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Abstract In this work, we employ the Karmarkar condi-
tion together with the notion of vanishing complexity (Her-
rera in Phys Rev D 97:044010, 2018) and isotropization
technique to generate models of compact stars within the
framework of complete geometric deformation. Starting off
with the Kuchowicz ansatz as one of the metric potentials
for the seed solution, we impose the Karmarkar condition
to obtain fully the gravitational behaviour of a static com-
pact object with anisotropic pressure. This solution is then
subjected to the complete geometric deformation algorithm.
The novelty in our work is to impose the condition of van-
ishing complexity and isotropization techniques in order to
derive the deformation functions. We present two solutions
of the resulting governing equations which are subjected to
physical viability tests. We demonstrate that the presence of
pressure anisotropy within the bounded object plays a key
role in determining its stability. In addition, we show that the
magnitude of the decoupling constant determines the direc-
tion of energy flow between the generic fluid and the fluid
matter distribution.

1 Introduction

The term “complexity” is associated with how complex a
system is. Often we talk about something being complex but
seldom do we think of quantifying it. Moreover, the notion
of complexity is very much dependent on the specific mat-
ter of study. Scientists have been trying to quantify “com-
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plexity” for several years now. So far, several attempts have
been made to figure out how to define complexity in various
branches of science [1–12]. Despite the many efforts, we still
lack a pinpointed approach to quantifying complexity. This
is more so because the notion of complexity depends on the
specificity of the system under investigation. So far, most
of the definitions of complexity have been linked to infor-
mation and disequilibrium or entropy. However, Lopez-Ruiz
and colleagues [8–10] took a new approach to define com-
plexity, which has been extended to self-gravitating systems
[13–18]. Due to some drawbacks in using the definition given
by Lopez-Ruiz and colleagues for self-gravitating systems,
a new definition was proposed by Herrera [19,20], for static,
spherically symmetric systems. This was further extended to
the spherically symmetric dynamic cases [21].

In the current paper, we will use the definition of complex-
ity as developed by Herrera [19,20]. It must be mentioned that
this new definition [19,20] doesn’t involve information and
disequilibrium. Rather, it focuses on the “structure” inside the
fluid distribution. To define complexity, one must remember
the least complex system is the simplest system. So, in this
definition, the least complex system is taken as a homoge-
neous fluid having isotropic pressure. This specific case is
taken as the case with vanishing complexity. In this theory,
the complexity factor emerges in the splitting of the Rie-
mann tensor. The simplest system, i.e. the locally isotropic
fluid with equal principal stresses and homogeneous energy
density is assigned a zero value of the complexity factor. The
active gravitational mass or Tolman mass [22] is closely asso-
ciated with the complexity factor in this theory. The Tolman
mass is a combination of its value for a zero complexity sys-
tem along with two other terms, which are associated with
the pressure anisotropy and inhomogeneity in energy den-
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sity respectively. These latter two terms can be represented
by a single scalar function, collectively referred to as the
“complexity factor”. The complexity factor may vanish in
two specific scenarios. In the most trivial one, for isotropic,
homogeneous fluid distributions, both these terms become
zero and the complexity factor vanishes. In another scenario,
the pressure anisotropy and energy inhomogeneity cancel
each other leading to the vanishing of the complexity factor.
However, for time-dependent systems, we face two differ-
ent problems. The first being that the concept of complex-
ity has to be generalized in order to incorporate dissipative
effects. Secondly, the complexity should be studied in terms
of time evolution and one has to determine what qualifies as
the simplest dynamical system. It was shown in [21] that for
dynamical cases, the complexity factor can be expressed as
the same scalar function as the static case while taking into
account dissipative variables. It was shown that the simplest
mode can be represented by homologous conditions. Later
on, it was shown that by considering the quasi-homologous
condition, the last condition can be relaxed to increase the
number of possible solutions [23]. In a recent study, the con-
tributions from pressure anisotropy, density inhomogeneities
and dissipation in the form of radial heat flux to the evolution
of complexity in a radiating star have been investigated [24].
Alongside spherically symmetric cases, axially symmetric
[25], cylindrically symmetric [26,27] fluid distributions have
also been studied. The definition of complexity in GR [19,20]
has been subsequently extended in several modified gravity
theories as well [28–40]. In this work, we generate a new
interior solution for compact stars by demanding the van-
ishing of the complexity factor at each interior point of the
stellar configuration. Before embarking on a quest to solve
the field equations, we will shed some light on compact stars
and their importance in GR and modified theories.

Compact stars have been very interesting objects to study
for researchers as they are the ideal testing conditions for
extremely dense nuclear matter. It has been fascinating, what
goes inside these objects, and how are the matter distribu-
tion and thermodynamical properties. To understand these
objects, several researchers have tried to find exact inte-
rior solutions, by solving Einstein’s field equations. How-
ever, solving these equations is a very tedious task and the
physical viability is not guaranteed. In the case of perfect
fluid distributions, only a subset of a wide plethora of exact
solutions is physically realizable. Due to extremely packed
nuclear matter, compact stars in fact are very unlikely to
have isotropic matter distribution. Due to strong gravity and
extreme internal density, the pressure splits into radial and
tangential components with different amplitudes. In this con-
text, it was shown by Ruderman [41] that when densities
exceed 1015 g/cm3, the pressure components no longer have
the same magnitude and the matter distribution becomes
anisotropic in nature. In this connection, Herrera [42] inves-

tigated that even if the system is initially considered as an
isotropic matter distribution, the stellar model always tends
to produce pressure anisotropy due to the internal physical
processes within the system. In this regard, Herrera and his
collaborators have done several pioneering works for analyz-
ing the role of pressure anisotropy and the processes leading
to the generation of anisotropies within fluid spheres [43–49].

