 0, the non-zero components of the spin connection are

Ω+− = −1

`
A−1ez − d lnA (B.1.12)

Ω±z =
1

`
A−1e∓ (B.1.13)

Ωza = −1

`
A−1ea (B.1.14)

Ωµi = A−1∂iAeµ. (B.1.15)

B.1.3 Curvature

The Riemann curvature is defined by ρMN = dΩMN + ΩMK ∧ ΩKN ,

ρµν = −A−2

(
1

`2
+ (dA)2

)
eµ ∧ eν (B.1.16)

ρµi = −A−1∇j∇iAeµ ∧ ej = −
(
∇j∇i lnA+ ∂j lnA∂i lnA

)
eµ ∧ ej . (B.1.17)

The Ricci curvature is

Rµν = ρσµ,
σ
ν + ρiµ,

i
ν (B.1.18)

= −(n− 1)A−2

(
1

`2
+ (dA)2

)
ηµν −

(
∇2 lnA+A−2(dA)2

)
ηµν (B.1.19)

=

(
−n− 1

`2
A−2 − n

`2
A−2(dA)2 −∇2 lnA

)
ηµν (B.1.20)

Rij = ρσi,
σ
j + ρki,

k
j (B.1.21)

= R
(10−n)
ij − n∇i∇j lnA− nA−2∂iA∂jA (B.1.22)
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B.2 Heterotic AdS3

B.2.1 Fields, Field Equations and Bianchi Identities

Warped AdS3 backgrounds are described the metric

ds2 = 2e+e− +A2dz2 + ds2
(
M7
)
,

e = du e− = dr − 2r

`
dz − 2rd lnA

where u, v, and z are the AdS3 coordinates, ` is the AdS radius, and A is the warp factor.

The fields of heterotic supergravity are compatible with the AdS symmetries if and only if the

scalar field, Φ, and the warp factor, A, depend only on the M7 coordinates, the two-form, F , is

restricted to M7 and has no coordinate dependence on AdS3, and the three-form, H, is of the

form

H = AXe+ ∧ e− ∧ dz +G,

where X is a scalar and G is a three-form restricted to M7, and neither have any coordinate

dependence on AdS3. With the fields expressed in this way, the field equations and Bianchi

identity can be decomposed in terms of these components. The Bianchi identities for the gauge

field strength and three form separate into three equations,

d(A3X) = 0

dG = 0

dF = 0,

while, from the field equations, we find that

∇2Φ = −3A−1∂iA∂
iΦ + 2(dΦ)2 − 1

12
G2 +

1

2
X2

∇kGijk = −3A−1∂kAGijk + 2∂kΦGijk,

∇jFij = −3A−1∂jAFij + 2∂jΦFij −
1

2
GijkF

jk

and the Einstein equation separates into an AdS component,

∇2 lnA = − 2

`2
A−2 − 3A−2(dA)2 + 2A−1∂iA∂

iΦ +
1

2
X2,

and a transverse component,

R
(7)
ij = 3∇i∇j lnA+ 3A−2∂iA∂jA+

1

4
Gik1k2Gj

k1k2 − 2∇i∇jΦ,

where ∇ is the Levi-Civita connection on M7 and R
(7)
ij is its curvature. Contracting the free

indices of the transverse component of the Einstein equation, we can express the scalar curvature

of M7 as

R(7) = 3∇2 lnA+ 3A−2(dA)2 +
1

4
G2 − 2∇2Φ

= − 6

`2
A−2 − 6A−2(dA)2 +

5

12
G2 +

1

2
X2 + 12A−1∂iA∂

iΦ− 4(dΦ)2.
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B.2.2 Killing Spinor Equations

The heterotic gravitino Killing spinor equation is

∇M ε−
1

8
/HM ε = 0.

Using the components of H defined above and the geometry of the warped product, we find that

the gravitino equation restricted to the AdS3 directions is equivalent to

0 = ∂uε± +A−1Γ+z

(
`−1 − Ξ−

)
ε∓

0 = ∂rε± −A−1Γ−zΞ+ε∓

0 = ∂zε± − Ξ±ε± +
2r

`
A−1Γ−zΞ+ε∓

where, for AdS3,

Ξ± = ∓ 1

2`
+

1

2
/∂AΓz ∓

1

4
AX.

Furthermore, we can use these relations on Ξ±,

Ξ±Γz+ + Γz+Ξ∓ = 0

Ξ±Γz− + Γz−Ξ∓ = 0,

to simplify the integrability conditions in these directions. We find that there is only one inde-

pendent condition,

0 =

(
Ξ±

2 ± 1

`
Ξ±

)
ε±

=

(
− 1

4`2
− 1

4
(dA)2 ∓ 1

4
AX/∂AΓz +

1

16
A2X2

)
ε±,

which, if ` <∞, can only be satisfied if dA = 0 and

− 1

4`2
+

1

16
A2X2 = 0, (B.2.1)

in which case

Ξ± = ∓1 + c1
2`

where c1 = `
2AX is either 1 or -1, as guaranteed by (B.2.1). We can easily integrate over z,

finding

ε±
(
0, 0, z, yi

)
= σ±

(
yi
)

+ e∓z/`τ±
(
yi
)
,

where

Ξ±σ± = 0 Ξ±τ± = ∓1

`
τ±.

For convenience, we introduce B(±), which represents Ξ± when it acts on σ± and Ξ±± 1
` when it

acts on τ±. The integrability condition is then succinctly expressed as B(±)χ± = 0, χ± = σ±, τ±.

Specifically,

B(±) = ∓c1 + c2
2`

,
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where c2 = 1 when χ± = σ± and c2 = −1 when χ± = τ±.

Using, again, the components of H defined above, the gravitino Killing spinor restricted to

M7 is ∇(±)ε = ∇iχ± + Ψ
(±)
i χ± = 0, where

Ψ
(±)
i = −1

8
/Gi.

Additionally, we find that dilatino Killing spinor equation reduces to A(±)χ± = 0, where

A(±) = /∂Φ± c1
`
A−1Γz −

1

12
/G.

The independent Killing spinor equations are thus

∇(±)χ± = 0, A(±)χ± = 0, and B(±)χ± = 0.

B.2.3 Lichnerowicz-type Theorem on σ+, τ+

We begin by introducing a modified version of the gravitino equation operator,

∇̂(+,q1,q2)
i = ∇(+)

i + q1A
−1ΓziB(+) + q2ΓiA(+),

with the intention to demonstrate that, for an appropriately chosen value of q1 and q2, if

Γi∇̂iχ+ = 0, then χ+ satisfies the gravitino and dilatino Killing spinor equations. For conve-

nience, we also introduce an operator representing a general linear combination of the algebraic

conditions,

A(+,q1,q2) = −q1A
−1ΓzB(+) + q2A(+),

so that ∇̂(+,q1,q2)
i = ∇(+)

i + ΓiA(+,q1,q2), and the modified Dirac-like condition is

Γi∇̂(+,q1,q2)
i χ+ =

(
Γi∇i + ΓiΨ

(+)
i + 7A(+,q1,q2)

)
χ+ = 0.

We expect to find that an equation of the form ∇2‖χ+‖2 = Q(χ+, χ+), where the right-hand

side, Q(χ+, χ+) is a positive-definite quadratic function in χ±. With this in mind, we now

expand the Laplacian, ∇2‖χ+‖2, into two terms,

∇2‖χ+‖2 = 2‖∇χ+‖2 + 2
〈
χ+,∇2χ+

〉
.

The first term can be further rewritten in terms of the differential operator ∇̂ by completing the

square,

2‖∇χ+‖2 = 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

− 4
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2)†Γi

)
∇iχ+

〉
− 2
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
= 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

− 4
〈
χ+,Ψ

(+)i†∇iχ+

〉
− 2
〈
χ+,

(
Ψ(+)i† − A(+,q1,q2)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
,
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while the second term can be rewritten using the property Γi∇iΓj∇jψ = ∇2ψ + 1
2R

(7)ψ, and

the Dirac-like condition,

2
〈
χ+,∇2χ+

〉
= 2
〈
χ+,Γ

i∇i
(
Γj∇jχ+

)〉
+

1

2
R(7)‖χ+‖2

=
1

2
R(7)‖χ‖2 − 2

〈
χ+,∇i

(
ΓiΓjΨ

(+)
j + 7ΓiA(+,q1,q2)

)
χ+

〉
− 2
〈
χ+,

(
ΓiΓjΨ

(+)
j + 7ΓiA(+,q1,q2)

)
∇iχ+

〉
.

Combining these, ∇2‖χ+‖2 can be rewritten as,

∇2‖χ+‖2 = 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

+
1

2
R(7)‖χ+‖2

+
〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) − 14q2ΓiA(+)
]
∇iχ+

〉
+
〈
χ+,−2

(
Ψ(+)i† − A(+,q1,q2)†

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
+
〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) − 14q2ΓiA(+)
]
χ+

〉
(B.2.2)

where

Ψ
(+)†
i =

1

8
/Gi

B(+)† = −c1 + c2
2`

A(+)† = /∂Φ +
c1
`
A−1Γz +

1

12
/G.

Of the terms on the right hand side of (B.8.6), the first term is proportional to the gravitino

equation squared, and so we expect that the remaining terms will be equal to some combination

of the algebraic KSEs. The third term includes a derivative of chi+, however, and so we will

attempt to write it in the form

αi∇i‖χ+‖2 +
〈
χ+,FΓi∇iχ+

〉
= αi∇i‖χ+‖2 −

〈
χ+,F

(
ΓiΨ

(+)
i + 7A(+,q1,q2)

)
χ+

〉
.

In terms of the fields, the third term can be rewritten as〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) − 14q2ΓiA(+)
]
∇iχ+

〉
=

〈
χ+,

[
7

`
A−1Γzi(q1c1 + q1c2 + 2q2c1)− 14q2Γi /∂Φ

+
1 + 14q2

4
/G
i
+

3 + 14q2

12
Γ/G

i
]
∇iχ+

〉
.

Thus, we find that it can be separated as outlined above if and only if q2 = − 1
7 . We will use this

value of q2 from here on. We therefore find that〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) + 2ΓiA
]
∇iχ+

〉
=

〈
χ+,

[
1

`
A−1Γzi(7q1c1 + 7q1c2 − 2c1) + 2Γi /∂Φ

−1

4
/G
i
+

1

12
Γ/G

i
]
∇iχ+

〉
,
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and so, factoring out a Γi on the right,

F =
1

`
A−1Γz(7q1c1 + 7q1c2 − 2c1)− 2/∂Φ− 1

12
/G

and αi = 2∂iΦ.

Now that the third term of (B.8.6) has been expressed as a term quadratic in the fields, it

can readily be combined with the fourth term of (B.8.6),〈
χ+,−2

(
Ψ(+)i† + q1A

−1B(+)†Γzi +
1

7
A(+)†Γi +

1

2
FΓi

)
×
(

Ψ
(+)
i + q1A

−1ΓziB(+) − 1

7
ΓiA(+)

)
χ+

〉
=

〈
χ+,−2

[
1

`

(
3q1c1 + 3q1c2 −

6c1
7

)
A−1Γzi − 6

7
/∂ΦΓi +

1

28
/G
i
+

5

168
Γ/G

i
]

×
[
−1

`

(
q1c1 + q1c2

2
− c1

7

)
A−1Γzi −

1

7
Γi /∂Φ− 5

56
/Gi +

1

84
Γ/Gi

]
χ+

〉
=

〈
χ+,

[
− 3

7`2
(7q1c1 + 7q1c2 − 2c1)

2
A−2 − 12

7
(dΦ)2 − 1

21
∂iΦΓ/G

i

− 1

42`
(7q1c2 + 7q1c1 − 2c1)A−1 /GΓz −

1

504
/G/G− 1

24
G2

]
χ+

〉
. (B.2.3)

The last term on the right hand side of (B.8.6) is the only term involving derivatives of the

fields other than Φ and the second derivative of Φ. However, we can use the Bianchi identity

and the Φ field equation to rewrite this term,〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 2A−1ΓziB(+) + 2ΓiA

]
χ+

〉
=

〈
χ+,

[
2∇2Φ +

1

48
/dG

]
χ+

〉
=

〈
χ+,

[
4

`2
A−2 + 4(dΦ)2 − 1

6
G2

]
χ+

〉
, (B.2.4)

and we can use the scalar part of the Einstein equation to rewrite the second term on the right

hand side of (B.8.6)

1

2
R(7)‖χ+‖2 =

〈
χ+,

[
− 2

`2
A−2 − 2(dΦ)2 +

5

24
G2

]
χ+

〉
. (B.2.5)

Now that we’ve expressed the all but the first term on the right hand side of (??) as terms

quadratic in the fields, we expect their sum, i.e., the sum of (B.7.40), (B.7.42), and (B.7.43), to

be a linear combination of
∥∥B(+)χ+

∥∥2
,
〈
ΓzB(+)χ+,A(+)χ+

〉
, and

∥∥A(+)χ+

∥∥2
. Indeed, comparing

this sum,〈
χ+,

[
1

`2

(
2

7
− 42q1

2 + 12q1 + 12q1c1c2 − 42q1
2c1c2

)
A−2 +

2

7
(dΦ)2 − 1

21
∂iΦΓ/G

i

− 1

42`
(7q1c2 + 7q1c1 − 2c1)A−1 /GΓz −

1

504
/G/G

]
χ+

〉
,
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to ∥∥∥B(+)χ+

∥∥∥2

=
1 + c1c2

2`2
‖χ+‖2〈

ΓzB(+)χ+,A(+)χ+

〉
=

〈
χ+,

[
− 1

2`2
(1 + c1c2)A−1 − 1

24`
(c1 + c2)/GΓz

]
χ+

〉
∥∥∥A(+)χ+

∥∥∥2

=

〈
χ+,

[
(dΦ)2 +

1

`2
A−2 − 1

6
∂iΦΓ/G

i
+
c1
6`
A−1 /GΓz

− 1

144
/G/G

]
χ+

〉
we find that

∇2‖χ+‖2 − 2∂iΦ∇i‖χ+‖2

=
∥∥∥∇̂χ+

∥∥∥2

+ 28
(
q1 − 3q1

2
)
A−2

∥∥∥B(+)χ+

∥∥∥2

+ 4q1A
−1
〈

ΓzB(+)χ+,Aχ+

〉
+

2

7
‖Aχ+‖2.

The right side of this equation is positive definite if 0 < q1 < 2
7 . In those cases, the Hopf

maximum principle tells us that ‖χ+‖2 is constant, and that,

∇(±)χ± = 0, A(±)χ± = 0, and B(±)χ± = 0,

i.e., χ+ is Killing.

B.2.4 α′ First Order Corrections

Most of the above analysis is entirely unaltered when we consider terms of first order in α′. The

primary differences are the Bianchi identity,

dH = −α
′

4

[
tr
(
Ř ∧ Ř

)
− tr(F ∧ F )

]
,

the ∇2Φ field equation,

∇2Φ = 2(dΦ)2 − 1

12
H2 +

α′

16

[
ŘMNST Ř

MNST − FMNabF
MNab

]
,

and the Einstein equation,

RMN =
1

4
H2
MN − 2∇M∇NΦ− α′

4

[
ŘMRST ŘN

RST − FMRSTFN
RST

]
.

In these equations, Ř is the curvature of the connection∇− 1
2H and F is the two-form gauge field.

Using the components of H defined above, without any assumptions about their dependence on

α′, the Bianchi identity separates into two equations,

d(A3X) = 0

dG = −α
′

4

[
tr
(
Ř(7) ∧ Ř(7)

)
− tr(F ∧ F )

]
.
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The field equations can also be expressed in terms of these components,

∇2Φ = −3A−1∂iA∂
iΦ + 2(dΦ)2 − 1

12
G2 +

1

2
X2

+
α′

16

[
Ř

(7)
ij,k`Ř

(7)ij,k` − FijabF ijab
]

∇kGijk = −3A−1∂kAGijk + 2∂kΦGijk,

and the AdS component of the Einstein equation is unchanged,

∇2 lnA = − 2

`2
A−2 − 3A−2(dA)2 + 2A−1∂iA∂

iΦ +
1

2
X2,

while the transverse component is now,

R
(7)
ij = 3∇i∇j lnA+ 3A−2∂iA∂jA+

1

4
Gik1k2Gj

k1k2 − 2∇i∇jΦ

− α′

4

[
Ř

(7)
ik,stŘ

(7)
j

k,st − FikabFjkab
]
,

from which we find that

R(7) = 3∇2 lnA+ 3A−2(dA)2 +
1

4
G2 − 2∇2Φ− α′

4

[
Ř

(7)
ij,k`Ř

(7)ij,k` − FijabF ijab
]

= − 6

`2
A−2 − 6A−2(dA)2 +

5

12
G2 +

1

2
X2 + 12A−1∂iA∂

iΦ− 4(dΦ)2

− 3α′

8

[
Ř

(7)
ij,k`Ř

(7)ij,k` − FijabF ijab
]
.

Aside from the corrections to the fields, there are no other first order corrections to the Killing

spinor equations. The derivation of (B.7.40) is therefore unaffected, but (B.7.42) becomes〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 2A−1ΓziB(+) + 2ΓiA(+)

]
χ+

〉
=

〈
χ+,

[
2∇2Φ +

1

48
/dG

]
χ+

〉
=

〈
χ+,

[
4

`2
A−2 + 4(dΦ)2 − 1

6
G2 +

α′

8

[
Ř

(7)
ij,k`Ř

(7)ij,k` − FijabF ijab
]

+
α′

32

[
Ř

(7)
i1i2,jk

Ř
(7)
i3i4,

jk − Fi1i2abFi3i4ab
]
Γi1i2i3i4

]
χ+

〉
,

and (B.7.43) becomes

1

2
R(7)‖χ+‖2 =

〈
χ+,

[
− 2

`2
A−2 − 2(dΦ)2 +

5

24
G2

−3α′

16

[
Ř

(7)
ij,k`Ř

(7)ij,k` − FijabF ijab
]]
χ+

〉
.

Thus, the same theorem hold if the condition〈
χ+,

[
−α
′

16

[
Ř

(7)
ij,k`Ř

(7)ij,k` − FijabF ijab
]

+
α′

32

[
Ř

(7)
i1i2,jk

Ř
(7)
i3i4,

jk − Fi1i2abFi3i4ab
]
Γi1i2i3i4

]
χ+

〉
= 0

is satisfied.
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B.3 Heterotic AdSn, n ≥ 4

B.3.1 Field equations and Bianchi Identities

For AdSn, n ≥ 4, all fields are purely magnetic. The Bianchi identity is

dH = 0, (B.3.1)

the field equations are

∇2Φ = −nA−1∂iA∂iΦ + 2(dΦ)2 − 1

12
H2 (B.3.2)

∇kHijk = −nA−1∂kAHijk + 2∂kΦHijk, (B.3.3)

and the Einstein equation separates into an AdS component,

∇2 lnA = −n− 1

`2
A−2 − nA−2(dA)2 + 2A−1∂iA∂

iΦ, (B.3.4)

and a transverse component,

R
(10−n)
ij = n∇i∇j lnA+ nA−2∂iA∂jA+

1

4
Hik1k2Hj

k1k2 − 2∇i∇jΦ, (B.3.5)

which contracts to

R(10−n) = n∇2 lnA+ nA−2(dA)2 +
1

4
H2 − 2∇2Φ (B.3.6)

= −n(n− 1)

`2
A−2 − n(n− 1)A−2(dA)2 +

5

12
H2 + 4nA−1∂iA∂

iΦ− 4(dΦ)2. (B.3.7)

B.3.2 Killing Spinor Equations

The AdS-direction parallel transport equations are

0 = ∂uε± +A−1Γ+z

(
`−1 − Ξ−

)
ε∓ (B.3.8)

0 = ∂rε± −A−1Γ−zΞ+ε∓ (B.3.9)

0 = ∂zε± − Ξ±ε± + 2rA−1Γ−zΞ+ε∓ (B.3.10)

0 = ∂aε+ +A−1ΓzaΞ+ε+ (B.3.11)

0 = ∂aε− +A−1Γza
(
Ξ− − `−1

)
ε− (B.3.12)

where, for AdSk, k ≥ 5,

Ξ± = ∓ 1

2`
+

1

2
/∂AΓz. (B.3.13)

Because

Ξ±Γz+ + Γz+Ξ∓ = 0 (B.3.14)

Ξ±Γz− + Γz−Ξ∓ = 0 (B.3.15)

Ξ±Γza + ΓzaΞ± = ∓`−1Γza, (B.3.16)
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we find that there is only one AdS-AdS integrability condition,(
Ξ±

2 ± 1

`
Ξ±

)
ε± = 0. (B.3.17)

However,

Ξ±
2 =

[
∓ 1

2`
+

1

2
/∂AΓz

][
∓ 1

2`
+

1

2
/∂AΓz

]
(B.3.18)

=
1

4`2
∓ 1

2`
/∂AΓz −

1

4
(dA)2 (B.3.19)

Ξ±
2 ± 1

`
Ξ± = − 1

4`2
− 1

4
(dA)2, (B.3.20)

so the integrability condition cannot be satisfied for ` <∞ or dA 6= 0.

B.4 Heterotic R1,n−1 ×M 10−n

R1,n−1 spaces are very similar to AdSn spaces. Again, the fields are purely magnetic, and the

Bianchi identity is

dH = 0 (B.4.1)

while the field equations are

∇2Φ = 2(dΦ)2 − 1

12
H2 (B.4.2)

∇kHijk = 2∂kΦHijk, (B.4.3)

and the Einstein equation includes only a transverse component,

R
(10−n)
ij =

1

4
Hik1k2Hj

k1k2 − 2∇i∇jΦ, (B.4.4)

which contracts to

R(10−n) =
1

4
H2 − 2∇2Φ (B.4.5)

=
5

12
H2 − 4(dΦ)2. (B.4.6)

B.4.1 Killing Spinor Equations

The R1,n−1-direction parallel transport equation is

∂µε = 0, (B.4.7)

so the Killing spinors have no dependence on these coordinates.

