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Brane Constructions and BPS Spectra

Abstract

The object of this work is to exploit various constructions of string theory and
M-theory to yield new insights into supersymmetric theories in both four and three
dimensions. In 4d, we extend work on Seiberg-Witten theory to study and compute
BPS spectra of the class of complete N' = 2 theories. The approach we take is
based on the program of geometric engineering, in which 4d theories are constructed
from compactifications of type IIB strings on Calabi-Yau manifolds. In this setup,
the natural candidates for BPS states are D3 branes wrapped on supersymmetric
3-cycles in the Calabi-Yau. Our study makes use of the mathematical structure of
quivers, whose representation theory encodes the notion of stability of BPS particles.
Except for 11 exceptional cases, all complete theories can be constructed by wrapping
stacks of two M5 branes on Riemann surfaces. By exploring the connection between
quivers and M5 brane theories, we develop a powerful algorithm for computing BPS
spectra, and give an in-depth study of its applications. In particular, we compute
BPS spectra for all asymptotically free complete theories, as well as an infinite set of
conformal SU(2)* theories with certain matter content.

From here, we go on to apply the insight gained from our 4d study to 3d gauge

theories. We consider the analog of the M5 brane construction in the case of 3d
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Abstract

N = 2 theories: pairs of M5 branes wrapped on a 3-manifold. Using the ansantz of
R-flow, we study 3-manifolds consisting of Riemann surfaces fibered over R. When
the construction is non-singular, the resulting IR physics is described by a free abelian
Chern-Simons theory. The mathematical data of a tangle captures the data of the
gauge theory, and the Reidemeister equivalances on tangles correspond to dualities
of physical descriptions. To obtain interacting matter, we allow singularities in the
construction. By extending the tangle description to these singular cases, we find
a set of generalized Reidemeister moves that capture non-trivial mirror symmetries
of 3d gauge theories. These results give a geometric origin to these well-known 3d

dualities.
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Chapter 1

Introduction

One of the primary and enduring features of string theory is the appearance of
extra dimensions and the need for compactification. Perturbative supersymmetric
string theory naturally exists in 10 dimensions; to make contact with familiar 4d
physics of any kind, it is necessary to dispose of these extra dimensions in some
way. A wide array of such constructions have been explored. This work has led
to important progress with applications both to our understanding of abstract field
theory, and to models of phenomenology. This course of study has also deepened our
knowledge of string theory itself, as it has illuminated a whole web of dualities within
string theory.

In particular, tools from string theory have found immense success in the study of
N = 2 supersymmetric 4d gauge theories. This class of theories is known to be non-
phenomonological; if the universe contains any 4d low-energy supersymmetry at all, it
must be a minimal A" = 1 symmetry. Nonetheless, these theories are extremely rich,

exhibit a wide array of non-perturbative features, and have offered deep insight into
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phenomenological physics. The application of string theoretic techniques to N' = 2
physics has become collectively known in the literature as geometric engineering.
Compactification of type IIB superstrings on certain Calabi-Yau 3-manifolds yields
low-energy N = 2 4d gauge theories. From here, additional tools from string theory
and geometry allow us to obtain a variety of non-perturbative results in A/ = 2 field
theory. The Seiberg-Witten solution [1,2] is in many ways the foundational result
in this area. Although the Seiberg-Witten work was originally understood without
reference to string theory, the geometric construction of that result from string theory
gives a more complete perspective on the role of the Seiberg-Witten Riemann surface,
and its relation to a string compactification.

The Seiberg-Witten solution gives the extreme low-energy, non-perturbative solu-
tion for the dynamics of massless fields in N' = 2 4d gauge theory. There is, of course,
much more to study in these theories. In particular, the Seiberg-Witten solution says
nothing about the spectrum or dynamics of massive states. Yet, string theory has
a great deal of insight to offer into the massive sector of the theory as well. The
string theory construction includes the full UV dynamics of the gauge theory, includ-
ing all massive modes and their interactions. Of course, in general these features are
susceptible to perturbative and non-perturbative corrections. As a consequence of
the special geometric and string theoretic characteristics of these constructions, there
are many attributes of the resulting 4d theories that are protected from corrections.
These results in Calabi-Yau compactification of type II strings have been aggressively
pursued in the literature.

The BPS spectrum is one such protected feature. BPS states saturate a lower-
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bound on mass, given by M > |Z|, where M is the mass of the state, and Z is the
central charge. These states form short supermultiplets, and are protected from decay
by the mass bound. From the string perspective, we have a natural set of candidates
for BPS states - namely, the extended D-branes that arise in type II superstrings. To
produce massive BPS states, the D-branes should wrap non-vanishing supersymmet-
ric cycles in the 6-dimensional Calabi-Yau manifold, and thus we will make use of
geometric features of the compactification.

It has long been understood that BPS spectra play a pivotal role in the study
of quantum field theories with extended supersymmetry. This was especially under-
scored in Seiberg-Witten solution to N = 2 4d supersymmetric Yang-Mills theory.
In that work, finding singularities in moduli space where various BPS states became
massless was the fundamental insight that led to the full solution of the IR dynamics
of the theory. However, in spite of the general consensus about the importance of
BPS states and a wealth of recent progress in the subject, there are relatively few
explicit examples, and hence little known about the general structure of BPS spectra.

The first two chapters of this thesis develop a framework for studying BPS spec-
tra, and compute spectra for a new infinite class of examples. Our methods begin in
chapter 2 from the perspective of quiver representation theory. Quivers are directed,
2-acyclic graphs; the representation theory of these structures has been studied in the
mathematics literature, and found powerful applications in the computation of BPS
states of physics. In our general discussion of BPS quivers, we make a key observa-
tion connecting mutation, a transformation on quivers that preserves the resulting

representation theory, and the physical duality between particle and anti-particle.
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Essentially, the specification of a BPS quiver associated to a particular theory de-
pends on some choice of which states to denote particles and which states to denote
anti-particles. By changing these artificial designations, we implement a mutation on
the resulting quiver. While this observation seems straightforward, it has important
and unforeseen implications for the resulting spectrum and the phenomenon of BPS
wall-crossing. The most powerful result, however, is the algorithm we denote as the
mutation method, which, in many cases, allows for the computation of a full BPS
spectrum by a finite and easily implementable procedure.

In chapter 3, we will narrow our focus to the class of complete theories, introduced
and classified in [3], where our program and techniques are quite powerful. Aside from
11 exceptional cases, all complete theories can be constructed from a stack of two Mb5-
branes wrapped on a Riemann surface. These include general SU(2)* asymptotically
free or conformal gauge theories, but no higher SU(n) gauge groups. For these theo-
ries, our methods correspond elegantly to certain geometric structures on the Riemann
surface. As noted before, we expect BPS particles in the 4d theory to correspond to
some extended BPS objects in the UV string theory; the geometry becomes relevant
because these higher extended BPS objects may be wrapped in non-trivial ways along
the compactification manifold. In this case, the extended BPS objects are M2 branes
stretching between the two M5 branes on the Riemann surface. Thus we would expect
some correspondence between the BPS quivers we study and the Riemann surfaces
in the geometry; indeed, there is a beautiful connection between quivers and triangu-
lated Riemann surfaces. We are able to give a completely geometric description for

the construction of the quiver as well as the implementation of the mutation method.
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Following our techniques, we compute BPS spectra for any asymptotically free theory
in this class, as well as an infinite subset of conformal SU(2)* theories.

This connection to M5 compactifications leads to chapter 4, where we explore fea-
tures of the N' = 2 3d gauge theories arising from stacks of two M5-branes wrapped
on a 3d surface, with the intention of exploring features of both 3d gauge theory and
the six-dimensional superconformal theory of M5 branes. The (2,0) superconformal
field theories in six dimensions, in particular the theory of N parallel M5-branes,
are among the most important quantum systems, and yet they remain poorly under-
stood. Their importance stems not only from the fact that they represent the highest
possible dimension in which superconformal field theories can exist, but also from
the observation that their compactifications to lower dimensions yield a rich class of
quantum field theories whose dynamics are encoded by geometry. Following the per-
spective of chapter 3, four-dimensional N' = 2 theories arise upon compactification
on a Riemann surface and provide a geometric explanation for Seiberg-Witten theory.

It is natural to expect that more general compactifications will provide more
information about these mysterious six-dimensional theories. One way to do this is
to increase the dimension of the compactification geometry. Thus, the next cases of
interest would be compactifications with dimensions d > 3 resulting at low-energies
in effective quantum field theories in dimensions 6 — d. The aim of this chapter is
to focus on the situation where d = 3 with N' = 2 supersymmetry. We will focus
on the situation of two Mb-branes wrapping some ultraviolet 3d geometry. In such
constructions, the infrared dynamics of the system is described by a single recombined

brane that can be viewed as a double cover of the original compactifiaction manifold.
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This infrared geometry is captured by describing the branching strands for the cover
which in general are knotted. When the branching strands collide the cover becomes
singular, and on that locus an M2-brane of vanishing size can end on the M5-branes,
leading to massless charged matter fields. The goal of the final chapter of this thesis is
to explore the dictionary between 3d geometry and 3d physics for these constructions;
that is, to find the correspondence between the knotted branch locus encoding the
geometry of the double cover and the underlying N' = 2 quantum field theory.

In this study, we can make use of our results from chapter 3 by applying the
ansatz of R-flow in our construction of the 3d compactification manifold [4]. The
complete theories of chapter 3 were constructed by wrapping two M5 branes on Rie-
mann surfaces; to consider 3-manifolds, we may take the Riemann surface fibered
over an additional real line R. The Riemann surface includes certain puncture singu-
larities, which are now lifted to the branching strands described above. If we allow
the moduli of the Riemann surface vary along the fibration, then we can generate

! R-flow is given by enforcing certain technical

some arbitrary knotting behavior.
constraints to preserve supersymmetry in the flow of the moduli, and makes contact
with the manipulation of BPS charges induced by the tuning of Riemann surface
moduli. In this ansatz, each 4d BPS state appears as a 3d massless particle localized
in the 3d geometry.

We will discover that certain dualities, particularly 3d mirror symmetry, are made

manifest in this construction. Our dictionary from geometry to a classical Lagrangian

involves a certain geometric choice. Different choices will produce distinct Lagrangian

LOf course, the resulting knot structure is highly dependent on the boundary conditions we take
to close off the 3-manifold
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descriptions of identical physics, and thus exhibit duality. In the context of R-flow,
certain 3d mirror symmetries are related to wall-crossing of 4d BPS states, allowing
us to make use of our results from the previous chapters. Continuing further in our
study, we disassemble these dualities into underlying geometric rules that can be use
to explore interesting, non-trivial dualities. The results offer a novel perspective and

geometric origin for 3d mirror symmetries and dualities.



Chapter 2

Formalism of BPS Quivers

2.1 Introduction

This chapter will serve to collect background material on the subject of BPS
quivers, which will be employed heavily throughout the rest of the thesis. Quiver
techniques for BPS spectra of 4d A/ = 2 field theories have been studied in a variety
of contexts, though traditionally from the framework of geometric engineering [5—11].
Although string theory gives the mathematical inspiration for these techniques, we
will take the perspective of 4d gauge theory in studying the applications of BPS
quivers, and avoid string theoretic derivations whenever possible. The point is that
these techniques are quite powerful for a huge class of 4d gauge theories, and perhaps
have some underlying purely 4d justification.

The direction connection between BPS states and quivers comes through quiver
representation theory. Representations of the quiver correspond to candidate BPS

particles, while a stability condition on representations known as Il-stability is known



Chapter 2: Formalism of BPS Quivers

to correspond to the preservation of supersymmetry associated with BPS particles.
Section 2.2 will be dedicated to discussing the basics of this representation theory,
its relevance to the physics being studied, and some simple examples. Unfortunately,
the representation theory quickly becomes quite convoluted, even for relatively simple
quivers.

The valuable insights come from studying various dualities and transformations
on quivers and spectra in Section 2.4. BPS quivers come equipped with a set of trans-
formations known as mutations. For each node of a BPS quiver, there is a procedure
to construct a new quiver mutated at that node. In the course of our discussion, we
will see that mutation is related to the physical duality of particle and anti-particle.
To specify a BPS quiver, we must make some designation of which states are particles
and which ones are antiparticles. We choose to do this by simply picking a half-plan
in the complex-plane of central charges Z. Of course, there are infinitely many differ-
ent half-planes one could choose, corresponding to different designations of particle
and anti-particle. We find that reversing one of these designations is equivalent to a
certain mutation. The mutated quiver produces an equivalent representation theory,
and thus an equivalent spectrum of BPS states.

The point is that each quiver makes some BPS states (or equivalently, some stable
representations) completely trivial to compute; however, these trivial states change
as we apply various mutations. By carefully tabulating trivial states as we mutate,
one can resolve the question of BPS stability for many states very efficiently. In
fact, for theories with a finite BPS spectrum, we can even simply tune through all

possible choices of particle half-plane and compute all the BPS states by this method.
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Since the mutations transformation is easily implementable by hand or by computer
programming, this method allows for many new spectra to be studied. We explore

the details and implications of this algorithm at the end of Section 2.4.

2.2 N =2 theories in 4d

We begin with a four-dimensional N" = 2 field theory with Coulomb moduli space
U. Here by a point u € U we will mean a specification of all supersymmetric pa-
rameters in the theory including Coulomb branch moduli, bare masses, and coupling
constants. At a generic value of the moduli u € U, this field theory has a U(1)" gauge

symmetry, and a low energy solution described by:

e A lattice I of electric, magnetic, and flavor charges of rank 2r + f, where f is

the rank of the flavor symmetry.

e A linear function Z, : I' = C, the central charge function of the theory.! Central
charges which couple to the electric and magnetic charges encode the effective
coupling and theta angle of the infrared physics, while the central charges that
couple to the flavor symmetries sample possible bare masses of matter in the

theory.

The behavior of the central charge function as one varies the moduli fixes com-
pletely the effective action for the neutral massless fields. However, the description of

the massive charged particles is more subtle. According to the A/ = 2 superalgebra,

'Here we explicitly indicate the u dependence by including a subscript on the central charge
function. For notational simplicity, we will eventually drop the subscript and leave the u dependences
implicit

10
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the central charge provides a lower bound on the masses of charged particles. The

mass of a particle with charge v € I" satisfies

M > |Z,9). (2:2.1)

The lightest charged particles are those that saturate the above bound - these are
termed BPS. The spectrum of BPS states is a priori undetermined by the low energy
solution of the theory alone, and it is precisely this question that we aim to address.
We will describe a class of theories where the BPS spectrum can be computed and

studied using the technology of quiver quantum mechanics.

2.3 BPS Quivers and Spectra

In this section we lay the foundations for our ideas by describing the connection
between quantum mechanical quiver theories and BPS spectra of four-dimensional
quantum field theories. In the course of our analysis we will also discover various
restrictions on the class of theories to which these quiver techniques apply. We first
describe in section 2.3.1 how the BPS spectrum of the 4d theory at a fixed point in
moduli space can frequently be used to define an associated quiver, and therefore to
pose a supersymmetric quantum mechanics problem. We will then see in section 2.3.3
that the ground states of this supersymmetric quantum mechanics precisely reproduce
the BPS spectrum. From this point of view, the quiver provides merely a clever way
of organizing the BPS spectrum. However, the true power of the technique is that

there exist many ways of producing a BPS quiver that do not assume a knowledge of

11
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the spectrum. These are briefly surveyed in section 2.3.2. It is through these methods

that we can hope in turn to discover previously unknown spectra.

2.3.1 Formal Construction of BPS Quivers

Let us begin by fixing a point v € U in moduli space. Suppose the occupancy
of BPS states here is known. We will then explain how to construct a quiver that
describes the theory at this point u.

To begin we split the BPS spectrum into two sets, the particles and the antiparti-
cles. We define particles to be those BPS states whose central charges lie in the upper
half of the complex Z plane, and antiparticles those in the lower. CPT invariance
ensures that for each BPS particle of charge v, there is an antiparticle of charge —~.
Thus the full BPS spectrum consists of the set of BPS particles plus their associated
CPT conjugate antiparticles. We will use the occupancy of the particles to construct
a quiver.

Among the particles, we choose a minimal basis set of hypermultiplets. Since the
lattice I has rank 2r 4+ f, our basis will consist of 2r + f BPS hypermultiplets. Let
us label their charges «;. The particles in the basis set should be thought of as the
elementary building blocks of the entire spectrum of BPS states. As such they are
required to form a positive integral basis for all occupied BPS particles in the lattice

I'. This means that every charge v which supports a BPS particle satisfies
2r+f

v = Z niyi. ni €4 (2.3.1)
i=1

We emphasize that the basis need not span I', but only the subset of occupied states

12
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in I". We will see in section 2.3.3 that this equation can be interpreted as saying that
the BPS particle with charge v can be viewed as a composite object built up from a
set of elementary BPS states containing n; particles of charge ;.

It is important to notice that the requirement that a set of states form a positive
integral basis for the entire spectrum of BPS particles is quite strong, and in particular
uniquely fixes a basis when it exists. To see this, we suppose that {v;} and {7;} are

two distinct bases. Then there is a matrix n;; relating them

Vi = NijY5; %= ("7 (2.3.2)

However since both {v;} and {7;} form positive integral bases, the matrix n;; and
its inverse must have positive integral entries. It is easy to see that this forces both
matrices to be permutations. Thus the two bases can differ only by a trivial relabeling.

Now, given the basis of hypermultiplets {+;} there is a natural diagram, a quiver,

which encodes it. This quiver is constructed as follows:
e For each element ; in the basis, draw a node of the quiver.

e For each pair of charges in the basis compute the electric-magnetic inner product
vi0;. If v;07; > 0, connect corresponding nodes v; and «y; with 7; oy, arrows,

each of which points from node j to node 1.

To illustrate this construction, we consider the simple case of pure SU(2) gauge
theory at a large value of the Coulomb branch modulus, where the theory is governed

by semiclassical physics. In terms of their associated electric and magnetic charges

13
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(e, m), the occupied BPS states consist of:

Vector multiplet W — boson : (2,0),
(2.3.3)

Hypermultiplet dyons : (2n,1), (2n+2,—1) n > 0.
Choosing the particle half-plane represented in Fig. 2.1a, the unique basis is given
by the monopole (0, 1) and the dyon (2, —1). The spectrum and the resulting quiver

are then shown in Figure 2.1.

[
@ . O O
2 (0,1) (2,-1)

(a) BPS Spectrum (b) BPS Quiver

Figure 2.1: The spectrum and BPS quiver of SU(2) Yang-Mills. In (a) the weak-
coupling BPS spectrum, both particles and antiparticles, is plotted in the (e, m)
plane. Red dots denote the lattice sites occupied by BPS states. The green arrows
show the basis of particles given by the monopole and dyon. We have represented our
choice of particle central charge half-plane by the grey region. In (b) the BPS quiver
is extracted from this data. It has one node for each basis vector, and the double
arrow encodes the symplectic product.

So, returning to the general story, we have given a map from BPS spectra to
quivers. At this stage, we pause to point out important subtleties in this procedure.
The first is that our identification of arrow being determined by the Dirac inner
product glosses over the possibility of having arrows between nodes which point in
opposite directions. In fact, what the Dirac product truly captures is the net number
of arrows. It is a fortunate feature of all of the field theory examples discussed
in this work, with the exception of section 6.2, the electric magnetic inner product

accurately determines the arrows in the quiver. Further analysis of this issue occurs

14
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in our discussion of superpotentials in section 3.

A second important subtlety is that there exist field theories for which there is no
BPS quiver whatsoever. To illustrate this, note that one assumption thus far was that
we could find a basis of hypermultiplets in the upper half of the central charge plane.
By linearity of the central charge function, this gives a constraint on the occupied
subset of I". In particular, since the set {7;} forms a basis, we have for an arbitrary

BPS particle of charge ~,

v = Zni% = Z,(y) = ZnZZu(%) n; >0 (2.3.4)

Since Z(;) all lie in the upper half-plane, (2.3.4) implies that the central charges of
all BPS particles lie in a cone in the upper half of the central charge plane, bounded
by the left-most and right-most Z(+;); we denote this the cone of particles.

One can see that many theories do not even have such a cone, and therefore don’t
have an associated BPS quiver. The simplest example is N' = 4 Yang-Mills with
gauge group SU(2). Because of S-duality, this theory has a spectrum of dyons with
charges (p, q), for p and ¢ arbitrary coprime integers. It follows that the phases of
the central charges of these dyons form a dense set in the unit circle in the central
charge plane. In particular, there is no cone of particles and hence no quiver.

We can state the problem with A" = 4 Yang-Mills from the A/ = 2 perspective:
there is an adjoint hypermultiplet which is forced to be massless. The N = 2* theory,
where the adjoint is given a mass, does admit a BPS quiver, as we will see in chapter
3. This situation is typical of gauge theories that become conformal when all mass

deformations are turned off. A conformal field theory has no single particle states

15
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at all, let alone BPS states. A quiver description is therefore only possible when

sufficiently many massive deformations of the theory exist and have been activated.

2.3.2 Alternative Constructions of BPS Quivers

Thus far we have explained how BPS quivers provide a way of describing certain
properties of the basis for the BPS spectates at a fixed point in moduli. In the next
section, we explain the reverse construction, that is, how to extract a BPS spectrum
from a BPS quiver, and hence how a BPS quiver can be used as a convenient way
for encoding the complete BPS spectrum. However, the most important application
of BPS quivers is that they can be used to deduce an unknown BPS spectrum. One
reason this is so, is that our construction of BPS quivers is completely local in the
Coulomb branch moduli space U. Given a point u € U where the BPS spectrum is
known, the quiver description of the spectrum is uniquely fixed if it exists. But, as
will be clear by the conclusion of section 3, once a quiver is determined for a single
modulus u, the quiver description of the entire moduli space U is also fixed. Thus,
we may determine the quiver in say a region of weak coupling where the physics is
under control, and then use it to calculate the BPS spectrum at strong coupling.

Even more striking is the fact that BPS quivers can frequently be deduced by
alternative geometric methods in various contexts in string theory, even when the
BPS spectrum is unknown for any value of the moduli. The quiver methods described
in the following sections can then be used to determine the spectrum from scratch.

The existing literature on the techniques used to extract BPS quivers is by now
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very vast, in the following we outline some of the various interrelated approaches:?

e Building on the original orbifold construction of quiver gauge theories of [5]
refs. [6-8,13] provided the identification of the quiver nodes with a basis of BPS
states obtained from fractional branes, these BPS quivers were further explored

in [9,10].

e The relation of the 4d quivers with the soliton spectrum in 2d [14] was studied in
various places, see for example [15-17], more recently this 2d/4d correspondence

and the associated construction of BPS quivers was discussed in [18].

e The toric methods of [19,20] and the relation to dimer models [21] were used
in [22] to construct a large class of quivers, their construction using mirror

symmetry was studied in [23].

e Based on the geometric study of BPS states in SW theories pioneered in [24] and
further studied in [25,26], the BPS quivers can be obtained from triangulations
of Riemann surfaces as described in [3,27] using the relation of triangulations
and quivers of [28]. Given a pair of M5-branes wrapping a Riemann surface C,
an ideal triangulation of C can be used to determine the BPS quiver. These

techniques have since been generalized to larger stacks of M5 branes [29].

2See also [12] and references therein for an excellent recent exposition of the mathematical struc-
tures used to describe to D-branes which in includes in particular the associated quiver representation
theory.
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2.3.3 Quiver Quantum Mechanics

We now return to our general discussion of BPS quivers and explain how to deduce
the full spectrum from the quiver. Thus far the BPS quiver we have introduced is
merely a way of encoding a basis of BPS states {7;} for a given N' = 2 theory. To

construct a general BPS state, we must know, for a given charge

y = Z N (2.3.5)

whether any particles of this charge exist in the theory, and if so, determine their de-
generacy and spins. We attack this question by viewing the hypothetical state with
charge v as a quantum mechanical bound state of n; copies of each basis particle ;.
Since we seek a BPS particle, we introduce a four supercharge quantum mechanics
problem and look for its supersymmetric ground states. The precise quantum me-
chanics theory is constructed from the BPS quiver and the charge v in the following
way: Let ¢ index nodes of the quiver, and a index the arrows of the quiver. Then
we introduce a gauge group for each node and bifundamental field Bj; for each arrow

pointing ¢ — 7,

Gauge Group = H U(n;), Matter = GB B (2.3.6)

nodes i arrows a

Thus, the BPS quiver, whose nodes and arrows were originally merely a presentation
of a basis of hypermultiplets, now encodes the gauge groups and bifundamental matter
of a quiver quantum mechanics.

This prescription can be motivated most easily when the four-dimensional field
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theory is engineered in string theory. In such a situation, BPS states are viewed
as various supersymmetric bound states of D-branes. Then the nodes of our quiver
correspond to a collection of basic supersymmetric branes and the arrows are bifun-
damental fields that arise at brane intersections. This also provides an elementary
understanding of the appearance of non-abelian gauge fields in the quantum mechan-
ics: they are the usual non-abelian degrees of freedom that arise when branes coincide.
The quantum mechanics problem introduced above is then nothing but the worldvol-
ume theory of a system of D-branes dimensionally reduced to 0+1 dimensions.
Returning to our general analysis, to asses the existence of a BPS particle with
charge ~, we look for supersymmetric ground states on the Higgs branch of this quiver

theory. These depend on two data which we must still specify:

e Fayet-Iliopoulos Terms

Since the gauge groups at each node are given by U(n;), the overall U(1) at
each node can couple to an independent FI-term 6;. These parameters are
fixed by the central charges Z,(7;) of the constituent particles. We state this
identification in the case that all the central charges point in nearly the same
direction in the complex plane. Then let Z,() denote the central charge of a

state with charge ~, and set

6, = |Z.(7)| (arg<zu<%>> - arg(Zuw))) . (2.3.7)
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For each node 7 in the quiver there is then a D-term equation of motion

doBLP— > IBLP =6 (2.3.8)

arrows arrows
starting at ¢ ending at i

When the central charges are not nearly aligned, the identification of the FI
parameters is more involved, and for now the reader should assume that the
moduli are such that this approximation is valid.® Later in section 2.3.4 we will

see an elegant way of rephrasing our problem that completely avoids this issue.

e Superpotentials

Whenever there are non-trivial oriented cycles in the BPS quiver, the quantum
mechanics theory admits a non-trivial gauge invariant superpotential ¥V which
is a holomorphic function of the bifundamental fields. Our procedure for pro-
ducing a quiver does not fix a superpotential; it is an independent datum of our
construction which must be computed by alternative means. Later in section
2.4 we will see general constraints on VW. For now, we simply assume that W

is given. This superpotential yields F-term equations of motion

ow
OB,

= 0. (2.3.9)

Having fully fixed the quantum mechanics, we now turn to the moduli space of

supersymmetric ground states with charge v, M.,.* This space is simply the solution

3 Alternatively one may tune the central charges to near alignment. Since this involves no crossing
of walls of marginal stability the spectrum is stable under this motion.

4From now on, whenever we refer to supersymmetric ground states of the quiver quantum me-
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to the equations of motion described above, quotiented by the action of the unitary

gauge groups.

arrows arrows
starting at 2 ending at 17

a 8W a a
My = B | oo =0, SBEP— Y BuP =0 ¢ /J[Um). (2:3.10)
1] )

If M., is non-empty, then there exists a BPS particle in the spectrum with charge ~.
To determine spins and degeneracy from M., we examine the structure of its coho-
mology. Specifically, since M, is the moduli space of a theory with four supercharges,
it is a Kahler manifold, and as such its cohomology automatically forms representa-
tions of Lefschetz SU(2). For each such irreducible Lefschetz SU(2) representation,
we obtain a supersymmetric BPS multiplet. The spacetime spin of a multiplet is then

determined by tensoring the Lefschetz spin with an overall N’ = 2 hypermultiplet,
. 1
Spin = Lefschetz ® ({51 +2 [O]) : (2.3.11)

Equation (2.3.11) can be intuitively understood by thinking about the worldvol-
ume theory of a BPS particle. This worldvolume theory supports four supercharges
and hence has an R-symmetry group of SU(2) which is none other than the Lefschetz
SU(2) of the moduli space. On the other hand, the R-symmetry group of a brane, in
this case our particle, can be identified with the group of rotations transverse to the
worldvolume, which in turn controls the angular momentum of the state. Thus the

Lefschetz SU(2) computes the orbital angular momentum of the state, and the overall

chanics, we will always mean on the Higgs branch. The Coulomb branch can also be studied and
gives rise to equivalent results for BPS spectra. [11]
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shift by 1/2 in (2.3.11) simply takes into account the intrinsic spin contribution.

In practice the most important application of (2.3.11) is to distinguish vector
multiplets from hypermultiplets. The latter are associated to Lefschetz multiplets of
length zero, as would naturally occur if, say, M, were a point. Meanwhile vector
multiplets are associated to Lefschetz multiplets of length two, the canonical example
of which is M, = P!. In complete generality the formula (2.3.11) tells us that if
M., has complex dimension d then there is guaranteed to be a BPS multiplet of spin
d—‘gl with charge v in the spectrum. Naive parameter counting gives the expected

dimension of the M., as

d= Z(nmj) - Z n? — (# F-term constraints) + 1. (2.3.12)
Ba

nodes

Here we have simply counted the degrees of freedom of the bifundamental fields,

B¢

i, and subtracted the gauge degrees of freedom and the F-term constraints. The

addition of 1 is for the overall diagonal gauge group U(1)y C [[, U(1) C [[, U(n,).
Since all fields are bifundamental, no field is charged under the simultaneous U(1)
rotation of all gauge groups, so this gauge degree of freedom is actually redundant.
In summary, given a quiver we have defined a supersymmetric quantum mechanics
problem, and the cohomology of the moduli spaces of grounds states of this quantum

mechanics determines the occupancy of BPS states.
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2.3.4 Quiver Representation Theory

While this supersymmetric quantum mechanics determines the BPS spectra as
specified by a quiver, it is useful in practice to work in the language of quiver rep-
resentation theory. Here the problem of determining the ground states of the super-
symmetric quantum mechanics gets recast in a holomorphic framework. Our ability
to rephrase the problem in terms of quiver representation theory arises from the fact
that a supersymmetric moduli space of a theory with four supercharges, such as M.,

can be presented in two ways:

e As the solution to the F-term and D-term equations of motion modulo the

action of the unitary gauge groups (this is what has been stated in (2.3.10)).

e As the solution to the F-term equations modulo the action of the complexified

gauge group [ [, Gl(n;,C), augmented by a stability condition.

It is the second notion of M, that makes use of quiver representation theory.

To begin, we note that in a zero energy field configuration of supersymmetric
quantum mechanics, the bifundamental fields are constants and hence their expec-
tation values can be viewed as linear maps between vector spaces C™ associated to
each node. These expectation values are constrained by the condition that they must
solve the F-term equations of motion OW/JBf; = 0. A quiver representation is by
definition precisely a choice of complex vector spaces C™ for each node, and linear
maps Bf; : C" — C" for each arrow in a quiver subject to the F-term equations.
So the data of a classical zero energy field configuration completely specifies a quiver

representation (See [12] and references therein).
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Given a quiver representation R, defined by vector spaces C" and maps Bj; an
important notion in the following will be the subrepresentations S C R. A subrepre-
sentation S is defined by a choice of vector subspaces C™ C C™ for each node and
maps bf; : C™ — C™ for each arrow, such that all diagrams of the following form

commute:

a

T T (2.3.13)

(Cmi ij (ij‘

To complete our holomorphic description of the moduli space we must still specify
a stability condition that ensures that a given quiver representation R is related to
a solution of the D-term equations in quiver quantum mechanics. To motivate this,
note that a quiver rep R with vector spaces C™ is related to the description of a
particle with charge vz = >_ n;7;. Then heuristically, a subrepresentation S of R can
be thought of as a bound state of smaller charge which may, in principle, form one of
the constituents of a decay of a particle of charge vg. To prohibit such a decay, we
must restrict our attention to stable quiver representations. To define this notion of

stability we let Z,(R) denote the central charge of a representation,’

Z,(R) = Z,(vg) = Z n: 24 (7)- (2.3.14)

By construction the central charge vector lies in the cone of particles in the upper

half of the central charge plane. Then R is called stable if for all subrepresentations

5When we speak of the central charge of a representation, we are always referring to the central
charge of the bound state associated to that representation.
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S other than R and zero, one has

arg(Z,(9)) < arg(Z,(R)). (2.3.15)

We will refer to any subrepresentation S that violates this condition as a destabilizing
subrepresentation. This condition is denoted Il-stability, and was studied in [7]. We
take this to be the requisite notion of stability at general points in moduli space.
One important consistency check on this choice is that when all the central charges
are nearly aligned, the stability condition (2.3.15) reduces to the D-term equations of
motion presented earlier [7,30].

Given this notion of stability, we can now formulate the moduli space M., as set

of stable quiver representations modulo the action of the complexified gauge group.

ow
OB,

M, = {R = {BY :C" — C"} =0, Ris IT — stable} /] Gini, ).

i (2.3.16)
This is a completely holomorphic description of M., and in many examples is explic-
itly computable.

As a very elementary application, we note that the nodes of a quiver are always II-
stable reps. That is, consider 7; as the representation given by choosing n; = d;;. This
is always stable since it has no non-trivial subrepresentations, and thus in particular
no destabilizing subreps. Furthermore, since there is only one non-zero vector space,

all maps must be chosen zero; thus the moduli space M., is given by a single point.