Several novel techniques have been employed to solve
the field equations which describe compact stars. Some of
these models include considering anisotropy, charge, or a
combination of both within the framework of both general
relativity and modified theories of gravity. Researchers have
incorporated several techniques to solve the field equations
in different scenarios. In the present work, we will use two
methodologies: the embedding Class I condition and gravita-
tional decoupling to solve the problem. The embedding Class
I condition basically deals with embedding a 4-dimensional
pseudo-Riemannian spacetime into a 4-dimensional pseudo-
Euclidean space. It was first derived by Karmarkar [50] and is
known as the Karmarkar condition or the embedding class-
I condition. In terms of the curvature components, it takes
the form of: R1212R3030 + R1220R1330 = R1010R2323. It was
then argued by Pandey and Sharma [51] that this is inade-
quate for being a class-I condition. There should be another
condition alongside, which is R2323 �= 0, that must be ful-
filled for it to be a class-I condition. The great utility of the
class-I condition is that it gives a relation between the two
metric potentials. So if one metric potential is known, the
other one can be easily determined by this condition. In recent
times, another specific way to solve field equations to obtain
interior solutions of compact stars has been very popular
amongst scientists. This is named the gravitational decou-
pling method which was first developed by Ovalle [52,53]
and a systematic and direct approach known as a minimal
geometric deformation (MGD) to generate anisotropic solu-
tions for self-gravitating systems from perfect fluid solutions
[54]. Later on, the MGD technique has been generalized and
its extension is referred to as the complete geometric defor-
mation (CGD) approach [55]. Using the above methodolo-
gies, several works have been investigated using the self-
gravitating systems in 4D [56–75] as well as in 5D EGB-
gravity [76–78]. Due to the wide use of the gravitational
decoupling approach, it has been used as a powerful tool to
investigate exact solutions in the context of the complexity
factor and energy exchange in fluid distributions [79–86].

In our current article, we use the CGD technique to solve
the system which leads to two sets of equations. The first
one is without the generic source, which is the general Ein-
stein’s system and the second one is the quasi-Einstein system
coming from the generic source, containing the deformation
functions f (r) �= 0 and h(r) �= 0. One of the main moti-
vations for this article is to use the vanishing complexity
factor condition as well as the (an)isotropization technique
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to find the deformation function(s). Furthermore, the seed
system is solved by using the Class I condition together with
a well-defined Kuchowicz metric. The structure of the article
is as follows: Sect. 2 represents the field equations under the
generic source. The definition of complexity factor and asso-
ciated scalars are given in Sect. 3. The solution corresponding
to the vanishing complexity factor is presented in Sect. 3.1
while the isotropic solution is in Sect. 3.2. The detailed phys-
ical analysis for both solutions is given in Sect. 4. The Sect. 5
contains the final concluding remarks for both solutions.

2 Einstein field equations in the framework
of gravitationally decoupled system

We take a spherically symmetric static fluid distribution that
is locally anisotropic and bounded by a spherical surface �.
The corresponding spacetime is given by the following line
element in the Schwarzschild-like coordinate as,

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(sin2 θdφ2 + dθ2), (1)

where, ν(r) and λ(r) are the metric functions. The gravi-
tationally decoupled Einstein field equations satisfying the
metric (1) can be given by,

Gi
j = Ri

j − 1

2
δij R = T i

j , (2)

where,

T i
j = T̂ i

j + β	i
j , (3)

where 	i
j denotes an unknown source introduced by grav-

itational decoupling constant β. To describe the internal
structure of the self-gravitating system corresponding to the
source T i

j , we consider the physical content of the spacetime
to be filled by anisotropic matter distribution with energy den-
sity ε, radial pressure Pr and tangential pressure P⊥. More-
over, the energy-momentum tensor T i

j is written as,

T i
j = ε ui u j − P Ki

j + �i
j , (4)

where

P = Pr + 2P⊥
3

; �i
j = �

(
ξ iξ j + 1

3
Ki

j

)
;

� = Pr − P⊥; Ki
j = δij − uiu j , (5)

and ui (four-velocity vector) and ξ i (unit space like vector)
are given by {i = 0, 1, 2, 3},
ui = (e−ν/2, 0, 0, 0) and ξ i = (0, e−λ/2, 0, 0), (6)

such that ξ i ui = 0 and ξ iξi = −1. Then the components of
the energy-momentum tensor for the spherically symmetric
line element (1) are,

T 0
0 = ε, T 1

1 = −Pr , T 2
2 = T 3

3 = −P⊥, (7)

and then Einstein field equations (2) read as,

ε = 1

8π

[
1

r2 − e−λ

(
1

r2 − λ′

r

) ]
, (8)

Pr = 1

8π

[
− 1

r2 + e−λ

(
1

r2 + ν′

r

) ]
, (9)

P⊥ = 1

8π

[
e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

) ]
, (10)

where primes denote the derivatives with respect to r . From
the Eqs. (8)–(10), we easily find the hydrostatic equilibrium
equation reads

dPr
dr

= −ν′

2

(
ε + Pr

) + 2(P⊥ − Pr )

r
, (11)

The above equation is called the generalized Tolman–
Oppenheimer–Volkoff equation for anisotropic matter dis-
tribution. Furthermore, the mass function m(r) is given by,

R3
232 = 1 − e−λ = 2m

r
, (12)

which is equivalent as,

m(r) = 4π

∫ r

0
x2ε(x)dx, (13)

Furthermore, we find ν′ using Eqs. (6) and (9),

ν′ = 2m + 8π r3Pr
(r − 2m)

, (14)

Then TOV equation (11) can be recast as,

dPr
dr

= −m + 4π r3Pr
(r − 2m)

(
ε + Pr

) + 2(P⊥ − Pr )

r
, (15)

On the other hand, the interior metric should be joined
smoothly with the exterior metric on the boundary surface
r = R which means that we require the continuity of the
first and the second fundamental forms across the boundary
surface. The vacuum Schwarzschild solution describes the
exterior spacetime, which is:

ds2=
(

1−2M

r

)
dt2 − dr2(

1 − 2M
r

) − r2(dθ2 + sin2 θdφ2).