The parallel transport equations in the transverse directions are ∇(±)ε = ∇iε + Ψ
(±)
i ε = 0,

where

Ψ
(±)
i =

1

8
/HiΓ11, (B.4.8)

and the algebraic equation is A(±)ε± = 0, where

A(±) = /∂Φ +
1

12
/HΓ11. (B.4.9)

128



B.4.2 Maximum Condition on ε+

We introduce a new operator,

∇̂(+)
i = ∇(+)

i + qΓiA(+), (B.4.10)

with the intention to demonstrate that, for an appropriately chosen value of q, if Γi∇̂(+)
i ε+ = 0,

then ε+ satisfies the Killing spinor equations. The modified Dirac condition is

Γi∇̂(+)
i ε+ =

(
Γi∇i + ΓiΨ

(+)
i + (10− n)qA(+)

)
ε+ = 0. (B.4.11)

The Laplacian expands into two terms,

∇2‖ε+‖2 = 2‖∇ε+‖2 + 2
〈
ε+,∇2ε+

〉
. (B.4.12)

The first term is then

2‖∇ε+‖2 = 2
∥∥∥∇̂(+)ε+

∥∥∥2

− 4
〈
ε+,
(

Ψ(+)i† + qA(+)†Γi
)
∇iε+

〉
− 2
〈
ε+,
(

Ψ(+)i† + qA(+)†Γi
)(

Ψ
(+)
i + qΓiA(+)

)
ε+

〉
= 2
∥∥∥∇̂(+)ε+

∥∥∥2

− 4
〈
ε+,Ψ

(+)i†∇iε+
〉

− 2
〈
ε+,
(

Ψ(+)i† − qA(+)†Γi
)(

Ψ
(+)
i + qΓiA(+)

)
ε+

〉
,

while the second term is

2
〈
ε+,∇2ε+

〉
= 2
〈
ε+,Γ

i∇i
(
Γj∇jε+

)〉
+

1

2
R(10−n)‖ε+‖2 (B.4.13)

=
1

2
R(10−n)‖ε‖2 − 2

〈
ε+,∇i

(
ΓiΓjΨ

(+)
j + q(10− n)ΓiA(+)

)
ε+

〉
− 2
〈
ε+,
(

ΓiΓjΨ
(+)
j + q(10− n)ΓiA(+)

)
∇iε+

〉
.

Thus, the full expansion is

∇2‖ε+‖2 = 2
∥∥∥∇̂(+)ε+

∥∥∥2

+
1

2
R(10−n)‖ε+‖2 (B.4.14)

+
〈
ε+,
[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 2(10− n)qΓiA

]
∇iε+

〉
+
〈
ε+,−2

(
Ψ(+)i† − qA(+)†

)(
Ψ

(+)
i + qΓiA(+)

)
ε+

〉
+
〈
ε+,∇i

[
−2ΓiΓjΨ

(+)
j − 2(10− n)qΓiA

]
ε+

〉
where

Ψ
(+)†
i = −1

8
/HiΓ11 (B.4.15)

A(+)† = /∂Φ +
1

12
/HΓ11 (B.4.16)
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We would like to write the third term in the form αi∇i‖ε+‖2 +
〈
ε+,FΓi∇̃iε+

〉
. Expanded,

this term is〈
ε+,
[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 2(10− n)qΓiA

]
∇iε+

〉
(B.4.17)

=

〈
ε+,

[
−2(10− n)qΓi /∂Φ− 1 + 2(10− n)q

4
/H
i
Γ11 −

3 + 2(10− n)q

12
Γ /H

i
Γ11

]
∇iε+

〉
.

This fixes q = − 1
10−n , so term is〈

ε+,
[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 2(n− 2)A−1ΓziB(+) + 2ΓiA

]
∇iε+

〉
(B.4.18)

=

〈
ε+,

[
2Γi /∂Φ− 1

12

(
/ΓH
)
i
Γ11 +

1

4
/HiΓ11

]
∇iε+

〉
,

which means

F = −2/∂Φ− 1

12
/HΓ11 (B.4.19)

and αi = 2∂iΦ.

Combining this with the fourth term in (B.8.6), we find〈
ε+,−2

(
Ψ(+)i† +

1

10− n
A(+)†Γi +

1

2
FΓi

)(
Ψ

(+)
i − 1

10− n
ΓiA(+)

)
ε+

〉
=

〈
ε+,−2

[
− 9− n

10− n
/∂ΦΓi − 1

4(10− n)
/H
i
Γ11 −

8− n
24(10− n)

Γ /H
i
Γ11

]
×
[
− 1

10− n
Γi /∂Φ +

8− n
8(10− n)

/HiΓ11 −
1

12(10− n)
Γ /HiΓ11

]
ε+

〉
=

〈
ε+,

[
−2(9− n)

10− n
(dΦ)2 +

1

3(10− n)
∂iΦΓ /H

i
Γ11 −

1

72(10− n)
/H /H − 1

24
H2

]
ε+

〉
(B.4.20)

Using the field equations and Bianchi identities, the last term is〈
ε+,∇i

[
−2ΓiΓjΨ

(+)
j + 2ΓiA

]
ε+

〉
=

〈
ε+,

[
2∇2Φ− 1

48
/dHΓ11

]
ε+

〉
(B.4.21)

=

〈
ε+,

[
4(dΦ)2 − 1

6
H2

]
ε+

〉
(B.4.22)

while the curvature term is

1

2
R(10−n)‖ε+‖2 =

〈
ε+,

[
−2(dΦ)2 +

5

24
H2

]
ε+

〉
. (B.4.23)

The sum of (B.7.40), (B.7.42), and (B.7.43), i.e. the second through fifth terms of (B.8.6), is〈
ε+,

[
2

10− n
(dΦ)2 +

1

3(10− n)
∂iΦΓ /H

i
Γ11 −

1

72(10− n)
/H /H

]
ε+

〉
.

Comparing this to

‖Aε+‖2 =

〈
ε+,

[
(dΦ)2 +

1

6
∂iΦ

(
/ΓH
)i

Γ11 −
1

144
/H /H

]
ε+

〉
we find that

∇2‖ε+‖2 − 2∂iΦ∇i‖ε+‖2 = 2
∥∥∥∇̂(+)ε+

∥∥∥2

+
2

10− n

∥∥∥A(+)ε+

∥∥∥2

. (B.4.24)
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B.5 IIA AdS3

B.5.1 Fields

For AdS3 backgrounds, the four-form field, G, and the three-form field, H, have electric compo-

nents,

G = Ae+ ∧ e− ∧ dz ∧X + Y (B.5.1)

H = AWe+ ∧ e− ∧ dz + Z. (B.5.2)

The remaining fields are purely magnetic.

B.5.2 Field equations and Bianchi Identities

The Bianchi identities are

dZ = 0 (B.5.3)

d(A3W ) = 0 (B.5.4)

dS = SdΦ (B.5.5)

dF = dΦ ∧ F + SZ +ASWe+ ∧ e− ∧ dz (B.5.6)

dY = dΦ ∧ Y + Z ∧ F (B.5.7)

dX = −3A−1dA ∧X + dΦ ∧X −WF. (B.5.8)

From the magnetic part of (B.5.6), we see that either S = 0, or W = 0. The field equations are

∇2Φ = −3A−1∂iA∂
iΦ + 2(dΦ)2 − 1

12
Z2 +

1

2
W 2 +

5

4
S2 +

3

8
F 2 +

1

96
Y 2 − 1

4
X2 (B.5.9)

∇kHijk = −3A−1∂kAHijk + 2∂kΦHijk +
1

2
Yijk`F

k` + SFij (B.5.10)

∇jFij = −3A−1∂jFij + ∂jΦFij −WXi −
1

6
Yijk`Z

jk` (B.5.11)

∇iXi = ∂iΦX
i + ∗7(Z ∧ Y ) (B.5.12)

∇`Gijk` = −3A−1∂`AGijk` + ∂`ΦGijk` + ∗7(WY − Z ∧X)ijk (B.5.13)

and the Einstein equation separates into an AdS component,

∇2 lnA = − 2

`2
A−2− 3

`2
A−2(dA)2 +2A−1∂iA∂

iΦ+
1

2
W 2 +

1

4
S2 +

1

8
F 2 +

1

96
Y 2 +

1

4
X2 (B.5.14)

and a transverse component, which contracts to

R(7) = 3∇2 lnA+ 3A−2(dA)2 +
1

4
Z2 − 7

4
S2 − 3

8
F 2 +

1

96
Y 2 +

5

4
X2 − 2∇2Φ (B.5.15)

= − 6

`2
A−2 − 6A−2(dA)2 + 12A−1∂iA∂

iΦ− 4(dΦ)2 +
5

12
Z2 +

1

2
W 2

− 7

2
S2 − 3

4
F 2 +

1

48
Y 2 +

5

2
X2 (B.5.16)
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B.5.3 Killing Spinor Equations

The AdS-direction parallel transport equations are

0 = ∂uε± +A−1Γ+z

(
`−1 − Ξ−

)
ε∓ (B.5.17)

0 = ∂rε± −A−1Γ−zΞ+ε∓ (B.5.18)

0 = ∂zε± − Ξ±ε± +
2r

`
A−1Γ−zΞ+ε∓ (B.5.19)

where, for AdS3,

Ξ± = ∓ 1

2`
+

1

2
/∂AΓz ±

1

4
AWΓ11 −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/Y Γz ∓

1

8
A /X. (B.5.20)

Note that for larger AdS dimensions, some of these fields will be identically zero.

Because

Ξ±Γz+ + Γz+Ξ∓ = 0 (B.5.21)

Ξ±Γz− + Γz−Ξ∓ = 0 (B.5.22)

we find that there is only one AdS-AdS integrability condition,(
Ξ±

2 ± `−1Ξ±
)
ε± = 0. (B.5.23)

Thus, we can easily integrate over z, finding

ε±
(
0, 0, z, 0, yi

)
= σ±

(
yi
)

+ e∓z/`τ±
(
yi
)
, (B.5.24)

where

Ξ±σ± = 0 Ξ±τ± = ∓`−1τ±. (B.5.25)

For convenience, we introduce B(±), which represents Ξ± when it acts on σ± and Ξ±±1 when it

acts on τ±. The integrability condition is then succinctly expressed as B(±)χ± = 0, χ± = σ±, τ±.

Specifically,

B(±) = ∓ c

2`
+

1

2
/∂AΓz ±

1

4
AWΓ11 −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/Y Γz ∓

1

8
A /X, (B.5.26)

where c = 1 when χ± = σ± and c = −1 when χ± = τ±.

The parallel transport equations in the transverse directions are ∇(±)ε = ∇iε + Ψ
(±)
i ε = 0,

where

Ψ
(±)
i = ±1

2
A−1∂iA+

1

8
/ZiΓ11 +

1

8
SΓi +

1

16
/FΓiΓ11 +

1

192
/Y Γi ±

1

8
/XΓzi, (B.5.27)

and the algebraic equation is Aε± = 0, where

A(±) = /∂Φ +
1

12
/ZΓ11 ∓

1

2
WΓzΓ11 +

5

4
S +

3

8
/FΓ11 +

1

96
/Y ± 1

4
/XΓz. (B.5.28)

Each of these applies to σ± and τ± individually.
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B.5.4 Maximum Condition on σ+, τ+, when S = 0

We introduce a new operator,

∇̂(+,q1,q2)
i = ∇(+)

i + q1A
−1ΓziB(+) + q2ΓiA(+), (B.5.29)

with the intention to demonstrate that, for an appropriately chosen value of q1 and q2, if

Γi∇̂iχ+ = 0, then χ+ satisfies the Killing spinor equations. For convenience, we also intro-

duce an operator representing a general linear combination of the algebraic conditions,

A(+,q1,q2) = −q1A
−1ΓzB(+) + q2A(+), (B.5.30)

so that ∇̂(+,q1,q2)
i = ∇(+)

i + ΓiA(+,q1,q2), and the modified Dirac condition is

Γi∇̂(+,q1,q2)
i χ+ =

(
Γi∇i + ΓiΨ

(+)
i + 7A(+,q1,q2)

)
χ+ = 0. (B.5.31)

The Laplacian expands into two terms,

∇2‖χ+‖2 = 2‖∇χ+‖2 + 2
〈
χ+,∇2χ+

〉
. (B.5.32)

The first term is then

2‖∇χ+‖2 = 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

− 4
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2)†Γi

)
∇iχ+

〉
− 2
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
= 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

− 4
〈
χ+,Ψ

(+)i†∇iχ+

〉
− 2
〈
χ+,

(
Ψ(+)i† − A(+,q1,q2)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
,

while the second term is

2
〈
χ+,∇2χ+

〉
= 2
〈
χ+,Γ

i∇i
(
Γj∇jχ+

)〉
+

1

2
R(7)‖χ+‖2 (B.5.33)

=
1

2
R(7)‖χ‖2 − 2

〈
χ+,∇i

(
ΓiΓjΨ

(+)
j + 7ΓiA(+,q1,q2)

)
χ+

〉
− 2
〈
χ+,

(
ΓiΓjΨ

(+)
j + 7ΓiA(+,q1,q2)

)
∇iχ+

〉
.

Thus, the full expansion is

∇2‖χ+‖2 = 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

+
1

2
R(7)‖χ+‖2 (B.5.34)

+
〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) − 14q2ΓiA(+)
]
∇iχ+

〉
+
〈
χ+,−2

(
Ψ(+)i† − A(+,q1,q2)†

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
+
〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) − 14q2ΓiA(+)
]
χ+

〉
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where

Ψ
(+)†
i =

1

2
A−1∂iA−

1

8
/ZiΓ11 +

1

16
Γi /FΓ11 +

1

192
Γi /Y −

1

8
Γi /XΓz (B.5.35)

B(+)† = − c

2`
− 1

2
/∂AΓz +

1

4
AWΓ11 −

1

16
A/FΓzΓ11 −

1

192
A/Y Γz −

1

8
A /X (B.5.36)

A(+)† = /∂Φ +
1

12
/ZΓ11 +

1

2
WΓzΓ11 −

3

8
/FΓ11 +

1

96
/Y − 1

4
/XΓz. (B.5.37)

We would like to write the third term in the form αi∇i‖χ+‖2 +
〈
χ+,FΓi∇̃iχ+

〉
. Expanded,

this term is〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) − 14q2ΓiA(+)
]
∇iχ+

〉
(B.5.38)

=

〈
χ+,

[
7q1c

`
A−1Γzi − [3 + 7q1]A−1∂iA− [1 + 7q1]A−1

(
Γ/∂A

)i
− 14q2Γi /∂Φ− 1 + 14q2

4
/Z
i
Γ11 −

3 + 14q2

12
Γ/Z

i
Γ11

− 7q1 + 14q2

2
WΓziΓ11 −

5 + 7q1 + 42q2

8
Γi /FΓ11

+
−1− 7q1 − 14q2

96
Γi /Y

]
∇iχ+

〉
.

This fixes q2 = − 1
7 and q1 = 1

7 . The term is thus〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 2A−1ΓziB(+) + 2ΓiA

]
∇iχ+

〉
(B.5.39)

=
〈
χ+,

[c
`
A−1Γzi − 4A−1∂iA− 2A−1

(
Γ/∂A

)
i
+ 2Γi /∂Φ

− 1

12

(
/ΓZ
)
i
Γ11 +

1

4
/ZiΓ11 +

1

2
WΓziΓ11

]
∇iχ+

〉
,

so

F =
c

`
A−1Γz + 2A−1 /∂A− 2/∂Φ− 1

12
/ZΓ11 −

1

2
WΓzΓ11 (B.5.40)

and αi = −3A−1∂iA+ 2∂iΦ.
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Combining this with the fourth term in (B.5.34), we find〈
χ+,−2

(
Ψ(+)i† +

1

7
A−1B(+)†Γzi +

1

7
A(+)†Γi +

1

2
FΓi

)(
Ψ

(+)
i +

1

7
A−1ΓziB(+) − 1

7
ΓiA(+)

)
χ+

〉
=

〈
χ+,−2

[
3c

7`
A−1Γzi +

10

7
A−1∂iA− 13

14
A−1Γ/∂

i
A− 6

7
/∂ΦΓi − 1

28
/Z
i
Γ11 −

5

168
Γ/Z

i
Γ11

+
3

14
WΓziΓ11 +

3

28
Γ/F

i
Γ11 +

1

28
/F
i
Γ11 +

1

168
Γ /Y

i
+

1

56
/Y
i

− 5

28
Γ /X

i
Γz −

1

14
XiΓz

]
×
[
− c

14`
A−1Γzi +

4

7
A−1∂iA+

1

14
A−1Γ/∂iA−

1

7
Γi /∂Φ +

5

56
/ZiΓ11 −

1

84
Γ/ZiΓ11

− 1

28
WΓziΓ11 +

1

56
Γ/F iΓ11 −

3

14
/F iΓ11 +

1

224
Γ /Y i −

1

42
/Y i

+
1

14
Γ /XiΓz −

5

28
XiΓz

]
χ+

〉
(B.5.41)

=

〈
χ+,

[
− 3

7`2
A−2 − 17

7
A−2(dA)2 +

26

7
A−1∂iA∂iΦ−

12

7
(dΦ)2 +

c

42`
A−1 /ZΓzΓ11

− 1

42
A−1∂iAΓ/Z

i
Γ11 +

1

21
∂iΦΓ/Z

i
Γ11 −

1

504
/Z /Z − 1

24
Z2 − 3c
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+
1
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3

28
W 2 +

c

28`
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1
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A−1∂iAΓ/F

i
Γ11

− 1
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∂iΦΓ/F

i
Γ11 −

3

112
/Z /F +

1

8
/Z
i
/F
i − 1

28
/F /F − 1

8
F 2 +

c

112`
A−1 /Y Γz

+
1

112
A−1∂iAΓ /Y

i − 1

56
∂iΦΓ /Y

i − 13

42 · 96
/Z /Y Γ11 +

1

48
/Zi /Y

i
Γ11 −

1

448
/F /Y Γ11

+
1

168 · 96
/Y /Y − 1

96
Y 2 +

5c

14`
A−1 /X − 5

14
A−1Xi∂

iAΓz +
5

7
Xi∂

iΦΓz

+
3

56
Xi /Z

i
ΓzΓ11 −

1

28
XiΓ/F

i
ΓzΓ11 +

1

168
Xi /Y

i
Γz −

5

28
X2

]
χ+

〉
(B.5.42)

Using the field equations and Bianchi identities, the last term is〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 2A−1ΓziB(+) + 2ΓiA

]
χ+

〉
=

〈
χ+,

[
−2∇2 lnA+ 2∇2Φ− 1

48
/dZΓ11 +

1

12
/dFΓ11 +

1

240
/dY − 1

2
∇iXiΓz

]
χ+

〉
(B.5.43)

=

〈
χ+,

[
4

`2
A−2 + 6A−2(dA)2 − 10A−1∂iA∂iΦ + 4(dΦ)2 − 1

6
Z2 +

1

4
∂iΦΓ/F

i
Γ11

+
1

24
/Z /F − 1

8
/Z
i
/F i +

1

2
F 2 +

1

48
∂iΦΓ /Y

i

+
1

288
/Z /Y Γ11 −

1

48
/Zi /Y

i
Γ11 −

1

2
Xi∂iΦΓz −X2

]
χ+

〉
(B.5.44)
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while the curvature term is

1

2
R(10−n)‖χ+‖2 =

〈
χ+,

[
− 3

`2
A−2 − 3A−2(dA)2 + 6A−1∂iA∂iΦ− 2(dΦ)2

+
5

24
Z2 +

1

4
W 2 − 3

8
F 2 +

1

96
Y 2 +

5

4
X2

]
χ+

〉
. (B.5.45)

The sum of (B.5.42), (B.5.44), and (B.5.45), i.e. the second through fifth terms of (B.5.34), is〈
χ+,

[
4

7`2
A−2 +

4

7
A−2(dA)2 − 2

7
A−1∂iA∂iΦ +

2

7
(dΦ)2 +

c

42`
A−1 /ZΓzΓ11

− 1

42
A−1∂iAΓ/Z

i
Γ11 +

1

21
∂iΦΓ/Z

i
Γ11 −

1

504
/Z /Z − 3c

7`
A−1WΓ11

+
1

84
W /ZΓzΓ11 +

1

7
W 2 +

c

28`
A−1 /FΓzΓ11 +

1

28
A−1∂iAΓ/F

i
Γ11

+
5

28
∂iΦΓ/F

i
Γ11 +

5

336
/Z /F − 1

28
/F /F +

c

112`
A−1 /Y Γz +

1

112
A−1∂iAΓ /Y

i

+
1

336
∂iΦΓ /Y

i
+

1

42 · 96
/Z /Y Γ11 −

1

448
/F /Y Γ11 +

1

168 · 96
/Y /Y

+
5c

14`
A−1 /X − 5

14
A−1Xi∂

iAΓz +
3

14
Xi∂

iΦΓz

+
3

56
Xi /Z

i
ΓzΓ11 −

1

28
XiΓ/F

i
ΓzΓ11 +

1

168
Xi /Y

i
Γz +

1

14
X2

]
χ+

〉
(B.5.46)
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Comparing this to∥∥∥B(+)χ+

∥∥∥2

=

〈
χ+,

[
1

4`2
+

1

4
(dA)2 − c

4`
AWΓ11 +

1

16
A2W 2 +

c

16`
A/FΓzΓ11

+
1

16
A∂iAΓ/F

i − 1

256
A2 /F /F +

c

192`
A/Y Γz +

1

192
A∂iAΓ /Y

i

− 1

16 · 96
/F /Y Γ11 +

1

1922
A2 /Y /Y +

c

8`
A /X − 1

8
AXi∂iAΓz

+
1

64
A2XiΓ/F

i
ΓzΓ11 +

1

192
A2Xi /Y

i
Γz +

1

64
A2X2

]
χ+

〉
(B.5.47)〈

ΓzB(+)χ+,Aχ+

〉
=

〈
χ+,

[
−1

2
∂iA∂iΦ +

c

24`
/ZΓzΓ11 −

1

24
∂iAΓ/Z

i
Γ11 +

c

4`
WΓ11

− 1

48
AW /ZΓz −

1

8
AW 2 − 3c

16`
/FΓzΓ11 −

3

16
∂iAΓ/F

i
Γ11

− 1

16
A∂iΦΓ/F

i
Γ11 −

A

192
/Z /F +

3

128
A/F /F − c

192`
/Y Γz

− 1

192
∂iAΓ /Y

i − 1

192
A∂iΦΓ /Y

i − 1

24 · 96
A/Z /Y Γ11

+
1

384
A/F /Y Γ11 −

1

96 · 192
A/Y /Y +

c

8`
/X − 1

8
Xi∂iAΓz

+
1

8
AXi∂iΦΓz +

1

32
AXi /Z

i
ΓzΓ11

− 1

32
AXiΓ/F

i
ΓzΓ11 +

1

32
AX2

]
χ+

〉
(B.5.48)∥∥∥A(+)χ+

∥∥∥2

=

〈
χ+,

[
(dΦ)2 +

1

6
∂iΦΓ/Z

i
Γ11 −

1

144
/Z /Z +

1

12
W /ZΓz +

1

4
W 2

+
3

4
∂iΦΓ/F

i
Γ11 +

1

16
/Z /F − 9

64
/F /F +

1

48
∂iΦΓ /Y

i

+
1

576
/Z /Y Γ11 −

1

128
/F /Y Γ11 +

1

962
/Y /Y +

1

2
Xi∂iΦΓz

+
1

8
Xi /Z

i
ΓzΓ11 −

3

16
XiΓ/F

i
ΓzΓ11 −

1

48
Xi /Y

i
Γz +

1

16
X2

]
χ+

〉
(B.5.49)

we find that

∇2‖χ+‖2 +
(
3A−1∂iA− 2∂iΦ

)
∇i‖χ+‖2 (B.5.50)

=
∥∥∥∇̂χ+

∥∥∥2

+
16

7
A−2

∥∥∥B(+)χ+

∥∥∥2

+
4

7
A−1

〈
ΓzB(+)χ+,Aχ+

〉
+

2

7
‖Aχ+‖2.