We find that each node of a quiver gives a multiplicity one hypermultiplet BPS state.
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2.3.5 Walls of Marginal Stability

The preceding discussion in this section has focused exclusively on utilizing BPS
quivers to encode the spectrum of an N/ = 2 quantum field theory at a specific point
u on the Coulomb branch Y. BPS states are stable under infinitesimal variations of
the modulus, and thus our description can be viewed as local theory of BPS particles
adequate on a patch in U. Of course we are interested in determining the spectrum
across the entire moduli space, and this can also be achieved using the quiver.

In the quiver representation theory problem, the moduli u along with bare mass
parameters and coupling constants enter the calculation through the central charge
function Z,. From the perspective of quiver representation theory, these are changes
in the stability conditions. For small deformations of the stability condition, the set
of stable representations, and hence the BPS spectrum, is unchanged. However at
certain real codimension one loci in moduli space we encounter walls of marginal
stability where a supersymmetric particle decays. At the wall, the central charges
of some representation R and its subrep S become aligned. On one side of the wall,
arg Z(S) < arg Z(R) so that R stable, and hence some corresponding BPS particle
exists. On the other side of the wall, the phases have crossed, and the stability
condition has changed. We will have arg Z(S) > arg Z(R), so the representation R is
no longer stable, and the associated particle has disappeared from the BPS spectrum.

It is a virtue of the description of the spectrum in terms of stable quiver rep-
resentations that these wall-crossing processes are completely explicit. Indeed the
BPS quiver gives us a way to calculate directly the BPS spectrum on either side of a

wall. One can then simply compare the answer on both sides, and see that proper-
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ties such as the Kontsevich-Soibelman wall-crossing formula hold. In this section we
study these wall crossing phenomena in the context of the Argyres-Douglas conformal

theories.

2.3.6 Examples
Ay Theory

Let’s begin with a simplest possible example which demonstrates wall-crossing.
We will consider the Argyres-Douglas A, theory, whose quiver is given by two nodes
connected by a single arrow [18]. We will denote by Z; the central charges of the two

basis particles,

@ @ (2.3.17)

No matter what the value of the central charges, the basis particles described by
the nodes of the quiver are stable. Thus the spectrum always contains at least two
hypermultiplets. Now let us search for a bound state involving n, particles of type v,
and ns particles of type 5. According to the general theory developed in the previous

sections we are to study a quiver representation of the following form

cm B e (2.3.18)

To determine stability we investigate subrepresentations. Let’s start with a subrep-
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resentation of the form

Cm i) Cn2
T T (2.3.19)
0—2—~C

There is no condition on the field B for this diagram to commute; it is always a

subrepresentation. Thus, stability of our bound state requires
arg(2s) < arg(ni1 2y + noZy) = arg(2,) < arg(2;). (2.3.20)

Next we consider a similar decay involving the first basis particle

Cnl B Cng
] T (2.3.21)
c—2—-0

If this is a subrepresentation, then stability demands that arg(Z;) < arg(Z,), so
(2.3.20) cannot be satisfied. Thus, to ensure the existence of a bound state we must
forbid this subrepresentation, and hence we must choose B so that the diagram in
(2.3.21) does not commute. Thus B should have no kernel, and in particular, we have
ny < na.

Finally we consider a decay involving the subrepresentation
cm B, e

(2.3.22)
L]

28



Chapter 2: Formalism of BPS Quivers

It is clear that b can be chosen in such a way that this is always a subrepresentation.

Then stability demands that the central charges satisfy

arg(2) + 25) < arg(n1 2, + nyZs). (2.3.23)

However, given that n; < ny, and that Z5 has smaller phase than Z, it is not possible
to satisfy the above inequality. It follows that the only possibility for a bound state
is that (2.3.22) is not a subrepresentation, but an isomorphism of representations. So
we only have the possibility of non-trivial moduli spaces for ny = ny = 1.

In summary, when arg(2,) < arg(Z;) this theory supports a bound state with
charge 71 + 2. The moduli space of representations of this charge is given by the
quotient of a single non-zero complex number B modulo the action of the complexified
gauge group. Clearly this moduli space is just a point, and so this representation
describes a single hypermultiplet. The complete spectrum for this example is depicted

in Figure 2.2, and agrees with the known result for this theory [25]. This basic 2-3

(a) Chamber 1 (b) Chamber 2

Figure 2.2: The chambers of the Ay Argyres-Douglas theory. The BPS spectrum is
plotted in the central charge plane. Particles are shown in red, antiparticles in blue.
The cone of particles is the shaded grey region. In (a) the particles form a bound
state. In (b) the bound state is unstable and decays.
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decay process is known in various contexts as a primitive decay [31]. In formalism
of Kontevich and Soibelman this wall-crossing gives rise to the pentagon identity of

quantum dilograthims.

Example: A3 Theory

As another example of quiver representation theory and wall-crossing we consider
a quiver involving a non-trivial superpotential WW. The quiver, known to be related

to the A3 Argyres-Douglas theory is given by

a3 (%)

1 o 2 (2.3.24)

We let «y; indicate the bifundamental field map exiting node ¢ and Z; the central

charge of node 7. The quiver is equipped with a superpotential

W = Q300 . (2325)

Minimization of VW implies that in any allowed field configuration all compositions of

pairs of maps vanish

g oy =0, 30 g = 0, oy 0az = 0. (2.3.26)

We will show that this quiver has, up to relabeling the nodes, exactly two chambers

with four or five BPS hypermultiplets respectively.
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First, we note that as usual all of the node representation where the dimensions
n,; of the associated vector space are given by n;, = d;; for j = 1,2,3 are stable and
hence yield three hypermultiplets. Further, when one of the n; vanishes, then two of
the maps o must also vanish and the analysis reduces to the A, case considered in
the previous section. This yields two or one bound states depending on whether the
phases of the Z; are or are not cyclically ordered. To conclude the analysis of this
quiver, we now wish to illustrate that there are no further bound states that arise
from representations

TN

Cm 2 Cr2 225 (2.3.27)

with all n; non-zero.

We begin by considering possible subrepresentations corresponding to node vec-
tors, (1,0,0), (0,1,0), and (0,0, 1). These are only subrepresentations when «; has a
kernel for i = 1,2, 3 respectively. Clearly not all of these can be subreps simultane-
ously or else the representation would already be destabilized. It follows that at least
one of the «;, say « is injective and hence in particular n; < ns.

Now we apply the F-term equations (2.3.26). From the fact that a3 o ag =
as o ap = 0 and the fact that a; is injective we learn that both as and a3 have
non-vanishing kernels. This means that both the node representations (0, 1,0) and
(0,0,1) are subreps so we deduce that Z; must have largest phase for stability, and

arg 2y, arg Z3 < arg(ni1 2, + noZs + n3Z3).
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However now we consider a subrepresentation with dimension vector (1, 1,0).

Cm 2z 225 8 (2.3.28)
[,
C B1 C B2 0

This is a subrep exactly when the image of a; meets the kernel of ay non-trivially,

which it does by the F-terms. Thus we learn that

arg(Zl + ZQ) < arg(nlzl -+ TLQZQ -+ 77,323). (2329)

Given the conditions on the Z; and the fact that n; < ns, the above is impossible.
Thus we have arrived at a contradiction. It follows that for this quiver with the
given superpotential there are no states with all n; non-vanishing. Note that this
conclusion is altered when the superpotnetial is turned off. In that case it is easy
to check that the representation (1,1,1) with all maps non-zero provides a stable

hypermultiplet at all moduli. This completes our analysis of this quiver.

2.4 Quiver Mutation and Duality

We have seen how wall crossing is encoded into our quiver quantum mechanics
picture. Walls of marginal stability correspond to hypersurfaces in which two central
charges become aligned. The stability condition will differ on the two sides of this

wall, and therefore there may be some representations which are stable on one side but
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not the other. There is in fact another type of hypersurface in moduli space that is
strikingly relevant in our picture: hypersurfaces across which a fixed quiver quantum
mechanics description of the BPS spectrum may break down entirely. Following [32]
we will refer to these as walls of the second kind.

The situation is less dire than it may seem; we will be able to find another quiver
description, valid on the other side of the wall. We will argue that the transformation
of a quiver across a wall of the second kind is given by a canonical procedure, known
as quiver mutation which describes a quantum mechanical duality relating the ground
state spectra of two distinct quivers. Once the rule for transforming quivers at such
walls is understood, we will be able to start with a quiver description at any point in
moduli space and arrive at any other point by following an arbitrary path connecting
them, doing the necessary mutations along the way. Further, in section 2.5 we will
revisit this procedure and see that the same transformation can be made on quivers
at a fixed point in moduli space, and in this case the transformation will take us
between quivers that describe the same physics. We will then immediately exploit
this duality to circumvent the computations involved in solving the representation
theory problem.

Recalling that the nodes of a quiver all correspond to particles, and must therefore
have central charges which lie in the upper half-plane, we see what can go wrong. As
we tune moduli, our central charge function changes, and as we cross some real co-
dimension 1 subspace in U, the central charge of one of the nodes may exit the
half-plane. This behavior defines the walls of the second kind. They are the loci in

moduli space (including as usual masses and couplings) where the central charge of
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a basis particle becomes real

Z.(7:) €R. (2.4.1)

Let us study the process of crossing a wall of the second kind in more detail.
Consider the central charge configuration illustrated in Figure 2.3a where the BPS
particles are described by the quiver ). As moduli are varied, the central charge of
one of the basis elements, Z; rotates out of the upper half-plane and we arrive at the

new configuration illustrated in Figure 2.3b.

Z/

(a) Spectrum pre-duality (b) Spectrum post-duality

Figure 2.3: A discontinuity in the quiver description results in a quantum mechan-
ical duality described by quiver mutation. In both diagrams the BPS spectrum is
plotted in the central charge plane. Red lines denote particles while blue lines denote
antiparticles. The gray shaded region indicates the cone of particles. In passing from
(a) to (b) the particle with central charge Z; changes its identity to an antiparticle.
The cone of particles jumps discontinuously and a new quiver description is required.

The first thing to notice about this process is that, since no central charges align,
no walls of marginal stability are crossed, and hence the total BPS spectrum (consist-
ing of both particles and antiparticles) is the same in Figures 2.3a and 2.3b. On the
other hand, from the point of the quiver this process is discontinuous. After Z; has
rotated out of the upper half of the central charge plane, it has changed its identity

from a particle to an antiparticle. Then the original basis of particles encoded by the
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quiver () is no longer an acceptable basis. Specifically, in passing from Figure 2.3a
to Figure 2.3b, the cone of particles has jumped discontinuously and as a result the
original quiver description of the BPS spectrum is no longer valid.

To remedy this deficiency we must introduce a new quiver @ that encodes the
BPS spectrum in the region of moduli space described by Figure 2.3b. Since the total
spectra of particles and antiparticles in () and @ are identical, the physical relation
between them is that of a duality: they are equivalent descriptions of the same total
spectrum of BPS states. In the moduli space U the regions of validity of ) and @
are sewn together smoothly along the loci where the central charge of an elementary

basis particle is real. This sewing is illustrated in Figure 2.4

Y

Figure 2.4: A cartoon of the moduli space and its relation to various BPS quiver
descriptions. The red lines denote walls of marginal stability where the BPS spectrum
jumps. The gray shaded region is the domain in moduli space where () describes the
BPS spectrum. The gray checkered region is the domain where () describes the
spectrum. The two descriptions are glued together smoothly away from the walls of
marginal stability. Their interface is a wall of the second kind.

In section 2.4.1 we define the operation of mutation on a given quiver () to produces
the quiver @7 valid on the other side of the wall of the second kind. In section 2.5
we explain how the existence of the mutation operation, when interpreted as duality
between different quiver descriptions, leads to a powerful and striking method for

determining BPS spectra.
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2.4.1 Quiver Mutation

As the preceding discussion indicates, a global description of the BPS spectrum
across the entire Coulomb branch will require many quivers all glued together in the
fashion described above. In this subsection we describe the algorithmic construction
of this set of quivers by a graphical process known as quiver mutation. In the following
subsection we justify these rules using arguments from quiver representation theory.

To define mutation, let us suppose that node ~, is the BPS particle in the quiver
whose central charge Z; is rotating out of the half-plane. We then seek to describe the
dual quiver Q with corresponding nodes {7;}. Of course, since we have determined
that a given spectrum of BPS particles admits at most one basis of BPS states, both
@ and {7;} are uniquely fixed. What’s more, the quiver @ can be described in a

simple graphical way starting from @. [15,16,33-37]. The new basis is given by

no=n (2.4.2)
- v+ (vjom)n ifyom >0
= (2.4.3)

To construct @ graphically we follow the steps below:
1. The nodes of @ are in one-to-one correspondence with the nodes in Q).

2. The arrows of @, denoted Ef;, are constructed from those of (), denoted Bj; as

follows:

a 3 ~(l 3
(a) For each arrow Bf; in @ draw an arrow B in Q.
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(b) For each length two path of arrows passing through node 1 in @, draw
a new arrow in é connecting the initial and final node of the length two
path

B4 B!, — B (2.4.4)

(c) Reverse the direction of all arrows in @ which have node 1 as one of their
endpoints.

BY —s B B! —s BY. (2.4.5)

3. The superpotential W of @ is constructed from the superpotential W of () as
follows:
(a) Write the same superpotential W.

(b) For each length two path considered in step 2(b) replace in W all occur-

rences of the product Bfj BY; with the new arrow Efj

(c) For each length two path considered in step 2(b) BfjBY; there is now a
new length three cycle in the quiver @ formed by the new arrow created

in step 2(b) and the reversed arrows in step 2(c)

B B¢ BY (2.4.6)

i1

Add to the superpotential all such three cycles.

As a simple example of this procedure we consider the A3 quiver of section 2.3.6

shown on the left and its mutation at node 1 shown on the right.
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(2.4.7)

W= BlQBQSB?)l W= §32§23 + §32§21§13

As the above example illustrates, the process of quiver mutation in general creates
cycles of length two in our new quiver. From a physical perspective these are fields
in the quiver quantum mechanics which admit a gauge invariant mass term. In the
example above such mass terms are present in the quadratic piece of the potential
§32§23. As is typical in physical theories, the massive fields decouple from the analysis
of ground states and hence do not affect the BPS spectrum. We may therefore
integrate them out. Thus to our list of quiver mutation rules we append the following

final steps:

4. For each two-cycle in @ for which a quadratic term appears in W, delete the

two associated arrows.

5. For each deleted arrow Ef; in step 4, solve the equation of motion

W _y (2.4.8)
0B,
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Use the solution to eliminate Efj from the potential.

In the example illustrated above, the only two cycle has quadratic terms in the
superpotential and is therefore deleted from the quiver. This results in a vanishing

superpotential and a quiver of the following form.

@) (D 3) (2.4.9)

As a general rule, the study of BPS quivers is greatly complicated by the existence
of pairs of opposite arrows whose associated fields cannot be integrated out from
the superpotential. When this is never the case, that is when the potential W is
strong enough to integrate out to all opposite bifundamental fields after an arbitrary
sequence of mutations, the potential is said to be non-degenerate. It is a fortunate
simplification that for the vast majority of BPS quivers related to quantum field
theories that we discuss in this paper the potential will turn out to be non-degenerate.
However exceptions to this general rule do arise. For example the quiver for the 7
theory defined by a free trifundamental half-hypermultiplet of a flavor group SU(2) x
SU(2) x SU(2) involves a quiver with canceling arrows and a potential which is too
degenerate to integrate out all the associated by bifundamental fields. In the following
unless otherwise stated we avoid this complication and assume that all of our quivers
involve non-degenerate superpotentials. However, even when this is not the case one
may still apply the mutation rules written above. Mutation at a node supporting a

pair of canceling arrows then results in adjoint fields at the mutated node.
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2.4.2 A; Revisited

To put the above theory of quiver mutation in perspective, it is useful to consider
the simplest example where the phenomenon of wall of the second kind occur. This
is the A3 theory whose representation theory was investigated in section 2.3.6. There
are in fact four distinct quivers for the Az theory related by mutation. These are

given by

©
®
©)

© ©
© ©
& ©

@

®)

Let us name these four quivers respectively as L, O, I, and C'. The representation
theory of the C' quiver was worked out in section 2.3.6. In particular we determined
that C' supports either 4 or 5 BPS states depending on moduli. The representation
theory of the other quivers is also readily calculated. One finds that L has 6 distinct
chambers, while both I and O have 4. If we dentote by 6; the phase of Z; and 6;; the
phase of Z; 4+ Z;, then the complete list of chambers is given in table 2.1.

In the global theory of A these chambers are connected together across walls of
the second kind where the quiver changes by a mutation. To understand mutations

we then represent each chamber as a node in a graph and connect those mutation
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Table 2.1: The chambers of the A; quivers before mutation equivalences are imposed.
For each quiver labelled with node charges Z;, #; denotes the argument of Z; while
0;; denotes the argument of Z; + Z;.

Chamber Phase Conditions Number of BPS States
Ly 03 > 92 > 91 3
Lo 0 smallest, and 64,03 > 015 4
L3 0 largest, and fy3 > 01, 03 4
Ly 91>912>63>‘92 5
Ls 92>91>923>93 5)
Lg 01 > 09 > 05 6
O, 0, smallest 3
Oy 0, intermediate 4
03 02 largest, and 012 < 03 or 023 < 01 5
04 62 largest, and 912 > (93 and 923 > 91 6
I 0y largest 3
I 05 intermediate 4
I 05 smallest, and 03 < 015 or 07 < o3 5
1 05 smallest, and 03 > 015 and 6; > 0,3 6
Ch not cyclically ordered e.g. 05 > 6, > 05 4
Cs cyclically ordered e.g. 61 > 05 > 05 )
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equivalent with directed arrows. For example we define the expression

Qi—Q;, (2.4.10)

to mean that mutation in chamber ¢ of quiver () on the leftmost boundary ray leads
to chamber j in the quiver @ With these conventions the complete structure of walls

of the second kind in the A3z theory is encoded in the following diagrams.

L1 IQ L5ﬁ02ﬁ[/4 L6
IlﬁOl L2<—C1<—L3 .[3 03 O4ﬁ“l4
O
(2.4.11)

Where in the above, some chambers have two arrows leaving them because one can

change the leftmost ray without crossing a wall.

2.4.3 Justification of Mutation

The previous subsection gives a straightforward recipe for producing, from a given
quiver (), all of its related duals by considering mutations at various nodes. However
we have not yet explained why this mutation rule is in fact correct. In this subsection
we fill in this gap.® Specifically our goal will be to derive the mutation rule, given
the assumption that a quiver description @ exists after the transition illustrated by

Figure 2.3.

6The arguments in this section are somewhat technical and could be skipped in a first reading.
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The basic point is that the new elementary basis particles 7;, are interpreted from
the point of view of () as certain bound states of the original basis particles ;. The
key step is to identify which bound states.

Consider again the cone geometry illustrated in Figure 2.3. A special role is played
by the two particles whose central charge rays form the boundary of the cone. Such
particles must always be included in the basis because, as their central charges are
on the boundary of the cone, there is no way to generate these states by positive
linear combinations of other rays in the cone. Thus in Figure 2.3b the two states
with central charges Z’ and —Z; must appear as nodes of the quiver @ Of these,
the latter is easy to identify as the antiparticle of the mutated node, —v;, and hence
this charge must be in the new basis. Meanwhile, in the following argument we will
prove that the left-most ray, which we frequently refer to as the extremal ray, Z’, is
always a two particle bound state which may be identified explicitly.

To begin, we consider all connected length two subquivers of () which involve the

node ;. For a given node ~; there are k; arrows pointing either from ~; to v, or from

7 to ;.

(2.4.12)

or

Let us describe the leftmost bound state supported by these two node quivers. In
the case on the right of (2.4.12), 71 appears as a sink. Then, since Z(;) has largest
phase by hypothesis, v, by itself is a destabilizing subrep of any possible bound state;

thus no bound states can form.
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On the other hand, in the case on the left of (2.4.12), where ; appears as a source,

bound states can exist. We consider a general representation of the form

B1

N

>
c» : cm (2.4.13)

To make a bound state with largest possible phase we wish to make a representa-
tion where n/m is as large as possible. However, it is not difficult to see that the ratio
n/m is bounded. Indeed, since Z(v;) has largest phase, there is a potentially desta-
bilizing subrepresentation involving only the particle 7;. Such a subrepresentation is

described by k; commutative diagrams of the form

c 2o (2.4.14)

|, ]

c—2.9¢

In other words, the potential destabilizing subrepresentation is nothing but a non-
zero vector which is simultaneously in the kernel of all of the maps B;. But then a

simple dimension count shows that

k

dimension < ker(Bj)> >n — km. (2.4.15)

j=1

And so in particular when the right-hand side of the above is positive, the subrepre-

sentation (2.4.14) exists and hence the bound state is unstable. Thus we learn that
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stability requires

< k. (2.4.16)

SR

Finally, it is not difficult to find a stable representation R which saturates the
above bound. Indeed let us take n = k; and m = 1. Then the maps B; are simply
projections to a line. The stability constraint that the B; have no common kernel
implies that, up to gauge transformation, B; can be taken to be the dual vector to the
jth basis element in the vector space attached to v;. So defined, the representation

R is stable and has no moduli. Thus it gives rise to a hypermultiplet with charge

Yi + ki (2.4.17)

This completes the required analysis of quivers with two nodes. To summarize,
in the region of parameter space where Z(-;) has largest phase, we have determined
the extremal bound state of all two-node subquivers involving ;. The charges of the

extremal bound states are:
e [f 7, 0 < 0 then the extremal bound state is simply ;.
e If 7, 0 > 0 then the extremal bound state is v; + (75 © 71)n.

Now we claim that in the quiver () with an arbitrary number of nodes, one of the
two particle bound states we have identified above will still be the left-most extremal

ray after Z(+;) exits the upper half-plane. To see this, we consider an arbitrary stable
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representation R of (). We write the charge of R as

YR =17+ Z myi + Z L (2.4.18)

~Yi0v1>0 ¥5011 <0

Let us focus in on the representation R near the node ;. There are now many
nodes connected to the node 1 by various non-zero maps. For those connections with
v; 0y1 < 0, the node ~; appears as a sink, for those with +; o y; > 0, v, appears as a
source.

Our strategy is again to test whether R is stable with respect to decays involving
the subrepresentation S with charge ;. As in the two node case, in such a situation
the connections where v, is a sink are irrelevant. On the other hand, if S is really
a subrepresentation then for each node link in the representation where node 1 is a
source, we have commutative diagrams of the form (2.4.14).

Given that Z(v;) has largest phase, stability of R means that we must obstruct
the existence of S. As in the analysis of the two node quivers we see that S will be
a subrepresentation provided that the kernels of all maps exiting the node ~; have
nonzero intersection. However, just as in (2.4.15) we can see that this leads to an a
priori bound on n, the amount of v, contained in the representation R. Explicitly we

have

dimension( ﬂ ﬁker(Bj)) >n— Z kim;. (2.4.19)

Yiom1 >0 j=1 vioy1>0

Hence to obstruct the existence of the subrepresentation S we deduce the bound

n< Y km (2.4.20)

Yi0v1>0
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But now we can directly see that R cannot be extremal. We have

¥i0y1>0 Y5071 <0
< arg Z mi(kiZy + Z;) + Z l;Z;

~i0y1>0 Y071 <0

But the final expression in (2.4.21) is manifestly contained in the positive span of the
two node extremal bound states, k;v1 + ;, that we identified in our analysis of two
node quivers. In particular, this means that R cannot be a boundary ray and hence
is not extremal.

Thus we deduce that the left-most ray after mutation is one of the two particle
bound states that we have identified in our analysis of two node quivers. Extremality
then ensures that our new basis must include this two particle bound state. But
finally we need only notice that the central charges of all the two node extremal
bound states that we have discovered are independent parameters. Indeed letting the
central charges vary in an arbitrary way, our conclusion is in fact that all the two
node bound states which we have determined must in fact be in the new basis. In
particular this means that the new basis of charges after mutation is completely fixed

and we may write the transformation as follows:

o= —m (2.4.22)
N v+ (ey)n i yoq >0
¥4 if o1 <0
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As one can easily verify, the graphical quiver mutation rules described in the
previous section are a direct consequence of computing the new BPS quiver @ from
the symplectic products of the new basis of charges {7;}. This completes our argument

justifying the mutation rules.

2.5 The Mutation Method

We saw above that at walls of the second kind, we were forced to change our
quiver description because the central charge of some state exited the upper half of
the complex half-plane, thereby turning from a particle to an antiparticle. We might
also consider what happens if we fix a modulus v € U and then consider a different
definition of the particle half-plane, H. If we imagine continuously changing our
choice from one H to another, the situation is precisely the same as above; there is
some parameter which we are tuning, and at some critical value the central charge of
some state becomes such that it switches from particle to antiparticle.

In this case, however, we are remaining at a fixed point in moduli space, and
so all of these quivers describe precisely the same physics. That is, they are dual
descriptions of the BPS spectrum. In fact, there is a whole class of quivers related to
each other by duality at each point in moduli space. We will now exploit this fact to
produce for us, in many cases, the entire spectrum for free.

First, let us reiterate that a single form of the quiver already in principle de-
termines exactly which BPS states in the theory are occupied, including their spin
and multiplicity. To find the answer, one can solve the representation theory of the

quiver with superpotential, which amounts to the linear algebra problem described in
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section 2.3.4. However, in practice this problem can become quite intractable. The
mutation method we propose gets rid of all of the unsightly work required in solving
the problem directly, and instead produces the spectrum using chains of dualities
through different quiver descriptions of the theory.

Recall our first application of quiver rep theory in section 2.3.4, where we checked
that nodes of the quiver always correspond to multiplicity one hypermultiplets. This
fact, together with an examination of which states are forced to be nodes for various
choices of half-plane H, is at the heart of what we call the mutation method. Imagine
that for our initial choice of H, with BPS basis {~;}, 71 is the node such that Z(v,) is
left-most in H.” Say we then rotate our half-plane past it, and do the corresponding
mutation to arrive at a new quiver description of the theory. This mutation includes
an action on the charges of the quiver 7;, as given in equation (3.2)-(3.3). Since this
new quiver is a description of the BPS states of the same theory, its nodes are also
multiplicity one hypermultiplets. Consequently, we have discovered some subset of
states in the 4d theory which we can say must exist. In particular, we generate some
new BPS states of the form —v1,7; 4+ (7;071)71. Of course, —v; is just the antiparticle
of the state v, so this is no additional information. However, the states ~; +m;y, are
completely new. To discover these same states from the original quiver would have
involved solving the non-trivial representation theory problem studied in the previous
subsection. We are able to avoid this headache by observing that, because of duality,
these states must be in the spectrum for consistency.

So we have found that duality will trivially produce some subset of the spectrum

"From now on we will abuse verbiage slightly and simply say that “y; is left-most.”
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as nodes of various dual quivers. But in fact it does much more: in many cases,
mutation produces the full spectrum in this way. Imagine we're in a chamber with
finitely many BPS states, and pick an arbitrary state v which is a hypermultiplet
of the 4d theory. Then we can rotate the half-plane H so that v is left-most. As
usual, since the nodes of the quiver form a positive basis for states in H, 7 must
itself be a node. Therefore, if we start with any quiver description, and start rotating
H — e H until v becomes left-most, we will go through a corresponding sequence
of mutations, after which ~ will simply be a node of the quiver.

It is then easy to see how to systematically generate the spectrum in any finite
chamber. We start with any quiver description which is valid at our given point in
moduli space, and start rotating the half-plane. Since there are only finitely many
states, we will only pass through finitely many mutations before we return to the
original half-plane H — e¢**H.® The key point is every state in the chamber is left-
most at some point during this rotation, so every state will indeed show up as a node
of one of the dual quivers. Since rotating past a state corresponds to mutating on
the node corresponding to that state, if we do the entire sequence of mutations and
record each state we've mutated on, we will have exhausted all states in the chamber.

We can save a bit of work by making use of CPT: for any state v in the spectrum,
—~ is also occupied. So instead of taking H — e*™H, we can just rotate half-way,

9

H — e™H, ending up at the quiver which describes all the antiparticles.” If we

record every state v we mutate on as H is rotated, and then add all antiparticles —,

8Recall that for a given choice of H, the quiver description is actually unique - there is a unique
positive integral basis for the lattice of occupied BPS states, up to permutation. So we will also
return to the original quiver up to permutation when H undergoes a full rotation.

9By a similar argument as above, the final quiver will have nodes —;.
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we will have precisely the spectrum of the 4d theory. Note that we must repeat this
procedure for each chamber, by doing mutations in some different order, as prescribed
by the ordering of the phases of the central charges in that region of moduli space.
As we discussed above any given quiver generally only covers some subset of moduli
space; therefore, for different chambers, it will generally be necessary to apply this
procedure to different mutation forms of the quiver.

Let’s try an example. The representation theory for the Argyres-Douglas A3
theory was worked on in detail in section 2.3.2. We will see how to reproduce it with
much less work in the present framework. We will assume that we are at a point in
moduli space covered by the cyclic three node quiver. Imagine that ~; is leftmost.
After the first mutation, the mutation that follows will depend on the ordering of
v3 and 7y, + 2. Suppose that 3 is to the left. Then the particle half-plane, H and

associated quiver before (i) and after (ii) the first mutation at ~; are

Z1+ 7,

o1



Chapter 2: Formalism of BPS Quivers

In the above diagrams, we denote the left-most particle state in each quiver, which
indicates the next node to be mutated, by drawing the corresponding node in black,
@®. Now since the ~; were in the original half-plane H to begin with, it must be that
Y1 + Y2 is to the left of —v; and —~3 in the current half-plane. This is true in general:
one never mutates on negative nodes in going through a w-rotation of H from a quiver
to its antiparticle quiver. The remaining mutations are completely fixed, and we find

(iii,iv,v)

- —3 Y1+ e 2 —3 —Y1 — )2

(i) (iv)
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So we’ve arrived at the antiparticle quiver, which at the level of quiver without charges
is the same, because the antisymmetric product is not affected by an overall sign on
charges.!® Therefore we've discovered a chamber with the states 71, 72, 3 and v; +,.
This indeed agrees with one of the chambers found in 2.3.2. All of the chambers can
similarly be mapped out, without ever doing the linear algebra analysis.

We pause here to emphasize two important points. The first is to recall that
a quiver from the mutation class generically only covers a subset of moduli space.
Therefore to map out all chambers, one must carry forth the above with the starting
quiver being any one of the quivers in the mutation class. The second point is that,
using the above method, one will not find any chamber covered by the cyclic quiver

which contains the state 71 + 75 + 73. In the analysis of section 2.3.2, it was found

10Tf you try to label nodes and keep track of them, which the drawings may subliminally suggest
you do, in general you will return to (—1)xpermutation.
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that the v; + v9 + 73 state was there in the quiver without superpotential, but killed
when the (unique) non-degenerate superpotential was included. Thus we see that
this mutation method knows about the associated non-degenerate superpotential in-
directly. This is expected, because a non-degenerate superpotential is required for
the mutation rule written above to be sensible.

There are some simple non-trivial statements which we can immediately make
based on this method. One is that any finite chamber can only contain hypermulti-
plets, with multiplicity one. The argument here is simply that any state in a finite
chamber can be made into a node of some dual quiver, and nodes, as we’ve mentioned,
can never correspond to higher spin objects or higher multiplicity hypers. Therefore,
it would be inconsistent with duality to ever have a higher spin or higher multiplicity
object in a finite chamber.

Now let’s consider infinite chambers. An additional layer of complexity, as com-
pared to the finite case, is that two dual quiver descriptions may be separated by
an infinite sequence of mutations. This is because, as we rotate between two choices
of H, we will generically have infinitely many BPS states which rotate out to the
left. Our method above depended on our ability to keep track of the sequence of
mutations which happens as H — e¢™H. Now the infinitude of states in some sense
blocks us from competing this sequence of mutations. For example, if we start with
a given quiver description, we can’t explore beyond the closest accumulation ray in
the Z-plane. Because of this difficulty, we can’t make a similarly definite statement
about the method as it applies to infinite chambers. Indeed, for certain theories, such

as N = 2* SU(2) (the mass deformed N' = 4 theory), it appears that the method
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isn’t sophisticated enough to exhaust the spectrum.!!

However, as we will see in several examples, infinite chambers may also be under-
stood by this method. Infinitude of the chamber is often due to higher spin objects,
and we can often make progress by being just a bit clever. Note that any higher spin
object must in fact be an accumulation ray of states in the central charge plane: If it
weren’t, we could rotate H so that it was left-most, and as above, in this dual quiver
description our higher spin state would be a node. Of course this is a contradiction -
nodes are always multiplicity one hypers. Higher multiplicity hypers must similarly
be accumulation rays, a fact which may be less intuitive outside of this framework.