(16)

The following junction conditions arise from using the first
and second fundamental forms,

1 − 2M

R
= eν(R), (17)

1 − 2M

R
= e−λ(R), (18)

Pr (R) = 0, (19)

The above conditions (17)–(19) are necessary and sufficient
for the matching of two spacetime metrics at the boundary
surface r = R. Before employing the gravitational decou-
pling technique, we assume that the matter distributing inside
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the spacetime for T̂ i
j is also anisotropic with energy density

ρ, radial pressure pr and tangential pressure pt depending
on spacetime geometry μ and η. Then,

T̂ i
j = ρ χ i χ j − Ps h

i
j + �̂i

j , (20)

where

Ps = pr + 2p⊥
3

; �̂i
j = �s

(
ζ iζ j + 1

3
hij

)
;

�s = pr − pt ; hij = δij − χ iχ j . (21)

and χ i (four-velocity vector) and ζ i are given by,

χ i = (e−η/2, 0, 0, 0) and ζ i = (0,
√

μ, 0, 0), (22)

such that ξ iζi = 0 and ζ iζi = −1. Then,

ε = ρ + β	0
0, Pr = pr − β	1

1, P⊥ = pt − β	2
2. (23)

In order to see the general effect of the extra source 	i
j on the

seed source Ti j , we apply the gravitational decoupling using
a complete geometric deformation (CGD) methodology. To
apply this, we transform the metric functions eλ and eν [55]
as,

ν(r) = η(r) + β h(r), (24)

e−λ(r) = μ(r) + β f (r). (25)

where, f (r) and h(r) are the geometric deformation func-
tions along radial and temporal metric components, respec-
tively. Due to the CGD, both deformation functions must be
non-zero i.e. f (r) �= 0 and h(r) �= 0. Then under these
transformations, we get the two sets of equations as:

8πρ = 1 − μ

r2 − μ′

r
, (26)

8πpr = μ − 1

r2 − μη′

r
, (27)

8πpt = μ

(
η′′

2
+ η′2

4
+ η′

2r

)
+

(
η′μ′

4
+ μ′

2r

)
, (28)

and

8πρ	 = −β

(
f ′

r
+ f

r2

)
, (29)

8πp	
r = β

[
f

(
ν′

r
+ 1

r2

)
+ μ h′

r

]
, (30)

8πp	
t = β

[
f

2

(
ν′′ + ν′2

2
+ ν′

r

)
+ β f ′

2

(
ν′

2
+ 1

r

)

+μ

4

(
2h′′ + βh′2 + 2 h′

r
+ 2η′h′) + μ′ h′

4

]
. (31)

where ρ	 = β 	0
0, p	

r = −β 	1
1, and p	

t = −β 	2
2, and

the corresponding hydrostatic equilibrium equations read as,

dpr
dr

= −ms + 4π r3 pr
(r − 2ms)

(
ρ + pr

) − 2�s

r
, (32)

and

dp	
r

dr
= −m + 4π r3Pr

(r − 2m)

(
ρ	 + p	

r

)

−βh′

2

(
pr + ρ

) − 2�	

r
. (33)

where �	 = (p	
r − p	

t ) and mass function ms for seed
system is defined by,

ms(r) = r

2
(1 − μ) = 4π

∫ r

0
x2 ρ(x)dx, (34)

Then

m = ms − β r

2
f (r). (35)

Furthermore, it is worth mentioning that both sources T̂i j
and 	i j can be successfully de-coupled as long as there is
an exchange of energy between them, and the corresponding
energy exchange �E between these sources can be given as
[55],

�E = βh′

2

(
pr + ρ

)
, (36)

According to the definition proposed by Herrera [19,20],
the gravitationally decoupled mass functionm(r) can be writ-
ten in terms of the homogeneous energy density and change
induced by density inhomogeneity as,

m(r) = 4π

3
ε − 4π

3

∫ r

0
r̂3 ε′dr̂ , (37)

Using Eq. (23), we can write

m(r) = ms(r) + β m	(r), (38)

where,

ms(r) = 4π

3
ρ r3 − 4π

3

∫ r

0
r̂3 ρ′dr̂ , (39)

m	(r) = 4π

3
	0

0 r
3 − 4π

3

∫ r

0
r̂3

[
	0

0

]′
dr̂ . (40)

and the solution of the seed system (26)–(28) can be given
by the following line element,

ds2 = eη(r)dt2 − μ−1(r) dr2 − r2(sin2 θdφ2 + dθ2), (41)

Furthermore, Tolman proposed the definition of the mass
function for a spherically symmetric static spacetime that
describes the energy content of a fluid sphere as,

mT = 4π

∫ r
�

0
r̂2 e(ν+λ)/2 (T 0

0 − T 1
1 − 2T 2

2 ) dr̂ , (42)

which can be written as (see for more details [19,20])

mT = (mT )�

(
r

r�

)3

− r3
∫ r

�

r

e(ν+λ)/2

r̂

×
[

8π(P⊥ − Pr ) + 4π

r3

∫ r

0
r̂3 ε′dr̂

]
dr̂ , (43)
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3 Complexity factor and associated scalars in the
framework of gravitational decoupling

Herrera recently proposed a definition of complexity in stellar
systems which arises from the orthogonal splitting of the Rie-
mann tensor in terms of scalar structures. These scalars usu-
ally connect the local anisotropy of the radial and transverse
stresses with the density inhomogeneity to the Tolman mass
corresponding to a static, bounded stellar structure. These
scalars are given,

XT = 8π ε = Xs
T + β X	

T , (44)

XT F = 4π

r3

∫ r

0
r̂3 ε′dr̂ = Xs

T F + β X	
T F , (45)

YT = 4π(ε + 3Pr − 2�) = Y s
T + β Y	

T , (46)

YT F = 8π� − 4π

r3

∫ r

0
r̂3 ε′dr̂ = Y s

T F + β Y	
T F , (47)

where,

Xs
T = 8πρ, X	

T = 8π	0
0, Xs

T F = 4π

r3

∫ r

0
r̂3 ρ′dr̂ ,

X	
T F = 4π

r3

∫ r

0
r̂3 [	0

0]′dr̂ , Y s
T = 4π(ρ + 3pr − 2�s),

Y	
T = 4π

[
	0

0 − 3	1
1 − 2�	

]
,

Y s
T F = 8π�s − 4π

r3

∫ r

0
r̂3 ρ′dr̂ ,

Y	
T F = 8π�	 − 4π

r3

∫ r

0
r̂3 [	0

0]′dr̂ .