B.5.5 Maximum Condition on σ+, τ+, when W = 0

We introduce a new operator,

∇̂(+,q1,q2)
i = ∇(+)

i + q1A
−1ΓziB(+) + q2ΓiA(+), (B.5.51)

with the intention to demonstrate that, for an appropriately chosen value of q1 and q2, if

Γi∇̂iχ+ = 0, then χ+ satisfies the Killing spinor equations. For convenience, we also intro-
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duce an operator representing a general linear combination of the algebraic conditions,

A(+,q1,q2) = −q1A
−1ΓzB(+) + q2A(+), (B.5.52)

so that ∇̂(+,q1,q2)
i = ∇(+)

i + ΓiA(+,q1,q2), and the modified Dirac condition is

Γi∇̂(+,q1,q2)
i χ+ =

(
Γi∇i + ΓiΨ

(+)
i + 6A(+,q1,q2)

)
χ+ = 0. (B.5.53)

The Laplacian expands into two terms,

∇2‖χ+‖2 = 2‖∇χ+‖2 + 2
〈
χ+,∇2χ+

〉
. (B.5.54)

The first term is then

2‖∇χ+‖2 = 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

− 4
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2)†Γi

)
∇iχ+

〉
− 2
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
= 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

− 4
〈
χ+,Ψ

(+)i†∇iχ+

〉
− 2
〈
χ+,

(
Ψ(+)i† − A(+,q1,q2)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
,

while the second term is

2
〈
χ+,∇2χ+

〉
= 2
〈
χ+,Γ

i∇i
(
Γj∇jχ+

)〉
+

1

2
R(7)‖χ+‖2 (B.5.55)

=
1

2
R(7)‖χ‖2 − 2

〈
χ+,∇i

(
ΓiΓjΨ

(+)
j + 7ΓiA(+,q1,q2)

)
χ+

〉
− 2
〈
χ+,

(
ΓiΓjΨ

(+)
j + 7ΓiA(+,q1,q2)

)
∇iχ+

〉
.

Thus, the full expansion is

∇2‖χ+‖2 = 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

+
1

2
R(7)‖χ+‖2 (B.5.56)

+
〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) − 14q2ΓiA(+)
]
∇iχ+

〉
+
〈
χ+,−2

(
Ψ(+)i† − A(+,q1,q2)†

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
+
〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) − 14q2ΓiA(+)
]
χ+

〉
where

Ψ
(+)†
i =

1

2
A−1∂iA−

1

8
/ZiΓ11 +

1

8
SΓi +

1

16
Γi /FΓ11 +

1

192
Γi /Y −

1

8
Γi /XΓz (B.5.57)

B(+)† = − c

2`
− 1

2
/∂AΓz −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/Y Γz −

1

8
A /X (B.5.58)

A(+)† = /∂Φ +
1

12
/ZΓ11 +

5

4
S − 3

8
/FΓ11 +

1

96
/Y − 1

4
/XΓz. (B.5.59)
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We would like to write the third term in the form αi∇i‖χ+‖2 +
〈
χ+,FΓi∇̃iχ+

〉
. Expanded,

this term is〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 14q1A

−1ΓziB(+) − 14q2ΓiA(+)
]
∇iχ+

〉
(B.5.60)

=

〈
χ+,

[
(10− n)q1c

`
A−1Γzi − [3 + 7q1]A−1∂iA− [1 + 7q1]A−1
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Γ/∂A

)i
− 14q2Γi /∂Φ− 1 + 14q2

4
/Z
i
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12
Γ/Z

i
Γ11
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4
SΓi − 5 + 7q1 + 42q2

8
Γi /FΓ11

+
−1− 7q1 − 14q2

96
Γi /Y

]
∇iχ+

〉
.

This fixes q2 = − 1
7 and q1 = 1

7 . The term is thus〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 2A−1ΓziB(+) + 2ΓiA

]
∇iχ+

〉
(B.5.61)

=
〈
χ+,

[c
`
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(
Γ/∂A

)
i
+ 2Γi /∂Φ

− 1

12

(
/ΓZ
)
i
Γ11 +

1

4
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∇iχ+

〉
,

so

F =
c

`
A−1Γz + 2A−1 /∂A− 2/∂Φ− 1

12
/ZΓ11 (B.5.62)

and αi = −3A−1∂iA+ 2∂iΦ.
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Combining this with the fourth term in (B.5.56), we find〈
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(
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1

7
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7
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2
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=
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1
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i
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1
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i
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Γ /X

i
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1
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XiΓz

]
×
[
− c
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4
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1
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1

7
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5
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〉
(B.5.63)

=

〈
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1
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+
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5

7
Xi∂

iΦΓz +
3

56
Xi /Z

i
ΓzΓ11

− 1

28
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1
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Xi /Y
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5

28
X2

]
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〉
(B.5.64)

Using the field equations and Bianchi identities, the last term is〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 2A−1ΓziB(+) + 2ΓiA

]
χ+

〉
=

〈
χ+,

[
−2∇2 lnA+ 2∇2Φ− 1
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1
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/dY − 1

2
∇iXiΓz
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〉
(B.5.65)

=
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[
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1
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〉
(B.5.66)
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while the curvature term is

1

2
R(10−n)‖χ+‖2 =

〈
χ+,

[
− 3
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+
5

24
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4
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1

96
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5

4
X2

]
χ+

〉
. (B.5.67)

The sum of (B.5.64), (B.5.66), and (B.5.67), i.e. the second through fifth terms of (B.5.56), is〈
χ+,

[
4

7`2
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4

7
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〉
(B.5.68)
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Comparing this to∥∥∥B(+)χ+

∥∥∥2

=

〈
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1
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〉
(B.5.69)〈
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− 1

32
AXiΓ/F

i
ΓzΓ11 +

1

32
AX2

]
χ+

〉
(B.5.70)∥∥∥A(+)χ+

∥∥∥2

=

〈
χ+,

[
(dΦ)2 +

1

6
∂iΦΓ/Z

i
Γ11 −

1

144
/Z /Z +

5

2
S/∂Φ +

5

24
S /ZΓ11 +

25

16
S2

+
3

4
∂iΦΓ/F

i
Γ11 +

1

16
/Z /F − 9

64
/F /F +

1

48
∂iΦΓ /Y

i

+
1

576
/Z /Y Γ11 +

5

192
S /Y − 1

128
/F /Y Γ11 +

1

962
/Y /Y +

1

2
Xi∂iΦΓz

+
1

8
Xi /Z

i
ΓzΓ11 −

3

16
XiΓ/F

i
ΓzΓ11 −

1

48
Xi /Y

i
Γz +

1

16
X2

]
χ+

〉
(B.5.71)

we find that

∇2‖χ+‖2 +
(
3A−1∂iA− 2∂iΦ

)
∇i‖χ+‖2 (B.5.72)

=
∥∥∥∇̂χ+

∥∥∥2

+
16

7
A−2

∥∥∥B(+)χ+

∥∥∥2

+
4

7
A−1

〈
ΓzB(+)χ+,Aχ+

〉
+

2

7
‖Aχ+‖2.

B.6 IIA AdS4

B.6.1 Fields

For AdS4 backgrounds, the four-form field, G, has an electric component, corresponding to a

scalar field on the transverse space,

G = A2e+ ∧ e− ∧ dz ∧ dxX + Y. (B.6.1)
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The remaining fields are purely magnetic.

B.6.2 Field equations and Bianchi Identities

The Bianchi identities are

dH = 0 (B.6.2)

dS = SdΦ (B.6.3)

dF = dΦ ∧ F + SH (B.6.4)

dY = dΦ ∧ Y +H ∧ F (B.6.5)

d(A4X) = A4dΦ, (B.6.6)

the field equations are

∇2Φ = −4A−1∂iA∂iΦ + 2(dΦ)2 +
5

4
S2 +

3

8
F 2 − 1

12
H2 +

1

96
Y 2 − 1

4
X2 (B.6.7)

∇kHijk = −4A−1∂kAHijk + 2∂kΦHijk + SFij +
1

2
F k`Gijk` (B.6.8)

∇jFij = −4A−1∂jAFij + ∂jΦFij −
1

6
F jk`Gijk` (B.6.9)

∇`Yijk` = −4A−1∂`AYijk` + ∂`ΦYijk` (B.6.10)

and the Einstein equation separates into an AdS component,

∇2 lnA =
1

96
Y 2 +

1

4
X2 +

1

4
S2 +

1

8
F 2 − 3`−2A−2 − 4A−2(dA)2, (B.6.11)

and a transverse component, which contracts to

R(6) = 4∇2 lnA+ 4A−2(dA)2 +
1

48
Y 2 +

3

2
X2 − 3

2
S2 +

1

4
H2 − 1

4
F 2 − 2∇2Φ (B.6.12)

= −12`−2A−2 − 12A−2(dA)
2

+
1

24
Y 2 + 3X2 − 3S2 +

5

12
H2 (B.6.13)

− 1

2
F 2 + 8A−1∂iA∂

iΦ− 4(dΦ)2.

B.6.3 Killing Spinor Equations

The AdS-direction parallel transport equations are

0 = ∂uε± +A−1Γ+z

(
`−1 − Ξ−

)
ε∓ (B.6.14)

0 = ∂rε± −A−1Γ−zΞ+ε∓ (B.6.15)

0 = ∂zε± − Ξ±ε± +
2r

`
A−1Γ−zΞ+ε∓ (B.6.16)

0 = ∂xε+ + ez/`ΓzxΞ+ε+ (B.6.17)

0 = ∂xε− + ez/`Γzx
(
Ξ− − `−1

)
ε− (B.6.18)
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where, for AdS4,

Ξ± = ∓ 1

2`
+

1

2
/∂AΓz −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/Y Γz ∓

1

8
AXΓx. (B.6.19)

Because

Ξ±Γz+ + Γz+Ξ∓ = 0 (B.6.20)

Ξ±Γz− + Γz−Ξ∓ = 0 (B.6.21)

Ξ±Γzx + ΓzxΞ± = ∓`−1Γzx, (B.6.22)

we find that there is only one AdS-AdS integrability condition,(
Ξ±

2 ± `−1Ξ±
)
ε± = 0. (B.6.23)

Thus, we can easily integrate over z, finding

ε±
(
0, 0, z, 0, yi

)
= σ±

(
yi
)

+ e∓z/`τ±
(
yi
)
, (B.6.24)

where

Ξ±σ± = 0 Ξ±τ± = ∓`−1τ±. (B.6.25)

For convenience, we introduce B(±), which represents Ξ± when it acts on σ± and Ξ±±1 when it

acts on τ±. The integrability condition is then succinctly expressed as B(±)χ± = 0, χ± = σ±, τ±.

Specifically,

B(±) = ∓ c

2`
+

1

2
/∂AΓz −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/Y Γz ∓

1

8
AXΓx, (B.6.26)

where c = 1 when χ± = σ± and c = −1 when χ± = τ±.

The parallel transport equations in the transverse directions are ∇(±)ε = ∇iε + Ψ
(±)
i ε = 0,

where

Ψ
(±)
i = ± 1

2A
∂iA+

1

8
/HiΓ11 +

1

8
SΓi +

1

16
/FΓiΓ11 +

1

192
/Y Γi ∓

1

8
XΓzxi, (B.6.27)

and the algebraic equation is Aε± = 0, where

A = /∂Φ +
1

12
/HΓ11 +

5

4
S +

3

8
/FΓ11 +

1

96
/Y ∓ 1

4
XΓzx. (B.6.28)

Each of these applies to σ± and τ± individually.

B.6.4 Maximum Condition on σ+, τ+

We introduce a new operator,

∇̂(+,q1,q2)
i = ∇(+)

i + q1A
−1ΓziB(+) + q2ΓiA, (B.6.29)
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with the intention to demonstrate that, for an appropriately chosen value of q1 and q2, if

Γi∇̂iχ+ = 0, then χ+ satisfies the Killing spinor equations. For convenience, we also intro-

duce an operator representing a general linear combination of the algebraic conditions,

A(+,q1,q2) = −q1A
−1ΓzB(+) + q2A, (B.6.30)

so that ∇̂(+,q1,q2)
i = ∇(+)

i + ΓiA(+,q1,q2), and the modified Dirac condition is

Γi∇̂(+,q1,q2)
i χ+ =

(
Γi∇i + ΓiΨ

(+)
i + 6A(+,q1,q2)

)
χ+ = 0. (B.6.31)

The Laplacian expands into two terms,

∇2‖χ+‖2 = 2‖∇χ+‖2 + 2
〈
χ+,∇2χ+

〉
. (B.6.32)

The first term is then

2‖∇χ+‖2 = 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

− 4
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2)†Γi

)
∇iχ+

〉
− 2
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
= 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

− 4
〈
χ+,Ψ

(+)i†∇iχ+

〉
− 2
〈
χ+,

(
Ψ(+)i† − A(+,q1,q2)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
,

while the second term is

2
〈
χ+,∇2χ+

〉
= 2
〈
χ+,Γ

i∇i
(
Γj∇jχ+

)〉
+

1

2
R(6)‖χ+‖2 (B.6.33)

=
1

2
R(6)‖χ‖2 − 2

〈
χ+,∇i

(
ΓiΓjΨ

(+)
j + 6ΓiA(+,q1,q2)

)
χ+

〉
− 2
〈
χ+,

(
ΓiΓjΨ

(+)
j + 6ΓiA(+,q1,q2)

)
∇iχ+

〉
.

Thus, the full expansion is

∇2‖χ+‖2 = 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

+
1

2
R(6)‖χ+‖2 (B.6.34)

+
〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 12q1A

−1ΓziB(+) − 12q2ΓiA
]
∇iχ+

〉
+
〈
χ+,−2

(
Ψ(+)i† − A(+,q1,q2)†

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
+
〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 12q1A

−1ΓziB(+) − 12q2ΓiA
]
χ+

〉
where

Ψ
(+)†
i =

1

2
A−1∂iA−

1

8
/HiΓ11 +

1

8
SΓi +

1

16
Γi /FΓ11 +

1

192
Γi /Y +

1

8
XΓzxi (B.6.35)

B(+)† = − c

2`
− 1

2
/∂AΓz −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/Y Γz −

1

8
AXΓx (B.6.36)

A† = /∂Φ +
5

4
S +

1

12
/HΓ11 −

3

8
/FΓ11 +

1

96
/Y +

1

4
XΓzx. (B.6.37)
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We would like to write the third term in the form αi∇i‖χ+‖2 +
〈
χ+,FΓi∇̃iχ+

〉
. Expanded,

this term is〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 12q1A

−1ΓziB(+) − 12q2ΓiA
]
∇iχ+

〉
(B.6.38)

=

〈
χ+,

[
6q1c

`
A−1Γzi − [3 + 6q1]A−1∂iA− [1 + 6q1]A−1

(
Γ/∂A

)i − 12q2Γi /∂Φ

− 8 + 6q1 + 60q2

4
SΓi − 1 + 12q2

4
/H
i
Γ11 −

1 + 4q2

4
Γ /H

i
Γ11

−2 + 3q1 + 18q2

4
Γi /FΓ11 −

q1 + 2q2

16
Γi /Y +

2− 3q1 + 6q2

2
XΓzxi

]
∇iχ+

〉
.

This fixes q2 = − 1
6 and q1 = 1

3 . The term is thus〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 4A−1ΓziB(+) + 2ΓiA

]
∇iχ+

〉
(B.6.39)

=

〈
χ+,

[
2c

`
A−1Γzi − 5A−1∂iA− 3A−1Γ/∂iA+ 2Γi /∂Φ

− 1

12

(
/ΓH
)
i
Γ11 +

1

4
/HiΓ11

]
∇iχ+

〉
,

so

F =
2c

`
A−1Γz + 3A−1 /∂A− 2/∂Φ− 1

12
/HΓ11 (B.6.40)

and αi = −4A−1∂iA+ 2∂iΦ.

B.7 IIA AdSn, n ≥ 5

B.7.1 Field equations and Bianchi Identities

For AdSn, n ≥ 5, all fields are purely magnetic. The Bianchi identities are

dH = 0 (B.7.1)

dS = SdΦ (B.7.2)

dF = dΦ ∧ F + SH (B.7.3)

dG = dΦ ∧G+H ∧ F, (B.7.4)

the field equations are

∇2Φ = −nA−1∂iA∂iΦ + 2(dΦ)2 +
5

4
S2 +

3

8
F 2 − 1

12
H2 +

1

96
G2 (B.7.5)

∇kHijk = −nA−1∂kAHijk + 2∂kΦHijk + SFij +
1

2
F k`Gijk` (B.7.6)

∇jFij = −nA−1∂jAFij + ∂jΦFij −
1

6
F jk`Gijk` (B.7.7)

∇`Gijk` = −nA−1∂`AGijk` + ∂`ΦGijk` (B.7.8)
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and the Einstein equation separates into an AdS component,

∇2 lnA = −(n− 1)`−2A−2 − nA−2(dA)2 + 2A−1∂iA∂
iΦ +

1

96
G2 +

1

4
S2 +

1

8
F 2, (B.7.9)

and a transverse component, which contracts to

R(10−n) = n∇2 lnA+ nA−2(dA)2 +
n− 2

96
G2 − 10− n

4
S2 +

1

4
H2 +

n− 6

8
F 2 − 2∇2Φ (B.7.10)

= −n(n− 1)`−2A−2 − n(n− 1)A−2(dA)
2

+
n− 2

48
G2 (B.7.11)

− 10− n
2

S2 +
5

12
H2 +

n− 6

4
F 2 + 4nA−1∂iA∂

iΦ− 4(dΦ)2.

B.7.2 Killing Spinor Equations

The AdS-direction parallel transport equations are

0 = ∂uε± +A−1Γ+z

(
`−1 − Ξ−

)
ε∓ (B.7.12)

0 = ∂rε± −A−1Γ−zΞ+ε∓ (B.7.13)

0 = ∂zε± − Ξ±ε± +
2r

`
A−1Γ−zΞ+ε∓ (B.7.14)

0 = ∂aε+ + ez/`ΓzaΞ+ε+ (B.7.15)

0 = ∂aε− + ez/`Γza
(
Ξ− − `−1

)
ε− (B.7.16)

where, for AdSk, k ≥ 5,

Ξ± = ∓ 1

2`
+

1

2
/∂AΓz −

A

8
SΓz −

A

16
/FΓzΓ11 −

A

192
/GΓz. (B.7.17)

Note that for larger AdS dimensions, some of these fields will be identically zero.

Because

Ξ±Γz+ + Γz+Ξ∓ = 0 (B.7.18)

Ξ±Γz− + Γz−Ξ∓ = 0 (B.7.19)

Ξ±Γza + ΓzaΞ± = ∓`−1Γza, (B.7.20)

we find that there is only one AdS-AdS integrability condition,(
Ξ±

2 ± `−1Ξ±
)
ε± = 0. (B.7.21)

Thus, we can easily integrate over z, finding

ε±
(
0, 0, z, 0, yi

)
= σ±

(
yi
)

+ e∓z/`τ±
(
yi
)
, (B.7.22)

where

Ξ±σ± = 0 Ξ±τ± = ∓`−1τ±. (B.7.23)
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For convenience, we introduce B(±), which represents Ξ± when it acts on σ± and Ξ±±1 when it

acts on τ±. The integrability condition is then succinctly expressed as B(±)χ± = 0, χ± = σ±, τ±.

Specifically,

B(±) = ∓ c

2`
+

1

2
/∂AΓz −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/GΓz, (B.7.24)

where c = 1 when χ± = σ± and c = −1 when χ± = τ±.

The parallel transport equations in the transverse directions are ∇(±)ε = ∇iε + Ψ
(±)
i ε = 0,

where

Ψ
(±)
i = ± 1

2A
∂iA+

1

8
/HiΓ11 +

1

8
SΓi +

1

16
/FΓiΓ11 +

1

192
/GΓi, (B.7.25)

and the algebraic equation is Aε± = 0, where

A(±) = /∂Φ +
1

12
/HΓ11 +

5

4
S +

3

8
/FΓ11 +

1

96
/G. (B.7.26)

Each of these applies to σ± and τ± individually.

B.7.3 Maximum Condition on σ+, τ+

We introduce a new operator,

∇̂(+,q1,q2)
i = ∇(+)

i + q1A
−1ΓziB(+) + q2ΓiA, (B.7.27)

with the intention to demonstrate that, for an appropriately chosen value of q1 and q2, if

Γi∇̂iχ+ = 0, then χ+ satisfies the Killing spinor equations. For convenience, we also intro-

duce an operator representing a general linear combination of the algebraic conditions,

A(+,q1,q2) = −q1A
−1ΓzB(+) + q2A, (B.7.28)

so that ∇̂(+,q1,q2)
i = ∇(+)

i + ΓiA(+,q1,q2), and the modified Dirac condition is

Γi∇̂(+,q1,q2)
i χ+ =

(
Γi∇i + ΓiΨ

(+)
i + (10− n)A(+,q1,q2)

)
χ+ = 0. (B.7.29)

The Laplacian expands into two terms,

∇2‖χ+‖2 = 2‖∇χ+‖2 + 2
〈
χ+,∇2χ+

〉
. (B.7.30)

The first term is then

2‖∇χ+‖2 = 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

− 4
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2)†Γi

)
∇iχ+

〉
− 2
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
= 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

− 4
〈
χ+,Ψ

(+)i†∇iχ+

〉
− 2
〈
χ+,

(
Ψ(+)i† − A(+,q1,q2)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
,
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while the second term is

2
〈
χ+,∇2χ+

〉
= 2
〈
χ+,Γ

i∇i
(
Γj∇jχ+

)〉
+

1

2
R(10−n)‖χ+‖2 (B.7.31)

=
1

2
R(10−n)‖χ‖2 − 2

〈
χ+,∇i

(
ΓiΓjΨ

(+)
j + (10− n)ΓiA(+,q1,q2)

)
χ+

〉
− 2
〈
χ+,

(
ΓiΓjΨ

(+)
j + (10− n)ΓiA(+,q1,q2)

)
∇iχ+

〉
.