Before concluding this discussion, we make some additional technical notes about
the actual implementation of the mutation method. As we have described it here, we
choose a point of the physical moduli space, compute central charges at that point,
and mutate on the nodes in the order given by the ordering of phases of the central
charges, as we tune H — H,. Instead, when exploring the possible BPS spectra, it is
sometimes more practical to simply mutate on the nodes in any order, and then check
two things: (1) that the ordering chosen is consistent, and (2) that the ordering chosen
is realized somewhere in physical moduli space. By consistent, we mean that there
exists some choice of central charges Z(+;) that correspond to the ordering chosen.
As it turns out, there is no need to check the first point: as long as we mutate
only on nodes whose charges are given by positive linear combinations of the original
v;, then the ordering is consistent. Of course, we expect to only mutate on positive

nodes since we are only rotating by 7 through the particle half-plane, and all particles

11 Of course we can always produce some arbitrarily large subset of states of the theory by mutating
until exhaustion (of the mutator, that is).
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should be given by positive integer linear combinations of the initial ;. Note that the
only condition for consistency is that arg Z(y; +2) lie between arg Z(v;), arg Z(72).
In fact, the mutation method protects us from making inconsistent choices. Fix
arg Z(vy1) > arg Z(2), and suppose we have already mutated past 7, but not yet ~o.
Thus —; is in the positive integral span of the mutated quiver basis. Suppose both
v1 + 72 and v to appear as nodes; this is an immediate contradiction with the fact
that the nodes form a basis, since now 75 is both a basis element and a non-trivial
linear combination of basis elements (v, +72) 4+ (—71). So only one of these can appear
as nodes and be mutated on next. If it is 77 + 72, there we are safe, and there is no
inconsistency. If it is 79, let’s mutate past so that both —v;, —v are in the positive
integral span of the mutated quiver basis; now it is impossible for v; + v2 to appear
as a node of the quiver, or else we can construct 0 as a non-trivial linear combination
of basis elements v, + vo + (—71) + (—72)-

Therefore we can apply the mutation method by simply mutating on the positive
nodes in any order we like, until we arrive at a quiver with all nodes labelled by
negative charges, indicating that we have completed the rotation H — H,. It remains
to be checked whether the ordering we have applied is actually physically realized in
moduli space. We can dispense of this final check when the physical moduli space has
complex dimension equal to the number of nodes. Then as we move in moduli space,
it is possible to tune all central charges of nodes however we wish. These theories
are known as complete theories, studied and classified in [3]. In the next chapter we
study the application of these techniques to the class of complete theories. In the

more general case of non-complete theories, existence of the desired changes in the
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physical moduli space must be checked by hand.

2.5.1 Quiver Mutation and Quantum Monodromy

The mutation method outlined in the previous section can be extended to compute
not only the BPS spectrum, but also the full Kontsevich-Soibelman (KS) quantum
monodromy operator itself [3,32,38]. In this section we briefly discuss these tech-
niques.

To implement the KS formalism one first introduces the quantum torus algebra.
Let 7 index the nodes of the quiver, as discussed in detail in previous sections, these
nodes integrally generate the lattice of BPS charges. Then the quantum torus algebra

is defined by:
e A generator Y; for each node of the quiver.

e Commutation relations between the generators.

Y}Y; = ¢ NY;Y;, (2.5.1)

where in the above, ¢ is a parameter.

Given a general charge v = > . n;y; we introduce the operator Y, as a normal ordered

product of the corresponding generators:

Y, = N[Y{" Y2 ... Y. (2.5.2)

The KS framework gives a characterization of the BPS spectrum in terms of a certain
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operator M(q) which acts on the quantum torus algebra and is constructed as a
product of certain quantum dilogarithm operators, ¥(Y,, ¢) built form the Y,. These

operators act naturally on the quantum torus algebra by conjugation

Yo, = U(Y,, )Y U (Y, q) " (2.5.3)

Meanwhile, the operation of quiver mutation studied in the previous sections also
acts on the algebra through its action on the charges at various nodes. We let
denote the operation on the charge lattice induced by quiver mutation at the k-th
node. The induced action on the generators Y; is then given in parallel to equations

(3.2)-(3.3) as

(

kal lf 'l == k
m(Ys) = VY, if v 0 > 0 (2.5.4)
\Y’Yi""("/ko’Yk)’Yk if y;oy, <0

We can combine the action of conjugation by the quantum dilogarithm with quiver

mutation to produce a quantum mutation operator which acts on the torus algebra

Qr = Ad(¥(Yr, q)) © pu. (2.5.5)

The quantum mutation operator is the natural generalization of quiver mutation
to the torus algebra. Furthermore, just as ordinary quiver mutations, like those
studied in the previous section, allow us to easily determine the BPS spectrum, the

quantum mutation operator allows us to write the full quantum monodromy operator
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M (q). Specifically, in a chamber consisting of finitely many BPS states there exists a
sequence of mutations which acts as the identity (up to a permutation of nodes) on
the quiver @)

k(s) "+ He@) k)@ = Q- (2.5.6)

A key feature of this sequence is that it is phase ordered; the state k(1) is left-most,
the state k(2) is next to left-most and so on. Associated to this sequence is an ordered

product of quantum mutation operators

Qis) - Q(2) L1 (2.5.7)

The above operator can be expressed in terms of the adjoint action of a single operator
which is none other than the desired operator M (q). As a consequence of the fact that
the original sequence of mutations in equation (2.5.6) is phase ordered, the operator
M (q) has the desired expression in terms of a phase ordered product over the BPS
states of quantum dilogarithm operators [18,39,40]. In this way we recover the full

KS monodromy operator from ordered mutation sequences.
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Complete Theories

3.1 Introduction

The goal of this chapter is to explore applications to complete theories, where
the framework described in chapter 2 is most powerful. These theories are defined
by the property that as one varies all parameters (including moduli, couplings and
bare masses), the number of independent central charges is equal to the rank of
the charge lattice. Completeness is a strong assumption about a field theory and is
typically not satisfied. However, a rich class of examples of such theories includes all
the four dimensional N' = 2 models that can be obtained by wrapping a pair of M5
branes on a punctured Riemann surface. These are the so-called rank two Gaiotto
theories [41-44]. As determined in [3], such examples have an additional remarkable
property: their BPS spectrum can be encoded by a BPS quiver [3,5,7-11,18,38]. This
dramatically simplifies the problem of finding BPS states. In place of some tedious

weak coupling physics or intractable strong coupling dynamics, the BPS spectrum is
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governed by a quantum mechanics problem encoded in this quiver.

Because of their simplicity, the class of complete theories defined by pairs of M5
branes on Riemann surfaces will be the focus of our investigation in this work. Broadly
speaking, our aim is to determine and understand the BPS quiver in such examples
and, when possible, to solve the associated quantum mechanics problem and deter-
mine the BPS spectrum. We begin in section 3.2 with a brief review of the classifi-
cation of complete theories given in [3]. The classification makes use of the notion of
finite mutation-type quivers, which we will also explore here.

To accomplish our first goal of determining the BPS quiver, in section 3.3 we re-
construct these complete theories via geometric engineering in type IIB string theory
on a local Calabi-Yau threefold. [24,45,46]. Such an approach has the advantage that
the BPS states can be explicitly identified as D3-branes wrapping special lagrangian
cycles in the Calabi-Yau. This makes the appearance of a quiver in the BPS state
counting problem manifest: the quiver simply encodes the world volume quantum
mechanics of the D3-branes. [5] However, we can go further and pass from this im-
plicit description of the quantum mechanics of D3-branes to an explicit algorithm for
constructing the BPS quiver. As we review there, the structure of the quiver is com-
pletely encoded by a certain triangulation of the Gaiotto curve, the Riemann surface
where the pair of M5 branes lives. Further, we explain how the same triangulation
allows one to compute the superpotential for the quiver, and in this way makes the
task of determining the full BPS quiver data for any given example an algorithmic
procedure.

Having accomplished our first task, in section 3.4 we focus on determining what
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structure the resulting spectra possess and on computing some explicit examples.
The problem of determining the BPS spectrum is computationally most tractable
in a chamber where there are finitely many BPS states; we restrict our attention
to this case. One of our most interesting results is a determination of an infinite
class of theories which have such a finite chamber. Indeed, as we prove in section
3.4, theories with finite chambers include all asymptotically free examples, Argyres-
Douglas models, and theories defined by punctured spheres and tori. The latter
examples are particularly interesting: They are conformal field theories where the
only breaking of scale invariance is that introduced by adding bare mass terms. In
all such cases the spectrum can be calculated explicitly and algorithmically using the
techniques developed herein.

Finally, in section 3.5 we undertake a brief investigation of complete theories with
BPS quivers which do not come from Gaiotto type constructions. In [3] such theories
were classified. They consist of eleven exceptional theories which are not of the
Riemann surface type. For all these examples except one, we determine an associated

superpotential and a finite chamber of BPS states.

3.2 Classification of Complete Theories

Perhaps one of the most unexpected applications of quiver mathematics in 4d
N = 2 gauge theory was the classification of complete theories given by Cecotti and
Vafa [3]. This classification followed through two key steps; first, the observation of a
4d/2d correspondence, which connected BPS quivers of 4d gauge theories to soliton

quivers of 2d Landau Ginzburg theories; second, the connection to finite mutation-
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type quivers.

3.2.1 4d/2d Correspondence

The easiest approach to this concept is by considering the type IIB construction
of 4d N' = 2 gauge theories. These are geometrically engineered from the space-
time point of view by compactifying 10d string theory on a 6d Calabi-Yau, which
may be defined as the vanishing locus of some polynomial W(z;) in four complex
dimensional space. On the other hand, we may consider the worldsheet definition
of perturbative strings in the context of Calabi-Yau compactification. In this case,
the 2d N = 2 linear sigma model of string theory is replaced with a supersymmetric
Landau-Ginzburg theory of four chiral superfields, whose superpotential is simply
given by the defining equation of the Calabi-Yau manifold, W.

For our purposes, the substance of the correspondence comes from identifying the
data of the 4d BPS quiver with the data of the 2d solitons. For the Landau-Ginzburg,

classical vacua occur at points with 2’ satisfying

ow
=0. 3.2.1
5 | (3:2.1)
Around such points we expand
W=Wo+ ) 2. (3.2.2)

63



Chapter 3: Complete Theories

Thus we see that the vanishing locus of W is approximated near this point as

=W, (3.2.3)

i

a 6-sphere, containing a special Lagrangian 3-sphere given by

ZRe(zi)Q = —W,, (3.2.4)

Recall that nodes of the 4d quiver correspond to some basis of non-trivial special
Lagrangian 3-cycles in the Calabi-Yau, which we can now identify with vacua of this
2d theory. Meanwhile, through a careful analysis of the 2d BPS equations, one finds
that the number of solitons (signed with a supersymmetric index) running between
any two vacua correspond precisely to the signed intersection number between the
corresponding special Lagrangian 3-cycles in the Calabi-Yau. So we find that the 4d
BPS quiver is neatly encoded in the soliton data of the associated 2d theory. It is
important to note that the 4d/2d correspondence is a broader statement than this.
In particular, it is expected that there should be a matching of all 4d and 2d N = 2
theories, not just those engineered via string theory. Furthermore, the quiver-soliton
equivalence we’ve found here is only a manifestation of the correspondence. It is
believed that such a matching persists even, say, for the class of 4d theories that do

not admit a BPS quiver.
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3.2.2 Classification of 2d N = 2 theories

The soliton structure of 2d theories has been studied in-depth in [14], with many
powerful results discussed there. The primary conclusion of that study was a classifi-
cation of possible 2d soliton structures. It was found that the matrix of vacua-soliton
adjacency (that is, the matrix consisting of the number of solitons between any pair
of vacua) is constrained to be a solution to a certain Diophantine equation. This
classification program was also explored in [14]. Here we only need to reference a
single result: for a system with two vacua, there can be either 0, 1, or 2 solitons
between the two vacua, but no more.

This conclusion holds very interesting consequences for the structure of BPS quiv-
ers. Of course, it trivially rules out almost all two-node quivers as possible BPS quiv-
ers. However, by restricting our attention to the subclass of complete theories, we can
accomplish much more. A theory is denoted complete if it has sufficient parameters
(masses, couplings, and moduli) to tune each primitive BPS charge independently.
In other words, it must have as many parameters as dimensions of its charge lat-
tice. Consider the example of a gauge theory with matter. The charge lattice has
dimension 2r + f where r is the rank of the gauge group (each gauge charge has an
associated electric and magnetic charge), and f is the rank of the flavor group. The
tunable parameters are the f masses of the matter fields, the n coupling constants
of the gauge theory (where n < r is the number of simple factors in the total gauge
group), and the r Coulomb branch parameters. Therefore, the only gauge theories
that are complete are those with n = r, that is SU(2)" gauge theories.

The condition of completeness allows us to manipulate these theories in very
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useful ways. We can tune any one BPS charge without affecting the others at all.
In fact, we can tune any particular BPS mass to infinity, and thereby decouple it
completely. In the BPS quiver, this means we can select any single node and delete
it. We can also tune the phases of any particular node, and thus induce any specific
mutation we choose. It is important to note that these possibilities are unique to
complete theories. In a general, non-complete theory, as we try to tune BPS charges,
we may find that the other charges move in some compensating way, preventing some

particular mutation or decoupling. In fact, this is known to happen in many cases.

3.2.3 Quivers of Finite Mutation-Type

Armed with these tools, we can identify some features that quivers of complete
theories must exhibit. Such a quiver must have no mutation form that contains a
triple (or higher) arrow. If such a mutation form existed, we could immediately
decouple all nodes except the two adjacent to the triple arrow, and then by the 4d/2d
correspondence, we have arrived at a forbidden soliton structure for the 2d theory.
Actually this feature implies something much more interesting: all quivers of complete
theories much have only finitely many distinct quivers in their associated mutation
class. This follows trivially from the previous observation; a quiver has a fixed set of
nodes, and if the number of arrows between any two nodes is constrained to be less
than k, then there are only finitely many possible combinations. We say that such
quivers are finite mutation-type.

Finite mutation-type quivers were fully classified by mathematicians, [47]. The

classification consists of the following:

66



Chapter 3: Complete Theories

e Quivers with at most two nodes;

e Quivers associated to ideal triangulations of surfaces with interior punctures,

boundaries, and marked points on the boundarys;
e Quivers mutation equivalent to the nine E-type Dynkin diagrams

— finite: EG,E7,E8,
— alffine: EG,E7,E8,

— elliptic: Eﬁ,E7,E8;
e Two Derksen-Owen mutation classes Xg, X7, [48].

The elliptical E-type quivers and Derksen-Owen quivers are shown in Figure 3.15.
For the study of 4d BPS states, we simply discard the quivers of the first type
with more than three arrows. The second set of quivers will be the main focus of the
rest of this chapter; we will proceed studying the physics of the relevant theories, and
discover the associated quivers along the way. The remaining 11 exceptional cases will
be discussed in 3.5, without delving into the details of the related physical theories.

The physics of those theories is explored further in ?77.

3.3 BPS Quivers of Complete Theories

In this section we focus on determining the BPS quiver for those complete theories

that coincide with the rank two Gaiotto theories.® By construction, all such theories

'In fact, among such theories, BPS quivers exist only for theories given by a Riemann surface
with some punctures. The case with no punctures describes an exactly conformal theory and its
BPS states do not admit a simple description.
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are intrinsically determined by a Riemann surface C decorated by a number of marked
points defined by the punctures. By the conclusion of this analysis, we will see that
the BPS quiver, together with its superpotential, is encoded combinatorially in a

triangulation of this decorated surface.

3.3.1 BPS States from Geometric Engineering

We will construct these models using geometric engineering [24,45,46,49] in type
IIB string theory on a non-compact Calaibi-Yau threefold. The threefolds in question
can be built up starting from a Riemann surface C. We start with a four complex-

dimensional space described by a rank three complex vector bundle over C. Explicitly
KC @D Kc D KC — C, (331)

where in the above K¢ denotes the canonical line bundle of holomorphic one-forms
on the Riemann surface C. In general the surface C is punctured at a finite number
of points p; € C and thus is non-compact.

Next we select a particular holomorphic quadratic differential ¢ on C. As a
quadratic differential, ¢ transforms under holomorphic changes of coordinates on

C as follows
d 2
o) = o) () (33.2)

To completely specify the problem, we must also fix the limiting behavior of ¢ at
the ideal boundaries of C, namely the punctures p;. Near each such puncture the

quadratic differential is permitted to have a pole of finite order. We fix the non-
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normalizable behavior of ¢ as a boundary condition and therefore impose that near

Di

1, .
() ~ o dx* + less singular terms. (3.3.3)

The integer k; > 0 associated to each puncture is invariant under changes of coordi-
nates. It is an important aspect of the construction, which we return to in section
3.3.3.2

Given this data our Calabi-Yau threefold is then defined by introducing local
coordinates (u,v,y) on the fiber of the vector bundle (3.3.1) and solving the following
equation

uv = y* — o(x). (3.3.4)

The associated holomorphic three-from (2 is given by
d
Q=" A dy Ada. (3.3.5)
u

It is then known that finite mass strings probing the singularity of this geometry
engineer a 4d field theory with N' = 2 supersymmetry. The Seiberg-Witten curve X
of such a theory is given by a double cover of C, and we obtain the Seiberg-Witten

differential by integrating ) over a non-trivial 2-cycle in the fiber.

S {@wylf=o@}h A= / 0= e 339

By varying the quadratic differential we obtain a family of Seiberg-Witten curves,

2The reason for the exclusion of the case k; = —1 is that such fluctuations in ¢ are normalizable,
and hence are not fixed as part of the boundary conditions.
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and in this way the Coulomb branch U of the theory is naturally identified with the
space of quadratic differentials obeying the boundary conditions (3.3.3).

It is also known that many of the simplest interesting gauge theories can be
geometrically engineered in this fashion. For example taking C to be a sphere with
two punctures p; both with k; = 1 constructs the pure SU(2) theory. In general the
class of field theories constructed in this way yields asymptotically free or conformal
theories with gauge groups given by a product of SU(2)’s, together with various
scaling and decoupling limits of such field theories. They are exactly the type 11B
version of the rank two Gaiotto theories constructed using M-theory in [41], and, as
we have mentioned above, in that context C is referred to as the Gaiotto curve.

For our present purposes, the primary advantage of building an N’ = 2 quantum
field theory in string theory is that the set of supersymmetric objects in string theory,
the BPS branes, is known. In our case we seek a brane whose physical interpretation
in four-dimensions is a charged supersymmetric particle of finite mass. Thus the
worldvolume of the brane should be an extended timelike worldline in Minkowski
space times a volume minimizing compact cycle in the Calabi-Yau (3.3.4). Since
type IIB has only odd dimensional branes, the only possibility is that BPS states are
described geometrically by Dirichlet three-branes wrapping special lagrangian three-
cycles.

Thus we are reduced to a classical, if difficult, geometric problem of counting
special lagrangians [25,50]. These are compact lagrangian three-manifolds N on

which the holomorphic three-form has a constant phase

Qly = €7)Q). (3.3.7)
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The central charge of such a brane is given by

Z,(N) = /N Q, (3.3.8)

and the phase # in the above is identified with the argument of the central charge of
the 4d particle defined by N

0 = arg Z(N). (3.3.9)

Now one of the key observations of [24] is that, in the geometries described by
(3.3.4), the counting of special lagragians can in fact be phrased entirely as a problem
in C. To exhibit this feature we use the fact that all of our special lagrangians are
embedded inside the vector bundle (3.3.1) and hence admit a natural projection to
C. The image of this projection is a certain one cycle 1 in C whose topology depends
on the topology of N. Each special lagrangian also wraps a non-trivial S? in the
fiber, which shrinks to zero at the zeros of ¢. The possibilities in our examples are as

follows, and are illustrated in Figure 3.1:

e N = S3. Such special-lagrangians are discrete. Their quantization yields hyper-
multiplets in 4d. When this three-sphere is projected to C we obtain an interval

7 stretching between two zeros of the quadratic differential ¢.

e N = S x S2 This class of special-lagrangians always come in one-parameter
families. Their quantization yields a vector multiplet in 4d. The projection of

any such S! x S? to C is a closed loop 7.

The shape of 7 in C is constrained by the special Lagrangian condition (3.3.7) on

N. Explicitly if we let ¢ € R parametrize n then the condition of constant phase €2
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(a) 53 (b) St x §2

Figure 3.1: Special-Lagrangian geometry in the Calabi-Yau. The blue denotes a
patch of the surface C. The red trajectory denotes the cycle n and the S? fibers are
indicated schematically above C. In (a) the topology of the cycle n is an interval
which terminates at two zeros of ¢. The S? fibers shrink at these end points yielding
a total space of an S3. In (b), the cycle  has the topology of a circle, and the total
space is S x S2. Such special-lagrangians always come in one parameter families
indicated in orange.

reduces to

Vo, = e?dt. (3.3.10)

The ambiguity in choosing the square root appearing in the above reflects the physical
fact that for every BPS particle there is also an associated BPS antiparticle of opposite
charge. Choosing the opposite sign for the square root then sends 8 — 6 + 7, i.e. it
replaces a BPS particle by its antiparticle.

We have now arrived at an elegant statement of the problem of calculating BPS
states in this class of quantum field theories. Our goal, however, is not directly to
use this structure to compute the BPS states, but rather to extract the BPS quiver
of this theory. In the following we will explain a natural way to extract such a quiver

from a global analysis of the flow equations (3.3.10).
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3.3.2 BPS States from M-theory

The above conclusions regarding BPS states for complete theories can be obtained
by an alternative means, beginning instead with the M5 brane world-volume theory.
We consider wrapping stacks of two M5 branes on a Riemann surface to produce an
N = 2 4d theory in the IR, following [41,42]. We briefly review the salient features
of this Mb5-brane theory, and the structure of BPS states from this perspective.

We begin with the same Riemann surface C along with its canonical line bundle
K. We also take the same quadratic differential ¢, and consider a stack of two parallel
M5 branes on the surface C, intersecting at zeroes of the quadratic differential ¢. More
precisely, we take the two M5 branes to be embedded in the total space of K¢, at the
loci given by

y’ = (). (3.3.11)

This equation describes a surface C’ given as a double-cover of C. Over a generic point
x € C, there are positive and negative roots of this equation, giving the position of
the two M5 branes, while at zeros of ¢, the two roots degenerate and the two branes
intersect.

A standard twisting procedure ensures that we preserve 8 supersymmetries from
the 6d (2,0) supersymmetric theory of the M5 branes, yielding a 4d N' = 2 gauge
theory as desired. Further details of the construction, and its correspondence to type
IT setups are discussed in [42]. For our purposes, we would like to understand the
BPS objects in this M5 brane theory.

The only natural candidates in this case are M2 branes ending on the wrapped

stack of M5 branes. The M2 branes are discs with boundary on C’, and volume-
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minimizing within homology. Again as in Figure 3.1, there are only two possible
forms for the M2 projected to C : a segment interpolating between two zeros of ¢, or
a loop encircling a singularity in ¢. The resulting M2 brane geometries are that of a
disc and a cylinder. The condition of volume-minimization allows us to restrict our
attention to M2 branes that fill the y direction perpendicular to C; thus, the brane is

fully specified by some trajectory n on C. Computing the volume, we find

vzéuwmzﬂpwﬁmzﬂmm (3.3.12)

However fn A is a homological invariant, with

AASLML (3.3.13)

Thus, the volume minimization condition is precisely equivalent to (3.3.10),

Ay = Vo, = evdt, (3.3.14)

which requires that A have constant phase along 1. We have reduced the question of
BPS states in the M5 brane construction of our 4d theories to the same mathematical

problem found in our type IIB setup.

3.3.3 Triangulations from Special-Lagrangian Flows

Our goal in this section will be to encode certain topological and combinatorial

data about the special lagrangian flow in terms of a triangulation of the surface C. Our
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basic strategy will be to analyze the local and asymptotic properties of the flow on C
defined by (3.3.10). This is a problem which is well-studied in mathematics [51] and
has recieved much attention in the present physical context [25,26,52-54]. We will
confine ourselves to a brief self-contained review. Since a quiver is constructed from
hypermultiplets, our focus will be on the trajectories of this flow which interpolate
between the zeros of ¢. Thus a special role will be played by these trajectories.

To begin, we investigate the local nature of the flow near each zero. We assume
that this is a simple zero so that, in some holomorphic coordinate w(z) centered at
the zero of ¢, the flow equation (3.3.10) takes the local form

2/3
Vwdw = e?dt = w(t) = <gewt + w3/2> . (3.3.15)

Because of the three roots of the right-hand-side of the above, each zero has three
trajectories emanating from it. These trajectories make angles of 27/3 with each
other and separate a local neighborhood centered on them into three distinct families
of flow lines, as illustrated in Figure 3.2.

Aside from the zeros, which can serve as endpoints for BPS trajectories, the other
distinguished points for the flow are the punctures of C. Since the punctures form ideal
boundaries of C, they should be thought of as lying at strictly infinite distance. Thus
the behavior of the flow equation near these points governs the asymptotic properties
of trajectories at very late and early times. In a local neighborhood centered on the
puncture p; € C, the flow equation is asymptotically given by

dw

w1+ki/2

= edt. (3.3.16)
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—

——

Figure 3.2: The local structure of the flow near a zero of ¢ shown as a black dot at
the center of the diagram. The red trajectories are the three flow lines which pass
through the zero. The black trajectories denote other generic flow lines.

We split our analysis of the solutions into two cases depending on the order k; 4+ 2 of

the pole in ¢ at the puncture:

e Reqular Punctures: k; =0

The regular punctures in C are naturally associated to flavor symmetries and
hence mass parameters of the engineered field theory [41]. In our analysis this
manifests itself in the following way: the residue of the pole in the flow equation
is a coordinate invariant complex parameter that is part of the boundary data
of the geometry. Restoring this parameter to the asymptotic flow equation we
then have.

dw

m— = edt. (3.3.17)
w

The parameter m is the residue of a first order pole in the Seiberg-Witten

differential and can be interpreted as a bare mass parameter.

We deduce the behavior of the late time trajectories by integrating (3.3.17).
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The solution with initial condition w, takes the form
w(t) = wyexp (m™'e”t). (3.3.18)

Assume that the BPS angle § has been chosen so that m~'e is not purely
imaginary. Then the solution (3.3.18) is a logarithmic spiral. Asymptotically

all trajectories spiral in towards the puncture as illustrated in Figure 3.3.

/

/

Figure 3.3: The local flow near a regular puncture indicated in red. The flow lines
are spirals terminating at the puncture.

o [rreqular Punctures: k; > 0

In the case of irregular punctures, we find power law behavior for the asymptotic

trajectories upon integrating (3.3.16):

—2¢0 1 M
w(t) = ( - t+ ki/2> . (3.3.19)
7 Wo

A key feature of this solution is that it exhibits Stokes phenomena. For large |¢|

the trajectories converge to the origin w = 0 along k; distinct trajectories. We
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account for this behavior of the flows by cutting out a small disk in the surface C
centered on the origin in the w plane. In terms of the metric structure of C this
hole is to be considered of strictly infinitesimal size. The modified surface now
has a new ideal boundary S, and the k; limiting rays of the flows are replaced
by k; marked points on this boundary. This procedure is illustrated in Figure

3.4.

(a) (b)

Figure 3.4: Asymptotic flows near an irregular puncture with £ = 1. In (a) the
flow lines converge along a single ray, the rightward horizontal direction. In (b), the
surface C is modified by cutting out the small gray checkered region. This surface now
has a boundary, depicted by the black curve. On the modified surface with boundary,
generic flows terminate at a point, indicated in red, on the boundary.

For each puncture p; with k; > 0 we perform the operation described above.
At the conclusion of this procedure our modified surface C now has an ideal
boundary component S} for each irregular puncture p; and further each S} is
decorated with k; marked points. From now on, when discussing flows with ir-
regular punctures, the symbol C shall mean this modified surface, equipped with

boundary components containing marked points for each irregular puncture.

Armed with the above, it is easy to deduce the global structure of the flow diagram
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on C, that is, the global picture of the solutions to

Vo = e’dt. (3.3.20)

We first choose the BPS angle 6 generically. This means that there are no BPS
trajectories in the flow, and hence no finite length trajectories connecting zeros of ¢

as well as no closed circular trajectories. There are then two types of flow lines:

o Separating Trajectories

These are flow lines which have one endpoint at a zero of ¢ and one endpoint at a
regular puncture or marked point on the boundary of C. Separating trajectories

are discrete and finite in number.

o Generic Trajectories

These are flow lines which have both endpoints at either regular punctures
or marked points on the boundary. Generic trajectories always come in one

parameter families.

A useful way to encode the topological structure of these flow diagrams is the
following. We consider our surface C with boundary. It has marked points in the
interior for each regular puncture, and marked points on the boundary given by the
order of the pole of ¢ at the associated irregular puncture. Then, for each one param-
eter family of generic trajectories, we choose exactly one representative trajectory and
draw an arc on C connecting the indicated marked points. An example is indicated in
Figure 3.5b. This procedure produces an ideal triangulation of C where each diagonal

of the triangulation terminates at two marked points. Further, by construction, each
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(a) Flow Diagram (b) Triangulation

Figure 3.5: An example flow diagram and its associated triangulation. In (a) we have
a global flow diagram on a disc with four marked points on the boundary. The red
dots are the zeros of ¢ and the associated separating trajectories are the red lines.
The gray cells denote one parameter families of generic flows. All flow lines end on
the four marked blue dots on the boundary. In (b) we have extracted the associated
triangulation. Fach black line is a generic flow line selected from each one parameter
family. The resulting triangles each contain one zero of ¢ by construction.

triangle contains exactly one zero of ¢. Generally it is possible for the flow to pro-
duce an ideal triangulation with self-folded triangles; these result in some technical
complications which we address in appendix 3.3.6.

In summary, for a fixed quadratic differential ¢ and generic angle 6, we have

produced an ideal triangulation of C by studying trajectories of

Vo =edt. (3.3.21)

The combinatorial structure of this triangulation encodes properties of the flow, and
we will see in the remainder of this section how to directly extract a BPS quiver
and superpotential from this triangulation. Throughout the discussion it will be
important to inquire how the triangulation varies as the data (¢,0) varies. The

quadratic differential ¢ labels a point in the Coulomb branch of the gauge theories
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in question, and thus it is natural to fix this data and study the BPS spectrum at
fixed point in moduli space. By contrast, the angle 8 is completely arbitrary. Any
generic angle 6 can be used, and different angles will produce distinct triangulations.
Demanding that ultimately our results are independent of 6 will give a powerful

constraint in the upcoming analysis.

3.3.4 BPS Quivers from Ideal Triangulations

We have now arrived at the structure of an ideal triangulation on the surface
C. From this data there is a simple algorithmic way to extract a quiver [28]. As a
preliminary definition, we refer to an edge in the triangulation as a diagonal, 9, if the

edge does not lie on a boundary of C. Then proceed as follows:
e For each diagonal 0 in the triangulation, draw exactly one node of the quiver.

e For each pair of diagonals 1, d5 find all triangles for which the specified diagonals
are both edges. For each such triangle, draw one arrow connecting the nodes
defined by d; and 5. Determine the direction of the arrow by looking at the
triangle shared by §; and d,. If §; immediately precedes ds going counter-

clockwise around the triangle, the arrow points from §; to ds.

In [3] many aspects of these quivers were explored and it was argued that these are
exactly the BPS quivers of the associated quantum field theories. We now provide a
full explanation of this proposal.

We first address the identification of the diagonals of the triangulation with the

nodes of the quiver. As we have previously explained, our triangulation is constructed
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at a fixed value of the central charge angle 6 appearing in (3.3.10). This angle has
been chosen such that no BPS states have a central charge occupying this angle. Now
let us imagine rotating 6. Eventually we will reach a critical value 6. where a BPS
hypermultiplet occurs and the structure of the flow lines will jump discontinuously.
The key observation is that each triangle in the triangulation contains exactly one zero
of ¢. Then, since BPS hypermultiplets are trajectories which connect zeros of ¢, a BPS
hypermultiplet trajectory must cross some number of diagonals in the triangulation
to traverse from one zero to another. A simple example of this is illustrated in Figure
3.6(Db).

What the above example illustrates is that each diagonal § labels an obvious
candidate BPS hypermultiplet trajectory, connecting the two zeros in the two triangles
which have ¢ as a common boundary. Further any hypermultiplet trajectory which
crosses multiple diagonals can be viewed homologically as a sum of the elementary
BPS trajectories which cross only one diagonal. Therefore, diagonals should be nodes
of the BPS quiver.

Next let us justify why arrows in the quiver should be described by triangles in
the triangulation. Each elementary hypermultiplet, corresponding to a diagonal in
the triangulation, lifts to a three-sphere in the Calabi-Yau. Since these three spheres
form nodes of the quiver, the lattice generated by their homology classes is naturally
identified with the charge lattice I' of the theory. Further the symplectic pairing given
by the electric magnetic inner-product is precisely the intersection pairing on these
homology classes. Thus for each intersection point of the three-spheres, we should

put an arrow connecting the associated nodes. On the other hand it is clear that
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this intersection number can be calculated by projecting the three-spheres to C and
then simply counting the signed number of endpoints that the associated trajectories
share. Each shared endpoint is naturally associated to the triangle containing it; so
the triangles correspond to arrows between nodes.

The result of this section is that, given a Riemann surface C defining a 4d, N' = 2
quantum field theory, we have produced a natural candidate BPS quiver. It is quite
interesting to note that as a result of recent mathematical work [28], these quivers
are all of finite mutation type. In other words, repeated mutations of vertices produce
only a finite number of distinct quiver topologies. In fact this property is equivalent
to the more physically understandable property of completeness [3]. The set of finite
mutation type quivers (or equivalently, the set of complete theories) consists precisely
of the quivers associated to triangulated surfaces, as described above, along with a
finite number of exceptional cases, discussed in section 3.5 [47].