Here, the scalar YT F is referred to as the complexity factor
of the spherically symmetric fluid distribution. The Tolman
mass (mT ) can be written in terms of complexity factors,

mT = (mT )�

(
r

r�

)3

+ r3
∫ r

�

r

e(ν+λ)/2

r̂
Y s
T Fdr̂

+β r3
∫ r

�

r

e(ν+λ)/2

r̂
Y	
T Fdr̂ , (48)

The system of equations (26)–(28) and (29)–(31) contain
10 unknown parameters and here is the primary motive to
solve them for self-gravitating compact objects. In order to
get started in solving this system of governing equations, we
will first invoke the Embedding Class I condition (Karmarkar
condition). Following this, the condition of vanishing com-
plexity factor i.e. YT F = 0 will be used to solve the second
system and obtain the expression of the deformation function
f (r) Prior to the detailed discussion of the solution, let us
briefly shed light on the embedding Class I condition, or the
Karmarkar condition, which can be expressed by the follow-
ing equation containing the Riemannian components,

R1212R3030 + R1220R1330 = R1010R2323, (49)

Here, R2323 �= 0. Under the spacetime (41), the above Kar-
markar condition (49) gives a differential equation of the
form,

(2η′′ + ξ ′ η′) (μ − μ2) + μ′ η′ = 0, where

μ(r) �= 1 for r �= 0. (50)

The following relation is derived from the solution of the
Eq. (50),

μ(r) = 1/
(
1 + F η′2eη(r)), (51)

with F being an arbitrary constant of integration. Now we
will use well-defined and known metric functions along with
vanishing complexity factor condition to discuss the solution.
In our model, we have considered the Kuchowicz metric for
η(r) which is discussed in the next section:

3.1 Complete deformed Kuchowicz model in the
framework of vanishing complexity factor

We have considered a well-defined Kuchowicz metric func-
tion for η(r) which is given by,

η(r) = 2Ar2 + ln B, (52)

with A being a constant having length−2 dimension and B
being dimensionless. It must be noted that several researchers
have used this form of the metric function for obtaining solu-
tions to Einstein’s field equations for self-gravitating com-
pact stars [88–91]. The potential μ(r) is obtained by plugging
Eq. (52) into Eq. (51),

μ(r) = 1

(1 + D Ar2 eAr2
)
, (53)

with D = 4 F A. The physical parameters pr (r), pt (r), and
ρ(r) are obtained by plugging Eqs. (52) and (53) into the
system of equations of motion (26)–(28),

ρ(r) =
ADeAr

2
(
Ar2

(
DeAr

2 + 2
)

+ 3
)

(
ADr2eAr2 + 1

)2 , (54)

pr (r) = −
A

(
DeAr

2 − 4
)

ADr2eAr2 + 1
, (55)

pt (r) =
A

(
Ar2 + 1

) (
DeAr

2 (
2Ar2 − 1

) + 4
)

(
ADr2eAr2 + 1

)2 . (56)

Now let us focus on the second section where the θ -sector
depends on the deformation functions f (r) and h(r). Several
methodologies can be applied to solve the second system, but
our motivation is to use the concept of vanishing complexity
factor condition (YT F = 0) for Ti j system and non-vanishing
complexity factor (Y s

T F �= 0) for Ti j system to obtain the
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solution. In this scenario, we have,

YT F = 8π� − 4π

r3

∫ r

0
x3 [ε]′dx = Y s

T F + Y θ
T F = 0, (57)

where β = 1 1[93]. Here the complexity factors for the seed
system and θ system are denoted by Y s

T F and Y θ
T F respec-

tively. Now, a differential equation in f (r) of the following
form is obtained by using the Eqs. (26)–(31) with Eq. (57),

h′2μr + 2r(h′′μ + (η′′ + h′′) f − 2Y s
T F ) + (η′ + h′)

×( f ′r − 2 f ) + 2h′μ(η′r − 1) + (η′ + h′)2 f r = 0,

(58)

As it is seen from Eq. (47), the complexity factor Y s
T F is

dependant on the seed energy density (ρ) and seed pressure
components (pr and pt ). The the expression for Y s

T F can be
cast as,

Y s
T F = −

2A2r2
(
DeAr

2 (
Ar2 − 1

) + 2
)

(
ADr2eAr2 + 1

)2 , (59)

After plugging in Y s
T F and the metric functions ξ(r), μ(r)

into the Eq. (58), we still need to determine the deformation
functions f (r) and h(r). Therefore, we must need one more
condition to solve this equation. Due to the non-linear nature
of Eq. (58), we assume a specific form of temporal deforma-
tion function h(r) = 2Ar2 to solve this equation. Now we
obtain f (r) as,

f (r) = Ce−4Ar2 − 1

ADr2eAr2 + 1
, (60)

with C being an arbitrary constant of integration. For obtain-
ing the constant F , the physically viable condition of the
metric functions is used. According to this, the metric func-
tion eλ(r) = μ(r)+β f (r) must be unity (e−λ(0) = 1) at the
center . This condition also requires the deformation function
to be zero at the center, i.e. f (0) = 0, from which we can
find C = 1. Then, the expressions for the modified radial
components for 	-sector, i.e. ρ	, p	

r , and p	
t become,

eλ(r) = ADr2eAr
2 + 1

1 + β
(
ADr2e−3Ar2 + e−4Ar2 − 1

) , (61)

eν(r) = Be2A(β+1)r2
, (62)

ρ	 = β

⎡
⎢⎣− 2A2Dr2eAr

2

(
ADr2eAr2 + 1

)2 − 2ADeAr
2

(
ADr2eAr2 + 1

)2

+ 1

ADr4eAr2 + r2
+ 8Ae−4Ar2 − e−4Ar2

r2

]
, (63)

p	
r = β

[(
4A(β + 1) + 1

r2

)(
e−4Ar2 − 1

ADr2eAr2 + 1

)