Thus, the full expansion is

∇2‖χ+‖2 = 2
∥∥∥∇̂(+,q1,q2)χ+

∥∥∥2

+
1

2
R(10−n)‖χ+‖2 (B.7.32)

+
〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 2(10− n)q1A

−1ΓziB(+)

−2(10− n)q2ΓiA
]
∇iχ+

〉
+
〈
χ+,−2

(
Ψ(+)i† − A(+,q1,q2)†

)(
Ψ

(+)
i + ΓiA(+,q1,q2)

)
χ+

〉
+
〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 2(10− n)q1A

−1ΓziB(+)

−2(10− n)q2ΓiA
]
χ+

〉
where

Ψ
(+)†
i =

1

2
A−1∂iA−

1

8
/HiΓ11 +

1

8
SΓi +

1

16
Γi /FΓ11 +

1

192
Γi /G (B.7.33)

B(+)† = − c

2`
− 1

2
/∂AΓz −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/GΓz (B.7.34)

A† = /∂Φ +
5

4
S +

1

12
/HΓ11 −

3

8
/FΓ11 +

1

96
/G (B.7.35)

We would like to write the third term in the form αi∇i‖χ+‖2 +
〈
χ+,FΓi∇̃iχ+

〉
. Expanded,

this term is〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 2(10− n)q1A

−1ΓziB(+) − 2(10− n)q2ΓiA
]
∇iχ+

〉
(B.7.36)

=

〈
χ+,

[
(10− n)q1c

`
A−1Γzi − [3 + (10− n)q1]A−1∂iA− [1 + (10− n)q1]A−1

(
Γ/∂A

)i
− 2(10− n)q2Γi /∂Φ− 12− n+ (10− n)q1 + 10(10− n)q2

4
SΓi

− 1 + 2(10− n)q2

4
/H
i
Γ11 −

3 + 2(10− n)q2

12
Γ /H

i
Γ11

− (8− n) + (10− n)q1 + 6(10− n)q2

8
Γi /FΓ11

+
(n− 4)− (10− n)q1 − 2(10− n)q2

96
Γi /G

]
∇iχ+

〉
.
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This fixes q2 = − 1
10−n and q1 = n−2

10−n . The term is thus〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 2(n− 2)A−1ΓziB(+) + 2ΓiA

]
∇iχ+

〉
(B.7.37)

=

〈
χ+,

[
(n− 2)c

`
A−1Γzi − (n+ 1)A−1∂iA− (n− 1)A−1

(
Γ/∂A

)
i

+2Γi /∂Φ− 1

12

(
/ΓH
)
i
Γ11 +

1

4
/HiΓ11

]
∇iχ+

〉
,

so

F =
(n− 2)c

`
A−1Γz + (n− 1)A−1 /∂A− 2/∂Φ− 1

12
/HΓ11 (B.7.38)

and αi = −nA−1∂iA+ 2∂iΦ.
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Combining this with the fourth term in (B.8.6), we find〈
χ+,−2

(
Ψ(+)i† +

n− 2

10− n
A−1B(+)†Γzi +

1

10− n
A†Γi +

1

2
FΓi

)
×
(

Ψ
(+)
i +

n− 2

10− n
A−1ΓziB(+) − 1

10− n
ΓiA

)
χ+

〉
=

〈
χ+,−2

[
(9− n)(n− 2)c

2(10− n)`
A−1Γzi − n2 − 9n− 2

2(10− n)
A−1∂iA+

n2 − 10n+ 8

2(10− n)
A−1Γ/∂

i
A

− 9− n
10− n

/∂ΦΓi +
11− n

4(10− n)
SΓi − 1

4(10− n)
/H
i
Γ11 −

8− n
24(10− n)

Γ /H
i
Γ11

+
9− n

8(10− n)
Γ/F

i
Γ11 +

1

4(10− n)
/F
i
Γ11 +

7− n
96(10− n)

Γ/G
i
+

1

8(10− n)
/G
i
]

×
[
− (n− 2)c

2(10− n)`
A−1Γzi +

4

10− n
A−1∂iA+

n− 2

2(10− n)
A−1Γ/∂iA−

1

10− n
Γi /∂Φ

− 1

4(10− n)
SΓi +

8− n
8(10− n)

/HiΓ11 −
1

12(10− n)
Γ /HiΓ11

+
1

8(10− n)
Γ/F iΓ11 −

9− n
4(10− n)

/F iΓ11 +
1

32(10− n)
Γ/Gi −

7− n
24(10− n)

/Gi

]
χ+

〉
(B.7.39)

=

〈
χ+,

[
− (9− n)(n− 2)2

2(10− n)`2
A−2 +

n3 − 11n2 + 18n− 16

2(10− n)
A−2(dA)2

− 2(n2 − 10n+ 8)

10− n
A−1∂iA∂iΦ−

2(9− n)

10− n
(dΦ)2 − (n− 2)c

2(10− n)`
A−1SΓz

− n− 2

2(10− n)
A−1 /∂AS +

1

10− n
S/∂Φ +

11− n
8(10− n)

S2 +
(n− 2)c

6(10− n)`
A−1 /HΓzΓ11

− n− 2

6(10− n)
A−1∂iAΓ /H

i
Γ11 +

1

3(10− n)
∂iΦΓ /H

i
Γ11 −

8− n
24(10− n)

S /HΓ11

− 1

72(10− n)
/H /H − 1

24
H2 +

(n− 2)c

4(10− n)`
A−1 /FΓzΓ11 +

n− 2

4(10− n)
A−1∂iAΓ/F

i
Γ11

− 1

2(10− n)
∂iΦΓ/F

i
Γ11 −

12− n
48(10− n)

/H /F +
1

8
/H
i
/F
i − 11− n

32(10− n)
/F /F

− 1

8
F 2 +

(n− 2)c

16(10− n)`
A−1 /GΓz +

n− 2

16(10− n)
A−1∂iAΓ/G

i

− 1

8(10− n)
∂iΦΓ/G

i
+

7− n
96(10− n)

S /G− n− 4

576(10− n)
/H /GΓ11

− 1

64(10− n)
/F /GΓ11 +

n− 1

48 · 96(10− n)
/G/G− 1

96
G2

]
χ+

〉
(B.7.40)
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Using the field equations and Bianchi identities, the last term is〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 2(n− 2)A−1ΓziB(+) + 2ΓiA

]
χ+

〉
=

〈
χ+,

[
−(n− 1)∇2 lnA+ 2∇2Φ +

1

2
/∂S − 1

48
/dHΓ11 +

1

12
/dFΓ11 +

1

240
/dG

]
χ+

〉
(B.7.41)

=

〈
χ+,

[
(n− 1)2

`2
A−2 + (n− 1)nA−2(dA)2 − 2(2n− 1)A−1∂iA∂iΦ + 4(dΦ)2

+
1

2
S/∂Φ +

11− n
4

S2 +
1

12
S /HΓ11 −

1

6
H2 +

1

4
∂iΦΓ/F

i
Γ11

+
1

24
/H /F − 1

8
/H
i
/F i +

7− n
8

F 2 +
1

48
∂iΦΓ/G

i
]
χ+

〉
(B.7.42)

while the curvature term is

1

2
R(10−n)‖χ+‖2 =

〈
χ+,

[
− (n− 1)n

2`2
A−2 − (n− 1)n

2
A−2(dA)2 + 2nA−1∂iA∂iΦ− 2(dΦ)2

−10− n
4

S2 +
5

24
H2 +

n− 6

8
F 2 +

n− 2

96
G2

]
χ+

〉
. (B.7.43)

The sum of (B.7.40), (B.7.42), and (B.7.43), i.e. the second through fifth terms of (B.8.6), is〈
χ+,

[
4(n− 2)

(10− n)`2
A−2 +

4(n− 2)

10− n
A−2(dA)2 − 2(n− 2)

10− n
A−1∂iA∂iΦ +

2

10− n
(dΦ)2

− (n− 2)c

2(10− n)`
A−1SΓz −

n− 2

2(10− n)
A−1 /∂AS +

12− n
2(10− n)

S/∂Φ +
31− 3n

8(10− n)
S2

+
(n− 2)c

6(10− n)`
A−1 /HΓzΓ11 −

n− 2

6(10− n)
A−1∂iAΓ /H

i
Γ11 +

1

3(10− n)
∂iΦΓ /H

i
Γ11

+
12− n

24(10− n)
S /HΓ11 −

1

72(10− n)
/H /H +

(n− 2)c

4(10− n)`
A−1 /FΓzΓ11

+
n− 2

4(10− n)
A−1∂iAΓ/F

i
Γ11 +

8− n
4(10− n)

∂iΦΓ/F
i
Γ11 +

8− n
48(10− n)

/H /F

− 11− n
32(10− n)

/F /F +
(n− 2)c

16(10− n)`
A−1 /GΓz +

n− 2

16(10− n)
A−1∂iAΓ/G

i

− n− 4

48(10− n)
∂iΦΓ/G

i
+

7− n
96(10− n)

S /G− n− 4

576(10− n)
/H /GΓ11

− 1

64(10− n)
/F /GΓ11 +

n− 1

48 · 96(10− n)
/G/G

]
χ+

〉
(B.7.44)
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Comparing this to∥∥∥B(+)χ+

∥∥∥2

=

〈
χ+,

[
1

4`2
+

1

4
(dA)2 +

c

8`
ASΓz +

1

8
A/∂AS +

1

64
A2S2

+
c

16`
A/FΓzΓ11 +

1

16
A∂iA

(
/ΓF
)i − 1

256
A2 /F /F

+
c

192`
A/GΓz +

1

192
A∂iAΓ/G

i
+

1

768
A2S /G

− 1

16 · 96
/F /GΓ11 +

1

1922
A2 /G/G

]
χ+

〉
(B.7.45)〈

ΓzB(+)χ+,Aχ+

〉
=

〈
χ+,

[
−1

2
∂iA∂iΦ +

c

24`
/HΓzΓ11 −

5c

8`
SΓz −

5

8
/∂AS − 1

8
AS/∂Φ

− 5

32
AS2 − 1

24
∂iA

(
/ΓH
)i

Γ11 −
1

96
AS /HΓ11

− 3c

16`
/FΓzΓ11 −

3

16
∂iA

(
/ΓF
)i

Γ11 −
1

16
A∂iΦ

(
/ΓF
)i

Γ11

− A

192
/H /F +

3

128
A/F /F − c

192`
/GΓz −

1

192
∂iAΓ/G

i

− 1

192
A∂iΦΓ/G

i − 1

128
AS /G− 1

24 · 96
A /H /GΓ11

+
1

384
A/F /GΓ11 −

1

96 · 192
A/G/G

]
χ+

〉
(B.7.46)

‖Aχ+‖2 =

〈
χ+,

[
(dΦ)2 +

1

6
∂iΦ

(
/ΓH
)i

Γ11 −
1

144
/H /H +

5

2
S/∂Φ +

5

24
S /HΓ11

+
25

16
S2 +

3

4
∂iΦ

(
/ΓF
)i

Γ11 +
1

16
/H /F − 9

64
/F /F

+
1

48
∂iΦΓ/G

i
+

5

192
S /G+

1

576
/H /GΓ11 −

1

128
/F /GΓ11 +

1

962
/G/G

]
χ+

〉
(B.7.47)

we find that

∇2‖χ+‖2 +
(
nA−1∂iA− 2∂iΦ

)
∇i‖χ+‖2 (B.7.48)

=
∥∥∥∇̂χ+

∥∥∥2

+
16(n− 2)

10− n
A−2

∥∥∥B(+)χ+

∥∥∥2

+
4(n− 2)

10− n
A−1

〈
ΓzB(+)χ+,Aχ+

〉
+

2

10− n
‖Aχ+‖2.

B.8 Common Sector AdSn, n ≥ 4

We introduce a new operator,

∇̂(+,q1,q2)
i = ∇(+)

i + q1A
−1ΓziB(+) + q2ΓiA, (B.8.1)

with the intention to demonstrate that, for an appropriately chosen value of q1 and q2, if

Γi∇̂iχ+ = 0, then χ+ satisfies the Killing spinor equations. For convenience, we also intro-
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duce an operator representing a general linear combination of the algebraic conditions,

A(+,q1,q2,κ) = −q1e
κΦA−1ΓzB(+) + q2A, (B.8.2)

so that ∇̂(+,q1,q2,κ)
i = ∇(+)

i + ΓiA(+,q1,q2,κ), and the modified Dirac condition is

Γi∇̂(+,q1,q2,κ)
i χ+ =

(
Γi∇i + ΓiΨ

(+)
i + (10− n)A(+,q1,q2,κ)

)
χ+ = 0. (B.8.3)

The Laplacian expands into two terms,

∇2‖χ+‖2 = 2‖∇χ+‖2 + 2
〈
χ+,∇2χ+

〉
. (B.8.4)

The first term is then

2‖∇χ+‖2 = 2
∥∥∥∇̂(+,q1,q2,κ)χ+

∥∥∥2

− 4
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2,κ)†Γi

)
∇iχ+

〉
− 2
〈
χ+,

(
Ψ(+)i† + A(+,q1,q2,κ)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2,κ)

)
χ+

〉
= 2
∥∥∥∇̂(+,q1,q2,κ)χ+

∥∥∥2

− 4
〈
χ+,Ψ

(+)i†∇iχ+

〉
− 2
〈
χ+,

(
Ψ(+)i† − A(+,q1,q2,κ)†Γi

)(
Ψ

(+)
i + ΓiA(+,q1,q2,κ)

)
χ+

〉
,

while the second term is

2
〈
χ+,∇2χ+

〉
= 2
〈
χ+,Γ

i∇i
(
Γj∇jχ+

)〉
+

1

2
R(10−n)‖χ+‖2 (B.8.5)

=
1

2
R(10−n)‖χ‖2 − 2

〈
χ+,∇i

(
ΓiΓjΨ

(+)
j + (10− n)ΓiA(+,q1,q2,κ)

)
χ+

〉
− 2
〈
χ+,

(
ΓiΓjΨ

(+)
j + (10− n)ΓiA(+,q1,q2,κ)

)
∇iχ+

〉
.

Thus, the full expansion is

∇2‖χ+‖2 = 2
∥∥∥∇̂(+,q1,q2,κ)χ+

∥∥∥2

+
1

2
R(10−n)‖χ+‖2 (B.8.6)

+
〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 2(10− n)q1e

κΦA−1ΓziB(+) − 2(10− n)q2ΓiA
]
∇iχ+

〉
+
〈
χ+,−2

(
Ψ(+)i† − A(+,q1,q2,κ)†

)(
Ψ

(+)
i + ΓiA(+,q1,q2,κ)

)
χ+

〉
+
〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 2(10− n)q1e

κΦA−1ΓziB(+) − 2(10− n)q2ΓiA
]
χ+

〉
The field equations and Bianchi identity are

dH = 0 (B.8.7)

∇2Φ = −nA−1∂iA∂iΦ + 2(dΦ)2 − 1

12
H2 (B.8.8)

∇kHijk = −nA−1∂kAHijk + 2∂kΦHijk (B.8.9)

and the Einstein equation separates into an AdS component,

∇2 lnA = −(n− 1)`−2A−2 − nA−2(dA)2, (B.8.10)
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and a transverse component, which contracts to

R(10−n) = n∇2 lnA+ nA−2(dA)2 +
1

4
H2 − 2∇2Φ (B.8.11)

= −n(n− 1)

`2
A−2 − n(n− 1)A−2(dA)2 +

5

12
H2 + 2nA−1∂iA∂

iΦ− 4(dΦ)2. (B.8.12)

Ψ
(+)
i =

1

2
A−1∂iA+

1

8
/HiΓ11 (B.8.13)

B(+) = − c

2`
+

1

2
/∂AΓz (B.8.14)

A = /∂Φ +
1

12
/HΓ11 (B.8.15)

Ψ
(+)†
i =

1

2
A−1∂iA−

1

8
/HiΓ11 (B.8.16)

B(+)† = − c

2`
− 1

2
/∂AΓz (B.8.17)

A† = /∂Φ +
1

12
/HΓ11 (B.8.18)

〈
χ+,

[
−4Ψ(+)i† − 2ΓiΓjΨ

(+)
j − 2(10− n)q1e

κΦA−1ΓziB(+) − 2(10− n)q2ΓiA
]
∇iχ+

〉
=

〈
χ+,

[
(10− n)q1c

`
eκΦA−1Γzi −

[
3 + (10− n)q1e

κΦ
]
A−1∂iA (B.8.19)

−
[
1 + (10− n)q1e

κΦ
]
A−1

(
Γ/∂A

)i − 2(10− n)q2Γi /∂Φ

−1 + 2(10− n)q2

4
/H
i
Γ11 −

3 + 2(10− n)q2

12
Γ /H

i
Γ11

]
∇iχ+

〉
.

This fixes q2 = − 1
10−n .

F =
(10− n)q1c

`
eκΦA−1Γz +

[
1 + (10− n)q1e

κΦ
]
A−1 /∂A− 2/∂Φ− 1

12
/HΓ11 (B.8.20)

αi = −
[
2 + (10− n)q1e

κΦ
]
A−1∂iA+ 2∂iΦ (B.8.21)
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Ψ(+)i† + q1e
κΦA−1B(+)†Γzi +

1

10− n
A†Γi +

1

2
FΓi (B.8.22)

=
(9− n)q1c

2`
eκΦA−1Γzi +

2 + (9− n)q1e
κΦ

2
A−1∂iA− 1 + (9− n)q1e

κΦ

2
A−1Γ/∂

i
A

− 9− n
10− n

/∂ΦΓi − 1

4(10− n)
/H
i
Γ11 −

8− n
24(10− n)

Γ /H
i
Γ11

Ψ
(+)
i + q1e

κΦA−1ΓziB(+) − 1

10− n
ΓiA (B.8.23)

= −q1c

2`
eκΦA−1Γzi +

1 + q1e
κΦ

2
A−1∂iA+

q1

2
eκΦA−1Γ/∂iA−

1

10− n
Γi /∂Φ

+
8− n

8(10− n)
/HiΓ11 −

1

12(10− n)
Γ /HiΓ11

〈
χ+,−2

(
Ψ(+)i† + q1e

κΦA−1B(+)†Γzi +
1

10− n
A†Γi +

1

2
FΓi

)
×
(

Ψ
(+)
i + q1e

κΦA−1ΓziB(+) − 1

10− n
ΓiA

)
χ+

〉
=

〈
χ+,

[
− (10− n)(9− n)q2

1

2
e2κΦA−2

(
1

`2
+ (dA)2

)
−
[
1 + (10− n)q1e

κΦ
]
A−2(dA)2

+ 2
[
1 + (9− n)q1e

κΦ
]
A−1∂iA∂

iΦ− 2(9− n)

10− n
(dΦ)2 +

q1c

6`
eκΦA−1 /HΓzΓ11

−q1

6
eκΦA−1∂iAΓ /H

i
Γ11 +

1

3(10− n)
∂iΦΓ /H

i
Γ11 −

1

72(10− n)
/H /H − 1

24
H2

]
χ+

〉
(B.8.24)

〈
χ+,∇i

[
−2ΓiΓjΨ

(+)
j − 2(10− n)q1e

κΦA−1ΓziB(+) + 2ΓiA
]
χ+

〉
=

〈
χ+,

[
−
[
1 + (10− n)q1e

κΦ
]
∇2 lnA− (10− n)κq1e

κΦA−1∂iA∂
iΦ + 2∇2Φ− 1

48
/dHΓ11

]
χ+

〉
(B.8.25)

=

〈
χ+,

[
(n− 1)

[
1 + (10− n)q1e

κΦ
]
A−2

(
1

`2
+ (dA)2

)
+
[
1 + (10− n)q1e

κΦ
]
A−2(dA)2

−
[
2n+ (10− n)κq1e

κΦ
]
A−1∂iA∂

iΦ + 4(dΦ)2 − 1

6
H2

]
χ+

〉
(B.8.26)

1

2
R(10−n)‖χ+‖2 =

〈
χ+,

[
− (n− 1)n

2
A−2

(
1

`2
+ (dA)2

)
+ nA−1∂iA∂iΦ− 2(dΦ)2 +

5

24
H2

]
χ+

〉
The sum is〈

χ+,

[
−1

2
p(n, q1e

κΦ)A−2

(
1

`

2

+ (dA)2

)
+
[
(2− n) + 2(9− n)q1e

κΦ + (10− n)κq1e
κΦ
]
A−1∂iA∂

iΦ +
2

10− n
(dΦ)2

+
q1c

6`
eκΦA−1 /HΓzΓ11 −

q1

6
eκΦA−1∂iAΓ /H

i
Γ11 +

1

3(10− n)
∂iΦΓ /H

i
Γ11 −

1

72(10− n)
/H /H

]
χ+

〉
(B.8.27)
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where

p(n, q1e
κΦ) =

[
(n− 1)− (10− n)q1e

κΦ
]2 − [(n− 1) + (10− n)q1

2e2κΦ
]

(B.8.28)

∥∥∥B(+)χ+

∥∥∥2

=

〈
χ+,

[
1

4

(
1

`2
+ (dA)2

)]
χ+

〉
〈

ΓzB(+)χ+,Aχ+

〉
=

〈
χ+,

[
−1

2
∂iA∂iΦ +

c

24`
/HΓzΓ11 −

1

24
∂iA

(
/ΓH
)i

Γ11

]
χ+

〉
‖Aχ+‖2 =

〈
χ+,

[
(dΦ)2 +

1

6
∂iΦ

(
/ΓH
)i

Γ11 −
1

144
/H /H

]
χ+

〉

∇2‖χ+‖2 +
([

2 + (10− n)q1e
κΦ
]
A−1∂iA− 2∂iΦ

)
∇i‖χ+‖2 (B.8.29)

=
∥∥∥∇̂χ+

∥∥∥2

− 2p(n, q1e
κΦ)A−2

∥∥∥B(+)χ+

∥∥∥2

+ 4q1e
κΦA−1

〈
ΓzB(+)χ+,Aχ+

〉
+

2

10− n
‖Aχ+‖2

only if

(2− n) + 2(9− n)q1e
κΦ + (10− n)κq1e

κΦ = −2q1e
κΦ (B.8.30)

rearranged, this is

q1e
κΦ =

n− 2

(κ+ 2)(10− n)
(B.8.31)

which, if we choose κ = −1, implies that q1e
κΦ = n−2

10−n and that the right side of the equation

is positive definite.
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B.9 IIB AdS-direction KSEs

B.9.1 Equations

The Killing spinor equations are(
∇M −

i

2
QM +

i

48
FMN1N2N3N4

ΓN1N2N3N4

)
ε

− 1

96

(
ΓM

N1N2N3GN1N2N3
− 9GMN1N2

ΓN1N2
)
C ∗ ε = 0 (B.9.1)

and

PMΓMC ∗ ε+
1

24
GN1N2N3ΓN1N2N3ε = 0, (B.9.2)

where C = Γ6789 and ∗ is the complex conjugation operator. The metric is given by

ds2 = A2ds2(AdSk) + ds2(S) (B.9.3)

=
A2

z2

(
ηµνdx

µdxν + dz2
)

+ (gS)ijdy
idyj (B.9.4)

and the frame forms are

eµ =
A

z
dxµ (B.9.5)

ez =
A

z
dz (B.9.6)

ei = e
i
S (B.9.7)

where indices are underlined to indicate that they are frame indices. The non-zero components

of the spin connection are thus

Ωµ,νz = −1

z
ηµν (B.9.8)

Ωµ,νi =
1

z
ηµν∂iA (B.9.9)

Ωz,zi =
1

z
∂iA (B.9.10)

Ωi,jk = (ΩS)i,jk. (B.9.11)

B.9.2 k ≥ 8

For k ≥ 8, F = 0 and G = 0, as the transverse space is not large enough to support either of

these fields. The first Killing spinor equation, (B.9.1), in the µ = 0, . . . , k − 2 directions reduces

to

∂µε−
1

2z
Γµ

zε+
1

2z
∂iAΓµ

iε = 0, (B.9.12)

where we have used the spin connection from equations (B.9.8)–(B.9.11). This system of partial

differential equations only if the integrability condition, ∂µ∂νε = ∂ν∂µε is met. This condition
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can be rewritten as [
/Fµ, /F ν

]
ε = 0 (B.9.13)

/Fµ =
1

2z
Γµ

z − 1

2z
∂iAΓµ

i, (B.9.14)

because /Fµ has no xν dependence.