We can give one strong consistency check on our proposal for the BPS quivers as
follows. Observe that, to a given Riemann surface theory C we have in fact produced
not one quiver but many. Indeed our quivers are constructed from the triangulation
produced from a fixed value 6 of the BPS angle where there are no BPS states. So

in fact our assignment is

(C,0) — Qg = BPS Quiver. (3.3.22)

As the central charge phase 6 varies over a small region, the flow evolves continuously
and the incidence data of the triangulation encoded in @)y remains fixed. However, as

0 varies past a BPS state, the flow lines and triangulation will jump discontinuously, as
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illustrated in the basic example of Figure 3.6. This results in a new quiver (Qy/, distinct
from Qy. Both of these quivers (Qy and Yy are natural candidates for the BPS quiver of
theory defined by C, and hence we should expect that the quantum mechanics theories
they define are equivalent. In other words consistency of our proposal demands that
all quivers of the from )y for any given 6 are mutation equivalent. Happily, a simple
theorem [28] shows that this is indeed the case: the set of quivers obtained from

triangulations of a given surface precisely forms a mutation class of quivers.

(a) 0 < ecritical (b) BPS State 0 = ecritical (C) 0> ecritical

Figure 3.6: Evolution of the special lagrangian flows with the BPS angle 6. In each
picture the black dots indicate the branch points of the cover where flows emerge.
Red trajectories are flows that emerge from the branch points and terminate on the
boundary at |z| = oo, while gray trajectories indicate generic flow lines. The green
trajectory denotes a representative of a generic flow line which can serve as an edge
in the triangulation. In (b) the BPS angle of the flow aligns with the phase of the
central charge and a new kind of trajectory, shown in blue, traverses between branch
points. Afterwards in (c) the green line has flipped.

Actually, we can say more. If we tune 6 from 0 to 27, we will see that every BPS
hypermultiplet corresponds to a jump of the triangulation, and gives a new choice
of quiver. This approach to computing BPS spectra was studied in [26]. As was
described there, the discontinuous jump of triangulation, or flip, at each BPS state

v is given by simply removing the diagonal crossed by =, and replacing it with the
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unique other diagonal that gives an ideal triangulation.> As argued in [28], at the
level of the quiver, this flip corresponds precisely to a mutation at the associated node.
Thus, if we forget about the surface C and triangulation, and instead focus on the
quiver itself, we see that we are simply applying the mutation method to compute 11I-
stable representations! This seems to be a deep insight into how the naively unrelated
problems of finding special lagrangians and computing Il-stable quiver representations
are in fact equivalent. Recall, however, that the mutation method made no reference
to completeness of the theory. While the triangulations and flips exist for some set
of complete theories, the mutation method is more general, and can be applied any
BPS quiver. In [55] we explored applications of the mutation method to non-complete
theories.

In later sections of this paper we will see further evidence for this proposal by
recovering the BPS quivers of well-known quantum field theories. However, before
reaching this point let us illustrate one important subtlety which we have glossed
over in the above. Consider the possible structure in an ideal triangulation of some
Riemann surface C, as illustrated in Figure 3.7. According to the rules of this section,
for each bivalent puncture in the triangulation we will obtain, as indicated, a cycle of
length two in the quiver. These are fields in the quiver theory which could, in principle,
admit a gauge invariant mass term in the superpotential. As mentioned in section
2.3.4, the quantum mechanics described by the quiver will be rather complicated, if

no such mass term is generated. In the next section we will argue that the natural

3To clarify, once we remove the diagonal of the appropriate BPS state, we are left with some
quadrilateral in our ‘triangulation.” To produce a true triangulation, we may add one of the two
possible diagonals that would cut the quadrilateral into a triangle. A flip is simply given by taking
the choice that differs from the original triangulation.
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Figure 3.7: A bivalent puncture in the triangulation gives rise to a two-cycle in Q.
The blue denotes a patch of C. Red lines indicate diagonals and marked points are
punctures. The nodes of the quiver for the two indicated diagonals are drawn. The
bivalent puncture implies that there is a two cycle in the quiver indicated by the black
arrows.

potential for these theories does indeed generate all possible gauge invariant mass

terms and therefore simplifies the resulting quivers considerably.

3.3.5 The Superpotential

The previous subsection identified a quiver associated to any ideal triangulation,
and further suggested that this quiver is naturally the BPS quiver of the associated
gauge theory. In this subsection we will complete this picture by describing a natural
superpotential for such a quiver, recently developed in the mathematics literature
[56-58]. We will then argue on general grounds, essentially as a consequence of
completeness, that this superpotential yields the necessary F-flatness conditions for
the quiver quantum mechanics theory.

We will build up the superpotential starting from the elementary case of an acyclic

quiver. Since such a quiver has no cycles, there are simply no gauge invariant terms
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to be written and W = 0.

Next we consider an arbitrary quiver () which, by a sequence of mutations, is
connected to an acyclic quiver. Since () is the quiver of a complete theory, all of its
central charges are free parameters that can be varied arbitrarily as one scans over
parameter space. It follows that the sequence of mutations connecting () to its dual
acyclic form is in fact realizable by physical variation of parameters. Hence, following
the mutation rules of section 2.4, the superpotential for the quiver ) is completely
fixed by the acyclic quiver with trivial potential.

The argument of the previous paragraph shows that the W assigned to any such
quiver () is completely fixed, however complicated the sequence of mutations leading
from the acyclic form to ) may be. Surprisingly, there exists an elementary descrip-
tion of this superpotential in terms of the local incidence data of the triangulation of
C which gives rise to . This description has been developed in [56]. For any quiver
() mutation equivalent to an acyclic quiver, the superpotential ¥V is computed as

follows:

e Let T denote a triangle in C. We say T is internal if all of its edges are formed
by diagonals, that is none of the sides of T" are boundary edges in C. Then
each edge of T represents a node of the quiver and the presence of the internal
triangle T implies that these nodes are connected in the quiver in the shape of
a three-cycle. For each such triangle T" we add the associated three-cycle to W.

This situation is illustrated in Figure 3.8a.

e Next let p be an internal, regular puncture in C. Then some number n of edges

in the triangulation end at p. Further since p is an internal puncture which
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does not lie on the boundary of C it follows that each such edge terminating at
p is in fact a diagonal and hence a node of the quiver. The n distinct nodes are
connected in an n-cycle in the quiver and we add this cycle to WW. This situation

is illustrated in Figure 3.8b.

@
Bi; B3B3 c W Bi;By3...Byitc W
(a) Internal Triangle (b) Internal Puncture

Figure 3.8: The two distinct structures in the triangulation which contribute to the
potential. The blue region denotes a patch of C, the red edges are diagonals in the
triangulation. These correspond to nodes of the quiver which we have indicated on the
triangulation. The black arrows connecting the nodes are the arrows in the quiver
induced by the shared triangles shown in the diagram. In (a) an internal triangle
gives rise to a three-cycle in W in (b) an internal puncture of valence k gives rise to
a k-cycle in W.

For quivers with multiple arrows between two given nodes, it is important to keep
track of which triangle the arrow arises from when writing down the superpotential.
The superpotential must be written with a fixed, consistent assignment of arrows to
triangles; inconsistent choices are not equivalent, and will generally give the wrong
answer.

The observation that the superpotential can be determined in such an elementary

way from the incidence data of the triangulation is striking. It strongly suggests that
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W is a local object that can be determined patch by patch on C. Granting for the
moment that this is so allows us to immediately generalize to any theory determined
by an arbitrary Riemann surface C. We can simply extend the simple rules given
above to all quivers.

One important consequence of this extension is that the it automatically ensures
that all of our superpotentials will be compatible with mutation. That is, just as in
equation (3.3.22), we have now constructed a map from a Riemann surface C and an
angle 0 to a quiver () and superpotential WW. However the angle 6 is arbitrary. As 0
rotates, in general the triangulation 7 of C will undergo a series of flips and arrive
at a new triangulation 7. From this new triangulation we can determine the quiver
(@, VNV) On the other hand we have previously noted that flips in the triangulation
are the geometric manifestation of quiver mutation. Thus we have two independent

ways of determining the dual quiver and superpotential:
e Compute (CNQ, W) from (Q, W) by performing a sequence of mutations.
e Compute (@, W) from the new triangulation T

A necessary condition for a consistent superpotential is that the two computations
yield the same answer. In [56] it was proved that this is the case.

The above argument shows that our proposal for the superpotential is consistent
with the quiver dualities described by mutation. However, it depends fundamentally
on our locality hypothesis for the superpotential. As we will now argue, using the
completeness property of the field theories in question, we can give a strong consis-

tency check on this assumption.
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All of our arguments thus far involve constraints on WV that arise from mutation.
As we mentioned in section 2.4 mutations may be forced when, as we move around
in moduli space, the central charges rotate out of the chosen half-plane. Most im-
portantly, all these rotations are physically realized, since in a complete theory all
central charges are free parameters.

Of course the central charges of the theory come not just with phases but also
with magnitudes. In a complete theory we are also free to adjust these magnitudes
arbitrarily. Let us then consider the limit in parameter space where the magnitude
of the central charge associated to a node § becomes parametrically large compared
to all other central charges

1Z(8)] — oo (3.3.23)

In this limit, the BPS inequality implies that all particles carrying the charge  become
enormously massive and decouple from the rest of the spectrum. At the level of the
quiver ) this decoupling operation is described as follows: simply delete from the
quiver the node ¢ and all arrows which start or end at 6. This produces a new quiver
@ with one node fewer than (). The superpotential for the resulting quiver theory @
is then determined simply by setting to zero all fields transforming under the gauge
group indicated by ¢.

Following our interpretation of nodes of the quiver as diagonals in a triangulation,
it is possible to describe this decoupling operation at the level of the Riemann surface
C itself. Consider the diagram of Figure 3.9a which depicts the local region in C
containing a diagonal § traversing between two punctures or marked points p;. The

decoupling operation to destroy the node ¢§ is then realized by excising a small disc
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containing ¢ as a diameter and no other diagonals. The result of this procedure is

shown in Figure 3.9b. It is clear from our construction of BPS quivers from triangu-

D1 D2

(a) C pre-surgery (b) 6 Decoupled

Figure 3.9: The node decoupling surgery for a typical diagonal ¢. In (a) we see a
patch of C focused on the region involving a typical diagonal §. In (b) ¢ has decoupled
leaving a new a new Riemann surface C which differs from C by the addition of a new
boundary component which encloses the checkered region and has two marked points

Di-
lations that this decoupling operation produces a new surface C. , whose BPS quiver
is exactly @, the quiver with the node § decoupled. We may therefore determine the
superpotential W for @ by applying the incidence rules described in this section to
the new surface C.

In summary, we see that there are two distinct ways for computing the superpo-

tential for the quiver @:

e Determine from C the superpotential for the quiver ). Then reduce to CNQ by

deleting the node §.

e Determine directly from the surface C the superpotential for the quiver @
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Consistency of our proposal demands that the two methods give rise to the same
superpotential. It is easy to see directly that this is the case. Indeed the effect of
the surgery operation illustrated in Figure 3.9 is to change the two triangles T; to
external ones, and to change the points p; to marked points on the boundary. Clearly
this eliminates from the superpotential exactly those terms in which fields charged
under the node ¢ appear.

By completeness, the decoupling limit argument can be applied to an arbitrary
node in a BPS quiver and yields a strong consistency check on the locality hypothesis
and thus our proposal for the superpotential.

Let us remark that the superpotential we have constructed naturally resolves the
headache proposed at the end of section 3.3.4. By construction, every two-cycle in a
quiver arises from a bivalent puncture of the corresponding triangulation. For each
bivalent puncture there is now a quadratic term in the superpotential that lifts the
fields involved in the associated two-cycle. Thus we may integrate out and cancel all
possible two-cycles to produce a two-acyclic quiver.

Finally, we point out that it would be interesting to calculate this superpotential
directly from a string theory construction. While several plausibility and consistency

arguments have been given, a direct calculation may certainly lead to further insight.

3.3.6 Self-Folded Triangles

In our discussion above we have left out a minor technicality involving self-folded

triangles. A self-folded triangle is one in which two sides become identified, resulting
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in the degenerate structure seen below.

ext

int (3.3.24)

We will call the edge labeled ezt exterior, and the edge labeled int interior. The frame-
work of triangulations above requires allowance of self-folded triangles. In particular,
some triangulations obtained from special lagrangian flows will require self-folded
triangles, and similarly, some flips will force self-folded triangles to occur.

To properly include these structures, we must slightly augment the rules for ob-
taining a quiver () and superpotential W from a triangulation 7. First, it is useful
to note that self-folded triangles, while necessary for the formalism, are a bit of an
extraneous complication. It is a theorem from [28] that every surface admits a tri-
angulation without self-folded triangles. Thus, having carefully understood the map
from triangulations and quivers, which maps flips to mutations, the rules for self-
folded triangles can be derived from the rules given in the body of the paper. We
would simply apply flips of the triangulation to remove all self-folded triangles, use
the given rules to obtain ) and W, and then invert the flips with the appropriate
inverse mutations on the quiver. For completeness, we give the relevant rules here.

To obtain the quiver (), we apply the usual rules as given in section 3.3.4 to
all diagonals, except for interior edges of self-folded triangles. For the interior edge

of each self-folded triangle, we draw a node corresponding to it, and draw arrows
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that duplicate the arrows of the node corresponding to the exterior edge of the same
self-folded triangle. For clarity, let us define a function e on diagonals ¢: if ¢ is an
interior edge, e(0) is the exterior edge of the self-folded triangle whose interior edge is
J; otherwise, e(d) is simply §. Similarly, we define i(J) to give the associated interior

edge if ¢ is an exterior one. Thus the full rules are:
e For each diagonal 4 in the triangulation, draw exactly one node of the quiver.

e For each pair of diagonals 4, 02 find all triangles for which e(d;), e(d2) are both
edges. Then for each such triangle draw one arrow from d; to ds if e(d;) imme-

diately precedes e(ds) going counter-clockwise around the triangle.

Similarly, we should also extend the superpotential to include self-folded triangles.
We use a, 3,7v... to denote both the diagonals and their respective nodes in the
quiver, and B, to denote both an arrow from « to 8 and the associated bifundamental

matter field. The full rules are as follows:

e For each internal, non-self-folded triangle ooy, we add the associated three cycle

BosBsyBya.

e For each internal, non-self-folded triangle a8~ adjacent to exactly two self-

folded triangles enclosed by «, § respectively, we add an additional three cycle

Bi(a)i(s) Bi(g)y Bri(a)-

e For each internal, non-self-folded triangle a3y adjacent to exactly three self-
folded triangles, we add three additional terms Bi(a)i(ﬁ)Bi(ﬁ)'yB’yi(a)—i_Bi(a)ﬁBﬁi(’y) Bz’('y)i(a)"’

Bai() Bi(#yitv) Bi(y)a-
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e For each internal, regular puncture adjacent to exactly one internal diagonal «,
we must have a self-folded triangle. The diagonal e(a) occurs in at most one
non-self-folded triangle. If that triangle is internal, e(«)f7v, we add the three

cycle BogBgyByq.

e For each internal, regular puncture adjacent to more than one internal diagonal,
we remove all the exterior edges of self-folded triangles incident on the puncture.
Now let n be the number of remaining diagonals incident on the puncture. The

quiver must have an n cycle a; ... a,; we add the term B, 4, - .- Ba,_y0n Banas -

3.3.7 Examples from SU(2) Gauge Theory

In this section we illustrate the rules developed above by cataloguing the BPS
quivers, with their required superpotential, for simple theories given by a single SU(2)
gauge group with matter and asymptotically free or conformal coupling. Of course
each theory comes with a number of quivers related by mutations and we need only
derive one. Consistent with our previous discussion, for those examples involving
irregular punctures, we will present triangulations of surfaces with boundary. In [55],
the representation theory of these quivers was studied, and found to agree with the
well known BPS spectra of the associated theories.

Before enumerating the examples, we take a moment to fix conventions. Through-
out, in all triangulations, red labeled lines denote diagonals, which appear as nodes
of the quiver, while black lines denote boundary components. Both regular punctures
and marked points on the boundary are indicated by black dots. Bifundamental fields

corresponding to arrows in the quiver will be denoted by X;; and Y;; where 7 and j
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label the initial and final vertex of the arrow respectively.

Asymptotically Free Theories
We first study quivers for SU(2) theories with asymptotically free gauge coupling.
e SU(2)

This theory is constructed on an annulus with one marked point at each bound-

ary.

Of course this is exactly the quiver for SU(2) Yang-Mills.

e SU(2) Ny =1

This theory is constructed on an annulus with one marked point on one bound-

ary component, and two marked points on the remaining boundary component.
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@/\

W = Xi12X93X31.
o SU(2) Ny =2

This theory is constructed on an annulus with two marked points on each bound-

ary component.

®

= X19X93X31 + Yo Xoa Xy1.

e SU(2) Ny =3

This theory is constructed on a disc with two marked points on the boundary

and two punctures.
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W = Xi3X35X51 + Xo3 X35 X5
+ X4 Xus X1 + Xoa Xy5 X0,

Conformal Theories

While the previous examples illustrate many general features, all the quivers given
there are mutation equivalent to quivers without oriented cycles. Thus for those cases
the potential is completely fixed by the mutation rules of section 2.4. Now we will
consider the case of SU(2) Yang-Mills theories with vanishing beta functions where
the conformal invariance is broken only by mass terms. Such quivers arise from
triangulations of closed Riemann surfaces and never have acyclic quivers. As such,

our proposal for the superpotential is the only known way of constructing W.

o SU(2) Ny =4

This theory is constructed on a sphere with four punctures. We draw the

associated triangulation on a plane omitting the point at infinity.
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W = Xi5X50Xou X1 + Xi13X30X06X61

+ X5 X50X06X61 + X13X32 X204 X1
Notice that this triangulation contains two bivalent punctures; the quiver and

superpotential above are obtained after integrating out the corresponding two-

cycles.

e SU(2) N = 2%,

This theory is constructed on a torus with one puncture. We draw the triangu-

lation on a quadrilateral where opposite sides are identified.
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W = Xi9X93X31 + YiaYo3Ys

+  Xi12Y23X31 Y12 X03Y31.
It is amusing to note that the this quiver for the N' = 2* theory is in fact invari-

ant under mutation and, consistent with our general discussion, our potential

is also mutation invariant.

Building from the examples in this section the reader can easily construct the BPS

quiver for a complete theory associated to any arbitrary Riemann surface.

3.4 Theories with Finite Chambers

In this section we will identify a subset of complete N' = 2 theories for which there
exists some chamber containing only finitely many BPS states. In particular, we will
show that all asymptotically free SU(2)" gauge theories, Argyres-Douglas models,
and conformal theories with genus zero and genus one surfaces and sufficiently many
punctures, meet this criterion. Our main motivation for studying theories with fi-
nite chambers is that they are especially well-adapted to the mutation method. As
described in [55], the mutation method is most straightforward for computing BPS

spectra which consist of only finitely many states. Additionally, as was mentioned in
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subsection ??, finite chambers have BPS spectra which consist exclusively of multi-
plicity one hypermultiplets.

Complete theories also have especially well-behaved wall-crossing phenomena. It
is a fact that the quiver of any complete theory has at most two arrows between any
two nodes.* Consider some wall crossing of two adjacent hypermultiplet states p, g,
and choose the half-plane for the quiver such that p is just outside of the half-plane
on the left and ¢ is just inside the half-plane. This situation is illustrated in Figure
3.10. The quiver must contain both ¢ and —p as nodes since they form the boundary
of the cone of positive states. Since we are studying a complete theory, we must
have [p o g| < 2. The hypermultiplet wall-crossing is completely straightforward and

explicit for any of the three possibilities.

e |pogq| = 0: there is no change in the spectrum across the wall,

e |pog| = 1: pentagon identity, which gives two states p, ¢ on one side of the wall

and three states p,p + ¢, ¢ on the other side of the wall,

e |pog| =2: SU(2) identity, which gives two states p,q on one side of the wall,
and the vector p + ¢ with infinite tower of dyons (n + 1)p + ng,np + (n + 1)q

for n > 0 on the other.

While the hypermultiplet wall-crossings are highly simplified, we should point out

4This can be understood via the triangulation construction. Two diagonals can share at most
two triangles between them, and therefore the resulting quiver can have at most two arrows between
any two nodes.

101



Chapter 3: Complete Theories

Figure 3.10: Here we illustrate a choice of half-plane that forces ¢, —p to be nodes of
the quiver, for any arbitrary adjacent hypermultiplet BPS states p, q. The grey region
indicates the choice of particle half-plane, H, while red vectors are BPS charges of
particles, and blue vectors are BPS charges of anti-particles

that it is still possible to have wall crossing of vector multiplets in a complete theory.
This may produce some wild behavior involving infinitely many vectors, which is not
so explicitly understood.

Of course, for complete theories the central charges for a basis of states can all
be varied independently by tuning parameters; thus in principle, all chambers found
via the wall-crossings described above should be physically realized in parameter
space. Combining the mutation method and the wall crossing formulae above, explicit
computation of BPS spectra for any complete theory with a finite chamber is now
reduced to a completely algorithmic procedure for a large region of parameter space.

We devote the rest of this section to finding finite chambers of complete theories.

The result of this study will produce finite chambers for the following theories:
e Conformal Argyres-Douglas type theories,

e Asymptotically free SU(2)" gauge theories,
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e Conformal SU(2)" gauge theories with bifundamentals charged under the ith
and ¢+ 1th SU(2)s for i = 1,..., k, and 2 additional fundamentals each for the

first and last SU(2),

e Conformal SU(2)" gauge theories with bifundamentals charged under the ith
and ¢ + 1th SU(2)s for ¢ = 1,...,k, and a bifundamental charged under the

first and last SU(2).

The first two classes of theories arise from surfaces with boundary, which will be
the main focus of the abstract arguments to follow. For the third and fourth class,
which correspond to boundaryless spheres and tori with arbitrary punctures, some
ad hoc techniques are applied to find finite chambers. Of the complete theories
associated to Riemann surfaces, we have failed to find finite chambers for boundary-
less g > 2 surfaces.” We note that there is another distinguishing feature of these
boundaryless higher genus theories, namely, that they contain some matter fields in
half-hypermultiplets, which cannot be given masses. As a result, it is impossible to
take various decoupling limits with large masses. It would interesting to understand

if this fact somehow precludes the existence of finite chambers for such theories.

3.4.1 Examples

Before we study the abstract arguments to prove existence of various finite cham-
bers, we will present some explicit examples in this subsection to illustrate the ob-

jective of this program. The examples will also illustrate the three classes of theories

5 Among the exceptional theories, dicussed in 3.15, we will find finite chambers for all except one,
X7
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which we will explore in this section. Our main tool here is the mutation method.
We recall that, when applying the mutation method to complete theories, we are free
to simply choose any ordering of central charges we wish. In the examples below, we
demonstrate the existence of the finite chamber by providing an ordering of central
charges that yields finitely many mutations in the mutation method; completeness

guarantees that a corresponding region of parameter space exists.

e Argyres-Douglas Dy theory.
The BPS structure of Argyres-Douglas A,, theories was studied systematically
in [25]. There exist analogues of Argyres-Douglas theory associated to ADE
Dynkin diagrams, which were studied in [18,44]. The quivers of these theories
are precisely their associated Dynkin diagrams.® Here we study the Argyres-
Douglas theory associated to Dy. The Gaiotto curve of this theory is given by a
sphere with one regular puncture, and one puncture with £ = 4. The resulting

surface with boundary and quiver are given below.

It is quite easy to identify a finite chamber for this theory via the mutation

6The underlying graph of the quiver, where we ignore orientation of arrows, exactly agrees with
the associated Dynkin diagram. It can be checked that all orientations of arrows for such quivers
are mutation equivalent.
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method. For example, take arg Z(v1) > arg Z(y3) > arg Z(v2) > arg Z(74);
then we mutate on 1,3,2,4 in that order. This gives a chamber whose BPS
stable states are precisely those associated to nodes of this quiver, without any
additional bound states. In fact, a chamber with just the nodes themselves
always exists for any acyclic quiver: choose an ordering on the nodes so that
argZ(vy;) > argZ(v;) if and only if 7; o, > 0. That such a choice is possible
is due to the fact that the quiver has no oriented cycles. Then we can see that
the resulting chamber will have only its nodes as II-stable representations, via

either the mutation method or directly from quiver representation theory.

e SU(2)?, one bifundamental hypermultiplet.

This theory corresponds to the surface and quiver shown below.

©Q

The gauge groups and matter content can be read off directly from the quiver.

Each SU(2) corresponds to a two-node SU(2) subquiver, and the bifundamental
field corresponds to the node which is attached to each SU(2) in the same way as
the third node of the SU(2), Ny = 1 quiver. The theory is asymptotically free.
A finite chamber can be found via the mutation method; for example, we find the
chamber {73, 71473, 1+72+73, i +72+275 74, 5, V3 +74, Y2, i+Y3 Y4, 11, V4t
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in decreasing phase order. This follows from the following mutation sequence:
3,1,2,4,5,2,1,3,2,4. This chamber includes the nodes themselves along with
several bound states; because this quiver contains cycles, there is no chamber
without bound states, as there was for Argyres-Douglas. Nonetheless, we have

exhibited a finite chamber for this theory.

o SU(2),N;=4.
The quiver of this theory is associated to a sphere with four regular punctures,
and was given along with the appropriate superpotential in subsection 3.3.7. It
is well known that this theory is conformal. Again the mutation method yields
a finite chamber: in decreasing phase order, {73,v4,7s5, %6, 71 + Y2 + V6,72 +
Y3+ Y572 + 3,7 + VY2 + Y571+ V6,715 72} The mutation sequence for
this chamber is 3,4,5,6,1,2,3,4,5,6,1,2. This finite chamber is particularly
interesting because it occurs in the moduli space of a conformal theory. If we
tune to the conformal point, by turning off all the masses of the flavor fields, it is
expected that the BPS structure becomes highly intricate, respecting some large
conformal duality group. In spite of this, we have exhibited a region of moduli
space where the BPS spectrum is very simple, and consists of 12 hypermultiplet

states.

These three cases are neatly representative of the types of theories for which we
will find finite chambers. As described above, the existence of finite chambers for
Argyres-Douglas theories is already clear, since they all correspond to acyclic Dynkin
diagrams. The discussion below will extend this to all complete theories associated to

surfaces with boundary; this class includes, in particular, Argyres-Douglas theories,
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as well as all complete asymptotically free SU(2)* gauge theories. We will also find

finite chambers for the conformal SU(2)* theories associated to spheres and tori.

3.4.2 Quiver Glueing Rule

Consider two quivers, A, B which separately have finite chambers G4, Gp; in each
quiver, choose a distinguished node, a, b respectively. We will consider the composite
quiver A ®° B which is given by drawing one arrow from a — b. More generally, we
might choose several nodes from each quiver, {a;}, {b;} (where we allow repeats in
the chosen nodes), and consider the composite quiver A @gi B formed by drawing
arrows between pairs of nodes, a; — b;. Note that all arrows must point from A to B.
The resulting quiver will contain a finite chamber whose BPS states are precisely the
union of the BPS states G4 U Gg. To specify such a chamber, we simply consider the
ordering within each quiver A, B to be given by the known finite chambers G4, Gg,
and in addition we require for any nodes a € A, 5 € B we have argZ(«) < argZ ().

The representation theory makes this fact completely transparent. Consider any
representation of the composite quiver. It is given by some representations A, B
respectively of quivers A, B along with a set of maps ¢; : V,, — V3, corresponding to
the arrows a; — b;. We will denote this rep as R = (A, B,{¢;}). Let A, B be nonzero.
Now we may consider the subrep S = (0,8, {0;}). This is always a valid subrep, as

can be seen by the following commutative diagram:
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Note that by our choice of chamber, argZ(S) > argZ(R), so that this is automatically
a destabilizing subrep. Consequently, any representation that has support on both
subquivers A, B will be unstable, leaving only the stable reps of the subquiver A, B
separately. This rule can be checked as a simple exercise using the mutation method.
Note that we have made no reference to A, B being quivers of complete theories. The
glueing rule is completely general and can be applied to any pair of quivers that are
known to have finite chambers.

As a first application of the glueing rule, we study acyclic quivers. Any acyclic
quiver can be built up by glueing in one-node quivers, one at a time. Simply pick an
ordering of the nodes consistent with the arrows - this is possible because the quiver is
acyclic. Then we may glue the nodes to each other one-by-one in the given ordering.
Since each one node quiver has only the node itself as a BPS state, we can build up
a finite chamber which consists only of the nodes of the quiver. This immediately
confirms the claim in subsection 3.4.1, and allows us to conclude that all Argyres-
Douglas theories have such chambers. In fact, acyclic finite mutation type quivers
were classified by [59], and consist precisely of usual ADFE and affine ADE Dynkin
diagrams. These are the only complete theories containing a minimal chamber in

which only the nodes of the quiver are stable BPS states.

3.4.3 Triangulation Glueing Rule

The relation between complete theories and triangulated surfaces allows us to
translate the above quiver glueing rule to a glueing rule at the level of the trian-

gulation. First, we define an augmented quiver associated to the triangulation of a
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surface, in which we include nodes corresponding to the boundary edges in the trian-
gulation, and draw arrows as given by the rules of section 3.3.4, treating boundary
edges and interior diagonals on equal footing. The nodes corresponding to boundary
edges will be referred to as augmented nodes. Then when we glue together two tri-
angulations along their boundaries, the new augmented quiver of the full surface is
given by identifying some pair of augmented nodes in the augmented quivers of the
two surfaces.

Notice that if the augmented quiver has a finite chamber, then so does the usual,
unaugmented quiver: the usual quiver is a subquiver of the augmented one, and
the finiteness of a chamber is preserved by taking subquivers. This can be seen via
representation theory. Stability for a representation of a subquiver is equivalent to
stability for the same rep considered in the full quiver, since in either case we need to
study the same set of destabilizing subreps. So the BPS spectrum of a subquiver is
just the restriction of the BPS spectrum of the full quiver to states that have support
only on the subquiver of interest.

Consider two triangulated surfaces A, B, each with at least one boundary compo-
nent. We will use the same symbols A, B to denote the associated augmented quivers.
To achieve the glueing of quivers described above, we consider glueing the two tri-
angulated surfaces along one component of their respective boundary components to
two sides of a triangle, as in Figure 3.11. Let us denote by a, b the augmented nodes
corresponding to the glued boundary edges of A, B respectively, and let ¢ be the
augmented node corresponding to the unglued edge of the triangle. The augmented

quiver of the full surface is given in Figure 3.11 as well.
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A

Figure 3.11: General glueing rule for triangulations. A and B indicate surfaces with
boundary, glued along one component of their respective boundaries to a triangle.
Red lines indicate interior diagonals, which give nodes of the adjacency quiver. Black
lines indicate boundary edges which give augmented nodes in the augmented quiver.

Figure 3.12: Mutated form of quiver shown in Figure 3.11, obtained by mutating at
node ¢

Note that ¢ is an augmented node, so that the unaugmented quiver is already a
subquiver of A®? B. Hence if A and B have finite chambers, then so does the resulting
unaugmented composite quiver corresponding to the glueing described. However, in
order to induct and continue glueing more pieces to this composite quiver, we would
like to check that the augmented quiver also has a finite chamber. This will be the
case if both A, B have finite chambers, and there is a finite chamber of A (or B) such
that no bound state has coefficient of a (resp. b) greater than 1.

To see this, begin by mutating on node c¢. We find a quiver A &¢ {c} ®° B (Fig-
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ure 3.12), which has a finite chamber consisting of G4 U {c} U Gp, with argZ(b;) >
argZ(c) > argZ(a;) for all a; € A, b; € B, as described above. Now if we do a se-
quence of wall crossings to let argZ(c) > argZ(b;), then we will be in a region covered
by the quiver form of Figure 3.11. This can be seen by the mutation algorithm: ¢
is now the left-most node, so we mutate at ¢ first, away from the direct sum form
in Figure 3.12, resulting Figure 3.11. We then see that we are in a region of moduli
space covered by the quiver Figure 3.11. As long as this wall-crossing procedure only
goes through pentagon-type crossings, we will only generate finitely many new bound
states. Since c¢ only has inner product with b in B, the condition is just that there
are no bound states in Gg with more than one b. A similar argument with inverse
mutation yields an analogous conclusion for A.

To reiterate, we have developed a glueing rule for triangulations, depicted in Fig-
ure 3.11. The glueing rule provides a finite chamber for the composite triangulated
surface, given finite chambers for the two separate triangulated surfaces, subject to

an additional mild conditions that there be no bound states of multiple a’s or b’s.

3.4.4 Surfaces with Boundary

In this section we will explore the quiver glueing rule and its implication for
triangulations, to attempt to build up a large class of Riemann surfaces whose quivers
contain a finite chamber. In fact, we will find that any surface with boundary has a
quiver with finite chamber. Recall from [3] that surfaces with boundary correspond
to asymptotically free theories along with the conformal Argyres-Douglas theories.

Aside from the Argyres-Douglas cases, these theories have negative beta function

111



Chapter 3: Complete Theories

because they are constructed by taking certain decoupling limits of the conformal
theories that correspond to boundaryless Riemann surfaces.

A surface in this context is characterized completely by its genus g, number of
punctures n, and number of boundary components b, along with some number of
marked points k; > 1 for every boundary component, ¢ = 1...b. The k; are identified
with the orders of poles as given in section 3.3.3. In order to build up new surfaces,
we will glue triangulated pieces B to some existing surface A with finite chamber, as
in Figure 3.11, all while making sure to preserve the finite chamber. Suppose we have
some surface (g,n,b, {k;}?_,) whose quiver, A, has a finite chamber. There are four

types of operations we will need to consider:

e Add a marked point on the boundary
An unpunctured triangle glued to boundary component ¢ of the surface A will
increase the number of marked points on i by one (k; — k; + 1) and leave the

other parameters of the surface unchanged.