1 For β = 0, Y θ
T F vanishes as both �θ and ρθ are multiples of β.

+ 4A

ADr2eAr2 + 1

]
, (64)

p	
t = −βA

[2ADr2eAr
2
(
Ar2 + 1

)
(
ADr2eAr2 + 1

)2 −
4

(
A(β + 2)r2 + 1

)

ADr2eAr2 + 1

−
(

2A(β + 1)r + 1

r

)⎛
⎜⎝ De5Ar2

(
Ar2 + 1

)
(
ADr2eAr2 + 1

)2 − 4

⎞
⎟⎠

×e−4Ar2 + p	
t1

]
, (65)

where, p	
t1 is mentioned in the Appendix. Moreover, the new

form of complexity factor YT F under the radial metric com-
ponent (61) is,

YT F=
2A2

(
β2 − 1

)
r2e−4Ar2

(
2βYT F1+e4Ar2

YT F2

)
(
ADr2eAr2+1

)2 .

(66)

where YT F1 and YT F2 are given in the Appendix. Using the
above expression, we can observe the influence of the decou-
pling constant β on the complexity factor. However YT F van-
ishes at β = 1. Moreover, the expressions for other scalars
are,

XT F = D

[
A2De2Ar2 (

Ar2 + 1
)

(
ADr2eAr2 + 1

)2 − A2eAr
2

ADr2eAr2 + 1

]

×r2(β − 1) + βe−4Ar2 (
4Ar2 + 1

) − β

r2 , (67)

YT = 1(
ADr2eAr2 + 1

)2

[
2A(β + 1)e−4Ar2

YT 1

]
, (68)

XT =
ADr2e5Ar2

(
Ar2

(
DeAr

2 + 2
)

+ 3
)

+ XT 1(
ADr3eAr2 + r

)2
e4Ar2

. (69)

where the coefficients in the above expressions are high-
lighted in the Appendix.

Using the boundary conditions (17)–(19), we find the con-
stant D, M, and B for solution (3.1) as

D = β(e4AR2 − 1)(1 + 4AβR2) − 4βAR2 − 4AR2e4AR2

eAR2 AR2
(

4Aβ2R2 + 4AβR2 − e4AR2 + β
) ,

(70)

M = R

2

[
1 − 1

(1 + D Ar2 eAr2
)

− β M1(R)
]
, (71)

B = −
(
−AβDR2eAR

2 + βe4AR2 − e4AR2 − β
)

(1 + ADR2eAR2
) e2A(β+1)R2+4AR2 , (72)

where, M1(R) = e−4AR2 − 1
ADR2eAR2 +1

.
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3.2 Isotropic solution for Kuchowicz model via
gravitational decoupling

In this section, the novel approach of Casadio et al. [92] will
be used to obtain the isotropic gravitationally decoupled solu-
tion for the effective energy-momentum tensor Ti j from the
corresponding anisotropic system (8)–(10). As the effective
system consists of two sub-systems for energy-momentum
tensor T̂i j and θi j . In this context, through source θi j , it is
possible to transform an anisotropic system (26)–(28) for T̂i j
with �s �= 0 to an isotropic system (8)–(10) given by Ti j
with � = 0 [92]. It is evident that by setting the value of β

to be β = 0 and β = 1, the anisotropic system (26)–(28) and
isotropic system (8)–(10) can be obtained respectively, and
the transformation can be controlled by this setting. In our
case, to achieve the isotropization, β is fixed as β = 1, and
for this, � = 0 gives,

�s = −�θ �⇒ �s = −(pθ
r − pθ

t ). (73)

Now we obtain the following non-linear differential equation
by using Eqs. (26)–(31) into Eq. (36) as

4 + 2μ′r + μ′η′r2 + β2h′2μr2 + μ(η′2r2

−4 − 2η′r + 2η′′r2)

+β f (−4 − 2ν′r + 2ν′′r2 + ν′2r2)

+βr [2h′′μr + f ′(2 + ν′r)
+h′(−2μ + μ′r + 2η′μr)] = 0, (74)

As we can see that the above equation depends on ξ(r), μ(r),
f (r), and h(r). Then using Class I solution from Eq. (51)
together with h(r) = 2Ar2 into Eq. (74), we find the defor-
mation function f (r) of the form,

f (r) = −Ar2e−4Ar2
(

4ExpIntegralEi
(
4Ar2 + 1

)
e

− De5Ar2

ADr2eAr2 + 1

)
+ Cr2e−4Ar2

, (75)

where, C is a constant of integration. Then the effective
energy density and effective pressures are,

ε(r) =
�1(r) + ADe5Ar2

[
Ar2

(
DeAr

2 + 2
)

+ 3
]

(
1 + ADr2eAr2)2

e4Ar2
, (76)

Pr (r) = 1

1 + AD1eAr2
)r2

[
be−4Ar2−1

[
4A(b + 1)r2 + 1

]

×�2(r) + 4Ab + A
(

4 − DeAr
2
) ]

, (77)

P⊥(r) =
A

(
Ar2 + 1

) (
DeAr

2 (
2Ar2 − 1

) + 4
)

(
ADr2eAr2 + 1

)2

+β �3(r). (78)

Using the boundary conditions (43)–(45), we find the con-
stant D, M, and B for solution (3.1) as

D = 4Ab
(
4A(β + 1)R2 + 1

)
Ei

(
4AR2 + 1

) − D1(R)

A eAR2 [
e D2(R) − 4AβR2D3(R)

] ,

(79)

M = R

2

[
1 − 1

(1 + D Ar2 eAr2
)

− β M2(R)
]
, (80)

B =
e−2A(β+1)r2

(
βADr2eAr

2
f (R) + β f (R) + 1

)
(1 + DAr2eAr2

)
. (81)

where

M2(R) = −AR2e−4AR2
(

4ExpIntegralEi
(
4AR2 + 1

)
e

− De5AR2

ADR2eAR2 + 1

)
+ C2e−4AR2

.