Using the Clifford algebra commutators, we can write

[Γµ
z,Γν

z] = −2Γµν (B.9.15)[
Γµ

i,Γν
j
]

= −2ηµνΓij − 2δijΓµν (B.9.16)[
Γµ

z,Γν
i
]

= −2ηµνΓzi = −
[
Γµ

i,Γν
z
]

(B.9.17)

with which we can simplify equation (B.9.13) to

− 1

2z2

(
1 + ∂iA∂

iA
)
Γµνε = 0. (B.9.18)

We know that 1 +∂iA∂
iA 6= 0 because (gS)ij is positive definite, and that Γµνε 6= 0 because Γµν

has a trivial kernel. There are therefore no supersymmetric solutions for k ≥ 8.

B.9.3 k = 7

For k = 7, the transverse space supports a three-form field, Gijke
i ∧ ej ∧ ek. Equation (B.9.1)

therefore reduces to

∂µε−
1

2z
Γµ

zε+
1

2z
∂iAΓµ

iε− A

96z
GijkΓµ

ijkC ∗ ε = 0 (B.9.19)

in the µ = 0, . . . , k − 1 directions. In the transverse directions, G is dual to a scalar field,

X =
1

6
εijkGijk (B.9.20)

Gijk = εijkX. (B.9.21)

Noting that ΓijkC = εijkΓ6 equation (B.9.19) simplifies to

∂µε−
1

2z
Γµ

zε+
1

2z
∂iAΓµ

iε+
A

16z
X ∗ Γµ

6ε = 0 (B.9.22)

The integrability condition, equation (B.9.13), still applies, except that now

/Fµ =
1

2z
Γµ

z − 1

2z
∂iAΓµ

i − A

16z
X ∗ Γµ

6. (B.9.23)

Using the Clifford algebra commutators, we can write the integrability condition as

0 =
[
/Fµ, /F ν

]
ε (B.9.24)

= − 1

2z2

[(
1 + ∂iA∂

iA− A2

64
|X|2

)
1− A

8
∂iAX ∗ Γi6

]
Γµνε. (B.9.25)
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Note that the commutators of the Γ matrices are not identical for the k = 6 and k = 7 cases,

however they differ only by terms proportional to ηµν . All terms symmetric in µ and ν cancel,

and so we derive the same expression for either case.

As in section B.9.2, we note that Γµν is invertible. Thus, in this case, the integrability

condition is satisfied when the operator(
1 + ∂iA∂

iA− A2

64
|X|2

)
1− A

8
∂iAX ∗ Γi6 (B.9.26)

either vanishes or annihilates ε. The second case amounts to finding eigenvectors of ∂iAX ∗Γi6.

We can use a rotation in the transverse dimensions to fix ∂8A = ∂9A = 0, without loss of

generality, so that

∂iAX ∗ Γi6 = ∂7AXΓ67 ∗ . (B.9.27)

If an antilinear operator, such as Γ67∗, has any eigenvalues, then it must have real eigenvalues.

Γ67∗ can be shown to have no real eigenvalues, and it therefore has no eigenvectors.

We are left, then, with the former case, that the operator (B.9.26) vanishes, i.e.

1 + ∂iA∂
iA− A2

64
|X|2 = 0 (B.9.28)

A

8
∂iAX = 0. (B.9.29)

If X is zero then the situation is the same as the k ≥ 8 case, and there is no solution, so from

equation (B.9.29) we can conclude that ∂iA = 0 and that A is therefore constant. Then, from

equation (B.9.28) we find that

X =
8

A
eϕi. (B.9.30)

Applying the second Killing spinor equation, equation (B.9.2), we find that

PiΓ
iC ∗ ε+

1

24
GijkΓijkε = 0. (B.9.31)

Putting this equation in terms of X and substituting using equation (B.9.30), it simplifies to(
PiΓ

6i ∗+
2

A
eϕi1

)
ε = 0. (B.9.32)

Using a rotation in the transverse dimensions, we can fix P9 = 0, so that(
P7Γ67 + P8Γ68

)
∗ ε =

2

A
eϕiε. (B.9.33)

Because the operator on the left hand side is antilinear, the eigenvalue associated with an eigen-

vector is dependent on that vector’s phase. Defining ε̃ = e
ϕ
2 iε, we find that,(

P7Γ67 + P8Γ68
)
∗ ε̃ = e−

ϕ
2 i
(
P7Γ67 + P8Γ68

)
∗ ε (B.9.34)

= e−
ϕ
2 i

2

A
eϕiε (B.9.35)

=
2

A
ε̃ (B.9.36)
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By squaring the operator on the left-hand side and rearranging, we find

−P7P 7 − P8P 8 +
(
P 7P8 − P7P 8

)
Γ78ε̃ =

4

A2
ε̃. (B.9.37)

The eigenvalues of Γ78 are ±i, so all eigenvalues of the squared operator take the form

−P7P 7 − P8P 8 ± i
(
P 7P8 − P7P 8

)
= −

(
P7 ∓ iP8

)(
P 7 ± iP 8

)
(B.9.38)

= −
(
P7 ∓ iP8

)(
P7 ∓ iP8

)∗
. (B.9.39)

Hence, all of these eigenvalues must be negative real numbers, however equation (B.9.37) re-

quires that the eigenvalue associated with ε be positive. Therefore, there are no supersymmetric

solutions when k = 7.

B.9.4 k = 6

For the k = 6 case, it will be most convenient to work in the lightcone coordinates of appendix

??. In these coordinates, spinors will decompose as ε = ε+ + ε−, where Γ±ε± = 0. It will also

be useful to introduce the one-form dual to G,

Xi =
1

6
εijk`G

jk` (B.9.40)

Gijk = −εijk`X`, (B.9.41)

and to define Λ±i = ∂iA± A
8 Xi∗.

In these terms, the first Killing spinor equation, (B.9.1), in the AdS directions, reduces to

∂+ε+
1

2A

(
Γ+

z − Λ−i Γ+
i +

r

A
∂iAΓzi

)
ε = 0 (B.9.42)

∂−ε+
1

2A

(
Γ−

z − Λ−i Γ−
i
)
ε = 0 (B.9.43)

∂zε+
1

2A

(
Γ+− + Λ+

i Γzi − r

A
∂iAΓ−

i
)
ε = 0 (B.9.44)

∂aε+
1

2A

(
Γa

z + Λ+
i Γa

i
)
ε = 0. (B.9.45)

A simple linear transformation expresses these in terms of spacetime derivatives,

∂uε+
1

2A

(
Γ+

z − Λ−i Γ+
i +

r

A
∂iAΓzi

)
ε = 0 (B.9.46)

∂rε+
1

2A

(
Γ−

z − Λ−i Γ−
i
)
ε = 0 (B.9.47)

∂zε+
1

2

(
Γ+− + Λ+

i Γzi − r

A
∂iAΓ−

i
)
ε− r

A

(
Γ−

z − Λ−i Γ−
i
)
ε = 0 (B.9.48)

∂aε+
ez

2

(
Γa

z + Λ+
i Γa

i
)
ε = 0. (B.9.49)
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Integrability Condition

There is only one integrability condition for the k = 6 case,(
1 + Λ+

i Λ−j ΓiΓj
)
ε = 0 (B.9.50)

It will be useful to introduce the operator Θ = Γz+Λ+
i Γi, defined such that the above integrability

condition is

Θ2ε = 0. (B.9.51)

Integration in u, r, and x

Expressing equations (B.9.46) through (B.9.49) as ∂µε− /Fµε = 0, we see that

/Fu = − 1

2A
Γ+Θ (B.9.52)

/Fr = − 1

2A
Γ−Θ (B.9.53)

/Fa = −e
z

2
ΓaΘ. (B.9.54)

Thus, the solution in the u-, r-, and x-directions is

ε
(
u, r, z, xa, yi

)
= eu/Fu+r /Fr+xa /Faε

(
0, 0, z, 0, yi

)
(B.9.55)

=

[
1−

(
u

2A
Γ+ +

r

2A
Γ− +

ez

2
xaΓa

)
Θ

]
ε
(
0, 0, z, 0, yi

)
. (B.9.56)

Integration in z

Expressing equation (B.9.48) as ∂zε− /Fzε = 0, /Fz is

/Fz = −1

2

(
Γ+− + Λ+

i Γzi
)
− r

A
Γ−Θ. (B.9.57)

Restricting this equation to the r = 0 hyperplane, we can reduce /Fz to

/Fz = −1

2

(
Γ+− + Λ+

i Γzi
)
. (B.9.58)

Γ+− has the property that Γ+−ε± = ±ε±, so the action of /Fz on ε± is

/Fzε+ = −1

2
ΓzΘε+ (B.9.59)

/Fzε− = −1

2
(ΓzΘ− 2)ε−. (B.9.60)

When we square ΓzΘ, we get

ΓzΘΓzΘε =
(

1 + Λ+
i Γzi

)(
1 + Λ+

j Γzj
)
ε (B.9.61)

=
(

1 + 2Λ+
i Γzi − Λ+

i Λ−j ΓiΓj
)
ε (B.9.62)

= 2
(

1 + Λ+
i Γzi

)
ε (B.9.63)

= 2ΓzΘ (B.9.64)
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We can therefore simplify the solution in the z-direction,

ε
(
0, 0, z, 0, yi

)
= ez /Fzη

(
yi
)
, (B.9.65)

by evaluating /Fz
n
ε±,

/Fz
n
ε+ =

(
−1

2
ΓzΘ

)n
ε+ (B.9.66)

=
(−1)

n

2
ΓzΘε+ (B.9.67)

/Fz
n
ε− =

[
−1

2
(ΓzΘ− 2)

]n
ε− (B.9.68)

= −1

2
(ΓzΘ− 2)ε− (B.9.69)

ε+ is therefore

ε+
(
0, 0, z, 0, yi

)
=

(
1 +

e−z − 1

2
ΓzΘ

)
η+

(
yi
)

(B.9.70)

while ε− is

ε−
(
0, 0, z, 0, yi

)
=

(
ez − ez − 1

2
ΓzΘ

)
η−
(
yi
)
. (B.9.71)

Together, these can be expressed as

ε
(
0, 0, z, 0, yi

)
=

(
1 +

e−z − 1

2
ΓzΘ

)
eP−zη

(
yi
)
. (B.9.72)

Composition

To find the full solution for ε, we will need to combine the results of the two previous sections.

It will help to note that

Θε+
(
0, 0, z, 0, yi

)
=

(
Θ +

e−z − 1

2
ΘΓzΘ

)
η+ (B.9.73)

= e−zΘη+ (B.9.74)

and

Θε−
(
0, 0, z, 0, yi

)
=

(
ezΘ− ez − 1

2
ΘΓzΘ

)
η− (B.9.75)

= Θη−. (B.9.76)

Thus, the full solutions for ε+ and ε− are

ε+
(
u, r, z, xa, yi

)
=

(
1− ez

2
xaΓaΘ

)
ε+
(
0, 0, z, 0, yi

)
− u

2A
Γ+Θε−

(
0, 0, z, 0, yi

)
(B.9.77)

=

(
1 +

e−z − 1

2
ΓzΘ

)
η+ −

xa

2
ΓaΘη+ −

u

2A
Γ+Θη− (B.9.78)

=

[
1 +

(
e−z − 1

2
Γz − xa

2
Γa

)
Θ

]
η+ −

u

2A
Γ+Θη− (B.9.79)
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and

ε−
(
u, r, z, xa, yi

)
=

[
1− ez

2
xaΓaΘ

]
ε−
(
0, 0, z, 0, yi

)
− r

2A
Γ−Θε+

(
0, 0, z, 0, yi

)
(B.9.80)

=

(
ez − ez − 1

2
ΓzΘ

)
η− −

ez

2
xaΓaΘη− −

e−z

2A
rΓ−Θη+ (B.9.81)

= ez
[
1 +

(
e−z − 1

2
Γz − xa

2
Γa

)
Θ

]
η− −

e−z

2A
rΓ−Θη+. (B.9.82)

Algebraic Condition

Multiplying equation (B.9.2) by C∗, we can write the algebraic Killing spinor equation in terms

of X,

0 = P iΓ
iε+

1

24
GijkΓijkC ∗ ε

= P iΓ
iε+

1

4
XiΓ

i ∗ ε. (B.9.83)

applying this to the result from section B.9.4, we find two algebraic conditions on η
(
yi
)
,

0 = P iΓ
iη +

1

4
XiΓ

i ∗ η (B.9.84)

0 = P iΓ
iΘη +

1

4
XiΓ

i ∗Θη. (B.9.85)

Transverse Dimensions

In the transverse dimensions, the covariant derivative includes two AdS-direction components,

∇iε =
(
eji∂j + Ωi,jkΓjk + Ωi,µνΓµν

)
ε (B.9.86)

=

(
eS
j
i∂j + ΩSi,jkΓjk +

2r

A
∂iA∂r +

1

2A
∂iAΓ+−

)
ε (B.9.87)

= ∇̃iε− e−z
r

A2
∂iAΓ−Θε+

1

2A
∂iAΓ+−ε, (B.9.88)

where ∇̃i is the covariant derivative on S considered as a submanifold of the full space. The first

Killing spinor equation, (B.9.1), is therefore(
∇̃i − e−z

r

A2
Γ−Θ +

1

2A
∂iAΓ+− −

i

2
Qi

)
ε+

(
− 1

16
Xi ∗+

3

16
XjΓi

j∗
)
ε = 0. (B.9.89)

Computations in the transverse directions will be done at the AdS origin, xµ = 0, so we will

define /F i as

/Fi = − 1

2A
∂iAΓ+− +

i

2
Qi −

1

16
Xi ∗+

3

16
XjΓi

j ∗ . (B.9.90)

so equation (B.9.89) can be written as

∇̃iε− /Fiε− e−z
r

A2
Γ−Θε = 0. (B.9.91)
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Applying this to equations (B.9.79) and (B.9.82), we find the differential Killing spinors

restricted to the transverse space,

∇̃iη − /Fiη = 0, (B.9.92)

as well as several additional integrability conditions. By setting u = r = z = 0, the first

integrability condition is found to be

∇̃i(Θη)− /Fi(Θη) = 0, (B.9.93)

or, equivalently,

0 =

(
∇̃i∇̃jAΓj − 1

8
∇̃iAXjΓ

j ∗ −A
8
∇̃iXjΓ

j∗
)
η

+

(
iA

8
QiXkΓk ∗ −1

8
∇̃kAXiΓ

k ∗+
A

64
X(iXk)Γ

k

−3

8
∇̃kAXjΓi

jk − 3A

64
X[iXj]Γ

j

)
η. (B.9.94)

Similarly, we can set r = z = xa = 0 or u = z = xa = 0 to find that

∇̃i
(

1

A
Γ+Θη−

)
− /Fi

(
1

A
Γ+Θη−

)
= 0 (B.9.95)

and

∇̃i
(

1

A
Γ−Θη+

)
− /Fi

(
1

A
Γ−Θη+

)
+

2

A2
Γ−Θη+ = 0, (B.9.96)

respectively. The Γ matrices commute with the covariant derivative, so the latter conditions

reduce to

1

A2
∂iAΓ+Θη− +

[
/Fi,

1

A
Γ+

]
Θη− = 0 (B.9.97)

1

A2
∂iAΓ−Θη+ +

[
/Fi,

1

A
Γ−

]
Θη+ =

2

A2
Γ−Θη+. (B.9.98)

From the form of /F i, these conditions are automatically satisfied. The only independent mixed

integrability condition is therefore equation (B.9.94).

We can derive the purely-transverse integrability conditions by expanding the commutator[
∇̃i, ∇̃j

]
η with equation (B.9.92),[

∇̃i, ∇̃j
]
η = ∇̃i∇̃jη − ∇̃j∇̃iη (B.9.99)

= ∇̃i
(
/Fjη
)
− ∇̃j

(
/Fiη
)

(B.9.100)

1

4
R̃Sij,k`Γ

k`η = 2∇̃[i /Fj]η −
[
/Fi, /Fj

]
η. (B.9.101)
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The right hand side expands to

2∇̃[i /F j] −
[
/Fi, /Fj

]
=
i

2
(dQ)ij −

1

16
(dX)ij ∗+

3

16

(
∇̃iXkΓj

k − ∇̃jXkΓi
k
)
∗

+
i

8
Q[iXj] ∗ −

3i

8
XkQ[iΓj]

k ∗+
1

16
X[iXj] +

9

128
|X|2Γij

+
3

128
X[iXk]Γj

k − 3

128
X[jXk]Γi

k

+
9

128
X(iXk)Γj

k − 9

128
X(jXk)Γi

k

+
9

128
XkX`Γij

k`. (B.9.102)

Bosonic Field Equations and Bianchi Identities

The Einstein equation,

RMN −
1

4
G(M

K1K2GN)K1K2
+

1

48
GK1K2K3

G
K1K2K3

ηMN − 2P(MPN) = 0 (B.9.103)

simplifies, in the AdS-directions, to[
− 5

2A2

(
1 + |dA|2

)
+

1

A2
|dA|2 − 1

A
∇̃2A

]
ηµν +

1

8
|X|2ηµν = 0 (B.9.104)

which tells us that

|X|2 = − 20

A2

(
1 + |dA|2

)
+

8

A2
|dA|2 − 8

A
∇̃2A. (B.9.105)

In the S-directions, using G(i
k1k2Gj)k1k2 = 2|X|2δij−2X(iXj), the Einstein equation instead

reduces to

R̃Sij +
6

A2
∂iA∂jA−

6

A
∇̃i∇̃jA−

3

8
|X|2δij +

1

2
X(iXj) + 2P(iP j) = 0. (B.9.106)

Expressed in terms of X, the remaining field equations and Bianchi identities are

0 = ∇̃iXi − iQiXi + PiX
i

(B.9.107)

0 = dP − 2iQ ∧ P (B.9.108)

0 = dQ+ iP ∧ P (B.9.109)

0 = dX +
6

A
dA ∧X − iQ ∧X − P ∧X (B.9.110)

0 = ∇̃iPi +
6

A
∂iAPi − 2iQiPi +

1

4
|X|2 (B.9.111)
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Reduction to S

We can apply these equations to the purely transverse integrability condition in section B.9.4 by

multiplying the condition by Γj . The derivative is thus

2Γj∇̃[i /F j] =
i

2
(dQ)ijΓ

j − 1

16
(dX)ijΓ

j ∗+
3

8
∇̃iXjΓ

j∗

+
3

8
(dX)jkΓi

jk ∗+
3

16
∇̃jXjΓi∗, (B.9.112)

= P[iP j]Γ
j +

3

4A
∇̃[iAXj]Γ

j ∗ − i
8
Q[iXj]Γ

j ∗ −1

8
P[iXj]Γ

j∗

− 9

2A
∇̃jAXkΓi

jk ∗+
3i

4
QjXkΓi

jk ∗+
3

4
PjXkΓi

jk∗

+
3i

16
QjX

jΓi ∗ −
3

16
PjX

j
Γi ∗+

3

8
∇̃iXjΓ

j∗, (B.9.113)

while the commutator is

−Γj
[
/Fi, /Fj

]
=
i

8
Q[iXj]Γ

j ∗ −3i

8
QiXkΓk ∗ − 3i

16
XkQjΓi

jk ∗ − 3i

16
XjQ

jΓi∗

+
7

64
X[iXj]Γ

j − 9

64
|X|2Γi −

3

64
XjXkΓi

jk

+
9

64
X(iXk)Γ

k, (B.9.114)

and the curvature term becomes

1

2
R̃SijΓ

j = − 3

A2
∇̃iA ∇̃jAΓj +

3

A
∇̃i∇̃jAΓj +

3

16
|X|2Γi −

1

4
X(iXj)Γ

j − P(iP j)Γ
j .