A

On the augmented quivers, this adds an oriented three-node cycle with one
node identified with an existing node on the quiver A. This is just the general
triangulation glueing described above, in which the surface B is empty and the

quiver B is only the node b itself. So this glueing preserves the finite chamber.
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e Add a puncture
To add a puncture, we take B to be a once-punctured monogon. This takes

n — n + 1, leaving everything else unchanged.
4 al( @), T (@) D)

The quiver B is just two copies of the node b. Here we have encountered a
self-folded triangle in the triangulation, so we must refer to the extended rules
given in the appendix 3.3.6. The quiver has a finite chamber by the general

glueing rule.

o Add a boundary component
For this we let B be the annulus with one marked point on each boundary
component. This glueing adds one boundary with one marked point, and leaves

everything else fixed. That is, b — b+ 1 and ky,q = 1.

B as a quiver is the SU(2) Ny = 2 quiver. By hand, we can check that B has
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a finite chamber in which there is no bound state with multiple b’s, using the
mutation method. For example, we find a chamber with states in decreasing
phase order {b,v3,v1 + b+ 73,72, 71 + b, 71 + 73,72}. Thus, the full augmented

quiver also has a finite chamber.

e [ncrease genus
We may increase the genus of the surface by taking B to be a torus with
boundary with one marked point. This gives ¢ — g+1 with all other parameters

fixed.

Note that we have only drawn B, the torus with boundary, which must be
glued into the surface A as in Figure 3.11. Again we can check by hand that B
contains a finite chamber with no bound states of multiple b’s. For example, the
mutation method gives a finite chamber with states in decreasing phase order
{0,793, 71,72 + 93,71 + Y4 + b, 71 + 74,72, 74 + b, 74} So the resulting augmented

quiver has a finite chamber.

Finally, we need to check that we have sufficient base cases in order to build up
all possible surfaces with boundary. Again we will be parameterizing surfaces as
(g,m,b,{k;}). The following are the base cases we need: once-punctured monogon

(0,1,1,{1}), unpunctured triangle (0,0,1,{3}), annulus with one marked point on
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each boundary (0,0,2,{1,1}), torus with one boundary component and one marked
point (1,0, 1,{1}). It is straightforward to see any surface not generated by increas-
ing the four parameters (g, n, b, {k;}) starting from one of these base cases is either a
surface without boundary or a surface that cannot be triangulated. For example, if
we try to reduce n in punctured monogon (0, 1,1,{1}), we see that the unpunctured
monogon, (0,0,1,{1}) cannot be triangulated. Notice that the base cases are pre-
cisely the pieces that we used in the glueings above, so we have already checked that
the corresponding augmented quivers all contain the desired finite chambers. So we
conclude that all surfaces with boundary (and thus all asymptotically free complete
theories) have at least one chamber in their parameter space with finitely many states.

Using the glueing rule and the wall-crossing formulae given at the beginning of this
section, computing explicit spectra for these theories is now a completely algorithmic
process. For any surface with boundary, we take a decomposition into the pieces used
above: punctured monogon, unpunctured annulus, and torus with boundary. The
pieces should all be glued together using unpunctured triangles as in Figure 3.11.
The choice of decomposition will specify the mutation form of the quiver we must
study, along with a point of parameter space, fixed by the ordering of central charges
compatible with the glueing rule. Now we simply take the union of the finite spectra
associated to each of these pieces; this gives the resulting spectrum of the total surface,
according to the glueing rule. Finally, we can use wall-crossing formulae to move to

other points in parameter space.
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3.4.5 Conformal Theories

For surfaces without boundary (that is, conformal theories), there seems to be
an essential complication in trying to decompose these quivers using the techniques
above. Very generally, quivers for boundaryless surfaces have large cyclic structures
that prevent such a decomposition. In particular, no node for a boundaryless surface
can be a sink or source; consequently, the quiver glueing rule is of little use.

Nonetheless, some progress has been made in searching for finite chambers using
the mutation method. We have extracted a finite chamber for genus g = 0,1 with
arbitrary punctures, which we give below. First, we recall some reasoning introduced
in [41], which allows us to deduce a Lagrangian description for these theories. For any
of these rank 2 Gaiotto-type theories, we can understand the gauge groups and matter
contained in the theory as follows. Take a pair-of-pants decomposition of the bound-
aryless Riemann surface C. Each pair of pants corresponds to a half-hypermultiplet
charged under 3 SU(2)’s, where each SU(2) is represented by one of the bound-
ary components of the pair of pants. Each glueing of a pair of pants identifies the
corresponding SU(2)’s and gauges that SU(2) symmetry. Given a boundaryless sur-
face, one can use this recipe to deduce the gauge group and matter content of the

corresponding theory.

Sphere with n > 4 Punctures

The sphere with n < 3 punctures cannot be triangulated; for n = 3 punctures,
it corresponds to three nodes with no arrows, which yields no interesting structure.

The sphere with n > 4 punctures has a Lagrangian description as an SU(2)" 3 theory
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Figure 3.13: Triangulation and quiver for the sphere with n > 4 punctures. The
triangulation is drawn on a plane with the point at infinity omitted. Note there are
self-folded triangles formed by the interior of a and the exterior of f (see appendix
3.3.6). In both the triangulation and the quiver, the dots indicate repetition of the
3-node structure, c;d;e;. The sphere with n punctures has n — 4 such pieces, and
3n — 6 nodes.

with bifundamentals charged under the ith and i + 1th SU(2)s for i = 1,...,n — 4,
and 2 additional fundamentals each for the first and last SU(2).

A triangulation and quiver of a sphere with n > 4 punctures is given in Figure 3.13.
In fact, the Lagrangian description can be read off directly from this quiver, forgetting
the surface and triangulation. Each two-node structure ¢;d; is precisely a pure SU(2)
subquiver, and thus indicates an independent SU(2). The nodes a, b, f, g appear just

the flavor nodes in subsection 3.3.7, and correspond to flavors charged under the
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first and last SU(2). Finally the nodes e; appear as flavor nodes for two adjacent
SU(2)s, and thus correspond to bifundamental flavors. So, we have reconstructed the
description of the gauge group and matter given above. This type of reasoning was
discussed further in [3].

A finite chamber for n > 4 is given by the following sequence of states, in decreas-

ing phase order:

a,b,a+b+cy,dy,a+cp, b+ e,

dl + 61,Cl,d2,61 + dg,Cl + dl +e1 + Cg,dl + e+ Co, €1, €1 —|—02,

di, + ek, Ck, dit1, €k + diy1, ek + di + ex + cry1, di. + € + Cry1, €k, €k + Chia,

dn—4 + €n—4,Cn—4a, dn—37 €n—4 + dn—37 Cn—14 + dn—4 + €n—1 + Cn—3, dn—4 + €n—1a + Cp—3,

€n—4,€n—1a + Cn—3,

f + dnf?ng + dn737 f + g + dnf?n Cp—3, fag

which is a chamber with 8n— 20 states. This can be verified by applying the mutation
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method with the following mutations, in order:

a, ba Clydlaaa b7
el,Cl,dQ,dl,CQ, Cl7d27617

€2, d2a d3a d17 C3, d27 d37 €9,

ek; dk? dk+17 dl; Ck:+17 dky dk+17 ek7

€n—4a, dn747 dnf?n dl> Cn—3, dnf47 dn737 €n—4,

fvgvdladn—37f7g

Torus with n > 2 Punctures

The torus with one puncture is the A/ = 2* theory, which has no finite chamber;
this theory is explored further in [55]. The torus with n > 2 punctures has a La-
grangian description as an SU(2)" gauge theory with a bifundamental between the
ith and ¢ + 1th SU(2) fori = 1,...,n — 1 and a bifundamental between the first and
last SU(2).

A triangulation and quiver for the torus with n punctures is given in Figure 3.14.
Again from the triangulation the gauge group and matter content can be directly read
off. We have n SU(2) subquivers, giving gauge group SU(2)", with bifundamental
matter arranged cyclically between every adjacent pair of SU(2)s.

A finite chamber for this theory is given by the following sequence of states, in
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Figure 3.14: Triangulation and quiver for the torus with n > 2 punctures. The
triangulation is drawn on a rectangle with opposite sides identified. In both the
triangulation and the quiver, the dots indicate repetition of the 3-node structure
a;b;c;. The torus with n punctures has n sets of double arrows, and 3n nodes. Note
that the two nodes labelled a,, should be identified, producing a quiver with cyclic
syminetry.
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decreasing phase order:

ay, a1 + by, a1 + by +c1,2a1 + by + ¢y 4+ ba, ¢, a1 + ba, c1, a1 + by + ba,

(05} +02,b2,a2,2a2 +b2—|—02 +b3,C3,CL2+b2 + Co +b3,a2+62 +b3,a2 +bg,

ag + ¢k, by, ag, 2a + by, + ¢ + b1, Crot1, @ + b + ¢ + bpg1, ak + ¢k + bpg1, ap + by,

Ap—1 + Cn—1, bn—la ap—1, 2an—1 + bn—l + Cn—1 + bna Cp,y An—1 + bn—l + Cp—1 + b’m
Ap—1 + Cn—1 + bna Ap—1 + bna

an+cn+Clybn7an+Cla2an+bn+cn+clabl7an+bn+Cn7an+cn7an

which is a chamber with 8n states.
This can be verified by applying the mutation method with the following muta-

tions, in order:

al,bl,cl,bQ,CQ,cl,bl, CL1,CLQ,bQ,CQ,bg,Cg,CQ,bQ,CLQ, e ,ak,bk,ck,bkﬂ,ckﬂ,ck, bk,ak, e

Qp, bn7 Cn, bla C1, Cnp, b?’w Q.

3.5 Exceptional Complete Theories

Thus far in our analysis in this paper we have studied complete gauge theories
that are canonically related to Riemann surfaces. These Riemann surface examples
constitute all but finitely many of the complete theories with BPS quivers. As de-
scribed above in section 3.2, there are 11 additional exception quivers associated to

complete theories. These quivers are not the adjacency quivers of any triangulated
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surface.

Having thoroughly investigated the BPS quivers and spectra for complete theories
associated to Riemann surfaces, we now take our investigation to its logical conclusion
and investigate the BPS spectra of the 11 exceptional cases. By construction, the
examples of quivers described here have no interpretation in terms of triangulated
surfaces. Thus a priori we have no independent method for fixing the superpotential,

and we simply proceed with an ad hoc case by case investigation.”

~

3.5.1 E, E,FE,

The E, quivers correspond to physical theories that are generalizations of the
Argyres-Douglas superconformal theories, and were studied with the affine En quivers
in [18]. These quivers are acyclic, and thus have no superpotential. As described in
section 3.4.2, acyclic quivers always contain a chamber in which the only stable states
are those given by the nodes themselves. Thus these theories have finite chambers,
where the BPS spectra consists of only the nodes themselves.

The En quivers were also explored in [3]. They are given by glueing linear acyclic
quivers to the quiver of SU(2), Ny = 3, (see Figure 3.16). The only cycles available
in these quivers are those of the SU(2), Ny = 3 quiver; thus we can decouple the
acyclic linear pieces as described in subsection 3.3.5. The linear subquivers do not
participate in the superpotential, since they are not involved in any cycles of the
full quiver; therefore this decoupling does not change the superpotential at all. The

superpotential for these quivers is simply the one given by SU(2), Ny = 3, shown

"After completing the manuscript, we were informed that these potentials (excluding X7) were
independently obtained in [60] from slightly different considerations.
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4 ° °
E7Z 3\
5 ° °
4 ° ° ° °

XGZ

Figure 3.15: The three elliptic E-type Dynkin diagrams oriented as to give finite
mutation quivers, and the two Derksen-Owen quivers.
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g

1] 12

Figure 3.16: Quiver of SU(2), Ny = 3. The superpotential is given by W =
X12X23X31 + K2X24X41 + (X12 + YiQ)X25X51. Notice that this quiver is embed-

ded as a subquiver of the E, quivers, as shown in Fig. 3.15. A decoupling argument

indicates that this gives the correct superpotential for studying the En quivers.

in Figure 3.16. Since the quivers involved in the glueing (i.e. A, linear quivers and
SU(2), N; = 3) have finite chambers ® we conclude that the E, quivers also have

finite chambers.

3.5.2 X Xo

The corresponding theories to the Derksen-Owen quivers were also studied in [3].
The X7 theory is an SU(2)? gauge theory with a massive hypermultiplet trifunda-
mental. The Xg theory is a certain decoupling limit of the Xj.

The Xg theory can be decoupled to the quiver corresponding to a punctured
annulus, with one marked point on each boundary (0, 1,2, {1,1}) without losing any
cycles. Thus its superpotential is simply given by the triangulation construction for
that theory, as shown in Figure 3.17. Since X4 can be obtained from a quiver glueing
of the punctured annulus quiver to a one-node quiver, this theory also has a finite

chamber.

$We have not described an explicit finite chamber for the SU(2), Ny = 3 quiver. However, since
it corresponds to a Riemann surface with boundary, namely the disc with two marked points on the
boundary and two punctures, we know that a finite chamber exists.
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Figure 3.17: Quiver of the annulus with one marked point on each boundary and
one puncture, (0,1,2,{1,1}). The superpotential is given by W = X3 X3X3; +
X34 X 45X 53 + Y12 X03X34 Y45 X535 X31. Note that this quiver is embedded as a subquiver
in Xg, X5.

Finally, we consider X;. No node of this quiver can be decoupled without removing
an oriented cycle, so the approaches used for the other exceptional quivers will not
apply. However, the mutation class consists of only two quivers [48]; thus it is easy to
check by hand that a propsed superpotential provides a quadratic mass term for all
two-cycles generated under mutation. Furthermore, decoupling node 7 should yield
the quiver Xg, with the superpotential given there. From this we are able to guess
the superpotential, W = X5 Xo3 X531 + X124 X145 X51 + X16X67X71 + Y12 X023 X34 Y45 X51 +
Y5 X 53X 36Ye7 X 73 X34 + Y7 X 73 X31 Y12 X3, which has the desired properties. In princi-
ple there are infinitely many higher order terms that could be added to this potential
and preserve these properties; this is simply the minimal guess. Exhaustive compu-
tational searches via the mutation method have failed to yield a finite chamber for

this quiver. Although we have no proof of this statement, it appears that this quiver

does not admit any finite chamber.
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3d Superconformal Theories and

Mirror Symmetry

4.1 Introduction

In the two preceding chapters, we have gained a great deal of insight along
with computational technology by combining different perspectives on the celebrated
Seiberg-Witten 4d N = 2 gauge theories. We first followed a careful study of quiver
techniques, which were originally motivated from the point of view of D-brane stabil-
ity in type IIB strings. We then moved on to study the class of complete theories, and
noted a powerful connection between our quiver techniques and the M-theory con-
structions of these same 4d theories [41,42]. By studying the correspondence between
these dual constructions, we were led to the novel results of chapter 3.

One natural direction is to pursue an analogous M5 brane construction in dif-

ferent dimensions, hoping that again the lift to M-theory will yield insight into the
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lower-dimensional physics. A conceptual slogan for the program of this chapter is
that we will investigate a three-dimensional analog of Seiberg-Witten theory. In the
ultraviolet, one may envision an unknown non-Abelian three-dimensional field theory
arising from the interacting theory of two M5-branes on R? with suitable boundary
conditions at infinity. Moving onto the moduli space of this theory is accomplished
geometrically by allowing the pair of M5-branes to fuse together into a single three-
manifold M. The long-distance Abelian physics can then be directly extracted from
the geometry of M. The situation we have described should be compared with the
case of four-dimensional N' = 2 theories whose infrared moduli space physics can
be extracted from a Seiberg-Witten curve. In that case, charged matter fields are
described by BPS states and can be constructed in M-theory from M2-branes. The
case of an interacting conformal field theory can arise when the M2-brane particles
become massless and the Seiberg-Witten curve develops a singularity.

One would hope to use the results of the previous chapters in a concrete way,
rather than merely as a source of conceptual inspiration. To do so, we consider
stacks of two M5 branes on 3-manifolds of the form >; x R;, where the Reimann
surface ¥ varies in complex structure along the line parameterized by t. Then, after
brane recombination, we have a single M5 brane sitting on a double cover of this flow
manifold. These examples are closely connected to the four-dimensional quantum
field theories of chapter 3. At a fixed value of ¢, the situation is that of an M5-
brane on Y whose resulting IR physics and BPS spectra were studied in detail in the
previous chapter. As t varies, this field theory moves in its parameter space and hence

describes a kind of domain wall in four dimensions. When equipped with suitable
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boundary conditions, this geometry can engineer a three-dimensional N' = 2 theory.

In the context of such examples, one may utilize the machinery of Seiberg-Witten
theory and BPS state counting to determine the resulting three-dimensional physics.
When the variation of ¥ takes a particularly natural form, known as R-flow, the
spectrum of three-dimensional chiral multiplets is in one-to-one correspondence with
the BPS states of the underlying four-dimensional model in a particular chamber. The
mass of the chiral multiplet is set by the minimal mass attained by the associated
BPS state over the flow in moduli space. Additionally, as the moduli of the four-
dimensional theory are varied, one may cross walls of marginal stability and hence find
distinct spectra of chiral multiplets in three-dimensions. Remarkably, the resulting
three-dimensional theories are mirror symmetric. In this way, the geometry provides
a striking confluence between two fundamental quantum phenomena: wall crossing
of BPS states, and mirror symmetry.

Having made these observations, we can generalize our exploration to a broader
class of 3-manifolds, and draw connections with geometric structures. The primary
relevant feature of the flow construction above is that branch points of the original
Riemann surface ¥ are stretched out into branching lines. When we introduce some
fixed boundary conditions on the flow manifold, these branch lines will connect into
some arbitrary tangle of branch lines sitting in the flow manifold. A tangle is a
mathematical generalization of a knot that allows for fixed open ends. After brane
recombination, we are left with a double cover of this flow manifold, branched over
this tangle. Thus, for the manifold where the infrared M5-brane resides, we take an

arbitrary double cover of R? branched along a tangle. The reduction of the theory
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of a single Mb5-brane along M will result in the three-dimensional quantum field
theories under investigation. The simplest class of examples are associated to non-
singular tangles. In this situation M is a smooth manifold and a single M5-brane
on M constructs a free Abelian N/ = 2 Chern-Simons theory in the macroscopic
dimensions. Light matter, appearing in chiral multiplets in three dimensions, arises
in the theory from M2-brane discs which end along M.

To generate non-trivial interacting conformal theories, we must relax some con-
straints of this construction. If we allow the branching lines to actually intersect,
then the light matter arising from the associated M2 disc will become massless. We
describe these intersecting branching lines geometrically as a singular tangle. In this
situation, we generate a non-trivial interacting conformal field theory with massless
matter. We would like to uncover the relationship between three-dimensional N' = 2
supersymmetric conformal field theories and singular tangles. Examples of singular

tangles are illustrated in Figure 4.1.

\é\c\/\/ \&x\/\%

) A Tangle ) A Singular Tangle

Figure 4.1: Examples of tangles and their singularities. In (a) a tangle in the R3. In
(b) a singular tangle where the strands have merged at various points. The singular-
ities are modeled in quantum field theory by charged massless matter.

An important feature of the constructions carried out in this chapter, familiar from

many constructions of field theories by branes, is that non-trivial quantum properties

of field theories are mapped to simpler geometric properties of the compactification
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manifold. In the case of N/ = 2 Abelian Chern-Simons matter theories the quantum

features which are apparent in geometry are the following.

e Sp(2F,7Z) Theory Multiplets:

The set of three dimensional theories with A" = 2 supersymmetry and U(1)¥
flavor symmetry is naturally acted on by the group Sp(2F,Z) [61,62]. This
group does not act by dualities. It provides us with a simple procedure for
building complicated theories out of simpler ones by a sequence of shifts in

Chern-Simons levels and gauging operations.

e Anomalies:

In three dimensions, charged chiral multiplets have non-trivial parity anomalies.
This means that upon integrating out a massive chiral field the effective Chern-

Simons levels are shifted by half-integral amounts [63].

e Dualities:

Three dimensional N = 2 conformal field theories enjoy mirror symmetry dual-
ities. Thus, distinct A/ = 2 Abelian Chern-Simons matter theories may flow in
the infrared to the same conformal field theory. In the case of three-dimensional
Abelian Chern-Simons matter theories, there are essentially three building block

mirror symmetries that we may compose to engineer more complicated dualities:

— Equivalences amongst pure CS theories. These theories are free and char-
acterized by a matrix of integral levels K. It may happen that two dis-

tinct classical theories given by matrices K; and K, nevertheless give rise
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to equivalent correlation functions and hence are quantum mechanically

equivalent.

— Gauged U(1) at level 1/2 with a charge one chiral multiplet is mirror to

the theory of a free chiral multiplet [62].

— Super-QED with one flavor of electron is mirror to a theory of three chiral

multiplets, no gauge symmetry, and a cubic superpotential [64,65].

One way non-trivial dualities appear stems from the fact that the M5-brane theory
reduced on M does not have a preferred classical Lagrangian. To obtain a Lagrangian
description of the dynamics requires additional choices. In our context such a choice
is a Seifert surface, which is a Riemann surface with boundary the given tangle. For
any given tangle there exist infinitely many distinct choices of Seifert surfaces each
of which corresponds to a distinct equivalent Lagrangian description of the physics.
This fact is closely analogous to the choice of triangulation appearing in the approach
of [66] for studying the same theories, as well as the choice of pants decomposition
required to provide a Lagrangian description of M5-branes on Riemann surfaces [41].

Throughout this chapter, our discussion of duality will be guided by a particular
invariant of the infrared conformal field theory, the squashed three-sphere partition
function

AT TS) (4.1.1)

This is a complex-valued function of a squashing parameter b (which we frequently
suppress in notation) as well as F' chemical potentials z;. It is an invariant of a field

theory with prescribed couplings to U(1)f" background flavor fields. This partition
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function gives us a strong test for two theories to be mirror and as such it is useful
to build into the formalism techniques for computing Z.

One method of explicit computation is provided by supersymmetric localization
formulas. At the classical level, an Abelian Chern-Simons matter theory coupled to

background flavor fields is determined by the following data:

e Integers G and F specifying that the theory in question has a U(1)¢ gauge

group and a U(1)¥" flavor group,
e An (G + F) x (G + F) matrix of Chern-Simons levels, K
e A set of chiral multiplets ®,, with (G + F') dimensional charge vectors ¢,
e A superpotential W (®,); a holomorphic function of chiral fields.

Given such data, the three-sphere partition function for the infrared conformal field

theory can be presented as a finite dimensional integral' [67,68]

Y

Z(x;) :/deeXp —mi(y x)K HE(qa-(y x)). (4.1.2)

x
In the above, E(x) denotes a certain transcendental function, the so-called non-
compact quantum dilogarithm, which will be discussed in detail in section 4.3. The
superpotential W enters the discussion only in so far as it restricts the flavor sym-

metries of the theory. The real integration variables y appearing in the formula can

'In the following formula, certain details about R-charge assignments are suppressed. These will
be dealt with more fully in section 4.3.
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be interpreted as parameterizing fluctuations of the real scalars in the N’ = 2 vector
multiplets.

We will be interested in computation of Z up to multiplication by an overall phase
independent of all flavor variables. This means in particular that throughout this
work we will ignore all framing anomalies of Chern-Simons terms. We will see that
the partition function in (4.1.2) can be usefully viewed as a wavefunction in a certain
finite dimensional quantum mechanics and develop this interpretation throughout.

Although our motivation, as outlined in this introduction, follows from the R-flow
constructions, we will proceed from a more general standpoint, and later explore the
details of the specific R-flow setup that connects to the material in previous chapters.
Indeed, R-flow is rather one implementation of the more general 3d constructions
that we shall study. In section 4.2 we explain how free Abelian Chern-Simons the-
ories arise from tangles, and how their partition functions are encoded in a simple
quantum mechanical setup. In section 4.3 we show how the data of massless chiral
fields is encoded in terms of singular tangles where branch loci collide. Each such
singularity can be geometrically resolved in one of three ways, matching the expected
deformations of the field theory. Upon fixing a Seifert surface, a surface with bound-
ary on the tangle, we are able to extract a Lagrangian description of the theory
associated to the singular tangle including superpotential couplings. In section 4.4
we generalize to arbitrary singular tangles, and explore physical redundancy in the
geometry. As a consequence of mirror symmetries, distinct singular tangles can give
rise to the same superconformal theory. These equivalences on field theories can be

described geometrically by introducing a set of generalized Reidemeister moves acting
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on singular tangles. On deforming away from the critical point by activating relevant
deformations of the field theory, we find that the generalized Reidemeister moves
resolve to the ordinary Reidemeister moves familiar from elementary knot theory.
The appearance of Reidemeister moves clarifies the relationship between quantum
dilogarithm functions and braids first observed by [69]. In section 4.5 we describe
how three-dimensional mirror symmetries can be understood from the perspective of

four-dimensional N' = 2 parent theories via R-flow. Finally, in section 4.6 we describe

three-dimensional U(1) SQED with arbitrary N;.

4.2 Abelian Chern-Simons Theory and Tangles

In this section we explore the simplest class of examples: Abelian N/ = 2 Chern-
Simons theories without matter fields. Such theories are free and hence of course
conformal. We find that such models are usefully constructed via reduction of the
Mb-brane on a non-singular manifold which is conveniently viewed as a double cover
of R? branched over a tangle, and describe the necessary geometric technology for
elucidating their structure. In addition we describe a finite dimensional quantum
mechanical framework for evaluating their partition functions. Throughout we will
study the theories with U (1) flavor symmetries and couple them to F' non-dynamical
vector multiplets. The set of such theories is acted upon by Sp(2F, Z) and we describe

this action from various points of view.
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4.2.1 Chern-Simons Actions, Sp(2F,Z), and Quantum Me-

chanics

Consider a classical N/ = 2 Abelian Chern-Simons theory. Let G denote the
number of U(1) gauge groups, and F the number of U(1) flavor groups.? The La-
grangian of the theory coupled to F' background vector multiplets is specified by a
(G+ F) x (G + F), symmetric matrix of levels

ke ky

K= : kg = k&, kr = k.. (4.2.1)

kL, kg
Here, kg denotes the ordinary Chern-Simons levels of the U(1)Y gauge group, kjy
indicates the G x F' matrix of mixed gauge-flavor levels, and kr the F' X F' matrix of

flavor levels. The action for the theory is

ZKa

4—6/d3$14a/\dA5+, @,ﬁzl,Q,G—FF (422)
s

af

(13 2

Where in the above the terms indicate the supersymetrization of the Chern-
Simons Lagrangian. K,z is integrally quantized with minimal unit one. The first G

vector multiplets are dynamical variables in the path integral while the last F' are

non-dynamical background fields.?

2Here and in the following flavor symmetries refer to non-R symmetries except when explicitly
indicated otherwise.

3The normalization of the Chern-Simons levels appearing in (4.2.2) indicates that these are spin
Chern-Simons theories [70] whose definition depends on a choice of spin structure on spacetime.
Since all the models we consider are supersymmetric and hence contain dynamical fermions, this is
no restriction.
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It is worthwhile to note that one might naively think that the matrix K does
not completely specify an N’ = 2 Chern-Simons theory. Indeed, since such theories
are conformal they contain a distinguished flavor symmetry, U(1)g, whose associ-
ated conserved current appears in the same supersymmetry multiplet as the energy-
momentum tensor. One might therefore contemplate Chern-Simons couplings involv-
ing background U(1)g gauge fields. However, such terms while supersymmetric vio-
late conformal invariance. Thus, as our interest here is superconformal field theories,
we are justified in ignoring these couplings.

Already in this simple context of Abelian Chern-Simons theory, we can see the
action of Sp(2F,Z) specified as operations on the level matrix K defined in equation
(4.2.1). For later convenience, it is useful to use a slightly unconventional form of the

symplectic matrix J

0 1 0 0 0 0
-1 0 1 0 0 0
0 -1 0 1 -~ 0 0
J = . (4.2.3)
0 0 0 0 0 1
0 0 0 0 -~ —10

In this basis, the integral symplectic group is conveniently generated by 2F generators

o, withn =1,2,---  2F whose matrix elements are given as

(0n>i,j = 51'7]' + 5i,n6n+1,j — 5i,n5n71,j7 Z,j = 1, 2, s ,2F (424)
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To define an action of the symplectic group Sp(2F,Z) on this class of theories, it
therefore suffices to specify the action of the generators o,,.
The action of the generators with odd labels o5, 1 preserves the number of gauge

groups and shifts the levels of the n-th background field

Oon1 (kc)ij — (ka)ij, (kar)ig — (k)i (kr)ij — (kr)ij+0indn;-
(4.2.5)
The action of the even generators, os,, is more complicated and performs a change of
basis in the flavor symmetries while at the same time increasing the number of gauge
groups by one. Explicitly, o9, can be factored as 0, = g, o cy where ¢y is a change

of basis operation

cu ko — ka, kar — kU, kp — UTkpU (4.2.6)

where in the above, the F' x F' matrix U is given by

(D)ig = 6ij — i1 (4.2.7)
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And the gauging operation g, is given by

kp

kG (k;M)z,n
, (4.2.8)

(kf/[)n,l (kF)n,n -1
(ka)in (kar)ig (knr)im—1 O (kar)imsr -+ (km)ir
(kF)na (kp)no (kr)nn—1 1 (kr)pmsr -+ (kp)ar

(kp)ia (kp)i2 (kp)in—1 0 (kp)inr - (kp)p

(kr)2a (k)2 (kr)om—1 0 (kp)omsr -+ (kp)ar
(kF)n—l,l (kF>n—1,2 (kF)n—l,n—l 0 (kF)n—Ln—i—l e (kF)n—LF

0 0 0 —1 0 e 0

(kp)ns11 (kp)nt12 (k@)nsin-1 0 (kp)nsiner -+ (kp)ns1r

(kp)ra (kp)p2 (kr)rn—1 0 (kp)rns1 -+ (kp)pr

Straightforward calculation using Gaussian path integrals may be used to verify

that these operations satisfy the defining relations of Sp(2F,Z). Notice that, while

these relations are simple to prove, they nevertheless involve quantum field theory in

an essential way. If w is any word in the generators o; which is equal to the identity

element by a relation in the symplectic group, then the action of w on a given matrix

of levels K produces a new matrix w(K') which in general is not equal, as a matrix,

to K. Nevertheless, the path integral performed with the matrices K and w(K)

produce identical correlation functions. Thus, the relations in Sp(2F,Z) provide us

with elementary, provable examples of duality in three-dimensional conformal field
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theory.

Let us now turn our attention to the partition function Z for this class of models.
Since Abelian Chern-Simons theory is free, an application of the localization formula
(4.1.2) reduces the computation to a simple Gaussian integral which is a function of

an F-dimensional vector z of chemical potentials for the U(1)¥ flavor symmetry

Y
Z(x) = /de exp |—mi(y x) K : (4.2.9)
T
The integral is trivially done to obtain*
1
Z(z) = ————=cexp |—miz' 2], T =kp — kykg ks (4.2.10)

V| det(ke)|

From the resulting formula we see that the partition function is labeled by two in-

variants

| det (k)| € N, regl(F,QuU{x}), =1 (4.2.11)

The possibility that the matrix 7 may have infinite entries is included to allow for
non-invertible kg. In that case, the associated vector in the kernel of kg describes
a massless U(1) vector multiplet and the flavor variable coupling to this multiplet is
interpreted as a Fayet-Illiopoulos parameter. At the origin of this flavor variable the
vector multiplet in question has a non-compact cylindrical Coulomb branch. This flat

direction is not lifted when computing the path integral on S* because the R-charge

4As remarked in the introduction, we are only interested in Z up to overall phases independent
of all flavor variables. Thus in the following formulas we neglect such phases.
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assignments do not induce conformal mass terms. This implies that the partition
function Z has a diveregence. Meanwhile, away from from the origin the non-zero
FI parameter breaks supersymmetry and Z vanishes. In total then, the partition
function is proportional to a delta function in the flavor variable, and the narrow
width limit of the Gaussian, when entries of 7 are infinite, with infinite coefficient,
det(kg) — 0, should be interpreted as such a delta function.

The partition function formula (4.2.10) provides another context to illustrate the
symplectic group Sp(2F,Z) on conformal field theories, in this case, via its action on
the invariants (4.2.11). A general symplectic matrix can be usefully written in terms

of F x F blocks as

A B
R RT, (4.2.12)
D

where R is certain invertible matrix which transforms the standard symplectic form to
our choice (4.2.3) whose precise form is not important. Then, the action of symplectic
transformations on 7 is simply the standard action of the sympletic group on the Siegel
half-space

T — (A7 + B)(Cr + D). (4.2.13)

Meanwhile, det(k¢g) transforms as a modular form
det(kg) — det(CT + D) det(ke). (4.2.14)

Thus the symplectic action on field theories reduces, at the level of partition functions,

to the more familiar symplectic action on Gaussian integrals.

140



Chapter 4: 3d Superconformal Theories and Mirror Symmetry

Before moving on to additional methods for studying these theories, let us revisit
the issue of Chern-Simons couplings involving a background U(1)gr gauge field. As
remarked above such couplings are forbidden by superconformal invariance. Never-
theless, to elucidate the physical content of Z(x) as well as the partition functions on
interacting field theories appearing later in this paper it is useful to examine exactly
how such spurious terms would enter the result.