4 Physical analysis

4.1 Analyses of basic thermodynamical properties
including energy density, pressure components, and
anisotropic factor

4.1.1 For solution 3.1

From Fig. 1 it can be seen that the energy density ε(r) is
maximum at the center and it gradually decreases towards
the surface. Moreover, as the value of β increases, the energy
density increases with it as well. When we look into the radial
and tangential pressure components, we observe that both
of them are maximum at the center, while keep decreasing
towards the surface. It is seen that both radial and tangential
pressures increase with an increase in β. Furthermore, the
radial pressure Pr (r) for different β values converge at the
surface and the tangential pressure P⊥(r) do not. We note that
the anisotropy factor, � is zero at the center and increases
monotonically as one moves towards the surface and is max-
imum at the surface. Furthermore, an increase in β results in
a corresponding increase in �.

4.1.2 For solution 3.2

However, for the second solution, we see some interesting
features in the plot of energy density ε(r). From Fig. 2 it
can be seen that although the basic nature of the variation
is quite similar to the previous solution, here for β = 0.8
and β = 1.0, we see some anomalies in the behavior of the
curves. Instead of monotonically decreasing, in these cases,
the curves first increase in the range of r � 4 to r � 6 and
then decrease. This shows, that as the β approaches 1, the
model starts to get unstable, so it can be said that for higher
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Fig. 1 Top panels: Left figure shows the behavior of energy density
(ε(r) × 104[km−2]) while right figure describe the behavior of radial
pressure (Pr × 104[km−2]) versus the radial coordinate r/R for dif-
ferent values of β. Bottom panels: The behavior of tangential pres-

sure (P⊥ × 104[km−2]) and anisotropy (�× 104[km−2]) versus radial
parameter r are shown in left and right panels, respectively. We use
A = 0.0026 km−2 to plot above figures for solution 3.1

complexity factors, the model has more stability. However,
for the second solution as well, the behavior of the radial pres-
sure Pr (r), tangential pressure P⊥(r), and the anisotropic
factor � behave as they do in the previous solution. Further-
more, we can see that the magnitude of � decreases as β

increases, and anisotropy totally vanishes at β = 1, which
leads to an isotropic model.

4.2 Complexity factor YT F and it’s behaviour

4.2.1 For solution 3.1

The behavior of the complexity factor YT F has been stud-
ied along with its variation with β, and the ensuing trend is
plotted in Fig. 3. It is seen that for β = 0, the complexity
factor vanishes, which is the limiting condition of the vanish-
ing complexity factor. Alongside this, it can be seen that the
curves of YT F for other values of β follow a similar pattern.
The complexity factor is zero at the center of the configura-
tion and it gradually increases and reaches its maximum at
some point, and then starts decreasing towards the surface.
The zero complexity at the center is expected, as it was shown
in the previous subsection that the anisotropic factor is also

zero at the center. Moreover, it can be seen that the complex-
ity factor increases with the increase in β, only except for
the β = 0.2 curve, which leads to the β = 0.0 curve until it
attains its peak. Also, it can be seen that the position of the
peaks in the YT F curves shift slightly towards the surface as
we increase the value of β.

4.2.2 For solution 3.2

For the second solution, from Fig. 4 left panel, it can be
seen that the complexity factorYT F shows markedly different
behavior when compared to the first solution. We note that the
behavior YT F is highly sensitive to β. For β = 0.0, β = 0.2,
and β = 0.4, the curves start at zero, then increase steadily,
and finally near the surface the rate of increase decays. While,
for β = 0.6, the curve keeps on increasing at the same rate
near the surface. For β = 0.8 and β = 1.0, we see that
some part of the YT F curves attain negative values, i.e. they
start at zero at the center, then go negative up to r � 5 for
β = 0.8 curve and r � 7 for β = 1.0 curve, and then increase
and keep increasing as one moves towards the surface. This
negative value of the complexity factor for β = 0.8 and
β = 1.0 shows, that for these two values of β = 0.8 and β,
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Fig. 2 Top panels: Left figure shows the behavior of energy density
(ε × 104[km−2]) while right figure describe the behavior of radial
pressure (Pr × 104[km−2]) versus the radial coordinate r/R for dif-
ferent values of β. Bottom panels: The behavior of tangential pres-

sure (P⊥ × 104[km−2]) and anisotropy (�× 104[km−2]) versus radial
coordinate r/R are shown in left and right panels, respectively. We use
A = 0.0021 km−2,C = 0.0002 km−2 to plot above figures for isotropic
solution 3.2

Fig. 3 Left panel: The behavior of complexity factor (YT F ×
104[km−2]) versus radial parameter r for different β, and Right panel:
The behavior of density inhomogeneity (XT F × 104[km−2]) versus

radial parameter r with different β. The above figures are plotted for
solution 3.1 with the same numerical values as used in Fig. 1

the solution is quite unstable. This was indicated in the plot
of energy density ε(r) as well, as was discussed in the earlier
subsection.

4.3 The density inhomogeneity

4.3.1 For solution 3.1

The behavior of the density inhomogeneity (XT F ) is studied
and plotted in the right panel of Fig. 4. It can be seen that
while XT F stays negative throughout the model, it is zero at
the center, and its magnitude increases as one moves toward
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Fig. 4 Left panel: The behavior of complexity factor (YT F ×
104[km−2]) versus radial parameter r for different β, and Right panel:
The behavior of density inhomogeneity (XT F × 104[km−2]) versus

radial coordinate r/R with different β. The above figures are plotted
for isotropic solution 3.2. We set the same numerical values as used in
Fig. 2

the surface. The vanishing of XT F at the center of the matter
distribution indicates the homogeneity of the density in this
region. Moreover, it is also seen that with the increase of the
value of β, XT F decreases.

4.3.2 For isotropic solution 3.2

As we look into the second solution, we can see from the right
panel of Fig. 4 that although the basic nature of the curves
is the same as the previous solution, for β = 0.8 and β =
1.0, we observe anomalies. Here, the density inhomogeneity
attains positive values after starting from zero at the center up
to r � 5 for β = 0.8 curve and r � 7 for β = 1.0 curve, and
then steadily decreases and becomes negative. This shows
again, that as β approaches 1, the solutions become unstable.