The integrability condition is therefore

0 =

(
−PjP iΓj +

3

4A
∇̃[iAXj]Γ

j ∗ − 9

2A
∇̃jAXkΓi

jk ∗ −1

8
P[iXj]Γ

j∗

− 3i

8
QiXkΓk ∗+

15i

16
QjXkΓi

jk ∗ − 3

16
PjX

j
Γi ∗+

3

4
PjXkΓi

jk∗

+
3

8
∇̃iXjΓ

j ∗ − 7

64
XjXiΓ

j +
3

64
|X|2Γi −

3

64
XjXkΓi

jk

− 3

A2
∇̃iA ∇̃jAΓj +

3

A
∇̃i∇̃jAΓj

)
η (B.9.115)

Lichnerowicz Theorem(s)

We wish to prove that, on the transverse manifold, S, the Dirac equation is equivalent to the

Killing spinor equations. As such, we will assume that the Dirac equations,

0 = D(±)η± (B.9.116)

= Γi∇̃iη± − Γi /F
(±)
i η (B.9.117)

hold, where

/F
(±)
i = ∓ 1

2A
∂iA+

i

2
Qi −

1

16
Xi ∗+

3

16
XjΓi

j∗, (B.9.118)
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and prove that the Killing spinor equations must hold as well.

To this end, we begin by computing the following Laplacian in the transverse dimensions,

∇̃2〈η±, η±〉 = 2 Re
〈
η±, ∇̃2η±

〉
+ 2
〈
∇̃iη±, ∇̃iη±

〉
. (B.9.119)

We expand the first term using

∇̃i∇̃iη± = Γi∇̃i
(

Γj∇̃jη±
)

+
1

4
R̃Sη± (B.9.120)

= Γi∇̃i
(

Γj /F
(±)
j

)
η± + ΓiΓj /F

(±)
j ∇̃iη± −

3

2A2
|dA|2η± −

3

2A
∇̃2Aη±

− 1

4
|X|2η± +

1

2
|P |2η±, (B.9.121)

which, along with

Γi /F
(±)
i = ∓ 1

2A
∂iAΓi +

i

2
QiΓ

i +
1

2
XiΓ

i∗, (B.9.122)

implies that

Re
〈
η±, ∇̃2η±

〉
= ±

(
1

2A2
|dA|2 − 1

2A
∇̃2A

)
〈η±, η±〉+

〈
η±,

i

4
(dQ)ijΓ

ijη±

〉
+ Re

〈
η±,

(
1

4
(dX)ijΓ

ij + ∇̃iXi

)
∗ η±

〉
+ Re

〈
η±,Γ

i

(
∓ 1

2A
∂jAΓj +

i

2
QjΓ

j +
1

2
XjΓ

j∗
)
∇̃iη±

〉
−
(

3

2A2
|dA|2 − 3

2A
∇̃2A− 1

4
|X|2 +

1

2
|P |2

)
〈η±, η±〉 (B.9.123)

=

〈
η±,

1

2
P[iP j]Γ

ijη±

〉
+ Re

〈
η±,

(
iQiX

i − PiXi
)
∗ η±

〉
+ Re

〈
η±,Γ

i

(
∓ 1

2A
∂jAΓj +

i

2
QjΓ

j +
1

2
XjΓ

j∗
)
∇̃iη±

〉
−
(

3∓ 1

2A2
|dA|2 − 3∓ 1

2A
∇̃2A− 1

4
|X|2 +

1

2
|P |2

)
〈η±, η±〉 (B.9.124)

noting that 〈
η±,Γ

ij ∗ η±
〉

= 0. (B.9.125)

For the second term, we can expand it by completing the square,〈
∇̃iη±, ∇̃iη±

〉
=
〈
∇̃iη± − /F

(±)
i η±, ∇̃iη± − /F

(±)i
η±

〉
−
〈
/F

(±)
i η±, /F

(±)i
η±

〉
− 2 Re

〈
η±,

(
± 1

2A
∂iA+

i

2
Qi +

1

16
Xi ∗+

3

16
XjΓi

j∗
)
∇̃iη±

〉
. (B.9.126)
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B.10 IIB AdS Directly From Horizon

B.10.1 Maximality Condition on η+

We know that, if D(+)
8 η8+ = 0, then

∇̃i8∇̃8i‖η8+‖2 − hi∇̃8i‖η8+‖2 = 2
∥∥∥∇(+)

8 η8+

∥∥∥2

+
∥∥∥A(+)η8+

∥∥∥2

, (B.10.1)

where

D(+)
8 = Γz∇(+)

8z + Γa∇(+)
8a +D(+) (B.10.2)

∇̃i8∇̃8iφ =
1

A2
∂z∂zφ+

e−2z

A2
δab∂a∂bφ+

4

A
∂iA∂iφ+

3

A2
∂zφ+ ∇̃2φ (B.10.3)

h = −2dz − 2

A
dA (B.10.4)

hi∇̃8iφ = − 2

A
∂zφ−

2

A
∂iA∂iφ (B.10.5)

∇(+)
8z ψ = ∂zψ +

1

2A
ΓzΘψ (B.10.6)

∇(+)
8a ψ = ∂aψ +

1

2A
ΓaΘψ (B.10.7)

A(+) = P iΓ
i +

1

4
XiΓ

i∗ (B.10.8)

and

η8+ = ε+
(
0, 0, z, xa, yi

)
,

=

[
1 +

(
e−z − 1

2
Γz −

xa

2
Γa

)
Θ

]
η+

(
yi
)
. (B.10.9)

If we assume that ε+ satisfies the pure-AdS integrability condition, Θ2ε+ = 0, as well as a

weaker form of the mixed AdS-transverse integrability condition, D(+)ε+, then D(+)
8 η8+ = D(+)η

is the Dirac operator on the transverse space,∥∥∥∇(+)
8 η8+

∥∥∥2

=

∥∥∥∥∇(+)η+ +

(
e−z − 1

2
Γz −

xa

2
Γa

)
∇(+)(Θη+)

∥∥∥∥2

(B.10.10)

=
∥∥∥∇(+)η+

∥∥∥2

+
1

4

[(
e−z − 1

)2
+ |x|2

]∥∥∥∇(+)(Θη+)
∥∥∥2

(B.10.11)

+ 2 Re

〈
∇(+)
i η+,

(
e−z − 1

2
Γz −

xa

2
Γa

)
∇(+)i(Θη+)

〉
,

and ∥∥∥A(+)η8+

∥∥∥2

=

∥∥∥∥A(+)η+ −
(
e−z − 1

2
Γz −

xa

2
Γa

)
A(+)Θη+

∥∥∥∥2

(B.10.12)

=
∥∥∥A(+)η+

∥∥∥2

+
1

4

[(
e−z − 1

)2
+ |x|2

]∥∥∥A(+)Θη+

∥∥∥2

(B.10.13)

− 2 Re

〈
A(+)η+,

(
e−z − 1

2
Γz −

xa

2
Γa

)
A(+)Θη+

〉
,
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On the left hand side,

‖η8+‖2 = ‖η+‖2 +
1

4

[(
e−z − 1

)2
+ |x|2

]
‖Θη+‖2 (B.10.14)

+ 2 Re

〈
η+,

(
e−z − 1

2
Γz +

xa

2
Γa

)
Θη+

〉
,

so

∇̃i8∇̃8i‖η8+‖2 − hi∇̃8i‖η8+‖2

=
1

A2
∂z∂z‖η8+‖2 +

e−2z

A2
δab∂a∂b‖η8+‖2 (B.10.15)

+
6

A
∂iA∂i‖η8+‖2 +

5

A2
∂z‖η8+‖2 + ∇̃2‖η8+‖2

= − 1

2A2
e−z
(
3e−z − 4

)
‖Θη+‖2 −

4e−z

A2
Re〈η+,ΓzΘη+〉

+
3e−2z

2A2
‖Θη+‖2 +

6

A
∂iA∂i‖η+‖2

+
3

2A

[(
e−z − 1

)2
+ |x|2

]
∂iA∂i‖Θη+‖2

+
6

A
∂iA∂i Re

〈
η+,

[(
e−z − 1

)
Γz + xaΓa

]
Θη+

〉
+ ∇̃2‖η+‖2 +

1

4

[(
e−z − 1

)2
+ |x|2

]
∇̃2‖Θη+‖2

+ ∇̃2 Re
〈
η+,

[(
e−z − 1

)
Γz + xaΓa

]
Θη+

〉
(B.10.16)

Equation (B.10.1) thus separates into components proportional to the linearly independent

functions, 1, e−z, e−2z, xa, and |x|2. The |x|2 component,

1

4
∇̃2‖Θη+‖2 +

3

2A
∂iA∂i‖Θη+‖2 =

1

2

∥∥∥∇(+)(Θη+)
∥∥∥2

+
1

4

∥∥∥A(+)Θη+

∥∥∥2

, (B.10.17)

by the Hopf maximum principle, tells us that if S is compact then ‖Θη+‖2 must be constant.

This also means tha

∇(+)
i (Θη+) = 0 (B.10.18)

and

A(+)Θη+ = 0, (B.10.19)

which are precisely the mixed AdS-transverse integrability conditions.

Furthermore, we can apply these to simplify the remaining components. The right hand side

reduces to two terms,

2
∥∥∥∇(+)

8 η8+

∥∥∥2

+
∥∥∥A(+)η8+

∥∥∥2

= 2
∥∥∥∇(+)η+

∥∥∥2

+
∥∥∥A(+)η+

∥∥∥2

, (B.10.20)
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and the left hand side reduces to

∇̃i8∇̃8i‖η8+‖2 − hi∇̃8i‖η8+‖2 (B.10.21)

=
2e−z

A2

(
‖Θη+‖2 − 2 Re〈η+,ΓzΘη+〉

)
(B.10.22)

+
6

A
∂iA∂i‖η+‖2 + ∇̃2‖η+‖2

+
6

A
∂iA∂i Re

〈
η+,

[(
e−z − 1

)
Γz + xaΓa

]
Θη+

〉
+ ∇̃2 Re

〈
η+,

[(
e−z − 1

)
Γz + xaΓa

]
Θη+

〉
.

Note that this eliminates the e−2z component as well.

The 1 component is then

∇̃2f(η+) +
6

A
∂iA∂if(η+) = 2

∥∥∥∇(+)η+

∥∥∥2

+
∥∥∥A(+)η+

∥∥∥2

, (B.10.23)

where

f(η+) = ‖η+‖2 − Re〈η+,ΓzΘη+〉. (B.10.24)

Once again applying the Hopf maximum principle, we find that the Killing spinor equations are

satisfied on the transverse space, S. Together with equations (B.10.18) and (B.10.19) and the

assumption of integrability on the AdS space, this implies that ε+ is a Killing spinor on the entire

space AdS6 ×w S4.

B.10.2 Lichnerowicz Theorem on η−

For 8 compact dimensions, we know that

∫
S8

∥∥∥D(−)
8 η−

∥∥∥2

=

∫
S8

∥∥∥∇(−)
8 η8−

∥∥∥2

+
1

2

∫
S8

∥∥∥A(−)η8−

∥∥∥2

+

∫
S8

Re
〈
Bη8−,D(−)

8 η8−

〉
. (B.10.25)

When not all 8 dimensions are compact, however, there are additional surface terms in this

equation which are non-zero. In this case, the condition on the integrands is (??),∥∥∥D(−)
8 η8−

∥∥∥2

=
∥∥∥∇(−)

8 η8−

∥∥∥2

+
1

2

∥∥∥A(−)η8−

∥∥∥2

− Re
〈
η8−,BD(−)

8 η8−

〉
+ ∇̃8i Re

〈
η8−,F i8η8−

〉
, (B.10.26)

where

B =

(
−1

2
hjΓ

j +
i

6
Y`1`2`3Γ`1`2`3

)
+

(
3

8
ΦjΓ

j +
1

48
H`1`2`3Γ`1`2`3

)
C∗ (B.10.27)

and

F i8 = Γij∇(−)
j +

(
−1

4
hi +

i

4
Y i`1`2Γ`1`2

)
(B.10.28)

+

(
17

16
Φi − 11

96
H`1`2`3Γi`1`2`3

)
C ∗ .
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For the AdS6 case specifically, we will express the 8-dimensional quantities in terms of their

AdS and transverse components as

D(−)
8 = Γz∇(−)

8z + Γa∇(−)
8a +D(−) (B.10.29)

h = − 2

A
ez − 2

A
dA (B.10.30)

∇(−)
8z ψ = ∂zψ +

1

2A
(ΓzΘ− 2)ψ (B.10.31)

∇(−)
8a ψ = ∂aψ +

1

2A
ΓaΘψ (B.10.32)

A(−) = P iΓ
i +

1

4
XiΓ

i∗ (B.10.33)

and

η8− = ε−
(
0, 0, z, xa, yi

)
,

= ez
[
1 +

(
e−z − 1

2
Γz −

xa

2
Γa

)
Θ

]
η−
(
yi
)
. (B.10.34)

The norm-squared of η8− is

‖η8−‖2 = e2z‖η−‖2 +
e2z

4

[(
e−z − 1

)2
+ |x|2

]
‖Θη−‖2 (B.10.35)

+ 2e2z Re

〈
η−,

(
e−z − 1

2
Γz −

xa

2

)
Θη−

〉
.

If we assume that D(−)ε− = D(−)(Θε−) = Θ2ε− = 0, we see immediately that ∇(−)
8z η8− =

∇(−)
8a η8− = 0, so that D(−)

8 η8− = D(−)η− = 0. The other terms in equation (B.10.26) can be
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expanded as∥∥∥∇(−)
8 η8−

∥∥∥2

= e2z

∥∥∥∥∇(−)η− +

(
e−z − 1

2
Γz −

xa

2
Γa

)
∇(−)(Θη−)

∥∥∥∥2

(B.10.36)

= e2z
∥∥∥∇(−)η−

∥∥∥2

+
e2z

4

[(
e−z − 1

)2
+ |x|2

]∥∥∥∇(−)(Θη−)
∥∥∥2

(B.10.37)

+ 2e2z Re

〈
∇(−)
i η−,

(
e−z − 1

2
Γz −

xa

2
Γa

)
∇(−)i(Θη−)

〉
∥∥∥A(−)η8−

∥∥∥2

= e2z

∥∥∥∥A(−)η− −
(
e−z − 1

2
Γz −

xa

2
Γa

)
A(−)Θη−

∥∥∥∥2

(B.10.38)

= e2z
∥∥∥A(−)η−

∥∥∥2

+
e2z

4

[(
e−z − 1

)2
+ |x|2

]∥∥∥A(−)Θη−

∥∥∥2

(B.10.39)

− 2e2z Re

〈
A(−)η−,

(
e−z − 1

2
Γz −

xa

2
Γa

)
A(−)Θη−

〉
∇̃8i Re

〈
η8−,F i8η8−

〉
= ∂z Re

〈
η8−,

(
ΓzD(−) +

1

2A
− 11

96
GijkΓzijkC∗

)
η8−

〉
(B.10.40)

+ ∂a Re

〈
η8−,

(
ΓaD(−) − 11

96
GijkΓaijkC∗

)
η8−

〉
+ ∇̃i Re

〈
η8−,F iη8−

〉
+

4

A
∂iARe

〈
η8−,F iη8−

〉
+

3

A
Re

〈
η8−,

(
ΓzD(−) +

1

2A
− 11

96
GijkΓzijkC∗

)
η8−

〉
=

1

2A2
∂z‖η8−‖2 +

3

2A2
‖η8−‖2 + ∇̃i Re

〈
η8−,F iη8−

〉
(B.10.41)

− 1

A
∂z Re

〈
η8−,

11

96
XiΓ

zi ∗ η8−

〉
+

4

A
∂iARe

〈
η8−,F iη8−

〉
− e−z

A
∂a Re

〈
η8−,

11

96
XiΓ

ai ∗ η8−

〉
− 3

A
Re

〈
η8−,

11

96
XiΓ

zi ∗ η8−

〉
=

5

2A2
‖η8−‖2 +

1

4A2
(ez − 1)‖Θη−‖2 −

1

2A2
ez Re〈η−,ΓzΘη−〉 (B.10.42)

+ ∇̃i Re
〈
η8−,F iη8−

〉
− 5

A
Re

〈
η8−,

11

96
XiΓ

zi ∗ η8−

〉
where we’ve used the fact that Θ2η− = 0 to find that

Re

〈
η8−,

11

96
XiΓ

zi ∗ η8−

〉
=

11

12A
e2z

(
‖η−‖2 +

1

4

[
1− e−2z + |x|2

]
‖Θη−‖2

+2 Re

〈
η−,

(
e−z − 1

2
Γz −

xa

2
Γa

)
Θη−

〉)
− 11

12A
ez Re〈η−,ΓzΘη−〉 (B.10.43)

Re

〈
η8−,

11

96
XiΓ

ai ∗ η8−

〉
=

11

12A
ez
(
xa

2
‖Θη−‖2 − Re〈η−,ΓaΘη−〉

)
(B.10.44)
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B.11 Homogeneity implies constant warp factor

The computations for flat backgrounds are the same as those for AdS backgrounds, except that

` =∞, i.e. 1
` = 0. Specifically, the Rn−1,1 ×w M10−n metric is

ds2 = 2du(dr + rh) +A2

(
n−1∑
a=2

(dxa)
2

)
+ ds2

(
M10−n) , (B.11.1)

h = −2A−1dA . (B.11.2)

Using the obvious frame,

e+ = du, e− = dr − 2rA−1dA, ea = Adxa, ei = eiM , (B.11.3)

the frame-indexed derivatives are

∂+ = ∂u, ∂− = ∂r, ∂a = A−1∂xa , ∂i = (eM )y
j

i

(
∂yj + 2rA−1∂yjA ∂r

)
, (B.11.4)

and the spin connection is

Ω±± = ±A−1dA, Ωµi = A−1∂iA eµ, Ωij = ΩM
i
j . (B.11.5)

Using this spin connection in the flat components of the gravitino KSE, they can all be

expressed as

∂µε± + ΓµΘ±ε± = 0 , (B.11.6)

where Θ± for Rn−1,1
is the same as Θ± for AdSn with 1

` = 0. The integrability condition is then

Θ∓Θ±ε± = 0, or, defining Ξ± = Γ2Θ±, Ξ2
±ε± = 0.

The homogeneity conjecture tells us that the Killing vectors derived from the Killing spinors,

KM =
〈
ε,ΓM ε

〉
, span the tangent space at each point. Using the flat-flat part of the Killing

vector condition,

0 = ∇(µKν) = ∂(µKν) −
1

A
Ki∂iA ηµν , (B.11.7)

because ∂µKν = ∂µ〈σ,Γνσ〉 = 0, LKA = 0 for each of these Killing vectors. Then, because they

span the tangent space, we find that A must be constant over the entire space, and, in particular,

over the transverse space.

B.12 IIB AdS3

B.12.1 Chirality

For any IIB spinors, ψ,

Γ0123456789ψ = ψ. (B.12.1)

For ψ± defined such that Γ±ψ± = 0, this means that

Γ23456789 ψ± = ±ψ±, (B.12.2)

and

Γ3456789 ψ± = ±Γ2ψ±. (B.12.3)
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B.12.2 Electric and Magnetic Components of Fields

For k ≤ 5, the fields will have AdS components, and so we must consider how they break down

into AdS and transverse components. For k = 3, Q and P are purely transverse, while G and F

have both AdS and transverse components. G can be expressed in terms of a scalar, Φ, and a

transverse three-form, H,

G = Φdvol(AdS3) +H, (B.12.4)

while F can be expressed in terms of a two-form, Y ,

F = dvol(AdS3) ∧ Y − ?7Y. (B.12.5)

In index notation these are

G+−z = Φ (B.12.6)

Gijk = Hijk (B.12.7)

F+−zij = Yij (B.12.8)

Fk1k2k3k4k5 = −1

2
εijk1k2k3k4k5Yij . (B.12.9)

B.12.3 Field Equations and Bianchi Identities

The Einstein equation has an AdS component,

1

A
∇̃2A = 2Y 2 +

3

8
|Φ|2 +

1

48
|H|2 − 2

A2
− 2

A2
|dA|2, (B.12.10)

and a transverse component

0 = R̃ij −
3

A
∇̃i∇̃jA− 2Y 2δij + 8YikYj

k (B.12.11)

− 1

4
H(i

k`Hj)k` −
1

8
|Φ|2δij +

1

48
|H|2δij − 2|P |2.

Contracting this, we find that

R̃ =
3

A
∇̃2A+ 6Y 2 +

5

48
|H|2 +

7

8
|Φ|2 + 2|P |2 (B.12.12)

= − 6

A2
− 6

A
|dA|2 + 12Y 2 + 2|Φ|2 +

1

6
|H|2 + 2|P |2. (B.12.13)

The Bianchi identities reduce to

dY = − 3

A
dA ∧ Y +

i

8

(
ΦH − ΦH

)
(B.12.14)

d ∗7 Y = − i
8
H ∧H (B.12.15)

dΦ =
3

A
ΦdA+ iΦQ− ΦP (B.12.16)

dH = iQ ∧H − P ∧H (B.12.17)

dP = 2iQ ∧ P (B.12.18)

dQ = −iP ∧ P , (B.12.19)
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while the field equations reduce to

B.12.4 Parallel Transport Equations

In the AdS directions the parallel transport equations are

∂uε+
1

2A
Γ+Θ−ε = 0 (B.12.20)

∂rε+
1

2A
Γ−Θ+ε = 0 (B.12.21)

∂zε± − Ξ±ε± = 0 (B.12.22)

where

Θ± = Γz + ∂iAΓi ∓
iA

2
Y ijΓzij +

(
−2A

96
HijkΓijk ±

36A

96
ΦΓz

)
C∗ (B.12.23)

Ξ+ = −1

2
ΓzΘ+, Ξ− = 1− 1

2
ΓzΘ−. (B.12.24)

The AdS integrability condition is Θ∓Θ±ε± = 0, which implies that

ε±
(
0, 0, z, 0, yi

)
= σ±

(
yi
)

+ e∓zτ±
(
yi
)
. (B.12.25)

Introducing

Ξ̃± = ∓ c
2

+
1

2
/∂AΓz ±

iA

4
/Y +

(
− A

96
/HΓz ∓ 18A

96
Φ

)
C∗, (B.12.26)

the conditions on σ± and τ± are

Ξ̃±χ± = 0 (B.12.27)

where c = 1 when χ± = σ± and c = −1 when χ± = τ±.

The parallel transport equations in the transverse dimensions are

0 = ∇(±)
i ε (B.12.28)

= ∇̃iε+ Ψ
(±)
i ε± (B.12.29)

where

Ψ
(±)
i = ± 1

2A
∂iA−

i

2
Qi ±

i

4

(
/ΓY
)
i
Γz ∓

i

2
/Y iΓ

z (B.12.30)

+

(
− 1

96

(
/ΓH
)
i
+

9

96
/Hi ∓

6

96
ΦΓzi

)
C ∗ .