The squashed three-sphere partition functions under examination are Euclidean

path integrals on the manifold
2, Lo 2
blzrf” + lzl” =0, (21,20) €C%, beER,. (4.2.15)

This geometry is labelled by a parameter b, a positive real number; however the

symmetry under b — 1/b allows us to restrict our attention to the parameter

6= % <b + %) | (4.2.16)
In this geometry preservation of supersymmetry requires one to turn on background
values for scalars in the supergravity multiplet. While these fields are normally real,
like the real mass variables z; coupling to the ordinary flavors, in this background
they are imaginary and proportional to ¢,. As a result R— R Chern-Simons levels, and
R-flavor Chern-Simons levels appear as Gaussian prefactors in the partition function

of the form

exp (imkgr(cy)® + 2mikpp(cy)z) - (4.2.17)

From the above, we note that the R — R Chern-Simons levels appear as multiplicative
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constants independent of the flavor variables x. Since we are interested in computa-
tion of partition functions up to overall multiplication by phases such terms are not
relevant for this work. On the other hand, the R — F' Chern-Simons terms appear as
linear terms in x in the exponent. One can easily see why such terms violate supercon-
formal invariance. The round three-sphere partition function for the conformal field
theory in the absence of background fields is given by evaluating Z(z) at vanishing z
and ¢, = i. The first derivative with respect to x evaluated at the round three-sphere

and vanishing x therefore computes the one-point function of the associated current

0x Z(2)|2=0,cp=i ~ krr ~ (JF)- (4.2.18)

As the three-sphere is conformal to flat space, conformal invariance means that this
one point function vanishes implying that krr must also vanish.

Quite generally throughout this paper we encounter examples of partition func-
tions of interacting CFTs where the naive value of kg, as extracted from the first
derivative of Z(z) evaluated at the conformal point, does not vanish. Superconformal
invariance can always be restored in such examples by explicitly including ultraviolet
counterterm values for krp to cancel the spurious contributions [71]. Thus, from now
on we write expressions for partition functions with non-vanishing first derivatives,
always keeping in mind that the true physical partition function of the conformal

theory is only obtained by including suitable counterterms.

142



Chapter 4: 3d Superconformal Theories and Mirror Symmetry

Quantum Mechanics and Partition Functions

The partition function calculations and Sp(2F, Z) action described in the previous
section can be phrased in a useful structure analogous to elementary quantum me-
chanics. We consider the Hilbert space of complex valued functions of F' real variables
and aim to interpret Z(x) as a wavefunction.’

First, introduce position and momentum operators acting on wavefunctions and
consistent with the symplectic matrix J introduced in (4.2.3)

i 0 " 1 0 (35, 55] 7
a5 _Aa_ a_ 5 Ty, Pjl = =
2 a.’ll'j 2w (91'3;1 Pj 2

Ti — x;, ij — (5i7j _5i,j+1)- (4219)

We use Dirac bra-ket notation for states, and let |y) denote a normalized simultaneous

eigenstate of the position operators

Bl =uly), (@) =8@—y), 1= / dy 5y, (4.2.20)

For convenience we also note that the wavefunction of a momentum eigenstate takes

the form

(ylp) = exp [27i (y1p1 + ya(p1 +pa) + -+ +yr(pr + P2+ +pp))].  (4.2.21)

On this Hilbert space there is a natural unitary representation of Sp(2F,Z). This

®As is typical in quantum mechanical settings, we have need of wavefunctions which are not
square integrable. Indeed all the partition functions associated to pure Chern-Simons theories are
non-normalizable.
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representation is defined using the generators (4.2.4) as follows®

Ogj_1 F> €xp (—m:t?) , T9j > €Xp (—mﬁ?) . (4.2.22)

One important feature of this representation is that its action by conjugation on po-
sition and momentum operators produces quantized canonical transformations. Ex-

plicitly, if M is any symplectic transformation we have

F F 2F
M (Z CLQj,lL%j + a/2jﬁj> Mil = Z Z (ng,Lkak) i’j + (ng,kak)ﬁj. (4223)

j=1 j=1 k=1

This fact underlies the significance of this representation in all that follows.
We now wish to show that we may interpret the partition function of a theory ¥

as a wavefunction of an associated state |U)
Zy(z) = (z|¥). (4.2.24)

Of course both wavefunctions and partition functions are complex-valued functions
of a F' real variables x; so we are free to make the identification appearing in (4.2.24).
The non-trivial aspect of this identification is that the Sp(2F,Z) action on quantum
field theories, defined by the operations appearing in (4.2.5)-(4.2.6) can be achieved
at the level of the partition function by the action of the operators of the same name

defined by the representation given in (4.2.22). To see that these quantum mechanics

6Technically speaking, the operators above must be multiplied by a certain overall (operator
independent) phase. However, since we are ignoring phases in our partition functions, we will also
ignore overall phases in quantum mechanics matrix elements.
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operators behave correctly, note that given any arbitrary state |¥) we have
(x|09j-1| W) = exp(—ima?) (x| V). (4.2.25)

Thus, if the state |¥) corresponds to a quantum field theory with partition function
(x|W), then the integral definition of the partition function given in equation (4.2.9)
implies that oy, shifts the background Chern-Simons level for the j-th flavor by one
unit as expected. We can similarly see that the quantum mechanical o9; operator

acts as required. We have

(x|og | W) = /dde(mk — )W Y (Uy). (4.2.26)
ki

This is exactly the action expected for the S operation at the level of partition func-
tions. It performs a change of basis on the flavors, given by the U matrix, and

introduces a single new gauge group with specified Chern-Simons levels.

SL(2,7Z) Examples As a sample application of the above ideas, we present here
a simple set of calculations based on SL(2,Z), relevant for the case of a single fla-
vor symmetry. Our symplectic transformations acting on quantum field theories are

generated by the familiar operators S and T subject to the relations’

S? = (ST)* = 1. (4.2.27)

"As usual we ignore phases in Z and hence the central element S? can be set to the identity.
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T acts on theories by increasing the Chern-Simons level of the flavor
T: kG — k?G7 k‘M — k’M’ k?F — k?F + 1, (4228)

while the S generator acts to gauge the flavor symmetry and introduces a new flavor

which is dual to the original symmetry

ke kum
S kg — , kﬂ%(o 0 --- 0 1), krp — 0.
kKT kp

(4.2.29)
The relevant quantum mechanics is now single variable for the single U(1) flavor

symmetry with standard commutation relations
[Z,p] = —. (4.2.30)
And the representation of symplectic transformations is given by
T — exp (—imi’Z) , STS ! — exp (—imﬁ2) . (4.2.31)

A simple class of theories is defined starting from the trivial theory €. This theory
has no gauge groups and vanishing flavor Chern-Simons levels. Its partition function
is unity

Zo(z) = (2]Q) = 1. (4.2.32)

More interesting theories can be generated by starting with the trivial theory 2 and

acting with S and 7. For a general SL(2,7Z) element O we have the following result
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for the partition function®

rot 1
0= € SL(2,Z) = Zo(z) = (z|0|Q) = ——= exp (—irz’t/u) .
s u VIl
(4.2.33)
The answer thus takes the general form (4.2.10) with associated invariants
| det(kg)| = u, T =1/u. (4.2.34)

Notice that, consistent with our general discussion, a particular element O defines a
particular quantum Abelian Chern-Simons theory, not a classical Lagrangian presen-
tation of such a theory. To obtain such a Lagrangian presentation, one must pick a
word in the generators S and 71" which is equal to the given element M. Different
words in the generators which are equal to the same fixed O provide examples of dual

theories.

Doubled Flavor Variables, Operator Multiplication, and Gauging The
SL(2,7Z) examples described above can be readily extended to the case of more flavor
symmetry. For any F' we consider the F-variable quantum mechanics described in
section 4.2.1 and introduce a trivial theory 2 with unit partition function. Then, if
O is any element of Sp(2F,Z) we can consider a quantum theory generated by acting
with O on the trivial theory. The resulting partition function can be expressed as the

wavefunction obtained by acting on the vacuum state |(2), a normalized momentum

8Formula (4.2.33) is correct when u is non-vanishing. In the special case where u = 0 the result
is just Zo(x) = (x).
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eigenstate with eigenvalue zero

Z@(Zﬁh" : ,IL‘F) = <ZE1,' c ,$F|O|Q> (4235)

As in the case of a single flavor symmetry discussed above, the resulting quantum
field theory and partition function depends only on the element O in Sp(2F,Z),
while a particular Lagrangian realization of the theory requires a choice of word in
the generators o, which represents O.

This quantum mechanical setup naturally suggests additional quantities to com-
pute. Rather than considering the wavefunction of O acting on the trivial state |2),
we may instead double the flavor variables and compute the complete matrix element

of O

ng(‘rh“' Yy LE, Y1, JyF) = <l’1,"' ;IF|O|y1;"'yF>- (4236)

Where in the above the superscript ‘Op’ for operator, is used to distinguish from the
partition functions introduced in (4.2.35). For O € Sp(2F, Z) a symplectic operator,
the matrix element ng, is the partition function of an Abelian Chern-Simons theory
now coupled to 2F" background flavor fields.

The construction of (4.2.36) is not limited to the case of symplectic operators.
Indeed, in section 4.5 we will see that an interesting class of non-symplectic operators
O have matrix elements which are identified with partition functions of interacting
three-dimensional conformal field theories coupled to 2F flavor fields. In general, such

matrix element partition functions have the following features.
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o If Z0P(x,y) is known then the partition function Zp(x) is determined,

Zo(x) = / dy Z9"(z,y). (4.2.37)

In the physical interpretation we have developed, the integration over the y
variables is the gauging of the associated flavor variables at vanishing values of

the associated FI parameters.

e More generally, the quantum-mechanical operation of operator multiplication
can be interpreted in field theory. A product of operators can always be decom-

posed into a convolution by an insertion of a complete set of states

ngOQ (x,y) = /dz ng(a:, z)ng(z, ). (4.2.38)

Again, the integration is physically interpreted as gauging. We consider the two
theories, whose partition functions are given by the matrix elements of O;, we

identify flavors as indicated in (4.2.38) and gauge with no FI-term.

° ng (x,y) is a partition function of a theory coupled to 2F background fla-
vor fields. A general theory of this type is acted on by the symplectic group

Sp(4F,Z), however a matrix element is acted on only by the subgroup
Sp(2F,Z) x Sp(2F,7Z) C Sp(4F,7Z) (4.2.39)

which does not mix the x and y variables. The geometrical and physical inter-

pretation of this splitting will be explained in section 4.5.
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4.2.2 Tangles

Our goal in this section is to give a geometric counterpart to the field theory
and partition function formalism developed in the previous analysis. A natural way
to develop such an interpretation is to engineer the Abelian Chern-Simons theory
by compactification of the Mb5-brane on a three-manifold M. In six dimensions, the
worldvolume of the Mb5-brane supports a two-form field B with self-dual three-form
field strength [72]. When reduced on a three-manifold, the modes of B may engineer
an Abelian Chern-Simons theory. We review aspects of this reduction and explain

the three-dimensional geometry required to understand the Sp(2F,Z) action.

Reduction of the Chiral Two-Form

Consider the free Abelian M5-brane theory reduced on a three-manifold M. To
formulate the theory of a chiral two-form, M must be endowed with an orienta-
tion which we freely use throughout our analysis. The effective theory in the three
macroscopic dimensions is controlled by the integral homology group H;(M,Z). The
simplest way to understand this fact is to note that a massive probe particle in the
theory arises from an M2-brane which ends on a one-cycle v in M. In particular the
homology class of v € Hy(M,7Z) labels the charge of the particle.

In the effective theory in three dimensions, massive charged probes are described
by Wilson lines. Let C' denote a one-cycle in the non-compact Minkowski space. A

general Wilson line can be written as

exp (iqa ]i Aa> . (4.2.40)
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If the theory in question has G gauge fields and F' flavor fields, then the charge
vector ¢, has G + F components and integral entries. However, in the presence of
non-vanishing Chern-Simons levels, the charge vector ¢ is in general torsion valued.
Thus, distinct values of the integral charge vector ¢ may be physically equivalent.
The allowed distinct values of the charge vector are readily determined by examining
the two-point function of Wilson loops in Abelian Chern-Simons theory coupled to
background vectors. The results are summarized as follows. Let Z¢ C Z%*F be the
subset of charges uncharged under the flavor group U(1). We view the level matrix
as specifying a map

K :7° — 7°%F, (4.2.41)

and those charge vectors in the image of this map are physically equivalent to no
charge at all.

Since we have determined that possible Wilson lines encode the homology of M
it follows that

H (M, 7) = 7257 /3(K). (4.2.42)

Equation (4.2.42) encodes the appropriate generalization of Kaluza-Klein reduction
to the case of torsion valued charges. The fact that we study Chern-Simons theories
up to possible framing anomalies (equivalently, overall phases in the partition func-
tion) means that the entire theory is characterized by the group (4.2.42). However,
the homology of M, and hence the underlying physics has no preferred description via
a classical Lagrangian. Indeed as we will illustrate in the remainder of this section,

distinct classical theories, with the same group of Wilson line charges, can in fact
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arise from compactification on the same underlying manifold M. Thus, already in
this elementary discussion of reduction of the two-form we see the important fact that
compactification of the M5-brane theory produces a specific quantum field theory not,
as one might naively expect, a specific Lagrangian presentation of a classical theory
which we subsequently quantize. It is for this reason that our geometric construc-
tions of field theories are powerful, for in these constructions, quantum dualities are
manifest.

Finally, before moving on to discuss explicit examples we remark on the geometry
associated to flavor symmetries. These arise when the manifold M is allowed to
become non-compact. Suppose that M develops cylindrical regions near infinity which
take the form of R x Ry x S*. Then on the asymptotic S! cycle we may reduce the

two-form field to obtain another gauge field

A= | B (4.2.43)
g1

However, unlike the compact cycles in the interior of M, the cycle S* has no compact
Poincaré dual and hence A is a non-dynamical background field; it provides the
effective theory in three dimensions with a U(1) flavor symmetry. Moreover, since
the boundary behavior of A must be specified to obtain a well-defined theory in three
dimensions, the resulting theory is of the type we have considered in the introduction:
a theory with flavor symmetries and a specified coupling to background gauge fields.
As a result the partition function Z(x) is a well-defined observable of the theory. The
number of flavor variables on which the result depends is the number of homologically

independent cylindrical ends of M. For F' flavors we require F' + 1 cylindrical ends.
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Double Covers From Tangles

The specific class of geometries that we will study are conveniently presented as

double covers over the non-compact space R?, branched over a one-dimensional locus
L

vz

M (4.2.44)

|

LCR?
Topologically L is simply the union of F' + 1 lines, however its embedding in R? is
constrained. On the asymptotic two-sphere at the boundary of three-space, we mark
2F + 2 distinct points py, - - - popio. The 2F + 2 ends of L at infinity are the points
p; . Meanwhile, in the interior of R? the components of L may be knotted. Such an
object is known as an (F + 1)-tangle. An example in the case of F' =1 is illustrated

in Figure 4.2. Given two distinct tangles L; and L,, they are considered to be equal

2\&\3\/‘ !

Figure 4.2: A tangle. The four endpoints of L extend forever towards the points at
infinity.

p3

topologically when one can be deformed to the other by isotopy in the interior of R3

which keeps the ends at infinity fixed.
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In the following we will also need to be more precise about the behavior near the
asymptotes p;,. Let B, C R? denote the exterior of a closed ball of radius 7 centered at
the origin. We view B, topologically as S? x I where I is an open interval. For large r
the portion of the tangle LN B, contained in B, consists of 2F +2 arcs. We constrain
the behavior of these arcs by requiring that the pair (B,, L N B,) is homeomorphic
to the trivial pair (S? X I, {p1,p2, - ,Pars2} X I) where the p; are points in S?. This
constraint implies that the knotting behavior of the tangle eventually stops as we
approach infinity. In practice it means that any planar projection of the tangle L
appears at sufficiently large distances as 2F + 2 disjoint semi-infinite line segment
which undergo no crossings.

For most of the remainder of this section, we will argue that the class of three-
manifolds obtained as double covers branched over tangles have exactly the correct
properties to engineer the Abelian Chern-Simons theories coupled to a background
flavor gauge field which we have discussed in the previous section. As a first step,
observe that such geometries do indeed support F flavor symmetries. Group the
asymptote points into F + 1 pairs {ps;_1,p2i}. The double cover of R branched over
the two straight arcs emanating from {pg;_1,po;} yields the anticipated cylindrical
ends of M required to support flavor symmetry. The fact that there are 2F + 2
asymptotes ensures that there are exactly F' independent flavor symmetries; note
that one linear combination of the asymptotic cycles can be contracted in the interior
of the manifold.

In section 4.2.3 we explain how to extract a Lagrangian for an Abelian Chern-

Simons theory from the geometric data of a tangle. As we have previously described,
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the M5-brane on M does not provide a preferred Lagrangian. Consistent with this
fact, we find that a Lagrangian description of the field theory associated to a particular
tangle requires additional geometric choices. In this case the choice is a Seifert surface,
a surface whose boundary is the given tangle. For any fixed L there are infinitely
many such surfaces each giving rise to a distinct Lagrangian presentation of the same
underlying physics.

Finally we argue that tangles, and hence the class of three-manifolds described as
double covers branched over tangles, enjoy a natural action by Sp(2F, Z). To illustrate

this action, we draw a generic tangle with '+ 1 strands as in Figure 4.3. Then, the

Figure 4.3: A generic tangle L in R3. The ellipsis indicate that the strands continue
to infinity with no additional crossings. In the interior of the box, the strands are in
general knotted in an arbitrary way.

action of the symplectic group is defined by the generators o; where j = 1,---2F,
which act on the tangles by braid moves in a neighborhood of the asymptotes p;.
Several examples are illustrated in Figure 4.4.

One way to understand this three-dimensional geometry is to note that the bound-
ary at infinity of M is a double cover of S? branched over 2F + 2 points, and hence
is a Riemann surface of genus F'. The action defined in Figure 4.4 is a surgery on M
which in general changes its topology. This surgery is induced by mapping class group

transformations in a neighborhood of the boundary of M. In particular, as is clear
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(a) Odd Braid Moves (b) Even Braid Moves

Figure 4.4: The symplectic action on the tangles. In (a) a typical odd generator
Oont1- In (b) an even generator og,.

from the illustrations, what we have defined is not, a priori, an action of the symplec-
tic group, but rather an action of the braid group, Baryi on 2F +1 strands [73].° The

braid group and the symplectic group are related by a well-known exact sequence

1— 75[7+1 — BQF+1 — Sp(QF, Z) — 1, (4245)

where Topyq is the Torrelli group. To make contact with our discussion of field
theories, we wish to illustrate that the action of the braid group defined by Figure
4.4 reduces to an action of the symplectic group on the associated field theories. This
implies that any two elements of By, that differ by multiplication by a Torelli
element must give rise equivalent actions on the field theories extracted from an
arbitrary tangle. More bluntly, the Torelli group generates dualities. One of the

outcomes of this section is a proof of this fact.

9The ‘last strand’ appearing at the bottom of the diagram in Figure 4.3 is stationary under all
braid moves. Alternatively one may work with the spherical braid group and impose additional
relations. For simplicity we stick with the more familiar planar braids.
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4.2.3 Seifert Surfaces

To understand the physics encoded by a tangle we need control over the homology
of the cover manifold M. The appropriate tool for this task is a Seifert surface. In
general given any knot'?, a Seifert surface 3 for the knot is a connected Riemann
surface with boundary the given knot. An example is illustrated in Figure 4.5. In the
mathematics literature it is common to impose the additional requirement that X be
oriented. In our context there is no natural orientation for ¥ and hence we proceed

generally allowing possibly non-orientable Seifert surfaces.

(a) Pretzel Knot (b) Seifert Surface

Figure 4.5: A sample Seifert surface. In (a) a pretzel knot in the three-sphere. In (b)
a Seifert surface for the knot.

For any knot, there exist infinitely many distinct Seifert surfaces; alternatively,
given a knot diagram there are a number of simple algorithms to construct a 3 [74].
We describe one useful algorithm in section 4.2.3. Seifert surfaces are relevant for
our discussion because, if one wishes to construct a double cover branched over a
knot, then a choice of ¥ is equivalent to a choice of branch sheet. As such, features

of the homology of the branched cover M can be extracted from a knowledge of a

10Tn this paper the term knot will be used broadly to include both knots and multicomponent
links.
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Seifert surface. However, the resulting three-manifold M depends only on the branch
locus L and hence the homology and ultimately the associated physical theory are
independent of the choice of ¥. In the following we explain how any fixed choice of
Seifert surface allows us to extract a set of gauge and flavor groups and a matrix of
Chern-Simons levels from the geometry.

To begin, we assume for simplicity that we are dealing with a knot in S3, as
opposed the non-compact tangles in R3 needed to support flavor symmetry. The
generalizations to the present non-compact situation will then be straightforward.
The detailed statements that we require are as follows. Any cycle in Hy(M,Z) can
be thought of as a cycle on the base S which encircles ¥. This can be viewed as
a direct parallel with the theory of branched covers of the two-sphere.!! Thus, we

deduce that there is a surjective map

H,(S? - %,Z) — H\(M,Z) — 0. (4.2.46)

Meanwhile, there is a linking number pairing between cycles in H;(S* — ¥, Z) and
cycles in Hy(3,7Z). This linking number pairing is perfect and hence we may extend
(4.2.46) to

H\(%,7) = H(S* - %,Z) — H,(M,Z) — 0. (4.2.47)

Our task is thus reduced to determining which cycles on the Seifert surface correspond

to trivial cycles in the homology of M.

1Tn making this comparison it is crucial that the branch locus is connected.
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To this end, we define a symmetric bilinear form, the so-called Trotter form

K : H\(S,Z) x Hi(%,7) — Z. (4.2.48)

Our choice of notation is intentional: we will see that the Trotter form defines the
Chern-Simons levels. To extract K we let o € H{(3,7Z), and set & to be the cycle
in S3 obtained from locally pushing « off of ¥ in both directions. The cycle & is a
two-to-one cover of a.. If ¥ is orientable then a consists of two disconnected cycles
each on a given side of ¥ (as determined by the orientation), however in general a

may be connected. The definition of the Trotter form is

K(a, B) = lky(a, B), (4.2.49)

where k4 denotes the linking number pairing of cycles in S?. A simple calculation
illustrates that K is symmetric. A slightly less trivial argument shows that the image
of K (as a map from cycles to cocycles) is exactly the set of cycles on ¥ which are

trivial in M. Thus, the completion of the sequence (4.2.47) is

0—Im(K) — H(3,Z) = H(S® - %,Z) — H,(M,Z) — 0. (4.2.50)

In particular we conclude that Hy(M,7Z) = Hy(3,7Z)/Im(K).
Double covers of S? branched over knots are exactly the geometries we expect to
engineer Abelian Chern-Simons theories without flavor symmetries and we may relate

theorem (4.2.50) to physics as follows:
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e A choice of Seifert surface 3 and a set of generators of homology ay,--- ,ag

determines a set of G Abelian gauge fields.

e The Trotter form pairing on cycles in Hy(3,Z) is equal to the Chern-Simons

levels matrix on the associated gauge fields.

Distinct choices of Seifert surfaces are physically related by duality transformations.
This fact is easy to verify directly. For example, distinct choices of ¥ which differ by
gluing in handles or Mobius bands add new gauge cycles and compensating levels to
keep the underlying physics unmodified.

Finally, we generalize our discussion of Seifert surfaces and homology to the case
of non-compact geometries required to discuss flavor symmetries. Let L denote a
tangle in R3. We extend to the case of non-compact Seifert surfaces X, again defined
by the condition that they are connected surfaces with boundary L. However, now to
compute flavor data we must fix a compactification of both L and ¥. We achieve this
by identifying the points p; in pairs and glueing in arcs near infinity as illustrated in

Figure 4.6.

. : )

Figure 4.6: The asymptotic geometry of a Seifert surface for a generic tangle. The
shaded blue region indicates the interior of ¥. The arcs at infinity indicate the com-
pactification of L and . The non-compact cycles on ¥ give rise to flavor symmetries.

Let ¢ indicate the union of the arcs at infinity, and Y. the compactified Seifert

surface including §. The surface X, should be viewed as embedded inside S3, the one-
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point compactification of R?, and all calculations of linking numbers take place inside
S3. For simplicity in future diagrams we often leave the compactification data of the
Seifert surface implicit by setting the convention that whenever a non-compact Seifert
surface consists of strips extending to infinity in R? the intended compactification is
the one where the strips are capped off with arcs as in Figure 4.6.

With these preliminaries about compactifications fixed, we may now state the

required generalization of the sequence (4.2.50)

0 — Im(K) = Hy(S.,6,7) = Hi(R® — %, 7) — Hy(M,Z) — 0. (4.2.51)

Note that in addition to the boundaryless cycles in . which give rise to gauge
groups, H; (3., d,7Z) also contains F' cycles with boundary in 0. In the uncompactified
Seifert surface these cycles are non-compact and illustrated in Figure 4.6. They
correspond physically to the U(1)!" flavor symmetry. To complete the construction,
it thus remains to extend the definition of the Trotter form. For boundaryless cycles in
Y, the definition is as before. Meanwhile to evaluate the Trotter form on cycles with
boundary, we again push them out locally in both directions from Y. and compute
the local linking number from the interior of . Alternatively, one may simply think
of the pair of points in the boundary of a flavor cycle in 3. as formally identified. In
this way we obtain a closed cycle in S® and we compute its Trotter pairings as before.
In this way we obtain a bilinear form K defined on H;(X.,0,Z), and the image of
this form restricted to the boundaryless cycles in Hy(3,, d,Z) defines the term Im(K)
appearing in (4.2.51).

To summarize, given any tangle L in R3, we extract a Lagrangian description of
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the effective Abelian Chern-Simons theory as follows:

e A choice of Seifert surface ¥ and a set of generators of the relative homology
Hy(3.,6,Z), ay,- -, agyr, determines a set of Abelian vector fields. Generators
corresponding to boundaryless one-cycles correspond to gauged U(1)’s while
those corresponding to one-cycles with boundary in 6 are background flavor

fields.

e The Trotter form pairing on cycles in H; (3., d,Z) is equal to the Chern-Simons
levels pairing on the associated vector fields. We denote by Im(K) the image of

this pairing restricted to the subset of boundaryless cycles in X, and we have

{Wilson Line Charges} = Hy(%,,,Z)/Im(K) = H (M, Z). (4.2.52)

Checkerboards

The previous discussion of Seifert surfaces is complete but abstract. For com-
putations with explicit examples, it is useful to have a fast algorithm for comput-
ing the relevant linking numbers and hence extracting a set of Chern-Simons levels
from geometry. One such method, described in this section, is provided by so-called
checkerboard Seifert surfaces.

To begin, fix a planar projection of the tangle L C R3. In such a planar diagram,
information about the knotting behavior of L is contained in the crossings in the
diagram. Fach crossing locally divides the plane into four quadrants. We construct
a Seifert surface for L by coloring the two of the four quadrants at each crossing in

checkerboard fashion and extending consistently to all crossings. The colored region
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then defines ». Note that each crossing ¢ in the diagram is endowed with a sign
((¢) = £1. The sign is given by the orientation of the crossing ¢ (over- or under-
cross) relative to the Seifert surface itself. Imagine rotating the under-strand through
the surface to align with the over-strand. If this rotation is counter-clockwise, the

sign is 41, if clockwise, the sign is -1; see Figure 4.7.

Figure 4.7: Checkerboard colorings and their associated signs. In (a), a positive
crossing. In (b), a negative crossing.

To compute the Trotter form, we first assume that . appears compactly in the
plane.!? Then, there is a natural basis of boundaryless cycles in 3. associated to
the compact uncolored regions of the plane. We orient these cycles counterclockwise.
Similarly, in the diagram of 3, non-compact white regions may be associated to flavor
cycles. These cycles are again canonically oriented “counterclockwise,” i.e. the cross-
product of the tangent vector to the cycle with the outward normal pointing into the
associated non-compact uncolored region must be out of the plane.!> The Trotter
pairing on these cycles is determined by the summing over crossings involving a given

pair of cycles weighted by the sign of the crossing. Explicitly, for o and § a pair of

12This assumption cannot in general be relaxed. Indeed when ¥. is non-comact in the plane
one must take into account the fact that in the compactification procedure, the plane becomes an
embedded S? inside S$® and hence may endow X, with additional topology.

13There is one linear relation among the flavor cycles obtained in this way. So a given ¥ will have
F + 1 non-compact uncolored regions and F' independent flavor cycles.
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generators as defined above we have

+ ) Cle) ifa#p,
K(a,B) =4 @fc (4.2.53)

=3 (o) ifa=8

acce

Equation (4.2.53) provides a convenient way to read off Chern-Simons levels for a
given tangle and will be utilized heavily (although often implicitly) throughout the

remainder of this work.

4.2.4 The Torelli Group of Dualities

We are now equipped to investigate the symplectic action on tangles. In particular,
we wish to prove that the action of the braid group Bsri; on tangles, reduces to
an action of the symplectic group Sp(2F,Z) when considered as an action on the
corresponding physical theories.

To prove this statement, we proceed in the most direct way possible. We compute
the action of the braid group generators o, illustrated in Figure 4.4, on the Chern-
Simons levels extracted from any Seifert surface associated to the tangle. We show
that this action matches exactly the previously defined action (4.2.5)-(4.2.6). Since
the later action is symplectic this implies that the former is as well. In particular,
this suffices to prove that the Torelli group acts trivially on the underlying quantum
field theory.

To begin, we fix a Seifert surface with definite compactification data J. As we

have previously described, § is a union of F' + 1 arcs §; with ¢ = 1,--- | F + 1. We
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draw diagrams such that the arcs are ordered down the page, with §; appearing at the
top, 02 next and so on. A basis of flavor cycles in H(X,.,d,7Z) is given by F cycles «;
each of which begins at dp,; and terminates at §;. This geometry is shown in Figure

4.6. With these conventions, the braid moves act as in Figure 4.8.

E— c— .D 6[ A’—- -:) 5]
; Sy} / =...> 5,
-5, Db
(a) The action of o1 on L (b) The action of o3 on L

Figure 4.8: The action of braid moves on linking numbers. In (a), all linking numbers
are unmodified except for those of the flavor cycle a; which runs from g, to 07
(illustrated in red), whose self-linking number is increased by one. In (b), we first
change basis of flavor cycles from aj to ;. Then we gauge ;, shown in green, and
introduce a new flavor cycle, shown in red, linked with the gauged cycle.

Consider first the odd braid moves oy;_; illustrated in Figure 4.8a. According to
formula 4.2.53, the effect of such a move is to modify the Trotter form by increasing
K (a;, o) by one while leaving all other entries invariant. This is exactly the expected
action given by (4.2.5) on Chern-Simons levels for this transformation.

Similarly we may consider the braid moves with even index oy; illustrated in
Figure 4.8b. To understand this transformation we first change basis on flavor cycles
to B; which run from ¢; to d;,;. The transformation from the basis «; to the basis f;
is given by the matrix U in (4.2.6)-(4.2.7). Then, the braid move oy, gauges §; and

introduces a new flavor cycle Ej. Finally, we update the Trotter form to account for
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the new linking numbers apparent in Figure 4.8b

SK(B;,8)) = —1, SK(B;, ;) = —1, SK(B;,B;) = 1. (4.2.54)

This is exactly the gauging operation of equation (4.2.8). Thus we have competed
the verification of the symplectic action.

As a result of this analysis we conclude that the Torrelli group Topy1 acts via
dualities on Abelian Chern-Simons theories. Given any tangle one may act on it
with a Torrelli element to obtain a new geometry. Fixing Seifert surfaces, the two
geometries in general will have distinct classical Lagrangian descriptions yet their
underlying quantum physics is identical.

Moreover, as we see in section 4.3 and beyond, the technology of this section
generalizes immediately to the more complicated geometries required for constructing
interacting field theories. In particular, the symplectic action we have described arises
from braid moves near infinity and hence is enjoyed by any geometry with the same

asymptotics.

4.2.5 Geometric Origin of Quantum Mechanics

To conclude our discussion of Abelian Chern-Simons theories we briefly comment
on the origin of the quantum mechanical framework for partition function calculations
discussed in section 4.2.1. We fix an Abelian Chern-Simons theory 7 (M) engineered
by reduction of the M5-brane on a three-manifold M. The three-sphere partition

function of this theory then has an underlying six-dimensional origin as the M5-brane

166



Chapter 4: 3d Superconformal Theories and Mirror Symmetry

partition function on the product manifold M x S3,
ZIM = ZM5 . (4.2.55)

Thus far, we have viewed M as small and interpreted the long-distance physics
as an Abelian Chern-Simons theory coupled to flavors which we subsequently com-
pactify on S®. However, an alternative point of view is to consider S* to be small,
and obtain another effective three-dimensional description which is subsequently com-
pactified on M. As S? has vanishing first homology, the resulting three-dimensional
description is one with no Wilson line observables. From the point of view of this
paper, which studies partition functions on compact manifolds up to multiplication
by overall factors, we cannot distinguish the result from the trivial theory.

However, a standing conjecture is that in fact the reduction on S gives rise to a
U(1) Chern-Simons theory at level one. Assuming the veracity of this statement, we
then arrive at a beautiful physical interpretation of the quantum mechanical calcula-
tions in section 4.2.1.