4.4 The strong energy condition

4.4.1 For solution 3.1

In the Fig. 5 left panel, the strong energy condition in terms of
the scalar YT has been studied. It is seen that YT is maximum
at the center and decreases monotonically as one moves radi-
ally towards the stellar surface. Moreover, with the increase
in β, its value increases.

4.4.2 For solution 3.2

The variation in YT remains similar in the second solution as
well, as compared to the first solution as can be seen from
the Fig. 6 left panel. This indicates, that for both models, the
strong energy condition is satisfied throughout the equilib-
rium configuration.

4.5 The homogeneous energy density distribution

4.5.1 For solution 3.1

The homogeneous energy density distribution in terms of the
scalar XT has been studied in the Fig. 5 right panel, and it is
seen that the homogeneity in energy density is maximum at
the center and it gradually decreases as we move radially out-
wards. Also, with the increase in β, the energy homogeneity
increases.

4.5.2 For isotropic solution 3.2

From the Fig. 6 right panel, the basic nature of the homoge-
neous energy density distribution remains the same for the
second solution as well, but as seen in the analysis of ε(r),
YT F , XT F , anomalies are found here as well for β = 0.8 and
β = 1.0. For these values of β, the curves initially increase
up to r � 5 and then start decreasing. We expect a monoton-
ically decreasing trend from the centre outwards. This again
shows that this solution has some instability as β approaches
1.

4.6 The variation of mass (M/M	) versus the complexity
factor YT F

4.6.1 For solution 3.1

From Fig. 7 it can be seen that the mass increases as the
complexity factor increases. And the relationship between
them is linear. In addition, the increase in the value of β is
accompanied by a corresponding increase in mass.
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Fig. 5 The behavior of scalars (YT × 104[km−2])-left panel and (XT × 104[km−2])-right panel describe the strong energy condition and homo-
geneous energy density distribution versus r for solution 3.1. We set same numerical values as used in Fig. 1

Fig. 6 The behavior of scalars (YT × 104[km−2])-left panel and (XT × 104[km−2])-right panel describe the strong energy condition and homo-
geneous energy density distribution versus r for isotropic solution 3.2. We set same numerical values as used in Fig. 2

Fig. 7 The variation of Mass (M/M	) versus complexity factor YT F
for solution 3.1

4.6.2 For solution 3.2

For the second solution, it is noticed from Fig. 8 that although
the nature of variation of the mass with the complexity factor
remains the same, here the variation with β is completely dif-
ferent. Unlike the previous solution, here the mass decreases
with the increasing value of β.

Fig. 8 The variation of Mass (M/M	) versus complexity factor YT F
for solution 3.2

4.7 Energy exchange

In this section, we will discuss an interesting physical feature
of the solution which is the exchange of energy between the
generic fluid 	i j and the fluid matter distribution (T̂i j ) given
by Eq. (36). The transfer of energy between fluid distributions
can be interpreted according to the positive and negative val-
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Fig. 9 Left panel: Density plot of the exchange of energy for the solution 3.1 for A = 0.0026. Right panel: Density plot of the exchange of energy
for A = 0.0021 and C = 0.0002 for the solution 3.2

ues of �E as: (i) if �E > 0, then the generic fluid is giving
the energy to the environment, (ii) if �E < 0, then the per-
fect/anisotropic fluid is giving the energy. This transition of
the energy exchange is shown on the β−r plan via Fig. 9. The
left panel of Fig. 9 corresponding to the solution 3.1 shows
that �E > 0 for all values of β ≤ 0.95 and r ∈ [0, 12] but
when β > 0.951, then �E < 0 near the boundary which
means that anisotropic fluid is giving the energy near the
boundary in the context of vanishing complexity factor. If
we look at the right panel of Fig. 9, the exchange of energy
�E is positive for all values of β ∈ (0, 1] and it is max-
imum inside the stellar model at β = 1. This implies that
the generic fluid 	i j is giving the maximum energy between
r ≈ 6 to 10 for decoupling constant β ≈ 1. A systematic
approach for the Embedding Class I solution generated by
isotropization technique and anisotropic solution in the con-
text of null complexity factor is mentioned in the flow chart
(Fig 10).

5 Concluding remarks

After a detailed physical analysis, it was found that for
anisotropic solution 3.1, all the thermodynamical properties
behave as expected. From Fig. 1, it can be clearly seen, that
the energy density, radial, and tangential pressure compo-
nents are maximum at the center and then decay radially
outwards, while the anisotropic factor starts as zero at the
center and then increases as one move towards the surface.
This shows that the energy density, as well as the pressure, are
maximum at the core. Furthermore, near the center, the mat-
ter distribution is largely isotropic, but as we move toward the
surface, the energy density decreases, as well as the matter
density becomes increasingly anisotropic. All of the param-

eters ε, Pr , P⊥, � increase with the increase of the value of
β. While for the isotropic solution 3.2, from Fig. 2 we see
some changes compared to the solution 3.1. Firstly, here we
see that for the β = 0.8 and β = 1.0, the energy density
curves act differently. Here, they start with a lower value,
then increase to a peak, and then steadily decrease, while
they should have started with a maximum value at the center
and then decrease steadily. Moreover, unlike the solution 3.1,
here the anisotropic factor � decreases with the increase in
β.

As we look into the complexity factor (YT F ), for the solu-
tion 3.1, it starts at zero and then increases in the radially
outward direction, and after attaining a peak, it decreases
(Fig. 3). Also, it must be noted, that YT F decreases with the
increase in β. While for 3.2, all the YT F curves start with
zero as well, but we see anomalies for β = 0.8 and β = 1.0
values, as in those cases, the complexity factor becomes neg-
ative for some part and then increases (Fig. 4).

The density inhomogeneity (XT F ) for solution 3.1 is
found to be maximum at the center and then gradually
decreases as one moves outwards (Fig. 3). It remains neg-
ative throughout the model. Moreover, it decreases with the
increase in β and the curves tend to diverge at the sur-
face. However, for solution 3.2, anomalies can be seen from
β = 0.8 and β = 1.0, as the curves for these values of β

attain positive values after starting from zero and then go
negative and decrease afterward (Fig. 4). However, the other
curves behave as expected. Moreover, unlike the previous
solution, here the values of XT F increase with the increase
in β, and the curves tend to converge at the surface.