B.12.5 Maximality Condition on σ+ and τ+

We introduce a new operator,

∇̂(+)
i = ∇(+)

i +
q

A
ΓziΞ̃+, (B.12.31)

with the intention to demonstrate that, for an appropriately chosen value of q, if Γi∇̂(+)
i χ+ = 0,

then χ+ satisfies the Killing spinor equations.
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As before, we find that

∇̃2‖χ+‖2 = 2
∥∥∥∇̂(+)χ+

∥∥∥2

+
1

2
R̃‖χ+‖2 (B.12.32)

+ Re
〈
χ+,

[
−4Ψ

(+)i − 2Ψ(+)i − 2ΓijΨ
(+)
j

−14
q

A
ΓziΞ̃+

]
∇̃iχ+

〉
Re
〈
χ+,

[
−2
(

Ψ
(+)i

+
q

A
Ξ̃+Γzi

)(
Ψ

(+)
i +

q

A
ΓziΞ̃+

)
−2∇̃iΨ(+)

i − 2Γij∇̃iΨ(+)
j − 14∇̃i

( q
A

ΓziΞ̃+

)]
χ+

〉
,

where

Ψ
(+)

i =
1

2A
∂iA+

i

2
Qi −

i

4

(
/ΓY
)
i
Γz −

i

2
/Y iΓz (B.12.33)

+

(
− 1

96

(
/ΓH
)
i
− 9

96
/Hi +

6

96
ΦΓzi

)
C∗

Ξ̃+ = − c
2
− 1

2
/∂AΓz +

iA

4
/Y +

(
− A

96
/HΓz −

18A

96
Φ

)
C ∗ . (B.12.34)

Expanding the third term, we find that

Re
〈
χ+,

[
−4Ψ

(+)i − 2Ψ(+)i − 2ΓijΨ
(+)
j − 14

q

A
ΓziΞ̃+

]
∇̃iχ+

〉
(B.12.35)

= Re

〈
χ+,

[
7qc

A
Γzi − 3 + 7q

A
∂iA− 1 + 7q

A

(
Γ/∂A

)i
− iQi + i( /ΓQ)

i
+
−2 + 14q

2
i /Y

i
Γz +

−1 + 7q

2
i
(
/ΓY
)i

Γz

+

(
−6 + 14q

96

(
/ΓH
)i

+
6 + 42q

96
/H
i
+

60 + 252q

96
ΦΓzi

)
C∗
]
∇̃iχ+

〉
.

We would like to write this in the form

α∂iA ∇̃i‖χ+‖2 + Re
〈
χ+,FΓi∇̃iχ+

〉
, (B.12.36)

which is only possible if q = 1
7 , in which case α = − 3

A ,

F =
c

A
Γz +

2

A
/∂A− i /Q+

(
1

24
/H + ΦΓz

)
C∗, (B.12.37)

and

Re
〈
χ+,

[
−4Ψ

(+)i − 2Ψ(+)i − 2ΓijΨ
(+)
j − 12

q

A
ΓziΞ̃+

]
∇̃iχ+

〉
= − 4

A
∂iA ∇̃i‖χ+‖2 + Re

〈
χ+,FΓi∇̃iχ+

〉
(B.12.38)

= − 4

A
∂iA ∇̃i‖χ+‖2 − Re

〈
χ+,FΓi

[
Ψ

(+)
i +

1

7A
ΓziΞ̃+

]
χ+

〉
. (B.12.39)

177



Combining this with the second term and the bilinear part of the fourth term in (B.14.32), we

find that

Re

〈
χ+,−2

(
Ψ

(+)i
+

1

7A
Ξ̃+Γzi +

1

2
F Γi

)(
Ψ

(+)
i +

1

7A
ΓziΞ̃+

)
χ+

〉
= Re

〈
χ+,−2

[
3c

7A
Γzi +

10

7A
∂iA− 13

14A

(
Γ/∂A

)i
+
i

2
( /ΓQ)

i − 3i

7
/Y
i
Γz (B.12.40)

−2i

7

(
/ΓY
)i

Γz +

(
− 20

7 · 96

(
/ΓH
)i − 24

7 · 96
/H
i
+

15

28
ΦΓzi

)
C∗
]

×
[
− c

14A
Γzi +

4

7A
∂iA+

1

14A

(
Γ/∂A

)
i
− i

2
Qi −

4i

7
/Y iΓz

+
3i

14

(
/ΓY
)
i
Γz +

(
− 8

7 · 96

(
/ΓH
)
i
+

60

7 · 96
/Hi −

5

56
ΦΓzi

)
C∗
]
χ+

〉
= Re

〈
χ+,

[
− 3

7A2
− 17

7A2
|dA|2 − 2Y 2 − 1

7
/Y

2 − 4ic

7A
/Y − 3

28
|Φ|2 +

5

168
Φ /HΓz

− 11

7 · 288
/H /H +

1

32
/H
i /Hi

+

(
i

12
Qi
(
/ΓH
)i

+
c

42A
/HΓz −

1

42A
∂iA

(
/ΓH
)i − 3c

7A
Φ

)
C∗
]
χ+

〉
(B.12.41)

We can use the field equations and Bianci identities to rewrite the last line of (B.14.32),

Re

〈
χ+,

[
−2∇̃iΨ(+)

i − 2Γij∇̃iΨ(+)
j − ∇̃i

(
4

A
ΓziΞ̃+

)]
χ+

〉
= Re

〈
χ+,

(
2

A2
|dA|2 − 2

A
∇̃2A+

i

2
/dQ− 2i∇̃i /Y iΓz −

1

48
/dHC∗

)
χ+

〉
= Re

〈
χ+,

[
4

A2
+

6

A2
|dA|2 − 4Y 2 − 3

4
|Φ|2 +

5

168
Φ /HΓz + PiP j

+
1

144
/H /H − 1

16
/H
i /Hi −

1

8
/H
ij /Hij +

1

24
|H|2

+

(
− i

12
Qi
(
/ΓH
)i

+
1

12
Pi
(
/ΓH
)
i

)
C∗
]
χ+

〉
. (B.12.42)

The second, third, and fourth terms on the right side of equation (B.14.32) thus sum to

Re

〈
χ+,

[
4

7A2
+

4

7A2
|dA|2 − 4ic

7A
/Y − 1

7
/Y

2
+

1

7
|Φ|2 +

1

84
Φ /HΓz (B.12.43)

+ |P |2 + PiP jΓ
ij

1

7 · 96
/H /H − 1

32
/H
i /Hi −

1

8
/H
ij /Hij +

1

24
|H|2

+

(
c

42A
/HΓz − 1

42A
∂iA

(
/ΓH
)i

+
1

12
Pi
(
/ΓH
)
i − 3c

7A
Φ

)
C∗
]
χ+

〉
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Noting that∥∥∥Ξ̃+χ+

∥∥∥2

=
〈
χ+, Ξ̃+Ξ̃+χ+

〉
(B.12.44)

=

〈
χ+,

[
1

4
+

1

4
|dA|2 − iA

2
/Y
i
∂iAΓz −

iAc

4
/Y − A2

16
/Y

2
(B.12.45)

− A2

962
/H /H +

9A2

256
|Φ|2 +

A2

256
Φ /HΓz

+

(
Ac

96
/HΓz − A

96
∂iA

(
/ΓH
)i

+
iA2

32
/Y i /H

i
Γz −

3Ac

16
Φ

)
C∗
]
χ+

〉
∥∥∥A(+)χ+

∥∥∥2

= Re

〈
χ,

[
|P |2 + PiP jΓ

ij +
1

576
/H /H +

1

16
|Φ|2 (B.12.46)

+
1

48
Φ /HΓz +

1

12
Pi
(
/ΓH
)
iC∗

]
χ

〉
we can now write equation (B.14.32) as

∇̃2‖χ‖2 +
4

A
∂iA∇̃i‖χ‖2 = 2

∥∥∥∇̂(+)χ
∥∥∥2

+
16

7A2
‖Ξcχ‖2 + ‖Aχ‖2 (B.12.47)

B.13 IIB AdS4

B.13.1 Chirality

For any IIB spinors, ψ,

Γ0123456789ψ = ψ. (B.13.1)

For ψ± defined such that Γ±ψ± = 0, this means that

Γ23456789 ψ± = ±ψ±, (B.13.2)

and

Γ456789 ψ± = ∓Γ23ψ±. (B.13.3)

B.13.2 Electric and Magnetic Components of Fields

For k ≤ 5, the fields will have AdS components, and so we must consider how they break down

into AdS and transverse components. For k = 4, Q, P, and G are all purely transverse, but F,

the self-dual five form, includes both components, and can be expressed in terms of a one form,

Y ,

F = dvol(AdS4) ∧ Y + ?6Y, (B.13.4)

or, in index notation,

F+−z3i = − 1

5!
εij1j2j3j4j5F

j1j2j3j4j5 = Yi. (B.13.5)
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B.13.3 Field Equations and Bianchi Identities

The Einstein equation has an AdS component,

1

A
∇̃2A = 4Y 2 +

1

48
|G|2 − 3

A2
− 3

A2
|dA|2, (B.13.6)

and a transverse component,

R̃ij −
4

A
∇̃i∇̃jA− 4Y 2δij + 8YiYj (B.13.7)

− 1

4
G(i

k`Gj)k` +
1

48
|G|2δij − 2P(iP j) = 0.

Contracting this, we find that the scalar curvature of the transverse space is

R̃ =
4

A
∇̃2A+ 16Y 2 +

1

8
|G|2 + 2|P |2 (B.13.8)

= − 12

A2
− 12

A2
|dA|2 + 32Y 2 +

5

24
|G|2 + 2|P |2 (B.13.9)

The Bianchi identities reduce to

dY = − 4

A
dA ∧ Y (B.13.10)

∇̃iYi = − i

288
εi1i2i3j1j2j3Gi1i2i3Gj1j2j3 (B.13.11)

dG = iQ ∧G− P ∧G (B.13.12)

dP = 2iQ ∧ P (B.13.13)

dQ = −iP ∧ P , (B.13.14)

while the field equations reduce to

∇̃iGijk = iQiGijk + P iGijk (B.13.15)

∇̃iPi = 2iQiPi −
1

24
G2. (B.13.16)

B.13.4 Parallel Transport Equations

In the AdS directions, the parallel transport Killing spinor equations are

∂uε+
1

2A
Γ+Θ−ε = 0 (B.13.17)

∂rε+
1

2A
Γ−Θ+ε = 0 (B.13.18)

∂zε+ +
1

2
ΓzΘ+ε+ = 0 (B.13.19)

∂zε− +

(
1

2
ΓzΘ− − 1

)
ε− = 0 (B.13.20)

∂aε± +
ez

2
ΓaΘ±ε± = 0 (B.13.21)
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where

Θ± = Γz + /∂A∓ iA/Y Γz3 −
A

48
/GC∗, (B.13.22)

and, for the z-direction equations, we’re considering r = 0. The integrability condition for these

directions is

Θ∓Θ±ε± = 0, (B.13.23)

and we can conclude from this that the solutions to the z-direction equations are

ε±
(
0, 0, z, 0, yi

)
= σ±

(
yi
)

+ e∓zτ±
(
yi
)
, (B.13.24)

where, defining Ξ+ = − 1
2ΓzΘ+ and Ξ− = 1− 1

2ΓzΘ−,

Ξ±σ± = 0 (B.13.25)

Ξ±τ± = ∓τ±. (B.13.26)

We can write these conditions succinctly as

Ξ̃±χ± = 0 (B.13.27)

where χ± is either σ± or τ±,

Ξ̃± = ∓ c
2

+
1

2
/∂AΓz ∓

iA

2
/Y Γ3 −

A

96
/GΓzC∗, (B.13.28)

and c is 1 when χ± = σ±, -1 when χ± = τ±.

In the transverse directions, the parallel transport equation is

0 = ∇(±)
i ε± (B.13.29)

= ∇̃iε± + Ψ
(±)
i ε±, (B.13.30)

where

Ψ
(±)
i = ± 1

2A
∂iA−

i

2
Qi ∓

i

2
YiΓz3 ±

i

2

(
/ΓY
)
i
Γz3 +

(
− 1

96

(
/ΓG
)
i
+

9

96
/Gi

)
C ∗ . (B.13.31)

We can see that this applies independently to σ± and τ±, so that in general ∇(±)
i χ± = 0.

B.13.5 Maximality Condition on σ+ and τ+

We introduce a new operator,

∇̂(+)
i = ∇(+)

i +
q

A
ΓziΞ̃+, (B.13.32)

with the intention to demonstrate that, for an appropriately chosen value of q, if Γi∇̂(+)
i χ+ = 0,

then χ+ satisfies the Killing spinor equations.

181



As before, we find that

∇̃2‖χ+‖2 = 2
∥∥∥∇̂(+)χ+

∥∥∥2

+
1

2
R̃‖χ+‖2 (B.13.33)

+ Re
〈
χ+,

[
−4Ψ

(+)i − 2Ψ(+)i − 2ΓijΨ
(+)
j

−12
q

A
ΓziΞ̃+

]
∇̃iχ+

〉
Re
〈
χ+,

[
−2
(

Ψ
(+)i

+
q

A
Ξ̃+Γzi

)(
Ψ

(+)
i +

q

A
ΓziΞ̃+

)
−2∇̃iΨ(+)

i − 2Γij∇̃iΨ(+)
j − 12∇̃i

( q
A

ΓziΞ̃+

)]
χ+

〉
,

where

Ψ
(+)

i =
1

2A
∂iA+

i

2
Qi −

i

2
YiΓz3 −

i

2

(
/ΓY
)
i
Γz3 +

(
− 1

96

(
/ΓG
)
i
− 9

96
/Gi

)
C∗ (B.13.34)

Ξ̃+ = − c
2
− 1

2
/∂
i
AΓz −

iA

2
/Y Γ3 −

A

96
/GΓzC ∗ . (B.13.35)

Expanding the third term, we find that

Re
〈
χ+,

[
−4Ψ

(+)i − 2Ψ(+)i − 2ΓijΨ
(+)
j − 12

q

A
ΓziΞ̃+

]
∇̃iχ+

〉
(B.13.36)

= Re

〈
χ+,

[
6qc

A
Γzi − 3 + 6q

A
∂iA− 1 + 6q

A

(
Γ/∂A

)i − iQi + i( /ΓQ)
i

+ i(−2 + 6q)Y iΓz3 + i(−2 + 6q)
(
/ΓY
)i

Γz3

+

(
−8 + 12q

96

(
/ΓG
)i

+
36q

96
/G
i
)
C∗
]
∇̃iχ+

〉
.

We would like to write this in the form

α∂iA ∇̃i‖χ+‖2 + Re
〈
χ+,F /̃∇χ+

〉
, (B.13.37)

which is only possible if q = 1
3 , in which case α = − 4

A ,

F =
2c

A
Γz +

3

A
/∂A− i /Q+

1

24
/GC∗, (B.13.38)

and

Re
〈
χ+,

[
−4Ψ

(+)i − 2Ψ(+)i − 2ΓijΨ
(+)
j − 12

q

A
ΓziΞ̃+

]
∇̃iχ+

〉
= − 4

A
∂iA ∇̃i‖χ+‖2 + Re

〈
χ+,FΓi∇̃iχ+

〉
(B.13.39)

= − 4

A
∂iA ∇̃i‖χ+‖2 − Re

〈
χ+,FΓi

[
Ψ

(+)
i +

1

3A
ΓziΞ̃+

]
χ+

〉
. (B.13.40)

Combining this with the second term and the bilinear part of the fourth term in (B.14.32), we
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find that

Re

〈
χ+,−2

(
Ψ

(+)i
+

1

3A
Ξ̃+Γzi +

1

2
F Γi

)(
Ψ

(+)
i +

1
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〉
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[
5c
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Γzi +
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∂iA− 4
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(
Γ/∂A

)i
+
i

2
( /ΓQ)

i − i

3
Y iΓz3 (B.13.41)

−2i

3

(
/ΓY
)i

Γz3 +

(
− 1

36

(
/ΓG
)i − 1

24
/G
i
)
C∗
]

×
[
− c

6A
Γzi +

2
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∂iA+

1

6A

(
Γ/∂A

)
i
− i

2
Qi −

2i

3
YiΓz3

+
i

3

(
/ΓY
)
i
Γz3 +

(
− 1
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(
/ΓG
)
i
+

1
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/Gi

)
C∗
]
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〉
= Re

〈
χ+,

[
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|dA|2 − 8

3
Y i∂iAΓz3 +

8ic

3A
/Y Γ3 −

8i

3A
Y 2 (B.13.42)

+
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i

12
Qi
(
/ΓG
)i

+
c

18A
/GΓz − 1
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∂iA

(
/ΓG
)i)

C∗
]
χ+

〉
We can use the field equations and Bianci identities to rewrite the last line of (B.14.32),

Re

〈
χ+,

[
−2∇̃iΨ(+)

i − 2Γij∇̃iΨ(+)
j − ∇̃i

(
4

A
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)]
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〉
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3
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i

2
/dQ− 2i∇̃iYiΓz3 −
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48
/dGC∗
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〉
= Re
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[
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+

12
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|dA|2 − 12Y 2 − 1
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|G|2 + PiP j

+
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144
Gi1i2i3Gj1j2j3Γi1i2i3j1j2j3

+
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+
1

12
Pi
(
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)
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C∗
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χ+

〉
. (B.13.43)

The second, third, and fourth terms on the right side of equation (B.14.32) thus sum to

Re

〈
χ+,

[
4

3A2
+

4

3A2
|dA|2 − 8i

3
Y i∂iAΓz3 +

8ic

3A
/Y Γ3 +

4

3
Y 2 (B.13.44)

+
1

24
|G|2 + |P |2 + PiP jΓ

ij +
1

144
Gi1i2i3Gj1j2j3Γi1i2i3j1j2j3

+

(
− 1

36

(
/ΓG
)i − 1

24
/G
i
)(
− 1

72

(
/ΓG
)
i
+

1

12
/Gi

)
+

(
c

18A
/GΓz − 1

18A
∂iA

(
/ΓG
)i

+
1

12
Pi
(
/ΓG
)
i

)
C∗
]
χ+

〉
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Noting that∥∥∥Ξ̃+χ+

∥∥∥2

=
〈
χ+, Ξ̃+Ξ̃+χ+

〉
(B.13.45)

=

〈
χ+,

[
1

4
+

1

4
|dA|2 +

iA

2
Y i∂iAΓz3 +

iAc

2
/Y Γ3 +

A2

4
Y 2 (B.13.46)

− A
2

962
/G/G+

(
Ac

96
/GΓz − A

96
∂iA

(
/ΓG
)i

+
iA2

32
Y i /GiΓ

z3

)
C∗
]
χ+

〉
‖Aχ+‖2 = Re

〈
χ,

[
|P |2 + PiP jΓ

ij − 1

576
/G/G+

1

12
Pi
(
/ΓG
)
iC∗

]
χ

〉
(B.13.47)

we can now write equation (B.14.32) as

∇̃2‖χ‖2 +
4

A
∂iA∇̃i‖χ‖2 = 2

∥∥∥∇̂(+)χ
∥∥∥2

+
16

3A2
‖Ξcχ‖2 + ‖Aχ‖2 (B.13.48)

B.14 IIB AdS5

B.14.1 Chirality

For any IIB spinors, ψ,

Γ0123456789ψ = ψ. (B.14.1)

For ψ± defined such that Γ±ψ± = 0, this means that

Γ23456789 ψ± = ±ψ±, (B.14.2)

and

Γ56789 ψ± = ∓Γ234ψ±. (B.14.3)

B.14.2 Electric and Magnetic Components of Fields

For k ≤ 5, the fields will have AdS components, and so me must consider how they break down

into AdS and transverse components. For k = 5, Q, P, and G are all purely transverse, but F,

the self-dual five form, includes both components, and can be expressed in terms of a scalar, Y ,

F = Y [dvol(AdS5) + dvol(M5)], (B.14.4)

or, in index notation,

F+−z34 = −F56789 = Y. (B.14.5)

B.14.3 Field Equations and Bianchi Identities

The Einstein equation has an AdS component,

1

A
∇̃2A = 4Y 2 +

1

48
|G|2 − 4

A2
− 4

A2
|dA|2, (B.14.6)
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and a transverse component,

R̃ij −
5

A
∇̃i∇̃jA− 4Y 2δij (B.14.7)

− 1

4
G(i

k`Gj)k` +
1

48
|G|2δij − 2P(iP j) = 0.

Contracting this, we find that the scalar curvature of the transverse space is

R̃ =
5

A
∇̃2A+ 20Y 2 +

7

48
|G|2 + 2|P |2 (B.14.8)

= − 20

A2
− 20

A2
|dA|2 + 40Y 2 +

1

4
|G|2 + 2|P |2 (B.14.9)

The Bianchi identities reduce to

dY = − 5

A
Y dA (B.14.10)

dG = iQ ∧G− P ∧G (B.14.11)

dP = 2iQ ∧ P (B.14.12)

dQ = −iP ∧ P , (B.14.13)

while the field equations reduce to

∇̃iGijk = − 5

A
∂iAGijk + iQiGijk + P iGijk (B.14.14)

∇̃iPi = − 5

A
∂iAPi + 2iQiPi −

1

24
G2. (B.14.15)

B.14.4 Parallel Transport Equations

In the AdS directions, the parallel transport Killing spinor equations are

∂uε+
1

2A
Γ+Θ−ε = 0 (B.14.16)

∂rε+
1

2A
Γ−Θ+ε = 0 (B.14.17)

∂zε+ +
1

2
ΓzΘ+ε+ = 0 (B.14.18)

∂zε− +

(
1

2
ΓzΘ− − 1

)
ε− = 0 (B.14.19)

∂aε± +
ez

2
ΓaΘ±ε± = 0 (B.14.20)

where

Θ± = Γz + ∂iAΓi ∓ iAY Γz34 −
A

48
/GC∗, (B.14.21)

and, for the z-direction equations, we’re considering r = 0. The integrability condition for these

directions is

Θ∓Θ±ε± = 0, (B.14.22)
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and we can conclude from this that the solutions to the z-direction equations are

ε±
(
0, 0, z, 0, yi

)
= σ±

(
yi
)

+ e∓zτ±
(
yi
)
, (B.14.23)

where, defining Ξ+ = − 1
2ΓzΘ+ and Ξ− = 1− 1

2ΓzΘ−,

Ξ±σ± = 0 (B.14.24)

Ξ±τ± = ∓τ±. (B.14.25)

We can write these conditions succinctly as

Ξ̃±χ± = 0 (B.14.26)

where χ± is either σ± or τ±,

Ξ̃± = ∓ c
2
− 1

2
∂iAΓzi ±

iA

2
Y Γ34 −

A

96
/GΓzC∗, (B.14.27)

and c is 1 when χ± = σ±, -1 when χ± = τ±.