Recall that M is not a compact manifold, but rather has non-compact cylindri-
cal ends required to support flavor symmetry. One may equivalently view M as a
manifold with boundary at infinity and with specified boundary conditions supplied
by the background flavor gauge fields. On general grounds, the path-integral of U(1)
level one Chern-Simons theory on M produces a state in the boundary Hilbert space
determined by the quantization of Chern-Simons theory on M. In this case, as a
consequence of the conjecture, one is quantizing a space of U(1) flat connections on

a Riemann surface with 2F" independent cycles. The Hilbert space thus consists of
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wavefunctions of F' real variables x, - - -z, which are interpreted as the holonomies
of a flat connection around a maximal collection of F' non-intersecting homology
classes in OM. The symplectic action is then the standard action in this Hilbert
space induced by the action on the homology of the genus F' Riemann surface M.
Thus, the quantum mechanical framework which emerged abstractly from super-
symmetric localization formulas in section 4.2.1, takes on a natural physical interpre-
tation when the associated field theories are geometrically engineered. In particular,
the viewpoint of the partition function Z;;(M) (x) as a wavefunction in a Hilbert space

is a simple consequence of the six-dimensional origin of the computation and leads to

a correspondence of partition functions
ZTM () = 200 (). (4.2.56)

This identification is reminiscent to the one studied in [75] and was obtained in the

case of three-manifolds from different perspectives by [76,77].

4.3 Particles, Singularities, and Superpotentials

In this section we exit the realm of free Abelian Chern-Simons theories and en-
ter the world of interacting quantum systems. We study conformal field theories
described as the terminal point of renormalization group flows from Abelian Chern-
Simons matter theories. Thus, in addition to the vector multiplets describing gauge
fields, our field theories will now have charged chiral multiplets. We will find that, in

close analogy with the study of A/ = 2 theories in four-dimensions, such theories can
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be geometrically encoded by studying the Mb5-brane on a singular manifold. In the
context of three-manifolds branched over tangles the natural class of singularities are
those where strands of the tangle collide and lose their individual identity. We refer
to such objects as singular tangles. Our main aim in this section is to give a precise
description of these objects and explain how they encode non-trivial conformal field
theories. In the process we will also describe how the geometry encodes superpoten-
tials. A summary of results in the form of a concise set of rules for converting singular

tangles to physics appears in section 4.3.4.

4.3.1 Singularities and Special Lagrangians

We begin with a discussion of the geometric meaning of chiral multiplets and
their associated wavefunctions in the three-sphere partition function. In our M-theory
setting, the three-manifold M is embedded in an ambient Calabi-Yau (), and massive
particles arise from M2-branes which end along M on a one-cycle. In the simplest
case of a spinless BPS chiral multiplet, supersymmetry implies that M is a special-
Lagrangian and the M2-brane is a holomorphic disc as illustrated in Figure 4.9 [78,79].
The mass of the BPS particle is proportional to the area of the disc, and hence in the
massless limit the cycle on which the M2-brane ends collapses.

Thus, when a particle becomes massless the three-manifold M develops a singu-

larity. A local model for this geometry is a special Lagrangian cone on T? in C3. Such
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Figure 4.9: A particle represented by an M2-brane disc ending M. The M2-brane is
the red disc located in the ambient space (), while the dark blue circle represents the
cycle of the three-manifold on which it ends.

a cone is defined to be the subset Ly in C? obeying [50]

Lo = {(21722,23) € C:|z1]? = |2 = |z3]?, Im(z12222) =0, Re(z12023) > O} :
(4.3.1)
When the mass of the M2-brane is restored, the singularity is resolved. This can be

done in three distinct ways [50]. Let m > 0, then the resolutions are

LY = {(21,2,2) € CP: 21> —m = |f> = |2°, Im(z1202) =0, Re(z12025) > 0},
L2 = {(21,22,23) € C°: 21" = |2|* = m = |z3]>, Im(z12222) =0, Re(z12023) > 0},
Ly = {(21,22,23) € C*: |z1|” = |2]? = |z3]* = m, Im(z12222) =0, Re(z12223) > 0} .

(4.3.2)

The resulting spaces are special Lagrangain three-manifolds in C? [79] diffeomorphic

to S! x R%. They differ by the orientation of a closed holomorphic disc in C* with
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area m which represents the M2-brane. In the case of L} this disc is given by

D) ={(21,0,0): 21 € C, |z|* <m}. (4.3.3)

The other cases, D?, and D3? | are analogous. We see that the boundary of the disc
is an oriented S' in L! whose homology class generates H,(L! Z) = Z. In the
other cases the boundary is given by an oriented circle around the origin of z; and
z3 respectively. One can thus see that the difference between the three ways the disc
appears is determined by the orientation of its central axis in C3.

To make contact with our discussion of tangles we view this local model for the

singularity as a double cover over R®. The special Lagrangians L% are acted on by

the involution

The quotient space is parametrized by the triple (z1, 22, 73) € R® where z; = Re(2;).
Locally the z; provide coordinates on L¢ , but the global structure of the special
Lagrangian is a double cover. The branch locus is the fixed points of (4.3.4) and is

composed of two strands explicitly given by

Ll oy =Vt24+m, zo=t, x3=1t, and x1=—Vt2+m, 1o =1, 13 = —t,
L2 ixy=t, 2o =Vt2+m, x3=1t, and x;=t, 19 = —Vt2 +m, 13 = {4,3.5)

L%:xlzt, xo=1, v3=Vt2+m, and x; =1, 1o =—1, v3=—Vt>+m,

where £ € R provides a coordinate along the strands.

171



Chapter 4: 3d Superconformal Theories and Mirror Symmetry

One way to see that the branched cover is an equivalent description of the original
topology is to slice R? into planes labelled by a time direction. The coordinate t
on the branch lines in (4.3.5) provides such a foliation and increasing time defines a
notion of flow. Each slice is a Riemann surface which is a double-cover of the plane
branched over two points and is thus a cylinder. Therefore, including time, we see
that topologically the cover is R? x S'. We pursue this perspective on local flows in
M and connect them to four-dimensional physics in section 4.5.

Returning to our analysis of the special Lagrangian cone, we note that when
viewed as a double cover it is easy to see how the three different resolutions L, are
realized in terms of the configurations of the branch lines (4.3.5). We fix a planar
projection of the geometry by declaring Z3 to be the oriented perpendicular direction.

Then, we can depict the geometry as in Figure 4.10. Note that Figure 4.10c only

(a) (b) ()

Figure 4.10: The three different resolutions together with the M2-brane disc repre-
sented by a dashed line. The pictures are drawn in the projection to the (x1, z3)-plane.
In (a) we see the branch locus giving rise to the special Lagrangian L. . In (b), the
branch locus underlying L?. In (c) the branch locus underlying L3 .

shows the overcross. The other choice, where the strand from upper left to lower

right goes under the second strand, called the undercross, does not occur. This
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is an artifact of the planar projection which we use to visualize the configuration.
Indeed, exchanging the oriented normal 3 to —Z3 exchanges the overcross for the
undercross. By contrast, changing the normal direction from Z3 to Z; or 3 permutes
the resolutions appearing in 4.10 but leaves the triple, as a set, invariant.

In the limit m — 0 the branch lines collide and we recover the singularity (4.3.1).
In R3, this appears as four branch half-lines all emanating from the origin. These
half-lines approach infinity in four distinct octants and hence specify the vertices of
a tetrahedron. In this way, we see the tetrahedral geometry of [66] emerge from the
structure of special Lagrangian singularities.

Having thoroughly analyzed the local model, we may now introduce a precise
definition of the concept of a singular tangle. It is simply a tangle where we permit
pairs of strands to touch at a finite number of points. The local structure of the
cover manifold M at each such point is that of the singular special Lagrangian cone
discussed above, and the global identification of strands in the tangle indicates how
these local models are glued together. In specifying the gluing we must keep track of

additional pieces of discrete data.

e We draw singular tangles in planar projections of R3. Hence each singularity is
equipped with an oriented normal vector £23. Varying the sign of the normal

vector changes whether the overcross or undercross appears upon resolution.

e Fix a sheet labeling 1, and 2, at each singularity. Then in the gluing we must
specify whether the identified sheets are the same or distinct. Varying between
these two choices alters the relative signs of the charges of the particles as

determined by the orientation of the M2-branes.
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Both of the data described above have only a relative meaning: for a single singularirty
they are convention dependent while for multiple singularities they may be compared.
All told then, if we draw singular tangles in a plane, each singularity is one of four
possible types. We encode the four possibilities graphically with a thickened arrow on

one of the strands passing through the singularity as in Figure 4.11. The thickened

:x X - L

a (b)

Figure 4.11: Two different singularities. In (a) we see how an overcross singularity
resolves after applying Figure 4.10c. In (b) the corresponding resolution is shown for
the undercross singularity. In both cases the two other resolutions of Figure 4.10 are
also present but not depicted.

strand always resolves out of the page while the direction of the arrow encodes the

charge of the massless M2-brane residing at the origin of the singularity.

4.3.2 Wavefunctions and Lagrangians

Our next task is to explain in general how to extract a Lagrangian description of
the physics defined by a singular tangle. As in the case of the free Abelian Chern-
Simons theories studied in section 4.2, there is no unique Lagrangian but rather for
each choice of Seifert surface we obtain a distinct dual presentation. In the case
of singular tangles, we will see that these changes in Seifert surfaces are related by

non-trivial mirror symmetries.
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To begin, let us recall the data associated to a chiral multiplet in an Abelian

Chern-Simons matter theory.

e A charge vector q, € Z%*F indicating its transformation properties under
U(1)¢ x U(1)F gauge and flavor rotations. In all of our examples the vector g,
will be primitive meaning that the greatest common divisor of the integers ¢,

1s one.

e A parity anomaly contribution. If a chiral multiplet is given a mass m, it may
be integrated out leaving a residual contribution to the Chern-Simons levels of

fields. The shift in the levels in given by
L,
Okap = 551gn(m)qaq5. (4.3.6)

For primitive charge vectors the above shift has at least one non-integral entry.
This implies that the ultraviolet levels are subject to a shifted half-integral
quantization law. We take the associated shift to be part of the definition of

the chiral multiplet.

e An R charge indicating the scaling dimension of the associated chiral operator
in the conformal field theory. This data is fixed by a maximization principle
once a superpotential is specified, and hence is not an additional data in the

geometry [67]. This will be addressed in section 4.3.3.

To encode the partition function of such chiral multiplets we must introduce a

new class of wavefunctions depending on these data. Each is given by a non-compact
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quantum dilogarithm of the form

E.(z—c(1—R)) = e 5 s(—z+ (1 — R)), (4.3.7)
E_(z—c(1—R)) = €5 s,(z+ (1 — R)),

where ¢, is the imaginary constant given in (4.2.16), and the function s,(x), defined

as
o)

H(l _|_6(2n+1)7rib2+27rbm)
sp(x) = e712% =0 : (4.3.8)

H (1 + 67(2n+1)7rib_2+27rb_1:p)

n=0

was obtained through a localization computation on the squashed three-sphere in [80]
where the numerator and denominator come from vortex partition functions on the
two half-spheres [81]. The physical interpretation of this function is read from the

variables as follows.

e The subscript of F. encodes the fractional ultraviolet Chern-Simons level j:%

assigned to the particle.

e The variable z indicates the linear combination of gauge and flavor fields under

which the chiral multiplet is charged. For E. the charge is z = ¢ - (y z).
e The variable R denotes the R-charge.

Thus, we see that the physical data of a chiral multiplet is completely encoded
by the wavefunctions (4.3.7). It follows that to assign a definite matter content
to a singular tangle, as well as extract the associated contributions to the partition

function Z, it suffices to assign a quantum dilogarithm to each singularity. To proceed,
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we introduce a singular Seifert surface X for a singular tangle L. As explained in
section 4.2.3, from the homology of ¥ we extract a basis of gauge and flavor cycles
under which particles may be charged. Let o be such a cycle. Utilizing the sequence
(4.2.51), we may view a equivalently as a cycle in the cover M. An M2-brane disc D

ending on M has a charge determined by its linking numbers
o = lky (o, OD). (4.3.9)

The extension of this formula to the case of singular M is then depicted in our

graphical notation in Figure 4.12.

xa‘ o
)

(a) Ey(za (b) E4(—za)
(c) E—(za) (d) E-(~za)

Figure 4.12: The dilogarithm assignments for singularities. The particles are charged
under the U(1) super-field associated to the cycle « indicated in red, and z, is the
associated scalar. The overcross vs. undercross resolution encodes the distinction
between E and specifies the fractional part of Chern-Simons levels. The orientation
of the arrow on the thickened strand relative to o determines the sign of the particle’s
charge.

These dilogarithm assignments completely determine the matter content of a sin-
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gular tangle. However, the assignments require a choice of Seifert surface. This
surface is a choice of branch sheet for the double cover and varying it does not alter
the underlying geometry. As a consequence, our rules are subject to the crucial test:
the underlying quantum physics must be independent of the choice of Seifert surface.

Given the dualities between free Abelian Chern-Simons theories already described
in section 4.2, independence of the choice of Seifert surface is ensured provided we have

the equality shown in Figure 4.13. There, we see that one and the same singularity

(a) Ey(za) (b) E_(25)

Figure 4.13: A duality results from changing the Seifert surface. In (a) a singularity
contributing F. (x,) to the partition function. In (b) the Seifert surface is changed
and the same singularity contributes E_(zg).

may make different contributions to an ultraviolet Lagrangian depending on the choice
of Seifert surface. At the level of partition functions, this means that a singularity
which contributes as E.(z,) with one choice of branch sheet can contribute with
E_(xp) with a different choice. Thus, we see that consistency of our analysis requires
a mirror symmetry under which the same underlying conformal field theory may arise
from ultraviolet theories with distinct matter content.

To understand the nature of the duality implied by Figure 4.13 we analyze its
impact on the local model of the singular tangle involving a single singularity. Equal-
ity in more complicated examples follows from the locality of our constructions. The

singular tangle together with its dual choices of Seifert surface and fixed compactifi-
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cation data ¢; are shown in Figure 4.14. The ultraviolet field content in each case is

(a) (b)

Figure 4.14: The duality between a free chiral multiplet and a U(1) gauge field with
a charged chiral field. In (a) we see the free chiral field coupled to the flavor cycle .
In (b) we see the gauge cycle 5 and flavor cycle « of the dual theory.

given by the following.

e Figure 4.14a: There is a background U(1) flavor symmetry associated to the
cycle a and no propagating gauge fields. Associated to the singularity there
is a chiral multiplet with charge 1 under the flavor symmetry. This particle
contributes +% to the Chern-Simons level. The scalar x, in the background

U(1) multiplet is the real mass of the chiral field.

e Figure 4.14b: There is a U(1) flavor symmetry associated to the cycle « and a
U(1) gauge symmetry associated to the cycle 5. Associated to the singularity
is a chiral multiplet uncharged under the flavor symmetry and with charge —1
under the gauge symmetry. The level matrix, including classical contributions
from the Trotter pairing as well as the fractional contributions of the particles
is given by

K(8,5) = —%, K(a,a) =0, K(a,B) = 1. (4.3.10)
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The off-diagonal portion of the level implies that the scalar z, is the FI-

parameter of the gauged U(1).

These two field theories are indeed known to form a mirror pair [62]. At the
level of partition functions this equivalence is represented by a quantum dilogarithm

identity, known as the Fourier transform identity [69]
E(xqg—cp) = /dmﬁ e T B (14). (4.3.11)

The fact that our geometric description of conformal field theories provides a frame-
work where this duality is manifest is a satisfying outcome of our analysis.

To gain further insight into this duality we now study resolutions of the singularity
in both theories and interpret these from the viewpoint of three-dimensional physics.
These resolutions correspond to motion onto the moduli space of the conformal field
theory. From the perspective of the ultraviolet Lagrangians, the various branches of
the moduli space can be described as Coulomb or Higgs branches, and the effect of
the mirror symmetry is to exchange the two descriptions.!

The three different resolutions (4.3.5) have the following effect on the geometry of
branch lines, see Figure 4.15. Let us start with the case (c¢). One can clearly see that
the self-Chern-Simons level of the field «, as determined by the Trotter pairing, is
one. This has a simple explanation from the point of view of field theory. Resolving
the singularity means making the M2-brane massive with a mass m > 0. Thus the

IR physics is obtained by integrating out this massive field which according to (4.3.6)

4Here and in the following the term Coulomb branch will be used generally to include the expec-
tation values of scalars in both dynamical and background vector multiplets.
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W \/
(a) (c)

(b)

Figure 4.15: The three resolutions of the free Chiral field singularity. Part (a) corre-
sponds to the Higgs branch. Part (b) and (c¢) represent motion onto the two sides of
the Coulomb branch.

gives rise to a shift

1 1
0k = §sign(m) Gala = 5- (4.3.12)

Thus, as the ultraviolet Chern-Simons level was already one-half, the effective level
is one exactly as the geometry of resolution (c) predicts. There is yet another way to

see this. The limiting behavior of the quantum dilogarithm is as follows
E,(m) ——— e ™ (4.3.13)

which again gives CS-level one in the effective theory as in our case m = z,. Reso-
lution (b) corresponds to the other extreme where we take m < 0. This gives rise

to

kga = —=, (4.3.14)

which results in an effective Chern-Simons level k., = 0. This is in complete accord
with the geometry as cycle a has no self-linking after push-off in Figure 4.15b. Equiv-

alently, this can be again seen in the limiting behaviour of the quantum dilogarithm

Ey(m) — 1. (4.3.15)
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The two resolutions we have studied thus correspond to motion onto the Coulomb
branch of the theory parameterized by the real mass m.

Now let us come to resolution (a) which is of a different nature. In order to
understand what is happening we follow a path in the moduli space of the Joyce
special Lagrangian starting from a point which corresponds to a resolution (b) or (c)
to a point of resolution type (a). Along such a path the absolute value of the mass
of the particle shrinks, as the volume of the M2-brane disc shrinks, until the field
becomes massless at the singularity. As long as the field is massive it is not possible
to turn on a vacuum expectation value for the scalar ¢ of the chiral multiplet as this
would lead to an infinite energy potential. However, when we sit at the CF'T point
and the field is massless we can deform the theory onto the Higgs branch by activating
an expectation value for ¢. We draw the three branches of the theory schematically in

Figure 4.16. We claim that motion onto the Higgs branch corresponds to resolution

s
v
o

m<0 m>0

Figure 4.16: Moduli space of a free chiral field.

(a) on the geometry. In order to see how this comes about we flip the Seifert surface

to obtain the resolutions of the dual description of the theory as shown in Figure

182



Chapter 4: 3d Superconformal Theories and Mirror Symmetry

4.17. In this dual theory resolution (a) arises from choosing x5 < 0 as can be seen

B
() (v

Figure 4.17: Resolutions of the theory dual to a free Chiral field.

from the limiting behavior of the negative parity quantum dilogarithm

Tg—>—00

E_(z5) — 1. (4.3.16)

Thus in the dual channel this resolution is obtained by giving a vev to the scalar part
of a vector multiplet and therefore corresponds to a point on the Coulomb branch
of the dual theory. But then the D-term equation of the dual theory requires that
Z, be set to zero due to the Chern-Simons coupling of the two fields. Translating
back to the original theory we indeed see that m = z, = 0 and that we have a
propagating massless field. We therefore conclude that we are capturing the correct
effective description of the physics on the Higgs branch. For completeness we note
that the dual theory is on the Higgs branch for resolution (b) and on the Coulomb
branch for resolution (c). This can be easily seen by noting the limiting behavior of

the negative parity quantum dilogarithm for xzz > 0

TR—>00 )
E_(zg) —— €'™5. (4.3.17)

The fact that resolutions of singular tangles capture motion onto the moduli space
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of the corresponding conformal field theories is a general feature of our constructions

which will be pursued in more detail in section 4.4.2.

4.3.3 Superpotentials From Geometry

There is one more ingredient in defining a three-dimensional theory with N = 2
supersymmetry that we have yet to address: the superpotential. In this section we
fill this gap. As with previous constructions, we find that the precise form of the
superpotential as an explicit expression involving fields depends on a choice of Seifert
surface used to construct a Lagrangian description.

The superpotential itself has a straightforward geometric interpretation in terms of
M2-brane instantons, as described in [4]. Here we will briefly review that discussion.
Consider some collection of massless chiral fields, X;. Our M5-brane resides on a
three-manifold M, which is a double cover of R? branched over a singular tangle L.
Meanwhile, the entire construction is embedded in an ambient Calabi-Yau Q. As
studied above, each of the particles X; corresponds to a singularity of the tangle L.

Given this setup, a superpotential interaction for the chiral fields X; may arise from
an instanton configuration of an M2-brane. This is a three-manifold C' in ), whose
boundary dC'is a two-cycle in M that intersects the particle singularities X;. Consider
the projection of the instanton M2 to one sheet of the double cover, dC.. This must
be a polygon bounded by the tangle L with vertices given by the singularities of X;. A
volume-minimizing configuration of this three-cycle will correspond to an interaction
generated by a supersymmetric M2 instanton. This object is precisely of the correct

geometric form to generate a superpotential term of the schematic form W =[], X.
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(a) Projection of BPS Instanton (b) Lift to @

Figure 4.18: Projections of BPS M2-brane instanton to the base. A portion of the
branching tangle L is shown in black. The tangle has singular self-intersections sup-
porting massless particles shown in blue. In (a), the interior of the polygon, shown
in green, is the projection to M, of the boundary of an M2 instanton. In (b), we see
the lift of the M2 instanton to the ambient manifold (). Its boundary is doubled to
an S? presented as two hemispheres glued along L. In the interior, this S? is filled in
to make a three-ball.

To sharpen this discussion, there are several further considerations.

e The coefficient of the interaction is controlled by the instanton action, which
is proportional to e=V, where V is the volume of the supersymmetric three-
manifold C'. To generate a non-zero interaction, we need the three-manifold
to have finite volume. Since our framework allows a non-compact manifold M
with L going off to infinity, we must restrict our superpotential polygons on

0C4 to be compact.

e The instanton action gets a contribution of exp (z /. 8 B), from the boundary of
the M2 ending on the Mb5-brane. If 9C = 0, that is, the boundary of the M2

is a trivial two-cycle, then this term is irrelevant. However in general, 0C' is a
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non-trivial homology class and we find

exp (2 /a i B) = exp (i), (4.3.18)

where v is a scalar field dual to a photon. This indicates the presence of a
monopole operator M; = exp (¢ + i) in the superpotential. So in this situa-
tion, we find a superpotential W = M []. X;. Of course, more generally 0C'is
some integer linear combination of homology basis elements and so we might

find that the superpotential contains a product of several monopole operators.

e The invariance of W under all gauge symmetries apparent in the homology of
the Seifert surface implies a compatibility condition on the discrete data living
at the singularities bounding the associated polygonal region. To analyze the
charge, we make use of the fact that the exact quantum corrected charge of the

monopole operator is

1 o
ap(Ma) =kas =5 D laalas, (4.3.19)

Chirals X;

where kqs is the Chern-Simons level including both the integral part from the

Trotter form, and the fractional contribution from particle singularities.

Given the above discussion, the next step is to analyze the explicit geometry of
supersymmetric M2-brane instantons and determine which possible contributions in
fact occur. This problem is important, but beyond the scope of this work. For our
purposes we simply take as an ansatz that every possible gauge invariant contribution

to the superpotential arising in the geometry as a polygon bounded by singularities
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is in fact present.
With this hypothesis, to extract the superpotential in complete generality, we
analyze a candidate contribution by expressing the boundary two-cycle dC' in a basis

of two-cycles {f3,} dictated by the Seifert surface

0C = cafa VA (4.3.20)

For example, when utilizing the planar checkerboard Seifert surfaces discussed in
section 4.2.3, the sum a ranges over compact un-colored regions, associated to gauge
cycles, as non-compact un-colored regions associated to flavor cycles. Then, the term

in question is

[Tme IT X (4.3.21)

a 1€0C

We include such a term in the superpotential provided it is gauge invariant as dictated
by the charge formula (4.3.19). The full superpotential is then a sum over all gauge
invariant terms associated to all polygonal regions present in the tangle diagram of
L.

Although it may seem cumbersome to explicitly calculate which polygons yield
gauge invariant contributions to W, in practice there is a simple sufficient, but not
necessary, graphical rule which ensures gauge invariance that applies to the simplest
class of contributions to the superpotential, namely polygons which lie entirely in
the plane of a given projection of the Seifert surface. This rule is simply that the
arrows on the singularities must circulate all in one direction around the gauge cycle

in question. It may be easily derived from formula (4.3.19) as well as the charge
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assignments of particles dictated by Figure 4.12. Examples of this type are shown

in Figure 4.19. We encounter more general ‘non-planar’ superpotential terms in our

o

2y

(a) Superpotential without Monopole (b) Superpotential with Monopole

Figure 4.19: Projections of BPS M2-brane instanton, with the singular tangle in
black. The particles X; are indicated by the location of the black arrows, the Seifert
surface is shaded in blue, and the projection of the instanton is shown in green. In (a),
the M2 instanton projects to a trivial 2-cycle in M, and therefore has no monopole
contribution. We find W = X; X5 Xj3. In (b), the M2 projects to the non-trivial 2-
cycle dual to the 1-cycle y shown on the Seifert surface. This contributes a monopole
operator, yielding W = M, X; X, X3. The different shades of green are used here to
indicate whether or not the polygon projection coincides with the Seifert surface.

analysis of examples in section 4.6.1.

4.3.4 Physics From Singular Tangles: A Dictionary

To conclude our discussion of singularities, we briefly summarize the algorithm
for extracting an ultraviolet Lagrangian description of the physics associated to a

singular tangle L.

e Pick a Seifert surface 3. The homology H; (X, d,Z) specifies a basis of gauge
and flavor cycles. Boundaryless cycles are dynamical gauge variables, while

cycles with boundary are background flavor fields.
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e Compute the Chern-Simons levels by computing the Trotter form on the ho-
mology H;(X.,d,7Z). In this procedure the singularities make fractional contri-
butions to linking numbers. The singularities of plus type, illustrated in Figures
4.12a and 4.12b, contribute 1/2. The singularities of minus type, illustrated in

Figures 4.12c and 4.12d, contribute —1/2.

e Assign to each singularity a chiral field X;. The field is charged under cycles on
¥, passing through the singularity. The charge is +1 (-1) if the singularity is of
plus type and the cycle is oriented with (against) the arrow at the singularity.
The charge is —1 (41) if the singularity is of minus type and the cycle is oriented

with (against) the arrow at the singularity.

e Compute the superpotential by summing over gauge invariant contributions
from closed polygonal regions in L. Each monomial entering in W contains a
product of chiral fields dictated by the vertices of the polygon, and possibly
various monopole operators determined by expressing the polygon in a basis of
two-cycles dual to Hy (X, d,Z). Gauge invariance of the contribution of a given
polygon is determined by application of the quantum corrected charge formula

for monopole operators (4.3.19).

The physical theory associated to L is the infrared fixed point determined by this
ultraviolet Lagrangian data. Varying the choice of Seifert surface, provides mirror
ultraviolet Lagrangians, but does not alter the underling infrared dynamics.

In general the resulting theory is a strongly interacting system which enjoys a
U(1)F flavor symmetry. The action of Sp(2F,Z) on this conformal field theory is

determined geometrically by the braid group action studied in section 4.2.4. The
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three-sphere partition function Z is an invariant of the theory which is extracted from
this ultraviolet Lagrangian by generalizing the quantum-mechanical framework of
section 4.2.1 and assigning to each singularity the quantum dilogarithm wavefunctions
dictated by Figure 4.12.

In the remainder of this paper we apply these rules to further analyze the geometric

description of mirror symmetries, and explore applications of the framework.

4.4 Dualities and Generalized Reidemeister Moves

In the previous sections we have developed a technique for extracting conformal
field theories from singular tangles. However, there is still non-trivial redundancy in
our description: as a consequence of mirror symmetry, two distinct singular tangles
may give rise to equivalent quantum field theories. In this section, we determine the
equivalence relation implied on singular tangles by mirror symmetries, and explore
their geometric content.

In searching for such relationships, one may take inspiration from the case of non-
singular tangles. In that case, the basic relations are the Reidemeister moves shown

below.

1 5/:_
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\ \/ \
3=~ Y_/ —
\ / A\

These moves are local and may be applied piecewise in any larger tangle diagram.

Further, these moves are a generating set for equivalences: any two tangles which are
isotopic may be related to one another by a sequence of Reidemeister moves.

In the case of singular tangles, we find similar structure. Basic mirror symmetries
determine relations on singular tangles which take the form of generalized Reidemeis-
ter moves. They are related to the moves presented above by replacing some crossings
by singularities. Further, each of these equivalences is local, and hence they may be
applied piecewise in a larger singular tangle to engineer more complicated relations.
It is natural to conjecture that these generalized Reidemeister moves, together with
the Torelli dualities of section 4.2.4 provide a complete set of quantum equivalence
relations on singular tangles.

In section 4.4.1 we present a detailed description of the generalized Reidemeis-
ter moves as well as the associated quantum dilogarithm identities that result from
application of these moves to partition functions. In section 4.4.2 we show how defor-
mations away from the conformal fixed point result resolve generalized Reidemeister

moves into the ordinary Reidemeister moves.

4.4.1 Generalized Reidemeister Moves

In this section we present the list of generalized Reidemeister moves. Each takes
the form of a graphical identity involving two singular tangles. The precise form of

these equalities depends on the discrete data living at the singularities. There are two
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things to note about this dependence which follow immediately from our analysis of

the local model in section 4.3.1.

o [f we flip arrows at all singularities by 180 degrees on both sides of an identity,
it still holds. Indeed, such a flip is equivalent to reflecting the sign of all U(1)
gauge and flavor groups. Geometrically, this is equivalent to globally changing

the labeling of sheets from 1 to 2 in the double cover.

e If we exchange all overcross and undercross of all singular and non-singular
crossings on both sides of an identity, the identity still holds. This is true
because each of our diagrams is drawn in a fixed projection with oriented normal
vector z3. Globally reflecting 23 — —2Z3 generates the indicated transformation

on diagrams, as shown for example in Figure 4.20.

7
_J

Figure 4.20: Reflection in the projection plane transforms an overcross singularity to
an undercross singularity.

In the following, we take these two principles into account and thereby present a
reduced set of generalized Reidemeister moves. Additional dualities may be generated

by changing the discrete data at the singularities as above.

Rules Descending from Move 1

Here, we consider a singular version of the first Reidemeister move. Populating

the singular tangles with a Seifert surface generates partition function identities. We
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will look at two such choices of Seifert surface differing by black-white duality.

DOEDE

With a choice of planar Seifert surface, we have the following two interpretations.

DO O

2

Ei(z—c(1—R))e™ =FE_(—x+ (1 — R))

Singularity Transform

In quantum mechanics language this is equivalent to starting with a quantum dilog-
arithm and applying a T-transformation. This does not involve any integrals, as
the quantum dilogarithm is an eigenstate of the T-operator. Hence there is also no
gauge group in the 3d gauge theory interpretation. The only effect on the theory is

a decrease in the background Chern-Simons level by one unit.

XL X

/dzE(z —z+a(1—R)e ™ = B (y —x — c(1 4 R)/2)

Fourier Transform

This represents a duality containing a U(1) gauge field on the one side but no gauge

field on the other. This rule is equivalent to the Fourier transformation identity

193



Chapter 4: 3d Superconformal Theories and Mirror Symmetry

discussed in section 4.3.1, and is another singular-tangle representation of that duality.
Here, the theory of one U(1) gauge field at level one-half together with a charged chiral

particle is mirror to a free chiral field.

Rules Descending from Move 2

The second Reidemeister move can be generalized to give rise to an identity be-
tween singular tangles where neighbouring singularities cancel pairwise such that on
the other side of the identity there is no singularity at all. Therefore, we denote these
identities with the term pairwise cancellation of singularities. We will also examine a
partition function identity inherited from the tangle identity for one choice of Seifert

surface. The relevant singular tangle identities are the following.

From the perspective of the 3d gauge theory these can be understood as follows.

We have a closed polygonal region bounded by two singularities. As discussed in
section 4.3.3 this gives rise to a superpotential with the two chiral fields. Thus the
particles are given mass and make no contribution to the infrared physics. The dual
theory then contains no particles, but depending on the UV Chern-Simons levels it
can contain background Chern-Simons levels.

Picking a Seifert surface these rules translate to the following quantum dilogarithm

identities.
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)OC_X
J
Ei(—x+c(1-R)E (z — (1l — R)) =e '™

DOC

E(x—ca(1-R)E_(r—ca(l—R))=1

2

From this perspective, the underlying identity of pairwise cancellation of singularities

is equation (16) in the appendix of reference [69].

Rules Descending from Move 3

The most important rule arises from singularization of the third Reidemeister
move. This rule is called the 3-2 move and encodes a non-trivial three-dimensional
mirror symmetry. In this section we will clarify its relation to the third Reidemeister
move by singularizing all crossings on one side of the identity and only two on the other
side. Apart from the 3-2 move, the third Reidemeister move can be singularized by
adding only one singularity on both sides. This application follows from the previously
identified Fourier transform identity and hence does not represent an independent
mirror symmetry. Nevertheless, the simple application is useful when moving between
Seifert surfaces in the examples of section 4.5 and 4.6. We will turn to this simple

application first and then discuss the 3-2 move.
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Change of Branch sheet Applying the Fourier transform identity of Figure 4.13
locally, we obtain a generalization of the third Reidmester move. On one side of the
duality we have a theory with a chiral particle charged under a U(1) gauge field which
in turn couples to two background gauge fields. The duality relates this theory to one
with no gauge group, a chiral mulitplet and two flavor fields. The partition function

equality is again an application of Figure 4.13.