As we analyze the strong energy condition in terms of
the scalar YT , it can be found that for both the solutions, the
nature is similar (Fig. 5 left panel and Fig. 6 left panel). The
curves start with a maximum value at the center and then
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Fig. 10 The flow chart of the Embedding Class I solution generated by isotropization technique and anisotropic solution in the context of null
complexity factor

gradually decay in the outward direction. While, for both
solutions, YT increases with the increase in the value of β.

Shedding light into the homogeneous energy density
based on the scalar quantity XT , it can be found (Fig. 5 right
panel) that for the solution 3.1, the curves start at a maximum
value at the center and the decrease as we move outward. It
shows that the energy is most homogeneous near the center.
Also, the value of XT increases with the increase in β. For
the solution 3.2 however, we see that (Fig. 6 right panel)
here β = 0.8 and β = 1.0 curves behave differently. The
curves for these values ofβ increase initially, then after attain-
ing maximum value, then start decreasing steadily afterward,
while they are expected to start at a maximum value at the
center. The nature of both the YT curves is similar to the
energy density (ε) curves.

Analyzing the variation of mass (M/M	) with the com-
plexity factor YT F , it can be ascertained from (Fig. 7) and
(Fig. 8) that for both the solutions, the mass varies almost
linearly with YT F . So, with the increase in the complexity
factor, mass increases. However, for solution 3.1, the mass
increases with the increase in β, but, for solution 3.2, the
mass decreases with the increase in β.

It must be noted that for the isotropic solution 3.2, the
anomalies found for the energy density (ε), complexity factor
(YT F ), density inhomogeneity (XT F ) and the homogeneous
energy density XT for the higher β values (β = 0.8 and
β = 1.0). This indicates that the models become unstable
as β approaches 1. We are led to conclude that the pres-
ence of anisotropy in self-gravitating systems renders the
model stable. In the case of vanishing anisotropy, the model
becomes unstable. The instability of the pressure isotropy
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condition has been demonstrated by Herrera [93] with regard
to bounded stellar configurations in GR.

Acknowledgements SKM is thankful for continuous support and
encouragement from the administration of University of Nizwa. The
author GM is very thankful to Prof. Gao Xianlong from the Depart-
ment of Physics, Zhejiang Normal University, for his kind support and
help during this research. Further, G. Mustafa acknowledges Grant No.
ZC304022919 to support his Postdoctoral Fellowship at Zhejiang Nor-
mal University.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The current work
is purely theoretical and hence no data is used or included.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix

p	
t1 = 4(β + 1)

(
A(β + 1)r2 + 1

) (
1

ADr2eAr2 + 1
− e−4Ar2

)
,

YT F1 =
(
ADr2e5Ar2 − A2D2r4e2Ar2 − 2ADr2eAr

2 + e4Ar2 − 1
)

,

YT F2 =
[
DeAr

2
(
Ar2 − 1

)
+ 2

]
,

YT 1 = 2Aβ2r2
(
A2D2r4e2Ar2 + 2ADr2eAr

2 − ADr2e5Ar2

−e4Ar2 + 1
)

+ β
(
A2D2r4e2Ar2

(3 − 2Ar2) + ADr2e5Ar2

×
(
Ar2 − 2

)
− 2ADr2eAr

2
(

2Ar2 − 3
)

− 2Ar2 − 3e4Ar2

+3
)

+ e4Ar2
[
A2Dr4eAr

2 + 2Ar2
(
DeAr

2 + 1
)

+ 3
]
,

XT 1 = β
(
A2D2r4e2Ar2(

8Ar2 − 1
) − ADr2e5Ar2

(2Ar2 + 1)

+2ADr2eAr
2
(8Ar2 − 1) + 8Ar2 + e4Ar2 − 1

)
,

�1(r) = 1

4eAr2 + e

[
β
(
e
(
C(32A2r4 − 4Ar2 − 3)(ADr2eAr

2 + 1)2

+Ae4Ar2
(
AD2r2e2Ar2

(32A2r4 − 4Ar2 − 1) + DeAr
2

×(56A2r4 − 14Ar2 − 3) + 32Ar2
))

− 4A(32A2r4 − 4Ar2

(ADr2eAr
2 + 1)2ExpIntegralEi

(
4Ar2 + 1

))]
,

�2(r) = e(ACDr2eAr
2 + ADe5Ar2 + C)

−4A(1 + ADr2eAr
2
)ExpIntegralEi(4Ar2 + 1),

�3(r) = −2A2Dr2eAr
2
(Ar2 + 1)

(ADr2eAr2 + 1)2
+ (4Ar2 + 1)−1

(ADr2eAr2 + 1)2

×
[

(2A(b + 1)r2 + 1)

e4Ar2+1

(
4A(16A2r4 − 1)(ADr2eAr

2 + 1)2

×ExpIntegralEi(4Ar2 + 1) − e

×
{
C(16A2r4 − 1)(ADr2eAr

2 + 1)2

+Ae4Ar2
(

16A3D2r6e2Ar2 + DeAr
2
(28A2r4 − 5Ar2 − 1)

+16Ar2
)})]

− 4A(β + 1)r2e−4Ar2
(A(β + 1)r2 + 1)

×
(4AExpIntegralEi

(
4Ar2 + 1

)
e

− ADe5Ar2

ADr2eAr2 + 1
− C

)

+
4A

(
A(β + 2)r2 + 1

)
ADr2eAr2 + 1

,

D1(R) = e
[
4Aβ2CR2 + β(4ACR2 + 4Ae4AR2 + C) + 4Ae4AR2

]
,

D2(R) = e4AR2
(4Aβ2R2 + 4AβR2 + β − 1) + βCR2(4A

×(β + 1)R2 + 1),

D3(R) = (4A(β + 1)R2 + 1)ExpIntegralEi(4AR2 + 1).
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