In the transverse directions, the parallel transport equation is

0 = ∇(±)
i ε± (B.14.28)

= ∇̃iε± + Ψ
(±)
i ε±, (B.14.29)

where

Ψ
(±)
i = ± 1

2A
∂iA−

i

2
Qi ∓

i

2
Y Γz34i +

(
− 1

96

(
/ΓG
)
i
+

9

96
/Gi

)
C ∗ . (B.14.30)

We can see that this applies independently to σ± and τ±, so that in general ∇(±)
i χ± = 0.

B.14.5 Maximality Condition on σ+ and τ+

We introduce a new operator,

∇̂(+)
i = ∇(+)

i +
q

A
ΓziΞ̃+, (B.14.31)

with the intention to demonstrate that, for an appropriately chosen value of q, if Γi∇̂(+)
i χ+ = 0,

then χ+ satisfies the Killing spinor equations.

As before, we find that

∇̃2‖χ+‖2 = 2
∥∥∥∇̂(+)χ+

∥∥∥2

+
1

2
R̃‖χ+‖2 (B.14.32)

+ Re
〈
χ+,

[
−4Ψ

(+)i − 2Ψ(+)i − 2ΓijΨ
(+)
j

−10
q

A
ΓziΞ̃+

]
∇̃iχ+

〉
Re
〈
χ+,

[
−2
(

Ψ
(+)i

+
q

A
Ξ̃+Γzi

)(
Ψ

(+)
i +

q

A
ΓziΞ̃+

)
−2∇̃iΨ(+)

i − 2Γij∇̃iΨ(+)
j − 10∇̃i

( q
A

ΓziΞ̃+

)]
χ+

〉
,
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where

Ψ
(+)

i =
1

2A
∂iA+

i

2
Qi +

i

2
Y Γz34i +

(
− 1

96

(
/ΓG
)
i
− 9

96
/Gi

)
C∗ (B.14.33)

Ξ̃+ = − c
2

+
1

2
∂iAΓzi +

iA

2
Y Γ34 −

A

96
/GΓzC ∗ . (B.14.34)

Expanding the third term, we find that

Re
〈
χ+,

[
−4Ψ

(+)i − 2Ψ(+)i − 2ΓijΨ
(+)
j − 10

q

A
ΓziΞ̃+

]
∇̃iχ+

〉
(B.14.35)

= Re

〈
χ+,

[
5qc

A
Γzi − 3 + 5q

A
∂iA− 1 + 5q

A
∂jAΓij

− iQi + iQjΓ
ij + i(3− 5q)Y Γz34i

+

(
−10 + 10q

96

(
/ΓG
)i

+
−6 + 30q

96
/G
i
)
C∗
]
∇̃iχ+

〉
.

We would like to write this in the form

α∂iA ∇̃i‖χ+‖2 + Re
〈
χ+,FΓi∇̃iχ+

〉
, (B.14.36)

which is only possible if q = 3
5 in which case

F =
3c

A
Γz +

4

A
/∂A− i /Q+

1

24
/GC∗ (B.14.37)

and α = − 5
A . We can then further expand the expression as

Re
〈
χ+,

[
−4Ψ

(+)i − 2Ψ(+)i − 2ΓijΨ
(+)
j − 10

q

A
ΓziΞ̃+

]
∇̃iχ+

〉
= − 5

A
∂iA‖χ+‖2 + Re

〈
χ+,FΓi∇̃iχ+

〉
(B.14.38)

= − 5

A
∂iA‖χ+‖2 − Re

〈
χ+,FΓi

[
Ψ

(+)
i +

3

5A
ΓziΞ+

]
χ+

〉
. (B.14.39)
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Combining this with the bilinear part of the fourth term of equation (B.14.32), we find that

Re

〈
χ+,−2

(
Ψ

(+)i
+

3

5A
Ξ̃+Γzi +

1

2
F Γi

)(
Ψ

(+)
i +

3

5A
ΓziΞ̃+

)
χ+

〉
= Re

〈
χ+,−2

[
6c

5A
Γzi +

11

5A
∂iA− 17

10A
∂jAΓij +

4i

5
Y Γz34i (B.14.40)

+
i

2
QjΓ

ij +

(
− 1

40

(
/ΓG
)i − 1

20
/G
i
)
C∗
]

×
[
− 3c

10A
Γzi +

4

5A
∂iA+

3

10A
∂jAΓij −

i

5
Y Γz34i

− i
2
Qi +

(
− 1

60

(
/ΓG
)
i
+

3

40
/Gi

)
C∗
]
χ+

〉
= Re

〈
χ+,

[
− 18

5A2
− 38

5A2
|dA|2 − 8

5
Y 2 − 24ic

5A
Y Γ34 (B.14.41)

− 2

(
− 1

40

(
/ΓG
)i − 1

20
/G
i
)(
− 1

60

(
/ΓG
)
i +

3

40
/Gi

)
+

(
1

10A
/GΓz +

1

16A
∂iA

(
/ΓG
)i

+
i

12
Qi
(
/ΓG
)i)

C∗
]
χ+

〉
.

We can use the field equations and Bianci identities to rewrite the last line of (B.14.32),

Re

〈
χ+,

[
−2∇̃iΨ(+)

i − 2Γij∇̃iΨ(+)
j − ∇̃i

(
6

A
ΓziΞ̃+

)]
χ+

〉
= Re

〈
χ+,

(
4

A2
|dA|2 − 4

A
∇̃2A+

i

2
/dQ− 1

48
/dGC∗

)
χ+

〉
(B.14.42)

= Re

〈
χ+,

[
16

A2
+

20

A2
|dA|2 − 16Y 2 − 1

12
|G|2 + PiP jΓ

ij (B.14.43)

+

(
− i

12
Qi
(
/ΓG
)i

+
1

12
Pi
(
/ΓG
)
i

)
C∗
]
χ+

〉
.

The second, third, and fourth terms on the right side of equation (B.14.32) thus sum to

Re

〈
χ+,

[
12

5A2
+

12

5A2
|dA|2 +

12

5
Y 2 − 24ic

5A
Y Γ34 + |P |2 + PiP jΓ

ij

− 1

40
Gij1j2Gik1k2Γj1j2k1k2 − 1

80
Gi1i2j Gi1j2kΓjk +

1

60
|G|2

+

(
1

10A
/GΓz −

1

10A
∂iA

(
/ΓG
)i

+
1

12
Pi
(
/ΓG
)
i

)
C∗
]
χ+

〉
(B.14.44)
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Noting that∥∥∥Ξ̃+σ+

∥∥∥2

=
〈
χ+, Ξ̃+Ξ̃+χ+

〉
(B.14.45)

=

〈
χ+,

[
1

4
+

1

4
|dA|2 +

iA

2
Y i∂iAΓz3 −

iAc

2
Y Γ34 +

A2

4
Y 2 (B.14.46)

− A2

322
Gij2j3Gik2k3Γj2j3k2k3 +

A2

2 · 162
Gi1i2 jGi1i2kΓjk

+
A2

16 · 96
|G|2 +

(
Ac

96
/GΓz − A

96
∂iA

(
/ΓG
)i)

C∗
]
χ+

〉
‖Aχ+‖2 = Re

〈
χ,

[
|P |2 + PiP jΓ

ij − 1

64
Gij1j2Gik1k2Γj1j2k1k2 (B.14.47)

− 1

32
Gi1i2 jGi1i2kΓjk +

1

96
|G|2 +

1

12
Pi
(
/ΓG
)
iC∗

]
χ

〉
we can now write equation (B.14.32) as

∇̃2‖χ‖2 +
5

A
∂iA∇̃i‖χ‖2 = 2

∥∥∥∇̂(+)χ
∥∥∥2

+
48

5A2
‖Ξcχ‖2 + ‖Aχ‖2 (B.14.48)

B.15 IIB AdS6

B.15.1 Bianchi Identities and Field Equations

We will need to express the field equations and Bianchi identities in terms of the AdS and

transverse dimensions. The Einstein equation has both an AdS component and a transverse

component,

Rµν =

[
− 5

A2
− 5

A2
|dA|2 − 1

A
∇̃2A

]
ηµν = − 1

48
|G|2ηµν (B.15.1)

R̃ij =
6

A
∇̃i∇̃jA+

1

4
G(i

k`Gj)k` −
1

48
|G|2δij + 2P(iP j), (B.15.2)

from which we find that

1

A
∇̃2A =

1

48
|G|2 − 5

A2
− 5

A2
|dA|2 (B.15.3)

R̃ =
6

A
∇̃2A+

1

6
|G|2 + 2|P |2 (B.15.4)

= − 30

A2
− 30

A2
|dA|2 +

7

24
|G|2 + 2|P |2 (B.15.5)
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The remaining equations, for k = 6, are purely transverse,

dP = 2iQ ∧ P (B.15.6)

dQ = −iP ∧ P (B.15.7)

dG = iQ ∧G+ P ∧G (B.15.8)

∇̃iPi = − 6

A
∂iAPi + 2iQiPi +

1

24
G2 (B.15.9)

∇̃kGijk = − 6

A
∂kAGijk + iQkGijk + P kGijk (B.15.10)

B.15.2 Differential and Algebraic Killing Spinor Equations on X

The z-direction Killing spinor equations are

∂zε+ = −1

2
ΓzΘε+ (B.15.11)

∂zε− =

(
1− 1

2
ΓzΘ

)
ε− (B.15.12)

where Θ = Γz + ∂iAΓi − A
48GijkΓijkC∗. Defining Ξ+ = − 1

2ΓzΘ and Ξ− = 1− 1
2ΓzΘ, so that,

Ξ± = ∓1

2
+

1

2
/∂AΓz − A

96
/GΓzC ∗ . (B.15.13)

we can write this more succinctly as

∂zε± = Ξ±ε±. (B.15.14)

It can be shown that the solutions to these equations take the form

ε±(z, y) = σ± + e∓zτ±, (B.15.15)

where σ± and τ± satisfy

0 = Ξ±σ± (B.15.16)

0 = (Ξ± ± 1)τ± (B.15.17)

= Ξ∓τ±. (B.15.18)

We also have the y-direction Killing spinor equations,

0 = ∇(±)
i ε± (B.15.19)

= ∇̃(±)
i ε± + Ψ(±)ε± (B.15.20)

= ∇̃iε± +

(
−e−z r

A2
∂iAΓ−Θ± 1

2A
∂iA−

i

2
Qi

)
ε± (B.15.21)

+

(
− 1

96

(
/ΓG
)
i
+

3

32
/Gi

)
C ∗ ε±,
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which apply to σ± and τ± independently,

∇̃iσ± +

(
± 1

2A
∂iA−

i

2
Qi

)
σ± +

(
− 1

96

(
/ΓG
)
i
+

3

32
/Gi

)
C ∗ σ± = 0 (B.15.22)

∇̃iτ± +

(
± 1

2A
∂iA−

i

2
Qi

)
τ± +

(
− 1

96

(
/ΓG
)
i
+

3

32
/Gi

)
C ∗ τ± = 0, (B.15.23)

noting that for r = 0,

Ψ
(±)
i =

(
± 1

2A
∂iA−

i

2
Qi

)
+

(
− 1

96

(
/ΓG
)
i
+

9

96
/Gi

)
C∗ (B.15.24)

and the algebraic Killing spinor equation,

/Pε± +
1

24
/GC ∗ ε± = 0, (B.15.25)

which also applies to σ± and τ± independently. Defining A = P iΓ
i + 1

24GijkΓijkC∗, this gives

Aσ± = 0 (B.15.26)

Aτ± = 0. (B.15.27)

Together, equations (B.15.16), (B.15.18), (B.15.22), (B.15.23), (B.15.26), and (B.15.27) are the

Killing spinor equations on the transverse space, X.

B.15.3 Basic Lichnerowicz Theorem

Let φ be any spinor. Then we can expand ∇̃2‖φ‖2 as

∇̃2‖φ‖2 = 2 Re ∇̃i
〈
φ, ∇̃iφ

〉
(B.15.28)

= 2
〈
∇̃iφ, ∇̃iφ

〉
+ 2 Re

〈
φ, ∇̃i∇̃iφ

〉
. (B.15.29)

Using the Bianchi identities on the Riemannian curvature tensor, Rij,k`, we can further expand

∇̃i∇̃iφ as

∇̃i∇̃iφ = δij∇̃i∇̃jφ (B.15.30)

=
(
ΓiΓj − Γij

)
∇̃i∇̃jφ (B.15.31)

= Γi∇̃i
(

Γj∇̃jφ
)
− 1

4
R̃ij,k`Γ

ijΓk`φ (B.15.32)

= Γi∇̃i
(

Γj∇̃jφ
)

+
1

4
R̃φ, (B.15.33)

so that

∇̃2‖φ‖2 = 2
〈
∇̃iφ, ∇̃iφ

〉
+ 2 Re

〈
φ,Γi∇̃i

(
Γj∇̃jφ

)〉
− 1

2
R̃〈φ, φ〉. (B.15.34)
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B.15.4 Maximality Condition on σ+ and τ+

We introduce a new operator, ∇̂+
i defined by

∇̂(+)
i χ = ∇(+)

i χ+
q

A
ΓziΞcχ, (B.15.35)

where χ is either σ+ or τ+ and c = 1 when χ = σ+, −1 when χ = τ+. We wish to show that, for

an appropriately chosen value of q, if

0 = Γi∇̂(+)
i χ (B.15.36)

= Γi∇̃iχ+
[
ΓiΨ

(+)
i − 4

q

A
ΓzΞc

]
χ (B.15.37)

then σ+ satisfies the Killing spinor equations, (B.15.22), (B.15.16), and (B.15.26). To this end

we compute

∇̃2‖χ‖2 = 2
〈
∇̃iχ, ∇̃iχ

〉
+ 2 Re

〈
χ,Γi∇̃i

(
Γj∇̃jχ

)〉
− 1

2
R̃〈χ, χ〉. (B.15.38)

The first term expands to

2
〈
∇̃iχ, ∇̃iχ

〉
= 2
∥∥∥∇̂(+)χ

∥∥∥2

− 4 Re
〈(

Ψ(+)i +
q

A
ΓziΞc

)
χ, ∇̃iχ

〉
− 2
∥∥∥(Ψ(+)i +

q

A
ΓziΞc

)
χ
∥∥∥2

= 2
∥∥∥∇̂(+)χ

∥∥∥2

− 4 Re
〈
χ,
(

Ψ
(+)i − q

A
ΞcΓ

zi
)
∇̃iχ

〉
(B.15.39)

− 2 Re
〈
χ,
(

Ψ
(+)i − q

A
ΞcΓ

zi
)(

Ψ
(+)
i +

q

A
ΓziΞc

)
χ
〉

= 2
∥∥∥∇̂(+)χ

∥∥∥2

− 4 Re
〈
χ,Ψ

(+)i∇̃iχ
〉

(B.15.40)

− 2 Re
〈
χ,
(

Ψ
(+)i

+
q

A
ΞcΓ

zi
)(

Ψ
(+)
i +

q

A
ΓziΞc

)
χ
〉

where

Ψ
(+)

i =
1

2A
∂iA+

i

2
Qi +

(
− 1

96

(
/ΓG
)
i
− 9

96
/Gi

)
C∗ (B.15.41)

Ξc = − c
2

+
1

2
∂iAΓzi − A

96
/GΓzC∗ (B.15.42)

The second term expands to

2 Re
〈
χ,Γi∇̃i

(
Γj∇̃jχ

)〉
= −2 Re

〈
χ,Γi∇̃i

[
ΓjΨ

(+)
j χ− 4

q

A
ΓzΞcχ

]〉
(B.15.43)

= −2 Re
〈
χ,Γi

[
ΓjΨ

(+)
j − 4

q

A
ΓzΞc

]
∇̃iχ (B.15.44)

+
[
ΓiΓj∇̃iΨ(+)

j − 4
( q

A2
∇̃iAΓziΞc −

q

A
Γzi∇̃iΞc

)]
χ
〉
.
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Combining these, we can rewrite equation (B.15.38) as

∇̃2‖χ‖2 = 2
∥∥∥∇̂(+)χ

∥∥∥2

+
1

2
R̃‖χ‖2 (B.15.45)

+ Re
〈
χ,
[
−4Ψ

(+)i − 2Ψ(+)i − 2ΓijΨ
(+)
j − 8

q

A
ΓziΞc

]
∇̃iχ

〉
+ Re

〈
χ,
[
−2
(

Ψ
(+)i

+
q

A
ΞcΓ

zi
)(

Ψ
(+)
i +

q

A
ΓziΞc

)
−2∇̃iΨ(+)

i − 2Γij∇̃iΨ(+)
j − 8∇̃i

( q
A

ΓziΞc

)]
χ
〉
.

Using the fact that Re
〈
φ,Γijφ

〉
= Re

〈
φ,ΓijC ∗ φ

〉
= 0, we can expand the third term,

Re
〈
χ,
[
−4Ψ

(+)i − 2Ψ(+)i − 2ΓijΨ
(+)
j − 8

q

A
ΓziΞc

]
∇̃iχ

〉
= Re

〈
χ,

[
4cq

A
Γzi − 3 + 4q

A
∂iA− 1 + 4q

A
∂jAΓij − iQi + iQjΓ

ij (B.15.46)

+

(
−12 + 8q

96

(
/ΓG
)i

+
−12 + 24q

96
/G
i
)
C∗
]
∇̃iχ

〉
.

We want to choose q such that this can be written as

α∂iA∇̃i‖χ‖2 + Re
〈
χ,FΓi∇̃iχ

〉
, (B.15.47)

which is only possible if q = 1. Thus,

Re
〈
χ,
[
−4Ψ

(+)i − 2Ψ(+)i − 2ΓijΨ
(+)
j − 8

q

A
ΓziΞc

]
∇̃iχ

〉
= Re

〈
χ,

[
4c

A
Γzi − 7

A
∂iA− 5

A
∂jAΓij − iQi + iQjΓ

ij (B.15.48)

+

(
− 1

24

(
/ΓG
)i

+
1

8
/G
i
)
C∗
]
∇̃iχ

〉
= − 6

A
∂iA∇̃i‖χ‖2 + Re

〈
χ,

[
4c

A
Γz +

5

A
∂jAΓj − iQjΓj +

1

24
/GC∗

]
Γi∇̃iχ

〉
(B.15.49)

= − 6

A
∂iA∇̃i‖χ‖2 − Re

〈
χ,F

[
ΓiΨ

(+)
i − 4

A
ΓzΞc

]
χ

〉
(B.15.50)

= − 6

A
∂iA∇̃i‖χ‖2 − Re

〈
χ,F Γi

[
Ψ

(+)
i +

1

A
ΓziΞc

]
χ

〉
(B.15.51)

where

F =
4c

A
Γz +

5

A
/∂A− i /Q+

1

24
/GC ∗ . (B.15.52)
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Combining this with the bilinear part of the fourth term in (B.15.45), we find that

Re

〈
χ,−2

(
Ψ

(+)i
+

1

A
ΞcΓ

zi +
1

2
F Γi

)(
Ψ

(+)
i +

1

A
ΓziΞc

)
χ

〉
= Re

〈
χ,−2

[
3c

2A
Γzi +

5

2A
∂iA− 2

A
∂jAΓij +

i

2
QjΓ

ij +

(
− 2

96

(
/ΓG
)i − 6

96
/G
i
)
C∗
]

×
[
− c

2A
Γzi +

1

A
∂iA+

1

2A
∂jAΓij −

i

2
Qi +

(
− 2

96

(
/ΓG
)
i
+

6

96
/G
i
)
C∗
]
χ

〉
(B.15.53)

= Re

〈
χ,

[
− 6

A2
− 11

A2
|dA|2 − 2

(
− 2

96

(
/ΓG
)i − 6

96
/G
i
)(
− 2

96

(
/ΓG
)
i +

6

96
/Gi

)
+

(
16c

96A
/GΓz − 16

96A
∂iA

(
/ΓG
)i

+
i

12
Qi
(
/ΓG
)i)

C∗
]
χ

〉
(B.15.54)

We can also use the Bianchi identities and field equations to expand the derivatives in the

fourth term on the right side of equation (B.15.45),

Re

〈
χ,

[
−2∇̃iΨ(+)

i − 2Γij∇̃iΨ(+)
j − 8∇̃i

(
1

A
ΓziΞc

)]
χ

〉
= Re

〈
χ,

[
5

A2
|dA|2 − 5

A
∇̃2A+

i

2
/dQ− 1

48
/dGC∗

]
χ

〉
(B.15.55)

= Re

〈
χ,

[
25

A2
+

30

A2
|dA|2 − 5

48
|G|2 + PiP jΓ

ij (B.15.56)

+

(
− i

12
Qi
(
/ΓG
)i

+
1

12
Pi
(
/ΓG
)
i

)
C∗
]
χ

〉
.

The second, third, and fourth terms on the right side of equation (B.15.45) thus sum to

Re

〈
χ,

[
4

A2
+

4

A2
|dA|2 +

1

48
|G|2 + |P |2 + PiP jΓ

ij (B.15.57)

+

(
16c

96A
/GΓz − 6

96A
∂iA

(
/ΓG
)i

+
1

12
Pi
(
/ΓG
)
i

)
C∗
]
χ

〉
Noting that

‖Ξcχ‖2 = Re
〈
χ,ΞcΞcχ

〉
(B.15.58)

= Re

〈
χ,

[
1

4
+

1

4
|dA|2 +

3A2

16 · 96
GijkGij`Γ

k` +
A2

16 · 96
|G|2

+

(
Ac

96
/GΓz − A

96
∂iA

(
/ΓG
)i)

C∗
]
χ

〉
(B.15.59)

‖Aχ‖2 = Re
〈
χ,AAχ

〉
(B.15.60)

= Re

〈
χ,

[
|P |2 + PiP jΓ

ij − 3

96
GijkGij`Γ

k` +
1

96
|G|2 +

1

12
Pi
(
/ΓG
)
iC∗

]
χ

〉
(B.15.61)

we can now write equation (B.15.45) as

∇̃2‖χ‖2 +
6

A
∂iA∇̃i‖χ‖2 = 2

∥∥∥∇̂(+)χ
∥∥∥2

+
16

A2
‖Ξcχ‖2 + ‖Aχ‖2 (B.15.62)
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