~ -
—__/

/dwE (w_x+cb<1_R>>67i7r(w7z)2+i7r(w7y)2 _ E+(y—Z—Cb(1+R)/2)67”(Z7$)2+i7r(w7y)2

2

/dU}E (w_x+cb<1_R>)€fiﬂ'(w7y)2+i7r(w7z)2 _ E+(Z_y_cb(1+R)/2)€7iﬁ(y7x)2+i7r(xfz)

The 3-2 move The relevant singular tangle identity is depicted below.

- r
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We clearly see that this identity relates a theory with three chiral fields to the one
with just two chiral fields. Such theories are known to come in mirror pairs in three
dimensions [62,64, 65,82]. Examining the left-hand-side we notice the presence of a
closed polygonal region bounded by three singularities and hence the existence of a
superpotential. To extract the physical content we choose Seifert surfaces as shown

below.

Eiz—y—a(l—-r)E_(z—z+ca(l—s5)E(r—y—c(l—1—53))

2

= /dWE+(?J —w—c)E (2 +w— (1 —7))e™ =)

The physical theories are then read off:

e LHS: A theory with three chiral fields X, Y, Z no gauge symmetry and a cubic

superpotential YW = XY Z, known as the XY Z-model.

e RHS: A theory with a gauged U(1) with vanishing self Chern-Simons level and
two oppositely charged chiral fields () and Q, known as U (1) super-QED with

N;=1.

These theories are known to form a mirror pair [65]. At the level of partition functions

this duality is the pentagon identity for quantum dilogarithms [69].
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4.4.2 Resolutions of Singularities

In this section we make the connection between generalized Reidemeister moves
and ordinary Reidemeister moves precise. We show that by moving onto the moduli
space of the conformal field theories on both sides of a generalized Reidemeister move,
we find the identity resolved into an ordinary Reidemeister move. To achieve this we
will choose a particular Seifert surface such that all the resolutions in question are
obtained as a motion onto the Coulomb branch. In general such a deformation gives
masses to all chiral fields and in the infrared they can be integrated out. Generically,

this leads to a fractional shift in the Chern-Simons levels of the form [65]

Ny
D (@0)i(ga)ssign(ma) € Z, I,J=1,--- ,G+F, (44.1)

a=1

1

(Krg)et = K1+ 5

where we have noted that the effective levels are integral in order to ensure gauge

invariance. These effective levels are depicted in Figure 4.21 as applied to a single

=DC

singularity as studied in section 4.3.2.

Figure 4.21: Resolution of singularities by turning on Fayet-Iliopoulos or Coulomb
branch parameters. In both parts, (a) and (b), m is the argument of the relevant
quantum dilogarithm.
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In applying this logic to study resolutions of singular tangles, one must take care
to remain in a supersymmetric vacuum. In other words the F'- and D-term equations

have to be satisfied. This will be dealt with next.

F- and D-term Equations

Let us elaborate the Coulomb branch resolutions from the viewpoint of the 3d
gauge theory. The singular tangle describes the CFT at the origin of the Coulomb
and Higgs branches. If we discuss only resolutions which remain at the origin of
the Higgs branch then the resulting resolutions correspond to different leaves of the
Coulomb branch parameterized by Fayet-Iliopoulos parameters and scalar fields in
vector multiplets.

In order to determine which resolutions are possible in a complicated singular
tangle we need to solve the D- and F-term equations of the relevant 3d gauge theory.
The potential V for the theory is a sum of a D-term and an F-term contributions of
the form

V=Vp+ Vp. (4.4.2)

In a supersymmetric vacuum this potential must vanish. As both Vp and Vg are
non-negative, both must vanish separately.

Let us first consider the F-term potential which reads

Ny

V=)

a=1

2

owl (4.4.3)

Iq

where W is the superpotential of the theory and ¢, is the scalar component of the
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chiral field X,. In our geometric examples, WV arises from a sum over polygons and
hence each monomial in W has degree larger than one in the ¢, fields. It follows that
if we remain at the origin of the Higgs branch ¢, = 0 the F-term potential is trivially
minimized.

Let us next turn to the D-term potential. In the following we will drop the
subscript eff from all Chern-Simons levels and assume that the IR limit has been

taken. The D-term potential is then given by

Vp = Z UD ]"‘Z—J,’)\D

+an,iDi|¢al2 + ) 1gaiyil’16al’, (4.4.4)
where the summation is over ¢, j = 1,--- , G for the gauge indices, and A =1,--- | F

for the Fayet-Illiopoulos parameters x,. The associated D-term equation then reads

?;1})?:2 wZ quaw—o (4.4.5)

On the Coulomb branch we have that ¢, = 0 which simplifies the above equation

considerably. Defining

kij  Fix Yi
K[J = ’ y ZL] = s (446)

ki k>\# T
it is possible to write equation (4.4.5) in the compact form

K;i;¥;, =0, (4.4.7)

200



Chapter 4: 3d Superconformal Theories and Mirror Symmetry

fore=1,---,G.
Equation (4.4.7) is our desired result. It implies that, restricting attention to
Coulomb branch deformations, we can determine which deformations are allowed by

searching for null-vectors of the effective level matrix K.

Resolution of Move Descending from Rule 1

Here, we examine how a particular resolution on the two sides of our first general-
ized Reidemeister move yields the ordinary Reidemeister move of first kind. In order
to proceed, we need to pick a particular Seifert surface which allows us to obtain
the relevant resolution as motion onto the Coulomb branch. We will pick the second

Seifert surface corresponding to the dilogarithm identity
/ Q2B (2 — 2+ e(1 — R)e ™V — B (y—z—ap(1+ R)/2).  (448)
The limit we take is the following
Yy — —00, T —00, 22— —00, (4.4.9)
resulting in
E(y—z—c(l+R)/2)—1, E (z—z+c¢(l—R))—1. (4.4.10)
The effective Chern-Simons levels of the left-hand-side become

koo =1, ko= —1, (4.4.11)
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which in turn lead to the D-term equation (4.4.7)
z—y=0. (4.4.12)

As this is consistent with the limit prescribed, we are indeed looking at a valid res-
olution satisfying the equations of motion of the gauge theory. The pictorial repre-
sentation is shown in Figure 4.22. We clearly see that the resolution reproduces the

ordinary first Reidemeister move as claimed.

)Cf)C
CfDC

Figure 4.22: Resolution of the first generalized Reidemeister move.

Resolution of Moves Descending From Rule 2

Next, we look at resolutions of the second generalized Reidemeister move. This
rule consists of two parts and we shall examine both of them. Again we have to pick
a Seifert surface which we choose to be the same as in section 4.4.1. The relevant

quantum dilogarithm identity for the first subrule is

2

Ei(—x+ca(1—-R))E (z— (1l — R)) =e ™. (4.4.13)
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Here we can consider the following limit

t—00: BEi(—r+c(l—R)E (x—c(l—R)—1-e7™ =™ (4.4.14)

As the limit gives the right hand side of the identity trivially there is nothing to be
checked. Therefore, this resolution does not involve any Reidemeister moves.

Let us now move to the second subrule. The relevant quantum dilog identity is

Eif(zr—c(l1—-R)E_(zr—ca(l—R)) =1 (4.4.15)

Taking the limit z — oo the left-hand-side becomes

2 2

E (z— (1= R)E_(xz —cy(1 — R)) = e ™ ™", (4.4.16)

The pictorial representation of this resolution is the second Reidemeister rule, as

shown in figure 4.23.

N/ \/
/

Figure 4.23: Resolution of the second generalized Reidemeister move.
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Resolution of Move Descending From Rule 3

Let us now come to our last and most involved case, namely the 3-2-move. The

relevant identity here is

Ez—y—a(l-—r)E_-(z—x+ca(l—s)E_(r—y—c(l—1—23))

= /dwE+(z —w—cp) By (w—y —cp(1 — r))ei”(x*w)Q_

Defining

r—y=c, Z—T=Cy, 2Z—1Y=CcCs,

we will consider the limit

>0 for i=1,2,3.

As the above equation set implies the relation ¢; = —cy + ¢3 we find that

63—02>>0.

Setting w = c3 ensures that we have the effective Chern-Simons-levels

The D-term equation (4.4.7) thus gives

T—y+w—z=c3—Cy+c3+cy—2c3 =0,

204
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and hence confirms that we are on the Coulomb-branch. The pictorial representation

W 3&\
\/ /\

Figure 4.24: Resolution of the 3-2-move.

of the limit discussed is the third Reidemeister move as shown in Figure 4.24.

4.5 R-flow

We have seen how singular tangles capture the content of a 3d conformal field
theory with four supercharges, and that resolutions of such objects describe dynamics
on the moduli space of the same theory. This is very similar to the Seiberg-Witten
description of the Coulomb branch of 4d gauge theories with eight supercharges. In
fact, the similarity goes even further. In the Seiberg-Witten case, the multi-cover of
a complex curve with punctures captures all the information about the BPS states
of the four-dimensional gauge theory [24,41,42,83]. In our case a multicover (more
specifically, a double cover) of R? with specified boundary conditions captures the
content of a three-dimensional theory. The connection of these two descriptions can

be made precise by looking at specific class of examples where the three-manifolds
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in question arise from flows of a Seiberg-Witten curve of a 4d theory. By this we
mean that there exists a slicing of the three-manifold along a ‘time’ direction such
that each slice represents a SW-curve. This construction is known as R-flow and has
been studied in [4,18]. This section is devoted to the definition and properties of
R-flow. R-flow is defined on the space of central charges of certain 4d N = 2 theories
and describes a domain wall solution which has the interpretation of a 3d N = 2

theory [84-86].

4.5.1 Definition of R-Flow

R-flow is a motion in the space central charges of four-dimensional theories with
eight supercharges. We focus on complete theories [3], in which deformations in the
space of central charges are locally equivalent to deformations of branch points of the

Seiberg-Witten curve. Then R-flow takes the following form

d

where Z; is the central charge of the i-th charge in the A/ = 2 4d theory. Central
charges flow in time along straight lines preserving their real parts while their imagi-
nary parts move at a rate which is proportional to their real parts. As a consequence
of this flow equation, the phase ordering of central charges is preserved and hence the
entire evolution takes place in a fixed BPS chamber. In summary, we can say that
phase ordering is time ordering and depict this in a graph shown in Figure 4.25. This
describes a three-dimensional theory as a domain-wall solution of the four-dimensional

parent theory where each 4d BPS state gives rise to a 3d BPS state whose mass is
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given by the real part of Z;.

Im

t>>0
Re
5]
£
— 71
Za
t<<0
Z3

Figure 4.25: R-flow for an example with three central charges.

4.5.2 A, flow and the KS-operator

In this paper, we are particularly interested in flows of 4d gauge theories which
arise from wrapping a Mb5-brane on a Riemann surface of the type A, describing
Argyres-Douglas CFTs [41,87]. These surfaces are double covers of the C-plane, in

the form

v = (z—a)(r —ay) (2 —an) (@ + ani1), (4.5.2)
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where a,11 =Y., a;. The Seiberg-Witten differential is given by the square root of

the quadratic differential
¢= (v —a)(r—a) - (x — an)(x + apny1)dr?, (4.5.3)

i.e. Agsw = /¢. Having established the above definitions, it is straightforward to

write down the central charges of the theory:

a2

Zl = \/57
as

Zy = Vo,

Z, = / + V. (4.5.4)

Now, choosing an ordering of the phases of the central charges, one arrives in a
specific chamber of the moduli space, with some particular set of BPS particles. For
the choice

argZy < argZs < --- < argy,, (4.5.5)

we obtain the so called minimal chamber with exactly n stable particles. On the

other hand, the mazimal chamber is defined for the configuration
argZ, < argZ, 1 < --- < argZj. (4.5.6)

Here the number of stable BPS particles is %n(n + 1) [25]. There are also various
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intermediate chambers, and we shall denote the number of states in a given chamber
by N. Note that each of these states is a linear combination of the primitive basis
given in (4.5.4), and its central charge is correspondingly a linear combination of the
central charges computed therein. We next assign to each central charge ordering a

Kontsevich-Soibelman operator of the following form [32, 52, 53]:

K(q) = H EL (%), (4.5.7)

where F, is the non-compact quantum dilogarithm, and the 4; label the stable BPS
states. The 4’s can be interpreted as phase space variables of the quantum Hilbert
space which differ by actions of Sp(n,Z) if n is even and Sp(n—1,7Z) if n is odd. From
the point of view of the A, curve the 4; represent cycles determined by two branch
points a; and a;. In particular, from the point of view of the quantum mechanics
description of section 4.2.1, they are linear combinations of z; and p; and are mapped

to each other by actions of the generators
O2j_1 = €Xp (—im??) ,  Ogj = exp (—iﬂ'ﬁ?) . (4.5.8)
We can assign to each KS-operator a quantum mechanical matrix element of the form
Zx = (z|Kly), (4.5.9)

which have an interpretation as partition functions of 3d theories as discussed in

section 4.2.1. These partition functions enjoy a Sp(n,Z) x Sp(n,Z) action which
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has the interpretation of the braid group action on the two ends of a braid with
n + 1 strands. Recalling the constructions of sections 4.2,4.3, we can thus assign a
singular braid Bk to the matrix element Zk. This is depicted schematically in Figure
4.26. As also indicated there, the braid naturally defines a time direction that we
can understand as follows. Fach line of the braid describes the flow of a branch point
of the A,-curve along the time direction. At the singularities, these branch points

collide, thereby loosing their individual identities.

By

n+l1

time
—>

Figure 4.26: For each KS-operator there is an associated singular braid Bg.

Let us zoom into the braid Bk to see how the strands approach each other for
an isolated singularity. To this end, we rewrite the partition function as a gluing of

three braids according to the formalism developed in section 4.2.1

Zg = /drc’dy’<3?!"'\y’><y’\E+(%z)|ﬂf'><$'\'“|y>7 (4.5.10)

where 4y represents the contribution of the 4d BPS state whose central charge is
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WIB Gl = e

Figure 4.27: Braid realization of a local singularity. The relevant branch points come
close to each other until they collide in the singularity and loose their individual
identities. After that they depart again until they reach their original positions in
the braid.

given by

Ty = /k V. (4.5.11)

Zooming into the braid we then have the local representation for an isolated singular-
ity shown in Figure 4.27. Resolving the singularity means turning the points at which
the branch points touch to near misses. As we have seen, for each singularity there are
exactly three ways to do this. R-flow, as a flow of branch points of the Seiberg-Witten
curve, is equivalent to choosing the resolution of Figure 4.10 (b) for all singularities.
Said differently, the singular braid By is obtained from the flow defined by equation
(4.5.1) in the limit in which all near misses are replaced by singularities.

Let us now come to the justification of this picture. The initial condition of R-
flow is determined by the chamber in which the flow starts. Furthermore, as the flow

continues one stays in the initial chamber due to the phase-order preservation of the
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flow. As central charges cross the real axis something special happens. Recall that
a 4d BPS hypermultiplet has an interpretation as a geodesic on the complex plane
between branch points of the Riemann surface [26,27]. These geodesics obey the

equation

Vo= e, (4.5.12)

where 6,,, m =1,---, N is the phase of the mth BPS state, i.e.

O = argZy,. (4.5.13)

There are two remarks in order here. First, R-flow describes a motion on the Coulomb
branch (including mass parameters) of the four-dimensional gauge theory. On the
other hand, the flow equation (4.5.12) is a flow on the C-plane at a fized point in
the moduli space. The Seiberg-Witten curve, being a double-branched cover of the
C-plane, is not subject to change under the flow (4.5.12). Therefore, in order to
relate the two motions, we have to choose a fixed angle 6, corresponding to a line in
the complex plane of central charges. Secondly, the geometry of R-flow predestines
exactly such a line, namely the real axis which defines a mirror axis for the flow.
Each time a central charge crosses the real axis there is a geodesic solution with
minimal length. Thus at such points the pair of branch points corresponding to the
BPS bound state whose central charge crosses the real axis are closest. Away from
the real axis, the pair of branch points repel in a symmetric way, thus producing the

near-miss behavior in Figure 4.10 (b).
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4.5.3 Examples

In this section present some examples of R-flow. We start with the simplest case
and proceed to increasing complexity. Already in the very first example, the A; flow,
we will find that R-flow gives insight into the behavior of branch lines near local

singularities.

A, flow

As a first example we will consider the most simple case of R-flow. This is the

theory corresponding to the curve
v =% +e, (4.5.14)

with a single central charge, denoted by Z;, given by
Ve i
7 = Va? +edr = g€ (4.5.15)
—Ve

We will find that this theory has significant importance for the resolution of arbitrary
singular tangles as it produces the various possible local resolutions of an isolated
singularity via Fayet-Iliopoulos parameters. Let us describe how this comes by. First
of all, note that we can parametrize € as € = —%(—im + t) with m real and positive
so that

Zy=m+it, m >0, (4.5.16)
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obeys the flow equation (4.5.1)!. The motion of the branch points of the curve are

then given by the law
ay = avm+it, ay = —avm+it, (4.5.17)

where « is a proportionality constant. We can now view this motion from two perspec-
tives. The first is as a motion on the C-plane which forms the base of the double cover.
The second perspective is obtained by looking at the motion of the two branch points
as giving rise to branch lines in C x R where R is the time-direction parametrized
by t. As the square root behaviour of (4.5.17) is fairly simple we can depict the two

perspectives easily as shown below in Figure 4.28. A very interesting phenomenon

o

Figure 4.28: m > 0. Part a) depicts the motion of branch points of the A;-curve on
the C-plane, where the arrows indicate direction of flow with increasing time ¢. Part
b) depicts the motion as branch lines in C x R.

happens when we flip the sign of the real part of the central charge, i.e. if we choose
m < 0 instead. Fixing the projection plane, we now obtain the following picture for

the branch-point flow (Figure 4.29).

I5Note that the derivative with respect to ¢ is not equal to m. This is no problem however, as this
condition was imposed initially to maintain the order of the central charges along the flow. But as
the Ay curve has just one central charge, we just demand that the real part stays constant.
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Figure 4.29: m < 0. Part a) depicts the motion of branch points of the A;-curve on
the C-plane while part b) describes the motion as branch lines in C x R.

We see that this analysis exactly mirrors two of the three possible resolutions
described in section 4.3.1, namely resolutions 4.10 (b) and (c). Note that resolution
(a) cannot be obtained in this formalism as it breaks time-flow or equivalently keeps

the mass parameter m at zero but deforms the theory onto the Higgs branch.

As flow

We now turn to our next example, the A, curve. It is, apart from the A; case,
the most important flow example as it provides insight into three-dimensional mirror
symmetry in terms of flows of four-dimensional theories. In order to illustrate this
we consider the two central charge orderings of this theory which provide two BPS

chambers with distinct particle content. We have a 2-particle chamber,

argZy < argZs < 0, (4.5.18)

and a three-particle chamber,

argZy < argZ; < 0, (4.5.19)
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where the third state is the one with charge Z; + Z5. Looking at the Kontsevich-

Soibelmann operator we see that in the first case it is given by

E.(p)E. (), (4.5.20)

while in the second case one has

. (#)E. (& + D). (p). (4.5.21)

The crucial point here is that these two operators are actually equal if we impose the
commutator

[#,p] = — (4.5.22)

as was first proven in [69]. This is the underlying equality leading to the 3-2-move dis-
cussed in section 4.4.1. Therefore, the 3-2-move can actually be thought of as arising
from R-flow of the A, curve. However, note that the 3-2 move is obtained by looking
at matrix elemts (z|K|p), that is position/momentum matrix elements, whereas R-
flow is equivalent to matrix elements of the form (z|K]|y), namely position/position
matrix elements. Furthermore, there are many braid realizations of these matrix ele-
ments differing by the other various dualities discussed in section 4.4.1. In this section
we will look at representations which are obtained from the prescription described
in Figure 4.27. That is, we will now look at the above KS-operators and their braid

realizations from the perspective of branch-point flow.
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Let us start with the minimal particle chamber. Using the identity

2 2

By (p) = ™ e i B (§)e 7 T omime” (4.5.23)

we obtain

@B DB (D)ly) = (alem™ e eims e im mimF e minE p(y))

- / 02/ (x| oy B (2! Y oo B (9)]y). (4.5.24)

This way we have rewritten the partition function in terms the o; which describe
actions of the braid group. The braid representation of the right-hand side of the

above identity is shown in Figure 4.30'®. The single integration variable in (4.5.24)

DG

Figure 4.30: The singularized braid of the A2 flow in the minimal chamber.

corresponds to a U(1) gauge group manifest as a compact white region in Figure
4.30. Furthermore, we have used that ; and o, ' commute with £, (Z) and therefore
cancel each other. Note that the theory described by the braid in Figure 4.30 is

related to U(1) SQED by changing the branch sheet as discussed in section 4.4.1'7.

16We have suppressed the R-charges of the singularities as these are not relevant for the present
discussion.

1"We also need to apply an S-transformation to the boundary condition in order to switch from
position boundary to momentum boundary.
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We will not discuss this here and rather turn our attention to a particular resolution
of the singular braid. Applying resolution rule (b) of Figure 4.10 to both singularities
we obtain the Figure 4.32. It is also possible to explicitly solve equation (4.5.1) and
compute the flow of branch points in the minimal chamber. The result is shown in
the second part of Figure 4.32. We see that the resolved braid and the flow of branch
points are topologically equivalent and just differ by change of projection plane. That
is, the location of particles is represented in both pictures by cusps at which the same
strands come approach.

Next, we turn to the maximal chamber. Here, we need further the following
identity

E (& +p) = ™ B, (2)e ™ (4.5.25)

which allows us to rewrite the partition function as

(2| B (2) B (2 + p)Ey(D)]y)

= (z|E4(2)e™ B, ()™ ™ ¢ (T B (7)™ ¢TI 1Y 4.5.26)

We depict the corresponding braid representation in Figure 4.31. One can immedi-

XGPS

Figure 4.31: The singular braid of the A2 flow in the maximal chamber.

ately extract from this singular braid the presence of three U(1) gauge fields corre-

sponding to the three white regions in the diagram. Moreover, we see that two of the
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chiral fields are charged under two U(1)’s. Again, by a change of branch sheet (see
section 4.4.1) and and S-duality at the boundary, we can transform this picture to the
one corresponding to the XY Z model discussed in section 4.4.1. We will not discuss
this here but will rather analyse the connection to R-flow as branch point flow. This
connection is established by looking at the particular resolution of the singular braid
which corresponds to R-flow of branch points. This resolution is depicted below in
Figure 4.33. The second part of Figure 4.33 shows the flow of branch points obtained
by explicitly solving equation (4.5.1) in the maximal chamber. Again we see that the

two figures are topologically identical.

As; flow

Next in complexity is the As-flow. For clarity of presentation, we will solely
concentrate on the flow in the minimal BPS chamber here. There are three cycles
corresponding to the operators 4, = &, 49 = p, and 43 = & + ¢, which form a central
extension of the SL(2,7Z)-algebra generated by # and p with commutators'®

i

&)= =5 [e.d] = led] = 0. (4.5.27)

The KS-operator corresponding to the minimal particle chamber is given by

K = E, (3 + ¢)E+(p)EL(2). (4.5.28)

18We have chosen here a different commutator between # and p compared to the A, case. This is
merely a convention. We could also have worked with the former commutator.
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(a) Braid resolution
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(b) Branch point flow

Figure 4.32: R-flow of A, in the minimal chamber. In (a) the resolved braid braid
is depicted. The previous singularities appear now as cusps in the braid diagram.
These are marked with red arrows. Part (b) shows the flow of branch points obtained
by explicitly solving equation (4.5.1).

A partition function can be formed from this operator by considering the wave-

function

Zx = (@B (T + o) EL (D) B+ (2)y).- (4.5.29)

This partition function now represents a singular braid. In order to extract the braid,
we have to rewrite it as a gluing of simple partition functions containing no gauge

groups. This is done by using the identity

E+ (ﬁ) _ e—iﬂ:?:2e—iﬂ'ﬁ26—i7r562 E+<:i,)ei7ri‘2 eifrﬁ2 eiwiz’ (4530)
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1:

e X
MNNSANE AN\
AN

time

(a) Braid resolution

(b) Branch point flow

Figure 4.33: R-flow of A, in the maximal chamber. Part (a) shows the resolved braid.
The locations of previous singularities are marked with red arrows. Part (b) depicts
the flow of branch points as arising from a flow of central charges along straight
vertical lines.

which allows us to rewrite Zk in the form

2

Zg = /dx/<x|E+(x + )T eI oI Y (| B ()T e e B (y)|y).
(4.5.31)
This partition function can be represented by the singularized braid shown in Figure
4.34. We see again a U(1) gauge group corresponding to the one compact white
region. Furthermore, a chiral field is charged under this gauge group while the two

other chiral fields are gauge neutral. Applying duality rules we can transform this
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_////L\W
X

Figure 4.34: The singularized braid of the A3 flow in the minimal chamber.

picture to different ones with more or less gauge groups. Applying resolution rule

(b) of Figure 4.10 to all singularities we obtain Figure 4.35. This resolved braid can

[ N/ N\
A
\!{ J \L

/\

time

Figure 4.35: The desingularized braid of the A3 flow in the minimal chamber. The
locations where the particles used to be are indicated by red arrows.

again be reproduced by letting the central charges of the A3 curve R-flow as depicted
in Figure 4.25. One can carry out the flow procedure by inverting the central charges
as functions of the branch points locally along the flow. The resulting flow of branch
points for the minimal chamber is depicted in Figure 4.36. Comparing Figure 4.35
with Figure 4.36 we find that the two are topologically identical in that the strands
which come closest at the location of particles are the same in both pictures, i.e. first
~v3 contracts, then v, and at last 7,. They merely differ by a change of the projection
plane.

We find that this behavior generalizes. That is, associated to the KS-operator

corresponding to the A, theory in a particular chamber, there exists a resolution
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Figure 4.36: Flow of branch points of the minimal chamber A3 by imposing a flow of
central charges along vertical straight lines.
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which arises as R-flow of the branch points. The prescription for finding the resolution

corresponding to R-flow is as follows. Start with the partition function

24 = (z[K(q)|2'). (4.5.32)

Associate to this matrix element the particular braid-representation which contains
all particles as singularities within the Seifert-surface, where by within we mean that
the Seifert-surface goes horizontally through the singularity as depicted in Figure
4.27. Apply resolution rule of Figure 4.10 (b). Note that it is not possible to obtain
other resolutions for the singular braids such as the one of figure 4.34 from R-flow.
The reason is that a local flip of the corresponding central charge, as described in
the case of A;, changes the KS-operator and will thus lead to a completely different

picture.

4.6 Applications

In this section we study some further applications of the developed rules. As
a first example we examine a more complicated geometry arising from the R-flow
prescription. The particular geometry contains a closed non-planar polygon, i.e. a
superpotential, which is only partly shaded and thus gives rise to a monopole operator.
We will establish that this monopole operator appears in the superpotential. As a
second example for the application of the methods developed in this paper we will
look at U(1) SQED with N; > 1. This example does not arise from R-flow. However,

we will find that the rules presented in section 4.4.1 are powerful enough to establish
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mirror symmetry even for these more complicated models geometrically.

4.6.1 Superpotentials from Geometry

In this section we look at an example of a 3d gauge theory which arises from R-
flow of an intermediate chamber of the A4 theory. This example was already analyzed

to some extent in [4]. The relevant KS-operator is given by
K = Ei(21)EL(Z2) By (D1 + 22) B4 (22) B4 (P2), (4.6.1)
where the phase space parameters satisfy the following commutation relations
A ? . 7 . i
[21, 1] = o [p1, @] = o (T2, Pa] = o (4.6.2)
The 3d partition function associated to the KS-operator is now

Zg = (2] B (21) B (22) B (D1 + 22) B4 (22) B4 (P2)]2). (4.6.3)

Its representation in terms of a singular braid is depicted in figure 4.37. We can

S

Figure 4.37: R-flow of A4 in intermediate chamber.

clearly see 4 U(1) gauge groups represented by the four white regions in the braid.
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Applying the Fourier transform identity twice and the T-transform rule of section

4.4.1 we obtain the simpler braid depicted in Figure 4.38. This braid represents a

X X
& o
X X

(a) Ay braid (b) A4 braid with superpotential

Figure 4.38: R-flow of A, in intermediate chamber, second representation. In (a) we
see a dual representation of the A, braid after application of various dualities to the
original R-flow braid. In (b) we see the same dual braid, now with the closed region
representing the superpotential highlighted in red. Chiral Fields are indicated by X;.

dual description of the same quantum field theory. In this description, there is a U(1)
gauge group under which two chiral multiplets, denoted by X3 and X5, are charged
oppositely. Furthermore, one can clearly see a compact polygonal region bounded
by three chiral singularities. This corresponds to a superpotential in the effective 3d
gauge theory to which all three chiral multiplets contribute. This theory contains a
monopole operator which also participates in the superpotential term. One way to
see this, is through the white region contained within the bounded polygonal region.
One can check, using the formula (4.3.19) for the charge of the monopole operator
discussed in section 4.3.3, that the monopole operator M is invariant under the U(1)
gauge group. This immediately tells us that we can write down a superpotential of

the form

W - MX2X3X4, (464)
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which is gauge invariant. Furthermore, this superpotential breaks exactly one U(1)
flavor symmetry which is consistent as there are five chiral fields but only four non-

compact white regions in the geometry.

4.6.2 U(1) SQED with Nj > 1

Here, we will demonstrate that our rules for the singular tangles provide a con-
venient geometric way of encoding general mirror symmetries of 3d N' = 2 gauge
theories. The example we will use to demonstrate this is the generalization of U(1)
SQED/XY Z mirror symmetry. Start with a 3d N' = 2 gauge theory with U(1) gauge
group and Ny > 1 charged hypermultiplets. This theory has a RG fixed point with
a mirror dual description as a (U(1)V7)/U(1) gauge theory with N; charged hyper-
multiplets (consisting of chiral multiplets ¢; and ¢;) and Ny neutral chiral multiplets

S; together with a superpotential [65]

Ny
i=1
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The charge assignments are as follows

Ul U): U(l)s U(1)n,

Q1 1 -1 0 0

o | -1 1 0 0

P 0 1 -1 0

Go 0 1 1 0 (4.6.6)
0

qny, —1 0 0 1

v, | 1 0 0 - -1

Si 0 0 0 0

The aim will now be to translate both theories into geometric tangles and transform
them into each other by using ordinary as well as singularized Reidemeister moves,

thereby proofing they are mirror pairs.

U(1) SQED with N; = 2

We will start with the geometry corresponding to U(1) SQED and specialize to
the case Ny = 2. The relevant diagram describing this gauge theory is depicted in
Figure 4.39.

The interior white region represents the U(1) gauge group and each pair of sin-
gularities corresponds to a hypermultiplet whose constituents have opposite charges
under the U(1). Let us next apply the second Reidemeister move to this diagram. The

result is depicted in Figure 4.40. Here we see that there are two extra U(1)’s and that
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|

Figure 4.39: Diagram describing U (1) SQED with Ny = 2.

|

|

Figure 4.40: Application of second Reidemeister move.

two singularities are charged under the first one whereas the second pair is charged
under the second. We are now in a position to apply the generalized Reidemeister

move known as the 3-2 move. This move can be applied twice, once to the upper

229



Chapter 4: 3d Superconformal Theories and Mirror Symmetry

white triangle and once to the lower white triangle, resulting in Figure 4.41. This

Figure 4.41: After applying the 3-2-move twice.

diagram simply shows a U(1) gauge theory with two chiral fields charges positively
under it and two fields charges negatively. Moreover, we observe two superpotential
terms each combining a neutral field with two oppositely charged fields. These data

exactly match those of the mirror dual which confirms the duality.
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U(1) SQED with N; = 3

As a second and last example we will consider the more complicated case of U(1)

SQED with Ny = 3. The relevant diagram is

Figure 4.42: U(1) SQED with N; = 3.

We can see 6 chiral multiplets charged under a U(1) gauge group with the charges
of the particles adding up to zero pairwise. The overcross and undercross singularities
are arranged such that the net self-Chern-Simons level of the U(1) is zero. We can
add a T-transform to turn one type of singularity to another, as shown in Figure 4.43.
Next, we do a second Reidemeister move to create a white region.

Performing the 3-2 move we end up with a superpotential and an extra U(1),
shown in Figure 4.45.

We now perform the Reidemeister move a second time to create a third white
region with two charged fields.

Application of the 3-2 move for a second time leads to the second superpotential

term.
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Figure 4.43: Adding a T-transform.

Figure 4.44: Applying a Reidemeister move.

As should by now be obvious, we again perform the Reidermeister move with the
result shown in Figure 4.48.

The last step is again a 3-2 move leading to the final result depicted in Figure

4.49.
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A

Figure 4.45: After first 3-2 move.

o

Figure 4.46: After second Reidemeister move.

As one can clearly see the above picture is the diagram describing the mirror dual
of our original theory. We have three superpotentials each containing one neutral

field and we have three U(1)’s under each of which 2 chiral fields are charged. Note
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o

Figure 4.47: After second 3-2 move.

o

Figure 4.48: After third Reidemeister move.

that the white region in the interior, under which no particle is charged, ensures that
the sum of all U(1)’s adds up to zero as required by the charge assignments shown

in (4.6.6). Thus we see that the diagram captures the theory in all details. The
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Figure 4.49: The mirror dual.

constructions we have presented easily generalize to the case of arbitrary Ny.
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